


2



Abstract

Robotic agents vastly increase the return of planetary exploration missions thanks to their

ability of performing in-situ measurements. To this date, unmanned exploration has been

performed by individual of robots such as the MER Spirit and Opportunity and later MSL

Curiosity.

A fundamental asset to robotic autonomy is the ability to perceive the surroundings

through vision systems such as stereo cameras. Since global localization using GPS-like

approaches is unavailable in extra-terrestrial environments, rovers need to measure their

motion in order to understand where they are heading. This allows to close high-level

control loops to follow planned routes toward goals of scientific interest. Visual SLAM (Si-

multaneous Localization and Mapping) is an effective strategy to fulfill these needs. Stereo

cameras are used to both reconstruct the environment structure through triangulation and

use that information to localize the cameras while moving. While performing Visual SLAM

on constrained resources is still challenging, many state of the art solution exist to solve

this problem for single exploration sessions.

The future of planetary exploration however strongly involves cooperation amongst

teams of heterogeneous robotic agents. While the SLAM problem is efficiently solved for sin-

gle sessions and agents, robust solutions for collaborative map merging and re-localization

are still topics of active research and constitute the first major objective of this thesis.

Here is proposed and validated a robust re-localization pipeline targeted at planetary ve-

hicles equipped with stereo vision systems allowing to localize them in previously built

maps. Instead of common Visual SLAM approaches based exclusively on visual features,

this algorithm exploits the invariant nature of 3D point clouds by using compact 3D binary

descriptors in conjunction with texture cues. Maps are discretized in submaps which are

represented in a lightweight form using the Bag of Binary Words paradigm. The algorithm

is then tested and validated both in the laboratories of the DLR Robotics and Mechatronics

Center and in Mount Etna, Sicily, an outdoor planetary analogous environment.

The second major research objective involves monocular vision for UAVs. Stereo depth

perception is often infeasible for UAVs as small baseline systems degenerate to monocular as

the vehicle takes off. 3D structure can be obtained using Structure-from-Motion approaches

which are however unable to recover a global metric scale. Scale is traditionally recovered

integrating accelerations from IMUs. However visual-inertial sensing is delicate being very

sensitive on wrong extrinsic calibration. In addition, initialization of the visual-inertial

pipeline is challenging and can diverge. These reasons challenge the implementation of

unsupervised autonomous behaviors on UAVs. To address these issues, this thesis work

proposes a sensor fusion approach between cameras and low resolution range sensors in

order to exploit direct range measurements enforcing scale constraints in monocular Visual

Odometry. This research objective is accomplished in two stages. Firstly a monocular

Visual Odometry is developed without enforcing strict performance constraints and is used

in conjunction with a low resolution Time of Flight camera, a lightweight sensor capable

of measuring 64 ranges in a narrow Field-of-View. The algorithm is tested against both a
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state of the art stereo visual SLAM system and a more accurate, while heavier, 2D LiDAR.

Finally, a real-time monocular Visual Odometry is developed exploiting a multi-threaded

architecture to enable concurrent tracking of the camera pose and scale optimization in the

background. This algorithm is tested with a 1D LiDAR altimeter, a minimal range sensing

configuration of just 1 point per measurement, demonstrating the ability of recovering and

maintain a correct scale along the trajectory with very light and inexpensive off-the-shelf

range sensors.
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Abstract - Italian

L’utilizzo di agenti robotici porta ad un maggiore ritorno scientifico nel contesto di

missioni per esplorazione planetaria grazie alla possibilità di effettuare misure in loco. Ad

oggi, l’esplorazione autonoma compete a singoli veicoli non cooperanti come nel caso delle

missioni MER Spirit e Opportunity e MSL Curiosity.

Una preziona risorsa per l’autonomia è la possibilità di percepire la struttura dell’ambiente

circostante tramite sistemi di visione. Questo problema è tradizionalmente risolto tramite

algoritmi di Visual SLAM, che permettono di ricostruire la struttura 3D osservata e di

calcolare la posizione di una telecamera rispetto ad essa. Ad oggi, molti algoritmi esistono

dedicati a singole sessioni operative o per singoli robot.

Il futuro dell’esplorazione planetaria coinvolge tuttavia la cooperazione tra unità robotiche

eterogenee come veicoli terrestri ed aerei. Mentre la Visual SLAM è efficientemente risolta

per singole sessioni, mappatura collaborativa e ri-localizzazione per exploratori multipli è

ancora argomento di ricerca e costituisce il primo grande obbiettivo di questa tesi.

In questo lavoro si propone e valida sperimentalmente un innovativo algoritmo di ri-

localizzazione per rover planetari equipaggiati con stereo camere permettedo di ricominciare

sessioni di esplorazione interrotte. Contrariamente alla maggiorità di algoritmi SLAM,

basati esclusivamente su informazioni visive, il nostro algoritmo sfrutta la natura invariante

delle nuvole di punti usando descrittori binari compatti congiuntamente ad informazioni

sulla texture degli oggetti osservati. Le nuvole di punti sono discretizzate in sotto-mappe e

rappresentate in maniera compressa usando il paradigma delle Bag-of-Words. L’algoritmo

è testato presso il centro di Robotica e Meccatronica dell’Agenzia Spaziale Tedesca (DLR)

e validato in un dataset catturato sul Monte Etna, riconosciuto come terreno analogo

planetario.

Il secondo obbiettivo di ricerca riguarda tecniche di Visual SLAM monoculare. Spesso

non è infatti possibile equipaggiare stereo camere in veicoli aerei di ridotte dimensioni in

quanto degenerano verso sistemi monoculari mentre la distanza dal suolo aumenta. At-

traverso tecniche di Structure from Motion è possibile ricostruire una struttura 3D da

osservazioni monoculari tuttavia mancando un fattore globale di scala. Tradizionalmente,

la scala è stimata integrando l’accelerazione lineare da IMU, tuttavia rumore nelle mis-

ure ed errori nella calibrazione dei parametri estrinseci de-stabilizzano il sistema di visione

inerziale. Questi motivi rendono delicata l’implementazione di comportamenti autonomi

su UAV. In questo lavoro di tesi è presentata una possibile soluzione a questo problema.

E’ proposto un approccio alla sensor fusion tra sistemi di visione monoculari e sensori di

distanza per il recupero ed un robusto mantenimento del corretto fattore di scala. Questo

obbiettivo è raggiunto in due step. Per prima cosa è sviluppato un algoritmo di Visual

Odometry senza alcun requisito sulle performance computazionali. L’algoritmo è abbinato

ad un sensore di profondità operante con il principio del Time of Flight (tempo di volo).

Le performances sono confrontate con un pesante ed accurato LiDAR a scansione planare

ed infine un sistema di stereo Visual SLAM. Infine, un sistema di Visual Odometry monoc-

ulare real-time è sviluppato in architettura a thread multipli che permette di calcolare
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contemporaneamente la posizione della camera nel tempo e di raffinarla tramite un pro-

cesso di ottimizzazione. L’algoritmo è testato utilizzando un laser altimetro, che consiste

in un sistema minimale di percezione di distanza ritornando un solo punto per misura. Si

dimostra cosi di poter mantenere un corretto fattore di scala lungo la traiettoria utilizzando

un semplice ed economico sensore di distanza comunemente impiegato per UAV.
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Chapter 1

Introduction

Future prospects for the technological development of space exploration systems strongly

involve cooperation within teams of heterogeneous robotic agents [38]. Depending on the

scientific objectives, collaborating agents can be multiple orbiters, landers, rovers or other

in-situ explorers such as aerial or legged robots. Coordinated observations between mul-

tiple observers in fact give insight to phenomena in a time-synchronized manner from the

perspective of different instruments for a more complete characterization. Such tasks have

already been performed between orbiters and rovers, an example is the simultaneous mea-

surement of the Mars atmosphere at different altitudes where the MER Mini-TES (Thermal

Emission Spectrometer) observations have been coordinated with the Mars Global Surveyor

spectrometer. However this required an intensive manual work by the ground teams in or-

der to synchronize and correlate data. Such way would prove to be infeasible for longer

missions and more frequent observations, therefore the need for autonomous behaviors is

critical in this case. Synchronous operations across ground agents benefit also from the

perspective of mapping and navigation. Coordinated exploration allows to maximize cov-

erage [19] [111] and build maps of a previously unknown environment in a fraction of the

time required to a single robot. This poses significant challenges to the ability of vision

system to merge 3D maps with high accuracy and stream them according to the given

communication link [49]. Aerial agents can complement the perceptive reach of ground

vehicles equipped with stereo cameras. The higher point of view and enhanced mobility

allow in fact an UAV to assess the ground traversability for its ground counterpart [92],

speeding up the path planning process substantially and identifying targets of interest from

visual cues to be analyzed from the rover scientific equipment once reached.

Although many concepts for robotic cooperation on Earth have been presented, the

technology required for performing robustly many of the involved tasks is still an active

research topic. Furthermore, to this day no real autonomous behaviors have been imple-

mented in space exploration missions. No aerial vehicle has yet flown on planetary surfaces

and the role of the spacecraft in small bodies exploration missions (Rosetta until 2016

with the Philae lander [11] and Hayabusa2 with the MASCOT lander [110]) was mainly of

communication relay with the control centers on Earth.

In this thesis are addressed multiple issues challenging the implementation of such col-

laborative systems respectively for the ground and aerial counterpart whose navigation
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Figure 1.1: Artistic impression of a multi-agent exploration scenarios. Wheeled rovers
explore environment in their reach while aerial agents are deployed to observe and map on
longer distances. Credit: German Aerospace Agency (CC-BY 3.0) https://event.dlr.

de/en/ila2018/arches/
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system heavily relies on stereo and monocular vision systems. In the context of long-term

operations, all the findings of each robotic explorer must be referenced to a common coordi-

nate system. To this aim, the 3D maps in form of point clouds, built by the robots through

their perception system, must be joined between each robot and across each exploration

session. Accomplishing this task is challenging and the reason is twofold:

• The task of place recognition, although frequently addressed in the contexts such as

autonomous driving, is particularly difficult while navigating in natural environments,

where the textures and shapes that can be observed are usually very repetitive or

lacking significant information. In addition to that, while rovers on Earth and even

heavy UAVs can be equipped with precise LiDAR systems to measure shapes, to

this date no planetary rover has been equipped with such sensors and rely instead

on cameras to perceive depth and perform Visual SLAM (Simultaneous Localization

and Mapping)

• Place recognition tasks as well as point cloud processing have a significant impact

on computational load even for workstation grade computers. The performances of

SLAM algorithms are in fact observed to degrade while imposing hardware constraints

[50].

This leads to the first major contribution of this work, which is the development of a fast

relocalization scheme for teams of heterogeneous robots equipped with stereo cameras as

the main perceptive sensor. The work was developed in collaboration with the DLR Center

for Robotics and Mechatronics and allows localization on a 3D map built in previous

exploration sessions by the same robot or others. The pipeline was developed with the

aim of providing a compressed representation of captured 3D data which is efficient to

store on the on-board memory and stream to other robots and allows a very fast similarity

evaluation with a database for relocalization. This first major contribution can be split in

two minor ones, which are:

• The adaptation of a well-known paradigm for computing similarity across documents

called the Bag of Words model to the 3D case. To the knowledge of the author of this

work, this is the first time this paradigm is applied to the context of place recognition

using point clouds and 3D binary descriptors

• The development of a fast and lightweight incremental voting scheme in alternative

to commonly used RANSAC to select a rototranslation model between point clouds

in presence of very high percentages of outliers.

In chapter 3 the aforementioned pipeline is explained in detail and tested on multiple

mapping sessions and with multi-robot teams.

Ground robots have less mass and power constraints compared to UAVs therefore can

easily carry equipment such as wide baseline stereo cameras. This allow them to obtain

high precision point clouds in the close range for both precise mapping and ego-motion es-

timation. UAVs have more strict mass and power budgets and therefore it is less preferable

to mount redundant systems such as multiple cameras. While in principle it is possible to
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1.1. MARS ROVERS

have more than one cameras to capture frames for later processing, trajectory estimation

must be performed at high frequencies to close path following loops. In addition, the mea-

surement accuracy of stereo vision systems degrade with the distance squared therefore for

longer viewing distances all stereo setups degenerate to a monocular one. For this reason

mainly monocular vision setups are used in the context of UAV ego-motion estimation, as

it will be for the Mars Helicopter Scout, part of the NASA Mars 2020 mission [7]. However,

monocular estimations provide 3D and trajectory information only up to an unknown scale

factor which must be resolved in conjunction with additional information. Many monocu-

lar vision systems make use of IMU sensors for retrieving the absolute scale. However the

initialization of such visual-inertial algorithms is delicate and many low power and weight

sensors are characterized by excessive measurement noise, with an impact of the ego-motion

estimation accuracy.

This leads to the second major contribution of this work, which is the development of a

monocular Visual Odometry system where the absolute scale is retrieved using generic low

resolution range sensors. This system allows a direct and robust estimation of the metric

scale during initialization of the algorithm and adjusts the scale factor along the trajectory

by means of an optimization back-end. The development of this algorithm is split in two

phases. In chapter 4 it is evaluated the feasibility of such approach with a non real-time

algorithm based on slow and accurate image feature matching. This algorithm is tested with

a very low resolution Time of Flight camera of 8x8 pixels delivering range information. In

chapter 5 a final version of the pipeline is presented where range measurements are provided

by a 1D LiDAR range finder delivering only 1 range estimate along its measurement axis.

Both versions of the algorithm are tested on ad-hoc experimental setups on Differential

GPS ground truth. To summarize the following contributions can be highlighted:

• It is here presented a sensor fusion approach for monocular Visual Odometry systems

where direct scale information is given by a minimal sensing setup delivering a single

range measurement. In such way, the benefit of accurate and immediate range mea-

surements can be exploited with low mass, power and volume sensor setups suitable

for small UAV navigation.

• It is proven that the performances that can be achieved by such setups are on-par

with heavier and more requiring stereo vision setups.

• In order to test the algorithms on real setups, unique extrinsic calibration techniques

are presented to express range measurements in camera coordinates. While in lit-

erature several example of extrinsic calibration algorithms are present, they usually

refer to camera-LiDAR systems where the LiDAR is planar (2D) or 3D.

1.1 Brief History of Mars Rover Missions

The first autonomous robotic explorer on Mars was the Sojourner rover, deployed by the

Pathfinder spacecraft which landed in the Ares Vallis region on July 4th 1997. Sojourner’s

primary objectives involved capturing data with the Alpha Proton X-ray Spectrometer

(APXS) to analyze the chemical composition of rocks and minerals. In addition, the rover
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1.1. MARS ROVERS

(a) Opportunity (b) Curiosity

(c) Sojourner (d) Mockups of each rover compared

Figure 1.2: Self portraits of NASA’s MER (Mars Exploration Rover), (Mars Science Lab-
oratory) Curiosity and the Sojourner rovers. Credit: NASA Jet Propulsion Laboratory
https://jpl.nasa.gov

carried three cameras with the main purposes of observing the condition of the lander, assess

the soil mechanics by observing the deformation induced by the wheels and observe surfaces

with higher resolution than the lander [89]. The rover was powered by six wheels, of which 4

steerable, and connected to the chassis by a rocker-bogie system which allowed to climb over

obstacles the approximate size of the wheels. During motion, dead reckoning from wheel

encoders and gyroscope readings provided an estimate of the trajectory. During stationary

moments, a stripe laser projected light on the terrain in front of the rover such that through

the camera system was possible to observe the presence of obstacles. After finding a viable

path towards a location of interest, the rover was able to travel autonomously. Images

captured before and after motion were transmitted back to Earth and used to correct

trajectory estimations.

It is from the Rocky 7 research prototype [145] that stereo vision is used for autonomous

navigation. Instead of manual localization from an operator on Earth as for Sojourner, the

lander observed a colored cylinder mounted on top of the rover. This position measurement

allowed for a global positioning with respect to the lander without any human interven-

tion and avoiding so to accumulate errors from gyroscope biases and wheel slippage [144].

Absolute heading was instead measured using a top mounted sun sensor in addition to

accelerometer readings.
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1.1. MARS ROVERS

1.1.1 Mars Exploration Rovers (MER)

In 2004 NASA’s Mars Exploration Rovers Spirit and Opportunity (figure 1.2a) landed on

the surface of Mars in order to observe and characterize the soil to find cues on past presence

of water, necessary factor for life as it is known. Spirit landed on the Gusev crater, sup-

posed to be originated from a water lake and later discovered to be the result of impacts and

wind erosion [131]. Opportunity landed 21 days later on the Eagle crater within Meridiani

Planum with the same purpose, demonstrating past water presence through visible geo-

logical cues and chemical analysis of rock composition [130]. With the Mars Exploration

Rovers is firstly implemented full on-board stereo vision processing. Significant hardware

and software upgrades allowed the rovers to conduct autonomous navigation tasks such as

pose estimation through Visual Odometry, safe terrain navigation via hazard detection and

global path planning. The two rovers carried an identical set of instruments comprising

two stereo camera setups. The Pancam was a 30 cm baseline setup with 16 degrees field of

view which was used for mapping of far objects while the Navcam, a 20 cm baseline stereo

camera with a wider field of view of 45 degrees, was primarily used for close observations.

The primary task for the stereo cameras was automatic terrain assessment. Stereo images

were rectified to remove lens distortion and used to generate 256x256 pixels disparity images

form which 48000 3D points in average could be reconstructed. The GESTALT (Grid-based

Estimation of Surface Traversability Applied to Local Terrain) system for terrain assess-

ment allowed Spirit to travel for 2 km in a 6 months period towards the Columbia Hills

approximately 50% faster than with only blindly followed planned paths. Visual Odometry,

originally conceived as an “extra feature”, was used in case of rough and high slip terrains

to correct for wheel slippage. However, wheel odometry was preferred while traversing

over low slip terrains due to the high computational cost of image processing, which was

performed on the onboard CPU. The Pancam stereo camera delivered was used also for

absolute orientation sensing by detecting the position of the Sun in conjunction with tilt

measurements from the accelerometers [86].

1.1.2 Mars Science Laboratory (MSL)

The MSL (Mars Science Laboratory) Curiosity (figure 1.2b) was launched in 2011 to explore

the Gale crater with the objectives of investigating Mars geology and climate. The focus

was on evaluating the habitability of the planet surface to assess the feasibility of future

human exploration missions [14]. Curiosity is still operational to this day after more than

2500 martian sols of operations and features 8 Hazard avoidance cameras and 4 Navigation

cameras, for a total of 12 engineering cameras with a design similar to the MER cameras

[87]. The objective of this camera system is to assist all MSL operations on Mars, from

assessing the terrain traversability to detect and avoid hazards, operate the robotic arm

and localize the rover with respect to the environment. The Navcam setups are configured

as a 42 cm baseline stereo system providing range measurements up to 100 meters while

the Hazcams have a 10 cm and 16 cm baselines respectively for the front and back ones

and a wide field of view of 120 degrees. As the MER rovers, Curiosity performs stereo

Visual Odometry, uses both cameras and IMUs to measure its attitude and is able to plan
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(a) Rover and Helicopter (b) Helicopter

Figure 1.3: Artistic impression and real model of the rover-drone team part of NASA’s
Mars2020 mission. Credit: NASA Jet Propulsion Laboratory

paths avoiding immediate hazards and non traversable regions. Many improvements to

the previous VO software [69] together with more powerful hardware allows Curiosity to

use VO for longer sequences spanning multiple sols and activate it autonomously while

detecting potential high slippage surfaces.

1.2 Future Prospects for Multi-Agent Exploration

1.2.1 Mars Helicopter Scout

In the context of NASA’s Mars 2020 mission, a small helicopter will be deployed by the rover

to demonstrate the feasibility of unmanned flight in the Mars atmosphere [7]. Figure 1.3b

shows the 850 grams vehicle characterized by a co-axial rotor of 1.21 meters in diameter

which will enable a sustained autonomous flight in the Mars atmosphere whose density

amounts approximately at the 1% of Earth’s atmosphere. Once deployed on the Mars

surface, the rover will drive away from the helicopter stopping at a safe distance and relaying

commands from Earth. Then, a series of autonomous flight tests will evaluate the vehicle

capability of accomplishing navigation and exploration tasks without any intervention. The

test campaign will involve a series of flights of increasing distance, altitude with durations

up to 90 seconds [18]. As the vehicle is developed as a technological demonstrator, the

navigation hardware makes use almost entirely of Commercial Off-the-Shelf components.

In order to follow the predefined path in an autonomous way it is required to perform Visual

Odometry in real-time which is a computationally expensive task. The selected CPU is in

fact a smartphone-grade 2.26 GHz Snapdragon 801 quad-core processor accompanied by

2 GB RAM memory and 32 GB flash storage running a custom Linux kernel. Flight and

attitude control is performed instead by a redundant system of Microcontroller Units which

can be hot-swapped in case of faults. The navigation sensor setup also comprises off the

shelf components. Two cameras are mounted on the helicopter, a navigation camera (NAV)

used for visual tracking and a high resolution camera for capturing detailed pictures to send

back to Earth. The Navigation Camera is a global shutter VGA (640x480 pixel) sensor

with a field-of-view (FoV) of 133x100 degrees (horizontal and vertical) capturing frames at

a rate of 10 Hz. The high resolution camera is referred to as Return-to-Earth (RTE) and

is a color rolling shutter 4208x3120 pixels sensor with a 47x47 degrees field of view. The
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(a) Artistic impression (b) ciccio

Figure 1.4: The Mars Electric Reusable Flyer prototype Credit: NASA Langley

two cameras are mounted with very little baseline given the size constraints and their field

of view overlap slightly. This can be a useful for later processing at Earth since it allows

to perform feature matching between the NAV and RTE cameras. Attitude and inertial

measurements are provided by a 3-axis MEMS IMU produced by Bosch ((Sensortec BMI-

160) and the altitude is measured by a 1D LiDAR rangefinder from Garmin, the Lidar-Lite

V3 which has a maximum range of 10 meters, a 1 cm resolution and a mean accuracy of

1% of the maximum range.

1.2.2 Mars Electric Reusable Flyer

Following the idea of a deployable UAV to assist and enhance rover operations, a concept

for a Vertical Take Off and Landing (VTOL) aircraft is in testing phase at NASA Langley1.

The vehicle, visible in figure 1.4, would allow safe take off and landing for recharging as

well as fast forward flight for wide terrain coverage. An engineering model has been tested

in the Spring of 2017 on a stratospheric balloon drop to gain insight on the aerodynamics.

The hovering capabilities have been tested furthermore in a low pressure chamber as for

the Mars Helicopter Scout. Research on this concept is on-going especially regarding vision

based autonomous navigation and hovering in complex scenarios such as canyons and lava

tubes.

1.2.3 Small Bodies Exploration

In October 3 2018 the MASCOT (Mobile Asteroid Surface Scout) lander touched down

on the surface of 162173 Ryugu, a near-Earth asteroid orbiting between the Earth and

Mars. MASCOT (visible in figure 1.5a) is part of JASA’s Hayabusa2 sample-return mis-

sion launched in 2014 whose scientific objective is to study the asteroid composition in

search of interactions between ice, minerals and organic compounds. Study of asteroids

and comets provides insight on the origin of planets, water and organic life. MASCOT,

developed by the German Aerospace Center (DLR) carries a camera (MasCam), and an

hyperspectral microscope (MMARA) [76] enhancing so the remote sensing capabilities of

the Hayabusa2 spacecraft on multiple scales. MASCOT’s mobility results from rotating a

1https://catalog.data.gov/dataset/mars-electric-reusable-flyer
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(a) MASCOT (b) MMX Lander

Figure 1.5: Renders of the MASCOT and MMX landers Credit: German Aerospace Agency
(CC-BY 3.0), CNES

swing arm contained inside the lander body to generate tumbling motions. Precise com-

mands sequences allows the body to stand on its sides exposing the instruments to the

location of interest, further details on the motion mechanism can be found in [124]. The

MasCam is mounted slightly inclined towards the ground with an angle of 22 degrees such

that the field of view of 54.8 degrees covers both the close ground as well as the horizon

[119]. The MasCam operated both during day and night with the help of an array of

monochromatic LEDs illuminating in 4 different spectral bands allowing to identify vari-

ations in the surface spectrum. Amongst other findings, high resolution measurements of

the asteroid surface temperature by the MARA radiometer allowed to explain the lack of

rocks belonging to Ryugu-like asteroids on Earth, being the surface of the asteroid more

fragile and brittle than expected [55].

Following the success of Hayabusa2, a new JAXA/DLR/CNES mission called MMX

(Martian Moon eXplorer) will launch in early 2020 to explore the Martian moon Phobos

[20]. The primary scientific objective of the mission is to observe the composition of Martian

moons, which would give insight on their origin and to answer questions related to planetary

formation and transport of matter between the inner and outer parts of the solar system.

The mission is scheduled to launch in 2024 and return with samples from Phobos in 2027

and comprises three main components: a propulsion stage, an exploration module and a

return module. The rover module will be equipped with a vision system for navigation and

localization and will carry a scientific payload comprising a spectrometer and a radiometer

for surface analysis.
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which can be expressed in matrix form as:
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where u, v are expressed in pixel coordinates as well as cx, cy and the coefficients Sx, Sy

transform the focal length in pixels. The 3x3 matrix in eq. 2.3 is called camera matrix, its

parameters are fixed for each camera and can be determined through calibration [134][157].

Generally, the position of points and cameras are expressed in a common coordinate system

which is denoted as world. In this case, the mapping from points in world coordinates to

the image plane is function of the rototranslation from world to camera. Eq. 2.3, express

in homogeneous coordinates becomes:
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(2.4)

Lens Distortion

Real cameras do not behave accordingly to the linear pinhole model. Their lens introduce

optical distortions, which can be modeled to convert the distorted image to its linear

counterpart allowing to use the pinhole model. A distortion model applicable to many

commercial cameras combines radial and tangential distortions. The radial contribution

is induced by lens distortion while the tangential part is due to the image sensor being

not parallel to the image plane. The relation between distorted and non-distorted pixel

coordinates is:

ud = u(1 + k1r
2 + k2r

4 + k3r
6) + 2p1uv + p2(r

2 + 2u2) (2.5)

vd = v(1 + k1r
2 + k2r

4 + k3r
6) + 2p2uv + p1(r

2 + 2v2)

where ud, vd are distorted pixel coordinates, k1, k2, k3 are radial distortion parameters, p1, p2

are tangential distortion parameters and r2 = u2 + v2.

2.2 Image Features

The previous section describes the relationship between 3D points and their projection

in the image plane. Many machine vision algorithm however start from detecting salient

positions in the image and subsequently determine the 3D position of the geometric point

to which they correspond. Visual features are locations which hold valuable information

for characterizing the content of an image. Feature detectors are algorithm that recognize

features amongst images in the most repeatable way possible and are usually sensible to

specific properties.

Corner detectors such as Moravec [95], Harris [61], Shi-Tomasi [125] or FAST [112]
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measure the location of intersection of edges in an image with sub-pixel accuracy. Corners

are easy to detect and generally fast to compute, however they do not excel in localization

accuracy and repeatability, meaning that subsequent detections changing the viewpoint

and scale might happen in slightly different locations. Harris and Shi-Tomasi corners are

detected by analyzing the image partial derivatives in the u and v coordinates. The partial

derivatives Ix and Iy are used to compute the second-moment matrix of I. Its eigenvalues

define a response function which dictates if the image patch under consideration is a corner

or not. The FAST corner detector instead declares corners those image patch which pass a

machine-learned circular test around the patch center. Corner detectors are very suitable for

artificial environments, however if the scene does not contain enough edges, blob detectors

are a viable and more computationally expensive asset. Blobs can be interpreted as regions

where a property derived from intensity values remains locally constant and two main

detection approaches can be distinguished. The first approach, denoted as difference of

Gaussians or DoG relies on computing the difference of the same image convolved by two

different Gaussian kernels. This step enhances those regions of the image which can be

reliably detected at different scales and approximates the Laplacian operator over I. This

detector is used by SIFT [84] (Scale Invariant Feature Transform). A second approach is

denoted determinant of Hessian, where the determinant of the Hessian matrix is computed

over multiple scales detecting the extrema. The resulting locations are invariant on scale

and rotation. The SURF [8] (Speeded Up Robust Features) detector is based on this

principle and computed the determinant of the Hessian in an approximated form using

Haar wavelets. Both corner and blob detectors, after computing their specific response

function over the image, perform non maximum suppression to select only the highest

scoring features for the best detection repeatability.

Feature descriptors convert the neighborhood of each image feature in a compact de-

scriptor in a compromise between invariance to illumination, scale and viewpoint and com-

putational speed. Simply computing the difference between image patches of fixed size is

not in fact invariant to any of the aforementioned factors. The SIFT descriptor is one of

the most accurate amongst all handcrafted feature descriptors being invariant to scale, il-

lumination, rotation and limited affine transformations. At keypoint detection time, SIFT

stores magnitude and orientation of the smoothed image gradient. Those are used to scale

and orient a grid centered on each keypoint which define a relative spatial domain. In

this domain, orientations and magnitude of gradients are collected in an histogram which

constitute the final descriptor. Similarly to SIFT, SURF descriptors are computed by align-

ing a spatial grid over keypoints given reference scales and orientations. The descriptor

entries are derived from Haar wavelet responses computed over subdivisions of the grid.

The choice between SURF and SIFT is design driven, while the former maintain a good

invariance while being relatively light, the latter achieves usually the highest matching

performances at the price of a higher computational effort.

Most recently, deep convolutional neural networks (CNN) have been shown to be a

viable option for learning both keypoint detection and description. The earlier DeepDesc

[127] and TFeat [94] rely on external keypoints, which in the comparative test given in [120]

are computed from SIFT. LIFT [153] instead performs jointly detection and description.
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2.4. STEREO MATCHING

2.4.1 Depth from stereo

The simple geometry of an ideal stereo setup lead to a simplified triangulation of matching

image features x and x′. Instead of the complex linear approach of section 2.3.3, the 3D

coordinates of X are obtained as follows:

Z = (b · f)/(u− u′) (2.12)

X = (u · Z)/f

Y = (v · Z)/f

where b is the baseline, or the distance between the optical centers, and u, v are horizontal

and vertical pixel coordinates. This process requires minimal effort to compute and can

easily be parallelized for efficiency. Equation 2.12 requires to know correspondences between

features in the left and right images. Dense stereo matching algorithms allow to perform

this task on a per-pixel basis. Amongst all it is summarized here the Semi-Global Block

Matching (SGBM) algorithm [64], which constitute the basis of stereo depth perception in

chapter 3.

SGBM

The Semi Global Matching algorithm, also referred to as Semi-Global Block Matching in the

OpenCV implementation 1, computes a disparity image exploiting Mutual Information [143]

instead of intensities and approximates a global 2D smoothness constraint as a combination

of discrete 1D constraints over multiple paths across local image patches. A disparity image

is defined as

D(u, v) = u− u′
∣

∣

v
0 ≤ u ≤ cols(I) (2.13)

where u′ is the horizontal pixel coordinate in the right image I ′(u′, v) where the intensities

match the ones in I(u, v).

The cost function to minimize is denoted L(x, d) where x is the point in the left image

and d the disparity. The first contribution to L is the pixel-wise matching cost C(x, d)

which, instead of being simply defined as a difference of local intensities from I ′ and I,

is computed as a function of the mutual information between the two in a local window.

Mutual information, as discussed in [143] provides an invariant quantity to illumination.

On a side note, the well-known implementation of the function in OpenCV substitutes this

step with a simpler intensity difference using the Birchfield-Tomasi metric [12].

A second contribution to the cost function is proportional to the difference between

the disparities in a neighborhood of x and the disparity of x. This constraint penalizes

regions where the disparity changes rapidly, which is likely due to noise or ambiguous costs

computed as part of C. Instead of aggregating this part of the cost in just the horizontal

direction, 16 paths are defined crossing the position of x.

1https://docs.opencv.org
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Chapter 3

Relocalization on Submaps using

Bags of Binary Words

3.1 Introduction

A fundamental requirement for long-term exploration of planetary environments is the abil-

ity of robotic agents to localize themselves across many consecutive mapping sessions. While

the Simultaneous Localization and Mapping (SLAM) problem for single agents equipped

with stereo cameras is solved efficiently from many state of the art algorithms, relocalization

and loop closure detection across different mapping sessions with changing viewpoints and

lighting conditions is still argument of research. In GPS-denied environments in fact no

global localization is available and a robot can only determine its ego-motion referring to

an arbitrarily located reference system. In order to refer findings and measurements to a

shared map, heterogeneous robotic teams or individual agents over multiple sessions, must

be able to localize themselves on a common ground. The task of place recognition using

stereo camera systems is traditionally tackled as a similarity search across a set of captured

frames, therefore exploiting images instead of 3D structure. Images are in fact a rich source

of information and similarity can be detected by matching feature descriptors in a large

database through efficient search strategies [31, 30, 97]. Other approaches, following the

SeqSLAM paradigm [93, 126, 54], are instead applied at image sequences captured while

repeating the same trajectories. In this way, compressed images are matched in limited-size

time windows to limit the search effort. Nevertheless, the effectiveness of visual place recog-

nition is undermined in presence of lighting and viewpoint changes as many approaches are

difficult to generalize with respect to both of the aforementioned factors. The intuition on

which this work builds upon is that, while the environment appearance is always subject to

changes depending on light source, atmospheric conditions and viewpoint, the structure of

the environment is usually invariant. Stereo vision systems, a common choice as principal

perception system for planetary rovers, allow to measure statically the 3D structure of the

observed environment. This information can be used to describe the properties of local

explored regions to recall them in a robust and consistent way across multiple mapping

sessions or from heterogeneous teams of robots. Ignoring the effect of reconstruction noise,

3D information is indeed invariant on the type of structure sensor employed. Relocalization
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on point clouds is drawing increasing attention recently also in the autonomous driving field

of research, where 3D LiDAR clouds are usually employed. As an example, the authors

of [35] segment LiDAR clouds in individual objects such as cars or buildings and associate

to them compact and invariant learned descriptors for fast recall. Works such as [29, 72]

build global descriptors for single 3D scans while works as [56] exploits local 3D feature de-

scriptors. However, in the context of space missions stereo cameras as preferred to LiDAR

systems for their mechanical simplicity as they do not have intrinsic moving parts. This

comes with significant consequences as the triangulation accuracy of stereo cameras limits

the range at which the 3D structure can be reconstructed without moving the observer.

Secondly, while 3D LiDARs provide a complete representation of the environment having

usually a 360 degrees lateral Field of View (FoV), exploration is needed with stereo cameras

to build a complete representation of local shapes and features.

For all these reasons, in this chapter is presented a relocalization pipeline based on

point clouds. The environment is discretized in submaps of moderate extent, referred to

a global frame through the robot pose at the instant of triggering their creation. Each

submap, aggregated from stereo data, contains 3D structural information which is de-

scribed and compressed through binarized 3D descriptors. With the help of the Bag of

Words paradigm, submaps are treated as containers of descriptors, which are transformed

in Bag of Words vectors for fast recalling during search of loop closures. In order to combine

the information between structure and appearance, binarized 3D descriptors are enriched

with texture information by appending a short hand-crafted texture descriptor of limited

size inspired by Local Binary Patterns [1]. Finally, submap correspondences selected from

different mapping sessions are validated by a novel incremental voting scheme which demon-

strates superior robustness to outliers with respect to standard RANSAC approaches. This

novel relocalization pipeline is tested both on indoor datasets replicating natural features

and on outdoor sequences captured on Mount Etna, designated as a planetary analogous

environment.

3.2 Local 3D feature descriptors

Point clouds contain information about the structure of an environment through a discrete

set of 3D points which, if triangulated from RGB cameras, contain also color or grayscale

intensity information. An efficient way of characterizing the content of a point cloud is

through feature descriptors which contain local structure information in various form. This

is the basis for the relocalization pipeline proposed in this chapter. Here follows an overview

of the existing descriptors and a brief discussion on the choice for SHOT [139] amongst all.

Among the most acknowledged descriptors for 3D point clouds, it can be cited firstly

the Intrinsic Shape Signatures descriptor [158], which also sets the basis for the SHOT

descriptor. ISS aims to compute a repeatable local signature of a point cloud by counting

the occupancy of a spherical region oriented around a keypoint. The first step is then, given

a keypoint around which compute the descriptor, define a local reference frame to ensure

viewpoint invariance. Being pi the 3D coordinates of a point belonging to the pointcloud,

and pj each other point in the cloud at a distance lower than rframe from p, the axis of the
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reference frame are aligned to the eigenvectors of the covariance matrix M :

M(pi) =

∑

|pi−pj<rframe|

wj(pj − pi)(pj − pi)
T

∑

|pi−pj<rframe|

wj
(3.1)

This step outputs the directions of a reference system which are repeatable but ambiguous

in the decision of their direction. After choosing the z-axis direction as the eigenvector

with lowest eigenvalues and imposing the right-hand rule for the directions of x and y,

there are 4 possible orientations left for the reference system. A spherical region of radius

rframe is partitioned in the polar coordinates system to achieve robustness to rotational

errors in the reference frame definition. The resulting partitions are designed to have equal

solid angle (see figure 3.1). An occupational histogram is built by counting the presence

of points in each angular partition. Since 4 possible reference frames can be obtained by

aforementioned process, an histogram is create for each of them, resulting in 4 histograms

per keypoint. At matching time, the similarity between descriptors is evaluated using a

χ2 test. Being di = {d0, d1, ..., dK}i and dj = {d0, d1, ..., dK}j two descriptors relative to

points pi and pj , their similarity is computed as:

dist(di, dj) =

K
∑

k=0

(di,k − dj,k)
2

(di,k + dj,k)
(3.2)

The concept and definition of Local Reference Frame as in eq. 3.1 is used also by the

authors of [139] for the development of the SHOT (Unique Signatures of Histograms

for Local Surface Description) descriptor. The SHOT descriptor aims at providing

an overall robust and accurate description of local surface properties by exploiting both

the concepts of signatures and histograms. In the context of 3D descriptors, signature

based methods [133, 26, 103] describe geometrical properties of the 3D neighborhood of

a keypoint after defining a support structure, or a region defined by an invariant local

reference frame. While in signature-based methods the selected geometric properties are

computed and reported for each point in the support structure, histogram based methods

[158, 22, 68] encode the desired geometrical properties into bins. These bins are related to a

Figure 3.1: Left: polar coordinates system centered on the local reference frame. Right:
Subdivision of the spherical support region in sectors with equal solid angles. Figure from
[158]
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Figure 3.2: Support structure for the SHOT descriptor. Figure from [139]

quantization of the support volume and their definition strongly affects the robustness and

descriptiveness of the 3D descriptor. The first major contribution of the SHOT descriptor

is the introduction of a unique local reference frame for the cathegorization of the point

cloud geometric properties. As for the ISS descriptor, the axes directions are found by

computing the eigenvalues of the covariance matrix, or scatter matrix M which is now

linearly weighted using the distance of the evaluated point from the support center, or the

axis origin:

M(pi) =

∑

|pi−pj<rframe|

(rframe − ri)(pj − pi)(pj − pi)
T

∑

|pi−pj<rframe|

(rframe − ri)
(3.3)

where pi is the reference frame center, pj is any other point in the neighborhood defined

by a maximum distance rframe from pi. ri is instead the euclidean distance between pj

and pi. The covariance matrix M(pi) will be more influenced by the local neighborhood

of pi. The next step is to disambiguate the axes direction in a robust way. For both the

z and x axes, the positive direction is selected as the one where the majority of points

belong. The y axis is instead determined as the cross product between x and z. In

their reference paper, the authors suggest that the combination of the selected weighting

scheme and sign disambiguation provides a more repeatable selection of reference axes

for different levels of noise and clutter. Inspired by the SIFT descriptor for 2D image

features, the definition of the SHOT descriptor involves computing local surface properties

and embedding them into a multiple set of histograms placed over the support structure,

which delivers a signature-like flavor. The support structure is defined as represented in

figure 3.2, where it is represented a partition of space in 4 azimuth, 2 elevation and 2 radial

divisions. In reality a 8 part division of azimuth is employed. The geometric property

which is encoded in the descriptor is the normal angle computed in the local Reference

Frame. Note that normals are computed by solving equation 3.3 for each point in the cloud

and selecting z as the eigenvector with lowest eigenvalue. Instead of binning the angle θi

between each normal and the z axis of the local Reference Frame, the authors decided to

build equally spaced bin histograms of the cosine of the angle cosθi. This choice also relieve

some computational load since the cosine of the angle between two normal vectors can be

computed as the dot product of the two normalized vectors:

cos θi = Ni ·Nj (3.4)
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Figure 3.3: Representation of the CSHOT descriptor. Figure from [138]

For less descriptive regions of the point cloud (i.e. flat regions), the difference between

descriptors is then limited to lower values since in the angle space, histogram partitions

adjacent to the normal angle are coarser, while they are finer for orthogonal directions.

Additionally, after populating the histograms, values are interpolated in order to smooth

the difference between each neighbor bins. In presence of noise, points could randomly

switch the bin where they belong, increasing the difference between descriptors. Invariance

to the pointcloud density is then achieved by normalizing the histograms such that the sum

of each bin value results 1. The length of the resulting descriptor depends on the number

of cosine bins in each histogram. Following the quantization of angles suggested by the

authors, given 10 bins per histogram, the length would be 320. Following the guidelines of

the PCL library1, the recommended bin count is 11, which leads to a descriptor of size 352.

An improved version of the SHOT descriptor is also presented by the same authors

in [138], where color information is employed for building the descriptor. This version

of the SHOT descriptor is called CSHOT (or Color-SHOT) and exploits the fact that

using stereo cameras or RGB-D sensors, depth information is always accompanied by color

information. RGB-D sensors always have RGB cameras to color-map the point clouds, and

most of the stereo cameras are built as a rig of RGB cameras. The CSHOT descriptor is

built by joining the standard SHOT descriptor and a new ensemble of histograms which

encode the color difference between the keypoint k and the points belonging to the support

region. As each of the point in the cloud are associated to an RGB triplet {R,G,B}i, each

of the histogram bins store the frequencies of the following difference:

l(Ri, Rk) =
3

∑

c=1

|Ri(c)−Rk(c)| (3.5)

where c is the index representing the red, green and blue members of the RGB triplet R.

The choice of using an L1 norm for computing the difference was motivated by the authors

experiments.

The Fast Point Feature Histogram (FPFH) [114] is a speeded up version of the

previously presented Point Feature Histogram [115]. The underlying idea is to gather local

information about the point cloud without focusing on the center of the support region.

Given a keypoint and a reference radius, a reference spherical region defines a neighborhood

of points which are selected for computing the descriptor. All the available point pairs in the

1http://docs.pointclouds.org/1.8.1/structpcl 1 1 s h o t352.html
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align heterogeneous clouds representing parts of the same scenario captured by a ground

vehicle and an UAV. The ground vehicle builds a consistent map of the environment from

an accurate LiDAR SLAM [34] while an UAV performs dense mapping with a monocular

camera using a Structure-from-Motion approach as described in [42]. The resulting dense

3D map built by the monocular system is aligned with the UGV map by computing and

matching 3D descriptors and is then used for other purposes such as traversability estima-

tion. The authors evaluate multiple choices for 3D descriptors such as SHOT, FPFH and

ESF. As ESF is a global descriptor, the points in each cloud are clustered in segments. The

authors test their pipeline on an indoor and on an outdoor datasets, choosing the SHOT

and FPFH histogram radius empirically after finding plateauing performances. In their

experiments, no choice of descriptors guaranteed winning performances in all tests. The

usage of FPFH provided better accuracy within simple scenarios but decreasing rapidly

with noise, clutter and generally more challenging scenes. SHOT showed however robust

performances over all datasets, most of the times achieving the lowest translational and

rotational errors after alignment. The authors of [60] evaluate some combinations of 3D

descriptors and detectors for the purpose of pairwise point cloud fusion and 3D reconstruc-

tion. The feature descriptor involved in this study are SHOT and the C-SHOT variant,

PFH, FPFH and a variant of the PFH descriptor which leverages also RGB data similarly

to C-SHOT. The authors also evaluate the effectiveness of selecting regions of the cloud to

describe which deliver significant information through the usage of 3D keypoint detectors.

The detectors involved in this work are the Normal Aligned Radial Feature (NARF) and

3D SIFT. The NARF detector [132] extracts keypoints in regions of the point clouds which

are stable and can provide accurate surface normals and in proximity of borders. The

authors of [132] suggest infact that borders in point clouds, such as discontinuities between

foreground and background objects, provide stable and repeatable information if observed

from varying viewpoints. The SIFT 3D keypoint detector [23] is an adaptation of the well

known SIFT detector for image features. Instead of image intensities, the principle curva-

ture of points within the clouds is used to create a Gaussian scale space. Keypoints lie at

the extrema of the DoG (Difference-of-Gaussians) function as for the 2D SIFT detector.

Regarding the descriptor evaluation, the authors of [60] observe that for all the descriptors,

as they rely on computing difference between normals, the radius for computing normals

have a significant impact on the performances. Greater values for the support region radius

deliver robustness to noise at the price of a lower uniqueness and greater computational

effort. Increasing the radius leads to a quadratic increase in description time for PFH and

linear for FPFH, SHOT and C-SHOT. As far as the success rate in pairwise registration is

concerned, the results in the author’s datasets show that in most of the scenarios, replacing

3D keypoint detectors with simple voxel grids increased the success rate in matching point

clouds. In their experiments, the FPFH descriptors outperforms all the other descriptors

in most of the dataset. The SHOT descriptor however shows consistent performances even

if not the highest. It must be noted that the descriptors were evaluated on RGB-D scenes,

captured using a Microsoft Kinect. As it was mentioned before, the quality, resolution,

completeness and noise characterizing a pointcloud are critical aspects for the descriptor

uniqueness and robustness. Performances are expected to vary significantly between de-
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scriptors when different clouds and shapes are evaluated. The authors of the previously

cited [34] infact observed a distinct superiority of the SHOT descriptor for LiDAR gener-

ated clouds captured by a moving robot. In [57], the authors test a wide variety of feature

descriptors including SHOT and FPFH as well as other descriptors which are not imple-

mented in the Point Cloud Library. The set of descriptors is ranked for accuracy, influence

of noise and occlusions and finally computational efficiency. To give a fair insight on their

performances, multiple datasets are used ranging from synthetic models with high details

and low to no noise, to LiDAR scans and dense stereo point clouds. The authors observe

that the SHOT descriptor deliver similar performances to the FPFH descriptor, with some

fluctuations between datasets. For some datasets with high quality point clouds, SHOT

delivers higher precisions than FPFH and for LiDAR scans FPFH outperforms SHOT.

However, the performances are not favoring one particular descriptor versus the other in

all the sequences therefore no final decision can be made. Where SHOT excels over FPFH

is instead on robustness. The authors infact report a better tolerance of SHOT of Gaussian

noise applied to the cloud, which can approximate the noise in dense stereo camera clouds

while increasing the distance. It is then tested the influence of keypoint selection using

Harris3D and ISS, reporting better performances in all tests as compared with uniform

sampling. This results is in contradiction with [60]. Finally, the authors suggest to use

FPFH for ”time-crucial” applications with sparse pointclouds and to use SHOT in generic

applications with dense clouds as a trade-off between descriptiveness and computational

efficiency.

From this brief review of descriptor performances what emerges is that it not straigh-

forward to predict what level of performances can be achieved by selecting a 3D descriptor.

The characteristics of the clouds and the parameters choice for tuning the descriptors have

a strong influence on matching accuracy and robustness to noise. For these reasons, the

SHOT descriptor will be used in the following experiments as its performances, while not

always the highest, do not fluctuate much in different datasets. This and its robustness to

noise suggest that it can be trusted in a wide variety of applications.

3.2.1 Binarized SHOT descriptors (B-SHOT)

The SHOT descriptor, as already stated in the previous section, is a vector of 352 floating

point numbers resulting from discretizing the support region in 32 sectors and computing 11

bins histograms of point cloud normals for each spatial quantization. Such data structure

have a significant impact both on memory and computational effort. A single descriptor

requires 1408 bytes of memory which multiplied by thousands of descriptors for a single or

several clouds represent a considerable amount of data. While modern computing devices

for robotics can store several hundreds of gigabytes of storage, inter-robot communication

and data sharing for mapping and localization can suffer if regular SHOT descriptors are

shared over a network. For this reason, the authors of [107] introduce a binarization scheme

for SHOT which convert the standard floating point descriptor to a binary vector of the

same length. While binary descriptors have been used regularly in the past years for 2D

images, this work represents the first implementation of binary 3D descriptors for point

clouds. In this dissertation, this binarized version of SHOT will be referred to as B-SHOT.
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Binary descriptors (such as BRIEF for images) do not directly encode spatial properties

of the object to describe, such as intensity derivatives or filter responses. They instead

encode the outputs of some checks over the appearance and distribution of the input values

contained in a standard SHOT descriptor. Values are analyzed in tuples of four members.

Let be Si a SHOT descriptor and Bi the relative binary version. {B0, B1, B2, B3} are

computed from {S0, S1, S2, S3} and so on. To compute these four binary values, five discrete

conditions are analyzed. Let be Ssum the sum of four SHOT values such that Ssum =

S0 + S1 + S2 + S3. The following 5 discrete cases are considered in a recursive way. Each

case is checked if the previous do not hold:

• Case A: all values in {S0, S1, S2, S3} are zero. Then all values in {B0, B1, B2, B3} are

also set to zero.

• Case B: one value from {S0, S1, S2, S3} exceed the 90% of Ssum. Then the same

position of that particular value is set to 1 in the binary vector while the others are

set to 0.

• Case C: the previous cases do not hold and the sum of two of the values in {S0, S1, S2, S3}

exceed the 90% of Ssum. The position of those two numbers are set to 1 in the binary

vector

• Case D: the previous cases do not hold. There are 3 values whose sum exceeds the

90% of Ssum. Those positions are set to 1 in the binary version

• Case E: the previous conditions do not hold. All values in binary vectors are set to

1.

This sequence of checks is repeated for every other set of 4 contiguous positions in Si. This

procedure is effective and the resulting binary string is descriptive enough to generate true

correspondences between local regions of matching point clouds. This procedure however

comes with a slight loss of information. In cases B and D in fact, as it is considered only

the sum of the values and not the values themselves, looking at the binary descriptor it

is unknown which of the values contributed most to the sum. As an example, if the tuple

from the SHOT descriptor is {0.3, 0.7, 0, 0}, the corresponding binary version would be

{1, 1, 0, 0}. But this result would originate also from {0.7, 0.3, 0, 0} which belongs to a

different descriptor. However this little loss of information is compensated by a the great

advantage of fast matching using the Hamming distance.

3.2.2 Embedding Texture cues (B-Tex-SHOT)

As previously mentioned, many 3D descriptors include also color information beside struc-

ture. This results in improved uniqueness of the descriptor vector and by extension a higher

matching accuracy. Most of the existing approaches for embedding color information how-

ever tend to overpower the color contribution, such as in the case of C-SHOT where the

75% of the descriptor contains color information. Additionally, while being normalized

with respect to the central intensity values, the color part is not invariant to non-uniform
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Figure 3.5: 9x9 cell grid of the texture descriptor. Colored patches define the intensity
values compared with the center to build the binary descriptor

changes in lighting and appearance. In case of monochrome image sequences, the presence

of three different color channels is also unnecessary as the information will be repeated.

In order to increase the precision of B-SHOT we leverage local texture information in a

way inspired by Local Binary Patterns [1], where binary strings are produced by a series of

checks over intensity differences. We propose an original short descriptor, designed to not

overpower the 3D structure part, and as invariant as possible to illumination differences

and misplacements of keypoints and local reference systems.

To compute this texture descriptor, the first step is to recall the axes of the local

reference systems and all points of the cloud contained in the support region. Points are

supposed to be characterized by 4 coordinates: P = {x, y, z, I} where I is a monochrome

intensity value ranging from 0 to 255. The z axis of the reference system is aligned to the

local normal vector, while the x and y axis will identify a plane which for most natural

3D features can be considered to be approximately tangent to the local surface. The xy

plane is divided in a coarse 9x9 cell grid where the cell size is computed with respect to

the radius of the support region R:

lcell =
2R

9
(3.7)

All the 3D points belonging to the support region are projected in the xy plane and for

each cell an intensity value is determined as the average of all point intensities who lie on

the cell. For cell ij, being n the number of points projected on it,

Iij =
1

n

n
∑

k=0

Ik i, j ∈ [1, 9] (3.8)

To provide illumination invariance, the descriptor is assembled by comparing the intensities

in each cell to a local reference value Iref, which is defined as the average intensity of the

central 3x3 cells:

Iref =
1

9

6
∑

i,j=4

Iij (3.9)

It is tested the intensity of cells laying on 4 increasing radiuses from the center, as the
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pattern in figure 3.5 shows. Each value of the descriptor is then defined as:

dint(k) =







1 if I(k) > Iref + t

0 otherwise
(3.10)

where the index k ranges from 1 to 44, which is the number of tested cell intensities and

t is a small threshold accounting for noise usually set to 2. As an effect of the coarse cell

division, the resulting descriptor tolerates small misplacements of the keypoint location

and small rotations of the local reference frame. Finally, a compact binary descriptor

combining structure and texture is defined by appending dint to B-SHOT, hence the name

B-Tex-SHOT:

dB-Tex-SHOT = dB-SHOT ∪ dint (3.11)

3.2.3 Hamming Distance

Typically, in order to determine the pairwise similarity between descriptors d1, d2, in case

they are generic floating point vectors, the L2 norm is computed on their difference (or

Euclidean norm), which represents the length of the difference vector.

dist(d1, d2) = (

n
∑

i=0

(d1,i − d2,i)
2)

1
2 (3.12)

If d1 and d2 are similar, because they represent regions of similar appearance, then their

difference would be small and tend to 0. Therefore matching descriptors between two sets

can be found by a Nearest Neighbor search which can be summarized as:

argmind1,d2(dist(d1, d2)), ∀(d1, d2) ∈ {S1}, {S2} (3.13)

being {S} submaps, or containers of descriptors. dist(d1, d2) is an operation of compu-

tational complexity O(n) with n the number of elements in d1 and d2. If d1 and d2 are

floating point vectors, then the computational effort can be significant and sometimes re-

quiring several seconds or minutes in single-threaded applications. For binary vectors, this

task is order of magnitude faster if dist(d1, d2) is computed applying the Hamming distance

on the binary vector pair.

In Information theory, the Hamming distance between two strings or two vector of equal

length is the number of element in which they differ. As an example, let be B1 and B2 two

binary vectors:

B1 = {1, 1, 0,0, 1, 0, 1, 1}

B2 = {1, 1, 0,1, 1, 0, 1, 1}

Hd = 1

They differ in just one member, highlighted in bold, therefore their Hamming distance is

exactly 1. For two binary vectors, the Hamming distance is 0 if they are equal in all their

members and can be at most the number of elements in case they are all different. From
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Figure 3.6: Comparison of the matching time between SHOT descriptors and B-SHOT
descriptors. The time refers to single pairwise matching of descriptor using eq. 3.12 and
the Hamming distance. For a true comparison, eq. 3.12 is applied without computing the
square root since it is not needed for just finding minima. The boxplot is evaluated for
approximately 106 descriptor pairs.

the computational perspective, the Hamming distance is extremely fast to compute since

it is performed as an XOR operation which is part of the intrinsics operations included

in many processor instructions. Figure 3.6 shows the results of a timing evaluation for

computing matches of SHOT and B-SHOT descriptors. Matching times are evaluated for

approximately 106 descriptor matches. Eq. 3.12 is employed without computing the square

root since as only minima are searched within pairs. Computing also the square root does

not alter the resulting pairs and saves computational time. The results show that the

Hamming distance between two binary descriptors requires one order of magnitude less

time to compute than the squared L2 distance between float vectors.

3.2.4 Keypoint Selection

Having selected the appropriate feature descriptor, the remaining problem to solve is how

to extract relevant points where to compute the descriptor. As discussed previously, the

advantage of using keypoint detectors is not clear and sometimes simple voxel grids deliver

better performances. Multiple reasons can be stated on why not relying on detectors and

instead prefer other approaches:

• Computational complexity. Keypoint detectors tend to require a significant effort to

compute, in the orders of 100 to 101 seconds for an average submap. See figure 3.7

for an analysis of the total time spent in detection and description alternating the

ISS detector to a simple voxel grid.

• Their efficiency is strictly related to a variety of parameters to tune and their impact

is not always clear, limiting the robustness of the approach.

For these reasons in this work we opt for two simple strategies for keypoint selection, the

first is through appyling a voxel grid to segmented obstacle data, which will be used in the

indoor datasets, while the second approach relies on detecting high curvature regions in
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Figure 3.7: Comparison of times for keypoint extraction and SHOT descriptor computation.
The test refers to 11 pointclouds captures during robot operation in mixed indoor / outdoor
scenarios. Keypoints result from voxel grid downsampling of the clouds with leaf size equal
to 2 times the cloud resolution. ISS keypoint extraction is performed with a salient radius of
6 times the cloud resolution. Figure [b] shows the same timings normalized on the number
of extracted features. It is very visible the overhead imposed by the ISS feature extraction
step. The average numbers of keypoints per cloud are 2111 for the voxel grid approach and
36 for the ISS approach.

the cloud and will be used in outdoor datasets, where the distinction between obstacle and

traversable regions is not always clear.

During exploration, the point clouds that can be built by a moving stereo system are

typically incomplete. The borders of the pointclouds therefore deliver false information

about the appearance of the environment. Their existence is infact related to the sensing

methodology, such as the camera field of view, and not to the actual geometry. Match-

ing local information based on the cloud borders is then prone to errors. An important

preprocessing step of the clouds before attempting registration is to remove those regions

from descriptor evaluation. This problem is solved here with a very light and efficient

solution which jointly detects borders and exclude invalid keypoints. Two assumptions are

here considered:

• Points in each cloud represent surfaces and not 3D volumes

• All point clouds are firstly processed with a Voxel grid, which discretizes the space in

3D cubes of given size and for each volume it is computed the centroid of the points.

This step is performed as a filtering stage and not for the purpose of keypoint selection.

The resulting cloud have uniform point density without losing 3D information.

Figure 3.8 depicts the keypoint filtering process. Instead of computing the cloud boundaries

and discarding points in their proximity, each point in the cloud is investigated about the

number of its neighbors in the radius of the support structure for computing the descriptor.

If the previous conditions hold, being Pres the point cloud resolution and Rsupport the radius

of the support volume, each point located far from the boundaries should have a number
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Figure 3.8: Depiction of the keypoint selection strategy for computing SHOT descriptors.
The point cloud on the left represents a patch of points measured from the stereo camera
belonging to the environment. The borders of this patch are highlighed with a dashed red
line and do not represent the actual borders of the object therefore are not descriptive of its
structure. If keypoints are selected such as the support region intersects the cloud borders
(red circle), the obtained descriptors do not encode a repeatable signature. The keypoint
in the cloud center however captures complete information about the cloud and therefore
delivers valid information.

Figure 3.9: Example of keypoint rejection. Black dots are used keypoints, red points are
highlight the rejections.
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of neighbors n equal in average to:

n ≃
πR2

support

P 2
res

(3.14)

where πR2
support corresponds to the area inside the support radius and P 2

res corresponds to

the area of a square centered on a keypoint of side length the cloud resolution. To test a

keypoint for being valid or not, the number of its nearest neighbors inside a radius Rsupport

is compared with n. If it is lower than n then the keypoint most likely lies on the cloud edges

or on isolated patches due to noise, otherwise it is considered valid for computing SHOT

descriptors. Figure 3.9 shows the outcome of a keypoint filtering process, representing with

red colors the points which are discarded.

Keypoints from Obstacle Data

The first approach to extract keypoints is to apply a coarse voxel grid on segmented obstacle

data from stereo clouds (see figure 3.10a). In [16] is presented an approach to distinguish

non-traversable regions from stereo disparity images which is very efficient if the transition

from ground to obstacles is very sharp. The remaining step is to apply a voxel grid filter,

selecting usually boxes with 5x5x5cm dimensions, and computing the average coordinate

of points belonging to each voxel. This approach provides the advantage of being com-

putationally very light while the downsides resides on the fact that keypoint locations are

not repeatable because they are not identified from salient 3D properties. Nevertheless,

the underlying assumption is that obstacle information is significative and the radius of

support regions for computing descriptors are multiple times higher than the voxel grid

size.

Keypoints from High Curvature

In natural planetary-like environments, the distinction between traversable ground and

obstacles is not very clear. In this case keypoints are extracted by detecting and down-

sampling regions in the clouds presenting high curvatures, which are assumed to contain

significant 3D information. The first step to obtain a curvature value for each point in the

cloud is to compute the scatter matrix from equation 3.1. As previously discussed, the

three eigenvalues of the scatter matrix λ0 < λ1 < λ2 indicates the density of points in each

direction. An approximation of the curvature is given by the formula:

σ =
λ0

λ0 + λ1 + λ2
(3.15)

The points resulting from thresholding the cloud (see figure 3.10b) according to the value

of σ are then downsampled using a voxel grid.
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(a) Obstacles (b) High curvature regions

Figure 3.10: Regions in the clouds for keypoint extraction. (a) Obstacle data in light
blue computed in an indoor environment replicating natural features in form of rocks. (b)
Submap extracted in an outdoor environment. The colormap highlight curvature starting
from red which corresponds to zero.

3.3 Bags of Binary Words for Place Recognition

The Bag of Words paradigm consists in a strategy to classify documents by the frequency

of the words that they contain. While firstly applied for classification of text documents

[6], the Bag of Words approach has been widely applied to the field of computer vision for

performing place recognition tasks [128] and loop closure detection. In computer vision, the

task of recalling similar images from a highly populated set, which can be a video captured

from a mobile robot, can be very onerous from a computational perspective depending on

the approach employed. As images are represented as matrices of millions of elements, it

is unconvenient both to store them as such and to compare them pixel-wise for detecting

similarity. For this reason, the seminal works [102, 33, 44] showed how to summarize the

information contained in images by relying on using sparse sets of feature descriptors as

visual words. The first step is to generate off-line a vocabulary of ordered visual descriptors

in a partially supervised manner using selected descriptors which should reflect all the

observable feature types in images. An image is converted into a Bag of Visual Words by

counting the frequency of the detected descriptors associated to words in the vocabulary.

This way, multiple images can be compared for their similarity by computing the similarity

between their Bag of Words representation, allowing loop closure detection up to the frame

rate of a video feed. As this approach is both effective and fast, several state of the art

visual SLAM systems relies on Bag of Words (or Bag of Visual Words) for loop closure

detection, such as ORB-SLAM2, S-PTAM, RTAB-MAP and others.

In this work, the Bag of Words paradigm is utilized in a novel approach for relocaliza-

tion and loop closure detection. Instead of using visual words, a vocabulary is generated

from binary 3D descriptors which encapsulate geometric information about discretized sec-

tions of the mapped environment, called submaps. Each submap, which can contain up to

hundreds of thousands of 3D points, is summarized by a Bag of Word vector which encode

the frequency of 3D descriptors. Similar submaps are found by comparing the their Bag of

Words vectors in a very fast and efficient way, finding candidate matches in the order of

milliseconds. As the vocabulary contains binary vectors, the memory footprint of the data
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Figure 3.11: Simple representation of a tree structure with k = 3 and L = 3. Green dots
represent words, purple dots represent nodes

structure is extremely reduced compared to vocabularies of float descriptors, facilitating

storage and communication of the vocabulary in resource constrained platforms.

3.3.1 Building the Vocabulary Tree

The vocabulary is an ordered container of reference elements, or words, whose presence

is detected for building Bag-of-Words vectors. The vocabulary must therefore be built in

advance so that each vector to be compared refers to the frequency of the same set of words.

In a vocabulary of text words, each element can be efficiently queried as they are ordered

alphabetically. An order is therefore necessary also with generic word types such as visual

descriptors or 3D descriptors. Generic feature descriptors can be ordered using distance

metrics since it is always defined a function which returns a pair-wise similarity score. A

vocabulary of descriptors can be built by sub-dividing the descriptor space in W clusters

as in [129] so that Bag of Words vector can be built by counting the frequencies of indexes

of clusters. A more efficient approach however, is to build the vocabulary as an hierarchical

set of clusters, which enclose descriptors more and more similar as the clustering level

increase. The vocabulary can be then be represented as a tree. Let be k the number of

choosen clusters per each level and L the number of levels, the number of words, or the

vocabulary nodes at the deeper level is:

W = kL (3.16)

The clustering process is based on the k-means++ algorithm [5] which aims at grouping

descriptors based on their proximity in such a way that the distances between descriptors

and their cluster center are minimum. Following the notation the author’s paper, let χ

denote a set of descriptors, initially the entire set. Let be xi the i-th descriptor in this

set and D(x) the preferred distance metric between the descriptor and the closest cluster

center to x. D(x) can be an Euclidean distance as well as a Hamming distance in case of

binary descriptors. The k-means++ algorithm serves to give an optimal first estimate of

the cluster centers before using a regular k-means algorithm for growing the cluster. The

procedure is structured as follows:

1. Select the first cluster center c1 by randomly extracting a point from χ
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Figure 3.12: Schematic representation of the vocabulary hierarchical tree structure. Each
represents a descriptor in the descriptor space, here represented as a 2D space. Each bigger
dot represent a cluster center, clusters are higlighted with different colors. Each cluster is
subdivided itself with the same k-means approach for a finite number of levels L

2. Select each other cluster ci by sampling x with probability

D(x)2
∑

xD(x)2

where D(x) is the distance from x to the closest cluster center c. The number of

clusters grow after each iteration

3. Repeat the previous point until the desired number of clusters has been initalized

At this point, the standard k-means algorithm can be used to cluster the descriptors:

1. Associate each descriptor x with the closest cluster, i.e. the cluster ci for which the

distance with x is minimum

2. Update the position of each cluster ci by re-computing the centroid of the descriptors

belonging to the i-th cluster

3. Repeat the above steps until convergence

This procedure defines the clusterization of a single level, a hierarchical tree structure of

nodes is generated by repeating the same procedure for each of the k clusters. Figure 3.12

depicts this process, and figure 3.11 represents the tree structure of the resulting vocabulary.

Word weighting

In text documents, not all words have the same impact on defining their category. Articles

or prepositions are too common across different texts and therefore are not discriminative

enough. With descriptors of 3D clouds the same principle applies as well, local proper-

ties which are present across several point clouds are not useful to identify one of them
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in particular. In order to mitigate this inefficiency, words are associated to a weight term

as suggested in [zissermann2006] using a term frequency-inverse document frequency ap-

proach. Weights are determined by two contributions: the term frequency and the inverse

document frequency. The first contribution can be computed as follows:

tf(i, S) =
ni,S
nS

(3.17)

Where ni,S is the number of occurrences of the word i in submap S and nS is the number

of words contained in submap S. This weight contribution belongs to the interval [0; 1]

and favors words which have a high occurrence in a point cloud suggesting that they give

a significant character to that entity. However, as previously mentioned, if the same highly

frequent words are present in all point clouds, they have a very low discriminative power and

must be accounted less. For this purpose, the inverse document frequency is introduced:

idf(i) = log(
N

ni
) (3.18)

where N is the number of clouds used for generating the vocabulary and ni is the number

of clouds which contain the word i. This term is high if the smallest number of clouds

possible contains a certain word. The combination of the two terms results in the final

weigth:

wi = tf(i) · idf(i) (3.19)

and it is high when a point cloud contains multiple occurrencies of a word i while the other

clouds have none. Other options are available for computing weights, such as using the

plain term frequency or a simpler binary scheme where the weigth is 1 if the cloud contains

that words, regardless of the frequency, or 0 otherwise. In our experiments the combined

approach of term frequency and inverse document frequency leads to the best results.

3.3.2 Bags of Binary Words Vectors

After the vocabulary is generated in a first training sequence, it is possible to convert new

point clouds in Bag of Words vectors v. Figure 3.13 depicts the process. For each submap,

the extracted binary descriptors are fed into the trained vocabulary. At each level, the

node which results in the lowest Hamming distance is selected until the lowest level is

reached. The leaf index and correspondent weight is added to the BoW vector v. After

processing all the descriptors in the target submap, the Bag of Words vector is complete

and represents a signature for the submap, storing its identity in terms of indexes and

weigths instead of a stack of descriptors. As a final step, all weights comprised in v are

normalized therefore accounting for the different number of words that two Bag of Words

vectors might have. This representation allows for a very fast matching between submaps

by computing a pair-wise score of Bag of Words vectors instead of descriptor to descriptor

distances. As suggested in [102], a similarity score between two Bag of Words vectors v

and w can be computed as:

s(v,w) = 1−
1

2
‖v −w‖1 (3.20)
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Figure 3.15: Plots of the weights as a function of the Hamming distance. In this example,
Hamming distances are contained in the interval [0; 396] where 396 is the length of the
B-Tex-SHOT descriptor. Left: plot of the function with fixed Hthresh = 20. Right: plot of
the function with fixed λ = 1

α, β ensure that, for a given value of λ, the following constraints are satisfied:

α

1 + λ ·Hthresh

+ β = 1 (3.24)

α

1 + λ · length(d)
+ β = 0

The first constraint ensures that if the Hamming distance is in the interval [0;Hthresh], the

additional weighting term is 1, otherwise if the Hamming distance is equal to te length of

the descriptor, the weight is 0. The Hamming distance is in fact maximum when each of

the bit fields in the binary descriptors are different from each other. Selecting a value for λ,

which defines the steepness of the function, ad Hthresh which defines the maximum distance

for which no additional weigths are applied, the other parameters can be determined as:

β =
1 + λHthresh

λ(Hthresh − length(d))
(3.25)

α = −β − λ · length(d) · β

the function is then fully determined and its shape can be observed in figure 3.15.

3.4 Relocalization

3.4.1 Candidates Selection

The scoring scheme described in section 3.3.2 is intended to provide a metric proportional to

the pair-wise similarity of submaps reflecting the fact that they might or might not contain

common words. Under the hypothesis that the vocabulary is descriptive and well-formed,

meaning that it contains words that belongs to the observed environment and the frequency

of those words as they appear in the vocabulary is as uniform as possible, high correlation

between vectors suggest that the submaps match. However, a challenge arises when good

candidates for submap matching must be selected from a set because the absolute values
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of the scores are very dependent on a variety of factors such as the vocabulary size and

composition. Traditional means of finding best matches between vectors, may they be visual

descriptors or other types of descriptors, can be divided in two families of approaches:

• Nearest Neighbor search: let be {D}i=1...n a set of database, or train descriptors

and {Q}j=1...m a set of query descriptors for those it is to be found the best match

in {D}. Let also be s(qi,dj) a scoring function which computes the similarity of

the two descriptors. In many applications, this scoring function might be an L2

norm of the descriptor difference, or the Euclidean distance. The Nearest Neighbor

search consists then in finding, for each qi, the database descriptor qi for which s is

minimum. This test is usually performed a second time by comparing not only the

query descriptors with the train descriptors but also the train with query descriptors,

consistent couples are then selected as matches. If the two sets of descriptors are very

different, the Nearest Neighbor search will eventually deliver matches with are false

in reality. Such test should be then accompanied with a threshold check so that only

consistent matches in the forward and backward pass have a distance between the

descriptors which is lower than a threshold. This threshold is usually handcrafted and

must be applicable for all the tests. This scheme can not be applied in the submap

matching scenario as there is no clear and repeatable way to select a fixed threshold

value, as it must be dependent on the vocabulary usage.

• Ratio test: originally proposed by Lowe in [84], it does not consider any absolute

value of the descriptor pairs scores or distances. The ratio test instead rewards the

uniqueness of scores. For all query descriptors qi and for all train descriptors dj , a

matching pair is selected if the highest score from qi to each train descriptor is higher

than the second highest multiplied by a given value. This means that a matching

pair is selected if its score “spikes” with respect to all the others. In the context of

submap matching this cannot be applied since many train submaps can have very

similar scores with the query if they share observations of the same parts of the

environment.

The impossibility of choosing fixed score thresholds and the fact that often recalls do not

spike in a unique way, requires to develop a custom selection scheme for this context.

The procedure developed for this matter is summarized in algorithm 1. The candidate

selection scheme proposed in this section is intended to run online at submap generation

time. Given a first set of submaps from the same robot or another robot obtained in a

previous SLAM session, the goal is to select a number of submaps to be fed in the further

steps of the relocalization pipeline such that they are minimal and most representative of

good candidate matches.

As a new SLAM session begins, the candidates selection scheme waits to receive a

minimum number of submaps. The first step is, in fact, to evaluate the spectrum of scores

which can be expected during the mapping session. That is done in order to be able to

threshold the scores based on the expected range between maximum and minimum values.
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After having received nstart submaps, a matching threshold is initialized as:

T = trel ∗ (bestMax− bestMin) + bestMin (3.26)

where bestMax and bestMin are the highest and lower scores received so far and trel is

the only parameter which must be manually decided prior to execution. trel is a relative

threshold and ranges from 0 to 1. The pipeline, initialized as described, picks matching

Algorithm 1: Selection of candidate Submap matches from BoW scores

Input :

• {si}: BoW scores between i-th submap and database submaps

• t: relative matching threshold over BoW scores, t ∈ [0, 1]

• nstart: minimum number of submaps to trigger a relocalization attempt

Output:

• {Ci}: set of candidate matches from current submaps to database

1 bestMax = 0
2 bestMin = Inf
3 if i < nstart then
4 update bestMax
5 update bestMin
6 store {Si} for future use

7 end

8 else if i = nstart then
9 update bestMax

10 update bestMin
11 T = t ∗ (bestMax− bestMin) + bestMin
12 foreach stored {sj} do

13 add to {Ci} each entry k in {sj} such that {sj}k > T
14 end

15 end

16 else if i > nstart then
17 update bestMax
18 update bestMin
19 T = t ∗ (bestMax− bestMin) + bestMin
20 add to {Ci} each entry k in {si} such that {si}k > T

21 end

candidated based on their relatively high scores with respect to the others. If the first

submaps have very low absolutes scores and therefore represent different scenarios, wrong

candidates would be still passed to further checks and hopefully rejected. However, at each

new submap reception, the values bestMax and bestMin are updated, so that when actual

matching submaps are received, the relative threshold Trel is updated to higher values and

from that time on, only more and more correct matches are sent to the next stages of the

pipeline. This selection scheme is therefore designed to initialize to some performance level
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and update iteratively adapting to the score ranges which are observed at each submap

receival.

3.4.2 Match Validation

Once candidates submap matches are extracted looking at high BoW scores, a validation

scheme must be implemented in order to discard all the false matches and only keep the

correct ones, in case they exist. The false matches rejection scheme implemented in the sin-

gle robot SLAM pipeline of [122] is not applicable in this case, as it relies on a strong prior

about the pose of submaps, considering also the uncertainty over the pose estimates. For

relocalization, no pose prior exists between consequent runs as estimating a first transfor-

mation between the two is the actual objective of the system. While the candidate selection

scheme relies on bag of binary words created using binary descriptors derived from SHOT,

the validation stage employs the original SHOT descriptors which are stored in memory.

Given a pair of submaps S1 and S2 selected as relocalization candidates, the first step is to

find correspondences between the two sets of SHOT descriptors {D} ∈ S1 and {Q} ∈ S2 by

performing a Nearest Neighbor search in two directions. For each di ∈ {D} the descriptor

qj ∈ {Q} is a match only if di is Nearest Neighbor of qj and qj is Nearest Neighbor of di.

Numerous correspondences amongst the ones computed are expected to be wrong. This is

because 3D information can be challenging to match if captured by stereo vision systems

instead of precise 3D LiDAR sensors. Traditionally, outlier rejection schemes when aligning

point clouds or images rely on RANSAC [41] which is prone to fail if the number of outliers

exceeds the number of inliers in estimating a model. In this case, the model to estimate

would be a 4D transformation from two submaps T1
2 excluding the roll and pitch angles

which are directly observable from IMU measurements, while {x, y, z, ψ} can drift. The

probability of success for the RANSAC algorithm is infact:

P (success) = (1− wn)k (3.27)

where w is the fraction of inliers, n is the number of samples selected to compute the model

in the current iteration and k is the number of iterations performed. As visible in figure

3.16, the probability of failing for RANSAC is almost 1 for the expected fractions of inliers

which can likely be lower than 0.3 for submaps which share actual descriptor matches. The

only way for the RANSAC algorithm to return a set of inliers is to lower the minimum

consensus parameter, which defines the fraction of input data that must comply with the

candidate model. By doing so, there would be no obvious way to distinguish between wrong

and correct models in the case where wrong descriptor matches outnumber the correct one,

if present. Therefore the RANSAC algorithm alone can not be applied to this scenario.

The process of selecting correct matches between point clouds is modeled as a voting

process of 4D transformations. The underlying hypothesis is infact that wrong descriptor

matches should vote for 4D transformations randomly placed in the x y z and yaw space,

while correct transformations, if present, should be voted repeatedly by multiple matches

both across the same submap pair as well as consequent submap pairs.
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Figure 3.16: Probability of failure in the RANSAC algorithm to find a good model between
the dataset corrupted by outliers. As more outliers are present, the fraction of inliers is
lower and the probability of failing is steeply increasing. More iterations help to select and
validate good models however the computational time is O(k) where k is the number of
iterations

Hough3D Clustering

Given a submap pair candidate for match verification, the matched SHOT descriptors are

clustered such that each resulting group of matches suggest the same rigid transformation

and furthermore resembles the correspondences between the same 3D model (such as a rock,

or in general an agglomerate of close keypoints) across the two submaps. The grouping

scheme is presented in [137] and it is here very briefly summarized. Inputs to the algorithm

are matched keypoints (regardless of the descriptor employed) and the Local Reference

Systems associated to each of them. Given a model instance, which in generic input

scenes can be a cluster of neighbor keypoints over a rock, a unique reference point for

that model is computed as the centroid of the set of keypoints. It is also stored the set of

vectors pointing from each keypoint in the model to the reference point (blue vectors in

figure 3.18). Each blue vector connecting keypoints to the reference point is stored in the

local coordinates of each reference frame. After descriptor matching, each corresponding

keypoint in the scene casts a vote in a 3D Hough space regarding the coordinates of the

reference point (pointed by green lines in fig 3.18). If multiple scene keypoints vote for the

same position of the reference point, then they likely represent the same object instance.

While the aforementioned process is related to just one model and a target scene comprising

(a) Descriptor Matches (b) Hough3D Grouping

Figure 3.17: This figure represents the effect of grouping descriptor matches across two
submaps using Hough3D. Groups of matches who suggest the same rigid transformation
are labeled with different colors.
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multiple models, the PCL2 implementation of the Hough3D voting scheme embeds the

algorithm in a RANSAC process to extract multiple models from a first pointcloud and

grouped correspondences with matched keypoints in a second point cloud. This process

helps to forward to the next validation step only groups of consistent keypoint matches

driving the selection of good transformation candidates between pairs of candidate submap

matches.

3.4.3 Transformation Clustering

The previous step shows how the whole set of individual keypoint matches are grouped in

a discrete set of clusters identifying the correlation of aggregated keypoints which resemble

the same object and define individual hypotheses of rigid transformations between the two

submaps. In order to validate a match between two submaps, each keypoint group after

Hough3D votes for a specific transformation that aligns the origins of the first and second

mapping sessions. As depicted in figure 3.19, the rigid transformation between two keypoint

clusters identifies the relative pose of the two origins through the local pose of each submap.

Under the hypothesis that the query and database SLAM sessions are not characterized

by excessive localization errors, all the reference frames of matching submaps should differ

by a constant rigid transformation, or more generally their difference should be bound in

a small interval. Let be Ti and Tj the rigid transformations between the local reference

frame and the respective map origins of two matching submaps from a database and query

SLAM session (see figure 3.19). The transformation Ti
j is computed during the Hough3D

grouping step for each keypoint cluster and does not account for the pose of each submap

respectively to their global origin. Instead it is derived from the local coordinates of each

keypoint which are expressed in the local origin of each submap. However, the reference

frame of each submap is expressed in the respective origin from the most recent 6D SLAM

pose estimate T
q
i for the second session (or relocalization session) and Tdb

j for the submap

in the first session. As each submap is rigid, any transformation applied to their points

applies also to their local reference frame, therefore it can be easily shown with the help of

figure 3.19 that:

Tdb
q

∣

∣

clk
= Tdb

j ·Tj
i · (T

q
i )

−1
∣

∣

clk
(3.28)

where Tdb
q is the transformation between the origins of the first and second SLAM session,

and it is the ultimate target of the relocalization pipeline. Eq. 3.28 is however evaluated

2http://pointclouds.org/

Figure 3.18: Depiction of the Hough3D voting scheme to recognize instances of an object
model in a scene where multiple objects are present. Figure from [137]
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Figure 3.19: Schematic representation of the rigid transformations between pairs of match-
ing submaps and the respective SLAM session origins. Dashed lines highlight the keypoint
matches grouped from Hough3D voting across the two submaps. The rigid transformation
that they identify leads to the transformation between the two session origins through the
local pose of each submap

for the inter-submap transformation T
j
i which is suggested by the k − th keypoint group

after Hough3D, and can be either a cluster of correct keypoint matches or not. In order to

select only the transformations suggested from clusters of correct matches, a voting scheme

is established on the 4D coordinates of Tdb
q

∣

∣

clk
= {x, y, z, ψ}. Should multiple groups of

correct keypoint matches be present, the transformation between the reference systems

that they vote for should gather more votes than the wrong ones because it can safely

be assumed that wrong matches vote for random transformations. This voting process is

described in detail and validated over synthetic tests in the following paragraph, and it is

performed across several submap matches until a set of correct transformations is safely

selected as winner.

An Incremental Clustering Scheme for 4D Transformations

The naive solution of discretizing the transformation space into bins of given dimension is

very likely to lack uniqueness. If for example the center of a set of good transformations

is located between two adjacent bins, their similar probability would render the choice

between the two ambiguous. An incremental clustering technique is therefore developed in

order to:

• Group into clusters a growing number of transformations

• Adapt the cluster boundaries without relying on fixed bins

The first transformation fed in the incremental clusterer defines the first cluster center. For

each other new transformations, the closest cluster center is found by minimizing the L2

distance between the current transformation and the cluster origins. It is also minimized
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Algorithm 2: Incremental Clustering Algorithm for computing consensus over a
candidate set of transformations
Input :

• Tdb
q

∣

∣

clk
: 4D Transformation between the origins of the two sessions as suggested by

Hough3D cluster k ({x, y, z, φ})

• txyz: spatial threshold for grouping transformations

• tφ: yaw threshold for grouping transformations

• tp: ratio threshold for accepting a cluster

Output:

• T: consensus transformation for relocalization

1 if first transformation then

2 initialize clusters {C}
3 end

4 else

5 search for closest cluster Ci

6 if Ti < txyz & tφ then

7 add Ti to cluster Ci

8 recompute Ci as new centroid

9 end

10 else

11 add new cluster to {C}
12 end

13 end

14 compute Pi for each cluster
15 normalize Pi
16 if 1− p2nd

pmax
> tp then

17 return Ti

18 end
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(a) 5 tf 2D sample (b) 5 tf histogram

(c) 100 tf 2D sample (d) 100 tf histogram

(e) 1000 tf 2D sample (f) 1000 tf histogram

Figure 3.20: Results of the iterative clustering technique described in algorithm 2. The
full 4D transformations are simplified as 2D translations for an easier visualization. (a)
and (b) show the outcome of clustering a realistic number of 5 transformations, (c) and
(d) are related to a number of 100 transformations. Samples are randomly drawn accord-
ing to a Gaussian distribution centered on the origin, representing true positives and a
second uniform distribution representing noise. (e) and (f) show clusters from an uniform
distribution of 5000 samples, just for testing purposes
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the difference in yaw angles:

argmini







||Txyz − cxyz||2

|Tψ − cψ|
(3.29)

where Txyz and cxyz denote the translation component of the current transformation and

the i-th cluster, while Tψ and cψ are related to the yaw. If the spatial and angular

distances between the closest cluster center are lower than the thresholds txyz and tψ,

the current transformation is added to the i-th cluster. The value of ci is then updated

by averaging all the cluster member, therefore representing the centroid of all members.

In case the distances exceed the thresholds then a new cluster is initialized. Figure 3.20

represent the results of this clustering scheme by simplifying the transformations to 2D

planar translations. Two scenarios are generated by sampling values from two distribution,

a Gaussian distribution with zero mean and unitary sigma and an uniform distribution in

x ∈ [−5, 5] and y ∈ [−5, 5]. The uniform distribution serves at representing outliers. In the

first scenario 100 samples are drawn while in the second one just 5 samples are considered.

The second scenario is most representative of the number of relocalization matches that

can be found in a real-world SLAM session. In both sessions, the distance threshold is set

to 1. From the results, it emerges that the clustering scheme is effective in grouping the

highest number of elements belonging to the “true” set of transformations. The normalized

histograms on the right are generated by dividing the cluster member count by the total

number of candidates:

Pi =
nc
nall

(3.30)

A good cluster of transformations must also be unique, meaning that its probability should

be much higher than all the others. To ensure that the most probable transformations are

correct, the highest probability value is tested against the second highest in a ratio test.

ci is correct ⇐⇒

(

1−
P2nd

Pmax

)

≥ 0.5 (3.31)

The value of 0.5 discriminates in fact the winning cluster in case of the lowest number of

candidates possible. This is the case of a cluster of size 2 and just one more cluster of size

1. The trivial case of a single cluster is not considered. For situations where more inliers

are present, the ratio test should score higher values than the imposed threshold.

3.5 Experiments: Inter-Robot and Multi-Agents Loop Clo-

sure

3.5.1 The Lightweight Rover Unit (LRU)

The relocalization pipeline discussed in this chapter, while being potentially employable

by any flying or ground exploration vehicle, focuses on the usage of the LRU (Lightweight

Rover Unit) as the experimental setup. In figure 3.21 two rovers, namely LRU and LRU2,

are depicted operating in cooperation during the test campaign on Mount Etna for the
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(a) LRU on mount Etna (b) LRU and LRU2 on mount Etna

Figure 3.21: The LRU and LRU2 rovers during the test campaigns on Mount Etna in 2016.
Pictures from [123]. The pictures show LRU with a Kinova arm attached to the rear for
manipulation and LRU2 carrying a hyper-spectral camera along with the stereo head and
monocular color camera.

ROBEX (Robotic Exploration of Extreme Environments)3 mission. A detailed descrip-

tion of the LRU rovers as well as the SLAM system which provides localization for each

individual mapping session follows in the next sections.

The Rover

The LRU rover is designed to be a lightweight exploration vehicle relying on a robust loco-

motion system which can adapt to harsh terrain condition and using only vision systems for

navigation. The dimensions of the rover are approximately 1090 mm in length and 730 mm

in width. Four individually powered wheels, which can be turned in-place independently

from each other, guarantee travel velocities around 1 meter per second. Each actuated

joint, including wheel drives, is moved with a brushless DC motor built and validated at

DLR called ILM motors [58], also employed for the MASCOT (Mobile Asteroid Surface

Scout) lander [109] [110]. The wheels are attached to two bogies which are connected to

the rover body by a Serial Elastic Actuator (SEA). This solution allows to benefit from

both active and passive suspensions. The passive element allows damping of the travel

surface irregularities for the sake of a better visual estimation and pose filtering as well as

safety of internal electronic components. The active counterpart allows instead to adjust

the center of mass of the rover body in order to maximize traction in slopes or to have

3https://robex-alliance.de

Figure 3.22: Picture of the pan-tilt unit of the LRU rover. Figure from [149]
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Figure 3.23: Schematic representation of the localization and mapping system for the LRU
and LRU2 rovers. Picture modified from [122]. This scheme shows how sensor data (stereo
camera and IMU) is used to provide localization through Visual Odometry and filtering, and
how the relevant 3D information in from of obstacle data is used in the SLAM system along
with the filter estimates to produce a globally consistent 3D map. Inter-robot detections
through visual markers allow to merge two maps from collaborative robotic teams.

different views of the environment using the onboard pan-tilt head. As for the sensor setup,

the LRU rover employs two stereo camera heads (figure 3.22), one for visual localization

and other, rear-mounted for supervising the manipulation. Each stereo head employs two

monochromatic Guppy PRO-F125B cameras with 1/3” sensor size and resolution 1292x964.

The main stereo head has a 9 centimeter baseline while the secondary head has a 6 cen-

timeter baseline. The central camera is a Guppy PRO-F125C with identical sensor size

and resolution. Linear accelerations and angular velocities for filtering and attitude are

provided by a Xsens MTi-10 IMU which is mounted in the body barycenter. Processing of

stereo frames to produce disparity images is provided by a Spartan-6 LX75 FPGA, which

applies the Semi-Global Block Matching (SGBM) [64] algorithm of each incoming stereo

pair and produces disparity images of 1024x508 pixels resolution with a frame-rate of 14.6

Hz. All the further processing of data is performed by the on-board PC which is an Intel

NUC equipped with an i7-3740QM quad-core processor (CPU clock 2.70 GHz). Power is

provided by a couple of Li-Ion batteries with a nominal capacity of 208 Wh supplying a

voltage ranging from 23V to 30V.

6D SLAM

Figure 3.23 shows an overview of the localization and mapping architecture running onboard

the rovers [122]. Sensor data are processed in a hierarchical and decoupled way to both

provide instantaneous localization as well as consistent mapping for individual robots as
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Figure 3.24: Simplified example of SLAM graph. Each reference frame is a Local Refer-
ence Frame for the localization filter and serves as origin for the respective 3D submap
(grey boxes). Yellow boxes denote submaps whose bounding boxes overlap for a significant
amount and therefore are likely to match. Picture from [122]

well as cooperating teams. Stereo Visual Odometry provides visual localization using a

fixed window keyframe-based approach [65]. Camera poses estimated from VO are fused

with IMU data to provide accurate localization with respect to a Local Reference System

[118], switched periodically to the current robot location according to user-defined metrics

such as excess of travelled distance or excess of pose uncertainty. For a detailed discussion

on the visual-inertial visual estimation pipeline the reader is referred to [122].

Switching of Local Reference Frames partition the travelled environment in submaps,

partial point clouds which are assumed to be locally accurate given the low drift rate of

the visual-inertial localization. Within each submap, points belonging to obstacles are

distinguished from the full point cloud using an obstacle detector based on disparity data

[16]. Obstacle points are used for keypoint extraction and description through SHOT

features. 3D information is used to establish loop closure constraints in the pose graph

to correct localization errors and drifts. As suggested in [17] in fact, 3D information

from obstacle data provide unanbiguous and informative geometrical feature which can

be exploited for matching submaps, in other words finding corresponding submaps from

3D similarity and estimating the rototranslation between them. An exhaustive search

for pairwise matching submaps is infeasible, as for n submaps the number of possible

combinations is:
n!

2(n− 1)!
(3.32)

In the rover SLAM system, the method for detecting potentially matching submaps relies

examining the overlap between bounding boxes of submaps in the x − y plane, gravity

aligned (figure 3.24). Given the most recent optimized poses from the pose graph, the

uncertainty of each submap origin (origin of Local Reference Frames) inflates each submap

bounding box:

overlap′x = overlapx + 2 ·∆σx (3.33)

overlap′y = overlapy + 2 ·∆σy
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Trainer Node

Inputs

Outputs

callbackSubmap

compute B-Tex-SHOT

recursive k_medians clustering

compute TF-IDF weights

new Submap

Descriptor DB

Vocabulary

Figure 3.25: Functional scheme of the trainer ROS node. This node is used during the
first exploration stage, when the robot is constructing a 3D map for the first time. Inputs
to the node are submaps, discretizing the 3D space based on the covariance of the local
localization filter estimates. The trainer node receives new submaps, extracts SHOT de-
scriptors and binarize them. When a sufficient number of submaps is received, a kd-tree
organizes the descriptors in a hierarchical architecture, which will represent the vocabulary.
The vocabulary is then saved to disk as a yaml file as well as the set of binary descriptors
which represent the database information.

where overlapx and overlapy are the overlaps between a pair of submaps in x and y

directions. The inflated overlap values rank each pair of potential matches for which

overlapx,y > 2m2. Each submap pair undergoes validation as previously described in

section 3.4.2, this stage is shared with the relocalization pipeline.

This paragraph gave a brief overview of the localization and mapping system used by

the rovers to build a map and localize themselves. It is highlighted how the current system

performs loop closures and re-localization, which is by relying on prior information about

the possible location. It is then clear how the relocalization pipeline, focus of this chapter,

improves the mapping capabilities of the system by defining a selection scheme of matching

submaps without any loss of generality.

3.5.2 ROS Architecture

The relocalization pipeline is implemented in the ROS (Robot Operating System)4 environ-

ment, running on a Linux platform with an Intel Xeon E5-1620 v3 and 8 Gigabyte of RAM.

The performances observed with this workstation are similar to what can be expected from

the hardware running in the LRU robot. Each functional part of the relocalization pipeline

is embedded in ROS nodes, which are stand-alone applications receiving and publishing

custom timestamped messages to be shared along the robotic network. Two nodes are

dedicated to relocalization, one for the original run and the second for the relocalization

session.

4https://www.ros.org
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Table 3.1: General parameters for the relocalization pipeline

Context Parameter Name Value

Normals rsupport 10 - 15 cm

Keypoints lgrid 5 - 10 cm

SHOT rsupport 10 - 15 cm

Vocabulary k 9
L 6
weight scheme TF-IDF

BoW recall trel 0.3
nwait 3
Hthresh 50
λ 1

From SVD decomposition of the covariance matrix Mi, the eigenvector with the lowest

associated eigenvalues defines the direction of the local normal. The spatial distribution of

normals will be exploited by the SHOT descriptor to compute local features. The following

step is keypoint extraction, where a discrete set of 3D points is selected as the anchor

positions from which compute the SHOT descriptors. As already discussed in section 3.2.4,

two approaches can be switched depending on the scenario. If the traversable and non-

traversable areas are easy to identify, obstacles are segmented and downsampled. Otherwise

curvatures values, already computed while extracting the normal vectors, are thresholded

to select meaningful areas from the 3D standpoint and downsampled.

SHOT descriptors (section 3.2) are then computed on the selected keypoints using

support radiuses typically ranging from 10 to 15 centimeters. The resulting set of de-

scriptors, defined by arrays of 352 floating point values, is binarized using the approach

discussed in section 3.2.1. Both the original SHOT descriptors as well as the binary coun-

terpart are stored as part of the submap object, the first will be used for the purpose of

submap matching in the context of the current SLAM session, the second is used instead

to build a vocabulary tree of binary descriptors [44] [33] for 3D place recognition in the

context of multi-session and multi-robot mapping. The vocabulary is build as a kd-tree us-

ing the k-means algorithm, the general parameter values for this task are reported in table

3.1. At the end of the training or first session, the vocabulary is saved to disk, reporting

all the nodes and respective weights in a compressed YAML file. The choice of using com-

pact binary descriptor reflects in very low dimensions of the vocabulary file, which reaches

dimensions of few megabytes after training with ∼ 106 binary descriptors.

Relocalizer Node

The relocalizer node is run during the second mapping session in order to recognize pre-

viously visited places and localize the rover on the previous map. As the node is started,

the vocabulary is loaded from the system as well as a database of B-SHOT descriptors

extracted from the previous set of submaps. This allows to build at runtime the bag-of-

words vectors for the previous submaps according to the desired weighting scheme (section

3.3.3). As new submaps are received and processed as described for the trainer node, the
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Figure 3.27: Outcomes of a mapping session in the laboratory environment of the Robotics
and Mechatronics center at DLR in Oberpfaffenhofen near Munich. The environment
comprises mock-ups of rocks and natural features. The dimensions of 8x12 meters are
constrained by the field of view of a Vicon system to measure the true position of the LRU
robot. Different colors highlight the discretization of the full map in submaps. Colored
dots connected by a black dashed line represent the origin of submaps of the same color.
Only obstacle clouds are shown here, the ground is removed.

vocabulary is invoked to transform binary descriptors in bag-of-words vectors. Candidates

for relocalization are searched by computing the pairwise similarity scores as explained in

section 3.4.1. Each submap is referred to the current world reference system from the first

robot position at submap switch time, submap position are subjected to updates during the

SLAM session as inter-session loop closures are found. For this reason, a second thread in

the relocalization nodes listens to submap positions updates for computing alignment with

the database from the most recent positions. When more than nwait new submaps are pro-

cessed, the candidate selection pipeline elects a set of candidate matches between current

and database submaps which exibit high similarity scores. This measure of similarity does

not guarantee the correctness of a match, therefore each pair of candidate matches is fed to

a match validation stage. Here, the original SHOT descriptors are matched and grouped

using the Hough3D scheme. Transformations from the Hough3D groups are clustered in

an ordered probability histogram triggering relocalization if a consensus is met.

3.5.3 Preliminary Validation of BoW Recalls

As a first investigation of the effectiveness of bag-of-words scoring for pointcloud recall,

the relocalization pipeline is run using the same data for the training and localization

stages. This test serves as ensuring that similar pointclouds, or in this case identical

pointclouds, exhibit large bag-of-words scores. In order to not facilitate the recall process,

no thresholding schemes (section 3.3.3) are applied during the generation of bag-of-words

vectors. This way, any possible ambiguity between submap recalls due deficiencies of words

in the vocabulary tree would manifest in the results. In addition, even if the submap

pointclouds between the training and relocalization stages are identical, a rotation of 180

degrees is applied for just the relocalization stage. If the submaps were compared without
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any perturbations between them, the pair-wise scores would just result in perfect recalls:

scores of 1 for the same submaps otherwise 0. However, rotating the submaps for recalling

results in a different selection of keypoints, which are arranged in a voxel grid scheme.

Shifting the positions of keypoints results consequently in different local reference frame

orientations therefore different values for the SHOT descriptors. This trick mimics the

consequences of mapping the same environment in different times.

Figure 3.27 shows the outcomes of a mapping session where the LRU (Lightweight

Rover Unit) was driven around the test environment in the laboratories of the Robotics

and Mechatronics center at DLR in Oberpfaffenhofen near Munich. The test area for this

run comprise some mock-up surfaces of natural rocky features. A ceiling-mounted Vicon

tracking system provides continuous ground truth during the rover motion covering an area

of 8x12 meters, which results in a possible travel area of approximately 96 m2. During the

exploration session, the stereo camera is used to observe as much of the environment as

possible using the pan and tilt motion of the camera head. During this session, which is

approximately 600 seconds long, 12 submaps are collected, some of them also overlapping

to some extent. Thanks to the Vicon tracking system, the origin of each submap is known

with millimeter level accuracy, and a precise grade of overlap between the different submaps

can be computed.

Computing ground truth for the relocalization pipeline

The results of this relocalization pipeline can be observed as the results of a classifier. Given

a set of submaps for training and one for relocalization:

Sdb = {s1, s2, ..., sn, }db

Sreloc = {s1, s2, ..., sn, }reloc

the relocalization pipeline tries to predict to which of the submaps in Sdb each submap in

Sreloc is most similar. For this problem, a reference measure for performance evaluation can

be a similarity metric based on spatial overlap. Given the true submap origins measured

by the Vicon tracking system, each submap pair can be scored as follows. Let be n1 and

n2 the total number of 3D points in each submap of the pair 〈s1, s2〉. For each point pi

in s1, submap s2 can be searched for a Nearest Neighbor which is the point satisfying the

following relation:

argmin
pj

||pi − pj ||L2
pi ∈ s1, pj ∈ s2 (3.36)

For all sets of points in 3D space this search would produce an output. In order to guarantee

that the points in the resulting pair actually matches, a threshold on the Euclidean norm

must be set.

||pi − pj ||L2
< thresh (3.37)

Reasonable values of this threshold should be related to the pointcloud noise, therefore

in first approximation the threshold is set to a relaxed value of 0.5 meters. Let be npairs

the number of Nearest Neighbors pairs that satisfy eq. 3.37, a scoring scheme for grade of
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True Value

Value Positive Value Negative

Predicted

Value

Predicted Positive True Positive False Positive
Predicted Negative False Negative True Negative

Table 3.2: Confusion Matrix representing the possible outcomes of a classification task

overlap is defined as:

o(s1, s2) =
2 ∗ npairs
n1 + n2

(3.38)

where the multiplicative factor 2 relates to the fact that each pair involves 2 points. This

score is comprised between 0, when no pairs are closer than the set threshold, and 1 when

all points are closer than the threshold.

BoW recall vs True overlap

Figures 3.28 and 3.29 report the results of comparing the BoW scores for each submap pair

with the true overlap score defined in the previous section. Each submap of the set of 12

visibile in figure 3.27 is compared against the rotated set. Sub-plots in the two figures refer

to one individual submap and contain the BoW scores computed for all the other submaps

in the rotated set (red line). The blue lines refers to the true overlap computed by a Nearest

Neighbor search (equation 3.38). It is evident how for about half of the submaps, spikes in

the bag-of-words scores completely match spikes in the true overlap curves. For submaps 1-

7 the correlation between bag-of-words scores and spatial overlap is very unique suggesting

that in most cases BoW scores are a valid index for recalling correct matches between point

clouds. In some cases, local maxima suggest the possibility of detecting false matches. BoW

scores in fact measure the similarity between descriptors, which could be present in more

than one submap in the mapping session. Another explanation for these local maxima is in

the non-completeness of the vocabulary tree: the small perturbations introduced by the 180

degrees rotation of the submaps from the relocalization set introduce notable differences

between the new and old descriptors. When the vocabulary tree is queried with the new

set of descriptors, the bag-of-words vectors are populated with word indexes which do not

match with the new descriptors. In other words the cluster centers at the lowest level of

the vocabulary tree are still quite different from the new descriptors, ending in wrong 3D

matches. In conclusion, these results suggest that the proposed approach for relocalization

using bag of binary words is a feasible solution but the BoW vector building scheme must

take into account the possibility of having to deal with an incomplete vocabulary. This

motivates the need of a re-weighting scheme for the contributions to the bag of words

vectors (section 3.3.3) and its effectiveness is highlighted in the next section.

3.5.4 On the effect of BoW re-weighting

Traditional applications of bag-of-words based image retrieval make use of dense vocabu-

laries of features up to 106 elements. In [102], the authors show the performances of an

image retrieval algorithm which is most efficient when using a vocabulary tree with k = 6
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Comparison of Submap Overlaps and BoW Scores (1/2)
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Figure 3.28: Comparison of the bag-of-word scores between submaps and true spatial
correlation. Submaps in the mapping session shown in fig. 3.27 are tested against each
other. The BoW recall is computed as in eq.3.20 without any thresholding scheme applied.
Volumetric overlaps are computed as the fraction of 3D neighbors over the total number of
points in the submaps pair.
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Comparison of Submap Overlaps and BoW Scores (2/2)
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Figure 3.29: Comparison of the bag-of-word scores between submaps and true spatial
correlation. Submaps in the mapping session shown in fig. 3.27 are tested against each
other. The BoW recall is computed as in eq.3.20 without any thresholding scheme applied.
Volumetric overlaps are computed as the fraction of 3D neighbors over the total number of
points in the submaps pair.
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and L = 10 (for the meaning of these parameters, the reader is referred to section 3.3.1).

In their work, a MSER (Maximally Stable Extremal Regions) keypoint detector [32] is

used followed by SIFT feature description. This results in a well structured and descriptive

vocabulary. The well-known Visual SLAM algorithm ORB-SLAM [96] is provided with a

dedicated vocabulary of ORB feature descriptors whose size is again close to 106 elements.

Visual information is both fast to retrieve and densely packed in images. From a single

image, thousands of unique descriptors can be extracted if enough visual information is

present. This allows to easily build a visual vocabulary from a relatively limited amount of

data. Point clouds on the other hand such as the submaps here involved, require notable

efforts to build and the amount of 3d information that stereo images can deliver is lim-

ited. From thousands of images observing a restricted environment, especially comprising

natural features, only little numbers of 3D descriptors can be extracted. This challenge

both the uniqueness of the vocabulary that can be built as well as its size, which is usually

limited. In this section, the effects of re-weighting 3D words are investigated. Figure 3.30

provides an overview of the tasks involved in this evaluation.

Given two input submaps belonging respectively to the relocalization and training stage

(blue and red), the procedure of extracting binary descriptors and transforming to bag of

words vectors is identical. These tasks involve the same parameters such as support region

radiuses for normals and descriptors extraction as well as the vocabulary parameters. In

particular, the threshold Hthresh on the Hamming distances between descriptors and leafs

(eq. 3.23) is applied to both submaps. This parameter influences the final values contained

inside each BoW vector, affecting the final pair-wise similarity scores. This effect is then

systematic for each session. After scoring each of the bag-of-words pairs, it is needed

to select a threshold value such that all scores higher than this threshold are considered

correct, otherwise false. This value is the relative threshold trel in eq. 3.26. Modifying

these two parameters, Hthresh and trel, affect the distribution of true and false submap

matches.

The performances of this relocalization pipeline can be interpreted as those of a classifier

of correct matches using a precision-recall test. Submaps pairs can belong to two classes,

matching or non matching. As summarized in table 3.2, a ground truth for the submap

Figure 3.30: Schematic representation of the tasks involved for evaluating the effect of
thresholds.
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locations deliver information about the true values. In other words, the True value is

the value that a perfect classifier should be able to predict. The value that is actually

predicted by the classifier, which can be mistaken, is the predicted value highlighted on

the first column. If the classifier commits no errors, each of the predictions are either true

positives (TP) or true negatives (TN), meaning that the classifier predicts correctly if two

submaps match or not. When the classifier is wrong, it can either trigger a match between

non-matching submaps (FP) or not trigger a match when two submaps actually match

(FN).

To score the performances of such classifier, two metrics are particularly useful: preci-

sion and recall [104]. Precision is defined as:

Precision =
True Positives

True Positives+ False Positives
(3.39)

and describes the predictive accuracy of the classifier. In relevant words to this evaluation,

this metric contains information about how many of the predicted matches are actually

correct. A value of 0 would describe a classifier that just predict wrong values. On the

contrary, a value of 1 describes a perfect classifier. This metric however does not include

information about the completeness of the prediction: positives which are not detected by

the classifier do not influence the precision score. For such information, the Recall metric

is useful and is defined as:

Recall =
True Positives

True Positives+ False Negatives
(3.40)

The denominator of the Recall metric involves all the true values that the classifier should

detect. It is then a measure of how many of the true values are actually detected by the

classifier, regardless of the false positives. These two metrics are visualized at the same time

through the Precision-Recall curve. The threshold trel ∈ [0, 1] is varied along equal intervals

from the extrema of its domain in order to evaluate the performances of the relocalization

pipeline. Just as a reminder, this relative threshold acts as a discriminator of similarity

between submaps in terms of bag-of-words scoring: let be vi and vj bag-of-words vectors

of si and sj :

s(vi,vj) > T (trel) → si and sj match (3.41)

where T (trel) is defined in eq. 3.26. A single value for trel defines a certain behavior of the

relocalizer which is translated in a point along the Precision-Recall curve.

In the following sections the candidate selection scheme is evaluated firstly without

embedding texture information, therefore using the B-SHOT descriptor to build the vocab-

ulary and bag-of-words vectors. Finally, in section 3.5.5 we highlight the benefits of using

our novel B-Tex-SHOT.

IN OUT RUN

The classifier performances are evaluated on two multi-robot datasets. The first, denoted

as IN OUT RUN involves the LRU and LRU2 rovers exploring a partially overlapping envi-

ronment. Both robots start inside the test environment at the Robotics and Mechatronics
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Figure 3.31: Map and submap origins for the IN OUT RUN multi-robot mapping session.
In this session, LRU explores the laboratory environment (three rocks are visible in the
proximity of the coordinates [−3, 5]) and a workshop area (upper right) behind the Vicon-
covered zone. LRU2 instead explore partially the Vicon-covered zone, then moves towards
the hallway of the Robotics and Mechatronics center as well as the exterior of the building.
Trajectories and maps are manually aligned. As both maps are rigidly aligned, some
misalignments are visible due to inaccuracies in the outcomes of the SLAM system.
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(a) BoW scores - Hthresh = 50

(b) True overlap

Figure 3.32: Heatmaps representing the BoW scores and true overlap between the LRU
and LRU2 submaps for the multi-robot session in figure 3.31. For each of the two plots, the
x direction contains the indexes of submaps from the relocalization session performed by
LRU2 while the y direction encodes the indexes from the training session performed with
LRU
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(a) Hthresh = 350 (b) Hthresh = 200 (c) Hthresh = 100

(d) Hthresh = 50 (e) Hthresh = 20

Figure 3.33: Heatmaps of BoW recalls as in figure 3.32a where the Hamming threshold for
bag-of-words vector creation is varied in 5 decreasing values spanning from the maximum
352 to 20. This figure shows how decreasing the value for Hthresh helps discriminating good
candidates.
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Figure 3.34: Precision-Recall curve for the IN OUT RUN session. Each curve is plotted for
different values of Hthresh which significantly affect performances. PR curves are defined
by increasing trel from 0 (lower right part) to 1 (upper left part). The diamond marker on
each of the curve represents the trel value of 0.7, increasing trel generates the upper left
side of the curves. Heatmaps for the curves reported in this graph can be observed in figure
3.33
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center where Vicon coverage is available. Maps and trajectories are visible in figure 3.31:

blue and red colors are related respectively to LRU and LRU2. During the run, both

rovers use their stereo SLAM system (section 3.5.1) in order to build a consistent map and

store their submaps to be processed offline. Here, only classifier performances in terms

of precision-recall are evaluated, timings and run-time performances are reported in the

following sections. LRU explores part of the test environment and the workshop (upper

right area). LRU2 instead explores briefly the test area and exits the building for some

outdoor exploration. In figure 3.31 submaps are plotted in terms of their obstacle content.

The more densely colored zones represent quasi-vertical surfaces which are actually the

detected obstacles where descriptors are evaluated. The submap count is 15 for LRU and

16 for LRU2. In order to align the two maps for ground truth, the available Vicon data is

used.

In these experiments, LRU submaps are used for building the vocabulary while LRU2

submaps are used for relocalization. Figure 3.32a reports, in form of a heatmap, the bag-

of-words scores between each pair of submaps from the training and relocalization sets.

Higher values reflects similarity between the contained descriptors while low values indicate

dissimilarity. Figure 3.32b reports instead a reference value the overlap based on the metric

proximity of submaps. These values represent ground truth for the relocalization pipeline,

valid candidate matches should at least be submaps actually overlapping. Generally, the

opposite is not valid since overlapping submaps might not have 3D similarity rendering

relocalization impossible for this pipeline. For this evaluation, true positives are defined by

overlaps higher than 0.1. Given a value for trel therefore, each candidate is a true positive

if the true overlap is higher than 0.1 otherwise it is marked as a false positive. Viceversa,

high overlaps which do not correspond to relocalization candidates are considered as false

negatives. Recalling the confusion matrix in table 3.2, all the possibilities in terms of

submap recalling are listed here:

{i, j} TP ⇐⇒ s(vi,vj) > T (trel) and overlap(i, j) > 0.1 (3.42)

{i, j} TN ⇐⇒ s(vi,vj) < T (trel) and overlap(i, j) < 0.1

{i, j} FP ⇐⇒ s(vi,vj) > T (trel) and overlap(i, j) < 0.1

{i, j} FN ⇐⇒ s(vi,vj) < T (trel) and overlap(i, j) > 0.1

where the threshold T is computes as a function of trel as in eq. 3.26. Varying the

threshold trel on the bag-of-words scores, the values for precision and recall are computed

as in eq. 3.39 and 3.40 drawing a curve in the precision-recall space. Figure 3.34 reports

various curves each related to a given Hamming threshold Hthresh. Only thresholds in the

set {20, 50, 80, 200, 352} are shown to avoid cluttering the plot. Firstly it is evident how

changing this threshold vary the precision of the tentative matches: the highest threshold

of 352 is the one that gives the lowest performances since for each value of the relative

threshold on bag-of-words scores trel (which defines the curve), the precision is very low.

This means that the majority of recalls are false positives i.e. wrong candidates. By

lowering the threshold, the precision-recall curve reaches higher values meaning that less

false positives are produced. Notably, the highest curve is obtained using a Hamming
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threshold of 50 which allows some flexibility in building bag-of-words vectors. By imposing

a much lower Hamming threshold, the contributions of the extracted descriptor in each

submap is too weak, suggesting that noise sources in computing the descriptors likely leads

to false associations. Relative thresholds trel around 0.7 in conjunction with Hthresh around

50 leads to the best performances in terms of recall accuracy (upper left corner in figure

3.34). These values are generally confirmed also by further experiments such as the one

that follows.

IN CORRIDOR RUN

A second multi-robot mapping session is used to evaluate the relocalizer precision is select-

ing candidate matches. This session involves the exploration of the laboratory environment

also explored in the IN OUT RUN as well as in the session shown in figure 3.27. The rover

then proceed to explore the corridors in the first floor of the Robotics and Mechatronics

building. Their trajectory (and 3D maps) overlap inside the laboratory as well as along two

corridors. Figure 3.35 show the maps of both LRU and LRU2, again the red and blue colors

denote the two agents. As for the previous test session, the map is represented for the 3D

content classified as obstacle and colored dots represent the Local Reference Frame of each

submap (see 3.5.1). A black dashed line connects each consecutive submap origin to recon-

struct the rovers trajectories. Both maps are here aligned manually since Vicon tracking is

available only for a very limited region of travel inside the laboratory environment. Drifts

in the localization and mapping system however make the trajectories diverge slightly, espe-

cially during the 90 degrees turns between the intersecting corridors. Visual alignment was

the best way to average drifts and allow to compute reference overlaps between submaps

(figure 3.36b). Figure 3.36a represents again in a heatmap form the bag-of-words scores

between each submap from the LRU and LRU2 mapping sessions. All the pair-wise scores

are computed using a Hamming threshold parameter Hthresh = 50. Compared with the

reference overlap given by spatial proximity, the matching regions detected by high bag-of-

words recalls are concentrated in the beginning and end of the trajectories: those are the

regions inside the laboratory environment where actual 3D information is discriminative of

the scenario. The overlaps in the corridors, highlighted as diagonal traces in figure 3.36b

are not detected by BoW recalls. This is expected since no useful information is provided

by those submaps, where obstacle clouds are just two narrow bands representing the side

walls, therefore ambiguous and not informative enough.

Figure 3.38 report the precision-recall curves generated for multiple values of Hthresh

and trel. As for the previous session, trel is varied from the minimum observed bag-of-

words score bestMin to the highest observed score bestMax and diamond markers represent

the value 0.7 along the curves. Also in this session it is evident how increasing the value

of the Hamming threshold helps in increasing the accuracy of the classifier, doubling the

precision score for most of the Recall values by switching to a Hthresh of 50. A decrease

in performances is observed while lowering the threshold to 20 since most of the valid

candidates contain non perfectly matching binary SHOT descriptors and are therefore

neglected by BoW scoring with such a low threshold. Curiously, with Hamming thresholds

of 200 to 352, the Precision drops to 0 for higher trel thresholds, this is most likely due
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Figure 3.35: Map and submap origins for the IN CORRIDOR RUN multi-robot mapping
session. In this session, the LRU and LRU2 rovers explore both the laboratory environment
visibile in the lower left as well as the first floor corridors of the Robotics and Mechatronics
center. Their trajectories and maps partially overlap on the corridors sector and fully over-
lap inside the laboratory. In the corridors, the rovers view captures only a few centimeters
of side wall, while the majority of the field of view comprises the ground. Only the point
cloud in the laboratory (lower left) contain usable 3D information for relocalization. The
total submap count for LRU is 29 while for LRU2 is 23. Vicon coverage is available only
inside the laboratory, which constitutes a minimal part of the travelled ground, therefore
the two sessions are manually aligned
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(a) BoW scores - Hthresh = 50

(b) True overlap

Figure 3.36: Heatmaps representing the BoW scores and true overlap between the LRU
and LRU2 submaps for the multi-robot session in figure 3.35. For each of the two plots, the
x direction contains the indexes of submaps from the relocalization session performed by
LRU2 while the y direction encodes the indexes from the training session performed with
LRU
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(a) Hthresh = 350 (b) Hthresh = 200 (c) Hthresh = 100

(d) Hthresh = 50 (e) Hthresh = 20

Figure 3.37: Heatmaps of BoW recalls as in figure 3.36a where the Hamming threshold for
bag-of-words vector creation is varied in 5 decreasing values spanning from the maximum
352 to 20. This figure shows how decreasing the value for Hthresh helps the selection of
good candidates.

to the presence of too many high recalls for submap pairs, most of which are wrong. It

is then very likely than only very few wrong matches are selected causing the precision to

drop to zero. This effect is confirmed also by figure 3.34, strongly motivating the need of

a thresholding scheme as the proposed one. To complement figure 3.38, also figure 3.37

reports the full heatmaps for different values of Hthresh.

3.5.5 Benefits of texture-enriched descriptors

Figure 3.39 shows the precision-recall curves on the IN OUT RUN and IN CORR RUN

datasets where the candidate selection scheme uses B-Tex-SHOT instead of the structure-

only B-SHOT. In this case the maximum allowed value for the Hamming threshold Hthresh

is 396, which is the descriptor length. The curves are computed again by varying trel from 0

to 1 with and without texture (therefore B-SHOT vs B-Tex-SHOT) on the same Hamming

thresholds. Generally, for Hthresh close to 80 and 100, employing texture increases the

precision of the classifier. In addition, figure 3.39 reports also a baseline value which is the

precision of a random classifier. In this case, the precision is computed as:

Prandom =
npositives

nsub,reloc · nsub,db
(3.43)
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Figure 3.38: Precision-Recall curve for the IN CORRIDOR RUN session. Each curve is
plotted for different values of Hthresh which significantly affect performances. PR curves
are defined by increasing trel from bestMin (lower right part) to bestMax (upper left part).
The diamond marker on each of the curve represents the trel value of 0.7, increasing trel
generates the upper left side of the curves.

Figure 3.39: Precision-recall curves for the IN OUT RUN and IN CORR RUN. In this case
results are compared with (solid lines) and without (dashed lines) adding texture using the
same Hthresh for both cases. A red dashed line shows the outcomes of a random classifier
to highlight baseline performances.
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Figure 3.40: Precision-recall curves for IN OUT RUN and IN CORR RUN. In this figure
we evaluate the benefit of using B-Tex-SHOT instead of a color SHOT (C-SHOT) binarized
extending the approach in [107]. Here we also compare the performances with a common
RANSAC validation approach, which computes a consensus on the roto-translation between
every submap pair. If RANSAC exits with a transformation model then the submap match
is consideres as a positive.

where npositives is the number of correctly matching submaps while nsub,reloc, nsub,db are

the number of submaps in the first and second dataset therefore their product is the total

number of possible matches.

Comparison with RANSAC

In figure 3.40 we evaluate how our approach stands in comparison with common RANSAC-

based approaches, motivating the impossibility of using RANSAC discussed in 3.4.2. To

extract a candidate match using RANSAC we first match both SHOT and C-SHOT (color

SHOT) between every possible pair of submaps from the two sessions. Then a RANSAC

registration algorithm is used5 to align the submaps rejecting wrong descriptor matches

and labeling them as outliers. For the RANSAC tests the probability parameter P is set to

0.99. P correspond to the probability of selecting a rototranslation model given the number

of descriptor matches and determine the number of iterations needed. RANSAC curves are

generated by varying not the algorithm parameters but the descriptor matching thresholds

instead. Both SHOT and C-SHOT are matched by minimizing L2 distances and selecting

those for which the distance is lower than a threshold. As both descriptors are normalized

on their norm, the possible distances belong in the interval [0, 1]. The curve denominated

B-CSHOT is instead built by replacing the B-SHOT descriptor with a binarized C-SHOT

adapting the method used for SHOT to a longer descriptor. The figure shows that the

performances between B-Tex-SHOT and B-CSHOT are very similar, therefore motivating

the usage of a shorter compact descriptor as B-Tex-SHOT (of length 396) instead of B-

CSHOT which has length 1344. The precision of RANSAC is lower than our approach in

every case, failing to discriminate inlier from outlier keypoint matches.

3.5.6 Indoor Multi-session relocalization

Having evaluated the performances of the relocalization candidate selection scheme (section

3.5.4), the full pipeline is here evaluated in the context of a multi-session mapping scenario.

5http://pointclouds.org/documentation/tutorials/random sample consensus.php
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(a) RVIZ view

(b) Submaps view

Figure 3.41: SLAM results for the database run of the multi-session experiment
IN RUN DB. Figure (a) reports the outputs of the RVIZ visualizer provided by the Robot
Operating System. The full 3D point cloud is shown color-mapped to highlight z-axis
coordinates (or elevation). Blue ellipses represent the position of each submap with the
uncertainty estimated from the iSAM2 optimizer. The full trajectory of the rover is shown
(unoptimized) with a solid blue line. The light grid has size 1 meter-. Figure (b) highlights
instead the division in submaps of the same SLAM session. Each dot represents the Local
Reference Frames which constitute the origin of each submap and are associated to each
respective point cloud using the same colors.
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Database Relocalization
new submap distance [m] 7.0 9.0
new submap rotation [deg] 480 480
new submap position σ [m] 0.2 0.2
new submap orientation σ [deg] 5.0 5.0

Table 3.3: Submap trigger params

(a) IN RUN 1 (b) IN RUN 2 (c) IN RUN 3

Figure 3.42: 3D maps, trajectories and Local Reference Frames for the relocalization ses-
sions IN RUN 1, IN RUN 2 and IN RUN 3. The figures are related to single mapping
sessions, where SLAM was run on LRU data during multiple explorations of the same
recreated natural environment. The figures highlights how the three SLAM sessions are
characterized by different submaps both in number and therefore appearance. As an ex-
ample, IN RUN 3 have more submaps in the upper right side than the others. For metric
reference, grid cells are 1 meter.

The LRU is driven in the laboratory environment, the same used for the preliminar investi-

gation in section 3.5.3. The environment is prepared with the rock in similar configuration

to what can be observed in figure 3.27. This multi-session mapping experiment comprises

one database run, denominated IN RUN DB, and three consecutive mapping sessions for

relocalization performed in a time frame of two days. This way, slight changes can appear

in terms of environment structure and lighting. The full map as well as submap division

respective to the IN RUN DB is reported in figure 3.41. This database run comprises 9

submaps, and observes partially the test environment. Relating again to figure 3.41, the

upper right side of the map lacks infact some structural detail which is actually present in

some relocalization runs. In order to further perturbate the conditions of the relocalization

scenario, aside from capturing other sessions with different travelled paths and lighting,

also the parameters for submap switching were changed such that the submaps will differ

also in size from database and query. Table 3.3 reports the parameters used by the submap

switching scheme in the different sessions, only the new submap distance parameter was

changed since it was the most influent in this scenario.

Figure 3.42 show the outcomes of the 3 individual SLAM sessions that constitute the

query set, or the relocalization set. The three runs are denominated IN RUN 1, IN RUN 2

and IN RUN 3 and the differences in submaps, environment and coverage of the area are

visible in the figure. As an example, the sessions IN RUN 1 and IN RUN 3 have coverage

of the upper right side of the map which is lacking in some parts in IN RUN 2 as well
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Run name n submaps captured area covered [m2] time duration

IN RUN DB 9 - ∼ 96

IN RUN 1 8 same day ∼ 96
IN RUN 2 11 same day ∼ 96
IN RUN 2 13 next day ∼ 96

Table 3.4: Summarized parameters of the database and relocalization sessions

as the database run IN RUN DB. The left side of all obstacle maps also might exhibit

differences as it is represented by a tent covering the glass walls of the building. Also

note that in the run IN RUN 1 the rover does not travel completely around the left rock

while it does in IN RUN 3. All these maps also show various level of metric accuracy

in the 3D reconstructions, several slight misalignments are visible and enhanced by the

top-down viewpoint. Different levels of uncertainty over the submap origins are observed

since different loop closures where detected. In run IN RUN 1 a single loop closure is

performed, in IN RUN 2 two loops are detected and none in IN RUN 3. Loop closures,

or submap matches, are visible in figure 3.42 as yellow lines connecting submap origins.

However, for an overview of the pose tracking performances of the individual SLAM system

the reader is referred to [122]. In addition, apart from pose accuracy not being the focus

of this chapter, it is not relevant to relocalization performances since this pipeline relies on

a submap basis. In other words, finding relocalization candidates and validating matches

is not related to the global pose of submaps. As far as the ground truth is concerned,

with the available Vicon tracking system, a true path for the rover is available during its

individual SLAM session but not for consecutive sessions. For this reason, in order to

have a reference transformation from each database-query session pairs, the rover started

in approximately the same position such that the true alignment between maps should be

the identity {x, y, z, φ} = {0, 0, 0, 0}

Candidate and Validated Submap Matches

As the environment observed in this dataset is small and rich of 3D information, only

B-SHOT are used to evaluate the effectiveness of a basic configuration. The usage of B-

Tex-SHOT is investigated in the following sections where the scenario is more complex and

the pipeline benefits from an increased classifier precision. Figure 3.44 show the results of

the relocalization pipeline in terms of both selected candidate matches (section 3.4.1) and

validated matches (section 3.4.2) for the run IN RUN 1. Each row contains the results of

the matcher by varying the relative threshold trel in the set {0.3, 0.5, 0.7}. For every run

also, the Hamming threshold Hthresh is always set to 50 given the findings on section 3.5.4.

This is done in order to verify how changes in thresholds affect the number of candidate

and validated matches. This aspect was previously investigated with the precision-recall

curves in figures 3.34 and 3.38, however this time it is shown how increasing the thresholds

might reduce the number of candidates passed to the validation stage but also the number

of validated matches as well. As previously stated infact, not always the bag-of-words

recall based on descriptor similarity is related to the fact that submaps actually match,
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and good matches can then be lost. The left and right columns of figure 3.44 report the

candidate matches (red tiles) and the set of validated matches (green tiles) over the bag-of-

words recalls and true metric overlaps respectively. It can be observed how increasing the

threshold trel leads to less selected candidates (red tiles) but also less validated matches

which can then be used to align the two maps. For this run also the bag-of-words recalls and

true overlaps matched quite accurately since between the left and right columns the color

tiles exhibit similar patterns. In all of these run, the full pipeline was able to relocalize,

since even with very selective thresholds, one match was found.

Figure 3.45 shows the relocalization results for the run IN RUN 2, where a run of 11

submaps is relocalized over the database. The same considerations made in the context of

the previous run apply also here. In this case, however, increasing the threshold trel have

a bigger impact over the proportion of validated matches over total candidate matches.

For a value of trel = 0.3 almost half of the possible submap pairs were considered as good

candidates, which leads inevitably to wasting computational resources. By increasing the

threshold to 0.7 many of the false matches were discarded and a very high proportion

of validated matches to candidate ones is achieved. Still, for query submap of Id 2, a

high recall was experienced with most of database submaps even if not one of them was

validated. As the pipeline ends when presenting a transformation for relocalization of the

full map, figure 3.43 shows a simplified representation of the transformation clusters. Only

the translational components are shown here neglecting the yaw contribution to the cluster.

As no false positives in relocalizing were observed, all transformations are contained in a

single cluster. The cluster center is close to the origin of the 3D space because the LRU

rover started in very similar locations for all these runs.

Figure 3.46 show the results related to the run IN RUN 3 where the query set is com-

posed of 13 submaps. Similar considerations can be made also here about the thresholds. In

this run as well as the others, a high threshold of trel = 0.7 was sufficient to provide enough

validated matches for relocalization. While the three validated matches with submaps 9,

10 and 12 were lost while increasing the thresholds, submaps 1, 3 and 4 were validated for

value of trel. Notably, submap 1 was not validated for the lowest value of trel, this can

be explained by the non-deterministic nature of the validation scheme, where RANSAC is

involved and therefore introducing randomness in the results.

Computational Performances

Figure 3.47 reports a detailed analysis of the time required for performing each step of the

relocalization pipeline. The three plots refer to the three relocalization session IN RUN 1,

IN RUN 2 and IN RUN 3. Additionally, each step compares also the computational effort

required in the context of the three values for trel = {0.3, 0.5, 0.7}. The different tasks

which are examined start from ground removal, or obstacle detection, to find 3D regions

where to compute descriptors, then keypoint selection and filtering as well as SHOT de-

scriptor extraction. The combination of these steps can be interpreted as a preprocessing

phase of handling each submap. Preprocessing is followed by recall tasks which involve

binarization of the SHOT descriptors, computing BoW vectors and scoring BoW vectors

with the database maps to generate candidates. The final step is the validation stage which
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Figure 3.43: Visualization of the 3D coordinates of the winning transformations between
validated submap matches for the run IN RUN 2. The yaw value is neglected in this
visualization. The 4 matching submaps are related to the trel of 0.7 in figure 3.45.

involves just validating each candidate match and growing a consensus of transformations.

Figure 3.47 reports timings in logarithmic scale in order to provide an easily understandable

comparison of the contributions of each tasks in the global timing budget of the relocal-

ization thread. From the preprocessing stage, the most demanding task is the extraction

of SHOT descriptors, which can require in average around half a second for submaps with

1000 to 2000 keypoints. Keypoint detection and filtering require a negligible computational

effort as it is implemented as a simple voxel grid approach, however as already pointed out

in figures 3.7 this approach results in a much higher number of descriptors to compute.

The time required to compute SHOT descriptors on such a high number of keypoints is

however tolerable and beneficial for grasping as much 3D information as possible on each

submap. Timings for the recall part are very low and they motivate the benefits of imple-

menting the proposed approach with bags of binary words. The highest effort required in

this step is for the binarization of SHOT descriptors which requires in average less than 10

milliseconds. Building bag-of-words vectors by traversing the vocabulary requires similar

but lower efforts and BoW scoring is negligible. The real bottleneck in this case, as it

is for the complete SLAM framework of [122], resides in the match validation stage. As

each plot shows, match validation requires in average a few seconds per submaps therefore

validating a high number of submaps can be an issue. However, as the boxplot shows for

different values of trel, the proposed re-weighting scheme for candidate selection is effective

in decimating the computational time required to validate each query submap versus all

the selected database ones.

3.5.7 Multi-robot relocalization

In this section the full relocalization scheme is tested in the multi-robot exploration datasets

IN CORRIDOR RUN and IN OUT RUN, used previously with manually aligned maps

to validate the candidate selection scheme from bag of binary words similarity (section

3.4.1). As previously mentioned, in these datasets the LRU and LRU2 rovers explore a

mixed indoor environment consisting of both replicas of natural features as well as artificial

objects. In the course of their exploration session, the rovers partially share observations of
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Figure 3.44: BoW recalls, ground truth overlaps, relocalization candidates and validated
for the session IN RUN 1. The three rows refer to three parameter settings in term of trel
for pushing relocalization candidates (red squares). Green tiles denote validated matches
from the candidate set.
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Figure 3.45: BoW recalls, ground truth overlaps, relocalization candidates and validated
for the session IN RUN 2. The three rows refer to three parameter settings in term of trel
for pushing relocalization candidates (red squares). Green tiles denote validated matches
from the candidate set.
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Figure 3.46: BoW recalls, ground truth overlaps, relocalization candidates and validated
for the session IN RUN 3. The three rows refer to three parameter settings in term of trel
for pushing relocalization candidates (red squares). Green tiles denote validated matches
from the candidate set.
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Figure 3.47: Timings for each step involved in the full relocalization pipeline. Each tasks
show the different timings also for three different parameters set for the pipeline. Hthresh is
fixed to 50 while trel spans the values {0.3, 0.5, 0.7} as in figures 3.44, 3.45 and 3.46. Times
are in logarithmic scales for better readability
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(a) IN RUN 1

(b) IN RUN 2

(c) IN RUN 3

Figure 3.48: Visualization of the relocalization results for the multi-session experiment.
The three figures relate to the runs IN RUN 1, IN RUN 2 and IN RUN 3. All three figures
show a top view of the obstacle point clouds as well as the submap origins. The red maps
are aligned over the database blue map of IN RUN DB using the estimated transformation.
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the same environment such that relocalization is possible. For this evaluation and for the

next one (section 3.5.8) as well, the full B-Tex-SHOT is employed instead of the structure-

only B-SHOT. The parameters for the relocalization pipeline have been set accordingly to

the recall performances observed in section 3.5.5, therefore Hthresh = 80 and trel = 0.75 to

reduce the computational effort required for match validation. Regarding the Tf clustering

scheme (section 3.4.2), the spatial threshold for including candidate transformations in

each cluster was set to 1 meter for x, y and z and 10 degrees for the yaw component.

The results of the Tf clustering scheme for extracting good transformations between the

individual session origins are shown in figure 3.49. Plots in the left column are related to

the IN CORRIDOR RUN while plots in the right column are related to IN OUT RUN.

The top plots show how probabilities associated to each Tf hypothesis, which are function

of the votes for that cluster (see section 18), vary while multiple submap matches are

selected as candidates. Indeed, under the hypothesis that wrong keypoint matches vote for

random transformations, if some correct keypoint correspondences are present across one

or multiple submap matches, the respective transformation should be voted for multiple

times. Regarding figure 3.49a, the cluster voting for the correct transformation appears

only during the 4th submap match attempt and the ratio between its associated probability

over the second best exceeds 0.5, which is the trigger threshold. It can be observed how all

the probabilities associated to the other clusters suddenly drop as the correct one appears.

The same behavior emerges also from the IN OUT RUN, where the correct transformation

is voted from the 3rd submap match attempt and the ratio metric suddenly increases to

over 0.8 triggering the relocalization. It can be observed that during the 2nd match attempt

the ratio was higher than 0.5 corresponding to a wrong cluster. This happens while too

little clusters are voted for and for this reason we wait to evaluate at least 3 match attempt

before selecting a winner.

3.5.8 Relocalization on a Planetary Analogous Environment

In this section, the full relocalization pipeline is tested on two datasets captured on Mount

Etna, designated as a planetary analogous environment. The two datasets are denominated

Etna easy and Etna hard. In the first, the LRU rover drives autonomously across remotely

designated waypoints. The rover travels around some rocky areas in two mapping sessions,

separated by a brief pause. In this dataset, the environment is observed from roughly

similar viewpoints across the two sessions and contains significant 3D information. It is

therefore easier to candidate and validate submap matches. In both Etna datasets, the

keypoint selection is based on high curvature regions (section 3.2.4). Figure 3.52 shows the

complete map build after relocalization. Figure 3.52b shows how the probability associated

to Tf clusters spikes when the 4th submap pair is pushed to the validator. Many correctly

matching keypoints are here grouped in Hough3D groups which collect a large number of

votes. The associated ratio metric is in fact around 0.9, much higher than the threshold

0.5 and close to the perfect score 1.

In the Etna hard session, both the LRU and LRU2 rovers explore autonomously the

environment without any remote intervention. The 3D map that they produce overlap for

some submaps, however little 3D features are present. Meaningful information is contained
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(a) Cluster probabilities (b) Cluster probabilities

(c) Votes Histogram (d) Votes Histogram

(e) 3D Tf Clusters Representation (f) 3D Tf Clusters Representation

Figure 3.49: Results of the Tf clustering step after successfull relocalization for the
IN CORRIDOR RUN (left column) and IN OUT RUN (right column). (a-b) evolution
of the probability associated to each Tf cluster proportional to the number of votes for sub-
sequent relocalization attempts, or pushed candidate matches. (c-d) ordered histograms of
votes associated to each Tf cluster. (e-f) 3D representation of the Tf clusters considering
only the {x, y, z} coordinates and neglecting yaw.
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(a) Full Map (Top View)

(b) 3D View (c) Detail

Figure 3.50: Views of aligned maps for IN CORRIDOR RUN after successfull relocal-
ization. Maps and submap trajectories are related to LRU2 while the grey map and
red submap trajectory are related to LRU. The visible green line connects the origins
of submaps validated by the pipeline. The transformation between the connected local
reference frames and propagated to the respective session origins defines the global trans-
formation that alignes the LRU2 map to the LRU one.
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(a) Full Map (Top View)

(b) Detail 1 (c) Detail 2

Figure 3.51: Views of aligned maps for IN OUT RUN after successfull relocalization. Maps
and submap trajectories are related to LRU2 while the grey map and red submap trajectory
are related to LRU. The visible green line connects the origins of submaps validated by the
pipeline. The transformation between the connected local reference frames and propagated
to the respective session origins defines the global transformation that alignes the LRU2
map to the LRU one. Detail views show how mapped environment features from the
individual SLAM sessions are aligned after relocalization.
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(a) Full Map Etna Hard

(b) Cluster Probability (c) Histogram

Figure 3.52: Full map and details for the Etna easy sequence. (b)-(c) are probability
values associated to the Tf clusters after Hough3D groups. Relocalization is triggered after
pushing the 4th candidate submap pair
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(a) Full Map Etna Hard

(b) Detail 1 (c) Matching submaps

(d) Cluster Probability (e) Histogram

Figure 3.53: Full map and details for the Etna hard sequence. Details show the portion of
the map where the only matching submap pair is located. Relocalization is triggered only
near the end of the sequence
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only in a few submaps concentrated on the center-left region of the map. In this case only

one submap match is validated and is pushed just before the end of the session. Figure

3.53 shows the full merged maps as well as some details in the regions where relocalization

occurs. Figure 3.53c in particular shows only the two matching submaps aligned from the

winning transformation. The relocalization quality can be appreciated by observing how

the rock features overlap with good visual accuracy.
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Chapter 4

RGB-D Monocular Visual

Odometry With a Low Resolution

Time of Flight Camera

This chapter presents a monocular Visual Odometry algorithm where the scale ambiguity

problem is solved by integrating depth measurements from low resolution range sensors.

The algorithm is intended as a feasibility test for a following real-time implementation

(chapter 5) and to compare the approach with stereo Visual SLAM and multiple range

sensor configurations. This work extends our paper “Monocular Visual Odometry Aided

by a Low Resolution Time of Flight Camera” presented at the 2017 IEEE International

Workshop on Metrology for Aerospace [24].

4.1 Related Works

In this section it is given an overview of algorithms and methods for embedding scale

information in monocular Visual SLAM or Visual Odometry systems. This evaluation,

which relates not only to this chapter but also to chapter 5, features a brief discussion

of peculiarities and limitations of the reported works focusing on why they might not

be optimal for integration in small sized and resource constrained vehicles. As using only

monocular observations the scale of the reconstruction is not constrained, additional sensors

must be involved to give metric references. Amongst all solutions reported in the literature

to solve this problem, three categories can be identified regarding the type of additional

sensors used. The first group comprise all those methods which embed metric information

from depth sensors such as RGB-D cameras or LiDARs. The second group gather methods

who use cheap altitude sensors which can be found onboard many commercial UAVs and

the third group bases scale recovery on deep learning.

4.1.1 Depth Enhanced Methods

This category of methods involves all those algorithms who actively use range information

from RGB-D cameras, LiDAR sensors or Time of Flight cameras. RGB-D cameras comprise
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both an RGB sensor for the visible spectrum and a depth sensor which can either use the

time-of-flight or structured infrared light principle. RGB-D cameras are most suited for

indoor usage such as augmented reality [21] and 3D reconstruction [151]. Many Visual

SLAM system have however been published exploiting the depth measurements of RGB-D

cameras, starting from the well known ORB-SLAM2 [98] which in addition to monocular

and stereo also support RGB-D cameras. Amongst the SLAM system dedicated to only

RGB-D can be cited RGBD-SLAM [36], KineticFusion [100] and more recently RGBDTAM

[28]. The authors of [13] use an RGB-D camera exploiting only depth information to

classify the perceived environment structure into planar regions, distinguishing obstacles

and walls in alternative to a more expensive LiDAR sensor. In [67] a light RGB-D camera

is mounted on an UAV to perform visual SLAM and plan paths in the non occupied places

in the environment. Although the usage of an RGB-D camera might be attractive for the

low cost of this type of sensors, their metrological performances degrade quickly in sunlight

therefore outdoor usage is limited. In addition, while many small and lightweight RGB-

D cameras can be found on the marker nowadays, their capability of measuring accurate

ranges is limited to 1 or 2 meters. More performing sensor, as the Microsoft Kinect v2,

require a dedicated power source and have larger dimensions and weight.

LiDARs (2D or 3D) are particularly valid methods for autonomous driving applications

since they provide range information with high accuracy but at a much higher price than

RGB-D sensors. V-LOAM [155] is a method for combining visual and LiDAR odometry

[154] where motion estimates obtained by visual odometry are refined at a lower frequency

(1Hz) by matching LiDAR scans. The benefit of this approach is a consequence of the

complementary nature of visual and LiDAR odometry: the former allows to estimate rapid

motions at a high frame rate while the latter provides accurate and relatively dense range

information in order to eliminate drift and scale inconsistencies. However, the measurement

setup used to evaluate V-LOAM comprises a 2D LiDAR in a sweeping configuration in order

to obtain 3D information. Each LiDAR sweep must be accurately undistorted using a

motion hypotesis. Additionally, the bulk of the sweeping mechanism and LiDAR limits the

implementation on small sized vehicles. LIMO [53] is a recently published visual odometry

pipeline which embeds ranges from a 3D LiDAR sensor in a more tight approach with

respect to V-LOAM. While in the latter, visual estimations are used to refine already precise

poses from LiDAR odometry, LIMO uses range information to establish scale constraints

between camera poses and triangulated landmarks. This approach, published later than our

original work [24] is similar to what we propose in this chapter. However, LIMO relies on

using full 3D LiDARs, which provide a complete covering of the surrounding, and establish

scale constraints by extracting planes from neighboring LiDAR points and observing the

point-to-plane distance with associated visual landmarks. This approach is therefore not

generalizable to 2D LiDARs which only return planar scans or lower resolution and noisier

range sensor types.

Time of Flight cameras are active depth sensor which measure the range of the observed

environment by computing the time of flight of modulated near infra-red (NIR) light pro-

duced by arrays of LEDs and reflected by objects. Compared to LiDAR sensors they return

dense per-pixel range information at a high rate and have usually compact sizes. In addi-
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tion, the intensity image of the return signals can be used for visual estimations such that

the sensors resemble an RGB-D camera, however to do so it is required to have a relatively

high sensor resolution. The authors of [91] investigate the usage of a SwissRanger SR-3k

time of flight camera for 3D mapping of an indoor scene. The authors compare multiple

approaches for evaluating the camera motion, firstly by aligning consecutive point clouds

through an ICP algorithm, then by exploiting optical flow on range images and finally from

SIFT feature matching. They show the superiority of aligning via ICP consecutive clouds

although more expensive from the computational perspective. A time of flight camera of a

smaller resolution of 64x48 pixels is used in conjunction with a spherical camera in [108].

The sensor setup is rotated to acquire “depth panoramas” from low resolution range images

in order to build an obstacle map for obstacle avoidance and 3D map building.

4.1.2 Altimeter Based Methods

Accurate knowledge of a metric scale is necessary for autonomous control of UAV where

monocular vision is employed to perform ego motion estimation. In [150] the visual scale

is an explicit component of the vehicle state refined in an EKF framework together with

gyro and acceleration biases. In [45] and [83] the metric scale is retrieved comparing the

length of the travels in the z direction estimated by the monocular visual odometry and by

an ultrasound altimeter. In [37] measurements from a barometric or ultrasonic altimeter

are used to consistently estimate the metric scale in a statistical formulation. The authors

assume that each measure is affected by Gaussian noise and the scale is then obtained

using a Maximum Likelihood estimator. None of these approaches integrates directly scale

estimates in the visual pipeline preferring to embded monocular visual odometry in a ”black

box” and relying instead on information fusion through EKFs.

A different approach is followed in [3] and [4] where range measures from a radar altimeter

are used inside the visual pipeline to scale the triangulation of 3D landmarks. However,

contrarily to our approach, range information is neglected in the optimization backend.

4.1.3 Learning Based Methods

Recent advances in deep learning techniques using convolutional neural network (CNN)

show that depth can be learned in a supervised manner [117] or unsupervised [146]. In

the first work, ground-truth depthmaps are used for training so that depth estimation is

performed to an absolute scale. However, the necessity of supervision renders this family of

approaches unsuitable for autonomous exploration. The authors of the second work propose

to learn depth in an unsupervised manner including a direct visual odometry algorithm as

a pose predictor for an image stream. Dense depth maps computed from the VO are used

to build a cost function to be minimized during training. Aside from the computational

cost, the authors show that failure to predict depth can occur in dynamic scenes or regions

with low texture information. Deep learning is also applied to end to end learning of Visual

Odometry. The authors of [148] train a network where couple of subsequent frames are

fed to a CNN whose output is the input to a Recurrent Neural Network. The network is

trained on the KITTI [48] dataset for autonomous driving and gains scale awareness from
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Figure 4.1: Functional Scheme of the RGB-D Visual Odometry pipeline described in this
chapter. For each new incoming frame from the camera, the visual front-end searches the
map of landmarks for 3D-2D correspondences and computes the instantaneous pose of the
camera. Each ToF depth measurement is used to refine the global scale by either direct
association to the 3D map or to selected images (see following section 4.4 and 4.4.2). Note
that this algorithm does not process images in real-time (up to the camera frame rate) as
it is meant as a feasibility test for the one developed in the next chapter.

the training poses, which are not generalizable to different environments. Depth prediction

is used in [136] simulating the usage of an RGB-D camera where depth is learned and not

measured. The authors show the superiority of this method over pure dense monocular

approaches and even RGB-D SLAM systems in outdoor environment, when the sunlight

degrades depth estimates. A scale-aware direct sparse odometry system is presented also

in [152] where a deep neural network predicts disparity images from a virtual stereo setup.

Training is performed in an unsupervised manner by employing a stereo SLAM system

[147].

4.2 Algorithm Overview

This section presents a general overview of the developed scale aware monocular Visual

Odometry algorithm. This pipeline comprises a visual front end whose aim is to track the

camera position with respect to a map of 3D landmarks. Both the camera poses as well as

the map are optimized by a back end utilizing the depth information provided by generic

range sensors. Figure 4.1 depicts a scheme that comprises all the functional blocks of the

pipeline. For each new incoming image, 2D SURF features are extracted and matched with

the previous images in a local window. Given a set of correlations between initialized 3D

landmarks (for which the 3D coordinates are fully determined) and 2D image features, the

camera pose is computed solving a PnP problem. Matched features which correspond to

non initialized frames are used to triangulate new 3D landmarks and add them to the map

so that they can provide new information to localize the camera for the following frames.

All the camera poses in a fixed-size local window as well as the observed 3D landmarks

are optimized in the back-end, where depth measurements from the time of flight camera
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are used to enforce scale constraints. Two different approaches to associate ToF depth

measurements to the monocular systems are evaluated: the first correlates directly the 3D

ToF measurements to visual information by projecting the ToF point cloud in the respec-

tive frame, the second approach correlates ToF measurements to landmarks searching for

neighbors in the 3D space. Scale information is used both in the optimization back end as

well as during initialization of the monocular pipeline. We developed this pipeline in order

to use low resolution depth sensors such as an ESPROS epc610 Time of Flight camera

with resolution 8x8 pixels and field of view 8.7x8.7 degrees. The low resolution combined

with a narrow field of view makes it impossible to directly apply point cloud registration

algorithms such as ICP [113] (Iterative Closest Point) or NDT [10] (Normal Distribution

Transform). The clouds are in fact not informative enough to be exploited on their own

and, in case of a low-power depth sensor such as the aforementioned one, too noisy to cap-

ture fine geometric details. Our approach however enforces depth constraints between the

camera measurement, or the 3D point cloud generated by triangulating landmarks, and the

depth sensor measurements resulting in an optimal fusion between the two. Furthermore,

as the algorithms handles 3D measurements without assumptions on the sensor type, it is

generalizable to any kind of depth sensor. This algorithm have no real time requirements

and is intended as a feasibility study for the development of a high performance and com-

putationally light pipeline which is the subject of the following chapter of this thesis. The

focus of this chapter is to explore the possibility of using very low resolution range sensors

for visual systems with constrained resources both in terms of mass as well as power re-

quirements. This type of sensors not only is small, light and requires little power but also

its limited amount of 3D data for the system to process reduces the computational effort

significantly with respect to LiDAR SLAM systems.

4.3 Front End

With the term front end is referred here the part of the developed visual odometry algo-

rithm in charge of computing the camera pose for each new frame received. The camera is

calibrated using the Zhang method [157] in order to determine its intrinsic parameters such

as the camera matrix K and the distortion parameters d. Each frame is firstly corrected for

lens distortion, then SURF (Speeded Up Robust Features) features [8] are extracted. The

Table 4.1: Brief comparison of depth sensors using the LiDAR/ToF measurement principle

Sensor Type Range [m] FOV [deg] Acc [mm] Power [W] Weight [g] Price [g]

Espros epc610 3D ToF 3 8.7x8.7 ±4cm 2* 10 1k$

Espros epc611 3D ToF 3 8.7x8.7 ±4cm 2* 5 500$
Mesa SR4000 3D ToF 8 43x34 ±1cm 10 500 10k$

Kinect V2 3D RGB-D 4.5 70x60 20 1400 200$
Asus XTion 3D RGB-D 3.5 58x45 5 600 300$

Sick Tim572 2D LiDAR 25 270 ±3cm 5 250 2k$
Sick PLS 312 2D LiDAR 50 180 ±5cm 20 5000 5k$
Velodyne Puck 3D LiDAR 100 360x30 ±3cm 8 830 10k$
HDL-64E 3D LiDAR 120 360x27 ±1cm 60 12700 100k$
* Including evaluation kit for development
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choice of selecting this descriptor is driven by the fact that no real time requirements are im-

posed for this algorithm, therefore it can benefit from the accuracy and repeatability of the

SURF descriptor regardless of its relatively high computational time (∼ 500ms/frame).

The SURF detector is particularly suited for natural environments as it behaves as a detec-

tor of blobs and the descriptor is invariant to both scale, rotations and illumination. The

front end of our algorithm considers a window of 5 images, I = {Ii}, i = n : n−5. Features

xj = {u, v}j extracted from the current image Ii are matched across the local window using

L2 (Euclidean) distances of their corresponding descriptors to find projections of the same

3D landmarks Xj . Such correspondences between features can be used to determine the

3D landmark coordinates using the DLT (Direct Linear Transformation) [62] algorithm.

4.3.1 Initialization

Differently from stereo or RGB-D visual pipelines, where a full 3D representation of the

environment is available from the first frame, monocular visual pipelines need to initialize

a tentative structure for the perceived environment in order to localize with respect to it

for all the next frames. The same approach is followed here as in the real time visual

odometry discussed in the next chapter, which is estimating a geometry of camera poses

and landmark coordinates from two views. Given the first two images Ii and Ii+1 a set

of local SURF features Fi = {fi, i = 1 : n} and Fj = {fj , j = 1 : m} are extracted and

matched minimizing L2 distances:

fi and fj match ↔ fj = argmin
j

||fi − fj ||L2 and ||fi − fj ||L2 < t (4.1)

where t is a threshold for the descriptor distance such that the correspondences between

the closest descriptors where the distance is too high are rejected. Knowing the camera

matrix K after intrinsic calibration, the obtained correspondences can be used as input to

a 5 point algorithm [101] of a normalized Direct Linear Transformation [62] to determine

the essential matrix or a homography matrix for the two views respectively if the scene is

non-planar or planar dominant. Further details about the meaning of these two matrices

and a brief mathematical formulation are referred to the introductory chapter in section

2.3.2 and 2.3.1. Knowledge of the 6 DoF transformation matrix between the two views

T̃P1

P0
= [R|t̃]P1

P0
allows to triangulate the 3D points related to the matched features and

build an unscaled map. This is due to the fact that both the aforementioned algorithms

determine translations up to a scale factor. As the last step during initialization, a Global

Bundle Adjustment is performed to optimize both the 3D point coordinates as well as the

camera poses by minimizing the reprojection error of all landmarks:

εi,j = |xi,j − π(Xj ,TP1)| (4.2)

where TP1 is the second camera pose in the two view geometry and TP0 is implicitly the

identity [I|0]. Xj are the 3D coordinates of the triangulated landmarks and π denotes the

projection function from a pinhole camera model (section 2.1). The next step for initializing

the monocular visual odometry is to compute a correct scale of the reconstruction, for which
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(a) Matches between two views

(b) 3D view

(c) Algorithm view

Figure 4.2: Example of initialization procedure. (a) Two consequent images are used to
extract SURF features. After matching them and computing an homography for this scene
is planar dominant, the full 3D geometry of the environment is reconstructed as well as the
camera poses, visible in (b). The algorithm proceeds then to track the initialized features
(c) and compute camera poses. (b) show reports both the scaled and unscaled second
camera pose. Black dots are 3D landmarks, red points are time-of-flight camera ranges

(a) Matches between two views

(b) 3D view

(c) Algorithm view

Figure 4.3: Example of initialization procedure for a non-planar dominant scene
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depth measurements from the range sensor are associated as described in section 4.4.

4.4 Association of depth measurements

In this section it is described how depth measurements from the employed range sensor

are associated to visual information coming from the RGB camera. In order to estimate a

correct scale of the environment, depth constraints are enforced from the available ranges.

Contrarily to other approaches in the literature where LiDAR scans are used in the first

place to perform odometry, our approach is camera-centric: the perceived depth is used to

correct the scale of triangulated landmarks as the visual odometry system builds a map

during exploration. Monocular setups in fact do not perceive scale and their pose estimates

can be parametrized as:

T =

[

sR t

0 1

]

s ∈ R (4.3)

(although in this work transformations are not parametrized with the explicit scale factor

s) where R is a rotation matrix, t is a translation vector and s is a scale factor. Equation

4.3 highlights that errors accumulated by visual estimations do not propagate only on the

camera orientation and position, but also on the scale factor. If the scale s is not optimized

at run time, it will eventually drift, especially during sharp turns where 3D landmarks that

define local scales are observed for little time [98]. Associating 3D range measurements

to a map of landmarks is not a trivial task as this map, deriving from monocular visual

estimations, can be very sparse and noisy. We investigate two different approaches for this

task. The first of them involves computing scale offsets based on the Euclidean distance of

landmarks and range points in the 3D space. The second approach relies instead entirely

on visual information, tracking range projections in the following frame using optical flow.

4.4.1 Depth association on the image space

Association of depth measurements with visual information on the image space is performed

by firstly projecting the time of flight point cloud in the RGB image. Let the time of

flight point cloud be denoted by PToF
i = {XToF

l } for l = 1 : nToF with XToF
l being the

individual 3D points. By knowledge from extrinsic calibration (section 4.6.1) of the rigid

transformation between the time of flight and RGB cameras Tcam
ToF, it is possible to project

PToF
i in the image frame, finding the feature locations in pixel coordinates:

xi,l = π(Tcam
ToF,X

ToF
l ) (4.4)

where π() denotes the projection function. Projections of ToF points xi,l are tracked from

frame Ii to frame Ii+1 by means of a Pyramidal Lukas-Kanade Tracker using a local window

of size 31x31 pixels. The result of this search is a set of pairs of 2D correspondences for the

time-of-flight camera measurements, which are used to triangulate the 3D points X̃ToF,l

with respect to the current scale (figure 4.4a depicts this process). Differences between the

true global scale and the current scale of the monocular reconstruction produce a different

depth of each triangulated point with respect to the measured XToF,l. A scale factor is
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Figure 4.4: (a) Camera Features Association to Depth Measurement on Images Space. The
geometric consistency between ToF 3D points projections on P0 x0,l and the projections on
P1 x1,l are verified by researching them along the epipolar lines. Unscaled ToF points X̃ToF,l

are compared with the ToF depth measurement XToF,l to retrieve the map absolute scale
r. (b) Camera Features Association to Depth Measurement on 3D map. Three neighbor
2D points are selected so that the plane defined by the respective 3D points should contain
the ToF measure.

computed finally as:

scorr =
1

nToF,i

∑

l

‖XToF,l‖

‖X̃ToF,l‖
(4.5)

where l spans across all the ToF projection tracks in Ii+1. During initialization, the scale

factor scorr is multiplied to the second camera pose as well as the 3D coordinates of land-

marks while during each Bundle Adjustment, the individual scale offsets for each l are

added as factors to minimize during optimization. Figures 4.3b and 4.2b report a 3D view

of the initialization stage, showing both the scaled and un-scaled second camera poses.

4.4.2 Depth association on the 3D space

The process of associating ToF measurement across frames using optical flow of ranges

projections is strictly dependent to the texture quality of the image patches. If the search

area of the image Ii+1 contains very repetitive or too uniform texture patterns, the search

can converge to wrong 2D coordinates ending in wrong triangulation of PiX̃ToF,l, therefore

computing wrong scale factors. For this reason another approach is tested which should

favor robustness of scale factor estimations rather than accuracy. In this approach, ToF

measurements are associated directly to triangulated landmarks from the visual front end

in order to evaluate the difference in their depths. It is recalled here the two-view geometry

reported in figure 4.4b, where a ToF cloud is captured at the same time of Ii in position Pi.

The set of 3D points PToF captured by the Time of Flight camera is projected in the image

frame of the respective RGB frame (Eq. 4.4). For each one of the projected points, three
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neighbour SURF features are selected so that the plane that is defined by the respective

3D points should contain the ToF measure. This approximation is better the more dense

and uniformily distributed is the set of matched SURF features in the images. The nearest

neighbor search consists in finding xj , j = 1 : 3 such that the L2 distance from the ToF

point projection is less than a threshold (generally 20 pixels in our tests):

{xj ,xi,l} associated ⇐⇒ ||xj − xi,l||L2 < thresh (4.6)

where xi,l is the l-th ToF projection in Ii. Let be Xl = {X1,l,X2,l,X3,l} the set of points

describing the plane where XToF,l should lie if the scale factor was correct. Let also be

Ql the intersection between the measurement semi-line and the plane defined by Xl. An

estimate of the scale correction factor is:

sl =
‖XToF,l‖

‖Ql‖
(4.7)

A factor sl is computed for each point in the ToF measured array. The final estimate of

the scale factor s is obtained averaging each sl. As for the previous association mode,

at initialization time the full set of triangulated 3D points X and the vector tPi+1,Pi
are

multiplied by s. At Bundle Adjustment time the scale factors are added to the graph

representing the range cost functions to minimize.

4.4.3 Pose estimation

As the monocular pipeline is initialized, a map of landmark with determined 3D coordinates

is available to localize the camera for the following frames. Given a set of 2D landmark

projections in pixel units and the corresponding 3D spatial coordinates, the camera pose is

estimated in a 3D-to-2D approach using the EPnP algorithm [82] embedded in RANSAC

scheme for robust outlier rejection. The robustness deriving from RANSAC comes with the

price of computational effort, approximately linear in the number of iterations. However

as mentioned before, the aim of this algorithm is to demonstrate the robustness of our

scale recovery approach and real-time constraints will be enforced only for the algorithm

described in the following chapter. For each new frame Ii, firstly feature correspondences

are searched in the previous image Ii−1 by matching SURF descriptors, and a first pose

estimate for Pi is determined from EPnP. Using this first guess for the camera location,

triangulated points belonging to a frame window (of 5 frames in our tests) are projected

on image Ii and new matches are searched between their descriptors in the past frames

and the current one. These new feature associations are used to refine the EPnP estimate

by a non-linear optimization stage using Levenberg-Marquardt algorithm. As the camera

moves and initialized landmarks (for which the 3D location is known) exit from the field of

view, feature matches detected previously which belongs to non initialized landmarks are

used to triangulate them therefore augmenting the map for localization in the next poses.
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4.5 Back End

As the camera moves and the map is augmented, errors in pose estimation and landmark

triangulation cause each pose Pi to accumulate drift both in rotation, translation and

scale. At fixed time intervals, it is performed a windowed Bundle Adjustment where a fixed

window of frames (15 in our tests) is optimized for the lowest reprojection errors and scale

offsets. The goal of this step is to find the camera poses and landmark locations which are

most consistent with the camera observations (detected features) and range measurements.

Due to the non linear nature of the Bundle Adjustment, a correct solution to the problem

can be expected only if the initial solution is close to the optimum, for which the attention

towards robustness to outliers in pose estimation is beneficial. The term Local Bundle

Adjustment refers here to the fact that only a fixed window of frames is optimized instead

of the global history, and is meant to be performed in real time or near real time. The

problem involves minimizing the following cost:

C(x,X , T ,PToF ) = F (x,X , T ) +G(x,X , T ,PToF ) + S(T ) (4.8)

F denotes a contribution to the cost computed over the landmark reprojection errors over

the camera frames where they are observed:

F (x,X , T ) =

npos
∑

i=npos−m

nobs
∑

j=1

fi,j(xi,j ,Xj ,Ti) (4.9)

where X denotes the set of observed landmarks Xj and T denotes the set of camera poses

Ti contained in the fixed window. fi,j is the reprojection error of the j-th landmark in the

i-th frame:

fi,j = |xi,j − π(Xj ,Ti)| (4.10)

G denotes instead a cost contribution computed from the scale offset between the triangu-

lated landmarks and the respective time-of-flight camera measurements. If the measured

ranges are associated to the map in the 3D space (as explained in section 4.4.2), then:

G(x,X , T ,PToF ) =

npos
∑

i=npos−m

dist(PToF
i ,Xi) (4.11)

where dist() computes the distance between landmarks and ToF points as in eq. 4.7.

However, if the algorithm is associating ToF measures to the image space, the quantity

which defines a cost term for the optimization is defined as in section 4.4.1.

J is a regularization term for the scale during optimization of the local window. Poorly

constrained landmarks in fact can lead to divergence of the scale factor as the algorithm

is purely monocular. A prior scale s̃ is computed before starting the optimization process

as the L2 distance between the origins of the first two poses in the local window. Being

k = npos −m with npos frame index and m usually 15, the scale prior is:

s̃ = ||tWk+1 − tWk ||L2 (4.12)
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(a) Calibration LiDAR-camera (b) Calibration ToF-camera

Figure 4.6: 4.6a shows the extrinsic setup involving the color camera and the 2D LiDAR: Πt
is a calibration target, which is a plane with a checkerboard pattern allowing knowledge of
T ccam. The lidar scan plane is Πl and intersects Πt in a line. 4.6b shows the extrinsic setup
between the RGB and ToF cameras: the sensor setup is moved with respect to a square
target in the 3 translation axis knowing with high accuracy the relative pose. Ranges from
the low resolution ToF camera allows to detect corners, which are correlated with Harris
corners in the RGB image minimizing a reprojection error.

of two inclined planes and associate manually extracted lines in the images with corners in

the lidar scans. The transformation between the camera and LiDAR reference systems is

estimated by aligning the found correspondences for a set of camera and range measures.

In [99] it is proposed a closed form solution for the camera-LiDAR calibration given a

simple target. In [47] it is described a calibration technique for 3D lidars and cameras

based on the alignment between planes coinciding with multiple checkerboards with planes

detected in the range scans. [2] propose a calibration framework for cameras and 2d lidars

in sweeping configuration and [52] propose a calibration method for 3D lidars and cameras

involving trihedral targets. A few works exist also on the calibration between time-of-

flight and RGB cameras. The authors of [59] present a calibration method tested with a

Mesa Imaging SR4000 time of flight camera (176x144 pixel resolution), which in addition

to depth provides also monochrome intensity images. This allows to match checkerboard

corners between images and estimate the extrinsic parameters by projecting the measured

3D points to the RGB frames. As depth noise can easily arise from differences in surface

reflectivity and spurious light, the checkerboard is segmented from the intensity images

and a plane is fitted on the respective depths. Depths of the matched features in the

intensity images of the RGB and ToF camera are extracted from the fitted plane. Image-

based alignment is performed also in the work of [70], where a 2D planar target with

circular markers placed in an irregular pattern is observed by both an RGB and time of

flight camera. 2D correspondences and depth measurements provide a first relative pose

estimation, which is refined by estimating depth biases. Amplitude images of the reflected

signal from the time of flight camera are used to extract and match features with other

imaging sensors in the Astrobee robot [27].
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(a) (b)

Figure 4.10: 3D visualization of the plate corners detection from the time-of-flight camera
ranges. Corner positions span an interval of around 1 meter in z and 10 centimeters in x
and y

Figure 4.11: Histogram of the reprojection errors between the plate corner point and the
respective Harris corners in the RGB frame. The RMSE (Root Mean Square Error) in this
case is about 6.5 pixels, which is acceptable considering the high noise in the corner depth
estimates

up-sampled frames of 32x32 pixels. A second step is to compute the gradients of the depth

ρ along the x and y directions:

∇Iρ =

[

∂Iρ
∂x

,
∂Iρ
∂y

]

(4.15)

For each row of the range image Iρ we search for the maximum gradient in the y direction

and store the pixel location where it happens. Then we search and store the pixel values

where the maximum gradients in x occur. The objective here is to extract the two edges

belonging to the target plate such that their intersection leads to the position of the corner.

As the range images are captured such that the plate edges are mostly parallel to the x and

y axes, we are confident that the highest gradients only appear along the edges directions.

Furthermore, we can say that the maxima should be coincident with the geometric edge
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location. As the ToF camera sweeps its field of view to generate range measurements, when

the observed position coincides with an edge, the return signal will be partly affected by the

foreground and partly by the background in similar proportions. The depth returned would

be approximately the mean of foreground (target in this case) and background, and the

spatial gradient would be maximum as it is shown in figure 4.9. The resulting set of points,

which can be visualized in figure 4.10, identify the two plate edges and the intersection

of the fitted lines denote the bi-dimensional corner point location. Taking the depth of

this identified corner however would return a wrong value because of veiling effect as the

field of view of the camera in that point comprise both the foreground and background.

For this reason we choose to associate to the corner the mean depth of the foreground.

Having stored a significant set of plate corner detections, a first estimate of the extrinsic

configuration between the RGB and ToF cameras is obtained by solving a Perspective-

n-Points problem, where the RGB camera is aligned with respect to the Time of Flight

camera such that the detections of the corner with Harris features are consistent with the

measured 3D positions. We use a P3P [74] algorithm embedded in a RANSAC scheme

to discard outliers. Finally, the non-linear problem expressed in equation 4.14 is solved

using Levenberg-Marquardt starting from the first given estimate. Figure 4.11 reports the

reprojection residuals after the optimization step showing that the majority of projection

factors were solved with a residual error close to or lower than 5 pixels. Some high residuals

are still present from corner detections which were affected by high range errors.

2D LiDAR-Camera calibration

Extrinsic calibration of the 2D LiDAR and stereo camera is performed implementing the

method of Vasconcelos et al. [141]. Figure 4.6a shows a scheme of the sensor setup as well

as the unknowns to estimate. The calibration target in this case is a planar surface Πt

whose position in the 3D space is recognized by the camera through the use of a known

checkerboard pattern. The LiDAR measures ranges by scanning the plane Πi, which inter-

sects the target plane Πt in a line Li. The target of the calibration procedure is to find the

transformation T cam
l such that the measured ranges coincide with the line Li.

The first step is to capture a sequence of synchronized LiDAR scans and images (from

the left camera frame). As the calibration method [141] relies on fitting lines in the part

of the scan representing the planar target, an automatic segmentation procedure is imple-

mented to exclude all the environment points from the scans. Let be α the scan angle,

which for the SICK PLS 312 LiDAR is comprised in the interval [0; 180]. For each couple

of subsequent scan points, the angular derivative of the range measurements is used to

determine if the two points lie on the same smooth surface or not. Therefore if the range

variation ||(r(αi+1) − r(αi))/∆α|| is higher than a threshold, a boundary between two

smooth surfaces is detected. The derivative is approximated to simply ||r(αi+1) − r(αi)||

and the threshold is set to 0.5 meters. All the angle values for which this condition is met

represent offsets between continuous surfaces, which are segmented from the full scan. The

segment whose length is closer to the checkerboard size is selected as the target. To avoid

any wrong decision, the procedure is supervised by checking the automatic selection of the

target plane. Figure 4.12a shows an example of segmented 2D scan where the environment
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(a) Segmented 2D Scan

(b) Range Derivatives

Figure 4.12: (a) Segmentation of the target plane from the full scan cloud. The LiDAR
sensor lies on the axes origin, dashed red lines denote the margins of the target points
which are highlighted in green. (b) Derivatives of the range measurements over the scan
angle. High values represent offsets between the surfaces observed from the environment.
Between scan angles 150 and 250 lies the checkerboard of (a).

points are plotted in blue while the detected target plane is highlighed in green. The con-

tinuous surfaces from which the plane is selected are highlighted in figure 4.12b as colored

patch. These are delimited by peaks in the range derivative curve. For this example, the

patch between approximately 150 and 250 degrees denotes the target plane, as the length

of the segment is close to the width of the target.

As enough pairs of images and segmented scans are acquired, the calibration method,

for which the details can be found in the author’s paper [141], is invoked to find a fitting

transformation T cam
l between the LiDAR sensor and the camera. In order to evaluate the

outcomes of the calibration, we observe the distribution of the residuals, which are point-

to-plane distances between the checkerboard scan points and the plane measured from the

checkerboard pattern. Figure 4.13a shows an histogram of residuals after calibration. The

distribution is denser close to the value of zero and decreases rapidly towards the 50 mm

value, which is also the resolution of the depth measurements returned by the SICK PLS

312 LiDAR. Figure 4.13b shows instead all the target calibration planes, oriented in a way
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(a) Histogram of Residuals (b) Extrinsics Visualization

Figure 4.13: Figure 4.13a displays a frequency histogram of the point-plane distances be-
tween scans and target planes after extrinsic calibration. A vertical red dashed line high-
lights the PLS lidar range resolution. Figure 4.13b is a 3D view of the camera-lidar con-
figuration after calibration, reporting also the position of the target planes and the range
measurements, which are colormapped according to their RMSE error.

that all the involved degrees of freedom of the alignment problem are well constrained.

Segmented ranges for the calibration target are also displayed colormapped by their RMSE

error, which results from the root mean square of the residuals themselves. The highest val-

ues are related to the most inclined planes, however always being acceptable in comparison

with the range resolution of the sensor.

(a) Scan projection

Figure 4.14: Projection of LiDAR scans (segmented target only) to the checkerboard planes
after calibration. Correct correspondences between the target and scan borders suggest a
good outcome for the extrinsic calibration.
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Name Range sensor Association method

2D-ToF EPC610 ToF camera Image space
3D-ToF EPC610 ToF camera 3D space
2D-LiDAR SICK PLS-312 Image space
3D-LiDAR SICK PLS-312 3D space

Table 4.2: VO configuration tested

4.7 Results and Discussion

In this section the proposed algorithm is evaluated for its accuracy in reconstructing the

camera trajectory. Because this method is intended as a feasibility test for the algorithm

proposed in the next chapter, no particular attention is put into real-time performances.

The choice of using SURF features in fact slows down the runtime to about 1 Hz in average,

therefore no performance figures are presented here. We performed two different experi-

ments, in the first one the sensor setup was moved manually using a linear slide in order

to have millimeter-level accuracy in the ground truth for translations. As a second test

scenario, the sensor setup was mounted on our mobile rover platform (visible in figure 4.5b)

which was manually driven in a natural environment. Although our algorithm is supposed

to enable small aerial vehicles to perform VO up to a correct scale, the sensors that we

employed were impossible to integrate in an UAV for their size and weight.

We use a variety of error metrics to evaluate performances with a focus on translation

drift which exposes scale inaccuracies. Let x∗i denote ground truth poses at frame i and

let xi denote the ones estimated by the algorithm. The first error metric that is evaluate

is the Absolute Trajectory Error, simply defined as the L2 norm of the difference between

the true and estimated poses:

ATEi = ||xi − x∗i || (4.16)

which tells how much the trajectory is deviating from the true path. However, there are

multiple sources of absolute trajectory errors such as rotation errors, estimation biases

[39], mis-calibrations and scale drift in case of monocular pipelines. The ATE is then

complemented by a scale drift metric which is defined as the difference in length between

consequent Visual Odometry steps. Let be δi = ||xi+1 − xi|| the trajectory length between

two subsequent estimated poses and δ∗i = ||x∗i+1 − x∗i || respectively for the ground truth.

The instantaneous scale is then defined as:

Scalei =
δi
δ∗i

(4.17)

Values over 1 indicate that the algorithm is overestimating the step length therefore the

metric scale. Values under 1 indicate the opposite. It is also evaluated to what extent the

scale drifts over time resulting in a different trajectory length:

SDi =

n
∑

i=0

||δi − δ∗i || (4.18)

In addition to these error metrics it is also plotted the scale offset perceived by the algorithm
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at runtime. This value is the mean of all point-point distances which are minimized by

the optimization back-end in order to maintain a correct scale. To some extent these

values shows the capabilities of the algorithm to adapt to scale changes and drifts along the

trajectory, and confirm that a global scale is actually being optimized. When the algorithm

is behaving correctly the scale offset value should stabilize to 1. To compare the accuracy

of our algorithm to widely known and available Visual SLAM solutions, ORB-SLAM21 [98]

is run on our datasets in stereo mode. Although ORB-SLAM2 is not modified to use range

measurements in any way, by using a stereo camera landmark depths are initialized with a

correct global scale.

4.7.1 Small scale motion evaluation

In the first test scenario, the sensor setup is mounted on a graduated linear slide (partially

visible in figure 4.5a) and moved in the transversal direction in steps of 5 cm over a total

length of 135 cm. This evaluation highlights the motion estimation accuracy on small scales

and the precise ground truth allows to compare the algorithm behavior in its different

configurations. The algorithm is in fact tested using both ways of associating ranges to

visual landmarks, on the 3D and image space, and using the low resolution time of flight

camera and the 2D LiDAR as well (see table 4.2 for the nomenclature used in the following

paragraphs). Two sequences are captured in different environments: the first sequence,

labeled INDOOR, takes place in an indoor laboratory environment. The sensors observe

artificial landmarks at different depths and characterized mostly by reflective surfaces which

can induce noise in range sensing especially for the time of flight camera. The second

sequence, labeled OUTDOOR takes place in a grassy outdoor scenario. The sensors are

slightly tilted towards the ground in order to measure distances in the [1−2] meters range.

In this case, the environment is very feature rich and visual tracking is facilitated.

INDOOR sequence

Figure 4.16 shows two example camera views of the test environment including the detected

SURF features (in magenta), the one corresponding to initialized landmarks (in green) and

the projection of range measurements in the image frame for both the time of flight camera

(figure 4.16a) and the 2D LiDAR (figure 4.16b). The camera trajectory, depicted in green,

starts at the axes origin and proceeds to the left. Figures 4.16c and 4.16d shows the point

cloud of triangulated visual landmarks as well as the 3D points corresponding to range

measurements using the time of flight camera. The range measurement noise can be easily

visualized in the top view as the ToF clouds, positioned in the environment respectively to

the camera pose estimate, appear as an noisy scatter of points. This environment appears

to be particularly challenging in fact for the algorithm when using the low resolution time

of flight camera. The pose errors along the trajectory is particularly high in fact by looking

at figure 4.15a. However, by constraining the scale using the 2D approach, the drift is

significantly lower across the whole path if compared to the 3D method. Using the 3D

approach, in order to establish scale factors, initialized landmarks must be found in the

1https://github.com/raulmur/ORB SLAM2
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(a) (b)

(c) (d)

Figure 4.15: Evaluation results in the INDOOR sequence. The algorithm is tested in a
variety of configuration, using both the LiDAR and ToF range measurements and switching
between the 3D and 2D approaches. In addition, ORB-SLAM2 is tested in stereo mode
using the full output from the ZED stereocamera. The “Scale offsets” plot does not contain
information about ORB-SLAM2 as it considers the scale residuals using range sensors.
These results are related to 20 independent runs, solid line is the median value, bands are
first and third quartiles.

proximity of range measurements projections. For the majority of the views however, range

projections lie on almost uniformly textured surfaces where little to none SURF features

are detected and triangulated. In this scenario, using the 2D LiDAR as range sensor allows

to obtain much more accurate poses and more stable scale estimates along the trajectory.

As the projected LiDAR points are in higher number and cover a wider region in the image,

it is more likely for the algorithm to establish scale constraints for both the 3D and 2D

approaches. However, also in this case the 2D method is more accurate and allows to

reconstruct almost a perfect scale factor by looking at figure 4.15c. Figure 4.15b shows

how the scale offset perceived by the algorithm converges to the value of 1 as more frames

are covered. This means that in all the 4 configurations, the VO algorithm converged to

a consistent scale showing a well conditioned behavior. Notably ORB-SLAM2 performed

worse than all configurations, initializing a wrong reconstruction scale at the beginning of
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: 3D reconstructions from the INDOOR sequence. (c) and (d) are 3D and top
views of the reconstructed environment using the time-of-flight camera as the range sensors.
Points in magenta are 3D locations of range measurements positioned in the environment
from the estimated camera transformations. (e) and (f) are the reconstructions performed
using the SICK PLS 312 LiDAR as range sensor. The accuracy in retrieving the correct
environment scale is visibile in (d) from the good overlap of range scans between themselves
and on the environment (black dots). (a) and (b) are example views of the dataset super-
imposing ToF and LiDAR ranges respectively. Magenta dots are SURF features, green
circles denoted initialized features
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(a) (b)

(c) (d)

Figure 4.17: Evaluation results in the OUTDOOR sequence. The algorithm is tested in a
variety of configuration, using both the LiDAR and ToF range measurements and switching
between the 3D and 2D approaches. In addition, ORB-SLAM2 is tested in stereo mode
using the full output from the ZED stereocamera. The “Scale offsets” plot does not contain
information about ORB-SLAM2 as it considers the scale residuals using range sensors.
These results are related to 20 independent runs, solid line is the median value, bands are
first and third quartiles.

the trajectory and not being able to correct it from further optimizations.

OUTDOOR sequence

The outdoor sequence consists in a translational motion over a feature rich grassy scenario.

The environment is approximately flat and easy for tracking and initialization. Figures

4.18a and 4.18b are example camera views with reprojected range measurements. Com-

pared to INDOOR, in this sequences all configurations of the algorithm delivered good pose

estimates with similar accuracies. Specifically, the 2D-tof configuration performed as well

as the LiDAR one, exhibiting always similar Absolute Trajectory Errors along the path.

The 3D-tof configuration performed slightly worse but never significantly, achieving just

around a centimeter higher errors at the last pose compared to the other methods. A reason
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(a) (b)

(c) (d)

(e) (f)

Figure 4.18: 3D reconstructions from the OUTDOOR sequence. (c) and (d) are 3D and top
views of the reconstructed environment using the time-of-flight camera as the range sensors.
Points in magenta are 3D locations of range measurements positioned in the environment
from the estimated camera transformations. (e) and (f) are the reconstructions performed
using the SICK PLS 312 LiDAR as range sensor. (a) and (b) are example views of the
dataset superimposing ToF and LiDAR ranges respectively. Green circles denote initialized
features
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Sequence 2D-ToF 3D-ToF 2D-LiDAR 3D-LiDAR ORB-SLAM2

RMSE fATE RMSE fATE RMSE fATE RMSE fATE RMSE fATE

INDOOR [m] 0.053 0.088 0.066 0.094 0.023 0.034 0.035 0.051 0.117 0.200
[%] 3.94 6.50 4.89 6.94 1.71 2.49 2.61 3.80 8.68 14.79

OUTDOOR [m] 0.017 0.037 0.021 0.035 0.016 0.029 0.014 0.024 0.021 0.022

[%] 1.27 2.72 1.59 2.61 1.21 2.15 1.05 1.78 1.59 1.65

Table 4.3: Performance summary for all the VO configurations in the INDOOR and OUT-
DOOR short sequences. Results are reported in terms of RMSE (Root Mean Square Errors)
as well as percentual over the total trajectory length of 1.35 meters.

for this is that computing the scale offset as the difference between the range measurement

and the average depth of neighboring landmarks might be inaccurate if the camera is not

looking perpendicular to the ground plane, which is the case of this evaluation as the cam-

era was inclined about 30 degrees from the horizontal plane. Also in this case, the scale

offset plot (figure 4.17b) shows a good behavior of the algorithm in all configuration as the

scale residuals were always converging to the value of 1 even if case of sudden scale errors.

In particular, the VO in configuration 3D-ToF struggles at the beginning of the trajectory

losing scale consistency but recovers quickly in the following poses.

A summary of the performances in the INDOOR and OUTDOOR short sequences in

given in table 4.3. Bold characters highlight the two highest performing configurations for

each sequence. Unsurprisingly, the VO in conjunction with the 2D LiDAR performs always

better than the time of flight camera. However, the penalty in pose estimation accuracy

using such a low resolution sensor is not always significant. While in the more challenging

INDOOR sequence using the time of flight camera almost doubles the error with respect to

the LiDAR, in the OUTDOOR scenario the figures are absolutely similar to the point that

the performance gap is irrelevant. Considering also the difference in power requirements,

weight and cost (refer to table 4.1), the choice of using such sensors is intriguing, especially

for resource-constrained platforms such as UAVs or small exploration vehicles.

4.7.2 Long range experiments

To test our VO algorithm on larger scale motions, the sensor setup was mounted on our

mobile robotic platform (shown in figure 4.5b) along with a differential GPS for a precise

ground truth with centimeter-level accuracy. The rover was manually driven while recording

a stream of stereo images, ToF and LiDAR scans and D-GPS data. All sensor data was

recorded at each individual refresh rate and synchronized offline at 4Hz, which is the scan

frequency of the SICK PLS 312 LiDAR. Full stereo frames were recorded in order to test

ORB-SLAM2 as in the previous sequences, however our monocular VO used the left camera

frames. A sequence was captured at the Europa park in Padova and features a natural

scenario, mostly comprising an almost flat grassy field. As the sensor setup was tilted

downward by approximately 30 degrees, both the time of flight camera and the LiDAR

were always able to detect the ground at a reasonable distance of around 1.5 meters. The

rover was driven on a curvilinear trajectory of around 60 meters length which can be

visualized in figure 4.21a along with some example camera views.
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Sequence 2D-ToF 3D-ToF 2D-LiDAR 3D-LiDAR ORB-SLAM2

RMSE fATE RMSE fATE RMSE fATE RMSE fATE RMSE fATE

EUROPA [m] 1.742 3.049 6.828 12.759 0.549 0.865 2.512 4.540 6.298 12.379
[%] 3.09 5.41 12.12 22.65 0.97 1.53 4.46 8.06 11.18 21.97

Table 4.4: Performance summary for all the VO configurations in the EUROPA park
sequence. Results are reported in terms of RMSE (Root Mean Square Errors) as well as
percentual over the total D-GPS trajectory length.

With this test we want to evaluate the capability of our VO of reconstructing the

camera trajectory over longer distances while keeping a correct metric scale. The error

metrics used for performance evaluation are the same as in the previous test, which are

the Absolute Trajectory Error, the instantaneous scale drift and the trajectory length

drift. Figure 4.19 reports all these errors computed over 20 runs of the algorithm in all

configurations. The medians of all errors are plotted using solid lines while the color bands

highlight the 25% and 75% percentiles. The sparsity of results gives in fact a qualitative

description of the uncertainty of the estimation. To compute the errors with respect to

the ground truth, firstly the trajectory estimates were ridigly aligned with the D-GPS data

using Horn’s method [66] knowing pose to pose correspondences from timestamps. While

most widely used Visual SLAM evaluation pipelines [135] suggest to use all the available

correspondences across the whole trajectory, we believe that for longer sequences this results

in overestimating the reconstruction accuracy. By constraining all poses, the estimated

trajectory is aligned over the ground truth such that the total misalignment is minimized,

dampening the effect of angular drifts which cause the trajectories to depart from each

other. For this reason we chose to align only the first 500 frames roughly corresponding to

15 meters of ground truth length.

The pose errors plotted in figure 4.19a confirm the findings of the previous tests. While

the LiDAR configurations allow to obtain more accurate and repeatable results, using the

noisy time of flight camera is always a viable solution especially in the 2D-ToF configura-

tion. The 3D-ToF proves to be the most inaccurate and uncertain as it reaches in average

errors higher than 10 meters at the end of the trajectory. The sources of this error are both

scale drifts, which are visible observing the estimated trajectory length (figure 4.19c), as

well as angular drifts which are visible in figure 4.20c. The 2D-ToF configuration performed

however on par with the 3D-LiDAR one as far as scale stability is concerned. A lower an-

gular drift also allowed to obtain a more fitting trajectory to the ground truth resulting

in very low absolute pose errors. As in the previous sequences however, the highest per-

forming configuration was 2D-LiDAR benefitting from more accurate and distributed range

measurements across the camera field of view. Overall, all the VO configuration performed

comparably or better than ORB-SLAM2 stereo in the same scenario, which showed very

similar performances to our 3D-ToF setup. As a matter of fact, the camera views were

always angled towards the ground, observing a rapidly moving environment in the close

proximity of the rover.
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Figure 4.19: Absolute Trajectory Error, Instantaneous Scale Drift and Trajectory Length
Drift for all configurations in the EUROPA park sequence. ORB-SLAM2 is tested for
performance comparison with a state of the art stereo visual SLAM system. Solid lines and
bands are respectively median and 1st-3rd quartiles over 20 runs.

128



4.7. RESULTS AND DISCUSSION

(a) Best trajectories compared

(b) (c)

(d) (e)

Figure 4.20: Trajectories (top view) for the EUROPA sequence, the VO is tested in all
configurations. Figure 4.20a compares the mean trajectory of all configurations including
ORB-SLAM2 in stereo mode. The remaining plots reports, for each configuration, the
mean trajectory and the 20 individual runs from which the mean is computed. This gives
an overview of the repeatability of each sensor choice
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(a) Trajectory from 2D-LiDAR and scan points

(b) (c)

Figure 4.21: View from the EUROPA dataset using both the Time of Flight camera and
the LiDAR sensor. Figure 4.21a shows the results of stacking 2D LiDAR scans along the
trajectory using the estimated camera poses. In the point cloud can be recognized some
features belonging to the environment such as fences, trees and a walking path. Although
this evaluation is willing to prove that our algorithm allows to use light and low resource
requiring range sensors, its generality with respect to the range sensor type opens the
possibility of using 2D or 3D LiDARs for more complete mapping purposes.
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Chapter 5

Scale Correct Monocular Visual

Odometry Using a LiDAR

Altimeter

This chapter presents a monocular Visual Odometry pipeline, which we refer to as aVO,

designed to be fast and computationally inexpensive, making use of a range sensor of the

lowest resolution possible (1 point) to correct scale drift. This algorithm was first presented

at the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018 [51].

Up to our knowledge, at the time of publication, this was the first attempt at integrating

one-point range measurements from LiDAR data in a monocular visual odometry pipeline,

embedding single range corrections factors in the optimization back-end.

5.1 Algorithm Overview

This section presents the Visual Odometry pipeline, main focus of this chapter, relatively

to its functional structure and properties, highlighting the contributions to the state of the

Figure 5.1: Simple overview of range sensor types. From left to right, 3D sensors such
as the Velodyne Puck family provide the highest information content at the price of a
higher weight and power required. In the middle, 2D LiDARs such as the SICK LMS
family represent a compromise between mass and power budget while on the right, LiDAR
altimeters provide the lowest amount of information possible as well as being lightweight
and inexpensive.
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Figure 5.2: General overview of the complete aVO pipeline. Red colors denote the inputs
such as images and range measurements. Blue colors denote the functional parts of the
algorithm, such as the members of the front and back ends.

art that it provides. As figure 5.1 shows, multiple choices are available for the selection of

LiDAR sensors, however the mass and power requirements of 3D and 2D LiDARs might

not be suitable for small and lightweight flying vehicles. In addition, this work proves

that by using single range information from a LiDAR altimeter, which is a commonly used

sensor for UAV navigation, it is possible to achieve state of the art performances in terms

of tracking accuracy even compared with scale aware RGB-D and stereo visual systems.

Figure 5.2 is a schematic representation of the aVO pipeline as a flow diagram of the

main functional tasks involved. Inputs to the algorithm are images from a monocular vision

system (single camera) provided usually with a frame rate of 30 Hz and range measurements

from a laser altimeter (a LightWare SF-10B1) provided in our case with a rate of 20 Hz.

Images are used to concurrently build a map of 3D landmarks as well as to compute the

camera positions with respect to that map as more frames are received. This process is

the main focus of the Front-end part, which occupies one of the two threads of the multi-

thread architecture of aVO. The Front-end is also in charge of selecting a sparse set of

frames called keyframes, whose position is optimized in the Back-end. The Back-end runs

on a second thread to ensure real time performances and is in charge of optimizing a recent

history of keyframe poses and 3D landmark coordinates in order to reduce the trajectory

drift. In this step, altimeter measurements are used as an additional constraints in the

1https://lightware.co.za/
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optimization to make sure that the distance between a limited set of 3D landmarks and

the camera center is in accordance to the true scale. Once optimal values for the camera

poses and map are computed, corrections are forwarded to the Front-end thread for pose

tracking.

5.2 Algorithm Front-End

This section presents the Front-end of aVO. This is the functional part of the algorithm

that is in charge of feature detection and tracking, pose estimation and map augmentation

for each incoming image.

5.2.1 Feature Detection and Tracking

Between all the available feature detectors such as SIFT [84], SURF [8] (used in the previous

chapter), and others, for the sake of computational efficiency, the FAST (Features from

Accelerated Segment Test) [112] corner detector is selected. The FAST detector is in fact

capable to extract corner features from 640x480 images requiring about 1 millisecond for

200 corners, therefore occupying a minor part of the theoretical 33 milliseconds per frame

to accomplish the required 30 Hz update rate. Additionally, aVO does not rely on feature

matching to obtain correspondences across multiple frames therefore a significant amount

of time is saved from not having to compute feature descriptors. The number of features

that are detected by the front end is limited in order to save unnecessary computational

time. Having a big number of feature tracks, and therefore 3D landmarks, can be beneficial

for robustness but not necessarily for tracking accuracy. For this reason, instead of selecting

whatever number of features from an image giving a fixed threshold for the FAST detector,

each image is divided in a grid of given dimension and only one corner is selected in each

cell. The number of divisions in u and v directions is provided as a parameter to the

algorithm and is selected depending on the type of environment. For outdoor scenarios,

where images usually contain good visual information, dividing the image in 10x10 or

11x11 grid sizes (see figure 5.3) usually deliver good results. If images are lacking visual

information in some parts, the grid can be set up with more divisions such that more

features are searched. At feature detection time, each cell is searched for FAST features,

and the one with highest corner score (regarding corner thresholds for the FAST detector,

the reader is referred to reference [112]) is selected. Doing so, when necessary, features are

extracted in the most uniform way possible and in the least number for having accurate

pose estimation. As the camera moves and new images are acquired, only empty cells are

searched for new features. If a cell is occupied by a tracked feature, no detection of new

corners is performed. The detected FAST corners are tracked in subsequent frames using a

sparse optical flow approach. Instead of computing descriptors and matching them across

each consequent image, a Pyramidal Lukas Kanade Tracker [15] focuses on a small patch

of pixels centered around each feature point and aligns it with the closest one in the next

image. This approach is robust to small scale and rotation differences between consequent

frames and allows to maintain tracks of the same features for long frame windows. While

requiring a greater computational effort than FAST extraction, feature tracking does not
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Figure 5.5: Parallax between observations of 3D landmarks between consequent views.
Blue triangles represent camera positions, Ki denotes the last keyframe, while the smaller
camera is the current position (not necessarily a keyframe). Green dots are initialized
points, or points for which the depth is known while pink points are not initialized. α is
the parallax between observations, which are represented as green arrows. The higher the
parallax the lower will be the uncertainty over the 3D position of the landmark.

the optimization scheme can diverge and lead to inconsistent results as the pose sequence

would have a soft constraint at some point. Contrarily, if all feature tracks are shared,

the relative pose between the two keyframes is correct enough so that the optimization

scheme does not have a significant impact. However, when the motion is dominant along

the camera line of sight, all tracks could be kept and the distance between two consequent

keyframes could be very high. In order to obtain a spatially uniform set of keyframes,

a constraint on the geometric distance between them is imposed. Each new keyframe is

therefore triggered if either one of the following conditions are met:







num(x̂(ti))/num(x̂(ti−1)) < 0.8

||ti − ti−1||/ρi > 0.15
(5.1)

where num(x̂) is the number of feature tracks shared between the current frame in position

ti and the last keyframe in position ti−1. ρi is the mean depth of all landmarks observed from

the last keyframe and ||ti− ti−1|| is the euclidean distance between the current position and

the last keyframe position. The effect of this keyframe selection scheme can be visualized in

figure 5.4 where it is highlighted how keyframes are sampled from the full camera trajectory.

5.2.2 Map augmentation

Contrarily to stereo or RGB-D systems, single images lack depth information. In order to

know the 3D location of the observed landmarks it is necessary to have at least two views of

the same point from different camera positions. This way, triangulation allows to estimate

a 3D location for the new landmark. New FAST corners extracted by the front end have no

3D information associated, therefore they are just tracked in each new frame without being

useful for pose estimation. As the camera moves, parallax between the first and the current
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(a) example 1 (b) example 2 (c) example 3

Figure 5.6: Example views related to the aVO initialization scheme. The 3 views show
in purple lines the feature tracks across several frames which are used to compute the
2-view-geometry necessary for initializing a map and two camera poses.

observation grows. In order to triangulate a point with high accuracy, the parallax should

be higher than a minimum threshold so that the influence of feature tracking noise over

the 3D location of the triangulated points is minimized. Residual errors are corrected by

the optimization back-end. Let be pj the observed 3D landmark whose depth is unknown.

Let also be TW
i and TW the pose of the i-th keyframe and the current camera respectively.

Using the notation of figure 5.5, let be fi and f the feature position in pixel coordinate

of the point p in the i-th keyframe and current camera images. Multiplying the image

features xi and x to the inverse of the calibration matrix K returns the unit vectors vi and

v connecting the cameras optical center and p.

vW = TW
C K−1x (5.2)

vWi = TW
C,iK

−1xi

The angle between vi and v expressed in the world reference frame is the parallax angle

between the two observations:

cos(α) = vW · vWi (5.3)

The parallax angle is computed for each non-initialized track in each new frame until a

threshold is met, after which the 3D point p is triangulated using the DLT algorithm [62]

(see also section 2.3.3) and inserted into the map. p can now be used for pose estimation

and its coordinates will be optimized by the algorithm back-end.

5.2.3 Initialization

As the first image is received from the monocular Visual Odometry pipeline, the system is

only aware of the projections of landmarks on the image frame. Depth and 3D coordinates

are unknown and must be recovered by initialization of the monocular algorithm. Classi-

cal approaches from Structure from Motion [62] [121] [98] are here employed in order to

recovery both the environment structure and camera poses from two overlapping views of

an environment. From the first detection, corner features are tracked in consequent frames

until a mean distance of tracks is reached, ensuring sufficient parallax. Let be xj and xj ′

the normalized metric coordinates of matching features which lay respectively in the first
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and second frame of the selected pair for initialization. In case the geometry of the observed

environment is mostly planar, it is efficient to compute the homography transformation [73]

[43] which transforms the observed plane in the two views:

xj ′ = Hxj j = 1, ..., nmatches (5.4)

H is the homography matrix and embeds the parameters defining the rotation and trans-

lation between the views. Eq. 5.4 is solved as a least-squares problem embedded in a

RANSAC scheme to mitigate the effect of outliers (diverged feature tracks). According to

[88], the matrix H can be decomposed in 4 sets of rotation R and translation t matrices

which must be tested in order to ensure that all the triangulated points lie in front of

both cameras (chierality constraint) and that both views observe the environment from

the same side. In case the environment is not planar dominant, a homography can not

describe robustly the two view geometry, in this case a more suitable representation of the

problem comes from the fundamental matrix :

xj ′Fx
T
j = 0 j = 1, ..., nmatches (5.5)

Equation 5.5 encodes a coplanarity constraint between pairs of matching features [101]. In

short, the plane containing the 3D landmark p as well as the two camera optical centers

contain also the image features xj and xj ′. The fundamental matrix can also be expressed

as:

F = K−T [t]xRK
−1 (5.6)

where [t]x is the cross product matrix of the translation vector t and R is the rotation matrix

between the two views (or cameras). R, t can be obtained both from the fundamental or the

homography matrix as explained in section 2.3.1 and 2.3.2. To conclude the initialization

process, R, t and the 3D landmark coordinates pj are optimized in a full Bundle Adjustment

for the two views, more detail on the optimization process in section 5.4.

As mentioned previously, the process of recovering environment structure and camera

poses from monocular estimations is affected by loss of scale information (see figure 2.3).

In order to initialize the scale, correspondences are searched in the second image from

landmark projections and the altimeter projection as explained in detail in the following

section 5.3. A scale factor is computed as follows:

s =
1

ncorr

ncorr
∑

j=1

d̂j
d

(5.7)

where d is the range measurement from the altimeter and d̂j are the depths (or L2 norms of

XC
j ) of landmarks whose projections are neighbors to the altimeter projection in the frame

(see figure 5.7). The scale factor s is multiplied to both the translation vector t and the

3D landmark coordinates Xj to obtain a scale correct initial reconstruction. Scale errors

originating from uncertainty over 3D landmarks coordinates are mitigated successively

during the Incremental Bundle Adjustment (section 5.4)
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5.2.4 Pose Estimation

After the monocular pipeline has been initialized and a first map is available, the cam-

era pose can be compute frame-wise by tracking the image features related to initialized

landmarks (landmarks for which 3D location is known) and solving the following problem:

argmin
TW

C

1

2

n
∑

j=1

ρ||fj − π(Xj ,T
W
C )||2 (5.8)

where TW
C is the pose of the camera with respect to a common global reference system, Xj

are 3D coordinates for landmark j and xj is the measured projection of that landmark, or

the undistorted feature track (section 5.2.1). π denotes the reprojection function derived

from the pinhole camera model:

xj = KTW
C X

W
j /zCj (5.9)

where zCj is the z coordinate of landmark j with respect to the current camera pose and K

is the camera matrix. Equation 5.8 is solved as a non-linear least squares problem using

the Levenberg-Marquardt algorithm. As with any (non-convex) optimization problem, in

order for the solution to not stabilize in local minima, an initial estimate for the variable

to optimize must be provided. In this case, as the problem in equation 5.9 is solved for

each incoming frame, the initial estimate for TW
C can be the pose for the previous frame

TW
C,t−1 which in case of moderate camera speed should be significantly close to the solution.

However, in order to cope with fast camera motions, the pose TW
C is predicted employing

a constant velocity model. For frame i, the instantaneous linear and angular velocities vi

and ωi, computed from frames (i-1) and i, are used to compute the new camera position

ti+1 and orientation qi+1 in quaternion form:

ti+1 = vi∆t (5.10)

qi+1 = qiq(ω∆t)

where qi is the quaternion of the i− th pose while ∆t is the time interval between frames

(usually 33 milliseconds for a 30Hz frame rate) and ω is the estimated angular velocity. This

helps also in reducing the computational impact of pose estimation as when the starting

value for the optimization is closer to the solution, the number of iterations required are

lower.

Equation 5.9 also include a loss function denoted by the term ρ whose effect is to damp

the influence on outliers in the optimization scheme. The selected function is the Cauchy

loss [80]:

ρ(s) = log(1 + s) (5.11)

where s is the L2 norm:

s = ||xj − π(Xj ,T
W
C )||2 (5.12)

If a feature track has diverged, meaning that the 2D measurement of the landmark position

drifted from the original FAST keypoint, the cost function for that particular landmark

138



5.3. RANGE INFORMATION FUSION

Figure 5.7: Simplified representation of the camera-altimeter association scheme. Range
measures are interpreted as single 3D points in the camera local reference frame. It con-
strains the depth of landmarks whose reprojection on the image plane is close to the al-
timeter one.

will never converge to 0 and the Jacobians would divert the search for the global minimum

of equation 5.8. Using the Cauchy loss function however the influence of outliers are

minimized.

5.3 Range Information Fusion

In order maintain a correct global scale, range measurements must be correlated to visual

information. When a new keyframe is created, the closest range measurement according

to its timestamp is stored. Each range measurement is represented as a single 3D point in

the camera local reference frame through knowledge of the extrinsic parameters (rotation

and translation) which relate the camera and altimeter reference frames. 3D landmarks

are associated to range measurements in terms of the proximity of their reprojection in

the camera image plane to the projection of each altimeter measure xi,a. Therefore, image

features xj of landmarks constrained by the depth d must satisfy the following constraint:

||xj − xi,a|| < tmax j = 1, ..., n (5.13)

where tmax is a user-defined threshold (usually in the range from 10 to 20 pixels). xi,a is

computed as:

xi,a = π
(

TCa di







0

0

1







)

(5.14)

where π is the projection in pixel coordinates on the camera image plane and TCa is the

extrinsic transformation between the altimeter reference frame and the camera reference

frame. A thorough explanation of the calibration procedure is given in section 5.5. For

the sake of robustness during the incremental bundle adjustment, associations between

139



5.4. ISAM2-BASED OPTIMIZATION BACKEND

landmarks and range measurements are considered valid only if the depth of the candidate

landmarks are similar. In other words, if the hypothesis of planar environment holds, as it

is in the case of a downward looking camera from an UAV, the mean depth of candidates

should be equal to the measured depth from the altimeter with a certain uncertainty.

However, in case of large variations of candidate landmark depths, as in the case of edges

of obstacles, it is not clear how to predict the correct depth values. Enforcing range

constraints in this case could eventually lead to instabilities during the optimization. For

this reason, an association is accepted only if the following constraint is validated:

√

√

√

√

1

ncand

ncand
∑

j=1

||dj − µd||2 < 0.05m j = 1, ..., ncand (5.15)

The threshold of 5 centimeters from the standard deviation of depths is a user defined

parameter and in all tests was sufficient to avoid dangerous associations.

5.4 iSAM2-based Optimization Backend

Errors in camera pose estimation and landmarks triangulation results in trajectory drift

and map inconsistency. Even if landmarks are triangulated with a sufficient parallax, their

3D position is still erroneous to a degree. Tracking of image features using a sparse optical

flow approach is affected by errors depending on image noise and texture information.

In addition, tracking is performed on raw distorted images for time complexity reasons

therefore lens distortion can cause more tracking errors at the limits of the camera field

of view. In order to cope with these errors, Bundle Adjustment is performed to optimize

both the 3D landmark coordinates as well as a history of keyframe poses given the available

observations. Let be TW
C,i, i = i0, ..., nc keyframe poses in the world reference frame and

XW
j , j = j0, ..., nl landmark coordinates expressed in the world reference frame which are

observed by the considered keyframes. Recalling the notation from the previous paragraphs,

let be d̂j the depths of landmarks which are constrained by the depth measurement di from

the i-th keyframe. The process of performing Bundle Adjustment consists in solving the

following non-linear least squares problem:

argmin
TW

C,i
,XW

j

1

2

nl
∑

j=j0

nc
∑

i=i0

||xj − π(XW
j ,TW

C,i)||
2 +

1

2

nc
∑

i=i0

na
∑

j=j0

||d̂j − di||
2 (5.16)

nc is the total number of keyframes to be optimized, nl is the total number of landmarks to

optimize and na is the number of landmarks which are constrained by range measurements

from each keyframe. Figure 5.8 shows a factor graph representation of the Bundle Ad-

justment problem formulated with equation 5.16. Green dots are keyframes poses and are

connected by dashed lines to the landmarks (purple dots) that they observe. Dots, or pa-

rameters to be optimized are nodes in this graph, while arrows encode some cost functions

whose parameters are the starting and ending positions. Grey dashed arrows represent

reprojection factors, which are the first component of the full cost function in equation

5.16. Red arrows represent instead depth measurement and involve both the keyframe pose
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k0 k1 k2 kn

l0 l1 l2 l3 l4 l5 lm

Figure 5.8: Factor graph representation of the monocular SLAM problem with altimeter
measurements. Green and blue nodes are keyframe and landmark poses respectively. Grey
dashed lines are image projection factors while red solid lines represent range factors. The
red dashed lines enclose the landmark nodes that are immediate neighbours to the altimetric
measure (singular 3D point expressed in the keyframe local reference frame).

as well as multiple landmarks between the observed ones. Multiple landmarks are in fact

constrained by a range measurement if their projection is in a radius from the altimeter

projection (see section 5.16 and figure 5.7). Red arrows depict the second contribution in

the cost sum of equation 5.16. The figure highlights how keyframe poses are constrained

by shared observations of the same landmarks, the more interconnected the keyframes, the

more accurate the solution of the optimization. No constraints are here defined between

keyframes, which could be established by other odometry sources such as integration of

IMU terms. The Bundle Adjustment problem formulated for the aVO pipeline helps in

maintaining consistency in the environment geometry and trajectory as well as constrain-

ing the global scale of the motion thanks to range measurement, which would eventually

drift as well in a monocular system.

The iSAM2 [71] incremental optimizer from the GTSAM2 library is choosen as the ref-

erence framework for implementing Bundle Adjustment. Contrarily to other optimization

frameworks where the local window of keyframes and landmark to optimize must be ex-

plicitly defined, iSAM2 provides functionality to detect which nodes will be influenced the

most by the current update step and marginalizes all the rest. This allows also to maintain

a single graph of keyframes and landmarks from which covariances can be extracted, if

requested, for performing sensor fusion tasks.

In order to define a well-posed optimization problem, the structure of the graph must

be built efficiently. Landmarks observed by only two keyframes and then discarded, as an

example, have a limited impact on the optimization results and add useless computational

complexity to the problem. Landmarks constrained by depth measurements, if triangulated

from wrong feature tracks, can immediately lead to divergence of the optimization since

their measurements are false. Additionally, since the back-end of the iSAM2 pipeline is a

Gauss-Newton algorithm, to little constrained landmarks (triangulated from low parallax)

leads to instability of the regression because the derivatives of the cost function will tend

to zero. To summarize, at frame trigger time, good landmarks for being involved in the

optimization are selected if the following requirements are fulfilled in order:

• a landmark must be observed by at least three keyframes.

2https://borg.cc.gatech.edu
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• the reprojection error for each landmark must be limited to a certain threshold.

• each landmark must have positive z component in the camera reference frames of all

keyframes.

• the depth of each landmark must be contained in a multiple of the mean scene depth

5.5 Altimeter-Camera System Calibration

Fusion of range measurement from a 1D sensor such as a LiDAR altimeter with visual in-

formation poses a great challenge from the implementation perspective as the system must

be extrinsically calibrated. In order to refer the 1D range information to the camera refer-

ence frame, where landmarks are expressed, the transformation between the altimeter and

camera must be fully known. This section provides a detailed formulation and validation

of a novel calibration scheme to be used for evaluating the aVO pipeline on a proper test

setup.

5.5.1 Extrinsic Calibration

The extrinsic calibration of a LiDAR altimeter and RGB camera system is challenging due

do the 1-D nature of the range sensor. Typical solutions for calibrating 2D or 3D LiDARs

and cameras rely on estimating the rototranslation between the sensors by aligning common

observations of custom targets. The tranformation between the reference systems is infact

univoquely defined. A LiDAR altimeter is a single range sensor whose measures can be

represented as semilines, starting from the optical center of the altimeter and ending to

the point of beam reflection. Referring an altimetric measurement to the camera reference

frame can not be achieved by using a rotation matrix and translation vector since one

of the three rotations is undefined (the one collinear to the optical axis). In this work,

the altimeter is represented as a vector in the camera reference frame and the calibration

procedure aims at estimating the origin and measurement direction of the sensor. Let be

PA a 3D point identified by a range measurement ρ and expressed in the camera reference

frame. Its coordinates can be defined as:

PA = h(ρ, calib) (5.17)

= ρ







cos(α)

sin(β)

sin(α)






+







xA

yA

zA







where the 5 DoF (Degrees of Freedom) calibration parameters α, β, xA, yA, zA are defined

according to fig. 5.9. The calibration procedure involves the usage of a planar checkerboard

which defines a calibration plane. The target is observed with appropriately distributed

orientations ensuring that each altimeter measure PA lies on the calibration plane. From

each checkerboard detection, the reference system of the target is determined and normals

ni as well as origins Oi are stored. In a first time, point-to-plane constraints identify a over-

constrained linear system which is solved using least-squares minimization in a RANSAC
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Figure 5.9: Extrinsic setup

scheme. The initial extrinsic parameters obtained in the first step are then refined in a

non-linear least squares fashion using Levenberg-Marquardt.

Point to Plane RANSAC

From each checkerboard detection, the following equation defines a constraint for the al-

timeter extrinsic parameters:

d(PA, πi) = 0 (5.18)

where πi represents the plane where the checkerboard pattern lies, and d represents the

point to plane distance between PA and πi. This relationship is equivalent to the following

expression:

OiPA · ni = 0 (5.19)

By explicitating OiPA as:

OiPA =







xA − xOi

yA − yOi

zA − zOi






(5.20)

and substituting eq. 5.18 and eq. 5.20 in eq. 5.19, the following relationship is obtained:

0 = xA(nxi) + yA(nyi) + zA(nzi) + (5.21)

cos(α)(ρnxi) + sin(β)(ρnyi) + sin(α)(ρnzi)−

(xOinxi + yOinyi + zOinzi)

For each calibration target, and by assigning:

φ = cos(α) (5.22)

θ = sin(α)

ψ = sin(β)
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the set of each point-plane constraint form a linear system of equations which can be

expressed in matricial form as Y = AX where:

X =





















XA

YA

ZA

φ

θ

ψ





















(5.23)

Yi = xOinxi + yOinyi + zOinzi (5.24)

Ai = [nxi nyi nzi ρnxi ρnyi ρnzi]

Assuming that the rows of A define a set of linearly independent equations, the extrinsic

parameters of the camera-altimeter setup can be obtained by solving this problem for X,

which is done by pre-multiplying with the pseudo-inverse of A:

X = (ATA)−1ATY (5.25)

Non-linear Refinement

The previous section defines a closed-form solution for computing the extrinsic parameters

of a lidar altimeter-camera system. The extrinsics are here refined by solving a non-

linear least squares problem using the previous results as starting points. For the linear

least squares problem the distance to be minimized was the orthogonal distance between

each couple of points and planes. By instead considering the along-line distance between

each altimeter measure and ray intersection with the planes, errors are accentuated when

evaluating distances with the most inclined planes. This error measure should lead to more

accurate and representative constraints. Let εPπ represent this new error measure. From

Figure 5.10: Representation of the residuals used in the closed form solution (orthogonal
point-plane distance) and in the non-linear optimization (along-ray distance)
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fig. 5.10, the error term εPπ can be obtained from d(P, π) considering that:

d(P, π) = εPπ ∗ cos(γ) (5.26)

d(P, π) = εPπ ∗
nA · nP
|nA||nP |

If nA and nP are unit vectors, the new error term is defined then as:

εPπ =
d(P, π)

nA · nP
(5.27)

nA encodes the direction of the laser beam and it is defined in the camera reference frame

from the extrinsic parameters {φ, θ, ψ}. Using the Levenberg-Marquardt algorithm, the

following problem is solved for the optimal extrinsics e:

argmine

N
∑

i=1

(εPπ(e)) i = 1 : Nplanes (5.28)

5.5.2 Tests

The calibration procedure is tested in two stages: first it is validated on a synthetic bench-

mark. That is done in order to exhamine the calibration accuracy while varying free param-

eters such as the number of calibration samples as well as their range and orientation with

respect to the range sensor origin and view point. It is investigated also the effect of range

measurement noise on both accuracy and repeatability of the calibration procedure. This

step should both validate the approach and provide a guideline for a better calibration of

the sensor setup. Secondly, a real-world test is performed using a UEye U-1226 monocular

camera with resolution 640x480 and a Lightware SF-10B LiDAR Altimeter.

Synthetic Dataset

A synthetic benchmark is performed by generating a set of calibration samples with known

orientation and position. A calibration sample is here defined as a pair defined as follows:

Ci = 〈T, ρ〉

where T is the transformation matrix from the camera reference frame to a virtual checker-

board reference frame and ρ is the measured range, affected by noise. T is defined such that

the z direction of the local reference frame is normal to the plane, while the directions x

and y are both contained in the plane. The transformation matrix T is derived by defining

first a normal unit vector and an origin. Two angles defining the orientation of the normals

are sampled from uniform distributions of angles of given limits. The plane origins are

instead genereated with fixed x and y coordinates (in the camera reference system) and

with z coordinates sampled from an uniform distribution between 1 and 3 meters, which

are typical viewing distances of calibration checkerboards to a camera. In figure 5.11 are

represented two examples of synthetic datasets generated as such. The virtual altimeter
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(a) Angles in range (-20; 20) degrees

(b) Angles in range (-60; 60) degrees

Figure 5.11: Examples of synthetic datasets generated according to the procedure in section
5.5.2
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extrinsics are here chosen to be:

{XA, YA, ZA, DX , DY , DZ} = {0, 0, 0, 0, 0, 1}

so that it is located coincident to the camera optical center and parallel to the z camera

coordinate. For each plane, the coordinate of each intersection point with the range sensor

view line are determined, and Gaussian noise is added to simulate measurement noise. For

each test configuration (max angle, number of planes, measurement noise), datasets are

sampled 100 times and each of them is used for the calibration procedure. This allows to

capture the randomness of the results that can be expected during calibration session.

The calibration accuracy is here investigated by evaluating the distance of the sensor origin

with respect to the ground truth. If OA = {XA, YA, ZA}, the error metric is the L2 norm

of OA since the true origin is set to 0̄:

εO =
√

X2
A + Y 2

A + Z2
A

Regarding the orientation of the range sensor, it is evaluated the angle between the unit

vectors representing the measured orientation and true orientation. If n̂A is the computed

orientation and n̂T is the truth, then the angular error metric is defined as:

εα = arccos
n̂A · n̂T
|n̂A||n̂T |

Influence of plane orientation

The first test to characterize the performances of this calibration pipeline is related to

the angles of the normal plane vector to the camera z axis, or the view axis. The ori-

entation of normals impose multiple constraints over the orientation of the range sen-

sor, these constraints are evident from the right half of the A matrix in the linear least

squares problem. Well distributed orientations infact give full rank to the coefficient ma-

trix. During this test, the number of planes is fixed to 30 and the sensor noise is mod-

eled as zero-mean Gaussian noise with 10mm standard deviation. The free parameter is

αmax = βmax = −αmin = −βmin which is varied from 10 to 60 degrees. The choice is moti-

vated by the fact that a minimum inclination is required to give full rank to the A matrix,

and inclinations higher than 60 degrees might not allow checkerboard pattern detection

algorithms to work accurately if at all. Figure 5.12 shows the convergence properties of

the calibration procedure fixing the number of observed planes to 30 and varying just the

maximum orientation angle of the calibration planes. Here the sensor noise is set to 10mm

and each test configuration is repeated 100 times.

Figure 5.12b highlights the dependency of the origin estimation error from the plane orien-

tation. The calibration suffers significantly from an excessive parallelism of the calibration

planes showing mean position errors of nearly 100 mm in average for 10 degrees of maximum

inclination. The accuracy however quickly increases with more inclined planes reaching a

mean error of less than 2 cm in this test. The orientation error shows the same tendency,

however it appears to be less heavily affected by lower inclinations, since for a maximum
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(a) (b)

(c) (d)

Figure 5.12: Synthetic benchmark test: (a) and (b) represent the convergence behavior
of the calibration procedure while varying the maximum plane orientation in the uniform
distribution. (c) and (d) represent the convergence behavior while varying the number of
calibration planes

angle of 10 degrees, the mean angular error in 100 tries is just over 2 degrees. For a

maximum inclination of 60 degrees, the angular error reaches an average of 0.39 degrees.

Influence of plane number

It is tested also the dependency of the calibration accuracy on the number of calibration

samples. The sequence of tests here involves number of planes from the following set:

{7, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The lowest number of calibration samples is 6, since

that is the number of free parameters to estimate in the linear system. The full rank of the

A matrix is also guaranteed by sampling orientations and distance of planes from uniform

distributions. However, more observations impose additional constraints to the extrinsic

parameters and therefore lead to a more accurate estimation. Figure 5.12c depicts the

trend of angular errors increasing the number of calibration planes, as expected the error

rapidly decreases in the range between 7 and 30 planes and shows lower accuracy gains for

more observations. For 100 planes, the mean angular error observed is 0.18 degrees but

the results can be considered valid for a number of 30 planes which lead to the results in

the previous section. The origin error also shows a quick convergence in the same range
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Product Name Datasheet Accuracy [mm]

AccuRange AR4000 ±2.5mm
LightWare LW20 ±10mm
LIDAR-Lite 3 ±25mm
LightWare SF-10B ±50mm
LeddarTech LeddarOne ±50mm

Table 5.1: Examples of off-the-shelf LiDAR altimeters measurement noise

of observations, leading to lower increases for more observations. The mean errors for 30

and 100 plane observations are respectively 16.9 mm and 7.6 mm. Comparing these results

to the sensor noise set to 10mm, the calibration can be considered successfull even for 30

observations.

Influence of measurement noise

Measurement noise has a significant effect on the calibration accuracy of the range sensor.

Increasing the number of calibration planes serves to minimize the impact of noisy data

by overcostraining the target calibration parameters. In table 5.1, multiple commercial

single-point LiDAR rangefinders are reported with their declared range detection accuracy.

Since no additional information is available, the reported accuracy can be interpreted as a

zero-mean Gaussian with given σ. In this section it is tested the effect of noise over the

calibration accuracy. All tests are performed by varying the σ from the set of following

samples:

σ ∈ {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30} mm

such that the generated ranges are computed as:

ρtest = ρ+N(0, σ)

As in the previous sections, each synthetic dataset is randomly generated 100 times to

capture the sparsity of the problem. Figure 5.13 represents the influence of range noise to

the calibration parameters, as expected all errors increase with larger range noise. This test,

however capture the beneficial effect that the non-linear optimization step has on refining

the results. The percentual performance gain for all test cases is reported in figure 5.14,

showing a particular influence of LM optimization in refining the orientation angle. The

mean gain is estimated at around 50% for the orientation and 30% for the origin location.

Camera-Altimeter Setup

In this section, the calibration algorithm is used in a real-world test of a setup comprising a

monocular camera and a lidar altimeter. The camera is an IDS uEye L-1226 color camera

with a resolution of 752 x 480 pixels. The lens adopted is a wide-angle optic with a focal

length of 2.5 mm. The LiDAR altimeter is a LightWare SF-10B LiDAR altimeter (see

figure. 5.15), which has a range resolution of 1 cm and a maximum detectable range of

50 m. Both the camera and the altimeter are processed using the ROS (Robot Operating
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(a)

(b)

Figure 5.13: Orientation and origin errors as a function of added Gaussian noise to the
synthetic ranges. Errors are reported before and after non-linear optimization. The number
of planes is set to 30 and the maximum angle is set to 60 degrees.

(a) (b)

Figure 5.14: Histograms of percentual performance gain for the non linear optimization
step. These results are related to the tests of fig. 5.13
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(a) 3D view

(b) Side View

Figure 5.16: Calibration planes and altimeter extrinsics representation. The plot is in
camera coordinates, z axis is coincinent with optical axis, x points to the right and y points
downwards. The altimeter line of sight is represented as a red dashed line. A red dot
represents the altimeter optical center and blue dots are 3D points of beam reflection

Figure 5.17: Histogram of residuals for the calibration in section 5.5.2. Vertical dashed line
is the altimeter resolution of 10 mm. The majority of residuals is lower than the resolution
of the sensor, suggesting a correct behavior of the calibration procedure.

Convergence properties

The calibration procedure tries to constrain the 6 parameters which define the position

and orientation of the altimeter with respect to the camera. For this reason a minimum
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Figure 5.18: Convergence characteristics of the calibration algorithm. Each subfigure rep-
resents the calibration results for each of the 6 extrinsic parameters. Boxplots graphically
denote the variability of results as a function of the number of planes used. The mean
terminal value for each parameter is highlighed with a dashed line.
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number of equations, or plane observations, must be satisfied. However, measurement

noise both from the altimeter and the camera can propagate in the final estimate. A higher

number of observations is then required to over-constrain the solution. It is evaluated here

how varying the number of calibration planes propagates to the 6 extrinsic parameters

estimation accuracy.

This test is conducted in a Monte Carlo fashion, where for each test number of planes

Np the algorithm is run 1000 times in order to capture the randomness of the RANSAC

outlier rejection scheme. For each test also, Np are sampled randomly from the total

set of observations in order to capture the randomness of calibration target positions,

which varies during different calibrations. Figure 5.18 represents the sparsity of results for

this test highlighting in particular the effect of using a minimal amount of planes. For 7

planes, random configurations of calibration targets leads to errors of the order of meters

on determining the altimeter origin. It can be seen that from 40 planes and above, the

calibration procedure reaches the minimum variance of the results.

Confidence of the results

After estimating the extrinsic parameters between the camera and the altimeter it is useful

to know the confidence interval associated to them. Following the non-linear calibration

procedure, the confidence intervals are computed as a function of the residual magnitude

and value of the Jacobian 3. For the Monte Carlo test using the maximum number of planes,

Gaussian probability distributions are fitted on the residuals after 1000 iterations. In table

5.2 the estimated and computed standard deviations are compared. From this comparison

emerges the fact that uncertainty estimated after non linear optimization is very consistent

with the Monte Carlo test, which captures the real sparsity of the results. The calibration

results can then be trusted both in term of parameter and confidence estimates. This is

crucial when performing sensor fusion, where the uncertainty estimates must be consistent

with the real measurement uncertainties.

5.6 Results and Discussion

The aVO pipeline is evaluated on different datasets with ground truth information in

order to provide information about the accuracy on reconstructing the camera trajectory,

3https://it.mathworks.com/help/stats/nlparci.html

Extr. param Predicted MC
x 6.847 4.598
y 7.638 6.391
z 5.873 7.677
Dx 0.003 0.002
Dy 0.005 0.003
Dz 0.003 0.003

Table 5.2: Comparison between the standard deviation on the solution estimated after the
nonlinear optimization and from the Monte Carlo test in figure 5.19

154



5.6. RESULTS AND DISCUSSION

Figure 5.19: Monte Carlo test to capture the variability of results. The number of test
is 1000. Normal distributions are fitted on the parameter distributions to validate the
uncertainty estimations from the non-linear stage outputs.
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(a) Example View (b) Example View

Figure 5.23: Example views from the dataset fr3 structure texture far

where x∗i and xi are coupled by the proximity of their timestamps. Additional error metrics

consider also the amount of translational drift, or the error accumulated in the instanta-

neous direction of motion. If δ∗i and δi are ||x
∗
i+1−x

∗
i || and ||xi+1−xi||, the following metric

estimates an absolute value for the average translational drift between consecutive poses:

|∆| =
1

n

n
∑

i=1

||δ∗i − δi|| (5.30)

A second metric evaluate instead a net value of the translational drift, as a trajectory can

drift in random directions between each consecutive pose without accumulating significant

errors over time:

∆ =
1

n

n
∑

i=1

(δ∗i − δi) (5.31)

Fr3 structure texture far

The first test sequence is the fr3 structure texture far where the camera orbits around a

structured environment providing sufficient amount of texture for feature detection and

tracking. In this sequence, the camera is pointing slightly upwards observing both the

ground as well as the scene, for a total length of 5.96 meters in length, see figure 5.23

for two example views from the sequence. For this reason, as the structure is not planar,

initialization is performed by decomposition of the essential matrix. Figure 5.24 shows

multiple views of the results from the aVO pipeline. It is represented both the map of

the environment as well as the reconstructed camera trajectory compared with the motion

capture system ground truth. From a qualitative point of view it can be appreciated how

the pipeline can build accurate 3D maps of the observed environment, as suggested by the

top views. It can also be observed how one of the flat vertical surfaces has a slight alias a

few centimeters apart. This is due to the online optimization of the scale using altimeter

measurements, a few points were observed and triangulated just before performing a Local

Bundle Adjustment that detected and corrected a significant scale drift. In terms of errors,

table 5.4 reports a comparison of the metrics introduced previously and computed over

a series of 10 runs in order to capture all the random effects that occurs each time. As

the implementation run real time it is affected by the task scheduling from the operating
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(a) 3D view (b) Front view

(c) Top view (d) Top view with ranges

Figure 5.24: Views of trajectory and map for the sequence fr3 structure texture far as
computed by the algorithm. Colored dots are 3D landmarks triangulated and optimized
during the sequence, the green line is the estimated trajectory and in magenta the ground
truth from the motion capture system. (d) represents also altimeter measurements from
the set of accepted associations (see section 5.3) to highlight the recovery of a correct scale

µATE σATE |∆| ∆

Ours [m] 0.048 0.023 0.016 0.003
[%] 0.815 0.381 0.270 0.049

- (no alti) [m] 0.088 0.041 0.016 0.006
[%] 1.514 0.823 0.280 0.097

ORB-SLAM2 [m] 0.027 0.011 0.017 0.001
[%] 0.438 0.176 0.278 0.009

RTAB-MAP [m] 0.029 0.012 0.019 0.001
[%] 0.498 0.197 0.330 0.013

RGBD-SLAM [m] 0.051 0.038 0.022 0.002
[%] 0.891 0.652 0.385 0.042

Table 5.3: Performance comparison with RGB-D algorithms
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Figure 5.25: Absolute Trajectory Error for 10 runs of the visual odometry on the
fr3 structure texture far sequence both with and without range inclusion in the Bundle
Adjustment step. Bold lines represent the mean error over the 10 runs.

system, which have a significant impact on the multi-threaded architecture of the visual

odometry pipeline. For this reason, both a mean ATE and a standard deviations over all

runs are reported. The algorithm is tested against ORB-SLAM2 [98] in RGB-D configu-

ration, RTAB-MAP [79] and RGBD-SLAM [36], state of the art system using full RGB-D

images to compute scale aware reconstructions. The effectiveness of the proposed range

fusion approach is proven by the fact that our algorithm reaches very similar accuracies in

pose estimation compared to all the other algorithms, even outperforming RGBD-SLAM.

Overall, the relative Absolute Trajectory Error normalized over the trajectory length, is

lower than 0.8% which is very limited even for scale aware RGB-D and stereo vision systems

for any kind of trajectories and environments. Performances also in terms of translation

drift are on par with the other tested algorithms. To stress the importance of embedding

range information in the Bundle Adjustment, the pipeline is tested also including range

only for the initialization step. The second row of table 5.4 reports the errors obtained

without online scale correction, which are almost doubled. Figure 5.25 plots the Absolute

Trajectory Error over the length of the sequence. Each light line is the ATE over the 10

runs averaged in table 5.4 and bold lines are the average errors. It is reported the effect of

including range measurements in the Bundle Adjustment over just using them for initial-

ization of the pipeline. The advantage of correcting scale online is evident over the course

of the whole sequence. Figure 5.26 reports a detailed analysis of the translational and ro-

tational errors as well as the absolute coordinates from keyframe poses. After aligning the

estimated trajectory over the reference one from the motion capture system, translational

errors are mostly in-plane, or distributed over the x and y directions which are parallel to

the ground floor. The y coordinate exhibits a significant drift which can be likely caused by

slight angular errors. Orientation errors are generally contained in the [0, 5] degrees range

while being in average in the order of 1 degree or less.
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(a) Absolute Position (b) Position Error

(c) Absolute Orientations (d) Orientation Error

Figure 5.26: Poses, orientations and related errors for the fr3 structure texture far se-
quence. Errors report also for visual reference the maximum error reported by the dataset
authors for the camera localization using the motion capture systems. Maximum position
error is estimated to be 10mm and maximum orientation error to be 0.5 degrees. Note
that the step in (c) for the φ angle is due to the conversion between quaternions and Euler
angles.
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(a) Example View (b) Example View

Figure 5.27: Example views from the dataset fr3 nostructure texture near withloop

Fr3 nostructure texture near withloop

The second sequence in the TUM RGB-D dataset where the pipeline is tested is denoted

Fr3 nostructure texture near withloop and comprises a planar scene textured with posters

to deliver some visual information for tracking. The camera moves in a circular motion look-

ing mainly downwards in a trajectory of length 13.85 meters so that most of the keyframes

can associate range information from the virtual altimeter to the observed landmarks. The

trajectory ends near the same spot from which it started allowing for easier evaluations of

pose drifts. As for the previous sequence, the image is divided in a 15x15 grid for feature

extraction, the image feature uncertainty is set to σu,v = 1 pixel and the range uncertainty

is set to σrange = 1 cm which is a reasonable amount for an RGB-D sensor in indoor environ-

ments. Figure 5.27 shows two example views from the dataset. Note that in some images

not all the field of view of the camera contains texture information. In many keyframes

the virtual altimeter can not be associated to any 3D landmark. Figure 5.28 shows some

views of the reconstructed trajectory and map for one run of the sequence. Compared to

the previous sequence, this one can be sightly more difficult to process correctly as in some

part the field of view of the camera contains very little texture information and localized

in just one part of the image. This results in both poor constraints over the camera pose

when solving equation 5.8 as well as scale drift as the virtual altimeter measurements are

µATE σATE |∆| ∆

Ours [m] 0.064 0.044 0.023 0.001
[%] 0.464 0.315 0.165 0.009

- (no alti) [m] 0.103 0.041 0.022 0.001
[%] 0.759 0.301 0.158 0.010

ORB-SLAM2 [m] 0.037 0.025 0.023 0.003
[%] 0.278 0.190 0.170 0.022

RTAB-MAP [m] 0.068 0.043 0.022 0.003
[%] 0.507 0.323 0.160 0.019

RGBD-SLAM [m] 0.050 0.035 0.016 0.001
[%] 0.370 0.261 0.116 0.006

Table 5.4: Performance comparison with state of the art RGB-D algorithms, sequence
fr3 nostructure texture near withloop. ORB-SLAM2 is set in RGB-D mode

163



5.6. RESULTS AND DISCUSSION

(a) Front view (b) 3D view

(c) Top view (d) Top view with ranges

Figure 5.28: Views of trajectory and map for the sequence
fr3 nostructure texture near withloop as computed by the algorithm. Colored dots
are 3D landmarks triangulated and optimized during the sequence, the green line is the
estimated trajectory and in magenta the ground truth from the motion capture system.
(d) represents also altimeter measurements from the set of accepted associations (see
section 5.3) to highlight the recovery of a correct scale
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Figure 5.29: Absolute Trajectory Error for 10 runs of the visual odometry on the
fr3 nostructure texture near withloop sequence both with and without range inclusion in
the Bundle Adjustment step. Bold lines represent the mean error over the 10 runs.

not associated to any 3D landmark. This effect is particularly visible in the reconstruc-

tions during the end of the sequence. Looking at the reconstruction in figure 5.28b, the

trajectory evolves clockwise and ends a few centimeters below the starting point. All views

highlight the pose drift that occurs near the end, where the camera observes a gap between

the posters without texture. Eventually the scale is recovered in the last few keyframes

where texture is present and scale information is inserted again in the Bundle Adjustment.

Table 5.4 reports the error metric computed as shown in the previous section, confirm-

ing the findings from the last test sequence. While ORB-SLAM2 in RGB-D configuration

outperforms our pipeline, the performances are on par with other RGB-D SLAM systems

even outperforming slightly RTAB-MAP in this scenario. Again, the effect of neglecting

scale information in the Bundle Adjustment have a significant impact in pose estimation

accuracy as demonstrated also by figure 5.29. Figure 5.30 reports a detailed view of all

errors related to one run the algorithm. It is evident also here how pose errors concentrate

on the last part of the trajectory when little visual information is present, and how the

z error decreases in the very last part of the sequence as new range information can be

exploited in the Bundle Adjustment. Similar considerations regarding angular errors can

be made with respect to the previous test sequence in this dataset.

Timings in the RGB-D Dataset

Figure 5.31 reports timings related to the front-end thread of the pipeline, which is devoted

to compute the camera pose with respect to each new incoming frame and the map being

built. The algorithm is designed to be able of obtaining reconstructions with accurate scales

as well as keeping the computational time low so that no frames, or a limited number of

them, are skipped. In both sequences the task of detecting FAST features arranged in a grid

is the least time consuming, requiring in average from 1 ms to 3 ms. The feature tracking

step requires in average 5 to 10 milliseconds in the worst cases because, depending on the

motion, more features can concentrate in the same parts of the image, for example when
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(a) Absolute Position (b) Position Error

(c) Absolute Orientations (d) Orientation Error

Figure 5.30: Poses, orientations and related errors for the
fr3 nostructure texture near withloop sequence. Errors report also for visual refer-
ence the maximum error reported by the dataset authors for the camera localization
using the motion capture systems. Maximum position error is estimated to be 10mm and
maximum orientation error to be 0.5 degrees. Note that the step in (c) for the φ angle is
due to the conversion between quaternions and Euler angles.
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(a) fr3 structure texture far (b) fr3 nostructure texture near withloop

Figure 5.31: Timings in the TUM RGB-D dataset sequences

the camera orbits around an observed location. Further optimization can decrease this time

by deciding to track only the best scoring landmarks in each cell of the image (shown as big

blue dots in figures 5.23 and 5.27) as the one with lowest reprojection errors and longest

life in terms of frames span of the track. Pose estimation is probably the most variable

step as the computational time depends on how the optimization problem in section 5.2.4

is well conditioned. The time spent each frame in computing the pose can reach up to 20

milliseconds while in average requiring around 10 milliseconds or lower. Overall the total

time spent for each frame is well below the nominal 33 milliseconds of a 30 Hz refresh rate

video stream. Some spikes are visible causing a few frame drops and might be related to

concurrency issues between threads or little optimization of the research code.

5.6.2 Outdoor Long Range Tests. Comparison with stereo SLAM

While the previous test was dedicated to showing the tracking performances of the algo-

rithm in confined scenarios, in this part the visual odometry is tested on longer distances in

order to highlight the stability of scale over time. The experimental system here comprises

Figure 5.32: Experimental setup comprising for the long range tests: a Stereolabs ZED
camera (left images used for monocular visual odometry), a LightWare SF-10B LiDAR
altimeter and an Xsens MTi-G IMU and GPS (not used for ground truth)
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a stereo camera (Stereolabs ZED camera) and a LightWare SF-10B altimeter, which allows

to test performances against a scale aware state of the art stereo visual SLAM algorithm,

ORB-SLAM2. At the time of performing this experiment, no differential GPS was avail-

able, therefore ground truth is given by aerial imagery and precise knowledge of the starting

and ending positions. The GPS measurements will be shown for reference but were too

inaccurate for giving a precise reference track because, as stated from the manifacturer of

the XSens MTi-G, at a CEP (Circular Error Probability) of 50% the reference value for

the pose error is 2.5 meters. The stereo camera from the setup visible in figure 5.32 was

set to record images at a resolution of 762x376 pixels with a framerate of 30 Hz. A virtual

monocular camera and altimeter system was created by selecting only the left image from

each stereo frame. As the GPS track was unusable for evaluation, Google Maps services

were used instead to track accurately in a second moment the camera path knowing the

starting and ending locations. As any temporal correlation was not available between the

reference path and the camera estimated trajectory, path length was evaluated to highlight

any translational drift due to scale inaccuracy. In addition, we used the Iterative Closest

Point algorithm [113] to align the trajectories estimated by our algorithm and ORB-SLAM2

to the ground truth and used the residual RMSE error between couples of corresponding

points to estimate how each trajectory fitted the reference one. In table 5.5 are reported

the results for this test. ORB-SLAM2 set in stereo configuration is able to estimate a close

trajectory in terms of path accuracy even if, as shown in figure 5.33 the aligned trajectories

appears to be very similar. However, as far as the translational drift is concerned, the

length for the trajectories estimated by our monocular pipeline and ORB-SLAM2 stereo

show equal error in relation to the ground truth suggesting that scale drift is very minimal

and well contained from our approach.

5.6.3 Outdoor Tests. Comparison with D-GPS

The last test sequences are captured with an hand-held sensor setup comprising a monoc-

ular camera, a LiDAR altimeter and a differential GPS for a precise ground truth with

centimeter level accuracy. The camera is a IDS uEye 1226 with a resolution 752x480 pixels

and a frame rate of 30 Hz. The camera is equipped with a wide angle lens of 2.1 mm focal

length and is provided with a global shutter. The altimeter is a LightWare SF-10B and

the D-GPS is a Swift Piksi Multi which in our test, at the best level of satellite coverage

provided poses with respect to a base-station at a rate of 100Hz and an average uncertainty

of around 2 cm both longitudinal and vertical. The setup is shown in figure 5.15. In these

sequence of tests, the camera is moved always facing the ground as it would being mounted

RMSE ICP Traj. Length (% length error)

Ours [m] 1.22 86.58
[%] 1.42 1.03

ORB-SLAM2 [m] 1.07 84.69
[%] 1.24 1.18

Table 5.5: Performance comparison with ORB-SLAM2 (STEREO)
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(a) Example View 1 (b) Example View 2

(c) Results

Figure 5.33: (a) and (b) are example views from the outdoor dataset and (c) shows the
estimated trajectories from the aVO pipeline and ORB-SLAM2 in stereo configuration.
The green line is a manually annotated ground truth from aerial imagery. The blue line
shows the very imprecise GPS track for visual reference

on a UAV for providing relative localization. In each sequence different kinds of motion

are tested. In the first of them, labeled OUT CIRCLE, the vision system is carried over

a circular path which begins and ends approximately in the same position. Doing so it is

evaluated both quantitatively and qualitatively how the estimated trajectory diverges from

the correct path for a relatively long sequence. The second test, labeled OUT HOVER,

involves a hovering motion of the camera over a fixed spot and with moderate altitude

changes, while the last sequence, labeled OUT LANDING, shows the camera hovering for

a while, then reaching the ground to simulate a landing motion and takes off again. Each

sequence is tested with the metrics used for the RGB-D Dataset 5.6.1, however this time

it is not made any comparison with existing state of the art algorithms as the used setup

provides already an accurate ground truth for reference and no available scale-aware visual

algorithm can be used with just a monocular camera.
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µATE σATE |∆| ∆

Ours [m] 0.082 0.033 0.052 0.004
[%] 0.481 0.189 0.296 0.023

Table 5.6: Error metrics for the OUT CIRCLE test sequence

µATE σATE |∆| ∆

Ours [m] 0.042 0.024 0.055 0.003
[%] 0.271 0.158 0.360 0.022

Table 5.7: Error metrics for the OUT HOVER test sequence

5.6.4 OUT CIRCLE

The first sequence involves a round trip departing and ending from approximately the same

location. After a first brief hovering motion (small circle in trajectories of figure 5.34), the

camera moves on a longer circular trajectory observing a feature-rich natural environment.

The length of the D-GPS track is 19.2 meters, long enough to highlight the amount of

translational drift that can occur. Correlations between the D-GPS data and the estimated

poses are established on the basis of timestamps by finding the closest ground truth and

estimated poses in time. Correspondences are denoted with blue segments connecting the

closest D-GPS measurement to each keyframe in figure 5.34. D-GPS and keyframe poses

must be referred to the same reference system in order to estimate the errors since the D-

GPS is expressed in a system centered on the base station and the visual odometry select

the first camera frame as the global coordinate system. Given a set of correspondences

between the two trajectories, Horn alignment is applied for computing a fitting rotation

as suggested by the authors of [135]. The same error metrics used for the tests in section

5.6.1 are used here to evaluate tracking performances and are reported in table 5.6 showing

a mean Absolute Trajectory Errors of about 8cm which constitutes the 0.4% relatively

to the entire trajectory length. Figure 5.34.c reports a side view of the trajectory and

reconstruction highlighting on the left side a slight curvature of the environment. This

could be either related to the actual geometry of the observed scenario or very little errors

in determining the distortion coefficients for the camera, which is observed also by the

authors of [150] and could be corrected by fusion of attitude measurements from an IMU.

Figure 5.37 reports the Absolute Trajectory Errors for this sequence after aligning D-

GPS data. The errors are mainly related to the x and y components of the motion, which

are approximately parallel to the ground. z errors amount in average to 0.01-0.02 meters

and are always lower than 0.05 meters. Note that the D-GPS track is accurate at centimeter

level and the manufacturer software reports an uncertainty estimate for each pose. Most

of the time the errors are contained in the 1 σ range so it is just possible to infer that z

drifts are negligible. This demonstrates that the algorithm is able to recover a robust and

stable scale factor all throughout the motion with minimal or absent drift.
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(a) Example view 1 (b) Example view 2

(c) Front view (d) 3D view

(e) Top view (f) 3D view with ranges

Figure 5.34: Views of trajectory and map for the sequence OUT CIRCLE as computed
by the algorithm. Colored dots are 3D landmarks triangulated and optimized during the
sequence, the green line is the estimated trajectory and in magenta the ground truth from
the motion capture system. (d) represents also altimeter measurements from the set of
accepted associations (see section 5.3) to highlight the recovery of a correct scale
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(a) Example view 1 (b) Example view 2

(c) Front view (d) 3D view

(e) Top view (f) Front view with ranges

Figure 5.35: Views of trajectory and map for the sequence OUT HOVER as computed
by the algorithm. Colored dots are 3D landmarks triangulated and optimized during the
sequence, the green line is the estimated keyframe trajectory and in magenta the ground
truth from the motion capture system. (d) represents also altimeter measurements from
the set of accepted associations (see section 5.3) to highlight the recovery of a correct scale
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µATE σATE |∆| ∆

Ours [m] 0.022 0.013 0.023 0.006
[%] 0.459 0.255 0.46 0.124

Table 5.8: Error metrics for the OUT LANDING test sequence

5.6.5 OUT HOVER

In this test, the motion is constrained in an approximately square box of 2x2 meters sim-

ulating a stable hover. Even though the motion is constrained in a very small area, the

trajectory length is still meaningful for evaluating eventual drift being 15.6 meters in length.

Figure 5.35 shows some example view from this sequence as well as the trajectories and

reconstructions from various angles. As for the previous sequence is plotted the keyframe

trajectory therefore appearing a sequence of segments instead of a smooth path. Only

keyframe poses are in fact optimized in the back-end. Figure 5.35 demonstrates the flat-

ness of the reconstructed man-made environment (the points not belonging to the ground

belongs to the chair visible in figure 5.35.b). Figure 5.35.f shows also the altimeter mea-

surements form the keyframes where depth associations were embedded in the Bundle

Adjustment. As reported by table 5.7 and by figure 5.37 the Absolute Trajectory Errors in

this sequence are very low being contained in the 5cm range for x and y and always below

the 1 σ uncertainty of the D-GPS for the z coordinate. As the hovering motion of the

camera keeps track of landmarks for a high number of keyframes, the pose drift is minimal

as the algorithm is computing the pose based on the same landmarks for most of the time

without triangulating new ones. This motivates the usefulness of the proposed approach

for UAV navigation contrarily to pure incremental visual odometry approaches [90] [106].

5.6.6 OUT LANDING

The last of the three sequences demonstrates the performance of the algorithm during rapid

altitude changes. The sensor setup is moved in a spiraling motion toward the ground (from

figure 5.35.a to 5.35.b) starting from a height of just over 1 meters and ending at a few

centimeters from the ground. For this sequence and the previous, D-GPS coverage is not

available for the entire sequences as the differential fix with the base station was unstable

causing the track to drift. The D-GPS track was then filtered removing the regions with

highest uncertainty in pose, which during fix loss were higher than 1 meter in all the

three directions. Even if ground truth is available for a limited part of the trajectory, the

errors shown in table 5.7 and in figure 5.37 are consistent with the other sequences and the

reconstructed map visible in figures 5.35.c and 5.35.d suggest good tracking accuracy also

during the remaining part of the trajectory.

5.6.7 Scale robustness and timings

Figure 5.38 reports for all sequences, the difference between the altimeter measurements

and the depth of the associated landmarks for each keyframe. This allows to evaluate the

instantaneous scale drift over time. As the figure shows, depth errors are always in average

contained in the 2 to 3 centimeter range even during the OUT LANDING sequence where
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(a) Example view 1 (b) Example view 2

(c) Front view (d) 3D view

(e) Top view (f) 3D view with ranges

Figure 5.36: Views of trajectory and map for the sequence OUT LANDING as computed
by the algorithm. Colored dots are 3D landmarks triangulated and optimized during the
sequence, the green line is the estimated keyframe trajectory and in magenta the ground
truth from the motion capture system. (d) represents also altimeter measurements from
the set of accepted associations (see section 5.3) to highlight the recovery of a correct scale
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(a) OUT CIRCLE (b) OUT CIRCLE

(c) OUT HOVER (d) OUT HOVER

(e) OUT LANDING (f) OUT LANDING

Figure 5.37: Trajectory coordinates and errors for the three sequences OUT CIRCLE,
OUT HOVER, OUT LANDING. Estimated trajectories in the left column are plotted
against the D-GPS aligned trajectories while Absolute Trajectory Errors in the right col-
umn are plotted against the estimated uncertainty of the D-GPS poses provided for each
pose by the manufacturer software. Note that errors along the z direction are low and con-
sistent with the measurement accuracy demonstrating consistency in the scale estimates.
Ground truth is lacking in some areas for the second and third trajectories due to high
uncertainty in the D-GPS estimates
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the range between the camera and ground was changing rapidly. Furthermore, errors are

always lower than 5 cm range which is the accuracy of the LightWare SF-10B LiDAR

altimeter as reported in the datasheet. This result demonstrates the consistency between

the sensor properties and the results of the visual odometry as an estimator for the camera

pose. In addition, figure 5.39 reports the average landmarks reprojection errors for all

frames in each sequence. The reprojection errors (eq 5.9) define also the cost function for

regressing the camera pose and are limited by the accuracy of feature tracking from sparse

optical flow. During the Bundle Adjustment, a σ of 1 pixel is associated to each reprojection

factor as a value which generally describe tracking accuracy. It is evident in figure 5.39

as the mean reprojection error is always contained or centered around the 1 pixel range.

This demonstrates firstly that the optimization scheme is able to contain the drift in camera

pose accurately up to the feature tracking uncertainty and also that the selected uncertainty

value is well representative of the error model for tracking. It can be also observed that the

reprojection error increases slightly during time and decreases instantaneously in a constant

“zig-zag” motion pattern which shows the effect of each Bundle Adjustment triggered at

keyframe rate and optimizing for the lowest reprojection error (other than depth). Figure

5.40 reports timings for the both the front-end and back-end during the outdoor sequences.

This time, a more powerful Intel i7 processor was used instead of the Intel i5 for the RGB-D

dataset tests. However, while multi-core performances are double, single core performances

are very comparable and only marginally better. It can be seen that almost all frames in

the sequences are processed with a higher rate than the nominal 30 Hz of the video stream

(or 33 milliseconds per frame) suggesting very good performances also in terms of efficiency.

Spikes are visible from time to time due to lack of optimization at code level, especially

related to concurrency between the two computational threads for the front-end and back-

end. Figure 5.40 also reports the timing required for each Bundle Adjustment at keyframe

generation time, the implemented incremental optimization scheme proves here to be very

efficient requiring in average less than 100 milliseconds (or less than a 3 frames time span)

to adjust the local trajectory and map depending on the number of landmarks involved in

the optimization.
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(a) OUT CIRCLE (b) OUT HOVER (c) OUT LANDING

Figure 5.38: Scale offsets during the three sequences. Offsets are the average depth differ-
ence between the 3D landmarks associated to an altimeter projection and its measure. It
is highlighted for reference the σrange of the altimeter measurements given by the manu-
facturer. These scale offset values are computed before Bundle Adjustments at keyframe
level.

(a) OUT CIRCLE (b) OUT HOVER (c) OUT LANDING

Figure 5.39: Mean reprojection errors for the three sequences. The error is computed as
the norm of the 2 element vector in eq. 5.9 and it is averaged for all tracked landmark
in each frame. To all plots is highlighted for visual reference the defined uncertainty over
each feature detection in the image (1 pixel for the u and v coordinates). Note how the
developed optimizer is able to constrain both the reprojection error, indicating consistency
of the 3D map with visual measurements, and scale (figure 5.38)
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(a) OUT CIRCLE (b) OUT CIRCLE

(c) OUT HOVER (d) OUT HOVER

(e) OUT LANDING (f) OUT LANDING

Figure 5.40: Left column: computational times per each frame for the front-end part of the
algorithm. It is highlighted in each plot the maximum time allowed to process each frame
from a 30Hz image stream. Right column: computational times per each iSAM2 update.
In each sequence, the optimization back-end spends in average less than 100 milliseconds
for Bundle Adjustment. All these times are related to a laptop-grade i7 CPU.
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Chapter 6

Conclusions

In the first part of this thesis work a robust re-localization pipeline based on stereo submaps

has been presented and tested. We showed how 3D local descriptors can be binarized and

enriched with texture information to obtain a precise and distinctive local signature, fast to

extract and match using the Hamming distance. We demonstrated how the Bag-of-Words

paradigm can be applied to 3D submaps, as containers of descriptors, deriving an extremely

light representation to compute their similarity in a fast and efficient way. The proposed

candidate selection scheme was validated in laboratory datasets, where submaps from the

LRU and LRU2 rovers, developed at the DLR Robotics and Mechatronics Center, were

compared and matched in milliseconds with precisions higher than 70%. A novel outlier

rejection scheme was introduced outperforming traditional RANSAC-based approaches to

validate candidate submap correspondences. We demonstrated the effectiveness of our

approach in a challenging outdoor scenario on Mount Etna, designated as a planetary

analogous environment. The complexity of the Etna datasets is due to the fact that visual

information is very repetitive and therefore ambiguous, leading to the state-of-the-art visual

SLAM system ORB-SLAM2 to fail in this scenario. Our algorithm on the other hand was

able to re-localize on multiple mapping sessions detecting matching submap pairs with

100% precision after validation and accurately aligning the 3D maps.

In the second part of this thesis is demonstrated that monocular vision systems can

be fused efficiently with low resolution range sensors to recover and maintain a correct

metric scale. A scale-aware monocular Visual Odometry prototype was tested comparing

pose estimation accuracy and scale drift using a low resolution Time of Flight camera

delivering 64 range measurements in an 8.7x8.7 degrees Field of View and a heavy and

precise 2D LiDAR measuring 360 scan points in a 180 degrees angle. Results showed that

while using a more accurate range sensor such as the 2D LiDAR delivers slightly higher

performances, pose estimates employing the ToF camera are still comparable with state

of the art stereo Visual SLAM while requiring less computational effort due to handling a

single image stream. Having demonstrated that our sensor fusion approach is effective, a

real-time implementation of a scale correct monocular Visual Odometry has been presented.

A minimalistic range sensing setup comprising a single-point off-the-shelf LiDAR altimeter

has been employed to initialize and correct the metric scale using an incremental optimizer

running on an independent thread. The proposed algorithm has been tested in the RGB-D
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TUM dataset outperforming RGB-D SLAM while using just one range measurement per

keyframe. In addition, a proper test setup comprising a color camera and a LightWare SF-

10 altimeter was used in conjunction with a differential GPS in outdoor scenarios testing

the pose estimation accuracy simulating a ventral camera setup for an UAV. In all tests

the maximum error did not exceed the 0.5% of the total travelled length, demonstrating

state of the art performances using very limited resources.
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