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Abstract

The notion of likelihood function plays a central role in classical statistical
inference, in particular from a Fisherian perspective, and represents an es-
sential concept for Bayesian inference. Modern high-dimensional data, such
as spatial data or complex structured longitudinal data, have generated chal-
lenges to the use of likelihood-based methods. These challenges involve both
theoretical and computational di�culties that can be encompassed by speci-
fying suitable pseudo-likelihoods, and in particular this thesis focuses on the
class of composite likelihood functions.

In the present thesis three issues regarding composite likelihood infer-
ence will be discussed. The �rst one concerns the non-standard asymptotic
distribution of composite log likelihood ratios. In order to recover the stan-
dard chi-square asymptotic distribution, an empirical log likelihood ratio test
statistic derived from the composite score function is proposed. The second
one is the possible lack of accuracy of composite likelihood test statistics.
Accurate estimates of tail area probabilities can be obtained by using the
proposed non-parametric saddlepoint test statistic, which is based on the
density of the maximum composite likelihood estimator. The third one con-
cerns the lack of robustness of the maximum composite likelihood estimator.
A robust maximum composite likelihood estimator with a high breakdown
point is derived by exploiting the idea of the minimum covariance determi-
nant estimator.





Sommario

La nozione di funzione di verosimiglianza gioca un ruolo fondamentale nel-
l'inferenza statistica, in modo particolare nell'approccio �sheriano, e rappre-
senta un concetto centrale nell'inferenza bayesiana. Dati con elevata dimen-
sionalità, come dati spaziali o dati longitudinali con struttura di dipendenza
complessa, hanno generato nuove s�de nell'utilizzo di procedure inferenziali
basate sulla funzione di verosimiglianza. Queste s�de coinvolgono sia as-
petti teorici che computazionali, che possono essere a�rontati mediante la
speci�cazione di opportune funzioni di pseudo-verosimiglianza. In partico-
lare, questa tesi è incentrata sulla classe delle funzioni di verosimiglianza
composite.

In questa tesi si discuteranno tre problemi che riguardano l'utilizzo delle
funzioni di verosimiglianza composite. Il primo problema riguarda la dis-
tribuzione asintotica non standard del test log rapporto di verosimiglian-
za composito. Al �ne di recuperare l'usuale distribuzione chi-quadrato,
viene proposto un rapporto di verosimiglianza empirico derivato dalla fun-
zione punteggio della verosimiglianza composita. Il secondo tema a�rontato
riguarda la possibile inacuratezza delle statistiche test ricavate dalle funzioni
di verosimiglianza composite. Per ottenere stime accurate delle probabilità
sulle code della distribuzione viene proposta una statistica test basata sul-
l'approssimazione del punto di sella. In�ne, il terzo problema riguarda la non
robustezza dello stimatore di massima verosimiglianza composita. A tal �ne
viene proposta una versione robusta di tale stimatore che è basata sull'idea
dello stimatore robusto �MCD� (minimum covariance determinant).
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Chapter 1

Introduction

The notion of likelihood function plays a central role in classical statisti-
cal inference, in particular from a Fisherian perspective, and represents an
essential concept for Bayesian inference. In the classical approach to in-
ference, procedures based on the likelihood function are general and have
optimal sampling properties, at least asymptotically, under relatively weak
assumptions.

The computation of the likelihood function is often at odds with the need
of introducing statistical models with highly structured dependencies or with
the necessity of dealing with very large datasets. Therefore, it may not be
convenient to specify, or compute, directly the likelihood function. Hence, it
may be relevant to de�ne suitable notions of approximate likelihoods, that
are useful for inference. Such approximate likelihoods often belong to the
wide class of pseudo-likelihoods, which includes, for instance, marginal and
conditional likelihoods, the integrated likelihood, the partial likelihood, the
pro�le likelihood and its modi�cations, the quasi-likelihood, the pairwise
likelihood and the composite likelihood.

The approximate nature of pseudo-likelihoods must be considered when
studying sampling properties of the related inferential procedures. Indeed,
in many cases it is necessary to introduce suitable modi�cations that allow
one to recover the usual asymptotic results of the proper likelihood. Several
pseudo-likelihoods have been introduced in the literature in order to deal
with complex models. However, the study of theoretical properties of the
corresponding inferential procedures is still in progress.

A brief review on the literature that partially deals with this topic is
given in Section 1.1, while in Section 1.2 the main contributions of the thesis
are described.
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CHAPTER 1. INTRODUCTION

1.1 Overview

When analyzing data on the basis of a statistical model, the availability of
a likelihood function for the quantities of interest leads to inferential pro-
cedures that are both general and simple to apply. Consider, for instance,
con�dence regions or testing procedures based on usual �rst-order approxi-
mations for the distribution of the maximum likelihood estimator or of the
log likelihood ratio statistic.

However, in the presence of complex models or in the presence of small
deviations from the assumed model, likelihood inference may encounter some
theoretical and computational di�culties. For instance, in models with com-
plicated temporal and/or spatial dependence structures, a likelihood function
based on the joint distribution of the observable data might even be unavail-
able. In other circumstances, the speci�cation of the joint distribution can
be straightforward, but the evaluation of the expression of the likelihood
function could be computationally rather cumbersome. For instance, model-
ing a spatial process with a Gaussian random �eld requires the determinant
and the inverse of the process' covariance matrix, whose dimension grows as
the number of observed sites increases (Stein et al., 2004). Finally, particu-
larly in complex models, possible deviations from model assumptions, and/or
the presence of outliers or in�uential observations, could produce unstable
inferences.

In order to take into proper account the above di�culties, one could con-
sider inference methods based upon unbiased estimating functions, whose
speci�cation only require mild assumptions concerning the random data gen-
erating mechanism, and on the associated pseudo-likelihood functions, such
as quasi-likelihoods (see, e.g., McCullagh, 1991), empirical likelihoods (see,
e.g., Owen, 2001) and composite likelihoods (see, among others, Lindsay,
1988; Varin et al., 2011). These pseudo-likelihoods enjoy some properties of
the full likelihood and prove useful in several context of practical interest.
For instance, the corresponding estimators are consistent and asymptoti-
cally normally distributed, and the pseudo-score function has zero mean.
Moreover, if the pseudo-score function is bounded, then the inferential pro-
cedures are robust with respect to outliers and in�uential observations (Ham-
pel et al., 1986). However, pseudo-log likelihood ratio statistics are not, in
general, asymptotically chi-square distributed (Kent, 1982) and their distri-
bution may depend on the elements of the Godambe information (Godambe,
1960).

In the above general context, this thesis focuses on some speci�c issues
related to a particular class of composite likelihoods, namely the pairwise
likelihood functions (Cox and Reid, 2004). Pairwise likelihoods are obtained
by combining either marginal or conditional distributions speci�ed for pairs
of observations. Pairwise likelihoods have received an increasing interest in
the last decade and there are a number of applications in statistical literature.

2



1.2. SUMMARY AND MAIN CONTRIBUTIONS OF THE THESIS

To quote just a few instances, we recall spatial data analysis (Hjort and
Omre, 1994; Heagerty and Lele, 1998; Varin et al., 2005), generalized linear
mixed models (Renard et al., 2004; Bellio and Varin, 2005), and longitudinal
models (Fieuws and Verbeke, 2006).

In spite of the high �exibility and multiplicity of applications of pairwise
likelihood functions, some concerns about the accuracy and the stability of
the associated inferential procedures need further investigation.

A �rst drawback emerges in hypothesis testing, when the pairwise ana-
logue of the log likelihood ratio statistic is considered. Indeed, the distri-
bution of the pairwise log likelihood ratio statistic does not converge to the
standard chi-square distribution, but to a linear combination of independent
chi-square variates, with coe�cients given by the eigenvalues of a matrix
related to the Godambe information (Kent, 1982). Analytical expressions
for this matrix are available in rather simple cases only, and to resort to its
empirical counterparts may lead either to a slowdown or to a failure of the
convergence to the distribution of the test statistic.

Another drawback with pairwise likelihood-based inference is related to
the robustness of the resulting procedures (Hampel et al., 1986). Although
the pairwise likelihood function is by construction obtained from a misspec-
i�ed model, it is, in general, not robust to outliers and in�uential observa-
tions. Indeed, pairwise score functions are combinations of genuine likelihood
scores that may be unbounded. As a consequence, the resulting maximum
pairwise likelihood estimator is, in general, not robust and this carries over
to the pairwise counterparts of the Wald, score and log likelihood ratio test
statistics, by a�ecting the stability of their coverage levels.

1.2 Summary and main contributions of the thesis

The main contributions of the present thesis are developed by exploiting the
high versatility of the estimating function theory, which is outlined in Chap-
ter 2. Chapter 3 introduces the pairwise likelihood functions, as a member
of the more general class of the composite likelihood functions. Their main
properties are reviewed and the two problems highlighted in the previous
Section, arising in making inference based on pairwise likelihood functions,
are discussed and outlined through simulation studies. These two problems
are then treated in the three main contributions of this thesis, which are
summarized below.

In Chapter 4 an empirical log likelihood ratio test statistic based on
the pairwise score function is provided, whose asymptotic distribution is
standard chi-square. Several adjustments to the pairwise log likelihood ratio
to approximate the usual chi-square distribution have been already proposed
(see, e.g., Geys et al., 1999; Chandler and Bate, 2007; Pace et al., 2011), but
they all require the computation of the elements of the Godambe information

3



CHAPTER 1. INTRODUCTION

which may be in some cases both computationally intensive and inaccurate.
In this thesis an empirical log likelihood ratio test statistic derived from the
pairwise score function is proposed, using the results in Adimari and Guolo
(2010). The empirical log likelihood ratio test statistic enjoys some of the
properties of the full likelihood one: the Bartlett-correctability (DiCiccio
et al., 1991); the derived con�dence regions capture skewness and kurtosis;
the ability to Studentize internally. In particular, the latter property leads
to a non-parametric version of the Wilk's theorem and hence the distribution
of the test statistic is standard chi-square while overcoming the estimation
of the elements of the Godambe information.

Chapter 5 discusses a proposal which aims at overcoming the problem of
poor accuracy of the pairwise log likelihood ratio statistic. A main concern
in the pairwise likelihood framework is to �nd the best design to build the
pairwise likelihood function (see, e.g., Lindsay et al., 2011; Davis and Yau,
2011). Indeed, the way the likelihood contributions are combined a�ects
the asymptotic variance of the maximum pairwise likelihood estimator. We
show that this problem may be circumvented by providing a test statistic
whose behavior does not rely on the particular design chosen to give raise to
the pairwise likelihood function. In particular, a non-parametric saddlepoint
test statistic (Robinson et al., 2003; Ma and Ronchetti, 2011) based on the
pairwise score function is derived, which enjoys some desirable properties: it
is asymptotically chi-square distributed and the approximation has a relative
error of second order. Hence, the proposed test statistic claims a high level
of accuracy but, nevertheless, it does not depend on the elements of the
Godambe information.

The aim of Chapter 6 is twofold: (i) to provide robust maximum pairwise
likelihood estimators and the related robust test statistics for the estimation
of multivariate location and scatter; (ii) to exploit the simpli�cations pro-
vided by the use of the pairwise likelihood function in order to provide general
robust procedures to deal with complex models. In particular, the focus is on
mixed linear models and time series models where classical robust estimat-
ing functions are di�cult to apply (see, e.g., Maronna et al., 2006; Heritier
et al., 2009). This research has moved towards the direction of providing
a robust maximum pairwise likelihood estimator with a high breakdown
point by exploiting the idea of the minimum covariance determinant estima-
tor (Rousseeuw, 1984). The robust maximum pairwise likelihood estimator
inherits from the minimum covariance determinant estimator both the dif-
�culty in deriving the asymptotic properties and a high breakdown point.
However, its computation is based on the pairwise score function and does
not involve the speci�cation of a new estimating function, as it is common in
order to obtain robust M- or S-estimators. Furthermore, the proposed robust
approach requires only mild assumptions about the shape of the underlying
distribution and the computation of the estimator can be performed with
a minor modi�cation of the existing algorithm for the minimum covariance

4



1.2. SUMMARY AND MAIN CONTRIBUTIONS OF THE THESIS

determinant estimator.
Several examples and simulation studies are reported in all the chapters

of the thesis.
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Chapter 2

Estimating functions and

pseudo-likelihoods

2.1 Introduction

Estimating functions provide a very general framework for statistical in-
ference, both from a theoretical and a practical point of view. In many
applications of practical interest, to rely on the assumptions that the spec-
i�cation of a likelihood function requires turns out to be either impossible
or too stringent. This happens, for instance, in the robust framework, when
the stability of the inferential procedures with respect to model misspeci�-
cation or contamination is required, or in the context of generalized linear
models, when over-dispersion occurs. Estimating functions are of intrinsic
value themselves, since they play a central role in motivating inference based
on both the likelihood function and several pseudo-likelihoods.

This Chapter aims at providing an overview about the theory of esti-
mating functions, which are introduced along with their basic properties.
The main ingredients useful to understand and encompass the subsequent
developments of this thesis are introduced. In particular, optimal estimat-
ing functions are outlined and their role is shown in the context of robust
inference. Moreover, a comprehensive view of the quasi-likelihoods and the
empirical likelihoods is provided, as speci�c classes of pseudo-likelihood func-
tions which are directly derivable from unbiased estimating functions. Ad-
ditionally, two simulation studies are included in order to compare the �nite
sample accuracy of con�dence intervals based on quasi and empirical log
likelihood ratio statistics.

2.2 Estimating functions and M-estimators

Let F = {f(y; θ); y ∈ Y ⊆ Rq, θ ∈ Θ ⊆ Rp, q, p ≥ 1} be a parametric sta-
tistical model for the random vector Y , and let Fθ = F (y; θ) be the distri-
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CHAPTER 2. ESTIMATING FUNCTIONS AND PSEUDO-LIKELIHOODS

bution function associated to f(y; θ). Suppose to observe a random sample
y = (y1, . . . , yn) of size n from Fθ.

The likelihood function for θ is

L(θ) = L(θ; y) =
n∏
i=1

f(yi; θ),

the log likelihood function is `(θ) = `(θ; y) = logL(θ) and the score function
is

`∗(θ) = `∗(θ; y) =
n∑
i=1

∂`(θ; yi)
∂θ

=
n∑
i=1

`∗(θ; yi). (2.1)

Under regularity assumptions always assumed in the following (see, e.g.,
Pace and Salvan, 1997, Sect. 1.4), the maximum likelihood estimator θ̂ is
de�ned as the solution of the score equation `∗(θ) = 0.

Basic properties of the score function (2.1) are the �rst and second
Bartlett's identities. The �rst Bartlett's identity gives the unbiasedness of
the score function, i.e.

E (`∗(θ;Y )) = 0, for all θ ∈ Θ,

while the second Bartlett's identity gives the information identity

Var (`∗(θ;Y )) = E
(
`∗(θ;Y )`∗(θ;Y )>

)
= −E

(
∂`∗(θ;Y )
∂θ>

)
= I(θ),

where I(θ) denotes the expected Fisher information matrix for one observa-
tion, and E(·) and Var(·) indicate expectation and variance with respect to
Fθ.

A generalization of the score function is given by the broad class of es-
timating functions (see, e.g., Godambe and Kale, 1991; Desmond, 1997),
that do not require to be the gradient of an objective function. Estimating
functions are functions both of the parameter θ and of the data y, of the
form

Ψθ = Ψ(θ; y) =
n∑
i=1

ψ(θ; yi), (2.2)

where ψ(·) : Θ× Y → R
p is a given function.

An estimator θ̃ for θ, obtained as the root of the estimating equation
Ψθ = 0, is called M-estimator (Huber, 1964, 1967) and can be viewed as a
generalization of the maximum likelihood estimator. The properties of both
estimating functions and M-estimators are reviewed in the following.

An estimating function is unbiased if

E (ψ(θ;Y )) = 0, for all θ ∈ Θ. (2.3)

8



2.2. ESTIMATING FUNCTIONS AND M-ESTIMATORS

Condition (2.3) does not necessarily imply the unbiasedness of the corre-
sponding M-estimator θ̃, unless Ψθ is linear in θ. However, under suitable
regularity conditions, the unbiasedness of the estimating function implies
the consistency of θ̃ (Clarke, 1983, 1986; Huber, 1967, 1981). Moreover, M-
estimators are approximately normal, with mean θ and covariance matrix

V (θ) = H(θ)−1J(θ)
(
H(θ)−1

)>
, where

J(θ) = Var(Ψθ) = E
(

ΨθΨ>θ
)

and H(θ) = −E
(
∂Ψθ

∂θ>

)
. (2.4)

Consistent estimates of J(θ) and H(θ) are

Ĵ(θ) =
1
n

n∑
i=1

ψ(θ; yi)ψ(θ; yi)>, Ĥ(θ) = − 1
n

n∑
i=1

∂ψ(θ; yi)
∂θ>

, (2.5)

The matrix G(θ) = V (θ)−1 is known as the expected Godambe informa-
tion (Godambe, 1960), and its sandwich form is due to the failure of the
second Bartlett's identity. When the score function `∗(θ) is considered, the
asymptotic normality for the maximum likelihood estimator holds with the
Godambe information replaced by the Fisher information.

2.2.1 Pro�le estimating functions

In parametric statistical models, very often only few components of the pa-
rameter are of interest. The remaining components are needed to increase
model adequacy and may be considered as nuisance, i.e. they describe addi-
tional aspects of the speci�ed family of probability distributions. Paralleling
likelihood procedures, the estimating function framework o�ers the opportu-
nity to make inference in the presence of nuisance parameters, by replacing
them with suitable consistent estimates.

Suppose that θ is partitioned as θ = (τ, λ), i.e. into a component of
interest τ and a nuisance component λ, whose dimensions are p0 and (p −
p0), respectively. Similarly, the estimating function is partitioned as Ψθ =
(Ψτ ,Ψλ), where Ψτ = Ψτ (θ; y) and Ψλ = Ψλ(θ; y) are the partial estimating
functions corresponding to τ and λ, respectively. This means that if λ was
known, then Ψτ may be used as an estimating function for τ . Let λ̃τ denotes
the constrained estimate of λ when τ is considered �xed, that is, the solution
of Ψλ(τ, λτ ; y) = 0, and let θ̃τ = (τ, λ̃τ ).

The elements (2.4) of the Godambe information are partitioned as well
as

J(θ) =
(
Jττ Jτλ
Jλτ Jλλ

)
and H(θ) =

(
Hττ Hτλ

Hλτ Hλλ

)
,

where, for instance, Jτλ = Jτλ(θ) = E
(
Ψτ (θ)Ψλ(θ)>

)
and Hτλ = Hτλ(θ) =

−E
(
∂Ψτ (θ)/∂λ>

)
.
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CHAPTER 2. ESTIMATING FUNCTIONS AND PSEUDO-LIKELIHOODS

The pro�le M-estimator τ̃ for τ is de�ned as the root of the pro�le esti-
mating equation

Ψ̃τ = Ψτ (τ, λ̃τ ; y) = Ψτ (θ̃τ ; y) = 0.

Its asymptotic variance corresponds to the ττ -block of V (θ̃τ ), which is given
by

V (θ̃τ )ττ = H(θ̃τ )ττJ(θ̃τ )ττ (H(θ̃τ )ττ )>+

+ 2H(θ̃τ )τλJ(θ̃τ )λτH(θ̃τ )ττ+

+ H(θ̃τ )τλJ(θ̃τ )λλ(H(θ̃τ )τλ)>

(2.6)

where, for instance, J(θ̃τ )τλ is the τλ-block of J(θ̃τ )−1, and H(θ̃τ )τλ is the
τλ-block of H(θ̃τ )−1. The �rst term in (2.6) is the asymptotic variance cor-
responding to τ if λ was known, whereas the remaining part re�ects the cost
of estimating the nuisance parameter. To study the asymptotic properties
of τ̃ , useful references are Gong and Samaniego (1981), Pierce (1982), Parke
(1986) and Jørgensen and Knudsen (2004).

The pro�le estimating function Ψ̃τ su�ers from bias like the ordinary
pro�le score function, that is

E (Ψτ (θ;Y ))|θ=θ̃τ = O(1).

However, Ψ̃τ can be adjusted in order to alleviate the e�ect of nuisance
parameters, thus obtaining an approximately unbiased estimating function
for τ (see Severini, 2002; Wang and Hanfelt, 2003; Jørgensen and Knudsen,
2004). Adjustments to eliminate the bias of Ψ̃τ can also be found in Adimari
and Ventura (2002) and Bellio et al. (2008).

2.3 Optimal estimating functions

The comparison between the Godambe and the Fisher information matrices
highlights that the particular choice of an estimating function a�ects the
e�ciency of the corresponding estimator.

Assume, without loss of generality, that θ is scalar and let U be the
class of all unbiased estimating functions with respect to the model F . An
estimating function Ψ∗θ is optimal if

Var(Ψ∗θ) = min
Ψθ∈U

Var (Ψθ) . (2.7)

The criterion (2.7) must be re�ned since Ψθ and cΨθ, where c is an arbitrary
constant, de�ne the same estimator, but the variance of cΨθ is c

2Var (Ψθ). In
view of this, a standardized estimating function can be considered in (2.7),
whose standardization depends on θ, of the form Ψs

θ = Ψθ/H(θ). By de�ning

10
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Us as the class of all the standardized estimating functions, the criteria (2.7)
becomes

Var (Ψs∗
θ ) = min

Ψθ∈Us
Var (Ψs(θ)) . (2.8)

Under mild conditions on the class U and on the model F , Godambe (1960)
showed that the score function `∗(θ) is optimal. This result provides a gener-
alization of the Cramer-Rao inequality for standardized unbiased estimating
functions (Kale, 1962), i.e.

Var (`∗(θ)) ≤ Var (Ψθ) . (2.9)

Godambe and Thompson (1974) showed the uniqueness of the optimal esti-
mating function Ψ∗θ, meaning that if two estimating functions Ψs

1θ and Ψs
2θ

are both optimal according to (2.8), then Ψs
1θ = Ψs

2θ.

The above results extend to the multidimensional setting, that is for
θ ⊆ Rp, p > 1. There are several criteria in order to establish the optimality
of Ψs

θ and the most common are

1. tr (Var (Ψs
θ)) > tr(Var (Ψs∗

θ )) (Chandrasekar and Kale, 1984), where
tr(·) denotes the trace of a matrix;

2. Var (Ψs
θ)−Var (Ψs∗

θ ) is non negative de�nite (Kale, 1962);

3. |Var (Ψs
θ) | > |Var (Ψs∗

θ ) |, where |·| denotes the determinant of a matrix.

A notable application of the above results can be found in the context of
generalized linear models, where the estimators of the regression parameters
are derived from the quasi-score functions (Wedderburn, 1974). Quasi-score
functions have properties similar to those of the genuine scores and can be
related to the theory of optimal estimating functions. For a more detailed
discussion the reader can refer to Desmond (1997).

2.4 Estimating functions and robustness

Robust statistic is concerned with the fact that many common assumptions
made about randomness, independence, distributional models, and so on,
are at most approximations to reality. Classical statistical procedures appear
very sensitive even to slight departures from the assumptions under which
they are developed.

Robust statistic aims at preserving inference from the possible misspeci�-
cations of the parametric family F . Since the hypothesized model Fθ is only
an approximation of the true underlying distribution Gθ, it can be supposed
that Gθ lies in a neighborhood of Fθ, i.e. Pε(Fθ) = {Gθ|d(Gθ, Fθ) < ε},
where d(·) is a suitable measure of distance which describes how a small
change in the underlying distribution can a�ect inference. This idea was

11
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formalized by Huber (1964) by introducing a contamination neighborhood
of Fθ, also known as gross-error model, de�ned as

Pε(Fθ) = {Fε|Fε = (1− ε)Fθ + εH} , (2.10)

where H an arbitrary unknown distribution. The model Pε(Fθ) assumes
that a fraction ε ∈ (0, 1) of the data may consist of gross errors coming from
the distribution H.

The use of estimating functions and M-estimators to deal with models of
the form (2.10) may prove useful. Historically, the �rst approach to robust
inference is Huber's minimax (Huber, 1964, 1981). However, in the follow-
ing, the in�nitesimal approach (Hampel et al., 1986) is considered. The
in�nitesimal approach is mainly based on the concepts of in�uence function
and breakdown point. The in�uence function and the breakdown point mea-
sure di�erent aspects of robustness of the inferential procedures: the former
refers to local aspects, whereas the latter to global ones.

2.4.1 The in�nitesimal approach

Let us consider an estimating function of the form (2.2), reformulated as

EF̂n
(Ψθ) =

∫
Ψ(θ; y) dF̂n,

where F̂n is the empirical distribution function assigning mass 1/n to each
observation and EF̂n denotes expectation with respect to F̂n. The root of

the estimating equation EF̂n (Ψθ) = 0 is the M-estimator θ̃, represented as a

function of F̂n, i.e. θ̃ = θ̃(F̂n). Since F̂n is a nonparametric estimate of Fθ,
the parameter θ can be de�ned as a functional as well, that is θ = θ(Fθ),
and is obtained as the root of the equation

E (Ψθ) =
∫

Ψ(θ; y) dFθ = 0. (2.11)

De�nition (2.11) points out the dependence of the parameter θ on the as-
sumed model Fθ and helps to understand the behaviour of the M-estimator
θ̃ when small departures from the assumed model occur.

One way to assess the robustness of an estimator T = T (hatF ) is to
consider the in�uence function (IF), de�ned as (Hampel et al., 1986)

IF(y;T, Fθ) = lim
ε→0

T ((1− ε)Fθ + ε∆y)− T (Fθ)
ε

=
∂

∂ε
[T ((1− ε)Fθ + ε∆y)]

∣∣∣∣
ε=0

,

where ∆y is a point mass in y. The IF measures the relative change on
the estimator T provided by a in�nitesimal contamination at y (Hampel,

12
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1974). Moreover, the IF provides information about the properties of the
estimator: the asymptotic bias of T caused by an in�nitesimal contamination
in y is given by the linear approximation ε IF(y;T, Fθ), while its asymptotic
variance is

V(T, Fθ) =
∫

IF(y;T, Fθ)IF(y;T, Fθ)>dFθ.

There are at least three important summary values of the IF. The most
important is the gross error sensitivity of T with respect to the model Fθ,
de�ned as

γ(T, Fθ) = sup
y
||IF(y;T, Fθ)||, (2.12)

where || · || denotes the Euclidean norm. The quantity in (2.12) measures
the worst impact on the standardized asymptotic bias of the estimator T
produced by an in�nitesimal contamination at y. A desiderable property of
an estimator is to have a �nite γ(T, Fθ) and estimators with this property
are said to be B-robust (Rousseeuw, 1981).

A second measure derived from the IF is the local shift sensitivity of T
at Fθ, that measures the e�ect on the estimator of changing the value y with
another one z. Finally, the rejection point represents the point after which
the e�ect of the possible contamination on the value of the estimator is null.

The IF of an M-estimator θ̃ is given by (Hampel et al., 1986)

IF(y; θ̃, Fθ) = H(θ)−1ψ(θ; y). (2.13)

Expression (2.13) highlights that the IF of an M-estimator is proportional
to the estimating function ψ(·). Thus, the gross error sensitivity of an M-
estimator is �nite if and only if ψ(·) is bounded. Hence, to check whether θ̃
is B-robust, it is su�cient to look at ψ(·).

The IF is an useful tool, giving rise to important robustness measures,
but there is one limitation: by construction, it is an entirely local concept.
Therefore, it must be complemented by a measure of global reliability of
the estimator, such as the breakdown point. The breakdown point of the
estimator T is de�ned as (see, e.g., Heritier et al., 2009, pag. 20)

ε∗(T, Fθ) = inf
{
ε : ε sup

H
||T (Fε)− T (Fθ)|| =∞

}
,

with H de�ned in (2.10), and it measures the distance from the model dis-
tribution beyond which the statistic becomes totally unreliable and uninfor-
mative.

The link between the IF and the breakdown point is given by the require-
ment that an estimator should have a high breakdown point and a low gross
error sensitivity. A high breakdown point is often easy to obtain. A low gross
error sensitivity, however, is in con�ict with the e�ciency requirement of a
low asymptotic variance with respect to the central model. Both γ(T, Fθ) and

13
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V(T, Fθ) have positive lower bounds, but in general these bounds cannot be
reached simultaneously. Estimators which are optimal under the constraint
of a bounded γ(T, Fθ) were proposed by Hampel (1974) and are presented
in the following Section. These estimators are obtained by bounding the
gross error sensitivity and, in general, have a low breakdown point. In view
of this, a robust estimator with bounded IF can become useless in practice
if its breakdown point is too small. Nevertheless, it is possible to combine
the request of an estimator with a high breakdown point and with a low
asymptotic variance, obtaining the so called MM-estimator (Yohai, 1987).

2.4.2 Robustness and optimality

Hampel (1974) considered the possibility of �nding an optimal estimator
under the constraint of bounded gross error sensitivity. Expression (2.13),
togheter with (2.9), gives some clues in order to �nd such an estimator. The
corresponding estimating function must be searched within a subclass of U ,
denoted with Uc, which contains all the unbiased estimating functions with
respect to the model F , which satis�es

γ(T, Fθ) ≤ c.

Indeed, if there were no constraints on the IF, then the class Uc would
coincide with U , and the optimality problem is solved by picking the score
function. Once an upper bound c is set, the optimal bounded estimating
function within Uc will coincide, for the majority of the observations, with
the optimal estimating function in U .

The optimal B-robust estimator (OBRE) θ̃∗ is derived from the optimal
bounded estimating function within the class Uc. For a �xed upperbound c,
the estimating function which de�nes the OBRE has the general form

n∑
i=1

ψ∗c (θ; yi) =
n∑
i=1

[`∗(θ; yi)− a(θ)]wc(θ; yi), (2.14)

where wc(θ; yi) = min (1, c/||A(θ) [`∗(θ; yi)− a(θ)] ||) are suitable weights
(Hampel et al., 1986), i = 1, . . . , n. The p-dimensional vector a(θ) and
the p× p matrix A(θ) are determined implicitly by the equations

a(θ) =
∫
`∗(θ; y)wc(θ; y)dFθ∫

wc(θ; y)dFθ
,

and [
A(θ)>A(θ)

]−1
=
∫

[`∗(θ; y)− a(θ)] [`∗(θ; y)− a(θ)]>w2
c (θ; y)dFθ.

A key quantity in (2.14) is the centering function a(θ) that ensures the
unbiasedness of the resulting optimal bounded estimating function. The
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computation of θ̃∗ as the root of
∑n

i=1 ψ
∗
c (θ; yi) = 0 can be carried out fol-

lowing an iterative procedure (see, for instance, Hampel et al., 1986; Carroll
and Ruppert, 1988; Ronchetti and Trojani, 2001; Bellio, 2007). As pointed
out by several authors (see, e.g., Dupuis and Field, 1998), the vector a(θ)
should be computed via numerical integration.

2.5 Hypothesis testing and con�dence regions

This Section focuses on testing hypothesis or setting con�dence regions about
θ. There are several test statistics available. The �rst one is the Wald-type
test statistic, de�ned as

Ww(θ) = (θ̃ − θ)>V (θ̃)−1(θ̃ − θ). (2.15)

As in classical inference, the asymptotic null distribution of (2.15) is chi-
square with p degrees of freedom (Heritier and Ronchetti, 1994).

Despite Wald-type statistics are simple to compute, they lack invari-
ance under reparametrization and force con�dence regions to have an ellip-
tical shape. If more accurate con�dence regions are required, score-type test
statistics may be considered, given by

Ws(θ) = Ψ>θ J(θ)−1Ψθ, (2.16)

whose asymptotic null distribution is chi-square with p degrees of freedom.

Consider the partition of the parameter θ in the two components τ and
λ. For testing hypothesis or setting con�dence regions about τ , the Wald-
and the score-type test statistics turn out to be

Wwp(τ) = (τ̃ − τ)>V (θ̃)ττ (τ̃ − τ), (2.17)

and

Wsp(τ) = Ψτ (θ̃τ )>H(θ̃τ )ττV (θ̃τ )ττH(θ̃τ )ττΨτ (θ̃τ ). (2.18)

The asymptotic null distributions of (2.17) and (2.18) are chi-square with p0

degrees of freedom (Heritier and Ronchetti, 1994).

There is also the possibility to derive log likelihood ratio-type tests based
of the function ρ(θ; y), de�ned as ∂ρ(θ; y)/∂θ = Ψθ. The function ρ(·)
and the associated log likelihood ratio-type tests as well, will be pursued in
Section 2.6.1.

The above results still hold and carry over the framework of bounded esti-
mating functions. In particular, when optimal bounded estimating functions
are considered (see Section 2.4.2), the statistics (2.15), (2.16), (2.17) and
(2.18) bound the e�ect of a small amount of contamination on the asymptotic
level and power of the derived test, while retaining the optimality properties
(Heritier and Ronchetti, 1994).
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2.6 Pseudo-likelihood functions

In the previous Sections it has been shown how to generalize likelihood-based
inferential procedures by using general unbiased estimating functions and the
associated M-estimators. In particular, the estimating function framework
may address at obtaining sensible estimators when either a semiparametric
model is speci�ed or to accommodate for small departures from the assumed
model. The term pseudo-likelihoods in general refers to functions of the
parameter of interest θ, as well of the observations y, that resemble for
some respects the behaviour of a genuine likelihood: zero mean pseudo-score
function, maximum pseudo-likelihood estimators with asymptotic normal
distribution, pseudo-log likelihood ratio test statistics with the standard chi-
square limiting distribution.

In the following two particular pseudo-likelihoods derived from unbiased
estimating functions are presented: the quasi-likelihood and the empirical
likelihood functions. Their properties and the connections with the estimat-
ing function framework are reviewed.

2.6.1 Quasi-likelihoods

An estimating function can be speci�ed avoiding the full speci�cation of
a parametric statistical model Fθ. For this reason, Ψθ frequently fails to
be the gradient of an objective function called quasi-log likelihood. Quasi-
log likelihood functions are obtained as the line integral of the estimating
function Ψθ, i.e.

`Q(θ) =
n∑
i=1

∫ θ

c
ψ(t; yi)dt, (2.19)

with c arbitrary constant. When θ is a vector parameter, it is not always
possible to uniquely de�ne a quasi-log likelihood function because the line
integral (2.19) depends on the path chosen. More precisely, it may happen
that the matrix H(θ) is symmetric, while its observed counterpart Ĥ(θ) is
not. Hence, a necessary and su�cient condition for the existence of a quasi-
log likelihood function is the symmetry of the matrix Ĥ(θ).

The problem of the nonexistence of (2.19) can be overcomed when the
parameter is scalar or when interest lies on a scalar component of θ. In the
latter situation θ is partitioned as (τ, λ) and a pro�le estimating function for
τ of the form Ψ̃τ =

∑n
i=1 ψτ (θ̃τ ; yi) is considered. Then, the pro�le quasi-log

likelihood function is

`QP (τ) =
n∑
i=1

∫ θ

c
ψτ (θ̃t; yi)dt.

When `Q(θ) and `QP (θ) exist, the corresponding quasi-log likelihood ra-
tios are de�ned as

WQ(θ) = 2
{
`Q(θ̃)− `Q(θ)

}
16
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and

WQP (τ) = 2 {`QP (τ̃)− `QP (τ)} .

These statistics do not present the classical chi-square asymptotic distribu-
tion (see, e.g., Kent, 1982). In particular,

WQ(θ) d→
p∑
j=1

λj(θ)Z2
j ,

and

WQP (τ) d→ Z2Hττ (θ̃τ )
Jττ (θ̃τ )

,

with λj(θ) eigenvalues of H(θ)−1J(θ), j = 1, . . . , p, and Zj indipendent ran-
dom variables having a standard normal distribution, and Z standard normal
random variable.

Quasi-log likelihood ratios with the standard chi-square limiting distri-
bution can be obtained in two di�erent ways. One possibility is to consider
the scaled test statistics proposed by Hanfelt and Liang (1995)

W hl
Q (θ) =

WQ(θ)
κ1

and

W hl
QP (τ) =

WQP (τ)
κ1p

, (2.20)

with κ1 =
∑p

j=1 λj(θ)/p and κ1p = Jττ (θ)/Hττ (θ). The second one is to
consider a linear trasformation of the estimating function Ψθ of the form
Ψ̄θ = A(θ)Ψ(θ), with

A>(θ) = J(θ)−1H(θ). (2.21)

Since A(θ) is non-singular, Ψ̄θ has the same solution as Ψθ, but the former
satis�es the second Bartlett's identity as a genuine score does. Therefore,
quasi-log likelihood ratios obtained by considering Ψ̄θ have the standard
asymptotic chi-square distribution.

When a pro�le estimating function is considered, some conceptual prob-
lems may arise in applying a linear transformation to Ψθ = (Ψτ ,Ψλ). Barndor�-
Nielsen (1995) de�ned a quasi-pro�le log likelihood function for τ based on
Ψ̄θ, but this estimating function mixes the components relative to τ and λ,
i.e.

Ψ̄θ = (AττΨτ +AτλΨλ, AλτΨτ +AλλΨλ) . (2.22)

In (2.22) the interpretation of the components of the new estimating function
cannot be clear, since the original partition of Ψθ is no longer respected.
However, it is possible to de�ne an alternative quasi-pro�le log likelihood for
τ following Adimari and Ventura (2002). The idea is to adjust the pro�le
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estimating function Ψ̃τ so that its bias and information bias are of order
O(1). The corresponding quasi-pro�le log likelihood is given by

`avQP (τ) =
∫ τ

c
w(θ̃t)ψτ (θ̃t; yi)dt,

where w(·) is a suitable correction term that depends on the elements of J(θ)
and H(θ) (Adimari and Ventura, 2002). The corresponding quasi-pro�le log
likelihood ratio statistic

W av
QP = 2

{
`avQP (τ̃)− `avQP (τ)

}
(2.23)

is approximately χ2
1 distributed.

2.6.2 Empirical likelihoods

The empirical likelihood function is a nonparametric tool introduced by
Owen (1988, 1990) and subsequently applied to several contexts, includ-
ing linear models (Owen, 1991; Chen, 1993), generalized linear models (Ko-
laczyk, 1994) and inference with dependent observations (see, e.g., Kitamura,
1997; Monti, 1997; Nordman and Lahiri, 2006; Nordman, 2008). The empir-
ical likelihood function has received great interest because it can be de�ned
starting from a very general estimating function (Qin and Lawless, 1994;
Owen, 2001).

Consider an estimating function Ψθ for the parameter θ. The empirical
likelihood function can be de�ned by considering the class D of all the distri-
bution functions having support on the sample y = (y1, . . . , yn). The generic
element in D is

F̂θ =

{
wi(θ) :

n∑
i=1

wi(θ) = 1,
n∑
i=1

wi(θ)ψ(θ; yi) = 0

}
,

and the empirical likelihood function for θ is de�ned as

Le(θ) = sup
F̂θ∈D

n∏
i=1

wi(θ). (2.24)

Let `e(θ) = logLe(θ) be the empirical log likelihood function and let

We(θ) = 2
{
`e(θ̃)− `e(θ)

}
= 2

n∑
i=1

log
wi(θ̃)
wi(θ)

(2.25)

be the empirical log likelihood ratio. To compute (2.25), the distributions
F̂θ and F̂θ̃ are needed. When θ = θ̃, the distribution function F̂θ̃ is nothing

but the empirical distribution function F̂n =
{
wi(θ̃) = 1/n, i = 1, . . . , n

}
18
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(Owen, 1988). For generic θ ∈ Θ, F̂θ is obtained by optimizing in δ(θ) and
λ(θ) the Lagrange function

n∑
i=1

wi(θ) + δ(θ)

(
n∑
i=1

wi(θ)− 1

)
+ λ(θ)>

n∑
i=1

ψ(θ; yi),

where δ(θ) ∈ R and λ(θ) ∈ Rp are Lagrange multipliers. Following Owen
(1988, 1990), δ(θ) = 1 and the elements of F̂θ have the following expression

wi(θ) =
1

n (1 + λ(θ)>ψ(θ; yi))
.

The Lagrange multiplier λ(θ) solves the equation

1
n

n∑
i=1

ψ(θ; yi)
(1 + λ(θ)>ψ(θ; yi))

= 0.

Since F̂θ̃ is already known, the empirical log likelihood ratioWe(θ) can be
rewritten in terms of forward Kullback-Leibler divergence (Kullback, 1997)
between F̂θ̃ and F̂θ, that is

We(θ) = 2nKL(F̂θ; F̂θ̃) = −2n
1
n

n∑
i=1

log (nwi(θ)) . (2.26)

Hence, the distribution function F̂θ that maximizes (2.24) is the closest distri-
bution function to F̂θ̃ in the sense of the forward Kullback-Leibler divergence,

i.e. F̂θ minimizes (2.26). Deeper insights about the relation between the em-
pirical likelihood function and the forward Kullback-Leibler divergence will
be discussed in Chapter 5.

Although the empirical log likelihood ratio (2.25) is based on nonpara-
metric estimates of empirical distributions in the class D, it can be used both
to set con�dence regions and to test hypothesis about θ as with a paramet-
ric likelihood ratio. Indeed, there are some notable properties that relates
We(θ) to the classical log likelihood ratio.

The asymptotic null distribution of the empirical log likelihood ratio
We(θ) is chi-square with p degrees of freedom. Hence, Owen (1988, 1990)
obtained the same limiting result obtained by Wilks (1938), but in a non-
parametric setting. This result is due to the empirical likelihood's ability to
Studentize internally. Indeed, by taking Taylor series expansion of (2.25),
the following �rst-order equivalence relations hold

We(θ) = (θ̃ − θ)>V (θ̃)−1(θ̃ − θ) +Op(n−1/2),

We(θ) = Ψ>θ J(θ)−1Ψθ +Op(n−1/2),
(2.27)

as `e(θ) was a genuine log likelihood function.
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When θ = (τ, λ), with τ p0-dimensional parameter of interest, a pro�le
version of (2.25) can be considered. Following the same notation of Sec-
tion 2.2.1, the pro�le empirical log likelihood ratio is

Wep(τ) = inf
λ
We(τ, λ), (2.28)

whose asymptotic null distribution is chi-square with p0 degrees of freedom.
The numerical optimization of (2.28) might be computational intensive when
the dimension of λ is large. Approximations to the pro�le empirical log
likelihood ratio for a scalar parameter of interest are derived in DiCiccio and
Monti (2001).

First-order theory highlights the relationships between empirical and
parametric likelihoods. Furthermore, higher-order asymptotics developed
by DiCiccio et al. (1991) show that, in the smooth function of means model
(Bhattacharya and Ghosh, 1978), empirical log likelihood ratios are Bartlett-
correctable. This is appealing since the Bartlett correction had previously
been available only for parametric likelihoods. Indeed, We(θ) is asympoti-
cally chi-square distributed up to an error of magnitude Op(n−1), but due
to its nonparametric nature the convergence to its distribution may be slow
when the sample size is moderate or small. The use of a Bartlett correction
means that a simple adjustment for the expected value of We(θ) improves
the error of the approximation up to Op(n−2). Bartlett corrections in the
presence of nuisance parameters are available for the pro�le empirical log
likelihood ratio; the reader can refer to Chen and Cui (2006).

Further discussions about the methodology and algorithms for empirical
likelihood can be found in Hall and La Scala (1990) and Owen (1990). Topics
related to Bartlett correctability in the presence of nuisance parameters, and
higher-order asymptotics can be found in DiCiccio and Romano (1989), Chen
(1993) and Lazar and Mykland (1999). Extensions of the empirical likelihood
methodology are developed in Hjort et al. (2009).

2.6.3 Numerical examples

Section 2.6.1 reviewed two approaches that lead to quasi-log likelihood ra-
tios having the usual chi-square limiting distribution. In particular, the �rst
approach aims at correcting directly the quasi-log likelihood ratio, whereas
the second one focuses on recovering, at least approximately, the second
Bartlett's identity for Ψθ. On the other hand, in Section 2.6.2 the em-
pirical log likelihood ratio has been shown to be asymptotically chi-square
distributed, without resorting to any kind of adjustment.

Quasi- and empirical log likelihoods are derived following two very dif-
ferent paths. The examples considered in this Section focus on a scalar
parameter of interest and are intented to compare the coverage accuracy of
quasi-log likelihood ratios given in (2.20) and (2.23), and empirical log like-
lihood ratios given in (2.28). In particular, we discuss two examples in order
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to compare the �nite-sample behaviour of W hl
QP (τ), W av

QP (τ) and Wep(τ) for
well-known robust M-estimators in the context of linear transformation mod-
els, which includes location and scale models and linear regression models.
Monte Carlo studies have been performed in order to evaluate both the accu-
racy of con�dence regions when the model is correctly speci�ed, and to assess
the stability of the coverage levels under small departures from the assumed
model. We consider a contamination model of the form Fε = (1− ε)Fθ + εH,
where H(·) denotes the contamination distribution and ε the contamination
percentage, set at 5%.

Example 2.1: Location and scale model

Let θ = (µ, σ), where µ ∈ R is a location parameter and σ > 0 a scale
parameter. In this framework, F (y;µ, σ) = F0((y − µ)/σ) and ψ(y;µ, σ) =
ψ((y−µ)/σ), with F0(·) standard element of the family, assumed symmetric
around the origin.

Consider inference about µ when σ is the nuisance parameter. The M-
estimators used are the well-known Huber estimator for location and scale,
and the biweight estimator (Hampel et al., 1986, Sections 4.2 and 2.6) ob-
tained, respectively, as solutions of the estimating functions

ΨHF (θ) =

(
n∑
i=1

ψk1(θ; ri),
n∑
i=1

ψk2(θ; ri)2 − nκ(k2)

)
and

ΨBIW (θ) =

(
n∑
i=1

ψbν(θ; ri),
n∑
i=1

ψk2(θ; ri)2 − nκ(k2)

)
,

with ri = (yi−µ)/σ, ψc(x) = min {c,max {−c, x}}, ψbν(x) = x(ν2−x2)2I[−ν,ν](x),
and κ(k2) consistency factor (see, e.g. Huber and Ronchetti, 2009). For this
example, the quasi-pro�le and the empirical pro�le log likelihoods for µ are
given in Adimari and Ventura (2002). The quasi-pro�le log likelihood ratio
statistic of Hanfelt and Liang (2.20) is given by

W hl
QP (µ) = 2

Aµµ
σ̃

n∑
i=1

∫ µ̃

µ
ψµ

(
yi − t
σ̃t

)
dt,

where σ̃t is the estimate of σ when µ is considered known and set equal to t.
When the central model is the normal one and the Huber estimator is used,
the factor Aµµ is given by

Aµµ =
Φ(k1)− Φ(−k1)

2(k2
1Φ(−k1)− k1φ(k1) + Φ(k1)− 1/2)

,

for a given tunning constant k1 > 0.
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Table 2.1 gives the results of a Monte Carlo experiment, based on 10.000
trials, that compares con�dence intervals for µ based on W hl

QP (µ), W av
QP (µ)

and Wep(µ) when the central model is the normal one. Data are generated
from three di�erent distributions: N(0,1), N(0,1) contaminated by a N(0,25),
and N(0,1) contaminated by a half normal with mean 4. Huber and biweight
estimators are used with k1 = 1.1, k2 = 0.6 and v = 4, respectively. From
Table 2.1 it can be noted that inference based on quasi-likelihoods seems to
be satisfactory, although inference onW av

QP (µ) is slightly preferable than that
based on W hl

QP (µ). The empirical likelihood method seems to yield intervals
with coverage closer to the nominal one and similar to W av

QP (µ). Finally, we
note that simulation studies, not reported here, show that the three methods
are equivalent for n ≥ 50.

distribution n 1− α 0.999 0.950 0.900 0.999 0.950 0.900
ΨHF ΨBIW

Wav
QP 0.971 0.917 0.863 0.979 0.928 0.877

10 Whl
QP 0.958 0.904 0.853 0.959 0.904 0.855

N(0,1) Wep 0.975 0.938 0.886 0.974 0.941 0.898
Wav
QP 0.985 0.932 0.887 0.984 0.938 0.896

20 Whl
QP 0.974 0.928 0.879 0.975 0.930 0.883

Wep 0.988 0.946 0.894 0.989 0.949 0.897

Wav
QP 0.971 0.912 0.856 0.979 0.922 0.872

10 Whl
QP 0.957 0.897 0.843 0.955 0.897 0.846

N(0,1) cont. Wep 0.976 0.937 0.884 0.973 0.942 0.894
by half normal Wav

QP 0.980 0.929 0.878 0.983 0.939 0.888

20 Whl
QP 0.974 0.922 0.869 0.974 0.926 0.874

Wep 0.986 0.942 0.887 0.988 0.945 0.887

Wav
QP 0.971 0.914 0.861 0.980 0.933 0.886

10 Whl
QP 0.958 0.904 0.852 0.959 0.911 0.859

N(0,1) cont. Wep 0.975 0.943 0.889 0.976 0.946 0.898
by N(0,25) Wav

QP 0.979 0.932 0.878 0.985 0.945 0.898

20 Whl
QP 0.972 0.922 0.872 0.975 0.931 0.885

Wep 0.988 0.942 0.889 0.988 0.945 0.894

Table 2.1: Simulation study: empirical coverage probabilities in the location
and scale model.

Example 2.2: Linear model

A regression and scale model has the form y = Xβ+σε, whereX is a �xed n×
p matrix, β ∈ Rp an unknown regression coe�cient, σ > 0 a scale parameter
and ε an n-dimensional vector of random errors from a known distribution
F0(·) symmetric around 0. Let θ = (β, σ). A wide class of M-estimators for
regression and scale parameters can be obtained by generalizing the Huber
estimator and it includes the Hampel-Krasker estimator (see Maronna et al.,
1979). If interest is about a scalar component βj , 1 ≤ j ≤ p, the quasi-pro�le
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log likelihood ratio W av
QP (βj) for βj is given in Adimari and Ventura (2002),

while W hl
QP (βj) is given by

W hl
QP (βj) =

w

σ̃

n∑
i=1

∫ β̃j

βj

xij
||xi||

ψk1 (||xi||r̃it) dt,

with r̃it = (yi − β̃1txi1 − . . . − txij − . . . − β̃dtxid)/σ̃t, β̃kt, k 6= j, and σ̃t
estimates of βk and σ, respectively, when βj is set equal to t. The correction
term w has the general form

w =
Hβj ,βj − γ>H

−1
(−j)γβj

Jβj ,βj − 2γ>βjH
−1
(−j)ηβj + γ>βjH

−1
(−j)J(−j)(H

−1
(−j))

>γβj
,

where Hβj ,βj is the jth diagonal element of H, γβj is the jth column of H
without its jth element, H(−j) denotesH without the jth column and the jth
row, and ηβj is the jth column of Ω without its jth element. Furthermore,
it is possible to consider a pro�le empirical log likelihood ratio given by

Wep(βj) = inf
βj
We(β, σ),

where We(β, σ) is given in (2.25) for θ = (β, σ).
Consider the model yi = β1 + β2xi2 + β3xi3 + εi, i = 1, . . . , n, computed

from Draper and Smith data (see Hampel et al., 1986, Section 7.5d). The
variables considered are the number of pounds of steam used per month
(yi), the average atmospheric temperature (xi2) and the number of operating
days in the month (xi3). The sample size is n = 25, the normal model is
assumed as the central one and the Hampel-Krasker estimator is used with
k1 = 1.1 and k2 = 0.6. Data are generated from three di�erent distributions:
N(0,1), N(0,1) contaminated with N(4,1), and N(0,1) contaminated with
N(0,25). Table 2.2 gives the results of a Monte Carlo experiment based
on 5000 trials that compares con�dence intervals for β3 based on W av

QP (β3)
and W hl

QP (β3). From Table 2 we can see that, for n = 25, W av
QP (β3) and

Wep(β3) are preferable thanW hl
QP (β3) in order to construct robust con�dence

intervals for all the scenarios considered, even ifW av
QP (β3) seems to be slightly

preferable

2.7 Final remarks

In this Chapter an overview of the estimating function theory has been sum-
marized, in particular by focusing on some aspects related to optimal esti-
mating functions and to their role in the context of robust statistic. More-
over, associated pseudo-likelihood functions, namely the quasi-likelihood and
the empirical likelihood functions, have been reviewed and compared through
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distribution 1− α 0.999 0.950 0.900

N(0,1) Wav
QP 0.992 0.958 0.911

Whl
QP 0.968 0.930 0.873

Wep 0.996 0.969 0.928

N(0,1) cont. Wav
QP 0.995 0.962 0.916

by N(4,1) Whl 0.967 0.929 0.871
Wep 0.996 0.971 0.941

N(0,1) cont. Wav
QP 0.996 0.964 0.914

by N(0,25) Whl
QP 0.971 0.922 0.872

Wep 0.997 0.971 0.937

Table 2.2: Simulation study: empirical coverage probabilities in the linear
model.

a small simulation study. While the arisen issues do not claim to cover the
considered topic in detail, they represent a useful background to better un-
derstand the subsequent developments of the present thesis. As a matter of
fact, next Chapter is devoted to introduce composite likelihood functions, as
a general framework to encompass the various issues treated in this work.
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Chapter 3

Composite likelihoods

3.1 Introduction

The likelihood function has become a centerpiece of statistical inference since
it was turned into a powerful tool by Fisher. Nevertheless, likelihood infer-
ence may be sometimes troublesome. For instance, it may happen that the
joint distribution is di�cult to be speci�ed and the resulting likelihood func-
tion is awkward due to a complex dependence structure of the data. An
example is provided by the use of max-stable processes for spatial multivari-
ate extremes (Padoan et al., 2010). On the other hand, the speci�cation of
the joint distribution can be straightforward, but the evaluation of the likeli-
hood function might lead to computational burden. For instance, modeling
a spatial process with a Gaussian random �eld requires the determinant and
the inverse of the process' covariance matrix, whose dimension grows as the
number of observed sites increases (Stein et al., 2004).

In order to cope with these di�culties both in model speci�cation or in
computations, the use of a surrogate for the ordinary likelihood may prove
useful for inferential purposes. Preliminary formulations of this idea date
back to Besag (1974) who used pseudo-likelihoods to model spatial processes
and to Cox (1975), that introduced the partial likelihood to �t proportional
hazards models. These solutions fall within the general class of composite
likelihood functions (Lindsay, 1988), that includes the full likelihood as a spe-
cial case. In principle, composite likelihoods arise from the use of a partially
misspeci�ed model, and hence a partially misspeci�ed likelihood function.

From a theoretical point of view, composite likelihoods are appealing
since the validity of the derived inferential procedures can be assessed both
from the standpoint of unbiased estimating functions and of the Kullback-
Leibler criterion (Varin and Vidoni, 2005; Lindsay et al., 2011; Varin et al.,
2011). Their use has been widely advocated by several authors both in the
frequentist domain (Varin, 2008; Varin et al., 2011) and, more recently, also
in the Bayesian setting (Smith and Stephenson, 2009; Pauli et al., 2011).
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CHAPTER 3. COMPOSITE LIKELIHOODS

Recent reviews on composite likelihoods may be found in Varin (2008) and
Varin et al. (2011). Composite likelihoods have shown a great impact also in
practical applications where complex models are involved. Some examples
are spatial processes (Hjort and Omre, 1994; Heagerty and Lele, 1998; Varin
et al., 2005), generalized linear mixed models (Renard et al., 2004; Bellio
and Varin, 2005), multivariate extremes (Padoan et al., 2010), longitudinal
models (Fieuws and Verbeke, 2006), time series (Davis and Yau, 2011), and
genetics (Hudson, 2001; McVean et al., 2002, 2004).

In this chapter the main properties of composite likelihood functions are
reviewed by focusing, in particular, on a speci�c instance of composite likeli-
hoods, namely the pairwise likelihood functions. Then, some issues emerging
in inference based on composite likelihood functions are discussed. Espe-
cially, the interest is addressed on the problems related to the asymptotic
distribution of the composite log likelihood ratio statistic and on the lack of
robustness of the maximum composite likelihood estimator. The problems
raised in the following sections will be then faced in the subsequent chapters,
where some possible solutions are proposed.

3.2 Composite likelihoods

Let Y ∈ Rq be a random vector with probability distribution F (y; θ), θ ⊆
R
p, density function f(y; θ), and associated full log likelihood function `(θ) =

log f(y; θ). Consider a set of marginal or conditional measurable events
{Er ∈ Y, r = 1, . . . ,m} and let fr(y; θ) = f(y ∈ Er; θ) be the likelihood con-
tribution generated from f(y; θ) by considering the set Er. Having observed
a random sample (y1, . . . , yn) of size n from Y , the composite likelihood is
de�ned as the product

cL(θ) =
n∏
i=1

m∏
r=1

fr(yi; θ)ωir ,

where ωir are non-negative weights, i = 1, . . . , n, r = 1, . . . ,m. The com-
posite log likelihood is

c`(θ) = log cL(θ) =
n∑
i=1

m∑
r=1

ωir log fr(yi; θ).

The former de�nitions are rather general, and the particular speci�cation
of the events Er allows the combination of both marginal and conditional
densities. Conditional composite log likelihoods are obtained by a suitable
speci�cation of the events Er de�ning the conditional densities f(y ∈ Er; θ) =
fX|Z(x|z; θ) = f(x|z; θ), with X and Z sub-components of Y . For instance,
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by pooling together all the possible pairwise conditional densities, we obtain

c`(θ) =
n∑
i=1

m∑
r=1

m∑
s=1

ωirs log f(yir|yis; θ),

or all the full conditional densities

c`(θ) =
n∑
i=1

m∑
r=1

ωir log f(yir|yi(−r); θ),

where wirs are the weights for the (r, s)-component of unit i and yi(−r) de-
notes the vector of all the observations but yir, i = 1, . . . , n, r = 1, . . . ,m.

Marginal composite likelihoods are de�ned by considering events Er giv-
ing rise to marginal densities of the form f(y ∈ Er; θ) = fX,Z(x, z; θ) =
f(x, z; θ). The special case of the independence log likelihood is derived
under working independence assumptions, i.e.

c`ind(θ) =
n∑
i=1

m∑
r=1

ωir log f(yir; θ),

while the pairwise log likelihood is

c`pw(θ) =
n∑
i=1

m−1∑
r=1

m∑
s=r+1

ωirs log f(yir, yis; θ). (3.1)

Recently, there have been some proposals aimed to build improved marginal
composite likelihoods by combining the information supplied from likelihood
contributions suited for the marginal and for the association parameters (Cox
and Reid, 2004; Kuk, 2007).

The validity of using composite likelihoods to perform inference about
θ can be assessed throughout the theory of unbiased estimating functions.
The maximum composite likelihood estimator θ̂c is de�ned implicitly as the
solution of the composite score equation

cs(θ) = cs(θ; y) =
n∑
i=1

m∑
r=1

ωir
∂ log fr(yi; θ)

∂θ
= 0.

Since cs(θ) belongs to the class of unbiased estimating functions, θ̂c inher-
its the properties of M-estimators, reviewed in Chapter 2. Under regularity
conditions assumed throughout this chapter (see, e.g., Molenberghs and Ver-
beke, 2005), the maximum composite likelihood estimator is consistent and
asymptotically normal, with mean θ and covariance matrix given by the
inverse of the Godambe information, i.e.

V (θ) = G(θ)−1

= E

(
−cs(θ;Y )

∂θ>

)−1

E

(
cs(θ;Y )cs(θ;Y )>

)[
E

(
−cs(θ;Y )

∂θ>

)−1
]>

= H(θ)−1J(θ)
(
H(θ)−1

)>
.
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In the composite likelihood framework, hypothesis testing and con�dence
regions can be obtained by using the analogous of the Wald, the score and
the log likelihood ratio tests. The composite likelihood counterparts of the
Wald and score tests are, respectively, given by

cWw(θ) = (θ̂c − θ)>V (θ̂c)−1(θ̂c − θ)

and
cWs(θ) = cs(θ)>J(θ)−1cs(θ),

with a standard χ2
p asymptotic distribution. Instead, the composite log like-

lihood ratio
cW (θ) = 2

{
c`(θ̂c)− c`(θ)

}
converges in distribution to

∑p
j=1 λj(θ)Z

2
j , with λj(θ) eigenvalues ofH(θ)−1J(θ)

and Zj independent random variables having a standard normal distribution
(see also Section 2.6.1).

In the presence of nuisance parameters, the pro�le versions of the afore-
mentioned statistics can be considered. Consider the partition of θ into a
component of interest τ and a nuisance component λ, whose dimensions are
p0 and (p− p0), respectively. The composite score function is similarly par-
titioned as cs(θ) = (csτ (θ), csλ(θ)). Let λ̂cτ be the root in λ of the equation
csλ(τ, λ) = 0 for �xed τ , and let τ̂c be the solution of the pro�le composite
score equation

csτ (τ, λ̂cτ ) = 0.

The pro�le versions of the composite Wald and score test statistics are,
respectively,

cWwp(τ) = (τ̂c − τ)> V (θ̂cτ )ττ (τ̂c − τ) (3.2)

and
cWsp(τ) = csτ (θ̂cτ )>H(θ̂cτ )ττV (θ̂cτ )ττH(θ̂cτ )ττ csτ (θ̂cτ ), (3.3)

with θ̂τ = (τ, λ̂cτ ). Both (3.2) and (3.3) have a null asymptotic χ2
p0 distribu-

tion. The pro�le composite log likelihood ratio is

cWp(τ) = 2
{
c`(θ̂c)− c`(θ̂cτ )

}
(3.4)

and converges to
∑p0

j=1 λj(θ)Z
2
j , with λj(θ) eigenvalues of {H(θ)ττ}−1G(θ)ττ

(Molenberghs and Verbeke, 2005).

3.3 Pairwise likelihood

This section is devoted to a particular composite likelihood, i.e. the pairwise
likelihood function (3.1), since it will be considered in the main contributions
of the present thesis. In the following, the paper by Cox and Reid (2004) is
reviewed, since some theory for the pairwise likelihood function is developed.
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Cox and Reid (2004) de�ne a pairwise log likelihood function for θ by
pooling together both bivariate and univariate densities, i.e.

p`(θ) =
n∑
i=1

p`(θ; yi)

=
n∑
i=1

{
q−1∑
r=1

q∑
s=r+1

log f(yir, yis; θ)− a
q∑
r=1

log f(yir; θ)

}
= c`pw(θ)− a · c`ind(θ),

where a is a suitable constant. Note that in the above de�nition the weights
wirs in (3.1) are taken all equal to one. The choice a = 0 corresponds to
take all possible bivariate marginal distributions, that is (3.1). This choice
is appropriate if c`ind(θ) is independent of θ, i.e. when the one-dimensional
marginal distributions contain no information about θ. In those rare cases
where most of the information is in c`ind(θ) and none or relatively little in
c`pw(θ), a negative value of a would be needed, although in most cases a
null or positive value of a is appropriate. In the following, it is shown that
the choice of a can be crucial in order to guarantee the consistency of the
maximum pairwise likelihood estimator.

The pairwise score function is given by

ps(θ) =
n∑
i=1

ps(θ; yi) =

=
n∑
i=1

{
q−1∑
r=1

q∑
s=r+1

∂ log f(yir, yis; θ)
∂θ

− a
q∑
r=1

∂ log f(yir; θ)
∂θ

} (3.5)

The maximum pairwise likelihood estimator θ̂p is de�ned implicitly through-
out the pairwise score equation ps(θ) = 0. In the standard setting, where
n diverges and q is �xed, the maximum pairwise likelihood estimator shares
the same properties of the maximum composite likelihood estimator, i.e. it
is consistent and asymptotically normally distributed with mean θ and co-
variance matrix given by the inverse of the Godambe information. In this
context, consistent estimates of J(θ) and H(θ) are, respectively,

Ĵ(θ) =
1
n

n∑
i=1

ps(θ; yi)ps(θ; yi)>, (3.6)

and

Ĥ(θ) = − 1
n

n∑
i=1

∂ps(θ; yi)
∂θ>

. (3.7)

Interesting results emerge when a small number n of individually large se-
quences is available, i.e. in the setting where q diverges and n is �xed. In
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this context, the pairwise score function ps(θ) is still an unbiased estimating
function, but this no longer implies satisfactory properties of the resulting
estimator. For practical purposes, an important situation is when n = 1,
that is when dealing with time series or spatial processes.

Consider a Taylor series expansion for ps(θ̂p) around θ. The expansion,
up to �rst order, gives

ps(θ̂p) = q−2

{
q−1∑
r=1

q∑
s=r+1

∂ log f(yr, ys; θ)
∂θ

− aq
q∑
r=1

∂ log f(yr; θ)
∂θ

}
+

+ q−2(θ̂p − θ)>
{
q−1∑
r=1

q∑
s=r+1

∂2 log f(yr, ys; θ)
∂θ∂θ>

+

− aq

q∑
r=1

∂2 log f(yr; θ)
∂θ∂θ>

}
+Op(q−1/2).

The second term is typically Op(1), whereas the �rst term has zero mean and
variance Var (ps(θ;Y )) which is rather complicated and it is not reported here
(the reader can refer to Cox and Reid (2004)).TheA consistent estimator of θ
can be obtained only if q−4Var (ps(θ;Y ))→ 0 as q →∞, and a su�cient and
necessary condition for this is that there exists a real root a of the equation

E

[
∂ log f(Yr, Ys; θ)

∂θ

(
∂ log f(Yw, Yu; θ)

∂θ

)>]
+

− 2aE

[
∂ log f(Yr, Ys; θ)

∂θ

(
∂ log f(Yw; θ)

∂θ

)>]
+

+ 2a2
E

[
∂ log f(Yr; θ)

∂θ

(
∂ log f(Yr; θ)

∂θ

)>]
= 0,

with the indexes r, s, w, u = 1, . . . , q all di�erent.
Although the results of Cox and Reid (2004) give some insights about the

consistency of θ̂p in the case of increasing q with �xed or slowly increasing
sample size n, there does not seem to be a rigorous and general proof about
the consistency of composite maximum likelihood estimators under various
conditions on q and n.

As a �nal remark, in the following chapters the pairwise log likelihood
function is considered with a = 0.

3.4 Some issues

In this Section two particular issues related with composite likelihood-based
inference are reviewed. They will be pursued in Chapters 4, 5, and 6, in
which new theoretical results and insights are provided.
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3.4.1 Test statistics

In Section 3.2, the asymptotic distribution of composite likelihood test statis-
tics has been given. In particular, the composite Wald and score test statis-
tics keep the standard asymptotic behavior. On the contrary, the composite
log likelihood ratio is asymptotically distributed as a linear combination of
independent chi-square random variables, because of the failure of the second
Bartlett's identity for the composite score function.

At a �rst glance, composite log likelihood ratios with a standard asymp-
totic distribution can be obtained, in principle, following the developments
applied in the quasi-likelihood framework (see Section 2.6.1). The �rst pos-
sibility is to apply a linear transformation to cs(θ), of the from (2.21), but
this will lead to a composite score function that might not be the primitive
of any composite log likelihood function. For this reason, in the composite
likelihood framework the approach used by Hanfelt and Liang (1995) is pre-
ferred (see Section 2.6.1). The idea is to correct directly cW (θ) by means
of suitable scaling factors in order to preserve the objective function c`(θ).
Adjusted versions of composite log likelihood ratios with a standard limiting
distribution can be derived from three di�erent approaches.

The �rst approach is based on moment adjustments to cW (θ), which
lead to composite log likelihood ratios whose moments match some of those
of the chi-square distribution. For instance, an adjusted composite log like-
lihood ratio, whose asymptotic distribution can be approximated by a χ2

p, is
obtained by considering a matching of the �rst moment, i.e.

cW1(θ) =
cW (θ)
κ1

,

with κ1 =
∑p

j=1 λj(θ)/p (see also Hanfelt and Liang, 1995). This test statis-
tic was suggested by Rotnitzky and Jewell (1990) for the independence likeli-
hood, and by Geys et al. (1999) for general pseudo-likelihoods. The statistic
cW1(θ) is simple to compute, but the chi-square approximation might be
inaccurate since κ1 corrects only the �rst moment of cW (θ). Other moment-
based adjustments can be considered. For instance, �rst and second moment
matching gives the Satterthwaite-type (Satterthwaite, 1946) adjustment sug-
gested in Varin et al. (2011), whereas matching of moments up to higher-
order have been considered in Wood (1989) and Lindsay et al. (2000).

The second class of adjusted composite likelihood statistics are given by
the proposals of Chandler and Bate (2007) and Pace et al. (2011). The �rst
one has the following expression

cWcb(θ) = cW (θ)
(θ̂c − θ)>V (θ̂c)−1(θ̂c − θ)
(θ̂c − θ)>H(θ̂c)(θ̂c − θ)

, (3.8)
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while the second is given by

cWinv(θ) = cW (θ)
cs(θ)>J(θ)−1cs(θ)
cs(θ)>H(θ)−1cs(θ)

.

The test statistic (3.8) essentially stretches the composite log likelihood
on the θ-axis about θ̂c to ensure that at least approximately, the second
Bartlett's identity holds. The test statistic cWinv(θ) can be derived from
(3.8) by considering the formal relation (θ̂c− θ) = H(θ)−1cs(θ) +Op(n−1/2).
Both the test statistics are asymptotically χ2

p distributed. Note that cWcb(θ)
and cWinv(θ) are equivalent, up to �rst order, to cWw(θ) and cWs(θ), re-
spectively.

Finally, the third way to obtain adjusted composite log likelihood ratios
is by resorting to the bootstrap. The parametric bootstrap is used in order
to approximate the distribution of cW (θ) without any additional estimation
of the eigenvalues λj(θ), j = 1, . . . , p. Indeed, the bootstrap automatically
corrects for the misspeci�cation of the joint distribution. An example of this
technique is given in Aerts and Claeskens (1999). However, this approach
can be quite demanding from a computational point of view and it can be
applied in a limited range of applications, since the speci�cation of the joint
distribution is required.

The statistics cW1(θ) and cWinv(θ), can be used in the presence of nui-
sance parameters. In particular, it is possible to derive

cW1p(τ) =
cWp(τ)
κ1p

, (3.9)

with κ1p =
∑p0

j=1 λj(θ), or

cWinvp(τ) = cWp(τ)
cWsp(τ)

csτ (θ̂τ )>H(θ̂τ )ττ csτ (θ̂τ )
. (3.10)

The asymptotic null distribution of (3.9) and (3.10) is χ2
p0 .

The computation of the quantiles of the asymptotic distribution of cW (θ)
relies both on the theory and the algorithms provided by Imhof (1961). The
problem to face is related to the dependence of almost all the composite
likelihood-based test statistics on the elements of the expected Godambe
information. Analytic expressions for J(θ) and H(θ) can be worked out
when the joint distribution is speci�ed and this is usually done in simple
cases only, in order to compare the composite likelihood procedures with
those based on the likelihood function. Furthermore, the speci�cation of
the joint distribution is not a�ordable in the composite likelihood context,
because it is too complex to deal with, thereby inference is based on an
approximate model. It follows that, for practical purposes, the expected
Godambe information must be replaced with its observed counterpart.
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All the test statistics derived from the composite log likelihood function
take into an account for the uncertainty of the estimation of J(θ) and H(θ).
Indeed, inaccurate estimates may lead either to a slowdown or to a failure
of the convergence to the distribution of the test statistics.

The matrix H(θ) is easy to estimate. In particular, it is possibile to pro-
vide an alternative expression to (2.5), that does not require the computation
of the second derivatives of c`(θ), given by

Ĥ(θ) =
n∑
i=1

m∑
r=1

ω2
ir

[(
∂ log fr(yi; θ)

∂θ

)(
∂ log fr(yi; θ)

∂θ

)>]
,

since the second Bartlett's identity still holds for each contribution to the
composite log likelihood function.

The estimation of J(θ) might be a hard task. Indeed, in the standard
setting where n→∞ and q is �xed, the estimate proposed in (2.5), i.e.

Ĵ(θ) =
n∑
i=1

[
m∑
r=1

ωir
∂ log fr(yi; θ)

∂θ

][
m∑
r=1

ωir
∂ log fr(yi; θ)

∂θ

]>
,

is consistent. In longitudinal studies, where there are short time series for
each subject, this estimate of J(θ) may be improved in terms of accuracy
by using the bootstrap or the jackknife (see, e.g., Lipsitz et al., 1994). The
jackknife estimate of J(θ) is

Ĵ(θ̂c)jack =
n− 1
n

n∑
i=1

(θ̂(−i)
c − θ̂c)(θ̂(−i)

c − θ̂c)>, (3.11)

where θ̂
(−i)
c is the maximum composite likelihood estimate with yi removed

from the sample, i = 1, . . . , n. The estimate (3.11) can be computationally
time demanding if the maximum composite likelihood estimate θ̂c is expen-
sive to obtain. In these circumstances, (3.11) can be obtained by considering

a �rst-order approximation, in which θ̂
(−i)
c is approximated with a single step

of the Newton-Raphson algorithm (Varin et al., 2011).
When q → ∞ and n is �xed, or when q � n, the estimation of J(θ)

gives rise to some issues. This setting is common, for instance, in genetics
in which q and n are the number of genes and subjects, respectively. The
extreme case is for n = 1, that is when a time series or a spatial process
is considered. The estimate of J(θ) depends on the mixing properties of
the random �eld or on the possibility to obtain internal replications. The
available estimators of J(θ) in this context are based on window subsampling
(Heagerty and Lele, 1998; Heagerty and Lumley, 2000; Caragea and Smith,
2006). Broadly speaking, these estimators are based on the idea to create
pseudo-independent sub-samples from y, Sb, accordingly to some criterion.
For instance, in time series the sub-samples Sb can be obtained by considering
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observations that are contiguous. The general expression for window sub-
sampling estimators is given by

Ĵ(θ)wsub =
B∑
b=1

|Sb|
(
∂ log f(y ∈ Sb; θ)

∂θ

)(
∂ log f(y ∈ Sb; θ)

∂θ

)>
,

where Sb are suitable sub-regions, |Sb| denotes the cardinality of the set Sb
and B is the number of sub-regions.

As a �nal remark, if (3.11) is too expensive to obtain, or if the conditions
for ensuring the validity of window subsampling estimators are not satis�ed,
the estimate of J(θ) can be obtained via the parametric bootstrap, that
however requires the speci�cation of a joint distribution for the data.

3.4.2 Robustness

Most of the research in the composite likelihood framework is concerned in
providing a reasonable model speci�cation that leads to sensible inferential
procedures, when dealing with complex models. Despite this is still a chal-
lenge, the robustness aspects of the composite likelihood-based procedures
have not yet been deeply investigated. The only exception is given by the
paper of Xu and Reid (2011) and is related to the robustness of the maximum
composite likelihood estimator. To review this contribution, the discussion
is restricted to marginal composite likelihoods.

The asymptotic behavior of the maximum composite likelihood estimator
has been justi�ed in Section 3.2, by using the theory of unbiased estimat-
ing functions. Deeper insights about the consistency of θ̂c can be achieved
by considering the composite Kullback-Leibler criterion. Varin and Vidoni
(2005) de�ne the composite Kullback-Leibler divergence between the model
f(y; θ) and the true (unknown) h(y), as a linear combination of the Kullback-
Leibler divergences for each component of the composite log likelihood, i.e.

KLc(f, h; θ) =
n∑
i=1

m∑
r=1

E (log hr(Yi)− log fr(Yi; θ))wir,

where hr(y) = h(y ∈ Er) and E(·) is taken with respect to the true model
h(y). The composite Kullback-Leibler divergence preserves the non-negativity
as does the ordinary one. This ensures, under some regularity conditions
(Varin and Vidoni, 2005), that θ̃c is consistent for the parameter value min-
imizing KLc(·), de�ned as

θ∗ = arg min
θ

KLc(f, h; θ). (3.12)

To understand the implications of (3.12), it is necessary to distinguish be-
tween the full and the marginal correct speci�cation of the model. The
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former states that model f(y; θ) is correctly speci�ed if there exists a θ0 ∈ Θ
such that f(y; θ0) = h(y). The latter focuses on all the component families
{fr(y; θ)} and requires fr(y; θ0) = hr(y) for all r = 1, . . . ,m, for some θ0 ∈ Θ
(Xu and Reid, 2011).

The interesting case for studying the robustness of θ̂c is when the compo-
nents of the composite likelihood are correctly speci�ed, but the joint model
is misspeci�ed. This kind of robustness is referred as robustness to consis-
tency by Xu and Reid (2011). From this point of view, by de�nition f(y; θ)
is misspeci�ed and the maximum composite likelihood estimator converges
to θ∗. On the other hand, if θ̂c is calculated from the composite likelihood
making use of the correctly speci�ed lower dimensional margins only, then
it still converges to the true parameter value without depending on the joint
model. In these cases, the maximum composite likelihood estimator might
be more reliable than a maximum likelihood estimator, since misspecifying a
high dimensional complex joint density may be much more likely than mis-
specifying some simpler lower dimensional densities (see, e.g., Varin, 2008;
Xu and Reid, 2011).

Although the contribution of Xu and Reid (2011) establishes the ro-
bustness of maximum composite likelihood estimators with respect to model
misspeci�cations, it is not clear how to link this result to the classical the-
ory of robustness (see Section 2.4). Roughly speaking, robustness usually
means obtaining the same inferential results under small deviations from
the assumed model. The range of models is often considered to be small-
probability perturbations of the assumed model, to re�ect the sampling no-
tion of occasional outliers. In the composite likelihood framework a �rst issue
arises: it is not clear which the central model is, since the range of models
to be considered are those consistent with the speci�ed set of sub-models
{fr(y; θ), r = 1, . . . ,m}. Hence, the de�nition of a gross error model of the
form (2.10) is not straightforward. Nevertheless, something can be said about
the B-robustness of the maximum composite likelihood estimator, since the
composite score function is an unbiased estimating function and θ̂c is an
M-estimator. In the following, the existence of a gross error model Pε(F cθ )
is assumed, where F cθ is supposed to be the central model that includes all
the models consistent with the marginal densities {fr(y; θ), r = 1, . . . ,m}.
Then, the in�uence function of θ̂c is

IF(y; θ̂c, F cθ ) = H(θ)−1ωr
∂ log fr(y; θ)

∂θ
.

Each contribution ∂ log fr(y; θ)/∂θ is a genuine score and, in general, it is
unbounded, leading to an unbounded gross-error sensitivity. This implies the
lack of robustness of θ̂c. Hence, regardless the marginal correct speci�cation
of the model, θ̂c might not be consistent.
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Example 3.1: Multivariate normal distribution

This example aims to show the lack of B-robustness of the maximum pairwise
likelihood estimator. The model considered is the multivariate normal, with
vector of means (µ, . . . , µ) ∈ Rq and compound symmetric matrix Σ, having
diagonal elements σ2 and o�-diagonal elements σ2ρ, with ρ ∈ (−1/(q−1), 1).
This model has been widely studied in the composite likelihood framework by
several authors. For instance, Cox and Reid (2004) compare the asymptotic
variance of the maximum pairwise likelihood estimator with the maximum
likelihood one, whereas (Pace et al., 2011) compare the accuracy of the com-
posite log likelihood ratios presented in Section 3.4.1.

This example focuses on the marginal pairwise log likelihood function
given in (3.5), with a = 0, for the parameter θ = (µ, σ2, ρ) . The multi-
variate normal distribution is particularly appealing in order to study the
robustness of the maximum pairwise likelihood estimator. Indeed, in this
case a marginal correct speci�cation of the model is achieved. Therefore, by
the results stated above, θ̂p will converge to the true parameter value rather
than to a pseudo-true one.

Given a random sample y = (y1, . . . , yn) the pairwise log likelihood func-
tion is

p`(θ) = −nq(q − 1)
2

log σ2 − nq(q − 1)
4

log(1− ρ2)− q − 1 + ρ

2σ2(1− ρ2)
SSW +

− q(q − 1)SSB + nq(q − 1)(ȳ − µ)2

2σ2(1 + ρ)
,

where

SSB =
n∑
i=1

q∑
h=1

(yih − ȳi)2 , SSW =
n∑
i=1

(ȳi − ȳ)2,

with ȳi =
∑q

h=1 yih/q and ȳ =
∑n

i=1

∑q
h=1 yih/nq. The pairwise score func-

tion has components

psµ(θ; y) =
∂p`(θ)
∂µ

=
nq(q − 1)(ȳ − µ)

σ2(1− ρ)
,

psσ2(θ; y) =
∂p`(θ)
∂σ2

=
q − 1 + ρ

2(σ2)2(1− ρ2)
SSW +

+
q(q − 1)

{
SSB + n(ȳ − µ)2

}
2(σ2)2(1 + ρ)2

− nq(q − 1)
2σ2

,

psρ(θ; y) =
∂p`(θ)
∂ρ

= −ρ
2 + 2ρ(q − 1) + 1

2σ2(1− ρ2)2
SSW +

+
q(q − 1)

{
SSB + n(ȳ − µ)2

}
2σ2(1 + ρ)2

+
nq(q − 1)ρ
2(1− ρ2)

.

To see whether the in�uence function of θ̂p is bounded or not, it is su�cient
to study the behavior of ps(θ) (see Section 2.4.1).
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Figure 3.1: Multivariate normal distribution. Plots of the components of the
pairwise score function. In panel (a) psµ(θ; y); (b) psσ2(θ; y); (c) psρ(θ; y).
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In particular, if the pairwise score function is bounded, this implies the
B-robustness of the maximum pairwise likelihood estimator. It is straight-
forward to see that ps(θ) is not bounded, since it is a function of ȳ, SSB
and SSW , that are linear and quadratic functions in the observations, re-
spectively. The unboundedness of the pairwise score function can be seen
from Figure 3.1, where the components of ps(θ) are plotted for q = 2 and
y = (y1, y2) ∈ [−3, 3] × [−3, 3]. In all the panels we see that when either
|y1| → ∞ or |y2| → ∞ the components of ps(θ) are not bounded. This
implies that the maximum pairwise likelihood estimator is not robust.

3.5 Final remarks

In this Chapter, some problems related to the use of pairwise likelihood
functions for inferential purposes have been discussed.

Interest has been �rst focused on hypothesis testing, when the pairwise
analogue of the log likelihood ratio test statistic is considered. It has been
highlighted that the pairwise log likelihood ratio statistic does not converge
to a standard limiting distribution, but to a linear combination of indepen-
dent chi-square random variables with parameters depending on the Go-
dambe information. The need of resorting to empirical expressions of the
elements of this matrix turns out to worsen the convergence to the asymp-
totic distribution of pairwise likelihood test statistics.

Then, the attention has been moved towards a second problem, caused
by the lack of robustness of the maximum pairwise likelihood estimator.
This problem is particularly critical since it may a�ects all the inferential
procedures based on the pairwise likelihood functions as, for instance, the
power and the coverage levels of the derived test statistics.

These two problems are faced in the following chapters where some orig-
inal solutions are proposed.
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Chapter 4

Empirical pairwise

log likelihood ratios

4.1 Introduction

The aim of this Chapter is to discuss a solution to cope with con�dence
regions and testing hypothesis in the pairwise likelihood framework. In Sec-
tion 3.4.1, it has been shown that pairwise likelihood test statistics require
the computation of the elements J(θ) and H(θ) of the Godambe informa-
tion. As pointed out in Section 3.4.1, analytical expressions of these matrices
are available in rather simple cases only, and often their empirical counter-
parts must be computed. These estimates, given in (3.6) and (3.7), may be
inaccurate or even non-consistent. This happens, for instance, when deal-
ing with times series or spatial processes. Some alternative estimators of
J(θ) and H(θ) are available, but they su�er from practical limitations. The
lack of accuracy of such estimates a�ects the convergence of the pairwise log
likelihood test statistics to their asymptotic distributions.

These reasons motivate the contribution proposed in this Chapter, where
a computationally and theoretically appealing approach is developed based
on empirical log likelihood ratios derived from pairwise score functions. The
proposed test statistics are attractive in the following situations:

1. the �rst one is related to the di�culties that might arise when an
estimate of J(θ) is needed. For instance, when asymptotics are in n,
the straightforward estimator Ĵ(θ) given in (3.6) might be inaccurate
when the sample size is moderate to small and this carries over the
accuracy of all the pairwise likelihood test statistcs. On the other
hand, the improved jackknife estimator Ĵjack(θ) given in (3.11) can
be computationally demanding to obtain. Instead, when asymptotics
are in q, estimators of J(θ) based on window subsampling are strictly
depending on the mixing conditions of the random �eld;
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2. the second one is concerned with those applications where the com-
putation of the maximum pairwise likelihood estimate requires a huge
computational e�ort. As a matter of fact pairwise empirical likelihood
ratios (and in general empirical likelihood ratios) are computed without
requiring the knowledge of the maximum pairwise likelihood estimate
(see Section 2.6.2).

The behavior of the proposed test statistics is also illustrated through
two simulation studies in Section 4.3.

4.2 Pairwise score-based empirical log likelihood ra-

tios

Let Y ∈ Rq be a random vector with probability distribution F (y; θ) and
density function f(y; θ), θ ⊆ Rp. Consider a random sample y = (y1, . . . , yn)
from Y , and de�ne a set of measurable events {Er : r = 1, . . . , nq(q − 1)/2}
in terms of pairs of observations (yih, yik), i = 1, . . . , n, h 6= k = 1 . . . , q.
In what follows, the pairwise score function given in (3.5) is considered by
letting a = 0.

The pairwise score function is given by

ps(θ) = ps(θ; y) =
n∑
i=1

q−1∑
h=1

q∑
k=h+1

∂ log f(yih, yik; θ)
∂θ

=
n∑
i=1

psi(θ), (4.1)

with psi(θ) =
∑q−1

h=1

∑q
k=h+1 ∂ log f(yih, yik; θ)/∂θ.

An empirical pairwise log likelihood ratio statistic for θ, derived from
(4.1), can be expressed as

pWe(θ) = 2
n∑
i=1

log
{

1 + ξ(θ)>psi(θ)
}
, (4.2)

where the Lagrangian multiplier ξ(θ) satis�es

1
n

n∑
i=1

psi(θ)
(1 + ξ(θ)>psi(θ))

= 0. (4.3)

The following Proposition states that, starting from the pairwise score
function, it is possible to obtain a pseudo log likelihood ratio test with stan-
dard limiting distribution. This task is accomplished by deriving the empir-
ical log likelihood ratio from the estimating function (4.1).

Proposition 1. Consider the pairwise score function (4.1) and the pairwise
empirical log likelihood ratio (4.2). Then

pWe(θ)
d→ χ2

p.
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Proposition 1 states the same asymptotic result of Owen (1988, 1990) for
the empirical pairwise log likelihood ratio statistic pWe(θ). The proof can
be easily sketched by exploiting the general results for unbiased estimating
functions. In particular, it is required ps(θ) = Op(n1/2), Ĵ(θ) = Op(n), and
Ĥ(θ) = Op(n).

Proof. A McLaurin series expansion of (4.3) yields

ξ(θ) = Ĵ(θ)−1ps(θ) +Op(n−1) = Op(n−1/2).

The expansion for pWe(θ) is

pWe(θ) = 2
n∑
i=1

log
{

1 + ξ(θ)>psi(θ)
}

=

= 2
n∑
i=1

{
ξ(θ)>psi(θ)−

1
2
ξ(θ)>psi(θ)psi(θ)>ξ(θ) +Op(n−3/2)

}
=

= 2
{
ξ(θ)>ps(θ)− 1

2
ξ(θ)>Ĵ(θ)−1ξ(θ)

}
+Op(n−1/2) =

= ps(θ)>Ĵ(θ)−1ps(θ) +Op(n−1/2) =

= pWu(θ) +Op(n−1/2).

A more rigorous proof can be easily obtained following the theory in
Adimari and Guolo (2010). The chi-square approximation still holds when
θ is partitioned as θ = (τ, λ), where τ is a parameter of interest and λ is
a nuisance parameter, i.e. for the pro�le version of pWe(θ). In particu-
lar, pWep(τ) = infλ pWe(τ, λ) still converges in distribution to a chi-square
random variable.

The asymptotic behavior of pWe(θ) is determined by the relations in
(2.27). This highlights the empirical likelihood's ability to Studentize inter-
nally and, roughly speaking, this means that, up to �rst order, the empirical
log likelihood ratio resembles Wald or score statistics without explicit esti-
mation of J(θ), H(θ) of either θ̂p.

Although the chi-square approximation for pWe(θ) is in error by order
Op(n−1) (Hall and La Scala, 1990; DiCiccio et al., 1991), the empirical log
likelihood ratio statistic (4.2) may lead to unsatisfactory inferences when the
sample size is relative small. Nevertheless, it is possible to derive an empirical
likelihood ratio that, in some circumstances, enhances the accuracy of the
approximation.

An alternative version of (4.2) can be obtained by rewriting (4.1) as

ps(θ) = p̄s(θ) = p̄s(θ; y) =
m∑
r=1

∂ log f(y ∈ Er; θ)
∂θ

=
m∑
r=1

psr(θ), (4.4)
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CHAPTER 4. EMPIRICAL PAIRWISE LOG LIKELIHOOD RATIOS

where, without loss of generality, f(y ∈ E1; θ) = f(y11, y12; θ), f(y ∈ E2; θ) =
f(y11, y13; θ), . . . , f(y ∈ Em; θ) = f(yn(q−1), ynq; θ), with m = nq(q − 1)/2.
The main di�erence between (4.1) and (4.4) is that the latter does not group
the score contributions derived from the same unit. In other words, using
p̄s(θ) is like observing a random sample of dimension nq(q − 1)/2 from a
bivariate distribution.

The pairwise empirical log likelihood ratio derived from p̄s(θ) is

p̄We(θ) = 2
m∑
r=1

log
{

1 + ξ̄(θ)>psr(θ)
}
, (4.5)

where the Lagrangian multiplier ξ̄(θ) satis�es

1
m

m∑
r=1

psr(θ)(
1 + ξ̄(θ)>psr(θ)

) = 0. (4.6)

The asymptotic behavior of p̄We(θ) is stated in the following Proposition.

Proposition 2. Consider the pairwise score function (4.4) and and the pair-
wise empirical log likelihood ratio (4.5). Then

p̄We(θ)
d→

p∑
j=1

λj(θ)Z2
j ,

with λj(θ) eigenvalues of H(θ)−1J(θ) and Zj independent standard normal
random variables, j = 1, . . . , p.

Proof. Following Cox and Reid (2004), we formally expand psi(θ̂p) around
θ, up to the �rst order, i.e.

psi(θ)− (θ̂p − θ)>
∂psi(θ)
∂θ>

·= 0.

The second term is Op(q2), while the order of the �rst term is Op(qk). The
constant k ∈ [1, 2] accommodates for the dependence structure of the data
(see Cox and Reid, 2004).

Furthermore, we have

n∑
i=1

{
psi(θ)− (θ̂p − θ)>

∂psi(θ)
∂θ>

}
=

= ps(θ) + (θ̂p − θ)>
∂ps(θ)
∂θ>

=

= Op(n1/2qk) +Op(n−1/2qk−2)Op(nq2).

(4.7)
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The estimator of J(θ) supplied by (4.4) is J̃(θ) = m−1
∑m

r=1 psr(θ)psr(θ)
>,

whereas that from (4.1) is n−1Ĵ(θ) =
∑n

i=1 psi(θ)psi(θ)
>. Thus,

J̃(θ)
p→ H(θ)

and

Ĵ(θ)
p→ J(θ).

A McLaurin series expansion of (4.6) yields

ξ̄(θ) = J̃(θ)−1ps(θ) +Op(n−1q2k−4) = Op(n−1/2qk−2),

where the order of J̃(θ) and ps(θ) can be derived from (4.7).

The expansion for p̄We(θ) is

p̄We(θ) = 2
m∑
r=1

log
(

1 + ξ̄(θ)>psr(θ)
)

=

= 2
(
ξ̄(θ)>ps(θ)− 1

2
ξ̄(θ)>J̃(θ)ξ̄(θ)

)
+Op

(
n−1/2q3k−4

)
=

= ps(θ)>J̃(θ)−1ps(θ) +Op

(
n−1/2q3k−4

)
=

=
{(

Ĵ(θ)−1/2
)>

ps(θ)
}>

Ĵ(θ)1/2J̃(θ)−1
(
Ĵ(θ)1/2

)>{(
Ĵ(θ)−1/2

)>
ps(θ)

}
+

+Op

(
n−1/2q3k−4

)
, (4.8)

where Ĵ(θ)1/2
(
Ĵ(θ)1/2

)>
= Ĵ(θ). The following equality∣∣∣∣Ĵ(θ)1/2J̃(θ)−1
(
Ĵ(θ)1/2

)>∣∣∣∣ =
∣∣∣J̃(θ)−1Ĵ(θ)

∣∣∣
implies that the eigenvalues of the two matrices are equal. Moreover∣∣∣J̃(θ)−1Ĵ(θ)

∣∣∣ p→
∣∣H(θ)−1J(θ)

∣∣ .
Finally, the result follows since in (4.8) we have a quadratic form in normal
random variables.

Proposition 2 states that the asymptotic distribution of pW (θ) and p̄We(θ)
are the same. Hence, p̄We(θ) should be scaled with the same scaling factors
used for pW (θ) (see Section 3.4.1) in order to obtain the standard chi-square
limiting distribution. Although p̄We(θ) must be computed along with the
elements of the Godambe information, in some circumstances its usage is

43



CHAPTER 4. EMPIRICAL PAIRWISE LOG LIKELIHOOD RATIOS

preferable than to pWe(θ) and pW (θ). For instance, consider the pairwise
empirical log likelihood ratio adjusted by matching the �rst moment

p̄We1(θ) =
p̄We(θ)
κ1

,

with κ1 =
∑p

j=1 λj(θ)/p. It is easy to show that κ1 = tr(H(θ)−1J(θ))/p =
Op(q2k−2) and hence the remainder term of the scaled statistic p̄We1(θ) is
Op
(
n−1/2qk−2

)
. Thus, it is worth to use p̄We1(θ) when the correlation is

moderate. Indeed, as the correlation strengthens, hence k moves from 1 to
2, the convergence will be slower. For instance if k = 1 and q = O(n), then
the remainder term is bounded by Op(n−3/2).

4.3 Numerical examples

In this Section two examples are discussed in order to compare the �nite-
sample behavior of the inferential procedures based on the test statistics
presented in Sections 3.4.1 and 4.2. The �rst example deals with the equicor-
related multivariate normal distribution and the second one considers cor-
related binary data. The �rst example considers a vector parameter and is
feasible to do closed form calculations both for complete and pairwise like-
lihood quantities. The second example provides a framework of practical
interest, where the pairwise likelihood function is not in closed form and the
estimation of the matrices H(θ) and J(θ) is needed and can be computa-
tionally intensive.

4.3.1 Multivariate normal distribution

Let us focus on the mean µ, variance σ2, and on the correlation coe�cient ρ
of an equicorrelated multivariate normal distribution (see Example 3.1). In
this case, the full log likelihood function `(θ), with θ = (µ, σ2, ρ), is available
and it is possible to compare the full log likelihood ratio statistic W (θ),
based on `(θ), with the scaled versions of pWθ) presented in Section 3.4.1,
and with the proposed pairwise empirical log likelihood ratios pWe(θ) and
p̄We(θ). The pairwise log likelihood function and the pairwise score function
for this model have been given in Section 3.4.2.

In order to assess the behavior of pWe(θ), p̄We1(θ), pW1(θ), pWw(θ),
pWs(θ), pWcb(θ) and pWinv(θ), we ran a simulation experiment, with n =
15, 30 and q = 30, for three values of ρ, ranging from a moderate to a strong
correlation. The analysis is restricted to positive values of ρ as in Cox and
Reid (2004) and Pace et al. (2011). In order to guarantee that Σ is positive
de�nite it must be −1/(q − 1) < ρ < 1.

Table 4.3.1 gives the empirical coverages of con�dence regions. Note that
both pW1(θ) and p̄We1(θ) are multiplied by the same scale factor 1/κ̂1, with
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q = 30 ρ = 0.2 ρ = 0.5 ρ = 0.9

n = 15 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

W (θ) 0.890 0.941 0.986 0.887 0.939 0.986 0.887 0.940 0.987
pW1(θ) 0.819 0.874 0.942 0.808 0.868 0.940 0.841 0.896 0.961
pWw(θ) 0.711 0.773 0.856 0.708 0.768 0.848 0.592 0.641 0.712
pWs(θ) 0.791 0.866 0.967 0.788 0.863 0.964 0.785 0.859 0.964
pWinv(θ) 0.845 0.931 0.996 0.890 0.960 0.995 0.904 0.952 0.990
pWcb(θ) 0.716 0.785 0.873 0.728 0.791 0.879 0.606 0.659 0.737
pWe(θ) 0.815 0.876 0.937 0.826 0.883 0.941 0.855 0.903 0.951
p̄We1(θ) 0.894 0.951 0.992 0.880 0.943 0.991 0.798 0.869 0.951

n = 30 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

W (θ) 0.891 0.943 0.988 0.893 0.943 0.987 0.892 0.862 0.885
pW1(θ) 0.848 0.899 0.957 0.842 0.896 0.958 0.862 0.913 0.969
pWw(θ) 0.797 0.857 0.928 0.794 0.853 0.923 0.698 0.749 0.821
pWs(θ) 0.827 0.886 0.954 0.831 0.886 0.953 0.828 0.888 0.952
pWinv(θ) 0.851 0.915 0.978 0.878 0.936 0.989 0.897 0.947 0.989
pWcb(θ) 0.803 0.867 0.940 0.809 0.872 0.941 0.711 0.767 0.844
pWe(θ) 0.886 0.930 0.976 0.884 0.935 0.949 0.889 0.934 0.969
p̄We1(θ) 0.895 0.946 0.989 0.885 0.944 0.989 0.849 0.910 0.971

Table 4.1: Multivariate normal distribution: empirical coverage probabilities
of con�dence regions for θ based on 20.000 Monte Carlo trials.

κ̂1 = tr(Ĥ(θ̂p)−1Ĵ(θ̂p))/p and the results show that the proposed pairwise
empirical log likelihood statistic p̄We1(θ) has a reasonably performance in
terms of coverage and is close to W (θ), pWs(θ) and pWinv(θ) when the
correlation is less than 0.9. For n = 15 and n = 30, p̄We1(θ) outperforms
pWe(θ), pWw(θ) and pWcb(θ). On the other hand, pWe(θ) performs as well
as pW1(θ) when n = 15, but for n = 30 the empirical coverages are closer
to the nominal levels than those of the scaled versions of pW (θ). Larger
sample sizes (results not reported here) give, as one would expect, rather
little di�erences between the results of all the test statistics.

4.3.2 Binary data

The pairwise likelihood is particularly useful for modeling correlated binary
outcomes, as discussed in Le Cessie and Van Houwelingen (1994). This kind
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of data arises, e.g., in the context of repeated measurements on the same
subject, where a standard likelihood analysis involves multivariate integrals
whose dimension equals the cluster sizes.

Let us focus on a multivariate probit model with constant cluster sizes.
In this case, the pairwise log likelihood is

p`(θ) =
n∑
i=1

q−1∑
h=1

q∑
k=h+1

logP (Yih = yih, Yik = yik; θ) (4.9)

(see Le Cessie and Van Houwelingen, 1994; Kuk and Nott, 2000). Pairwise
likelihood inference is much simpler than using the full likelihood since it
involves only bivariate normal integrals. For instance (see also Renard et al.,
2004), we have P (Yih = 1, Yik = 1; θ) = Φ2(γih, γik; ρ), where Φ2(·, ·; ρ) de-
notes the standard bivariate normal distribution function with correlation
coe�cient ρ and γih = xihβ/σ is the component of place h of γi = Xiβ/σ

2,
with β unknown p-dimensional regression coe�cient, σ known scale pa-
rameter and Xi design matrix for unit i with ones in the �rst column,
i = 1, . . . , n, h, k = 1, . . . , q.

In our simulation setting, we have β = (β0, β1) and the covariate in Xi,
i = 1, . . . , n, is generated considering q independent trials from a uniform
random variable on the interval [−1, 1]. The binary outcomes for unit i are
obtained simulating from a q-variate normal Z having vector of means γi,
covariance matrix Σ with Σhh = σ2, Σhk = σ2ρ, h 6= k, and then dichotomiz-
ing the result according to Yih = 1 if Zih ≥ 0, as described in Section 2 of
Renard et al. (2004).

Simulation results for the overall parameter θ = (β0, β1, ρ) are summa-
rized in Table 4.3.2, which gives the empirical coverages for con�dence re-
gions for θ. The derivatives of (4.9) are not available in closed form, and
their numerical evaluation has been carried out using the R library numDeriv,
while the maximization step has been performed using functions in standard
R libraries. The results in Table 4.3.2 show that the pairwise empirical log
likelihood statistic p̄We1(θ) gives quite good results for moderate sample
sizes, but in this example the statistic pWe(θ) slightly improves on all the
statistics. This example highlights that the use of the statistic pWe(θ) might
be preferable and of practical interest than the scaled versions of pW (θ)
when the matrices H(θ) and J(θ) must be computed numerically.
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q = 20 ρ = 0.25 ρ = 0.50 ρ = 0.75

n = 50 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

pW1(θ) 0.872 0.919 0.969 0.869 0.915 0.966 0.867 0.915 0.967
pWw(θ) 0.845 0.903 0.963 0.854 0.913 0.970 0.866 0.920 0.973
pWs(θ) 0.862 0.915 0.970 0.869 0.921 0.974 0.876 0.929 0.978
pWcb(θ) 0.844 0.902 0.963 0.854 0.912 0.969 0.864 0.921 0.974
pWinv(θ) 0.869 0.924 0.977 0.878 0.933 0.983 0.888 0.942 0.987
pWe(θ) 0.875 0.927 0.977 0.886 0.936 0.981 0.892 0.941 0.983
p̄We1(θ) 0.880 0.926 0.974 0.876 0.919 0.970 0.872 0.920 0.970

n = 100 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

pW1(θ) 0.878 0.924 0.974 0.875 0.920 0.968 0.869 0.918 0.970
pWw(θ) 0.872 0.927 0.979 0.878 0.931 0.981 0.879 0.935 0.983
pWs(θ) 0.881 0.931 0.980 0.883 0.934 0.980 0.887 0.938 0.984
pWcb(θ) 0.872 0.926 0.979 0.876 0.931 0.980 0.880 0.935 0.983
pWinv(θ) 0.884 0.937 0.984 0.887 0.939 0.985 0.893 0.943 0.989
pWe(θ) 0.894 0.946 0.987 0.894 0.944 0.987 0.893 0.946 0.988
p̄We1(θ) 0.882 0.928 0.976 0.878 0.922 0.970 0.872 0.920 0.971

Table 4.2: Binary data: empirical coverage probabilities of con�dence regions
based on 20.000 Monte Carlo trials, with β0 = 1/2 andβ1 = 1.

4.4 Final remarks

In this Chapter, the possibility of deriving empirical likelihoods from a pair-
wise score function has been investigated. The simulation results in Sec-
tion 4.3 indicate that the proposed p̄We1(θ) and pWe(θ) can be useful to
make inference in complex models, and they o�er a new appealing computa-
tional method to derive likelihood ratio-type test statistics in this framework.

The pairwise empirical log likelihood ratio pWe(θ) provides several ad-
vantages over pW (θ) and its scaled versions, in some respects. First, the
computation of the elements of the Godambe information is avoided, and in
particular that of J(θ) that can be troublesome (see Section 3.4.1). In the
equicorrelated multivariate normal example J(θ) is available, but we used
Ĵ(θ) in order to perform a fair and more realistic comparison of pWe(θ) with
the scaled versions of pW (θ) and p̄We(θ). Second, to perform hypothesis
testing the statistic pWe(θ) does not require the knowledge of the pairwise
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maximum likelihood estimate θ̂p that can be computationally demanding to
obtain (such as in the context of max-stable processes; see, e.g., Padoan
et al., 2010).

For what concerns the statistic p̄We1(θ), it does not overcome the esti-
mation of J(θ) but provides coverages that are even better than those of the
scaled versions of pW (θ).

In general, to compute the proposed empirical pairwise likelihoods we
have to solve equations (4.3) and (4.6) and the computational demand, to
�nd the roots ξ(θ) and ξ̄(θ), is negligible compared to that for pW (θ), since
we need to compute only once the pairwise score function at θ. Furthermore,
the algorithm described in Owen (1990) reformulates the problem of solving
(4.3) and (4.6) into a minimization problem, providing fast and reliable roots
for these equations.

As a �nal remark, we note that the proposed pairwise empirical likeli-
hoods may be readily extended to general composite score functions, provid-
ing inferential tools alternative to composite likelihood functions.
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Chapter 5

Saddlepoint test based on the

maximum pairwise likelihood

estimator

5.1 Introduction

In the previous Chapter, empirical log likelihood ratio statistics based on the
pairwise score function were developed and discussed. The proposals aim at
providing test statistics that may prove useful in the composite likelihood
framework. In particular, it has been shown that the test statistic pWe(θ)
behaves as it was a parametric log likelihood ratio, i.e. its limiting distribu-
tion is standard chi-square without any additional estimation of the elements
of the Godambe information. This feature is particularly appealing and pro-
vides a notable improvement with respect to composite likelihood-based test
statistics in those situations where the computation of the elements of the
Godambe information is somehow troublesome (see Section 3.4.1).

The nominal levels of con�dence regions based on pWe(θ) are asymptoti-
cally correct, and in �nite samples the empirical levels may be far away from
the nominal ones, especially when the sample size n is small. To cope with
the possible lack of accuracy of pWe(θ), an alternative pairwise empirical log
likelihood ratio, namely p̄We(θ), is proposed. It has been shown that the
convergence of p̄We(θ) to its asymptotic distribution depends on the sam-
ple size n, the dimensionality of the data q as well as on the dependence
among the observations. Hence, in some situations the use of p̄We(θ) may
be preferable than that of both pWe(θ) and composite likelihood-based test
statistics. However, the asymptotic distribution of p̄We(θ) is no longer stan-
dard chi-square and it turns out to be the same asymptotic distribution of
the composite log likelihood ratio (3.4). Hence, inference based on p̄We(θ)
requires the computation of the elements of the Godambe information.

In this Chapter, the use of a test statistic based on the saddlepoint ap-
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proximation to the density of M-estimators is discussed in the pairwise like-
lihood framework. There are at least three notable features provided by the
use of the nonparametric saddlepoint test statistic in the pairwise likelihood
framework:

1. despite saddlepoint approximations were originally proposed in a fully
parametric setting, the proposed test statistic is based on nonparamet-
ric saddlepoint approximations. This is very relevant in the pairwise
likelihood framework since the speci�cation of the joint distribution of
the data is avoided and inference is based on an approximate model;

2. the proposed test statistic has a standard asymptotic behavior and
the error in the approximation is of order Op(n−1). In particular, the
error is relative rather than absolute, meaning that the approximation
provided is very accurate also in the tails of the distribution. This
is an important property of the proposed test statistic since the main
alternatives, such as bootstrapped test statistics, claim absolute errors;

3. the proposed test statistic possesses the aforementioned nice proper-
ties in a general setting: the accuracy of the approximation and the
standard asymptotic behavior hold under the assumptions required for
composite likelihood methods.

The behavior of the proposed nonparametric saddlepoint test statistic is
illustrated through two simulation studies in Section 5.5.

5.2 Background on saddlepoint approximations

Edgeworth expansions are used to approximate the density and distribution
functions of standardized sums of random variables. Several statistics can be
expressed in such a form, and a notable example of the use of the Edgeworth
formula is to approximate the density of maximum likelihood estimators.
Although Edgeworth expansions have practical disadvantages compared to
saddlepoint approximations, they play a central role in theoretical discussions
of small-sample inference. Edgeworth approximations are not pursued in the
remaining part of the Chapter and the reader can refer to Hall (1997).

Saddlepoint approximations in statistic date back to Daniels (1954).
Broadly speaking, they are an improvement over Edgeworth expansions that
give rise to highly accurate density estimates. Saddlepoint approximations
control the relative error of the approximation rather than the absolute one
(as Edgeworth approximations do), thereby they are usually very accurate
when the sample size is small. Therefore, their use is relevant when accurate
estimates of tail area probabilities are required.

In order to sharpen the scope of this Section, the saddlepoint approxi-
mation for the density of multivariate M-estimators is presented. The main
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references for saddlepoint approximations for the density and distribution
function of sums of independent random variables are Daniels (1954) and
Lugannani and Rice (1980), whereas a general reference is Butler (2007).

Let F = {f(y; θ); y ∈ Y ⊆ Rq, θ ∈ Θ ⊆ Rp, q, p ≥ 1} be a parametric
statistical model for the random vector Y , and let Fθ = F (y; θ) be the
distribution function associated to f(y; θ). Consider a random sample y =
(y1, . . . , yn) of size n from Fθ. An M-estimator θ̃ is de�ned implicitly as the
solution of the estimating equation

Ψθ = Ψ(θ; y) =
n∑
i=1

ψ(θ; yi) = 0,

with ψ(·) known function (see Section 2.2).
In this context, attention is restricted to situations where the cumulant

generating function of Ψθ, de�ned as

KΨ(λ(θ); θ) = logE
(

exp
{
λ(θ)>ψ(θ;Y )

})
,

with λ(θ) ∈ Rp, exists. Under this assumption, the saddlepoint approxima-
tion to the density of θ̃ is given by (Field, 1982)

fθ̃(t) =
(

2π
n

)p/2
exp {nKΨ(λ(t); t)} |B(t)||Σ(t)|−1/2(1 +Op(n−1)), (5.1)

where the saddlepoint λ(t) = λ satis�es the saddlepoint equation

∂

∂λ
KΨ(λ(t); t) = 0.

Further, in (5.1)

B(t) = exp {−KΨ(λ(t); t)}E
(

exp
{
λ(t)>ψ(t;Y )

} ∂

∂t>
ψ(t;Y )

)
and

Σ(t) = exp {−KΨ(λ; t)}E
(
ψ(t;Y )ψ(t;Y )> exp

{
λ(t)>ψ(t;Y )

})
.

The saddlepoint approximation (5.1) was given in Field (1982), and has been
subsequently considered by Skovgaard (1990), Jensen and Wood (1998) and
Almudevar et al. (2000). Conditions which imply the existence of fθ̃(t), and
which cover cases with ψ(·) not di�erentiable, are given in Almudevar et al.
(2000).

The saddlepoint approximation (5.1) can be extended to the situation in
which the true underlying distribution function Fθ is replaced by its empirical
counterpart, i.e. F̂n. More precisely, Ronchetti and Welsh (1994) de�ne
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the empirical saddlepoint approximation for the density of multivariate M-
estimators as

f̃θ̃(t) =
(

2π
n

)p/2
exp

{
nK̂Ψ(λ̂(t); t)

}
|B̂(t)||Σ̂(t)|−1/2 (5.2)

where

K̂Ψ(λ̂(t); t) = log

(
1
n

n∑
i=1

λ̂(t)>ψ(t; yi)

)
,

B̂(t) = exp
{
−K̂Ψ(λ̂(t); t)

} 1
n

n∑
i=1

exp
{
λ̂(t)>ψ(t; yi)

} ∂

∂t>
ψ(t; yi),

Σ̂(t) = exp
{
−K̂Ψ(λ̂(t); t)

} 1
n

n∑
i=1

ψ(t; yi)ψ(t; yi)> exp
{
λ̂(t)>ψ(t; yi)

}
,

and the saddlepoint λ̂(t) = λ̂ solves the equation

∂

∂λ
K̂Ψ(λ(t); t) = 0.

To evaluate the error of (5.2), it is necessary to consider the density of
n1/2(θ̃ − θ). It may be shown that as n diverges, the following result holds

fθ̃(θ + n−1/2u) = f̃θ̃(θ̃ + n−1/2u)
{

1 +
a(u)√
n

+Op(n−1)
}
,

where a(u) = Op(1) and its expression, as well as u, are given in Ronchetti
and Welsh (1994).

5.3 Saddlepoint test based on multivariate M-estimators

Consider the null hypothesis H0 : θ = θ0. The parametric saddlepoint test
is (Robinson et al., 2003)

h(θ̃) = −2nKΨ(λ(θ̃); θ0) = −2n logEθ0
(

exp
{
λ(θ̃)>ψ(θ̃;Y )

})
, (5.3)

where Eθ0 is the expected value with respect to Fθ0 , and its asymptotic null
distribution is chi-square with p degrees of freedom. In particular, under the
assumptions given in Robinson et al. (2003), h(θ̃) is asymptotically pivotal,
and the following result holds

p = Pθ0

[
h(θ̃(Y )) ≥ h(θ̃(y))

]
= Pθ0

[
χ2
p ≥ h(θ̃(y))

] {
1 +Op(n−1)

}
, (5.4)

where Pθ0(·) denotes the probability under H0, θ̃(Y ) is the M-estimator, θ̃(y)
is the M-estimate, and χ2

p is a chi-square random variable with p degrees of
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freedom. Relation (5.4) states that the error in the approximation is relative
and of second order. It is worth to note that if the underlying distribution
of the observations belongs to a full exponential family with score function
ψ(θ; y) = y − θ, where θ is the mean parameter, then the statistic (5.3) is
the log likelihood ratio.

In practice, the distribution Fθ underlying the data may be unknown.
The conventional approach to obtain an estimate of Fθ, which puts mass on
the observed data points, is to follow Owen (2001), which results in maximiz-
ing the empirical likelihood under suitable constraints. As it has been shown
in Section 2.6.2, this approach is equivalent to minimize the constrained for-
ward Kullback-Leibler divergence between F̂n and

F̂θ =

{
wi(θ) :

∑
i

wi(θ) = 1,
∑
i

wi(θ)ψ(θ; yi) = 0

}
.

The idea is to apply the parametric saddlepoint test (5.3) by replacing Fθ0 ,
i.e. the distribution under H0, by a suitable nonparametric estimate F̂θ0 , in
order to retain the second-order property (5.4). This task is accomplished by
minimizing rather than the constrained forward Kullback-Leibler divergence
the backward's one, that is

n∑
i=1

wi(θ0) log
(
wi(θ0)
n

)
+

+δ(θ0)

(
n∑
i=1

wi(θ0)− 1

)
+ β(θ0)>

n∑
i=1

ψ(θ0; yi)
(5.5)

where δ(θ0) ∈ R and β(θ0) ∈ Rp are Lagrange multipliers. The minimization
in wi(θ0) of (5.5) is equivalent to the unconstrained minimization of

log

(
1
n

n∑
i=1

exp
{
β(θ0)>ψ(θ0; yi)

})

in β(θ0). It may be shown that the elements of F̂θ0 have the following
exponential analytical form (Robinson et al., 2003)

wi(θ0) =
exp

{
β(θ0)>ψ(θ0; yi)

}∑n
i=1 exp {β(θ0)>ψ(θ0; yi)}

, i = 1, . . . , n, (5.6)

and it turns out that F̂θ0 is the nonparametric tilted distribution used by
Efron (1981) in the bootstrap framework.

Following the basic idea of the saddlepoint test, and using F̂θ0 as the
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underlying distribution, a nonparametric version of (5.3) is given by

ĥ(θ̃) = −2n log Êθ0
[
exp

{
λ(θ̃)>ψ(θ̃;Y )

}]
=

= −2n log

[
n∑
i=1

wi(θ0) exp
{
λ(θ̃)>ψ(θ̃; yi)

}]
=

= −2n log

∑n
i=1 exp

{
β(θ0)>ψ(θ0; yi) + λ(θ̃)>ψ(θ̃; yi)

}
∑n

i=1 exp {β(θ0)>ψ(θ0; yi)}

 ,
(5.7)

where Êθ0(·) denotes the expected value with respect to F̂θ0 . The statistic
ĥ(θ̃) retains the desired second-order property. This means that, even when
the sample size n is small, the distribution of (5.7) is very close to a χ2

p

since the error in the approximation is relative and not absolute. Indeed,
the following result holds (Ma and Ronchetti, 2011)

p = Pθ0

[
ĥ(θ̃(Y )) ≥ ĥ(θ̃(y))

]
=

= P
[
χ2
p ≥ ĥ(θ̃(y))

] {
1 +O(n−1)

}
.

(5.8)

It is worth to outline some points about the relation in (5.8):

1. the derivation of (5.8) stems from the bootstrap, since F̂θ0 is the non-
parametric tilted distribution under H0. In particular, the result is
obtained: i) by using some results about second-order relative errors
on the accuracy of bootstrap tests, and ii) by linking the bootstrap
p-value to the p-value given in (5.8). An heuristic discussion is given
in the following.

Let y∗ be a sample drawn from F̂θ0 , and let θ̃∗ denote the solution of
Ψ(θ; y∗) = 0. In the bootstrap framework, when the sample space is
y = (y1, . . . , yn), the true distribution is F̂θ0 . Under mild regularity
conditions (see Field et al., 2008; Ma and Ronchetti, 2011), there exists
a saddlepoint approximation to the distribution of θ̃∗(Y ∗). Therefore,
for �xed ĥ(θ̃(y)), the bootstrap p-value satis�es

p∗ = P ∗
F̂θ0

[
ĥ(θ̃∗(Y ∗)) ≥ ĥ(θ̃(y))

]
=

= P
[
χ2
p ≥ ĥ(θ̃(y))

] {
1 +O(n−1)

}
,

(5.9)

where P ∗
F̂θ0

(·) denotes the probability under the bootstrap distribution.

Hence, (5.9) shows that the distribution of the statistic ĥ(θ̃∗(Y ∗)) is
second order accurate, in relative terms. Moreover, following Field
et al. (2008) it is possible to link the bootstrap p-value to the p-value
given in (5.8), i.e.

54



5.4. NONPARAMETRIC SADDLEPOINT TEST BASED ON THE MAXIMUM

PAIRWISE LIKELIHOOD ESTIMATOR

p∗ = P ∗
F̂θ0

[
ĥ(θ̃∗(Y ∗)) ≥ ĥ(θ̃(y))

]
=

= PFθ0

[
ĥ(θ̃(Y )) ≥ ĥ(θ̃(y))

] {
1 +O(n−1)

}
=

= p(1 +O(n−1)).

(5.10)

2. the result in (5.8) holds under mild conditions given in Field et al.
(2008). Here, it is stressed that the agreement in (5.10) between p∗

and p holds if the estimating function Ψθ is bounded. The bounded-
ness of Ψθ is not required for robustness purposes, but, loosely speak-
ing, to retain the second-order property (5.7) without resorting to the
bootstrap. The importance of this assumption will be outlined in Sec-
tion 5.5.2 through a simulation study.

In the following, it is sketched the computation of the bootstrap distribu-
tion of ĥ(θ̃(Y )), although relation (5.10) shows that it is possible to achieve
the same level of accuracy by using the asymptotic distribution of ĥ(θ̃(Y )).

Given the observed sample, compute θ̃ = θ̃(y), wi(θ0), i = 1, . . . , n, and
ĥ(θ̃). Then, draw B samples from F̂θ0 , denoted by y∗b = (y∗1b, . . . , y

∗
nb),

for b = 1, . . . , B. For each sample compute θ̃∗b by solving the equation
Ψ(θ; y∗b ) = 0, and compute

ĥ(θ̃∗b ) = −2n log

[
n∑
i=1

wi(θ0) exp
{
λ(θ̃∗b )

>ψ(θ̃∗b ; yi)
}]

.

The bootstrap distribution of ĥ(θ̃(Y )) is given by the elements ĥ(θ̃∗b ). There-
fore the bootstrap p-value can be computed as

p∗ =
1

B + 1

B∑
b=1

I
{
ĥ(θ̃∗b ) ≥ ĥ(θ̃)

}
,

where I(·) is the indicator function.

5.4 Nonparametric saddlepoint test based on the

maximum pairwise likelihood estimator

The nonparametric saddlepoint statistic (5.7) is derived for general multivari-
ate M-estimators. In this Section, we outline the possibility to apply it in the
composite likelihood framework. Indeed, it has been shown that maximum
composite likelihood estimators belong to the general class of M-estimators
(see Section 3.2).

In the following, we give the formulation of ĥ(θ̃) for the pairwise likeli-
hood setting, since the numerical examples in Section 5.5 are devoted to the
pairwise likelihood function.
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Let θ̂p be the maximum pairwise likelihood estimator, de�ned as the
solution of the pairwise score equation

ps(θ) =
n∑
i=1

ps(θ; yi) =
n∑
i=1

{
q−1∑
r=1

q∑
s=r+1

∂ log f(yir, yis; θ)
∂θ

}
= 0 .

Assuming that the density of θ̂p admits the saddlepoint approximation (5.1),
the nonparametric saddlepoint pairwise test statistic is de�ned as

ĥ(θ̂p) = −2n log

∑n
i=1 exp

{
β(θ0)>ps(θ0; yi) + λ(θ̂p)>ps(θ̂p; yi)

}
∑n

i=1 exp {β(θ0)>ps(θ0; yi)}


= −2n log

[
n∑
i=1

wi(θ0) exp
{
λ(θ̂p)>ps(θ̂p; yi)

}]
, (5.11)

where

wi(θ0) =
exp

{
β(θ0)>ps(θ0; yi)

}∑n
i=1 exp {β(θ0)>ps(θ0; yi)}

, i = 1, . . . , n.

It is worth to outline the advantages provided by the use of (5.7) in the
pairwise likelihood framework:

1. the nonparametric saddlepoint test statistic does not require the speci-
�cation of the underlying distribution Fθ, since it is based on a suitable
nonparametric estimate F̂θ, given in (5.6). Hence, it is possible to make
accurate inference regardless the speci�cation of the joint distribution;

2. the nonparametric saddlepoint test statistic is asymptotically chi-square
distributed up to a relative error of order Op(n−1), without any addi-
tional estimation of the elements of the Godambe information. Indeed,
as it is outlined in Section 3.4.1, the lack of accuracy of composite
likelihood-based tests might be ascribed to an inaccurate estimate of
J(θ) and/or H(θ).

5.5 Numerical examples

This section aims at showing some numerical evidence about the behavior of
the pairwise nonparametric saddlepoint test statistic (5.11). Two examples
are illustrated, each of them highlighting a di�erent feature of ĥ(θ̂p).

In the �rst example (5.11) is compared to the pairwise likelihood-based
test statistics presented in Section 3.4.1. In particular, the �nite sample
accuracy of the χ2 approximation is analized in the context of a multivariate
normal model (see Section 3.4.2 and Section 4.3.1).

In the second example, a �rst order autoregressive model is considered in
order to apply ĥ(θ̂p) in a context of robust regression based on the pairwise
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likelihood function. It is shown that the use of bounded estimating func-
tions in order to compute ĥ(θ̂p) is recommended not merely for robustness
purposes. Indeed, the boundedness of the estimating function is required to
have a second order agreement, in relative terms, between the distributions
of ĥ(θ̂∗p) and ĥ(θ̂p) (Ma and Ronchetti, 2011).

In both examples the full log likelihood function `(θ) is available and this
allows to set the log likelihood ratio test W (θ) as a benchmark.

5.5.1 Multivariate normal distribution

Let Y be a normally distributed random vector, with q-dimensional vector
of means (µ, . . . , µ)> and symmetric covariance matrix Σ, having diagonal
elements σ2 and o�-diagonal elements σ2ρ, with ρ ∈ (−1/(q − 1), 1). The
pairwise log likelihood for θ = (µ, σ2, ρ) and the pairwise score function have
been given in Example 3.1 of Section 3.4.2.

In order to compare the accuracy of con�dence regions based on ĥ(θ̂p)
with the accuracy of the con�dence regions based on composite likelihood
test statistics, a simulation study has been performed by generating 100.000
samples of size n = 10 from Y ∈ R30, with µ = 0, σ2 = 1, and ρ ranging
from a moderate to a strong correlation. For each sample, the nonparametric
saddlepoint test statistic, as well as the statistics given in Section 3.4.1,
have been computed. Both the observed and the expected elements of the
Godambe information have been used to compute the pairwise likelihood test
statistics, being the latter available in this example (Pace et al., 2011). The
statistics denoted with the superscript �e� are computed using the elements
of the expected Godambe information.

Table 5.1 reports the empirical coverage probabilities of con�dence re-
gions for θ. As expected, the best results are obtained when the elements of
the expected Godambe information have an analytical expression and in par-
ticular when pW e

u(θ) and pW e
inv(θ) are used. However, when Ĵ(θ) and Ĥ(θ)

are used, the pairwise likelihood test statistics have coverage probabilities
far from the nominal levels. Instead, the bootstrap distribution of the non-
parametric saddlepoint test statistic ĥ(θ̂∗p) approximates quite well the χ2

3,
and the approximation is close to that provided by the gold standard W (θ).
From other simulation studies not reported here, it emerges that pairwise
likelihood test statistics achieve the nominal levels when either the sample
size is increased or when resampling-based estimates of J(θ) and H(θ) are
computed.

5.5.2 Robust �rst order autoregression

Consider a stationary �rst order autoregressive model, of the form

yj = φ0 + φ1yj−1 + εj , j = 2, . . . , q, (5.12)
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ρ = 0.2 ρ = 0.5 ρ = 0.9
1− α 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

W (θ) 0.8802 0.9375 0.9858 0.8795 0.9367 0.9858 0.8800 0.9365 0.9859

ĥ(θ̂∗p) 0.8644 0.9282 0.9820 0.8722 0.9300 0.9833 0.8650 0.9254 0.9809

pWw(θ) 0.5215 0.5855 0.6842 0.3273 0.3733 0.4567 0.1280 0.1466 0.1815

pWu(θ) 0.7733 0.8826 1.0000 0.7727 0.8826 1.0000 0.7747 0.8826 1.0000

pW1(θ) 0.7847 0.8442 0.9194 0.7505 0.8179 0.9058 0.7540 0.7823 0.8197

pWcb(θ) 0.5570 0.6250 0.7286 0.4201 0.4829 0.5906 0.1689 0.1991 0.2581

pWinv(θ) 0.7955 0.8950 0.9786 0.7980 0.8791 0.9516 0.9122 0.9462 0.9758

pW e
w(θ) 0.7618 0.8155 0.8840 0.7286 0.7853 0.8601 0.5758 0.6194 0.6865

pW e
u(θ) 0.9051 0.9443 0.9805 0.9038 0.9435 0.9807 0.9040 0.9433 0.9807

pW e
1 (θ) 0.8133 0.8673 0.9336 0.8136 0.8692 0.9361 0.8407 0.8983 0.9613

pW e
cb(θ) 0.7885 0.8459 0.9126 0.7858 0.8463 0.9190 0.6296 0.6836 0.7610

pW e
inv(θ) 0.9080 0.9528 0.9883 0.8940 0.9477 0.9889 0.8699 0.9276 0.9802

Table 5.1: Multivariate normal model: empirical coverage probabilities of
con�dence regions for θ based on 100.000 Monte Carlo trials.

with φ0 ∈ R, φ1 ∈ (−1, 1), and εj independent normal random variables
with mean 0 and variance σ2 > 0. Under these assumptions, the process
can be described by a q-variate normal random variable Y , with vector of
means (φ0/(1−φ1), . . . , φ0/(1−φ1))> ∈ Rq and covariance matrix Σ, having
generic element Σjk = σ2φ

|j−k|
1 /(1− φ2

1), j, k = 1, . . . , q.
Instead of considering bivariate marginal distributions for pairs of con-

tiguous observations (Pace et al., 2011), the pairwise log likelihood function
for θ = (φ0, φ1, σ

2) is derived by considering the univariate conditional dis-
tributions Yj |Yj−1 = yj−1 ∼ N(φ0 + φ1yj−1, σ

2), and it has the following
expression

p`(θ) = −(q − 1)
2

log σ2 − 1
2σ2

q∑
r=2

(yr − φ0 − φ1yr−1)2 . (5.13)

The resulting pairwise score function leads to the ordinary least squares
estimate of θ, that can be easily robusti�ed using a Mallows'-type estimate
for φ0 and φ1 and the Huber's Proposal 2 for σ. This is accomplished by
solving the system of estimating equations

q∑
j=2

ψk1(rj) = 0

q∑
j=2

ψk2(rj)ψb(yj−1) = 0

q∑
j=2

ψk3(rj)2 − (q − 1)β(k3) = 0,

(5.14)
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where rj = (yj − φ0 − φ1yj−1) /σ, ψk(r) = min {k,max(−k, r)} , k > 0, and
β(k3) is a consistency factor (see, e.g., Huber and Ronchetti, 2009).

The purpose of this example is to point out the importance of using
bounded estimating functions instead of unbounded ones. Indeed, the reason
for using the former is threefold: to show that the χ2 approximation to the
distribution of ĥ(θ̂p) has a second order relative error; to show that the
second order agreement also holds between the asymptotic distributions of
ĥ(θ̂p) and ĥ(θ̂∗p); to provide versions of ĥ(θ̂p) whose accuracy remains stable
under small contaminations of the model.

In order to take into account for contaminated and non-contaminated
series, an additive outlier model has been considered (Maronna et al., 2006).
Hence (5.12) becomes

yj = φ0 + φ1yj−1 + εj + uj , (5.15)

with uj ∼ (1−ξ)δ0+ξN(µu, σ2
u), ξ ∈ [0, 1], δ0 point mass distribution located

at zero, µν ∈ R, and σ2
ν > 0.

The simulation study is based on 100.000 Monte Carlo trials and series of
length q = 50 have been generated according to (5.15). The true parameter
value θ is set to (φ0, φ1, σ

2) = (0, 0.5, 1). We consider both non-contaminated
series and series where at most 5% of data points are contaminated, with
µν = φ0/(1−φ1) and σ2

ν = 25σ2. For each replication, ĥ(θ̂p) and ĥ(θ̂∗p) have
been computed using the estimating functions in (5.14), and these statistics
are denoted, respectively, with ĥ(θ̂p)γ and ĥ(θ̂∗p)γ , where γ = (k1, k2, k3). We
use two values of γ, γ1 = (1.3, 1.3, 1.3) and γ2 = (∞,∞,∞) leading, respec-
tively, to a bounded and to an unbounded estimating function. It is worth
to note that in this example some care is needed to evaluate ĥ(θ̂∗p)γ : in order
to preserve the dependence structure of the series and to be consistent with
the speci�cation of (5.13), pairs of data points (yj−1, yj) must be resampled
instead of single observations yj .

In Table 5.2 the empirical coverage probabilities of con�dence regions for
θ are reported. When ξ = 0, the comparison between ĥ(θ̂p)γ1 and ĥ(θ̂p)γ2
highlights that the use of a bounded estimating function improves the ac-
curacy of the χ2 approximation. Moreover, the distributions of ĥ(θ̂∗p)γ1 and

ĥ(θ̂p)γ1 are very close, and the accuracy of the approximation is comparable
to that of the full log likelihood ratio W (θ). When contamination occurs,
the coverage levels of the nonparametric saddlepoint test statistics computed
with Ψ(θ)γ1 remain quite stable, while those of the log likelihood ratio W (θ)
and of ĥ(θ̂p)γ2 drop, as one would expect.

5.6 Final remarks

In this Chapter a nonparametric saddlepoint test statistic based on the max-
imum pairwise likelihood estimator has been discussed. The use of the pro-
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ξ = 0 ξ = 0.05
1− α 0.90 0.95 0.99 0.90 0.95 0.99

W (θ) 0.8888 0.9432 0.9882 0.2967 0.3363 0.3999

ĥ(θ̂∗p)γ1 0.8914 0.9447 0.9892 0.8885 0.9434 0.9886

ĥ(θ̂p)γ1 0.9007 0.9512 0.9875 0.8573 0.9298 0.9872

ĥ(θ̂p)γ2 0.8232 0.8822 0.9534 0.3623 0.4356 0.5621

Table 5.2: First order autoregressive model: coverage probabilities of con�-
dence regions for θ based on 100.000 Monte Carlo trials.

posed test statistic ĥ(θ̂p) is particularly appealing in the pairwise and more
generally in the composite likelihood framework for the following motiva-
tions:

1. ĥ(θ̂p) can be derived under mild assumptions that do not involve the
speci�cation of the joint distribution. Indeed, as pointed out in Sec-
tion 5.3, the proposed test statistic is based on a suitable nonparamet-
ric estimate of the underlying distribution under the null hypothesis.
The only assumptions needed involve some smoothness conditions on
the estimating function in order to justify the validity of formal Edge-
worth expansions. For more details see Field et al. (2008) and Ma and
Ronchetti (2011);

2. the computation of ĥ(θ̂p), as well as its asymptotic distribution, do not
depend on the elements of the Godambe information. In particular,
its asymptotic distribution is standard chi-square. As highlighted in
Section 3.4.1 the computation of the elements of the Godambe infor-
mation can be troublesome in some circumstances. For instance, when
a spatial process or a time series are observed, the estimate of J(θ)
must be obtained by resorting to resample methods, such as the jack-
knife and windows subsampling (see Section 3.4.1). The example of
Section 5.5.2 shows that the proposed ĥ(θ̂p) is very close to the like-
lihood ratio W (θ), even at the central model, while overcoming the
estimation of J(θ) and H(θ);

3. the test statistic ĥ(θ̂p) claims a high level of accuracy and it is not re-
lated to a speci�c setting. Indeed, in the pairwise likelihood framework
it is not possible to derive general results, since the speci�cation of the
pairwise likelihood depends on the structure of the data. Therefore, the
inferential procedures are a�ected by the particular speci�cation of the
pairwise likelihood function and the properties, such as the e�ciency
of the estimator, must be investigated case by case.
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Chapter 6

Robust pairwise likelihood

estimation of multivariate

location and scatter

6.1 Introduction

Chapters 4 and 5 discussed two solutions to cope with the possible lack of
accuracy of pairwise likelihood test statistics, due to the estimation of the
elements of the Godambe information. However, any attempt to improve
the convergence of the considered statistics to their asymptotic distribution
would become a wild-goose chase in the presence of small deviations from
the assumptions under which they are developed. Indeed, the solutions pro-
posed in the previous Chapters do not take into account for the possible
occurrence of outliers and in�uential observations, and their potential e�ect
on composite likelihood inference. For instance, the stability of the level and
the power of these test statistics relies on the robustness of the maximum
composite likelihood estimator.

As far as we know, the study of the robustness of composite likelihood-
based procedures has been largely neglected by the statistical literature. As
outlined in Section 3.4.2, Xu and Reid (2011) provide results about the con-
sistency of maximum composite likelihood estimators derived from marginal
composite likelihoods, when there is a correct marginal speci�cation of the
model regardless the correct speci�cation of the model. Despite this is a
valuable result, it is not possible to measure, for instance, the bias of the
maximum composite likelihood estimator caused by outliers and in�uential
observations. Indeed, this would require a rigorous de�nition of a gross error
model in the composite likelihood framework.

The results discussed in Chapter represent a �rst attempt to provide
a robust maximum composite likelihood estimator for multivariate location
and covariance, and some preliminary results are presented for some spe-
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ci�c models. The proposed robust pairwise likelihood estimator stems from
the idea of minimum covariance determinant estimator (Rousseeuw, 1984).
Notably, the proposed estimator claims a high breakdown point (see Sec-
tion 2.4) and, in particular, it has the following advantages over the existing
robust estimators for multivariate location and covariance:

1. it is based on the pairwise score function, that does not need to be
modi�ed in order to bound the gross-errors. The computation of ro-
bust M-estimators usually requires either a modi�cation of the score
function in order to bound the gross-error sensitivity or the speci�ca-
tion a new estimating function.

2. the simpli�cations provided by the use of pairwise likelihood functions
are appealing when robust inference is needed for complex models. In-
deed, there are situations where classical robust estimators are di�cult
to obtain due to the complex dependence structure of the data. Exam-
ples where robust inference is still challenging are mixed linear models
(Heritier et al., 2009) and time series models (Maronna et al., 2006).

The behavior of the proposed robust maximum pairwise likelihood es-
timator is illustrated in two examples in Section 6.4, and is compared
with some existing robust estimators in the context of mixed linear
models and time series models.

6.2 Minimum covariance determinant estimators

Consider a random vector Y ∈ Rq, with vector of means µ ∈ Rq and covari-
ance matrix Σ, belonging to the set of all positive de�nite matrices of size q.
Here, the density function of Y is assumed to be of the form

f(y;µ,Σ) = |Σ|−1/2g(d(y;µ,Σ)), (6.1)

where

d(y;µ,Σ) =
√

(y − µ)>Σ−1(y − µ)

is the Mahalanobis distance between y and µ. In (6.1) the function g(·)
is known and it is assumed to have a strictly negative �rst derivative, so
that the density function (6.1) belongs to the parametric class of elliptically
symmetric distributions (Croux and Haesbroeck, 1999). For instance, the

multivariate normal density is obtained by setting g(x) ∝ e−
1
2
x2
.

Let y = (y1, . . . , yn) be a random sample of size n from Y , and let H
be the set including all the possible subsets of size h = bδnc, 0 < δ < 1,
that can be obtained from {1, . . . , n}, where bxc denotes the integer part of
x. The minimum covariance determinant (MCD) estimators of location and
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covariance are, respectively,

µ̂(S) =
1
h

∑
j∈S

yj (6.2)

and

Σ̂(S) =
1
h

∑
j∈S

(yj − µ̂(S)) (yj − µ̂(S))> , (6.3)

where S ∈ H is such that

|Σ̂(S)| ≤ |Σ̂(L)|, for all L ∈ H.

Hence, MCD estimators select the subset of h observations out of n, whose
covariance matrix has the lowest determinant.

The size of the subset S is crucial in determining the breakdown point of
MCD estimators, and to balance the trade-o� between robustness and e�-
ciency. The choice h = b(n+ q + 1)/2c yields to the highest possible break-
down point (Lopuhaa and Rousseeuw, 1991). However, since the breakdown
point of MCD estimators is min(δ, 1−δ), the value h = δn = 0.75n yields to a
better compromise between e�ciency/stability and high breakdown (Croux
and Haesbroeck, 1999).

MCD estimators (6.2) and (6.3) are n1/2 consistent and asymptotically
normally distributed (Butler et al., 1993), i.e.

n1/2(µ̂(S)− µ) d→ N(0, κ(δ)Σ)

and

n1/2(Σ̂(S)− κ(δ)Σ) d→ N(0,Ω(δ)), (6.4)

where the constant κ(δ) can be chosen in order to obtain consistency with
respect to the assumed model. In particular, for elliptically symmetric uni-
modal distributions, the consistency factor is (Butler et al., 1993)

κ(δ) =
∫ √kδ

0
rq+1g(r2)dr, (6.5)

where kδ = F−1(1−δ) and F (·) is the distribution function associated to f(·).
The matrix Ω(δ) in (6.4) gives the asymptotic variance of the MCD estimator
of covariance and its expression is given in Croux and Haesbroeck (1999,
page 169). The in�uence function of µ̂(S) and Σ̂(S) are given, respectively,
in Butler et al. (1993) and Croux and Haesbroeck (1999).

When the sample size is small, the consistency factor (6.5) is not su�-
cient to make the MCD estimator of covariance unbiased. In this respect,
Pison et al. (2002) provide some �nite sample correction factors when the
underlying distribution is the multivariate normal.
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6.2.1 Computation of MCD

The major drawback of the MCD estimator is its computation time. Indeed,
the best subset S must be searched in the set H, whose cardinality increases
with the sample size. Thus, its computation turns out to be unfeasible for
large samples. To cope with this issue, Rousseeuw and Van Driessen (1999)
proposed the so called FAST-MCD algorithm, that can handle samples of
size with order of magnitude tens of thousands.

The MCD solution S is obtained by repeating selective iterations, called
C-steps. Below, a sketch of the algorithm is reported.

Compute preliminary estimates µ̂(L0) and Σ̂(L0) by using a subset L0

of size q + 1. Then, for b = 1, . . . , B:

1. calculate the distances

dbi =
√

(yi − µ̂(Lb))>Σ̂(Lb)−1(yi − µ̂(Lb)), i = 1, . . . , n;

2. take a new subset Lb+1, by keeping those indices corresponding to
those yi leading to the h lowest distances;

3. obtain new estimates based on Lb+1, i.e.

µ̂(Lb+1) =
1
h

∑
j∈Lb+1

yj

and

Σ̂(Lb+1) =
1
h

∑
j∈Lb+1

(yj − µ̂(Lb+1)) (yj − µ̂(Lb+1))> .

4. If |Σ̂(Lb+1))| < |Σ̂(Lb))| return to Step 1, otherwise stop.

This algorithm (Rousseeuw and Van Driessen, 1999) requires to repeat steps
1-4 for di�erent starting subsets L0.

6.3 Robust maximum pairwise likelihood estimator

In this Section a robust maximum pairwise likelihood estimator is proposed,
by using the idea of the minimum covariance determinant estimator.

Before starting, recall that the maximum pairwise likelihood estimator
θ̂p is de�ned implicitly through the pairwise score equation

ps(θ) =
n∑
i=1

ps(θ; yi) =
n∑
i=1

{
q−1∑
r=1

q∑
s=r+1

∂ log f(yir, yis; θ)
∂θ

}
= 0.
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The basic idea of MCD estimators is to compute the sample mean and sample
covariance matrix with a suitable subset of observations. However, pairwise
likelihood functions are usually de�ned for a parameter θ, which does not
necessarily coincide with the vector of means µ and the covariance matrix Σ
of the underlying distribution. Instead, θ is usually in some relation with µ
and Σ, i.e. µ = µ(θ) and Σ = Σ(θ). Hence, steps 1 and 3 of the FAST-MCD
algorithm need a slight modi�cation, since it is necessary to compute the
maximum pairwise likelihood estimate θ̂p(Lb) by solving

∑
i∈Lb

{
q−1∑
r=1

q∑
s=r+1

∂ log f(yir, yis; θ)
∂θ

}
= 0,

and then to take µ̂(Lb) = µ(θ̂p(Lb)) and Σ̂(Lb) = Σ(θ̂p(Lb)).
Theoretically, the robust maximum pairwise likelihood estimator can be

simply obtained with the above minor modi�cation to the FAST-MCD al-
gorithm. However, as outlined in Section 3.4.2, in the composite likelihood
framework it is not easy to de�ne a gross-error model of the form

Pε(F cθ ) = {F cε |F cε = (1− ε)F cθ + εG} ,

where F cθ is supposed to be the central model that includes all the models
consistent with the marginal speci�cation fYr,Ys(·), in order to justify the
results reviewed in Section 2.4 and Section 6.2. Roughly speaking, without
the de�nition of a gross error model it is not clear how �far� from the central
model it is possible to go while keeping the estimator reliable.

Results in Xu and Reid (2011) reveal that the maximum composite likeli-
hood estimator is consistent if a correct marginal speci�cation of the model is
achieved regardless the correct speci�cation of the model (see Section 3.4.2).
Hence, the proposed robust maximum pairwise likelihood estimator is de-
rived following this idea. In place of considering n q-dimensional observa-
tions, m = nq(q − 1)/2 pairs of data points are considered as they were a
sample from a bivariate distribution. Then, the pairwise score function, to be
used in the FAST-MCD algorithm, has the following alternative expression
(see Section 4.2)

p̄s(θ) = p̄s(θ; y) =
m∑
h=1

∂ log f(y ∈ Eh; θ)
∂θ

=
m∑
h=1

psh(θ),

where, without loss of generality f(y ∈ E1; θ) = f(y11, y12; θ), f(y ∈ E2; θ) =
f(y11, y13; θ), . . . , f(y ∈ Em; θ) = f(yn(q−1), ynq; θ).

The FAST-MCD algorithm needs two further modi�cations in order to
accommodate for p̄s(θ). First, in Step a, the Mahalanobis distances are
evaluated for pairs of data points yirs = (yir, yis), i.e.

dbirs =
√

(yirs − µ̂(Lb)rs)>Σ̂(Lb)−1
rs (yirs − µ̂(Lb)rs),
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where µ̂(Lb)rs = (µ̂(Lb)r, µ̂(Lb)s) and Σ̂(Lb)rs is a 2 × 2 matrix whose di-
agional elements are Σ̂(Lb)rr, Σ̂(Lb)ss, respectively, while the o�-diagonal
ones are Σ̂(Lb)rs. Second, the consistency factor (6.5) has to be evaluated
with q = 2, and it is given by

κ(δ) =
∫ √kδ

0
r3g(r2)dr.

6.3.1 Computation of the robust maximum pairwise likeli-

hood estimator

In the following, the main steps of the FAST-MCD algorithm, to compute
the robust maximum pairwise likelihood estimator, are summarized.

Compute a preliminary estimate θ̂(L0). Then, take

µ̂(L0) = µ(θ̂(L0))

and
Σ̂(L0) = Σ(θ̂(L0)).

For b = 1, . . . , B:

1. calculate the distances

dbirs =
√

(yirs − µ̂(Lb)rs)>Σ̂(Lb)−1
rs (yirs − µ̂(Lb)rs),

i = 1, . . . , n, r 6= s = 1, . . . , q;

2. take a new subset Lb+1, by keeping those indices corresponding to
those pairs (yir, yis) leading to the h = bδmc lowest distances;

3. obtain θ̂p(Lb+1), and then compute

µ̂(Lb+1) = µ(Lb+1)

and
Σ̂(Lb+1) = Σ(Lb+1);

4. If |Σ̂(Lb+1))| < |Σ̂(Lb))| return to Step 2, otherwise stop.

6.4 Numerical examples

6.4.1 MCD in mixed linear models

The general formulation of a mixed linear model (MLM) is

Y = Xβ +
r∑
j=1

Zjγj + ε ,
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whereX and Zj are individual and cluster level design matrices, respectively,
β is the q×1 vector of �xed e�ects and γj are n-dimensional vectors of random
e�ects, r ≥ 1. It is assumed that the random e�ects γj are independent each
other and are normally distributed as N(0, σ2

γj ), that the error terms ε are
independent and N(0, σ2

ε ), and that γj are independent of ε and the overall
parameter vector is identi�able. In particular, the marginal distribution of Yi

is N(Xiβ,Σi) at the cluster level, with Σi =
∑r

j=1 σ
2
γj

[
ZjΨZTj

]
(ii)

+ σ2
ε Iq,

where
[
ZjΨZTj

]
(ii)

stands for the ith block-diagonal element of ZjΨZTj ;

whereas Y ∼ N(Xβ,Σ), with Σ =
∑r

j=1 σ
2
γjZjΨZ

T
j + σ2

ε IN , N = nq.
The multivariate normal formulation of MLMs has been the starting

point in Copt and Feser (2006) in order to develop robust techniques based
on constrained S-estimators for µ and Σ. By adopting the same model
formulation, we aim at studying the behavior of the MCD solution based on
the maximum likelihood (ML), restricted maximum likelihood (REML) and
pairwise maximum likelihood (PML) estimators, respectively.

In order to investigate the behavior of the proposed method, we consider
a real example with data coming from an experiment in which 5 types of
electrodes were applied to the arms of 16 subjects and their skin resistance
is measured. This example was also considered by Copt and Feser (2006);
see references therein for the original source of the data.

The model is a one-way within factor design, given by

yir = µ+ βr + γi + εir, i = 1, 2, . . . , 16, r = 2, . . . , 5.

The skin resistance is the response, that is assumed to depend on the elec-
trode type acting here as a �xed e�ect and the random e�ect has one level.
This formulation leads to a multivariate normal model with vector of means
µ = vec(µ + βj) and compound symmetric covariance matrix Σ = σ2R,
where σ2 = σ2

γ+σ2
ε and R has unit diagonal values and o�-diagonal elements

ρ = σ2
γ/(σ

2
γ + σ2

ε ). As the pairwise likelihood estimator of θ = (µ, σ2
γ , σ

2
ε )

coincides with its maximum likelihood version (see Pace et al. 2011), this
example is rather peculiar and it is considered as a toy example to asses the
reliability of the pairwise MCD with respect to the other robust and non
robust methods.

The standard errors for the regression parameters of the proposed MCD
estimators are evaluated as

se(β̂) =

κ(δ)

(
n∑
i=1

XT
i Σ̂−1

i Xi

)−1
1/2

, (6.6)

where Σ̂ is the MCD estimate.
Table 6.1 gives the �tted model by classical ML and REML, the proposed

MCD estimators, evaluated with δ = 0.75, and the constrained S-estimator
(CS) of Copt and Feser (2006) (evaluated with a 75%-breakdown point).
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The MCD based techniques prevent against the overestimation of the
(6.6), and of the variance components provided by ML and REML, in the
same fashion as the constrained-S approach of Copt and Feser (2006), even
if the resulting values are larger with respect to the latter method.

The employ of the pairwise likelihood equations leads to larger se(β̂)
and to larger estimates of variance components than the use of (restricted)
likelihood equations in the MCD machinery. However, this behavior has
to be expected and comes from the fact that the full likelihood has been
approximated starting from a misspeci�ed model.

MCD-ML MCD-PML MCD-REML

β1 1.288 (0.386) 1.456 (0.405) 1.288 (0.403)
β2 0.625 (0.406) 0.686 (0.443) 0.625 (0.424)
β3 0.320 (0.406) 0.352 (0.443) 0.320 (0.424)
β4 -0.104 (0.406) 0.028 (0.443) -0.104 (0.424)
β5 -0.158 (0.406) -0.195 (0.443) -0.158 (0.424)

σ2
γ 0.422 0.562 0.460

σ2
ε 0.523 0.835 0.571

CS ML REML

β1 1.279 (0.281) 1.817 (0.463) 1.817 (0.478)
β2 0.564 (0.276) 1.056 (0.512) 1.056 (0.529)
β3 0.404 (0.276) 0.763 (0.512) 0.763 (0.529)
β4 -0.008 (0.276) -0.313 (0.512) -0.313 (0.529)
β5 -0.155 (0.276) -0.438 (0.512) -0.438 (0.529)

σ2
γ 0.710 1.329 1.418

σ2
ε 0.579 2.098 2.238

Table 6.1: Skin resistance data: estimates (standard errors) by MCD-ML,
MCD-PML, MCD-REML, CS, ML and REML.

6.4.2 The case of one observation: �rst order autoregression

Consider a normal autoregressive process of order one, of the form

yir − µ = ρ(yir−1 − µ) + εir, i = 1, 2, . . . , n, r = 2, . . . , q,

where εir are independently normal distributed with zero mean, variance
σ2 and covariance (Yir, Yis) = σ2ρ|r−s|/(1 − ρ2), r, s = 1, . . . , q. Assume
that a single observed series is available. The pairwise log likelihood for
θ = (µ, σ2, ρ) is derived using only pairs of contiguous components, i.e. for
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r−s = 1, r > s, as outlined in Pace et al. (2011). The total number of pairs
is N = q − 1.

When it is of interest to perorm robust inference in this setting, the use of
the pairwise-MCD based estimator appears particularly appealing, since it
can be based on a set ofN bivariate observations and represent an alternative
to existing robust methods (see Maronna et al., 2006, for a detailed account).

In order to asses the �nite sample behavior of the pairwise-MCD estima-
tor, a simulation study based on 1000 Monte Carlo trials has been performed.
The contaminated scenario is based on an additive outlier model, according
to which the observed value at time r is yr − µ+ νr, with

νr ∼ (1− κ)δ0 + κN(µν , σ2
ν),

where δ0 is a point mass distribution located at zero and 0 ≤ κ ≤ 1. The
setting of the numerical study is as follows: κ = 0, 0.1, µ = 0, σ2 = 1, ρ =
0.5, µν = µ and σ2

ν = 10σ2. The size of the subsets for the MCD-pairwise
likelihood procedure is h = δN = 0.75N .

Table 6.2 provides the means of the maximum likelihood, pairwise max-
imum likelihood and MCD-pairwise maximum likelihood estimates for the
parameter θ. It can be observed that, when the model is not contaminated,
the pairwise-MCD estimator behaves closely to the ML and the PML es-
timators. On the contrary, under 10% contamination the pairwise-MCD
estimator provides accurate and reliable estimation.
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q = 200

ML PMLE MCD-PMLE

µ
κ = 0 0.003 (0.137) 0.001 (0.138) 0.001 (0.147)
κ = 0.1 0.006 (0.177) 0.005 (0.178) 0.001 (0.153)

σ2 κ = 0 0.987 (0.101) 0.987 (0.101) 0.971 (0.116)
κ = 0.1 2.371 (0.610) 2.371 (0.612) 1.150 (0.181)

ρ
κ = 0 0.494 (0.063) 0.493 (0.063) 0.486 (0.081)
κ = 0.1 0.264 (0.081) 0.264 (0.081) 0.448 (0.084)

q = 500

µ
κ = 0 0.005 (0.089) 0.003 (0.088) 0.001 (0.093)
κ = 0.1 0.013 (0.012) 0.006 (0.121) 0.002 (0.096)

σ2 κ = 0 0.994 (0.065) 0.993 (0.064) 0.995 (0.078)
κ = 0.1 2.480 (0.386) 2.481 (0.386) 1.171 (0.111)

ρ
κ = 0 0.496 (0.040) 0.496 (0.040) 0.492 (0.049)
κ = 0.1 0.273 (0.051) 0.273 (0.051) 0.455 (0.049)

Table 6.2: First order autoregression: mean (standard errors) of ML, PML,
MCD-PML estimators of θ for q = 200, 500, and k = {0, 0.1}

6.5 Final remarks

In this Chapter, a robust maximum pairwise likelihood estimator with a high
breakdown point has been provided by exploiting the idea of the minimum
covariance determinant estimator. The proposed robust procedure does not
need to modify the given pairwise score function, neither to specify a new
estimating function, as it is common in order to obtain robust M- or S-
estimators. Furthermore, the proposed robust approach requires only mild
assumptions about the shape of the underlying distribution and the compu-
tation of the estimator can be performed with a minor modi�cation of the
existing algorithm for the minimum covariance determinant estimator.

Some room for further investigation is left. Indeed, the robust maximum
pairwise likelihood estimator has been derived for two speci�c models. The
hard task to accomplish with the proposed robust estimator is to derive
its standard errors. To this end, the in�uence function is needed, but its
computation requires the speci�cation of a gross error model. As mentioned
in Section 3.4.2, the de�nition of a gross error model is not straightforward
since it is not clear what the central model is.
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