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Abstract

Leakage in pressurized water distribution systems is a major issue for water utilities today,

because of the huge concerns over public health risks and the economic constraints on energy

and resources. This thesis investigates innovative techniques for the detection of leakages

in water distribution systems, relying on the calibration of network hydraulic models. The

main goal is to suggest a method to reduce the costs of the field surveys currently required

from the leakage detection activity on real systems.

An inverse model, based on the coupling between Kalman Filter based data assimilation

techniques and network hydraulic models, is proposed and critically analyzed. The model is

based on the knowledge of pressure heads, pipe flow rates and volume measurements, which

can be easily obtained in any network with a limited effort and no technical troubles, with

exception of the flow rate measurements.

The present work investigates different aspects of the proposed coupled model, related to

the data assimilation technique used (Ensemble Kalman Filter or Ensemble Smoother), the

type of hydraulic analysis developed (demand driven analysis through standard EpaNET or

pressure driven analysis), the type of model parameters to be calibrated (the nodal leakage

flow rates or the EpaNET emitter coefficients responsible for the nodal leakage flow rates),

besides distinctions on the type of assimilated data and on the number and locations of

available measurements.

Despite the fact that the success of the proposed technique depends on the specific

features and topological structure of the network analyzed, this coupled model applied to

synthetic water distribution systems proves to be effective for leakage detection and could

be a competitive solution compared to the traditionally used district metering procedures

in real world cases.
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Chapter 1

Introduction

This thesis investigates innovative techniques for the detection of leakages in water distri-

bution systems (WDSs).

To some extent leakages plague all the WDSs and the problem turns mainly into water

quality issues and concerns over public health risk, since the bursts are potential points for

the transfer of contaminants from the water table into the system when pressure decreases

during a shortcoming due to management or maintenance operations. Leakages result not

only in loss of treated drinkable water, but also in wasting the energy and resources invested

in its supply, transportation and distribution, which are major issues for water utilities to-

day. Moreover, leakages reduce the system efficiency in satisfying the consumer requirements

in terms of delivered discharge and pressure, besides causing long term damages to infras-

tructures and to the distribution system itself due to the hidden pressurized outflows.

A first estimate of the leakage scope in WDSs is often obtained from a balance between

non-revenue water and the overall system intake, but the actual losses may however dif-

fer significantly from this estimate, which does not account for the apparent losses due to

non-revenue consumption (e.g. water used for washing the streets or for the fire service).

Alternative techniques to the traditional balance are thus required for a proper leakage as-

sessment, but in any case the economic benefit deriving from the application of a leakage

detection technique actually depends on its availability and effectiveness. At present, the

audits help to identify parts of the WDS that have excessive leakage, however they do not

provide information about the exact location of leaks requiring attention, thus leak detec-

tion surveys are undertaken via the preferential use of acoustic methods (Hunaidi et al.,

2000; AWWA, 2008), which are costly both in terms of number of pipes to be examined

and working time. The spatial assessment of water losses through network models is a chal-

lenging issue that can help to analyze real world problems when, as usual, a proper network

segmentation and the detailed knowledge of water demand are not available, making the

13



identification of losses through district metering cumbersome. Moreover, the spatial distri-

bution of water losses in WDSs strongly affects the calibration of the network models, that

should be accomplished on the basis of data readily available as the metered consumption,

the global flow rates and the pressure heads on a limited number of locations.

1.1 Purpose and scope

This thesis investigates a leakage localization method based on coupling data assimilation

techniques based on the Kalman Filter, as the Ensemble Kalman Filter (EnKF) (Evensen,

1994) or the Ensemble Smoother (ES) (Van Leeuwen and Evensen, 1996), to the EpaNET

(Rossman et al., 2000) software as a tool for the hydraulic simulation of the network. The

Kalman Filter data assimilation techniques are able to manage the different uncertainties

linked to the context, and at the same time are able to work as inverse models to calibrate

the parameters involved in the modelling procedure.

This thesis proves that the proposed model allows for the definition of the network

segments where significant water losses are more likely to occur, through the assimilation

of a suitable number of measurements of nodal pressure (Pudar and Liggett, 1992; Chen

and Zhang, 2006), pipe flow rate and cumulative incoming flow volume. The total inflow

is commonly known, while nodal pressures can be monitored with a limited technical and

economical effort. Although accurate measurements of pipe flow rates are not usual and

require a good preliminary knowledge of the WDS, good practice and the newly developed

design and renewal techniques generally assure the division of the water supply network into

hydraulically independent districts that can be continuously monitored.

A comparison between EnKF and ES is realized and the adequacy of the EnKF for

the analyzed problem is shown, the algorithm being able to manage the non-linear physical

relationship that links water losses to the indirect measurements of pressure heads or volumes

in a WDS. The EnKF technique coupled with a pressure driven hydraulic model, which

better describes the physical relationship between pressures and flow rates in a WDS, is

then verified on a more complicated system.

Given the great potential of the information technology tools currently available, the use

of the proposed coupled model to assess the spatial distribution of leakages in a WDS is a

promising tool that can help to solve real world problems reducing the costs associated with

onsite acoustic surveys and, at the same time, making the calibration of hydraulic network

models a more reliable procedure.
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1.2 Literature review

1.2.1 Inverse models for leakage detection

Leak detection methodologies have gained the interest of the scientific community and many

papers have been published on this topic in recent years, thanks to the increase in computer

power and the availability of new numerical methods for WDSs analysis.

Leak detection in WDSs can be accomplished by solving an inverse problem using mea-

surements of pressure and/or flow. In the work developed by Pudar and Liggett (1992),

the problem is formulated with equivalent orifice areas of possible leaks as the unknowns.

Minimization of the difference between measured and calculated heads produces a solution

for the areas. In this analysis the usual assumption is made that all the demands occur at

the nodes and the leaks are at the nodes as well. In this way leaks become simply additional

demands, the location and quantities being unknown. In the ill posed inverse problem we

know the characteristics of the system (pressures) and the demands but some quantities

- the unaccounted for nodal outflows, leaks - are unknown. If the known quantities are

extended to a sufficient number of pressures (i.e. pressure measurements), we can find the

leaks. The leaks Li are usually the unknowns, but can be expressed in terms of pressure by

an orifice formula

Li = CoiAoi

√
2gpi
γw

(1.1)

in which Coi is an orifice coefficient and Aoi is an equivalent orifice area. The values of Aoi

become the unknowns instead of the Li.

Inverse techniques can be used to calibrate WDSs, as discussed by Boulos and Wood

(1990), who consider the case of unknown pipe parameters and boundary conditions.

Pérez et al. (2011) propose a leakage localization method based on the pressure mea-

surements and pressure sensitivity analysis of nodes in a network. The methodology of

leakage localization proposed in this paper is mainly based on standard theory of model-

based diagnosis described for example in Gertler (1998) that has already been applied to

water networks to detect faults in flow meters (Ragot and Maquin, 2006).

The work developed by Morosini et al. (2014) shows a leak detection approach based

on a Bayesian calibration method. The methodology uses a newly formulated index which

takes into account the variation of roughness in pipes between the calibrated models with

and without leaks. The approach proved to be effective in finding leaks without a high

computational cost, but the results depend crucially on the number and quality of the

observed data.

Because the system characteristics are never known perfectly and no measurement can
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be considered without error, and because the different kinds of measurements available

are usually indirectly related to the model parameters, a suitable approach is necessary

to reconcile information from multiple sources. A comprehensive approach to the problem

of uncertainty in WDSs has been proposed within the frame of leak detection problem

(Poulakis et al., 2003; Rougier, 2005) and real time management (Hutton et al., 2012).

Recently it has become common the solution of the inverse problem through the ap-

plication of Kalman Filter based techniques, as the Ensemble Kalman Filter (EnKF) or

the Ensemble Smoother (ES). These techniques follow a Monte Carlo approach, using an

ensemble of model realizations to evaluate necessary statistics.

The first formulation of the EnKF was given by Evensen (1994). The EnKF has been

found useful in various applications (e.g. meteorology) which deal with large and non-linear

problems. This technique shows a fairly low computational cost compared to optimization

processes (that need the explicit calculation of an objective function). Another benefit of

the EnKF is that existing codes can be used to obtain model predictions, such as pressure

heads and flows. With the prediction of such codes, the system is sequentially updated by

incorporating the available observations.

Chen and Zhang (2006) apply the EnKF in the field of subsurface hydrology to update

the hydraulic conductivity field by assimilating hydraulic head measurements, providing the

capabilities of the method.

Dealing with subsurface hydrology, in Hendricks Franssen and Kinzelbach (2008) the

EnKF is used for the joint updating of parameters and states. In their work the filter in-

breeding problem is investigated in details and some solutions are proposed for its reduction.

In Nowak (2009) the EnKF procedure moves toward pure parameter updating.

Zhou et al. (2011) have concentrated on the Gaussian hypothesis of the variables prob-

ability distribution function, that ensures the optimal working conditions for the Kalman

Filter based methods. In this work a technique called Normal-Score Transform is applied

to parameters and state variables so that the Kalman filtering equations will be applied on

Gaussian variates.

Data assimilation methods are used in Okeya et al. (2014) to improve predictions of

water demand and WDS states with the assumption that pipe roughness values and other

hydraulic model parameters are known and the system has no leakage losses.

In their very recent paper Bragalli et al. (2016) use an innovative cascade of Ensem-

ble Kalman Filters to assimilate the information deriving from sensors measuring pressure

heads, flow in pipes and demands, with the objective of increasing knowledge in WDSs.

In contrast to the EnKF, the ES (Van Leeuwen and Evensen, 1996) analysis incorporates
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all previous measurements and model states to compute an updated model state estimate at

all previous measurement times. The ES scheme is a promising alternative to other inverse

modelling techniques because of the low computational burden and the ability to run the

algorithm entirely independent from the transient model simulation. ES applications are

reported in literature (e.g. Bailey and Baù, 2010) for the estimation of the system parameter

values.

1.2.2 Optimal sampling design

In order to increase knowledge in a WDS, measurements are performed through pressure

sensors and flowmeters. An interesting problem is to find the most appropriate measurement

network that optimizes leakage detection, using a minimum number of sensors.

Pudar and Liggett (1992) point out that measurement programs can be guided by the

sensitivity matrix for maximum effectiveness. A methodology based on this matrix is pro-

posed by Pérez et al. (2011) for optimizing leakage detection. The leakage sensitivity analysis

evaluates the effect of a leakage on the pressure in a node. If this process is repeated for

each node and possible leak, the sensitivity matrix S is obtained as follows:

S =


∂p1
∂L1

· · · ∂p1
∂Ln

...
. . .

...

∂pn
∂L1

· · · ∂pn
∂Ln

 (1.2)

where each element sij measures the effect of leak Lj in the pressure of node pi. It is ex-

tremely difficult to calculate S analytically in a real network, because of the huge non explicit

and non-linear systems of equations that describe its dynamics. In the mentioned work the

sensitivity matrix is generated by simulation as follows: the same leakage is introduced in

each node and the corresponding increment of pressure is measured. Because some sensors

are much more sensitive to all leakages than others, a normalization of sensitivity is needed

so that the information provided by any node is comparable. Each row corresponding to a

node with a sensor is divided by the maximum value of this row that corresponds to the

leakage most important for that node. This procedure leads to the normalized sensitivity

matrix S̄:

S̄ =


∂s11
∂σ1

· · · ∂s1n
∂σ1

...
. . .

...

∂sn1

∂σn
· · · ∂snn

∂σn

 (1.3)

where σi = max {si1, ..., sin}, i = 1, ..., n. This matrix shows how the most relevant leak

is the one on the node itself, the maximum normalized sensitivity being on the diagonal.
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Columns correspond to nodes with leaks and rows correspond to nodes with sensors. Each

element is equal to zero when leakage j does not affect pressure in node i and it is equal to

1 when leakage j affects node i. This approach is a possible way to define sensor placement

avoiding the optimization process.

A significant amount of previous research on sampling design has focused on the reliabil-

ity aspects of WDSs (Xu and Goulter, 1998) and on the model calibration (Bush and Uber,

1998). To solve the problem of optimal sampling design various methods are suggested in

literature. Kapelan et al. (2005) propose a methodology in which the sampling design of

pressure loggers is formulated as a multi-objective problem that minimizes the calibrated

model prediction uncertainty and cost. Morosini et al. (2014) present a method for sampling

design based on sensitivity analysis (D-optimality criteria based) to find pipes and nodes

that affect the hydraulic behaviour of the entire system. The essence of all these methods

is in discovering sensitivity nodes in the network, which represent behaviour of all other

nodes.

In some recent works the sensor placement methodology was aimed at finding leaks. In

the work developed by Pérez et al. (2009) sensors are placed in the Barcelona network to

detect a discrepancy in pressure due to leakage depending on its location. Promising results

are obtained by Quevedo Caśın et al. (2011) by using a fault isolation algorithm which

correlates the residuals (generated by comparing available pressure measurements with their

estimation using a model) with the fault sensitivity matrix. In a more recent study Pérez

et al. (2014) investigate the optimal sensor distribution considering that some sensors are

already installed in real networks, as flow sensors at the control points. Casillas et al. (2013)

propose a genetic algorithm-based sensor placement method for leak location, consisting

in minimizing the number of non-isolable leaks. The EnKF approach recently adopted by

Bragalli et al. (2016) allows for the selection of selective and affordable monitoring networks.

1.3 Thesis outline

Chapter 2 gives the theoretical fundamentals of the techniques used. The Kalman Filter

theory is developed, focusing on two derivative data assimilation methods, the EnKF and

the ES.

In Chapter 3 the gradient algorithm for the solution of pipe networks is presented. The

derivation of the recursive algorithm is then extended to include pumps. A pressure driven

hydraulic network model is developed, that is a FORTRAN program which performs the

three step procedure proposed by Todini (2003). Two example networks are reported for
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the model application.

In Chapter 4, it is investigated the possibility of retrieving the spatial distribution of

water losses by assimilating pressure head measurements. A comparison is developed be-

tween the EnKF and the ES techniques on the synthetic Anytown benchmark system. The

EnKF generally outperforms the ES when the number of available measurements is higher,

the recursive structure of the EnKF allowing for an effective management of the problem

non-linearities.

In Chapter 5, the Normal-Score EnKF technique is coupled with a pressure driven hy-

draulic network model to investigate the possibility of retrieving the spatial distribution of

water losses through the calibration of the EpaNET emitter coefficients responsible for the

nodal leakages. The assimilated measurements are pressure heads, flow rates and volumes.

The procedure is tested on the two synthetic networks of Anytown and Net3, characterized

by a different topological complexity. The numerical experiments demonstrate that the suc-

cess of the technique is directly proportional to the topological complexity of the network

and to the cross correlation relationship between the leakage variables to be estimated and

the potentially measured system variables.

Finally the conclusions summarize the main results of the thesis.
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Chapter 2

Kalman Filter based data assimilation

techniques

2.0.1 Introduction

There are many sources of uncertainty in any mathematical model of a system. In fact,

the model objective is to represent critical modes of system response, so many effects are

left unmodelled. Even effects which are modelled are necessarily approximations to what is

observed and their parameters are not determined absolutely. Then disturbances, which we

can neither control nor model deterministically, contribute to drive the system. Moreover

sensors do not provide perfect and complete data about a system, devices being always noise

corrupted.

A mean of extracting valuable information from a noisy signal must be provided. This

problem is known as data assimilation and a possible solution is made by Kalman Filter

based techniques. The Kalman Filter (KF) and its variants, the Ensemble Kalman Filter

(EnKF) and the Ensemble Smoother (ES), are herein described.

2.1 The Kalman Filter

The Kalman Filter (KF) (Kalman, 1960) is a sequential data assimilation algorithm for

linear dynamics and measurement processes with Gaussian error statistics. Given a linear

forecast model and a series of time dependent observations affected by errors, the KF can

sequentially incorporate new observations at the point when they become available, thus

obtaining a least square estimation of the state of the system.

The KF consists of three main components. The first is a state vector, which usually

includes model parameters and dependent variables. The second is a forecast model. The
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third is an assimilation model, whose purpose is to combine the information coming from the

forecast model and the observed data. The difference between the two sources of information

is called innovation. The weight assigned to the innovation is determined through the state

error covariance matrix and error covariance matrix of the observations (Evensen, 2003).

The KF is shortly described by the equations in the sequel.

Xf
ti = AXu

ti−1 + e1ti (2.1)

P f
ti = AP u

ti−1A
T +Wti (2.2)

zmti = MXti + e2ti (2.3)

Kti = P f
tiM

T
(
MP f

tiM
T +Rti

)−1

(2.4)

Xu
ti

= Xf
ti +Kti

(
zmti −MXf

ti

)
(2.5)

P u
ti

= (I −KtiM)P f
ti (2.6)

where X is the state vector, which represents the state of the system, including model pa-

rameters, (dependent) variables, and other observations; zm denotes the observation vector;

M is the observation operator which represents the relationship between the state vector

and the observation vector; P denotes the state error covariance matrix; K denotes the

Kalman gain; R is the error covariance matrix of the observations; W denotes the covari-

ance matrix of the model noise; A stands for the linear transition matrix (also referred to

as matrix derivative or sensitivity matrix), which is a linear operator to forward the state

from one time step to the next time step; e1 and e2 are independent white noises for the

forecast model and the observations, drawn from multi-normal distributions with zero mean

and covariance W and R, respectively; ti denotes the time step; the superscript T stands for

transpose; the superscript f and u indicate the forecast and update procedure, respectively.

Equation (2.1) represents the forecast procedure of the KF system at the time step

ti. The forecast model will run until new observations become available. The observation

vector zm is transformed from the true field through the observation operatorM , allowing for

observation errors e2 in equation (2.3). The optimal least squares Kalman gain is calculated

through equation (2.4). From equation (2.5) the new state vector is obtained as a weighted

summation of the forecast state and the innovation. After the data assimilation step of

equation (2.5), the new state error covariance P u is given by equation (2.6). In general, the

trace of P u should be less than that of the forecast error covariance P f given by equation

(2.2).
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2.2 The Ensemble Kalman Filter

The EnKF (Evensen, 1994) is based on the Monte Carlo approach, meaning that an en-

semble of realizations is used to describe the problem and the error statistics. The basic

concept is that the information conveyed by a full probability density function can be ex-

actly represented by an infinite ensemble of model states. Suppose that we have N model

states, each of dimension n. Each model state represents a point in an n−dimensional state

space. This cloud of points in the state space can, in the limit when N goes to infinity, be

described using a probability density function

Φ (x) =
dN

N
(2.7)

where dN is the number of points in a small unit volume. With the knowledge about either

Φ or the ensemble representing Φ, we can calculate whichever statistical moment.

The essence of the EnKF is very similar to the KF one. The difference is that in the KF

the error covariance matrix for the forecast estimate, P f , is explicitly computed through

P f =
〈(
Xf −X

) (
Xf −X

)T〉
(2.8)

where the brackets denote an expectation value. P f is then propagated in time through

equation (2.2). However, the true state X is not known, and we therefore define the ensemble

covariance matrix P f
e around the ensemble mean 〈Xf〉.

〈Xf〉 ≈ 1

NMC

NMC∑
mc=1

Xf
mc (2.9)

P f ≈ P f
e =

1

NMC − 1

NMC∑
mc=1

[(
Xf
mc − 〈Xf〉

) (
Xf
mc − 〈Xf〉

)T]
(2.10)

where now the average is over the ensemble. The subscript mc denotes the index of the

ensemble members, and NMC denotes the total number of the ensemble members.

Thus, we can use an interpretation where the ensemble mean is the best estimate and the

spreading of the ensemble around the mean is a natural definition of the error in the ensemble

mean. There will clearly exist infinitively many ensembles with an error covariance equal

to P f
e . Thus, instead of storing a full covariance matrix, we can represent the same error

statistics using an appropriate ensemble of model states. Given an error covariance matrix,

an ensemble of finite size will always provide an approximation to the error covariance

matrix. However, when the size of the ensemble N increases, the errors in the Monte Carlo

sampling will decrease proportional to 1√
N

(Evensen, 2009b).
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In the EnKF the forecast model is performed on each ensemble member independently.

Equation (2.1) becomes:

Xf
mc(ti)

= AXu
mc(ti−1) + e1mc(ti) (2.11)

where A is the forecast operator to integrate the state with time, that can be either linear or

non-linear. The observation vector at the time step ti for each ensemble member is similar

to equation (2.3):

zmmc(ti) = MX(ti) + e2mc(ti) (2.12)

where MX(ti) is the observation data obtained from the true field and e2mc(ti) is the ob-

servation noises. Following the previous interpretation, each observation is represented by

an ensemble, where the mean is the actual measurement and the variance of the ensemble

represents the measurement errors. The Kalman gain has exactly the same expression as its

KF counterpart (equation 2.4). The updated ensemble of states is then computed similarly

to equation (2.5):

Xu
mc(ti)

= Xf
mc(ti)

+Kti

(
zmmc(ti) −MXf

mc(ti)

)
(2.13)

with the new (posterior) error covariance matrix still given by equation (2.6), which can also

be conveniently computed from the ensemble of updated states (2.13) using the formulae

like (2.9) and (2.10). In the latter procedure, the posterior mean and covariance of the state

vector can be selectively calculated whenever and wherever needed, eliminating the needs

of keeping track of the whole covariance matrix.

2.2.1 Non-linear model dynamics

For a non-linear model where we appreciate that the model is not perfect and contains

model errors, we can write it as a stochastic differential equation:

dx = u (x) dt+ k (x) dq (2.14)

where x is a random vector, u is a deterministic non-linear operator and k (x) dq is a stochas-

tic forcing term representing the random contribution from the model errors. In detail, dq

describes a vector Brownian motion process with assigned covariance Wdt, while k is an

operator.

When additive Gaussian model errors forming a Markov process are used, one can derive

the Fokker-Planck equation (also named Kolmogorov’s equation) which describes the time

evolution of the probability density Φ (x) of the model state,

∂Φ

∂t
=
∑
i

∂(uiΦ)

∂xi
=

1

2

∑
ij

∂2Φ
(
kWkT

)
ij

∂xi∂xj
(2.15)
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where i = 1, ..., n, thus ui is the component number i of the model operator u and kWkT is

the covariance matrix for the model errors.

If equation (2.15) could be solved in terms of Φ, it would be possible to calculate sta-

tistical moments for the model forecast to be used in the analysis scheme. The EnKF

applies a Markov Chain Monte Carlo (MCMC) method to solve equation (2.15), by inte-

grating the ensemble of model states forward in time, according to the stochastic model

dynamics described by equation (2.14). This ensemble prediction is equivalent to solving

the Fokker-Planck equation using an MCMC method. This procedure forms the backbone

for the EnKF.

An advantage of the EnKF is that the effect of non-linear terms is retained, since each

ensemble member is integrated independently by the model. In fact, the error covariance of

the ensemble evolves according to

P f
e(ti)

= FPe(ti−1)F
T +We + o(2) (2.16)

where F coincides with matrix A of the KF. Equation (2.16) is again of the same form as is

used in the standard KF, except of the extra o(2) terms that may appear if u is non-linear

and that are implicitly retained in the EnKF.

2.2.2 Computation efficiency of the EnKF

In the EnKF scheme, it is easy to find out that the observation operator M and the state

error covariance P always appear together during the updating process, thus the product

of M and P can be calculated instead of the actual covariance P . M is a linear operator

with only 0s and 1s as its entries, indicating the product of M and P is simply selecting

several lines from the matrix P . Computing the product of M and P first can simplify the

computation greatly.

If the state vector contains n components and the observation vector contains m compo-

nents (usually m being much smaller than n), the matrix P has the size m× n. Therefore,

in the EnKF system only m lines related to the observable components of the state vector

need to be computed out of the whole covariance matrix P .

The posterior mean and covariance of the state vector can be selectively evaluated from

the ensemble of updated realizations as needed. The reduced dimensionality in the covari-

ance matrix as well as the approach for obtaining the required covariance constitutes a

major advantage for the EnKF.

The EnKF system is also suitable for parallel computation, since each ensemble member

works independently when performing forecasting and updating. Communication is only
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necessary when calculating the state error covariance and the Kalman gain.

2.3 The Ensemble Smoother

The Ensemble Smoother (ES) (Van Leeuwen and Evensen, 1996) is a derivative of the

EnKF scheme. In contrast to the EnKF, which incorporates all previous measurements to

provide an updated model state at only the current time, the ES analysis incorporates all

previous measurements and model states to compute an updated model state estimate at

all previous measurement times, using both the spatial and temporal covariance of model

results (Evensen, 2009a). In this way, previous model states continue to be updated at each

measurement assimilation time, and thus the method can be used to reconstruct historical

conditions (McLaughlin, 2002).

As discussed by Van Leeuwen (2001), the ES gives superior results compared to the EnKF

at earlier times, since the model states can be updated back in time, but provides identical

estimates of the system state at the current assimilation time as the EnKF (Evensen and

Van Leeuwen, 2000).

The ES algorithm still follows a Monte Carlo approach, that is an ensemble of realizations

is used to describe the system state and the measurement data, whose error is assigned by

the modeller. All the error statistics are assumed to follow a normal frequency distribution.

2.3.1 Forecast step

Each model state X is forecasted to time t + ∆t on the basis of the model state at the

current time Xt, parameters C, forcing terms c, boundary conditions b, and solution to the

mathematical model ϕ, generating the prior system information Xf
t+∆t.

Xf
mc(t+∆t) = ϕ

(
Xmc(t), C, ct, bt

)
(2.17)

If this step occurs at the beginning of the model simulation, then each Xt coincides to the

initial model state X0.

2.3.2 Update step

At time t + ∆t, measurement data zmt+∆t from the true state are collected and perturbed

with a Gaussian error to create the perturbed measurement vector Zm
t+∆t. The assimilation

procedure generates a posterior state estimate Xu
t+∆t where the superscript u represents

update.

Xu
mc(t+∆t) = Xf

mc(t+∆t) +Kmc(t+∆t)

(
Zm
mc(t+∆t) −MXf

mc(t+∆t)

)
(2.18)
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The matrix M maps model results at measurement locations to actual measurements, cre-

ating the residual at measurement locations. The lower the error in the measurement data,

the more heavily the residual is weighted, and the model forecast values thus approach the

measurement values. A residual equal to 0 signifies complete agreement between the model

state and the true state. K is the Kalman gain matrix, with the same formulation as equa-

tion (2.4) of the KF and EnKF. Equation (2.18) is the same as equation (2.5) of the KF or

equation (2.13) of the EnKF.

The forecast model error covariance matrix for the ES is still calculated through equation

(2.10), and it is composed of spatial covariance terms between states at the same simulation

time, as well as space-time covariance terms between states from different times.

Because the ES update routine is run only once using all previous model states and

measurement data, and as such can be applied exclusive of the model simulation, it is

an appealing approach for estimation of time-independent parameters. Besides, the ES

computational burden is lower than the EnKF one and no iterative procedure is required.

2.4 Augmented state for parameter estimation

The state matrix X of both the EnKF or ES scheme can be augmented to include model

parameter values, allowing the spatial covariance between parameter and state variables to

correct not only the state, but also the parameters, of the model-estimated system. By

doing so, the model itself is corrected to more precisely imitate the workings of the true

system (e.g. Nowak, 2009).

In all the cases analyzed in this thesis, the data assimilation techniques are implemented

considering an augmented system state for the estimation of parameters. The EnKF and

ES are applied to non the non linear relationship that links the leakage parameters and the

observed system variables. As in other applications reported in literature (e.g. Zhou et al.,

2011) the KF based techniques are used with non Gaussian variables.
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Chapter 3

Modelling and simulation of WDSs

3.0.1 Introduction

Given the geometry (layout, topography), physical properties (pipe lengths, diameters,

roughness, reservoir shapes and levels, pump and valve characteristic curves) and the nodal

demands (inflows and outflows), the problem usually referred to as the analysis of a wa-

ter distribution network (WDN) consists of determining both the flows in every link (pipe,

pump, valve) and the piezometric head (and pressure) in every node of the system, under

the assumption that steady state flow has been reached.

Because the flows in the links and piezometric heads in the nodes are interrelated via

the head loss-flow formula being used, the problem is normally restricted to determining

one of them, i.e. either link flows or nodal piezometric heads.

The WDN analysis problem has received considerable attention since early 1936 when

Cross (1936) proposed two methods for tackling the problem, one of them well suited for

hand computation. Later on, Warga (1954), Martin and Peters (1963) and others (Shamir

and Howard, 1968), proposed solutions based on the Newton-Raphson method. Wood and

Charles (1972) introduced the Linear Theory Method algorithm. The gradient algorithm

was originally proposed by Todini (1979) and Pilati and Todini (1984) and subsequently

extended to incorporate pumps and other devices.

Nowadays all the algorithms that solve the network analysis problem use some fixed

piezometric head values as boundary conditions, from which the distribution of the flow

rates in the system is derived. Only the method from Wood and Charles (1972) still remains,

which is based on the use of flow rates as boundary conditions. Such a method is rather

inefficient from the computational point of view, thus leaving space to the more recent and

effective gradient algorithm.
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3.1 Mathematical background for network analysis prob-

lem

The steady state flow in a WDN is usually presented as that corresponding to the simulta-

neous fulfillment of a mass conservation and an energy conservation law.

• Mass conservation law, also referred to as mass or flow continuity law:

∑
i

Qij = qj (3.1)

for all the nodes, with j = 1, 2, ...nn. Qij is the flow in link connecting nodes i and

j. qj is the nodal demand in node j. The summation is carried out over all the

nodes i connected with the j-th node. Equation (3.1) represents a system of nn linear

equations in the unknown Qij, where nn is the number of nodes in the network.

• Energy conservation law, usually expressed in terms of head losses (gain) along a loop

or energy path: ∑
k

hij = δEk (3.2)

for all the paths, where k = 1, 2, ...nl. hij is the head loss in link connecting nodes i

and j. The summation is carried out over one sequence (path) of links going from one

known head node to another. Normally a reservoir will be the known head node. δEk

is the energy (level) difference between the starting and final node of the k-th path. nl

is the number of loops plus energy paths in the network. A loop is the particular case

of a path starting and ending at the same node (i.e. δEk = 0). Eq. (3.2) represents

a system of nl equations. Instead of being an energy conservation law, eq. (3.2) is

actually establishing a continuity of potential condition, since it holds for any set of

nodal piezometric head.

In addition to mass and potential continuity, a head loss-flow relationship must also be

satisfied by each link. The Hazen-Williams and Darcy-Weisbach formulae are some of the

most widely used head loss-flow relationships for computing head losses in pipe networks;

quadratic functions are used in the case of valves and pumps. Because the relationships are

non-linear in the flows, the system of simultaneous equations produced by (3.1) and (3.2) is

a non-linear one and no direct solution is possible.
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3.2 The global gradient formulation

The gradient algorithm may be regarded as a bridge between the optimization based and

the Newton-Raphson based techniques in that it starts from the minimization of a slightly

modified content model (Collins et al., 1978) in order to prove the existence and uniqueness of

the solution, which is the key to the unconditional convergence of the method. The problem

is algebraically reconducted to the recursive solution of a linear system of size equal to the

number of unknown nodal heads and a matrix projection of the results over the unknown

pipe flows. The special structure of the resulting system matrix, a sparse Stieltjes matrix,

symmetrical, positive definite which non zero elements can be stored in number of nodes +

number of pipes locations, allows for an efficient solution by using the Incomplete Cholesky

Factorization/Modified Conjugate Gradient algorithm (ICF/MCG) due to Kershaw (1978).

3.2.1 Necessary conditions

Todini (1979) and Pilati and Todini (1984) show that the necessary conditions for the

steady state flow are simply the simultaneous fulfilment of the mass conservation law (nodal

balance) and a non-linear relationship describing the head loss-flow phenomena in pipes.

Both conditions can be expressed in the following compact system of equations: A12H + F (Q)

A21Q

 =

 −A10H0

q

 (3.3)

A12 = AT21: (np, nn) unknown head nodes incidence matrix

A10 = AT01: (np, no) fixed head nodes incidence matrix

QT = [Q1, ..., Qnp]: (1, np) flow rates in each pipe

qT = [q1, ..., qnn]: (1, nn) nodal demands

HT = [H1, ..., Hnn]: (1, nn) unknown nodal heads

HT
0 = [H01, ..., H0no]: (1, no) fixed nodal heads

F T (Q) = [f1, ..., fnp]: (1, np) law expressing head losses in pipes (fi (Qi))

with nn the number of nodes with unknown heads, no the number of nodes with fixed head

and np the number of pipes with unknown flow rate.

A12 (i, j) = 1 if flow of pipe i enters node j

0 if pipe i and node j are not connected

-1 if flow of pipe i leaves node j

A10 is defined similarly to A12 for fixed head nodes.
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A10 (i, j) = 1 if flow of pipe i enters node 0

0 if pipe i and node 0 are not connected

-1 if flow of pipe i leaves node 0

The system represented by equation (3.3) may have more than one solution depending

upon the shape of fi (Qi). If all fi (Qi) are monotonically increasing functions, it can be

proved that the solution of system (3.3) exists and is unique (Pilati and Todini, 1984). A

more general approach to the proof of the existence and uniqueness of the solution can be

derived as follows. Assuming the Hazen-Williams head loss function, one can write for each

pipe:

fi (Qi) = Ri|Qi|ni−1Qi (3.4)

with Ri a constant. After integration of fi from 0 to Qi:

minC (Q) =

np∑
i=1

Ri|Qi|ni+1

ni + 1
+

no∑
j=1

H0j

np∑
i=1

A01 (j, i)Qi (3.5)

subjected to
np∑
i=1

A21 (j, i)Qi − qj = 0 (3.6)

with j = 1, nn. Due to the definition of fi (Qi) there is no need for the additional constraints

Qi ≥ 0. This allows to transform the constrained minimization into an unconstrained one

by means of Lagrange multipliers, i.e.

minΓ (Q, λ) =

np∑
i=1

Ri|Qi|ni+1

ni + 1
+

no∑
j=1

H0j

np∑
i=1

A01 (j, i)Qi+
nn∑
j=1

λj

np∑
i=1

(A21 (j, i)Qi − qj) (3.7)

Since all the Ri are positive when all ni > 0, Γ is convex and the solution of this problem

exists and is unique. This coincides with the sufficient condition for a minimum. The

solution can thus be found by imposing all the necessary conditions for an extreme:

∂Γ

∂Qi

= 0 (3.8)

with i = 1, np and
∂Γ

∂λj
= 0 (3.9)

with j = 1, nn, to get, in matrix form: A11 A12

A21 0

 Q

λ

 =

 −A10H0

q

 (3.10)
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where

A11 =


R1|Q1|n1−1

Ri|Qi|ni−1

Rnp|Qnp|nnp−1

 (3.11)

is an A11 (np, np) diagonal matrix.

By comparison with equation (3.3) it is immediate to assign a physical meaning to the

Lagrange multipliers: they represent in fact the unknown nodal heads. Finally after the

substitution λ = (n+ 1)H one gets:

 A11 A12

A21 0

 Q

H

 =

 −A10H0

q

 (3.12)

Equation (3.12) equals equation (3.3) when the head losses are given by equation (3.4).

The upper part of the system (3.12) represents the head loss-flow relationships (np non-

linear equations in Q) while the lower part corresponds to the nodal flow balances (nn linear

equations in H).

3.2.2 Derivation of the gradient method

In order to solve the system of non-linear equations (3.12), the Newton-Raphson technique

can be used, provided that matrix A11 does not become singular, which happens when the

heads at the extremes of a pipe are identical and consequently the flow in the pipe vanishes.

This problem can be avoided by defining a lower bound for the elements of matrix A11.

The Newton-Raphson iterative scheme can thus be obtained by differentiating both sides

of equation (3.12) with respect to Q and H to get:

f1 = A11Q+ A12H + A10H0 = 0 (3.13)

f2 = A21Q− q = 0 (3.14)

∂f1

∂Q
= A11

∂Q

∂Q
dQ+

∂A11

∂Q
QdQ+

∂(A12H)

∂Q
dQ+

∂(A10H0)

∂Q
dQ (3.15)

∂f1

∂H
=

∂(A11Q)

∂H
dH + A12

∂H

∂H
dH +

∂(A10H0)

∂H
dH (3.16)

∂f2

∂Q
= A21

∂Q

∂Q
dQ− ∂q

∂Q
dQ (3.17)

∂f2

∂H
=

∂(A21Q)

∂H
dH − ∂Q

∂H
dH (3.18)

33



Equation (3.15) can be rewritten as

∂f1

∂Q
= Ri|Qi|ni−1dQi + (ni − 1)Ri|Qi|ni−2QidQi (3.19)

= (1 + ni − 1)Ri|Qi|ni−1dQi = NA11dQ (3.20)

and after simplifications the system becomes NA11 A12

A21 0

 dQ

dH

 =

 dE

dq

 (3.21)

with N (np, np) being the diagonal matrix

N =


n1

ni

nnp

 (3.22)

and where

dE = A11Q
k + A12H

k + A10H0 = 0 (3.23)

dq = A21Q
k − q = 0 (3.24)

are the residuals to be iteratively reduced to zero and Qk e Hk the flows and heads at

iteration k. Assuming

NA11 = D−1 (3.25)

(and therefore DA11 = N−1, N , A11 and D being diagonal), the inverse of the system matrix

can be obtained analytically (Ayres, 1962) by partitioning: D−1 A12

A21 0

 =

 B11 B12

B21 B22

 (3.26)

with

B11 = D −DA12 (A21DA12)−1A21D (3.27)

B12 = DA12 (A21DA12)−1 (3.28)

B21 = (A21DA12)−1A21D (3.29)

B22 = − (A21DA12)−1 (3.30)

The solution of equation (3.21) can be found bearing in mind that:

dQ = B11dE +B12dQ (3.31)

dH = B21dE +B22dQ (3.32)
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By substituting for equations (3.27), (3.28), (3.29) and (3.30) into equations (3.31) and

(3.32) to give:

dH = (A21DA12)−1A21D
[
A11Q

k + A12H
k + A10H0

]
+

− (A21DA12)−1 (A21Q
k − q

)
(3.33)

= (A21DA12)−1A21DA11Q
k + (A21DA12)−1A21DA12H

k +

+ (A21DA12)−1A21DA10H0 − (A21DA12)−1A21Q
k + (A21DA12)−1 q (3.34)

= Hk + (A21DA12)−1 [A21D
(
A11Q

k + A10H0

)
+
(
q − A21Q

k
)]

(3.35)

dQ =
[
D −DA12 (A21DA12)−1A21D

] [
A11Q

k + A12H
k + A10H0

]
+

+DA12 (A21DA12)−1 (A21Q
k − q

)
(3.36)

= DA11Q
k +DA12H

k +DA10H0 −DA12 (A21DA12)−1A21DA11Q
k +

−DA12 (A21DA12)−1A21DA12H
k −DA12 (A21DA12)−1A21DA10H0 +

+DA12 (A21DA12)−1A21Q
k −DA12 (A21DA12)−1 q (3.37)

= D
(
A11Q

k + A10H0

)
+

−DA12

{
(A21DA12)−1 [A21D

(
A11Q

k + A10H0

)
+
(
q − A21Q

k
)]}

(3.38)

Substituting for equation (3.35) into equation (3.38), bearing in mind the definition of D

and that:

dQ = Qk −Qk+1 (3.39)

dH = Hk −Hk+1 (3.40)

one finally obtains the recursive Newton-Raphson algorithm:

Hk −Hk+1 = Hk + (A21DA12)−1 [A21D
(
A11Q

k + A10H0

)
+
(
q − A21Q

k
)]

(3.41)

Hk+1 = −
(
A21N

−1A−1
11 A12

)−1 [
A21N

−1A−1
11 A11Q

k
]

+

−
(
A21N

−1A−1
11 A12

)−1 [
A21N

−1A−1
11 A10H0 + q − A21Q

k
]

(3.42)

= −
(
A21N

−1A−1
11 A12

)−1 [
A21N

−1
(
Qk + A−1

11 A10H0

)]
+

−
(
A21N

−1A−1
11 A12

)−1 (
q − A21Q

k
)

(3.43)
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Qk −Qk+1 = −DA12 (A21DA12)−1 [A21D
(
A11Q

k + A10H0

)
+
(
q − A21Q

k
)]

+

+D
(
A11Q

k + A10H0

)
(3.44)

= N−1A−1
11 A11Q

k +N−1A−1
11 A10H0 +

−N−1A−1
11 A12

(
A21N

−1A−1
11 A12

)−1 (
A21N

−1A−1
11 A11Q

k
)

+

−N−1A−1
11 A12

(
A21N

−1A−1
11 A12

)−1 (
A21N

−1A−1
11 A10H0

)
+

−N−1A−1
11 A12

(
A21N

−1A−1
11 A12

)−1 (
q − A21Q

k
)

(3.45)

Qk+1 = Qk −N−1Qk −N−1A−1
11 A10H0 −N−1A−1

11 A12H
k+1 (3.46)

Qk+1 =
(
I −N−1

)
Qk −N−1A−1

11

(
A12H

k+1 + A10H0

)
(3.47)

where A11 is computed using Qk.

Summarizing the network analysis problem can be reconducted to the iterative solution

of a system of linear equations of size equal to the number of nodes nn plus a scalar projection

and a linear combination of the results, of size equal to the number of pipes np.

The linear equation (3.43) can be conveniently solved by using the Incomplete Cholesky

Factorization/Modified Conjugate Gradient algorithm (ICF/MCG) due to Kershaw (1978).

3.3 Derivation of the recursive algorithm extended to

include pumps

Salgado et al. (1988) extended the original gradient method to incorporate pumps into the

system. A physically based algorithm is introduced for modelling pressure control devices,

which fits within the framework of the gradient method.

The Hazen-Williams and Darcy-Weisbach formulae are widely accepted for describing

the head loss-flow phenomena in pipes; quadratic (or nearly) functions are used for the same

purposes in the case of valves and pumps. Thus, a general relationship between flow and

head loss (or gain, in the case of pumps) may be written as:

hi = riQ
n
i + vi (3.48)

with i = 1, ..., np. hi [m] is the head loss in the branch, while n is a formula dependent

exponent, typically 1.85-2. ri and vi are the characteristic parameters. For pipes and valves

we drop the constant term (i.e. vi = 0), for pumps both parameters are needed. These values

are usually supplied by the manufacturer, or are determined via laboratory or field head

loss-flow measurements, for different operating conditions. np is the number of branches

(pipes, pumps, valves).
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Equation (3.48) is a set of np non-linear equations. Using the link to node topological

matrix A12, we can express the head loss or gain of each link connecting two different nodes

as

A11Q+ A12H = −A10H0 (3.49)

where:

A11 =


R1|Q1|n1−1+

v1

Q1

Ri|Qi|ni−1+
vi
Qi

Rnp|Qnp|nnp−1+
vnp
Qnp

 (3.50)

On the other hand, the mass balance at each node can be written as

A21Q = q (3.51)

with the same meaning of variables.

The system of equations (3.49) and (3.51) can be set in a compact form by the matrix

equation (3.12). The lower part caters for mass conservation and the upper part for the

flow-head loss relationship. Due to the fact that the relationships (3.48) and (3.49) are non-

linear in the flows, the system of simultaneous equations represented by (3.12) is non-linear

and a direct solution is not possible. Some form of linear approximation is needed in order

to solve the problem, leading to the formulation of the iterative gradient algorithm. On

applying the gradient operator to the system of equations (3.12) we get: NA′11 A12

A21 0

 dQ

dH

 =

 dE

dq

 (3.52)

where now

A′11 =


r1|Q1|n1−1

ri|Qi|ni−1

rnp|Qnp|nnp−1

 = −


v1

Q1
vi
Qi

vnp
Qnp

 (3.53)

where N (np, np) is the diagonal matrix of the exponents n of the head loss-flow relationship.

At an intermediate iteration, an (np, 1) residual vector dE and an (nn, 1) residual vec-

tor dq can be computed through equations (3.23) and (3.24), which represent the energy

imbalance at each link and the flow imbalance at each node respectively.

We seek the solution of equation (3.52) dQ

dH

 =

 NA′11 A12

A21 0

−1  dE

dq

 (3.54)
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Following a similar approach to Pilati and Todini (1984), the inverse of the block-triangular

matrix in equation (3.54) can be computed as another block matrix: NA′11 A12

A21 0

−1

=

 B11 B12

B21 B22

 (3.55)

On using:

G = NA11 (3.56)

and computing the blocks of the inverse in equation (3.55), we get:

B11 = G−1 −G−1A12

(
A21G

−1A12

)−1
A21G

−1 (3.57)

B22 = −
(
A21G

−1A12

)−1
(3.58)

B12 = G−1A12

(
A21G

−1A12

)−1
(3.59)

B21 =
(
A21G

−1A12

)−1
A21G

−1 (3.60)

Then rewriting system (3.55) as:

dQ = B11dE +B12dq (3.61)

dH = B21dE +B22dq (3.62)

equations (3.23), (3.24), (3.57), (3.58), (3.59) and (3.60) are substituted into equations

(3.61) and (3.62), which after some reordering gives:

dQ =
[
I −G−1A12

(
A21G

−1A12

)−1
A21

]
G−1 (A11Qi + A10H0) +

+
[
G−1A12

(
A21G

−1A12

)−1
]

(A21Qi − q) (3.63)

dH =
[(
A21G

−1A12

)−1
A21G

−1
]

(A11Qi + A12Hi + A10H0) +

−
(
A21G

−1A12

)−1
(A21Qi − q) (3.64)

On considering:

dQ = Qi −Qi+1 (3.65)

dH = Hi −Hi+1 (3.66)

and replacing equations (3.65) and (3.66) we obtain:

Qi+1 =
[
I − (NA′11)

−1
A11

]
Qi − (NA′11)

−1
(A12Hi+1 + A10H0) (3.67)[

A21 (NA′11)
−1
A12

]
Hi+1 = −

[
A21 (NA′11)

−1
(A11Qi + A10H0) + (−A21Qi + q)

]
(3.68)

Equations (3.67) and (3.68) are the coupled system which has to be solved recursively.
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3.4 A pressure driven approach to the network analy-

sis problem

For the past few years the need has been felt of solving the network analysis problem, in

case the piezometric head on some nodes is insufficient to deliver the required demand.

The methods used so far are based on a demand driven approach (DDA), which considers

the demand qj at a node as a fixed problem constraint, assuming there is always enough

power at the node to allow for the entire demand qj,r. The implicit hypothesis is that the

piezometric head Hj at the node, which is a problem unknown, is always sufficient to satisfy

qj,r. This assumption is actually realistic and the analysis results are correct, only when

the head at the node is greater than or equal to the minimum head required to satisfy the

demand (Hj ≥ Hj,s). If the power condition is instead unsatisfied, the analysis highlights the

critical nodes for which Hj ≤ Hj,s. In this case the fixed nodal flow rate is incompatible with

the power Hj calculated through a DDA and the two quantities are uncorrelated, appearing

qj to be completely independent from Hj. A DDA approach is widely accepted when the

goal of the hydraulic analysis is the network design, but it appears to be inadequate when

an extended period simulation is performed.

The pressure driven analysis or head driven analysis (PDA) is based on a completely

different approach, which calculates the qj values at the nodes as a function of the avail-

able pressure Hj. The goal of the PDA approach is the fulfilment of the flow rate-head

relationship qj = f (Hj), other than the classical continuity and flow equations.

3.5 The proposed three step approach

Todini (2003) shows that it is possible to correctly solving the WDN problem when the head

is insufficient, by using a three step technique. The proposed approach stems from three

basic considerations.

1. Equation (3.12) derives from the minimization of a convex functional with linear con-

straints at the nodes.

2. If the head is really insufficient with a negative pressure, no water will be drafted from

the taps.

3. If the head is small but the pressure is non-negative, thus insufficient to allow drafting

the actual demand, a reduced demand may be satisfied. The logic says that what will
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be drafted from the taps is the possible maximum (given that the actual demand is

higher) that will make the pressure drop to zero at the node.

With these simple considerations in mind, it is possible to develop an extremely simple

procedure that can allow to find correct solutions to the head driven problem. One must:

1. Start by solving the WDN in the conventional manner with fixed demands. If all the

constraints are satisfied, namely all the Hi ≥ H∗i , the found solution is the correct

one.

2. If some of the nodes show an insufficient head Hi ≤ H∗i , solve a WDN problem setting

Hi = H∗i in non-satisfied nodes and compute q̂i, the maximum demand compatible

with this constraint. Three possibilities inevitably descend from this solution, either

q̂i ≥ qi, 0 ≤ q̂i ≤ qi or q̂i < 0.

3. At this point a third step is needed which will require replacing a number of constraints.

• At the nodes where q̂i ≥ qi, meaning that there is enough power at that node

to allow for the entire demand, the original constraints is set back in terms of

demand, where the demand will be again equal to qi.

• At the nodes where 0 ≤ q̂i ≤ qi, meaning that the power is insufficient to deliver

the entire demand, the head constraint is retained, since the users will inevitably

try to draw as much water as possible.

• At the nodes where q̂i < 0, meaning that the power is insufficient to provide any

water, the original constraint is set back in terms of demand but with demand

qi = 0.

This procedure is demonstrated to converge to the right solution, successfully dealing with

the cases of insufficient head that may occur.

3.6 Introduction to NETAN HD

NETAN HD (NETwork ANalysis Head Driven) is a FORTRAN programming language

code, which performs the analysis of a WDN through a more realistic pressure driven ap-

proach. The code uses the gradient algorithm originally proposed by Pilati and Todini

(1984), which is embedded into the three step procedure proposed by Todini (2003) to

correctly solve the network analysis problem when the head is insufficient.
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The analysis is based on the steady flow hypothesis. The head losses in pipes are com-

puted using the Darcy-Weisbach formula:

h =
ff l

12.1d5
Q2 (3.69)

where h is the head loss, ff is the friction factor, l is the pipe length, d is the pipe diameter

and Q is the pipe flow.

Concerning the Darcy-Weisbach relationship, the friction factor is calculated using the

iterative implicit Colebrook-White formula:

1√
ff

= −2Log10

(
e

3.71d
+

2.52

Re
√
ff

)
(3.70)

where e is the pipe roughness.

Prior to the calculation of the head losses, the Re number is verified in order to define

the network links where the laminar flow condition occurs. In this case a linear relationship

is used for the head loss calculation:

h = 4.153
l

νd5
Q (3.71)

where ν is the kinematic water viscosity.

NETAN HD is able to verify both looped and not looped pressurized networks, consid-

ering both nodal demands and distributed withdrawals. In this case the computation of

the head losses is based on the Messina method, which equally subdivides the distributed

withdrawals along the pipes between the two extremes of a pipe. The method works then

with a fictitious flow rate, which is defined as the equivalent flow rate producing the same

head losses as distributed withdrawals do. This technique substitutes the distributed flow

rate in the pipe P with two concentrated withdrawals
P

2
at the extremes. The fictitious

flow rate Q∗ and the two flow rates entering Qe and going out Qu are linked through the

relationships:

Q∗ = Qe −
P

2
(3.72)

Qu = Q∗ − P

2
(3.73)

The calculation can be developed using and assuming the following relation to hold for the

head losses:

h = αβQ∗|Q∗| (3.74)

where α is the pipe resistance factor, while β is the corrective factor due to the distributed

withdrawals, which can assume the following values:

β = 1 +
1

12

(
P

Q∗

)2

(3.75)
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when 0 <
P

|Q∗|
< 2

β =
2

3

|Q∗|
P

+
1

2

P

|Q∗|
(3.76)

when
P

|Q∗|
> 2

NETAN HD also allows for the network analysis when pumps are present, which deliver

a flow directly into the system. The delivered flow rate and hydraulic head are computed for

each pump. The general relationship between head gain and flow rates is given for pumps

as:

hp = Hp −RpQ
n (3.77)

where n is equal to the coefficient used for the head losses. In this way the gain-flow rate

relationship for pumps can be directly inserted into the system of equations of the gradient

algorithm. Each couple of values Hp and Rp defines a working interval for the pump.

NETAN HD requires an input file rete.inp, whose structure is described later, and pro-

duces an output file risultati.out that contains the results of the network flow analysis in

terms of hydraulic heads and nodal flow rates for the nodes, and pipe discharges, velocity

and head losses for the pipes. The hydraulic heads and flow rates are given for the pump

elements.

3.7 Input file rete.inp

The input file rete.inp is created from the user. It contains the general network data, the

node coordinates and properties, and the characteristics of pipe and pump elements. The

variables required in the input file are listed in table (3.3).

Type Variable Description Unit

I NN Number of network nodes

I NT Number of network elements (pipes and pumps)

I NLN Number of nodes with fixed demands

I NBN Number of nodes with fixed head (sources)

R EPS Tolerance

I NMAX Maximum number of iterations

R CPG Multiplier for nodal demands (steady state)

I ICOOR Index for the reading of the node characteristics

ICOOR=1 given pipe lengths

Table continues on next page
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Table continues from previous page

Type Variable Description Unit

ICOOR=3 given node coordinates

I NNOD Number of the network node (ordered)

T nID Name of the network node

R QT Z coordinate value m

R X1 X coordinate value

R Y Y coordinate value

I IS Index for the imposition of the boundary conditions

IS=0 variable head node

IS=1 fixed head node (source)

R QK Required nodal demand ls−1

R XX Value of the fixed piezometric head m

R Hmin Minimum required head at the node m

I Nel Number of the network element (pipe or pump)

T pID Name of the pipe or pump element

I N1 Starting pipe node

I N2 Ending pipe node

R D Pipe diameter mm

R L Pipe length m

R e Pipe roughness mm

R q Distributed withdrawals along the pipes ls−1

I IPP Number of pumps

T ppID Name of the pump element

I NPT Number of points of the characteristic curve

R QP Pump delivered flow rate ls−1

R HP Pump delivered piezometric head m

Variable types: I = integer, R = real, T = text.

Table 3.3: Structure of the input file rete.inp.
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3.8 Program NETAN HD

The principal routines defined in NETAN HD are listed in table (3.4).

NETAN HD Main program

subroutine INPUT Reading of the input file

subroutine ELAB Imposition of the boundary conditions

subroutine HDRIV Head driven analysis

subroutine TODINI Demand driven analysis

subroutine STIFF Calculation of the system matrix coefficients

subroutine CW Friction factor for turbolent flow regime

Table 3.4: NETAN HD program structure.

3.8.1 INPUT

The subroutine INPUT reads the input file rete.inp. The main steps are:

1. Reading of the general network data.

2. Reading of the node coordinates.

3. Reading of the node properties and nodal demands.

4. Reading of the pipe properties and distributed demands.

5. Reading of the pump number and hydraulic properties.

6. Calculation of the overall network discharge.

3.8.2 ELAB

The subroutine ELAB reorders the input data and imposes the necessary boundary con-

ditions on fixed head nodes. The nodal withdrawals due to concentrated and distributed

demands are calculated (Messina).
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3.8.3 HDRIV

The subroutine HDRIV solves the network analysis problem through the three step proce-

dure described in Todini (2003). The main steps are:

1. A conventional DDA is performed from the subroutine TODINI with fixed demands.

If all the constraints are satisfied, the found solution is the correct one and the analysis

stops.

2. If at least one node shows an insufficient head, a PDA is undergone.

3. Step 1: the minimum required head values are imposed on the critical nodes. If all

the nodes besides the source nodes are critical, then the network is insufficient and

the analysis stops.

4. Step 2: the subroutine TODINI computes the maximum demands q̂i compatible with

the given constraints. Three possibilities descend from this solution:

• q̂i ≥ qi, the original constraint is set back in terms of demand, again equal to qi.

• 0 ≤ q̂i ≤ qi, the head constraint is retained.

• q̂i < 0, the original constraint is set back in terms of demand but with demand

qi = 0.

5. Step 3: the second step is repeated until convergence.

3.8.4 TODINI

The subroutine TODINI performs the conventional DDA with fixed demands. The gradient

algorithm implemented allows for the modelling of pressure regulating devices such as pumps

or valves. The main steps are:

1. Imposition of the boundary conditions. If the heads at the extremes of a pipe are

identical and thus the flow in the pipe vanishes, the imposed head value is lowered for

one of the two nodes.

2. Building of the topological matrices.

3. Building of the system matrix calling the subroutines STIFF and CW.

4. Building of the nodal Newton-Raphson iterative scheme.

5. Solving of the coupled system through the ICF/MCG algorithm.
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6. Once the solution has been found in terms of pressure heads and flow rates distribution,

the corresponding flow velocity and head loss in pipes are computed.

7. The whole result is returned to the main program and written in the output file

risultati.out.

3.8.5 STIFF

The subroutine STIFF calculates the coefficients of the system matrix according to the

flow regime in pipes (laminar or turbolent) and using the Darcy-Weisbach formula for the

description of the head losses. The main steps are:

1. Calculation of the Re number.

2. At the first iteration the flow is considered to be laminar.

3. Control and adjustment of the range of flow rates in which the pumps are working.

4. Calculation of the friction factor considering the type of flow (laminar or turbolent).

5. Calculation of the correction coefficients for the Messina method.

3.8.6 CW

The subroutine CW calculates the value of the friction factor to be used in the Darcy-

Weisbach formula, assuming the Re number and the pipe roughness are known. The

Colebrook-White relationship is used.

3.9 Output file echo.out

The output file echo.out summarizes the general network data. The properties of nodes,

links and pumps are listed to verify they have been correctly read and processed. The value

of the total flow rate delivered to the network analyzed is reported at the end.

3.10 Output file risultati.out

The output file risultati.out contains the results of the analysis. The required number of

iterations is reported for each step of the method. For each node are reported the calculated

nodal flow rate, the piezometric head and pressure head. For each link are reported the flow

rate and the head loss. The principal variables are listed in table (3.5).
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Type Variable Description Unit

nID Name of the network node

R QUC Calculated nodal flow rate ls−1

R HN Calculated piezometric head m

R PP Calculated pressure head m

pID Name of the link element (pipe or pump)

N1ID Name of the starting node

N2ID Name of the ending node

R QQ Calculated pipe discharge ls−1

R VV Calculated flow velocity ms−1

R DDH Calculated hydraulic head loss m

Variable types: I = integer, R = real, T = text.

Table 3.5: Structure of the output file risultati.out.

Two example networks are reported in Appendix A to prove the effectiveness of the imple-

mented pressure driven hydraulic network model.
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Chapter 4

EnKF vs. ES for losses identification

in WDSs

4.0.1 Introduction

This study proposes a method for the identification of the spatial distribution of water losses

in water distribution networks (WDNs) through the use of pressure head measurements

(Pudar and Liggett, 1992; Chen and Zhang, 2006). The proper identification of areas most

prone to water losses reduces the costs associated with acoustic surveys both in terms of

number of pipes to be examined and working time.

To get the best estimate of the water losses spatial distribution, data assimilation tech-

niques based on the Kalman Filter approach, the Ensemble Kalman Filter (EnKF) (Evensen,

1994) and the Ensemble Smoother (ES) (Van Leeuwen and Evensen, 1996) are coupled with

the hydraulic network model (EpaNET) (Rossman et al., 2000). The coupled model per-

formances are investigated on the Anytown benchmark system (Walski et al., 1987) with

both a known and unknown consumption pattern. Water demand and pipe roughness are

assumed as known. A method to identify the most effective network monitoring locations

is also proposed, based on a first order approximation analysis of the uncertain parameters

(Bush and Uber, 1998; Xu and Goulter, 1998). Despite the fact that the method is tested

on a single synthetic network, the result suggests that the tool is promising for water losses

identification.

4.1 The coupled inverse model

Two Kalman filter based data assimilation techniques, the EnKF and the ES, are applied to

infer the spatial distribution of water losses L through a set of pressure head measurements
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Zm. The transient model EpaNET is used to retrieve the pressure values H during an

extended period simulation characterized by a varying nodal demand.

The EnKF si recursively applied on a Monte Carlo (MC) ensemble of system realizations.

Each MC realization is characterized by a different set of model parameters L with assigned

statistical properties and is propagated in time through EpaNET to compute the pressure

distribution in the network. At each time ti in which a set of pressure head measurements zm

is available, both L and H values are corrected (updated) by means of these measurements.

This procedure is repeated till the last measurement collection time tF and it returns a

progressive correction of the parameters L. The equation that describes the EnKF technique

is (2.13):

Xu
ti

= Xf
ti +Kti

(
zmti −MXf

ti

)
(4.1)

with ti = t1, ..., tF , where

Xf
ti =

[
L1, L2, ..., Lnn, H1(ti), H2(ti), ..., Hnn(ti)

]
(4.2)

is the forecast model state estimate (equation (2.11)) with nn the number of network nodes;

zmti =
[
zm1(ti)

, zm2(ti)
, ..., zmnmis(ti)

]
(4.3)

is the measurements vector (equation (2.12)), with nmis the number of collected measure-

ments at each time ti; K is the Kalman gain matrix that operates on the difference between

the measured pressure heads zmti and the corresponding values predicted by the model MXf
ti ,

being M the matrix operator that maps the EpaNET results to the measurements. In par-

ticular, the Kalman gain (equation (2.4)) is equal to

K = P fMT
(
MP fMT +R

)−1
(4.4)

where P f is the model forecast error covariance matrix (equation (2.10)) and R the mea-

surement error covariance matrix.

The model state forecast Xf
ti is updated through equation (4.1) to produce the posterior

estimate

Xu
ti

=
[
Lu1 , L

u
2 , ..., L

u
nn, H

u
1(ti)

, Hu
2(ti)

, ..., Hu
nn(ti)

]
(4.5)

EpaNET is then applied with the updated values of L = [Lu1 , L
u
2 , ..., L

u
nn] and the new model

state forecast Xf
ti+1 at the next measurement time ti+1 is computed.

The ES differs from the EnKF because all the measurements are processed in one step

and the model state Xf∗
tF

that is now equal to

Xf∗
tF

= [L,Ht1 , ..., HtF ] (4.6)
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is updated only once at the last measurement time tF . The matrix Xf∗
tF

in equation (4.6)

has then dimension Xf∗
tF

[nn, (1 + tF )]. EpaNET is run just once till time tF and the H

values computed at the measurement times (t1, t2, ..., tF ) are collected in Xf∗
tF

and updated

all together by means of the matrix Zm∗ holding the perturbed measurements available:

Zm∗ =
[
Zm
t1
, Zm

t2
, ..., Zm

tF

]
(4.7)

The matrix Xu∗
tF

containing the updated model states for all the measurement times is

obtained by applying equation (4.1) just once with the new meaning of the matrices.

It has to be stresses that the Kalman techniques are here applied to estimate water losses,

included as model parameters in the state matrix to solve an inverse problem. Both the

techniques adopted (EnKF and ES) could be able to correct such values depending on the

correlation between losses and the measured hydraulic heads (Van Leeuwen and Evensen,

1996).

4.2 The Anytown network

The EnKF and the ES are coupled with the EpaNET software, to investigate their appli-

cability in leakage detection for the Anytown WDN. It represents a benchmark system for

the supply of an hypothetical community of about 350000 inhabitants and was originally

conceived to compare results obtained by different optimization methods (Walski et al.,

1987). The network, a 20 nodes and 39 pipes system, is shown in figure (5.1) according

to the pipe configuration obtained from Farmani et al. (2005). The node elevation and

the mean nodal demand of the example here analyzed are given in table (B.1), while the

pipe data are reported in table (B.2). Tanks are neglected compared to the literature case.

Water is pumped into the system from a water treatment works by means of three identical

pumps connected in parallel, whose characteristic curve is given in table (B.3). The link and

node data, the pump characteristic curve, the average daily water use at each node and the

variation of water use throughout the day are available from the Centre for Water Systems

(2004).

4.3 Model set up

The capabilities of the EnKF and of the ES to retrieve the water losses spatial distribution

through the assimilation of pressure head measurements are investigated, and the perfor-

mance of the two approaches is compared. Water losses are assumed as the only uncertain
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model parameters and are supposed to be about 50% of the overall system consumption

that is 620 ls−1 on daily average. As the water demands, also the water losses are modelled

as nodal withdrawals, although they are distributed along pipe lines.

To prove the capabilities of the model, the synthetic reference system shown in figure

(4.1) is considered, where the daily average of the losses is reported. In such system, the

overall water loss is distributed on the subset of arbitrarily chosen network nodes (nodes 2,

4, 9 and 10). To provide the measurements used in the assimilation procedure, an extended

period simulation of 24 hours is run, according to the known spatial and temporal evolution

of water demand. Through the EpaNET software, the pressure values H on each network

node are computed and recorded every 3 hours, that is for 8 time instants in the 24 hours.

These values provide the measurements used in the assimilation procedure, and are affected

by an uncertainty that is defined through a variation coefficient set to 0.01 on the basis of

physical considerations.
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Figure 4.1: Water losses spatial distribution in the Anytown synthetic reference system.

The tests are carried out in two different cases. In the first one the temporal evolution

of water demand is known: both the EnKF and the ES are applied considering the system

state evolution according to the time pattern. In the second case, the temporal evolution of

water demand is unknown as usually encountered in real-life problems and for this case just

the ES is applied considering a steady state behaviour of the system driven by mean daily

water demand, the EnKF application being misleading in the second case. Three different

scenarios are analyzed:

1. EnKF application for known consumption pattern;

2. ES application for known consumption pattern;
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3. ES application for unknown consumption pattern (the only mean daily values are

available).

The model performances are investigated for each scenario with an increasing number of

assimilated pressure head measurements: 10, 15 or 19.

In distribution systems a proper sampling design, that is a proper identification of the

measurement locations, lets the best possible model calibration. The sampling procedure

adopted here selects the network nodes where pressure values are most sensitive to changes in

the calibration parameters, that is to changes in the spatial distribution of water losses. By

the MC approach, an initial distribution of water losses is generated for each MC simulation,

being 500 the proper size of the ensemble deduced from a preliminary sensitivity analysis.

The leakage values are sampled from the uniform distribution and properly weighted to

respect the known total amount of water losses in the system. A different set of water

losses characterized any specific EpaNET simulation, by which the system is propagated

forward according to the governing equations. For both the two cases of known or unknown

demand time pattern, the cross correlation between the sampled L parameters and the

corresponding H variables is calculated. Nodes are ranked according to the mean cross

correlation absolute values as shown in figure (4.2). Numerical simulations are developed

progressively increasing the number of assimilated H measurements. A proper methodology,

which considers the cross correlation relationship between parameters and variables of the

model, is suggested to select the H measurement points within the network that are most

affected from a change in the spatial distribution of water losses. The result of the model

provides the updated average L parameters. In details, the L spatial distribution is obtained

and the corresponding H field is computed.

4.4 Numerical experiments

4.4.1 Assimilation of 10 measurements

The results obtained from the assimilation of 10 pressure head measurements are shown in

figure (4.3), panel (1a), (1b) and (1c). Different colours correspond to different nodal leakage

values L and the network positions that have to be surveyed are those where the L values

are higher. The comparison with figure (4.1) shows that the solution nodes characterized by

higher cross correlation absolute values are more easily recognized as leakage positions than

the nodes characterized by lower cross correlation values. The EnKF (panel (1a)) identifies

half of the solution nodes (nodes 2 and 10) while other two nodes (4 and 9) are completely
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Figure 4.2: Rank of the nodes for Anytown according to the mean cross correlation absolute

value criterion.

missed. The ES (panel (1b) and (1c)) better defines a network area close to nodes 2 and 4

affected by water losses, while the area surrounding nodes 9 and 10 is not recognized by the

model. The former area is better defined from the ES in case the demand pattern is known

(panel (1b)) rather than in case of unknown demand pattern (panel (1c)).

4.4.2 Assimilation of 15 measurements

The comparison with panels (1a), (1b) and (1c) of figure (4.3) shows that the uncertainty

of the solution is reduced when 15 H values are assimilated (panels (2a), (2b) and (2c)).

Moreover, the performance of the EnKF (panel (2a)) is completely overcome by the ES one

(panels (2b) and (2c)). The EnKF is not able to well localize the leakages, whereas the ES

suggests well defined areas around nodes 2 and 4, and nodes 9 and 10, where water losses are

most likely to occur. When the consumption time pattern is available the ES stresses the

differences between areas characterized by lower or higher L values, and gives the highest

peak value at node 4.

4.4.3 Assimilation of 19 measurements

In this case the EnKF (panel (3a)) gives its best performance, accurately identifying the

solution nodes and reducing almost to zero the L values on the remaining network nodes.

Also the ES (panels (3b) and (3c)) demonstrates the highest efficiency, displaying higher

peaks in correspondence to the solution nodes, with no relevant difference depending on the

knowledge of the demand pattern. Anyway, with 19 assimilated measurements the EnKF

prevails.
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Figure 4.3: Results of the analysis for the assimilation of 10 measurements: EnKF (1a),

ES for known consumtpion pattern (1b) and ES for unknown consumption pattern (1c).

Results of the analysis for the assimilation of 15 measurements: EnKF (2a), ES for known

consumtpion pattern (2b) and ES for unknown consumption pattern (2c). Results of the

analysis for the assimilation of 19 measurements: EnKF (3a), ES for known consumtpion

pattern (3b) and ES for unknown consumption pattern (3c).
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4.4.4 Discussion on the results

As expected, both the EnKF and the ES give better performances as the number of assim-

ilated pressure head measurements increases.

In the Anytown system here analyzed, both the EnKF and ES techniques suffer the

undifferentiated and small cross correlation values affecting the nodes. The simple arrange-

ment of pipes in Anytown often causes a high number of pipes (compared to the number of

the whole system) to join together on the same node. This aspect, together with the high

carrying capacity of each pipe, implies that the pressure drop occurring on a node poten-

tially characterized by leakage is easily recovered through a small decrease of the pressure

head values that affects most of the network nodes. This justifies the small values of the

cross correlation between the L parameters and the H variables, and also the small differ-

ences among the cross correlation in different nodes. Both these aspects make difficult the

node discrimination. For these reasons, the model result does not rapidly improve with the

increase of the assimilated measurement number.

The peculiarity of the network analyzed leads to some unexpected findings.

Even if more than 50% of the network nodes are monitored, the results are not satis-

factory in terms of water losses identification. This is due to the topological features of the

Anytown network which is characterized by a high resilience (Todini, 2000), thus requiring

large efforts in terms of pressure measurements collection to further improve the results

in terms of pipeflow distribution. It also implies that, with a limited number of nodes, a

threshold number of assimilated measurements above which the model parameters could be

considered satisfactorily calibrated cannot be defined in this case.

Moreover, when a limited number of measurements is used in the assimilation procedure,

the ES works better than the EnKF. This is probably due to the filter inbreeding problem,

that is, the ensemble variance increasingly underestimation over time (Hendricks Franssen

and Kinzelbach, 2008), that deeply affects the EnKF assimilation procedure just after few

recursive steps since the initial covariance values are small. In this case and in the particular

case of the Anytown network, the ES approach seems to give better results.

In the Anytown network, the knowledge of the demand pattern does not lead to any

improvement in the delineation of areas prone to leakage, but it increases the results meaning

enhancing the peak values of L for both the EnKF and the ES.

Nevertheless, by strongly increasing the number of assimilated measurements, the EnKF

outperforms the ES and leads to a right identification of the leakage nodes, as expected.

The outperformance of the EnKF depends on the recursive structure of the updated proce-

dure, which allows an effective management of the non-linearity (Crestani et al., 2013) that
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characterizes this problem.

4.5 Final remarks

In this work, the capabilities of the EnKF and the ES to retrieve the spatial distribution of

water losses in a distribution network through the assimilation of pressure head measure-

ments are analyzed and compared.

The comparison is made in the case of the Antown supply system, a benchmark network

characterized by a high resilience, that is, by low values of cross correlation between the

uncertain L parameters and the H variables.

Both the EnKF and the ES give better performances as the number of assimilated

pressure head measurements increases but, when this number is higher, the EnKF generally

outperforms the ES. This is due to the fact that the ES is not recursive, and thus is not

capable to manage the non-linearity of the problem.

As the number of measurements reduces, just in one case the results are better for the

ES than for the EnKF, probably because of the peculiarity of the network analyzed, where

on each nodal pressure H the influence of the flow rates L is limited, and because of the filter

inbreeding problem that affects the recursive procedure. For this reason, the ratio between

the minimum number of measurements that is needed to obtain a suitable result and the

number of the network nodes cannot be defined as it was done in other cases analyzed

(Ruzza et al., 2014).

Despite the fact that the network peculiarity may affect the number of measurements

needed to reach a satisfactory result, the proposed approach demonstrates to be a promising

tool for the calibration of the water losses parameters in a distribution system affected by

uncertainty in the flow rate distribution.

It has to be stressed that in some cases a significant advantage can be derived from

the application of the ES technique, that is when the system behaviour over time is not

sufficiently described from the available information or, when the system knowledge is given

only in terms of time averaged measurement data as it happens in Ruzza et al. (2014). In

these cases the application of the ES technique is preferred, the EnKF being misleading

when no temporal information is available.
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Chapter 5

Losses identification in WDSs

through NS-EnKF coupled with a

pressure driven model

5.0.1 Introduction

Leakage in pressurized water distribution systems (WDSs) is a major issue for water utilities

today, because of the huge concern over public health risk and the economic constraints on

energy and resources.

As previous works (Ruzza et al., 2014; Ruzza et al., 2015; Ruzza and Salandin, 2015)

suggested, data assimilation techniques based on the Kalman Filter coupled with the net-

work hydraulic model EpaNET allow for calibration of model parameters (nodal leakage

flow rates) through the assimilation of a suitable number of measurements. The effective-

ness of this technique seems to be influenced not only from the hydraulic model features

and from the parameters to be calibrated, but also from the specific WDS considered.

In this work, a pressure driven hydraulic model, which properly describes the physical

relationship between the available nodal pressure and the system outflows (user consumption

as well as leakage outflows), is coupled to the Ensemble Kalman Filter (EnKF) technique

and Normal-Score Transform (NST). This approach works as an inverse model to calibrate

the emitter coefficients (model parameters) that control the nodal leakage flow rates. Their

physical meaning is straightforward, the emitter coefficient value being proportional to the

area of the hole responsible for the leakage. The measurements assimilated for the model

parameters estimation are pressure heads and flow rates, besides the values of cumulative

volume of system inflow as well as of leakage outflow, over an extended period of time. These

measurements, with exception of the flow rate measurements, could be easily collected in any
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network with a limited effort and no technical troubles. Water demand and pipe roughness

are assumed as known.

The capabilities of the NS-EnKF to retrieve the spatial distribution of leakages are an-

alyzed and compared on the two synthetic benchmark systems of Anytown and Net3. The

choice of the example networks is justified by considerations on their topological and hy-

draulic properties, besides their physical characteristics. In fact, the similarity of circulating

flow rates and pipe diameters allow for comparison of the effects due to a different topolog-

ical scheme, which is more complex in Net3 than in Anytown. Moreover, the elevation of

the network nodes influences the system behaviour and differently affects the performance

of the applied technique, Anytown being much steeper than Net3. The results suggest that

the investigated tools are differently effective in helping to identify the leakage positions

depending on the WDS physical characteristics.

5.1 The case studies

5.1.1 The Anytown network

The Anytown network is a benchmark system for the supply of an hypothetical community

of about 350000 inhabitants and was originally conceived to compare results obtained by

different optimization methods (Walski et al., 1987). The network, a 20 nodes and 39 pipes

system, is shown in figure (5.1), according to the pipe configuration obtained from Farmani

et al. (2005). The node elevation and the mean nodal demand of the example here analyzed

are given in table (B.1), while the pipe data are reported in table (B.2). The network

shows a significant redundancy in terms of pipe diameters and loops. Tanks are neglected

compared to the literature case. Water is pumped into the system from a water treatment

works by means of three identical pumps connected in parallel, whose characteristic curve

is given in table (B.3). The water use pattern is available over a 24 hour time period with

a timestep of 3 hours. The link and node data, the pump characteristic curve, the average

daily water use at each node and the variation of water use throughout the day are available

from the Centre for Water Systems (2004).

The daily system intake due to user consumption is 47.83 · 106 lday−1, the average daily

flow rate being 620 ls−1. The mean pressure head is 41.53 m in absence of leakage.
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Figure 5.1: Scheme of Anytown adopted in the developed example.
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5.1.2 The Net3 network

The Net3 network is a benchmark system coming with the EpaNET package. The network is

made up by 89 nodes and 111 pipes and is shown in figure (5.2) in the configuration adopted

for the developed example. The system is supplied from two sources: the river reservoir

satisfies most of the demand, while the lake reservoir contributes for a much smaller part that

is less than 5% when no leakage occurs. The node elevation and the mean nodal demand are

listed in table (B.4), while table (B.5) shows the values related to pipes. The Net3 network

has some branches which depart from a main pipe of large diameter extending throughout

most of the system, while the portion of the system closer to the sources is mostly looped.

Storage tanks are neglected with respect to the initial configuration. Water is pumped

into the system from two water treatment works, both of them with two identical pumps

connected in parallel. The pump characteristic curves are given in table (B.6) for the lake

source and in table (B.7) for the river source. The water use pattern for Net3 is available

over a 24 hour time period with a timestep of 1 hour.

The daily system intake due to user consumption is 59.68 · 106 lday−1, the average daily

flow rate being 690 ls−1. The mean pressure head is 78.45 m in absence of leakage.

5.2 The pressure driven hydraulic network model

Water losses, as well as user consumption, are considered as uniformly distributed along

pipelines and modelled as nodal withdrawals. A pressure driven hydraulic network model is

used to properly describe the true physical relationship between the available nodal pressure

and the system outflows (user consumption as well as leakage outflows).

To overcome the limitations presented by the intrinsically demand driven nature of stan-

dard EpaNET, the nodal demands and the water losses are simulated through a nontrivial

combination of valves and hydrants, using EpaNET emitters. These are devices modelling

the flow through a nozzle or orifice that discharges to the atmosphere. The flow rate through

an emitter varies as a function of the pressure available at the node according to a power

law (equation (5.1)):

q = CHγ (5.1)

where q is the flow rate, H is the pressure head and γ is a pressure exponent (Rossman

et al., 2000). Because the standard EpaNET version only allows for a single value of pressure

exponent to be specified, γ = 1 is used for all the nodal demands and water losses. Figure

(5.3) represents the qualitative behaviour of the flow rate-pressure relationship adopted. A

similar approach is used by Salandin and Bertola (1996) based on the hypothesis of Gupta
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Figure 5.2: Scheme of Net3 adopted in the developed example.
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and Bhave (1996). Brunone (2007) observes that the relationship between the leakage flow

rate and the available pressure tends to be linear due to the variability of the leak areas

according to the pressure that is realized. The main steps for building the pressure driven

model can be summarized as follows.

• The base demand for all the network nodes is set to zero.

• For each network node three pipes are added, with very short length and very large

diameter so as not to cause any significant head loss. These are:

1. A check valve (CV) that links the network node to a dummy node, where the

initial base demand is replaced. The dummy node has the same elevation as the

network node. In the same way, the available pattern for water consumption is

removed from the network node and assigned to the dummy node. The resulting

pressure head or piezometric head can be read on both these nodes, whereas the

pressure driven actual demand coincides with the CV flow rate.

2. A CV that links an emitter node to the dummy node. The elevation of the emitter

node exceeds the elevation of the network node of an amount equal to the service

pressure, that is the pressure head above which the demand is fully satisfied and

the node behaviour is demand driven (under the hypothesis that the user does

not consume more water than required). The service pressure is considered to

be 25 m for the two networks analyzed and the outflows behave as in figure

(5.3). The emitter coefficient value for the pressure driven demand is calculated

as in equation (5.1), considering the service pressure of 25 m and the maximum

demand that would occur at the node during a standard demand driven extended

period simulation. The choice of the maximum demand derives from the need

of ensuring that a demand driven analysis is performed when no leakage occurs,

thus the model results can be compared with the standard EpaNET output. In

the pressure driven scheme, the emitter node acts as a reservoir supplying the

dummy node as long as the pressure is below 25 m, decreasing the system outflow

when pressure is too low.

3. A CV that links the network node to an emitter node representing the leakage.

The CV prevents the leakage flow rate to become negative when the available

nodal pressure is lower than the node elevation. These emitter coefficient values

are uncertain model parameters to be calibrated.

The pressure driven scheme proposed does not require the emitter coefficients to be changed
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during an extended period simulation, but it is anyhow able to represent the temporal

variability of water use thanks to the varying demand imposed on dummy nodes. Such an

approach can be easily implemented using the standard EpaNET input file.

   H s 
   = 25 m

H [m] 

q
[l

/s
]

q
=

CH

H* 
= 0 m

Figure 5.3: Qualitative behaviour of the flow rate-pressure relationship according to the

pressure driven model adopted.

5.3 Model set up

5.3.1 Synthetic system solution

The work deals with the effectiveness of the EnKF to provide the best possible estimate

of the nodal leakage locations when coupled with the proposed pressure driven hydraulic

model. The emitter coefficients C = [C1, C2, ..., Cnn], each of dimension [ls−1m−1], control

the nodal leakage flow rates L = [L1, L2, ..., Lnn], each of dimension [ls−1], where nn is

the number of network nodes. The C values are assumed as the only uncertain model

parameters, kept constant over time. Their physical meaning is straightforward, the C

value being proportional to the area of the hole responsible for the leakage.

The model performances are evaluated through comparison with a synthetic reference

system for the two networks analyzed. The synthetic system solution is reported in figure

(5.4) for Anytown and in figure (5.5) for Net3, in terms of leakage diameter and in terms of

corresponding mean nodal leakage flow rates L̄ =
[
L̄1, L̄2, ..., L̄nn

]
over a 24 hour simulation

period. In such systems, the overall water loss is distributed on a subset of arbitrarily chosen

network nodes. These solution systems provide the measurements used in the assimilation

procedure.
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Figure 5.4: Synthetic solution for Anytown in terms of leakage diameter (panel a) and mean

nodal leakage flow rate (panel b).
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Figure 5.5: Synthetic solution for Net3 in terms of leakage diameter (panel a) and mean

nodal leakage flow rate (panel b).
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5.3.2 Generation of the ensemble

The C field is assumed to follow a bimodal probability density function (pdf) on the basis

of physical considerations (figure (5.6)). The bimodal shape gives reason of the fact that

only a relative portion of the WDS is affected by losses, that is Ci > 0, while most of the

network nodes are characterized by leakage of negligible entity, that is Ci ∼ 0. A different

weighting of the pdf masses represents a different percentage of leakage nodes in the WDS.

At time t0 an initial ensemble of NMC realizations of the random function C is gen-

erated. The first mode m1 of the bimodal pdf is a necessarily positive value close to zero,

while the second mode m2 is derived assuming that the overall leakage volume (V m
out)t=24,

measured over a 24 hour time period, is distributed on a percentage of the nodes. Equation

(5.2) considers the mean nodal leakage flow rate L̄i [ls−1] and a mean pressure H̄ [m] that

is likely to occur in the leaking system.

m2 =
L̄i
H̄

(5.2)

The calculated values are m2 = 0.48 ls−1m−1 for Anytown and m2 = 0.39 ls−1m−1 for Net3,

assuming in first instance that half of the WDS is characterized by leakage and that H̄ = 25

m is likely to occur.

Each realization of the C field is propagated forward in time through the pressure driven

hydraulic model, according to the system governing equations and the known spatial and

temporal variability of water demand.

The estimation of the L field is realized by measurements assimilation and using an

augmented system in which only the model parameters C are considered (Bailey and Baù,

2010). Measurements are available over discrete time instants ti = t1, t2, ..., tF [hours]

being F the number of observation times. Three types of measurements are used in the

assimilation procedure:

• the pressure heads Hm = [Hm
1 , H

m
2 , ..., H

m
nobsH ] [m];

• the pipe flow rates Qm =
[
Qm

1 , Q
m
2 , ..., Q

m
nobsQ

]
[ls−1];

• the cumulative volume of system inflow V m
in [l] and leakage outflow V m

out [l] over a

known time period.

The superscript m indicates the measured values, nobsH and nobsQ are the number of ob-

served variables at each observation time ti. The state vector is made up of model parameters

C and variables: hydraulic heads H = [H1, H2, ..., Hnn], flow rates Q = [Q1, Q2, ..., Qnp], the

total inflow volume Vin and the total leakage outflow Vout over a known time period. The
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state matrix containing the fixed parameters and the computed variables at each required

time instant is built as in equation (5.3)

Xti = [C1, ..., Cnn, H1, ..., Hnn, Q1, ..., Qnp, Vin, Vout]ti (5.3)

and has dimensions X [(nn+ nn+ np+ 2) , NMC], being nn the number of nodes and np

the number of pipes. The observation vector containing the available measurements is built

as in equation (5.4)

zmti =
[
Hm

1 , ..., H
m
nobsH , Q

m
1 , ..., Q

m
nobsQ, V

m
in , V

m
out

]
ti

(5.4)

and has dimension zm [nobsH + nobsQ+ 2], being the volume values always available as

their collection is part of the normal management operations of a WDS.

Figure 5.6: Qualitative behaviour of the bimodal frequency distribution.

5.3.3 Sampling design

Sampling design is a two-objective optimization problem. The first objective is the min-

imization of the difference between the model-simulated output and measured data. The

second objective is the reduction of total sampling design cost. The effectiveness of the L

field estimate is related to the cross correlation between L and the potential measurements

H and Q. The sampling procedure here adopted selects the network nodes or the network

pipes where the H values or Q values are most sensitive to changes in the spatial distribution

of the nodal leakage flow rates L, that is in the field of variables to be estimated. The goal is

achieved through a Monte Carlo numerical approach, based on the assumption that the only

system uncertainty is related to the random function C, while the remaining parameters
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(e.g. pipe roughness, nodal demands) are fixed as deterministic. The only unknown in the

sampling design analysis is the location of pressure sensors and flowmeters.

A ensemble of NMC equally likely stochastic realizations of the state vector (equation

(5.3)) is generated. Each realization of the C field, then of water losses L at different times,

characterizes any specific EpaNET simulation, by which the system is propagated forward

according to the governing equations. The mean values of the system variables L̄, H̄ and Q̄

over a 24 hour time period simulation are retrieved. The cross correlation between H̄ and

L̄ is calculated using equation (5.5)).

CrCorr
(
H̄, L̄

)
=

〈(
H̄ −

〈
H̄
〉) (

L̄−
〈
L̄
〉)T〉√

V ar
(
H̄
)
V ar

(
L̄
) (5.5)

where 〈
H̄
〉

=
1

NMC

NMC∑
i=1

H̄ (5.6)

V ar
(
H̄
)

=
1

NMC − 1

NMC∑
i=1

(
H̄ −

〈
H̄
〉)2

(5.7)

The result is a cross correlation matrix of dimensions CrCor (nn, nn), of which any element

is itself a cross correlation that can assume values from −1 to +1, where 0 means the

considered variables are totally uncorrelated, while 1 means the considered variables are

perfectly correlated. The absolute values of cross correlation are used, as both positive

and negative fluctuations are equally important. The network nodes are ranked according

to the mean cross correlation absolute values. The result is a selection of positions where

pressure head measurements are more effective for retrieving the spatial distribution of L.

Following the same approach, the cross correlation between Q̄ and L̄ is calculated, obtaining

a matrix of dimensions CrCor (np, nn). The result is a rank of pipe positions where flow

rate measurements are more convenient to retrieve the L field.

The results are reported in figure (5.7) for Anytown and in figure (5.8) for Net3, in terms

of most effective potential measurement locations for pressure heads (panel a) and pipe flow

rates (panel b). According to the dimension of the system, cross correlation takes values of

order 10−1 for Anytown and 10−2 for Net3, meaning that the improvement due to the use

of a one more measurement would be more effective in Anytown than in Net3. For both

Anytown and Net3, it emerges a fairly clear correlation structure in terms of Q, while the

distinction of the cross correlation values for H is very weak, with exception of the nodes

close to supply points, where cross correlation is definitely low and measurements taken on

such nodes would not be much helpful for calibration. More specifically, the cross correlation

between L̄ and Q̄ reveals for Net3 a very strong dependence of the leakage estimation on the
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knowledge of some Q values corresponding to the large diameter pipeline departing from the

river reservoir. On the other hand a such strong dependence is not recognized in Anytown.

Because cross correlation between different system variables contributes to the system

description, the calculated values of cross correlation between H̄ and L̄ (CrCorrHL, column

2), H̄ and H̄ (CrCorrHH , column 3), H̄ and Q̄ (CrCorrHQ, column 4) are reported in table

(5.1) for Anytown and in table (5.3) for Net3. The calculated values of cross correlation

between Q̄ and L̄ (CrCorrQL, column 2) are reported in table (5.2) for Anytown and in table

(5.4) for Net3. CrCorrHH is very high for Net3, implying rather small differences among

piezometric heads when generating the ensemble of system states. A similar argument

concerns also CrCorrHQ. While the CrCorrHQ values are similar in Anytown and Net3,

it happens in Net3 that the H̄ field is much more dependent on the Q̄ field than on the L̄

field. In other words, the use of one more pressure measurement in Net3 would be more

effective in defining the Q field than the L field.

The use of the mean daily values L̄, H̄ and Q̄ is justified by considerations developed in

Darvini et al. (2008). The method demonstrates that the spatial variability of L and the

time variability of L can be treated separately, thus considering the mean time values of

variables L̄, H̄ and Q̄ is equivalent to observe only the fluctuations due to a different spatial

distribution of L. In any WDS, the flow rate Qj supplied at a node can be expressed as a

function f of the head H at the same node and at the adjacent nodes, and of the roughness

e (through a head-loss formula)(equation (5.8)).

Qj = f (H, e) (5.8)

The same flow rate Qj is varying as a function of the temporal behaviour of the user demand

q and of the system leakage L, thus it is a function of both space x and time t. In equation

(5.9) all the dependencies are located in a function G = G (x, t).

f (H, e) + q + L = G (H, e, q, L) = 0 (5.9)

By expanding in Taylor series the equation (5.9) around the mean positions H̄, ē, q̄, L̄, and

by limiting the expansion to the first-order, one obtains equation (5.10).

G
(
H̄, ē, q̄, L̄

)
+
∂G

∂H
H ′ +

∂G

∂e
e′ +

∂G

∂q
q′ +

∂G

∂L
L′ ' 0 (5.10)

The pipe roughness e is a random variable whose spatial variation is unknown, while its time

evolution is nearly deterministic. It is generally e = ē (x) + e′ (x), but the fluctuation term

is here neglected, the roughness values being known in the WDSs analyzed. Regarding the

piezometric heads it is H = H̄ (x)+H ′ (x, t). Both the spatial and temporal variation derive
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from H = H (q, L). For water consumption q the uncertainty regards only the temporal

variation, being q = q̄ + q′ (t), while it is generally possible to reconstruct the spatial

distribution of q through meter records. Regarding the water losses it is L = L̄ (x)+L′ (x, t).

The spatial variation remains the only uncertainty, the temporal variation depending on

L = L (H). Equation (5.10) becomes

Ḡ (x) +
∂G

∂H
H̄ ′ (x) +

∂G

∂L
L̄′ (x) ' 0 (5.11)

It follows from the assumptions that considering the mean time values of variables L̄, H̄ and

Q̄ let us to consider only the fluctuations of H and Q due to a different spatial distribution

of L, all the quantities in equation (5.11) being dependent only on x.
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Figure 5.7: Rank of the most effective potential measurement locations for Anytown, for

pressure heads (panel a) and flow rates (panel b) according to the cross correlation criterion.

Node CrCorrHL[−] CrCorrHH [−] CrCorrHQ[−]

1 0.110 0.703 0.352

2 0.135 0.693 0.350

3 0.146 0.630 0.239

4 0.159 0.669 0.219

5 0.160 0.640 0.194

6 0.161 0.633 0.189

7 0.165 0.710 0.228

8 0.166 0.719 0.233

9 0.146 0.657 0.250

10 0.143 0.693 0.282

Table continues on next page
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Table continues from previous page

Node CrCorrHL[−] CrCorrHH [−] CrCorrHQ[−]

11 0.142 0.703 0.297

12 0.128 0.731 0.352

13 0.137 0.774 0.368

14 0.139 0.768 0.364

15 0.143 0.764 0.353

16 0.156 0.763 0.334

17 0.137 0.738 0.335

18 0.142 0.737 0.356

19 0.146 0.695 0.341

20 0.099 0.630 0.320

Table 5.1: Values of cross correlation for Anytown, be-

tween piezometric heads and nodal leakage flow rates

(CrCorrHL, column 2), piezometric heads and piezomet-

ric heads (CrCorrHH , column 3), piezometric heads and

pipe flow rates (CrCorrHQ, column 4).

Pipe CrCorrQL[−] Pipe CrCorrQL[−]

1 0.132 27 0.132

2 0.128 28 0.137

3 0.140 29 0.116

4 0.123 30 0.127

5 0.151 31 0.138

6 0.152 32 0.128

7 0.094 34 0.136

8 0.093 35 0.130

9 0.101 36 0.168

11 0.136 37 0.130

12 0.161 38 0.092

17 0.167 39 0.118

18 0.157 41 0.125

Table continues on next page
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Table continues from previous page

Pipe CrCorrQL[−] Pipe CrCorrQL[−]

19 0.179 110 0.155

20 0.158 113 0.100

21 0.145 114 0.169

22 0.106 115 0.172

23 0.143 116 0.137

24 0.135 125 0.141

26 0.134

Table 5.2: Values of cross correlation for Anytown,

between pipe flow rates and nodal leakage flow rates

(CrCorrQL, column 2)
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Figure 5.8: Rank of the most effective potential measurement locations for Net3, for pressure

heads (panel a) and flow rates (panel b) according to the cross correlation criterion.

Node CrCorrHL[−] CrCorrHH [−] CrCorrHQ[−]

10 0.052 0.637 0.180

15 0.055 0.763 0.228

35 0.062 0.930 0.279

60 0.034 0.441 0.120

Table continues on next page

73



Table continues from previous page

Node CrCorrHL[−] CrCorrHH [−] CrCorrHQ[−]

601 0.038 0.530 0.135

61 0.038 0.530 0.135

101 0.064 0.904 0.263

103 0.064 0.902 0.263

105 0.064 0.910 0.266

107 0.063 0.905 0.265

109 0.064 0.907 0.267

111 0.064 0.920 0.275

113 0.063 0.920 0.278

115 0.064 0.919 0.273

117 0.063 0.917 0.268

119 0.062 0.928 0.267

120 0.063 0.924 0.267

121 0.062 0.926 0.264

123 0.062 0.925 0.263

125 0.062 0.925 0.264

127 0.062 0.924 0.263

129 0.062 0.923 0.263

131 0.061 0.907 0.258

139 0.061 0.873 0.254

141 0.059 0.823 0.245

143 0.056 0.775 0.232

145 0.059 0.827 0.246

147 0.059 0.839 0.248

149 0.060 0.846 0.249

151 0.062 0.911 0.258

153 0.062 0.911 0.258

157 0.062 0.929 0.269

159 0.062 0.930 0.273

161 0.062 0.930 0.275

163 0.062 0.930 0.276

164 0.062 0.930 0.276

Table continues on next page
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Table continues from previous page

Node CrCorrHL[−] CrCorrHH [−] CrCorrHQ[−]

166 0.062 0.928 0.276

167 0.062 0.928 0.277

169 0.062 0.930 0.277

171 0.062 0.930 0.277

173 0.062 0.930 0.277

177 0.062 0.929 0.279

179 0.062 0.929 0.279

181 0.062 0.930 0.279

183 0.062 0.929 0.280

184 0.062 0.926 0.280

185 0.063 0.927 0.282

187 0.063 0.927 0.283

189 0.063 0.929 0.281

191 0.063 0.926 0.282

193 0.063 0.927 0.281

195 0.063 0.925 0.282

197 0.063 0.924 0.280

199 0.061 0.931 0.270

201 0.061 0.931 0.270

203 0.061 0.931 0.270

204 0.063 0.927 0.283

205 0.061 0.930 0.268

206 0.057 0.922 0.253

207 0.059 0.928 0.261

208 0.054 0.910 0.245

209 0.052 0.881 0.233

211 0.052 0.869 0.231

213 0.052 0.866 0.231

215 0.052 0.856 0.232

217 0.052 0.852 0.233

219 0.052 0.849 0.233

225 0.052 0.849 0.233

Table continues on next page
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Table continues from previous page

Node CrCorrHL[−] CrCorrHH [−] CrCorrHQ[−]

229 0.051 0.840 0.225

231 0.051 0.836 0.225

237 0.051 0.844 0.224

239 0.051 0.836 0.222

241 0.051 0.836 0.222

243 0.051 0.833 0.222

247 0.051 0.835 0.222

249 0.051 0.835 0.222

251 0.051 0.833 0.221

253 0.051 0.828 0.219

255 0.051 0.831 0.220

257 0.063 0.906 0.265

259 0.063 0.898 0.263

261 0.063 0.912 0.267

263 0.063 0.911 0.267

265 0.062 0.930 0.277

267 0.063 0.928 0.281

269 0.063 0.929 0.280

271 0.062 0.930 0.278

273 0.061 0.930 0.269

275 0.061 0.931 0.268

Table 5.3: Values of cross correlation for Net3, be-

tween piezometric heads and nodal leakage flow rates

(CrCrossHL, column 2), piezometric heads and piezo-

metric heads (CrCrossHH , column 3), piezometric heads

and pipe flow rates (CrCrossHQ, column 4).

Pipe CrCorrQL[−] Pipe CrCorrQL[−]

60 0.042 211 0.061

101 0.063 213 0.062

Table continues on next page
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Table continues from previous page

Pipe CrCorrQL[−] Pipe CrCorrQL[−]

103 0.057 215 0.055

105 0.063 217 0.044

107 0.034 219 0.028

109 0.062 221 0.060

111 0.061 223 0.064

112 0.050 225 0.068

113 0.061 229 0.077

114 0.059 231 0.071

115 0.054 233 0.043

116 0.065 235 0.067

117 0.056 237 0.074

119 0.051 238 0.075

120 0.057 239 0.072

121 0.063 240 0.075

122 0.056 241 0.075

123 0.073 243 0.075

125 0.065 245 0.056

129 0.044 247 0.043

131 0.041 249 0.038

135 0.038 251 0.026

137 0.023 257 0.023

145 0.048 261 0.064

147 0.043 263 0.024

149 0.040 269 0.068

151 0.042 271 0.041

153 0.038 273 0.061

155 0.040 275 0.051

159 0.043 277 0.024

161 0.047 281 0.052

163 0.031 283 0.053

169 0.043 285 0.040

171 0.053 287 0.042

Table continues on next page
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Table continues from previous page

Pipe CrCorrQL[−] Pipe CrCorrQL[−]

173 0.076 291 0.031

175 0.077 293 0.039

177 0.077 295 0.042

179 0.077 297 0.050

180 0.029 299 0.033

181 0.023 301 0.037

183 0.079 303 0.044

185 0.024 305 0.036

186 0.054 307 0.046

187 0.076 309 0.053

189 0.074 311 0.055

191 0.064 313 0.058

193 0.033 315 0.061

195 0.050 317 0.040

197 0.047 319 0.062

199 0.050 321 0.078

202 0.061 323 0.070

203 0.051 325 0.059

204 0.069 329 0.064

205 0.052 330 0.000

207 0.055 333 0.021

209 0.051

Table 5.4: Values of cross correlation for Net3, between

pipe flow rates and nodal leakage flow rates (CrCorrQL,

column 2)

5.3.4 The Normal-Score EnKF

Although the EnKF is relatively robust for non-linear model dynamics as in the case of

WDSs, it performs not optimally for non-Gaussian parameter distributions, i.e. the emitter

coefficients C that follow a bimodal-like distribution. A Normal-Score Transform (NST) is
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applied, as reported in literature in Zhou et al. (2011). The method focuses on transforming

the non-Gaussian distributed state variables and, most importantly, the non-Gaussian dis-

tributed model parameters, into a new vector that follows marginal Gaussian distributions.

The NST is applied independently to each parameter and variable at all locations and at all

times. Once the NST function is established, the NS-EnKF just follows the same procedure

as the standard EnKF. A flow chart of the NS-EnKF consists of the following steps.

1. Ensemble forecast. A large number of equally likely stochastic realizations of the state

vector Xf
ti is generated (equation (5.3)).

Xf
ti =

[
C1, ..., Cnn, H1(ti), ..., Hnn(ti), Q1(ti), ..., Qnp(ti), Vin(ti), Vout(ti)

]
(5.12)

2. NST. Establish the local cumulative distribution functions (cdfs) for all the compo-

nents of Xf
ti from the ensemble of realizations. In our case there will be one such local

cdf at each location for the C coefficients and another one for each H, Q, Vin and Vout.

Use these local cdfs to build the NST function and transform Xf
ti into a new vector

Xf
nst(ti)

, with all its components following marginal Gaussian distributions with zero

mean and unit variance. The transformation functions need to be recomputed at each

time step.

3. Update. State data are collected at time ti (equation (5.4)).

zmti =
[
Hm

1(ti)
, ..., Hm

nobsH(ti)
, Qm

1(ti)
, ..., Qm

nobsQ(ti)
, V m

in(ti)
, V m

out(ti)

]
(5.13)

These data zmti are transformed into zmnst(ti) using the NST functions computed in the

previous step. Next we apply equation (2.13) to update the state vector Xf
nst(ti)

, thus

obtaining Xu
nst(ti)

.

4. Backtransform. The updated state vector Xu
nst(ti)

is back transformed using the previ-

ously constructed transformation functions. Time advances one step, from ti to ti+1.

The updated state vector Xu
ti

becomes the current vector Xf
ti+1

and we loop back to

the forecast step.

To sum up, the proposed method applies the EnkF always to a state vector all of which

components follow a marginal Gaussian distribution. Furthermore, using the NST we ensure

that the prior non-Gaussian marginals of the model parameters are kept throughout.

The recursive application of the model provides a progressive correction of the C coeffi-

cients for the network nodes. The spatial and temporal distribution of L is then retrieved

from the propagation of the system over time through the pressure driven hydraulic model

adopted.
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5.3.5 Description of the measurement scenarios

The measurements used in the assimilation procedure are provided from the synthetic solu-

tion systems of Anytown (figure 5.4) and Net3 (figure 5.5). An extended period simulation

is run according to the known C field and the system governing equations. Through the

pressure driven hydraulic network model the H, Q, Vin and Vout values are retrieved every

6 hours, that is for 4 time instants in the 24 hours, for Anytown, and every 4 hours, that

is for 6 time instants in the 24 hours, for Net3. These values are affected by an uncertainty

that is defined through a variation coefficient (CV) set to 2.5% for H and Q and to 10% for

Vin and Vout, on the basis of physical considerations.

The performances of the NS-EnKF to infer the spatial distribution of the water losses

L through the calibration of the C values are evaluated in different scenarios, where the

number of collected measurements of each type is progressively increased according to the

cross correlation criterion, as described in table (5.5) for Anytown and in table (5.6) for

Net3. Two different assimilation schemes are proposed.

The first assimilation scheme (scenarios a) uses a first data assimilation cycle lasting 24

hours, during which only V m
in and V m

out are included. The second part of the data assimilation

procedure uses all the measurements available at the observation times, that are transient

Hm
nobsH and Qm

nobsQ, and the known volumes V m
in and V m

out until the considered assimilation

time, the last assimilation time being t = 24. The purpose of this scheme is to facilitate the

calibration of the C values, that should more quickly reach the correct order of magnitude,

by using the information available from the global flow balance, coming from the knowledge

of the volumes. Because no information on the spatial distribution of C comes from V m
in

and V m
out, the second stage of the procedure allows for a more precise spatial estimation of

the C field through transient measurements.

The second assimilation scheme (scenarios b) is equivalent to the second part of the first

assimilation scheme, which consists in the update through all the measurements available

at each observation time, that are transient Hm
nobsH and Qm

nobsQ and the known volumes V m
in

and V m
out until the considered time, the last measurement time being t = 24.

For Anytown network 8 different scenarios are considered, assuming to have the knowl-

edge of a quarter (scenarios 1a and 1b), a half (scenarios 2a and 2b) or three quarters

(scenarios 3a and 3b) of the network variables. The case of complete network knowledge

(scenarios 4a and 4b) is analyzed for comparison.

For Net3 network 16 different scenarios are considered, assuming that the knowledge

of the system progressively increases from scenario 1a to 7a and in parallel from 1b to 7b.

The cases of 5 (scenarios 1a and 1b), 10 (scenarios 3a and 3b) and 15 (scenarios 5a and
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5b) assimilated measurements are considered for comparison with the proposed scenarios

for Anytown. The case of complete network knowledge (scenarios 8a and 8b) is analyzed

for reference.

Assimilated measurements

Scenario 1st stage 2nd stage

1a Vin + Vout 5H + 5Q + Vin + Vout

2a Vin + Vout 10H + 10Q + Vin + Vout

3a Vin + Vout 15H + 15Q + Vin + Vout

4a Vin + Vout 20H + 39Q + Vin + Vout

1b - 5H + 5Q + Vin + Vout

2b - 10H + 10Q + Vin + Vout

3b - 15H + 15Q + Vin + Vout

4b - 20H + 39Q + Vin + Vout

Table 5.5: Measurements scenarios for Anytown.

Assimilated measurements

Scenario 1st stage 2nd stage

1a Vin + Vout 5H + 5Q + Vin + Vout

2a Vin + Vout 5H + 6Q + Vin + Vout

3a Vin + Vout 10H + 10Q + Vin + Vout

4a Vin + Vout 11H + 13Q + Vin + Vout

5a Vin + Vout 15H + 15Q + Vin + Vout

6a Vin + Vout 22H + 27Q + Vin + Vout

7a Vin + Vout 44H + 55Q + Vin + Vout

8a Vin + Vout 89H + 111Q + Vin + Vout

1b - 5H + 5Q + Vin + Vout

2b - 5H + 6Q + Vin + Vout

3b - 10H + 10Q + Vin + Vout

4b - 11H + 13Q + Vin + Vout

5b - 15H + 15Q + Vin + Vout

6b - 22H + 27Q + Vin + Vout

Table continues on next page
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Table continues from previous page

Assimilated measurements

Scenario 1st stage 2nd stage

7b - 44H + 55Q + Vin + Vout

8b - 89H + 111Q + Vin + Vout

Table 5.6: Measurements scenarios for Net3.

5.4 Results and discussion
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Figure 5.9: NS-EnKF results for Anytown, in terms of leakage diameter for scenario 1a

(panel 1a), scenario 1b (panel 1b), scenario 2a (panel 2a) and scenario 2b (panel 2b).
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Figure 5.10: NS-EnKF results for Anytown in terms of leakage diameter for scenario 3a

(panel 3a), scenario 3b (panel 3b), scenario 4a (panel 4a) and scenario 4b (panel 4b).

83



N

0    1     2     3 km

Mean nodal 
leakage [l s-1]

       0 - 5 
       5 - 10 
       10 - 15 
       15 - 20 
       > 20 

(2b)

N

0    1     2     3 km

Mean nodal 
leakage [l s-1]

       0 - 5 
       5 - 10 
       10 - 15 
       15 - 20 
       > 20 

(1b)

N

0    1     2     3 km

Mean nodal 
leakage [l s-1]

       0 - 5 
       5 - 10 
       10 - 15 
       15 - 20 
       > 20 

(2a)

N

0    1     2     3 km

Mean nodal 
leakage [l s-1]

       0 - 5 
       5 - 10 
       10 - 15 
       15 - 20 
       > 20 

(1a)

9

8

7
6

4
3

2

1

17

16

10

11

12

18

19

15

13

14

9

8

7
6

5

4
3

2

1

17

16

10

11

12

18

19

15

13

14

9

8

7
6

5

4
3

2

1

17

16

10

11

12

18

19

15

13

14

9

8

7
6

5

4
3

2

1

17

16

10

11

12

18

19

15

13

14

Figure 5.11: NS-EnKF results for Anytown, in terms of mean nodal leakage flow rates for

scenario 1a (panel 1a), scenario 1b (panel 1b), scenario 2a (panel 2a) and scenario 2b (panel

2b).
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Figure 5.12: NS-EnKF results for Anytown in terms of mean nodal leakage flow rates for

scenario 3a (panel 3a), scenario 3b (panel 3b), scenario 4a (panel 4a) and scenario 4b (panel

4b).
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Scenario MAEC MAEL REVin REVout MAEH MAEQ

[ls−1m−1] [ls−1] [−] [−] [m] [ls−1]

1a 0.428 14.721 0.168 1.177 4.802 8.518

2a 0.263 9.121 0.120 0.852 4.065 5.909

3a 0.054 2.105 0.036 0.248 1.180 1.422

4a 0.015 0.421 0.009 0.059 0.268 0.305

1b 0.363 13.074 0.139 0.940 4.023 7.522

2b 0.183 6.344 0.058 0.412 2.013 3.299

3b 0.070 2.800 0.035 0.244 1.221 1.646

4b 0.008 0.230 0.005 0.038 0.211 0.225

Table 5.7: NS-EnKF results for Anytown. Measurement

scenarios (column 1), mean absolute error for the emitter

coefficients (MAEC, column 2), mean absolute error for

the nodal leakage flow rates (MAEP , column 3), relative

error for the incoming volume (REVin, column 4), relative

error for the leakage outflow (REVout, column 5), mean

absolute error for pressure heads (MAEH , column 6),

mean absolute error for pipe flow rates (MAEQ, column

7).

Scenario Pipe % to survey Scenario Pipe % to survey

1a 46.1 1b 41.0

2a 31.5 2b 33.7

3a 16.8 3b 24.1

4a 16.8 4b 16.8

Table 5.8: NS-EnKF results for Anytown in terms of

percentage of pipe length to be surveyed.
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Figure 5.13: NS-EnKF results for Net3, in terms of leakage diameter for scenario 1a (panel

1a), scenario 1b (panel 1b), scenario 2a (panel 2a) and scenario 2b (panel 2b).
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Figure 5.14: NS-EnKF results for Net3 in terms of leakage diameter for scenario 3a (panel

3a), scenario 3b (panel 3b), scenario 4a (panel 4a) and scenario 4b (panel 4b).
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Figure 5.15: NS-EnKF results for Net3 in terms of leakage diameter for scenario 5a (panel

5a), scenario 5b (panel 5b), scenario 6a (panel 6a) and scenario 6b (panel 6b).
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Figure 5.16: NS-EnKF results for Net3 in terms of leakage diameter for scenario 7a (panel

7a), scenario 7b (panel 7b), scenario 8a (panel 8a) and scenario 8b (panel 8b).
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Figure 5.17: NS-EnKF results for Net3, in terms of mean nodal leakage flow rates for

scenario 1a (panel 1a), scenario 1b (panel 1b), scenario 2a (panel 2a) and scenario 2b

(panel 2b).
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Figure 5.18: NS-EnKF results for Net3 in terms of mean nodal leakage flow rates for scenario

3a (panel 3a), scenario 3b (panel 3b), scenario 4a (panel 4a) and scenario 4b (panel 4b).
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Figure 5.19: NS-EnKF results for Net3 in terms of mean nodal leakage flow rates for scenario

5a (panel 5a), scenario 5b (panel 5b), scenario 6a (panel 6a) and scenario 6b (panel 6b).
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Figure 5.20: NS-EnKF results for Net3 in terms of mean nodal leakage flow rates for scenario

7a (panel 7a), scenario 7b (panel 7b), scenario 8a (panel 8a) and scenario 8b (panel 8b).
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Scenario MAEC MAEL REVin REVout MAEH MAEQ

[ls−1m−1] [ls−1] [−] [−] [m] [ls−1]

1a 0.448 10.820 0.228 0.815 23.073 25.340

2a 0.459 10.779 0.230 0.832 23.313 24.886

3a 0.603 8.821 0.229 0.810 24.429 20.474

4a 0.540 8.653 0.223 0.750 23.394 19.516

5a 0.734 8.121 0.235 0.840 24.948 22.831

6a 2.593 7.558 0.197 0.635 22.167 24.096

7a 0.922 6.472 0.144 0.459 15.858 22.019

8a 0.091 3.554 0.079 0.220 7.346 7.853

1b 0.463 11.016 0.237 0.869 23.472 25.520

2b 0.452 10.609 0.231 0.855 23.536 26.161

3b 1.012 11.773 0.261 1.085 27.301 30.903

4b 0.542 9.454 0.229 0.816 24.235 22.494

5b 0.671 8.133 0.237 0.866 25.126 22.619

6b 1.741 6.438 0.184 0.592 21.205 22.141

7b 0.969 4.836 0.117 0.389 14.829 20.255

8b 0.023 0.983 0.002 0.006 0.191 1.292

Table 5.9: NS-EnKF results for Net3. Measurement sce-

narios (column 1), mean absolute error for the emitter

coefficients (MAEC, column 2), mean absolute error for

the nodal leakage flow rates (MAEP , column 3), relative

error for the incoming volume (REVin, column 4), rel-

ative error for the leakage outflow (REVout, column 5),

mean absolute error for pressure heads (MAEH , column

6), mean absolute error for pipe flow rates (MAEQ, col-

umn 7).

Scenario Pipe % to survey Scenario Pipe % to survey

1a 45.5 1b 45.3

2a 41.9 2b 41.6

3a 35.6 3b 24.1

Table continues on next page
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Table continues from previous page

Scenario Pipe % to survey Scenario Pipe % to survey

4a 35.7 4b 28.4

5a 25.2 5b 15.8

6a 15.8 6b 14.3

7a 20.0 7b 11.5

8a 10.2 8b 13.7

Table 5.10: NS-EnKF results for Net3 in terms of per-

centage of pipe length to be surveyed.

The results of the NS-EnKF application for Anytown are reported in figure (5.9) and figure

(5.10) in terms of leakage diameters. The corresponding results in terms of mean daily

nodal leakage flow rates L̄ are retrieved from the propagation over time of the C parameters

estimated from the model, and are reported in figure (5.11) and figure (5.12). Darker colours

correspond to higher values. The estimated values are compared with the reference system

solution for Anytown (figure 5.4). As expected, the NS-EnKF gives better performances as

the number of assimilated measurements increases, progressively reducing the uncertainty

of the solution, both in terms of parameters and L̄ variables. The mean absolute errors for

the estimated emitter coefficients C (MAEC) and the mean absolute errors for leakages L̄

(MAEL) are reported in column 2 and column 3 of table (5.7) respectively and are consistent

with the output of the images. As it is proved from scenarios 1a and 1b for Anytown, the

use of 5 measurements of H and Q, besides the volumes Vin and Vout, is not sufficient to

detect any loss of the two leaking areas that characterize the synthetic solution for Anytown

(nodes 9 and 10, nodes 14 and 15). As soon as the information available regards half

of the system, that is 10 measurements of H and Q (scenarios 2a and 2b), the model is

more effective in defining the two leakage areas for Anytown, being rather precise for 15

measurements of H and Q (scenarios 3a and 3b). Scenarios 4a and 4b prove the fairness of

the NS-EnKF, which is able to select only nodes 9, 10, 14 and 15 both in terms of parameters

and L̄, when 20 H measurements and 39 Q measurements are assimilated, besides Vin and

Vout. In general, the adoption of the first assimilation scheme (scenarios a), which plans

to run a first assimilation cycle including only the volume measurements, is not able to

improve the results obtained in the scenarios of type b, in which all the measurements of

H, Q, Vin and Vout are included all together as soon as available. The major effect of the
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former assimilation scheme is providing solution fields with higher peak values, either at

the solution nodes or at the adjacent ones. The numerical results suggest that the second

assimilation scheme is more successful than the first one. This general trend is shown not

only from MAEC and MAEL, but also in terms of relative errors on the volumes (REVin for

Vin and REVout for Vout). The same holds for the mean absolute errors on piezometric heads

(MAEH) and on pipe flow rates (MAEQ). All the variable values are retrieved through

an extended period simulation of the pressure driven hydraulic model, using the NS-EnKF

estimated C coefficients. Table (5.8) gives the model results in terms of percentage of the

network pipe length to be examined through in situ techniques. The results for the second

type of assimilation scheme (scenarios b) are better than the corresponding results for the

same level of system knowledge in scenarios a.

The results of the NS-EnKF application for Net3 network are reported in terms of model

estimated leakage diameters in figures (5.13), (5.14), (5.15) and (5.16). The corresponding

mean daily leakages L̄, calculated from the transient hydraulic model, are represented in

figures (5.17), (5.18), (5.19) and (5.20). The synthetic solution for Net3 (figure (5.5)) is

used as a reference for the evaluation of the NS-EnKF performances and it is characterized

by two leakage areas. The first area, including nodes 117, 120, 257, 259, 261 and 263, is a

looped zone close to the system sources, while the second area, including nodes 213, 215,

217, 219 and 225, is a length of branched pipeline. Although scenarios 1a, 1b, 2a and 2b

for Net3 demonstrate that about a five percent system knowledge is still insufficient for the

identification of any of the leakage areas, the NS-EnKF is better capable of estimating the

spatial distribution of L̄ as the number of assimilated measurements increases. In scenarios

3a and 3b (10 H and 10 Q measurements), 4a and 4b (11 H and 13 Q measurements) and

5a and 5b (15 H and 15 Q measurements) the gap between the estimated system state

and the true solution progressively closes. As the figures show, the selected leakage nodes

progressively concentrate on the two solution areas for Net3, both in terms of parameters

and L̄ variables. In scenarios 6a and 6b (22 H and 27 Q measurements), and 7a and

7b (44 H and 55 Q measurements), corresponding to a quarter and a half of the system

knowledge respectively, the two solution areas for Net3 are defined increasingly better.

Scenarios 8a and 8b prove the fairness of the NS-EnKF, which is able to select only the

network nodes belonging to the solution loop and to the solution pipe branch, when 89 H

measurements and 11 Q measurements are assimilated, besides Vin and Vout. For a small

number of assimilated measurements, the model suggest rather high peak values for the

selected leakage nodes, spreading such nodes on the whole network. Regarding the type

of assimilation scheme adopted, table (5.9) lists the calculated errors for the estimated
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parameters (MAEC) and the model retrieved variables (MAEL, REVin , REVout , MAEH

and MAEQ), and shows how the results for scenarios 3a and 4a are slightly better than the

corresponding results for scenarios 3b and 4b, meaning that for a relatively small number

of measurements the assimilation of the only Vin and Vout values, before all the available

measurements are included in the assimilation procedure, could be helpful. However, as the

number of available measurements exceeds a quarter of the system knowledge (scenarios 6,

7 and 8), results for scenarios b are better than results for scenarios a. Table (5.10) gives the

results for Net3 in terms of percentage of the network pipe length to be examined through

in situ techniques. The results for the second type of assimilation scheme (scenarios b) are

always better than the results for the corresponding scenarios of type a, the overall model

performance being better for the former assimilation scheme.

5.5 Final remarks

In this work, the capabilities of the NS-EnKF to retrieve the spatial distribution of the

water losses through the calibration of the emitter coefficients C were investigated on the

two synthetic benchmark systems of Anytown and Net3. The aim was to compare the

effectiveness of the NS-EnKF when applied on two different topological schemes, Net3 being

more complex than Anytown. Two different assimilation schemes were proposed.

As expected, the NS-EnKF gives better performances as the number of assimilated mea-

surements increases, progressively reducing the gap between the estimated system state and

the true solution. In both the systems here analyzed, the NS-EnKF suffer the undifferen-

tiated and small cross correlation values between the pressure heads at the nodes H̄ and

the leakages L̄. This determines the need to assimilate a high number of measurements to

define the two leakage areas characterizing the synthetic solution. These requirements in

terms of measurements are 10 H and 10 Q measurements (scenarios 3, corresponding to a

half of the system knowledge) for Anytown, and 22 H and 27 Q measurements (scenarios

4, corresponding to a quarter of the system knowledge) for Net3, thus the mentioned effect

is more noticeable in Anytown than in Net3, due to the higher degree of network schele-

tonization and the smaller number of elements used to represent the WDS. Besides, the pipe

flow rates show a well defined cross correlation structure in both cases. The assimilation of

Q measurements is more effective than the assimilation of H values, the flow rate being a

direct measurement of the variable L that we are interested to estimate.

The fairly high percentage of network elements that need to monitored in Anytown for

a satisfactory calibration, and the progressive closing of the gap between the estimated
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system state and the true solution as the measurements number increases, are both due to

the structure of the network that is regularly looped. In the case of Net3 a much smaller

percentage of elements is required to be monitored in order to effectively detect the leaks.

This is justified from the structure of Net3 network which is more complex, that is less

looped, than Anytown and shows several branches. On such branches a pressure drop due

to an eventual leakage cannot be recovered as it happens in looped systems like Anytown,

thus determining the greater sensitivity of the pressure values to the spatial distribution of

the flow rates, that is a greater effectiveness of the coupled model here applied. The cross

correlation relationship between water losses L̄ and potentially measured variables (H and

Q), that contributes to determine the coupled model efficiency, is indeed closely linked to

the network topological structure: the more complex and least looped the network analyzed,

the highest the performance of the coupled model.

A relevant aspect is the weak distinction of the selected solution nodes for Net3, meaning

that such nodes are correctly identified by the model, but are poorly differentiated from the

lower estimated values. This is due to the specific physical and topological characteristics

of Net3, which shows a high cross correlation between the piezometric head values H̄. This

means that the specific pressure valueH that is realized at a network node strongly influences

the H values that are realized on the adjacent nodes. Thus when a leakage characterizes

a node, the pressure decrease that occurs on such node as a consequence of the loss is

immediately transmitted to the adjacent network nodes. For this reason the H̄ field does

not show a great spatial variability, thus weakening the model capability to clearly select

the solution nodes with a small number of assimilated measurements and using a small

number of assimilation times. Moreover, the elevation of the network nodes, which is rather

constant in Net3 compared to the Anytown network, contributes to stress the mentioned

effect, while data assimilation techniques based on the Kalman filter actually work on the

differences between the cross correlation values of the involved variables. Moreover, Net3

network shows a high cross correlation between H̄ and Q̄ values. This feature, coupled

with the high carrying capacity of the large diameter pipe extending throughout most of

the system, contributes to smooth the spatial variation of the fields of variables H and Q,

collected as measurements to be used in the assimilation procedure. A different situation

occurs in Anytown, where the cross correlation between piezometric heads H̄ is limited,

thanks to the redundant looped structure of the network. For the same reason, the Q field

in Anytown does not condition heavily the H field (relatively low cross correlation values

between H̄ and Q̄).

The adoption of a different assimilation scheme, which uses a first data assimilation
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cycle during which only measurements of volume Vin and Vout are included (scenarios b),

does not lead to better results compared to those obtained with the classical assimilation

scheme (scenarios a), in which all the measurements are included all together when available.

The results were consistent, even if the errors in scenarios a are generally higher than the

corresponding errors for scenarios b. This is due to the anticipated reduction of the ensemble

variance in scenarios a, the number of assimilation times for scenarios a being twice the

number of assimilation times for scenarios b.

In conclusion, the proposed approach demonstrates to be a promising tool for the spatial

identification of leakages L̄ in a WDS through the calibration of the C parameters values.

The NS-EnKF performances are directly proportional to the topological complexity of the

network analyzed and to the cross correlation between H̄ and L̄, and Q̄ and L̄. The model

effectiveness for the cases here analyzed is inversely proportional to the cross correlation

values between the H̄ and H̄ variables, and between the H̄ and Q̄ variables.
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Chapter 6

Conclusions

In this thesis an inverse model, consisting in coupling Kalman Filter based data assimilation

techniques to the network hydraulic model, is originally proposed and systematically applied

to some synthetic cases. The aim is the assessment of the spatial distribution of water losses

in WDSs through the calibration of the network parameters. The main purpose is to suggest

a method to reduce the costs of field surveys currently required from the leakage detection

activity on real systems, and to make the calibration of hydraulic network models, usually

affected from the lack of knowledge on water losses, pipe roughness and water use, a more

reliable procedure. The proposed model relies on the availability of pressure, flow rate

and volume measurements data, which can be easily collected in real systems with limited

efforts, with exception of the flow rate measurements, for which a relatively small number

of monitoring positions is usually available.

The main results can be summarized as follows.

• With the aim of assessing the spatial distribution of water losses through the cali-

bration of the network parameters, the Kalman Filter based techniques prove their

effectiveness on some synthetic WDSs.

• In some cases a significant advantage can be derived from the application of the ES

technique, that is when the system behaviour over time is not sufficiently described

from the available information or, when the system knowledge is given only in terms

of time averaged measurement data. Bearing in mind that in these cases the ES tech-

nique can be conveniently applied, the numerical experiments developed demonstrate

the higher effectiveness of the EnKF compared to the ES, in retrieving the spatial

distribution of the leakage parameters, when a fairly high number of measurements is

available.

• The filter inbreeding problem, as it is reported in the literature relating to some
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applications in the hydrological field, could affect the EnKF technique. However the

model performances are not significantly affected and the results are always consistent

in the cases here analyzed.

• Despite the fact that a high computational efficiency could be obtained by embedding

the hydraulic transient model with the recursive EnKF procedure, the available soft-

wares such as EpaNET are easier to use for the wide range of devices and situations

that can be reproduced. A combination of valves and hydrants is conveniently adopted

by using standard EpaNET to separately represent the pressure driven behaviour of

both user demand and nodal leakage.

• In the cases here analyzed, the application of a Monte Carlo numerical approach, based

on the criterion of cross correlation between the model parameters and the potentially

measured system variables, leads to the selection of the measurement locations that

turn out to be effective for the purpose of model calibration.

• The NS-EnKF procedure applied on the Anytown benchmark system leads to satisfac-

tory results both in terms of leakage detection and variables estimation, even if a fairly

high percentage of network elements needs to be monitored to calibrate the model.

As the number of assimilated measurements increases, the gap between the estimated

system state and the true solution closes progressively. Both these aspects are due to

the structure of the Anytown network that is regularly looped. The NS-EnKF appli-

cation on the Net3 network leads to good results as well, both in terms of parameters

and variables. In this case a much smaller percentage of elements is required to be

monitored in order to obtain a satisfactory model calibration. This is explained from

the structure of the Net3 network which is more complex, that is less looped, than

Anytown and shows a number of branches. On such network branches, a pressure

drop due to an eventual leakage cannot be recovered as it happens in looped systems,

thus determining the greater sensitivity of pressure values to the spatial distribution

of the flow rates, that is a greater effectiveness of the coupled model here applied. The

cross correlation relationship between water losses and potentially measured variables

(pressure heads or pipe flow rates), that contributes to determine the coupled model

efficiency, is indeed closely linked to the network topological structure.
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Appendix A

Netan HD examples
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Example 1

The Anytown (Walski et al., 1987) literature network is analyzed, which is constituted by

20 nodes and 39 pipes. The source node has a fixed piezometric head of 3.05 m amsl. The

system is fed through a pump inserted at element 40, whose head-flow rate curve is available.

The program stops the analysis at the demand driven case, the hydraulic head at each

node being sufficient to fully satisfy the requested demand.

Input file input.inp

Anytown Todini pompa

NN NT NLN NBN EPS NMAX CPG

21 40 20 1 2 300 1

IL PRIMO INDICE DA IL NUMERO DI COORDINATE DA LEGGERE:

SE I=1 Nn, Z, IS, QK, XX, Hmin

SE I=3 Nn, Z, X, Y, IS, QK, XX, Hmin

1

GRANDEZZE RIFERITE AI NODI

Nnod nID quota IS QK XX Hmin

1 n1 6.10 0 31.5451 0 6.10

2 n2 15.24 0 12.6180 0 15.24

3 n3 15.24 0 12.6180 0 15.24

4 n4 15.24 0 37.8541 0 15.24

5 n5 24.38 0 37.8541 0 24.38

6 n6 24.38 0 37.8541 0 24.38

7 n7 24.38 0 37.8541 0 24.38

8 n8 24.38 0 25.2361 0 24.38

9 n9 36.58 0 25.2361 0 36.58

10 n10 36.58 0 25.2361 0 36.58

11 n11 36.58 0 25.2361 0 36.58

12 n12 15.24 0 31.5451 0 15.24

13 n13 15.24 0 31.5451 0 15.24

14 n14 15.24 0 31.5451 0 15.24

15 n15 15.24 0 31.5451 0 15.24
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16 n16 36.58 0 25.2361 0 36.58

17 n17 36.58 0 63.0902 0 36.58

18 n18 15.24 0 31.5451 0 15.24

19 n19 15.24 0 63.0902 0 15.24

20 n20 6.10 0 0.0000 0 6.10

21 n40 3.05 1 0.0000 3.05 3.05

GRANDEZZE RIFERITE AGLI ELEMENTI

Nel pID N1 N2 D L e q

1 p1 n1 n2 304.7 3657.6 1.5 0

2 p2 n1 n12 762.9 3657.6 2.0 0

3 p3 n1 n13 699.6 3657.6 2.0 0

4 p4 n1 n20 457.2 30.5 1.0 0

5 p5 n2 n3 253.9 1828.8 1.5 0

6 p6 n2 n4 203.9 2743.2 1.5 0

7 p7 n2 n13 304.7 2743.2 2.0 0

8 p8 n2 n14 253.9 1828.8 1.5 0

9 p9 n3 n4 253.9 1828.8 1.5 0

10 p11 n4 n8 203.1 3657.6 1.5 0

11 p12 n4 n15 253.9 1828.8 1.5 0

12 p17 n8 n9 203.1 3657.6 1.5 0

13 p18 n8 n15 253.9 1828.8 1.5 0

14 p19 n8 n16 203.1 1828.8 1.5 0

15 p20 n8 n17 203.1 1828.8 1.5 0

16 p21 n9 n10 304.9 1828.8 1.5 0

17 p22 n10 n11 394.6 1828.8 1.5 0

18 p23 n10 n17 355.6 1828.8 1.5 0

19 p24 n11 n12 203.1 1828.8 1.5 0

20 p26 n12 n17 606.9 1828.8 1.5 0

21 p27 n12 n18 355.6 1828.8 2.0 0

22 p28 n13 n14 762.2 1828.8 2.0 0

23 p29 n13 n18 304.7 1828.8 2.0 0

24 p30 n13 n19 152.4 1828.8 2.0 0

25 p31 n14 n15 598.0 1828.8 2.0 0

26 p32 n14 n19 253.9 1828.8 2.0 0
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27 p34 n15 n16 253.9 1828.8 2.0 0

28 p35 n15 n19 253.9 1828.8 2.0 0

29 p36 n16 n17 203.1 1828.8 1.5 0

30 p37 n16 n18 203.1 1828.8 2.0 0

31 p38 n16 n19 253.9 1828.8 2.0 0

32 p39 n17 n18 203.1 1828.8 1.5 0

33 p41 n18 n19 253.9 1828.8 2.0 0

34 p110 n4 n5 355.6 1828.8 1.0 0

35 p113 n5 n6 406.4 1828.8 1.0 0

36 p114 n6 n7 152.4 1828.8 1.0 0

37 p115 n6 n8 203.9 1828.8 1.0 0

38 p116 n7 n8 609.6 1828.8 1.0 0

39 p125 n11 n17 406.4 2743.2 1.0 0

40 pump n40 n20 457.2 30.5 1.0 0

POMPE(IPP)

1

Nel Npti

pump 5

Q1 Q2 H1 H2

0.0000 378.5412 91.4400 89.0016

378.5412 757.0824 89.0016 82.2960

757.0824 1135.6236 82.2960 70.1040

1135.6236 1514.1648 70.1040 55.1688

Output file echo.out

DATI DI RETE

NUMERO DI NODI: 21

NUMERO DI ELEMENTI: 40

NUMERO DI NODI UTILIZZATORI: 20

NUMERO DI NODI SORGENTE: 1

PRECISIONE DI CALCOLO: 2.00

MASSIMO NUMERO DI ITERAZIONI: 300
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COEFFICIENTE DI PUNTA: 1.00

DATI DEI NODI

NODO nID Z[m] QK[l/s] IS XX[m] Hmin[m]

1 n1 6.1 31.55 0 0 6.10

2 n2 15.2 12.62 0 0 15.24

3 n3 15.2 12.62 0 0 15.24

4 n4 15.2 37.85 0 0 15.24

5 n5 24.4 37.85 0 0 24.38

6 n6 24.4 37.85 0 0 24.38

7 n7 24.4 37.85 0 0 24.38

8 n8 24.4 25.24 0 0 24.38

9 n9 36.6 25.24 0 0 36.58

10 n10 36.6 25.24 0 0 36.58

11 n11 36.6 25.24 0 0 36.58

12 n12 15.2 31.55 0 0 15.24

13 n13 15.2 31.55 0 0 15.24

14 n14 15.2 31.55 0 0 15.24

15 n15 15.2 31.55 0 0 15.24

16 n16 36.6 25.24 0 0 36.58

17 n17 36.6 63.09 0 0 36.58

18 n18 15.2 31.55 0 0 15.24

19 n19 15.2 63.09 0 0 15.24

20 n20 6.1 0.00 0 0 6.10

21 n40 3.1 0.00 1 3.05 3.05

DATI DEGLI ELEMENTI

Elem. pID N1ID N2ID D[mm] L[m] e[mm] q[l/(sm)]

1 p1 n1 n2 304.7 3657.6 1.5 0

2 p2 n1 n12 762.9 3657.6 2.0 0

3 p3 n1 n13 699.6 3657.6 2.0 0

4 p4 n1 n20 457.2 30.5 1.0 0

5 p5 n2 n3 253.9 1828.8 1.5 0

6 p6 n2 n4 203.9 2743.2 1.5 0

7 p7 n2 n13 304.7 2743.2 2.0 0
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8 p8 n2 n14 253.9 1828.8 1.5 0

9 p9 n3 n4 253.9 1828.8 1.5 0

10 p11 n4 n8 203.1 3657.6 1.5 0

11 p12 n4 n15 253.9 1828.8 1.5 0

12 p17 n8 n9 203.1 3657.6 1.5 0

13 p18 n8 n15 253.9 1828.8 1.5 0

14 p19 n8 n16 203.1 1828.8 1.5 0

15 p20 n8 n17 203.1 1828.8 1.5 0

16 p21 n9 n10 304.9 1828.8 1.5 0

17 p22 n10 n11 394.6 1828.8 1.5 0

18 p23 n10 n17 355.6 1828.8 1.5 0

19 p24 n11 n12 203.1 1828.8 1.5 0

20 p26 n12 n17 606.9 1828.8 1.5 0

21 p27 n12 n18 355.6 1828.8 2.0 0

22 p28 n13 n14 762.2 1828.8 2.0 0

23 p29 n13 n18 304.7 1828.8 2.0 0

24 p30 n13 n19 152.4 1828.8 2.0 0

25 p31 n14 n15 598.0 1828.8 2.0 0

26 p32 n14 n19 253.9 1828.8 2.0 0

27 p34 n15 n16 253.9 1828.8 2.0 0

28 p35 n15 n19 253.9 1828.8 2.0 0

29 p36 n16 n17 203.1 1828.8 1.5 0

30 p37 n16 n18 203.1 1828.8 2.0 0

31 p38 n16 n19 253.9 1828.8 2.0 0

32 p39 n17 n18 203.1 1828.8 1.5 0

33 p41 n18 n19 253.9 1828.8 2.0 0

34 p110 n4 n5 355.6 1828.8 1.0 0

35 p113 n5 n6 406.4 1828.8 1.0 0

36 p114 n6 n7 152.4 1828.8 1.0 0

37 p115 n6 n8 203.9 1828.8 1.0 0

38 p116 n7 n8 609.6 1828.8 1.0 0

39 p125 n11 n17 406.4 2743.2 1.0 0

40 pump n40 n20 457.2 30.5 1.0 0

POMPE
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NUMERO DI POMPE IN RETE: 1

Pompa 1 inserita nell elemento pump al tronco 40

Q1[l/s] Q2[l/s] H1[m] H2[m] Rp[1/(m^3/s)^n] Hp[m]

0.0 378.5 91.44 89.00 -6.44 91.44

378.5 757.1 89.00 82.30 -17.71 95.71

757.1 1135.6 82.30 70.10 -32.21 106.68

1135.6 1514.2 70.10 55.17 -39.45 114.91

Portata totale richiesta dalla rete: 618.284 [l/s]

Output file risultati.out

Convergenza raggiunta al ciclo: 6

nID QUC[l/s] HN[m] PP[m]

n1 31.55 86.64 80.54

n2 12.62 81.81 66.57

n3 12.62 75.83 60.59

n4 37.85 73.30 58.06

n5 37.85 71.34 46.96

n6 37.85 71.26 46.88

n7 37.85 74.49 50.11

n8 25.24 74.58 50.20

n9 25.24 79.32 42.74

n10 25.24 81.83 45.25

n11 25.24 82.13 45.55

n12 31.55 84.44 69.20

n13 31.55 83.01 67.77

n14 31.55 82.37 67.13

n15 31.55 81.27 66.03

n16 25.24 79.84 43.26

n17 63.09 82.92 46.34

n18 31.55 82.58 67.34

n19 63.09 80.16 64.92

109



n20 0.00 87.80 81.70

n40 -618.28 3.05 0.00

pID QQ[l/s] VV[m/s] DDH[m]

p1 36.92 0.51 4.84

p2 271.73 0.59 2.20

p3 278.08 0.72 3.64

p4 -618.28 -3.77 -1.16

p5 35.89 0.71 5.98

p6 19.49 0.60 8.51

p7 -20.23 -0.28 -1.20

p8 -10.84 -0.21 -0.56

p9 23.27 0.46 2.53

p11 -6.38 -0.20 -1.28

p12 -41.49 -0.82 -7.98

p17 -12.41 -0.38 -4.74

p18 -37.99 -0.75 -6.69

p19 -18.57 -0.57 -5.26

p20 -23.43 -0.72 -8.34

p21 -37.65 -0.52 -2.50

p22 -25.60 -0.21 -0.30

p23 -37.29 -0.38 -1.10

p24 -12.25 -0.38 -2.31

p26 181.17 0.63 1.52

p27 46.77 0.47 1.86

p28 205.58 0.45 0.64

p29 14.70 0.20 0.43

p30 6.03 0.33 2.84

p31 142.41 0.51 1.10

p32 20.79 0.41 2.21

p34 16.70 0.33 1.43

p35 14.69 0.29 1.11

p36 -14.17 -0.44 -3.08

p37 -12.77 -0.39 -2.74

p38 -0.18 0.00 -0.32
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p39 4.61 0.14 0.34

p41 21.77 0.43 2.42

p110 52.77 0.53 1.96

p113 14.92 0.12 0.08

p114 -7.16 -0.39 -3.23

p115 -15.77 -0.48 -3.32

p116 -45.02 -0.15 -0.09

p125 -38.59 -0.30 -0.79

pump 618.28 3.77 -84.75
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Example 2

The second example refers to a test case reported from Todini (2003). The network is formed

by 8 nodes and 14 elements. The source node has a fixed piezometric head of 140 m amsl.

The system is gravity fed.

Since the hydraulic head at each node is insufficient to fully satisfy the requested demand,

the program developed a pressure driven analysis.

Input file input.inp

Todini test

NN NT NLN NBN EPS NMAX CPG

8 14 7 1 4 300 1

IL PRIMO INDICE DA IL NUMERO DI COORDINATE DA LEGGERE:

SE I=1 Nn, Z, IS, QK, XX, Hmin

SE I=3 Nn, Z, X, Y, IS, QK, XX, Hmin

1

GRANDEZZE RIFERITE AI NODI

Nnod nID quota IS QK XX Hmin

1 n1 140 1 0.00 140 140

2 n2 80 0 16.67 0 80

3 n3 90 0 16.67 0 90

4 n4 70 0 33.33 0 70

5 n5 80 0 250.00 0 80

6 n6 90 0 250.00 0 90

7 n7 90 0 166.67 0 90

8 n8 100 0 83.33 0 100

GRANDEZZE RIFERITE AGLI ELEMENTI

Nel pID N1 N2 D L e q

1 p1 n1 n2 400 1000 0.05 0

2 p2 n1 n3 500 1000 0.05 0

3 p3 n2 n3 200 1000 0.05 0

4 p4 n2 n4 300 1000 0.05 0
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5 p5 n2 n5 200 1000 0.05 0

6 p6 n3 n5 200 1000 0.05 0

7 p7 n3 n6 300 1000 0.05 0

8 p8 n4 n5 150 1000 0.05 0

9 p9 n5 n6 150 1000 0.05 0

10 p10 n4 n7 250 1000 0.05 0

11 p11 n5 n7 150 1000 0.05 0

12 p12 n5 n8 150 1000 0.05 0

13 p13 n6 n8 200 1000 0.05 0

14 p14 n7 n8 150 1000 0.05 0

POMPE(IPP)

0

Output file echo.out

DATI DI RETE

NUMERO DI NODI: 8

NUMERO DI ELEMENTI: 14

NUMERO DI NODI UTILIZZATORI: 7

NUMERO DI NODI SORGENTE: 1

PRECISIONE DI CALCOLO: 4.00

MASSIMO NUMERO DI ITERAZIONI: 300

COEFFICIENTE DI PUNTA: 1.00

DATI DEI NODI

NODO nID Z[m] QK[l/s] IS XX[m] Hmin[m]

1 n1 140 0.00 1 140 140

2 n2 80 16.67 0 0 80

3 n3 90 16.67 0 0 90

4 n4 70 33.33 0 0 70

5 n5 80 250.00 0 0 80

6 n6 90 250.00 0 0 90

7 n7 90 166.67 0 0 90

8 n8 100 83.33 0 0 100
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DATI DEGLI ELEMENTI

Elem. pID N1ID N2ID D[mm] L[m] e[mm] q[l/(sm)]

1 p1 n1 n2 400 1000 0.05 0

2 p2 n1 n3 500 1000 0.05 0

3 p3 n2 n3 200 1000 0.05 0

4 p4 n2 n4 300 1000 0.05 0

5 p5 n2 n5 200 1000 0.05 0

6 p6 n3 n5 200 1000 0.05 0

7 p7 n3 n6 300 1000 0.05 0

8 p8 n4 n5 150 1000 0.05 0

9 p9 n5 n6 150 1000 0.05 0

10 p10 n4 n7 250 1000 0.05 0

11 p11 n5 n7 150 1000 0.05 0

12 p12 n5 n8 150 1000 0.05 0

13 p13 n6 n8 200 1000 0.05 0

14 p14 n7 n8 150 1000 0.05 0

POMPE

NUMERO DI POMPE IN RETE: 0

Portata totale richiesta dalla rete: 816.670 [l/s]

Output file risultati.out

Convergenza raggiunta al ciclo: 8

nID QUC[l/s] HN[m] PP[m]

n1 -816.67 140.00 0.00

n2 16.67 127.90 47.90

n3 16.67 131.74 41.74

n4 33.33 102.29 32.29

n5 250.00 76.32 -3.68

n6 250.00 82.08 -7.92

n7 166.67 70.66 -19.34
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n8 83.33 69.01 -30.99

pID QQ[l/s] VV[m/s] DDH[m]

p1 330.48 2.63 12.10

p2 486.19 2.48 8.26

p3 -29.09 -0.93 -3.85

p4 229.24 3.24 25.60

p5 113.66 3.62 51.58

p6 117.95 3.75 55.43

p7 322.47 4.56 49.67

p8 37.35 2.11 25.98

p9 -16.84 -0.95 -5.76

p10 158.56 3.23 31.64

p11 16.68 0.94 5.66

p12 19.12 1.08 7.31

p13 55.63 1.77 13.07

p14 8.57 0.49 1.65

Convergenza raggiunta al ciclo: 14

nID QUC[l/s] HN[m] PP[m]

n1 -757.83 140.00 0.00

n2 16.67 129.79 49.79

n3 16.67 132.72 42.72

n4 33.33 110.22 40.22

n5 344.73 80.00 0.00

n6 324.20 90.00 0.00

n7 125.72 90.00 0.00

n8 -103.49 100.00 0.00

pID QQ[l/s] VV[m/s] DDH[m]

p1 302.57 2.41 10.21

p2 455.26 2.32 7.28

p3 -25.18 -0.80 -2.94

p4 199.47 2.82 19.57
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p5 111.60 3.55 49.79

p6 114.95 3.66 52.72

p7 298.47 4.22 42.72

p8 40.43 2.29 30.22

p9 -22.59 -1.28 -10.00

p10 125.72 2.56 20.22

p11 -22.59 -1.28 -10.00

p12 -32.57 -1.84 -20.00

p13 -48.33 -1.54 -10.00

p14 -22.59 -1.28 -10.00

Convergenza raggiunta al ciclo: 14

nID QUC[l/s] HN[m] PP[m]

n1 -715.56 140.00 0.00

n2 16.67 130.72 50.72

n3 16.67 133.55 43.55

n4 33.33 111.67 41.67

n5 250.00 91.14 11.14

n6 250.00 94.85 4.85

n7 148.89 90.00 0.00

n8 0.00 92.87 -7.13

pID QQ[l/s] VV[m/s] DDH[m]

p1 287.84 2.29 9.28

p2 427.72 2.18 6.45

p3 -24.66 -0.78 -2.82

p4 196.70 2.78 19.05

p5 99.13 3.16 39.59

p6 102.73 3.27 42.41

p7 283.66 4.01 38.70

p8 33.03 1.87 20.54

p9 -13.30 -0.75 -3.71

p10 130.34 2.66 21.67

p11 6.98 0.40 1.14
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p12 -8.80 -0.50 -1.73

p13 20.36 0.65 1.98

p14 -11.57 -0.65 -2.87
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Appendix B

Network data
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Node Elevation Demand Node Elevation Demand

number [m amsl] [l/s] number [m amsl] [l/s]

1 6.10 31.54 11 36.58 25.24

2 15.24 12.62 12 15.24 31.54

3 15.24 12.62 13 15.24 31.54

4 15.24 37.85 14 15.24 31.54

5 24.38 37.85 15 15.24 31.54

6 24.38 37.85 16 36.58 25.24

7 24.38 37.85 17 36.58 63.09

8 24.38 25.24 18 15.24 31.54

9 36.58 25.24 19 15.24 63.09

10 36.58 25.24 20 6.10 0.00

Table B.1: Node elevation and nodal demand data for

Anytown illustrative network.

Pipe Starting Ending Length Diameter Roughness

number node node [m] [mm] [D-W]

1 1 2 3657.6 304.7 1.5

2 1 12 3657.6 762.9 2.0

3 1 13 3657.6 699.6 2.0

4 1 20 30.5 457.2 1.0

5 2 3 1828.8 253.9 1.5

6 2 4 2743.2 203.9 1.5

7 2 13 2743.2 304.7 2.0

8 2 14 1828.8 253.9 1.5

9 3 4 1828.8 253.9 1.5

11 4 8 3657.6 203.1 1.5

12 4 15 1828.8 253.9 1.5

17 8 9 3657.6 203.1 1.5

18 8 15 1828.8 253.9 1.5

19 8 16 1828.8 203.1 1.5

20 8 17 1828.8 203.1 1.5

Table continues on next page
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Table continues from previous page

Pipe Starting Ending Length Diameter Roughness

number node node [m] [mm] [D-W]

21 9 10 1828.8 304.9 1.5

22 10 11 1828.8 394.6 1.5

23 10 17 1828.8 355.6 1.5

24 11 12 1828.8 203.1 1.5

26 12 17 1828.8 606.9 1.5

27 12 18 1828.8 355.6 2.0

28 13 14 1828.8 762.2 2.0

29 13 18 1828.8 304.7 2.0

30 13 19 1828.8 152.4 2.0

31 14 15 1828.8 598.0 2.0

32 14 19 1828.8 253.9 2.0

34 15 16 1828.8 253.9 2.0

35 15 19 1828.8 253.9 2.0

36 16 17 1828.8 203.1 1.5

37 16 18 1828.8 203.1 2.0

38 16 19 1828.8 253.9 2.0

39 17 18 1828.8 203.1 1.5

41 18 19 1828.8 253.9 2.0

110 4 5 1828.8 355.6 1.0

113 5 6 1828.8 406.4 1.0

114 6 7 1828.8 152.4 1.0

115 6 8 1828.8 203.9 1.0

116 7 8 1828.8 609.6 1.0

125 11 17 2743.2 406.4 1.0

Table B.2: Pipe data for Anytown illustrative network.

Flow[ls−1] Head[m]

0.0000 91.440

126.1804 89.002

Table continues on next page
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Table continues from previous page

Flow[ls−1] Head[m]

252.3608 82.296

378.5412 70.104

504.7216 55.169

Table B.3: Pump curve for Anytown.
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Node Elevation Demand Node Elevation Demand

number [m amsl] [l/s] number [m amsl] [l/s]

10 44.81 0.00 185 4.88 1.62

15 9.75 0.06 187 3.81 0.00

35 3.81 0.06 189 1.22 6.81

60 0.00 0.00 191 7.62 5.17

601 0.00 0.00 193 5.49 4.50

61 0.00 0.00 195 4.72 0.00

101 12.80 11.98 197 7.01 1.08

103 13.11 8.40 199 -0.61 7.53

105 8.69 8.54 201 0.03 2.81

107 6.71 3.45 203 0.61 0.06

109 6.19 14.60 204 6.40 0.00

111 3.05 8.96 205 6.40 4.12

113 0.61 1.26 206 0.30 0.00

115 4.27 3.29 207 2.74 4.38

117 4.15 7.43 208 4.88 0.00

119 0.61 11.11 209 -0.61 0.05

120 0.00 0.00 211 2.13 0.55

121 -0.61 2.63 213 2.13 0.88

123 3.35 0.06 215 2.13 5.82

125 3.35 2.88 217 1.83 1.53

127 17.07 1.11 219 1.22 2.61

129 15.54 0.00 225 2.44 1.44

131 1.83 2.70 229 3.20 4.05

139 9.45 0.37 231 1.52 1.04

141 1.22 0.62 237 4.27 0.98

143 -1.37 0.39 239 3.96 2.81

145 0.30 1.74 241 3.96 0.00

147 5.64 0.54 243 4.27 0.27

149 4.88 1.71 247 5.49 4.44

151 10.21 9.12 249 5.49 0.00

153 20.18 2.79 251 9.14 1.52

157 3.99 3.27 253 10.97 3.44

Table continues on next page
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Table continues from previous page

Node Elevation Demand Node Elevation Demand

number [m amsl] [l/s] number [m amsl] [l/s]

159 1.83 2.61 255 8.23 2.55

161 1.22 1.00 257 5.18 0.00

163 1.52 0.59 259 7.62 0.00

164 1.52 0.00 261 0.00 0.00

166 -0.61 0.16 263 0.00 0.00

167 -1.52 0.92 265 0.00 0.00

169 -1.52 0.00 267 6.40 0.00

171 -1.22 2.48 269 0.00 0.00

173 -1.22 0.00 271 1.83 0.00

177 2.44 3.67 273 2.44 0.00

179 2.44 0.00 275 3.05 0.00

181 2.44 0.00 River 67.06 0.00

183 3.35 0.00 Lake 50.90 0.00

184 4.88 0.00

Table B.4: Node elevation and nodal demand data for

Net3 illustrative network.

Pipe Starting Ending Length Diameter Roughness

number node node [m] [mm] [H-W]

60 River 60 375.2 609.6 140

101 10 101 4328.2 457.2 110

103 101 103 411.5 406.4 130

105 101 105 774.2 304.8 130

107 105 107 448.1 304.8 130

109 103 109 1200.9 406.4 130

111 109 111 609.6 304.8 130

112 115 111 353.6 304.8 130

113 111 113 512.1 304.8 130

114 115 113 609.6 203.2 130

Table continues on next page
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Table continues from previous page

Pipe Starting Ending Length Diameter Roughness

number node node [m] [mm] [H-W]

115 107 115 594.4 203.2 130

116 113 193 506.0 304.8 130

117 263 105 830.6 304.8 130

119 115 117 664.5 304.8 130

120 119 120 222.5 304.8 130

121 120 117 570.0 304.8 130

122 121 120 624.8 203.2 130

123 121 119 609.6 762.0 141

125 123 121 457.2 762.0 141

129 121 125 283.5 609.6 130

131 125 127 987.6 609.6 130

135 127 129 274.3 609.6 130

137 129 131 1975.1 406.4 130

145 129 139 838.2 203.2 130

147 139 141 624.8 203.2 130

149 143 141 426.7 203.2 130

151 15 143 502.9 203.2 130

153 145 141 1069.9 304.8 130

155 147 145 670.6 304.8 130

159 147 149 268.2 304.8 130

161 149 151 310.9 203.2 130

163 151 153 356.6 304.8 130

169 125 153 1389.9 203.2 130

171 119 151 1054.6 304.8 130

173 119 157 634.0 762.0 141

175 157 159 887.0 762.0 141

177 159 161 609.6 762.0 141

179 161 163 131.1 762.0 141

180 163 164 45.7 355.6 130

181 164 166 149.4 355.6 130

183 265 169 179.8 762.0 141

Table continues on next page
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Table continues from previous page

Pipe Starting Ending Length Diameter Roughness

number node node [m] [mm] [H-W]

185 167 169 18.3 203.2 130

186 187 204 30.5 203.2 130

187 169 171 387.1 762.0 141

189 171 173 15.2 762.0 141

191 271 171 231.7 609.6 130

193 35 181 9.1 609.6 130

195 181 177 9.1 304.8 130

197 177 179 9.1 304.8 130

199 179 183 64.0 304.8 130

202 185 184 30.5 203.2 130

203 183 185 155.5 203.2 130

204 184 205 1380.7 304.8 130

205 204 185 403.9 304.8 130

207 189 183 411.5 304.8 130

209 189 187 152.4 203.2 130

211 169 269 196.9 304.8 130

213 191 187 780.3 304.8 130

215 267 189 374.9 304.8 130

217 191 193 158.5 304.8 130

219 193 195 109.7 304.8 130

221 161 195 701.0 203.2 130

223 197 191 350.5 304.8 130

225 111 197 850.4 304.8 130

229 173 199 1219.2 609.6 141

231 199 201 192.0 609.6 141

233 201 203 36.6 609.6 130

235 199 273 221.0 304.8 130

237 205 207 365.8 304.8 130

238 207 206 137.2 304.8 130

239 275 207 435.9 304.8 130

240 206 208 155.5 304.8 130

Table continues on next page
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Table continues from previous page

Pipe Starting Ending Length Diameter Roughness

number node node [m] [mm] [H-W]

241 208 209 269.8 304.8 130

243 209 211 368.8 406.4 130

245 211 213 301.8 406.4 130

247 213 215 1306.1 406.4 130

249 215 217 506.0 406.4 130

251 217 219 624.8 355.6 130

257 217 225 475.5 304.8 130

261 213 229 670.6 203.2 130

263 229 231 597.4 304.8 130

269 211 237 634.0 304.8 130

271 237 229 240.8 203.2 130

273 237 239 155.5 304.8 130

275 239 241 10.7 304.8 130

277 241 243 670.6 304.8 130

281 241 247 135.6 254.0 130

283 239 249 131.1 304.8 130

285 247 249 3.1 304.8 130

287 247 255 423.7 254.0 130

291 255 253 335.3 254.0 130

293 255 251 335.3 203.2 130

295 249 251 442.0 304.8 130

297 120 257 196.6 203.2 130

299 257 259 106.7 203.2 130

301 259 263 426.7 203.2 130

303 257 261 426.7 203.2 130

305 117 261 196.6 304.8 130

307 261 263 106.7 304.8 130

309 265 267 481.6 203.2 130

311 193 267 356.6 304.8 130

313 269 189 196.9 304.8 130

315 181 271 79.3 609.6 130

Table continues on next page
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Table continues from previous page

Pipe Starting Ending Length Diameter Roughness

number node node [m] [mm] [H-W]

317 273 275 679.7 203.2 130

319 273 205 196.6 304.8 130

321 163 265 365.8 762.0 141

323 201 275 91.4 304.8 130

325 269 271 393.2 203.2 130

329 61 123 13868.4 762.0 140

330 60 601 0.3 762.0 140

333 601 61 0.3 762.0 140

Table B.5: Pipe data for Net3 illustrative network.

Flow[ls−1] Head[m]

0.0000 31.6992

126.1804 28.0416

252.3608 19.2024

Table B.6: Pump curve for Net3 lake source.

Flow[ls−1] Head[m]

0.0000 60.9600

504.7216 42.0624

883.2628 26.2128

Table B.7: Pump curve for Net3 river source.

128



List of simbols

A linear transition matrix

A10 fixed head nodes incidence matrix

A12 unknown head nodes incidence matrix

Ao equivalent orifice area

b boundary condition vector

c forcing term vector

C emitter coefficients vector

Co orifice coefficient

d pipe diameter

e pipe roughness

ē mean pipe roughness

e1 forecast model white noise

e2 observation white noise

E energy (level)

f (H) law expressing nodal flow rate

f (H, e) law expressing head losses in pipes

f (Q) law expressing head losses in pipes

ff friction factor

F transition matrix

g gravity acceleration

h pipe head loss

H nodal heads vector

H̄ mean pressure heads vector

H∗ critical pressure

Hm measured pressure head

H0 fixed nodal heads vector

Hp pump head
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Hs service head

I identity matrix

k stochastic non-linear operator

K Kalman gain matrix

l pipe length

L nodal leakage flow rates vector

L̄ mean nodal leakage flow rates vector

m1 first mode of the bimodal pdf

m2 second mode of the bimodal pdf

M observation operator

n exponent of the head loss formula

N diagonal matrix of the exponents

NMC Monte Carlo ensemble dimension

nmis number of collected measurements

nn number of nodes

nl number of energy paths

no number of nodes with fixed head

nobsH number of measured pressure heads

nobsQ number of measured pipe flow rates

np number of pipes

p pressure head

P f forecast state error covariance matrix

P f
e forecast ensemble error covariance matrix

P u updated state error covariance matrix

q nodal demands vector

q̂ maximum compatible nodal demand

qr required nodal demand

Q pipe flow rates vector

Q̄ mean pipe flow rates vector

Q∗ fictitious flow rate

Qm measured pipe flow rate

Qe pipe incoming flow rate

Qu pipe outgoing flow rate

r pump characteristic parameter

R observation noise covariance matrix
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Rp pump flow rate

Re Reynolds number

s element of the sensitivity matrix

S sensitivity matrix

S̄ normalized sensitivity matrix

t assimilation time

tF last measurement collection time

u deterministic non-linear operator

v pump characteristic parameter

Vin incoming flow volume

V m
in measured incoming flow volume

Vout outgoing flow volume

V m
out measured outgoing flow volume

W model noise covariance matrix

x random vector

X system state matrix

X0 initial model state

Xf forecast state estimate

Xf∗ ES forecast state

Xf
nst normal-score forecast state estimate

Xu updated state estimate

Xu∗ ES updated model state

Xu
nst normal-score updated state estimate

zm observation vector

zmnst normal-score observation vector

Zm observation matrix

Zm∗ ES observation matrix
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α pipe resistance factor

β corrective factor due to the distributed withdrawals

Γ minimization function

γ pressure exponent

γw water density

∆t time step

λ Lagrange multiplier

ν kinematic water viscosity

σ maximum element on the row of S̄

Φ probability density function

ϕ mathematical model solution
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