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Abstract

In the age of big data, the amount of information that applications need to process
often exceeds the computational capabilities of single machines. To cope with this
deluge of data, new computational models have been defined. The MapReduce
model allows the development of distributed algorithms targeted at large clusters,
where each machine can only store a small fraction of the data. In the streaming
model a single processor processes on-the-fly an incoming stream of data, using
only limited memory. The specific characteristics of these models combined with
the necessity of processing very large datasets rule out, in many cases, the adoption
of known algorithmic strategies, prompting the development of new ones. In this
context, clustering — the process of grouping together elements according to some
proximity measure — is a valuable tool, which allows to build succinct summaries
of the input data.

In this thesis we develop novel algorithms for some fundamental problems,
where clustering is a key ingredient to cope with very large instances or is itself the
ultimate target. First, we consider the problem of approximating the diameter of an

undirected graph, a fundamental metric in graph analytics, for which the known exact
algorithms are too costly to use for very large inputs. We develop a MapReduce
algorithm for this problem which, for the important class of graphs of bounded
doubling dimension, features a polylogarithmic approximation guarantee, uses
linear memory and executes in a number of parallel rounds that can be made
sublinear in the input graph’s diameter. To the best of our knowledge, ours is the
first parallel algorithm with these guarantees. Our algorithm leverages a novel
clustering primitive to extract a concise summary of the input graph on which to
compute the diameter approximation. We complement our theoretical analysis
with an extensive experimental evaluation, finding that our algorithm features an
approximation quality significantly better than the theoretical upper bound and
high scalability.

Next, we consider the problem of clustering uncertain graphs, that is, graphs
where each edge has a probability of existence, specified as part of the input. These
graphs, whose applications range from biology to privacy in social networks, have
an exponential number of possible deterministic realizations, which impose a big-
data perspective. We develop the first algorithms for clustering uncertain graphs
with provable approximation guarantees which aim at maximizing the probability
that nodes be connected to the centers of their assigned clusters. A preliminary
suite of experiments, provides evidence that the quality of the clusterings returned
by our algorithms compare very favorably with respect to previous approaches
with no theoretical guarantees.

Finally, we deal with the problem of diversity maximization, which is a funda-
mental primitive in big data analytics: given a set of points in a metric space we are
asked to provide a small subset maximizing some notion of diversity. We provide
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efficient streaming and MapReduce algorithms with approximation guarantees
that can be made arbitrarily close to the ones of the best sequential algorithms
available. The algorithms crucially rely on the use of a k-center clustering primitive
to extract a succinct summary of the data and their analysis is expressed in terms
of the doubling dimension of the input point set. Moreover, unlike previously
known algorithms, ours feature an interesting tradeoff between approximation
quality and memory requirements. Our theoretical findings are supported by the
first experimental analysis of diversity maximization algorithms in streaming and
MapReduce, which highlights the tradeoffs of our algorithms on both real-world
and synthetic datasets. Moreover, our algorithms exhibit good scalability, and a
significantly better performance than the approaches proposed in previous works.
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Chapter 1

Introduction

The last two decades have witnessed an impressive growth in the amount of digital
data produced in an ample spectrum of application domains. Every digital pro-
cess and social media exchange produces large amounts of data. Mobile devices,
sensor networks, and internet-connected appliances are multiplying the amount of
information that is being produced. Nowadays, estimates of the volume of data
produced are in the order of zettabytes (1021 bytes), with a yearly increase rate
of around 40% [FB13]. The effective exploitation of this wealth of data is of great
value to science, business, government, and society in general, and it has been
reckoned as one of the most important scientific challenges of the 21st century. A
term has been coined to identify this phenomenon and the challenges it poses: big

data. In [Lan01], big data is characterized in terms of three properties:

volume: The amount of data is unprecedented, and is increasing at a higher rate
than our ability to process it;

variety: Data comes in a wide array of forms, both structured and unstructured,
including text, video, audio and more;

velocity: Data is generated continuously at a high rate, and we are interested in
extracting useful information almost in real time.

These three properties clearly illustrate how dealing with big data is requiring a
sharp paradigm shift with respect to traditional computing. For example, in main-
stream algorithmics we regard time complexities polynomial in the input size as
feasible. However, when huge datasets have to be processed, even a quadratic run-
ning time becomes impractical. Thus, for computational problems whose state-of-
the-art exact solutions require superlinear time, novel algorithmic strategies must
be designed in order to tackle very large instances, and these strategies should give
up the quest for exact solutions and aim at exposing suitable tradeoffs between ac-
curacy of the returned solution and computational efficiency. In the big data realm,
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CHAPTER 1. INTRODUCTION

space needs to be maintained under control. Algorithmic strategies that attain ef-
ficiency at the expense of a superlinear increase of the memory requirements may
become impractical. Moreover, the analysis of large datasets must often face the
presence of redundant or irrelevant data, which may increase the computational
complexity and obfuscate relevant information, as well as the presence of some
degree of uncertainty in the data, which may weaken the guarantees on the final
results.

Motivated by the above scenario, novel computational frameworks have emerged
in recent years, establishing themselves as standards both in academia and industry
for big data processing. In particular, MapReduce [DG08; KSV10; Pie+12] is one
of the most widely used model for batch processing huge datasets. To address
the challenges posed by big data applications, it leverages the massive amount
of parallelism offered by large clusters made of off-the-shelf medium-power com-
ponents, endowed with large robust mass storage and transparent provision of
fault-tolerance.

Along with new models of computation, some earlier ones have found new
life in the big data era. The streaming model [HRR98] was originally introduced
in the ’90s to process data stored in slow tertiary storage, using only the limited
main memory of a single machine. In this setting, for efficiency, one could only
perform a small number of sequential reads of the data, keeping a small amount
of information in main memory. Nowadays, with distributed filesystems [GGL03;
Shv+10] enabling parallel access to large datasets, and with the consequent intro-
duction of models such as MapReduce, the aforementioned motivating scenario for
the streaming model is becoming less relevant. However, we mentioned how big
data is also characterized by velocity: data is produced at a tremendous rate, and we
want to process it nearly in real time. In this scenario, the streaming model finds
a new application: inputs are provided as a continuous stream of data of possibly
unbounded size, and storing the data for offline analysis may not be feasible or
even desirable. In this case, data analysis must be performed by processing the
data on the fly, and using only a limited amount of local memory.

This thesis focuses on the development of efficient algorithms for three relevant
problems in the big data setting. Our goal is to design efficient algorithms for these
problems, which are practical and feature provable guarantees on the performance
and on the quality of the returned solutions, possibly exposing suitable tradeoffs
with available resources. To assess the practicality of our approaches, for each
problem we complement our theoretical findings with experimental evaluations.

The algorithms we propose share a common approach: the use of clustering as a
tool. Clustering is the process of grouping elements of the input according to some
criterion. In the big data context, clustering lends itself to be used for different
purposes. On the one hand, one can be interested in considering each cluster
separately, examining its elements as they share some common characteristic. On
the other, one can use clustering as a way to build a summary of the input set,
where each cluster is considered as a whole, representing all its elements. In
this thesis we adopt both perspectives on clustering: for one of the problems we
consider we are interested in clustering in itself, to relate elements belonging to the
same cluster; for the other two problems we use clustering to provide summaries
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of the input on which compute approximations. There are several definitions of
clustering, based on the choice of the metric to group elements together. In this
thesis, we concentrate on k-center clustering, which requires to group elements so
as to minimize their distance from some set of centers, that is a suitably chosen
subset of the input. In the analysis of our algorithms, we make use of the notion of
doubling dimension of a metric space, which is the smallest D such that any ball of
radius r can be covered by at most 2D balls of radius 2r.

The first problem we consider is the approximation of the diameter of large
graphs, which is a fundamental primitive in graph analytics, with applications to
a wide variety of networks, such as biological, communication, social, and web
networks. For this problem, several exact algorithms are known. However, when
the size of the graph becomes too large to fit into main memory, and computational
frameworks such as MapReduce need to be used, exact algorithms are ruled out
by their superlinear complexity. We develop a parallel algorithm for approximat-
ing the diameter of large weighted graphs, whose properties make it suitable to
be implemented on distributed platforms such as MapReduce. In particular, our
algorithm employs a clustering strategy to build a small sketch of the input graph
on which to compute the diameter approximation. Our clustering strategy is of in-
dependent interest, and we prove that it provides a polylogarithmic approximation
to the k-center problem. Moreover, we show that our algorithm attains a poly-
logarithmic approximation factor for the graph diameter. On spaces of bounded
doubling dimension, ours is the first approximation algorithm that requires a num-
ber of MapReduce rounds sublinear in the diameter of the graph, using only linear
space. Even on graphs of unknown doubling dimension, experimental evidence
on datasets of up to billions of edges shows that our algorithm is fast and scal-
able, and attains very good approximation ratios. We implemented our algorithms
on the Spark MapReduce engine, contributing the implementation to the public
repository of Spark libraries.

The second problem we study is the clustering of uncertain graphs. These graphs
are used to represent interacting entities where each interaction presents some de-
gree of uncertainty. This uncertainty is encoded in the uncertain graph by assigning
to each edge a probability of existence. For instance, in networks representing the
interactions of proteins, the existence of an interaction is determined through a
noisy experiment: the interaction is then represented as an edge with an existence
probability reflecting the degree of confidence in the measure. Even for uncertain
graphs of moderate size, the exponential number of their possible deterministic
realizations frames the problem in the big data context. The problem of clustering
uncertain graphs is hard for two independent reasons: clustering is NP-hard, and
computing connection probabilities between arbitrary nodes is #P-complete. We
develop clustering algorithms for uncertain graphs, aiming at minimizing a mea-
sure related to the connection probability of nodes belonging to the same cluster.
We also show how to embed a progressive sampling strategy into our algorithm
in order to efficiently and accurately estimate connection probabilities. To the best
of our knowledge, our algorithms for clustering uncertain graphs are the first with
provable guarantees on the quality of the approximation. We also present a pre-
liminary suite of experiments, which shows that our algorithms compare favorably
with previous works.
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Last, we study diversity maximization, which is a fundamental problem in big
data analytics: given a large set of points in a metric space, the goal is to find a
small cardinality subset that maximizes some measure of diversity. Such a subset
can be employed as a small representative summary of the large input point set.
Diversity maximization has several applications, including aggregator websites,
recommendation systems, web search, e-commerce, and facility location. We pro-
pose MapReduce and streaming algorithms for the diversity maximization problem
which expose a tradeoff between the available resources and the quality of the ap-
proximation. Our algorithms are based on the (composable) core-set technique, in
which the diversity is computed on a small subset of the (partitioned) input. In par-
ticular, we use k-center clustering to build our core-sets, leveraging its properties
to ensure the accuracy of the result. With respect to previous works, that pro-
vided constant-approximations irrespective of the available computing resources,
on metric spaces with bounded doubling dimension we obtain significantly better
approximation factors. In MapReduce, our algorithms run in a constant number
of rounds, whereas in streaming they require only one or two passes over the data.
We support our theoretical findings with an extensive suite of experiments, show-
casing the performance and accuracy of our algorithms. These experiments also
provide evidence that our approach is effective also on point sets for which the dou-
bling dimension is unknown. To the best of our knowledge, ours is the first work
to study experimentally the performance of diversity maximization algorithms on
MapReduce and streaming.

Part of this work was done while visiting Brown University (Providence, USA),
as a visiting research fellow, from February to August 2016.

The rest of the thesis is structured as follows. In Chapter 2, we introduce some
common notation, we describe the MapReduce and streaming models, and the
notion of k-center clustering. In Chapter 3, we describe our diameter approxima-
tion algorithm. Our approach to the clustering of uncertain graphs is described
in Chapter 4, while in Chapter 5 we deal with the problem of diversity maximiza-
tion. Finally, in Chapter 6 we summarize our results and we outline a number of
directions for future work. In each chapter we review previous work relevant to
the results being presented. Part of the material of this thesis has been published in
different venues, which are listed in section “Our publications” of the references.
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Chapter 2

Preliminaries

In this chapter we introduce some core concepts that will be used throughout the
thesis. Other preliminary material, specific to particular topics, is deferred to the
relevant chapters.

2.1 Notation and basic concepts

Sets, distances, and spaces. In this dissertation, sets will be denoted by capital
letters, such as C, P, and S. For a set S, the set of all its subsets is denoted as 2S.

We denote with M = (M, dist) a general metric space, which is a set M paired
with a function dist :M×M→ R+0 such that for any x, y ∈M

1. dist(x, y) ⩾ 0

2. dist(x, y) = 0 ⇐⇒ x = y

3. dist(x, y) = dist(y, x)

4. dist(x, y) ⩽ dist(x, z) + dist(z, y), ∀z ∈M (triangle inequality)

We call such a function a distance function. For convenience, we also define the
distance between a point and a set. Given a set S, a subset P ⊂ S, and a point
x ∈ S \ P, the distance between x and P is miny∈P dist(x, y). As a shorthand, we
will use the following notation

dist(x, P) = min
y∈P

dist(x, y) (2.1)

Given a metric space M = (M, dist) and a point x ∈ M, the ball of radius r centered

at x is the set of all points inM at distance at most r from x.
We define two more fundamental concepts we will use, namely the radius of a

subset and the farness of a set. Given a metric space M = (M, dist), a set S ⊆ M,
and a subset C ⊂ S, the radius of C with respect to S is defined as

rC(S) = max
x∈S

dist(x,C) (2.2)
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The farness of the subset C is defined as the minimum distance between any two
elements

ρC = min
x,y∈C

dist(x, y) (2.3)

With r∗k(S) we denote the maximum radius of any subset of S with k elements.
Similarly, we denote with ρ∗k the maximum farness of any subset of k elements of
S.

Doubling dimension. A fundamental concept we will use in this thesis is that of
doubling dimension.

Definition 1 ([GKL03]). The doubling dimension of a metric space M is the smallest

D such that any ball of radius r is covered by at most 2D balls of radius r/2.

Note that the doubling dimension may not be a constant. Metric spaces with
bounded doubling dimension are also called doubling spaces. Among others, this
class of metric spaces includes the important family of ℓp-spaces. Consider for any
fixed d > 0 the set Rd, and for any p > 0 consider the function

ℓp(x, y) =

(
d∑

i=1

|xi − yi|
p

)1/p

∀x, y ∈ Rd

The metric space (Rd, ℓp), called ℓp-space, has doubling dimensionO (d) [GKL03].
Therefore we have that Euclidean spaces (which are ℓp-spaces with p = 2), have
constant doubling dimension. Computing the doubling dimension of a metric
M = (M, dist) is NP-hard, but a 2-approximation algorithm exists [GK13].

Given their properties, doubling spaces have been used in the literature for sev-
eral purposes, including routing [KSW04; Abr+06; Sli07; KRX08], clustering [Tal04;
FM10; ABS10], nearest neighbour search [KL04; RG06; BKL06], machine learn-
ing [BLL09; GKK14], and traveling salesman [Tal04; BGK12].

Probabilities. We will denote the probability of an event X with Pr [X]. The
expectation of a random variable X is denoted as E [X], and its variance with
var [X].

Graphs. In this thesis we will deal with undirected graphs, both weighted and
unweighted. We denote an unweighted graph G with the pair G = (V, E), where
V is the set of nodes, and E ⊆ {{u, v} : u, v ∈ V} is the set of edges. Moreover, we
define n = |V | andm = |E|. Weighted graphs are defined by a triple G = (V, E,w),
where w is the weight function, i.e. a function w : V × V → R+. In this thesis we
will consider only strictly positive weight functions. Given a connected graph G
and a pair of nodes u, v ∈ V , we define their distance as the length of the shortest
(weighted) path connecting them, and we denote it with dist(u, v). The diameter

of an unweighted connected graph G = (V, E), denoted by Φ(G), is the maximum
distance between any pair of nodes:

Φ(G) = max
u,v∈V

dist(u, v) (2.4)
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2.2. THE MAPREDUCE MODEL

In the case of weighted graphs, we distinguish between the weighted diameter
and the unweighted diameter. The weighted diameter of a graph G = (V, E,w),
denoted by Φ(G), is the maximum distance between any pair of nodes. The un-
weighted diameter, instead, is the diameter of the unweighted graph obtained from
G by ignoring all edge weights, and is denoted by Ψ(G).

For disconnected graphs, we define the (weighted) diameter to be the largest
(weighted) diameter of the subgraphs induced by the connected components.

Note that for graphs we consider, that is graphs with positive edge weights,
the pair (V, dist) of nodes together with shortest path distances is a metric space.
Therefore, we can extend the definition of ball of radius r to graphs. Specifically,
given a graph G = (V, E) and a node v ∈ V , the ball of radius r centered in v is the
set of nodes u ∈ V such that dist(v, u) ⩽ r. Similarly, we can extend the notion of
doubling dimension to graphs.

Definition 2. The doubling dimension of a graph G = (V, E) is the smallest D such

that any ball of radius r is covered by at most 2D balls of radius r/2.

The doubling dimension of a graph may not be a constant. However, sev-
eral important classes of graphs have constant doubling dimension, including d-
dimensional arrays, whose doubling dimension is Θ(d).

2.2 The MapReduce model

When dealing with large amounts of data, the crucial challenge is how to process all
this data efficiently. Using a single machine is impractical or even impossible: the
limited amount of memory available on a single machine is a show stopper for many
algorithms when the input size grows beyond the memory limits. It is therefore
necessary to resort to parallel and distributed algorithms. To ease the development
of useful applications and relieve application programmers from the burden of
managing low-level parallelism, several parallel processing frameworks have been
developed by the industry and academia [DG08; Isa+07; Aki+15; Whi15; Zah+10].
Among these frameworks, MapReduce [DG08] is the most widespread. Created
at Google to ease the development and deployment of distributed data processing
applications, its open source incarnation Hadoop [Whi15] has seen a wide adoption
in the industry. The main advantage of MapReduce as a computational platform is
that it allows to process massive amounts of data using large clusters of commodity
computers, instead of specialized and expensive hardware.

The high level idea of the MapReduce paradigm is defined in the following,
while the next subsection we will describe the computational model adopted in this
thesis. A MapReduce algorithm operates on multisets of key-value pairs, which
are transformed by means of two functions, namely map and reduce. The map
function takes as input a single key-value pair and produces in output a multiset
of pairs on possibly different domains. The reduce function works on the outputs
of the map function, taking as input all the pairs sharing the same key. The glue
that connects the map and reduce function is the shuffle operation. Conceptually,
the shuffle operation takes all the pairs produced by themap function, and groups
together the ones with the same key, so that the reduce function can process each
group. The ensemble of map, shuffle, and reduce functions defines a round, and
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the output of a round can be the input of another. Indeed, MapReduce algorithms
execute as a sequence of rounds, each transforming a multiset of key-value pairs
into another. Observe that, given a pair, themap function operates independently
of other pairs. Similarly, the reduce function can process a given a key and all its
associated values independently of the others. This independence is what enables
the parallel execution of the map and reduce functions on different inputs. In
a typical MapReduce implementation there are several processors, each applying
in parallel the map and reduce functions on different parts of the input, which
is partitioned across the processors. The shuffle operation, then, exchanges data
through the network, so as to bring all the values with the same key in the memory
space of a single processor. Note that the details of the communication, which is
performed by the shuffle operation, are hidden from the user, who only needs to
specify how the map and reduce functions work on data. This data-centric view
is what makes MapReduce oblivious to the execution platform.

2.2.1 The MapReduce computational model

While useful in practice, MapReduce was initially lacking a theoretical model to
support the analysis of algorithms, hindering a systematic development of efficient
algorithmic strategies. In subsequent years, several works have attempted to fill
this gap [KSV10; GSZ11; Pie+12].

In this section, we review the MapReduce computational model presented by
Pietracaprina et al. [Pie+12], which is the model we use in this thesis to analyze
the complexity of our MapReduce algorithms. As noted in [Lat+11] and [Pie+12],
a reduce function can embed the subsequent map function, simplifying the pre-
sentation. Therefore, in what follows we will assume that the map function is
embedded in the preceding reduce function, thus adopting a slightly different ter-
minology with respect to the original MapReduce paradigm. We assume that the
first reduce function is the identity function, so that the first round effectively runs
only the map function. In this thesis, we define a reducer as a processor with limited
memory executing a given reduce function.

As we mentioned in the previous section, an algorithm specified in the MapRe-
duce model executes as a sequence of rounds. Round r, with r ⩾ 1, takes as input a
multiset of key-value pairsWr where the keys are taken from a universe Kr. Then,
by means of a reduce function ρr,Wr is transformed into two multisets: Wr+1 which
is the input to the next round (empty if r is the last round), and Or which is the
(possibly empty) output of round r. The output of the algorithm is

⋃
r⩾1Or, where⋃

denotes the union of multisets. Note that Kr+1, the universe of keys the next
round, can be different from Kr, and the same holds for the universe of values. The
reduce function ρr defines the transformation operated at round r. It is applied
independently to all the pairs inWr sharing the same key, denoted asWr,k ⊆Wr,
and is required to run in time polynomial in |Wr,k|.

The model is defined in terms of two parameters ML and MA, and is there-
fore called MR(ML,MA)1. An algorithm in the MR(ML,MA) model is called an

1The notation used in this thesis is slightly different than the one used in the original paper [Pie+12],
with ML used in place of m and MA instead of M. This substitution is to avoid confusion when
dealing with graphs on MapReduce, wherem refers to the number of edges
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MR-algorithm. The two parameters constrain the resources available to the reduce
function: ML is the amount of memory available for local computations, whereas
MA is the aggregate memory across all reducers. LetMr,k be the amount of memory
needed to compute ρr(Wr,k) on the RAM model, including both the work space
and the space taken by the input. The model imposes the following constraints

• Mr,k ∈ O (ML), for every r ⩾ 1 and k ∈ Ur

•
∑

k∈Ur
Mr,k ∈ O (MA), for every r ⩾ 1

•
∑

r⩾1Or ∈ O (MA)

Note that the size of the output is not constrained by the memory available for the
local computation, while it is limited by the total aggregate memory available. The
complexity of an MR-algorithm is expressed as the number of rounds executed in
the worst case, and is a function of the input size n and of the parametersML and
MA.

Two fundamental primitives that are used in algorithms presented in this dis-
sertation are sorting and prefix sum. The input for both primitives is a set of n
key-value pairs (i, ai), with i ∈ [0, 1) and ai ∈ S, where S is a suitable set. For
sorting, given a total order over S, the output is a set of n key-value pairs (i, bi),
where bi−1 < bi and the bi’s form a permutation of the ai’s. For prefix sums, we
consider a binary associative operation⊕ over S: the output consists of a collection
of n pairs (i, bi) where bi = a0 ⊕ · · · ⊕ ai for 0 ⩽ i < n. We report a fundamental
result from the original paper [Pie+12].

Theorem 1 ([Pie+12]). The sorting and prefix sum primitives for inputs of size n can be

performed in O
(
logML

n
)

round in MR(ML,MA) for anyM = Ω (n).

Observe that, when ML = O (nε), for some ε ∈ (0, 1), the sorting and prefix sum
primitives execute in a constant number of rounds.

2.2.2 MapReduce implementations and our experimental platform

There are several implementations of MapReduce, aside from the original one
by Google [DG08]. The most widespread, in academia and industry alike is
Hadoop [Whi15], which is the de-facto standard open source implementation. In
order to run on clusters of commodity hardware in a scalable and fault tolerant way,
Hadoop leverages the Hadoop Distributed Filesystem [Shv+10], which distributes
and replicates data across machines. Each round reads its input and writes its
output on this distributed filesystem, thus ensuring fault tolerance. On one hand
this ensures that no data is lost during the processing, but on the other makes each
round very costly. Moreover, each round includes a shuffle phase implemented as
an expensive all-to-all communication. The combination of these two shortcomings
prompted the development of alternative implementations.

Among the alternatives to Hadoop, Spark [Zah+10] is the one which gained
the most momentum in the last few years. To improve performance, Spark caches
the partitioned result of each round in main memory, from where the subsequent
round can read it. By doing this, Spark avoids entirely the expensive round-trip to
the distributed filesystem, considerably lowering the cost of each round. In order
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to provide fault tolerance, Spark embeds in the result of each round its lineage, that
is the sequence of transformations that were used to compute it, starting from the
program’s input safely stored on disk. If a reducer fails, then some partitions of the
results computed so-far are lost. To recover, Spark can use the lineage of the lost
partitions to recompute the missing data: the rationale is that the amortized cost
of recomputing a fraction of the results every once in a while is less than the cost of
accessing the distributed filesystem in each round. Given its superior performance,
Spark is our platform of choice for implementing the MapReduce algorithms of this
thesis.

Experimental platform. We deploy Spark version 1.6.1 on a in-house cluster of
16 machines, each equipped with 18Gb of main memory and a 3.07Ghz Intel i7
processor with 4 cores. The machines are connected with a 10Gbps Ethernet
network. Moreover, each machine has 6Tb of storage, of which 3 are shared with the
rest of the cluster through the Hadoop Distributed Filesystem, and 3 are available
for local operation.

2.2.3 Experimental evaluation of the MapReduce model

In [CS15], we performed an experimental evaluation of the MR(ML,MA) model.
The goal was to investigate the MR(ML,MA) model from a practical standpoint,
exercising the tradeoff between available space and performance. We chose matrix
multiplication as a case study since it is both computation and communication
intensive. This allows to significantly load the system and to asses its performance
under stress. Moreover, the possibility to decompose the problem into arbitrary-
size subproblems makes matrix multiplication an ideal candidate to investigate the
tradeoffs between available resources (local and aggregate memory) and perfor-
mance. We implemented the sparse and dense matrix multiplication algorithms
used in the reference paper [Pie+12] on the Hadoop platform2, since it is the de-facto
standard and the most adherent to the original specification.

This study gave us insights that have been useful for all our subsequent work.
The main takeaway is that, while the performance is mostly determined by the
number of rounds, one must pay attention also as to the volume of communication
in a single round. In fact, it is true that each round in Hadoop involves an all-
to-all communication, and therefore it is desirable to minimize the number of
rounds. However, the volume of data shuffled in a single-round algorithm may
be too high and congest the network. In such cases, splitting the same volume of
communication over multiple rounds is beneficial and gives a better performance.

For a detailed exposition of these results, we refer to [CS15].

2.3 The Streaming model

Streaming [HRR98] is another popular model in the big data setting. Historically,
this model was motivated by technological factors. Data was often stored on slow
tertiary storage which provided only sequential access. In this case, algorithms

2The library, calledM3, is freely available at http://crono.dei.unipd.it/m3/.
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were forced to perform only sequential passes over the data, and doing multiple
passes was impractical. Nowadays, technological improvements mitigated this
problem. However, several applications still require the development of streaming
algorithms. In particular, in many cases there is a need to analyze in real-time
large volumes of data as it is generated. For instance, one might be interested in
analyzing the Twitter stream in real-time, or might want to compute statistics on a
stream of financial transactions. In such cases, batch systems such as MapReduce
are of little help, and we must resort to streaming algorithms.

In the streaming model there is a single processor with limited memory, which
can perform only a limited number of sequential scans over the input. More
formally, a data stream is a sequence x1, . . . , xi, . . . , xn of elements of a set X, which
can only be read in increasing order of i. The streaming model is described by
two parameters [HRR98]: the number of passes p and the main memory space s (also
called workspace in the literature), that is the memory available to the processor.
When developing a streaming algorithm, the goal is to use as little memory as
possible, while minimizing the number of passes. Despite the heavy limitations
imposed by the streaming model, several data sketching and statistics problems
can be solved using O (1) passes and limited space [FM83; AMS99; Gil+02; Fei+02;
Cha+04; Mut05; Fla+08].

Oftentimes, however, there is a dichotomy between the number of passes p
and the memory s. This happens when dealing with graphs, for instance. In the
streaming model, a graph is represented as the sequence of its edges. With the
restriction of being able to maintain in memory only a portion of size s is the edge
set, even the simplest problems such as graph connectivity requireΩ (n/s) passes
over the data, with n being the size of the graph [HRR98; DFR09]. The tradeoff
here is clear: the only way of performing fewer passes is to allow larger memories,
with the extreme case that a one-pass algorithm can be obtained only if memory
linear in the size of the graph is available.

2.4 k-center clustering

As we discussed in the introduction, this thesis focuses on the use of clustering as
a tool to solve several big data problems. In this section, we define the clustering
problem and review some fundamental related results. Given a set of points in a
metric space, clustering is the process of grouping them into clusters according to
some criterion. These clusters can then serve for different purposes: a cluster can
be used as a proxy for its elements, summarizing them; or we may be interested in
examining the constituents of each cluster. Indeed, clustering is applied in a variety
of different contexts, like Information Retrieval [MRS08], computer vision [Yan+08],
bioinformatics [NYP12], image hashing [MBE06], and classification [D+73; Pen+05;
Dai+07].

Different clustering criteria define different instances of the clustering problem.
Some clustering criteria group the elements according to their distance from some
set of centers, optimizing for the minimum [Gon85], the sum [Cha+99], or the
squared sum [Jai10] of distances. Other approaches forego the selection of a set
of centers, for instance grouping nodes with respect to the probability of random
walks [Don08]. Given a set S in a metric space, we define by k-clustering a partition
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Algorithm 1: GMM(S, k)
Input: S = {v1, . . . , vn} the sets of elements to be clustered, k number of

clusters to be found.
Output: The set of k cluster centers.

C← an arbitrary point c1 ∈ S
for i← 2 to k do

ci← argmaxv∈S\C dist(v, C)

C← C ∪ ci
end

return C

of S in k subsets according to some measure. For the purposes of this thesis we
concentrate on the k-center clustering problem [Gon85], defined below.

Definition 3. Given a metric space M = (M, dist), a set of points S ⊆M, and an integer

k, the k-center problem requires to find a set C ⊂ S of k points such that the radius of C

with respect to S as defined in Equation (2.2)

rC(S) = max
p∈S

dist(p,C)

is minimized.

The problem is NP-hard, and is actually NP-hard to approximate with an ap-
proximation factor better than 2 for arbitrary metric spaces [Gon85]. Restricting
the input to be in an Euclidean space is of little help. Clustering on the Euclidean
line can be done in polynomial time [Bru78]; however it is NP-hard to achieve an
approximation factor of 2 cos(π/6)−ε on the Euclidean plane, and of 2−ε on higher
dimensional spaces [Gon85], for any ε > 0.

Recall that, given an undirected weighted graphG = (V, E,w) and the shortest-
paths distance function dist : V ×V → R+

0 , the pair (V, dist) is a metric space, as we
observed in Section 2.1. Therefore, for the shortest path distance and other distance
functions with similar properties, we can define the k-center problem on graphs as
follows.

Definition 4. Given a weighted graph G = (V, E,w), and a function dist : V ×V → R+
0

such that (S, dist) is a metric space, the k-center problem requires to find a set C ⊂ V of k

nodes such that maxv∈V minc∈C dist(v, c) is minimized.

2.4.1 The GMM algorithm

In his seminal work, Gonzalez presented a simple 2 approximation greedy algo-
rithm for the k-center problem in general metric spaces [Gon85]. The algorithm,
which we refer to as GMM (Greedy Minimum Maximum), is depicted in Algo-
rithm 1 and works as follows. First, the set of centers C is initialized with an
arbitrary point from the input set S. Then, iteratively, the algorithm adds to C the
point in C \ S which maximizes the distance from already selected points, break-
ing ties arbitrarily, until C contains k points. Then, we can build the clustering
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by associating each point to the closest center ∈ C. There is an easy sequential
implementation of the GMM algorithm which runs in O (kn) time. The following
proposition is proved in [Gon85].

Proposition 1. Given a set S and an integer k, the GMM algorithms computes a set of

cluster centers C such that

r∗k(S) ⩽ rC(S) ⩽ 2r
∗
k(S)

We now review the concept of anticover [Hal+99], which relates the radius and
farness of a set of points.

Definition 5. Given a set S, a subset C ⊂ S is an anticover if rC(S) ⩽ ρC.

The set of centers found by the GMM algorithm is an anticover, as stated by the
fact below. We will use this property of GMM in Chapter 5, when we will deal with
the diversity maximization problem.

Fact 1. The set of cluster centers found by the GMM algorithm when building a k-center

clustering is an anticover.

Proof. Let C = {c1, · · · , ck} be the centers of the clustering found over a set S by
GMM, indexed in the order they were added to C by the algorithm. Let dk =
dist(ck, C \ {ck}). By construction, we have that ρC = dk, since the distance of any
center to the ones added previously decreases as the center index increases. For
the same reason, we have that dk ⩾ dk+1 = rC(S), where dk+1 is the distance of
the center that would be added if we were to build a k + 1-clustering. Therefore,
we have rC(S) ⩽ dk = ρC. Since dist(p,C) ⩽ rC(S) for any p ∈ P, this suffices to
prove that C is an anticover.

2.4.2 MapReduce k-center algorithms.

Once datasets become large, the sequential GMM algorithm becomes ineffective,
due to the memory limits of the RAM model. Because of this, in recent years much
work has been devoted to the development of k-center algorithms in the distributed
setting [EIM11; BEL13; Mal+15].

In particular, a two-round MapReduce algorithm for the k-center problem in
metric spaces has been developed in [Mal+15], improving on previous works. The
algorithm, as in [EIM11], assumes the existence of an oracle taking as input a
pair of points and returning the distance between them, or that all the pairwise
distances are given alongside with the input. The basic idea of the algorithm is
simple and effective. First, the input S is partitioned in ℓ non overlapping subsets
S1, . . . , Sℓ, where ℓ is the number of reducers, and Si is assigned to the i-th reducer.
Then, reducer i computes a set Ci of k points by running GMM on Si. Finally, the
algorithm collects C = C1 ∪ · · · ∪Cℓ in a single reducer, and runs GMM on this set
to find the solution. By straightforwardly adapting the results in [Mal+15] to the
MR(ML,MA) model, we can state the following proposition.

Proposition 2. The above MR-algorithm is a 4-approximation algorithm, runs in two

rounds withMA = Θ (n) andML = O
(
max{nε, kn1−ε}

)
.
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Unfortunately, the assumption that there is an oracle for the distance function
does not hold for important classes of inputs, such as graphs, where computing
distances requires a non-constant number of rounds. Similarly, requiring theΘ

(
n2
)

pairwise distances to be given in input is impractical for large values of n.
On MapReduce, a clustering algorithm for unweighted graphs has been pre-

sented by Miller et al. [MPX13]. The goal of the algorithm is to partition the input
graph in clusters of small radius with only a small fraction of edges between clus-
ters. Note that this algorithm does not optimize the k-center objective function.
Nonetheless, its purpose is quite similar, therefore it is a viable candidate for clus-
tering graphs on MapReduce. The algorithm features a single parameter β, which
allows to control both the diameter of the clusters and the number of edges between
them. The algorithm assigns to each node u ∈ V a random time shift δ, taken from
an exponential distribution with mean 1/β. Then, it grows a cluster centered at u
starting at time δmax − δu, where δmax is the maximum shift, unless by that time
node u has been already covered by some other cluster. The authors show that in
this fashion the graph is partitioned into clusters of maximum radiusO ((logn)/β),
with high probability, while the expected number of edges between clusters is at
most O (βm).

2.4.3 Streaming k-center algorithms.

In Section 2.3, we reviewed the streaming model, where a single processor with
limited memory operates on a sequential stream of data. Charikar et al. [Cha+04]
developed the doubling algorithm, which is a k-center algorithm in the streaming
model. Given a metric space M = (M, dist), a stream of points S ⊂ M, and
an integer parameter k, the doubling algorithm works in phases as follows. In
the initialization phase, the algorithm accepts the first k + 1 points of the stream
as singleton clusters, and sets a distance threshold d1 to the minimum distance
between any two points seen so far. At the start of phase i, the algorithm has a
collection of k+ 1 clusters C1, C2, . . . , Ck+1, each with a center cj for j ∈ [1, k+ 1],
and a distance threshold di. The following invariants hold at the beginning of
phase i

1. for each Cj and for any p ∈ Cj, we have dist(p, ci) ⩽ 2di

2. for each pair of clusters Cj and Cℓ we have dist(cj, cℓ) ⩾ di

Each phase then consists of two stages: the merging stage and the update stage. In
the merging stage, the algorithm reduces the number of clusters in the following
way. The algorithm set a new distance threshold di+1 = 2di, and then, iteratively,
it merges together the clusters whose centers are at distance ⩽ di+1, until the
are no such clusters. Note that it may happen that for a given distance threshold
there is no merge. In this case the algorithm doubles again the threshold, until
there are no more than k clusters. Then, the update stage accepts new points from
the stream. A new point p of the stream is placed in a cluster centered in any
c such that dist(p, c) ⩽ 2di+1. If there is no such cluster, then p is placed in a
new singleton cluster. Note that this implementation of the update stage builds
clusters complying with the invariants of phase i + 1. The update stage continues
until either there are no more points in the stream or the algorithm has built k+ 1
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clusters. In the second case, phase i terminates and phase i + 1 starts with a new
merging stage.

The following result is proved in [Cha+04].

Proposition 3. The above streaming algorithm is a 8-approximation algorithm for the

k-center problem, runs in a single pass, and requires O (k) memory.

In Chapter 5, we will use the doubling algorithm as a basis to build efficient
streaming algorithms for the problem of diversity maximization.
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Chapter 3

Diameter approximation

A fundamental primitive for graph analytics is the computation of a graph’s diam-
eter. This primitive is computationally intensive, therefore resorting to parallelism
is inevitable as the size of the graph grows. Moreover, computing exactly the
diameter of large graphs is essentially as expensive as computing the All-Pairs
Shortest Paths, which is unfeasible on very large graphs. Therefore, when dealing
with large graphs, an approximation to the diameter is the best that can be hoped
for. However, state of the art parallel strategies for diameter estimation are either
space inefficient or incur long critical paths. These strategies are thus unfeasible for
dealing with huge graphs, especially on platforms such as MapReduce, where only
linear space in the size of the graph is allowed and long critical paths are penalized
by the high intrinsic cost of each round.

In this chapter, we develop clustering-based parallel algorithms for diameter
estimation on both weighted and unweighted undirected graphs, suitable for im-
plementation on MapReduce-like platforms. The high level idea of our algorithms
is the following. Given a (weighted) graph G, we derive a smaller auxiliary graph,
whose size is tuned to fit into the local memory ML of a single reducer. This aux-
iliary graph is built by clustering the input graph: each cluster will be represented
by a single node in the auxiliary graph, and edges between nodes are weighted
so as to summarize the shortest paths between the corresponding clusters. The
approximation of the input graph’s diameter is then obtained as a simple function
of the exact diameter of the auxiliary graph, which can be computed efficiently
because of its reduced size. We prove that the approximation ratio is bounded, and
we verify experimentally that the actual approximation ratio is much better than
what predicted by the theory.

Efficiently clustering a graph on MapReduce is tricky, because of the very limit-
ing nature of the platform: only memory linear in the size of the graph is allowed,
and distance computations are very expensive because of their inherent high round
complexity. Therefore, a substantial part of this chapter is devoted to developing
clustering algorithms that tackle the constraints of MapReduce (Section 3.2). After
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that, we will see how to relate the diameter of the auxiliary graph to the one of
the input graph in 3.3. We will also study how to implement efficiently this algo-
rithm on MapReduce (Section 3.4), and how to optimize for the unweighted case
(Section 3.5). We will then present an experimental evaluation of the MapReduce
implementation of our algorithms in Section 3.7.

The results presented in this chapter were first presented at the Symposium on
Parallelism in Algorithms and Architectures [Cec+15], for unweighted graphs, and
at the International Parallel and Distributed Processing Symposium [Cec+16b] for
weighted graphs.

3.1 Related work

3.1.1 Algorithms based on All-Pairs Shortest Paths

For general graphs with arbitrary weights, an approach for the exact diameter
computation requires the solution of the All-Pairs Shortest Paths (APSP) problem.
There are many classic algorithms to solve this problem. Floyd-Warshall’s algo-
rithm runs inΘ

(
n3
)

time and requiresΘ
(
n2
)

space. On graphs with non-negative
weights, running Dĳkstra’s algorithm (with Fibonacci heaps) from each vertex
requires O

(
mn+ n2 logn

)
time, which is better than O

(
n3
)

for sparse graphs.
Moreover, by keeping track of only the largest distance found at each invocation,
the space requirement drops toΘ (n). On unweighted graphs, Dĳkstra’s algorithm
can be replaced by a simple Breadth First visit, with the same space requirements
and an overall running time of O (mn). However, Dĳkstra’s algorithm and the
BFS are difficult to parallelize. Indeed, one may run the sequential algorithm from
each node on separate processors in parallel, however this approach is not appli-
cable when the graph does not fit in the memory of a single processor. There are
some works improving on the O

(
mn+ n2 logn

)
bound provided by Dĳkstra’s al-

gorithm. In [Pet04], an APSP algorithm with running time ofO
(
mn+ n2 log logn

)
has been introduced.

Finally, another classic approach to solve the APSP problem is to repeatedly
square the adjacency matrix of the graph. Using fast matrix multiplication algo-
rithms, this approach can be implemented in O

(
n2.3727 logn

)
time [Wil12]. By

applying a clever recursive decomposition of the problem, we can drop the re-
peated squaring, saving a logarithmic factor in the time complexity [AHU74, pp.
201-206]. The space requirement in any case isO

(
n2
)
, which rules out matrix-based

approaches in the context of large graphs.
All the above algorithms work on both directed and undirected graphs. For

undirected graphs, a faster algorithm with running time O (m n α(m,n)), where
α(m,n) is the inverse-Ackermann function, is presented in [PR02].

The drawback of these approaches is that they are either space inefficient or
difficult inherently sequential, making them not applicable on very large graphs.

3.1.2 Algorithms based on Single-Source Shortest Path

A very simple approximation algorithm, in both the weighted and unweighted
case, consists in picking an arbitrary node of the graph, and finding the farthest
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node from it by solving the Single-Source Shortest Paths problem (SSSP for short).
It is easy to see that this is a 2-approximation for the diameter of the graph. This
approach spurred a line of research in which a few SSSP instances are solved,
starting from carefully selected nodes, to get good approximation of the diameter.
Magnien et al. [MLH09] considered the case of unweighted graphs, and studied
empirically a simple strategy which achieves very good approximation factors in
practice. This algorithm, called 2-Sweep, performs a first BFS from an arbitrary
vertex, and a second one from the farthest reachable node, returning the maximum
distance found. The theoretical approximation factor achieved by this approach is
still 2, like a single BFS, but experiments showed that on some real world graphs the
actual value found is much closer to the optimum. Building on this idea, Crescenzi
et al. developed the iFub algorithm for unweighted graphs [Cre+13], and the DiFub
algorithm for weighted graphs [Cre+12], both of which compute the diameter of a
given graph exactly. In the worst case, these algorithms require to solve the SSSP
problem for every node. However, with an extensive experimental evaluation the
authors showed that only a small number of BFSs is needed in practice.

The drawback affecting these approaches, which are very effective when the
graph fits in the memory of a single machine, is the difficulty of parallelizing SSSP
computations, especially on loosely coupled architectures such as MapReduce.

3.1.3 Algorithms based on the neighbourhood function

The neighbourhood function NG(h) of a graph G, also called the hop plot [FFF99],
is the number of pairs of nodes that are within distance h, for every h ⩾ 0 [PGF02].
The neighbourhood function can be used for several purposes, including diameter
computation [PGF02; BRV11], facility location [Gar+15], and centrality computa-
tion [BRV11]. Computing the neighbourhood function exactly requires to store, for
each node and each h, the set of nodes reachable within distance h. This results in
an overall O

(
n2
)

space requirement, which is impractical for large graphs.
Palmer et al. [PGF02] introduced the Approximate Neighbourhood Function algo-

rithm (abbreviated ANF), where Flajolet-Martin probabilistic counters [FM83] are
used to count the nodes reachable within distance h. Each node is associated with
a counter, updated iteratively: in iteration i, the counter approximates the number
of nodes reachable in i hops. At the end of iteration i, the information of all the
counters is combined to obtain NG(i). Each counter requires only O (logn) bits,
therefore lowering to O (n logn) the memory required to compute the neighbour-
hood function. This result has been further improved by Boldi et al. [BRV11] by
replacing Flajolet-Martin counters with HyperLogLog counters [Fla+08]. Hyper-
LogLog counters require only O (log logn) bits to count the number of reachable
nodes, so the overall memory requirement drops to O (n log logn).

These neighbourhood function approximation algorithms were originally de-
veloped for shared memory machines. A MapReduce implementation of ANF,
called HADI, has been presented by Kang et al. [Kan+11]. This MapReduce algo-
rithm suffers mainly of two drawbacks: a) the memory required is slightly superlin-
ear, and b) it requires a number of rounds linear in the diameter of the graph. More-
over, all three of ANF, HyperANF and HADI work only on unweighted graphs.
In [BV13], the authors of HyperANF extended their approach to graphs with in-
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teger weights on the nodes, which are arguably less common than edge-weighted
graphs.

Cohen [Coh15] presented an overview of so-called all-distance sketches, which
include the probabilistic counters used by the above neighbourhood function esti-
mators. This unified overview is instrumental to the introduction of HIP estima-
tors, which have half the variance of the approaches reviewed above when used
to the neighbourhood function. Moreover, Cohen describes a way to compute all-
distance sketches (and hence estimate the neighbourhood function) on weighted
graphs. We note that, in both the weighted and unweighted case, the estimation of
the neighbourhood function requires several single-source shortest paths computa-
tions, which makes these approaches unsuitable for the application in MapReduce.

3.1.4 Algorithms based on clustering

In this chapter’s introduction, we mentioned how our approach is based on the
construction of a small auxiliary graph by means of clustering. There are other
approaches to approximate the diameter of a graph that are based on a similar
approach.

In the external memory model, where performing even a single BFS has a very
high I/O complexity, Meyer [Mey08] proposed an algorithm to approximate the
diameter of unweighted graphs. The algorithm of [Mey08] seeks to derive, with a
low I/O complexity, a graph that can fit into main memory, on which to compute an
approximation to the diameter. The algorithm features a design parameter k, which
can be employed to obtain a tradeoff between I/O complexity and approximation
quality. The basic idea is the following. First, the algorithm selects nodes at random
with probability 1/k, marking the selected ones as master nodes, which are the
representative centers of distinct clusters. Then, it grows clusters around master
nodes “in parallel”: iteratively, each master node tries to capture all unvisited
neighbours of its current cluster. The clusters are non-overlapping, therefore if
multiple masters try to capture the same node, only an arbitrary one succeeds.
The cluster-growing phase terminates when all the nodes are assigned to a cluster,
and is followed by a postprocessing needed to ensure that each node is at most
k − 1 hops away from the closest master. This is done by performing an Euler
tour of an arbitrary spanning tree of G, and marking an additional master node
every k nodes in the Euler tour. This postprocessing is inherently sequential and is
what prevents this algorithm to be applied in MapReduce. After the graph has been
clustered, the algorithm builds an auxiliary graph with a vertex for each cluster, and
edges suitably weighted to approximately represent the distances between master
nodes. By computing the diameter of this auxiliary graph, the algorithm provides
a O

(√
k
)

approximation to the input graph’s diameter. The I/O complexity is
O(n ·

√
log k/(kB) + k · scan(n) + sort(n)), where B is the number of elements

that can be transferred within a single I/O operation, scan(n) = Θ (n/B) is the
number of I/O operations needed to scan an input of n elements, and sort(n) =
Θ(n/B logn/B(n/B)) is the I/O complexity of sorting n elements. Therefore,
setting a lower value of k to get a better approximation requires performing more
I/O operations, intuitively because with fewer clusters each cluster requires to
reach farther distances before the entire graph is covered. An extension of this
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approach to weighted graphs in the external memory context has been proposed
in [AMV12], which however is analyzed only experimentally and lacks provable
approximation bounds.

Clustering is also used to approximate shortest paths between nodes, which
can indirectly be used to approximate the diameter. In particular, in [Coh98] the
notion of (β,W)-cover for a weighted graphG has been introduced. A (β,W)-cover
is essentially a decomposition of the graph into overlapping clusters: each node
is allowed to belong to O

(
βn1/β logn

)
distinct clusters and for any two nodes at

weighted distance at most W in the graph, there is a cluster containing both. A
(β,W)-cover is obtained by growing clusters of decreasing radii from successive
batches of centers. In [Coh00], the author presents a PRAM algorithm which
uses (beta,W)-covers to approximate shortest-path distances. For sparse graphs
with m ∈ Θ (n), this algorithm features O

(
nδ
)

depth, for any fixed constant
δ ∈ (0, 1), but incurs a polylogarithmic space blow-up due to the use of (β,W)-
covers. The algorithms are rather involved and communication intensive, hence,
while theoretically efficient, in practice they may run slowly when implemented
on distributed-memory clusters of loosely-coupled servers, where communication
overhead is typically high.

3.1.5 ∆-stepping

In a seminal work, Meyer and Sanders proposed a PRAM algorithm, called ∆-

stepping, for the SSSP problem [MS03]. This algorithm exercises a tradeoff between
work-efficiency and parallel time through a parameter∆. The diameter approxima-
tion algorithm we present in this chapter will be partly based on ideas introduced
in [MS03], therefore in this section we briefly describe the ∆-stepping algorithm.
Moreover, recall that a single run of any SSSP yields a 2-approximation to the
graph’s diameter, hence the ∆-stepping algorithm can be regarded as a parallel
diameter approximation algorithm.

Let G = (W,E,w) be a weighted graph, and s ∈ V be the source node for the
SSSP computation. Furthermore, define tent(v) the tentative distance of v from s,
that is an upper bound to dist(s, v). Tentative distances are improved with edge

relaxations of the kind used in the classical Bellman-Ford’s algorithm: for an edge
e = {u, v}, the relaxation of e consists in setting tent(u) = min{tent(u), tent(v) +
w(e)} and tent(v) = min{tent(v), tent(u) +w(e)}.

The ∆-stepping algorithm maintains a one-dimensional array B of buckets, such
that Bi ∈ B = {v ∈ V : tent(v) ̸= ∞ ∧ tent(v) ∈ [i · ∆, (i + 1) · ∆)}. In this setting,
the parameter ∆ defines the bucket width. Initially, s has tent(s) = 0, whereas all
the other nodes have tentative distance ∞. Therefore, initially B0 contains only
s with tentative distance 0. The algorithm then works in phases. In phase i, the
algorithm removes all the nodes from bucket Bi and relaxes all the edges such that
w(e) ⩽ ∆ (these edges are called light). This operation may result in new nodes
being inserted in bucket Bi. Furthermore, nodes previously deleted from bucketBi

are reinserted in Bi if their tentative distance is updated. This operation is repeated
until bucket Bi is empty. At this point the algorithm proceeds to the relaxation of
heavy edges, that is edges of weight strictly larger than ∆. Phase i terminates with
this relaxation, and the algorithm moves on to bucket Bi+1.
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The performance of the ∆-stepping algorithm is parameterized by a parameter
ℓ∆, which in turn is tied to the weights of the input graph. Specifically, ℓ∆ is one
plus the maximum number of edges in a shortest path of length ⩽ ∆.

The following result is proved in [MS03], and characterizes the complexity with
two further parameters: n∆ is the number of node pairs connected by a path of
length ⩽ ∆, and m∆ is the number nodes that can be reached by extending any
path of length ⩽ ∆with a light edge.

Theorem 2 ([MS03, Theorem 16]). The∆-stepping algorithm can be implemented to run

on the CRCW-PRAM in time

O

(
L

∆
ℓ∆ logn

)
with work

O

(
n+m+ n∆ +m∆ +

L

∆
ℓ∆ logn

)
Note that in the expressions of the parallel time and the work there are terms

both increasing and decreasing with ∆, which makes difficult to choose the best
value for ∆. Indeed, finding the right value of ∆ for a given input graph is one
of the most cumbersome parts of applying the ∆-stepping algorithm. We observe
that the parallel time is Ω (Ψ(G)), where Ψ(G) is the unweighted diameter of G
as introduced in Section 2.1. This has important implications when ∆-stepping is
ported to MapReduce, since it translates in a number of rounds which is at least
linear in the unweighted diameter.

In the original paper [MS03], the authors propose a preprocessing of the graph
to speed up the execution. This preprocessing involves adding so-called shortcuts:
the graph is augmented with new edges between nodes at distance ⩽ ∆. While this
preprocessing can be shown to turn the dependence of the running time on ℓ∆ from
multiplicative to additive, it also requires a potentially quadratic space blow-up. In
the context of MapReduce, where memory is at premium and only linear space is
allowed, this optimization may not be convenient.

3.2 Clustering algorithm

In this section we discuss a parallel algorithm for clustering weighted graphs,
which, as we mentioned before, is a fundamental building block of our diameter
approximation strategy. The challenge is to perform cluster growth by exploiting
parallelism while, at the same time, limiting the weight of the edges considered
in each growing step: the goal is to avoid increasing excessively the weighted
radius of the clusters, which influences the quality of the subsequent diameter
approximation. This must be done using a small number of rounds (i.e. the
unweighted radius must be small) and only linear space in the size of the graph.

To address these issues, we grow clusters in stages, where in each stage a new
randomly selected batch of cluster centers is added to the current clustering and the
number of uncovered nodes halves with respect to the preceding stage. The idea
behind such a strategy is to force more clusters to grow in poorly connected regions
of the graph while keeping both the total number of clusters and the maximum
cluster radius under control. Note that we cannot afford to grow a cluster boldly
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by adding all nodes connected to its frontier at once, since some of these additions
may entail heavy edges, resulting in an increase of the weighted cluster radius. To
tackle this challenge, we use ideas akin to those employed in the∆-stepping parallel
SSSP algorithm proposed in [MS03] and which we briefly reviewed in Section 3.1.5.
In particular, we limit a cluster’s growth by imposing a threshold ∆ on its radius.
Unlike the ∆-stepping algorithm, however, this threshold is not fixed a priori but
automatically tuned to a quasi-optimal value during the clustering process.

Before proceeding to the description of the subroutines used in the clustering
and the algorithm itself, we will introduce some notation that will be used for the
rest of the chapter. Let G = (V, E,w) be a connected undirected weighted graph
with n nodes, m edges, and a function w which assigns a positive real weight
w(e) ∈ R+ to each edge e ∈ E. We make the reasonable assumption that the edge
weights are polynomial in n, that iswmax/wmin = O

(
nh
)
, for some h > 0, where

wmax and wmin are, respectively, the maximum and minimum edge weight. As
we defined in Chapter 2, the distance between two node u, v ∈ V is denoted with
dist(u, v) and is the weight of a minimum-weight path between u and v. Moreover,
the diameter Φ(G) of the graph is the maximum distance between any two nodes.
With the following definition we introduce the concept of τ-clustering in weighted
graphs.

Definition 6. For any positive integerτ ⩽ n, aτ-clustering ofG is a partitionC = {C1, C2 . . . , Cτ}

of V into τ subsets called clusters. Each cluster Ci has a distinguished node ci ∈ Ci called

center, and a radius r(Ci) = maxv∈Ci
{dist(ci, v)}. The radius of a τ-clustering C is

r(C) = max1⩽i⩽τ{r(Ci)}. Finally, denote by R
opt

G (τ) the minimum among the radii of all

τ-clusterings of G.

The algorithm that we describe in the next sections maintains with each node
u ∈ V a state consisting of two variables (cu, du): initially, cu is undefined and
du = ∞. Whenever u is assigned to a cluster, then cu is set to the cluster center
and du is set to an upper bound to dist(cu, u). In particular, if u is a cluster center,
then cu = u and du = 0.

3.2.1 Subroutines

We now present some subroutines that we will use to build our clustering algorithm.

∆-growing step. Before presenting the algorithm, we introduce some technical
details. Let ∆ be a real-valued parameter which we use as a guess for the radius
of the clustering. As in [MS03], we call an edge light if its weight is ⩽ ∆, and
heavy otherwise. The clustering algorithm repeatedly applies, in parallel, edge
relaxations of the kind described in Section 3.1.5. More precisely, we define the
following ∆-growing step: for each node u with du < ∆ and for each light edge
(u, v), in parallel, if du +w(u, v) ⩽ ∆ and dv > du +w(u, v) then the status of v is
updated by setting dv = du + w(u, v), and cv = cu. In case more than one node
u can provide an update to the status of v, the algorithm performs the update that
yields the smallest value of dv and, secondarily, the one caused by the node u such
that cu has smallest index.
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Algorithm 2: Contract(G = (V, E))

V ′← ∅;
E ′← ∅;
for e = {u, v} ∈ E do

if cu = nil∧ cv = nil then

V ′← V ′ ∪ {u, v};
E ′← E ′ ∪ e

end

else if cu ̸= nil∧ cv = nil then▷ The same applies for cu = nil∧ cv ̸= nil
V ′← V ′ ∪ {cu, v};
e ′← {cu, v} with weight w(e);
E ′← E ∪ e ′;

else

The edge has both endpoints in the cluster, ignore it so it does not appear in
the output.

end

end

for u, v ∈ V ′
such that are multiple edges between u and v do

Remove from E ′ all edges {u, v} except the minimum weight one.
end

return G ′ = (V ′, E ′) ;

Graph contraction. Suppose that a sequence of ∆-growing steps is performed
starting from some set of centers X ⊆ V . After the execution of these steps, we can
contract the graph G as follows (Procedure Contract(G), see Algorithm 2). For
each center c ∈ X, all nodes u ∈ V with cu = c are removed, except c itself. For
each edge (u, v) the algorithm performs one of the following transformations:

• if both cu and cv are defined, the edge is removed;

• if both cu and cv are undefined, the edge is left unchanged;

• if cu is defined and cv is undefined, the edge is replaced by a new edge (cu, v)
of weight w(u, v). Note that this may result in multiple edges between cu
and v. In this case, the algorithm retains the one with minimum weight.

3.2.2 Clustering algorithm

We now present algorithm Cluster(G, τ), which, given in input a graph G with
n nodes and m edges, and an integer parameter τ, builds a clustering of G with
O
(
τ log2 n

)
clusters. The algorithm, whose pseudocode is given in Algorithm 3,

grows clusters progressively in a number of stages, until all the nodes of the graph
are covered. In each stage, which corresponds to an iteration of the outer while
loop, a sequence of ∆-growing steps is executed, each with the goal of including
into the current clusters at least half of the nodes that are still uncovered but are
reachable from some cluster through a path of weight at most ∆. The set X of
centers of the current clusters includes clusters partially grown in previous stages
(if any), which are now contracted and represented only by their centers (set Ci),
and a set of O (τ logn) centers randomly selected from the uncovered nodes. In
each stage, the algorithm guesses geometrically increasing values of ∆, starting
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Algorithm 3: Cluster(G, τ)
∆←min{w(u, v) : (u, v) ∈ E}
γ← 4 ln 2
C1 ← ∅ ▷ current set of cluster centers

G1(V1, E1)← G(V, E)
i← 1
while |Vi \ Ci| ⩾ 8τ logn do

Make v ∈ Vi \ Ci a new center with probability (γτ logn)
|Vi\Ci|

X← Ci ∪ {newly selected centers}
foreach u ∈ Vi do

if u ∈ X then (cu, du)← (u, 0) else (cu, du)← (nil,∞)
end

V ′← ∅ ▷ Set of nodes covered in this iteration

while |V ′| < |Vi \ Ci|/2 do

repeat

perform a ∆-growing step on Ḡ
V ′← {u ∈ Vi \ Ci : du ⩽ ∆}

until (no state is updated) or (|V ′| ⩾ |Vi \ Ci|/2)
if |V ′| < |Vi \ Ci|/2 then ∆← 2∆

end

Assign each u ∈ V ′ to the cluster centered at cu
Gi+1(Vi+1, Ei+1)← Contract(Gi)
Ci+1 ← X
i← i+ 1

end

Assign each u ∈ Vi \ Ci to a new singleton cluster centered at u
▷ Vi is the final set of cluster centers

from a suitable initial value, until the coverage goal can be attained. When few
nodes are left uncovered, these are added as singleton clusters and the algorithm
terminates. Observe that at mostO (logn) stages are executed and each contributes
an additive factor ∆ to the clustering radius. We will show below that the largest
guess for ∆will be O

(
R
opt
G (τ)

)
, with high probability.

Observe that when the algorithm terminates, each node u ∈ V is assigned to
a cluster centered at some node cu. Let ∆end denote the value of ∆ at the end of
the execution of Cluster(G, τ). In the following lemma, we show that with high
probability ∆end does not exceed RoptG (τ) by more than a constant factor.

Lemma 1. ∆end = O
(
R
opt
G (τ)

)
, with high probability.

Proof. Consider an arbitrary iteration of the outer while loop and let Gi = (Vi, Ei)
be the (contracted) graph on which cluster growth is performed during the iteration.
Let Ci ⊆ Vi be the nodes of Gi representing clusters grown in previous iterations.
Clearly, we have that |Vi −Ci| ⩾ 8τ logn. Refer to the nodes of Vi −Ci as uncovered

nodes. We now show that, with probability at least 1 − 1/n, in Gi at least half of
the uncovered nodes can be reached by the new centers selected in the iteration or
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by nodes of Ci with paths of weight at most 2RoptG (τ) traversing only uncovered
nodes.

Let C̄ be a τ-clustering of the whole graph with optimal radius r(C̄) = RoptG (τ).
To avoid confusion, we refer to its clusters as C̄-clusters, while simply call clusters

those grown by our algorithm. Consider the C̄-clusters that include some uncov-
ered node. Among these C̄-clusters, those that contain less than |Vi − Ci|/(2τ)
uncovered nodes account for a total of less than τ|Vi − Ci|/2τ = |Vi − Ci|/2 such
nodes. We call large the C̄-clusters that contain |Vi − Ci|/(2τ) or more uncovered
nodes. Therefore, large C̄-clusters account for more than |Vi − Ci|/2 uncovered
nodes altogether. Let C̄ℓ be any such large C̄-cluster. By the choice of γ in the
probability for center selection, we have that with probability ⩾ (1− 1/n2) at least
one uncovered node c ′ ∈ C̄ℓ is selected as a new center. Since, for every uncovered
node v ∈ C̄ℓ, there is a path in G from c ′ to v through c̄ℓ of weight w ⩽ 2R

opt
G (τ),

there must be a path inGi from c ′ to v of weight at mostw inGi. Note that the suffix
of this path starting from the last cluster center has weight ⩽ w and traverses only
unconvered nodes. The desired property follows by applying the union bound
over all large C̄-clusters.

Since clusters are grown from the newly selected centers as well as from the
nodes of Ci, any value ∆ ⩾ 2R

opt
G (τ) guarantees that half of the nodes in Vi − Ci

are covered by clusters. Consequently, ∆ can never be doubled beyond 4RoptG (τ).
The lemma follows by applying the union bound over all iterations.

Recall that with ℓX we denote the maximum number of edges in any shortest
path of length ⩽ X, for a given graph. Moreover, observe that ℓcX = O(ℓX), for any
constant c > 0. We can now state the main result for this section.

Theorem 3. Let τ be a positive integer. With high probability, Cluster(G, τ) returns

a clustering of G with O
(
τ log2 n

)
clusters of radius O

(
R
opt
G (τ) logn

)
, and performs

O
(
ℓ
R
opt
G (τ) logn

)
∆-growing steps, with ∆ = O

(
R
opt
G (τ)

)
.

Proof. By Chernoff’s bound each iteration of the outer while loop selectsO (τ logn)
new cluster centers with high probability. Hence, the bound on the number of
clusters follows applying the union bound over theO (logn) iterations of this loop.
As for the bound on the clustering radius, we observe that the aggregate number of
iterations of the inner while loop is at most logn+log(∆end/wmin). Moreover, note
that∆end = O (Φ(G)) = O (n ·wmax). By the assumption of polynomiality of edge
weights, we therefore have that log(∆end/wmin) = O (log(n ·wmax/wmin)) =
O (logn). By virtue of Lemma 1 and the discussion above, the number of iterations
of the inned while loop is thus O (logn). The bound follows by observing that
each such iteration increases the radius of cluster by an additive term at most
∆end = O

(
R
opt
G (τ)

)
.

Finally, observe that in every iteration of the inner while loop the number of ∆-
growing steps executed is at most ℓ∆ ⩽ ℓ∆end

. By the properties of edge relaxations,
after ℓ∆end

growing steps all nodes at distance less than ∆ from some center of X
have been reached by the closest center in X with a minimum-weight path, hence
their state cannot be further updated. Therefore, the final number of ∆-growing
steps will be O (ℓ∆end

logn) = O
(
ℓ
R
opt
G (τ) logn

)
, with high probability.
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Algorithm 4: Contract2(G = (V, E))

V ′← ∅;
E ′← ∅;
for e = {u, v} ∈ E do

if cu = nil∧ cv = nil then

V ′← V ′ ∪ {u, v};
E ′← E ′ ∪ e

else if cu ̸= nil∧ cv = nil then▷ The same applies for cu = nil∧ cv ̸= nil
V ′← V ′ ∪ {cu, v};
e ′← {u, v};
if w(e) ⩽ 2RCL

G (τ) then w(e ′)← du +w(u, v) − 2RCL
G (τ) ;

else w(e ′)← w(u, v) ;
E ′← E ∪ e ′;

else

The edge has both endpoints in the cluster, ignore it so it does not appear in
the output.

end

end

for u, v ∈ V ′
such that are multiple edges between u and v do

Remove from E ′ all edges {u, v} except the minimum weight one.
end

return G ′ = (V ′, E ′) ;

The algorithm we presented above can be extended to disconnected graphs.
Let G be a graph with h ⩾ 1 connected components. It is easy to see that for any
τ ⩾ h, algorithm Cluster(G, τ) works correctly with the same guarantees stated in
Theorem 3.

3.3 Diameter approximation algorithm

We now present an algorithm to estimate the diameter of a weighted graph as
a function of the diameter of a suitable (much smaller) auxiliary graph derived
from a clustering obtained through a refined version of the strategy devised in the
previous section. As we will clarify in the analysis, we introduce this refinement
to achieve a provable bound on the approximation guarantee, by ensuring that not
too many clusters have the potential to reach small neighborhoods of the graph.
Algorithm Cluster2(G, τ), whose pseudocode is given in Algorithm 5, builds the
required clustering in two steps. First, it computes the radius RCL

G (τ) of the cluster-
ing returned by Cluster(G, τ). Second, it executes logn iterations where it selects
uncovered nodes as new cluster centers with probability doubling at each iteration.
In the i-th iteration, both previous and new clusters are grown using 2RCL

G (τ)-
growing steps until all uncovered nodes at distance at most 2RCL

G (τ) from them are
reached. At the end of the iteration, the graph is contracted using Procedure Con-
tract2, whose pseudocode is reported in Algorithm 4. This procedure is similar to
Procedure Contract used in Cluster, with the difference that each original edge
(u, v) of weightw(u, v) ⩽ 2RCL

G (τ) and such that cu is defined and cv is undefined,
is replaced by a new edge (cu, v) with rescaled weight du+w(u, v)−2RCL

G (τ). Note
that this rescaling results in a positive weight, because when cu is defined and cv
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Algorithm 5: Cluster2(G, τ)
Let RCL

G (τ) be the radius of the clustering returned by Cluster(G, τ)
C1 ← ∅ ▷ current set of cluster centers

G1(V1, E1)← G(V, E)
for i← 1 to logn do

Select v ∈ Vi − Ci as a new center independently with probability 2i/n
X← Ci ∪ {newly selected centers}
foreach u ∈ Vi do

if u ∈ X then (cu, du)← (u, 0) else (cu, du)← (nil,∞)
end

∆← 2RCL
G (τ)

repeat

perform a ∆-growing step on Ḡ
until no state is updated

Gi+1(Vi+1, Ei+1)← Contract2(Gi)
Ci+1 ← X

end

is undefined, we have that du + w(u, v) > 2RCL
G (τ), otherwise v would have been

included in the cluster centered in cu.
The following lemma analyzes the quality of the clustering returned by Cluster2(G, τ)

and upper bounds the number of growing steps performed.

Lemma 2. Let τ be a positive integer. With high probability, Cluster2(G, τ) com-

putes an O
(
τ log4 n

)
-clustering of radius RCL2

G (τ) = O
(
R
opt
G (τ) log2 n

)
by performing

O
(
ℓ
R
opt
G (τ) logn logn

)
∆-growing steps with ∆ = O

(
R
opt
G (τ) logn

)
.

Proof. By Theorem 3 we know that with high probability the invocation of Cluster(G, τ)
at the beginning of the algorithm computes a K-clustering, with K = O

(
τ log2 n

)
,

of radius RCL
G (τ) = O

(
R
opt
G (τ) logn

)
. In what follows, we condition on this

event. Then, the bounds on the number of growing steps and on RCL2
G (τ) are

straightforward. For γ = 4/ log2 e, define H as the smallest integer such that
2H/n ⩾ (γK logn)/n, and let t = logn − H. We now show that the number of
original nodes of G not yet reached by any cluster decreases at least geometrically
at each iteration of the for loop after the H-th one. Recalling that VH+i − CH+i

is the set of original nodes of G that at the beginning of Iteration H + i have not
been reached by any cluster, for 1 ⩽ i ⩽ t, define the event Ei =“at the beginning of

Iteration H+ i, VH+i −CH+i contains at most n/2i−1
nodes”. We now prove that the

event ∩ti=1Ei occurs with high probability. Observe that:

Pr
(
∩ti=1Ei

)
= Pr(E1)

t−1∏
i=1

Pr(Ei+1|E1 ∩ · · · ∩ Ei)

=

t−1∏
i=1

Pr(Ei+1|E1 ∩ · · · ∩ Ei),
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since E1 clearly holds with probability one. Consider an arbitrary i, with 1 ⩽ i < t,
and assume that E1∩· · ·∩Ei holds. We prove that Ei+1 holds with high probability.
Since Ei holds, we have that at the beginning ofIterationH+ i, the number of nodes
inVH+i−CH+iis at mostn/2i−1. Clearly, if |VH+i−CH+i| ⩽ n/2i thenEi+1trivially
holds with probability one. Thus, we consider only the case

n

2i
< |VH+i − CH+i| ⩽

n

2i−1
.

In order to show that Ei+1 holds also in this case, we resort to the same argument
used in the proof of Lemma 1. Let C̄ be a K-clustering of the whole graph with
optimal radius RoptG (K) and observe that RoptG (K) ⩽ RCL

G (τ). To avoid confusion, we
refer to its clusters as C̄-clusters, while simply call clusters those grown by Cluster2.
Consider the C̄-clusters that include some nodes of VH+i−CH+i, and call one such
cluster large if it contains at least

|VH+i − CH+i|

2K
>
nγ logn

2H+i+1

nodes of VH+i − CH+i. This implies that the large C̄-clusters contain, altogether,
at least half of the nodes of VH+i − CH+i. Moreover, by the choice of γ, it is easy
to argue that, with probability ⩾ (1− 1/n), at least one new center is selected from
each large C̄-cluster in Iteration H + i. Consider now an arbitrary large C̄-cluster
centered at c̄ℓ and let c ′ ∈ C̄ℓ be a new center selected from this cluster in the
iteration. For every v ∈ C̄ℓ ∩ (VH+i − CH+i) there is a path in G from c ′ to v
(through c̄ℓ) of weight w ⩽ 2RCL

G (τ), hence there must be a path in Gi from c ′

to v of weight at most w. It then follows that node v will be covered by some
cluster in Iteration H+ i. Consequently, in the iteration at least half of the nodes of
VH+i − CH+i will be covered by clusters, with probability at least 1− 1/n.

By multiplying the probabilities of the O (logn) conditioned events, we con-
clude that event ∩ti=1Ei occurs with high probability. Note that in the last iteration
(IterationH+ t) all uncovered nodes are selected as centers with probability 1, and,
if ∩ti=1Ei occurs, these are O (K logn). Now, one can easily show that, with high
probability, in the first H iterations, O

(
K log2 n

)
clusters are added and, by condi-

tioning on ∩t+1
i=1Ei, at the beginning of each Iteration H + i, 1 ⩽ i ⩽ t, O (K logn)

new clusters are created, for a total of O
(
K log2 n

)
= O

(
τ log4 n

)
clusters.

Observe that for fixed τ, the clustering returned by Cluster2 has a larger number
of clusters and a weaker guarantee on its radius than the clustering returned by
Cluster. As such, Cluster2 does not appear to be a very desirable clustering
strategy in itself. However, Cluster2 enforces the following important property
which will be needed for proving the diameter approximation. With reference to a
specific execution of Cluster2, define the light distance between two nodes u and v
as the weight of the minimum-weight path from u and v consisting only of edges
of weight at most 2RCL

G (τ). (Note that the light distance is not necessarily defined
for every pair of nodes.)

Due to the weight rescaling performed by Contract2 at the end of each iteration,
given a center c selected at a certain Iteration i of the for loop, and a node v at light
distance d from c, the cluster centered at c cannot grow to reach v in less than
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⌈d/2RCL
G (τ)⌉ iterations and that in those many iterations vwill be reached by some

cluster (possibly the one centered at c). Consequently, no center selected at a later
iteration at that same distance from v as cwould be able to reach v.

We are now ready to present the main result of this section, which shows how
we can employ Cluster2 to determine a good approximation to the graph diameter.
Suppose we run Cluster2 on a graphG = (V, E,w) to obtain a clusteringC of radius
RCL2
G (τ). For each u ∈ V , let cu be the center of the cluster assigned to u, and let du

be distance between u and cu returned by Cluster2. As in [Mey08], we define the
weighted auxiliary graph associated toC as the graphGC where nodes correspond
to clusters and, for each edge (u, v) of G with cu ̸= cv, there is an edge in GC

between the clusters of u and vwith weight w(u, v) + du + dv. In case of multiple
edges between two clusters, we retain only the one yielding minimum weight. Let
Φ(G) (resp., Φ(GC)) be the weighted diameter of G (resp., GC). We approximate
Φ(G) through the value

Φapprox(G) = Φ(GC) + 2R
CL2
G (τ). (3.1)

It is easy to see that our estimate is conservative, that is, Φapprox(G) ⩾ Φ(G). We
have:

Theorem 4. With high probability,

Φapprox(G) = O
(
Φ(G) log3 n

)
.

Proof. Since RCL2
G (τ) = O

(
R
opt
G (τ) log2 n

)
(by Lemma 2), and RoptG (τ) = O (Φ(G)),

we have that RCL2
G (τ) = O

(
Φ(G) log2 n

)
. Therefore, to prove the theorem it remains

to show thatΦ(GC) = O
(
Φ(G) log3 n

)
. Let us fix an arbitrary pair of clustersC1, C2

and an arbitrary minimum-weight path π between their centers in G, and let wπ

be the weight of π. Let πC be the path of clusters in GC traversed by π. We now
show that with high probability the weight of πC in GC is O

(
Φ(G) log3 n

)
, by

distinguishing two cases.
Case 1. Suppose that 2RCL

G (τ) > Φ(G) (note that this can happen since the
clustering yielding the radius RCL

G (τ) determined at the beginning of Cluster2 is
built out of paths using only light edges of weight O

(
R
opt
G (τ)

)
). In this case,

it is easy to see that the first batch of centers ever selected in an iteration of the
for loop of Cluster2 will cover the entire graph, and these centers are O (logn)
with high probability. Therefore, πC contains O (logn) clusters and its weight is
O
(
wπ + RCL2

G (τ) logn
)
= O

(
Φ(G) log3 n

)
.

Case 2. Suppose now that 2RCL
G (τ) ⩽ Φ(G). We show that, with high probabil-

ity, at most O
(
⌈wπ/R

CL
G (τ)⌉ log2 n

)
clusters intersect π (i.e.,contain nodes of π). It

can be seen that π can be divided intoO
(
⌈wπ/R

CL
G (τ)⌉

)
subpaths, where each sub-

path is either an edge of weight> RCL
G (τ) or a segment of weight⩽ RCL

G (τ). It is then
sufficient to show that the nodes of each of the latter segments belong toO

(
log2 n

)
clusters. Consider one such segment S. Clearly, all clusters containing nodes of S
must have their centers at light distance at most RCL2

G (τ) from S (i.e., light distance
at most RCL2

G (τ) from the closest node of S). Recall that RCL2
G (τ) ⩽ 2RCL

G (τ) logn.
For 1 ⩽ j ⩽ 2 logn + 1, let C(S, j) be the set of nodes whose light distance from S
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is between (j− 1)RCL
G (τ) and jRCL

G (τ) − 1, and observe that any cluster intersecting
Smust be centered at a node belonging to one of the C(S, j)’s. We claim that, with
high probability, for any j, there are O (logn) clusters centered at nodes of C(S, j)
which may intersect S. Fix an index j, with 1 ⩽ j ⩽ 2 logn+ 1, and let ij be the first
iteration of the for loop of Cluster2 in which some center is selected fromC(S, j). By
the property of Cluster2 discussed after Lemma 2, ⌈((j+ 1)RCL

G (τ) − 1)/(2RCL
G (τ))⌉

iterations are sufficient for any of these centers to cover the entire segment. On
the other hand, any center from C(S, j) needs at least ⌈(j − 1)RCL

G (τ)/(2RCL
G (τ))⌉

iterations to touch the segment. Hence, we have that no center selected fromC(S, j)
at Iteration ij + 2 or higher is able to reach S. It is easy to see that, due to the
smooth growth of the center selection probabilities, the number of centers selected
from C(S, j) in Iterations ij and ij + 1 is O (logn), with high probability. This
implies that the nodes of segment S will belong to O

(
log2 n

)
clusters, with high

probability. By applying the union bound over all segments of π, we have that
O
(
⌈wπ/R

CL
G (τ)⌉ log2 n

)
clusters intersect π, with high probability. Therefore, with

high probability the two clusters C1, C2 are connected inGC by a path of weight at
most πC, which is

O

(
wπ + RCL2

G (τ)

⌈
wπ

RCL
G (τ)

⌉
log2 n

)
= O

(
Φ(G) + RCL2

G (τ)
Φ(G)

RCL
G (τ)

log2 n

)
= O

(
Φ(G) log3 n

)
The theorem follows by applying the union bound over all pairs of clusters.

3.4 Implementation in the MapReduce model

We now discuss the implementation of the above diameter approximation algo-
rithm in the MapReduce model described in Section 2.2.1, using overall linear space.
We will show that, for a relevant class of graphs, we can make its round complexity
asymptotically smaller than the one required to obtain a 2-approximation through
the state-of-the-art SSSP algorithm by [MS03].

The basic idea is to run the clustering algorithm Cluster2 described in the
previous section with a cluster granularity τ such that the auxiliary graph built
from the clustering fits into the memory of a single reducer. We first observe that,
regardless of the number of active clusters and for any ∆, we can implement a
∆-growing step on the MR(ML,MA) model through a constant number of simple
prefix and sorting operations. Recall that, by Theorem 1, these operations require
O
(
logML

n
)

rounds. Therefore, by combining Theorem 1 and Lemma 2, we easily
derive the following result.

Lemma 3. Let G be a connected graph with n nodes andm edges. On the MR(ML,MA)
model, withMA = Θ(m), algorithm Cluster2(G, τ) can be implemented in

O
(
ℓ
R
opt
G (τ) logn logn logML

n
)

rounds. In particular, if ML = Ω (nε), for some constant ε > 0, the number of rounds

becomes O
(
ℓ
R
opt
G (τ) logn logn

)
.
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The theorem below states the performance of the diameter approximation algo-
rithm on the MR(ML,MA)model whenMA is linear in the graph size and sufficient
local memory is available. In particular, the theorem shows an interesting tradeoff
between the number of rounds and the sizeML of the local memory.

Theorem 5. Let G be a connected weighted graph with n nodes, m edges, and weighted

diameter Φ(G). Also, let ε ′ < ε ∈ (0, 1) be two arbitrary constants, and let τ =
⌈nε ′

/ log4 n⌉. With high probability, an estimate Φapprox(G) to the diameter Φ(G) of

G, such that Φ(G) ⩽ Φapprox(G) ⩽ O(Φ(G) log3 n), can be computed in

O
(
ℓ
R
opt
G (τ) logn logn

)
rounds on the MR(ML,MA) model withML = Θ(nε) andMA = Θ(m).

Proof. By setting τ = ⌈nε ′
/ log4 n⌉, we have that Cluster2 returns O(nε ′

) clusters
with high probability. In case the number of clusters is larger, we repeat the exe-
cution of Cluster2. Let GC = (VC, EC) be the auxiliary graph associated with the
returned clustering. By the choice of τ, we have that |VC| ⩽ ML. Furthermore, if
|EC| ⩽ ML we can compute the diameter of GC in a single reducer in one round.
Otherwise, by employing the sparsification technique presented in [BS07] we trans-
formGC into a new graphG ′

C = (V, E ′
C)with |E ′

C| ⩽ML, whose diameter is a factor
at most O(ε ′/(ε − ε ′)) = O(1)) larger than the diameter of GC. This sparsification
technique requires a constant number of cluster growing steps similar in spirit to
those described above, which can be realized through a constant number of prefix
and sorting operations. By Theorem 1 we can implement this transformation in
O(1) rounds in the MR(ML,MA) model. By combining the discussion above with
Lemma 3, we have that the execution of Cluster2 followed by the computation of
the diameter of the auxiliary graph takes O

(
ℓ
R
opt
G (τ) logn logn

)
.

Note that the round complexity depends on the characteristics of the graph and
is nonincreasing in the number of clusters as controlled by τ, which is in turn a
function ofML. To take into account the topological properties of the input graph,
and remove the dependency on ℓ

R
opt
G (τ) logn, we express the round complexity in

terms of the doubling dimension of the graph, which we introduced in Definition 2:
for a given graph G, its doubling dimension is the smallest D such that any ball
of radius r can be covered by at most 2D balls of radius r/2. Recall that Φ(G) and
Ψ(G) denote the weighted and unweighted diameter of G.

Before stating the performance of our algorithm parameterized with the dou-
bling dimension of the graph, we need the following technical lemma.

Lemma 4. Given a graph G with maximum degree d, if we remove edges with probability

p > 1−1/d (i.e. we leave an edge in the graph with probability< 1/d) then whp the graph

becomes disconnected and each connected component has size O (logn).

Proof. LetG ′ = (V, E ′) be a graph obtained fromG = (V, E) by removing each edge
in E with probability 1 − p > 1 − 1/d. Equivalently, each edge in E is included in
E ′ with probability p < 1/d, independent of other edges. If G ′ has a connected
component of size k then it must have a tree of size k. We prove the claim by
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showing that for c > 6
(
1−p(d−1)
p(d−1)

)2
, the probability that a given vertex v is part of

a tree of size k = c logn is bounded by 1/n2.
For a fixed vertex v ∈ V , let Y0 = {v} and let Yi be the set of vertices connected

to Yi−1 but not to Yj, j < i− 1, i.e.

Yi = {w | ∃(w,u) ∈ E ′, w ̸∈ ∪i−1
i=0Yi, u ∈ Yi−1},

Consider a Galton–Watson branching process [Ken75] {Zi, i ⩾ 0}, with Z0 = 1,
and Zi =

∑Zi−1

j=1 Xj.i, where Xj,i are independent, identically distributed random
variables with a Binomial distribution B(d − 1, p). Clearly for any i ⩾ 0, the
distribution of Yi is stochastically upper bounded by the distribution of Zi.

Since a tree of k vertices has k − 1 edges, and the number of decendents of
different nodes are independent,

Pr(
∑
i⩾0

Zi ⩾ k) ⩽ Pr(
k∑

i=1

Xi ⩾ k− 1)

where Xi are independent random variables distributed B(d−1, p) [Dwa69]. Now,
we have E[

∑k
i=1 Xi] = k(d − 1)p, therefore, by applying a Chernoff bound, the

probability that v is part of a tree of size c logn is bounded by

Pr(
∑
i⩾0

Yi ⩾ k) ⩽ Pr(
∑
i⩾0

Zi ⩾ k) ⩽ e
−c logn/3 ⩽ n−2

By union bound over the n nodes, the probability that the graph has a connected
component of size greater than c logn is bounded by 1/n.

An alternative way of interpreting the above lemma is the following.

Observation 1. Given a graph of maximum degree d with edge weights uniformly dis-

tributed in [wmin, wmax], if we remove the edges whose weight is ⩾ (wmin+wmax)/d,

then with high probability the graph becomes disconnected and the size of each connected

component isO (logn). That is, in any simple path the length of any segment of consecutive

edges with weight < (wmin +wmax)/d is O (logn), whp.

Thanks to the above interpretation of Lemma 4, we can state the following
corollary of Theorem 5.

Corollary 1. Let G be a connected graph with n nodes, m edges, maximum degree d ∈
O (1), doubling dimension D, and positive edge weights chosen uniformly at random from

[wmin, wmax], with wmax/wmin ∈ O(nh) for some h > 0. Also, let 0 < ε ′ < ε < 1
be two arbitrary constants. With high probability, an estimateΦapprox(G) to the diameter

Φ(G) of G, such that Φ(G) ⩽ Φapprox(G) ⩽ O(Φ(G) log3 n), can be computed in

O

(⌈
Ψ(G) log4/D n

nε ′/D

⌉
log3 n

)

rounds on the MR(ML,MA) model withML = O(nε) andMA = Θ(m).
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Proof. As in Theorem 5, we set τ = ⌈nε ′
/ log4 n⌉ so as to have Cluster2 return-

ing O(nε ′
) clusters with high probability. By iterating the definition of doubling

dimension starting from a single ball of unweighted radius Ψ(G) containing the
whole graph, we can decompose the graph into τ disjoint clusters of unweighted
radius ψ = O

(⌈
Ψ(G)/τ1/D

⌉)
. Since wmax be the maximum edge weight, we

have that ψ ·wmax upper bounds RoptG (τ). We know that our algorithm computes
the diameter approximation in O

(
ℓ
R
opt
G (τ) logn logn

)
rounds. We will now give

an upper bound on ℓ
R
opt
G (τ) logn. By Lemma 4 and Observation 1, we have that

by removing all edges of weight ⩾ (wmin + wmax)/d with high probability the
graph becomes disconnected and each connected component has O (logn) nodes.
As a consequence, with high probability any simple path in G will traverse an
edge of weight ⩾ (wmin + wmax)/d = Ω (wmax) every O (logn) nodes. This
implies that a path of weight at most RoptG (τ) logn = O

(⌈
Ψ(G)

τ1/D

⌉
wmax logn

)
has

ℓ
R
opt
G (τ) logn = O

(⌈
Ψ(G)

τ1/D

⌉
log2 n

)
edges. The statement follows by the choice of

τ.

The above corollary ensures that, for graphs of constant doubling dimension,
we can make the number of rounds polynomially smaller than the unweighted
diameter Ψ(G). This makes our algorithm particularly suitable for inputs that are
otherwise challenging in MapReduce, like high-diameter, mesh-like sparse topolo-
gies (a mesh has doubling dimension 2). On these inputs, performing a number
of rounds sublinear in the unweighted diameter is crucial to obtain good perfor-
mance. Conversely, algorithms for the SSSP problem perform a number of rounds
linear in the diameter. Consider for instance ∆-stepping that, being a state of the
art parallel SSSP algorithm, is our most natural competitor. Given a graph G with
random uniform weights, the analysis in [MS03] implies that under the linear-space
constraint a natural MR-implementation of ∆-stepping requires Ω (Ψ(G)) rounds.
By Corollary 1, if G has bounded doubling dimension the round complexity of
our algorithm can be made smaller by a sublinear yet polynomial factor, which
is a function of the available local space ML. We will verify experimentally this
performance difference in the Section 3.7.

3.5 Improved performance for unweighted graphs

We can show that running the MapReduce implementation described in the previ-
ous section on unweighted graphs is faster than in the general case. In fact, in the
unweighted case, the ∆-growing step is very efficient, since once a node is reached
for the first time, it is always with the minimum distance, so it will not be further
updated. In fact, in the unweighted case the ∆-growing step is conceptually equiv-
alent to a BFS-like expansion. This results in an improvement in the running time
by a logarithmic factor, as shown in the following corollary to Theorem 5.

Corollary 2. LetG be a connected unweighted graph with n nodes,m edges, and doubling

dimension D. Also, let 0 < ε ′ < ε < 1 be two arbitrary constants. With high probability,

an estimate Φapprox(G) to the diameter Φ(G) of G, such that Φ(G) ⩽ Φapprox(G) ⩽
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O(Φ(G) log3 n), can be computed in

O

(⌈
Φ(G) log4/D n

nε ′/D

⌉
log2 n

)

rounds on the MR(ML,MA) model withML = O(nε) andMA = Θ(m).

Proof. By reasoning as in the proof of Corollary 1 we can show that G can be
decomposed into τ disjoint clusters of radius φ = O

(
⌈Φ(G)/τ1/D⌉

)
. Therefore, φ

upper bounds the optimal radius RoptG (τ).
Recall that, for a given x, ℓx is by definition one plus the maximum number of

edges in any shortest path connecting two nodes at distance ⩽ x. Therefore, in an
unweighted graph, which is equivalent to a weighted graph with unit edge weights,
we have by definition that ℓ

R
opt
G (τ) logn = R

opt
G (τ) logn + 1. Recall also that our

algorithm computes the diameter approximation in O
(
ℓ
R
opt
G (τ) logn logn

)
rounds.

By combining these observations with the upper bound toRoptG (τ)discussed above,
we have that the algorithm runs in O

(
⌈Φ(G)/τ1/D⌉ log2 n

)
MapReduce rounds.

The statement follows by choosing τ = ⌈nε ′
/ log4 n⌉, as argued in the proof of

Corollary 1.

Observe that Corollary 1 for weighted graphs requires the input graph to have
edge weights distributed uniformly at random, in order to ensure the result with
high probability. Conversely, the above Theorem 2 holds with high probability
based only on the choices of the algorithm.

In the case of unweighted graphs, the most natural competitor is the simple
BFS search, instead of ∆-stepping. The same considerations of the previous sec-
tion hold, since a BFS search requires Θ (Φ(G)) rounds, similarly to ∆-stepping.
Another family of competitors is represented by neighbourhood function-based
algorithms [PGF02; BRV11; Kan+11], which we reviewed in Section 3.1.3. These
algorithms, like the BFS, requireΘ (Φ(G)) rounds, and are therefore outperformed
by our approach on graphs with constant doubling dimension.

3.6 Approximation to k-center

In the previous sections, we introduced diameter approximation algorithms which
used, as a subroutine, the construction of clusters of small radius around center
nodes. It is natural to envision the application of our clustering strategies to the
solution of the k-center problem on graphs, which was introduced in Section 2.4.
In particular, the following theorem shows that Algorithm Cluster can be used to
solve the k-center problem for unweighted graphs.

Theorem 6. LetG be a connected graph withn nodes,m edges and doubling dimensionD.

For k = Ω(log2 n), algorithm Cluster can be employed to compute, with high probability,

an O(log3 n)-approximation to the k-center problem on G in

O

(⌈
Φ(G) log2/D

k1/D

⌉
logn

)
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rounds, on the MR(ML,MA) model with MA = Θ(m) and ML = O(nε), for some

constant ε ∈ (0, 1].

Proof. Fix τ = Θ
(
k/ log2 n

)
so that Cluster(τ) returns at most k clusters with

high probability, and let M be the set of centers of the returned clusters. Without
loss of generality, we assume that M contains exactly k nodes. In case |M| < k,
we can add k − |M| arbitrary nodes to M, which will not increase the value of the
objective function. LetRCL(τ) be the maximum radius of the clusters returned by our
algorithm. As proved in Theorem 3, we have that, with high probability, RCL(τ) =

O (RG(τ) logn). We now argue that RoptG (τ) = O
(
R
opt
G (k) log2 n

)
. Consider

the optimal solution to the k-center problem on the graph, and the associated
clustering of radius RG(k). Furthermore, consider the auxiliary graph built from
this clustering as described in Section 3.3, and let T be a spanning tree of such a
graph. It is easy to see that T can be decomposed into τ subtrees of heightO

(
log2 n

)
each. Merge the clusters associated with the nodes of each such subtree and pick
any node as center of the merged cluster. By construction, we have that given an
arbitrary node u and its closest newly picked center c, the path from u to c traverses
at most log2 n original clusters, each contributing a factor O

(
R
opt
G (k)

)
to the path

length. Since the graph has unit edge weights, the edges between clusters account
for an additiveO

(
log2 n

)
factor, overall. We have then that every node in the graph

is at distance D = O
(
RG(k) log2 n+ log2 n

)
= O

(
RG(k) log2 n

)
from one of the

picked nodes. Since D ⩾ RoptG (τ), we conclude that RoptG (τ) = O
(
R
opt
G (k) log2 n

)
,

and bound on the approximation factor follows.
As for the number of rounds in the MR(ML,MA) model, by iterating the def-

inition of doubling dimension, starting from a single ball of radius Φ(G) and
containing the whole graph, we can cover the graph with τ disjoint clusters of
radius φ = O

(
⌈Φ(G)/τ1/D⌉

)
. Clearly, φ upper bounds the optimal radius of the

clustering RoptG (τ). By Lemma 3, Cluster performs O
(
ℓ
R
opt
G (τ) logn

)
∆-growing

step, which by the discussion above is O (ℓφ logn). Each of these ∆-growing
steps can be implemented with a constant number of sorting and prefix opera-
tions. Thus, by Theorem 1, we have that a ∆-growing step can be implemented
in O

(
logML

n
)

rounds in the MR(ML,MA) model. Since by hypothesis the local
memory is ML = O (nε) for constant ε ∈ (0, 1], we have that each ∆-growing step
can be implemented in a constant number of rounds. Therefore, Cluster computes
a clustering in O (ℓφ logn) rounds. By reasoning as in the proof of Theorem 2 we
have that ℓφ = O (φ), therefore the number of rounds is O

(
⌈Φ(G)/τ1/D⌉ logn

)
.

The round complexity follows by the choice of τ.

In Section 2.4.2 we reviewed the MapReduce k-center algorithm by Malkomes
et al. [Mal+15], which runs in two rounds, and provides a 4-approximation for the
k-center problem. Therefore it seems to have a better performance both from the
perspective of round complexity and approximation ratio. However, it requires
either a distance oracle or theΘ

(
n2
)

distances to be given in input. Hence, it seems
unlikely that the algorithm from [Mal+15] can be applied to the k-center problem
on graphs in 2 rounds using in linear space. To the best of our knowledge, ours
is the first MapReduce algorithm that solves the k-center problem on unweighted
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graphs with a provable approximation guarantee, and with a number of rounds
sublinear in the diameter for graphs with bounded doubling dimension.

Our k-center approximation algorithm can also be applied to disconnected
graphs. Consider a graph G with h > 1 connected components. Observe that
for k ⩾ h, the k-center problem still admits a solution with non-infinite radius.
Given k ⩾ h, we can still get a O

(
log3 n

)
-approximation to k-center as follows.

If k = Ω
(
h log2 n

)
, then the graph has enough connected components to run

Cluster(G, τ) with τ = Θ
(
k/ log2 n

)
as we described before. If instead h ⩽ k =

o(h log2 n), setting τ = Θ
(
k/ log2 n

)
would not do, because Cluster will try to

use less cluster centers than the number of connected components. In this case
we run Cluster(G,h), obtaining a clustering with O

(
h log2 n

)
components, by

Theorem 3. From this clustering, we can obtain a k-clustering by applying the
same merging technique introduced in the proof of Theorem 6 as follows. We
consider the auxiliary graph built from the clustering as described in Section 3.3,
and we let T be a spanning tree of such a graph. We then decompose this spanning
tree into k subtrees, merging all the clusters associated to the nodes of a given
subtree. It is easy to see that the approximation ratio is still O

(
log3 n

)
.

Theorem 6 holds only for unweighted graphs. As for weighted graphs, the
derivation of a theoretical bound on the approximation factor that can be obtained
by using algorithm Cluster remains an open problem. In particular, when dealing
with weighted graphs, the spanning tree-based construction adopted in the proof
cannot be used: while we can still decompose the spanning tree in such a way that
any path traverses at most log2 n clusters, the edges between different clusters may
have an arbitrary weight. The development of a proof for the case of weighted
graphs is the object of ongoing work.

3.7 Experimental Analysis

In this section we present an experimental analysis of our algorithm. The goal is to
verify the quality of the approximation provided by our algorithm over a wide range
of topologies, and to compare with the performance of other algorithms presented
in the literature. Furthermore, we analyze the scalability of our implementations.
We run experiments on both weighted and unweighted graphs in order to compare
with existing algorithms for both cases. For weighted graphs, in subsection 3.7.1, we
compare with our most natural competitor, the ∆-stepping algorithm [MS03]. As
for unweighted graphs (subsection 3.7.2), we compare our diameter approximation
algorithm with the BFS algorithm and with HADI [Kan+11]. Finally, we compare
our Cluster algorithm with the clustering algorithm introduced in [MPX13], which
we reviewed in Section 2.4.2, from the perspective of the quality of clustering.

We implemented our algorithms, whose code is openly accessible [Cec15]
within the Spark framework, which we introduced in Section 2.2.2. We also con-
tributed our implementation to the repository of publicly available Spark libraries1,
to allow an easy integration of our algorithm in other software [Cec16b]. All the
experiments have been run on the 16-machines clusters described in Section 2.2.2.
We implemented a simplified version of our diameter approximation algorithm,

1https://spark-packages.org/
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dubbed cl-diam, where, for efficiency, we used Cluster for computing the graph
clustering, rather than Cluster2. In fact, Cluster2 first runs Cluster to obtain an
estimate of the radius, and then computes a second clustering which is instrumen-
tal to provide a theoretical bound to the approximation factor, but which does not
seem to provide a significant improvement to the quality of the approximation in
practice.

As a second optimization, we ran Cluster using an initial value of ∆ larger
than the minimum edge weight, as was specified in the pseudocode. We observe
that by increasing the initial value of ∆, the round complexity improves since less
doublings are required before reaching the final value. On the other hand, setting
the initial value of ∆ too large may yield a larger cluster radius, possibly incurring
a worse diameter approximation. To explore this phenomenon, we experimented
on a 2048 × 2048 mesh with random edge weights, such that an edge has weight
1 with probability 0.1 and 10−6 otherwise. With high probability, such a graph
can be completely covered using clusters that do not contain edges of weight 1:
including one of those edges in a cluster would make its radius far bigger than it
needs to be. We ran our algorithm with two configurations. The first configuration
started with ∆ = 10−6 (i.e., the minimum edge weight) so as to let the algorithm
tune itself to the final value ∆end = 6.4 · 10−5; the second configuration started
with an inital ∆ equal to the graph diameter (≈ 2.004) so that no doubling of ∆
was needed. The diameter approximation obtained by the second configuration
was about 2.5 times larger than the actual diameter, whereas the first configuration
obtained an approximation ratio of 1.0001. A set of experiments (omitted here
for the sake of brevity) showed that a good initial guess for ∆ is the average edge
weight, which reduces the round complexity without affecting the approximation
quality significantly. Therefore, all our experiments have been run with this initial
guess of ∆.

In all experiments the parameter τwas set so that the final diameter computation
in the auxiliary graph would not dominate the running time. Since the auxiliary
graphs turned out in all cases to be sufficiently sparse, the use of sparsification
techniques mentioned in the proof of Theorem 5 was not needed. Furthermore,
whenever we refer to the “true diameter” of the input graph, we refer to the
maximum distance found with a very large number of sequential SSSP runs. This
lower bound to the actual diameter is also used to compute the approximation
ratios, which are therefore overestimated, since the approximation algorithms we
deal with provide upper bounds to the diameter. Finally, all values reported as
results of the experiments are averages over at least 5 runs.

3.7.1 Experiments on weighted graphs

To explore the performance of our diameter approximation algorithm, we used
several weighted graphs, whose properties are summarized in Table 3.1. For some
graphs we added edge weights distributed uniformly at random in (0, 1]. Note that
edge weights generated in this way comply with the assumption of polynomiality
we introduced at the beginning of Section 3.2. In fact, since we use double precision
floating point numbers (standard IEEE 754) the smallest positive real number that
can be represented is a constant. Therefore, the ratio between the maximum weight
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and the smallest one is actually constant in n. The graphs can be classified as
follows:

road networks: roads-USA and roads-CAL are respectively the road networks of
USA and California with distances in meters, as taken from the collection of
datasets of the 9th DIMACS challenge2. Both graphs are sparse and feature a
large unweighted diameter.

social networks: livejournal and twitter are two social network datasets taken
respectively from the SNAP collection3 and the WebGraph collection4. Both
graphs are denser than the aforementioned road networks, and their un-
weighted diameter is small. Since these graphs were originally unweighted,
we assigned random uniform edge weights in (0, 1], according to the ap-
proach commonly adopted in the literature. Note that the twitter graph is
particularly massive, with almost 1.5 billion edges.

synthetic graphs: we also use three classes of artificially generated graphs whose
size can be made arbitrarily large through a parameter S and whose topolog-
ical properties reflect those of the real networks in the first two classes:

• mesh(S): a S×Smesh, with edge weights uniformly distributed in (0, 1].
These are graphs of known doubling dimension D = 2, for which the
results of Corollary 1 hold. Moreover, this is a topology with properties
similar to those of road networks.

• R-MAT(S): these are graphs mimicking the structure of social networks,
with a power-law degree distribution and small diameter. They are
included in the Graph500 benchmark set [Mur+10]. Edge weights have
a uniform distribution between in (0, 1].

• roads(S): graphs are obtained as the cartesian product of a linear array
of S > 1 nodes and unit edge weights with roads-USA. Basically, graphs
of this family are created by layering S copies of roads-USA, and by
connecting the corresponding nodes of adjacent layers with unit edge
weights.

Comparison with the SSSP-based approximation algorithm

Recall that an SSSP algorithm can be used to yield an upper bound to the diameter,
at most a factor-2 away from the actual value, by returning twice the weight of the
heaviest shortest path. Thus, we compared our algorithm cl-diam with a Spark
implementation of the ∆-stepping SSSP algorithm (starting from a random node),
which, as we saw in the preliminaries, is the state of the art for parallel SSSP
and is in fact our only practical competitor on weighted graphs. In ∆-stepping,
parameter ∆ can be set to control the tradeoff between parallel time (i.e., rounds
in the MapReduce context) and total work. For each graph, we tested ∆-stepping

2http://www.dis.uniroma1.it/challenge9/
3http://snap.stanford.edu/data
4http://law.di.unimi.it/webdata/twitter-2010/
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Graph n m Φ(G)

roads-USA 23,947,347 29,166,673 55,859,820
roads-CAL 1,890,815 2,328,872 16,485,258
livejournal ⋆ 3,997,962 32, 681, 189 9.41
twitter ⋆ 41,652,230 1,468,365,182 9.07
mesh(S) ⋆ S2 2S(S− 1) †
R-MAT(S) ⋆ 2S 16 · 2S †
roads(S) ≈ S · 2.3 · 107 ≈ S · 5.3 · 107 †
⋆ edge weights randomly distributed ∈ (0, 1].
† the diameter depends on the size of the graph, controlled by S > 1.

Table 3.1: Weighted benchmark graphs. Φ(G) is the weighted diameter.

roadsUSA roadsCAL mesh(2048) livejournal twitter RMAT(24)
1.0

1.1

1.2

1.3

1.4

1.5
CLDIAM
∆stepping

Figure 3.1: Approximation ratio of cl-diam and ∆-stepping.

with several values of ∆, selecting the value yielding the best running time. Since
in MapReduce-like environments the number of rounds has a significant impact on
the running time, for all graphs the best value of ∆ turned out to be always the one
minimizing the number of rounds. As for our algorithm, we set τ so that cl-diam
yields an auxiliary graph with ⩽ 100, 000 nodes. In Section 3.7.2, we will study the
influence of the clustering granularity on the approximation factor, finding that it
has no impact, in accordance with the theory.

The results of the comparison between cl-diam and∆-stepping are summarized
in Table 3.2 and graphically represented in Figures 3.1, 3.2, and 3.3. In the table
we report, for each graph, the approximation factor and the running time. Along
with these, we also report two additional measures, namely, the number of rounds
and the work (defined as the sum of node updates and messages generated), that
allow to compare the two algorithms in a more platform-independent way. It has
to be remarked that the approximation factor featured by cl-diam on all benchmark
graphs, which is always less that 1.4, is much better that the theoretical O

(
log3 n

)
bound. Also, our algorithm is from about one to two orders of magnitude faster
than ∆-stepping, while featuring comparable approximation ratios (Figure 3.1).
As expected, the higher performance of cl-diam is consistent with the fact that it
requires far less rounds than ∆-stepping, as shown in Figure 3.2.

For what concerns the work, the better performance of cl-diam, as shown in
Figure 3.3, is mainly due to the smaller number relaxations with respect to ∆-
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roadsUSA roadsCAL mesh(2048) livejournal twitter RMAT(24)
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Figure 3.2: Number of rounds required by cl-diam and ∆-stepping. The scale is
logarithmic.

roadsUSA roadsCAL mesh(2048) livejournal twitter RMAT(24)
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Figure 3.3: Work performed by cl-diam and ∆-stepping. The scale is logarithmic.
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approximation time rounds work
graph CL ∆S CL ∆S CL ∆S CL ∆S

roads-USA 1.26 1.09 158 14,982 74 11,268 4.22·108 1.35·1011
roads-CAL 1.25 1.22 13 917 16 2,639 1.70·107 2.27·109
mesh(2048) 1.23 1.30 46 1,239 70 2,997 1.13·108 1.58·108
livejournal 1.22 1.10 19 74 7 42 1.97·108 4.81·108
twitter 1.19 1.32 236 601 5 35 4.71·109 1.20·1010
R-MAT(24) 1.33 1.02 144 1,493 4 41 7.45·108 4.20·109

Table 3.2: cl-diam vs ∆-stepping (resp. CL and ∆S in the table, for brevity). For
each benchmark, the table shows the running time (in seconds), the approximation
ratio, the number of rounds, and the work of the two algorithms.

stepping. Indeed, cl-diam explores paths only up to a limited depth, whereas
∆-stepping needs to run until all the nodes are labeled with the optimal distance
from the source. In fact, ∆-stepping could limit the amount of relaxations by
using a smaller ∆, but in doing so it would incur an increase of the number of
rounds, hence exhibiting worse performance. The gap between ∆-stepping and
cl-diam in terms of both number of rounds and work suggests that our algorithm
is likely to remain competitive on other distributed-memory platforms employing
programming frameworks alternative to MapReduce.

We remark that the experiments reported in Table 3.2 involve graphs of mod-
erate size for which, not surprisingly, much better running times can be obtained
on a single machine equipped with sufficient main memory. In fact, the purpose
of those experiments was not to attain best absolute performance on the individual
graphs but, rather, to compare the relative performance of cl-diam with the one of
∆-stepping. Since it is conceivable to expect that the relative performance of two al-
gorithms does not change as the graphs size grows, performing this comparison on
much larger graphs would have only encumbered the experimental work without
changing the overall outcome. Nevertheless, we performed further experiments,
reported in the next subsection, to provide evidence that our algorithm scales well
with respect to the number of machines and input size.

Scalability.

Graph time (seconds)

R-MAT(29) 6218
roads(32) 14054

Table 3.3: Experiments on big graphs

To check the scalability of cl-diam with
respect to the number of machines, we
ran it using 2, 4, 8, and 16 machines on
R-MAT(26) and roads(3) which have
approximately the same number of
nodes but topologies of different na-
ture. The results are reported in Figure
3.4 which shows that, for both graphs,
the algorithm exhibits excellent scalability.

Finally, we ran cl-diam on R-MAT(29) and roads(32), which are much larger
graphs than those employed in the experiments reported in Table 3.2, and for which
the running time of ∆-stepping would be impractically high on our platform. The
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Figure 3.4: Scalability of cl-diam wrt the number of machines.

running times on 16 machines are shown in Table 3.3. Consider that the size of
R-MAT(29) is 32 times larger than the size of R-MAT(24), in terms of number of
edges. Similarly, the number of edges of roads(32) is about 57 times larger than
the size of roads-USA, because of the edges between each layer. Table 3.3 shows
that cl-diam is ≈ 43 (resp. ≈ 88) times slower on R-MAT(29) (resp. roads(32))
with respect to R-MAT(26) (resp. roads-USA). Given this, the experiment shows
that cl-diam’s performance scales well with the graph size on the same machine
configuration, with a slight penalty in the running time on large graphs, which is
to be expected due to the increased number of interactions with the disks occurring
in each machine because of the large graph size.

Altogether, the experiments suggest that our algorithm can be effectively em-
ployed to provide a good estimate of the diameter of huge graphs on sufficiently
large clusters of commodity processors.

3.7.2 Experiments on unweighted graphs

As we showed in Section 3.5, on unweighted graphs our algorithm runs potenitally
faster than in the general case. Moreover, some other diameter approximation
algorithms, like HADI [Kan+11], only work on unweighted graphs. Hence, we run
on a set of unweighted graphs whose main characteristics are reported in Table 3.4.
The first graph is a symmetrization of the biggest connected component of the
Twitter network introduced in the previous section. The next four graphs are from
the SNAP collection5 and represent, respectively, the Livejournal social network,
also described in the previous section, and three road networks, which are the
road networks of California, Pennsylvania, and Texas. The weights on the edges
of the road networks have been ignored. The last graph is a synthetic 1000× 1000
mesh, which has been included since its doubling dimension is known, unlike the
other graphs, and constant (b = 2), hence it is an example of a graph where our
algorithms are provably effective.

5http://snap.stanford.edu/data
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Dataset n m Φ(G)

twitter 39,774,960 684,451,342 16

livejournal 3,997,962 34,681,189 21

roads-CA 1,965,206 2,766,607 849

roads-PA 1,088,092 1,541,898 786

roads-TX 1,379,917 1,921,660 1,054

mesh1000 1,000,000 1,998,000 1,998

Table 3.4: Unweighted benchmark graphs. Φ(G) is the diameter.

We run two sets of experiments: one aiming at assessing the quality of the
solution found by our algorithm relative to the main competitors, the other at
comparing different clustering strategies. The graphs considered in this section
are slightly smaller than the ones used previously to ease the comparison with the
competitors, which are prohibitively slow when run on large graphs.

Comparison with HADI and the BFS-based approximation algorithm

We performed three sets of experiments to investigate different aspects of our
algorithm applied to unweighted graphs.

The first set of experiments aimed at testing the quality of the diameter ap-
proximation provided by our algorithm, and its dependence on the clustering
granularity. The results are reported in Table 3.5. For each graph of Table 3.4 we
estimated the diameter by running our algorithm with two clusterings of different
granularities (dubbed coarser and finer clustering, respectively) reporting, in each
case, the number of nodes (nC) and edges (mC) of the auxiliary graph GC, the ap-
proximationΦapprox(G) and the true diameterΦ(G). We observe that in all cases
Φapprox(G)/Φ(G) < 2. Also, we observe that, consistently with the theoretical
results, the quality of the approximation does not seem to be significantly affected
by the granularity of the clustering. Therefore, for very large graphs, or distributed
platforms where individual machines are provided with small local memory, one
can resort to a very coarse clustering in order to fit the whole auxiliary graph in
one machine, and still obtain a good approximation to the diameter, at the expense,
however, of an increased number of rounds, which are needed to compute the
clustering.

With the second set of experiments, we assessed the time performance of our
algorithm against two competitors: HADI [Kan+11], which was reviewed in Sec-
tion 3.1.3 and provides a rather tight diameter estimation through the approxima-
tion of the neighborhood function; and Breadth First Search (BFS), which, as the
∆-stepping algorithm employed in the previous section, can be used to obtain an
upper bound to the diameter within a factor two. The original code for HADI was
written for the Hadoop framework6. Because of Hadoop’s known large overhead,
for fairness, we reimplemented HADI in Spark, with a performance gain of at least

6HADI website: www.cs.cmu.edu/~pegasus
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Coarser clustering Finer clustering
Dataset nC mC approx. nC mC approx.

twitter 1835 18865 1.43 5276 895356 1.68

livejournal 1933 24442 1.38 7837 570608 1.38

roads-CA 1835 5888 1.77 3863 10946 1.73

roads-PA 1087 3261 1.57 4286 12314 1.58

roads-TX 1316 3625 1.48 3821 10880 1.52

mesh1000 880 3224 1.06 3588 14198 1.01

Table 3.5: Size of the auxiliary graph, in terms of number of nodes a and edges, and
diameter approximation returned by cl-diam on the benchmark graphs of Table 3.4.
The approximation ratio is the ratio Φapprox(G)/Φ(G), where Φapprox(G) is the
estimated diameter and Φ(G) is the true diameter.

Dataset cl-diam BFS HADI

twitter 61 (1.68) 45 (1.37) 3697 (0.875)

livejournal 9 (1.38) 15 (1.24) 388 (1.24)

roads-CA 21 (1.73) 191 (1.67) 11008 (0.98)

roads-PA 15 (1.58) 173 (1.58) 10090 (0.97)

roads-TX 24 (1.52) 260 (1.39) 12572 (0.94)

mesh1000 16 (1.01) 368 (1.11) 17287 (1.00)

Table 3.6: Comparison of our approach (Cluster) with HADI and BFS. Num-
bers in parentheses are the approximation factors, computed as the ratio
Φapprox(G)/Φ(G) between the estimated diameter and the true diameter.

one order of magnitude. We did not compare our algorithm with the other two
neighbourhood function-based algorithms, ANF and HyperANF [PGF02; BRV11],
since they have been developed for shared-memory multiprocessor architectures,
which are different from our target architecture. In fact, we expect that if im-
plemented on distributed-memory platforms, the performance of both ANF and
HyperANF for high-diameter graphs is negatively affected by their long critical
paths, as is the case for HADI e BFS. By comparing with HADI, we compare with
the algorithmic stratecy based on the neighbourhood function, which is the core
idea of the other two algorithms as well. As for the BFS, we implemented a simple
and efficient version in Spark. Table 3.6 reports the running times and the diameter
estimates obtained with the three algorithms where, for our algorithm, we used
the finer clustering granularity adopted in the experiments described earlier. The
figures in the table clearly show that HADI, while yielding a very accurate estimate
of the diameter, is much slower than our algorithm, by orders of magnitude for
large-diameter graphs. This is due to the fact that HADI requires Θ (Φ(G)) rounds
and in each round the communication volume is linear in the number of edges of
the input graph. On the other hand BFS, whose approximation guarantee is similar
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Figure 3.5: Performance of Cluster and BFS on graphs with small variations.

to ours in practice, outperforms HADI and, as expected, is considerably slower
than our algorithm on large-diameter graphs. Indeed, BFS still requires Θ (Φ(G))

rounds as HADI, but its aggregate communication volume (rather than the per
round communication volume) is linear in the number of edges of the input graph.

A desirable feature of our strategy is its capability to adapt to irregularities of
the graph topology, which may have a larger impact on the performance of the
other strategies. In order to provide experimental evidence of this phenomenon,
our third set of experiments reports the running times of our algorithm and BFS on
three variants of the two small-diameter graphs (livejournal and twitter) obtained
by appending a chain of c · Φ(G) extra nodes to a randomly chosen node, with
c = 1, 2, 4, 6, 8, 10, thus increasing the diameter accordingly, without substantially
altering the overall structure of the base graph. The plots in Figure 3.5 clearly show
that while the running time of our algorithm is basically unaltered by the modifica-
tion, that of BFS grows linearly with c, as expected due to the strict dependence of
the BFS number of rounds from the diameter. A similar behaviour is to be expected
with HADI for the same reason.

Comparison of Clustering Algorithms

We compared the quality of the clustering returned by algorithm Cluster against
that of the clustering returned by the algorithm presented in [MPX13] and reviewed
in Section 2.4.2, which we call mpx, for brevity. Recall that mpx assigns to each node
u ∈ V a random time shift δ, drawn from an exponential distribution of with mean
1/β, with β set by the user. Then, it starts growing a cluster centered at u starting at
time δmax = δu, where δmax is the maximum shift, unless u has not been already
covered by some other cluster. The authors of [MPX13] show that the radius of
clusters built this way is O ((logn)/β). Moreover, the expected number of edges
between clusters is at most O (βm). We omit from the comparison the algorithm

54



3.7. EXPERIMENTAL ANALYSIS

Algorithm cl-diam Algorithm mpx
Dataset nC mC r nC mC r

twitter 40001 17216285 5 41431 109348 6

livejournal 4020 230326 7 5796 17098 9

roads-CA 15038 40597 31 16429 34021 61

roads-PA 7710 13300 30 8529 18446 58

roads-TX 10653 28582 30 11238 23308 55

mesh1000 7641 18476 34 9112 25885 56

Table 3.7: Comparison between the clusterings returned by Cluster and mpx. nC

is the number of clusters,mC is the number of edges between clusters, and r is the
maximum cluster radius.

from [Mey08], which we also reviewed in Section 3.1.3, since its reliance on an Euler
tour of a spanning tree makes it inherently sequential, hence impractical for very
large graphs.

Recall that Cluster uses a parameter τ to control the number of cluster centers.
As for mpx the parameter β we described above indirectly controls the number of
clusters. Both algorithms aim at computing a clustering of the graph into clusters
of small radius, so we focused the experiments on comparing the maximum radius
of the returned clusterings. However, since the minimum maximum radius attain-
able by any clustering is a nonincreasing function of the number of clusters, but
neither algorithm is able to precisely fix such a number a priori, we structured the
experiments as follows.

We aimed at clustering granularities (i.e., number of clusters) which are roughly
three orders of magnitude smaller than the number of nodes for small-diameter
graphs, and roughly two orders of magnitude smaller than the number of nodes for
large-diameter graphs. We ran mpx and Cluster setting their parameters β and τ so
as to obtain a granularity close enough to the desired one, and compared the max-
imum cluster radius obtained by the two algorithms. In order to be conservative,
since our algorithm features a better control on the number of returned clusters,
we first ran Cluster with a value of τ suitably chosen to obtain the desired number
of clusters. Then we searched a value of β such that mpx returned a comparable
but larger number of clusters, thus giving it a slight advantage.

Table 3.7 shows the results of the experiments for the benchmark graphs. Each
row reports the graph, and, for each algorithm, the number of nodes (nC) and edges
(mC) of the auxiliary graph associated with the clustering (whose construction is
described in Section 3.3), and the maximum cluster radius (r). Note that, in the
auxiliary graph, multiple edges between the same pair of clusters are represented
by a single edge. The table provides a clear evidence that our algorithm is more
effective in keeping the maximum cluster radius small, especially for graphs of large
diameter. This is partly due to the fact that mpx starts growing only a few clusters,
and before more cluster centers are activated the radius of the initial clusters is
already grown large. On the other hand, mpx is often more effective in reducing
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the number of edges of the auxiliary graph, which is in fact its main objective.
This is particularly evident for the first two graphs in the table, which represent
social networks, hence feature low diameter and high expansion (thus, probably,
high doubling dimension). In these cases, the few clusters initially grown by mpx
are able to absorb entirely highly expanding components, thus resulting in a more
drastic reduction of the edges.
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Chapter 4

Clustering uncertain graphs

In Chapter 3, we dealt with deterministic graphs and the approximation of their
diameter. Oftentimes, however, the nature of the data is such that it presents
some level of uncertainty. In these cases, this uncertainty in the relationships
between entities of the graph can be modeled by associating existence probabilities
to each edge: such a graph is called an uncertain graph. For example, in Protein-
Protein Interaction (PPI) Networks, an edge between two proteins corresponds to
an interaction that is observed through a noisy experiment characterized by some
level of uncertainty. This uncertainty can be conveniently cast as the probability
of existence of that edge [Ast+04]. Also, in social networks, the probability of
existence of an edge between two individuals may be used to model the likelihood
of an interaction between the two individuals, or the influence of one of the two over
the other [AR07]. Other applications of uncertainty in graphs arise in the realm
of mobile ad-hoc networks [BM05; Gho+07] and graph obfuscation for privacy
enforcement [Bol+12].

While in the previous chapter we used clustering as a means of building a
succinct representation of the input, in this chapter we study clustering in itself.
The main objective is to introduce novel strategies for clustering uncertain graphs,
aiming at partitioning the node set in such a way that a suitable measure related to
the probability of connectivity inside the clusters is maximized.

In accordance with the mainstream literature, an uncertain graph is defined over
a set of nodes V , a set of undirected edges E between nodes of V , and a probability
function p : E→ (0, 1]. We denote such a graph by G = (V, E, p), and we adopt the
possible world semantics [Pot+10]: G can be viewed as a probability space whose
outcomes (referred to as possible worlds) are graphs G = (V, E ′), where E ′ ⊆ E and
any edge e ∈ E is included in E ′ with probability p(e), independently of other
edges. Note that, even for graphs of moderate size, the exponential number of
possible worlds puts computational problems on uncertain graphs in the big data
realm by rights. In this case, instead of the explicit size of the input, is its implicit

dimension that rules out traditional approaches, and requires the design of new

57



CHAPTER 4. CLUSTERING UNCERTAIN GRAPHS

algorithmic strategies.
Clustering uncertain graphs is challenging for several orthogonal reasons. As

observed in [Lin+12], aiming at high probability of connectivity within clusters
is certainly a good criterion but it is hard to pursue, both because of the inherent
difficulty of clustering per se, and because the estimation of cluster-wide connection
probabilities in the uncertain graph scenario is #P-complete, as we will see in the
next section. Also, it has been observed [Pot+10; Lin+12] that the straightforward
reduction to the analysis of a deterministic graph where edge probabilities become
weights may not yield significant outcomes because it disregards the possible world
semantics.

Therefore, instead of adopting a costly reliability measure defined on whole
clusters, we focus on the connection probability of pairs of nodes (also known as
two-terminal reliability) as a measure upon which base our clustering. This is the
probability that the two nodes belong to the same connected component in a ran-
dom possible world. As a first technical contribution, which may be of independent
interest for the broader area of network reliability, we show that this measure satis-
fies some form of triangle inequality, unlike other measures used in previous works.
This property allows us to cast the problem of clustering uncertain graphs into the
same framework of traditional clustering approaches on metric spaces while still
enabling an effective integration with the possible world semantics.

We study the following clustering problem, together with some variations.
Given in input an uncertain graph G and an integer τ, we seek a partition of
the nodes of G into τ clusters, each with a center vertex, such that the minimum
connection probability of a node to the center of its cluster is maximized. For
this problem, we develop a simple deterministic algorithm based on a sequential
cluster growing strategy which returns a clustering where the minimum connection
probability of a node to the center of its cluster isΩ

(
p2opt(τ)

)
, where popt(τ) is the

connection probability of the optimal solution. We also show how to adapt the
strategy to approximate the somewhat dual problem of determining, for a fixed
threshold q for the connection probability, a clustering of minimum cardinality
whose featured connection probability is at least q. In order to speed up the
cluster-growing process, we also develop an alternative strategy made of only a
logarithmic number of concurrent cluster growing phases, which attains the same
approximation quality as the sequential cluster-growing strategy at the expense of
an increase in the number of clusters by an at most doubly-logarithmic factor. In
fact, we show that this blow-up in the number of clusters can be eliminated at the
expense of worsening the connection probability guarantee. We also describe a
variant of our algorithms that allows to impose a limit on the length of the paths
that contribute to the connection probability between two nodes.

For the sake of clarity, the algorithms introduced above, which we will describe
in detail in Sections 4.3 and 4.4, are presented assuming the existence of an oracle
for the connection probabilities. Section 4.5 will present a variant of our algorithms
where only limited-depth paths are considered in the definition of connection prob-
abilities. In Section 4.6, we will see how to estimate connection probabilities in an
efficient way. Specifically, we will integrate a progressive sampling scheme for the
Monte-Carlo estimation of the required probabilities which essentially preserves
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the approximation quality. While the Monte-Carlo estimation can be very com-
putationally intensive for small probabilities, our clustering strategies tackle this
obstacle by only requiring precise estimates of probabilities not much smaller than
the value of the optimal solution.

Finally, in order to validate our approaches, in Section 4.7 we devise a pre-
liminary suite of experiments aimed both at evaluating the relative efficiency of
our strategies and at comparing the performance of the returned clustering against
some competing strategies.

The material of this chapter is the account of ongoing work [Cec+16a].

4.1 Related work

4.1.1 Network reliability

Uncertain graphs have been studied, even if somewhat implicitly, in the context of
network reliability. Given an uncertain graph, we can interpret edge probabilities
as the complement of failure probabilities. A typical objective of network reliability
analysis is to determine the probability that a given set of nodes is connected under
random failures. Such a probability can be estimated with a Monte-Carlo approach.
The drawback of this approach is that it becomes prohibitively expensive for very
low probability values (for further details, see Section 4.2). Actually, even the
simplest problem of estimating the probability that two distinguished nodes s and
t are connected is known to be#P-complete [Val79; Bal86]. In the last three decades,
several works have tried to come up with better heuristics for various reliability
problems on uncertain graphs. For a more detailed account of the research on
uncertain graphs in the context of network reliability, see [Jin+11] and references
therein.

4.1.2 Uncertain graphs

The definition of uncertain graph that we adopt was introduced in [Pot+10], where
the authors investigate several probabilistic notions of distance between nodes, and
develop efficient algorithms for determining the k nearest nodes of a given source
under the various distance measures. It has to be remarked that the proposed
measures do not satisfy the triangle inequality, thus ruling out the applicability of
traditional graph clustering approaches [Sch07].

Boldi et al. [Bol+12] studied the problem of turning a deterministic graphG into
an uncertain graph G for the purpose of identity obfuscation. The main goal of their
work is to build the uncertain graph G in such a way that individual vertices of the
original graph G can no longer be identified by their topological properties. At the
same time some global properties of G, such as degree distribution, diameter, and
clustering coefficient are preserved in expectation over the possible worlds of G. In
particular, the authors introduce the concept of a (k, ε)-obfuscation with respect
to a given property P of the original graph G. In the paper [Bol+12], the authors
consider the degree distribution as the property P. The parameter k ⩾ 1 is related
to the entropy of the distribution of property P in the uncertain graph: a higher
k implies a higher level of obfuscation. ε ∈ (0, 1] is a tolerance parameter, and
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controls the fraction of nodes which are not obfuscated. This tolerance ε is allowed
because some networks have a small set of clearly identifiable nodes, for which
obfuscation is difficult and not needed. For instance, in a social network, the profile
of a pop-star does not need to be obfuscated. The basic idea of the algorithm is the
following. For a given graphG = (V, E), the algorithm builds an uncertain graph G

with V as the vertex set. As for the edge set, the algorithm selects a subset of V ×V
of cardinality c · |E|, where c is a user-defined parameter. Edge probabilities are
then suitably assigned so as to ensure that the result graph is a (k, ε)-obfuscation of
G. The authors provide an implementation of their obfuscation algorithm, which
we will use in Section 4.7 to generate synthetic uncertain graphs.

A detailed account of the state of the art on the subject of uncertain graphs can
be found in [Par+15]. In the same work, the authors investigate the problem of
extracting a single representative possible world providing a good summary of an
uncertain graph for the purposes of query processing.

A number of recent works have studied different forms of clustering of uncertain
graphs. In [KPT13] the authors consider the identification of a deterministic cluster

graph, which corresponds to a clique-cover of the nodes of the uncertain graph.
The aim is to minimize the expected edit distance between the clique-cover and a
random possible world of the uncertain graph, where the edit distance is measured
in terms of edge additions and deletions. The authors provide a 5-approximation
algorithm for this problem in the paper. The main drawback of this approach is that
the formulation of the clustering problem does not allow to control the number of
clusters. Moreover, the approximate solution returned by the proposed algorithm
relies on a shallow star-decomposition of the topology of the uncertain graph,
which does not exploit more systemic information about its connectivity properties.
The same clustering problem has been also studied by Gu et al. in [Gu+14].
They consider a more general class of uncertain graphs where the assumption of
edge independence is lifted and the existence of an edge (u, v) is correlated to the
existence of its adjacent edges (i.e., edges incident on either u or v). The authors
propose two algorithms for this problem, one that, as in [KPT13], does not fix a
bound on the number of returned clusters, and another that fixes such a bound.
Neither algorithm provides worst-case guarantees on the approximation ratio.

Liu et al. [Lin+12] define a clustering problem with the objective of minimiz-
ing the expected entropy of the returned clustering, defined with respect to the
adherence of the clustering to the connected components of a random possible
world. With this objective in mind, the authors develop a clustering algorithm
which combines a standard k-means strategy with the Monte-Carlo sampling ap-
proach for reliability estimation. No theoretical guarantee is offered on the quality
of the returned clustering with respect to the defined objective function. Moreover,
the efficiency of the algorithm, which depends on a convergence parameter that
cannot be estimated analytically, does not appear to scale well with the size of the
graph. In summary, while the pursued approach to clustering has merit, there is
no rigorous analysis of the tradeoffs that can be exercised between the quality of
the returned clustering and the running time of the algorithm.

In [Don08] the Markov Cluster Algorithm (mcl) is proposed for clustering
weighted graphs. In particular, in mcl weights are considered as a similarity score

between the endpoints. The algorithm does not specifically target uncertain graphs,
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but it can be run on these graphs by considering the edge probabilities as weights.
In fact, some of the aforementioned works on clustering of uncertain graphs have
used mcl for comparison purposes. The algorithm focuses on finding so-called nat-

ural clusters, that is sets of nodes characterized by the presence of many edges and
paths between their members. The basic idea of the algorithm is then to simulate
random walks on the graph, defining the clustering based on the probability of a
random walk to stay within a cluster. Edge weights (i.e. the similarity scores) are
used by the algorithm to define the probability that a given random walk traverses
a given edge. The algorithm’s behaviour is controlled with a parameter, called
inflation, which indirectly controls the granularity of the clustering. The author of
the algorithm provides a very efficient implementation of mcl, with which we will
compare our algorithms in Section 4.7.

4.2 Preliminaries

Let G = (V, E, p) be an uncertain graph, as defined in the introduction. In accor-
dance with the established notation used in previous work, we write G ⊑ G to
denote that G is a possible world of G. Given two nodes u, v ∈ V , the probability
that they are connected (an event denoted as u ∼ v) in a random possible world can
be defined as

Pr [u ∼ v] =
∑
G⊑G

Pr [G] IG(u, v), where IG(u, v) =

{
1 if u ∼ v in G
0 otherwise

We refer to Pr [u ∼ v] as the connection probability between u and v in G. The un-
certain graphs we consider are undirected and no weights are attached to their
nodes/edges. Therefore, also the possible worlds of an uncertain graph are undi-
rected and unweighted graphs.

Recall that in Section 2.4 we defined a k-clustering as a partition of a set S in k
subsets according to some criterion. Similarly, for an uncertain graph G = (V, E, p),
we define a τ-clustering as a partition of V into τ clusters C1, . . . , Cτ and a set of
centers c1, . . . , cτ with ci ∈ Ci, for 1 ⩽ i ⩽ τ. We study the problem of determining
a τ-clustering which maximizes the following objective function

min
1⩽i⩽τ

min
v∈Ci

Pr [ci ∼ v] . (4.1)

We denote the optimum value of the above objective function with popt(τ). In
other words, we want the clusters to be well connected, in the sense that each node
is likely to be connected to its cluster’s center in a random possible world. We
can rephrase this problem as an instance of the k-center problem as shown in the
following.

4.2.1 A triangle inequality for connection probabilities

For every pair of nodes u, v ∈ V define d(u, v) = ln(1/Pr [u ∼ v]) with the under-
standing that d(u, v) = ∞ if Pr [u ∼ v] = 0. Under this transformation, the aim
becomes the minimization of the following objective function

max
1⩽i⩽τ

max
v∈Ci

d(ci, v). (4.2)
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The above objective function is clearly reminiscent of the k-center objective function
(see Definition 3 in Chapter 2). We want the function d(·, ·) to satisfy the triangle
inequality, since this would allow us to develop efficient algorithms. The triangle
inequality for d(·, ·) is expressed as follows

ln
1

Pr [u ∼ v]
⩽ ln

1

Pr [u ∼ z]
+ ln

1

Pr [z ∼ v]
∀u, v, z ∈ V

The above relation can be cast in terms of probabilities as

Pr [u ∼ v] ⩾ Pr [u ∼ z] · Pr [z ∼ v] ∀z ∈ V (4.3)

In what follows we prove that the above inequality actually holds for pairwise
connection probabilities in uncertain graphs. Fix an arbitrary edge e ∈ E and let
A(e) be the event: “edge e is present”. We need the following technical lemma.

Lemma 5. For any u, v ∈ V , e ∈ E, we have Pr [u ∼ v|A(e)] ⩾ Pr [u ∼ v|¬A(e)]

Proof. Let Gu,v
e (resp., Gu,v

¬e ) be the set of possible worlds where u ∼ v, and edge e is
present (resp., not present). We have that

Pr [u ∼ v|A(e)] =
∑

G⊑Gu,v
e

Pr [G] /p(e)

Pr [u ∼ v|¬A(e)] =
∑

G⊑Gu,v
¬e

Pr [G] /(1− p(e)).

The lemma follows by observing that for any graph G in Gu,v
¬e the same graph

with the addition of e belongs to Gu,v
e , and the corresponding terms in the two

summations are equal.

We can now prove that Inequality (4.3) holds.

Theorem 7. For any uncertain graph G = (V, E, p) and any triplet u, v, z ∈ V , we have:

Pr [u ∼ v] ⩾ Pr [u ∼ z] · Pr [z ∼ v] .

Proof. The proof proceeds by induction on the number k of uncertain edges, that is,
edges e ∈ E with p(e) ̸= 0 and p(e) ̸= 1. Fix three arbitrary nodes u, v, z ∈ V . The
base case k = 0 is trivial, since, in this case, the uncertain graph is deterministic and
for each pair of nodes x, y ∈ V , Pr [x ∼ y] is either 1 or 0, which implies that when
Pr [u ∼ z] · Pr [z ∼ v] = 1, then Pr [u ∼ v] = 1 as well. Suppose that the property
holds for uncertain graphs with at most k uncertain edges, with k ⩾ 0, and consider
an uncertain graph G = (V, E, p) with k + 1 uncertain edges. Fix an arbitrary edge
e ∈ E and let Ae denote the event that edge e is present. For any two arbitrary
nodes x, y ∈ V , we can write

Pr [x ∼ y] = Pr [x ∼ y|A(e)] · p(e) + Pr [x ∼ y|¬A(e)] · (1− p(e))
= (Pr [x ∼ y|A(e)] −Pr [x ∼ y|¬A(e)]) · p(e) + Pr [x ∼ y|¬A(e)] .

(4.4)

By Lemma 5, the term multiplying p(e) in the above expression is nonnegative. As
a consequence, we have that

Pr [u ∼ z] · Pr [z ∼ v] − Pr [u ∼ v] = A · (p(e))2 + B · p(e) + C,
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for some constants A,B,C independent of p(e), with A ⩾ 0. Therefore, the maxi-
mum value of Pr [u ∼ z] · Pr [z ∼ v] − Pr [u ∼ v], as a function of p(e), is attained for
p(e) = 0 or p(e) = 1. Since in either case the number of uncertain edges is decre-
mented by one, by the inductive hypothesis, the difference must yield a nonpositive
value, hence the theorem follows.

Now that we have a relation similar to the triangle inequality for pairwise
connection probabilities, we could apply existing k-center algorithms such as GMM
to solve our clustering problem. However, as we shall see in the following, things
do not go so smoothly, because connection probabilities must be estimated, and the
cost of this operation rules out GMM and similar approaches.

4.2.2 Estimating connection probabilities

We know that, given two nodes u, v ∈ V , the exact computation of Pr [u ∼ v] is #P-
complete [Bal86]. However, for reasonably large values of this probability a very
accurate estimate can be obtained through Monte-Carlo sampling. More precisely,
for r > 0 letG1, . . . , Gr be r sample possible worlds drawn independently at random
from G. For any pair of nodes u and v we can define the following estimator

q̃(u, v) =
1

r

r∑
i=1

IGi
(u, v) (4.5)

It is easy to see that q̃(u, v) is an unbiased estimator of Pr [u ∼ v]. Moreover, for
fixed ε ∈ (0, 1] and δ ∈ (0, 1), by taking

r ⩾
3 ln 2

δ

ε2 Pr [u ∼ v]
(4.6)

samples, we have that q̃(u, v) is an (ε, δ)-approximation of Pr [u ∼ v], that is,

Pr

[
|q̃(u, v) − Pr [u ∼ v] |

Pr [u ∼ v]
⩽ ε

]
⩾ 1− δ (4.7)

(e.g., see [MU05, Theorem 10.1]). Hence, given a lower bound on Pr [u ∼ v], we can
choose a number of samples rwhich ensures that the actual connection probability
between u and v is estimated with small relative error, with a desired confidence
level. However, when Pr [u ∼ v] approaches 0, the number of samples, hence the
work, required to attain an accurate estimation becomes prohibitively large. As
we will see in the next section, this limitation is a problem for the application of
existing clustering algorithms.

4.3 Sequential cluster growing

In the previous section, we mentioned how the existence of relation similar to the
triangle inequality for connection probabilities could enable us to apply the GMM
algorithm for clustering uncertain graphs. Recall from Section 2.4.1 that GMM
relied on the repeated determination of the farthest node from the centers selected
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so far. In our scenario, using d(u, v) = ln(1/Pr [u ∼ v]) as a distance function,
this approach might entail the computation of very small values of Pr [u ∼ v], for
some pair of nodes (u, v). As we pointed out before, this is computationally
inefficient. Consequently, we have to resort to strategies which are able to create
clusters based on proximity rather than on farness. In this section, we present
two proximity-based algorithms for clustering uncertain graphs, with provable
approximation guarantees. First, we present a simple deterministic algorithm
based on a sequential growing strategy; secondly we introduce a variant which,
for a target connection probability, aims at minimizing the number of returned
clusters. The presentation of these algorithms assumes the existence of an oracle
that, given two nodesu, v ∈ V , returnsPr [u ∼ v]. The discussion of the Monte-Carlo
estimation of such probability, and its integration with the algorithms presented in
this section, is deferred to Section 4.6.

4.3.1 Clustering with a target number of clusters

Consider an uncertain graph G = (V, E, p). Recall that popt(τ) denotes the optimum
value of the objective function of Equation (4.1), and observe that popt(τ) > 0 if
and only if the uncertain graph G features no more than τ connected components.
For convenience, in the rest of the presentation we assume that this is the case.
Algorithm 6 describes a simple sequential cluster growing strategy that returns a τ-
clustering which approximates popt(τ). The algorithm features a design parameter
γ ∈ (0, 1) that can be employed to exercise a quality-performance tradeoff.

Before describing the algorithm in detail, we have to define two helper functions.
Let c(u, S) = argmaxc∈S{Pr [c ∼ u]} be the function that, given a node u ∈ V and
a set of nodes S ⊂ V , returns the node ∈ S connected with u with the highest
probability. Moreover, we define π(u, S) = Pr [c(u, S) ∼ u], that is the maximum
among the probabilities of connection of u with any node ∈ S.

The algorithm keeps track of a threshold probability pcurr and proceeds itera-
tively. In each iteration, it starts by selecting an arbitrary vertex c1 ∈ V , which is
inserted into the set of current centers S. Then, all the vertices v ∈ V such that
Pr [c1 ∼ v] ⩾ pcurr are marked as covered by cj. These nodes are not yet assigned
to the cluster centered in cj. This operation is repeated by selecting a new cluster
center from the unmarked nodes until there are no more unmarked nodes or τ
centers have been selected. In the former case, the algorithm assigns each node
u ∈ V to the cluster centered in c(u, S). In the latter, if some nodes have not been
included in any cluster, the algorithm updates pcurr with a schedule controlled with
the parameter γ, and starts building a new clustering from scratch.

It is easy to see that the algorithm terminates returning an ℓ-clustering, with ℓ ⩽
τ, since pcurr cannot drop below half the minimum connection probability between
two nodes in the same connected component of G before the termination condition
is reached. Let C1, . . . , Cℓ be the clusters returned by the algorithm centered at
c1, . . . , cℓ, and let palg be the value of the objective function corresponding to this
clustering, namely

palg = min
1⩽i⩽ℓ

min
v∈Ci

Pr [ci ∼ v] .

Recall that we defined popt(τ) as the objective function of an optimal τ-clustering
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Algorithm 6: SequentialCluster(G, τ, γ)
pcurr← 1;
while true do

S← ∅; ▷ Centers selected by the algorithm
V1← V ;
for i← 1 to τ do

select one arbitrary cluster center ci ∈ Vi;
Mi← {u ∈ Vi : Pr [ci ∼ u] ⩾ pcurr}; ▷ Nodes marked by ci
Vi+1← Vi −Mi;
S← S ∪ {ci};
if Vi+1 = ∅ then

for u ∈ V do

Assign u to the cluster centered in c(u, S);
end

return the clusters centered at c1, c2, . . . , ci;
end

end

pcurr← pcurr/(1+ γ)
end

Error “No clustering found”;

Ĉ1, . . . , Ĉτ, with centers ĉ1, . . . , ĉτ. The quality of the approximation is guaranteed
by the following theorem.

Theorem 8. Algorithm 6 terminates after at most ⌊2 log1+γ(1/popt(τ))⌋ + 1 iterations

of the while loop and returns a clustering with

p
alg

⩾
p2

opt
(τ)

(1+ γ)

Proof. Let ℓ = ⌊2 log1+γ(1/popt(τ))⌋ + 1. Suppose that the algorithm reaches the
ℓ-th iteration of the while loop and note that at the beginning of this iteration
p2opt(τ)/(1+ γ) < pcurr ⩽ p

2
opt(τ). Let Ĉki

be the cluster in the optimal τ-clustering
which contains ci (the center selected in the i-th iteration of the for loop), for every
i ⩾ 1. Moreover, let ĉki

be the center of Ĉki
. Observe that for every node v ∈ Ĉki

,
and thanks to Theorem 7

Pr [ci ∼ v] ⩾ Pr [ci ∼ ĉki
] · Pr [ĉki

∼ v] ⩾ p2opt(τ) ⩾ pcurr

Therefore, Vi+1 cannot contain any node of Ĉki
. In fact, inductively, we have that

Vi+1 cannot contain any node of
⋃i

j=1 Ĉkj
. Therefore, Vt+1 for some t ⩽ τmust be

empty. The theorem follows by observing that palg ⩾ pcurr ⩾ p2opt(τ)/(1+ γ) in the
last iteration of the algorithm.

The above theorem also states the influence of the design parameter γ on both
the approximation quality and the running time. Thanks to γ we can control the
rate of the adjustment of the probability guess pcurr. Setting γ to a higher value
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Algorithm 7: SequentialCluster2(G, q)
V1← V ; i← 1;
while true do

select one arbitrary cluster center ci ∈ Vi;
Ci← {u ∈ Vi : Pr [ci ∼ u] ⩾ q};
Vi+1← Vi \ Ci;
if Vi+1 = ∅ then return C1, C2, . . . , Ci;
i← i+ 1;

end

makes the guessing more aggressive, allowing to converge to a solution faster.
At the same time, however, this worsens the approximation ratio. Conversely, a
smaller value makes the adjustment of pcurr more conservative, and consequently
slower but more accurate.

4.3.2 Clustering with a target probability

In some application scenarios, it may be useful to control the connectivity within
the clusters by imposing a lower bound on the connection probability of a node
to the center of its cluster. Consider an uncertain graph G = (V, E, p). We can
define an alterative clustering problem which, given a probability threshold q,
requires to find a partition of nodes into a minimum number of clusters where the
connection probabilities of the nodes to their assigend cluster centers is at least q.
Let τopt(q) denote such minimum number of clusters. It is easy to see that τopt(q) is
a non-decreasing function of q. Algorithm 7 computes an approximate solution to
this problem. The algorithm proceeds iteratively: in iteration i, it selects from the
unassigned nodes an arbitrary vertex ci as a cluster center, greedily placing in the
cluster centered in ci all the unassigned nodes v ∈ V such that Pr [ci ∼ v] ⩾ q. The
following theorem bounds the number τalg of clusters returned by the algorithm.

Theorem 9. Algorithm 7 returns a τ-clustering with τ
alg

⩽ τopt(
√
q), where each node

is connected to the center of its cluster with probability at least q.

Proof. By construction, the algorithm generates clusters featuring the given con-
nection probability. Consider an optimal τ(√q)-clustering, where each node is
connected to the center of its cluster with probability at least √q. Note that by
Theorem 7, two nodes c, u belonging to the same cluster of this optimal τ(√q)-
clustering are connected with probability ⩾ q. An argument similar to the one
used in the proof of Theorem 8 shows that at the end of the i-th iteration of the
while loop all nodes which in the optimal τ(√q)-clustering belong to the same
cluster as one of the cj’s, with j ⩽ i, must have been already included in some
cluster. Hence, no more than τopt(

√
q) clusters are returned by the algorithm.

4.4 Concurrent cluster growing

The main drawback of the τ-clustering algorithm presented in the previous subsec-
tion (Algorithm 6) is the fact that for each of the O

(
log1+γ(1/popt(τ))

)
guesses of
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Algorithm 8: ConcurrentCluster(G, τ)
V1← V ; i← 1;
while |Vi| > ατ logn do

select ατ logn new cluster centers at random with replacement from Vi;
Si← {newly selected centers};
let u1, u2, . . . , u|Vi| be the nodes of Vi in decreasing order of π(·, Si);
for j← 1 to |Vi|/2 do

assign uj to cluster centered at c(uj, Si) ;
end

Vi+1← {uj : j > |Vi|/2 ∧ uj /∈ Si} ;
i← i+ 1;

end

return the clusters centered at S1 ∪ S2 ∪ · · · ∪ Si−1 ∪ Vi;

the connection probability, τ clusters must be computed sequentially from scratch
one after the other, which may be computationally cumbersome for large graphs
and large values of τ. In this section, we propose an alternative and more effi-
cient, but randomized, clustering algorithm (Algorithm 8) inspired by the strategy
we developed for the diameter approximation problem discussed in Chapter 3 for
deterministic graphs. On the one hand, this approach allows many clusters to be
grown concurrently while, on the other, it embodies an implicit and more accu-
rate guessing of the target connection probability. Consider an uncertain graph
G = (V, E, p). The algorithm proceeds in phases. In each phase, a new batch of
random centers is added and at least of the yet uncovered nodes are assigned to the
clusters of these new centers, or to previously grown clusters. As in Chapter 3, the
idea underlying this strategy is to push more clusters in regions of the graph with
low connection probability. The clusters covering these regions have fewer nodes
each and will not include nodes connected with very low probabilities.

Recall from Section 4.3.2 that, foru ∈ V andS ⊂ V , c(u, S) = argmaxc∈S{Pr [c ∼ u]}
and π(u, S) = Pr [c(u, S) ∼ u]. As before, we assume the existence of an oracle that,
given a pair of nodes u, v ∈ V , returns Pr [u ∼ v]. In Section 4.6 we will describe
how to remove this assumption.

Let α > 0 be a suitable constant which will be fixed in the analysis. The
algorithm, whose pseudocode is given in Algorithm 8, works in phases as follows.
In phase i, it first selects at random, from the nodes that are still uncovered, a batch
of ατ logn centers. Let Si be the set of newly selected centers, and let Vi be the
set of uncovered nodes at the beginning of phase i. The algorithm then considers
the nodes u ∈ Vi by decreasing order of π(u, Si), i.e. by decreasing probability of
connection to some center. It then assigns each node u of the first |Vi|/2 nodes in
this ordering to the cluster centered at c(u, Si), before proceeding to phase i+ 1.

Suppose that the algorithm returns ℓ clusters,C1, . . . , Cℓ, centered at {c1, . . . , cℓ},
and note that the clusters form indeed a partition of V . As before, let palg be the
value of the objective function corresponding to this clustering, namely

palg = min
1⩽i⩽ℓ

min
v∈Ci

Pr [ci ∼ v] .
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Recall that we defined popt(τ) as the objective function of an optimal τ-clustering
Ĉ1, . . . , Ĉτ, with centers ĉ1, . . . , ĉτ. We have:

Theorem 10. Algorithm 8 returns an ℓ-clustering with ℓ = O
(
τ log2 n

)
and such that

p
alg

⩾ p2
opt
(τ), with high probability.

Proof. The upper bound on ℓ follows immediately by observing that the while loop
executes less than logn iterations. In order to prove the lower bound on palg,
consider a generic Iteration i of the while loop and let ni be the number of nodes
not yet assigned to clusters (i.e., ni = |Vi|). It is sufficient to show that there exist at
leastni/2 nodes u ∈ Vi such that π(u, Si) ⩾ p2opt(τ). Define an optimal cluster Ĉj to
be large if |Ĉj ∩ Vi| ⩾ (ni/(2τ)). It is easy to see that the optimal clusters which are
not large account for less than half of the nodes of Vi, hence large clusters contain
at least ni/2 nodes of Vi. We now argue that at least one center of Si falls into every
large cluster Ĉj, with high probability. Consider an arbitrary large cluster Ĉj. The
probability that no center of Si is selected among the nodes of Ĉj ∩ Vi is(

1−
|Ĉj ∩ Vi|

ni

)ατ logn

⩽

(
1−

1

2τ

)ατ logn

⩽ e(1/2)α logn,

which can be made polynomially small in n for large enough α. Recall that Ĉj

includes a node ĉj such that Pr
[
ĉj ∼ u

]
⩾ popt(τ), for every u ∈ Ĉj. Suppose that

a center c ∈ Ĉj ∩ Vi is selected as a new center in the iteration. Then, for every
u ∈ Ĉj ∩ Vi, by Theorem 7 we have that

Pr [c ∼ u] ⩾ Pr
[
c ∼ ĉj

]
· Pr

[
ĉj ∼ u

]
⩾ p2opt(τ).

This immediately implies that π(u, Si) ⩾ Pr [c ∼ u] ⩾ p2opt(τ). As observed before,
there are at least ni/2 nodes of Vi in large clusters, hence the statement follows.

Observe that in contrast to Algorithm 6, Algorithm 8 lends itself to parallel
execution, since it only O(logn) sequential phases where, in each phase, the as-
signment of nodes to clusters (i.e., the growing of clusters) can be don ein parallel.
Moreover, it ensures a slightly better upper bound on the connection probability.
However, these better features are counter-balanced by a number of clusters which
is a factorO

(
log2 n

)
larger than the target τ. We can reduce the number of clusters

τ at the expense of an increased connection probability, as shown by the following
corollary.

Corollary 3. The clustering returned by Algorithm 8 can be transformed into a τ-

clustering where each node is connected to its assigned cluster center with probability

at least p4
opt
(τ)/16.

Proof. Again, suppose that the algorithm returns ℓ ∈ O
(
τ log2 n

)
clustersC1, . . . , Cℓ,

centered at c1, . . . , cℓ. Assume for now that popt(τ) is known. Consider an auxiliary
graph H whose nodes are the ci’s and whose edges are all pairs (ci, cj) such that
Pr
[
ci ∼ cj

]
⩾ p2opt(τ). Take one arbitrary center ci and merge Ci and all clusters

centered at the neighbors of ci in H into one new cluster with center ci. Let v be a
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node in this new merged cluster and suppose it originally belonged to Cj, where
cj is a neighbor of ci in H. By Theorem 7, we have that

Pr [v ∼ ci] ⩾ Pr
[
v ∼ cj

]
· Pr

[
cj ∼ ci

]
⩾ p4opt(τ).

Remove ci and its neighbors fromH and repeat the above procedure. We now show
that no more than τ new clusters are created in this fashion. Consider a generic
merging step where a center ci and all of its neighbors in H are removed from H.
Let Ĉki

be the cluster in the optimal τ-clustering which contains ci. Observe that
any other center cj that belongs to Ĉki

is a neighbor of ci in H, hence, all clusters
centered at nodes of Ĉki

are merged together in the step under consideration. As
a consequence, no more than τ new clusters can be created in this fashion. Finally,
if popt(τ) is not known, one can repeat the procedure for geometrically decreasing
guesses of popt(τ), starting from √palg, where palg is the objective function value
of the original ℓ-clustering returned by the algorithm, until τ or less clusters are
obtained. Clearly, after no more than O

(
log(
√
palg/popt(τ))

)
attempts, the last

guess will be at least popt(τ)/2, and the corollary follows.

4.5 Limiting the path length

The algorithms described in the previous sections consider paths of any length
to define the connection probability. In other words, for an uncertain graph G =
(V, E, p), a possible world G ⊑ G gives a positive contribution to the connection
probability of a pair of nodes (u, v) if u and v are in the same connected component
in G. Sometimes, however, we might be interested in considering only nodes
which are topologically close. For instance, in Protein-Protein Interaction networks
we might be interested in grouping in the same cluster only proteins which are
connected with a short chain of interactions. In such cases, we impose a maximum
length d on the paths used to define the connection probability.

More precisely, for a fixed integer d, with 1 ⩽ d ⩽ n, we define with u d
∼ v the

event “u and v are connected by a path of length at most d”. We can then define
the d-connection probability between u and v as

Pr

[
u

d
∼ v

]
=

∑
G⊑G

Pr [G] IG(u, v;d) (4.8)

where IG(u, v;d) is 1 if u d
∼ v in the possible world G, and 0 otherwise. By easily

adapting the proofs of Lemma 5 and Theorem 7 we have that the following relation
holds for any triplet u, z, v ∈ V

Pr

[
u

d
∼ v

]
⩾ Pr

[
u

⌊d/2⌋
∼ z

]
· Pr

[
z

⌊d/2⌋
∼ v

]
Consider a τ-clustering C1, . . . , Cτ with centers c1, . . . , cτ. We now aim at the
maximization of the following objective function.

min
1⩽i⩽τ

min
v∈Ci

Pr

[
ci

d
∼ v

]
(4.9)
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We denote by popt(τ, d) the maximum value of this objective function exhibited by
any τ-clustering of the uncertain graph G. It is important to remark that popt(τ, d) >
0 if and only if there exists a tau-clustering of G such that for each node u there is
at least a path of length d between u and the center of its cluster.

Suppose that we run Algorithms 6 and 8 using the d-connection probability
rather than the unconstrained connection probability, anywhere it is required, and
let palg denote the value of the above objective function for the clusterings returned
by the algorithms. We have the following theorem for the algorithm based on the
sequential cluster growing strategy.

Theorem 11. Considering only d-connection probabilities, Algorithm 6 terminates after at

most ⌊2 log1+γ(1/popt(τ, ⌊d/2⌋))⌋+1 iterations of the while loop and returns a clustering

with

p
alg

⩾
p2

opt
(τ, ⌊d/2⌋)
(1+ γ)

if popt(τ, ⌊d/2⌋) > 0.

The assumption on popt(τ, ⌊d/2⌋) > 0 is required in the above statement to
ensure that the algorithm terminates. As for the algorithm based on the concurrent
cluster growing strategy, we have the following result.

Theorem 12. Considering only d-connection probabilities, Algorithm 8 returns an ℓ-

clustering with ℓ = O
(
τ log2 n

)
and such thatp

alg
⩾ p2

opt
(τ, ⌊d/2⌋), with high probability.

The proofs of the two theorems above follow easily, with virtually the same
arguments, by substituting popt(τ, ⌊d/2⌋) for popt(τ) in the proofs of Theorem 8
and 10, respectively.

As for Algorithm 7, again suppose we run it using the d-connection probabil-
ity rather than the unconstrained connection probability, anywhere it is required.
Define τ(√q, d) to be the minimum number of clusters that yield a value of the
objective function of Equation 4.9 greater than or equal to the threshold q, and
let τalg be the number of clusters returned by the algorithm. Then, by substituting
τ(
√
q) with τ(√q, ⌊d/2⌋) in the statement of Theorem 9, we can prove the following

theorem with virtually the same arguments.

Theorem 13. Considering only d-connection probabilities, Algorithm 7 returns a τ-

clustering with τ
alg

⩽ τopt(
√
q, ⌊d/2⌋), where each node is connected to the center of

its cluster with probability at least q.

4.6 Implementing the oracle

So far, the presentation of the algorithms relied on the assumption that a perfect
oracle for pairwise connection probabilities exists. Unfortunately the implemen-
tation of such a perfect oracle is very hard, as we saw in Section 4.1. Indeed, the
estimation of the pairwise connection probability between two nodesu, v ∈ V is the
most critical part for the implementation of our algorithms. In Section 4.2, we saw
how to use Monte-Carlo sampling to estimate such probabilities, with bounds on
both the probability of error and the entity of the error itself. The problem is that to
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get reliable estimates one has to set the number of samples r according to Eq. (4.6),
namely r ⩾ (3 ln 2

δ)/(ε
2 Pr [u ∼ v]) which embodies the probability to be estimated.

Clearly, since such a probability is not known a priori, we have to resort to suitable
guesses. It is important to observe that choosing too few samples would lead to
unreliable results, and choosing too many would make the algorithms inefficient.

In this section we present improved Monte-Carlo sampling approaches to ad-
dress the above issues, and we will see how to embed them in both the algorithms
described in the previous section. We assume that a lower bound pL to p2opt(τ) is
available. This lower bound can be obtained by squaring the probability of the most
unlikely world, but in practice it may represent a minimum connection probability
set by the user, which may not be interested in clusterings with very low connection
probabilities. In the latter case, if the algorithm does not find a clustering using
only probabilities above pL, it terminates by reporting that no clustering has been
found. Remember that q̃(u, v) denotes the estimate of the probability Pr [u ∼ v]

obtained by sampling possible worlds (Section 4.2, Equation (4.5)). Moreover, for
a node u ∈ V and a set of nodes S ⊂ V , we define c̃(u, S) = argmaxc∈S{q̃(c, u)} as
the function returning the node ∈ S connected to uwith the highest estimated prob-
ability. Similarly, we define π̃(u, S) = Pr [c̃(u, S) ∼ u] as the maximum estimated
probability of connection between u and any node ∈ S. We use ε > 0 to denote an
approximation parameter to be fixed by the user. The basic idea of the sampling
approaches presented here is that we adjust the number of samples dynamically
during the execution of the algorithms.

4.6.1 Implementation of the sequential growing strategies

Consider Algorithm 6, which given a parameter τ looks for a τ-clustering maxi-
mizing the connection probabilities to cluster centers. Recall that the algorithm
uses a probability threshold pcurr which is lowered at each iteration, and which
is essentially a guess on the target value of the objective function. In this section
we present an implementation of Algorithm 6 which maintains the same overall
structure and uses progressive sampling to estimate connection probabilities. This
implementation is shown in Algorithm 9 and works as follows.

In Iteration i, Algorithm 9 seeks only connection probabilities that are ⩾ pcurr.
Therefore, we can limit the number of samples used in Iteration i just to the ones
necessary to estimate reliably probabilities greater than pcurr. This number of
samples is given by the following equation

ri =
12

pcurrε2
ln

(
2n2

δ

(
1+

⌊
log1+γ

1

pL

⌋))
(4.10)

where δ ∈ O
(
n−d

)
for some constant d > 1. To take into account the error

introduced by the estimation, which is bounded by ε, we modify the rule with
which nodes are marked as covered by cluster centers as follows: given the value of
pcurr, the algorithm marks as covered by ci all nodes v with estimated probability
q̃(v, c) ⩾ (1− ε

2)pcurr.
Let p̃alg be the objective function of the clustering obtained with the implemen-

tation of the sequential clustering algorithm augmented with the above sampling
strategy. The following theorem ensures the quality of such a clustering.
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Algorithm 9: SequentialClusterImpl(G, τ, γ)
pcurr← 1;
while pcurr ⩾ pL do

r← 12
pcurrε2 ln

(
2n2

δ

(
1+

⌊
log1+γ

1
pL

⌋))
;

V1← V ;
S← ∅; ▷ Centers selected by the algorithm
Sample r possible worlds G1, . . . Gh, . . . , Gr ⊑ G;
for i← 1 to τ do

select one arbitrary cluster center ci ∈ Vi;
for u ∈ V do

q̃(ci, u)← 1
r

∑r
h=1 IGh

(u, v);
end

Mi← {u ∈ Vi : q̃(ci, u) ⩾ (1− ε
2)pcurr}; ▷ Nodes marked by ci

Vi+1← Vi −Mi;
S← S ∪ {ci};
if Vi+1 = ∅ then

for u ∈ V do

Assign u to the cluster centered in c̃(u, S);
end

return the clusters centered at c1, c2, . . . , ci;
end

end

pcurr← pcurr/(1+ γ);
end

Error “No clustering found”;

Theorem 14. Algorithm 9 terminates after at most ⌊2 log1+γ(1/popt(τ))⌋+ 1 iterations

of the while loop and returns a clustering with

p̃
alg

⩾
(1− ε)

(1+ γ)
p2

opt
(τ)

if p2
opt
(τ) > pL, with high probability.

Proof. Consider an arbitrary iteration i of the algorithm, and a pair of nodes u, v ∈
V . Let

δ ′ =
δ

n2
(
1+

⌊
log1+γ

1
pL

⌋)
By the choice of the number of samples (Equation (4.10)) and Inequality (4.7) we
have the following properties on the estimate q̃(u, v)

• if Pr [u ∼ v] > pcurr, then q̃(u, v) < (1− ε
2) with probability < δ ′

• if Pr [u ∼ v] < (1− ε)pcurr, then q̃(u, v) ⩾ (1− ε
2) with probability < δ ′

Moreover, note that the algorithm performs at most 1 + ⌊log1+γ
1
pL
⌋ iterations of

the outer while loop. Therefore, by the choice of δ ′ and by union bound on the
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number of node pairs and the number of iterations, we have that the following
holds with probability > 1 − δ: in each iteration every node connected with some
center with probability ⩾ pcurr is added to a cluster, and no cluster contains nodes
whose connection probability with the center is< (1−ε)pcurr. Note that some node
with connection probability to a center ⩾ (1 − ε)pcurr may be added to a cluster.
This implies that palg ⩾ (1− ε)pcurr, with probability 1− δ.

Consider now the ℓ-iteration, with ℓ = ⌊2 log1+γ(1/popt(τ))⌋ + 1, in which we
have pcurr ⩽ p2opt(τ) and the algorithm stops returning a clustering. Note that at
the beginning of this iteration we have pcurr > p

2
opt(τ)/(1+ γ). Therefore, by the

discussion above, we have

palg ⩾ (1− ε)pcurr ⩾
(1− ε)

(1+ γ)
p2opt(τ)

with probability 1− δ. By the choice of δ ∈ O
(
n−d

)
for some d > 1, the statement

holds with high probability.

We now move to considering the implementation of Algorithm 7 which, given a
threshold probability q, seeks a clustering with connection probabilities ⩾ q, while
minimizing the number of clusters. Algorithm 10 shows the implementation of this
clustering strategy augmented with the use of sampling for estimating connection
probability. Note that in this case, the threshold probability is fixed by the user,
therefore there is no need to adapt the number of samples dynamically. Therefore,
we use a fixed number of samples r given by the following expression.

r =
12

qε2
ln
2n2

δ
(4.11)

with δ ∈ O
(
n−d

)
for some constant d > 1. In the implementation, a vertex

u is added to a cluster Ci of center ci if q̃(ci, u) ⩾ q(1 − ε
2), where q is the

minimum connection probability threshold given in input, where estimates q̃(ci, u)
are obtained through Equation (4.5) using the above number of samples.

Theorem 15. With high probability Algorithm 10 returns a partition of V into τalg ⩽
τ(
√
q) clusters such that each node is connected to the center of its cluster with probability

at least (1− ε)q.

Proof. We first prove that each node is connected to the center of its cluster with
probability at least (1− ε)q. By reasoning analogously to the proof of Theorem 14,
we have that with probability 1 − δ no cluster contains nodes with a connection
probability to the center < (1 − ε)q. Therefore, we have that clusters contain only
nodes with connection probability to the center ⩾ (1− ε)q, with probability 1− δ.

As we did in Theorem 9, we consider an optimal τ(√q)-clustering, where each
node is connected to the center of its cluster with probability at least√q. At the end
of the i-th iteration of the while loop of Algorithm 10, all the nodes u that in the
optimal (

√
τ)-clustering belong to the same cluster as one of the cj’s, with j ⩽ i, must

have already been included in some cluster, since Pr
[
cj ∼ v

]
⩾ q by Theorem 7.

Hence, no more than τopt(
√
q) clusters are returned by the algorithm.
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Algorithm 10: SequentialCluster2Impl(G, q)
V1← V ;
i← 1;
r← 12

qε2 ln
2n2

δ ;
Sample r possible worlds G1, . . . Gh, . . . , Gr ⊑ G;
while true do

select one arbitrary cluster center ci ∈ Vi;
for u ∈ V do

q̃(ci, u)← 1
r

∑r
h=1 IGh

(u, v);
end

Ci← {u ∈ Vi : q̃(ci, u) ⩾ (1− ε
2)q};

Vi+1← Vi \ Ci;
if Vi+1 = ∅ then return C1, C2, . . . , Ci;
i← i+ 1;

end

4.6.2 Implementation of the concurrent growing strategy

In Algorithm 8, the most critical part in a given iteration i is the identification of
tfhe |Vi|/2 nodes to add to clusters. These are the nodes which are connected to
some center with the highest probability. Note that the algorithm does not enforce
a limit on the minimum probability that can be used in a given iteration. However,
we can still apply a progressive sampling technique.

Algorithm 11 depicts our concurrent cluster growing strategy with progressive
sampling to estimate connection probabilities For a given iteration i, let Vi be the
set of nodes that are still uncovered, and consider the set of newly selected centers
Si. Moreover, consider a probability threshold πh = π0/2

h, for h ⩾ 0 with π0 = 1.
We will use πh as a bound on the minimum probability that the algorithm will
consider when adding a node to a cluster. Similarly to the previous section, we
also need a bound pL on the lowest possible probability that the algorithm may
need to estimate. Such a bound, as before, can either be obtained by squaring
the probability of the most unlikely world, or can be set by the user. For a given
threshold πh, the number of samples is, for ε ∈ (0, 1) and δ ∈ (0, 1)

rh =
12

πhε2
ln

(
2n2

δ

(
2+

⌊
log

1

pL

⌋
+ ⌈logn⌉

))
(4.12)

Iteration i is then as follows. Using the above number of samples, starting from
r0, the algorithm will estimate the values of π(u, Si), for each uncovered node
u ∈ Vi (Procedure ProgressiveSampling in Algorithm 11). Then if the number of
estimates that are larger than πh ·(1+ ε

2) is less than |Vi|/2, the algorithm repeats the
estimation using rh+1 samples, with πh+1 = πh/2. This progressive sampling is
iterated until there are at least |V |/2 nodes such that the estimate of their connection
probability to some center is higher than πh · (1 + ε

2). At this point, the algorithm
builds clusters as described in Algorithm 8 and moves to iteration i + 1. Let p̃alg
be the objective function of the clustering obtained from the concurrent clustering
algorithm with embedded progressive sampling.
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Algorithm 11: ConcurrentClusterImpl(G, τ)
V1 ← V ; i← 1;
while |Vi| > ατ logn do

select ατ logn new cluster centers at random with replacement from Vi;
Si ← {newly selected centers};
▷ If the call below stops with an error, terminate execution
u1, u2, . . . , u|Vi|/2 ← ProgressiveSampling(G, Vi, Si);
foreach u1, . . . uj . . . , u|Vi|/2 do

assign uj to cluster centered at c̃(uj, Si) ;
end

Vi+1 ← {uj : j > |Vi|/2 ∧ uj /∈ Si} ;
i← i+ 1;

end

return the clusters centered at S1 ∪ S2 ∪ · · · ∪ Si−1 ∪ Vi;

Procedure ProgressiveSampling(G, V̄, S)
h← 1;
πh ← 1;
while true do

rh ← 12
πhε2 ln

(
2n2

δ

(
2+

⌊
log 1

pL

⌋
+ ⌈logn⌉

))
;

Sample rh possible worlds G1, . . . Gj, . . . , Gr ⊑ G;
for c ∈ S, u ∈ V̄ do q̃(c, u)← 1

r

∑r
j=1 IGj

(u, v) ;
let u1, u2, . . . , u|V̄ | be the nodes of Vi in decreasing order of π̃(·, Si);
if π̃(u|Vi|/2) ⩾ πh · (1+ ε

2
) then return u1, u2, . . . , u|V̄ |/2 ;

else if πh/2 < pL then Error “No clustering found” ;
else

πh+1 ← πh/2;
h← h+ 1;

end

end

end

Theorem 16. Algorithm 11 returns an ℓ-clustering with ℓ = O
(
τ log2 n

)
and such that

p̃
alg

⩾ (1− ε)p2
opt
(τ), if p2

opt
(τ) > 2pL, with high probability.

Proof. We prove the theorem in two steps: first we will prove that if p2opt(τ) > 2pL
then the algorithm will find a clustering, with high probability; then we will show
that in each iteration, there is no node v assigned to any cluster centered in c such
that Pr [c ∼ v] < (1− ε)p2opt, with high probability. Let

δ ′ =
δ

n2
(
2+

⌊
log 1

pL

⌋
+ ⌈logn⌉

)
Assume that p2opt(τ) > 2pL. In the ProgressiveSampling subroutine in Algo-

rithm 11, consider iteration h such that πh ⩽ p2opt(τ), if a clustering has not been
found already. By the choice of the number of samples, for a fixed pair of nodes u, v
such that Pr [u ∼ v] ⩾ p2opt(τ), we have q̃(u, v) ⩾ (1 + ε

2)p
2
opt(τ), with probability
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⩽ δ ′. By union bound on the number of pairs, we have q̃(u, v) ⩾ (1 + ε
2)p

2
opt(τ)

for any u, v ∈ V such that Pr [u ∼ v] ⩾ p2opt(τ), with probability ⩽ δ. By reasoning
as in the proof of Theorem 10 we can prove that there are |Vi|/2 such nodes, and
therefore the algorithm computes a clustering.

Consider now Iteration i of the outer while loop of Algorithm 11, and the set
of newly selected centers Si. We are going to prove that, for v ∈ Vi and c ∈ Si
such that Pr [v ∼ c] < (1 − ε)p2opt(τ), v is added to the cluster centered in c with
probability ⩽ δ ′. We condition on the event that at least one center of Si falls into
every large as defined in Theorem 10, which happens with high probability. Let
w1, . . . , wj, . . . , w|Vi|/2 be |Vi|/2nodes ofVi such thatπ(wj, Si) ⩾ p2opt(τ). Consider
an arbitrary iteration h of the inner call to ProgressiveSampling. For v to be added
to the cluster centered in c we need that q̃(v, c) >

(
1+ ε

2

)
πh. We have two cases,

which we analyze in the following

• Pr [v ∼ c] < πh. Note that this implies that

Pr
[
q̃(v, c) >

(
1+

ε

2

)
πh

]
< Pr

[
q̃(v, c) >

(
1+

ε

2

)
Pr [v ∼ c]

]
⩽
δ ′

2

where the last inequality follows by Chernoff bound.

• Pr [v ∼ c] ⩾ πh. For 1 ⩽ j ⩽ |Vi|/2, let cwj
be the center maximizing

Pr
[
wj ∼ cwj

]
. Note that Pr [v ∼ c] < Pr

[
wj ∼ cwj

]
by hypothesis. More-

over, observe that for v to be added to the cluster centered in c, it must be
q̃(v, c) > q̃(wj, cwj

), for any j ∈ [1, |Vi|/2]. We bound the probability of this
event. Note that (1− ε

2)Pr
[
wj ∼ cwj

]
> (1+ ε

2)Pr [v ∼ c]. By Chernoff bound
and the choice of the number of samples

Pr
[
q̃(wj, cwj

) ⩽
(
1−

ε

2

)
Pr
[
wj ∼ cwj

]]
⩽ e−

rh Pr[wj∼cwj ]
3

ε2

4 ⩽ e−
rhπh

3
ε2

4 ⩽
δ ′

2

and similarly

Pr
[
q̃(v, c) ⩽

(
1+

ε

2

)
Pr [v ∼ c]

]
⩽
δ ′

2

Therefore, q̃(v, c) > q̃(wj, cwj
) with probability ⩽ δ ′, for a fixed j.

By combining the above two cases, and by union bound on the wj’s, we have that
q̃(v, c) >

(
1+ ε

2

)
πh with probability ⩽ δ ′ ·n. Hence, in iteration i of the while loop

and iteration h of the inner call of ProgressiveSampling, we have that v is added to
the cluster centered in cwith probability ⩽ δ ′ ·n. By applying the union bound on
all nodes v, and on the 2+

⌊
log 1

pL

⌋
+ ⌈logn⌉worst case iterations of the algorithm,

we have that, with probability ⩽ 1 − δ, for any cluster center c there is no node
v added to the cluster centered in c such that Pr [v ∼ c] < (1 − ε)p2opt(τ), and the
theorem follows.

4.7 Experimental evaluation

In this section we report some preliminary experiments, with the goal of comparing
the performance of our algorithms with respect to other approaches proposed in
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graph nodes edges

Collins 1622 9074
Gavin 1855 7669
Krogan 2708 7123

DBLP 226413 1432920

Table 4.1: Graphs considered in our experiments.

the literature. We run experiments along three lines, organized as follows. First, we
compare the sequential clustering strategy of Algorithm 9 with mcl [Don08], which
is often used for comparison in previous works on uncertain graphs1, as observed
in Section 4.1. Then, we consider Protein-Protein Interaction (PPI) networks, which
are one of the main motivating applications of the analysis of uncertain graphs.
Here, we use Algorithm 9 to predict so-called protein complexes, validating the re-
sults against the ground truth provided by hand-curated MIPS database of protein
complexes [Mew+04]. Finally, we compare the relative performance of our sequen-
tial and parallel strategies.

We implemented our algorithms in C++ [Cec16c] with the Monte Carlo sam-
pling of possible worlds executed in parallel using OpenMP. Considering that the
sample sizes defined in Section 4.6 are derived to tolerate very conservative union
bounds, we verified that in practice starting the progressive sampling schedule
from 50 samples always yields very accurate probability estimates. We ran this im-
plementation on a single node of the cluster described in Section 2.2.2. We remark
that our implementation of the parallel algorithm does not leverage on all the par-
allelism exposed by the concurrent growth of multiple clusters, because estimating
connection probabilities in parallel is already enough to employ all the parallelism
provided by our machine.

In our experiments we employed four different graphs, whose characteristics
are summarized in Table 4.1. Three graphs are PPI networks, with different dis-
tributions of edge probabilities: Collins [Col+07], with mostly high-probability
edges; Gavin [Gav+06], with the majority of edges having low probabilities, and
the CORE network introduced in [Kro+06] (Krogan in the following), which has
one fourth of the edges with probability greater than 0.9, and the others almost uni-
formly distributed between 0.27 and 0.9. As a computationally more challenging
topology, we also included in the experiments a subgraph of the DBLP collabo-
ration network, obfuscated with the algorithm presented in [Bol+12] (reviewed in
Section 4.1), with parameters k = 20 and ε = 10−3.

4.7.1 Comparison with MCL

In this section we compare our sequential cluster growing strategy (with progres-
sive sampling, Algorithm 9, dubbed Seq from now on) with mcl [Don08] in terms
of quality of the returned clustering, measured by three metrics. The first metric

1We were not able to compare with the algorithms proposed in [Lin+12] and [KPT13], since their
code was not made available by the authors.
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pmin ACR AVPR time (ms)
graph # clusters mcl Seq mcl Seq mcl Seq mcl Seq

Collins
263 0.24 0.48 0.50 0.33 0.92 0.85 377 911
300 0.28 0.53 0.56 0.37 0.93 0.89 231 906
317 0.44 0.56 0.60 0.39 0.94 0.90 223 629

Gavin
214 0.02 0.18 0.12 0.12 0.74 0.55 525 3400
320 0.07 0.25 0.23 0.19 0.81 0.62 272 3320
386 0.07 0.32 0.31 0.24 0.81 0.67 250 833

Krogan
351 0.07 0.31 0.20 0.14 0.71 0.67 1,173 3997
580 0.16 0.43 0.36 0.23 0.72 0.76 490 4311
705 0.16 0.57 0.43 0.30 0.71 0.83 417 1761

DBLP
17,774 ≈ 0 1.00 0.89 1.0 0.99 1.0 2,002,441 2,109
32,893 ≈ 0 1.00 0.95 1.0 0.99 1.0 958,595 2,083
42,236 ≈ 0 1.00 0.96 1.0 0.99 1.0 891,443 2,102

Table 4.2: Comparison of mcl and Seq. The second column reports the number
of clusters returned by mcl for different inflation values (1.5, 2, and 2.5) and,
consequently, the target number of nodes τ for our algorithm. Values of pmin

reported as ≈ 0 indicate that there was a pair of nodes not connected in any
sampled possible world, for 50,000 samples. Running times are in milliseconds.

is the minimum connection probability pmin between any node and its cluster’s
center, that is the metric introduced in Eq. (4.1) and optimized by our algorithms.
For mcl, when computing this metric we consider as cluster centers the attractor

nodes as defined in [Don08]. The other two metrics we consider were introduced
in [Lin+12]. The Average Vertex Pairwise Reliability (AVPR), measures the average
pairwise connection probability of nodes within the same clusters, and is defined
as follows

AVPR =

∑τ
i=1

∑
u,v∈Ci

Pr [u ∼ v]∑τ
i=1

(
|Ci|
2

)
The Average Cluster Reliability (ACR), instead, is the weighted average probability
that a cluster is connected in a random possible world

ACR =

∑τ
i=1 |Ci| · Pr [“Ci is connected”]

|V |

Recall from Section 4.1 that the granularity of the clustering computed by mcl
cannot be controlled accurately but it is influenced by the inflation parameter.
Therefore, for each graph in Table 4.1, we run mcl with inflation set to 1.5, 2.0,
and 2.5, and then we run Seq with a value of τ which matches the granularity
of the clustering returned by each mcl run. The results of the experiments are
summarized in Table 4.2, which also reports the running times.

With respect to the pmin metric, Seq is always better than mcl, which is not
surprising given the fact that Seq optimizes this metric. In particular, in the case
of DBLP mcl finds a clustering with an almost-zero pmin, meaning that there is at
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least one pair of nodes in the same cluster with almost zero connection probability.
Conversely, Seq finds a clustering with pmin = 1, meaning that all pairs of nodes
in the same cluster are connected with probability 1, as supported by Theorem 7.

As for the ACR and AVPR metrics, the scores obtained by the two algorithms
are comparable, with mcl performing slightly better in most cases. We remark that
pmin is a harder worst-case metric, whereas ACR and AVPR are averages that may
hide the presence of low-probability connections in the same cluster. Also, these
experiments show that for some graphs, such as DBLP, a clustering strategy that
ignores the possible-world semantics, as the one at the base of mcl, may provide a
very poor clustering with respect to our metric. As for the running times, mcl is
almost always faster with the notable exception of the biggest DBLP graph. This is
due to the fact that, thanks to progressive sampling, Seq is able to find the clustering
with pmin = 1 with a small number of samples.

This preliminary comparison of the two algorithms shows that, with respect
to the goal of maximizing the minimum connection probability to centers, our
approach exhibits encouragingly better performance compared to mcl.

4.7.2 Experiments on Protein-Protein Interaction networks

One of the motivating applications for the study of uncertain graphs is the analysis
of Protein-Protein Interaction (PPI) networks. Recall that in these graphs the nodes
represent proteins, and edges represent interactions between different proteins.
Since the measures used to determine such interactions are affected by noise, a PPI
network is modeled as an uncertain graph. Interacting proteins can be grouped in
protein complexes, that are groups of proteins that stably interact with one another.
Since the experiments to detect both protein interactions and protein complexes are
expensive, the interest in analyzing PPI networks is to find clusters of proteins to
predict unknown protein complexes.

The evaluate the performance of sequential clustering strategy Seq in this pre-
dictive setting, we use the benchmark is the Krogan graph for which the authors
published a clustering with 547 clusters obtained with mcl [Kro+06, Suppl. Table
10]. We consider a ground truth derived from the MIPS database [Mew+04], which
is publicly available [BB06]. For the purpose of the evaluation, we restrict ourselves
to proteins appearing in both Krogan and MIPS, thus obtaining a ground truth of
13,496 protein pairs. The input to the clustering algorithms is the entire Krogan
graph. We evaluated the returned clusterings in terms of the confusion matrix.
Namely, a pair of proteins in the same cluster is considered a true positive if both
proteins appear in the same MIPS complex, and a false positive otherwise; similarly,
a pair of proteins in different clusters is a true negative if the two proteins do not
appear in the same MIPS complex, and false negative otherwise.

We run Seq considering only d-connection probabilities (see Section 4.5) for
different values of d, and by setting τ = 547 so as to match the cardinality of the
reference clustering from [Kro+06]. The idea behind the use of limited path length
is that we want to place in the same predicted complex proteins that are connected
with a high probability, but which are also as topologically close. We do not report
results for d = 1 since there is no clustering of the Krogan graph with d = 1

and τ = 547. We remark that in [KPT13] the authors applied to the same dataset
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d TPR FPR FNR

Seq

2 0.125 0.005 0.875
3 0.148 0.011 0.852
4 0.168 0.035 0.832
6 0.642 0.589 0.358
8 0.769 0.737 0.231

mcl 0.142 0.002 0.858

Table 4.3: Comparison of mcl and Seq with limited path length on Krogan w.r.t.
the MIPS ground truth.

a clustering strategy based on a star-cover of the graph which is reminiscent of
our algorithm with d = 1, but their clustering has more clusters than the reference
clustering by [Kro+06]. Table 4.3 reports the True Positive Rate (TPR), False Positive
Rate (FPR) and False Negative Rate (FNR) for Seq with different values of d, and for
mcl. We observe that, for low path lengths, our algorithm is able to find a clustering
with scores similar to the reference. Note that higher values of d yield fewer false
negatives at the expense of an increased number of false positives. This is expected,
since with higher d the algorithm may place proteins that are topologically distant
in the same predicted complex. Observe that a moderate number of false positives
may be a desirable feature, since these pairs can be the target of further investigation
to verify unknown protein interactions.

This experiment supports our intuition that considering topologically close
proteins while aiming at high connection probabilities makes our algorithm com-
parable with state of the art solutions in this predictive setting. Moreover, it can be
regarded as a preliminary evidence that our algorithm can be applied to the im-
portant context of the analysis of Protein-Protein Interaction networks with good
results, prompting us to further develop of our approach. In particular, ongo-
ing work is focused on comparing our approaches with the clustering algorithm
of [NYP12], which is developed to consider explicitly the semantics of PPI net-
works. Moreover, a comparison of the relative performance of our sequential and
concurrent cluster growing strategies is ongoing.

4.7.3 Comparison of sequential and parallel strategy

In the last set of experiments we compare our sequential and parallel cluster grow-
ing strategies described in Algorithms 9 and 11 (Seq and Par, respectively). We use
dblp as a benchmark because its large size makes it computationally challenging
for the clustering task, and compare the two algorithms in terms of the number of
clusters found, the quality metric pmin, and the running time. We ran Seq to find
τ clusters, and Par with batch size τ, for several values of τ. Actually, the theory
developed in Section 4.4 prescribes the use of a larger batch size (i.e.. Θ (τ logn)) to
ensure that the approximation guarantees hold with high probability. However, we
found that in practice a smaller batch size yields clusterings of comparable quality
but smaller granularity.

The results of this experiment are reported in Table 4.4. We observe that Par
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# clusters pmin time (s)
τ Par Seq Par Seq Par Seq

32 71 32 0.01 0.01 299 412
64 180 62 0.05 0.02 94 155
128 488 128 0.16 0.05 55 113
256 1031 256 0.15 0.11 74 115
512 1957 512 0.50 0.23 112 143

Table 4.4: Comparison of Par and Seq on DBLP. Parameter τ is the batch size for
Par and the target number of clusters for Seq. Running times are in seconds.

is faster than Seq, even though the parallelism of the platform available for the
experiment is not sufficient to unleash its full potential, due to the parallel cluster
growing. Nonetheless, Par is faster than Seq since it does not build the clustering
from scratch for each guess. Par pays this better running time with a slight increase
in the number of clusters, much lower than the theretical worst-case bound. Also,
this slackness allows Par to find a clustering with a higher pmin, hence making it
more adaptive to the input. Observe that the values ofpmin reported here are lower
than the ones in Table 4.2 because different clustering granularities are considered
in the two cases.
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Chapter 5

Diversity maximization

With this chapter we move from the realm of graphs into the domain of more
general metric spaces. We will consider the problem of diversity maximization, a
fundamental primitive in massive data analysis, which provides a succinct sum-
mary of a dataset while preserving the diversity of the data [MB08; AMT13; Wu13;
Yan+15].

Consider for instance news aggregation websites, which collect a large number
of news articles from several sources. Users of these websites are not interested
in dealing with all this information at once. On the contrary, the role of a news
aggregator is to present its users with a small number of news, covering a diverse

set of topics. Similarly, consider the case of web search. A particular query might
give millions of results, possibly referring to different topics. These results need to
be ranked before being presented to the user, which most likely will pay attention
only to the first few results. Therefore, the interest is in maximizing the diversity of
the top-ranked pages presented to the user. In general, combinations of relevance
ranking and diversity maximization have been explored in a variety of applications,
including web search [AK11; CG98; Xin+06], e-commerce [BGM11], recommenda-
tion systems [YLA09; MRK06], aggregator websites [MZR09] and database query-
result navigation [KSI06; CL07]. The common problem in all these applications is
that even after filtering and ranking for relevance, the output set is often too large
to be presented to the user. A practical solution is to present a diverse subset of the
results, so that the user can evaluate the variety of options and possibly refine the
search. Other than the aforementioned applications, there are contexts where it is
desirable to place a set of facilities in such a way that they are as dispersed as possible.
One such case is the placing of “undesirable” facilities, like nuclear power plants,
ammunition dumps or oil storage tanks: these facilities should be spread out so that
an accident happening to one does not damage the others [EN89; Tam91; RRT07].
Similarly, when planning the distribution of business franchises it is desirable to
minimize the competition between different units by separating them [Kub87]. All
the aforementioned problems, along with others listed in [RRT07; AMT13; Ind+14],

83



CHAPTER 5. DIVERSITY MAXIMIZATION

Problem Diversity measure Sequential approximation

remote-edge minp,q∈S d(p, q) 2 (2) [Tam91]
remote-clique

∑
p,q∈S d(p, q) 2 (2) [HRT97; BG09]

remote-star minc∈S

∑
q∈S\{c} d(c, q) 2 (−) [CH01]

remote-bipartition minQ⊂S,|Q|=⌊|S|/2⌋
∑

q∈Q,z∈S\Q d(q, z) 3 (−) [CH01]
remote-tree w(MST(S)) 4 (2) [Hal+99]
remote-cycle w(TSP(S)) 3 (2) [Hal+99]

Table 5.1: Diversity measures considered in this thesis. w(MST(S)) (resp.,
w(TSP(S))) denotes the minimum weight of a spanning tree (resp., Hamiltonian
cycle) of the complete graph whose nodes are the points of S and whose edge
weights are the pairwise distances among the points. The last column lists the best
known approximation factor, the lower bound under the hypothesis P ̸= NP (in
parentheses), and the related references.

can be formulated as diversity maximization problems, whose pervasiveness mo-
tivates us in finding efficient algorithms.

There are a number of ways to formulate the goal of finding a set of k points
which are as diverse, or as far as possible from each other. We adopt the classifica-
tion introduced in [CH01], where diversity maximization problems are formulated
in terms of specific graph-theoretic measures defined on sets of k points, seen as
the nodes of a clique where each edge is weighted with the distance between its
endpoints. In this setting, measuring the diversity of a set in terms of the mini-
mum distance between its points corresponds to the remote-edge measure; whereas
measuring the diversity by the sum of the distances corresponds to the remote-

clique problem. Several diversity measures defined in this way are reported in
Table 5.1. Finding a subset of cardinality kmaximizing any of the diversity criteria
reported in the table is known to be NP-hard for general metric spaces. While
the most appropriate ones in the context of web search, e-commerce, aggregator
systems and query results navigation are the remote-edge and the remote-clique
measures [GS09; AMT13], our results also extend to the other measures in the ta-
ble, which have important applications in analyzing network performance, locating
strategic facilities or noncompeting franchises, or determining initial solutions for
iterative clustering algorithms or heuristics for hard optimization problems such as
TSP [Hal+99; CH01; RRT07]. We include all of these measures here to demonstrate
the versatility of our approach to a variety of diversity criteria. We want to stress
that different measures characterize the diversity of a set in a different fashion:
indeed, an optimal solution with respect to one measure is not necessarily optimal
with respect to another measure.

In this chapter, we analyze our algorithms in terms of the doubling dimension

of the input set (see Definition 1), which we will review in Section 5.2. This pow-
erful notion has been used in the analysis of algorithms in a number of recent
works [ABS10; RG06; KRX08; GKK14], including our diameter-approximation al-
gorithms presented in Chapter 3. While our methods yield provably tight bounds
in spaces of bounded doubling dimension (e.g., any bounded dimension Euclidian
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space) they have the potential of providing good approximations in more general
spaces based on important practical distance functions such as the cosine dis-
tance in web search [AK11] and the dissimilarity (Jaccard) distance in database
queries [LRU14], as we shall see in Section 5.8.

We present MapReduce and streaming algorithms for the diversity maximiza-
tion problem in Sections 5.4 and 5.5. Our algorithms are based on the core-set
framework [AHV05], which captures the idea of a small subset preserving a good
approximation of the diversity of the input set. In Section 5.3 we will define the
characteristics that a subset must exhibit in order to be a core-set for the diversity-
maximization problem. In particular, we will use variations of k-center clustering
as a means of building such core-sets in an efficient way. The basic idea of our algo-
rithms is to build a clustering with a very fine granularity, based on the amount of
available resources, so that the cluster centers provide an accurate representation of
the input. This core-set construction, paired with the concept of doubling dimen-
sion, will yield efficient and accurate algorithms. In Section 5.6 we will see how
to reduce the memory requirements of our algorithms. Finally, we will present an
extensive experimental work in Section 5.8.

The results presented in this chapter have been published in the Proceedings of
the VLDB Endowment [Cec+17].

5.1 Related work

Diversity maximization for various diversity objective measures has been studied
in the literature under different names, including p-Dispersion, Max-Min Facility

Dispersion, and p-Maximin [Kub87; RRT94; Erk90; Tam91], Maxisum Dispersion and
Average Facility Dispersion [Kub87; RRT94], MaxMinSum and MaxSumMin disper-

sion [EN91], Remote-MST and Remote-TSP [Hal+99]. A uniform taxonomy for di-
versity maximization problems has been given in [CH01], and it is the one we
adopt. All of these problems are known to be NP-hard, and several sequential
approximation algorithms have been proposed in the literature. Table 5.1 lists, for
each problem, the approximation factor attained by the best sequential approxi-
mation algorithm in general metric spaces. There are also some specialized results
for some spaces with bounded doubling dimension: for the remote-clique prob-
lem, a polynomial-time (

√
2+ ε)-approximation algorithm on the Euclidean plane,

and a polynomial-time (1 + ε)-approximation algorithm on d-dimensional spaces
with rectilinear distances, for any positive constants ε > 0 and d, are presented
in [FM03]. In [Hal+99] it is shown that a natural greedy algorithm attains a 2.309
approximation factor on the Euclidean plane for remote-tree. Recently, the remote-
clique problem has been considered under matroid constraints [AMT13; CEZ16],
which generalize the cardinality constraints considered in previous literature.

In recent years, the notion of (composable) core-set has been introduced as a
key tool for the efficient solution of optimization problems on large datasets. A
core-set [AHV05], with respect to a given computational objective, is a (small) subset
of the entire dataset which contains a good approximation to the optimal solution
for the entire dataset. A composable core-set [Ind+14] is a collection of core-sets, one
for each subset in an arbitrary partition of the dataset, such that the union of these
core-sets is a good core-set for the entire dataset. The approximation factor attained
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by a (composable) core-set is defined as the ratio between the value of the global
optimal solution and the value of the optimal solution when limited to points of
the (composable) core-set.

Core-sets have been applied in a wide variety of contexts, including compu-
tational geometry [AHV05], clustering [HM04; HK07; Bat+14], and submodular
maximization [Bad+14; MZ15]. We remark that the diversity maximization and
the submodular maximization problems are fundamentally different, since usually
diversity functions are not submodular. In particular, the approaches devised in
the aforementioned papers do not apply to the problems we consider. For the diver-
sity maximization problems listed in Table 5.1, composable core-sets with constant
approximation factors have been devised in [Ind+14; AFZ15], and we report their
approximation guarantees in Table 5.2. Note that once a (composable) core-set
is available one has to run an approximation algorithm on such a (composable)
core-set to actually find a solution, since the problems are NP-hard, hence exact
solutions are out of reach even for smaller input sizes. For this reason, in Table 5.2
we report also the approximation ratio obtained by combining the approximation
of introduced by the core-set with the one introduced by the approximation al-
gorithm applied on the core-set. As observed in [Ind+14], (composable) core-sets
may become key ingredients for developing efficient algorithms for the MapRe-
duce and streaming frameworks, where the memory available for a processor’s
local operations is typically much smaller than the overall input size. In particular,
the composable core-sets construction of [Ind+14; AFZ15] can be used to yield
two-rounds MapReduce algorithms in the following way. In the first round the
algorithm partitions the input in ℓ subsets distributed among the reducers, so that
each reducer can compute a composable core-set of size k. In the second round
the composable core-sets are aggregated in the memory of a single reducer, which
runs a sequential approximation algorithm for the problem at hand on this set of
ℓ ·k points. Hence, the implementation of the algorithms of [Ind+14; AFZ15] in the
MR(ML,MA) model requires local memory ML = Θ (ℓ · k), and aggregate mem-
ory MA = Θ (n). As for the application of composable core-sets in the streaming
model, in [Ind+14] the authors propose a one-pass implementation. The stream of
n input points is partitioned into

√
n/k blocks of size

√
kn each, and a core-set of

size k is computed from each block and kept in memory. At the end of the pass,
the final solution is computed on the union of the core-sets, whose total size is√
kn. The algorithm used to build the core-sets in each reducer depends on the

problem being solved. While for some problems the simple and efficient GMM
algorithm is used, for other problems (namely remote-clique, remote-bipartition,
and remote-star) the core-sets are built using the LocalSearch [AMT13] algorithm,
which works as follows. Given a set S of n points, an integer k, and a parameter
γ, the LocalSearch algorithm keeps track of a tentative solution T of size k, initial-
ized to a subset of the input containing the two farthest points. Then, it iteratively
improves the diversity of T by a factor at least (1 + γ/n) by suitably swapping a
point ∈ T with a point ∈ S \ T , converging to a solution in O

(
n
γ log k

)
iterations.

Note that, in each iteration, the LocalSearch algorithm has to compute the diver-
sity of T for O (kn) swaps. Therefore, depending on the diversity measure being
considered, the LocalSearch algorithm may have a high complexity. For instance,
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Core-set approximation Overall approximation
[Ind+14; AFZ15]

remote-edge 3 6

remote-clique 6+ γ † 12+ γ †
remote-star 12 24

remote-bipartition 18 54

remote-tree 4 16

remote-cycle 3 9

† γ is introduced in the description of the LocalSearch algorithm.

Table 5.2: Approximation factors of the composable core-sets for diversity maxi-
mization proposed in the literature [Ind+14; AFZ15]. The second column reports
the overall approximation factor for the given diversity problem, obtained by mul-
tiplying the core-set approximation factor with the best sequential approximation
factor, as reported in Table 5.1.

evaluating the remote-clique diversity of a set of k points takes Ω (k) time: in this
case the complexity of LocalSearch becomesΩ

(
k2n2

γ log k
)

.

5.2 Preliminaries

Let S be a set of points from a metric space M = (M, dist), and recall that the
doubling dimension of M is the smallestD such that any ball of radius r is covered
by at most 2D balls of radius r/2 (See definitions in Chapter 2). Note that as an
immediate consequence, for any 0 < ε ⩽ 1, any ball of radius r can be covered by
at most (1/ε)D balls of radius εr.

For ease of presentation, we concentrate on metric spaces of constant doubling
dimension D, although the results can be immediately extended to nonconstant
D by suitably adjusting the ranges of variability of the parameters involved. As
we noted in Chapter 2, several relevant metric spaces have constant doubling di-
mension, a notable case being Euclidean space of constant dimensionD, which has
doubling dimension O (D) [GKL03].

Let div : 2M → R be a diversity function that maps a set S ⊂ M to some
nonegative real number. We will consider the instantiations of function div listed
in Table 5.1, which have been studied under different names in the literature.
We adopt the taxonomy that was introduced in [CH01], and which is used also
in [Ind+14; AFZ15]. For a specific diversity function div, a set S ⊂M of size n and a
positive integer k ⩽ n, the goal of the diversity maximization problem is to find some
subset S ′ ⊆ S of size k that maximizes the value div(S ′). In the following, we refer
to the k-diversity of S as

divk(S) = max
S ′⊆S,|S ′|=k

div(S ′)

When we reviewed the related work, we introduced the concept of core-set as
found in the literature [AHV05]. The idea captured by the core-set concept is that
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of a small set of points that approximate some property of a larger set. We now
formalize this intuition for the property of the k-diversity of a set.

Definition 7. Let div(·) be a diversity function, k be a positive integer, and β ⩾ 1. A set

T ⊆ S, with |T | ⩾ k, is a β-core-set for S with respect to the k-diversity if

divk(T) ⩾
1

β
divk(S)

As we reviewed in Section 5.1, the concept of core-set has been extended
in [Ind+14; AFZ15] so that, given an arbitrary partition of the input set, the union
of the core-sets of each subset in the partition is a core-set for the entire input set.
A core-set with this property is deemed a composable core-set, for which we give a
formal definition below.

Definition 8. Let div(·) be a diversity function, k be a positive integer, and β ⩾ 1. A

function c(S) that maps S ⊂ M to one of its subsets computes a β-composable core-set
w.r.t. div if, for any collection of disjoint sets S1, . . . , Sℓ ⊂M with |Si| ⩾ k, we have

divk

(
ℓ⋃

i=1

c(Si)

)
⩾
1

β
divk

(
ℓ⋃

i=1

Si

)

Finally, we will make use of the concepts of radius and farness of a set as intro-
duced in Chapter 2, and we report here the definitions for convenience. Given a
set S and a subset T , the radius of T with respect to S is rT (S) = maxp∈S dist(p, T).
The farness of T is the minimum distance between any two points of T , that is
ρT = minp∈T dist(p, T \ {p}). For a given integer k > 0, we also define the optimal

radius r∗k(S) for S with respect to k as the minimum radius of a subset of k points
of S. Similarly, we define the optimal farness ρ∗k(S) for S with respect to k to be the
maximum farness of any subset of k points of S.

5.3 Core-set characterization

In this section we identify some properties that, when exhibited by a subset T of
the pointset S, guarantee that T is a (1+ε)-core-set for the diversity problems listed
in Table 5.1. In the subsequent sections we will show how core-sets with these
properties can be obtained in the streaming and MapReduce settings. In fact, when
we discuss the MapReduce setting, we will also show that these properties also
yield composable core-sets featuring tighter approximation factors than existing
ones, for spaces with bounded doubling dimension.

First, we need to establish a fundamental relation between the optimal radius
r∗k(S) and the optimal farness ρ∗k(S) for the pointset S. In Chapter 2 we considered
the GMM greedy algorithm for the k-center problem [Gon85], and we proved in
Fact 1, that the set of centers found by the GMM algorithm is an anticover: that is,
rC(S) ⩽ ρC. Thanks to this property, we can prove the following fact.

Fact 2. Given a set S and k > 0, we have r∗k(S) ⩽ ρ
∗
k(S).
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Proof. Consider the set of centersC found by the GMM algorithm. By the anticover
property (Fact 1) we have rC(S) ⩽ ρC. Since r∗k(S) ⩽ rC(S) and ρC(S) ⩽ ρ∗k(S), the
fact immediately follows.

Consider an arbitrary diversity measure div(·) from Table 5.1 and let O ⊆ S

be the subset of k points such that div(O) = divk(S). Consider a subset T ⊆ S.
Intuitively, T is a good core-set for some diversity measure on S, if for each point of
the optimal solution O it contains a point sufficiently close to it. We formalize this
intuition by suitably adapting the notion of proxy function introduced in [Ind+14].
We aim at defining a function p : O→ T such that the distance between o and p(o)
is bounded, for any o ∈ O. For some problems we will require this function to
be injective, whereas for some others, injectivity will not be needed. We begin by
studying the remote-edge and the remote-cycle problem.

Lemma 6. For any given ε > 0, let ε ′ be such that (1− ε ′) = 1/(1+ ε). A set T ⊆ S is a

(1 + ε)-core-set for the remote-edge and the remote-cycle problems if |T | ⩾ k and there is a

function p : O→ T such that, for any o ∈ O, d(o, p(o)) ⩽ (ε ′/2)ρ∗k(S).

Proof. Consider the remote-edge problem first, and observe thatdivk(T) ⩽ div(O) =
ρ∗k(S). By applying the triangle inequality and the stated property of the proxy
function p we get

divk(T) ⩾ min
o1,o2∈O

d(p(o1), p(o2))

⩾ min
o1,o2∈O

{d(o1, o2) − d(o1, p(o1)) − d(o2, p(o2))}

⩾ min
o1,o2∈O

d(o1, o2) − ε
′ρ∗k(S)

= div(O)(1− ε ′) = div(O)/(1+ ε)

Note that p(·) does not need to be injective: in fact, if two points of the optimal
solution are mapped into the same proxy, the first inequality trivially holds, its
right hand side being zero.

Consider now the remote-cycle problem. Note that divk(T) ⩽ div(O). Let
ρ̄ = div(O)/k and observe that ρ∗k(S) ⩽ ρ̄. Let P = {p(o) : o ∈ O} ⊆ T be the image
of the proxy function. Following the argument given in [Ind+14; AFZ15], consider
TSP(P), an optimal tour onP. We build a weighted graphGwhose vertex set isO∪P
and whose edges are those induced byTSP(P) plus two copies of edge (o, p(o)), for
each o ∈ O. The weight of an edge (u, v) is d(u, v). Clearly, the resulting graph G
is connected and all its vertices have even degree, therefore it admits an Euler tour
TE of its edges. From TE we obtain a cycle C of O by shortcutting all nodes that are
not in O. By repeated applications of the triangle inequality during shortcutting
and the fact that d(o, p(o)) ⩽ (ε ′/2)ρ̄, we obtain:

w(TSP(O)) ⩽ w(C) ⩽ w(TE)

⩽ w(TSP(P)) + kε ′ρ̄

⩽ divk(T) + ε
′ div(O)

Therefore, div(O) ⩽ divk(T)/(1− ε
′) = divk(T)(1+ ε).
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Note that the proof of the above lemma does not require p(·) to be injective. In-
stead, injectivity is required for the remote-clique, remote-star, remote-bipartition,
and remote-tree problems, which are considered next.

Lemma 7. For a given ε > 0, let ε ′ be such that 1 − ε ′ = 1/(1 + ε). A set T ⊆ S

is a (1 + ε)-core-set for the remote-clique, remote-star, remote-bipartition, and remote-tree

problems if |T | ⩾ k and there is an injective function p : O→ T such that, for any o ∈ O,

d(o, p(o)) ⩽ (ε ′/2)ρ∗k(S).

Proof. Observe that for each of the four problems it holds that divk(T) ⩽ div(O).
Let us consider the remote-clique problem first, and define

ρ̄ = div(O)/

(
k

2

)
=

∑
o1,o2∈O

d(o1, o2)/

(
k

2

)
Clearly, ρ∗k(S) ⩽ ρ̄. In fact, a set of k points where the minimum distance between
any pair of points is ρ∗k(S) will have a remote-clique diversity ⩾ ρ∗k ·

(
k
2

)
and

⩽ div(O), which implies ρ∗k ·
(
k
2

)
⩽ div(O). By combining this observation with the

triangle inequality we have

divk(T
′) ⩾

∑
o1,o2∈O

d(p(o1), p(o2))

⩾
∑

o1,o2∈O

[d(o1, o2) − d(o1, p(o1)) − d(o2, p(o2))]

⩾
∑
o1,o2

d(o1, o2) −

(
k

2

)
ε ′ρ̄ = div(O)/(1+ ε)

The injectivity of p(·) is needed in this case for the first inequality above to be true,
since k distinct proxies are needed to get a feasible solution.

The argument for the other problems is virtually identical, the only change
being in the definition of ρ̄, and in the expression of the objective function. For
the remote-star problem, we have that ρ̄ = div(O)/(k − 1); for remote-bipartition
ρ̄ = div(O)/(k/2)2; and for remote-tree ρ̄ = div(O)/k. By suitably replacing the
definition of ρ̄ in the appropriate places, the statement for the remote-star, remote-
bipartition, and remote-tree follows by the same argument.

5.4 Applications to data streams

We now see how to construct core-sets in the streaming model. Recall from Sec-
tion 2.3 that in the streaming model [HRR98] one processor with a limited-size main
memory is available for the computation. The input is provided as a continuous
stream of items which is typically too large to fit in main memory, hence it must
be processed on the fly within the limited memory budget. Streaming algorithms
aim at performing as few passes as possible (ideally just one) over the input.

Recall that in [Ind+14], the authors proposed to use composable core-sets to
approximate diversity in the streaming model by partitioning the input stream into
blocks of size

√
kn. For each block, then, a core-set of size k is built, and the final

solution is computed on the union of all the core sets, whose size is
√
kn.
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In this section, we show that substantial savings can be obtained by computing
a single core-set from the entire stream. In particular, we show how to obtain a space
requirement independent of n, through two variants of the 8-approximation dou-

bling algorithm for the k-center problem presented in [Cha+04], which we described
in Section 2.4.3.

5.4.1 The SMM core-set algorithm

In the following, we describe our first variant of the doubling algorithm, which we
call SMM (for Streaming Minimum Maximum). SMM is used to compute core-sets
for problems in which the injectivity of the proxy function is not required (i.e.
remote-edge and remote-cycle).

Let k, k ′ be two positive integers, with k ⩽ k ′. SMM(S, k, k ′), which returns
a core-set of size ∈ [k, k ′], works in phases and maintains in memory a set T of at
most k ′ + 1 points. Each Phase i is associated with a distance threshold di, and is
divided into a merge step and an update step. Phase 1 starts after an initialization in
which the first k ′ + 1 points of the stream are added to T , and d1 is set equal to
minc∈T d(c, T \ {c}). At the beginning of Phase i, with i ⩾ 1, the following invariant
holds. Let Si be the prefix of the stream processed so far. Then:

1. ∀p ∈ Si, d(p, T) ⩽ 2di
2. ∀t1, t2 ∈ T , with t1 ̸= t2, we have d(t1, t2) ⩾ di

Observe that the invariant holds at the beginning of Phase 1. The merge step
operates on a graph G = (T, E) where there is an edge (t1, t2) between two points
t1 ̸= t2 ∈ T if d(t1, t2) ⩽ 2di. In this step, the algorithm seeks a maximal
independent set I ⊆ T of G, and sets T = I. The update step accepts new points
from the stream. Let p be one such new point. If d(p, T) ⩽ 4di, the algorithm
discards p, otherwise it adds p to T . The update step terminates when either the
stream ends or the (k ′ + 1)-st point is added to T . At the end of the step, di+1 is set
equal to 2di. As shown in [Cha+04], at the end of the update step, the set T and
the threshold di+1 satisfy the above invariants for Phase i+ 1.

To be able to use SMM for computing a core-set for our diversity problems, we
have to make sure that the set T returned by the algorithm contains at least k points.
However, in the algorithm described above the last phase could end with |T | < k.
To fix this situation, we modify the algorithm so as to retain in memory, for the
duration of each phase, the setM of points that have been removed from T during
the merge step performed at the beginning of the phase. Consider the last phase.
If at the end of the stream we have |T | < k, we can pick k− |T | arbitrary nodes from
M and add them to T . Note that we can always do so becauseM ∪ I = k ′ + 1 ⩾ k,
where I is the independent set found during the last merge step.

Suppose that the input set S belongs to a metric space with doubling dimension
D. We have that the core-set built by the SMM algorithm has the properties to be a
good core-set for diversity maximization, as shown in the following lemma.

Lemma 8. For any 0 < ε ′ ⩽ 1, let k ′ = (32/ε ′)D · k, and let T be the set of points

returned by SMM(S, k, k ′). Then, given an arbitrary set X ⊆ S with |X| = k, there exist a

function p : X→ T such that, for any x ∈ X, d(x, p(x)) ⩽ (ε ′/2)ρ∗k(S).
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Proof. Let r∗k ′(S) to be the optimal radius for Sw.r.t. k ′. Suppose that SMM(S, k, k ′)
performs ℓ phases. It is immediate to see that rT (S) ⩽ 4dℓ. As was proved
in [Cha+04], 4dℓ ⩽ 8r∗k ′(S), thus rT (S) ⩽ 8r∗k ′(S). Consider now an optimal
clustering of S with k centers and radius r∗k(S) and, for notational convenience,
define ε ′′ = ε ′/32. From the doubling dimension property, we know that there
exist at most k ′ balls in the space (centered at nodes not necessarily in S) of radius
at most ε ′′r∗k(S) which contain all of the points in S. By choosing one arbitrary
center in S for each such ball, we obtain a feasible solution to the k ′-center problem
for S with radius at most 2ε ′′r∗k(S). Consequently, r∗k ′(S) ⩽ 2ε ′′r∗k(S). Hence, we
have that rT (S) ⩽ 8r∗k ′(S) ⩽ 16ε ′′r∗k(S). By Fact 2, we know that r∗k(S) ⩽ ρ∗k(S).
Therefore, we have rT (S) ⩽ 16ε ′′ρ∗k(S) = (ε ′/2)ρ∗k(S). Given a set X ⊆ S of size k,
the desired proxy function p(·) is the one that maps each point x ∈ X to the closest
point in T . By the discussion above, we have that d(x, p(x)) ⩽ (ε ′/2)ρ∗k(S).

5.4.2 The SMM-EXT core-set algorithm

For the diversity problems mentioned in Lemma 7 — namely remote-cycle, remote-
star, remote-bipartition, and remote-tree — we need that for each point of an optimal
solution the final core-set extracted from the data stream contains a distinct point
very close to it. In what follows, we describe a variant of SMM, dubbed SMM-
EXT, which ensures this property. Algorithm SMM-EXT proceeds as SMM but
maintains for each t ∈ T a set Et of at most k points (referred to as delegates in what
follows) which are close to t, and include t itself. More precisely, at the beginning
of the algorithm, T is initialized with the first k ′ + 1 points of the stream, as before,
and Et is set equal to {t}, for each t ∈ T . In the merge step of Phase i, with i ⩾ 1,
iteratively for each point t1 not included in the independent set I, we determine an
arbitrary point t2 ∈ I such that d(t1, t2) ⩽ 2di and letEt2 inheritmax{|Et1 |, k− |Et2 |}

points of Et1 . Note that one such point t2 must exist, otherwise I would not be a
maximal independent set. Also, note that a point t2 ∈ I may inherit points from
sets associated with different points not in I. As for the update step of Phase i,
let p be a new point from the stream, and let t ∈ T be the point currently in T
which is closest to p. If d(p, t) > 4di we add it to T setting Ep = {p}. If instead
d(p, t) ⩽ 4di and |Et| < k, then we add p to Et, otherwise we discard it. Finally, we
define T ′ =

⋃
t∈T Et to be the output of the algorithm, and observe that T ⊆ T ′.

Lemma 9. For any 0 < ε ′ ⩽ 1, let k ′ = (64/ε ′)D · k, and let T ′
be the set of points

returned by SMM-EXT(S, k, k ′). Then, k ⩽ |T ′| ⩽ k · k ′ and given an arbitrary set

X ⊆ S with |X| = k, there exist an injective function p : X→ T ′
such that, for any x ∈ X,

d(x, p(x)) ⩽ (ε ′/2)ρ∗k(S).

Proof. The upper bound on |T | is immediate, while the lower bound follows from
the injectivity proved below. Let rT ′(S) = maxp∈S d(p, T

′) be the radius of T ′, and
suppose that SMM(S, k, k ′) performs ℓ phases. By defining ε ′′ = ε ′/64, and by
reasoning as in the proof of Lemma 8 we can show that rT ′(S) ⩽ 4dℓ ⩽ 16ε ′′ρ∗k(S).
Consider a point x ∈ X. If x ∈ T ′ then we define p(x) = x. Otherwise, suppose
that x is discarded during Phase j, for some j, because either in the merging or in
the update step the set Et that was supposed to host it had already k points. Let Ti
denote the set T at the end of Phase i, for any i ⩾ 1. A simple inductive argument
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shows that at the end of each Phase i, with j ⩽ i ⩽ ℓ there is a point t ∈ Ti such
that |Et| = k and d(x, t) ⩽ 4di. In particular, there exists a point t ∈ Tℓ such that
|Et| = k and d(x, t) ⩽ 4dℓ ⩽ 16ε ′′ρ∗k(S). Since Et ⊂ T ′, any point in Et is at distance
at most 4dℓ ⩽ 16ε ′′ρ∗k(S) from t, and |X| = k, we can select a proxy p(x) for x from
the k points in Et such that d(x, p(x)) ⩽ 32ε ′′ρ∗k(S) = (ε ′/2)ρ∗k(S) and p(x) is not a
proxy for any other point of X.

It is easy to see that the set T characterized in Lemma 8 satisfies the hypotheses
of Lemma 6. Similarly, the set T ′ of Lemma 9 satisfies the hypotheses of Lemma 7.
Therefore, as a consequence of these lemmas, for metric spaces with bounded
doubling dimension D, we have that SMM and SMM-EXT compute (1 + ε)-core-
sets for the problems listed in Table 5.1, as stated by the following two theorems.
Theorem 17. For any 0 < ε ⩽ 1, let ε ′ be such that (1 − ε ′) = 1/(1 + ε), and let

k ′ = (32/ε ′)D · k. Algorithm SMM(S, k, k ′) computes a (1+ ε)-core-set of size k ′ for the

remote-edge and remote-cycle problems using O
(
(1/ε)Dk

)
memory.

Theorem 18. For any 0 < ε ⩽ 1, let ε ′ be such that (1 − ε ′) = 1/(1 + ε), and let

k ′ = (64/ε ′)D · k. Algorithm SMM-EXT(S, k, k ′) computes a (1 + ε)-core-set of size

k · k ′ for the remote-clique, remote-star, remote-bipartition, and remote-tree problems using

O
(
(1/ε)Dk2

)
memory.

Note that, for a fixed approximation factor (1+ ε), the size of the core-sets built
by SMM and SMM-EXT is different, with SMM-EXT building bigger core-sets. We
remark that this is because of the injectivity of the proxy function required by
Lemma 7 for the diversity problems addressed by SMM-EXT.

5.4.3 Streaming approximation algorithm

The core-sets discussed above can be immediately applied to yield the following
streaming algorithm for diversity maximization. Let S be the input stream of n
points. One pass on the data is performed using SMM, or SMM-EXT, depending
on the problem, to compute a core-set in main memory. At the end of the pass,
a sequential approximation algorithm is run on the core-set to compute the final
solution. The following theorem is immediate.
Theorem 19. Let S be a stream of n points of a metric space of doubling dimension D,

and let A be a linear-space sequential approximation algorithm for any one of the problems

of Table 5.1, returning a solution S ′ ⊆ S, with divk(S) ⩽ αdiv(S ′), for some constant

α ⩾ 1. Then, for any 0 < ε ⩽ 1, there is a 1-pass streaming algorithm for the same problem

yielding an approximation factor of α+ ε, with memory

• Θ
(
(α/ε)Dk

)
for the remote-edge and the remote-cycle problems;

• Θ
(
(α/ε)Dk2

)
for the remote-clique, the remote-star, the remote-bipartition, and the

remote-tree problems.

Proof. The proof follows by running A on (1 + ε/α)-core-sets obtained through
Theorems 17 and 18, which have size Θ

(
(α/ε)Dk

)
and Θ

(
(α/ε)Dk2

)
, respectively.

In section 5.7 we will compare the guarantees of the above theorem with the
results of previous works.
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5.5 Applications to MapReduce

In this section, we consider another popular computational model for processing
large amounts of data: MapReduce, which we reviewed in detail in Section 2.2, and
which was also the computational model we used for our diameter-approximation
algorithm (Chapter 3). We employ composable core-sets in order to leverage the
strengths of MapReduce. The basic idea of our approach is the following. We
partition the input among the reducers so that, in a first MapReduce round, each
reducer can build a composable core-set locally. Then, in a second round, all the
composable core-sets are collected in a single reducer, which applies a sequential
approximation algorithm for the diversity problem at hand.

Consider a set S belonging to a metric space of doubling dimension D, and a
partition of S into ℓ disjoints sets S1, S2, . . . , Sℓ . In what follows we consider in turn
all the diversity problems listed in Table 5.1: div(·) denotes the diversity function of
the problem under consideration, andOdenotes an optimal solution to the problem
with respect to instance S = ∪ℓi=1Si. Note that, for any i ∈ [1, ℓ], ρ∗k(Si) ⩽ ρ∗k(S).
As we mentioned above, the basic idea of our MapReduce algorithms is to derive,
for each Si, a core-set Ti ⊆ Si. Then, the core-sets are aggregated into one single
core-set T = ∪ℓi=1Ti, which will be used as input for a sequential approximation
algorithm. We want the set T to satisfy the hypotheses of Lemmas 6 and 7, so as to
have a guaranteed good approximation.

5.5.1 Using GMM for computing core-sets

Let us consider first the remote-edge and remote-cycle problems. To build our
composable core-sets for these problems we use the GMM k-center algorithm, that
we described in Section 2.4.1. Note that we are interested only in the set of cluster
centers found by GMM, and not in building the associated clustering. The following
Lemma shows that if we run Algorithm GMM on each Si, with 1 ⩽ i ⩽ ℓ, and then
take the union of the outputs, the resulting set satisfies the hypotheses of Lemma 6.

Lemma 10. For any 0 < ε ′ ⩽ 1, let k ′ = (8/ε ′)D · k, and let T =
⋃ℓ

i=1GMM(Si, k
′).

Then, |T | = O(ℓk/(ε ′)D), and given an arbitrary set X ⊆ S with |X| = k, there exist a

function p : X→ T such that for any x ∈ X, d(x, p(x)) ⩽ (ε ′/2)ρ∗k(S).

Proof. Fix an arbitrary index i, with 1 ⩽ i ⩽ ℓ, and let Ti = {c1, c2, . . . , ck ′}, where
cj denotes the point added to Ti at the j-th iteration of GMM(Si, k

′). Let also
Ti(k) = {c1, c2, . . . , ck} and dk = d(ck, Ti(k) \ {ck}). From the anticover property
exhibited by GMM, which holds for any prefix of points selected by the algorithm,
we have rTi(k)(Si) ⩽ dk ⩽ ρTi(k)(Si) ⩽ ρ∗k(S). Define ε ′′ = ε ′/8. Since Si can be
covered with k balls of radius at most dk, and the space has doubling dimension
D, then there exist k ′ balls in the space (centered at nodes not necessarily in
Si) of radius at most ε ′′dk that contain all the points in Si. By choosing one
arbitrary center in Si in each such ball, we obtain a feasible solution to the k ′-center
problem for Si with radius at most 2ε ′′dk, which implies that the cost of the optimal
solution to k ′-center is at most 2ε ′dk. As a consequence, since by Proposition 1
GMM(Sk, k

′) returns a 2-approximation Ti to the k ′-center problem for Si, we have
tat rTi

(Si) ⩽ 4ε ′′dk, hence rTi
(Si) ⩽ 4ε ′′ρ∗k(S). Let now T =

⋃ℓ
i=1 Ti. Clearly, we
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Algorithm 12: GMM-EXT(S, k, k ′)
T ′← GMM(S, k ′)
Let T ′ = {c1, c2, . . . , ck ′}

T ← ∅
for j← 1 to k ′ do

Cj← {p ∈ S : cj = argminc∈T ′ d(c, p)∧ p ̸∈ Ch with h < j}
Ej← {cj} ∪ { arbitrary min{|Cj|− 1, k− 1} points in Cj}

T ← T ∪ Ej
end

return T

have that rT (S) ⩽ max1⩽i⩽ℓ rTi
(Si) ⩽ 4ε ′′ρ∗k(S). Hence, for any set X ⊆ S, the

desired proxy function p(·) is obtained by mapping each x ∈ X to the closest point
in T . By the above argument, we have d(x, p(x)) ⩽ 4ε ′′ρ∗k(S) = (ε ′/2)ρ∗k(S).

5.5.2 The GMM-EXT core-set algorithm

For the diversity problems considered in Lemma 7 (remote-cycle, remote-star,
remote-bipartition, and remote-tree) the proxy function is required to be injec-
tive. Therefore, similarly to what we did with the streaming algorithms, we de-
velop an extension of the GMM algorithm, dubbed GMM-EXT (see Algorithm 12).
This extended algorithm first determines a kernel T ′ of k ′ ⩾ k points by running
GMM(S, k ′) and then augments T ′ by first determining the clustering of S whose
centers are the points of T ′ and then picking from each cluster its center and up
to k − 1 delegate points. In this fashion, we ensure that each point of an optimal
solution to the diversity problem under consideration will have a distinct close
“proxy” in the returned set T .

As before, let S1, S2, . . . , Sℓ be disjoint subsets of a metric space of doubling
dimension D. We have:

Lemma 11. For any 0 < ε ′ ⩽ 1, letk ′ = (16/ε ′)d·k, and let T =
⋃ℓ

i=1GMM-EXT(Si, k, k
′).

Then, |T | = O(ℓk2/(ε ′)D) given an arbitrary set X ⊆ S, with |X| = k, there exist an injec-

tive function p : X→ T such that for any x ∈ X, d(x, p(x)) ⩽ (ε ′/2)ρ∗k(S).

Proof. For any 1 ⩽ i ⩽ ℓ, let Ti = GMM-EXT(Si, k, k
′) be the result of the invocation

of GMM-EXT on Si. By defining ε ′′ = ε ′/16 and by reasoning as in Lemma 10,
we have that the radius of the set T ′

i computed by the call to GMM(Si, k
′) within

GMM-EXT(Si, k, k ′) is rT ′
i
(Si) ⩽ 4ε ′′ρ∗k(S). Fix an arbitrary index i, with 1 ⩽ i ⩽ ℓ,

and consider, for 1 ⩽ j ⩽ k ′, the sets Ci,j and Ei,j as determined by Algorithm
GMM-EXT(Si, k, k ′), and define Xi,j = X∩Ci,j. Since |Xi,j| ⩽ min{k, |Ci,j|} = |Ei,j|,
we can associate each point in x ∈ Xi,j to a distinct proxy p(x) ∈ Ei,j. Since both
x and p(x) belong to Ci,j, by the triangle inequality we have that d(x, p(x)) ⩽
2rT ′(S) ⩽ 8ε ′′ρ∗k(S) = (ε ′/2)ρ∗k. Since the input sets S1, S2, . . . , Sℓ are disjoint, then
we have that all the Xi,j are disjoint. This ensures that we can find a distinct proxy
for each point of X in T =

⋃ℓ
i=1 Ti, hence, the proxy function is injective.

The two lemmas above guarantee that the set of points obtained by invoking
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GMM or GMM-EXT on the partitioned input complies with the hypotheses of
Lemmas 6 and 7 of Section 5.3. Therefore, for metric spaces with bounded doubling
dimensionD, we have that GMM and GMM-EXT compute (1+ε)-composable core-
sets for the problems listed in Table 5.1, as stated by the following two theorems.

Theorem 20. For any 0 < ε ⩽ 1, let ε ′ be such that (1 − ε ′) = 1/(1 + ε), and let

k ′ = (8/ε ′)D · k. For any X ⊆ S, GMM(X, k ′) computes a (1+ ε)-composable core-set of

size O(k/(ε ′)D) for the remote-edge and remote-cycle problems.

Theorem 21. For any 0 < ε ⩽ 1, let ε ′ be such that (1 − ε ′) = 1/(1 + ε), and let

k ′ = (16/ε ′)D · k. For any X ⊆ S, GMM-EXT(X, k, k ′) computes a (1 + ε)-composable

core-set of size O
(
k2/(ε ′)D

)
for the remote-clique, remote-star, remote-bipartition, and

remote-tree problems.

As for the streaming algorithms, we have that our MapReduce algorithms have
different core-set sizes depending on the diversity problem: for a fixed approxima-
tion factor (1 + ε), the core-set for remote-edge and remote-cycle is smaller than
the other four problems. This is due to the fact that remote-clique, remote-star,
remote-bipartition and remote-tree all require an injective proxy function, which
we provide by augmenting the core-set with delegates.

5.5.3 MapReduce deterministic algorithm

The composable core-sets discussed above can be used to obtain the following
MapReduce algorithm for diversity maximization. Let S be the input set of n
points and consider an arbitrary partition of S into ℓ subsets S1, S2, . . . , Sℓ, each
of size n/ℓ. In the first round, each Si is assigned to a distinct reducer, which
computes the corresponding core-set Ti, according to algorithms GMM, or GMM-
EXT, depending on the problem. In the second round, the union of the ℓ core-sets
T =

⋃ℓ
i=1 Ti is concentrated within the same reducer, which runs a sequential

approximation algorithm on T to compute the final solution. We have:

Theorem 22. Let S be a set of n points of a metric space of doubling dimension D, and

let A be a linear-space sequential approximation algorithm for any one of the problems of

Table 5.1, returning a solution S ′ ⊆ S, with divk(S) ⩽ αdiv(S ′), for some constantα ⩾ 1.
Then, for any 0 < ε ⩽ 1, there is a 2-round MR algorithm for the same problem yielding

an approximation factor of α+ ε, withMA = n and

• ML = Θ
(√

(α/ε)Dkn
)

for the remote-edge and the remote-cycle problems;

• ML = Θ
(
k
√
(α/ε)Dn

)
for the remote-tree, the remote-clique, the remote-star, and

the remote-bipartition problems.

Proof. Set ε ′ such that 1/(1 − ε ′) = 1 + ε/α, and recall the remote-edge and the
remote-cycle problems admit composable core-sets of size k ′ = (8/ε ′)Dk, while
the problems remote-tree, remote-clique, remote-star, and remote-bipartition have
core-sets of size kk ′, with k ′ = (16/ε ′)Dk. Suppose that the above MR algorithm
is run with ℓ =

√
n/k ′ for the former group of two problems, and ℓ =

√
n/(kk ′)

for the latter group of four problems. Observe that by the choice of ℓ we have that
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both the size of each Si and the size of the aggregate set |T | are O(ML), therefore
the stipulated bounds on the local memory of the reducers are met. The bound on
the approximation factor of the resulting algorithm follows from the fact that the
Theorems 20 and 21 imply that, for all problems, divk(S) ⩽ (1 + ε/α) divk(T) and
the properties of algorithm A yield divk(T) ⩽ αdiv(S).

Theorem 22 implies that on spaces of constant doubling dimension, we can
get approximations to remote-edge and remote-cycle in 2 rounds of MapReduce
which are almost as good as the best sequential approximations, with polynomially
sublinear local memory ML = O

(√
kn
)

, for values of k up to n1−δ, while for
the remaining four problems, with polynomially sublinear local memory ML =
O
(
k
√
n
)

for values of k = O
(
n1/2−δ

)
, for 0 ⩽ δ < 1. In fact, for these four

latter problems and the same range of values for k, we can obtain substantial
memory savings either by using randomization (in two rounds, as shown in the
next subsection), or, deterministically with an extra round (as will be shown in
Section 5.6.2).

5.5.4 MapReduce randomized algorithm

In this section, we show how to use randomization to get substantial memory
savings for the diversity problems that require an injective proxy function. The
basic idea is that if we randomly permute the input before computing the core-
sets, it is unlikely that many points of the optimal solution are concentrated in the
same reducer. Therefore we can afford to select fewer delegate points to ensure the
injectivity of the proxy function, with high probability. The random permutation
can be performed with an additional round. We have:

Theorem 23. For the problems of remote-clique, remote-star, remote-bipartition, and

remote-tree, we can obtain a randomized 3-round MR algorithm with the same approx-

imation guarantees stated in Theorem 22 holding with high probability, and with

ML =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Θ

(√
(α/ε)Dkn logn

)
for k = O

(
(εDn logn)1/3

)
Θ
(
(α/ε)Dk2

)
for k =

⎧⎨⎩Ω
(
(εDn logn)1/3

)
O
(
n1/2−δ

)
∀δ ∈ [0, 1/6)

where α is the approximation guarantee given by the current best sequential algorithms

referenced in Table 5.1.

Proof. We fix ε ′ and k ′ as in the proof of Theorem 22, and, at the beginning of the
first round, we use random keys to partition the n points of S among

ℓ = Θ
(
min{

√
n/(k ′ logn), n/(kk ′)}

)
reducers. Fix any of the four problems under consideration and let O be a given
optimal solution. A simple balls-into-bins argument suffices to show that, with
high probability, none of the ℓ partitions may contain more thanΘ (max{logn, k/ℓ})
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out of the k points of O. Therefore, it is sufficient that, within each subset of the
partition, GMM-EXT selects up to those many delegate points per cluster (rather
than k− 1). This suffices to establish the new space bounds.

5.5.5 Recursive MapReduce algorithm

The deterministic strategy underlying the 2-round MR algorithm can be employed
recursively to yield an algorithm with a larger (yet constant) number of rounds
for the case of smaller local memory budgets. Specifically, if the union of the
composable core-sets computed in each subset of the partition has size larger than
ML, we recursively call the algorithm using this union as input. The following
theorem shows that this recursive strategy can still guarantee an approximation
comparable to the sequential one as long as the local memoryML is not too small.

Theorem 24. Let S be a set of n points of a metric space of doubling dimension D, let

and A be a linear-space sequential approximation algorithm for any one of the problems

of Table 5.1, returning a solution S ′ ⊆ S, with divk(S) ⩽ αdiv(S ′), for some constant

α ⩾ 1. Then, for any 0 < ε ⩽ 1 and 0 < γ ⩽ 1/3 there is an O ((1− γ)/γ)-round MR

algorithm for the same problem yielding an approximation factor of α + ε, with MA = n

and

• ML = Θ
(
(α2(1−γ)/γ/ε)Dknγ

)
for the remote-edge and the remote-cycle problems;

• ML = Θ
(
(α2(1−γ)/γε)Dk2nγ

)
, for some γ > 0 for the remote-clique, the remote-

star, the remote-bipartition, and the remote-tree problems.

Proof. Let ε ′ be such that 1/(1 − ε ′) = 1 + ε/(α(2(1−γ)/γ − 1)) and recall that the
remote-edge and the remote-cycle problems admit composable core-sets of size
k ′ = (8/ε ′)Dk, while the problems remote-tree, remote-clique, remote-star, and
remote-bipartition, have core-sets of size kk ′, with k ′ = (16/ε ′)D. We may apply
the following recursive strategy. We partition the input set S into n/ML sets of size
ML and compute the corresponding core-sets. Let T be the union of these core-sets.
If |T | > ML, then we recursively apply the same strategy using T as the new input
set, otherwise, we send T to a single reducer where algorithm A is applied. By
the choice of the parameters, it follows that in all cases (1− γ)/γ rounds suffice to
shrink the input set to a size at mostML. The resulting approximation factor with
respect to divk(S) will then be at most

α

(
1+

ε

α(2(1−γ)/γ − 1)

) (1−γ)
γ

⩽ α

(
1+

ε(2(1−γ)/γ − 1)

α(2(1−γ)/γ − 1)

)
= α+ ε,

where the last inequality follows from the known fact (1 + a)b ⩽ (1 + (2b − 1)a)
for every a ∈ [0, 1] and b > 1, and the observation that, by the choice of γ, we have
(1− γ)/γ ⩾ 2.

5.6 Saving memory: generalized core-sets

Consider the problems remote-clique, remote-star, remote-bipartition, and remote-
tree. Our core-sets for these problems are obtained by exploiting the sufficient
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conditions stated in Lemma 7, which require the existence of an injective proxy
function that maps the points of an optimal solution into close points of the core-
set. To ensure this property, our strategy so far has been to add more points to
the core-sets, both in streaming and in MapReduce. More precisely, we saw how
to build a core-set composed by a kernel of k ′ points, augmented by selecting, for
each kernel point, a number of up to k − 1 delegate points laying within a small
range. This augmentation ensures that for each point o of an optimal solution O,
there exists a distinct close proxy among the delegates of the kernel point closest to
o, as required by Lemma 7.

In order to reduce the core-set size, hence saving memory, the augmentation
can be done implicitly by keeping track only of the number of delegates that must
be added for each kernel point. A set of pairs (p,mp) is then returned, where p
is a kernel point and mp is the number of delegates for p (including p itself). The
intuition behind this approach is the following. The set of pairs described above
can be viewed as a compact representation of a multiset, where each point p of the
kernel appears with multiplicitymp. If, for a given diversity measure, we can solve
a natural generalization of the maximization problem on the multiset, then we can
transform the obtained multiset solution into a feasible solution for S by selecting,
for each multiple occurrence of a kernel point, a distinct close enough point in S.
In what follows we illustrate this idea in more detail.

Let S be a set of points. A generalized core-set T for S is a set of pairs (p,mp) with
p ∈ S and mp a positive integer, referred to as the multiplicity of p, where the first
components of the pairs are all distinct. We define its size s(T) to be the number
of pairs it contains, and its expanded size as m(T) =

∑
(p,mp)∈T mp. Moreover,

we define the expansion of a generalized core-set T as the multiset T formed by
including, for each pair (p,mp) ∈ T ,mp replicas of p in T.

Given two generalized core-sets T1 and T2, we say that T1 is a coherent subset of
T2, and write T1 ⊑ T2, if for every pair (p,mp) ∈ T1 there exists a pair (p,m ′

p) ∈ T2
with m ′

p ⩾ mp. For a given diversity function div and a generalized core-set T for
S, we define the generalized diversity of T , denoted by gen-div(T), to be the value of
div when applied to its expansion T, where mp replicas of the same point p are
viewed as mp distinct points at distance 0 from one another. We also define the
generalized k-diversity of T as

gen-divk(T) = max
T ′⊑T :m(T ′)=k

gen-div(T ′).

Let T be a generalized core-set for a set of points S. A set I(T) ⊆ Swith |I(T)| = m(T)
is referred to as a δ-instantiation of T if for each pair (p,mp) ∈ T it contains mp

distinct delegate points (including p), each at distance at most δ from p, with the
requirement that the sets of delegates associated with any two pairs in T are disjoint.
The following lemma ensures that the difference between the generalized diversity
of T and the diversity of any of its δ-instantiations is bounded.

Lemma 12. Let T be a generalized core-set for S withm(T) = k, and consider the remote-

clique, remote-star, remote-bipartition, and remote-tree problems. For any δ-instantiation

I(T) of T we have that

div(I(T)) ⩾ gen-div(T) − f(k)2δ.
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where f(k) =
(
k
2

)
for remote-clique, f(k) = k − 1 for remote-star and remote tree, and

f(k) = ⌊k/2⌋ · ⌈k/2⌉ for remote-bipartition.

Proof. Recall that gen-div(T) is defined over the expansion T of T where each pair
(p,mp) ∈ T is represented bymp occurrences of p. We create a 1-1 correspondence
between T and I(T) by mapping each occurrence of a point p ∈ T into a distinct
proxy chosen among the delegates for (p,mp) in I(T). The lemma follows by noting
both gen-div(T) and div(I(T)) are expressed in terms of sums of f(k) distances and
that, by the triangle inequality, for any two points p1, p2 in the multiset (possibly
two occurrences of the same point p) the distance of the corresponding proxies is
at least d(p1, p2) − 2δ.

For any one of the four problems under considerations, given a generalized
core-set T we intend to run an adaptation of the best sequential algorithm for the
problem to compute a coherent subset T̂ of T of exapanded size m(T̂) = k whose
generalized diversity if a good approximation of gen-divk(T). A delta-instantiation
of T̂ will then provide the final solution. It is important to observe that the best
sequential approximation algorithms for the remote-clique, remote-star, remote-
bipartition, and remote-tree problems (see Table 5.1), which are essentially based
on either finding a maximal matching or running GMM on the input set [HRT97;
CH01; Hal+99], can be easily adapted to work on generalized core-sets.

Consider first the adaptation of the GMM algorithm, and its adaptation to a
generalized core-set T . The algorithm keeps track of a set of pairs T̂ , which is
initialized with a pair (p, 1), where p is a point of T with some multiplicity mp.
Correspondingly, the pair (p,mp) in T will be replaced by the pair (p,mp − 1)

Then, the algorithm performs a sequence of iterations until the expanded size of T̂
is k. In each iteration, the algorithm seeks among the pairs (p,mp) ∈ T such that
mp > 0 the one maximizing the distance dist(p, c), for any (c,mc) ∈ T̂ . Then, the
pair (p,mp) ∈ T is replaced by a pair (p,mp − 1), and p is inserted into T̂ . This
insertion operation is implemented as follows: if there is no pair (p,mp) in T̂ , then
we add to T̂ the pair (p, 1), otherwise we replace the original pair with (p,mp + 1).

For other diversity problems, the approximation algorithm is based on a max-
imal matching heuristic: the algorithm selects iteratively the pair of unselected
points u, vmaximizing dist(u, v), until ⌊k/2⌋ pairs are selected. If k is odd, an extra
arbitrary point is added to the solution. This heuristic can be easily applied to a
generalized core-set T as follows. In each iteration, the algorithm seeks (u,mu) ∈ T
and (v,mv) ∈ T withmu > 0 andmu > 0 such that dist(u, v) is maximized. Then,
the points u and v are inserted in the solution using the insertion procedure de-
scribed above. If k is odd, an arbitrary point p such that (p,mp) ∈ T with mp > 0

is added to the solution.
Given the above discussion, we have:

Fact 3. The best existing sequential approximation algorithms for the remote-clique, remote-

star, remote-bipartition, and remote-tree, can be adapted to obtain from a given general-

ized core-set T a coherent subset T̂ with expanded size m(T̂) = k and gen-div(T̂) ⩾
(1/α) gen-divk(T), where α is the same approximation ratio achieved on the original prob-

lems. The adaptation works in space O (s(T)).
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We will now consider how to build generalized core-sets in both streaming and
MapReduce.

5.6.1 Generalized core-sets for streaming algorithms

We can modify the streaming algorithm to compute generalized core-sets, so as
to lower the memory requirements for the remote-tree, remote-clique, remote-star,
and remote-bipartition problems to match the one of the other two problems, at
the expense of an extra pass on the data. The idea behind this adaptation is that
in a first pass on the data we can build a generalized core-set, using multiplicities
instead of explicit delegates. Then, with a sequential approximation algorithm
adapted as specified Fact 3 we identify a subset of points in the generalized core-set
with expanded size k. Since the adapted sequential algorithms return a set of pairs
(p,mp), where p is a point and mp is its multiplicity, for the algorithm to return a
set of distinct points we need another pass on the data. In this second pass, we use
these points with multiplicities to suitably select k distinct points that will make
up the final solution. The details of this strategy are provided in the following
theorem.

Theorem 25. For the problems of remote-clique, remote star, remote-bipartition, and remote-

tree, we can obtain a 2-pass streaming algorithm with approximation factor α + ε and

memory Θ
(
(α2/ε)Dk

)
, for any 0 < ε < 1, where α is the approximation guarantee given

by the current best sequential algorithms referenced in Table 5.1.

Proof. Let ε̄ be such that α+ε = α/(1− ε̄), and observe that ε̄ = Θ (ε/α). In the first
pass we determine a generalized core-set T of size k ′ = (64α/ε̄)D · k by suitably
adapting the SMM-EXT algorithm to maintain counts rather than delegates for each
kernel point. Let rT denote the maximum distance of a point of S from the closest
point x such that (x,mx) is in T . Using the argument in the proof of Lemma 8,
setting ε ′ = ε̄/(2α), it is easily shown that rT ⩽ (ε ′/2)ρ∗k(S) = (ε̄/(4α))ρ∗k(S).
Therefore, we can establish an injective map p(·) from O to the expansion T of
T . Let us focus on the remote-clique problem (the argument for the other three
problems is virtually identical), and define ρ̄ = div(O)/

(
k
2

)
. By reasoning as in the

proof of Lemma 7, we can show that gen-divk(T) ⩾ div(O)(1− ε̄/(2α)).
At the end of the first pass, the best sequential algorithm for the problem,

adapted as stated in Fact 3, is used to compute in memory a coherent subset T̂ ⊑ T
withm(T̂) = k and such that gen-div(T̂) ⩾ (1/α) div(O)(1− ε̄/(2α)).

The second pass computes an rT -instantiation I(T̂) of T̂ , that is a set containing,
for each pair (p,mp) ∈ T̂ ,mp distinct delegates at distance at most rT from p. The
algorithm works by maintaining T̂ in memory, together with the setH of delegates.
For each delegate inH, the algorithm keeps track of the pair (p,mp) to which it was
assigned. The set of delegatesH is initialized to the set of points {p : ∀(p,mp) ∈ T̂ },
assigning each p to its corresponding pair. We define a pair (p,mp) ∈ T̂ (and
by extension the point p) to be complete if it has been assigned mp delegates, and
incomplete otherwise. The algorithm, for each point q of the stream, works as
follows. If there is an incomplete pair for which q can be a delegate, then we add q
toH, assigning it to that pair. Otherwise, we build the following auxiliary directed
graph: there is a node vp for each pair (p,mp) ∈ T̂ , and there is a directed edge
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from vp1
to vp2

if there is a delegate ∈ H assigned to p1 that can also be a delegate
for p2. Furthermore, there is a node vq for q with a directed edge towards each
node vp such that q can be a delegate for p. We run on this graph a DFS starting
from vq, until we either find a node vp such that (p,mp) is incomplete or there
are no more reachable nodes. In the former case, we can add q to H, with the
caveat that we have to “make room” for it by performing a chain of swaps. Let
vq, vp1

, vp2
, . . . , vpγ be the directed path found by the DFS in the auxiliary graph

from vq to the first node vpγ such that pγ is incomplete, and let qi ∈ H be a delegate
assigned to pi that can also be a delegate for pi+1, for 1 ⩽ i < γ (we know that such
a point exists because of how the auxiliary graph is defined). We assign qi to pi+1,
for 1 ⩽ i ⩽ γ. Note that we can assign qγ−1 to pγ because pγ is an incomplete
node. After this chain of swaps p1 becomes incomplete and we can assign q to
it. If the DFS does not find any vp such that p is incomplete, then we discard q
and proceed to the next point of the stream. Let C̄ be the set of points p ̸= q such
that vp is traversed by the DFS rooted at vq, and let H̄ ⊆ H be the set of delegates
associated to points of C̄. There is no way to assign the delegates in H̄ ∪ {q} to the
pairs satisfying the distance constraint and such that every pair (p,mp) is assigned
⩽ mp delegates. Hence, in any rT instantiation of T̂ that contains q, at least one
point of H̄ is missing. The algorithm terminates when |H| = k.

Note that discarding points of the stream according to the above protocol does
not prevent to find a solution, that is a rT -instantiation of T̂ . Consider an iteration
of the streaming algorithm, and let S̄ be the set of points of the stream that have
yet to be seen and H be the set of delegates selected so far. By induction on the
number of iterations executed by the algorithm, we prove that there is a solution
in H ∪ S̄. It is easy to see that in the first iteration, at the beginning of the stream
with H = {p : ∀(p,mp) ∈ T̂ }, the base case of the induction holds. Consider now
an iteration in which a point q is discarded. Let C̄ be the set of points traversed by
the DFS as defined above, and let H̄ ⊆ H be the set of delegates associated to points
in C̄. Note that all the points in C̄ are complete, using points in H̄, otherwise the
algorithm would have included q in the solution. Assume by contradiction that all
the possible solutions in H ∪ S̄ contain q, and consider one such solution, deemed
Γ . Note that, as we discussed above, at least one point of H must be excluded
from the solution to make room for q. Consider now the set Ψ ⊆ Γ of delegates
assigned to points in C̄ in the solution, and observe that q ∈ Ψ. We have that the
set Γ \Ψ∪ H̄ is also a feasible solution: H̄ is a set of points that makes all points in C̄
complete. Therefore, we can build a solution that does not contain q, contradicting
the assumption that all solutions must include q. This ensures that the algorithm
finds a feasible solution, that is, a valid rT -instantiation of T̂ .

The above streaming algorithm can run using O (k) space. In fact, the sets T̂
and H only require O (k) space, and there is no need to explicitly instantiate all
the O

(
k2
)

edges of the auxiliary graph, since the algorithm can derive them on
demand from the definition.

Now that we have a rT -instantiation of T̂ , by applying Lemma 12 with δ = rT ⩽
(ε̄/(4α))ρ̄, we get div(I(T̂)) ⩾ div(O)/(α+ ε) and the approximation factor follows.
Since ε̄ = Θ (ε/α) and the second pass requires onlyO (k) space, the space required
is Θ

(
(α/ε̄)Dk

)
= Θ

(
(α2/ε)Dk

)
.
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5.6.2 Generalized core-sets for MapReduce algorithms

In this section, we study how to adapt the MapReduce diversity maximization algo-
rithm to employ generalized core-sets, for the problems of remote-clique, remote-
star, remote-bipartition, and remote-tree. As in the case of the streaming algorithm,
the aim of this adaptation to is save memory, bringing the memory requirement
of the MapReduce algorithm for these four problems on par with the algorithm
for remote-edge and remote-cycle. Similarly to what happened with the streaming
algorithm, where the adoption of generalized core-sets implies an extra pass on the
data, in MapReduce using generalized core-sets costs an extra round.

Before describing the adaptation of the algorithms, we need to extend the
definition of composable core-set to generalized core-sets. Let div be a diversity
function, k be a positive integer, and β ⩾ 1. A function c(S) that maps a set of
points S to a generalized core-set T for S computes a β-composable generalized core-set

for div if, for any collection of disjoint sets S1, . . . , Sℓ, we have that

gen-divk

(
ℓ⋃

i=1

c(Si)

)
⩾
1

β
divk

(
ℓ⋃

i=1

Si

)
.

Consider a simple variant of GMM-EXT, which we refer to as GMM-GEN, which on
input S, k and k ′ returns a generalized core-set T of S of size s(T) = k ′ and extended
size m(T) ⩽ kk ′ as follows: for each point ci of the kernel set T ′ = GMM(S, k ′),
algorithm GMM-GEN returns a pair (ci,mci

) wheremci
is equal to the size of the

set Ei computed in the i-th iteration of the for loop of GMM-EXT.

Lemma 13. For any ε ′ > 0, define k ′ = (16α/ε ′)Dk. Algorithm GMM-GEN computes

a β-composable generalized core-set for the remote-clique, remote-star, remote-bipartition,

and remote-tree problems, with 1/β = 1− ε ′/(2α).

Proof. Given a collection of disjoint sets S1, . . . , Sℓ, let Ti = GMM-GEN(Si, k, k
′),

and T =
⋃ℓ

i=1 Ti. Consider the expansion T of T . Let us focus on the remote-clique
problem (the argument for the other three problems is virtually identical) and
define ρ̄ = div(O)/

(
k
2

)
. By reasoning along the lines of the proof of Theorem 25,

we can establish an injective map p : O→ T such that, for any o ∈ O, d(o, p(o)) ⩽
(ε ′/(4α))ρ̄. Let T̂ be the generalized core-set whose expansion into a multiset yields
the k points of the image of p. We have:

gen-divk(T) ⩾ gen-div(T̂) ⩾ div(O)

(
1−

ε ′

2α

)
We are now able to show that GMM-GEN computes a high-qualityβ-composable

generalized core-set, which can then be employed in a 3-round MR algorithm to
approximate the solution to the four problems under consideration with lower
memory requirements. The basic idea of this MapReduce algorithm is the follow-
ing. In the first two rounds, the algorithm computes a generalized core-set using
the GMM-GEN algorithm. Then, we find a set with expanded size k using a se-
quential approximation algorithm for the diversity maximization problem at hand,
adapted as described in Fact 3. A third round is needed to build the output, which
is a suitable set of distinct points based on the multiplicities of the ones found by
the sequential algorithm. This high level idea is detailed in the theorem below.
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Theorem 26. For the problems of remote-clique, remote-star, remote-bipartition, and

remote-tree, we can obtain a 3-round MR algorithm with approximation factor α + ε and

ML = Θ
(√

(α2/ε)Dkn
)

, for any 0 < ε < 1, where α is the approximation guarantee

given by the current best sequential algorithms referenced in Table 5.1.

Proof. Consider the remote-clique problem (the argument for the other three prob-
lems is virtually identical) and define ρ̄ = div(O)/

(
k
2

)
. Let ε ′ be such that α + ε =

α/(1−ε ′) and observe that ε ′ = Θ (ε/α). Also, setk ′ = (16α/ε ′)D·k. For ℓ =
√
n/k ′

consider a arbitrary partition of the input set S into ℓ subsets S1, S2, . . . , Sℓ each of
size ML = n/ℓ =

√
nk ′ each. In the first round, each reducer applies GMM-GEN

to a distinct subset Si to compute generalized core-sets of size k ′. In the second
round, these generalized core-sets are aggregated in a single generalized core-set
T , whose size is ℓk ′ =

√
nk ′ =ML and such that the maximum distance of a point

of S from the closest point xwith (x,mx) ∈ T is rT ⩽ (ε ′/(4α))ρ̄. Then, one reducer
applies to T the best sequential algorithm for the problem, adapted as stated in
Fact 3, to compute a coherent subset T̂ ⊑ T withm(T̂) = k and such that

gen-div(T̂) ⩾
1

α
gen-divk(T) ⩾

(
1−

ε ′

2α

)
1

α
div(O),

where the last inequality follows by Lemma 13. In the third round, T̂ is distributed
to ℓ reducers which are able to compute an instantiation I(T̂) of T̂ as follows. For
each pair (p,mp) ∈ T̂ , such thatp ∈ Si, the i-th reducer selectsmp distinct delegates
from Si at distance at most rT ⩽ (ε ′/(4α))ρ̄ from p. By Lemma 12, we have that

div(I(T̂)) ⩾

(
1−

ε ′

2α

)
1

α
div(O) −

ε ′

2α
div(O)

=
1

α

(
1−

ε ′

2α
−
ε ′

2

)
div(O)

⩾
1

α
(1− ε ′) div(O) =

1

α+ ε
div(O)

As for the memory bound, we have thatML =
√
nk ′ = Θ

(√
(α2/ε)Dkn

)
.

5.7 Comparison with previous approaches

In the previous two sections we introduced streaming and MapReduce algorithms
for all six diversity measures listed in Table 5.1. In this section, we compare their
approximation factors and memory requirements with the ones that can be attained
using the composable core-sets recently proposed in the literature [Ind+14; AFZ15].

For what concerns the streaming model, it is important to observe that while we
devised ad-hoc streaming algorithms for the computation of our core-sets, to the
best of our knowledge no other core-sets for diversity maximization computable
by streaming algorithms are known. Hence, for comparison purposes we will
consider the streaming approach proposed in [Ind+14] to derive core-sets from
composable core-sets, which is applicable to the composable core-sets presented
in the aforementioned previous works. Specifically, a stream of n input points is
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1 pass 2 passes

r-edge
Θ
(
(α/ε)Dk

)
−r-cycle

r-clique

Θ
(
(α/ε)Dk2

)
Θ
(
(α2/ε)Dk

)r-star
r-bipartition
r-tree

Table 5.3: Memory requirements of our streaming approximation algorithms. The
approximation factor of each algorithm is reported in Table 5.5. The factor α is the
best sequential approximation factor for a given problem, as reported in Table 5.1.
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Θ
(
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(√
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)} Θ
(√

(α2/ε)Dkn
)r-star
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Table 5.4: Memory requirements of our MapReduce approximation algorithms.
We report only the size of the local memory ML since the aggregate memory MA

is always linear in n. The approximation factor of each algorithm is reported in
Table 5.5. The factor α is the best sequential approximation factor for a given
problem (see Table 5.1).

partitioned into blocks of size
√
kn each. For each of these

√
n/k blocks, a core-set

of size k is computed and kept in memory. Then, the final solution is computed on
the union of the core-sets, whose total size is

√
kn.

As for MapReduce, the application of the composable core-sets proposed in [Ind+14;
AFZ15] is similar to ours, which we introduced in the previous section. In partic-
ular, the input set is partitioned among the reducers, that independently compute
core-sets. These core-sets are then aggregated into a single reducer, which com-
putes the final approximation.

In Tables 5.3 and 5.4 we report the memory requirements of our algorithms.
These should be compared with the memory requirements of the approached
proposed in [Ind+14; AFZ15]: Θ

(√
kn
)

for streaming, and Θ (ℓk) for MapReduce,
where ℓ is the number of subsets in which the input is partitioned. Observe that in
streaming (Table 5.3), the memory required by our algorithms is independent from
the size of the stream n. This allows our algorithms to process streams of unlimited
size. On the contrary, previous approaches require to maintain in main memory
several core-sets: the consequent dependence on n of the memory required makes
them applicable only to streams of size bounded by the available resources. To the
best of our knowledge, our algorithms are the first to use core-sets for diversity-
maximization of size independent of n in the streaming setting. As for MapReduce
(Table 5.4) all our algorithms can adapt to the available local memoryML thanks to
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Previous [Ind+14; AFZ15] Our algorithms
General metric spaces Bounded doubling dimension

remote-edge 6 2+ ε
remote-clique 12+ γ † 2+ ε
remote-star 24 2+ ε
remote-bipartition 54 3+ ε
remote-tree 16 4+ ε
remote-cycle 9 3+ ε

† γ is introduced in the description of the LocalSearch algorithm.

Table 5.5: Approximation factors obtained by our algorithmsg with suitable mem-
ory (the memory requirements are summarized in Tables 5.3 and 5.4). We compare
with the best approximation obtained with the approaches devised in [Ind+14;
AFZ15]. The approximation factors reported here assume the application of the
best sequential algorithm for each problem, as reported in Table 5.1. D is the
doubling dimension of the metric space of the input points.

the parameter ε, while previous approaches may not be able to exploit the available
local memory. Our adaptability to the available memory, in both the streaming and
MapReduce algorithms, has consequences also on the quality of the approximation.

In Table 5.5 we report the approximation factors obtained by our algorithms
on spaces of bounded doubling dimension, with sufficient memory. The approx-
imation factors are obtained by considering the application of the best-known
sequential algorithm (see Table 5.1) for each problem on the final core-set built by
our algorithms. Observe that, with respect to the previous approaches proposed
in [Ind+14; AFZ15], on metric spaces with bounded doubling dimension we can get
considerably better approximation factors. Most importantly, our approximation
factors can be made as close as possible to the best factors attainable by sequential
algorithms, as the amount of local memory increases. This means that by giv-
ing more resources to our algorithms, we are able to obtain better approximation
qualities, compared to the constant-factor approximations of previous works.

5.8 Experimental evaluation

We present a suite of experiments with the aim of assessing the performance of our
algorithms on different datasets, both real-world and synthetic. The main interest is
in verifying the dependence of the approximation quality on the resources available
to the algorithms. We also evaluate the performance and scalability of our imple-
mentations, and we compare with the performance of previous approaches [Ind+14;
AFZ15]. To the best of our knowledge, ours is the first work on diversity maxi-
mization in the MapReduce and streaming settings which complements theoretical
findings with an experimental evaluation.

We ran our experiments on the infrastructure described in Section 2.2.2. The
MapReduce algorithm has been implemented within the Spark framework, whereas
the streaming algorithm has been implemented in Scala, simulating a streaming
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setting [Cec16a].
Synthetic datasets are generated randomly from the three-dimensional Eu-

clidean space. We tested several random distributions of points, including: points
picked uniformly at random within the unit-radius sphere; points with gaussian
distance from the origin and a uniform random direction (in terms of the line go-
ing through the point and the origin); points placed uniformly at random in the
space, each surrounded by a cloud of points at random gaussian distance and in
a uniformly random direction. Among all these distribution, we verified that the
most challenging for our algorithms was the following one. For a given k, k points
are randomly picked on the surface of the unit radius sphere centered at the origin
of the space. This way we ensure the existence of a set of far-away points. The
other points are chosen uniformly at random in the concentric sphere of radius 0.8.
Since this is the most challenging, and ultimately more interesting, input for our
algorithms, we omit the results relative to other inputs.

We also tested our algorithms on real-world workloads, using the musiXmatch
dataset [Ber+11]. This dataset contains the lyrics of 237,662 songs, each represented
by its bag-of-words [LRU14]. In the bag-of-words model, the set of all the words
occurring in the documents being processed defines a vector space, with each word
being a dimension. A text, then, is represented in this space as the sparse vector of
its word counts. In the case of the musiXmatch dataset, the set of words is limited
to the most frequent 5,000 across the entire dataset, so the dimensionality of the
corresponding vector space is 5,000. We performed the following preprocessing
on the dataset. We filtered out songs represented by less than 10 frequent words,
obtaining a dataset of 234,363 songs. The reason of this filtering is that one can
build an optimal solution using songs with short, non overlapping word lists. Thus,
removing these songs makes the dataset more challenging for our algorithm. As
for the distance function, in the bag-of-words model, a commonly used one is the
cosine distance. Given two vectors u⃗ and v⃗, it is defined as follows

dist(u⃗, v⃗) =
arccos

(
u⃗·⃗v

∥u⃗∥∥v⃗∥

)
π/2

Since the components of all the vectors are always non-negative, the normalization
factor π/2 makes the function take values ∈ [0, 1]. With this distance, two vectors
orthogonal vectors — that is, two texts with no words in common — are at dis-
tance 1. This distance is closely related to the cosine similarity commonly used in
Information Retrieval [LRU14].

Since optimal solutions are out of reach for the input sizes that we considered,
for each dataset we computed approximation ratios with respect to the best solution
found by many runs of our MapReduce algorithm with maximum parallelism and
large local memory. In the case of the musiXmatch dataset, note that whenever we
have a solution where the minimum cosine distance between two vectors is 1 such
a solution is clearly optimal given the range of values taken by the cosine distance
function.

In this section, we report results for the remote-edge problem. Preliminary
experiments suggest that for other problems — such as remote-clique, remote-
tree, and remote-star — our algorithms exhibit similar behaviour. A complete
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Figure 5.1: Approximation ratio attained by the streaming algorithm for different
values of k and k ′ on the musiXmatch dataset.
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Figure 5.2: Approximation ratios attained by the streaming algorithm for different
values of k and k ′ on a synthetic dataset of 100 million points.

experimental evaluation of the performance of our algorithms on all the diversity
measures is the object of ongoing work. All results reported in the following are
obtained as averages over at least 10 runs: the input of the streaming algorithm is
randomly shuffled before each run; similarly, the input of each MapReduce run is
partitioned randomly.

5.8.1 Streaming algorithm

The first set of experiments investigates the behavior of the streaming algorithm for
various values of k, as well as the impact of the core-set size, as controlled by the
parameter k ′, on the approximation quality. The results of these experiments are
reported in Figure 5.1, for the musiXmatch dataset, and Figure 5.2. for a synthetic
dataset of 100 million points, generated as explained above.

First, we observe that as k increases the remote-edge measure becomes harder
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Figure 5.3: Throughput of the kernel of the streaming algorithm on the musiXmatch
dataset.

to approximate: that is, finding a higher number of diverse elements appears more
difficult. On the real-world dataset, because of the high dimensionality of its space,
we tested the influence of k ′ on the approximation with a geometric progression
of k ′ (Figure 5.1). On the synthetic datasets instead (Figure 5.2), since R3 has a
smaller doubling dimension, the effect of k ′ is evident already with small values,
therefore we use a linear progression. As expected, by increasing k ′ the accuracy
of the algorithm increases in both datasets. Observe that although the theory
suggests that good approximations require rather large values of k ′ = Ω(k/εD), in
practice our experiments show that relatively small values of k ′, not much larger
than k, already yield very good approximations, even for real-world datasets whose
doubling dimension is unknown, such as the musiXmatch dataset.

In Figure 5.3, we consider the performance of the kernel of streaming algorithm,
that is, we concentrate on the time required to process each point, ignoring the cost
of data acquisition. The rationale is that data may be streamed from sources with
very different throughput: our goal is to assess the maximum rate that can be
sustained by our algorithm, independently of the source of the stream. We report
results for the same combination of parameters shown in Figure 5.1. As expected,
the throughput is inversely proportional to both k and k ′, with values ranging from
3,078 to 544,920 points/s. The throughput supported by our algorithm makes it
amenable to be used in streaming pipelines: for instance, in 2013 Twitter1 averaged
at 5,700 tweets/s and peaked at 143,199 tweets/s. In this scenario, the bottleneck of
the pipeline may become the data acquisition rather than our core-set construction.

As for the synthetic dataset, the throughput of the algorithm exhibits a behavior
with respect to k and k ′ similar to the one reported in Figure 5.3, but with higher
values ranging from 78,260 to 850,615 points/s since the distance function is cheaper
to compute.

1https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
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Figure 5.4: Approximation ratios attained by the MR algorithm for different values
of k and k ′ on a synthetic dataset of 100 million points.

5.8.2 MapReduce algorithm

We demonstrate our MapReduce algorithm on the same datasets used in the pre-
vious section. For this set of experiments we fixed k = 128 and we varied two
parameters: size of the core-sets, as controlled by k ′, and parallelism (i.e., the num-
ber of reducers). Because the solution returned by the MapReduce algorithm for
k ′ = k turns out to be already very good, we use a geometric progression for k ′ to
highlight the dependency of the approximation factor on k ′. For synthetic datasets,
the results are reported in Figure 5.4. For a fixed level of parallelism, we observe
that the approximation ratio decreases as k ′ increases, in accordance to the theory.
Moreover, we observe that the approximation ratios are in general better than the
ones attained by the streaming algorithm, plausibly because in MapReduce we use
a 2-approximation k ′-center algorithm to build the core-sets, while in streaming
only a weaker 8-approximation k ′-center algorithm is available.

Figure 5.4 also reveals that if we fix k ′ and increase the level of parallelism, the
approximation ratio tends to decrease. This can be justified by the observation that
the final core-set obtained by aggregating the ones produced by the individual re-
ducers grows larger as the parallelism increases, thus containing more information
on the input set. Instead, if we fix the product of k ′ and the level of parallelism,
hence the size of the aggregate core-set, we observe that increasing the parallelism
is mildly detrimental to the approximation quality. This is to be expected, since
with a fixed space budget in the second round, in the first round each reducer is
forced to build a smaller and less accurate core-set as the parallelism increases.

The experiments for the real-world musiXmatch dataset highlighted that the
GMM k ′-center algorithm returns very good core-sets on this high dimensional
dataset, yielding approximation ratios very close to 1 even for low values of k ′.
(Because of this, we do not report a figure.) As remarked above, the more pro-
nounced dependence on k ′ in the streaming case may be the result of the weaker
approximation guarantees of its core-set construction.

Since in real scenarios the input might not be distributed randomly among the
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approximation time (s)
k AFZ CPPU AFZ CPPU

4 1.023 1.012 807.79 1.19
6 1.052 1.018 1,052.39 1.29
8 1.029 1.028 4,625.46 1.12

Table 5.6: Approximation ratios and running times attained by our MR algorithm
(cppu) and afz.

reducers as in the previous experiments, we also experimented with an “adversar-
ial” partitioning of the input: each reducer was given points coming from a region
of small volume, so as to obfuscate a global view of the pointset. With such ad-
versarial partitioning, the approximation ratios worsen by up to 10%. On the other
hand, as k ′ increases, the time required by a random shuffle of the points among
the reducers becomes negligible with respect to the overall running time. Thus,
randomly shuffling the points at the beginning may prove cost-effective if larger
values of k ′ are affordable. Recall that in Section 5.5.4 we described how distribut-
ing the input randomly allows to save space by selecting less delegate points for the
remote-clique, remote-star, remote-bipartition, and remote-tree problems. Ongo-
ing work is focused on studying how such a reduction of the number of delegates
impacts the quality of the approximation, when the input is distributed randomly.

5.8.3 Comparison with state of the art

In Table 5.6, we compare our MapReduce algorithm (dubbed cppu) against its state
of the art competitor based on composable core-sets presented in [AFZ15] (dubbed
afz). Since no code was available for afz, we implemented it in MapReduce with
the same optimizations used for cppu. We remark that afz employs different core-
set constructions for the various diversity measures, whereas our algorithm uses
the same construction for all diversity measures. In particular, for remote-edge,
afz is equivalent to cppu with k ′ = k, hence the comparison is less interesting and
can be derived from the behavior of cppu itself. Instead, for remote-clique, the
core-set construction used by afz is based on local search and may exhibit highly
superlinear complexity. For remote-clique, we performed the comparison with
various values of k, on datasets of 4 million points on the 2-dimensional Euclidean
space, using 16 reducers (afz was prohibitively slow for higher dimensions and
bigger datasets). The datasets were generated as described in the introduction
to the experimental section. Also, we ran cppu with k ′ = 128 in all cases, so as to
ensure a good approximation ratio at the expense of a slight increase of the running
time. As Table 5.6 shows, cppu is in all cases at least three orders of magnitude
faster than afz, while achieving a better quality at the same time.

5.8.4 Scalability

We report on the scalability of our MR algorithm on datasets drawn from R3, rang-
ing from 100 million points (the same dataset used in subsections 5.8.1 and 5.8.2)
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Figure 5.5: Scalability of our algorithms for different number of points and proces-
sors. The running time for one processor is obtained with the streaming algorithm.

up to 1.6 billion points. We fixed the size s of the memory required by the final
reducer and varied the number of processors used. On a single machine, instead
of running MapReduce, which makes little sense, we ran the streaming algorithm
with k ′ = 2048, so as to have a final coreset of the same size as the ones found in
MapReduce runs. For a given number of processors p and number of points n, we
ran the corresponding experiment only if n/p points fit into the main memory of a
single processor. As shown in Figure 5.5, for a fixed dataset size, our MapReduce
algorithm exhibits super-linear scalability: doubling the number of processors re-
sults in a 4-fold gain in running time (at the expense of a mild worsening of the
approximation ratio, as pointed out in Subsection 5.8.2). The reason is that each
reducer performs O

(
ns/(kp2)

)
work to build its core-set, where p is the number

of reducers, since the core-set construction involves s/(kp) iterations, with each
iteration requiring the scan of n/p points.

For the dataset with 100 million points, the MR algorithm outperformed the
streaming algorithm in every processor configuration. It must be remarked that the
running time reported in Figure 5.5 for the streaming algorithm takes into account
also the time needed to stream data from main memory (unlike the throughput
reported in Figure 5.3). This is to ensure a fair comparison with MapReduce, where
we also take into account the time needed to shuffle data between the first and the
second round, and the setup time of the rounds. Also, we note that the streaming
algorithm appears to be faster than what the MR algorithm would be if executed
on a single processor, and this is probably due to the fact that the former is more
cache friendly. If we fix the number of processors, from Figure 5.5 we observe that
our algorithm exhibits linear scalability in the number of points.
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Chapter 6

Conclusions

In this thesis we considered three problems (estimation of the diameter of large
weighted graphs, clustering of uncertain graphs, and diversity maximization) in
the big data setting, where the sheer size of data often rules out the application
of established algorithmic strategies. In fact, the size of the input data is such
that the memory of a single machine is insufficient, therefore we have to resort to
algorithms in either the MapReduce or the streaming model. Both computational
models require algorithms to use only a limited amount of memory. In streaming,
the limit is on the main memory that the processor can use, and algorithms aim at
performing only a small number of sequential passes over the input. In MapReduce
the aim is to minimize the number of rounds, with limits on both the local memory
available to each reducer and on the total aggregate memory.

In this context, a powerful technique for the development of effective algorithms
is k-center clustering, where the elements of the input are grouped according to
their distance from a set of cluster centers. By doing so, we can build a concise
summary of the input, where each cluster center represents all the other elements
of its cluster. Therefore, k-center clustering can be used very effectively to reduce
the input to a small summary that fits into the limited memory of a single processor,
where it can be further processed. Furthermore, k-center clustering is an interesting
problem in itself, as witnessed by the large body of literature on this problem.

For the problem of approximating the diameter of large weighted graphs, we
saw in Chapter 3 how building a small-radius clustering of suitable size allows
to pursue both a small number of MapReduce rounds and a good approximation
quality. We obtained an algorithm that computes a polylogarithmic approximation
to the input graph’s diameter and, for the important class of graphs with bounded
doubling dimension, executes in a number of rounds that can be made sublinear
in the diameter. Moreover, we proved that our clustering approach can be used to
provide a polylogarithmic approximation to the k-center problem on unweighted
graphs. To the best of our knowledge, ours are the first parallel approximations for
these problems to achieve parallel time sublinear in the diameter using only linear
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space, for a relevant class of graphs. We complemented our theoretical findings
with an extensive experimental evaluation of the performance of our algorithm.
Our implementation of the algorithms is available in the public repository of spark
libraries, so as to ease its integration in other software. The experiments we per-
formed showed that our algorithm can scale up to graphs with billions of edges.
We also found that the actual approximation factor is typically considerably lower
than the one predicted by the theory. Our intuition is that a sharper analysis should
be able to remove some logarithmic factor in the approximation, or even yield a
constant approximation, and this will be object of future work. Moreover, another
line of future research involves extending the proof of our MapReduce k-center
approximation to the case of weighted graphs.

In Chapter 4 we studied the problem of clustering uncertain graphs so as to max-
imize the connection probability of nodes to cluster centers. By proving a triangle
inequality-like relation for connection probabilities, which was unknown before,
we have shown how our clustering problem can be cast in terms of k-center cluster-
ing. However, we saw how the difficulty of estimating low probabilities rules out
the application of known k-center algorithms for this problem. We proposed two
clustering strategies, a sequential and a concurrent one, aiming at growing clusters
only considering nodes with high connection probability to the cluster centers. We
then leveraged this behaviour when embedding a progressive sampling strategy
into our algorithms, so as to use as few samples as possible, for efficiency. Our
algorithms are the first to provide provable guarantees on the quality of the re-
turned solution, contrary to other approaches proposed in the literature. A suite
of preliminary experiments has shown that the performance of our algorithms is
competitive with respect to previous works. The main line of future research in-
volves the execution of an extensive suite of experiments on a variety of datasets,
including synthetic graphs, Protein-Protein Interaction networks, and obfuscated
social networks. One of the goals of these experiments will be to compare our se-
quential and concurrent clustering strategies, both from the perspective of accuracy
and performance. We also plan to further assess the performance of our algorithms
with respect to other works. Another line of research is about designing strategies
to allow a better control on the final number of clusters in the concurrent clustering
strategy, which currently returns more clusters than the required ones.

Finally, in Chapter 5 we considered the problem of diversity maximization.
Here, we used k-center clustering as a means of building a succinct representation
of the input, where each cluster center represents all of its cluster members. By do-
ing so, we were able to develop efficient MapReduce and streaming algorithms for
diversity maximization. In MapReduce, using modified versions of the well-known
GMM k-center algorithm in each reducer allowed us to obtain constant-rounds al-
gorithms. In streaming, adapting a recent streaming k-center algorithm provided
us with means to build one-pass and two-passes algorithms. On spaces of bounded
doubling dimension, for all the diversity problems we considered, our algorithms
feature approximation factors that can be made arbitrarily close to the approxima-
tion factor of the best sequential algorithm for the same problem, if enough local
memory is available. To the best of our knowledge, our algorithms are the first to ex-
pose a tradeoff between approximation quality and available resources, compared
to previous works which provided constant-factor approximations. We demon-
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strated the practicality of our approach on both real-world and synthetic datasets
of up to billions of elements. These experiments highlighted the space/quality
tradeoffs predicted by the theory, as well as the efficiency and scalability of our ap-
proach compared to previous works. Furthermore, we verified that our algorithms
exhibit very good accuracy even on point sets for which the doubling dimension is
not known. Our work is the first to study experimentally diversity-maximization
algorithms in MapReduce and streaming, to the best of our knowledge. Future
research will be focused on extending the experimental analysis to other diversity
measures and datasets. We also plan to investigate experimentally the impact of
the reduction of the number of delegates on both the performance and the accuracy
of our algorithms, when the input is randomized. Another direction of future work
is represented by the application of our core-set strategy to other problems.

115



CHAPTER 6. CONCLUSIONS

116



References

Our publications

[Cec+15] Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, and Eli Up-
fal. “Space and Time Efficient Parallel Graph Decomposition, Clus-
tering, and Diameter Approximation.” In: Proc. SPAA. ACM, 2015,
pp. 182–191.

[Cec+16a] Matteo Ceccarello, Carlo Fantozzi, Andrea Pietracaprina, Geppino
Pucci, and Fabio Vandin. “Clustering Uncertain Graphs”. Manuscript.
2016.

[Cec+16b] Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, and Eli Up-
fal. “A Practical Parallel Algorithm for Diameter Approximation of
Massive Weighted Graphs”. In: Proc. IPDPS. 2016, pp. 12–21. doi:
10.1109/IPDPS.2016.61.

[Cec+17] Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, and Eli Up-
fal. “MapReduce and Streaming Algorithms for Diversity Maximiza-
tion in Metric Spaces of Bounded Doubling Dimension”. In: PVLDB

10.5 (2017), pp. 469–480.
[CS15] Matteo Ceccarello and Francesco Silvestri. “Experimental Evaluation

of Multi-Round Matrix Multiplication on MapReduce”. In: Proc. ALENEX.
2015, pp. 119–132. doi: 10.1137/1.9781611973754.11.

Software

[Cec15] Matteo Ceccarello. GraDiaS: Graph Diameter in Spark. http://crono.
dei.unipd.it/gradias. 2015.

[Cec16a] Matteo Ceccarello. DivMax: Diversity Maximization. https://github.
com/Cecca/diversity-maximization. 2016.

[Cec16b] Matteo Ceccarello. graphx-diameter. https : / / spark - packages .
org/package/Cecca/graphx-diameter. 2016.

[Cec16c] Matteo Ceccarello. UGraphC: Uncertain Graph Clustering. https : / /
github.com/Cecca/ugraph. 2016.

117

http://dx.doi.org/10.1109/IPDPS.2016.61
http://dx.doi.org/10.1137/1.9781611973754.11
http://crono.dei.unipd.it/gradias
http://crono.dei.unipd.it/gradias
https://github.com/Cecca/diversity-maximization
https://github.com/Cecca/diversity-maximization
https://spark-packages.org/package/Cecca/graphx-diameter
https://spark-packages.org/package/Cecca/graphx-diameter
https://github.com/Cecca/ugraph
https://github.com/Cecca/ugraph


REFERENCES

Other references

[Abr+06] Ittai Abraham, Cyril Gavoille, Andrew V. Goldberg, and Dahlia Malkhi.
“Routing in Networks with Low Doubling Dimension”. In: Proc. ICDCS.
2006, p. 75. doi: 10.1109/ICDCS.2006.72.

[ABS10] Marcel R. Ackermann, Johannes Blömer, and Christian Sohler. “Clus-
tering for metric and nonmetric distance measures”. In: ACM Trans.

Algorithms 6.4 (2010). doi: 10.1145/1824777.1824779.
[AFZ15] Sepideh Aghamolaei, Majid Farhadi, and Hamid Zarrabi-Zadeh. “Di-

versity Maximization via Composable Coresets”. In: Proc. CCCG. 2015.
[AHU74] Alfred V Aho, John E Hopcroft, and Jeffrey D Ullman. The design and

analysis of computer algorithms. 1974.
[AHV05] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. “Geo-

metric approximation via coresets”. In: Combinatorial and computational

geometry 52 (2005), pp. 1–30.
[AK11] Albert Angel and Nick Koudas. “Efficient diversity-aware search”. In:

Proc. SIGMOD. 2011, pp. 781–792. doi: 10.1145/1989323.1989405.
[Aki+15] Tyler Akidau et al. “The Dataflow Model: A Practical Approach to Bal-

ancing Correctness, Latency, and Cost in Massive-Scale, Unbounded,
Out-of-Order Data Processing”. In: Proc. VLDB Endow. 8.12 (2015),
pp. 1792–1803.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. “The Space Complexity
of Approximating the Frequency Moments”. In: J. Comput. Syst. Sci.

58.1 (1999), pp. 137–147. doi: 10.1006/jcss.1997.1545.
[AMT13] Zeinab Abbassi, Vahab S. Mirrokni, and Mayur Thakur. “Diversity

maximization under matroid constraints”. In: Proc. KDD. 2013, pp. 32–
40. doi: 10.1145/2487575.2487636.

[AMV12] Deepak Ajwani, Ulrich Meyer, and David Veith. “I/O-efficient hierar-
chical diameter approximation”. In: Proc. ESA. Springer. 2012, pp. 72–
83.

[AR07] Eytan Adar and Christopher Ré. “Managing Uncertainty in Social Net-
works”. In: IEEE Data Eng. Bull. 30.2 (2007), pp. 15–22.

[Ast+04] Saurabh Asthana, Oliver D King, Francis D Gibbons, and Frederick
P Roth. “Predicting protein complex membership using probabilistic
network reliability”. In: Genome research 14.6 (2004), pp. 1170–1175.

[Bad+14] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi,
and Andreas Krause. “Streaming submodular maximization: massive
data summarization on the fly”. In: Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining - KDD

’14. New York, New York, USA: ACM Press, 2014, pp. 671–680. doi:
10.1145/2623330.2623637.

[Bal86] M.O. Ball. “Computation Compexity of Network Reliability Analy-
sis: An Overview”. In: IEEE Transactions on Reliability R-35.3 (1986),
pp. 230–239.

118

http://dx.doi.org/10.1109/ICDCS.2006.72
http://dx.doi.org/10.1145/1824777.1824779
http://dx.doi.org/10.1145/1989323.1989405
http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.1145/2487575.2487636
http://dx.doi.org/10.1145/2623330.2623637


OTHER REFERENCES

[Bat+14] MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and Va-
hab Mirrokni. “Distributed balanced clustering via mapping coresets”.
In: Advances in Neural Information Processing Systems (NIPS ’14) (2014),
pp. 2591–2599.

[BB06] Institute of Bioinformatics and Systems Biology. The MIPS Compre-

hensive Yeast Genome Database. ftp : / / ftpmips . gsf . de / fungi /
Saccharomycetes/CYGD/. May 2006.

[BEL13] Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang. “Distributed
k-means and k-median clustering on general communication topolo-
gies”. In: Proc. NIPS. 2013, pp. 1995–2003.

[Ber+11] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul
Lamere. “The Million Song Dataset”. In: Proc. ISMIR. 2011.

[BG09] Benjamin E. Birnbaum and Kenneth J. Goldman. “An Improved Anal-
ysis for a Greedy Remote-Clique Algorithm Using Factor-Revealing
LPs”. In: Algorithmica 55.1 (2009), pp. 42–59. doi: 10.1007/s00453-
007-9142-2.

[BGK12] Yair Bartal, Lee-Ad Gottlieb, and Robert Krauthgamer. “The traveling
salesman problem: low-dimensionality implies a polynomial time ap-
proximation scheme”. In: Proc. STOC. 2012, pp. 663–672. doi: 10.1145/
2213977.2214038.

[BGM11] Sayan Bhattacharya, Sreenivas Gollapudi, and Kamesh Munagala. “Con-
sideration set generation in commerce search”. In: Proc. WWW. 2011,
pp. 317–326. doi: 10.1145/1963405.1963452.

[BKL06] Alina Beygelzimer, Sham Kakade, and John Langford. “Cover trees
for nearest neighbor”. In: Proc. ICML. 2006, pp. 97–104. doi: 10.1145/
1143844.1143857.

[BLL09] Nader H. Bshouty, Yi Li, and Philip M. Long. “Using the doubling
dimension to analyze the generalization of learning algorithms”. In: J.

Comput. Syst. Sci. 75.6 (2009), pp. 323–335. doi: 10.1016/j.jcss.2009.
01.003.

[BM05] Sanjit Biswas and Robert Morris. “ExOR: opportunistic multi-hop rout-
ing for wireless networks”. In: Proc. SIGCOMM. 2005, pp. 133–144.

[Bol+12] Paolo Boldi, Francesco Bonchi, Aristides Gionis, and Tamir Tassa. “In-
jecting Uncertainty in Graphs for Identity Obfuscation”. In: Proc. VLDB

Endow. 5.11 (2012), pp. 1376–1387.
[Bru78] Peter Brucker. “On the complexity of clustering problems”. In: Opti-

mization and operations research. Springer, 1978, pp. 45–54.
[BRV11] Paolo Boldi, Marco Rosa, and Sebastiano Vigna. “HyperANF: Approx-

imating the Neighbourhood Function of Very Large Graphs on a Bud-
get”. In: Proc. WWW. ACM, 2011, pp. 625–634. doi: 10.1145/1963405.
1963493.

119

ftp://ftpmips.gsf.de/fungi/Saccharomycetes/CYGD/
ftp://ftpmips.gsf.de/fungi/Saccharomycetes/CYGD/
http://dx.doi.org/10.1007/s00453-007-9142-2
http://dx.doi.org/10.1007/s00453-007-9142-2
http://dx.doi.org/10.1145/2213977.2214038
http://dx.doi.org/10.1145/2213977.2214038
http://dx.doi.org/10.1145/1963405.1963452
http://dx.doi.org/10.1145/1143844.1143857
http://dx.doi.org/10.1145/1143844.1143857
http://dx.doi.org/10.1016/j.jcss.2009.01.003
http://dx.doi.org/10.1016/j.jcss.2009.01.003
http://dx.doi.org/10.1145/1963405.1963493
http://dx.doi.org/10.1145/1963405.1963493


REFERENCES

[BS07] Surender Baswana and Sandeep Sen. “A simple and linear time ran-
domized algorithm for computing sparse spanners in weighted graphs”.
In: Random Struct. Algorithms 30.4 (2007), pp. 532–563. doi: 10.1002/
rsa.20130.

[BV13] Paolo Boldi and Sebastiano Vigna. “In-Core Computation of Geometric
Centralities with HyperBall: A Hundred Billion Nodes and Beyond”.
In: Proc. ICDM. 2013, pp. 621–628. doi: 10.1109/ICDMW.2013.10.

[CEZ16] Alfonso Cevallos, Friedrich Eisenbrand, and Rico Zenklusen. “Max-
Sum Diversity Via Convex Programming”. In: Proc. SoCG. 2016, 26:1–
26:14. doi: 10.4230/LIPIcs.SoCG.2016.26.

[CG98] Jaime G. Carbonell and Jade Goldstein. “The Use of MMR, Diversity-
Based Reranking for Reordering Documents and Producing Sum-
maries”. In: Pfoc SIGIR. 1998, pp. 335–336. doi: 10.1145/290941.
291025.

[CH01] Barun Chandra and Magnús M. Halldórsson. “Approximation Algo-
rithms for Dispersion Problems”. In: J. Algorithms 38.2 (2001), pp. 438–
465. doi: 10.1006/jagm.2000.1145.

[Cha+04] Moses Charikar, Chandra Chekuri, Tomas Feder, and Rajeev Mot-
wani. “Incremental Clustering and Dynamic Information Retrieval”.
In: SIAM Journal on Computing 33.6 (2004), pp. 1417–1440. doi: 10.
1137/S0097539702418498.

[Cha+99] Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. “A
constant-factor approximation algorithm for the k-median problem”.
In: Proc. STOC. ACM. 1999, pp. 1–10.

[CL07] Zhiyuan Chen and Tao Li. “Addressing Diverse User Preferences in
SQL-query-result Navigation”. In: Proc. SIGMOD. ACM, 2007, pp. 641–
652.

[Coh00] Edith Cohen. “Polylog-time and near-linear work approximation scheme
for undirected shortest paths”. In: Journal of the ACM 47.1 (2000),
pp. 132–166.

[Coh15] Edith Cohen. “All-Distances Sketches, Revisited: HIP Estimators for
Massive Graphs Analysis”. In: IEEE Transactions on Knowledge and Data

Engineering 27.9 (Sept. 2015), pp. 2320–2334. doi: 10.1109/TKDE.2015.
2411606.

[Coh98] Edith Cohen. “Fast algorithms for constructing t-spanners and paths
with stretch t”. In: SIAM Journal on Computing 28.1 (1998), pp. 210–236.

[Col+07] S.R. Collins et al. “Toward a comprehensive atlas of the physical interac-
tome of Saccharomyces cerevisiae”. In: Molecular & Cellular Proteomics

6.3 (2007), pp. 439–450.
[Cre+12] Pierluigi Crescenzi, Roberto Grossi, Leonardo Lanzi, and Andrea Marino.

“On Computing the Diameter of Real-World Directed (Weighted) Graphs”.
In: Proc. SEA. 2012, pp. 99–110. doi: 10.1007/978-3-642-30850-5_10.

120

http://dx.doi.org/10.1002/rsa.20130
http://dx.doi.org/10.1002/rsa.20130
http://dx.doi.org/10.1109/ICDMW.2013.10
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.26
http://dx.doi.org/10.1145/290941.291025
http://dx.doi.org/10.1145/290941.291025
http://dx.doi.org/10.1006/jagm.2000.1145
http://dx.doi.org/10.1137/S0097539702418498
http://dx.doi.org/10.1137/S0097539702418498
http://dx.doi.org/10.1109/TKDE.2015.2411606
http://dx.doi.org/10.1109/TKDE.2015.2411606
http://dx.doi.org/10.1007/978-3-642-30850-5_10


OTHER REFERENCES

[Cre+13] Pilu Crescenzi, Roberto Grossi, Michel Habib, Leonardo Lanzi, and
Andrea Marino. “On computing the diameter of real-world undirected
graphs”. In: Theoretical Computer Science 514 (2013). Graph Algorithms
and Applications: in Honor of Professor Giorgio Ausiello, pp. 84–95.
doi: http://dx.doi.org/10.1016/j.tcs.2012.09.018.

[D+73] Richard O Duda, Peter E Hart, et al. Pattern classification and scene

analysis. Vol. 3. Wiley New York, 1973.
[Dai+07] Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu. “Co-clustering

based classification for out-of-domain documents”. In: Proc. KDD.
2007, pp. 210–219. doi: 10.1145/1281192.1281218.

[DFR09] Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. “Trading
off Space for Passes in Graph Streaming Problems”. In: ACM Trans.

Algorithms 6.1 (Dec. 2009), 6:1–6:17. doi: 10.1145/1644015.1644021.
[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-

cessing on large clusters”. In: Communications of the ACM 51.1 (2008),
pp. 107–113.

[Don08] Stĳn van Dongen. “Graph Clustering Via a Discrete Uncoupling Pro-
cess”. In: SIAM J. Matrix Analysis Applications 30.1 (2008), pp. 121–141.
doi: 10.1137/040608635.

[Dwa69] Meyer Dwass. “The total progeny in a branching process and a related
random walk”. In: Journal of Applied Probability 6.3 (1969), pp. 682–686.

[EIM11] Alina Ene, Sungjin Im, and Benjamin Moseley. “Fast Clustering Using
MapReduce”. In: Proc. KDD. ACM, 2011, pp. 681–689. doi: 10.1145/
2020408.2020515.

[EN89] Erhan Erkut and Susan Neuman. “Analytical models for locating unde-
sirable facilities”. In: European Journal of Operational Research 40.3 (1989),
pp. 275–291.

[EN91] Erhan Erkut and Susan Neuman. “Comparison of 4 models for dis-
persing facilities”. In: Infor 29.2 (1991), pp. 68–86.

[Erk90] Erhan Erkut. “The discrete p-dispersion problem”. In: European Journal

of Operational Research 46.1 (1990), pp. 48–60.
[FB13] Wei Fan and Albert Bifet. “Mining big data: current status, and forecast

to the future”. In: ACM SIGKDD Explorations Newsletter 14.2 (2013),
pp. 1–5.

[Fei+02] Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan.
“An Approximate L1-Difference Algorithm for Massive Data Streams”.
In: SIAM J. Comput. 32.1 (2002), pp. 131–151. doi:10.1137/S0097539799361701.

[FFF99] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. “On Power-
law Relationships of the Internet Topology”. In: Proc. SIGCOMM. 1999,
pp. 251–262. doi: 10.1145/316188.316229.

[Fla+08] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier.
“HyperLogLog: the analysis of a near-optimal cardinality estimation
algorithm”. In: DMTCS Proceedings 1 (2008).

121

http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2012.09.018
http://dx.doi.org/10.1145/1281192.1281218
http://dx.doi.org/10.1145/1644015.1644021
http://dx.doi.org/10.1137/040608635
http://dx.doi.org/10.1145/2020408.2020515
http://dx.doi.org/10.1145/2020408.2020515
http://dx.doi.org/10.1137/S0097539799361701
http://dx.doi.org/10.1145/316188.316229


REFERENCES

[FM03] Sándor P. Fekete and Henk Meĳer. “Maximum Dispersion and Geo-
metric Maximum Weight Cliques”. In: Algorithmica 38.3 (2003), pp. 501–
511. doi: 10.1007/s00453-003-1074-x.

[FM10] S.A. Friedler and D.M. Mount. “Approximation algorithm for the ki-
netic robust K-center problem”. In: Computational Geometry 43.6 (2010),
pp. 572–586.

[FM83] Philippe Flajolet and G.Nigel Martin. “Probabilistic Counting”. In:
Proc. FOCS. Nov. 1983, pp. 76–82. doi: 10.1109/SFCS.1983.46.

[Gar+15] Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis,
and Mauro Sozio. “Scalable Facility Location for Massive Graphs on
Pregel-like Systems”. In: Proc. CIKM. 2015, pp. 273–282. doi: 10.1145/
2806416.2806508.

[Gav+06] A. C. Gavin et al. “Proteome survey reveals modularity of the yeast
cell machinery”. In: Nature 440.7084 (2006), pp. 631–636.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google
file system”. In: Proc. SIGOPS. Vol. 37. 5. ACM. 2003, pp. 29–43.

[Gho+07] Joy Ghosh, Hung Q Ngo, Seokhoon Yoon, and Chunming Qiao. “On
a Routing Problem Within Probabilistic Graphs and its Application
to Intermittently Connected Networks”. In: Proc. INFOCOM. 2007,
pp. 1721–1729.

[Gil+02] Anna C. Gilbert et al. “Fast, small-space algorithms for approximate
histogram maintenance”. In: Proc. STOC. 2002, pp. 389–398. doi: 10.
1145/509907.509966.

[GK13] Lee-Ad Gottlieb and Robert Krauthgamer. “Proximity Algorithms for
Nearly Doubling Spaces”. In: SIAM J. Discrete Math. 27.4 (2013), pp. 1759–
1769. doi: 10.1137/120874242.

[GKK14] Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. “Effi-
cient Classification for Metric Data”. In: IEEE Trans. Information Theory

60.9 (2014), pp. 5750–5759. doi: 10.1109/TIT.2014.2339840.
[GKL03] Anupam Gupta, Robert Krauthgamer, and James R. Lee. “Bounded Ge-

ometries, Fractals, and Low-Distortion Embeddings”. In: Proc. FOCS.
2003, pp. 534–543. doi: 10.1109/SFCS.2003.1238226.

[Gon85] Teofilo F. Gonzalez. “Clustering to minimize the maximum intercluster
distance”. In: Theoretical Computer Science 38 (1985), pp. 293–306. doi:
http://dx.doi.org/10.1016/0304-3975(85)90224-5.

[GS09] Sreenivas Gollapudi and Aneesh Sharma. “An axiomatic approach
for result diversification”. In: Proc. WWW. 2009, pp. 381–390. doi: 10.
1145/1526709.1526761.

[GSZ11] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. “Sorting,
Searching, and Simulation in the MapReduce Framework”. In: Proc.

ISAAC. 2011, pp. 374–383. doi: 10.1007/978-3-642-25591-5_39.

122

http://dx.doi.org/10.1007/s00453-003-1074-x
http://dx.doi.org/10.1109/SFCS.1983.46
http://dx.doi.org/10.1145/2806416.2806508
http://dx.doi.org/10.1145/2806416.2806508
http://dx.doi.org/10.1145/509907.509966
http://dx.doi.org/10.1145/509907.509966
http://dx.doi.org/10.1137/120874242
http://dx.doi.org/10.1109/TIT.2014.2339840
http://dx.doi.org/10.1109/SFCS.2003.1238226
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1145/1526709.1526761
http://dx.doi.org/10.1145/1526709.1526761
http://dx.doi.org/10.1007/978-3-642-25591-5_39


OTHER REFERENCES

[Gu+14] Yu Gu, Chunpeng Gao, Gao Cong, and Ge Yu. “Effective and Ef-
ficient Clustering Methods for Correlated Probabilistic Graphs”. In:
IEEE Trans. Knowl. Data Eng. 26.5 (2014), pp. 1117–1130.

[Hal+99] Magnús M. Halldórsson, Kazuo Iwano, Naoki Katoh, and Takeshi
Tokuyama. “Finding Subsets Maximizing Minimum Structures”. In:
SIAM Journal on Discrete Mathematics 12.3 (1999), pp. 342–359. doi:
10.1137/S0895480196309791.

[HK07] Sariel Har-Peled and Akash Kushal. “Smaller coresets for k-median
and k-means clustering”. In: Discrete and Computational Geometry 37.1
(Jan. 2007), pp. 3–19. doi: 10.1007/s00454-006-1271-x.

[HM04] Sariel Har-Peled and Soham Mazumdar. “On coresets for k-means
and k-median clustering”. In: Proceedings of the thirty-sixth annual ACM

symposium on Theory of computing - STOC ’04. New York, New York,
USA: ACM Press, 2004, pp. 291–300. doi: 10.1145/1007352.1007400.

[HRR98] Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan.
“Computing on data streams”. In: Proc. DIMACS. 1998, pp. 107–118.

[HRT97] Refael Hassin, Shlomi Rubinstein, and Arie Tamir. “Approximation
algorithms for maximum dispersion”. In: Oper. Res. Lett. 21.3 (1997),
pp. 133–137. doi: 10.1016/S0167-6377(97)00034-5.

[Ind+14] Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian, and Vahab
S. Mirrokni. “Composable core-sets for diversity and coverage max-
imization”. In: Proc. PODS. 2014, pp. 100–108. doi: 10.1145/2594538.
2594560.

[Isa+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. “Dryad: distributed data-parallel programs from sequential
building blocks”. In: ACM SIGOPS Operating Systems Review. Vol. 41.
3. ACM. 2007, pp. 59–72.

[Jai10] Anil K. Jain. “Data clustering: 50 years beyond K-means”. In: Pattern

Recognition Letters 31.8 (2010), pp. 651–666. doi: 10.1016/j.patrec.
2009.09.011.

[Jin+11] Ruoming Jin, Lin Liu, Bolin Ding, and Haixun Wang. “Distance-Constraint
Reachability Computation in Uncertain Graphs”. In: Proc. VLDB En-

dow. 4.9 (2011), pp. 551–562.
[Kan+11] U. Kang, Charalampos E. Tsourakakis, Ana Paula Appel, Christos

Faloutsos, and Jure Leskovec. “HADI: Mining Radii of Large Graphs”.
In: ACM Trans. Knowl. Discov. Data 5.2 (Feb. 2011), 8:1–8:24. doi: 10.
1145/1921632.1921634.

[Ken75] David G Kendall. “The genealogy of genealogy branching processes
before (and after) 1873”. In: Bulletin of the London Mathematical Society

7.3 (1975), pp. 225–253.
[KL04] Robert Krauthgamer and James R. Lee. “Navigating nets: simple algo-

rithms for proximity search”. In: Proc. SODA. 2004, pp. 798–807.

123

http://dx.doi.org/10.1137/S0895480196309791
http://dx.doi.org/10.1007/s00454-006-1271-x
http://dx.doi.org/10.1145/1007352.1007400
http://dx.doi.org/10.1016/S0167-6377(97)00034-5
http://dx.doi.org/10.1145/2594538.2594560
http://dx.doi.org/10.1145/2594538.2594560
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1145/1921632.1921634
http://dx.doi.org/10.1145/1921632.1921634


REFERENCES

[KPT13] George Kollios, Michalis Potamias, and Evimaria Terzi. “Clustering
Large Probabilistic Graphs”. In: IEEE Trans. Knowl. Data Eng. 25.2
(2013), pp. 325–336.

[Kro+06] Nevan J Krogan et al. “Global landscape of protein complexes in the
yeast Saccharomyces cerevisiae”. In: Nature 440.7084 (2006), pp. 637–
643.

[KRX08] Goran Konjevod, Andréa W. Richa, and Donglin Xia. “Dynamic Rout-
ing and Location Services in Metrics of Low Doubling Dimension”. In:
Proc. DISC. 2008, pp. 379–393. doi: 10.1007/978-3-540-87779-0_26.

[KSI06] Georgia Koutrika, Alkis Simitsis, and Yannis E. Ioannidis. “Précis: The
Essence of a Query Answer”. In: Proc. ICDE. 2006, pp. 69–78. doi:
10.1109/ICDE.2006.114.

[KSV10] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. “A Model
of Computation for MapReduce”. In: Proc. SODA. 2010, pp. 938–948.
doi: 10.1137/1.9781611973075.76.

[KSW04] Jon M. Kleinberg, Aleksandrs Slivkins, and Tom Wexler. “Triangula-
tion and Embedding Using Small Sets of Beacons”. In: 2004, pp. 444–
453. doi: 10.1109/FOCS.2004.70.

[Kub87] Michael J Kuby. “Programming Models for Facility Dispersion: The p-
Dispersion and Maxisum Dispersion Problems”. In: Geographical Anal-

ysis 19.4 (1987), pp. 315–329.
[Lan01] Doug Laney. “3D data management: Controlling data volume, velocity

and variety”. In: META Group Research Note 6 (2001), p. 70.
[Lat+11] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvit-

skii. “Filtering: a method for solving graph problems in mapreduce”.
In: Proc. SPAA. ACM. 2011, pp. 85–94.

[Lin+12] Liu Lin, Jin Ruoming, Charu Aggarwal, and Shen Yelong. “Reliable
clustering on uncertain graphs”. In: Proc. ICDM. Dec. 2012, pp. 459–
468.

[LRU14] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of

Massive Datasets, 2nd Ed. Cambridge University Press, 2014.
[Mal+15] Gustavo Malkomes, Matt J Kusner, Wenlin Chen, Kilian Q Weinberger,

and Benjamin Moseley. “Fast Distributed k-Center Clustering with
Outliers on Massive Data”. In: Proc. NIPS. Curran Associates, Inc.,
2015, pp. 1063–1071.

[MB08] Michael Masin and Yossi Bukchin. “Diversity Maximization Approach
for Multiobjective Optimization”. In: Operations Research 56.2 (2008),
pp. 411–424. doi: 10.1287/opre.1070.0413.

[MBE06] Vishal Monga, Arindam Banerjee, and Brian L. Evans. “A clustering
based approach to perceptual image hashing”. In: IEEE Trans. Informa-

tion Forensics and Security 1.1 (2006), pp. 68–79. doi: 10.1109/TIFS.
2005.863502.

124

http://dx.doi.org/10.1007/978-3-540-87779-0_26
http://dx.doi.org/10.1109/ICDE.2006.114
http://dx.doi.org/10.1137/1.9781611973075.76
http://dx.doi.org/10.1109/FOCS.2004.70
http://dx.doi.org/10.1287/opre.1070.0413
http://dx.doi.org/10.1109/TIFS.2005.863502
http://dx.doi.org/10.1109/TIFS.2005.863502


OTHER REFERENCES

[Mew+04] Hans-Werner Mewes et al. “MIPS: analysis and annotation of pro-
teins from whole genomes”. In: Nucleic acids research 32.suppl 1 (2004),
pp. D41–D44.

[Mey08] Ulrich Meyer. “On Trade-Offs in External-Memory Diameter-Approximation”.
English. In: Algorithm Theory – SWAT 2008. Vol. 5124. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2008, pp. 426–436. doi:
10.1007/978-3-540-69903-3_38.

[MLH09] Clémence Magnien, Matthieu Latapy, and Michel Habib. “Fast compu-
tation of empirically tight bounds for the diameter of massive graphs”.
In: Journal of Experimental Algorithmics (JEA) 13 (2009), p. 10.

[MPX13] Gary L. Miller, Richard Peng, and Shen Chen Xu. “Parallel graph de-
compositions using random shifts”. In: 25th ACM Symposium on Paral-

lelism in Algorithms and Architectures, SPAA ’13, Montreal, QC, Canada -

July 23 - 25, 2013. 2013, pp. 196–203. doi: 10.1145/2486159.2486180.
[MRK06] Sean M. McNee, John Riedl, and Joseph A. Konstan. “Being accurate is

not enough: how accuracy metrics have hurt recommender systems”.
In: Proc. CHI. 2006, pp. 1097–1101. doi: 10.1145/1125451.1125659.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to information retrieval. Cambridge University Press, 2008.

[MS03] Ulrich Meyer and Peter Sanders. “∆-stepping: a parallelizable shortest
path algorithm”. In: Journal of Algorithms 49.1 (2003). 1998 European
Symposium on Algorithms, pp. 114–152. doi: http://dx.doi.org/
10.1016/S0196-6774(03)00076-2.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and computing: Ran-

domized algorithms and probabilistic analysis. Cambridge University Press,
2005.

[Mur+10] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang.
“Introducing the graph 500”. In: Cray User’s Group (CUG) (2010).

[Mut05] S. Muthukrishnan. “Data Streams: Algorithms and Applications”. In:
Foundations and Trends in Theoretical Computer Science 1.2 (2005). doi:
10.1561/0400000002.

[MZ15] Vahab Mirrokni and Morteza Zadimoghaddam. “Randomized Com-
posable Core-sets for Distributed Submodular Maximization”. In: Pro-

ceedings of the Forty-Seventh Annual ACM on Symposium on Theory of

Computing - STOC ’15. New York, New York, USA: ACM Press, 2015,
pp. 153–162. doi: 10.1145/2746539.2746624.

[MZR09] Sean A. Munson, Daniel Xiaodan Zhou, and Paul Resnick. “Sidelines:
An Algorithm for Increasing Diversity in News and Opinion Aggre-
gators”. In: Proc. ICWSM. 2009.

[NYP12] Tamás Nepusz, Haiyuan Yu, and Alberto Paccanaro. “Detecting over-
lapping protein complexes in protein-protein interaction networks”.
In: Nature methods 9.5 (2012), pp. 471–472.

125

http://dx.doi.org/10.1007/978-3-540-69903-3_38
http://dx.doi.org/10.1145/2486159.2486180
http://dx.doi.org/10.1145/1125451.1125659
http://dx.doi.org/http://dx.doi.org/10.1016/S0196-6774(03)00076-2
http://dx.doi.org/http://dx.doi.org/10.1016/S0196-6774(03)00076-2
http://dx.doi.org/10.1561/0400000002
http://dx.doi.org/10.1145/2746539.2746624


REFERENCES

[Par+15] Panos Parchas, Francesco Gullo, Dimitris Papadias, and Francesco
Bonchi. “Uncertain Graph Processing through Representative Instances”.
In: ACM Trans. Database Syst. 40.3 (2015), p. 20. doi: 10.1145/2818182.

[Pen+05] Yi Peng, Gang Kou, Yong Shi, and Zhengxin Chen. “Improving Cluster-
ing Analysis for Credit Card Accounts Classification”. In: Proc. ICCS.
2005, pp. 548–553. doi: 10.1007/11428862_75.

[Pet04] Seth Pettie. “A new approach to all-pairs shortest paths on real-weighted
graphs”. In: Theoretical Computer Science 312.1 (2004), pp. 47–74. doi:
http://dx.doi.org/10.1016/S0304-3975(03)00402-X.

[PGF02] Christopher R. Palmer, Phillip B. Gibbons, and Christos Faloutsos.
“ANF: A Fast and Scalable Tool for Data Mining in Massive Graphs”.
In: Proc. KDD. ACM, 2002, pp. 81–90. doi: 10.1145/775047.775059.

[Pie+12] Andrea Pietracaprina, Geppino Pucci, Matteo Riondato, Francesco Sil-
vestri, and Eli Upfal. “Space-round tradeoffs for MapReduce compu-
tations”. In: Proc. ICS. ACM. 2012, pp. 235–244.

[Pot+10] Michalis Potamias, Francesco Bonchi, Aristides Gionis, and George
Kollios. “k-Nearest Neighbors in Uncertain Graphs.” In: Proc. VLDB

Endow. 3.1 (2010), pp. 997–1008.
[PR02] Seth Pettie and Vĳaya Ramachandran. “Computing Shortest Paths with

Comparisons and Additions”. In: Proc. SODA. Society for Industrial
and Applied Mathematics, 2002, pp. 267–276.

[RG06] Cole R and L.A. Gottlieb. “Searching Dynamic Point Sets in Spaces
with Bounded Doubling Dimension”. In: Proc. STOC. 2006, pp. 574–
583.

[RRT07] Daniel J. Rosenkrantz, S. S. Ravi, and Giri Kumar Tayi. “Approximation
Algorithms for Facility Dispersion”. In: Handbook of Approximation Al-

gorithms and Metaheuristics. 2007. doi: 10.1201/9781420010749.ch38.
[RRT94] S. S. Ravi, Daniel J. Rosenkrantz, and Giri Kumar Tayi. “Heuristic

and Special Case Algorithms for Dispersion Problems”. In: Operations

Research 42.2 (1994), pp. 299–310. doi: 10.1287/opre.42.2.299.
[Sch07] Satu Elisa Schaeffer. “Graph clustering”. In: Computer Science Review

1.1 (2007), pp. 27–64.
[Shv+10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

“The Hadoop Distributed File System”. In: Proc. MSST. IEEE Computer
Society, 2010, pp. 1–10. doi: 10.1109/MSST.2010.5496972.

[Sli07] Aleksandrs Slivkins. “Distance estimation and object location via rings
of neighbors”. In: Distributed Computing 19.4 (2007), pp. 313–333. doi:
10.1007/s00446-006-0015-8.

[Tal04] Kunal Talwar. “Bypassing the embedding: algorithms for low dimen-
sional metrics”. In: Proc. STOC. 2004, pp. 281–290. doi: 10 . 1145 /
1007352.1007399.

[Tam91] Arie Tamir. “Obnoxious Facility Location on Graphs”. In: SIAM J.

Discrete Math. 4.4 (1991), pp. 550–567. doi: 10.1137/0404048.

126

http://dx.doi.org/10.1145/2818182
http://dx.doi.org/10.1007/11428862_75
http://dx.doi.org/http://dx.doi.org/10.1016/S0304-3975(03)00402-X
http://dx.doi.org/10.1145/775047.775059
http://dx.doi.org/10.1201/9781420010749.ch38
http://dx.doi.org/10.1287/opre.42.2.299
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1007/s00446-006-0015-8
http://dx.doi.org/10.1145/1007352.1007399
http://dx.doi.org/10.1145/1007352.1007399
http://dx.doi.org/10.1137/0404048


OTHER REFERENCES

[Val79] Leslie G. Valiant. “The Complexity of Enumeration and Reliability
Problems”. In: SIAM J. Comput. 8.3 (1979), pp. 410–421.

[Whi15] Tom White. Hadoop - The Definitive Guide: Storage and Analysis at Internet

Scale (4. ed., revised & updated). O’Reilly, 2015.
[Wil12] Virginia Vassilevska Williams. “Multiplying matrices faster than Coppersmith-

Winograd”. In: Proc. STOC. ACM. 2012, pp. 887–898.
[Wu13] Yong Cheng Wu. “Active Learning Based on Diversity Maximization”.

In: Applied Mechanics and Materials 347.10 (2013), pp. 2548–2552.
[Xin+06] Dong Xin, Hong Cheng, Xifeng Yan, and Jiawei Han. “Extracting

redundancy-aware top-k patterns”. In: Proc. KDD. 2006, pp. 444–453.
doi: 10.1145/1150402.1150452.

[Yan+08] Allen Y. Yang, John Wright, Yi Ma, and Shankar S. Sastry. “Unsuper-
vised segmentation of natural images via lossy data compression”. In:
Computer Vision and Image Understanding 110.2 (2008), pp. 212–225. doi:
10.1016/j.cviu.2007.07.005.

[Yan+15] Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and Alexander G.
Hauptmann. “Multi-Class Active Learning by Uncertainty Sampling
with Diversity Maximization”. In: International Journal of Computer Vi-

sion 113.2 (2015), pp. 113–127. doi: 10.1007/s11263-014-0781-x.
[YLA09] Cong Yu, Laks V. S. Lakshmanan, and Sihem Amer-Yahia. “Recom-

mendation Diversification Using Explanations”. In: Proc. ICDE. 2009,
pp. 1299–1302. doi: 10.1109/ICDE.2009.225.

[Zah+10] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. “Spark: Cluster Computing with Working Sets.” In:
Proc. HotCloud. USENIX Association, 2010.

127

http://dx.doi.org/10.1145/1150402.1150452
http://dx.doi.org/10.1016/j.cviu.2007.07.005
http://dx.doi.org/10.1007/s11263-014-0781-x
http://dx.doi.org/10.1109/ICDE.2009.225

	Introduction
	Preliminaries
	Notation and basic concepts
	The MapReduce model
	The MapReduce computational model
	MapReduce implementations and our experimental platform
	Experimental evaluation of the MapReduce model

	The Streaming model
	k-center clustering
	The GMM algorithm
	MapReduce k-center algorithms.
	Streaming k-center algorithms.


	Diameter approximation
	Related work
	Algorithms based on All-Pairs Shortest Paths
	Algorithms based on Single-Source Shortest Path
	Algorithms based on the neighbourhood function
	Algorithms based on clustering
	-stepping

	Clustering algorithm
	Subroutines
	Clustering algorithm

	Diameter approximation algorithm
	Implementation in the MapReduce model
	Improved performance for unweighted graphs
	Approximation to k-center
	Experimental Analysis
	Experiments on weighted graphs
	Experiments on unweighted graphs


	Clustering uncertain graphs
	Related work
	Network reliability
	Uncertain graphs

	Preliminaries
	A triangle inequality for connection probabilities
	Estimating connection probabilities

	Sequential cluster growing
	Clustering with a target number of clusters
	Clustering with a target probability

	Concurrent cluster growing
	Limiting the path length
	Implementing the oracle
	Implementation of the sequential growing strategies
	Implementation of the concurrent growing strategy

	Experimental evaluation
	Comparison with MCL
	Experiments on Protein-Protein Interaction networks
	Comparison of sequential and parallel strategy


	Diversity maximization
	Related work
	Preliminaries
	Core-set characterization
	Applications to data streams
	The SMM core-set algorithm
	The SMM-EXT core-set algorithm
	Streaming approximation algorithm

	Applications to MapReduce
	Using GMM for computing core-sets
	The GMM-EXT core-set algorithm
	MapReduce deterministic algorithm
	MapReduce randomized algorithm
	Recursive MapReduce algorithm

	Saving memory: generalized core-sets
	Generalized core-sets for streaming algorithms
	Generalized core-sets for MapReduce algorithms

	Comparison with previous approaches
	Experimental evaluation
	Streaming algorithm
	MapReduce algorithm
	Comparison with state of the art
	Scalability


	Conclusions
	References

