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Sommario

L’imaging da tensore di diffusione (diffusion tensor imaging, DTI) è una tec-

nica di risonanza magnetica (magnetic resonance imaging, MRI) non invasiva,

che permette di ottenere informazioni riguardanti la direzionalità della struttura

microscopica del cervello. Il segnale di risonanza di diffusione, ottenuto dall’appli-

cazione di gradienti magnetici in diverse direzioni, è infatti sensibile al movimento

delle molecole di acqua all’interno di una struttura. Dal momento che il movi-

mento di diffusione dell’acqua è di natura anisotropa all’interno della materia

bianca cerebrale, una misura della sua variazione permette di stimare la direzio-

nalità delle strutture, nello specifico fibre formate da insiemi di assoni, presenti

al suo interno. Si rende possibile quindi localizzare le fibre di materia bianca

che collegano diverse zone del cervello, tramite tecniche definite di trattografia, e

derivare indici di quantificazione della diffusione, quali la sua intensità il grado di

anisotropia nei tessuti cerebrali. In caso sia presente uno stato patologico, questo

può essere evidenziato sia da una variazione dei diversi indici di diffusione, intro-

dotti al capitolo 1, che da una anomala ricostruzione dei tratti cerebrali. Scopo di

questa tesi è la valutazione di nuovi approcci per quantificare il danno ai tessuti

cerebrali in diverse patologie.

In questa tesi, ai capitoli 1 e 2 , sarà data un’introduzione alle basi della tecnica

di imaging DTI e al modello utilizzato per l’interpretazione dei dati. Inoltre,

sarà data una panoramica dello stato dell’arte relativo a tale tecnica. Il metodo
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Sommario

più utilizzato per l’analisi di immagini DTI prevede l’assunzione di un model-

lo monoesponenziale, da cui viene stimato un tensore di diffusione simmetrico

tramite il fit dei dati misurati. Successivamente, da una scomposizione di tale

tensore in autovettori e autovalori, vengono derivate quantità scalari dette indici

di diffusione. Due degli indici più utilizzati sono la fractional anisotropy (FA) e

la mean diffusivity (MD), che quantificano rispettivamente il grado di anisotro-

pia e l’intensità della diffusione all’interno di un voxel. È stato dimostrato che

tali indici sono sensibili ai cambiamenti patologici nella microstruttura dei tessuti.

Nel capitolo 3, vengono presentate le due maggiori categorie in cui possono venire

suddivisi gli algoritmi di trattografia: trattografia deterministica e probabilisti-

ca. Gli algoritmi deterministici prevedono di ricostruire la direzione di un fascio

di fibre connettendo voxel adiacenti, seguendo la direzione predominante della

diffusione all’interno dei voxel stessi. Tale direzione viene definita dall’autovet-

tore corrispondente all’autovalore maggiore, tra quelli in cui è stato scomposto

il tensore. Gli algoritmi che seguono un approccio probabilistico, invece, consi-

derano oltre ai dati misurati anche il rumore, che è caratteristica intrinseca dei

dati DTI. Questi algoritmi forniscono come output una mappa dove ad ogni voxel

corrisponde un grado di connettività del voxel stesso. Spesso tale valore rappre-

senta la probabilità di un dato voxel di essere connesso sia alla regione di interesse

(ROI) da cui il procedimento di tracking è stato fatto partire, sia alla ROI dove

il tratto termina. Nel capitolo 4 viene presentato lo stato dell’arte relativo alla

trattografia.

Nel capitolo 5 vengono riportati i risultati ottenuti dall’applicazione di un nuo-

vo algoritmo di trattografia deterministica a pazienti affetti da sclerosi multipla

(multiple sclerosis, MS), al fine di studiare quantitativamente l’effetto della pa-

tologia nei tratti di materia bianca. Un approccio innovativo per la valutazione

della connettività cerebrale viene definito nel capitolo 6, dove vi sono anche i
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risultati della sua applicazione a immagini ottenute da pazienti affetti da traumi

cerebrali (traumatic brain injuries, TBI). Tale approccio consiste nella creazione

di un template di connessioni che dal talamo raggiungono diverse aree cortica-

li, ottenendole dall’applicazione di un algoritmo di trattografia probabilistica a

dati ottenuti da volontari sani. L’utilizzo di tale template in pazienti TBI ha

permesso di valutare il danno alla materia bianca senza effettuare la stima dei

tratti nei cervelli patologici, dove può essere critica a causa del danno cerebrale

potenzialmente esteso. Inoltre, tale metodologia è completamente automatica e

poco computazionalmente pesante, e non richiede alcuna conoscenza pregressa

sul danno cerebrale subito dai pazienti.

Due metodologie per la valutazione della diffusione cerebrale di pazienti affetti da

sclerosi multipla, schizofrenia e disturbo bipolare vengono descritte nel capitolo

7. Vengono considerate sia una metodologia che considera le caratteristiche di

diffusione all’interno di determinate ROI patologiche, in rapporto a tessuto sano,

sia una metodologia che considera l’intero volume cerebrale. Per i pazienti affetti

da sclerosi multipla, è stata utilizzata una metodologia che prevede di comparare

direttamente i valori di diffusione relativi a specifiche ROI, posizionate in aree

patologiche di materia grigia, con i valori di diffusione della materia grigia sana.

Si è visto che i valori di FA sono alterati nelle ROI patologiche, e che l’alterazione

persiste nel tempo. Nei pazienti schizofrenici o affetti da disturbo bipolare è stato

usato un metodo, la tract-based spatial statistics, che permette di considerare

l’intero volume acquisito, al fine di identificare differenze nella diffusione rispetto

ad individui sani.
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Summary

Diffusion tensor imaging (DTI) is a non-invasive magnetic resonance imaging

(MRI) technique that allows one to infer information about the directionality

of brain microstructure. The DT signal, obtained from the application of mag-

netic gradients in different directions, is sensitive to the displacement of water

molecules inside a structure. Since water diffuses in an anisotropic way inside

the white matter of the brain, a measure of the water displacement gives an

estimation of the directionality of the structures, as fibers of axons, present in

said white matter. It is then possible to delineate the bundles of white matter

that connect different parts of the brain, with tractography techniques, and to

investigate the diffusion properties of brain tissues, as the grade of anisotropy or

the magnitude of the diffusion itself. Pathology is reflected both in an abnormal

fiber reconstruction and in variations in diffusion indexes, introduced in chapter

1. Aim of this work is to evaluate new approaches to quantify brain tissue dam-

age in different pathologies.

In this thesis, in chapter 1 and 2, an overview on the basis of diffusion imaging and

on the underlying model will be given, as well as a report of the state of the art

literature on the topic. In order to characterize the anisotropy of diffusivity inside

the white matter, the most widely used DTI analysis method requires to quantify

a symmetric diffusion tensor matrix by linear regression and, successively, to de-

rive, from the eigenvalues of the estimated tensor matrix, scalar quantities called
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Summary

diffusion indexes. Fractional anisotropy (FA) and mean diffusivity (MD) are two

of the main DTI indices which respectively quantify the degree of anisotropy and

the intensity of diffusion inside a voxel. These indices have been shown to be

sensitive to changes in the tissue microstructure.

In chapter 3, the two main typologies of tracking algorithms are presented. Two

main approaches are used for brain fiber tracking: deterministic and probabilistic

tractography. Deterministic tractography algorithms allow the reconstruction of

fiber bundles directions, connecting adjacent voxels following the predominant

diffusion direction, determined by the direction of the eigenvector of the tensor

with the highest eigenvalue. Probabilistic tractography approaches take into ac-

count the noise that inherently affects DTI data, and give as an output a brain

map where a value of connectivity is given for each voxel. This value often repre-

sents the probability of a given voxel to be connected to both the starting tract

region of interest (ROI), called seed, and the ROI where the tract terminates. In

chapter 4, a review of the literature regarding tractography is given.

In chapter 5, a novel deterministic tractography algorithm has been applied to

multiple sclerosis (MS) patients, to study quantitatively the affected white mat-

ter bundles. A novel approach for the evaluation of brain connectivity based on

a template of white matter fibers is described in chapter 6, and the results of its

application on traumatic brain injury (TBI) patients are reported. This approach

consists in creating a template of connections from the thalamus to the cortex,

generating it from probabilistic tractography of healthy volunteers. Then, the

template has been applied to TBI patients in order to assess the damage to the

white matter, avoiding the direct application of tracking algorithm in damaged

tissue, that can be critical. It also has the advantages to be less time-consuming

than tractography and to be completely data-driven, so no prior knowledge of

the TBI damage is required to evaluate the pathology.
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Then in chapter 7, two methods for the study of the diffusion characteristics of

the brain of multiple sclerosis, schizophrenia and bipolar disorder patients are

delineated. The evaluation of disease is done both by considering known altered

tissue regions of interest (ROIs) and utilizing completely data-driven methods.

A ROI approach is utilized for the analysis of gray matter lesions in multiple

sclerosis. It is shown that FA is altered in the presence of lesions, and that

the alterations persist also if longitudinal studies are conducted. A whole-brain

statistical method, known as tract-based spatial statistics, has been utilized to

investigate changes in white matter tracts in psychiatric patients, specifically

schizophrenia and bipolar disorder patients, in respect to healthy individuals.
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Chapter 1

Diffusion Tensor Imaging:

Theory and Applications

1.1 Introduction

The sensitivity of magnetic resonance techniques to water diffusion has been con-

sidered for the first time in 1950, with a research conducted by E. Hahn [1]. It was

found that there is an attenuation of the measured signal, related to the diffusion

of water inside the considered tissue. Later [2, 3], this propriety was exploited

creating ad-hoc sequences that allow the quantification of water diffusion. This

technique has been called diffusion tensor imaging. Given that the central ner-

vous system (CNS) is characterized by organized structures, within which water

diffuses following precise directions, diffusion tensor imaging has become a popu-

lar tool for the investigation of brain tissues characteristics. In 1990 Moseley [4]

demonstrated that water diffusion is anisotropic in white matter and Le Bihan

[5] showed that, assuming that the estimated direction of predominant diffusion

coincides with the direction of white matter fibers, the directionality of diffusion

inside the brain can be shown. After Pierpaoli and colleagues [6] evaluated quan-

titative indices that can depict the integrity of brain tissues, applications of DTI

became widespread as a method to study brain structure and modifications due
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to disease. Early applications of DTI included stroke [7], multiple sclerosis [8]

and schizophrenia [9]. In the last years DTI applications increased, and diffusion

analysis has become an important tool in research and in clinical practice, with

applications that cover several neuropathology fields of research , from healthy

brain structure, as in brain development and aging studies, to neuropsychological

diseases as dementia to genetic disorders as Huntington disease [10]. This devel-

opment has been made possible also by technical advancements, as the growth

of intensity of MRI magnetic fields (from <1T, to 1.5T, to 3T and beyond) and

the possibility of increasing the number of magnetic gradient available for DTI

experiments (from 6, to 32, to 64 and, now, to hundreds).

1.2 Diffusion in water and in tissue

Diffusion is a physical process that consists in the random motion of molecules

in a medium, driven by kinetic energy. It has been described initially according

to Fick’s first law, which states that, when there is a difference in concentration,

molecules move creating a net flux from regions with high concentration towards

regions with low concentration:

J = −D∇c, (1.1)

where J is the net flux, c is the gradient of concentration and D the diffusion

coefficient. D is dependent only on the dimension of the particle diffusing, the

microstructure characteristics and the temperature of the medium, and it is de-

scribed by the Stokes - Einstein equation:

D =
RT

NA

1

6πrη
, (1.2)

where R is the ideal gas constant, NA the Avogadro number, r the particle radius

and η and T the viscosity and the temperature of the medium measured in Kelvin
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1.2 Diffusion in water and in tissue

respectively.

When there isn’t any gradient in concentration, the net flux disappears, but

molecules continue to move, maintaining a thermodynamic equilibrium. This

phenomenon has been referred to as Brownian motion, and it’s been described in

a stochastic fashion. The movement of particles can be represented by a Gaussian

displacement distribution, dependent from D; the probability for a molecule to

have traveled a distance x in the time t is defined as:

p(x, t) =
e−x

2/4Dt

√
4πDt

. (1.3)

According to this, the mean square displacement during the time ∆t is:

< x2 >= 2D∆t (1.4)

where ∆t is the time during which the particle moves.

When there aren’t boundaries for the motion of molecules, diffusion is free and

it follows the model of random Brownian motion. In this case, the diffusion is

called isotropic. When, on the other hand, the movement of particles is hindered

by obstacles, diffusion will happen preferentially in the direction where there is

no impediment, and the diffusion will be called anisotropic.

This is particularly important when the focus is posed, as in this thesis, in the

diffusion of water within biological tissue. As a matter of fact, living tissues are

composed of organized structures that guide the movement of water, which hence

doesn’t happen freely. Often these structures are not visible with conventional

magnetic resonance techniques, because their dimensions are even magnitude of

orders smaller than the resolution of a magnetic resonance image.

This is particularly important when the interest is in brain images. In fact, brain

tissues are highly characterized by their diffusion properties, and white matter,

gray matter and cerebro-spinal fluid (CSF), that are the three components of the
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brain, can be differentiated based on the way water diffuses.

Neural tissue is formed of neurons, neural cells that have a body, from which

dendrites depart, and an axon. Dendrites are branches that extend for a limited

space from the body, along which the neural signal travels, towards said body.

The axon is an elongated structure that can reach up to 1m in length (in the

case of spinal cord neurons), with the purpose of connecting different neurons or

regions. White matter is constituted of axons organized in fibers, where they are

parallel one to another. Water diffuses more easily along the axons than perpen-

dicularly to their axes. This is because in traveling perpendicularly to the axon,

molecules encounter membranes, which are an obstacle to diffusion. Moreover,

axons are covered with myelin, which is a substance that enhances the conductiv-

ity of electricity and modules the anisotropy of diffusion inside the white matter.

Although the primary source of anisotropy of diffusion inside the brain is the high

level of organization of structures and fibers, myelin has a non-negligible effect

on water diffusion [11]. In the gray matter there are the bodies of the neurons,

along with the dendrites, and glial cells. Here water diffuses without a prefer-

ential direction, and more freely and with more intensity than in white matter.

CSF occupies, in a healthy brain, around 10% of the cerebral volume [12]. It’s

a fluid with characteristics that can be assimilated to water, hence there are no

barriers to diffusion, that happens in a isotropic fashion and with high magni-

tude, compared to the rest of the brain.

Diffusion in tissues can be analyzed in vivo thanks to diffusion tensor imaging

(DTI), whose basics will be explained in section 1.3. With this technique, it is

possible to derive measures of diffusion in the tissues, as presented in section 1.4

and 1.5, that can then be used to investigate the health of the tissues and, as is

of interest in this thesis, of the brain.
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1.3 Measuring diffusion with diffusion tensor imaging

1.3 Measuring diffusion with diffusion tensor imaging

Magnetic resonance imaging (MRI) is based on the property of nuclei to have a

spin, associated with a magnetic momentum, which causes them to align to an

external static magnetic field. When such a field is applied, protons precess with

a frequency given by the Larmor equation:

υ = γB, (1.5)

where B is the magnitude of the external field and γ is a constant, called gyro-

magnetic ratio, which is intrinsic to the specific nucleus. If a second magnetic

pulse, with the same frequency υ is applied, the magnetic momentum of protons

rotate by an angle, called flip angle, specific for a definite MR sequence. When

the magnetic pulse is turned off, protons tend to return to their equilibrium state

within a period of time that is characteristic of the specific examined tissue. In

this way, the spins induce a current in the receiver coil, which is the signal used

to generate MR images. If the applied field suffers from inhomogeneities, as it is

the case with real non-ideal MRI scanners, there are variations in the frequencies

to wich the nuclei precess, which lead, over time, to loss of signal.

To avoid this problem, the spin-echo sequence is used, where protons are exited

with a 90 degrees pulse, followed, after a time TE/2 by a 180 degrees refocusing

pulse, as first proposed by [1]. After the 180◦ pulse, the polarity of the protons is

reversed, so that after a time equal to the time past before the refocusing pulse,

the protons are in phase again, and no signal is lost due to spurious dephasing.

After the time TE an echo is detected by the receiver coils. A modification of

this sequence is the basis for diffusion tensor imaging.

This behavior of protons to acquire a phase proportional to the applied external

magnetic field can be used to detect diffusion in tissues, with DTI, that is ac-

quired with the pulse sequence presented in [3]. It consists in applying linearly
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Figure 1.1: Graphical representation of a linearly modulated magnetic gradient applied along a
direction. The shade represents the intensity of the gradient in a specific location.

modulated magnetic gradients, so that a particular location in space corresponds

to a defined value of the applied field. A graphical representation of magnetic

gradients is shown in figure 1.1

The magnetic field inside the MRI scanner is then

B = B0 +Gx(x) +Gy(y) +Gz(z). (1.6)

where the gradients are applied for the duration of the time δ < TE/2. After a

time ∆t < TE/2 , during which the refocusing 180◦ pulse has been applied, the

same gradient is turned on again. A representation of this sequence is in figure

1.2.

If spins have not moved from their initial locations, the gradients have no effect

and after the rephasing pulse the nuclei are in phase. If there is movement along

the direction of the gradient, during the two diffusion-weighting gradients the

nuclei are subject to fields of different intensities, and they will no longer be in

phase after refocusing. In this case, the phase shift of each particle is proportional

to the distance it covered. This causes an attenuation of the received signal S

in respect to the signal measured with no weighting-diffusion gradients S0, that

follows, under the assumption that diffusion can be described by a Gaussian

6



1.3 Measuring diffusion with diffusion tensor imaging

Figure 1.2: Diffusion tensor MR sequence. The two diffusion-weighting gradients have the same
magnitude and the same duration δ. In this figure, only a direction has been considered for
simplicity. Figure modified from [13].

function, the Stejskal - Tanner equation:

S = S0e
−bD, (1.7)

where D is the diffusion coefficient and b depends on the sequence settings [14].

In the case of rectangular gradients, b is

b = (γGδ)2(∆t− δ/3), (1.8)

where ∆t is the separation time between the two gradients and δ the time of

application of gradients. The value of D measured in eq. 1.7 is relative only to

the diffusion that take place along the direction of the application of the gradient.

When diffusion is isotropic, the scalar D completely describes the process, but

if the diffusion has different behavior depending on the observed direction, the

information that can be extracted from just one measure is not enough to charac-

terize the phenomenon. In tissues, because the diffusion is hindered by barriers,

the estimated coefficient D is called apparent diffusion coefficient (ADC), since it

appears to be lower than the coefficient in free water D [15]. Hence, to completely
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describe diffusion that is not isotropic, measures along more than one direction

are needed.

1.4 The diffusion tensor model

Anisotropic diffusion is modeled using the diffusion tensor. The tensor is a 3x3

matrix that takes into account the different diffusion in different directions, thus

modeling diffusion in all three dimensions. The 1.7 then becomes

S = S0e
−bgTDg (1.9)

where g is the unit vector that represents the direction along which the gradient

has been applied, and the diffusion coefficient D is replaced by the tensor D:


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz.

 (1.10)

The elements Dxx, Dyy and Dzz are the apparent diffusion coefficients along the

three axes, and the off-diagonal elements represent the correlation between these

measures. Thus, the tensor D is a symmetric covariance matrix, defined by six

independent parameters.

Equation 1.7 then becomes

ln
S

S0
= −

(
√
bx

√
by
√
bz

)
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz



√
bx√
by

√
bz,

 (1.11)

where bx, by and bz now contain information about the applied gradient direction.

For the estimation of the six independent elements of D, six acquisitions, each

along one direction, are needed, and a single acquisition with no gradient applied

S0. For example, when a gradient is applied along the direction x, the 1.11,

8
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combined with eq. 1.8 becomes

ln
S

S0
= − (γδ)2

(
Gx 0 0

)
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz




Gx

0

0

 , (1.12)

then

S = S0e
−(γGxδ)2(∆t−δ/3)Dxx . (1.13)

As can be seen, from the measurement along x it is possible to estimate the

parameter Dxx. In the same way, the other parameters of D can be inferred from

other six acquisition along independent directions.

Typically, in a DTI acquisition scheme, the number of directions along which

diffusion is measured is much higher than six, that is the minimum, to mitigate

noise effects. In this way, the system to be solved to estimate all the parameters

becomes ovedetermined, and a process of fitting is then needed. If a magnetic

gradient is applied along a generic direction, the eq. 1.11 becomes

ln
S0

S
= Dxxbx +Dyyby +Dzzbz + 2Dxy

√
bx
√
by+

+ 2Dxz

√
bx
√
bz + 2Dyz

√
by
√
bz.

(1.14)

that, if two vectors b and D are defined as follows:

b =

(
bx by bz

√
bxby

√
bxbz

√
bybz

)
D =

(
Dxx Dyy Dzz 2Dxy 2Dxz 2Dyz

)T (1.15)

reduces to

ln(
S0

S
) = bD (1.16)

This is a linear equation that can be solved, in respect to D, with a linear least

9
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square fitting process,where

D̂ = argmin
D

∥∥∥∥ln

(
S0

S

)
− bD

∥∥∥∥2

(1.17)

and

D̂ = (BTB)−1BT ln

(
S0

S

)
. (1.18)

In this case, the data are fitted to the model without considering the noise. If

it is taken into account, the data can be fitted with a weighted least squares

method, where voxels weights are inversely proportional to the level of the noise

that affects the data:

D̂W =
(
BTWB

)−1
BT ln

(
S0

S

)
, (1.19)

where W is a diagonal weighting matrix, whose values are proportional to the

estimated noise.

1.5 DTI-derived indices

Once the tensor D is completely characterized, as shown in the previous section,

it is possible to derive quantities that describe concisely the process of diffusion

for every considered voxel. The tensor D can be diagonalized into its three

eigenvectors v1, v2 and v3 and eigenvalues λ1, λ2 and λ3, where λ1 is the biggest

eigenvalue and λ3 the smallest one. D can be represented by an ellipsoid with

axes of length λ1, λ2 and λ3. It can be assimilated to a sphere, if the three

eigenvalues have the same value, or it can assume a more elongated shape, when

one of the eigenvalues is predominant. Moreover, it can assume intermediate

shapes, depending on the relationships between the eigenvalues. A graphical

example is provided in figure 1.3.
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1.5 DTI-derived indices

Figure 1.3: The diffusion ellipsoid can assume different shapes, according to the relationship
between its axes. Figure modified from [16].

One of the most widely clinically used diffusion parameters is mean diffusivity,

or average ADC. It is defined as proportional to the trace of the tensor, and can

be defined as a directionally averaged diffusivity:

MD =
tr(D)

3
=
Dxx +Dyy +Dzz

3
=
λ1 + λ2 + λ3

3
= averageADC. (1.20)

MD gives a quantification of the magnitude of diffusion. The values of the tensor

eigenvalues can be combined also to give anisotropy-related indices, like fractional

anisotropy (FA) and relative anisotropy (RA): in fact, the information of the

possible predominance of an eigenvalue - and associated eigenvector - on the

others, gives the idea of how much the diffusion is, in a particular voxel, following

a preferential direction. FA is defined [17] as the variance of the three eigenvalues,

normalized for the general amplitude of diffusivity, and is described as follows:

FA =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 − λ2
3

. (1.21)

FA describes the portion of the tensor which results from anisotropy, and gives a
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measure of the directionality of diffusion. RA, that is defined as:

RA =

√
1

2

√
(λ2

1 − λ2
2)2 + (λ2

2 − λ2
3)2 + (λ2

3 − λ2
2)2

λ1 + λ2 + λ3
(1.22)

describes the ratio between anisotropic and anisotropic portion of the diffusion

tensor. Another anisotropy index is volume ratio (VR), which is the ratio of the

volume of the diffusion ellipsoid to the volume of a sphere with a radius equal to

the mean of the eigenvalues:

VR =
λ1λ2λ3(

(λ1+λ2+λ3)
3

)3 . (1.23)

These three indices range from 0 to 1, where in the case of FA and RA o indicates

perfect isotropy and 1 perfect anisotropy (i.e. diffusion occurring along just one

direction), and in the case of VR the interpretation of the values is the opposite.

Another two used measures are radial and axial diffusivity. Axial diffusivity is

the amount of diffusion along the principal direction, λ1, and radial diffusivity

(RD) describes the amount of mean diffusion that occurs along the two minor

axes of the diffusion ellipsoid:

RD =
λ2 + λ3

2
. (1.24)

If the just introduced indices are calculated across the brain, in all voxels, maps

of the brain isotropy can be derived. White and grey matter present a higher

contrast in FA and RA images than in conventional MRI images, whereas MD

presents less variability across the whole brain parenchyma. An example of said

maps, for a subject, is shown in figure 1.4.

Maps can also be obtained of the three eigenvectors v1, v2 and v3: they will

12
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Figure 1.4: Diffusion indices maps for a subject, in the same slice: FA (a), MD (b) and AD (c).
As can be seen, FA distinguishes between white and grey matter with a high contrast, which is
lower in the MD image. Similar maps can be obtained for all other diffusion measures. Data
taken with a 3T MRI scanner.

be composed of sets of three maps, representing vi,x, vi,y and vi,z. If every di-

rection is associated to a color, these maps can be viewed as a RGB image. It

is a convention that red stands for left-right diffusion direction, green for the

superior-inferior and blue for the anterior-posterior. The map of the first eigen-

vector is related to the underlying direction of diffusion in the tissue, as can be

seen in figure 1.5.

The diffusion indices described in this section are reported concisely in table 1.1.

Index Acronym Formula Range Unit

Mean diffusivity MD λ1+λ2+λ3
3 Not defined m2

/
s

Fractional anisotropy FA
√

1
2

√
(λ1−λ2)2+(λ2−λ3)2+(λ3−λ1)2√

λ21+λ22−λ23
0÷ 1 Dimensionless

Relative anisotropy RA
√

1
2

√
(λ21−λ22)2+(λ22−λ23)2+(λ23−λ22)2

λ1+λ2+λ3
0÷ 1 Dimensionless

Volume ratio VR λ1λ2λ3(
(λ1+λ2+λ3)

3

)3 0÷ 1 Dimensionless

Axial diffusivity AD λ1 Not defined m2
/

s

Radial diffusivity RA λ2+λ3
2 Not defined m2

/
s

Table 1.1: The most used diffusion indices that can be estimated from the decomposition in
eigenvectors and eigenvalues of the tensor D.
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Figure 1.5: Color-coded map of the principal direction of diffusion. v1 map has been multiplied
by FA, so that the voxels with a high level of anisotropy appear brighter. This gives more clarity
to the color map. From the left: coronal, sagittal and horizontal view.

Clinical applications of diffusion metrics are reviewed in the next chapter.

1.6 Artifacts in DTI images

Noise is inherent to DTI data, and moreover DTI is obviously very sensitive

to motion, since water motion is in fact the quantity that it is measured and

estimated. The displacements that DTI measures are of the orders of microm-

eters: even a slight movement of the subject being scanned, also arising from

respiration, blood flow, eye motion, or cardiac pulsation, would corrupt the data

heavily [18, 19]. This is the main reason single-shot EPI sequences are used.

These kind of sequences though are susceptible of other artifacts, as eddy cur-

rents. Eddy currents are distortion of the images caused by the changing magnetic

field, that affect the different DTI volumes causing a misalignment of structures

by means of shears, stretches, and translations. To reduce their effect, paral-

lel imaging is adopted, and during postprocessing the images belonging to the

different volumes are registered to reduce misalignments, as is done in FSL soft-

ware (www.fmrib.ox.ac.uk/fsl). Another artifact that could affect DTI data

is ghosting [20], caused by nsufficient or incorrect fat-suppression, that can be

eliminated with the optimization of the acquisition scheme.

14
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1.7 Beyond the tensor model

1.7 Beyond the tensor model

The tensor model has the advantage of being simple, but has the disadvantage of

not allowing the identification of different fiber populations that can be present

together in the same voxel. To overcome this drawback, several techniques have

been proposed. One example is Diffusion Spectrum Imaging (DSI) [21]. With this

technique, data are acquired in q-space (that is the space in which MRI data are

measured, prior to being transformed into images by Fourier transform), which is

sampled intensively (in the case of [21] 515 values of q-encoding were considered)

and then the probability density function (PDF) of displacement p(r) is obtained

with the 3D Fourier transform of the signal modulus:

p (r) =

N−1∑
k=0

|S (q)|e−i2π
r
N
n. (1.25)

Then, the orientation density function (ODF), that represents the possible di-

rections of diffusion, is estimated from the spectrum described above with an

angular projection:

ODF (u) =

∫
p (ρu)ρ2dρ

where u is the 3D unit vector and ρ2dρ is the 3D volume element for which the

integral is computed. The local maxima of the ODF are then used to define the

direction of diffusion, and with a tracking algorithm fiber bundles can be recon-

structed, as can be seen in figure 1.6.

Tuch and colleagues [22] proposed a method in which the sampling is done on a

spherical shell in q-space in hundred of directions, that allows a reduction of acqui-

sition time in respect to DSI. A mixture model that represents fibers populations

is then applied to the data. This approach has been called high angular reso-

lution diffusion imaging (HARDI). Later [23] a completely model-free method,

q-ball imaging, that employs the Radon transform of the diffusion PDF, has been
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Figure 1.6: Figure from [21]. Reconstructed fiber using DSI (left) and applying DTI on the
same data (right) in the optic chiasm of monkey. As can be seen, DSI succeeds in reconstructing
crossing fibers better than DTI. A and B are magnified in C and D respectively. The small inset
figure shows the color coding that is used for the depiction of the fibers, to which the colors
corresponding to theirs endpoints have been assigned.

presented. The Radon transform of the PDF provides a good approximation of

the ODF.

Other models for the estimation of diffusion data obtained from intensely sampled

q-space employ multi-fiber models, in which the measured intensities are fitted to

models that are the combination of different fibers populations, as in [24, 25], or

the combination of different fibers populations and a compartment that accounts

for extra-axonal diffusion [26].

These techniques are though not used in the clinical practice, because of the large

amount of time that the acquisition takes and because their application are still

mostly restricted to research. In clinical settings, the amount of available time is

limited, and this is also the reason why the conventional tensor model is used in

this thesis, since the focus is posed on the development of techniques that can be

useful from a clinical point of view.
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Chapter 2

Diffusion indices in healthy

and pathological brain tissue

2.1 Evaluation of diffusion indices in healthy

As introduced in section 1.5, DTI-derived indices can be used to investigate the

structure of the cerebral tissues. The most widely used diffusion indices are FA

and MD, because they have been found to relate well with tissue diffusion changes

and give a concise representation of diffusion characteristics. The values of FA

and MD of a voxel or a region of interest (ROI), in fact, relate strictly to the

functionality and the microstructure of the underlying brain tissues. An increase

in water diffusion in white matter could reveal a deterioration of the axons, as

well as changes in the fractional anisotropy. In example, a change in FA due to

an increase of radial diffusivity could be a sign of degeneration of white matter

fibers, when the diffusion occurs not only along the fibers but also perpendicu-

larly to them. In gray matter, areas of increased FA or MD could also highlight

structural damage. The detection of such changes can be of great importance in

the evaluation of the brain health.

Before evaluating the alteration of diffusion indices in pathologic brains, it is es-
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sential to understand what is their behaviour in healthy tissues, and which are

the critical factors that need a careful evaluation.

In [17] it is found that, in healthy, diffusion parameters, especially MD, have a

low variability across subjects. Therefore, a change in their values in patients, in

respect to healthy volunteers, could be crucial in the evaluation of brain damage.

Moreover, it the same work of Pierpaoli et al., it is shown that anisotropy indices

vary inside the white matter, revealing that DTI measures reflect differences in

the local architecture and microstructure. In particular, anisotropy measures are

lower in the white matter of subcortical regions, and higher in the white matter of

corpus callosum or in the pyramidal tract, that are directionally organized struc-

tures. Also in [27] it is demonstrated that different anisotropy values in white

matter correspond to areas with different axonal organization. They showed

that DTI anisotropy images allow the detection of highly myelinated structures,

as the internal capsula or the optic radiation, not visible in conventional T1 or

T2-weighted MRI images. Using anisotropy measures, also substructures of the

thalamus and of the occipital white matter, which appear homogeneous with

conventional imaging techniques, are clearly visible. It is also demonstrated that

anisotropy values are consistent across different subjects, providing a basis for

their use in the evaluation of diseased brains.

Inter-subject similarity of FA and MD values have also been demonstrated by

Pfefferbaum et al. [28] to be high. In their work, FA and MD measurement

with the same scanner, in different times, showed a mean percentage variability

of respectively 1.9% and 2.6% between the different measures, across 10 healthy

subjects. Although they found a bias when they compared diffusion indices ob-

tained with different scanners, they demonstrated that FA and MD can be com-

pared longitudinally and across subjects, using the same scanner, in a reliable

fashion. They also provided typical diffusion values for healthy. Mean FA and
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MD in the supratentorial brain (white matter, gray matter and CSF) was, in

this study, respectively, around 0.2 (dimensionless) and 4.3× 10−4mm2/s. When

supratentorial white matter only was considered, the reported values were around

0.4 (dimensionless) and 4.3 × 10−4mm2/s for FA and MD, whereas when they

restricted the study to only a region of corpus callosum, characterized from a

highly directional structure, the values they found were around 0.6 (dimension-

less) and 4× 10−4mm2/s.

Although it is certain that there is a variability across scanners, these values

can be considered representative for healthy brains. When DTI data are used

for tractography, a FA value that is generally accepted to indicate the transition

from white to gray matter is 0.2 [29].

In [30], the effect of the field intensity (1.5 T and 3T) on the evaluation of diffusion

parameters is evaluated. It is found that it affects the computation, confirming

the previous finding that diffusion measurement taken with very different scanners

are not comparable. In [31] it’s shown that also the b-value can be an important

factor that adds a bias in the computation of FA. These findings suggest that, in

addition to external factors such as motion, noise and image registration, there

are internal factors, i.e. field strength and b-values, that are to be kept in con-

sideration when the reliability of a study is being evaluated. Nevertheless, in [32]

typical FA and ADC values are reported for a healthy population, both at 1.5T

and 3T. Those values are here reported in table 2.1.

As can be seen, in accordance with the initial findings of [17] and [27], FA val-

ues show a regional variability, with the highest values in the corpus callosum,

whereas ADC shows less regional variations. The low inter-subject variability in

diffusion indices found in all studies confirms that the values found in healthy

can be used as a term of comparison when investigating the structure of damaged

brain.

Typical applications of DTI in disease are, among others, in cerebral ischemia,
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1.5T (n=10) 3T (n=10)

Region FA or ADC Mean SD Mean SD P value*

Basal pons FA right 0.637 0.081 0.670 0.081
FA left 0.663 0.076 0.667 0.042

ADC right 0.746 0.039 0.730 0.065
ADC left 0.747 0.033 0.726 0.054

Mesencephalon FA right 0.791 0.041 0.825 0.038 0.019
FA left 0.805 0.027 0.828 0.036

ADC right 0.760 0.054 0.737 0.061
ADC left 0.742 0.036 0.721 0.041

Capsula interna FA right 0.778 0.037 0.747 0.046
FA left 0.746 0.042 0.748 0.040

ADC right 0.681 0.017 0.699 0.026 0.044
ADC left 0.672 0.020 0.682 0.034

Corona radiata FA right 0.520 0.040 0.483 0.043 0.02
FA left 0.550 0.041 0.521 0.051

ADC right 0.643 0.028 0.659 0.028
ADC left 0.671 0.017 0.647 0.043 0.015

Centrum semiovale FA right 0.539 0.062 0.502 0.064
FA left 0.567 0.067 0.493 0.065 0.004

ADC right 0.668 0.035 0.703 0.036 0.01
ADC left 0.676 0.028 0.709 0.040 0.022

CC genu FA 0.853 0.040 0.838 0.030
ADC 0.756 0.070 0.758 0.044

CC corpus FA 0.665 0.080 0.669 0.057
ADC 0.858 0.079 0.850 0.116

CC splenium FA 0.868 0.050 0.862 0.050
ADC 0.684 0.054 0.711 0.033

Table 2.1: Healthy regional mean FA and ADC values, measured at 1.5 and 3T. CC = corpus
callosum. *Statistical difference between mean values for 1.5 T vs 3 T; values reported when
p<0.05. Table from [32].

brain maturation, traumatic brain injury, multiple sclerosis, Alzheimer’s disease

and tumors [33]. DTI allows the assessment of the acute stage of ischemia even

when conventional MRI doesn’t show any changes [34]: in ischemic areas, ADC

and FA show relevant changes in time in respect to healthy tissue, and also allow

differentiating acute and chronic ischemic regions. Brain maturation can also

be followed with DTI, because FA and ADC vary with age [35, 36]. ADC and

FA, that at birth are respectively higher and lower than in adult brains, undergo

substantial changes in the first 6 months after birth, related to decline in water

content and progressive myelination, to reach adult values in a non-linear fashion.

Aging has also been investigated with DTI, and it is been found i.e. in [37] that
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ADC increases and FA decreases with age, especially in subjects older than 40

years and in densely packed areas as the corpus callosum. Decrease in FA have

been found in Alzheimer’s disease [38], related to progression of disease, and in

[39] axonal degeneration in cognitive tracts has been documented. ADC maps

can help in the differentiation of tumoral tissue in respect to healthy brain matter

[40, 41], and changes in MD and FA have been demonstrated in the tissue around

the tumors, especially gliomas.

Applications of DTI in multiple sclerosis, traumatic brain injuries, schizophrenia

and bipolar disorder will be briefly covered in the next sections and more diffusely

in the next chapters, as they are the pathologies that have been considered of

interest in this thesis.

2.2 Evaluation of diffusion indices in pathological brains

2.2.1 Diffusion indices evaluation in multiple sclerosis

Multiple sclerosis (MS) is a chronic demyelinating disease that manifests itself

with the presence of demyelinated plaques, or lesions, in the central nervous

system (CNS). An example of how these lesions are visualized on MRI images is

presented in figure 2.1. It is a major cause of disability in young individuals, and

it presents in different phenotypes:

- relapsing-remitting multiple sclerosis (RRMS), which is characterized by

episodes (relapses) when new symptoms appear, followed by periods of re-

mission, that can be complete;

- secondary-progressive multiple sclerosis (SPMS), where the disease pro-

gresses steadily, with or without relapses, often occurring after RRMS;

- primary progressive multiple sclerosis (PPMS), defined by a progressive

worsening of the disease, without relapses or remissions;
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Figure 2.1: Figure from [42]: White matter MS lesions in a patient, identified on a coupled T1-
FLAIR-DTI image acquired at 3T. Lesions are visible as hyperintense spots and well identifiable.

- progressive relapsing multiple sclerosis (PRMS), where a steady progression

of the disease is coupled with superimposed relapses, without complete

remissions;

Lesions are characterized by a phase during which they are active and inflamma-

tory processes occur, followed by a chronic phase, in which they become formed

by scar tissue (sclerosis). Symptoms vary greatly, from mild numbness to paral-

ysis. Gravity of disease is graded according to the expanded disability status

scale (EDSS) [43], that quantifies the disability using 10 different classes. The

progression of the disease and the specific symptoms are unpredictable, but can

be managed through medication. Causes of MS are, to date, unknown, even if the

major theories comprehend autoimmune, environmental, infectious and genetic

etiology.

DTI is a well-established method for the evaluation of multiple sclerosis brain

matter. MS studies have been focused mostly on the differentiation of white

matter MS lesions from healthy tissue and on the characterization of the diffu-

sion properties of white matter of patients in respect to healthy. In example,

in [44] it is shown that diffusivity is increased in multiple sclerosis white matter

lesions, thus demonstrating a microstructural damage in the integrity of the tis-
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sue. Also fractional anisotropy is abnormal in demyelinating lesions, and some

damage is detectable also in normal-appearing white matter (NAWM), as shown

e.g. in [45, 46, 47, 48, 49]. In particular, FA is lower in lesions than in NAWM,

and lower here than in white matter of healthy individuals. For MD, the opposite

is true: it is higher in plaques than in NAWM, and higher in NAWM than in

healthy white matter. FA and MD allow also the differentiation between types of

lesion, since their values are more far from healthy mean values when the white

matter considered regions are more disrupted. Recently, the same findings for

lesions and NAWM have been confirmed using 3T DTI-MRI [42] and also in pe-

diatric patients [50, 51]. Even if DTI in MS lesions allows the determination of

architectural damage in MS white matter, it does not differentiate if the damage

is permanent, i.e. due to axonal loss, or transient, i.e. due to edema or demyelina-

tion followed by remyelination [52]. DTI indices can though determine if lesions

are active or inactive, and differentiate between different types of lesions, based

on the extent of deterioration of white matter. Also whole-brain analysis has

been used to investigate white matter differences between patients and healthy

individuals, and for example in [53, 54, 55], widespread damage has been found

in terms of altered diffusion indices.

Also gray matter has been investigated using DTI, although less extensively.

Some studies, e.g. [56, 57, 58] found an increased MD in normal appearing gray

matter (NAGM) of patients when compared to healthy controls, and that there

is some differentiation using diffusion indices on the basis of the MS phenotype.

DTI has also been shown to be sensitive to variations over short periods of time

[59, 60] in NAGM. In [61] a change in cortical gray matter of patients has been

detected, in term of higher MD and reduced FA, in specific areas, that sug-

gest that microstructural destruction due to inflammation and demyelination is

present also in gray matter. Gray matter lesions are less investigated with DTI,

but for example in [62] FA is found to be increased, probably due to microglial

activation. The work of this thesis regarding MS brain diffusivity focuses on gray
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matter lesions, and is described in chapter 7

Even if there is some modest correlation between DTI measures values and clinical

findings, the interpretation of this kind of results is not straightforward, especially

when dealing with MS-related disability or with the possibility of a prediction of

the progression of the disease.

2.2.2 Diffusion indices evaluation in traumatic brain injury

Traumatic brain injury (TBI) is the commonest cause of death and disability in

the under 40s [63]. It can be defined as damage to the brain provoked by a sud-

den trauma, as a collision with an object or a penetration of a sharp object into

the brain tissues. It mostly occurs in traffic-related accidents, falls and assaults.

Injuries are classified on the basis of their severity [64] into three categories: pos-

sible, mild and severe TBI. This system of classification integrates the duration of

loss of consciousness, length of post-traumatic amnesia, lowest recorded Glasgow

Coma Scale in the first 24 hours, and initial neuroimaging results.

TBI has a strong impact on patients and society, as patients who survive are often

left with long-lasting disability, often the result of cognitive and neuropsychiatric

problems [65], which include memory, language, social and sensory difficulties.

Head injury can result in diffuse traumatic axonal injury (DAI) (often called also

traumatic axonal injury (TAI), which is scattered damage to the axons in the

brain tissue [66] and usually associated to TBI shearing injuries, induced by ac-

celeration or deceleration [67]. These forces provoke the tissue to slide and the

axons to stretch, that causes the axons cytoskeleton to break and subsequential

possible neuron death. Detection of this type of damage is difficult and can only

be diagnosed definitively postmortem, but DTI shows promising results in the

evaluation of the microscopic integrity of the TAI-affected white matter. TAI is

found to be a key pathological factor in the development of TBI-related problems

[68, 69, 70, 71, 72].
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DTI has been demonstrated to be useful for the characterization of TBI-related

brain deterioration: in example, in [73] two patients with severe head injury,

and no abnormalities on conventional MRI, were studied. Altered MD and, to

a lesser extent, FA were found in both cases in specific regions, probably due to

TAI and axonal loss or fiber disorganization. A reduction in FA and a reduction

in the intensity of the dominant eigenvector of the tensor was found in several

ROIs in [74], where 5 patients were investigated shortly after the injury. Also

in this case, no damage was visible in tomography images, nor in conventional

MR images. The same result has been confirmed in e.g. [69] for 46 mild TBI

patients. In all studies, altered ROIs were found especially in the corpus callosum

and in the internal capsula. At group level, Nakayama et al. [75, 76] found that

taking into account the whole white matter and doing a voxel-based analysis,

i.e. a statistic comparison for every voxel considered, it is possible to detect FA

reduction and a MD growth in areas of the corpus callosum, internal capsula and

some subcortical areas, confirming the previous ROI-based results. An example

from [76] is reported in figure 2.2.

In [77] mean FA of the whole white matter is found to correlate with TBI severity,

and recently in [78] FA values in the corpus callosum and in frontal white matter

have been related with cognitive measures.

2.2.3 Diffusion indices evaluation in schizophrenia and bipolar

disorder

Bipolar disorder and schizophrenia are two major psychiatric diseases. Bipolar

disorder manifests itself with violent shifts in mood, i.e. episodes of mania (char-

acterized by extreme euphoria and hyperactivity, often with delusional symp-

toms) and of depression, with variable duration. Between episodes, patients can

experience periods without any symptoms. Schizophrenia symptoms include hal-

lucinations, delusions, movement disorders and cognitive abnormalities, especially
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Figure 2.2: Image from [76]. Reduced FA is found in mild TBI patients in multiple white matter
clusters bilaterally.

involving executive function and working memory. Both diseases are debilitat-

ing for the affected individuals, and have a certain degree of overlap in symptoms.

In the last years, DTI has been used in bipolar disorder, revealing white mat-

ter abnormalities especially in prefrontal, parietal, temporal and occipital lobes,

internal capsule, uncinate fasciculus, superior longitudinal fasciculus and corpus

callosum [79]. With a ROI-based study, in [80] reduced FA was found in the

proximity of corpus callosum, and the same result was confirmed by Wang et al

[81], both with a ROI-based analysis and with a voxel-based approach, as can

be seen in figure 2.3. In [82] reduced FA and high MD were found in temporal

and occipital white matter areas, using a voxel-based approach. Abnormalities

in FA were found also widespread across white matter tracts i.e. in [83], that

have been confirmed when considering tracts belonging to the emotional network

[84]. In some cases, elevated FA was found in particular white matter areas, as a

part of corpus callosum or left uncinate fasciculus or optic radiation [85, 86]. All
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2.2 Evaluation of diffusion indices in pathological brains

(a) Cluster of voxels with reduced FA found in corpus callosum with a voxel-
based analysis.

(b) FA values histograms of three ROIs placed in the corpus callo-
sum: anterior, middle and posterior corpus callosum. In all three
ROIs, patients show reduced FA, which is statistically relevant for
anterior and middle corpus callosum

Figure 2.3: Figures modified from [81]: reduced FA is found in corpus callosum for bipolar
disorder patients both using a voxel-based approach (a) and a ROI-based approach (b).

these findings point towards microstructural changes that redefine directionality

of fiber, either reducing diagonal fibers and increasing FA [86] or disrupting white

matter structure, in the case of reduced FA.

In the case of schizophrenia, DTI studies focus on finding differences in the brain

connections in respect to healthy, in particular in cortico-cortical connectivity

[87]. Studies have been conducted both using ROI approaches and considering

the whole brain using voxel-based analysis. With the first approach, difference be-

tween patients and healthy were found, particularly regarding reduced anisotropy

and higher diffusivity in the corpus callosum e.g. in [88]. Reduced anisotropy
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Diffusion indices in healthy and pathological brain tissue

Figure 2.4: Figure from [94]. Using a voxel-based method, reduced FA was found for patients
suffering from schizophrenia in corpus callosum, and in the temporal white matter.

was also found in the cingulate fasciculus (a white matter bundle connecting the

cingulate gyrus to the middle temporal cortex), that could be related to lack

of executive function ([89, 90]). A decrease in FA is also found in the middle

pedunculus (that connect the pons, a structure belonging to the brain stem, to

the cerebellum) in e.g. [91] and in internal capsula [92]. Differences in FA were

found both in anterior and posterior white matter regions [93]. Conducting a

whole-brain analysis, a disruption in white matter integrity was found for pa-

tients suffering from schizophrenia. In example in [94], reduced FA was found in

small clusters in corpus callosum and in the left temporal lobe white matter, as

reported in figure 2.4, and in right anterior cingulum in [95].
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Chapter 3

Diffusion Tensor Tractography:

Structural Connectivity

3.1 Structural connectivity measured with DTI

Different areas of the brain are connected by neural axons that bundle together

in fibers, also called tracts. These bundles also carry the information, in form of

electric impulses, and are surrounded by myelin, that acts as insulator. The vast

majority of white matter fibers connect areas that are near, thus are particularly

short [96]. Long fibers can connect the two hemispheres of the brain, passing

through the corpus callosum, that is a thick bundles of nerve fibers, and con-

necting symmetric areas of the brain. DTI tractography is the first non-invasive

method to detect white matter tracts in vivo, whereas before the advent of this

technology only invasive studies using tracers (in animals) or post-mortem dis-

section studies were possible.

Methods to investigate structural connectivity can be divided into two main tech-

niques: deterministic tractography, that will be presented in section 3.2, and

probabilistic tractography, that will be discussed in section 3.3.

29



Diffusion Tensor Tractography: Structural Connectivity

3.2 Deterministic Tractography

Deterministic tractography algorithms have the aim of forming lines (called stream-

lines) that follow the path of a specific white matter tract from a starting brain

area to other areas connected by neural fibers. The underlying principle is the

strong assumption that the principal direction of the estimated diffusion tensor

coincides with the direction of the underlying fiber. One of the first approaches

has been described by Mori et al [29]: this method, called fiber-assignment by

continuous tracking (FACT), gives as an output a three-dimensional trajectory

that follows white matter tracts. The trajectory starts in the middle of a seed

voxel, follows the principal direction of that voxel and, at the boundary with an

adjacent one, it changes direction to the principal eigenvector of the diffusion ten-

sor estimated for the new voxel. The tensor is computed for every voxel and there

considered constant. The tracking is then done in a continuous two-dimensional

space: this allows the voxels to be intersected at any given point in the bound-

ary. This avoid gross deviations from the fiber’s real trajectory, as happens if

tracking space is considered discrete (i.e. if the tract trajectory comprehends a

whole voxel). This concept is illustrated graphically in figure 3.1. The termina-

tion of the tract is done when the change in direction exceeds a threshold, which

is evaluated by the following coefficient:

R =
s∑
i=0

s∑
j=0

∣∣v1i · v1j

∣∣
s(s− 1)

, (3.1)

where v1i represents the principal eigenvector of the diffusion tensor D at the i-th

voxel, and s the number of nearby data point considered. Being this coefficient

the sum of the inner products of the considered vectors, if these are aligned, R

has high values. If the diffusion direction becomes unsure, the directions of the

principal eigenvectors are different for adjacent voxels, and the value of R drops.

In [29] fiber reconstruction is stopped when R < 0.8.
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3.2 Deterministic Tractography

Figure 3.1: Figure from [29]. a) schematic representation of the structure underlying a voxel,
where water diffuses in an anisotropic fashion; b) diffusion tensor reconstructed from the diffusion
in a); c) tracking of the white matter fiber represented in a) using the principal eigenvector
estimated in b) considering a discrete 2D space; d) tractography of the same fiber using a
continuous 2D space. It can be seen how the trajectory deviates from the true trajectory
when a discrete field is considered, and how this is minimized when using a continuous vector
field.The true fiber trajectory is depicted with the bolded line, and the reconstructed trajectory
is formed by the shaded voxels. The depiction is here simplified to a 2D tract reconstruction, for
simplicity. It can be seen how the trajectory deviates from the true trajectory when a discrete
field is considered, and how this is minimized when using a continuous tracking space.

The fiber trajectory can be described as a 3D curve, its evolution can be described

by the Frenet equation [97]:

dr(s)

ds
= t(s), (3.2)

where r is said 3D trajectory, s is the arc length and t(s) is the tangent vector

to r(s) at the point s. As stated earlier, the assumption that is made is that

the principal fiber of the estimated tensor D is parallel to the white matter

tract direction. An important difference with the approach earlier described and

presented in [29] is that D is now calculated at every considered point, in a

continuous field. Thus, the eigenvector and eigenvalues are not just calculated

for every voxel, but the tensor field is interpolated and they are calculated at
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every needed point. This considered, the eq. 3.2 becomes

dr(s)

ds
= t(s) = v1(r(s)), (3.3)

where v1(r(s)) is the principal eigenvector calculated in the position r(s). A

graphical interpretation of this concept is given in figure 3.2. The differential

equation system in eq. 3.3 can then be solved using the initial condition r0:

r(0) = r0. (3.4)

Eq. 3.3 can be solved numerically using 3.4, using Euler or Runge-Kutta methods,

described in the next sections. A tract is terminated if:

1. it reaches the end of the brain

2. it crosses a region with low anisotropy, so that the diffusion direction is too

undetermined

3. the angle of the fiber trajectory exceeds a given threshold.

The angle between two tracking steps i and i+ 1 is computed as

θ = arccos
(
v1i · v1(i+1)

)
(3.5)

and the tract is terminated based on its value on the assumption that white

matter bundles follow smooth trajectories [98].

Lazar et al in [99] proposed an alternative approach, called tensor deflection

(TD), for tracking white matter fibers using DTI data. With this technique, the

whole information contained in the tensor D is used instead of just considering

the first eigenvector. At the i-th step, the new direction of the trajectory, viout,

is obtained by multiplying the direction v
(i−1)
in of the tract at the previous step

by the tensor D at the current point:
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3.2 Deterministic Tractography

Figure 3.2: Figure modified from [97]. r(s) is the 3D curve representing a white matter fibre
trajectory. The tangent t(s1) to r(s) at s1 equals the vector v1(r(s)), which is the principal
eigenvector of the tensor D calculated at r(s1).

viout = D · v(i−1)
in , (3.6)

The vector v
(i−1)
in can be described as a linear combination of the three eigenvalues

of D, as v
(i−1)
in = α1v

i
1 + α2v

i
2 + α3v

i
3, thus the eq. 3.6 becomes

viout = λ1α1v
i
1 + λ2α2v

i
2 + λ3α3v

i
3 = λ1

(
α1v

i
1 +

λ2

λ1
α2v

i
2 +

λ3

λ1
α3v

i
3

)
. (3.7)

If v
(i−1)
in has the same direction as the first eigenvector vi1, the outgoing direction

will coincide with the incoming direction. If v
(i−1)
in 6= vi1 the tract trajectory

deviates, and the amount of deviation is weighted according to the predominance

of the first eigenvalues on the others, i.e. by the anisotropy of the tensor, as

illustrated in figure 3.3.

In fact, if λ1 >> λ2 and λ3, viout will be deviated towards vi1, of an amount that

depends on the weights α1, α2 and α3 of v
(i−1)
in . If α1 is very small compared

to α2 and α3, the amount of deviation from v
(i−1)
in will be negligible even if the
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Diffusion Tensor Tractography: Structural Connectivity

Figure 3.3: Figure from [99]. In the tensor deflection approach, the direction of a reconstructed
fiber will be deviated from the incoming direction vin of an amount that depends not only on
the intensity of the principal eigenvector v1 but also on the shape of the tensor D.

tensor has a very elongated shape. In the extreme case, i.e. v
(i−1)
in perpendicular

to vi1, the trajectory of the reconstructed tract won’t be deviated. If the tensor

is completely isotropic, the direction won’t be deviated as well.

This behavior makes the method less sensitive to noise in respect to the FACT

algorithm. Noise inherently affects DTI data and results in higher uncertainty in

the process of fitting the tensor to the data. Since in this approach the deviation

of the tract is weighted by the shape of the tensor, thus by the certainty of the

predominance of one direction, the effect of the noise is mitigated, with the result

of producing better results in areas of low anisotropy, in respect to the FACT

algorithm [99]. This characteristic of the tensor deflection method can also bring

to underestimation of the real curvature of the tract, in curved pathways.

3.2.1 Trajectory estimation with Euler’s method

Euler’s method allows the numerical solution of differential equations. In this

case, the equation to be solved is eq. 3.3, coupled with the initial condition 3.4.

Although the tensor field is considered continuous, the numerical solving needs a

discretization of the domain of the function, so that the space of possible values

of the independent variable becomes S =

{
s0, s1, s2, ... sn

}
. The numerical

solution to the 3.3 then is found using a first order Taylor series expansion,

considering two near points s0 and s1, where

r(s1) = r(s0) + r
′
(s0)(s1 − s0). (3.8)
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3.2 Deterministic Tractography

Since the tangent to r(s) at s0 is assumed to be parallel to v1(r(s)), the 3.8

becomes

r(s1) = r(s0) + hv1(r(s0)), (3.9)

once the integration step h has been chosen, usually smaller than a half voxel, so

that r
′
(s0)(s1 − s0) ≈ hv1(r(s0)).

The trajectory of the tract is then given by the solution to the equations

r(s1) = r(s0) + hv1 · (r(s0))

r(s2) = r(s1) + hv1 · (r(s1))

...

r(sn+1) = r(sn) + hv1 · (r(sn))

(3.10)

that will give an approximate solution to the differential equation 3.3.

3.2.2 Trajectory estimation with Runge-Kutta method

Euler’s method is easy to implement but since it takes into account only the first

order, it could cause accumulation of errors along the tract propagation [97], of the

order of O(h2) . Moreover, it is sensitive to noise, that could cause propagation

of errors and, in the considered case of tractography, erroneous estimation of the

tracts trajectories. A more reliable solution is to adopt the fourth-order Runge-

Kutta method, after the same steps of discretization and choice of h adopted in

Euler’s method:

r(sn+1) = r(sn) +
h

6
(k1 + 2k2 + 2k3 + k4), (3.11)

where
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k1 = v1(r(sn))

k2 = v1

(
r
(
sn + h

2k1

))
k3 = v1

(
r
(
sn + h

2k2

))
k4 = v1 (r (sn + hk3))

. (3.12)

This method is however much more demanding computationally. It can be noted

that the first step, that involves the computation of k1, is in fact equivalent to

the first-order approximation computed with Euler’s method.

3.3 Probabilistic Tractography

As anticipated in section 3.1, tractography methods can be divided into two

categories, deterministic and probabilistic algorithms. While the deterministic

approaches described in the previous section only take into account the mea-

sured data, probabilistic algorithms also give a representation of the noise that

corrupts DTI data, thus of the uncertainty that inherently affect the fiber direc-

tion estimation.

Jones and colleagues in [100] visualized this uncertainty as cones, estimated using

the bootstrap technique. For every voxel, 1000 estimates of the first eigenvector

v1 are estimated. This is obtained by linear fitting of the data to the tensor

as shown in chapter 1, where the data are obtained drawing a sample, with

replacement, from the acquired data. The angle between the i-th estimate of v1,

v1
i, and the average principal eigenvector v̄1 is computed as

θi = arccos(vi1 · v̄1). (3.13)

where v̄1 is the mean principal eigenvector of all the bootstrap estimates.

To visualize the uncertainty estimated using this technique, for each voxel a cone

is constructed, with an angle corresponding to the 95th percentile, computed
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3.3 Probabilistic Tractography

Figure 3.4: Figure from [100]. a) FA map for the considered healthy subject; b) cones on
uncertainty of the direction of the diffusion for the region highlighted in a); c) the same region
with further enlargement. As can be noted, the shape of the cones is more spread when the FA
is lower, while it is narrower where the uncertainty in the fiber direction is negligible, as in the
corpus callosum.

using all the bootstrap estimations. The major axis of the cone corresponds

to v̄1, and the cone is then oriented in both the possible directions, since the

vectors estimated from DTI data are not oriented. As can be seen in figure

3.4, the precision of the estimates is higher in areas with high anisotropy, as the

corpus callosum, and drops in area with low anisotropy, as gray matter, regions

of crossing fibers and CSF. It is to be noted that aim of this method is not to

follow fiber trajectories, but to estimate the uncertainty related to the estimation

of said trajectories.

Also in [101] the uncertainty in the diffusion direction is depicted as directional

uncertainty. Here, it is estimated using a Monte-Carlo approach, where a modified

principal eigenvector, v1,mod is estimated, at the location x, as v1, mod (x, n) =

v1(x) + δv1(x, n), where n refers to the n-th iteration of the Monte-Carlo pro-

cess. δv1 is estimated from the PDF of possible fiber orientations: the spread of

the distribution from which the principal vector direction is drawn is related to

the fractional anisotropy of the tensor or to the relative weight of the two minor

eigenvalues, in both cases weighted by a sigmoidal function, depicted for FA in

figure 3.5. In this way, for example, voxel with low FA are characterized by high
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Figure 3.5: Figure from [101]. Sigmodal function for the estimation of δv1

Figure 3.6: Figure modified from [101]. Three examples of PDF profiles estimated using FA for
the characterization of uncertainty: a) FA = 0; b) FA = 0.4; c) FA = 0.7.

uncertainty, and vice versa. The so obtained directions of the principal eigenvec-

tor define a probability density function (PDF) of possible orientations at each

point. An example of these PDF for different values of FA is given in figure 3.6.

After the estimation of the PDF, a streamline algorithm is then run from every

chosen starting point multiple times following a Monte-Carlo approach again.

The number of times a streamline crosses a voxel defines the degree of connection

that voxel has with the starting points, and defines a quantity called connectiv-

ity. In their approach, Parker and colleagues terminate the tracking when the

transition between two points exceeds a threshold angle, fixed at π/2. When this

approach is used, it gives maps of connectivity that are more spread than the

streamlines obtained with deterministic tractography. It is not an easy task to

identify if this is due to real connections that are not followed with deterministic

methods, or to the lack of information in those areas, that results in low and
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3.3 Probabilistic Tractography

widespread connectivity.

Similar considerations about the spread of the connectivity maps can be made

for the approach presented in [102] and subsequently extended in [25]. In their

work, Behrens and colleagues give a complete probabilistic characterization of

the connections in white matter. The uncertainty in the estimation of diffusion

directions is not derived by the tensor model, but it is obtained in a completely

stochastic framework. The probability density functions of the diffusion directions

are obtained a posteriori, using bayesian estimation. The Bayes theorem states

that, given a model M , a set of measured data Y and a set of parameters ω, the

a posteriori probability density function that represents the probability, given

the data and the model, of observing the particular set of parameters ω, can be

calculated as

P (ω |Y,M ) =
P (Y |ω, M)P (ω |M )

P (Y |M )
(3.14)

where P (Y |M ) is the probability of observing the data given the model and the

parameters, and P (ω |M ) is the a-priori (i.e. having no information about Y )

probability of observing the particular set of parameters given the model. The

denominator describes the probability of observing the measured data given a

model M , and is calculated as follows:

P (Y |M ) =

∫
Ω

P (Y |ω,M )P (ω |M )dω, (3.15)

where Ω is the space of parameters. This integral is not solvable analytically.

A Markov Chain Monte-Carlo (MCMC) approach has been chosen by Behrens

and colleagues, where samples are drawn from regions of the space with high

probability, providing a pdf in relatively short times.
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In their work, that has been implemented in FSL software (http://www.fmrib.

ox.ac.uk/fsl/ [103, 104]), two models have been used: the tensor model (ex-

plained in section 1.4)and a partial volume model, where the signal is modeled

using two compartments: an isotropic one, that describes the diffusion occurring

in free water inside a considered voxel, and an anisotropic one, that describes

directionally organized diffusion in the fiber direction. This model is described

as:

yi = S0

(
(1− f) e−bid

)
+ fe−bidr

T
i RARTri , (3.16)

where yi is the data measured in the voxel, S0 the signal without diffusion-

weighting, d is the diffusivity, f the fraction of volume with anisotropic diffusion

inside the voxel, bi and ri are the b-value and the gradient relative to the i −

th direction of acquisition. The value RART represents the tensor along the

direction of the fibers. In fact, R rotates the A, fixed at

A =


1 0 0

0 0 0

0 0 0

 (3.17)

to the predominant direction of diffusion, defined by the three angles (θ,φ,ψ).

The matrix A is composed of null elements, except for the first, because in the

anisotropic compartment only completely anisotropic diffusion along the esti-

mated direction is allowed, while diffusion is null in the other directions.

In both models used, the noise is modeled as independent and identically dis-

tributed (iid) and gaussian, with zero mean and standard deviation σ. The

priors used for the set of parameters ω (comprising the angles θ,φ and ψ that

define the diffusion direction, the value of S0, the SD of the noise and, in the

case of the partial volume model, the fraction f) are chosen as completely non-

informative, apart from positivity constraints. In particular, the priors for the
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3.3 Probabilistic Tractography

angles θ, φ and ψ are proportional to the sine of θ. The other priors are defined

as follows:

P (S0)∼ U (0,∞)

P (λ1, λ2, λ3)∼Γ (aλ, bλ)

P
(

1
σ2

)
∼Γ (aσ, bσ)

where aλ, bλ and aσ, bσ are chosen to give to the Gamma distribution high vari-

ances, so that they are kept non-informative and have a small effect on the pos-

terior distributions.

This model has been later extended in [25], where the diffusivity has not been

constrained to happen in a single direction for every voxel. In this case, the case

of crossing fibers inside a voxel has been taken into consideration. In this case,

the model becomes

yi = S0

1−
N∑
j=1

fj

 e−bid +
N∑
j=1

fje
−bidrTi RjARTj ri

 , (3.18)

which is analogous to the 3.16, but now a compartment is assigned to each diffu-

sion direction estimated to be present in a voxel. In the equation 3.18, N is the

number of direction of diffusion that fit the measured data yi. The signal yi is the

sum of all the signals given by the different directions populations. The number

of populations of fibers inside a voxel is estimated with a bayesian method. In

particular, automatic relevance determination (ARD) is used, where the most

complex model is fit, and where parameters don’t show to be relevant, they are

forced to zero. Both in the case of single fiber and in the case of multiple fibers,

the actual tractography is done drawing samples from the pdf (or from one of

the pdf s in the multiple orientations case) and then advancing in that direction,

in an approach similar to the streamline deterministic algorithms. As in [101]

the connectivity is calculated counting the number of stramlines that fall into a

specific voxel. The multi-fiber approach described by Behrens and colleagues 3.18

has been demonstrated to be more sensitive to non-dominant projections, that
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are lost with a single fiber approach. Moreover, the probabilistic approach allows

the consideration of areas of low anisotropy, in respect to deterministic tractog-

raphy: since the uncertainty is completely described, it is no longer necessary to

interrupt the fiber tracking. Since probabilistic methods, as stated earlier, give

as outputs spread maps of probability of connections, it is necessary to threshold

the results in order to identify tracts connecting different brain regions, so to

exclude voxels with low probability [98].

3.4 Discussion

In the previous sections, the most known algorithms for the estimation of white

matter connections have been taken into consideration. The described determinis-

tic and probabilistic approaches have different advantages and drawbacks, and are

usually exploited with different aims. Deterministic algorithms have the benefit

of allowing the analysis of specific connections: white matter bundles trajectories

of interest are tracked along their courses. This can be useful when the interest

is specific in the shape or properties of single tracts. Another advantage of deter-

ministic methods is the rapidity of the computation. Deterministic approaches

also suffer from some limitations: since deterministic methods rely completely

on the measured data, usually the tracking algorithms are terminated when the

information obtained from the measures becomes too corrupted by noise for a

precise diffusion direction estimation. Moreover, these methods need some pa-

rameters, used for the termination of the tracking process, that have to be defined

by the user. Probabilistic methods don’t discard the noise, inherently present for

every DTI acquisition, and model it together with water diffusion. This allows

the investigation of brain connections also when the information given by the data

is corrupted by noise. In this way, connections that can not be tracked with de-

terministic approaches because of limited size or weaker directional organization

can often be estimated. On the other hand, these methods are more computa-
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tionally demanding than deterministic approaches and give outputs that are not

easily interpreted: usually the results of the estimation process are connectivity

maps, or voxel-wise representations of the probability of tract directions, that

need further analysis before being associated with the structural connections be-

tween brain areas. Because of these differences, it is not possible to determine

if a technique performs better than the other and both methods are currently

object of research both clinical and methodological, with the aim of gaining more

insight on structural brain connections.
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Chapter 4

Structural connectivity in

healthy and disease

4.1 Estimation of brain structure with tractography

in healthy

Over the last years, both deterministic and probabilistic tractography have been

used to investigate brain structure in vivo. Results of tractography are charac-

terized by a good intra and inter-operator reproducibility [105]. Applications of

tractography include the tracking of specific white matter tracts, the generation

of atlas or templates of connections, and the parcellation of white matter and

gray matter, coupled with and the investigation of the general interconnection of

brain areas, often denominated structural connectivity.

Deterministic tractography has been extensively used for the detection of specific

white matter connections. Using definite ROIs, the tracts of interest are isolated

from the rest of the tractography outputs, and used to investigate inter-subject

variability, or to define typical brain connections and their diffusion characteris-

tics. One application of this is the investigation of the brain lateralization, i.e.
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Structural connectivity in healthy and disease

the dominance of an hemisphere on the other. In [106] the structure of the cingu-

lum (one of the main white matter bundles, involved in emotion processing) was

investigated, using a ROI-based deterministic algorithm. A left-right asymmetry

was found in healthy subjects for FA values, also confirmed by [107]. This defines

a general white matter characteristic not detectable with any other technique and

that can give more insight on brain structure. Barrick and colleagues [108] stud-

ied asymmetries between the two hemispheres utilizing a streamline algorithm

in healthy volunteers, finding that there are consistent left-right asymmetries in

the pathways that connect the temporal to the parietal and the temporal to the

parietal lobes. An example from this work is reported in figure 4.1, where asym-

metries in the tracts are represented using different colors in the two hemispheres,

and symmetrical connections have the same color. In particular, two white mat-

ter bundles are clearly visible: arcuate fasciculus, that is known to connect the

temporoparietal junction with the frontal cortex, and the uncinate fasciculus,

that connects the temporal lobe with the orbitofrontal cortex. Asymmetries in

the arcuate fasciculus were reported also by [109], and related to findings from

phonologic studies and models that describe language processing. This shows

that DTI can help in disclosing the relationship between structure and function

in the brain. Asymmetries in the white matter circuits related to auditory and

phonologic processing, with stronger connections in the dominant hemisphere,

were already found in [110], thus have been confirmed with the previously men-

tioned study.

Another example can be done considering the visual network: in [111] the con-

nections in the occipital lobe are estimated, with a particular focus on the white

matter bundles that cross the corpus callosum, as can be seen in figure 4.2. In a

later work of the same group [112] the optic radiation, that connects the thala-

mus with the visual cortex, has been investigated. Its location can be precisely

defined using DTI tractography: this could be of great importance in the case of
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4.1 Estimation of brain structure with tractography in healthy

Figure 4.1: Figure from [108]. Reconstructed pathways from temporal to parietal lobes. Sym-
metric tracts have the same color in both hemispheres, asymmetric pathways are depicted with
different colors. AF = arcuate fasciculus; UF = uncinate fasciculus.

neurological surgery procedures. Tracking of the bundles belonging to a network

can also be used to estimate possible white matter damage in patients affected

by various pathologies. For example, in [113] white matter tractography has

been used to evaluate the connections in the visual lobe for early blinds: a lower

degree of connectivity has been found for patients in respect to healthy individ-

uals. In this case, it can be noted how tractography reflects the changes in the

brain organization following disease. In the work described in [114] probabilistic

tractography was applied to a data set of healthy volunteers, and the presence

of tracts that connect directly the auditory to the visual cortex was shown, thus

suggesting the presence of a direct connection between these two areas.

The ability of locating white matter fiber bundles allows the definition of how

the typical brain structure and organization is. This information can be used

to form atlases, or templates, that can be utilized to investigate inter-subject

variability or pathological changes in structure or diffusivity. In [110] five white

matter tracts have been evaluated, in a cohort of healthy individuals: the authors

obtained maps that define the location of the considered bundles in the healthy

population. In this way, it has been possible to evaluate the variability inherent

to the considered population, as can be seen in figure 4.3.
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Figure 4.2: Figure modified from [111]. White matter bundles located in the occipital left lobe,
estimated with tractography (a). In (b) a subset of those fibers is depicted, in particular the
fibers that cross the corpus callosum in the highlighted ROI. The light blue structure is the
corpus callosum, superimposed to a T1 slice.

In [115] an atlas of tracts has been created from healthy subjects, to be then

used, once coregistered to patients brains, to evaluate damage in connectivity.

The probabilistic maps obtained from the results in healthy volunteers allowed

the investigation of diffusion characteristics in a MS patient in the presence of

white matter lesions, that prevented the tractography from working properly. The

same approach has been used in [116] in a group of MS patients. Deterministic

tractography has also been used in [117] to reconstruct the major white matter

tracts. Results have been proved to be in accordance with post-mortem dissec-

tion studies, and allowed to inferring information on lateralization, gender effects

and inter-subjects variability, that reflects the natural anatomical differences in

healthy population. A white matter tracts template has also been proposed by

Peng and colleagues [118]: several white matter bundle were traced from a diffu-
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4.1 Estimation of brain structure with tractography in healthy

Figure 4.3: Figure modified from 4.3. Inter-subject variability in tract location has been repre-
sented by overlap maps: the color is brighter where the degree of overlap between subjects is
higher.

sion tensor data template obtained by healthy volunteers, using a deterministic

streamline approach. The use of a DT template allows the evaluation of indi-

vidual characteristics in comparison to those of a whole healthy population. A

similar approach was used in [119], where a total of 15 tract masks obtained from

tracking in the DTI atlas were used to investigate the diffusion properties of brain

tissues during childhood and development.

Often the interest, instead of in the location or on the shape of a fiber bundle,

is in the identification of which brain areas are structurally connected. To infer

this information, tracts are estimated with a tractography process and voxels are
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classified on the basis of the degree of connection with the starting points (de-

nominated connectivity value). An example of this can be seen in [120]. In their

work, Behrens and colleagues segmented the gray matter in regions corresponding

to areas connected to the thalamus, which is a central deep gray matter struc-

ture that is involved in many brain functions. Probabilistic tractography was run

starting from these regions, and then the value of connectivity to the different

cortical areas was computed for each thalamic voxel. As can be seen in figure 4.4,

the thalamus was segmented in different clusters, corresponding to the thalamic

nuclei. This result was confirmed in [121], where it was shown that structural

connectivity also correlated with functional connectivity between thalamus and

cortical areas, and was consistent with histology. Thalamus parcellation results

were found to have a high reproducibility, both inter- and intra-subject [122].

The same procedure has also been applied to other brain structures, and demon-

strated to be reliable. For example, using a similar procedure, in [123] connec-

tions between Broca’s area (a cortical area involved in language processing) and

the medial cortex are investigated, allowing a connectivity-based parcellation of

Broca’s area. Another example is represented from [124], where the amygdala (a

gray matter structure involved in emotions processing) was segmented in its four

nuclei using connectivity values obtained with probabilistic tractography.

The aforementioned relation with functional studies has been taken into consid-

eration multiple times, because of the great insight it could provide on the inte-

gration between structure and functionality in the brain. This can be achieved

both integrating structural and functional measures and guiding the evaluation of

functional connectivity using the knowledge derived from structural connectivity

studies [125]. For example, in [126] the parietal cortex was parcellated using prob-

abilistic tractography in several different areas, then functional connectivity of the

so-obtained regions was investigated, demonstrating that functional connectivity

reflects to a certain degree the underlying structural connections. Another way
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Figure 4.4: Figure modified from [120]. Segmentation of cerebral cortex in four cortical zones
corresponding to thalamic connection areas (prefrontal/temporal, motor, somatosensory and
parieto-occipital zones (a). Voxels of the thalamus are classified according to the highest prob-
ability of connection with the cortical areas in a) and color-coded with the same colors.(b,c).

to define the relationship between structural and functional connectivity is to use

as seeds for tractography the clusters of voxels that show functional connections.

An example of this technique can be seen in [127], where ROIs selected in acti-

vation areas obtained from a resting state fMRI experiment were used as seeds

and targets for tractography. Structural connectivity showed to reflect functional

connectivity, as can be seen in figure 4.5.

A more advanced way to deal with cerebral connectivity is to consider the whole

brain and analyze the connections between all voxels belonging to the cortex, with

the aim of defining the general anatomical connectivity networks. In these analy-

ses, usually the brain is parcellated in regions, whose interconnections, in terms of

structural linkage, are then investigated. Then a connection matrix, or a graph,

is computed from these measurements [128]. For example, in [129] connectivity

51



Structural connectivity in healthy and disease

Figure 4.5: Figure from [127]. Top row: functional activation areas obtained from a resting
state fMRI experiment. Bottom row: results from deterministic tractography, where the ROIs
derived from functional analyses were used as seeds and targets. Left and right figures show the
same tracts from different angles.

between 78 cortical regions has been evaluated, using graph properties.Cortex

parcellations were used as nodes, and tracts estimated with tractography as the

graph edges. It’s been found that the brain has some small world properties,

meaning that the connections don’t follow a random behavior, but short clus-

tered links are preferred across brain areas. Also in this case, the ultimate goal is

to link function and structure to gain more insight on the brain inner mechanisms.

In the next section, applications of tractography regarding the three pathologies

considered in this thesis are outlined.
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4.2 Estimation of structural damage in pathological brains

4.2 Estimation of structural damage in pathological

brains

4.2.1 Tractography in multiple sclerosis

Because of the presence of white matter demyelinating lesions, where, as seen

in section 2.2.1, fractional anisotropy values decrease, tractography in multiple

sclerosis is a critical process. Tissue disruption underlying changes in diffusivity

in lesions makes the tracking through white matter lesions difficult [130, 131], as

can be seen in figure 4.6. This problem can be overcome avoiding tractography

directly in patients, and using tract templates derived from healthy subjects [132,

133, 115]. These methods make it impossible to analyze the individual changes

to the tracts shape or volume caused by the disease, but allow the evaluation

of diffusion indeces values along the tracts, or in areas where the tracts are for

healthy. In this way, tract-specific abnormalities can be detected even if the

tracking is in fact impossible for patients. The method described in [115] has

been applied to a population of MS patients in [116], and it has been proven to

be reliable in the evaluation of MS white matter tracts. Also applying an atlas

of white matter tracts followed to a registration to individual patients spaces,

Kezele and colleagues [134] found a decrease in volume, i.e. athrophy, over time,

in ten white matter bundles in MS patients.

Nevertheless, in several cases (e.g. in [135, 136, 137, 138]) it has been demon-

strated, with particular focus on pyramidal tract (i.e. a corticospinal tract) and

corpus callosum, that individual-based tractography discriminates efficiently be-

tween MS patients and healthy volunteers, even if patients with a great lesion

burden beneficiate from an atlas approach. In general, in patients tracts the di-

rectionality of diffusion results disrupted, as is highlighted by low FA values, and

its magnitude increases (MD values are high). A disruption in the tract recon-
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Figure 4.6: Figure from [115]. Tract reconstruction for a MS patient. The lesion, indicated in
yellow, prevents the tracking of the whole considered tract.

struction is always detectable in patients (see figure 4.7), but that doesn’t affect

negatively the differentiation of patients from healthy individuals.

Also structural connectivity in MS has been investigated. For example, in [139] a

disruption of the memory network was found in early MS patients, in particular

results show a weakening of the connections in the frontal cortex. In another

example, using graph theory, reduced efficiency of connections were found in

various network, including the sensory-motor system and the visual system [140],

with a certain degree of correlation with clinical signs, evaluated with the EDSS

scores.

4.2.2 Tractography in traumatic brain injury

Tractography has also been applied to traumatic brain injury patients DTI data.

The sensitivity of DTI to white matter damage in absence of visible lesions is par-

ticularly important in the case of diffuse axonal injury (DAI), as noted in section

2.2.2. This holds true also when the evaluation of brain integrity is done with

tractography. For instance, in conjunction with the abnormalities in diffusion in-

dices already discussed in section 2.2.2, disruption was found in the white matter
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4.2 Estimation of structural damage in pathological brains

Figure 4.7: Figure from [138]. Reconstruction of the corpus callosum with deterministic trac-
tography for a MS patient. Demyelinating lesions (depicted in green) prevent the algorithm to
follow the tract. Left: reconstructed fibers and white matter lesions. Right: the same tracts
without the superimposed lesion.

fiber tracts. For example, in [75, 141, 142] reconstruction of fibers from corpus

callosum with deterministic tractography resulted abnormal if visually compared

with tracts obtained in healthy (figure 4.8), even if there wasn’t any detectable

abnormality or lesion in the conventional MR images. The same finding proved

its clinical usefulness in [143, 144], where DTI tractography helped in the defi-

nition of a diagnosis for two TBI patients, clarifying the damage that the injury

brought to brain interconnections and functionality. The comparison between

patients and healthy was done not only qualitatively, but also quantitatively in

[145]: the number of fibers crossing the corpus callosum was counted and com-

pared; it was found that TBI patients had less fibers, in number, through the

callosum and that this number related with traumatic injury degree. The num-

ber of fibers reconstructed by deterministic tractography has been used also in

[146] to analyze the damage caused by trauma. Patients also showed reduced

FA, mean length, fiber count, fiber volume, and fiber density, and increased MD

[147], correlated with disease outcome. The authors of this work also followed

changes in structural connectivity over time, demonstrating that these changes

reflect clinical outcome and recovery of patients.
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Figure 4.8: Figure modified from [75]. Top row: deterministic tractography of corpus callosum in
a healthy volunteer. Bottom row: for comparison, deterministic tractography of corpus callosum
in a TBI patient.

4.2.3 Tractography in schizophrenia and bipolar disorder

One of the widely accepted theory on the causes of schizophrenia is the disconnec-

tion hypothesis. Postmortem studies, fMRI and electrophysiological experiments

support the idea that schizophrenia arises from abnormal connections between

prefrontal cortex and other structures [148]. A very similar theory has been

proposed also for bipolar disorder (BD). Supporting this theory, the authors

investigated structural connectivity with probabilistic tractography in BD and

schizophrenia patients, in particular for uncinate fasciculus and anterior thala-

mic radiation, finding weaker connections both for schizophrenia and for BD.

In schizophrenia, a similar result was found using deterministic tractography in

the inferior longitudinal fasciculus, that connects the occipital with the temporal

cortex [149, 150]. White matter damage leading to disruption of connections was

also found in other structures, such as arcuate fasciculus [150], fornix [151, 152],
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4.2 Estimation of structural damage in pathological brains

Figure 4.9: Figure from [157]. Depiction of connections that show statistical differences between
schizophrenic patients and healthy. The higher statistical difference is depicted in green, the
lower in red.

anterior commissura [153] and corpus callosum [154, 155].

Also brain connectivity has been taken into consideration, both analyzing specific

connection and taking into account general connectivity difference with healthy.

For example, connectivity between inferior frontal gyrus and superior temporal

gyrus was investigated in [156] with probabilistic tractography, finding abnor-

mality in pathways. Rathi and colleagues [157], with a slighly different model

for DTI data, found a whole set of connections to be altered (fig 4.9), a result

that was found also in [158] using graph theory: impaired connections were found

especially involving frontal, parietal and temporal lobes. Also thalamo-cortical

connections were found to be impaired in schizophrenia [159], as well as general

organization of connections [160].

In bipolar disorder, although diffusion characteristics are less investigated than

in schizophrenia, some relevant results have been found. Deterministic tractogra-

phy revealed increased connectivity between the hippocampus and the amygdala

[161], in a white matter area corresponding to the uncinate fasciculus, that could

be related to hyperactivity that characterizes bipolar behavior. Disrupted diffu-

sion was found in uncinate fasciculus, anterior thalamic radiation and superior
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longitudinal fasciculus [162], which can all be related to frontal cortex. These

results, along with more widespread white matter damage, was confirmed using

probabilistic tractography in [84].
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Chapter 5

A novel method to evaluate

white matter MS lesions with

deterministic tractography

5.1 Introduction

As described in section 2.2.1, multiple sclerosis is characterized by damage to

the white matter, in terms of demyelinated plaques. These lesions, where FA

value drops because of structural damage, alter the course of tractography in

white matter of patients affected by MS. Nonetheless, investigating the degree

of damage to connections and to white matter tracts is of primary importance

for the evaluation of the disease and its consequences on the integrity of the brain.

In 5.3 a method of deterministic tractography is presented. An existent deter-

ministic tractography algorithm has been modified to make it more reliable in the

presence of reduced FA, and the results obtained in the presence of lesions with

those obtained in contralateral normal-appearing white matter (NAWM) areas

were compared. Conventional deterministic algorithms often interrupt the track-
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ing in the case of lowered FA or changes in fiber directionality. Although this

behavior is desirable because it makes reconstruction very conservative, the draw-

back is that some information gets lost. With the technique utilized in this work,

the reconstruction is taken a little further than with conventional techniques, be-

cause the algorithm that has been used for tracking the fibers in locations where

the directionality is not strongly determined is robust to noise and allows data

that would otherwise be discarded to be taken into account.

Using the conventional streamline method [29], the presence of a lesion could

precociously interrupt the reconstruction of the tract, because of low FA [115].

The possibility of the presence of noise is completely discarded and the recon-

struction is abruptly terminated. With the method here proposed, the value of

FA to be used to terminate the tract is lowered, because the considered algorithm

is more robust to noise than conventional streamline. Moreover, in section 5.3.1,

the interpolation applied in the algorithm that has been developed is explained

in detail, because the choice of an interpolation technique over others is critical.

5.2 Dataset

For this study, 12 relapsing-remitting multiple sclerosis (RRMS) patients have

been considered (8 males, 4 females, age 35 ±11 years, mean EDSS 3 ± 1). They

underwent MRI acquisition, with a 1.5T Philips Achieva scan. 32 non-collinear

directions were applied, TR and TE were 11730 and 6 ms respectively, and the

voxel resolution was 2mm isovoxel (i.e. identical size in the three dimensions)

(matrix 112x112x60). Two additional non-diffusion weighted volumes (B0) were

also acquired. To identify white matter lesions, also a FLAIR volume was ac-

quired (TE = 120 ms, TR = 10000 ms, TI = 2500 ms, matrix 288 x 288 x 50).

MRI scans were conducted in Euganea Medica, Padova, Italy in collaboration

with the Multiple Sclerosis Centre of Veneto region, Dept. of Neurosciences, Uni-
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versity Hospital of Padova, Italy.

For the comparison of the interpolation methods, two additional DTI volumes

were used: a volume acquired at the hospital of Verona at 3T (TR = 5000 ms,

TE = 118ms, b-value = 1000s/mm2, matrix 128 x 128 x 23 and voxels with di-

mensions 1.7188 x 1.7188 x 6 mm3 ) with 30 non-collinear diffusion directions

and 5 additional B0 acquisitions, of a healthy volunteer, and a volume acquired

at 1.5T, with 15 non-collinear diffusion directions (TR = 15634 ms, TE = 25ms,

b-value = 800s/mm2, matrix 256 x 256 x 50 voxels and voxel size 0.9375 x 0.9375

x 3 mm3), of a MS patient who underwent a MR scan at Euganea Medica.

5.3 Methods

5.3.1 Interpolation of the tensor field

DTI images were corrected for distortions caused by eddy currents using FSL -

FMRIB’s Diffusion Toolbox (FDT) (www.fmrib.ox.ac.uk/fsl). To assess the

interpolation technique that could give the best results, interpolation results have

been evaluated on a DTI volume of a MS patient, acquired with 15 directions at

1.5T, and on a volume of a healthy volunteer, acquired at 3T with 30 directions.

This was done to better analyze possible differences in the results given by the

interpolation technique. In particular, it is of particular interest how the interpo-

lation affects the results in the case of a voxel with strongly different dimensions.

Interpolation is necessary because both with continuous tracking and with tensor

deflection, the computation of the tract trajectory is done considering a con-

tinuous tensor field, and the integration step is always smaller than the size of

a voxel. If all the voxel neighboring the voxel containing the actual position in

which the tensor is evaluated are considered, interpolation acts on 27 voxels. The

tensor Di evaluated at the position r(si) is computed as a weighted sum of the

contributions from all 27 voxels:
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Di =

27∑
j=1

pjDj

27∑
j=1

pj

. (5.1)

The weights pjs are defined as the linear function of the difference between the

maximum distance from r(si) that can be obtained for a point in the 27 neigh-

boring voxel, that is 1.5 times the diagonal of the voxel, and the distance between

r(si) and the center of the voxel cj . With this definition, non-negative weights are

obtained, and the nearer voxels have more weight in the computation of the inter-

polated tensor field. If the diagonal of the voxel is called d, the above definition

can be summarized as follows:

pj = 1.5 · d− |cj − r(si)| . (5.2)

This way of interpolating the tensor field has been compared with gaussian in-

terpolation, where the weights are defined using a gaussian distribution, centered

in the position r(si) and with variable standard deviation, in this work chosen to

be equal to the inverse of the diagonal of the voxel d.

pj =
d√
2π
e−d

2 (cj−r(si))
2

2 . (5.3)

For the evaluation of interpolation, two ROIs have been considered, both located

on the splenium of the corpus callosum, as can be seen in figure 5.1.

5.3.2 Propagation of the tract and evaluation of MS lesions

Tractography has been implemented integrating the FACT method firstly de-

scribed by [97] and illustrated in section 3.2, combined with the tensor deflection

(TD) method, presented in [99] and also described in 3.2.

Since the tensor deflection method is proven to be less sensitive to noise and low
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Figure 5.1: ROIs defined for the comparison of interpolation of the tensor field. For both datasets
the ROI was located on the splenium of the corpus callosum. Left: Reconstructed FA for the 3T
volume (voxel size 1.7188 x 1.7188 x 6 mm3) and superimposed ROI. Right: reconstructed FA
and superimposed ROI for the volume acquired at 1.5T (voxel size 0.9375 x 0.9375 x 3 mm3.)

FA, but more computationally demanding, the algorithm switches from conven-

tional tractography solved with Eulero method, to tensor deflection, following

the rule:

r(sn+1) = r(sn) + α · vout, (5.4)

where

vout =


v1 FA > threshold

D · vin FA < threshold

(5.5)

where D is the tensor evaluated at the n-th step in the tracking process, and v1

its first eigenvector. vin is the direction of the tract evaluated at the n-th step

as well. α is the integration step, and is a parameter that can be tuned in accor-

dance with the tracking method that is being used. It has beed defined as follows:
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α =


h FA > threshold

h
k FA < threshold, k > 1

(5.6)

In this case, the threshold has been set for a FA value of 0.2, and α is fixed

at 0.4 voxels. k has values > 1, since tensor deflection works best with smaller

integration steps, given that it tends to underestimate the tract curvature. In

the rest of this work, k has been set to 5. The algorithm is terminated when

FA reaches a value of 0.16. Another termination criterion is the angle that the

trajectory covers in a voxel: it has been set to a value of 40 degrees.

This algorithm was applied to the patients data, and used to evaluate the dam-

age in terms of reconstructed white matter tracts. All voxels with FA > 0.6,

which is a value for which the white matter is formed by well-defined fibers,

were used as starting points, thus obtaining a whole brain tractography. From

the obtained tracts, those of interest have been selected using predefined ROIs

located on white matter MS lesions identified on FLAIR images. To compare

the tractography outputs in pathological areas to that in normal appearing white

matter, we manually delineated contralateral ROIs, paying close attention that

the surrounding region didn’t present MS plaques. The lesions were identified

on T2-weighted images, and then registered to the DTI space using FSL FLIRT

[163]. An example showing the considered ROIs is presented in figure 5.2 Fi-

nally, we compared the density of reconstructed fibers and their mean length in

the pathological and in the normal appearing ROIs. The distribution of lengths

in the ROIs were also statistically compared using the Wilcoxon rank-sum test

(p=0.05).
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Figure 5.2: ROIs for the evaluation of tracts in MS white matter lesions. a) peri-ventricular
lesion identified in T2 space; b) T2 image registered to DTI patient space: the lesion is visible
also in this space; c) lesion and contralateral ROI, obtained from b), superimposed to the FA
map.

5.4 Results

5.4.1 Interpolation of the tensor field

Interpolations with linear and gaussian weights have been compared, selecting

fibers that cross a corpus callosum ROI. This ROI, shown in figure 5.1, is located

in an area of high anisotropy, where tractography results are well-defined. It has

been chosen because of the high reproducibility of results. In figure 5.3 an exam-

ple of the results of tractography with both interpolation techniques are reported.

As can be seen, tracts show a good degree of overlap with the exception of some

small tracts that don’t interfere with the reconstruction.

The performance of the two interpolation methods has been compared also quan-

titatively. In table 5.1 results, in terms of number and length of reconstructed

tract (i.e. the number of integration steps of size α), are reported for the data

with resolution 1.7188 x 1.7188 x 6 mm3 . As can be noted, the interpolation

with gaussian weights results in around 16% less reconstructed tract, in number,

than with linear weights. Also their length is smaller, and results reduced of 20%

in respect to linear weights. This can be explained because voxels have a low
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Figure 5.3: Reconstruction of corpus callosum fibers for the dataset at 1.5T with resolution
0.9375 x 0.9375 x 3 mm3. Tracking was done interpolating the tensor field with linear weights
(red lines) and gaussian weights (blue lines).
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number of tracts mean length of tracts

linear weights 268 90

gaussian weights 225 72

Table 5.1: Comparison of interpolation with linear or gaussian weights, for the DTI volume
acquired at 3T, with 30 non-collinear diffusion directions and resolution of 1.7188 x 1.7188 x 6
mm3

number of tracts mean length of tracts

linear weights 1960 170

gaussian weights 1636 167

Table 5.2: Comparison of interpolation with linear or gaussian weights, for the DTI volume
acquired at 1.5T, with 15 non-collinear diffusion directions and resolution of 0.9375 x 0.9375 x
3 mm3

resolution in the third dimension, z. This causes the term d2 in equation 5.3 to

get high values, thus weights for voxels different from the one containing r(si) be-

come very small, making the interpolation less effective than with linear weights

and obtaining a less smooth tensor field. In this way, abrupt transitions of di-

rections are more likely to happen than utilizing linear weights, and the whole

tractography process becomes more conservative. For the data with resolution

0.9375 x 0.9375 x 3 mm3 the effects of different interpolations don’t show such

consistent differences, especially in the estimated length of tracts. Since the stan-

dard deviation of the gaussian distribution of weights is larger, the interpolation

obtained with gaussian weights is more similar to that obtained with linearly

weighted coefficients, as can be noted in table 5.2. With gaussian distributed

weights, the estimated number of tracts was still reduced of around 16%, but the

length was reduced just of 2%. For the reconstruction of tracts in MS patients

brains, whose results are shown in section 5.4.2, the more conservative approach

has been chosen.
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Lesion ROI Controlateral ROI Rank-sum results

length density length density h p

Subject 1 123 0.12 147 0.35 1 <0.0001
Subject 2 119 0.01 140 0.02 1 <0.0001
Subject 3 162 0.42 157 0.31 0 0.10
Subject 4 147 0.13 154 0.39 1 0.03
Subject 5 138 0.05 147 0.12 0 0.09
Subject 6 126 0.12 145 0.41 1 0.02
Subject 7 122 0.14 136 0.16 0 0.09
Subject 8 143 0.18 151 0.52 1 0.02
Subject 9 149 0.18 155 0.46 0 0.14
Subject 10 148 0.06 148 0.18 0 0.45
Subject 11 118 0.05 143 0.11 1 <0.0001
Subject 12 107 0.01 139 0.08 1 <0.0001

Table 5.3: Deterministic tractograpy for MS patients. Length and density of tracts in MS
plaques and in normal-appearing contralateral white matter are reported, as well as the output
of a rank-sum test between the lengths in lesion and in contralateral ROIs.

5.4.2 Evaluation of tracts in presence of white matter MS lesions

Tracts length and density in pathological ROIs resulted consistently smaller than

in NAWM ROIs. In particular, we found that there is a mean decrease of 9%

in tract length and of 52% in fibers density in ROIs containing MS plaques.

Remarkably, the presence of lesions didn’t interrupt the tracking algorithm, but

affected the integrity of the reconstructed tracts. In one subject we found a

small increase in length (3%). Using the rank-sum statistical tests we found

that the majority of distributions of tracts lengths are different in lesions and

NAWM ROIs, with 7 out of 11 ROIs presenting different statistical distributions.

When the difference in length didn’t reach statistical significance, an effect of

the presence of the lesion is still visible in the density of tracts. All quantitative

results are reported in table 5.3.
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5.5 Discussion

In this chapter, two algorithms for the tracking of white matter fibers are com-

bined and, integrated with an evaluation of the methods for the tensor field inter-

polation, used to track fibers in the white matter of MS patients. The tracking is

continued also for voxels where conventional streamline algorithms interrupt the

reconstruction, because the tensor deflection method, used where the FA goes

below the threshold of 0.2, is robust to noise. This avoids blunt terminations for

tracts affected by lesions. It is to be noted that the value of 0.16, used for the

termination of the algorithm, defines voxels, even if with a lower value of FA,

belonging to the white matter. This has been proven considering a white matter

segmentation obtained with SPM (http://www.fil.ion.ucl.ac.uk/spm/) and

considering the voxels belonging to the white matter where the FA ranges from

0.2 to 0.16, thus the voxels where tensor deflection is used. As can be seen in

figure 5.4, there are a non negligible number of voxel belonging to white matter

characterized by those values of FA. With this technique, it has been possible to

quantitatively evaluate the disruption to the tracts caused by white matter MS

lesions. These lesions could be identified from the rest of the white matter on the

basis of the estimated density of fibers that go through them.
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Figure 5.4: Segmentation of white matter for a MS patient considered in this study obtained
with SPM (only voxels with probability of belonging to white matter ≥ 0.8 are considered) with
superimposed (in red) voxels of white matter with a FA value ranging from 0.16 to 0.20. The
segmentation has been done for the T1 image, then registered to DTI space.
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Chapter 6

A novel method for the

evaluation of structural

connectivity in pathological

brains

6.1 Introduction

The thalamus is a central deep gray matter structure, involved in sensory func-

tion and in regulating the level of consciousness, and is a relay for information

directed to different cortex areas. The integrity of the connections from thala-

mus to cortex is of great importance, and any change in diffusivity along fiber

tracts can be a sign of deterioration or damage. It is a key node in many of

brain networks [164, 165, 120]. Damage to this key subcortical structure and its

connections is an important determinant of outcome after TBI [166].

The best method for defining the location of a particular tract in patient groups

with white matter damage is unclear and is topic of current research [115, 146].
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The standard approach in the uninjured brain is to perform tractography in in-

dividual space to produce tracts in subject-specific space. This method can be

performed in patients, but abnormalities in tract structure can be difficult to

interpret. Tractography can evidentiate, in TBI patients, parts of the tract that

appear to be absent [143, 145, 167] or a reduced number of tract fibers compared

to controls [146]. However, abnormalities in tract structure might also result from

a technical failure of the deterministic tractography algorithm because of low FA

in parts of the white matter and, similarly, because of too high uncertainty in

damaged areas for probabilistic tractography. Therefore, metrics extracted from

tracts obtained directly in patients might be mis-leading, because severely dam-

aged areas could be completely discarded from the tractographic reconstruction.

These issues have led to alternative proposals for ways to investigate the struc-

ture of specific white matter tracts in patient groups. For example, Hua and

colleagues use deterministic tractography to define the structure of a number of

large white matter tracts in healthy controls [115]. This information was com-

bined across subjects and used to define mean tract locations in standard space,

before transforming them back into individual space to study a MS patient with

white matter damage.

On the basis of the previous findings, in this chapter an approach to investi-

gate thalamo-cortical connectivity following TBI is proposed, without applying

tractography directly on patients, to avoid misinterpretation of unsure results.

In contrast to Hua and colleagues probabilistic tractography has been used in a

young group of controls to define the location of a number of thalamo-cortical

connections. These are then combined across subjects to derive a template of

mean thalamo-cortical connectivity, which is used to investigate white matter

structure along these tracts. To prove the feasibility of the use of such a tem-

plate instead of individual tractography, the values of diffusion indices on healthy
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obtained applying the template were evaluated, comparing them with values ob-

tained using individual tractography. In the patients the advantages of taking

the template approach are illustrated by comparing template results to the indi-

vidual tractography. Differently from [115] and [116] white matter damage was

evaluated quantitatively, in terms of number of voxels which result to be damaged

in comparison to healthy individuals.

Unlike previous approaches, this method is independent from user defined param-

eters, as the FA threshold at which to terminate the tracking algorithm, thanks

to the use of probabilistic tractography, which is not dependent on the FA value,

and it is also not necessary to place specific ROIs in the patients space, since

tractography in pathological brains is completely avoided. Also partial volume

and registration problems discussed in [116] are addressed, using non-linear reg-

istration and excluding the possible presence of cerebrospinal fluid (CBF), using

a masking technique.

This study was conducted in collaboration with the Computational, Cognitive

and Clinical Neuroimaging Laboratory of Imperial College (Hammersmith Hos-

pital), London, UK.

6.2 Dataset

The dataset was composed by 22 TBI patients (age 39 ± 11 years, 17 males, 5 fe-

males) and 21 age-matched healthy control subjects (age 35 ± 12 years, 10 males,

11 females). Patients were all recruited at least two months post injury (23 ±

17 months). Based on the Mayo classification system for TBI severity [64] there

were 14 moderate/severe, and 8 mild (probable) cases of TBI. Injury was sec-

ondary to road traffic accidents (50%), falls (29%) and assaults (21%). Exclusion

criteria were as follows: neurosurgery, except for invasive intracranial pressure

monitoring (one patient); history of psychiatric or neurological illness prior to

their head injury; history of significant previous TBI; anti-epileptic medication;

73



A novel method for the evaluation of structural connectivity in
pathological brains

current or previous drug or alcohol abuse; or contraindication to MRI. The study

was approved by the Hammersmith and Queen Charlotte’s and Chelsea Research

ethics committee, and all participants gave written informed consent.

6.3 Methods

6.3.1 MRI acquisition

MRI data were obtained using a Philips (Best, The Netherlands) Intera 3.0 Tesla

MRI scanner using Nova Dual gradients, a phased array head coil, and sensitivity

encoding (SENSE) with an under-sampling factor of 2. High-resolution images

(T1-weighted MPRAGE) were acquired with the following acquisition parame-

ters: matrix size 208 × 208; slice thickness=1.2 mm, 0.94 mm × 0.94 mm in plane

resolution, 150 slices; TR=9.6 ms; TE=4.5 ms; flip angle 8◦. Diffusion-weighted

volumes with gradients applied in 64 non-collinear directions were collected. The

following parameters were used: 73 contiguous slices, slice thickness = 2 mm,

field of view (FOV) 224 mm, matrix 128 x 128 (voxel size = 1.75 x 1.75 x 2

mm3), b value = 1000. Four images with no diffusion weighting (b = 0 s/mm2)

were also acquired.

6.3.2 Data processing

A high level overview of the methodology used is provided in figure 6.1. The

approach here presented comprised the following steps: 1) data preprocessing;

2) definition of anatomical regions-of-interest in the control group to use as the

starting point for tractography; 3) probabilistic tractography in the control group;

4) generation of mean thalamo-cortical tract templates; 5) validation of the tract

templates in two control groups; 6) application of the template in patients for

the investigation of white matter structure in the TBI group.
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Figure 6.1: Summary of processing steps. Seed, target and exclusion ROI for tractography are
identified in subject space for all healthy controls. Individual tractography is run for all healthy.
The output is non-linearly registered to MNI 1 mm2 standard space, averaged and binarized
to get a mean white matter thalamo-cortical connectivity template for every considered tract.
The obtained maps are then masked with a TBSS white matter skeleton. For every patient, the
template is masked with a CSF mask, to avoid partial volume effects. Then, patients FA and
MD values are compared to healthy mean FA and MD within the specified tracts, and voxels
with abnormal values are counted.
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Diffusion tensor imaging preprocessing

Diffusion-weighted images were registered to the b = 0 image by affine transfor-

mations to minimize distortion due to motion and eddy currents and then brain-

extracted using BET [168], part of the FSL image processing toolbox [103, 104].

Voxelwise fractional anisotropy (FA) and mean diffusivity (MD) maps were gen-

erated using FDT in FSL [102, 120, 25].

Brain segmentation and region of interest definition

The MAPER (multi-atlas propagation with enhanced registration) procedure was

used to generate the start and target points for tractography. Anatomical re-

gions of interest were defined in native space from high-resolution T1 images.

The procedure has previously been shown to yield accurate and robust segmen-

tation results and to minimize the potential sampling error associated with mis-

registration [169, 170]. Bilateral thalamic regions were defined to provide the

starting point of tractography. A number of cortical regions were then defined

to provide the termination points of thalamo-cortical tracts likely to be damaged

by TBI: bilateral anterior cingulate cortices, superior frontal, inferior frontal,

superior temporal gyri and superior parietal lobe regions.

Probabilistic tractography

Probabilistic tractography was used to define thalamo-cortical connections in the

control group [102, 25]. Ten tracts were generated for every subject. To limit

inter-hemispheric connections, a corpus callosum ROI also obtained from the

MAPER procedure was used as exclusion mask. Tractography was performed

in DTI subject space. Therefore, DTI b = 0 images were linearly registered to

T1 images and the inverted transformation matrix was applied to the T1 seg-

mentation to bring the regions of interest into DTI space. The probabilistic

tractography algorithm considered a maximum of two fibers per voxel. A curva-
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ture threshold of 0.2 was employed, with 5000 samples producing the estimated

fiber distribution for each seed voxel.

Mean connectivity template creation

Data from the 10 control subjects were then combined to create the thalamo-

cortical connectivity template. Individual FA maps were non-linearly warped

and registered to the 1x1x1 mm3 FMRIB MNI FA template using FSL FNIRT

tool [171, 172]. The transformation matrix obtained was then applied to the in-

dividual tractography outputs. Thalamo-cortical tract templates were generated

by averaging the individual warped connectivity values in standard space, and

retaining only the voxels whose intensity exceeded a specified threshold. The

applied threshold was defined as the 5% of voxels with highest connectivity val-

ues. The obtained maps were then binarised. This identified voxels with a high

likelihood of falling within a tract of interest across all controls.

Comparison with individual tractography

The validity of using a tract template to sample white matter integrity measures

was investigated in the control subjects. To test if it is possible to obtain similar

results using the mean tract template and individual tractography, mean FA and

MD values and their distributions derived from tracts generated by both individ-

ual tractography and the tract templates were compared.

The rough output of individual probabilistic tractography is a spread map of val-

ues of connectivity, not comparable in terms of spatial extent with the template

tracts, that consist in the voxels with the highest connectivity values across sub-

ject. Given that the number of voxels with a connectivity value different from

zero obtained from the tractography algorithm is different for every individual,

a 5% or fixed threshold would give a different volume for every subject, different

from the volume obtained with the tract maps. Therefore, the same volume of

voxels is kept, in terms of mm3, both in the template tracts in standard space

77



A novel method for the evaluation of structural connectivity in
pathological brains

and in individual DTI space. To do so, the number of voxels to be kept was

calculated using the following relationship:

Voxels to be retained = (6.1)

voxels retained in standard space · dimensions of individual space

dimensions of standard space
(6.2)

The registration process involved in producing the tract templates can introduce

partial volume errors, particularly around the edge of white matter tracts [173].

As part of the validation procedure the best way to minimize this problem has

been investigated using two types of masking. Firstly, the white matter skeleton

produced by TBSS was used as a mask. This ’skeleton’ defines the center points

of large white matter tracts and, by doing this, greatly limits the impact of partial

volume effects. Secondly, a CSF mask produced by FSL FAST [174] and the gray

matter masks of start and target regions were masked out of the assessment. The

DTI metrics from the individual tractography and tract template approaches

were then compared in three situations:

1. no masking;

2. white matter ’skeleton’ masking;

3. ’skeleton’ + CSF + ROIs masking.

Spearman’s correlation statistics were used for mean MD and FA values and

Wilcoxon rank-sum test (p = 0.01) for statistical distributions. Importantly, we

performed the same set of analyses on a further group of 11 controls, who were not

used to generate the template tracts. This was done to prove if the tract templates

could be applied outside the original group, and still gives estimates of DTI

metrics that correlated highly with those generated by individual tractography.
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Tractography in the patients group

Then it was directly tested whether individual tractography in the patients group

was problematic. To evaluate differences with the individual tractography algo-

rithm, the FSL algorithm has been run also for the TBI patients, and the same

comparisons of values of diffusion indices done for controls have been made for

the patients. The FSL tractography has been run with the same procedure used

for healthy during the generation of the template. In addition to considering the

diffusion indices, also the evaluated dispersion of the estimates of the principal

and second diffusion direction were taken into account. The dispersion values give

a measure of the noise, thus of the uncertainty, of the estimation of the diffusion

direction during the sampling from its probability density function. The disper-

sion values within the template tracts to the mean dispersion values obtained

from healthy controls were compared.

Investigation of white matter damage in the patients

DTI metrics (FA and MD) were sampled from the patients using the tract tem-

plates defined in the control group. FA and MD maps were non-linearly registered

into MNI space using FSL FNIRT. DTI measures in the patients were compared

voxel-wise to the mean distribution obtained from all 21 controls. The percentage

of voxels within each mask with FA and MD values more than 3 standard devi-

ations away from the mean was calculated, to provide a measure of the severity

of tract damage.

6.4 Results

6.4.1 Validation of a novel template for thalamo-cortical connec-

tivity

A representation of the tracts comprised in the template is shown in figure 6.2.

79



A novel method for the evaluation of structural connectivity in
pathological brains

Figure 6.2: Averaged tracts in MNI standard space. ROIs are in blue, averaged tracts in yellow.
Tracts from thalamus to anterior cingulate cortex (a), superior frontal gyrus (b), inferior frontal
gyrus (c), superior temporal gyrus (d), superior parietal lobe (e).

Estimates of FA and MD were extracted from individual DTI data using both the

tract templates and the individual probabilistic tractography. Visual inspection

of the two tract estimates revealed a reasonable correspondence in their location.

To quantify this correspondence, mean FA and MD were calculated for both

approaches applying the two masking methods (TBSS skeleton with or without

CSF and target ROIs exclusion). Then it was tested whether the two sets of values

were correlated and whether they were from the same or different distributions. In

general the masking procedure improved the number of tracts showing significant

correlations of FA and MD. We first extracted DTI metrics from the group of

subjects used to define the templates (N=10). In the case of FA only 2 tracts

showed a significant correlation between the two approaches when no masking

was used, with a Spearman correlation coefficient ρ of 0.88. 7 tracts significantly

correlated when the TBSS skeleton was used to constrain the search area, with ρ

ranging from 0.60 to 0.96. When the skeleton plus additional masking approach
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Tract
No masking Mask I Mask II

Spearman ρ (p) Spearman ρ (p) Spearman ρ (p)

Left TH − left ACC 0.51 (0.13) 0.60 (0.07) 0.89(<0.01)
Left TH − left IFG 0.34 (0.33) 0.82(<0.01) 0.90(<0.01)
Left TH − left SFG 0.58 (0.08) 0.59(0.08) 0.94(<0.01)
Left TH − left PL 0.28 (0.43) 0.54(0.11) 0.53(0.12)
Left TH − left TG 0.87 (0.002) 0.72(0.02) 0.59(0.08)

Right TH − right ACC 0.27 (0.45) 0.96(<0.01) 0.84(0.004)
Right TH − right IFG 0.42 (0.23) 0.81(<0.01) 0.89(<0.01)
Right TH − right SFG 0.88 (<0.01) 0.79(<0.01) 0.43(0.21)
Right TH − right PL 0, 52(0.13) 0.95(<0.01) 0.85(<0.01)
Right TH − right TG 0.21 (0.55) 0.60(0.07) 0.73(0.02)

Table 6.1: Spearman correlation coefficient for the mean FA values of all the considered thalamo-
cortical tracts, using both masking approaches, for the healthy subjects from which the template
has been derived

was used 7 tracts showed significant correlations, with coefficients ranging from

0.84 to 0.94. For MD, with no masking 4 tracts significantly correlated, with

Spearman ρ from 0.66 to 0.73. Applying both masking techniques, all tracts

correlated significantly, with coefficients ranging from 0.61 to 0.97. All correlation

results are reported in tables 6.1 and 6.2.

The same metrics from a second group of controls (N=11), not involved with the

template creation, were extracted. In this case, for FA, 5 tracts showed signifi-

cant correlation with no masking, with ρ ranging from 0.72 to 0.82. Applying the

TBSS mask, 7 tracts significantly correlated, with coefficients from 0.71 to 0.91.

7 tracts resulted to show significant correlation also masking for CBF, where the

ρ ranged from 0.68 to 0.98. For MD, 7 tracts correlated significantly with no

masking, with ρ values from 0.63 to 0.88. With the two masking approaches, all

tracts showed a significant correlation, with coefficients from 0.65 to 0.98. Cor-

relation coefficient in the three cases are reported in tables 6.3 and 6.4.

Next it has been tested whether the DTI metrics produced by the different ap-

proaches belonged to different statistical distributions. Convergence of the ap-
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Tract
No masking Mask I Mask II

Spearman ρ (p) Spearman ρ (p) Spearman ρ (p)

Left TH − left ACC 0.66 (0.04) 0.94 (<0.01) 0.90 (<0.01)
Left TH − left IFG 0.49 (0.15) 0.90 (<0.01) 0.86 (<0.01)
Left TH − left SFG 0.60 (0.07) 0.90 (<0.01) 0.87 (<0.01)
Left TH − left PL 0.64 (0.05) 0.75 (<0.01) 0.76 (0.01)
Left TH − left TG 0.66 (0.04) 0.78 (0.01) 0.61 (0.05)

Right TH − right ACC 0.28 (0.43) 0.85 (<0.01) 0.93 (<0.01)
Right TH − right IFG 0.73 (0.02) 0.90 (<0.01) 0.90 (<0.01)
Right TH − right SFG 0.72 (0.02) 0.95 (<0.01) 0.88 (<0.01)
Right TH − right PL 0.36 (0.31) 0.96 (<0.01) 0.85 (<0.01)
Right TH − right TG 0.26 (0.47) 0.97 (<0.01) 0.82 (<0.01)

Table 6.2: Spearman correlation coefficient for the mean MD values of all the considered
thalamo-cortical tracts, using both masking approaches, for the healthy subjects from which
the template has been derived

Tract
No masking Mask I Mask II

Spearman ρ (p) Spearman ρ (p) Spearman ρ (p)

Left TH − left ACC 0.82 (<0.01) 0.89 (<0.01) 0.92(<0.01)
Left TH − left IFG 0.06 (0.86) 0.91(<0.01) 0.56(0.07)
Left TH − left SFG 0.82 (<0.01) 0.57(0.09) 0.73(<0.01)
Left TH − left PL 0.79 (<0.01) 0.78(<0.01) 0.28(<0.40)
Left TH − left TG 0.57 (0.07) 0.88(<0.01) 0.98(<0.01)

Right TH − right ACC 0.77 (<0.01) 0.77(<0.01) 0.74(0.01)
Right TH − right IFG 0.32 (<0.01) 0.87(<0.01) 0.78(<0.01)
Right TH − right SFG 0.72 (<0.01) 0.71(0.02) 0.81(<0.01)
Right TH − right PL 0.35(0.28) 0.73(0.02) 0.81(<0.01)
Right TH − right TG 0.49 (0.12) 0.56(0.08) 0.68(0.02)

Table 6.3: Correlation coefficient for the mean FA values of all the considered thalamo-cortical
tracts, using all masking approaches, for 11 healthy subjects not involved in the template creation
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Tract
No masking Mask I Mask II

Spearman ρ (p) Spearman ρ (p) Spearman ρ (p)

Left TH − left ACC 0.88 (<0.01) 0.90 (<0.01) 0.90 (<0.01)
Left TH − left IFG 0.52 (0.1) 0.86 (<0.01) 0.90 (<0.01)
Left TH − left SFG 0.63 (0.04) 0.88 (<0.01) 0.97 (<0.01)
Left TH − left PL 0.63 (0.04) 0.98 (<0.01) 0.92 (<0.01)
Left TH − left TG 0.44 (0.18) 0.69 (0.02) 0.91 (<0.01)

Right TH − right ACC 0.74 (<0.01) 0.65 (0.03) 0.95 (<0.01)
Right TH − right IFG 0.73 (0.01) 0.78 (<0.01) 0.75 (<0.01)
Right TH − right SFG 0.69 (0.02) 0.85 (<0.01) 0.95 (<0.01)
Right TH − right PL 0.79 (<0.01) 0.86 (<0.01) 0.92 (<0.01)
Right TH − right TG 0.11 (0.43) 0.77 (<0.01) 0.79 (<0.01)

Table 6.4: Correlation coefficient for the mean MD values of all the considered thalamo-cortical
tracts, using both masking approaches, for 11 healthy subjects not involved in the template
creation

proach would result in samples from the same distribution, so this provides a

measure of how closely aligned the tract regions were from a statistical point of

view. For FA in the group used to define the tract templates, with no masking

62% of the studied tracts came from statistically different statistical distribu-

tions. This decreased to 17% with the first masking technique and 8% when the

second was used. For the separate group, with no masking, 74% had different

distributions. This fell to 14% for the first masking technique and 13% using the

second technique. Figure 6.3 shows a representative example of the FA values

distributions from a healthy subject. No specific tracts have been identified that

consistently showed values to come from different distributions with all different

masking approaches or across different subjects.

Similar results were found with MD, although more tracts were found where the

distributions were distinct. In the group used to define the templates 74% or

tracts showed results from different distributions. This fell to 41% for the first

masking technique and 37% for the second. For subjects not involved in the atlas

creation, 72% of tracts had values from distinct statistical distributions, falling to

34% and to 30% for the two masking techniques. These results demonstrate that
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Figure 6.3: Distribution of FA in the right thalamus to parietal lobe . Overlaid histograms of
FA values for every voxel belonging to the individual tractography output (black line) and to
the mean projected tract (red line). This is demonstrated for TBSS skeleton plus gray matter
masking . Distributions depicted for four healthy controls not involved in the atlas creation (top
row) and for four belonging to the group from which the atlas was derived (bottom row).

focusing the analysis of white matter to regions at the centre of each tract pro-

duces results that converge between the approaches. This supports the proposal

that a mean tract template can be used in most cases to robustly sample DTI

metrics from large white matter tracts, and that this approach can be generalized

to subjects not used to define the original tract templates.

6.4.2 Application of a thalamo-cortical connectivity template in

traumatic brain injury patients

The percentage of voxels with abnormal MD and FA values within the tracts maps

and within the maps obtained with individual tractography was investigated. Ab-

normality was defined as voxels where the considered diffusion parameter value

was more than 3 standard deviations away from the mean value of the whole

normal group. This technique was sensitive to demonstrating damage within the

tracts examined. The hypotesis, regarding the individual tractography results,

was that where large amounts of white matter damage was present, the output

of tractography would be disrupted. We tested this by performing probabilistic
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tractography between in patients as stated in 6.3.2.

The potential problems are illustrated by considering patients with and without

extensive damage to the tract connecting the right thalamus to right anterior

cingulate cortex (figure 6.4). In a patient with a low amount of abnormal voxels

(patient 1 - 1.17% MD, 0% FA) tractography produces a similar result to that

found for the mean tract template in the normal subjects. However, for a patient

with a large amount of damage (patient 5 - 28.81% MD, 7,19 %FA) tractography

produces a very atypical tract. This extends far outside the likely location of

this tract and is likely to be a spurious result of the tractography algorithm

failing to cope with the effects of the white matter damage, as there are no

gross abnormalities visible on standard structural imaging in this area. A similar

finding is illustrated for the thalamic to inferior frontal gyrus tract (figure 6.5),

in a patient that shows extensive damage in the white matter. Patient 1 (0.69%

MD, 0% FA) and patient 6 (47.96% MD, 27.35% FA) are shown. Here, the

tractography fails almost completely in the patient’s brain and it would be not

possible to sample diffusion indices in that area using individual algorithm. Using

the template, the analysis of diffusion can be extended to that area, that in

normals belongs to a well-defined white matter tract.

To better highlight the potential problems given by running the probabilistic

tractography in patients, the estimated dispersion relative to the principal and

the secondary diffusion direction have been taken into consideration. It is to

be expected that for patients the dispersion, that is a quantification of the un-

certainty in the estimation of the diffusion direction, has higher values than for

controls, where the tractography in the white matter deals with normal, healthy

tissue. Results for this analysis can be seen in figure 6.6 and figure 6.7. It can

be seen that for patients the dispersion is consistently higher in respect to healthy.

We next compared the estimates of damage produced by using the patients’ trac-
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Figure 6.4: 3D representation of tract from right thalamus to right anterior cingulate cortex.
Blue ROIs: right thalamus and right anterior cingulate cortex. Yellow tract: template averaged
tract. Green tract: Individual tractography output. Red areas: voxels with MD > MDmean +
3sd. A patient with a low percentage of damaged voxels (a) and a patient with a high percentage
of voxels with high MD (b) are depicted. c) ) T1 slice for the same subject depicted in b). The
structural image does not show gross damage. d) Histogram of MD values in the same tract
depicted above. Black: mean atlas MD. Blue: MD values for patient depicted in a) (patient 1).
Red: MD values for patient depicted in b) (patient 5).)
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Figure 6.5: 3D representation of tract from left thalamus to left inferior frontal gyrus. Blue
ROIs: left thalamus and left inferior frontal gyrus. Yellow tract: atlas tract. Green tract:
individual tractography output. Red areas: voxels with MD > MDmean + 3sd. A patient with
a low percentage of damaged voxels (a) and a patient with a high percentage of voxels with high
MD (b) are depicted. c) T1 slice for the same subject depicted in b). The structural image does
not show, especially on the left side, a load of damage that prevents the presence of a white
matter tract. That tract is not detected by tractography. d) Histogram of MD values in the
same tract depicted above. Black: mean atlas MD. Blue: MD values for patient 1. Red: MD
values for patient 6.
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Figure 6.6: Mean percentage across subjects of the number of voxels with dispersion higher
than the mean healthy dispersion + 3SD for the principal diffusion direction. Patients have a
higher percentage of voxels with high dispersion in the analysed tracts, with values significantly
different from those of healthy in 8 out of 10 tracts.

Figure 6.7: Mean percentage across subjects of the number of voxels with dispersion higher
than the mean healthy dispersion + 3SD for the secondary diffusion direction. Patients have a
higher percentage of voxels with high dispersion in the analysed tracts, with values significantly
different from those of healthy in 8 out of 10 tracts.
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tography and the tract template assessment. Mean FA and MD were extracted

using both approaches, with the second masking approach used to maximize sen-

sitivity to damage and exclude CSF, that is often present in large quantities

in patients. Using the template, the number of voxels with abnormal diffusion

charachteristics was in general higher than using the output of tractography, es-

pecially for patients with a high level of damage (see tables 6.5, 6.6, 6.7, 6.8).

6.5 Discussion

Thalamic dysfunction appears to be a key determinant of clinical outcome after

TBI e. g. [175]. Therefore, the ability to robustly define the impact of TBI on

thalamo-cortical connections is important. The key finding is that areas of low

FA resulting from traumatic axonal injury after TBI disrupt the reconstruction

of individual tracts. This results in uncertainty about the validity of the tracts

produced in individual patients, and makes DTI metrics extracted from these

tracts difficult to interpret. This is an important problem as DTI is increasingly

being used to study the pathological effects of TBI e.g.[176, 177, 178], and it is

important to quantify the amount of damage within particular tracts of interest

[146]. The use of probability maps coupled with careful registration provides an

alternative to tractography performed in individual patients. It is shown how this

can be used in TBI patients to estimate the amount of damage in a particular

tract.

Probability maps of large tracts have previously been shown to provide an efficient

tool for investigating white matter structure that bypass some of the problems

of performing tractography in patient populations [115]. In this study maps for

11 large white matter tracts were generated from control DTI data. The method

described in this thesis addresses two problems cited in [115, 116], i.e. difficult

registration and partial volume effects. The registration between DTI individual

89



A novel method for the evaluation of structural connectivity in
pathological brains

P
ercen

tag
es

(%
)

T
ra

ct
1

2
3

4
5

6
7

8
9

1
0

11
12

13
14

15
16

17
18

19
20

21
22

L
eft

T
H

-
left

A
C

C
0
.6

4
0
.6

8
2
.5

3
2.8

5
10.53

63.17
2.63

1.99
3
.52

0.8
9

1
.4

2
1.99

0.07
1.99

0.53
3.13

7.37
0.39

1
4.13

0.46
12.78

0.3
9

R
ig

h
t

T
H

-
rig

h
t

A
C

C
1
.1

7
2
.8

9
0
.4

9
1
6.0

6
28.81

71.84
2.76

6.27
5
.31

6.6
0

7
.9

2
4.79

0.31
2.12

0.09
12.81

21.90
0.25

1
5.23

1.78
6.36

0.2
8

L
eft

T
H

-
left

IF
G

0
.6

9
0
.3

8
1
.0

2
4.8

0
10.84

47.96
2.22

2.36
5
.68

1.0
2

4
.5

5
2.88

0.22
2.91

0.41
4.53

6.36
0.38

1
7.97

0.63
14.79

1.1
0

R
ig

h
t

T
H

-
rig

h
t

IF
G

1
.1

2
2
.2

8
1
.3

6
1
7.8

2
19.92

53.92
1.56

5.67
6
.22

7.8
8

5
.4

8
3.05

0.67
4.24

0.22
19.15

20.12
0.25

1
5.04

4.11
9.89

1.1
2

L
eft

T
H

-
left

S
F

G
0
.5

5
0
.3

5
0
.3

9
3.3

8
14.32

59.13
2.74

2.35
7
.46

1.1
3

2
.2

3
3.36

0.14
4.33

0.32
5.00

5.64
0.30

1
6.79

0.58
13.33

0.2
5

R
ig

h
t

T
H

-
rig

h
t

S
F

G
1
.7

6
2
.6

0
0
.9

5
1
6.1

7
23.89

62.07
1.83

6.73
5
.61

7.7
4

7
.3

7
5.59

0.18
6.56

0.13
17.25

16.92
0.26

1
8.09

3.19
7.48

0.3
1

L
eft

T
H

-
left

P
L

0
.2

8
0
.1

8
0
.2

8
2.2

0
20.79

37.80
0.30

0.58
3
.31

2.1
2

2
.0

2
8.91

0.13
2.85

0.56
8.02

12.47
0.18

1
0.75

0.45
11.00

2.0
7

R
ig

h
t

T
H

-
rig

h
t

P
L

0
.9

5
1
.6

9
1
.1

8
2.4

1
26.71

38.48
0.90

2.27
2
.13

9.8
1

3
.4

9
1
6.72

0.95
1.76

0.12
7.84

11.91
0.02

1
8.04

5.74
11.12

0.9
3

L
eft

T
H

-
left

T
G

0
.3

3
0
.3

7
1
.4

7
1.7

6
11.42

15.32
0.53

0.87
5
.23

1.5
3

1
.0

7
5.23

0.37
1.67

0.23
7.19

11.86
0.07

6.36
2.30

10.12
1.8

0

R
ig

h
t

T
H

-
rig

h
t

T
G

1
.4

3
4
.2

5
2
.7

6
3.6

7
23.20

18.30
2.08

2.21
2
.53

1
0.6

1
3
.4

7
1
2.36

1.07
3.02

0.32
13.86

13.40
0.00

1
2.56

9.28
11.65

0.7
5

T
a
b
le

6
.5

:
P

ercen
ta

g
e

o
f

v
ox

els
w

ith
M

D
h
ig

h
er

th
a
n

h
ea

lth
y

m
ea

n
M

D
fo

r
2
2

T
B

I
p
a
tien

ts.
P

ercen
ta

g
es

co
m

p
u
ted

u
sin

g
th

e
tra

cts
o
b
ta

in
ed

fro
m

th
e

a
tla

s.

90



6.5 Discussion

P
er

ce
n
ta

g
es

(%
)

T
ra

ct
1

2
3

4
5

6
7

8
9

10
11

1
2

13
14

15
16

17
18

19
2
0

2
1

2
2

L
ef

t
T

H
-

le
ft

A
C

C
0.

36
0.

39
1.

60
1.

32
0.

00
1.

03
0.

00
0.

25
0.

46
0
.5

0
0.

75
1
.4

9
0
.0

0
0.

00
0.

00
0.

6
4

0.
00

0.
00

5.
05

0
.0

0
7
.6

9
0
.2

5

R
ig

h
t

T
H

-
ri

g
h
t

A
C

C
0.

06
1.

17
0.

37
2.

83
0.

00
21

.7
8

0.
03

1.
11

2.
09

2
.0

6
1.

97
3
.4

7
0
.0

6
1.

17
0.

09
5.

2
2

7.
22

0.
18

6.
45

1
.5

7
5
.0

4
0
.1

2

L
ef

t
T

H
-

le
ft

IF
G

0.
27

0.
27

0.
49

3.
07

3.
54

6.
26

0.
05

0.
14

1.
04

0
.6

0
1.

76
2
.6

3
0
.0

3
1.

32
0.

19
0.

0
0

0.
91

0.
22

10
.5

9
0
.0

3
1
2
.1

5
0
.1

6

R
ig

h
t

T
H

-
ri

g
h
t

IF
G

0.
42

0.
79

0.
20

9.
24

3.
99

28
.9

4
0.

27
0.

25
3.

30
1
.0

7
2.

33
1
.9

1
0
.4

2
1.

39
0.

12
10

.4
1

9.
34

0.
10

7.
68

2
.9

2
5
.3

3
0
.7

7

L
ef

t
T

H
-

le
ft

S
F

G
0.

39
0.

28
0.

30
2.

07
3.

55
20

.1
5

0.
39

0.
71

1.
73

0
.4

4
0.

78
2
.4

6
0
.0

7
0.

41
0.

00
0.

2
1

0.
12

0.
00

10
.5

2
0
.0

7
9
.9

2
0
.2

1

R
ig

h
t

T
H

-
ri

g
h
t

S
F

G
0.

26
1.

25
0.

42
3.

96
2.

40
32

.8
1

0.
26

1.
85

3.
72

3
.1

5
2.

07
5
.2

1
0
.0

9
3.

17
0.

15
7.

6
6

9.
35

0.
26

11
.7

9
2
.9

5
5
.1

7
0
.1

3

L
ef

t
T

H
-

le
ft

P
L

0.
25

0.
08

0.
05

1.
64

16
.5

0
31

.0
4

0.
08

0.
18

1.
97

1
.8

9
0.

43
8
.8

8
0
.0

0
0.

88
0.

03
2.

8
0

3.
41

0.
10

9.
21

0
.0

8
1
0
.4

5
1
.6

7

R
ig

h
t

T
H

-
ri

g
h
t

P
L

0.
81

0.
74

0.
37

1.
83

23
.2

9
24

.2
6

0.
14

1.
41

1.
09

5
.7

6
2.

27
14

.8
9

0
.4

4
1.

30
0.

07
6.

1
1

11
.1

2
0.

00
13

.0
2

3
.5

8
8
.7

9
0
.6

5

L
ef

t
T

H
-

le
ft

T
G

0.
23

0.
33

1.
13

1.
43

7.
89

11
.7

2
0.

07
0.

30
4.

20
0
.4

0
0.

37
5
.0

0
0
.0

0
0.

70
0.

07
1.

1
7

3.
40

0.
07

3.
73

0
.2

3
9
.1

2
1
.3

7

R
ig

h
t

T
H

-
ri

g
h
t

T
G

1.
33

3.
05

2.
34

3.
05

19
.9

9
13

.3
4

0.
71

1.
91

2.
34

4
.7

4
1.

98
9
.8

0
0
.7

5
1.

85
0.

29
10

.0
9

12
.5

6
0.

00
9.

09
6
.0

7
6
.2

0
0
.7

8

T
a
b
le

6
.6

:
P

er
ce

n
ta

g
e

o
f

v
ox

el
s

w
it

h
M

D
h
ig

h
er

th
a
n

h
ea

lt
h
y

m
ea

n
M

D
fo

r
2
2

T
B

I
p
a
ti

en
ts

.
P

er
ce

n
ta

g
es

co
m

p
u
te

d
u
si

n
g

th
e

in
d
iv

id
u
a
l

tr
a
ct

o
g
ra

p
h
y

o
u
tp

u
ts

.

91



A novel method for the evaluation of structural connectivity in
pathological brains

P
ercen

tages
(%

)

T
ract

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
2
0

21
22

L
eft

T
H

-
left

A
C

C
0,0

0
0
,23

0,63
1,06

7,84
28,68

3,34
0,30

2,18
2,58

0,23
2,08

0,10
1,46

0,04
1,26

1,42
0,33

4,05
0
,22

2
,52

0,9
6

R
igh

t
T

H
-

rig
h
t

A
C

C
0,0

0
0
,18

0,70
7,19

6,11
39,42

1,70
1,41

1,37
0,53

0,21
2,02

0,00
0,10

0,00
0,97

1,08
0,35

5,23
0
,35

1
,03

0,6
4

L
eft

T
H

-
left

IF
G

0,0
0

0
,16

0,16
1,44

7,90
27,35

2,19
0,82

2,94
3,98

0,19
2,53

0,24
4,03

0,09
2,09

1,31
0,29

4,52
0
,27

3
,86

1,1
9

R
igh

t
T

H
-

rig
h
t

IF
G

0,0
0

0
,17

0,61
12,3

5
6,70

36,78
2,23

2,15
1,37

4,11
0,20

2,71
0,11

1,48
0,00

4,71
2,98

0,27
4,16

0
,56

2
,61

0,8
0

L
eft

T
H

-
left

S
F

G
0,0

0
0
,24

0,09
2,40

7,15
27,71

2,09
0,91

3,22
2,66

0,40
2,52

0,11
3,87

0,05
2,47

1,67
0,31

4,72
0
,48

2
,94

1,0
6

R
igh

t
T

H
-

rig
h
t

S
F

G
0,0

0
0
,24

0,09
2,40

7,15
27,71

2,09
0,91

3,22
2,66

0,40
2,52

0,11
1,90

0,13
2,47

1,67
0,31

4,72
0
,48

2
,94

1,0
6

L
eft

T
H

-
left

P
L

0,0
0

0
,17

0,25
0,20

4,71
14,89

0,10
0,03

0,68
1,01

2,19
1,68

0,03
0,13

0,03
1,23

2,08
0,15

1,68
0
,37

0
,87

1,3
2

R
igh

t
T

H
-

rig
h
t

P
L

0,0
2

0
,17

0,05
0,21

3,68
12,21

0,17
0,00

0,74
1,82

0,76
3,67

0,17
0,10

0,08
3,30

3,53
0,11

5,67
0
,49

1
,38

0,3
0

L
eft

T
H

-
left

T
G

0,1
3

0
,20

0,07
0,40

6,48
10,12

0,00
0,32

0,62
2,93

0,59
0,65

0,14
0,23

0,00
2,09

2,17
0,00

0,49
0
,81

1
,54

0,5
3

R
igh

t
T

H
-

rig
h
t

T
G

0,0
3

0
,06

0,03
0,20

6,25
9,23

0,35
0,00

0,10
4,96

0,16
3,71

0,14
0,35

0,00
3,77

3,31
0,00

0,86
0
,96

2
,30

0,6
4

T
a
b
le

6
.7

:
P

ercen
ta

g
e

o
f

v
ox

els
w

ith
F
A

low
er

th
a
n

h
ea

lth
y

m
ea

n
F
A

fo
r

2
2

T
B

I
p
a
tien

ts.
P

ercen
ta

g
es

co
m

p
u
ted

u
sin

g
th

e
th

a
la

m
o
-co

rtica
l

tem
p
la

te.

92



6.5 Discussion

P
er

ce
n
ta

ge
s

(%
)

T
ra

ct
1

2
3

4
5

6
7

8
9

10
1
1

12
13

1
4

15
16

1
7

18
1
9

20
2
1

2
2

L
ef

t
T

H
-

le
ft

A
C

C
0,

0
0

0
,2

1
0,

28
0,

87
0,

09
10

,8
2

1,
20

0,
33

0
,1

2
0
,4

3
0,

17
2
,0

4
0
,0

0
0,

09
0,

04
0,

49
1,

02
1
0,

82
6,

4
6

0
,4

9
2,

4
0

1,
7
6

R
ig

h
t

T
H

-
ri

g
h
t

A
C

C
0,

0
4

0
,2

0
0,

08
0,

85
4,

58
7,

32
1,

35
0,

24
0
,0

0
0
,0

0
0,

00
1
,8

9
0
,0

0
1,

64
0,

15
0,

00
0,

67
1
9,

67
7,

6
9

0
,0

0
6,

7
9

2,
4
0

L
ef

t
T

H
-

le
ft

IF
G

0,
0
4

0
,2

6
0,

22
20

,3
5

4,
01

13
,9

8
0,

95
0,

88
0
,0

5
0
,6

2
0,

03
1
,4

7
0
,9

9
0,

83
0,

05
5,

30
5,

15
1
2,

68
4,

3
5

1
,5

0
3,

6
0

2,
5
6

R
ig

h
t

T
H

-
ri

g
h
t

IF
G

0,
0
1

0
,2

1
0,

08
0,

92
5,

18
6,

96
1,

13
0,

57
0
,0

0
0
,0

0
0,

00
1
,8

0
0
,0

8
0,

84
0,

00
2,

82
0,

66
1
2,

31
6,

2
3

0
,0

2
5,

1
2

2,
6
8

L
ef

t
T

H
-

le
ft

S
F

G
0,

0
2

0
,3

3
0,

20
2,

13
1,

63
12

,7
2

1,
56

0,
77

0
,2

5
0
,6

4
0,

85
1
,0

2
0
,0

2
0,

83
0,

05
1,

35
1,

49
1
2,

93
6,

2
4

0
,9

2
3,

7
7

1,
8
0

R
ig

h
t

T
H

-
ri

g
h
t

S
F

G
0,

0
0

0
,0

9
0,

04
0,

15
1,

53
4,

10
0,

09
0,

02
0
,0

0
0
,0

0
0,

00
0
,9

0
0
,0

0
0,

09
0,

00
0,

51
0,

90
7,

41
3,

3
1

0
,0

8
2,

1
3

1,
8
4

L
ef

t
T

H
-

le
ft

P
L

0,
0
5

0
,2

0
0,

08
0,

16
1,

49
4,

70
0,

13
0,

05
0
,3

9
0
,0

5
0,

23
1
,6

5
0
,5

7
0,

18
0,

07
3,

88
5,

09
8,

71
5,

4
2

1
,1

1
2,

0
7

0,
7
9

R
ig

h
t

T
H

-
ri

g
h
t

P
L

0,
0
3

0
,0

7
0,

02
0,

19
2,

19
2,

38
0,

06
0,

03
0
,0

0
0
,0

0
0,

00
0
,3

7
0
,0

0
0,

34
0,

00
1,

37
0,

76
1
0,

28
1,

0
9

0
,2

7
2,

8
2

0,
9
1

L
ef

t
T

H
-

le
ft

T
G

0,
0
6

0
,1

6
0,

07
0,

11
2,

32
3,

56
0,

35
0,

03
0
,0

0
0
,0

0
0,

11
1
,6

5
0
,8

7
0,

10
0,

02
3,

78
5,

16
4,

81
1,

5
0

1
,8

9
2,

8
0

0,
8
4

R
ig

h
t

T
H

-
ri

g
h
t

T
G

0,
0
0

0
,2

1
0,

28
0,

87
0,

09
10

,8
2

1,
20

0,
33

0
,1

2
0
,4

3
0,

17
2
,0

4
0
,0

0
0,

09
0,

04
0,

49
1,

02
1
0,

82
6,

4
6

0
,4

9
2,

4
0

1,
7
6

T
a
b
le

6
.8

:
P

er
ce

n
ta

g
e

o
f

v
ox

el
s

w
it

h
F
A

lo
w

er
th

a
n

h
ea

lt
h
y

m
ea

n
F
A

fo
r

1
2

T
B

I
p
a
ti

en
ts

.
P

er
ce

n
ta

g
es

co
m

p
u
te

d
u
si

n
g

th
e

in
d
iv

id
u
a
l

tr
a
ct

o
g
ra

p
h
y

o
u
tp

u
ts

.

93



A novel method for the evaluation of structural connectivity in
pathological brains

spaces and the MNI template has been made using nonlinear techniques, to ac-

count for deformations and to provide a more precise alignment with standard

space. In fact, transformation to a standard space must account also for defor-

mations that can not be covered with a linear transformation, whereas when the

alignment is made between images acquired with different imaging methods, or

in different times, for the same subject, linear registration can provide all the

necessary information. Moreover, the use of a nonlinear method is a powerful

way to achieve the best alignment for pathological brains. After a thorough vi-

sual assessment of the registrations, it has been possible to note that the use of

nonlinear algorithms can give more accurate mapping from individual to MNI

space in the case of the here considered TBI patients.

To avoid partial volume effects, only the center of the selected tracts are consid-

ered, using a white matter skeleton obtained using the TBSS procedure, and also

masked out the CSF, that is enlarged in patients, utilizing an individual CSF

segmentation obtained with FSL. This is particularly important in the case of

the most severely affected patients, because the CSF is massively present also

in areas normally not affected by partial volume, and obviously the inclusion of

CSF in the evaluation of damage could lead to erroneous considerations.

Using probabilistic tractography has some advantages over deterministic tractog-

raphy, particularly when one wants to investigate tracts that involve deep gray

matter structures. Moreover, probabilistic tractography relies less than deter-

ministic on user-dependent parameters as the FA thresholds. The benefits of

masking the probability maps are specifically addressed, and it is shown that

focusing investigation to the center of white matter tracts, as expected, produces

a better convergence of results between the probability templates and the indi-

vidual tractography approaches in the control group.

As with any in vivo human tractography study there is no ’gold standard’ for
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identifying the location of white matter tracts. Probabilistic tractography in an

individual can produce idiosyncratic and noisy estimates of tract location, which

may complicate the comparison of results across individuals and across groups of

subjects. The goal of using the template tracts was to provide a more robust way

of estimating white matter integrity from areas of white matter that in general

are contained within a particular tract of interest. A complete correspondence

between the two approaches is not to be expected, but comparing them provides

a way of studying how much they converge on similar answers. An inter-subject

variation in tractography outputs is to be expected. [116] showed that, although

the overlap between individual results and a tracts template is not expected to

be perfect, the use of a template, obtained for particular white matter tracts and

using deterministic tractography, can be considered to give results comparable to

those obtained with individual tractography. Not only diffusion indices obtained

with the two methods strongly correlate, but it is also not possible to find a statis-

tical difference between the distribution of values of these indices obtained from

the template and from individual results in the majority of cases. This result is

confirmed when these correspondences have been tested in healthy subjects not

involved in the template creation, in addition to those from which the template

tracts have been derived.
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Chapter 7

Evaluation of diffusion indices

in patients

7.1 Introduction

As seen in chapter 2, water diffusion characteristics can help in the interpreta-

tion of disease and in particular of microstructural damage, which is often present

in neurological and psychiatric pathologies. In the course of this chapter, three

pathologies will be taken into consideration: multiple sclerosis, schizophrenia and

bipolar disorder. These two last diseases will be accounted for in conjunction,

because the interest was in finding structural differences between the two patholo-

gies. Aim of this part of the thesis is to find structural abnormalities, in terms

of diffusion indices, in particular FA, in patients.

In the case of multiple sclerosis, the analysis described in next sections focuses

on gray matter damage. As already introduced, multiple sclerosis patients often

show gray matter lesions, that in the past weren’t extensively considered. More

recently, it has been demonstrated that conventional MRI only shows a minimal

part of the real lesion load in gray matter [179, 180]. Moreover, these lesions

seem to be related to the clinical cognitive impairment in patients [181, 182] and
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they have been demonstrated to be present since the early stages of disease for

example in [183, 184]. Cortical pathology is histologically different from white

matter [180], in example massive demyelination of gray matter is found, as well

as less inflammation in respect to white matter lesions. Cortical pathology is to

date still not clear, thus it is of importance to gain information about the struc-

tural changes that occur for this tissue. Aim of this study was to determine if

the diffusion characteristics of gray matter lesions are different from the normal-

appearing gray matter, and if they change over time.

In 7.3.2 a whole brain analysis [173] for FA values of patients affected by schizophre-

nia or bipolar disorder is presented. As described in section 2.2.3, white matter

abnormalities in these pathologies, in terms of fractional anisotropy (FA), are

reported by several studies investigating the neuropathology of these disorders.

The study here presented is the first that compares directly these two pathologies

in term of diffusion whole-brain analysis.

7.2 Datasets

7.2.1 Dataset 1: MS patients for the evaluation of cortical lesions

In this study, 34 patients (12 males, 22 females, age 38 ± 12 years , duration

of disease 11 ± 9 years, EDSS 3.3 ± 1.8) affected by relapsing-remitting multi-

ple sclerosis were considered. Patients underwent MRI acquisitions with a 1.5T

scanner (Philips Achieva, Philips Medical Systems, Best, the Netherlands) twice,

in a 9-months period. The acquisition scheme comprised a high-resolution T1

sequence (TR = 25 ms, TE = 4.6, 256 x 256 x 120 matrix), a DTI sequence with

15 non-collinear directions of acquisition (TR = 15634 ms, TE = 25 ms, TI =

3400 ms, 256 x 256 x 50 matrix, 15 gradient directions, B0 = 800 s x mm2), and a

DIR (TR = 7974 ms, TE = 74 ms, 256 x 256 x 50 matrix) sequence. All patients

were examinated in Euganea Medica, Padova, Italy. This study was conducted
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in collaboration with the Multiple Sclerosis Centre of Veneto region, Dept. of

Neurosciences, University Hospital of Padova, Italy.

7.2.2 Dataset 2: schizophrenia and bipolar disorder patients

61 healthy controls, 17 schizophrenic patients and 9 patients affected by bipolar

disorder underwent MRI scans using a 3T Siemens Allegra scanner. DTI data

were acquired along 30 directions, with parameters B0 = 1000 s x mm2 and

matrix 128 x 128 x 23, TR = 5000 ms, TE = 118 ms. This study was done in

collaboration with the Section of Psychiatry and Psychological Medicine, Inter-

University Center for Behavioural Neurosciences, University of Verona, Verona,

Italy.

7.3 Methods

7.3.1 ROI-based studies of multiple sclerosis patients

Patients DTI images were corrected for distortions caused by eddy currents using

FSL - FMRIB’s Diffusion Toolbox (FDT) (www.fmrib.ox.ac.uk/fsl). All vol-

umes of the DTI sequence were registered to the first volume without diffusion

weighting, with a combination of scaling and translation [185].

FA maps were obtained with the linearized model [17] using the same software

(FSL). T1 images were registered to the DTI using a linear transformation with

FSL-FLIRT [163]. Thereafter, DIR images were registered to the previously reg-

istered T1 images, so that both DIR and T1 images were in subjects DTI space.

GM lesions at the two time points were manually segmented on the DIR images

and registered to the DTI using the same transformation used for the DIR im-

ages. Only lesions containing more than 5 voxels were considered. Cerebral GM

was segmented using SPM (http://www.fil.ion.ucl.ac.uk/spm/) from the T1

images. Voxels with a probability greater than 0.8 to belong to gray matter were

considered. . Mean FA and SD were calculated for the whole gray matter and
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for the gray matter MS lesions.

The values of FA were compared in the two time points, and gray matter FA was

compared with lesion FA (ranksum test, p = 0.05). Results of this study were

combined with those of a study involving cerebral perfusion in the same patients

and lesions.

7.3.2 Whole brain studies of schizophrenia and bipolar disorder

patients

Also for this study, image processing was done using FMRIB-FSL software. Eddy

currents correction was applied and FA maps were calculated using the linearized

model. Using the tract-based spatial statistics (TBSS) procedure [173], all FA

maps were non-linearly registered to the Montreal Neurological Institute (MNI)

standard space, using the FMRIB-58 FA standard space(created from the FA

maps of 58 healthy adult subjects brought in MNI space) with a resolution of 1

x 1 x 1 mm. All images were visually checked to ensure that the normalization

process didn’t cause misalignment or abnormal deformations. A FA skeleton

was then obtained, thinning the mean FA map and keeping only the center of

the white matter tracts. Then, to avoid residual misalignment, for all subjects

the appropriate voxels were projected into the skeleton, by choosing the voxel

with the highest FA along the perpendicular to the skeleton structure. Voxelwise

statistics were then performed using permutation-based nonparametric inference,

using randomize FSL tool. Schizophrenic patients - controls, bipolar patients -

controls and bipolar - schizophrenic patients contrasts were tested, taking into

consideration only a subset of healthy, to match the patients for age. Multiple

comparisons were corrected using threshold-free cluster enhancement (TFCE),

with a level of significance of p = 0.05. The analyses were conducted considering

age as a nuisance covariate to avoid confounding effects due to age differences

between the groups.
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7.4 Results

7.4.1 ROI-based studies of multiple sclerosis patients

Mean and standard deviation (SD) of the FA of the voxels belonging to lesions

were computed, using manually drawn ROIs on the DIR images, brought using

linear registration into individual DTI spaces. Each parameter was computed

both considering the mean value across all CLs together, and taking each lesion

separately, with consistent results. FA values of CLs resulted higher (Wilcoxon

rank-sum test, p=0.05)than the mean NAGM FA value, and their values mostly

don’t change significantly over the time span we considered. All subjects show,

in the two time points, elevated FA for the lesion voxels, even if the mean FA of

some lesions doesn’t differ with statistical significance (p=0.05) from the mean of

NAGM FA. The percentage difference between mean FA of the lesions and mean

FA of the GM ranges from 9.04% to 63.81%, with a mean of 35% at the first time

point (T0), while at the second time point (T9) the percentage difference was

from a minimum of 8.57% to a maximum of 59.34% with a mean of 32%. Five

illustrative examples are reported, for clarity, in figure 7.1.

It was possible to identify some lesions that had FA mean value significantly

(rank-sum test, p=0.05) lower than the mean NAGM FA. In all subjects, seven

of these lesions, called outliers because of theirs particular behavior, were found.

Their value over time is represented in figure 7.2. As can be seen, after nine

months these lesions didn’t show abnormal behavior in respect to the others.

Results obtained with DSC-MRI confirmed that these lesions showed values that

were different from the other GM lesions. In particular, these particular areas

showed high cerebral blood flow (CBF), in contrast to lower CBF in respect to

the NAGM detected in the other lesions. This could be explained hypothesizing

that these were at T0 active lesions, thus hyperperfused, that lose this activity

during the nine months occurred between the two scans. This can also be ex-
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Figure 7.1: Boxplots of the ratio of the mean cortical lesions FA on the mean gray matter FA.
All five patients showed as example show higher values of FA in the cortical lesions in both time
points. The value of the represented ratio doesn’t change sigificantly over time.

Figure 7.2: Left: mean value of the difference between mean FA in cortical lesions and in NAGM.
Right: behavior over of the seven outliers that showed a FA lower than the mean NAGM FA at
T0.
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plained with FA values. A decrease in FA followed by a subsequent increase could

indicate a period in which demyelination and inflammation is active, followed by

a period during which the lesion becomes chronic.

Although FA in gray matter hasn’t been evaluated in the past, in this study

differences in FA values have been found to be reliable and consistent over time.

Moreover, the precision of FA estimation in gray matter was not lower than

the precision in white matter. This increase in FA in lesions in respect to gray

matter could suggest that the pathologic process involves microstructural reorga-

nization, in particular microglial activation: microglial cells that change toward a

more elongated shape could explain from a biological point of view these findings

obtained with DTI.

7.4.2 Whole brain studies of schizophrenia and bipolar disorder

patients

Using the TBSS procedure illustrated in section 7.3.2, differences in FA were

investigated for three different combinations of groups: bipolar disorder patients

and healthy controls, schizophrenia patients and healthy controls, and bipolar

and schizophrenia patients directly. In agreement with literature, the comparison

between bipolar disorder and healthy demonstrated widespread FA differences.

Decreased FA can be noted in various white matter tracts, as corpus callosum,

corona radiata and superior longitudinal fasciculus, as can be seen in figure 7.3.

These differences resulted statistically significant (p=0.05) after TFCE correction

for multiple comparisons and correction for age effects.

The comparison between schizophrenia and healthy revealed, among other struc-

tures, significantly reduced FA (p=0.05, TFCE correction, correction for age

effects) in corpus callosum and corona radiata, clearly affected by the disease.

Results are illustrated in figure 7.4.
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Figure 7.3: Results of TBSS voxel-wise analysis for 9 patients affected by bipolar disorder versus
17 age-matched healthy controls. Voxel in green represent the TBSS white matter skeleton.
Voxel in red-yellow are the voxel where FA for patients is statistically lower than for healthy,
after TFCE multiple comparisons correction (p = 0.05). Widespread white matter damage was
found, especially in corpus callosum and longitudinal fasciculus (statistical significance is higher
where the color assigned to the voxel is brighter)

Then, patients affected by the two diseases were compared directly. This direct

comparison of voxel-wise FA has never been published, thus here are reported

both uncorrected and TFCE corrected results.

Lower FA for bipolar patients than for schizophrenia patients was found, as can

be seen in figures 7.5 and 7.6, in the corpus callosum and in the right and left lon-

gitudinal fasciculus. These differences didn’t reach statistical significance when

corrected for multiple comparisons. It is to be noted, though, that in two clus-

ters of voxels located within the superior left superior longitudinal fasciculus tract

and the corpus callosum, a difference can be found between the two group, not

much below the level of significance (p = 0.09), as can be seen in figure 7.6.

Abnormality in the diffusion parameters in the longitudinal fasciculus in bipo-

lar disorder patients, in respect to healthy, have been previously been reported,

e.g. in [162]. A comparison between bipolar disorder and schizophrenia, in terms

of diffusion, has been done in [186], utilizing voxel-based morphometry (VBM).

TBSS has the great advantage, over VBM, of restricting the analysis to the centre

of white matter tracts. This allows potential partial volume effects to be reduced,

and to focus the attention on the possible disruption of connections, that is of
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Figure 7.4: Results of TBSS voxel-wise analysis for 17 patients affected by schizophrenia versus
17 age-matched healthy controls. Voxel in green represent the TBSS white matter skeleton.
Voxel in red-yellow are the voxel where FA for patients is statistically lower than for healthy,
after TFCE multiple comparisons correction (p = 0.05). White matter tracts damage was found,
especially in corpus callosum and corona radiata (statistical significance is higher where the color
assigned to the voxel is brighter

Figure 7.5: Results of TBSS voxel-wise analysis for 9 patients affected by bipolar disorder versus
17 patients affected by schizophrenia. Voxel in green represent the TBSS white matter skeleton.
Voxel in red-yellow are the voxel where FA for patients is statistically lower than for healthy,
uncorrected (p = 0.05). White matter tracts damage was found, especially in corpus callosum
and corona radiata (statistical significance is higher where the color assigned to the voxel is
brighter.) Results here reported are not corrected for multiple comparisons.
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Figure 7.6: Results of TBSS voxel-wise analysis for 9 patients affected by bipolar disorder versus
17 patients affected by schizophrenia. Voxel in green represent the TBSS white matter skeleton.
Voxel in red-yellow are the voxel where FA for patients is statistically lower than for healthy,
after TFCE multiple comparisons correction (p = 0.09). There are two clusters of voxels, in
corpus callosum and left superior longitudinal fasciculus that show difference between the two
groups, although statistical significance is not reached.

primary importance in psychiatric diseases. Given the promising results of this

exploratory study, an increase in the number of patients could help in better un-

derstanding the diffusion characteristics present in these two groups of patients,

also by strengthening the results statistical value.
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Chapter 8

Conclusions

In this thesis, a novel approach for the evaluation of brain structure and integrity

has been proposed. In particular, a novel method for tractography and a novel

method for the evaluation of structural thalamo-cortical connectivity have been

presented.

The tractography algorithm presented in chapter 5 has been developed especially

for the evaluation of white matter lesions in multiple sclerosis. To do so, partic-

ular attention has been posed on the best way to track fibers that are affected

by the presence of demyelinated lesions. The method is a combination of two

techniques: the fiber-assignment by continuous tracking (FACT) and the tensor

deflection (TD) algorithms. In this way, it has been possible to combine the sim-

plicity and rapidity of the FACT algorithm, used when diffusion directionality is

well defined, and the robustness to noise of the tensor deflection method, that

allowed the tracking also through the white matter lesions. This is a great ad-

vantage on the conventional methods of tractography, that often interrupts the

tracking bluntly when encountering a lesion, losing the possibility of investigating

its diffusion properties. Future work regardig this method will involve the inte-

gration of the method from a stochastic point of view, that could allow a more

in-depth evaluation of diffusion inside white matter demyelinating MS lesions.
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For the evaluation of thalamo-cortical connectivity, a method based on the use of

a template has been proposed in chapter 6. From a cohort of healthy volunteers,

thalamo-cortical connections have been derived using probabilistic tractography,

run from left and right thalamus to ten different cortical areas. This template

has been validated in healthy, and then applied in traumatic brain injury (TBI)

patients. Using the template, various damaged tracts have been identified, and

it has also been possible to investigate quantitatively the amount of damage for

each patient and each considered tract. This method has several advantage on

conventional tractography done directly on patients: it is less time consuming

than estimating the tracts for every patient and it is completely automatic, elim-

inating the need of supervision by expert clinicians. More importantly, it allows

the determination of diffusion characteristics in tracts where the tractography in

patients fails, because of the damage provoked by trauma. This is of primary

importance, because in this way white matter disruption can be identified and

evaluated, comparing it with the behavior of diffusion in healthy, even if the tissue

microstructure is compromised. In respect to the other few methods that apply

a template of connectivity, this here presented has the advantage of focalising in

the thalamic connections, particularly important in the case of TBI patients. A

natural future expansion for this work will be the integration of this technique

with fMRI, to analyze the interconnection of structure and function, regarding

the connections between the thalamus and the cortex, both in healthy and for

TBI patients.

In chapter 7, diffusion indices have been evaluated for multiple sclerosis, bipolar

disorder and schizophrenia patients. Diffusion anisotropy of gray matter lesions

has been taken into consideration. The obtained results, described in section

7.4.1, revealed a modification of diffusion behavior in gray matter plaques. This

evidentiates that the disease causes a reorganization of brain microstructure. This
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is one of the first studies that considers diffusion properties of gray matter MS

lesions and, to date, the first to have followed diffusion changes over time, with

a longitudinal study. Results obtained with tract-based spatial statistics (TBSS)

for the populations of healthy, bipolar disorder patients and schizophrenia pa-

tients, presented in section 7.4.2 are promising, especially the direct comparison

between bipolar and schizophrenic patients, never investigated before in terms of

whole brain diffusion properties, and will be integrated with a dataset of SUV-

PET that is already being acquired.

In conclusion, in this thesis an overview on DTI is presented, as well as some

novel algorithms and applications with the aim of better investigating and un-

derstanding microstructural brain charachteristics and organization in vivo.
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