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Astract 
The DNA information appears nowadays more stratified than it was supposed to be a 

decade before. In this scenario, non coding RNAs have been introduced in the fraction 

of functional RNA, carrying information and underpinning regulatory circuits of 

complex genetic phenomena in eukaryotes. microRNAs are endogenous single 

stranded ~22 nt long transcripts among that unveiled non coding RNA with regulatory 

functions, detected both in animals and plants. Increasing evidence shows that 

deregulation of microRNAs (miRNAs) plays an important role in both solid and 

hematologic malignancies. In this work we considered microRNA non canonical 

functions and involvement in tumours, integrating computational analyses of genome-

wide datasets and targeted experimental results, with a critical approach to the specific 

adopted computational tools. 

First, we studied miRNAs role in myeloproliferative disorders, more specifically in 

primary myelofibrosis, considering also other small RNAs detected in RNA-seq data. 

Myeloproliferative neoplasms are chronic myeloid cancers involving CD34+ 

hematopoietic stem cells alterations, evolving to acute leukemia in the most severe 

forms. This study deals indeed with an Illumina sequencing of small RNAs samples of 

CD34+ hematopoietic stem cells of patients affected by primary myelofibrosis and of 

controls, in order to characterize miRNAs profile and find relevant differentially 

expressed elements, as putative effectors of a disrupted post-transcriptional regulation 

involved in PMF initiation and progression. 

Then, in order to have a better understanding of each step of a computational analysis 

of RNA-seq data, we studied the impact on small RNAs differential expression 

analysis of normalization methods developed for long RNA. We evaluated five 

commonly used normalization methods to pinpoint a procedure to perform a robust 

RNA-seq analysis. We estimated statistical distribution parameters from a real 

microRNA numerous dataset and we simulated a huge number of small RNAs dataset. 

We controlled datasets characteristics in order to generate 9 different testing scenarios 

and measure the normalization impact on differentially expressed elements 

recognition, through ROC and AUC curves. We ascertain that normalization methods 

still need strong efforts in developing new algorithms in order to fill the wide room for 

improvement. 
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Thereafter we evaluated the implication of microRNAs in the gene expression 

changes observed after H-ferritin silencing. We explored whether different FHC 

amounts might modulate miRNA expression levels in K562 cells and we studied the 

impact of miRNAs in gene expression profile modifications. To this aim, we 

performed a miRNA-mRNA integrative analysis in K562 silenced for FHC 

(K562shFHC) comparing it with K562 transduced with scrambled RNA (K562shRNA). 

The remarkable up-regulation of four miRNAs, hsa-let-7g-5p, hsa-let-7f-5p, hsa-let-

7i-5p and hsa-miR-125b-5p, in silenced cells and their down-regulation when FHC 

expression was rescued supported a specific relation between FHC silencing and 

miRNA-modulation. The integration of target predictions with miRNA and gene 

expression profiles led to the identification of a regulatory network. Our data, 

confirmed by an experimental validation, indicate that, FHC silencing may affect 

RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and they 

add new insights to the relationship among iron homeostasis and miRNAs. 

We further explored a putative non canonical role of microRNAs, more specifically, 

in the context of the always more evident complex cross talk between protein-coding 

and non-protein coding RNAs. We worked on a preliminary study that deals with the 

involvement of microRNAs in the regulation of alternative translation (AT) and thus 

of protein isoform equilibrium. There is an increasing appreciation of the high 

prevalence of alternative translation in mammals. Complex and regulated translation 

pattern are achieved thanks to multiple Open Reading Frame (ORFs) and Translation 

Initiation Sites (TISs) in the same mRNA that can influence each other in different 

ways. miRNAs were recently demonstrated to be involved in modulation of protein 

isoform equilibrium binding to TISs. We provided novel data on the overlap of active 

TISs of mRNAs, experimentally defined using GTI-seq, to miRNA-binding sites, 

experimentally determined using CLASH technique. The genes whose sites were 

recognized are supposed to be involved in miRNA-modulated AT and we modelled 

the interaction mechanism. The miRNA-based regulation of mRNA alternative 

translation surely deserves further investigation to clarify if and how it impacts on cell 

processes and on disease.  
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Sommario 
L’informazione contenuta nel DNA appare oggi sempre più stratificata di quanto non 

si pensasse. In questo scenario, gli RNA non codificanti sono stati riconosciuti come 

RNA funzionali, portatori di informazione e parti fondamentali dei più complessi 

circuiti regolativi negli eucarioti. Tra i più studiati RNA non codificanti con funzioni 

regolative ci sono i microRNA (miRNA), RNA a singolo filamento lunghi circa 22 

nucleotidi, presenti sia in piante che animali. Ci sono prove sempre più evidenti che la 

deregolazione dei miRNA abbia un ruolo fondamentale nei tumori solidi e del sangue. 

In questo lavoro abbiamo preso in considerazione le funzioni non canoniche dei 

miRNA, il loro coinvolgimento nei tumori, integrando analisi computazionali di dati 

genome-wide e dati sperimentali più specifici, con un approccio critico rispetto gli 

strumenti computazionali. 

Abbiamo innanzitutto studiato il ruolo dei miRNA nelle neoplasie mieloproliferative, 

più specificamente nella mielofibrosi, considerando anche altri small RNA presenti 

nei dati RNA-seq. Le malattie mieloproliferative sono tumori cronici della linea 

mieloide che vedono l’alterazione delle cellule emopoietiche CD34+, ed evolvono in 

leucemia acuta nei casi più gravi. In questo studio abbiamo pertanto analizzato dati di 

RNA-seq, prodotti con tecnologia Illumina, di cellule raccolte da pazienti affetti da 

mielofibrosi primaria e da controlli sani, al fine di caratterizzare i profili di microRNA 

e trovare gli elementi differenzialmente espressi, in quanto possibili elementi di 

regolazione post trascrizionale alterata e coinvolti nella genesi e nello sviluppo della 

mielofibrosi. 

Successivamente, al fine di aver piena consapevolezza dei vari passi di un’analisi 

computazionale, abbiamo studiato l’impatto dell’applicazione su dati di RNA corti di 

algoritmi di normalizzazione, sviluppati per RNA lunghi, valutato a livello dei risultati 

dell’analisi differenziale. Abbiamo preso in considerazione cinque tra i più 

comunemente usati algoritmi, per individuare la procedura che permetta di svolgere in 

modo più robusto l’analisi di dati RNA-seq. Abbiamo stimato i parametri della 

distribuzione statistica di un dataset reale di microRNA particolarmente numeroso, e 

abbiamo simulato un numero sostanzioso di dataset. Abbiamo generato nove tipi di 

data set con diverse caratteristiche controllate e abbiamo misurato l’impatto della 

normalizzazione nei vari casi, quantificando l’impatto sull’analisi differenziale 

attraverso curve ROC e AUC. Abbiamo evidenziato la necessità di nuovi algoritmi di 
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normalizzazione, più specifici per i miRNA, in grado di colmare le grosse lacune dei 

metodi attuali. 

Ci siamo in seguito concentrati sul coinvolgimento dei microRNA nei cambiamenti 

dei valori di espressione genica, rilevati in cellule K562 in cui fosse silenziata la 

ferritina FHC. Abbiamo indagato se diversi livelli di FHC potessero modulare i livelli 

di espressione dei microRNA e abbiamo monitorato l’impatto dei miRNAs rispetto le 

modificazioni dei livelli d’espressione dei geni. A tal fine abbiamo, condotto 

un’analisi integrata di miRNA-mRNA in cellule K562 silenziate per la FHC 

(K562shFHC) confrontandole con cellule K562 trasdotte con RNA scrambled 

(K562shRNA). La notevole up-regolazione di quattro miRNA, hsa-let-7g-5p, hsa-let-7f-

5p, hsa-let-7i-5p e hsa-miR-125b-5p, nelle cellule silenziate e il fatto che i loro livelli 

di espressione scendessero quando fosse riattivata l’espressione di FHC, supporta 

l’esistenza di una relazione tra FHC e la modulazione dei miRNA. Integrando le 

informazioni sui target dei miRNA e i profili di espressione dei geni, abbiamo 

identificato dei network regolativi. I nostri dati, confermati con validazioni 

sperimentali, indicano che il silenziamento di FHC potrebbe impattare sui livelli di 

RAF1/pERK1/2 attraverso la modulazione di specifici gruppi di microRNA, fornendo 

nuove informazioni sul rapporto tra omeostasi del ferro e miRNA. 

Infine, ci siamo occupati di un ruolo non canonico dei microRNA, più specificamente 

nel contesto delle sempre più evidenti interazioni tra RNA codificanti e RNA non 

codificanti. Abbiamo condotto uno studio preliminare sul coinvolgimento dei 

microRNA nella regolazione della traduzione alternativa e di conseguenza 

dell’equilibrio delle varie isoforme proteiche. C’è una maggior consapevolezza della 

diffusione del meccanismo della traduzione alternativa nei mammiferi. Si realizzano 

pattern complessi di regolazione delle isoforme grazie alla presenza, nello stesso 

mRNA, di più Open Reading Frame (ORF) e Translation Initiation Sites (TISs) 

utilizzati. Questi sono in grado di influenzarsi a vicenda in maniera diversa. E’ stato 

recentemente dimostrato che i miRNA sono coinvolti nella modulazione 

dell’equilibrio delle isoforme proteiche, legandosi ai TIS. Noi abbiamo individuato la 

corrispondenza di siti TIS attivi nei trascritti di mRNA, trovati sperimentalmente con 

GTI-seq, e siti di legame di miRNA nelle sequenze di mRNA, determinati 

sperimentalmente con tecnica CLASH. Questi geni in cui sono stati riconosciuti siti di 

legame, si suppongono coinvolti in un meccanismo di traduzione alternativa modulata 

da miRNAs. Alcune interazioni miRNA-tis sono state confermate sperimentalmente, 
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ma ulteriori studi sono necessari per valutare se il meccanismo di modulazione della 

traduzione alternativa da parte dei miRNA possa impattare  su processi cellulari e 

nella malattia.  
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Introduction 
The present work aims at exploring multiple aspects of the microRNAs world 

prevalently with a bioinformatics approach. 

We are having an overview on microRNA biogenesis, their biological role and 

mechanism of action, computational tool of analysis. Finally I’ll give you a hint about 

the four main themes we focused on in this thesis. 

 

The non coding small RNA: a focus on 

microRNA 
RNA-seq technologies offer the possibility to investigate in a wide range of biological 

application of interrogating the transcriptome1-‐3. Many works and ambitious projects 

arose. As such, the Encyclopedia of the DNA Elements (ENCODE)4, 5which 

combined efforts aim to characterize RNAs across 15 different human cell lines. They 

provide new insights into the mechanisms of gene regulation6. Many newly identified 

elements were discovered unveiling the pervasiveness of transcription and many 

noncoding elements were found to control regulatory networks7, 8. Among the non 

coding elements they studied: 

•  Micro-RNAs (miRNAs), which are short RNA fragments known to have a 

role in post-transcription regulation 

• Transfer RNAs (tRNAs), the adapter molecules between mRNA and amino 

acids. 

• Small nuclear RNAs (snRNAs) associated with the spliceosome 

• Small nucleolar RNAs (snoRNAs), which guide chemical modifications 

(methylation and pseudouridylation) of ribosomal and transfer RNAs as well 

as snRNAs. 

 

The DNA information appears nowadays more complex than it was supposed to be a 

decade before. The commonly accepted modular structure of the DNA has been called 

into question: the same genetic sequence does not correspond to a single regulatory 

function or transcript but it is commonly believed that multiple layers of information 
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are embedded in every sequence9. The genome has been compared to a palimpsest by 

Tuck and Tollervey9, as it resembles an overwritten text. In figure 1 you can see their 

interpretation of that concept. 

 
Figure 1: two transcripts from the same locus can use the same sequence to different functional effects. 
The overlapping arrangement of genetic information enables a single sequence to encode multiple 
functions. This principle is embodied at many genomic loci, which generate ensembles of transcripts 
with shared sequences but disparate functions. This raises questions about how a specific function is 
assigned to a transcript, given the numerous possibilities. There are several explanations, illustrated by 
the various ways in which overlapping transcripts are generated: (a) Two transcripts identical in 
sequence and length might function differently, perhaps being translated in alternative reading frames 
(green or purple) to generate distinct proteins. Here, extrinsic factors are responsible for specifying 
which reading frame should be used. (b) Alternative transcription initiation and/or termination generate 
an ensemble of interleaved transcripts from a single genomic locus. Within this ensemble, a shared 
sequence (red) can perform distinct functions, perhaps contributing to an open reading frame (green) in 
one transcript and a structural feature in another. Here, the function of a sequence is governed by its 
context, with the different lengths and orientations of transcripts perhaps affecting their folding or 
recruitment of binding factors. (c) Many classes of transcript might act as precursors to shorter 
fragments, excised by post-transcriptional cleavage. These fragments might function in ways distinct 
from those of their parents. Thus, within the context of the shorter fragment, a shared sequence (blue) 
can perform an alternative role. This indicates that the length of a transcript might contribute to 
specifying which of several possible functions is performed by a particular sequence. Other post-
transcriptional processes (such as splicing) can also generate alternative transcripts, but are beyond the 
scope of this review. Figure adapted from Tuck at al9. 

 

In this complex scenario, non coding RNA must be introduced in the fraction of 

functional RNA, carrying information and underpinning regulatory circuits of 

complicated genetic phenomena in eukaryotes10, 11. microRNAs are endogenous single 

stranded ~22 nt long among that unveiled non coding RNA with regulatory functions, 

detected both in animals and plants12.  They were first revealed during a 

characterization of genes that control the timing of larval development in worm 

Caernorhabditis elegans. This was the case of lin-4 and let-7 13, 14. Soon in other 

bilateral animals including mammals, homologs of let-7 were identified. Their 



    8 

expression followed that observed in C. elegans as if let-7 might be playing 

orthologous roles in different metazoan lineages15. Several thousand of other small 

RNAs were later recognized in worms, flies, plants, green algae, viruses and mammals 

and they were called microRNA16-18. They are evolutionary conserved elements19, for 

example miRNA regulatory system in the floral developmental phase has a well 

conserved patterns for each step of the pathway, suggesting they play important roles 

in the evolution of flower20. 

Salmena et al. 21 proposed a theory that hypothesizes that key elements of multiple 

RNAs communication are microRNAs. All the types of RNA transcripts are supposed 

to exchange information mediated by microRNA-binding sites called “microRNA 

response elements” (MREs). They based their hypothesis on theoretical and 

experimental studies in which “RNAs influences each others’ level by competiting for 

a limited pool of microRNAs”, that’s why they called their theory “competitive 

endogenous RNA” (ceRNA). The actual regulational machinery mechanism is still 

debated but al lot of breakthroughs have been made. 

miRNAs biogenesis 
miRNAs biogenesis starts from RNA polymerase II transcription of several bases long 

primary transcript called pri-miRNAs. These transcripts fold back themselves to form 

hairpin structures12. The pri-miRNA is then cleaved in the nucleus by the Drosha 

RNase III endonuclease22 liberating a ~70 nt long stem loop intermediate, known as 

pre-miRNA23, 24. Secondarily, the pre-miRNA is actively exported to the cytoplasm by 

Ran-GTP and by the export receptor Exportin-5 25, 26, where the RNase III 

endonuclease Dicer lops off the terminal base pairs and the loop of the hairpin 

precursor. This process release a ~22 nt miRNA duplex22. Depending on 

thermodynamic properties of the duplex, one of the two strands is incorporated into 

the Argonaute (Ago) protein27, a component of the ribonucleoprotein complex called 

RNA-induced silencing complex (RISC). This is the effector complex and it guides 

the miRNA incorporated to the targets. The other strand that is not incorporated, 

appears typically to be degraded. It is not clear which are the rules governing strand 

selection. It has been reported that both miRNA strands are functional28 and can be 

both accumulated in specific cell tissues and types.  
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miRNAs can be transcribed as long polycistronic primary transcripts and the first 

experimental confirmation was found in total HeLa cells, with two miRNAs clusters 

transcribed from a transcription unit (TU) 23. They can also be encoded outside a 

cluster, as monocistronic transcripts with their own promoters29, 30. miRNA genes 

structure definition is ongoing and was found in different genomic locations: both 

intronic and exonic. Also a special class of miRNAs has been reported, called 

mirtrons, whose exact sequence of the pre-miRNA31 is an intron. Figure 2 from Olena 

and Patton30 resumes schematically a classification of miRNAs depending on their 

genomic location. 

 

Figure 2. Genomic location of miRNAs. A: Intergenic miRNAs are found in genomic regions distinct 
from known transcription units. These miRNAs can be monocistronic (top part) with their own 
promoters (black arrowhead), or polycistronic, where several miRNAs are transcribed as cluster of 
primary transcripts (bottom part) with a shared promoter (black arrowhead). B: Intronic miRNAs are 
found in the introns of annotated genes, both protein coding and noncoding. These miRNAs can be 
present as a single miRNA (top part) or as a cluster of several miRNAs (bottom part). Intronic miRNAs 
are thought to be transcribed from the same promoter as their host genes (black arrowhead, all parts) 
and processed from the introns of host gene transcripts. In the special case of mirtrons (middle part), the 
intron is the exact sequence of the pre-‐‑miRNA with splice sites on either side (denoted by white 
asterisks). In this case, the Microprocessor complex is thought to be unnecessary in mirtron maturation 
(Okamura et al., 2007). C: Exonic miRNAs are far more rare than either of the types above and often 
overlap an exon and an intron of a noncoding gene. These miRNAs are also thought to be transcribed 
by their host gene promoter and their maturation often excludes host gene function. Figure adapted 
from Olena and Patton30. 
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Evolutionary conservation of miRNAs 
All miRNAs are characterized by a common biosynthetic pathway and reaction 

mechanism. Many miRNAs sequences are conserved, in their mature form, among 

different organisms. Moreover, the evolutionary appearance of multicellular 

organisms has the same trend of the appearance of the miRNA pathway for regulating 

gene expression. Some miRNA pathways are conserved virtually intact throughout 

phylogeny while miRNA diversity also correlates with speciation. The bigger is 

animal morphological complexity and the growing is the number of miRNA genes, 

expression of miRNAs and diversities of miRNAs targets, corroborating to the idea 

that organismal complexity can be estimated by the complexity of the miRNA 

circuitry. The complexity of the miRNA gene families establishes a link between 

genotypic complexity and phenotypic complexity in animal evolution32. Many works 

in the area of miRNA phylogenetic conservation and diversity suggests that miRNAs 

play important roles in animal evolution, by driving phenotypic variation during 

development19. A well-recognized example of evolutionally conserved miRNA is let-

7. It displays a temporal expression pattern during many organisms development. It 

belongs to a larger gene family that has been amazingly conserved across almost all 

groups of bilaterally symmetrical animals, highly conserving its temporal expression 

pattern, and this is represented in Figure 3. Curiously, let-7 RNA is not found in more 

basal metazoans, including non bilaterians suggesting that acquisition of the let-7 gene 

was an essential step of evolution from lower metazoan to a higher bilaterians19. 
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Figure 3. Acquisitions of miRNAs in metazoan phylogeny. An abbreviated phylogeny is modified 
from earlier studies. Green lines represent animal phyla that do not have let-7 miRNAs. Major 
innovations of miRNA repertoires are represented by magenta arrowheads, which are based on previous 
data. A class of approximately 20 miRNAs, including let-7, is common to all bilaterians except acoels 
(a). The next innovation (b) is the addition of about 56 new families of miRNAs at the branch leading 
to the vertebrates. A third miRNA innovation (c) occurred at the branch leading to the placental 
(eutherian) mammals, at which time about 40 new miRNA families were acquired. Furthermore, a large 
number of primate-specific miRNAs are also identified (d). Each of the nematode and arthropod 
lineages might also have evolved unique miRNA families. Figure adapted from Niwa et al19 

Many miRNAs are highly conserved throughout the animal kingdom, as for example 

mir-1 that is detected from C. elegans to human. It operates during muscle 

development and is essential in maintaining muscle fibers integrity. Moreover, a 

recent comprehensive study of microRNA gene expression in zebrafish, lists 142 

miRNA loci in the genome of Danio rerio that are homologous to more than 100 

different mammalian microRNAs, belonging to almost 100 different families33.  

It is fascinating how episodes of miRNAs innovation correlate with major 

introductions of developmental complexity during evolution. That observation 

suggests that a dramatic expansion of the non coding repertoire, among all miRNAs, 

could represent the mechanism originating the complexity in higher order organisms, 

rather than an increase in protein coding inventory. Supporting that hypothesis, 
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diverse comparative genomic study concluded that both flies and vertebrates witness a 

growth in their respective number of cell types over geologic time, coherently to the 

gaining of their respective number of miRNAs34, 35. It is reasonable to claim that 

miRNAs are active driver of animal evolution over the course of animal phylogeny 

towards gene network complexity, through their regulation of an increasing number of 

targets. It is noteworthy that both DNA and RNA viruses exploit miRNA potential as 

key regulatory elements in the control of gene expression. Viruses indeed have 

evolved mechanisms to degrade, boost, or hijack cellular miRNAs to benefit the viral 

life cycle36. 

Non canonical miRNAs biogenesis 
Canonical biogenesis is not the only mechanism miRNAs are produced with. In the 

last decade, more evidences emerged of alternative biogenesis mechanisms either 

Drosha-independent or Dicer-independent, adding complexity to miRNAs regulatory 

network37, 38. This versatility in miRNA biogenesis may reflect a fine tuned 

regulation mechanism of specific miRNAs expression in different developmental 

stages or altered cell states, in order to achieve differential gene regulation. 

Drosha cleavage is bypassed both during mirtron production, when small RNAs are 

generated through mRNA splicing, lariat debranching and folding as pre-miRNAs, 

and in rare exceptions where small RNAs derive from endogenous short hairpin RNA 

transcription, as the case of the 7-methylguanosine (m7G)-capped pre-mir-320. 

Another example of bypassing Drosha processing is when miRNAs are produced from 

other non-coding RNAs. This is the case of tRNA or tRNA like that can be miRNA 

precursors. Mature miRNAs derived are demonstrated to be functional in modulating 

proliferation and DNA damage response39, 40. Processing of small nucleolar RNAs 

(snoRNAs), as for ACA4541, and small nuclear RNA-like viral RNAs42 can be an 

additional biogenetic pathway.  

Moreover, miRNA biogenesis goes through non canonical miRNA production in 

presence of unusual pri-miRNA structure. If the miRNA precursor has a shorter 3’ 

overhang needs an additional processing step to generate the mature miRNA: it has to 

be monouridylated by the uridylyl transferase for efficient Dicer processing. miRNAs 

characterized by the monouridylation of terminal 3’ are called uridylyl transferase 

(TUTase)-dependent group. 
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Figure 4: The 7-methylguanosine (m7G)-capped pre-mir-320 is directly generated through 
transcription, bypassing Drosha processing, and it is exported to the cytoplasm by exportin 1 (EXP1). 
Mirtron loci produce pre-miRNAs directly through splicing and debranching. Some mirtrons contain 5′ 
or 3′ single-stranded RNA tails that need to be trimmed before Dicer processing. Some small nucleolar 
RNAs (snoRNAs), such as ACA45, and tRNAs (or tRNA-like RNAs) may also be cleaved to produce 
pre-miRNAs. Terminal uridylyl transferase (TUTase)-dependent group II pri-miRNAs produce pre-
miRNAs with a shorter 3′ overhang that is suboptimal for Dicer processing. This means that they need 
to be monouridylated for efficient Dicer processing. In a Dicer-independent pathway, a short pre-mir-
451 is produced by Drosha, exported to the cytoplasm (possibly by EXP5) and loaded on Argonaute 2 
(AGO2) without Dicer processing. AGO2 cleaves ('slices') the stem of pre-mir-451, generating AGO-
cleaved pre-mir-451 (ac-pre-mir-451), which is further trimmed by the 3′–5′ exonuclease poly(A)-
specific ribonuclease PARN. The question marks indicate places in which the depicted action has not 
be fully confirmed. MHV, murine γ-herpesvirus; mmu, Mus musculus; Pol II, polymerase II. Figure 
adapted from Ha et al37 

 

Alternative miRNA biogeneses could be Dicer-independent pathways, as the case of a 

short pre-mir-451 produced by Drosha, exported to the cytoplasm and loaded on 

Argonaute 2. Dicer processing is substituted by a trimming performed by AGO2 and 

the 3′–5′ exonuclease poly(A)-specific ribonuclease PARN. miR-451 is a 

erythropoietic miRNA conserved in vertebrates, in confirmation of the importance of 

its functional role. Figure 4 shows all the different types of alternative miRNA 

biogeneses. 
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IsomiRNAs 
miRNAs are annotated as a single defined sequences but are actually mixture of 

sequences, slightly different from the official mature miRNA. As the case of the most 

part of miRNAs, several length or sequence variants have been detected. These 

variants are called isomiRNAs43. Sequencing-based technology revealed a bona fide 

repertoire of expressed small RNAs, originally dismissed as sequencing/alignment 

artifacts or poor quality RNAs. Nowadays isomiRs are confidently detected and they 

contribute to miRNA expression and qualitative characteristics. They were 

experimentally validated and characterized as tissues, conditions and cell types 

specific44-‐46. They were demonstrated to vary in response to stimuli, suggesting their 

biogenesis to be dynamic and regulated. IsomiRs are categorized into three main 

classes: 

• 5’isomiRs, with variations at the 5’ end; 

• 3’isomiRs, differing from the canonical miRNA in the 3’ end; 

• Polymorphic isomiRs, harboring distinct nucleotides composition. 

The biological mechanism underlying isomiRs production has not been fully 

elucidated but several lines of evidence suggest that isomiRs could be processed by 

variations in Drosha/Dicer cleavage of the pre-miRNA47-‐50. Others pri/pre-miRNA 

enzymes processing activities could be source of template miRNA variations. 

Exoribonucleases catalyzed nucleotides trimming, nucleotidyl transferases catalyzed 

nucleotides addition, RNA editing are considered wellspring of variations43, 51. 

Interestingly, a very low frequency of single nucleotide polymorphisms (SNP) has 

been identified in genomic miRNA regions52, 53.  

A growing number of reports suggest that isomiRs are biologically functional and to 

act as canonical miRNAs44,	  46. Also the fact that 5’ isomiRs are also under selection 

during evolution witnesses their functional importance46. 

For example, has-miR-101 has many different 5’-isomiR-101 ubiquitously detected 

and highly abundant that interact with RISC complexes, silencing their target54. 

Cloonan et al.55 biotin-labeled miRNAs and isomiRs to pull down endogenous mRNA 

targets, detecting highly expressed isomiRs incorporated into the RISC complex and 

targeting endogenous mRNAs.  
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Considering that different isomiRs can characterize different tissues or condition, as 

tumor respect to normal tissues, and that diverse isomiRs could impact differently on 

target genes and pathways, isomiRs deregulated expression could be implicated in 

diseases. 

moRNAs 
High-throughput sequencing revealed overlapping reads aligning to hairpins outside 

miRNA loci. That small RNAs were called microRNA-offset RNAs56-58. 

MoRNAs were first reported in a simple chordate, the ascidian Ciona intestinalis, as 

∼20-nt-long RNAs derived from the ends of pre-miRNAs. moRNAs were considered 

as by-products of potentially atypical miRNA processing, possibly generated by 

RNAse III-like processing59. In C intestinalis moRNAs displayed a developmental 

regulated expression. More evidence of moRNAs pervasiveness arrived with 

Langenberger study58. It reported the presence of 78 members of this new class of 

small RNAs, in short RNA sequencing of human prefrontal cortex. For 71 of the 78 

loci, the moRNAs were well-conserved, together with miRNA processed from the 

same hairpin. The 78 moRNAs loci belonged to only 54 distinct families. 

Interestingly, studying the families, Langenberger noted that four families showed 

moRNAs in three or more paralogs, and seven families had two paralogs with 

evidence for moRNA expression. He inferred association of moRNAs with an early 

evolutionary origin, as almost all miRNA families with multiple paralogs are 

evolutionarily old. 

moRNAs sequences partially overlap miRNA regions but generally span the Drosha 

cutting sites, letting us hypothesize a non canonical processing of the hairpin 

precursor in moRNA biogenesis60. However the origin of moRNA is still unclear and 

many hypothesis were generated. They might arise from exonuclease activity on their 

precursor 39, 61or from alternative Drosha processing59, 60, 62. For sure moRNAs are 

detected in different tissues: Taft et al reported moRNAs enriched expression in the 

nucleus in the human leukemia cell line THP-163, Meiri et al detected moRNAs 

expression in solid tumours64while Bortoluzzi and Bisognin in JAK2V617F-mutated 

SET2 cells57. Unfortunately, information about moRNA functional role is still 

fragmentary. They may act as miRNAs but no experimental evidence has been 
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reported. Their need to be further characterized and nowadays their mechanism of 

action remains to be elucidated (Asikainen, personal communication). 

miRNA regulatory function and target 

prediction tools 
When incorporated in the RISC complex, miRNAs are known to target mRNAs by 

imperfect base pairing to the 3’UTR mRNA region. They act to downregulate gene 

expression by either two posttranscriptional mechanism: by irreversibly triggering 

mRNA degradation65-‐67 or by their translational repression12. Recent works show that 

mRNA destabilization explains most (66%–>90%) miRNA-mediated repression65. 

Plant miRNA target site are located within target genes open reading frames (ORF) 

and miRNAs bind to mRNA by perfect sequence complementarity68.  

It’s more complicated for animals. miRNAs bind to mRNAs by imperfect Watson-

Crick pairing of miRNA nucleotides 2-8, called “seed region”, to a short region of 

mRNA termed miRNA recognition elements (MREs), generally situated at 3’ 

untraslated region (UTR) but also sporadically in the 5’UTR or ORF69. The seed 

region of miRNAs is the most conserved in miRNA sequences70. Not even the 

position of mRNA MRE is easily identifiable along the mRNA sequence and it’s not 

unique for each mRNA: many mRNAs has potential multiple sites for the same 

miRNA71-73, and it has been reported that multiple sites enhance the degree of 

downregulation74. Target sites can be classified in three main groups: 1) canonical, 2) 

3’-supplemetary, 3) 3’-compensatory sites. Among the canonical, three main types 

can be distinguished:  

• the 7mer1A that has an adenine in position 1 at the 5’ end of miRNA; 

• the 8mer having matched adenine in position 1 and an additional match in 

position 8; 

• the 7mer-m8 that has a match in position 8; 

A minor class of canonical sites is represented by 6-nt seed which has a limited impact 

in downregulating targeted mRNA. 

In all the previous cases, there can be an additional binding site at the 3’, the so-called 

3’-supplementary site. It usually has a weaker effect on target recognition and a lower 
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efficiency. 3’ compensatory sites consist in a binding site that has a mismatch in the 

seed but an additional extended pairing at the 3’ of the miRNA that compensates it.  

Figure 5 from Witkos et al75 shows the just described different miRNA-mRNA 

representative interactions. 
 

Figure 5.	  Different classes of miRNA target sites are presented in a schematic way. Vertical dashes 
represent single Watson-Crick pairing. Nucleotides involved in binding have been arbitrarily defined to 
depict positions of required complementarity between miRNA and mRNA. Seed regions of miRNAs 
are marked by red color and the adenine at binding position 1 by green. Interactions between mRNA 
and the 3’ end of miRNA have not been shown because they are sequence-dependent and do not 
significantly contribute to the miRNA downregulation effect. In the case of 3’-suppelmentary and 3’-
compensatory sites two regions of pairing (base pairs colored in blue) force middle mismatches to form 
a loop structure. Additionally, features of particular site types have been listed. Figure adapted from 
Witkos et al.75 

  

The mechanism governing miRNA targeting is poorly characterized76,	  77.  

It is hard to predict which mRNA will be bound by a miRNA also because of the 

numerous predicted MREs sequences that match the complementarity of the short 

miRNA seed region. It is also complicated to predict the effect of miRNA binding78, 

considering that different miRNAs could act cooperatively to the same target, 

increasing the sensitivity of repression and enhancing the regulatory effect71. miRNAs 

themselves are recently supposed to be regulated by target interactions that do not 
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necessarily affect miRNA levels79, entailing that miRNA expression level could not be 

representative of its impact. The complexity of miRNA-mRNA interaction causes 

ambiguity in target prediction results and a high rate of false positive predicted target. 

Target identification is challenging and more rules than sequence complementarity 

need to be taken into account71. Many algorithms have been developed and available 

tools for miRNA target prediction encompass a range of different computational 

approaches, from the modeling of physical interactions to the incorporation of 

machine learning. Well-known methods are miRanda80, DIANA-microT 81, 

RNAhybrid82, MicroInspector83, Target Scan and TargetScans84,	   85, PicTar86, 

MicroTar87, PITA88, RNA2289 .Target prediction algorithms have been extensively 

discussed76,	   90-‐92 but the debate always ended wishing for powerful predictive 

algorithm. Each method takes into account diverse weighted features to compute a 

score. That score is used to rank predictions and call putative mRNA targets. They 

differently use parameters as free energy of binding, folding energy, the presence of 

multiple binding sites within 3’UTR, secondary structure of 3’UTR that influence 

accessibility, local AU content, pattern recognition, target site accessibility energy. 

Especially, target prediction programs can be divided in two classes, distinguished on 

the basis of the use or not of the information about evolutionary conservation of 

interactions75. miRanda, DIANA-microT, RNAhybrid, MicroInspector, PicTar, 

TargetScan, are all based on conservation criteria, while PITA, MicroTar and RNA22 

are not. 

miRNAs can be grouped depending on their seed sequence, that are supposed to target 

the same mRNAs. miRNAs with same seed sequence are gathered together in the 

same miRNA family. It has been reported that miRNA families are well conserved 

among related species and have the same target. Friedman et al93 gave a 

comprehensive overview of miRNA target conservation: “In total, >45,000 miRNA 

target sites within human 3′UTRs are conserved above background levels, and >60% 

of human protein-coding genes have been under selective pressure to maintain pairing 

to miRNAs. Mammalian-specific miRNAs have far fewer conserved targets than do 

the more broadly conserved miRNAs, even when considering only more recently 

emerged targets. Although pairing to the 3′ end of miRNAs can compensate for seed 

mismatches, this class of sites constitutes less than 2% of all preferentially conserved 

sites detected”.  
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Alternative miRNA localizations and functions 
miRNAs are known endogenous posttranscriptional downregulators of gene 

expression by either irreversibly triggering mRNA degradation or inducing 

translational repression. Proper miRNAs’ functioning requires their assembly into an 

RNA-induced silencing complex (RISC), a multiprotein complex. 

There are increasing evidences that miRNAs can act in a non-canonical way to 

modulate gene expression or to perform different biological effect. This is the case of 

microRNAs found in bloodstream and body fluids, associated with extracellular 

vesicles (EVs), which are small membrane vesicles secreted from various types of 

cells, in cell-free microvesicles (MVs) or in complexes with other factors, such as 

RNA-binding proteins and high-density lipoprotein (HDL) particles. For example, 

EVs released by cells of the immune system can play a regulatory role in the induction 

and suppression of immune responses94. miRNA binding, in that context, was 

hypothesised to act as cell-to-cell communication mediators95. 

Besides posttranscriptional regulation mechanism, by targeting 3’UTR mRNAs, 

microRNAs are transcriptional modulator of epigenetic remodelling events at targeted 

gene promoters, playing a role in a more stable and heritable form of gene 

regulation96. The well conserved miR-10a, for example, targets a homologous DNA 

region in the promoter region of the hoxd4 gene, involved in animal development as 

well as in in tumour invasion and metastasis. microRNA-10a inhibits hoxd4 gene 

expression by targeting the promoter region and mediating chromatin remodelling 

DNA histone methylation, involving Dicer and Ago1-397. 

Similarly, miRNAs can bind to evolutionary conserved loci that are complementary 

genomic seed-matches, corresponding to promoters, lineage-specific transcription 

factors and/or members of their epigenetic machinery. They bind polycomb proteins 

(PcGs) binding sites affecting gene expression at transcriptional level, not only at 

translational mRNA level. They were reported to guide chromatin remodelling 

complexes to specific genome sites in the nucleus98 or promoting de-novo methylation 

of DNA99. 

miRNAs are found to associate with two kind of PcGs, PRC1 and PRC2, that are 

transcriptional repressors, strongly evolutionary conserved, that modify chromatin 

structure by covalent modification of histone proteins. PcGs own RNA binding 

properties and a leading role in PRC promoter targeting is played by microRNAs, as 
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the part of policomb-RNA complex that modulates PcG-promoter pairing100. The 

polycomb-microRNA complex catalyzes the histone H3 trimethylation or histone 

H2A monoubiquination of the “bivalent domain" of the NFI-A promoter, modulating 

NFI-A expression. Upregulation of NFI-A levels in primary hematopoietic 

stem/progenitor cells (HSC/HPCs) induces differentiation along the erythroid lineage, 

while downregulation leads toward the granulocytic linage. More specifically miR-

223 was identified to target NFI-A promoter, thus mediating cell-lineage faith through 

PcGs recruitment101. 

A non-canonical miRNA function more related to miRNA-based post-transcriptional 

silencing can be related to the control of alternative translation. 

There is a growing appreciation of widespread of alternative translation (AT) in 

mammals102-107. It’s a fine regulated mechanism and many mRNAs display a complex 

translation pattern, having multiple open reading frames (ORFs). ORFs can be 

mutually alternative, influence each other and/or the formation of secondary structures 

that can modulate ribosome activity, giving birth to alternative protein isoforms108, 109. 

miRNAs were reported to bind 5’UTR110 and coding sequences (CDS) regions of 

mRNAs111-113. A recent work of Sonda et al114 demonstrated that C/EBPβ mRNA 

alternative translation is regulated by miR-142-3p. The miRNA binds to non canonical 

site of the mRNA coding sequence, in a region including one of three in frame 

translation initiation site (TIS). The miRNA binding changes the ratio between protein 

isoforms with different properties, thus impacting on the cell phenotype. 

This is just a short list of non canonical miRNA functions and this is an area of active 

ongoing study. 

miRNAs deregulation and cancer 
It is well known that gene expression is intricately regulated and there are multiple 

layers of expression level controls. microRNAs are active player of gene post 

transcriptional regulation and cellular homeostasis. They play important roles in many 

biological processes including cell differentiation, organogenesis, development, 

regulation of cell cycle and apoptosis. Dysregulation of miRNAs has been observed in 

many diseases but the cause-effect mechanism has not always been established, nor 

their role in tumour initiation and progression115. Moreover, dysregulated miRNAs of 

a tumour expression profile are not necessary pathogenetic and needlessly activate a 
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specific mechanism of action in oncogenesis116. So that dysregulation detection 

constitutes only the starting point for disease-relevant studies117. The deregulation of 

miRNAs in cancer can be due to epigenetic changes, as altered DNA methylation or 

histone acetylation, to defect in miRNAs biogenesis, as altered Dicer or Drosha 

activity, or to chromosomal abnormalities118. They can act either as tumour suppressor 

genes, promoting cancer cell death and/or to inhibit cancer cell growth, or as 

oncogenes, actively contributing to cancer cell proliferation. The first evidence of 

miRNA involvement in human cancer derived from studies on chronic lymphocytic 

leukemia (CLL). They were studying a deleted region in CLL at chromosome 13q14. 

They were expected to find a tumour suppressor gene, being the region deleted in 

tumour phenotype. They rather detected the miR-15a and miR-16-1 loci, transcribed 

from the same polycistronic RNA. These miRNAs target several factors that promote 

cell-cycle progression, as CDK6, CARD10 and CDC27. Lacking miRNAs post 

transcriptional regulation of these factors, due to deletion in haematopoietic and solid 

malignancies, there is an enhanced proliferative response of cancer cells to a variety of 

mitogenic stimuli116. In this case miRNAs influence tumour biology through their 

action as signal modulators along cancer-relevant pathways. Another way miRNAs 

can be involved in disease is through the increased or decreased activity of their 

transcription factors at the promoter. The well-known p53 tumour suppressor gene 

directly transactivates the miR-34a, miR-34b and miR-34c family transcription units, 

which are able to mediate some aspects of the cellular response to p53 activation, 

including cell-cycle arrest and apoptosis119-121.  Another miRNA able to impair cell 

proliferation or induce apoptosis through oncogenes targeting is let-7, targeting RAS 

and MYC122, 123, while opposite effect has miR-21 targeting tumour suppressor 

proteins in breast cancer, glioblastomas and pancreas118, 124-126. A number of 

microRNAs, that Hurst et al called metastamir, are demonstrated to play a role in the 

metastatic program, both displaying a pro- and anti-metastatic effects127. They showed 

involvement in epithelial-mesenchymal transition, migration and angiogenesis. miR-

10b for example, is highly expressed in ~50% of metastatic tumours. It suppresses the 

homeobox D10 expression, leading to an increase in RHOC, a pro-metastatic gene, 

and initiation of breast cancer invasion and metastasis. miR-373 and miR-520c were 

studied by Agami et al128, found to promote migration and to increase in vivo 

metastasis at least in part by targeting the adhesion molecule, CD44. On the other 

hand, miR-373 showed higher expression in lymph-node metastasis compared with 
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the primary tumours. Conversely,	  miR-146 family of miRNA could profoundly inhibit 

invasion and metastasis of MDA-MB-231 human breast carcinoma cells, similarly to 

miR-126 and miR-335 that are active regulators of tumour invasion and metastasis in 

human breast cancer. 

The list of validated microRNAs involved in tumour development and progression is 

still long, acting through a huge variety of mechanisms. Although significant advances 

have been made so far, only fewer success in the development of miRNAs for use in 

therapy have been reported. A great step forward will be the use of circulating 

miRNAs in body fluids are accessible and allow a non invasive inquiry. They have 

already been detected in serum of women characterized of being expected and 

disappeared after the baby birth, as proof of pregnancy status. Circulating miRNAs 

expression level was further used to monitor the existence of cancer cell in patients95, 

129, as for early diagnosis with serum miRNAs in colorectal adenocarcinoma130or lung 

cancer131. Indeed, human body fluids, as blood, urine, saliva amniotic fluid, colostrum, 

breast milk, bronchial lavage, cerebrospinal fluid, peritoneal fluid, pleural fluid, tears 

and seminal fluid, have been shown to harbour extracellular miRNAs that are 

emerging as effective biomarkers for detection of diseases132, 133. However, the entire 

spectrum of miRNAs in the fluids has not been fully characterized. 

More efforts must be put in that issue for an effective translation of miRNAs 

knowledge into clinical practices. 

 

Aim of the work 
In this work we considered different aspect of the microRNA word, integrating 

computational analyses of genome-wide datasets and targeted experimental results.  

First, we studied miRNA role in myeloproliferative disorders, more specifically in 

primary myelofibrosis, considering also other small RNAs detected in RNA-seq data. 

This study deals indeed on a Illumina sequencing of small RNAs samples of CD34+ 

hematopoitic stem cells of patients affected by primary myelofibrosis and of controls, 

in order to characterize miRNA profiles and find relevant differentially expressed 

elements. 
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Then, in order to have a better understanding of each step of a computational analysis 

of RNA-seq data, we studied the impact on small RNAs differential expression 

analysis of long RNA-contrived normalization methods. 

Thereafter we evaluated the implication of microRNAs in the gene expression 

changes observed after H-ferritin silencing in K562 cells. 

The last part of this thesis report a preliminary study of the involvement of 

microRNAs in the regulation of alternative translation and thus of protein isoform 

equilibrium.  
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Chapter 1 
We expanded the knowledge of miRNAs and moRNAs expressed by CD34+ cells, we 

identified and validated a few elements that can contribute to PMF pathogenesis. We 

considered small RNA sequencing data of 6 CD34+ cells, including 3 samples 

collected from 3 pools of bone marrow CD34+ cells of healthy subjects, and 3 

samples of circulating CD34+ cells of patients affected by primary myelofibrosis 

(PMF), two of which were from a single patient and one was from a pool of 4 patients. 

In addition to 784 miRNAs annotated in miRBase, our in-house pipeline miR&moRe 

let us discover 34 new miRNAs expressed in our samples. miRNAs are de facto 

mixtures of isomiRs, specific variations of isomiRs expression impact also on 

miRNAs expression. Thus, we considered isomiR counts for miRNA expression 

calculations, recognizing that most of miRNAs detected are expressed in their isoform 

variants, not as the annotated sequence. We also detected in our samples sequences 

aligning to hairpins outside known and novel miRNAs that correspond to expressed 

microRNA-offset RNAs, called moRNAs. Myeloproliferative disorders are clonal 

hematopoietic stem cell neoplasias, miRNA and moRNA deregulation can be implied 

in tumor physiopathology. We then looked for differentially expressed small RNAs in 

PMF CD34+ samples respect to control samples. We recognized 37 sRNAs with 

significant differentially expressed (DE) in patient respect to control CD34+. 

Noteworthy, among the differentially expressed sRNAs, 2 moRNAs are included. hsa-

3’-moR-128-2 was highly expressed in normal CD34+ cells and dramatically 

downregulated in PMF patients: the moRNA was not detected in considered PMF 

samples. We excluded multiple matching loci and ruled out mapping or annotations 

artifacts and made sure that the detected small RNA was a moRNA derived from the 

non-canonical processing of the human mir-128-2 hairpin. moRNA biological roles 

and mechanisms of function still deserve investigation. Very likely, moRNAs can 

function as miRNAs in post-transcriptional gene silencing, guiding RISC to 

complementary target mRNAs. Six of the selected small RNAs differentially 

expressed in PMF considering small RNA sequencing data in CD34+ resulted 

significantly differentially expressed, also in PMF granulocytes samples, we thus 

validated the differential expression of miR-10b-5p, miR-19b-3p, miR-29a-3p, miR-

379-5p, miR-543 and moR-128-2. Target predictions of these validated small RNA 

were performed by using two different programs, miRanda and PITA. A functional 
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enrichment analysis, based on Reactome annotation maps, of targets predicted by both 

methods was obtained using a hypergeometric test. miRNA targets are enriched in 

many interesting pathways involved in tumor development and progression, as 

signaling by FGFR, DAP12 and Oncogene Induced Senescence. Hopefully identified 

and validated elements will help in the understanding the mechanisms that contribute 

to PMF pathogenesis and in formulate new targeted therapies.  
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Abstract 
Myeloproliferative neoplasms are chronic myeloid cancers involving CD34+ 

hematopoietic stem cells alterations. They include essential thrombocythemia (ET), 

polycythemia vera (PV) and myelofibrosis (MF). MF is the most severe form and can 

evolve in acute leukemia. Increasing evidence shows that deregulation of microRNAs 

(miRNAs) plays an important role in both solid and hematologic malignancies. 

Moreover, previous studies showed that microRNA-offset RNAs (moRNAs) could be 

expressed by processing of miRNA precursors. To attain deeper knowledge of small 

RNAs expressed in CD34+ cells and of the possible miRNA/moRNA-mediated post-

transcriptional regulation in PMF, we sequenced with Illumina HiSeq2000 technology 

CD34+ cells from healthy subjects and from of patients affected by primary 

myelofibrosis (PMF).  

We detected the expression of 784 known miRNAs, discovered 34 new miRNAs and 

99 new miRNA-offset RNAs (moRNAs), expressed in in CD34+ cells. We then 

identified 37 small RNAs (DEMs) differentially expressed in patients respect to 

healthy subjects, with a prevalence of miRNA up-regulation in the disease. Six of the 

37 identified small RNAs resulted significantly differentially expressed also in PMF 

granulocytes samples, we thus validated the differential expression of miR-10b-5p, 

miR-19b-3p, miR-29a-3p, miR-379-5p, miR-543 and moR-128-2. Target predictions 

of these validated small RNA and a functional enrichment analysis were performed. 

miRNA targets are enriched in many interesting pathways involved in tumor 
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development and progression, as signaling by FGFR, DAP12 and Oncogene Induced 

Senescence. 

In this study, we expanded the knowledge of miRNAs and moRNAs expressed in 

CD34+ cells, identified and validated a few elements that can contribute to PMF 

pathogenesis. Hopefully this information will help in the understanding the 

mechanisms that contribute to PMF pathogenesis and in formulate new targeted 

therapies.  
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Background 
Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are a 

heterogeneous group of clonal hematopoietic stem cell (HSC) disorders associated 

with overproduction of mature myeloid cells1, 2.  

MPNs are chronic myeloid cancers that include essential thrombocythemia (ET), 

polycythemia vera (PV) and primary myelofibrosis (PMF). MPNs can be complicated 

by thrombosis and/or hemorrhage and they may evolve into acute myeloid leukemia.  

MF, the most serious MPN form, can arise primarily (PMF) or follow PV and ET 

onset (post-PV/ET MF). In primary myelofibrosis (PMF) the abnormal proliferation 

of megakaryocytes is accompanied by deposition of fibrous connective tissues in the 

bone marrow, abnormal stem cell trafficking, and extramedullary hematopoiesis 

(myeloid metaplasia).1, 2  

PMF is associated with marked hepatosplenomegaly, anemia and profound 

constitutional symptoms including fatigue, weight loss, cachexia, pruritus, night 

sweats, low-grade fever, and bone and joint pain. Treatment, apart from 

“conventional” allogeneic stem cell transplantation (SCT), is guided by risk 

stratification and the patient’s clinical needs.2-4 

In 2005 the first mutation related to MPNs was identified in the Janus Kinase 2 

(JAK2)5-9. 

The JAK2 V617F mutation is present in approximately 95% of patients with PV, and 

in 50% to 60% of those with ET or primary MF (PMF). Additional mutations have 

been identified in patients who have myeloproliferative neoplasms with or without 

JAK2 mutations: in particular a signaling mutation that activates the thrombopoietin 

receptor (MPL) and in epigenetic regulators, but also chromosomal aberrations.2, 10-12 

In 2013, somatic mutations of CALR, the gene encoding calreticulin, have been found 

in 20% to 25% of patients with essential thrombocythemia (ET) or PMF. Like JAK2 

and MPL mutations, somatic mutations of CALR behave as driver mutations 

responsible for the myeloproliferative phenotype. 

Despite the fact that the mutational landscape of MPNs has been extensively 

investigated, the molecular etiology of the disease has not been fully elucidated. 

Indeed several lines of evidence indicate that the identified mutations are not 

sufficient for disease initiation and progression. Although murine models have 

provided unequivocal evidence that JAK2V617F is able to cause MPNs13, disease 
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phenotype is significantly heterogeneous between different murine lines and even 

within the same line, suggesting that disease phenotype is affected by other unknown 

genetic or epigenetic factors14.  

MicroRNAs are endogenous small non-coding RNAs, approximately 22 nt in length, 

crucial for post-transcriptional gene regulation. They are loaded into the RNA-induced 

silencing complex (RISC), directing the complex (including Argonaute proteins) to 

downregulate target mRNA expression by either triggering mRNA degradation or 

translational repression.15 Recent studies show that mRNA destabilization explains 

most (66%–>90%) miRNA-mediated repression16. 

It is known that that deregulation of miRNAs plays an important role in both solid and 

hematologic malignancies17, 18. Indeed, hematopoietic differentiation is tightly 

governed by gene expression that is strictly regulated at multiple cell-fate decision 

levels. miRNAs regulate hematopoiesis acting both in HSC and in committed 

progenitor cells18-20. At the stem cell level, some miRNAs evolutionally conserved are 

responsible for expanding HSCs by inhibiting apoptosis21-23. At the progenitor cell 

level, miRNAs regulate the developmental fate of the megakaryocyte-erythroid 

progenitor (MEP) cell, the common progenitor of the erythroid and megakaryocytic 

lineages24, 25. At the more committed hematopoietic cell level, specific miRNAs are 

expressed in different blood cell lineages and in different stages of hematopoietic 

differentiation. For example Chen et al.26 reported that miR-142s expression was 

lower in the erythroid and T-lymphoid lineages and higher in B-lymphoid and 

myeloid lineages, while miR-223 expression was confined to myeloid lineages, with a 

very low detectable expression in T- and B-lymphoid and erythroid lineages. 

miRNAs have an important role in regulation of hematopoiesis27-30. miR-16, miR-451 

upregulation and miR-150, miR-155, miR-221 and miR-222 downregulation are 

associated with different stages of erythropoiesis31, 32. miR-223 expression level, 

determined by two regulatory regions on its gene, fine-tunes lineage commitment of 

myeloid precursor33. miR-181 family was detected during granulocytic and 

macrophage-like differentiation and its level decrease along the hematopoietic lineage. 

They modulate differentiation by targeting and negatively regulating PRKCD mRNA, 

an upstream regulator of a pathway of the myeloid differentiation, and CAMKK1 

mRNA, involved in the granulocytic and PMA-induced macrophage-like 

differentiation34, 35.  
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Recent studies highlighted aberrant miRNA expression in MPNs, and specific miRNA 

signatures that distinguish MPN granulocytes from those of healthy donors18, 36.  

A recent study characterized both gene and microRNA (miRNA) expression profiles 

in CD34+ cells from PMF patients37. It identified several biomarkers and putative 

molecular targets such as FGR, LCN2, and OLFM4. By means of miRNA-gene 

expression integrative analysis, the study suggested that JARID2 downregulation, 

mediated by miR-155-5p overexpression, might contribute to MK hyperplasia in 

PMF. 

High-throughput analysis of miRNA expression levels in MPN CD34+ cells were 

previously reported only by Lin et al.35,38 and by Zhan et al.26.  

In a preliminary study, we performed short RNA massive sequencing and extensive 

bioinformatic analysis in the JAK2V617F-mutated SET2 cell line39, detected and 

quantified 652 known mature miRNAs, of which 21 were highly expressed, thus being 

responsible of most of miRNA-mediated gene repression. In the same study, we 

showed that the majority of miRNAs were mixtures of sequence variants (isomiRs) 

and we identified 78 novel miRNAs. Indeed, we discovered that SET2 cells express a 

number of miRNA-offset RNAs (moRNAs), short RNAs derived from genomic 

regions flanking mature miRNAs, whose biological role needs to be elucidated.  

In this study, we characterized miRNA and moRNA expression in CD34+ stem cells 

using massive small RNA-seq. The observed specificities in small RNAs expression 

of PMF CD34+ cells were subsequently confirmed considering granulocytes from 

PMF, PV and ET patients and from healthy controls. We thus provided new 

information regarding the possible role of miRNAs and new moRNAs in the disease.  
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Materials and Methods 

Small RNA-seq library construction and sequencing 
We deep-sequenced small RNAs libraries using Illumina HiSeq2000 technology, 

single reads from 49 to 57 bp. We sequenced 3 samples of pooled CD34+ bone 

marrow cells from healthy subjects (unknown genders) and 3 samples of circulating 

CD34+ cells of patients affected by primary myelofibrosis (PMF), a 

myeloproliferative neoplasm, two of which were from a single patient and one was 

from a pool of 4 patients, for a total number of 6 sequenced samples. All samples and 

raw reads information are summarized in Supplementary Table 1. 

  

Small RNA data analysis: preprocessing 
First step of data analysis is data preprocessing. The starting point is adapter removal. 

Reads “adapter-only”, too short or unclipped have been discarded. Unclipped reads 

are discarded because they can't represent miRNA or miRNA like short RNAs. 

We admitted a read length range between 15 and 30 nt, slightly wider than the human 

annotated miRNAs length in miRBase to conserve also possible new longer isomiRs. 

We therefore discarded raw reads out of the range 15-30 bps in length. We then 

filtered out low quality reads, keeping all that reads displaying a base mean quality 

higher than 30, and allowing no more than 2 nucleotides per read with quality under 

20. To complete data preprocessing we eliminated ground noise, considered as reads 

belonging to unique sequences with less than 10 reads counts each.  

 

Small RNA data analysis: reads mapping and comparative 

filtering 
Reads have been mapped using Bowtie v. 1.1.0 both to the GRCh38 genome assembly 

and the known hairpins sequences extended in both directions by additional 30 bp to 

accommodate moRNAs mapping at the extremities of known hairpins. Reads mapping 

to more than 5 different loci on the genome, out of miRNA hairpins, are unlikely to be 

real miRNAs, and they have been thus discarded. 
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Barplot on Supplementary Figure 1 shows filtering effects on absolute reads counts 

for each sample. 

We processed each sample data with our in-house pipeline miR&more. The output 

consists of lists of known miRNA read counts, lists of new miRNAs and moRNAs 

and lists of variants (isomiRs) for all the small RNAs found in each sample.  

 

Expression data normalization and sample cluster analysis   
Sample merging and carefully conducted steps of data normalization and 

transformation are needed to guarantee the comparability of samples, to allow 

descriptive unsupervised analyses and differential expression tests. We performed 

normalization using R/Bioconductor package DESeq. Inference of differential 

expression in DESeq relies on the estimation of the typical relationship between the 

data variance and their mean, or, equivalently, between the data dispersion and their 

mean. Variance dependence to the mean can be modeled following different ways 

using DESeq, with several algorithms and very different results. The selection of the 

method used is crucial, since variance estimation influences unsupervised 

classification, differential expression and all following analyses. We tried two 

different methods for fitting data variance: 1) a parametric model, 2) a local regression 

model. 

The first is the recommended default but in some data sets could fail to give optimal 

results. Sum of square of residuals for local regression is 15311.52 whereas for GLM 

is 156849.3, so we can conclude that local regression fits better our data. 

We performed cluster analysis using R to check whether samples were correctly 

classified in their own biological class. We clustered samples using both full small 

RNAs expression matrix (904 small RNAs) and filtered, computing euclidean distance 

and complete linkage as clustering method. 

To filter the expression matrix at different levels of small RNAs expression we 

calculated, for each small RNA in the matrix, the sum of expression vector values. 

Then we performed clustering analysis under the following conditions 1) considering 

all the small RNAs found 2) selecting only small RNAs over the median (430 

miRNAs and 22 moRNAs), 3) filtering only small RNAs over the third quartile (219 

miRNAs and 7 moRNAs).  
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Differentially expressed sRNAs 
We performed a differential expression analysis using DESeq R/Bioconductor 

package. We considered those short RNAs that had a total expression throughout all 

samples higher than the median. We performed a multiple test correction according to 

the Benjamini Hochberg (FDR). We considered a corrected p-value of 0.05 as 

threshold to identify differentially expressed elements. 

 

Validation of differentially expressed sRNAs 
We performed Real-time PCR (RT-PCR) assays on granulocytes using single TaqMan 

MicroRNA Assay (Applied Biosystem). These were carried out in an independent 

cohort of normal controls (n=10) and patients with PMF (n=50), polycythemia vera 

(PV)(N=30) and essential thrombocythemia (ET)(n=30).  

 

Target prediction of validated small RNAs and functional 

enrichment 
The complexity of miRNA-mRNA interactions causes ambiguity in target prediction 

results. Target genes identification is indeed challenging and many algorithms have 

been developed. Target prediction programs can be divided in two classes, 

distinguished on the basis of the use or not of the information about evolutionary 

conservation of interaction68.  We chose to perform a target prediction using two 

different programs, miRanda55 and PITA63, which implement orthogonal target 

prediction strategies. Our choice was determined also by code availability that allowed 

us to make custom predictions using as query sequences also isomiRs and moRNA 

sequences. 

We performed a target prediction using both miRanda 3.3a and PITA executable 

version 6 (31-Aug-08). We applied default parameters of miRanda to predict target of 

selected small RNA sequences since these settings are reported to optimize the 

dynamic programming miRanda algorithm. We used default parameters for PITA 

target prediction too. According to PITA documentation, we considered a binding site 
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with score <= -10 likely to be functional in endogenous microRNA expression levels. 

We performed a hypergeometric test using an in-house modified version of the R 

Category package of Bioconductor that supports Reactome annotation maps via the 

reactome.db R package. 

Results and Discussion 

sRNA sequencing libraries 
Small RNA libraries were prepared from 1 µg of total RNA according to TruSeq 

Small RNA kit. 

Quality control was performed on a high sensitivity DNA chip (Agilent).  

The purified cDNA libraries was used for cluster generation on Illumina's Cluster 

Station and sequenced on an Illumina HiSeq2000 instrument.  

 

small RNA expressed in and PMF CD34+ cells and in PMF 

patients 
We considered small RNA sequencing data of 6 CD34+ cells, including 3 samples 

collected from 3 pools of bone marrow CD34+ cells of healthy subjects (CTR; 

unknown gender), and 3 samples of circulating CD34+ cells of patients affected by 

primary myelofibrosis (PMF), two of which were from a single patient and one was 

from a pool of 4 patients.  

The Illumina 2000 sequencing produced a total of 787,913,722 raw reads 

(131,318,954 per sample mean). After a stringent filtering during the preprocessing 

and quality control steps (Supplementary Figure 1), 349,372,534 were aligned to 

GRCh38 genome “extended” hairpins. Aligned reads corresponded to 44.3% of initial 

raw reads, but due to high sequencing depth, the number of considered reads was still 

high. 

Table 1 reports a summary of different types of small RNAs detected in the 

considered samples, according to current miRNA annotations.  
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 CTR ONLY CTR PMF ONLY PMF ALL 

known miRNAs 568 24 760 216 784 

new miRNAs 20 3 31 14 34 

moRNAs 52 3 96 47 99 

Total new 

sRNAs 
72 6 127 61 133 

Total sRNAs 640 30 887 277 917 

Table1 Summary of small RNAs expressed in considered CD34+ cells. 

We detected a total of 917 small RNAs expressed in at least one of the 6 considered 

CD34+ samples, including 784 know miRNAs. Notably, 8 known miRNAs are highly 

expressed and contribute to the total miRNA expression throughout all samples from 

2.5% to 25%, representing all together the 80% of the total expression. Moreover, we 

detected 133 new small RNAs, including 34 new miRNAs produced from known 

hairpins and 99 microRNA-offset RNAs (moRNAs). 

Descriptive sample clustering analysis was conducted to check if differences in 

mapped read numbers across samples may affect expression estimation and small 

RNAs profile sample characterization. Cluster analysis and heatmaps are represented 

in Supplementary Figure 2. Two heatmap plots were generated, by considering 

normalized expression profiles of all the small RNAs expressed and considering only 

those expressed over the median level. Both unsupervised analyses show the same 

result: samples are correctly clustered, with CTR samples clustered together and 

separately from PMF samples. Looking at the distances, CTRs are closer to each other 

than the MFs in their group pointing out an increased variability of small RNA 

expression profiles in patient samples respectively to controls. 

Cluster analyses and heatmaps demonstrate that patients and controls small RNAs 

profiles are significantly different from each other and highlight a characteristic 

miRNA and moRNA expression profile in PMF. 
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New miRNAs 
In addition to 784 miRNAs annotated in miRBase, our in-house pipeline miR&moRe 

let us discover 34 new miRNAs expressed in our samples (Supplementary Table 2).  

To find new miRNAs, we considered all the hairpins precursors annotated in 

miRBase, to be used as reference for read mapping and small RNA detection and 

quantification. Some of the known hairpin precursors were known to only generate 

one mature miRNA with only a handful of reads reported in mirBase across all NGS 

experiments surveyd. After identifying the hairpin region that would most likely pair 

with annotated mature we classify as new miRNAs all the clusters of reads that map 

there. A consistent number of reads were attributed to new miRNAs. Since these reads 

passed stringent quality filtering and mapping criteria, it is improbable that they could 

be sequencing errors. Furthermore, two of these new miRNAs: hsa-miR-2110* and 

hsa-miR-548ag-2* are highly expressed and show a mean expression over the median 

of the mean expression values distribution calculated on all the detected small RNAs.  

 

miRNAs are mixtures of isoforms contributing to miRNAs 

expression 
Our and other previous studies showed that miRNAs are mixtures of sequences, 

slightly different from the official mature miRNA, called isomiRs 39, 40. Microarray 

technology, relying on sequence hybridization to appropriately designed annealing 

probes, can only detect annotated miRNA sequences. Sequencing-based technology 

reveals instead all the repertoire of expressed small RNAs, both the unknown and the 

annotated miRNAs, and is able to detect isomiRs, that contribute to miRNA 

expression and qualitative characteristics.  

In our dataset, miRNA expression counts indeed consider for each miRNA a group of 

reads that not only perfectly match the annotated miRNA (“exact”), but also match the 

precursor with a 1-2 nt shorter or longer sequence than the mature miRNA in the 3’ 

region (“shorter or longer at 3’ ”), in the 5’ end (“shorter or longer at 5’”) or at both 

the ends (“both”). 

Expressed miRNAs with unique sequence are very few, only 165 out of the 784 

annotated miRNAs detected (21%). Unique sequence miRNAs are in general weakly 

expressed: they were detected at level under the median of the mean expression values 
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distribution. Notably, the remaining 619 expressed miRNAs have more than one 

isomiR. We also detected reads aligning to hairpins precursor with one or two 

mismatches but we excluded these reads from the total miRNAs expression 

estimation.  

  
Figure 1 Distribution of reads per category across sample. “Exact” reads are identical to the mature 
miRNA sequence annotated in miRBase, whereas “mismatch” reads present respectively one or two 
nucleotides different from the annotated sequence but identical length; the last category includes reads 
perfecly matching the miRNA precursor (and genomic) sequence but shorter or longer than the 
annotated mature miRNA. “Exact” reads are rare, while shorter or longer are very abundant. 

 

Figure 1 and Supplementary Table 3 show that the annotated sequence, called “exact” 

isomiR, rarely is the dominantly expressed form, while most of the total expression 

contribute is given by shorter or longer isomiR sequences. Reads aligning with 

mismatches are also represented in display items for comparison. These 

considerations are based on statistics considering all expressed miRNAs. Looking at 

singular miRNAs, the ratio between isomiR types changes. For example miR-10b-5p 

is mainly detected in its “shorter or longer” variant (Figure 2).  

We considered the possibility that peculiar genetic characteristics of the considered 

PMF cells would result in specific isomiR sequences, or can be related to variations of 

isomiRs expression level in disease. Our results did not identified isomiRs expressed 

exclusively in PMF samples. Anyway, since miRNAs are de facto mixtures of 

isomiRs, specific variations of isomiRs expression impact also on miRNAs 
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expression. Thus, we considered isomiR counts for miRNA expression calculations 

and for the following analyses. 

 

 
Figure 2. Abundance of reads falling in different isomiR types fro hsa-miR-10b-5p. Reads different 

from the annotated mature miRNA sequence are the most abundant. 

 

moRNAs discovery 
As anticipated, we also detected in our samples sequences aligning to hairpins outside 

known and novel miRNAs, that correspond to expressed microRNA-offset RNAs, 

called moRNAs (Table 1).  

moRNAs sequences partially overlap miRNA regions but generally span the Drosha 

cutting sites, letting us hypothesize a non canonical processing of the hairpin 

precursor in moRNA biogenesis.39  

A complete list of all the detected moRNAs is in Supplementary Table 4. Noteworthy, 

28 moRNAs were highly expressed, 26 of them over the median of the short RNAs 

expression values distribution and 12 of them even over the third quartile (Table 2).   
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name CTR MF strand position seq 

hsa-moR-128-2-3p 2493 0 + 
chr3:35744548-
35744568 

CCCTACTGTGTCACA
CTCCTA 

hsa-moR-21-5p 2946 2437 + 
chr17:59841243-
59841271 

ACATCTCCATGGCTG
TACCACCTTGTCGG 

hsa-moR-24-2-5p 5971 1719 - 
chr19:13836350-
13836376 

TGCCTGGCCTCCCTG
GGCTCTGCCTCC 

hsa-moR-27a-5p 1752 312 - 
chr19:13836510-
13836534 

CGAAGCCTGTGCCTG
GCCTGAGGAG 

hsa-moR-3651-5p 0 1266 - 
chr9:92292537-
92292565 

ATGGACAGCTCTCCA
GTGGATTCGATGGG 

hsa-moR-421-5p 848 2784 - 
chrX:74218449-
74218472 

CCTAATCCGGTGCAC
ATTGTAGGC 

hsa-moR-6724-1-5p 683 280 + 
chr21:8205298-
8205332 

TGTGGGGGAGAGGC
TGTCGCTGCGCTTCT
GGGCCC 

hsa-moR-6724-2-5p 683 280 + 
chr21:8249488-
8249522 

TGTGGGGGAGAGGC
TGTCGCTGCGCTTCT
GGGCCC 

hsa-moR-6724-3-5p 683 280 + 
chr21:8388345-
8388379 

TGTGGGGGAGAGGC
TGTCGCTGCGCTTCT
GGGCCC 

hsa-moR-6724-4-5p 683 280 + 
chr21:8432513-
8432547 

TGTGGGGGAGAGGC
TGTCGCTGCGCTTCT
GGGCCC 

hsa-moR-941-4-5p 6564 2531 + 
chr20:63919746-
63919768 

CACCCGGCTGTGTGC
ACATGTGC 

hsa-moR-941-5-5p 9780 3800 + 
chr20:63919858-
63919880 

CACCCGGCTGTGTGC
ACATGTGC 

Table 2. List of most abundant moRNAs in considered CD34+ samples, which are expressed over the 
third quartile of all sRNAs expression. 

We classified moRNAs on the basis of the hairpin precursor arm they where 

processed from: 5’-moRNAs mapping to the 5’ hairpin arm, and 3’-moRNAs 

spanning over the 3’ hairpin arm. 5’-moRs were significantly more abundant respect 

to 3’-moRs. Out of 99 moRNAs expressed in considered samples, only 16 (16.2%) 

were processed from the 3’ hairpin arm, while 83 (91.1%) were 5’-moRs. According 

to our data, seven hairpins were processed producing two moRNAs each 

(Supplementary Table 4). 

5’-moRs estimated expression values were 10 times higher than 3’-moRs, ranging 

from summed up normalized values over all samples of 5 to 40,739, compared to a 3’-

moRs range of 6 to 7,478. Both 3’-moRs and 5’-moRs are more expressed in controls 

than in PMF patient samples.  

Considering all the small RNAs processed from the same hairpins precursors from 

which the 9 most expressed moRNAs are derived, we see that whereas miRNAs are 
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more expressed in PMF samples compared to CTRs, the relation is flipped in 

moRNAs, that are more expressed in normal CD34+ than in PMF samples (Figure 3). 

For the same set of moRNAs, Figure 4a shows in detail all the expressed small RNAs 

that are produced from the same hairpins precursor. 

 
Figure 3. Expression of miRNAs and moRNAs produced from the same hairpin, considering the 

hairpins expressing most abundant moRNAs considered separately (A) and together (B). 

 

We observed that moRNAs sequences partially overlap mature miRNA regions and 

generally span the Drosha cutting sites, with moRNAs protruding from the canonical 

hairpin precursor.  

  

Identification of sRNA differentially expressed in PMF vs 

CTR 
Since myeloproliferative disorders are clonal hematopoietic stem cell neoplasias, 

miRNA and moRNA deregulation can be implied in tumor physiopathology. We then 

looked for differentially expressed small RNAs in PMF CD34+ samples respect to 

control samples. We recognized 37 sRNAs with significant differentially expressed 

(DE) in patient respect to control CD34+ (Table 3). 

name CTR PMF log2(FC) P value P-val-adj 

hsa-miR-1185-5p 0 136 15.00 1.24E-05 6.98E-04 

hsa-miR-127-5p 0 317 15.00 4.66E-07 7.01E-05 

hsa-miR-1277-5p 0 98 15.00 1.53E-04 6.28E-03 

hsa-miR-299-3p 0 210 15.00 1.78E-04 6.69E-03 

hsa-miR-323a-3p 0 121 15.00 5.34E-03 7.29E-02 
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hsa-miR-377-3p 0 206 15.00 9.34E-04 1.92E-02 

hsa-miR-377-5p 0 155 15.00 8.32E-06 6.25E-04 

hsa-miR-379-3p 0 89 15.00 2.76E-04 9.56E-03 

hsa-miR-382-5p 0 205 15.00 2.97E-04 9.56E-03 

hsa-miR-431-3p 0 80 15.00 1.72E-03 3.11E-02 

hsa-miR-490-3p 0 719 15.00 2.48E-03 3.99E-02 

hsa-miR-539-3p 0 204 15.00 1.37E-03 2.58E-02 

hsa-miR-543 0 262 15.00 4.64E-04 1.40E-02 

hsa-miR-654-5p 0 99 15.00 6.37E-04 1.60E-02 

hsa-miR-656 0 78 15.00 8.90E-04 1.91E-02 

hsa-miR-665 0 317 15.00 2.67E-03 4.15E-02 

hsa-miR-758-3p 0 171 15.00 3.04E-03 4.56E-02 

hsa-miR-873-5p 0 211 15.00 6.57E-04 1.60E-02 

hsa-miR-25-3p 37 226192 12.59 2.85E-27 1.29E-24 

hsa-miR-29a-3p 206 44817 7.77 6.73E-04 1.60E-02 

hsa-miR-136-5p 34 1516 5.47 1.24E-04 5.57E-03 

hsa-miR-495-3p 8 281 5.09 6.43E-04 1.60E-02 

hsa-miR-873-3p 7 239 5.04 5.15E-03 7.27E-02 

hsa-miR-485-5p 12 353 4.84 1.17E-03 2.30E-02 

hsa-miR-19b-3p 3795 99173 4.71 7.13E-07 8.03E-05 

hsa-miR-432-5p 14 343 4.62 2.09E-03 3.62E-02 

hsa-5'-moR-542 9 232 4.62 6.72E-03 8.66E-02 

hsa-miR-379-5p 31 561 4.16 7.86E-03 9.58E-02 

hsa-miR-19a-5p 15 265 4.16 5.16E-03 7.27E-02 

hsa-miR-33b-5p 26 394 3.90 6.09E-03 8.08E-02 

hsa-miR-1307-5p 779 10914 3.81 8.23E-04 1.86E-02 

hsa-miR-142-3p 5954 33867 2.51 7.73E-03 9.58E-02 

hsa-miR-3150b-3p 196 7 -4.90 2.23E-03 3.73E-02 

hsa-miR-10b-5p 119504 2855 -5.39 2.15E-08 4.84E-06 

hsa-3'-moR-128-2 2489 0 -15.00 1.15E-05 6.98E-04 

hsa-miR-128-2* 102 0 -15.00 1.87E-05 9.36E-04 

hsa-miR-5008-3p 149 0 -15.00 4.17E-06 3.76E-04 

Table 3. List of 37 most expressed miRNAs  
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Figure 4A shows the logarithm of the mean expression ratio in PMF and control cells 

for DE miRNAs and moRNAs. As shown in Figure 4A, the most part of DE sRNAs 

are upregulated in patients, while only five small RNAs are downregulated.  

Noteworthy, among the differentially expressed sRNAs, 2 moRNAs (hsa-5’-moR-542 

and hsa-3’-moR-128-2) are included.  

hsa-5’-moR-542 results up-regulated in PMF with a log2FC of 3.5. 

hsa-3’-moR-128-2 highly expressed in normal CD34+ cells (at levels over the third 

quartile of the overall small RNA expression distribution) and dramatically 

downregulated in PMF patients: the moRNA was not detected in considered PMF 

samples. We mapped hsa-3’-moR-128-2 sequence to the whole human genome to 

exclude multiple matching multiple loci and to rule out mapping or annotations 

artifacts. We can thus exclude that moRNA-associated reads could come from 

different or contaminating RNAs. An additional UCSC Blat41 analysis confirmed that 

the moRNA sequence only aligned to chr3:35786042-35786062. We are therefore 

confident that the detected small RNA is a moRNA derived from the non-canonical 

processing of the human mir-128-2 hairpin.  

 
Figure 4. Differential expression of small RNAs in PMF vs CTR CD34+. A) Log2 FC of small RNA 
differentially expressed considering PMF vs CTR CD34+, according to RNA-seq data. When a small 
RNA was not expressed in one sample category, the ratio was infinite and we represent it as the 
arbitrary maximum value of 15. B) RT-PCR expression calculation in granulocytes collected from an 
independent and sizeable cohort of normal controls (n=10) and of PMF (50), PV (30) or ET (30) 
patients. 

Validations confirmed 6 differentially expressed sRNAs 
We selected the most significantly deregulated and highly expressed detected 

differentially expressed miRNAs for further analysis. Specifically, we considered 21 

A B 
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small RNAs among the 37 differentially expressed for a quantification with Real-time 

PCR (RT-PCR) in granulocytes collected from an independent and sizeable cohort 

(total n=120) of normal controls and PMF, PV or ET patients. 

Six of the selected small RNAs differentially expressed in PMF considering small 

RNA sequencing data in CD34+ resulted significantly differentially expressed, also in 

PMF granulocytes samples: miR-10b-5p and moR-128-2 from RT-PCR, and miR-

19b-3p, miR-29a-3p, miR-379-5p, miR-543 from a previous study of Norfo et al37 

(Figure 4B). 

For these small RNAs the evidence of differential expression in PMF was robust, 

since it was detected by NGS and also validated technically (by qRT—PCR) and 

biologically (in independent samples). For the remaining miRNAs, the observed 

differences were not confirmed by PMF granulocytes analysis. 

Of the sRNAs for which DE in PMF was detected both in CD34+ cells and in 

granulocytes, all resulted to follow the same trend also in PV or ET granulocytes 

(Data not shown). Considering the significance of the observed variation, we would 

like to mention that miR-10b-5p is down regulated both in PV and ET samples (with a 

significant p-value, not reaching significance when the p-value is adjusted), whereas 

miR-19b-3p and miR-543 are respectively down and up regulated only in ET. 

Regarding the moR-128-2, very downregulated in PMF CD34+ and granulocytes, it 

decreases, but at a lower extent, without reaching statistical significance, also in PV 

and ET granulocytes. 

miR-10b-5p, downregulated both in PMF CD34+ and granulocytes, has been 

previously reported to be deregulated in breast cancer42-44and involved in 

chemoresistance related pathway45 . It has been validated as downregulated in 

endometrial carcinoma46, bladder cancer 47, in advanced stage of small cell carcinoma 

of the cervix (SCCC)48 and in clear cell renal cell carcinoma (ccRCC) and its 

expression level has been also included in a linear model that capture the metastatic 

tumor signature and patient prognosis49. 

We found miR-29a-3p upregulated in patients CD34+ respect to controls. Han et 

al.50previously demonstrated that miR-29a is downregulated in hematopoietic 

progenitors respect to lineage-committed progenitors, including granulocytes. That 

means that its expression level grows along the committed lineage. In our validation 

set of granulocyte cells, we recognized miR-29a as significantly downregulated in 

patients compared to controls. It results therefore deregulated in the validations too, 
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but it reversed the direction of differential expression in the committed granulocytes 

of the validation set, respect to the HSCs of sequencing set. Assuming that miR-29a 

expression in controls follows the highlighted trend reported by Han et al., in our 

patient data it results highly expressed in HSC when it should have a low expression 

level, while it has a low expression level in committed granulocytes when it should be 

highly expressed. We can thus classify miR-29a as a deregulated small RNA, which 

expression is modulated along differentiation. Figure 5 shows miR-29a trend in 

different cell and sample types. 

 

 

Figure 5. Schematic trend of miR-29a in CD34+ and granuocytes 

 

Coherently with our finding, Han et al also showed that sustained expression of miR-

29a-3p in mouse HSC/progenitors leads myeloid progenitors to self-renewal capacity, 

to biased myelopoiesis and myeloproliferative disorder that progress to acute myeloid 

leukemia. Additional data supporting miR-29a-3p deregulation comes from a previous 

study by Norfo et al.37, in which miRNA expression profiling was obtained by 

Affymetrix miRNA 2.0 array analysis on a cohort of 42 PMF patients CD34+ cells 

and 31 healthy donors. In the same study, miR-29a-3p was found upregulated in 

CD34+ patients, in agreement with our findings in PMF CD34+ patients. miR-29a-3p 

upregulation in PMF CD34+ cells was validated by RT-PCR (with TaqMan probes) in 

an independent set of CD34+ cells from 10 PMF patients and 8 healthy subjects.  
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In the same study, also the upregulation of miR-379-5p, miR-543 and miR-19b-3p 

were validated in PMF CD34+. Our validations on granulocytes do not confirm a 

statistically significant upregulation of these miRNas in PMF, showing only a trend 

toward, but we are confident that the validation of Norfo et al. on CD34+ is solid, 

considering that they were carried out on our same cell type. Interestingly Norfo et al. 

validated microarray data using two sets of experiments, conducted on CD34+ cells 

and on granulocytes, that showed that PMF-specific variations of a few miRNAs are 

observed in CD34+ and not in granulocytes.  

Indeed miR-486-3p was significantly downregulated in PMF granulocytes and 

upregulated in PMF in CD34+. 

The 3’-moR-128-2, a newly annotated small RNA, results expressed in CD34+ and is 

not detected in PMF. It is also downregulated in PMF granulocytes respectively to 

controls.  

Supplementary Figure 3 shows the expression profiles in considered RNA-seq 

samples, of all the detected sRNAs expressed from mir-128-1 and mir-128-2 loci: of 

them, the unique miRNA expressed from 128-1 hairpin is equally expressed in PMF 

and normal samples, 3’-moR-128-2 is highly expressed in normal stem cells and down 

regulated in PMF, whereas miR-128-3p (miR-128-2-3p) is weakly expressed.  

In Figure 6 we show additional information regarding miR-128-3p and 3’-moR-128-2. 

The moRNA sequence is not contained in the canonical hairpin (Figure 6A). Thus, the 

moRNA probably derives from the processing of an alternative hairpin precursor. In 

Figure 6B we show the RNAfold predicted minimum free energy (MFE) folding 

structure of the canonical hairpin and of the longer one from which the moRNA is 

derived. 
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Figure 6. The 3’-moR-128-2 is produced by the precursor sequence of miR-128-3p. Panel A) shows 
that the moRNA is derived from a region of the primary miRNA sequence exceeding the canonical 
hairpin precursor sequence, and that the moRNA is not exaclty adjactent to the annotated miRNA. 
Panel B) shows the minimum free energy (MFE) folding structure predicted  by RNAfold  for the 
canonical hairpin seqeunce and for the longer one, from which the moRNA is probably derived. Panel 
C) shows that the considered small RNAs are conserved in evolution through vertebrates. 

Figure 6C shows that mir-128 locus is inside an intron of ARPP21 gene, and displays 

that the genomic region encoding the 5’ region of the moRNA is as conserved as that 

corresponding to the miRNA, according to Vertebrate and Mammals UCSC base-wise 

conservation score. 

moRNA biological roles and mechanisms of function still deserve investigation. Very 

likely, moRNAs can function as miRNAs in post-transcriptional gene silencing, 

guiding RISC to complementary target mRNAs. This was first demonstrated by 

Umbach and colleagues, that used a luciferase-based indicator assay to demonstrate 

that a viral moRNA (moR-rR1-3-5p) has inhibitory activity against an artificial 

mRNA bearing a perfect target site 51, 52. Beyond this proof of principle experiment, a 

recent study reported moRNA specific expression in human embryonic stem cells 

(hESCs; Asikainen et al., personal communication, 2015). In the same study, moRNA 

and miRNA transfection experiments and microarray quantification of gene 
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expression were conducted and identified gene silenced by moR-103a-2-3p, one of the 

most abundantly expressed moRNAs in hESCs, and by miR-103a.  

In line with these previous studies, we assumed that 3’-moR-128-2 can act as a 

miRNA, and investigated its possible impact on target gene silencing and on specific 

pathways or biological processes.  

We conducted a preliminary functional characterization of the possible biological role 

of sRNAs DE in PMF, by a double strategy.  

First we investigated possible target genes and pathways of the group of validated DE 

sRNAs, considered as a whole. 

Then, we focused more on one of the most novel elements emerged by our results, 3’-

moR-128-2, to get specific insights on its possible functions in CD34+ and, in turn, in 

PMF disease. 

 

Genes and pathways targeted by the sRNAs deregulated in 

PMF 
Target predictions of miR-10b-5p, miR-19b-3p, miR-29a-3p, miR-379-5p, miR-543 

and of moR-128-2 were performed by using two different programs, miRanda53 and 

PITA54, which implement orthogonal target prediction strategies, and for which the 

code availability allowed us to make custom predictions of possible miRNAs and 

moRNA target genes, by using as query sequences the identified isomiRs and 

isomoRs sequences. 

Among different isomiRs detected for each considered miRNA, we considered the 

most expressed, even if it was different from the annotated sequence (Supplementary 

Table 6). We also considered those isomiRs that were significantly contributing to 

miRNA total expression, and which were differently expressed in patients respect to 

controls (t-test<0.05 and |log2FC| > 1). Accordingly, both isomoRs were considered 

for moR-128-2.  

A functional enrichment analysis, based on Reactome annotation maps, of targets 

predicted by both methods was obtained using a hypergeometric test. 

Supplementary Table 6 includes details on considered sequences and on the number of 

identified target genes per sequence. It lists the significantly (p-value <= 0.05) 

enriched pathways, and the number of distinct genes represented in small RNAs 
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targets. We choose to include in the table only those pathways that appear enriched in 

targets of at least half of the small RNAs.  

miRNA targets are enriched in many interesting pathways involved in tumor 

development and progression, as signaling by FGFR, DAP12 signaling and Oncogene 

Induced Senescence.  

Human fibroblast grow factor receptors (FGFRs) are a family of four tyrosine kinase 

receptors (FGFR1–4) involved in a variety of cellular processes. They are indeed key 

regulators of fibrogenesis, embryogenesis, angiogenesis, metabolism, and many other 

processes of proliferation and differentiation55, 56. Deregulation of FGFR signaling has 

been observed in numerous tumors.57, 58 

DAP10 is an immunoreceptor tyrosine-based activation motif (ITAM)-bearing 

transmenbrane adapter molecule and it is reported to be signaling partner of activating 

natural killer receptors. DAP12 complex to TREM-1 and MDL-1 receptors to form 

receptor complexes involved in macrophage differentiation59 and apoptosis in M1 

leukemia cells60, significant monocytic activation of myeloid cell, calcium 

mobilization  and inflammatory response61, 62. Its elevated expression levels are 

associates with enhanced cytotoxic characteristics in large granular lymphocyte 

leukemia63. 

Senescence is the stable cell growth arrest. Oncogene senescence (OIS) occurs when 

the activation of an oncogene is triggered, in this case it is termed oncogene-induced 

senescence. OIS acts as a barrier against tumour progression by driving stable growth 

arrest of cancer progenitor cells 64-66. 

3'-moR-182-2 
Intrigued by the striking expression pattern of the newly discovered 3'-moR-182-2 we 

looked in details into sequence, structure, expression and functional differences of 3'-

moR-128-2 and miR-128-3p.  

First we considered how sequence variants (isomiRs) of these two small RNAs relate 

to each other (Figure 7). For miR-128-3p, we identified 7 variants expressed in 

considered CD34+ samples: one exact isomiR, corresponding to the miRBase 

annotated mature form, and 6 “shorter or longer” variants (miR-128-3p-SL-1 to miR-

128-3p-SL-6), whereas only 2 3'-moR-128-2 isomoR were found out (3'-moR-182-2-1 

and 3'-moR-182-2-2)(Figure 7A). 
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Figure 7. Origin, sequence variability, and relations beween 3’-moR-128-2 and the adjacent miR-128-
3p. Panel A) shows that 3’-moR-128-2 and miR-128-3p map to the same locus and that both shows 
sequence variability (isomiRs and isomoRs). Both the major and the minoR isomoRs are found in 
normal CD34+ cells and not in PMF samples. Red and blue colors indicate isomiR and isomoR groups 
that can be produced with an unique sequence cutting sites. The most expressd isomoR is not associated 
to the corresponding most expressed isomiR. Moreover, expression levels, in CTR and PMF samples, 
of isomiRs and isomoRs are poorly correlated intragroup. These observations, point against the 
moRNA being simply a by-product of the miRNA biogenesis. A similar indication is given by the fact 
that some abundant isomiRs are not associated to detected isomoR sequences. Panel B) shows that 3’-
moR-128-2 and miR-128-3p have different, poorly overlapping, sets of predicted targets.  Panel C) 3-
moR-128-2 can stably bind RAN 3’UTR, schematic representation of the binding.  

 

According to the conservative hypothesis that interprets moRNA as byproducts of 

Drosha cleavage 67, one should expect comparable mean levels of miRNA and 

moRNA cognate variants (i.e. obtained from a single endonucleolytic cleavage cut) in 

control and PMF samples. 3'-moR-182-2-1, the most abundant isomoR, is expressed 

only in control samples and its only viable cognate partner is the miR-128-3p-exact 

variant that is highly and nearly equally expressed in control and PMF samples (with 

3,739 and 2,256 normalized reads, respectively)(Figure 7A). This observation does 

not point in this direction. Neither do the poor correlation of expression levels, in CTR 

and PMF samples, of cognate isomiRs and isomoRs, the fact that some abundant 

isomiRs are not associated to detected isomoR sequences, the good conservation of 
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moRNA sequence (Figure 6C), and the previously reported observation that both 

isomoRs are not contained in the canonical hairpin (Figure 6A). 

At the functional level, we predicted the targets of most expressed miR-128-3p 

isomiRs (miR-128-3p-exact, miR-128-3p-SL-2, miR-128-3p-SL-3, and miR-128-3p-

SL-4) and targets of the two 3'-moR-182-2 isomoRs (3'-moR-182-2-1 and 3'-moR-

182-2-2) assuming that they would act as miRNA, as indicated by the available 

experimental data51. 

We compared the union of predicted targets of miR-128-3p variants and the union of 

predicted targets of of 3-moR-128-2 variants, to understand how the moRNA function 

can be related to that of the cognate miRNA, as previously supposed (Asikainen 

personal communication). As shown in the Venn diagram in Figure 7B, only a small 

fraction of 3-moR-128-2 target genes, less than 17%, is putatively targeted also by at 

least one of the miR-128-3p isomiRs. 

According to Reactome-based functional enrichments, performed as explained in the 

previous paragraph, different pathways are enriched in predicted targets of 3-moR-

128-2 and of miR-128-3p. miR-128-3p targets are enriched in genes that are part of 

cellular pathways for the most part related to NGF, FGFR, ERBB4, ERBB2 signaling 

and transduction and to calcium ion homeostasis and signal transduction. 

Targets of 3-moR-128-2 are enriched too in genes part of several, distinct, pathways 

related to cellular signaling in growth and proliferation as “Signaling by Notch“, 

“Signaling by ERBB4”, “Signaling by FGFR in disease” but also, quite interestingly, 

in genes part of the “Post-transcriptional silencing by small RNAs” and of the more 

general “Regulatory RNA pathways”. Remembering that 3-moR-128-2 is highly 

expressed in normal and not detected in PMF CD34+, it is worth notice that, 4 out of 7 

genes of the “Post-transcriptional silencing by small RNAs” path, namely AGO1, 

AGO3, TNRC6A, and TNRC6B can be targeted by at least one isomoR of 3-moR-

128-2. Moreover, both considered 3-moR-128-2 isomoRs can also target RAN, the 

RAS-related nuclear protein, member of the RAS Oncogene Family, that is required 

for RNA export from the nucleus. Table 4 shows regulatory pathways identified for 

the two expressed moR-128 variants. 

 

Short RNA Variant Regulatory RNA pathways targets 
3'-moR-128-2 3'-moR-128-2-1 AGO3, RAN, POLR2H 
 3'-moR-128-2-2 AGO1, RAN, TNRC6A, TNRC6B 
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Table 4. regulatory RNA pathways of moR-128 predicted target 

In principle 3-moR-128-2, where it is expressed, as in CD34+ hematopoietic stem 

cells, could affect the expression of genes important for the entire process of miRNA-

based silencing. It can indeed target genes essential for post-transcriptional silencing 

both by translation repression, as AGO1/3, and by mRNA degradation, as 

TNRC6A/B. AGO1 and AGO3 are required for post-transcriptional translation 

repression activity; AGO1 is also involved in transcriptional silencing of promoters 68, 

and AGO3 is additionally putatively involved into the modulation of mature miRNA 

incorporation to the RISC complex, thus controlling the ratio between microRNA 

guide and passenger strand 69.  

TNRC6A, and TNRC6B play a role in miRNA-dependent translation repression and 

endonucleolytic cleavage, by recruiting specific deadenylase complexes. 

Moreover, 3-moR-128-2 can stably bind RAN 3’UTR. RAN is a multifunctional 

protein, involved in many processes and diseases. RAN controls cell cycle progression 

and it is a potential therapeutic target for treatment of cancers with activation of the 

PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways 70. 

Specifically in relation to the above mentioned findings, as known, RAN play a key 

role in RNA export from the nucleus and for the biogenesis of all miRNAs. Thus, 

RAN silencing by 3-moR-128-2 can impair pre-miRNA transportation to the 

cytoplasm and output a reduction of miRNA biogenesis, a situation someway similar 

to that documented by a recent study that identified, in B. mori, a virus-encoded 

miRNA that suppresses the host miRNA biogenesis exactly by targeting the host 

exportin-5 RAN cofactor 71. 
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Conclusion 
In this study, we characterized miRNA and moRNA expression in CD34+ stem cells 

using massive small RNA-seq. The observed specificities in small RNAs expression 

of PMF CD34+ cells were subsequently confirmed considering granulocytes from 

PMF, PV and ET patients and from healthy controls. We thus provided new 

information regarding the possible role of miRNAs and new moRNAs in the disease. 

An interesting findings is the validated differentially expressed 3-moR-128-2 that we 

suppose could affect the expression of genes important for the entire process of 

miRNA-based silencing. It can indeed target genes essential for post-transcriptional 

silencing both by translation repression, as AGO1/3, and by mRNA degradation, as 

TNRC6A/B. It can also stably bind RAN 3’UTR that controls cell cycle progression 

and it is a potential therapeutic target for treatment of cancers with activation of the 

PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. Hopefully this information will 

help in the understanding the mechanisms that contribute to PMF pathogenesis and in 

formulate new targeted therapies. 
  



    62 

References 

1. Tefferi A and Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: The 2008 
World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 2007;22(1):14-
22. 

2. Vannucchi AM, Guglielmelli P, Tefferi A. Advances in Understanding and Management of 
Myeloproliferative Neoplasms. CA: A Cancer Journal for Clinicians. 2009;59(3):171-191. 

3. Vannucchi AM. Management of myelofibrosis. ASH Education Program Book. 2011;2011(1):222-
230. 

4. Vannucchi AM. From Palliation to Targeted Therapy in Myelofibrosis. N Engl J Med. 
2010;363(12):1180-1182. 

5. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human 
myeloproliferative disorders. The Lancet. 2005;365(9464):1054-1061. 

6. Jones AV, Kreil S, Zoi K, et al. Widespread occurrence of the JAK2 V617F mutation in chronic 
myeloproliferative disorders. Blood. 2005;106(6):2162-2168. 

7. James C, Ugo V, Le CouÃ©dic J, et al. A unique clonal JAK2 mutation leading to constitutive 
signalling causes polycythaemia vera. Nature. 2005;434(7037):1144-1148. 

8. Kralovics R, Passamonti F, Buser AS, et al. A Gain-of-Function Mutation of JAK2 in 
Myeloproliferative Disorders. N Engl J Med. 2005;352(17):1779-1790. 

9. Zhao R, Xing S, Li Z, et al. Identification of an Acquired JAK2 Mutation in Polycythemia Vera. J 
Biol Chem. 2005;280(24):22788-22792. 

10. Klampfl T, Harutyunyan A, Berg T, et al. Genome integrity of myeloproliferative neoplasms in 
chronic phase and during disease progression. Blood. 2011;118(1):167-176. 

11. Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. 
Leukemia. 2013;27(9):1861-1869. 

12. Vannucchi AM and Biamonte F. Epigenetics and mutations in chronic myeloproliferative 
neoplasms. Haematologica. 2011. 

13. Mullally A, Lane SW, Ball B, et al. Physiological Jak2V617F expression causes a lethal 
myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. 
Cancer Cell. 2010;17(6):584-596. 

14. Chen E, Beer PA, Godfrey AL, et al. Distinct Clinical Phenotypes Associated with JAK2V617F 
Reflect Differential STAT1 Signaling. Cancer Cell. 2010;18(5):524-535. 

15. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-
297. 

16. Eichhorn S, Guo H, McGeary S, et al. mRNA Destabilization Is the Dominant Effect of 
Mammalian MicroRNAs by the Time Substantial Repression Ensues. Mol Cell. 2014;56(1):104-115. 

17. Iorio MV and Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and 
therapeutics. A comprehensive review. EMBO Molecular Medicine. 2012;4(3):143-159. 



    63 

18. Guglielmelli P, Tozzi L, Pancrazzi A, et al. MicroRNA expression profile in granulocytes from 
primary myelofibrosis patients. Exp Hematol. 2007;35(11):1708.e1-1708.e12. 

19. Hussein K, Theophile K, Dralle W, Wiese B, Kreipe H, Bock O. MicroRNA expression profiling of 
megakaryocytes in primary myelofibrosis and essential thrombocythemia. Platelets. 2009;20(6):391-
400. 

20. Guglielmelli P, Tozzi L, Bogani C, et al. Overexpression of microRNA-16-2 contributes to the 
abnormal erythropoiesis in polycythemia vera. Blood. 2011;117(25):6923-6927. 

21. Guo S, Lu J, Schlanger R, et al. MicroRNA miR-125a controls hematopoietic stem cell number. 
Proceedings of the National Academy of Sciences. 2010;107(32):14229-14234. 

22. O'Connell RM, Chaudhuri AA, Rao DS, Gibson WSJ, Balazs AB, Baltimore D. MicroRNAs 
enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. 
Proceedings of the National Academy of Sciences. 2010;107(32):14235-14240. 

23. Ooi AGL, Sahoo D, Adorno M, Wang Y, Weissman IL, Park CY. MicroRNA-125b expands 
hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. 
Proceedings of the National Academy of Sciences. 2010;107(50):21505-21510. 

24. Lu J, Guo S, Ebert BL, et al. MicroRNA-Mediated Control of Cell Fate in Megakaryocyte-
Erythrocyte Progenitors. Developmental Cell. 2008;14(6):843-853. 

25. Kumar MS, Narla A, Nonami A, et al. Coordinate loss of a microRNA and protein-coding gene 
cooperate in the pathogenesis of 5qâˆ’ syndrome. Blood. 2011;118(17):4666-4673. 

26. Chen C, Li L, Lodish HF, Bartel DP. MicroRNAs Modulate Hematopoietic Lineage Differentiation. 
Science. 2004;303(5654):83-86. 

27. Zhan H, Cardozo C, Raza A. MicroRNAs in myeloproliferative neoplasms. Br J Haematol. 
2013;161(4):471-483. 

28. Zhang L, Sankaran VG, Lodish HF. MicroRNAs in erythroid and megakaryocytic differentiation 
and megakaryocyteâ€“erythroid progenitor lineage commitment. Leukemia. 2012;26(11):2310-2316. 

29. BÃ¡ez A, MartÃn-Antonio B, Piruat JI, et al. Gene and miRNA Expression Profiles of 
Hematopoietic Progenitor Cells Vary Depending on Their Origin. Biology of Blood and Marrow 
Transplantation. 2014;20(5):630-639. 

30. Raghavachari N, Liu P, Barb JJ, et al. Integrated analysis of miRNA and mRNA during 
differentiation of human CD34+ cells delineates the regulatory roles of microRNA in hematopoiesis. 
Exp Hematol. 2014;42(1):14-27.e2. 

31. Bruchova H, Yoon D, Agarwal AM, Mendell J, Prchal JT. Regulated expression of microRNAs in 
normal and polycythemia vera erythropoiesis. Exp Hematol. 2007;35(11):1657-1667. 

32. Bruchova H, Merkerova M, Prchal JT. Aberrant expression of microRNA in polycythemia vera. 
Haematologica. 2008;93(7):1009-1016. 

33. Vian L, Di Carlo M, Pelosi E, et al. Transcriptional fine-tuning of microRNA-223 levels directs 
lineage choice of human hematopoietic progenitors. Cell Death & Differentiation. 2013;21(2):290-301. 

34. Su R, Lin H, Zhang X, et al. MiR-181 family: regulators of myeloid differentiation and acute 
myeloid leukemia as well as potential therapeutic targets. Oncogene. 2014. 



    64 

35. Lin X, Rice KL, Buzzai M, et al. miR-433 is aberrantly expressed in myeloproliferative neoplasms 
and suppresses hematopoietic cell growth and differentiation. Leukemia. 2013;27(2):344-352. 

36. Slezak S, Jin P, Caruccio L, et al. Gene and microRNA analysis of neutrophils from patients with 
polycythemia vera and essential thrombocytosis: down-regulation of micro RNA-1 and -133a. Journal 
of Translational Medicine. 2009;7(1). 

37. Norfo R, Zini R, Pennucci V, et al. miRNA-mRNA integrative analysis in primary myelofibrosis 
CD34+ cells unveils the role of miR-155/JARID2 axis in abnormal megakaryopoiesis. Blood. 2014. 

38. Zhan H, Cardozo C, Yu W, et al. MicroRNA deregulation in polycythemia vera and essential 
thrombocythemia patients. Blood Cells, Molecules, and Diseases. 2013;50(3):190-195. 

39. Bortoluzzi S, Bisognin A, Biasiolo M, et al. Characterization and discovery of novel miRNAs and 
moRNAs in JAK2V617F-mutated SET2 cells. Blood. 2012;119(13):e120-e130. 

40. Gaffo E, Zambonelli P, Bisognin A, Bortoluzzi S, Davoli R. miRNome of Italian Large White pig 
subcutaneous fat tissue: new miRNAs, isomiRs and moRNAs. Anim Genet. 2014;45(5):685-698. 

41. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002;12(4):656-664. 

42. Gee HE, Camps C, Buffa FM, et al. MicroRNA-10b and breast cancer metastasis. Nature. 
2008;455(7216):E8-E9. 

43. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-
10b in breast cancer. Nature. 2007;449(7163):682-688. 

44. Chan M, Liaw CS, Ji SM, et al. Identification of Circulating MicroRNA Signatures for Breast 
Cancer Detection. Clinical Cancer Research. 2013;19(16):4477-4487. 

45. Ouyang M, Li Y, Ye S, et al. MicroRNA Profiling Implies New Markers of Chemoresistance of 
Triple-Negative Breast Cancer. PLoS ONE. 2014;9(5). 

46. Tsukamoto O, Miura K, Mishima H, et al. Identification of endometrioid endometrial carcinoma-
associated microRNAs in tissue and plasma. Gynecol Oncol. 2014;132(3):715-721. 

47. Zaravinos A, Radojicic J, Lambrou GI, et al. Expression of miRNAs Involved in Angiogenesis, 
Tumor Cell Proliferation, Tumor Suppressor Inhibition, Epithelial-Mesenchymal Transition and 
Activation of Metastasis in Bladder Cancer. J Urol. 2012;188(2):615-623. 

48. Huang L, Lin J, Yu Y, Zhang M, Wang H, Zheng M. Downregulation of Six MicroRNAs Is 
Associated with Advanced Stage, Lymph Node Metastasis and Poor Prognosis in Small Cell Carcinoma 
of the Cervix. PLoS ONE. 2012;7(3). 

49. Wu X, Weng L, Li X, et al. Identification of a 4-microRNA Signature for Clear Cell Renal Cell 
Carcinoma Metastasis and Prognosis. PLoS ONE. 2012;7(5). 

50. Han Y-, Park CY, Bhagat G, et al. microRNA-29a induces aberrant self-renewal capacity in 
hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med. 
2010;207(3):475-489. 

51. Umbach JL, Strelow LI, Wong SW, Cullen BR. Analysis of rhesus rhadinovirus microRNAs 
expressed in virus-induced tumors from infected rhesus macaques. Virology. 2010;405(2):592-599. 

52. Bortoluzzi S, Biasiolo M, Bisognin A. MicroRNAâ€“offset RNAs (moRNAs): by-product 
spectators or functional players? Trends Mol Med. 2011;17(9):473-474. 



    65 

53. Enright AJ, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol. 2004;5(1):R1-
R1. 

54. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA 
target recognition. Nat Genet. 2007;39(10):1278-1284. 

55. Brooks AN, Kilgour E, Smith PD. Molecular Pathways: Fibroblast Growth Factor Signaling: A 
New Therapeutic Opportunity in Cancer. Clinical Cancer Research. 2012;18(7):1855-1862. 

56. Tiong KH, Mah LY, Leong C. Functional roles of fibroblast growth factor receptors (FGFRs) 
signaling in human cancers. Apoptosis. 2013;18(12):1447-1468. 

57. Katoh M and Nakagama H. FGF Receptors: Cancer Biology and Therapeutics. Med Res Rev. 
2014;34(2):280-300. 

58. Tan L, Wang J, Tanizaki J, et al. Development of covalent inhibitors that can overcome resistance 
to first-generation FGFR kinase inhibitors. Proceedings of the National Academy of Sciences. 2014. 

59. Aoki N, Kimura S, Takiyama Y, et al. The Role of the DAP12 Signal in Mouse Myeloid 
Differentiation. The Journal of Immunology. 2000;165(7):3790-3796. 

60. Aoki N, Kimura S, Oikawa K, et al. DAP12 ITAM Motif Regulates Differentiation and Apoptosis 
in M1 Leukemia Cells. Biochem Biophys Res Commun. 2002;291(2):296-304. 

61. Gingras M, Lapillonne H, Margolin JF. TREM-1, MDL-1, and DAP12 expression is associated 
with a mature stage of myeloid development. Mol Immunol. 2002;38(11):817-824. 

62. Bakker ABH, Baker E, Sutherland GR, Phillips JH, Lanier LL. Myeloid DAP12-associating lectin 
(MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proceedings of the 
National Academy of Sciences. 1999;96(17):9792-9796. 

63. Chen X, Bai F, Sokol L, et al. A critical role for DAP10 and DAP12 in CD8+ T cellâ€“mediated 
tissue damage in large granular lymphocyte leukemia. Blood. 2009;113(14):3226-3234. 

64. Aird KM and Zhang R. Nucleotide metabolism, oncogene-induced senescence and cancer. Cancer 
Lett.  

65. Grasso D and Vaccaro MI. Macroautophagy and the oncogene-induced senescence. Endocrinology 
of Aging. 2014;5. 

66. Hills S and Diffley JX. DNA Replication and Oncogene-Induced Replicative Stress. Current 
Biology. 2014;24(10):R435-R444. 

67. Ma H, Wu Y, Choi JG, Wu H. Lower and upper stem-single-stranded RNA junctions together 
determine the Drosha cleavage site. Proc Natl Acad Sci U S A. 2013;110(51):20687-20692. 

68. Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez-Dorantes M, Hidalgo-Miranda A. miRNA 
biogenesis: Biological impact in the development of cancer. Cancer Biol Ther. 2014;15(11):1444-1455. 

69. Winter J and Diederichs S. Argonaute-3 activates the let-7a passenger strand microRNA. RNA 
Biol. 2013;10(10):1631-1643. 

70. Yuen HF, Chan KK, Grills C, et al. Ran is a potential therapeutic target for cancer cells with 
molecular changes associated with activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. 
Clin Cancer Res. 2012;18(2):380-391. 



    66 

71. Singh CP, Singh J, Nagaraju J. A baculovirus-encoded MicroRNA (miRNA) suppresses its host 
miRNA biogenesis by regulating the exportin-5 cofactor Ran. J Virol. 2012;86(15):7867-7879. 

72. Azuma-Mukai A, Oguri H, Mituyama T, et al. Characterization of endogenous human Argonautes 
and their miRNA partners in RNA silencing. Proceedings of the National Academy of Sciences. 
2008;105(23):7964-7969. 

73. Fernandez-Valverde S, Taft RJ, Mattick JS. Dynamic isomiR regulation in Drosophila 
development. RNA. 2010;16(10):1881-1888. 

74. Tan GC, Chan E, Molnar A, et al. 5' isomiR variation is of functional and evolutionary importance. 
Nucleic Acids Res. 2014;42(14):9424-9435. 

75. Jaskiewicz L and Zavolan M. Dicer partners expand the repertoire of miRNA targets. Genome Biol. 
2012;13(11). 

76. Neilsen CT, Goodall GJ, Bracken CP. IsomiRs â€“ the overlooked repertoire in the dynamic 
microRNAome. Trends in Genetics. 2012;28(11):544-549. 

77. Fukunaga R, Han B, Hung J, Xu J, Weng Z, Zamore P. Dicer Partner Proteins Tune the Length of 
Mature miRNAs in Flies and Mammals. Cell. 2012;151(3):533-546. 

78. Morin RD, O'Connor MD, Griffith M, et al. Application of massively parallel sequencing to 
microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008;18(4):610-621. 

79. Cloonan N, Wani S, Xu Q, et al. MicroRNAs and their isomiRs function cooperatively to target 
common biological pathways. Genome Biol. 2011;12(12). 

80. Chan Y, Lin Y, Lin R, et al. Concordant and Discordant Regulation of Target Genes by miR-31 and 
Its Isoforms. PLoS ONE. 2013;8(3). 

81. Langenberger D, Bermudez-Santana C, Hertel J, Hoffmann S, Khaitovich P, Stadler PF. Evidence 
for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics. 2009;25(18):2298-
2301. 

  



    67 

Chapter 2 
In order to have more awareness in applying normalization methods when managing 

RNA-seq data of small RNA dataset, we evaluated the performance of normalization 

algorithms formulated for long RNAs, applied to human small RNA datasets. We 

simulated multiple matrixes with a controlled number of differentially expressed 

elements. We chose five normalization methods among the most cited and widespread, 

implemented in R packages: DESeq, edgeR, Quantile, NBPSeq, TBT. Each algorithm is 

based on different hypothesis on statistical shape and characteristics of data and we tested 

their impact on the downstream analysis in a differential expression test. To quantify 

normalization algorithms performances we calculated ROC curves and AUC curves. In 

this way we could compare the power of discovery differentially expressed small RNAs 

under different dataset characteristic, even when the assumption each method makes were 

violated. ROC curves showed that algorithms do not perform significantly differently 

applied to the same simulated scenarios and we are not able to definitively prefer a 

normalization algorithm as the best. The most successful situation for all the algorithm 

was when small RNAs strongly differentiate between the two groups. That coincides with 

a simulation scenario with the widest generated mean fold change. All the algorithms 

produced a high false positive rate and AUC curves showed us only small differences in 

the performances. We are far from reaching the consensus on the best normalization 

algorithm and there is still room to improve normalization methods for RNA-seq analysis. 
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Abstract 
RNA-seq technologies are useful for a wide range of biological investigations. While 

providing the highest throughput and the biggest discovery potential than ever, count data 

analysis is getting always more challenging. Many normalization methods have been 

developed to manage massive RNA-seq datasets and draw the information encrypted. All 

methods rely on statistical assumptions on data characteristics but no one of them has 

been specifically full-fledged for small RNAs. We comprehensively evaluated five 

commonly used normalization methods to pinpoint a procedure to perform a robust RNA-

seq analysis. We thus considered DESeq, edgeR, Quantile, NBPSeq and TBT algorithms. 

We simulated a huge number of small RNAs dataset with controlled characteristics in 

order to generate 9 different testing scenarios. With the aim of constructing a scenario the 

more realistic as possible, we estimated the distribution parameter of small RNA profiles 

from a real small RNAs dataset. We paid attention to choose a numerous real dataset to 

have an estimated value as representational of the reality as possible. We introduced in 

the simulated distribution a fixed number of differentially expressed elements and we 

applied five normalization methods. We evaluated the impact of the algorithms as the 

ability to recognize differentially expressed elements, conducting a differential expression 

analysis to all the normalized datasets. 

Our results show that there is not yet a performing algorithm to use and there is an 

impelling need for more powerful normalization methods. Appropriate statistical and 

computational methods could improve the accuracy of results that still include a high 

number of false positive elements. 
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Introduction 
 

High-throughput technologies are today in common use in biology. In the last decade we 

witnessed a very quick transformation in the methods for studying the transcriptome, 

offering a growing spectrum of applications. RNA-seq technology is the innovative 

element and since the very first papers in which it was applied1-‐3, the potentials to 

understand the transcriptome have been appreciated. The evolution started from the 

relative low throughput sequence-based approach of Sanger sequencing of cDNA or EST 

libraries4-‐7 and led to tag-based methods that improved the throughput, as serial analysis 

of gene expression (SAGE)	   8,	   9, cap analysis of gene expression (CAGE)	   10-‐12 and 

massively parallel signature sequencing (MPSS)	   13-‐15. These technologies were still 

expensive and the true revolutionary tool for transcriptomics was the advent of RNA-

seq16, performed by the Illumina technologies17-‐21, the Applied Biosystems SOLiD22 and 

by Roche 454 Life Science23-‐25. The use of these new technologies slushed the 

sequencing costs and improved the throughput, opening the doors to a wide application 

field. Examples of the use of NGS are chromatin immunoprecipitation coupled to 

sequencing (ChIP-seq), whole genome genotyping, genome wide structural variation, de 

novo assembling and re-assembling of genome, mutation detection and carrier screening, 

detection of inherited disorders and complex human diseases, paired ends and genomic 

captures, sequencing of mitochondrial genome, personal genomics26 and post-

transcriptional gene regulation27. 

Regarding transcriptome characterization, RNA-seq has a huge discovery potential that 

previous microarray technology or PCR missed. Indeed, it does not depend on prior 

knowledge about genome or transcriptome sequence. In addition, differently from 

microarray technology, RNA-seq is not affected by background noise nor by signal 

saturation signal1, it has a wide dynamic range of expression estimations, enabling the 

detection of weakly expressed genes27. Datasets produced are so heavily large and 

complex that the information contained is not clear-cut. Millions of short reads are 

produced from an RNA-seq experiment and a computational pipeline is always necessary 

to manage raw-data and to draw out information. Processing methods to extract and to 

release the information are pivotal. As well elucidated by Oshlack at al. 28	   	  28, a typical 

pipeline is organized in three main different steps: 1) Reads mapping to reference genome 

or transcriptome; 2) Summary of mapped reads at gene-level or transcriptome-level 
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depending on the experiment; 3) Data normalization, to compare different biological 

samples. The previous steps are always preliminary respect to further and more specific 

applications of methods that are determined by the experiment aim and scientific question 

of interest. A common issue in RNA-seq experiments is to determine differentially 

expressed (DE) elements among compared samples, generally two or more conditions or 

treatments. The goal is hence to identify genes or small RNAs that have changed 

significantly across samples and that can characterize distinct experimental groups of 

samples. In these specific applications of RNA-seq experiment, the normalization step is 

critical. It affects the good performance of the issue and DE genes could not actually be 

recognized due to an inadequate normalization29-‐31. Its aim is to correct for technical bias 

that affect data and make multiple samples comparable, while maintaining true biological 

signal32. Bias have impact upon between-sample distributional differences in read 

counts29,	  33.  These bias are due to differences in sample preparation, in library size (or in 

sequencing depth) 1, in variable GC contents34, in gene length or in relative abundances of 

the genes35, 36. Despite many efforts to develop and evaluate normalization methods, there 

is not a recognized gold standard procedure. Many statistical methods have been 

formulated and discussed for microarray data analysis37. Due to the different principle of 

functioning upon which RNA-seq and microarray rely, and to deep differences in the 

distributions of expression data obtained with the two methods, microarray normalization 

algorithms cannot be applied to RNA-seq data. Microarrays record intensities as 

continuous measurements, assumed to follow a logarithmic or Gamma distribution38-40, 

while RNA-seq data are count, and thus discrete, values. Many algorithms have been 

devised to achieve normalisation of RNA-seq-derived long RNA expression data but no 

one has been developed specifically for small RNA. There are only few statistical studies 

evaluating normalization methods on mRNA-seq29,	   35,	   41-‐44. Only one focus on 

normalization methods applied specifically to small RNAs dataset45 but Zhou et al. 32 

took a dig at it. All the procedures that deal with undesired variations among samples 

make assumption about true shape of data, in order to correct for differences in data 

shapes respect to the assumption. The most commonly used statistical models for RNA-

seq are Negative Binomial and Poisson distributions46-49, while more frequently they used 

a beta-binomial distribution50. It is also accepted that the fraction of deregulated mRNA 

respect to the total mRNAs expressed is negligible and that the deregulation is equally 

arranged between up-regulation and down-regulation41, 49. mRNA data and small RNA 
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data are somehow different in their expression and it not guarantee that normalization 

methods conceived for mRNA fit also for small RNA data. More specifically microRNAs 

(miRNA) are small RNA ~22 nt long51, post-transcriptional regulator of gene 

expression52. Their deregulated expression is implicated in tumour onset and 

progression53-55 and recognizing differentially expressed miRNAs can thus be crucial. 

Although many relevant normalization methods for RNA-seq have been generated, there 

is no guidance about how each algorithm impacts on the downstream analysis of 

microRNA data, as differentially expressed elements detection. The aim of this study is to 

evaluate normalization effect on DE downstream analysis in microRNA datasets. 

Materials and Methods 
In this section we describe the normalization methods considered, the real dataset used 

and the statistical model adopted in the simulation model. We performed a systematic 

analysis in order to test the robustness of normalization algorithms when their 

assumptions on data distribution are violated. 

Normalization methods 
We chose five normalization methods among the most cited and widespread, 

implemented in R packages: DESeq56, edgeR57, 58, Quantile59, NBPSeq60, TBT61. Each 

algorithm is based on different hypothesis on statistical shape and characteristics of data 

and we briefly describe their assumptions.  

 

DESeq   

It considers RNA-seq count data to follow a negative binomial distribution of witch 

parameters are variance and mean. It differentiates from other normalization methods 

because of its data-driven relationships of variance and mean. DESeq is based on the 

hypothesis that the majority of genes are not differentially expressed and that the 

proportion of up-regulated and down-regulated genes is equal. Differentially expressed 

elements impact on statistical data distribution is then negligible and they do not hence 

change the assumed regular negative distribution. It is implemented in the DESeq 

Bioconductor package and is easily applicable for R programming language users. 
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edgeR  

As DESeq, edgeR methods considers data to have a negative binomial distribution and 

the most part of it to be not DE. This information is taken into account to model the 

overdispersion parameter relative to the Poisson distribution, and uses a conditional 

weighted likelihood to moderate the level of overdispersion across genes. To achieve the 

moderation, they share information over all reads and the most evident effect is to 

stabilize dispersion estimation in small samples. The normalization methods implements 

the Trimmed Mean of M values (TMM) 31 method to calculate a scaling factor as a 

weighted trimmed mean of the log ratios between two classes of samples. 

Quantile 
The Quantile normalization method was developed for microarray data and it has been 

later applied to RNA-seq count data too. Its aim is to make two data distribution identical 

in their statistical properties and it works modifying data to the mean of the 

corresponding ranked values. It makes hypothesis neither on the proportion of up 

regulated and down regulated genes nor on a specific statistical distribution shape. It just 

assumes data to have the same distribution across samples. It is implemented in the R 

Bioconductor Limma package. 

 

NBPSeq 
NBPSeq has been formulated for RNA-Seq data normalization of DE analysis 

experiments. Di et al.60, 62  claim this method to be a parameterized negative 

binomial distribution based. It was derived from Robinson and Smyth algorithms57 

and it is asserted to solve edgeR inappropriate estimation of data overdispersion. 

Di et al model has indeed an additional parameter to allow the dispersion parameter to 

depend on the mean. Their parametric method complements nonparametric regression 

approaches for modelling the dispersion parameter. 

 

TBT  

TBT is developed by Kadota et al. and consist of a double normalization step of Trimmed 

Mean of M values (TMM) 31 algorithm alternated by the baySeq procedure62. They start 

normalizing data with a first run of TMM normalization. Then they estimate the 

percentage of DE using the empirical Bayesian method implemented in baySeq and they 
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exclude the corresponding DE for the last step that is a second TMM normalization. In 

that way they eliminate DE elements for TMM normalization that have been 

demonstrated to shift the median log-ratio of data from the expected zero mean61.  In this 

manner they do not need to make assumption on the proportion of up/down regulated 

elements. On the other hand, they consider a negative binomial statistical model for 

RNA-seq count data. 

 

Real Dataset 
We downloaded and considered a real data set from the Sequence Read Archive (SRA) 

database. It is a microRNA high throughput sequencing dataset of 63 head and neck 

squamous cell carcinoma, submitted by the French National League Against Cancer - 

Research Dept. It is a part of an integrative study of the Cartes d'Identité des Tumeurs 

(CIT) project (Accesion Study ERP001908). 

We chose this public dataset because of its large number of samples of Human tissue, 

belonging all to the same biological type, all sequenced with high depth. We indeed 

needed the more samples as possible in order to have the more representative statistical 

population of small RNA expression profiles. In the 63 high throughput samples we 

found 970 small RNAs expressed, more precisely annotated microRNAs, new 

microRNAs and new moRNAs. We assume data to have a negative binomial distribution 

with an overdispersed variance. The head and neck tumour count data allowed us to make 

a realistic estimation of distribution parameters of a miRNA expression profile. 

 

Comparison procedure 
The aim was to evaluate the performance of normalization algorithms formulated for long 

RNAs, applied to human small RNA datasets. We simulated multiple matrixes with a 

controlled number of differentially expressed elements, keeping track of them with a flag 

on data. We then measured the impact of normalization methods as the ability to 

recognize differentially expressed elements in a differentially expressed analysis, after the 

normalization step. To this aim we applied the normalization methods and performed the 

same differential expression analysis to all the normalized data. The analysis had 

identified some elements as differentially expressed and, knowing the truth about the 

nature of elements, we easily determined how many true positive, true negative, false 
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positive and false negative elements each test produced, when applied to a datasets 

normalized with a specific method. 

From these values we derived measures of the goodness of normalization algorithms in 

maintaining the intrinsic information the data contain. To quantify normalization 

algorithms performances we calculated ROC curves and AUC curves. In this way we 

compared the power of discovery differentially expressed small RNAs under different 

dataset characteristic, even when the assumption each method makes were violated.  

Simulation model 
In order to significantly assess the impact of the normalization methods on small RNAs 

downstream analysis, we simulated many groups of small RNAs dataset, each made up of 

1000 simulated datasets of 1000 small RNAs expression valules (Ngenes=1000) in 10 

normal samples compared against 10 treated samples (Nsamples=20). Each group of 

datasets has specific and controlled statistical distribution of small RNA expression 

values.  

In the “head and neck squamous cell carcinoma” small RNAs dataset, we detected 970 

small RNAs (Ngenes=970) in the 63 samples (Nsamples=63). The dataset can thus be 

represented as a matrix 970x63, with sample values on the columns and gene values 

across samples on the rows. We started from the evaluation of the mean and the 

dispersions of small RNA expression values across samples, drawing two vectors of 970 

values (970 means and 970 dispersions). To this aim, we used both a customized version 

of the Bioconductor DESeq package and the standard Bioconductor edgeR package.  

The function “estimateTagwiseDisp.R” implements the empirical Bayes strategy 

proposed by Robinson and Smyth57 for estimating the tagwise negative binomial 

dispersions. The empirical Bayes method is based on a weighted conditional maximum 

likelihood.  

In the DESeq package, the dispersion is considered as the square of the coefficient of 

biological variation, and additive weighted component of the variance, together with the 

uncertainty in measuring a concentration by counting reads. The function 

“estimateDispersions” performs three steps: it first estimate a temporary dispersion value 

for each gene, then it fit a curve for each group and then it assign a final estimated 

dispersion value. It implicitly normalizes data and we modified it in order to pass over 

this step. 

In Figure 1 we compared the estimated dispersion 
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Figure 1. Comparison of estimated dispersion with different methods, a 

customized version of DESeq and the edgeR tagwise dispersion. 

 

We then fitted the relationship between all the couples mean-variance. It is a 

characteristic parameter of small RNAs dataset56, 58and we considered the fitted 

distribution function rather than directly the mean-variance couples values, in order to be 

able to sample as many couples mean-variance as we wanted. We therefore needed a 

multiple datasets owing the same characteristic to have a representative population and 

give a statistical significance to the results. We chose the custom DESeq values as 

estimated variance because we could more easily fit the relation between data dispersion 

and mean. The fitted variance-mean relationship is represented in Figure 2. 
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Figure 2. Fitted relation of estimated mean and dispersion values 

 

To create a matrix 1000x20 (Ngenes=1000, Nsamples=20) with realistic expression 

values, we sampled 1000 times from the quartile of the distribution of the estimated 

means. Having estimated the relation with dispersion, for every sampled mean value, we 

calculated the related dispersion, finding 1000 couples of mean and dispersion values, 

corresponding to the parameters of 1000 small RNAs expression values of the assumed 

binomial negative distributions. Having fixed 1000 corresponding distributions, we 

sampled from each distribution 20 values, drawing a matrix 1000x20. We repeated the 

sampling of 20 expression values 1000 times, obtaining 1000 matrixes of 1000x20. 

After that, we have always considered the same 1000 matrixes 1000x20 and we always 

introduced a 20% of elements differentially expressed in one of the two classes of 10 

samples, modifying the 20% of small RNA expression values in 10 of the 20 samples. We 

implicitly assume that differentially expressed elements are in a relative small number, 

more specifically the 20% of the total. To choose which small RNA should be 

differentially expressed we randomly sampled 200 indexes of the matrix, for each matrix. 
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Every normalization method assumes data to respond to some specific statistical 

characteristics but actually, in most cases, we do not know which is the truth about data. 

To this aim we tuned the proportion of up/down regulated small RNA (respectively 

upregulated-downregulated: 50%-50%, 70%-30%, 90%-10%) and the mean extent of the 

shift from normal values, measured as fold change (FC: 2, 4, 8). 

The combination of different values of the parameters FC and up/down differentiated our 

dataset in 9 groups of 1000 matrixes each.  

Each count data matrix was then normalized using all the normalization algorithms 

chosen: DESeq, edgeR, quantile, NBPSeq, TBT. 

 

Differential expression analysis 
To assess the impact of normalization methods we performed a differential expression 

analysis for each normalized matrix.  

To test which small RNAs were recognized as differentially expressed, we proceeded in a 

similar way the “nbinomTest” DESeq package does. Unlike it, we did not normalize data 

in the testing for differentially expressed genes. We indeed similarly calculated the mean 

expression value for each small RNA, both considering all the classes and individually 

for every class of samples. Then we computed the fold change for each small RNA, as the 

logarithm to basis 2 of the ratio for the first to the second condition values, and a t-test to 

get the statistical significance for the change. Since we worked with matrixes of 1000 

miRNAs, it is necessary to control the false discovery rate (FDR). Raw P-values were 

thus adjusted for multiple testing with the Benjamini-Hochberg procedure63. 

We considered as differentially expressed all the small RNAs with an adjusted P-value < 

0.05.  
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Results and discussion 
We aimed to investigate the impact of the five chosen normalization methods on small 

RNA downstream analysis. All the normalization methods were developed for count data 

of long RNA transcripts. Small RNA dataset exhibit a negative binomial distribution with 

an overdispersed variance. In order to measure the performances of different 

normalization algorithms we simulated different population of small RNA count data. All 

the populations have the same dimensions: they are all composed by 1000 elements and 

each of it is a matrix of count expression values. The matrixes are all made up of two 

groups of samples of 10 members each, the groups corresponding to the classes we 

compare in the differential analysis. For each member we measure the expression values 

of 1000 small RNAs. 

All the populations have the 20% of differentially expressed small RNAs in one of the 

two groups, with controlled characteristics. They indeed vary in the proportion of 

up/down regulated and in the mean fold change. The ratio of up/down regulated small 

RNA let us investigate the robustness of the normalization methods respect to the 

assumption that there are the same proportion of up/down regulated small RNAs. 

Introducing a high mean fold change in the differential expressed elements, we can 

analyse differences in normalization methods in presence of high count small RNAs.  

The goal of a differential expression analysis is to assess whether two groups of sample 

belong (null hypothesis) or not (reject the null hypothesis) to the same population, in that 

sense the test is a binary classifier. Formally an instance is mapped to one element of the 

set {p,n} of positive and negative class labels. A classifier is a mapping from instances to 

predicted classes. We label as positive all the instances that belong to different population 

(differentially expressed elements) and negative all the elements that confirm the null 

hypothesis of belonging to the same population. 

The performance of a binary classifier can be measured with the power of the test: it’s the 

test’s probability to correctly rejecting the null hypothesis, called also “sensitivity”, 

“recall” or “true positive rate” (TPr). In our scenario it corresponds to the correct 

classification of a small RNA as differentially expressed. We are also interested in the 

false positive rate (FPr), or “false alarm rate”, that means the probability of error in 

rejecting the null hypothesis. In other word, how often we classify as differentially 

expressed small RNAs that are not. Testing for differentially expressed small RNAs in a 

simulated scenario where we know the truth about belonging to differentially expressed 
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elements or not, let us evaluate the effective false positive rate and false positive rate in a 

representative situation of the reality. 

We proceeded with a first qualitative evaluation of the impact of normalization methods, 

drawing Receiver Operating Characteristics (ROC) curves. ROC graph shows TPr on Y 

axis and FPr. Every point of the graph correspond to a pair of TPr and FPr varying the 

threshold of the scoring that we use to assign a label {p,n} to an instance. We can see all 

the curves in Figure 3.  
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Figure 3. ROC graph in 9 different scenarios, ROC graph shows TPr on Y axis and FPr. Every point of the 
graph correspond to a pair of TPr and FPr varying the threshold of the scoring. 

We can see that the algorithms do not perform significantly differently applied to the 

same scenarios and we are not able to definitively prefer a normalization algorithm as the 

best. They all have the same trends, varying the fold change value and the ratio between 

up regulated and down regulated small RNAs. More specifically we can see that an 

unbalanced proportion of up-regulated small RNAs respect to the down regulated small 

RNAs worsen the performance. As previously mentioned, an imbalance of up- and down-

regulated miRNAs is very likely to occur in many real word datasets. 

Considering a up-down regulated ratio of 50%, independently from the fold change value, 

the methods led to the same condition. The choice of the normalization procedure in that 

scenario does not weigh on DE recognition.  
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Fold change differentiate a little how the normalization methods have a bearing on DE 

test and we decided to quantify the performance by comparing the values of areas under 

the ROC curves. To compare classifier we may want to reduce ROC performances to a 

single scalar value. It is commonly accepted to calculate the Area Under the ROC Curve 

(AUC) that is equivalent to the probability that the classifier will rank a randomly chosen 

positive instance higher then a randomly chosen negative instance. The higher the AUC 

value is and better is the classifier performance. 

In Tables 1A, 1B, 1C are represented all the mean values of the areas under the curves 

that we draw for each TPR-FPR pair, varying the p-values threshold.  

The most successful situation is when small RNAs strongly differentiate between the two 

groups. That coincides with a simulation scenario where a mean fold change is equal to 8. 

Considering that the attainment falls short when the proportion of up regulated small 

RNAs grows, it is not surprising that the best performance is achieved in case of fold 

change equal to 8 and 50% of proportion. The normalization algorithm that allows the 

best compromise between TPr and FPr is edgeR but it does not move far away from other 

methods. 

To have a dimension of the differences, we arbitrary considered as threshold a p-value 

adjusted of 0.05 and in Table 2A, 2B, 2C we gathered a complete calculation of TPr and 

FPr for each of the 9 scenarios. We can see that all the normalization algorism produce a 

high false positive rate and this strengthen the needs of experimental validation in case of 

biological data. 

 

 FC2UP0.5 FC2UP0.7 FC2UP0.9 

auc_deseq 0,8059 0,7974 0,7677 

auc_edger 0,8060 0,7981 0,7693 

auc_quantile 0,8037 0,7948 0,7631 

auc_tbt 0,7918 0,7861 0,7638 

auc_nbpseq 0,8044 0,7944 0,7590 

Table 1A AUC  (area under ROC curves) values of  FC=2 and proportion of up regulated=50%, 70%, 90%  
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 FC4UP0.5 FC4UP0.7 FC4UP0.9 

auc_deseq 0,9386 0,9331 0,9109 

auc_edger 0,9391 0,9341 0,9165 

auc_quantile 0,9362 0,9284 0,8945 

auc_tbt 0,9397 0,9391 0,9363 

auc_nbpseq 0,9380 0,9305 0,9043 

Table 1B AUC  (area under ROC curves) values of  FC=4 and proportion of up regulated=50%, 70%, 90% 

 

 FC8UP0.5 FC8UP0.7 FC8UP0.9 

auc_deseq 0,9674 0,9647 0,9505 

auc_edger 0,9683 0,9664 0,9538 

auc_quantile 0,9664 0,9585 0,9231 

auc_tbt 0,9622 0,9625 0,9613 

auc_nbpseq 0,9678 0,9643 0,9458 

Table 1C AUC  (area under ROC curves) values of  FC=8 and proportion of up regulated=50%, 70%, 90% 

  

 
FC2UP05 FC2UP07 FC2UP09 

TPR FPR TPR FPR TPR FPR 

deseq 0,3505 0,8200 0,2766 0,7789 0,4088 0,7800 

edger 0,3656 0,7850 0,2396 0,7100 0,4492 0,8050 

quantile 0,2638 0,7650 0,3717 0,7588 0,3292 0,6750 

tbt 0,1691 0,6133 0,1100 0,6111 0,1397 0,6270 

nbpseq 0,3304 0,7850 0,3108 0,7286 0,3922 0,7550 

Table 2A. TPR, FPR of FC=2 and proportion of up regulated=50%, 70%, 90% p-value adjusted = 0.05.  

 

 
FC4UP05 FC4UP07 FC4UP09 

TPR FPR TPR FPR TPR FPR 
deseq 0,4313 0,9296 0,4593 0,9500 0,5859 0,9400 
edger 0,5670 0,9600 0,5788 0,9500 0,6349 0,9700 
quantile 0,4020 0,9548 0,5144 0,9246 0,6851 0,9300 
tbt 0,2382 0,9293 0,2434 0,9184 0,3945 0,9694 
nbpseq 0,3497 0,9450 0,4862 0,9300 0,5551 0,9347 
Table 2B. TPR, FPR of  FC=4 and proportion of up regulated=50%, 70%, 90% p-value adjusted = 0.05.  
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FC8UP05 FC8UP07 FC8UP09 

TPR FPR TPR FPR TPR FPR 

deseq 0,3108 0,9700 0,3852 0,9450 0,7009 0,9949 

edger 0,3484 0,9700 0,5038 0,9849 0,6270 0,9850 

quantile 0,3568 0,9450 0,5707 0,9747 0,7997 0,9849 

tbt 0,2808 0,9444 0,2831 0,9646 0,2886 0,9596 

nbpseq 0,1541 0,9750 0,3509 0,9497 0,7186 0,9450 

Table 2C. TPR, FPR of  FC=8 and proportion of up regulated=50%, 70%, 90% p-value adjusted = 0.05.  
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Conclusions 
In this study, we systematically evaluated the impact of five normalization algorithms 

formulated to manage RNA count data, when applied to small RNA count data. 

To this aim we simulated nine different realistic scenarios of 1000 data set each, each 

scenario differing in the proportion of up and down regulated small RNAs and in the 

extent of deregulation.  

We have not been able to identify a method that was robust respect to the diverse 

characteristics of the datasets. All the algorithms produce a high false positive rate and 

AUC curves show us only small differences in the performances. 

We are far from reaching the consensus on the best normalization algorithm and there is 

still room to improve normalization methods for RNA-seq analysis. 
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Chapter 3 
We were later interested in studying whether different intracellular amounts of FHC 

might affect gene expression profile. As first step toward the dissection of the molecular 

basis of FHC-modulated gene expression, we performed an integrated analysis of miRNA 

and mRNA expression patterns in K562 FHC-silenced cells. We used K562 cells in 

which the expression of FHC has been stably knocked-down by shRNA interference and 

whose transcriptome profile was already established. By using a microRNA PCR Panel, 

we found that 4 out of 84 analysed miRNAs, namely hsa-let-7g-5p, hsa-let-7f-5p, hsa-let-

7i-5p and hsa-miR-125b-5p, were consistently and significantly up-regulated in 

FHCsilenced K562 cells compared to control cells. The correlation among FHC amounts 

and the expression of the four miRNAs was further supported by the transient silencing 

and the reconstitution experiments. The profile of the four up-regulated miRNAs has been 

integrated with the transcriptome analysis by combining data obtained from the 

microRNA targets prediction software with a correlation-based approach. This test is 

based on the assumption that, since miRNAs tend to down-regulate the expression of 

their targets, the expression profiles of miRNAs are expected to be inversely related with 

those of their true target genes. This analysis led to the identification of 91 down-

regulated genes, the majority of whom appear to be candidate targets of a single miRNA, 

while 15 are subjected to multiple miRNA regulation. IPA revealed that the highest 

scored pathways in which these genes are involved are: “Cell Death and Survival, 

Hematological System Development and Function, Hematopoiesis” and “DNA 

Replication, Recombination and Repair, Cell Cycle, Cancer”. We believe that the 

identification of FHC-dependent miRNA/mRNA networks implies that different amounts 

of the ferritin subunit contribute, in K562 cells, to the remodelling of gene expression 

taking place during these cellular processes through the action of let-7g, let-7f, let-7i and 

miR-125b. This observation is further strengthened by the comparison of the miRNAs-

regulated pathways, reported in this work. It is interesting to note that, among the 

common pathways, “Cell Death and Survival” and “Hematological System Development 

and Function” rely on the ERK1/2 activation that our results demonstrate to be severely 

affected by FHC modulation. In conclusion, the data presented in this study add a further 

level of complexity to the relationship among iron and miRNAs, since it appears that the 
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intracellular amounts of FHC subunit are able to regulate let-7g, let-7f, let-7i and miR-

125b expression, as well as the repertoire of their down-stream genes. Recent reports 

suggest that the redox state of the cell might influence Let7 and 125-b levels, but 

certainly the FHC interference on miRNA expression deserves further analysis. 
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Abstract 
In a previous study, we showed that the silencing of the heavy subunit (FHC) of ferritin, 

the central iron storage molecule in the cell, is accompanied by a modification in global 

gene expression. In this work, we explored whether different FHC amounts might 

modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in 

gene expression profile modifications. To this aim, we performed a miRNA-mRNA 

integrative analysis in K562 silenced for FHC (K562shFHC) comparing it with K562 

transduced with scrambled RNA (K562shRNA). Four miRNAs, namely hsa-let-7g, hsa-

let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The 

remarkable down-regulation of these miRNAs, following  FHC expression  rescue, 

supports a specific relation between FHC silencing and miRNA-modulation. The 

integration of target predictions with miRNA and gene expression profiles led to the 

identification of a regulatory network which includes the miRNAs up-regulated by FHC 

silencing, as well as 91 down-regulated putative target genes. These genes were further 

classified in 9 networks; the highest scoring network, “Cell Death and Survival, 

Hematological System Development and Function, Hematopoiesis”, is composed by 18 

focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC 

silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is 

significantly down-regulated. Taken all together, our data indicate that, in our 

experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the 

modulation of a specific set of miRNAs and add new insights in to the relationship among 

iron homeostasis and miRNAs. 
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Introduction 
A tight regulation of iron homeostasis is essential for life in eukaryotic cells. The 

availability of iron is required for critical pathways such as ATP generation and DNA 

synthesis. Deregulated iron levels contribute indeed to the generation of free radicals that, 

in turn, damage cellular proteins and nucleic acids [1]. Ferritin, a 24-mer protein, is 

devoted to keep intracellular iron in a bio-available and non-toxic form [2], thus playing a 

central role in intracellular iron equilibrium. 

The nano-cage of the ferritin molecule is composed by a well-defined array of heavy-type 

(FHC) and light-type (FLC) subunits, coded by two different genes [3] that share both 

extensive aminoacid sequence (55%) and structural similarity. The two subunits perform 

different functions in iron metabolism: FHC is involved in rapid iron uptake and release 

and it has ferroxidase activity, while FLC, devoid of enzymatic activity, essentially 

contributes to long-term iron storage [4]. Recently, several lines of evidence have 

demonstrated that FHC is a multi-functional protein, that might play a central role in 

proliferation [5], angiogenesis [6], chemokine signalling [7] and neoplastic 

transformation [8]. FHC expression is modulated, at transcriptional level, by proteins 

involved in tumorigenesis; among them, E1A [9], p53 [10], and c-Myc [11] act as 

repressors, while c-Jun is an inducer [12]. FHC itself binds to p53 and is able to activate 

p53 transcription under oxidative stress conditions [13]. Moreover, FHC transcription is 

activated by TNFα and interleukin 1α (IL-1α) [14], suggesting that pathways related to 

inflammation and stress can impact on ferritin regulation. The ferritin H subunit also 

physically interacts with, and regulates the activity of the chemokine receptor CXCR4 

[7], highly expressed in a variety of human malignancies. FHC down-regulation by 

shRNA interference strongly modifies, in vivo and in vitro, the proliferation of human 

melanoma cells [15].  

This scenario is even more complicated when considering the relationship between 

ferritin and cellular proliferation. FHC up-regulation has been associated with induction 

of differentiation and growth arrest in hematopoietic systems [16], differentiation of the 

Caco-2 enterocytic cell line [17] and switch from pre-adipocytes to adipocytes [18]. 

The last decade has witnessed a tremendous increase of knowledge on the role of 

microRNAs (miRNAs) in regulating gene expression in normal and pathological 

conditions. These non-coding RNAs, with an average length of 19-25 nucleotides, are 

able to modulate the expression of thousands of genes by inhibiting translation or 
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inducing degradation of transcripts. Moreover, one target transcript can be controlled by 

more than one miRNA [19]. It has been suggested that miRNAs might regulate more than 

60% of the protein coding genes [20]. Key functional roles for miRNAs have been 

demonstrated in development, organogenesis and cell differentiation [21]. In 

hematopoietic stem and progenitor cells miR-221, miR-222, miR-223 and miR-150 act as 

master regulators, contributing to the hematopoietic development and the lineage 

specification [22, 23].  

The role of miRNAs in cancer has been deeply investigated. Specific patterns of miRNA 

expression (miRNome) and variations have been established in different tumour stages 

and subtypes. miRNAs can play oncogenic (oncomiRNAs) and/or tumor suppressive role 

in almost all the aspects of cancer biology [24]. Moreover, a specific miRNA can play 

opposite roles in different contexts: for example, miR-29 acts as a tumor-suppressor in 

lung cancer, while it plays oncogenic functions in breast cancer [25]. Like virtually all 

other cellular processes, also iron homeostasis is regulated by specific miRNAs. miR-210 

acts on the transferrin receptor and is involved in iron acquisition. Iron storage and 

utilization are controlled by miR-200b, targeting FHC, while iron release is regulated by 

miR-485-3p, through its action on ferroportin (Fpn) [26]. 

We have recently found that, in a metastatic melanoma cell line [15] and in the K562 

erythroleukemia cell line [27], the silencing of FHC subunit is accompanied by profound 

modifications of gene expression. The molecular basis of the link among FHC levels and 

gene expression profile in these cells have not been established yet. 

In this study, we profiled both mRNA and miRNA expression in K562 cells silenced for 

the ferritin H subunit and compared these expression profiles with that of control cells. 

We identified specific miRNAs and genes differentially expressed upon FHC-knock 

down and studied the relations thereof. 
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Materials and Methods  

miRNA isolation and quantitative real-time PCR 
miRNA-enriched total RNA was extracted from cultured FHC-silenced K562 (K562shFHC) 

cells and K562 transduced with scrambled RNA (shRNA) using miRCURYTM RNA 

Isolation Kit Cell and Plant (EXIQON, Woburn, USA) following the manufacturer’s 

protocol. The concentration of RNA and the RNA quality (260/280 and 260/230 

absorbance ratios) of the samples were measured using Nanodrop (Thermo SCIENTIFIC, 

Waltham, MA, USA). We designed a double-step analysis for identification and 

quantification of abnormally expressed miRNAs in K562 shFHC compared to K562 

shRNA cells. The first was a “panel” procedure that simultaneously evaluated expression 

level of different mature miRNAs by quantitative real-time PCR (qRT-PCR); the second 

was performed on individual miRNAs, which eventually resulted differentially expressed 

in panel experiments. For panel analysis, we used Cancer Focus microRNA PCR Panel 

that assesses the expression levels of 84 onco-miRNAs.  

Each sample was assayed in triplicate, and the experimental data were normalized to the 

expression levels of the housekeeping small nuclear RNA,U6. 

 

Identification of differentially expressed miRNAs 
The fold change of miRNAs expression among the tested samples was calculated using 

2−ΔΔCt formula. Differences among the two sets of samples were analyzed by the Student 

t-test. Those differences with a p<0.05 were considered statistically significant.  

From this first analysis we decided to focus on those miRNAs that were found to be up-

regulated in K562 shFHC compared to K562 shRNA cells. cDNA synthesis, was 

performed using  TaqMan® MicroRNA Reverse Transcription Kit (Life Technologies, 

Carlsbad, CA, USA) containing microRNA-specific RT primers and Taqman miRNA 

assay. To measure miRNAs expression levels, 1.33 µL of each cDNA was added to the 

specific TaqMan microRNA Assay (20X) and TaqMan 2X Universal PCR Master MiX 

(Life Technologies, Carlsbad, CA, USA). The amplification conditions for miRNA qRT-

PCR were the following: 10 min at 95 °C, 40 cycles at 95 °C for 15 s, and 60 °C for 60 s. 

The experiments were performed in duplicate and the analysis was performed using the 

2−ΔΔCt formula. 
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Transfection of K562 cells 
K562 cells were transfected using electroporation. In particular, over-expression of FHC 

was performed using the expression vector containing the full length of human FHC 

cDNA (pc3/FHC); transient silencing of K562 cells was obtained using a homemade 

FHC siRNA, kindly provided by Prof. Sonia Levi from the Vita-Salute San Raffaele 

University Milano, Italy. For rescue of FHC expression, approximately 6×106 K562-

silenced cells (K562shFHC) were resuspended in 600µL of Opti-MEM (Gibco BRL). 

Subsequently, 3×106 of cell suspension was mixed with 30 µg of pc3/FHC 

(K562shFHC/pc3FHC). The remaining 3×106 of cell suspension was mixed with the 

control plasmid, pcDNA™3.1 (K562shFHC/pcDNA™3.1). For transient silencing of 

FHC, 6x106 K562 cells were resuspended in 600µL of Opti-MEM and then, half was 

mixed with 15µg of a GFP-positive control siRNA (K562 Ctrl siRNA) and half with 

15µg of FHC siRNA (K562 FHC siRNA). After 15 minutes of incubation at room 

temperature, each sample was electroporated in a sterile electroporation cuvette (Bio-Rad 

Gene Pulser cuvette, 0.4 cm) using Gene Pulser Xcell Electroporation System (Bio-Rad). 

Electroporation was performed at 285V and 975µFa. After electroporation, cell 

suspensions were centrifugated at maximum speed and the pellets were left at room 

temperature for 20 minutes. Then, fresh complete medium was added to the pellets and 

cells were further incubated at 37°C in a humidified atmosphere supplemented with 5% 

CO2. Transfection efficiency was measured after 72h using real-time PCR. 

 

Identification of differentially expressed genes 
Genes modulated after FHC silencing have been identified using Limma package [28]. 

Differential expression analysis was obtained by a t-statistic, which is computed for each 

gene and for each contrast, with standard errors moderated across genes, exploiting the 

Empirical Bayes shrinkage method to stabilize the variance estimate. 

Only genes with absolute log(FC) of at least 1 and a FDR q-value lower than 0.1 have 

been considered differentially expressed. 
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Identification of anticorrelated predicted targets of miRNAs 
We identified the predicted regulatory relations significantly supported by expression 

data, integrating target predictions with miRNA and gene expression profiles in silenced 

and un-silenced cells. Only differentially expressed miRNAs were considered. Target 

predictions were computed with TargetScan. 

Pairwise Spearman correlations between miRNA and predicted target gene expression 

profiles were calculated. The supported relationships associated to statistically significant 

correlations (r<= -0.81 and p-value <=0.05) were selected. 

 

Pathways visualization 
Network visualization and annotation have been performed using Cytoscape [29]. 

  

Functional analysis of target genes  
In order to infer the potential functions of the differentially expressed miRNAs, we 

performed the functional analysis of their target genes using Ingenuity Pathway Analysis 

(IPA) database. IPA maps each gene within a molecular network and defines it as “focus 

molecule”. Ingenuity Pathway Analysis (IPA) software program was used as described 

elsewhere [30]. Following IPA analysis, Panther (Protein ANalysis THrough 

Evolutionary Relationships) was used to also classify genes in specific signalling and 

metabolic pathways (http://www.pantherdb.org/).  

 

RNA extraction and quantitative real-time PCR for FHC and 

c-Myc and RAF1 detection 
Total RNA was extracted from two distinct batches of K562 shRNA and K562 shFHC 

cells using the Trizol method (Life Technologies, Carlsbad, CA, USA). Real-time PCR 

was performed using 10X SYBR Green PCR Master mix (Life Technologies, Carlsbad, 

CA, USA), 400 nM of each primer pair, 20 ng of cDNA (total RNA equivalent) and 

nuclease-free water. The thermal profile consisted of 1 step at 95 °C for 10 min followed 

by 45 cycles at 95 °C for 30 s, 60 °C for 60 s. Human glyceraldehyde 3-phosphate 
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dehydrogenase (GAPDH) was used as housekeeping. Each reaction was performed in 

duplicate. The primer sequences for FHC and GAPDH have been already published (27). 

The primer sequences for RAF1 and c-MYC were as follow: 

RAF1 FW: TGCTGCGTCTTTGATTGGAG 

RAF1 REV: TGGTGCTACAGTGCTCATGA 

c-MYC FW: CCTCGGATTCTCTGCTCTCC 

c-MYC REV: TGTGAGGAGGTTTGCTGTGG 

Protein Extraction and Western Blotting Analysis 
K562 shRNA and K562 shFHC cells were lysed in the following buffer [20 mM Hepes 

pH 7.9, 420 mM NaCl, 1% Triton X-100, 1 mM EDTA, 25% glycerol, 1 mM PMSF, 1 

mM Na3VO4, 1 mM DTT, 1 µg/ml aprotinin, 1 µg/ml leupeptin] for 30 min on ice. After 

removal of the cell debris by centrifugation (12,000 ×g, 30 min), the concentration of 

proteins in the supernatant was measured by the Bio-Rad protein assay according to the 

manufacturer's instructions (Bio-Rad Laboratories, Hercules, CA, USA) [31]. A total of 

50 µg protein extract was boiled for 10 min in SDS sample buffer, separated by 12% 

SDS-PAGE and the proteins were transferred to a nitrocellulose membrane by 

electroblotting. Non-specific reactivity was blocked by incubating the membrane in 

nonfat dry milk in TPBS [5% (w/v) milk in PBS (pH 7.4) and 0.005% Tween 20] for 2 h 

at room temperature. The membrane was incubated with primary mouse anti-Phospho-

p44/42 MAPK (Erk1/2) (Thr202/Tyr204) antibody (1:1000; Cell Signaling Technology, 

Danvers, MA, USA) overnight at 4°C. Being washed in TPBS, the membranes were 

subsequently incubated with anti-mouse secondary antibody (1:3000 Cell Signaling 

Technology, Danvers, MA, USA) for 2 hours. The membrane was developed by ECL-

Western blot detection reagents according to the manufacturer's instructions (Santa Cruz 

Biotechnology, Texas, USA). γ-Tubulin was used as a loading control. 

 

Assessment of cell proliferation 
3-[4,5-Dimethylthiaoly]-2,5-diphenyltetrazolium bromide (MTT) assay was performed to 

detect proliferation of K562 shRNA and K562 shFHC cells. The experiments were 

performed on starved cells that were obtained culturing proliferating cells with RPMI 
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1640 without FBS for 24h. A total of 4.5X104 cells/well were seeded into 96-well plate 

and let to grow for 72h in RPMI medium. There were octuplicates for each cell type. 

Fresh MTT (Sigma Aldrich, Saint Louis, MO, USA), re-suspended in PBS was added to 

each well. After 2h incubation, culture medium was discarded and replaced with 200µL 

of DMSO. Optical density was measured at 570 nm in a spectrophotometer. Each 

experiment was performed in triplicate.  
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Results 

miRNA and transcriptome analysis in K562 cells 
Our main goal in the past years has been the identification and classification of genes 

whose expression is directly or indirectly modulated by FHC in different human cell 

lines. In the present study, we evaluated if the silencing of FHC may also alter 

oncomiRNAs expression in the K562 erythroleukemic cell line with the aim of 

identifying the potentially regulated genes. To this, we utilized a cell clone, already 

described, in which FHC expression has been knocked-down with specific shRNA [27]. 

Using Cancer Focus microRNA PCR Panel, we have identified 59 miRNAs, 12 of which 

were up-regulated and 3 down-regulated, with an absolute Log fold-change (LogFC) 

greater than 1, in K562 cells silenced for H ferritin (shFHC) versus K562 cells transduced 

with scrambled RNA (shRNA) (Table S1). The analysis was performed in triplicate from 

both cell types using quantitative real-time PCR (qRT-PCR). Four miRNAs namely hsa-

let-7g-5p, hsa-let-7f-5p, hsa-let-7i-5p and hsa-miR-125b-5p resulted significantly up-

regulated, with LogFC variation of at least five  and a t-test p-value <0.05, after FHC 

knock-down (Table 1). 

 

microRNA 
LogFC 

(shFHC vs shRNA) 
p-value 

hsa-let-7g-5p 7.38 0.0133 

hsa-let-7f-5p 5.47 0.0218 

hsa-let-7i-5p 4.95 0.0340 

hsa-miR-125b-5p 5.82 0.0470 

Table 1 .Four miRNAs are significantly up-regulated after H ferritin silencing 

 

The expression of these four miRNAs was assessed by TaqMan assay in an independent 

set of RNA obtained from silenced cells and from K562 cells in which the expression of 

FHC has been restored. The results of a duplicate set of experiments are shown in Panels 

A and B of Figure 1. Panel A shows the extent of FHC-silencing and reconstitution. In 

Panel B are reported the expression levels of the four miRNAs in the silenced and 

reconstituted K562 cells. It appears that the four miRNAs are indeed up-regulated in the 

cells in which the FHC subunit was present at a significantly lower level (FC= 0.3) 
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compared to shRNA cells (p-value<0.05) and down-regulated in the cells where FHC 

expression levels were rescued.  

 
Figure 1. Four miRNAs are significantly modulated by FHC amounts. A) Real-time PCR 
analysis of FHC mRNA performed on total RNA from K562 shRNA, K562 shFHC and 
K562shFHC/pc3FHC . Results are representative of two different experiments. B) TaqMan 
analysis of hsa-miR-125b, hsa-let-7f, hsa-let-7g, hsa-let-7i in K562 shRNA, K562 shFHC 
and K562shFHC/pc3FHC. Results are representative of two different experiments. N.S.: Not 
Significant 

 
According with the microRNA PCR panel, the greatest increase was observed for hsa-let-

7g, whose expression is about 14-fold higher in the silenced cells compared to the 

control. We also transiently trasfected K562 cells with a homemade FHC siRNA kindly 

provided by Professor S. Levi, and compared the expression levels of the four miRNAs 

with those of control cells. In two independent experiments, a different silencing 

efficiency, in the order of about 20 and 40%, was obtained. Panels A and B of Figure 2 
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show that, in both samples, FHC silencing is accompanied by an up-regulation of hsa-let-

7g-5p, hsa-let-7f-5p, hsa-let-7i-5p and hsa-miR-125b-5p. 

 
Figure 2. Transient silencing of FHC induce up-regulation of hsa-miR-125b, hsa-let-7f, hsa-let-7g, hsa-let-
7i. A transient silencing of FHC of about A) 20% and B) 40% is accompanied by the up-regulation of hsa-
miR-125b, hsa-let-7f, hsa-let-7g, hsa-let-7i. Results are representative of two different experiments 
performed by TaqMan analysis. *p value<0.05 

 
The gene expression profile of FHC-silenced versus un-silenced K562 cells has been 

already determined in a previous work [27]. Here, in order to integrate miRNA and 

mRNA transcriptome findings, we have re-analyzed the raw microarray data. The Limma 

differential expression analysis identified 219 transcripts with a significantly altered 

expression in the FHC-silenced cells, including 64 up- and 53 down-regulated genes with 

an absolute LogFC greater than 2. The full cast of the FHC-dependent mRNAs is reported 

in Supplementary Table 2 (Table S2). 
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miRNA-mRNA regulatory network 
Next, for differentially expressed miRNAs, we integrated target predictions with miRNA 

and gene expression profile, to identify the regulatory relationships significantly 

supported by expression data. Combining TargetScan predictions of miRNA-target 

interactions with a correlation-based analysis of miRNA and transcript expression 

profiles (see Materials and Methods), we obtained 108 interactions supported by 

expression data, involving hsa-let-7g-5p, hsa-let-7f-5p, hsa-let-7i-5p and hsa-miR-125b-

5p and 91 down-regulated genes. In particular, the expression of hsa-let-7i resulted to be 

negatively correlated with that of 13 transcripts; hsa-let-7f and hsa-let-7g with that of 20 

transcripts and 25 transcripts, respectively; finally, hsa-miR-125b negatively correlated 

with 50 transcripts. As shown in the reconstructed regulatory network (Figure 3), the 

majority of these genes were supported targets of only one miRNA, whereas 15 genes 

were putatively regulated by two or more  up-regulated miRNAs. 

The list of the 91 down-regulated transcripts with their cognate miRNAs is reported in 

Supplementary Table 3 (Table S3). 

 
Figure 3. miRNA-mRNA interaction networks. miRNA-mRNA interaction networks built by Cytoscape. 
We identified a total of 108 miRNA-mRNA significantly negatively correlated interaction. The four up-
regulated miRNAs are colored in red and the 91 down-regulated target mRNAs are in green. let-7i is 
correlated with 13 transcripts; let-7f and let-7g with 20 and 25 transcripts, respectively; miR-125b 
negatively correlates with 50 transcripts. The majority of genes are supported targets of only one specific 
miRNA, whereas 15 genes are putatively regulated by two or more distinct up-regulated miRNAs.  
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miRNAs modulated by FHC silencing impact on specific 

pathways  
The 91 down-regulated supported target genes of hsa-let-7g-5p, hsa-let-7f-5p, hsa-let-7i-

5p and hsa-miR-125b-5p were studied with two knowledge-based approaches  to better 

characterize the networks potentially modulated by FHC silencing. Ingenuity Pathway 

Analysis tool (IPA) highlighted the 9 networks reported in Table 2; of them, the highest 

scoring is “Cell Death and Survival, Hematological System Development and Function, 

Hematopoiesis” with a significance score of 37 and 18 focus molecules (Panel A of 

Figure 4), followed by “DNA Replication, Recombination and Repair, Cell Cycle, 

Cancer” with a significance score of 32 and 16 focus molecules (Panel B of Figure 4). 

The significance scores of these networks (estimating the probability that a collection of 

genes equal to or greater than the number in a network can be achieved by chance alone) 

are very high, since a score of 3 indicates a 1/1000 chance that the focus genes are in a 

specific network due to random chance.  

 
Figure 4. The two highest scoring networks identified by IPA, that correlate genes target of the miRNAs 
differentialy expressed after FHC silencing. Ingenuity Pathway Analysis was used to investigate the 
networks potentially affected by the down-regulated genes. (A) Cell Death and Survival, Hematological 
System Development and Function, Hematopoiesis” is the highest scoring network with a significance 
score of 37 and 18 focus molecules (B) DNA Replication, Recombination and Repair, Cell Cycle, Cancer” 
has a significance score of 32 and 16 focus molecules. The target down-regulated genes are shaded in 
green. Intensity of shading correlates with the degree of down-regulation. A solid line represents a direct 
interaction between two genes, while a dotted line indicates an indirect interaction.  
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Table 2 Top 9 molecular networks predicted by IPA, by analysis of genes with expression profiles 
significantly negatively correlated with that of miRNAs differentially expressed after FHC silencing 

 

Molecules in Network Score Focus 

Molecules 

Top Diseases and Functions 

BMF, CD69, GIPC1, GJC1, GNPDA1, 

ICAM2, IRS2, PAG1, PPAT, PPP2CA, 

RAF1, RDX, SEMA3E, SOCS1, 

ST6GAL1, TGFBR3, UTRN, VEGFB 

37 18 Cell Death and Survival, 

Hematological System 

Development and Function 

ABHD6, ARL6IP4, ASXL2, CMTM6, 

CRCP, GALNT1, GANAB, HIST2H2BF, 

NXT2, OSBPL3, PARP8, PSTPIP2, RMI2, 

TMEM87A, WDR73,XRCC3 

32 16 DNA Replication, 

Recombination and Repair, Cell 

Cycle, Cancer 

DDX26B, GXYLT1, PHF23, QSOX2, 

RAB43, SLC46A3, SNX22, SNX24, 

SNX25, SZRD1, TMEM50A, VSTM4, 

ZNF10 

24 13 Cancer, Gastrointestinal disease, 

Cell death and Survival 

ADRBK1, ARHGEF2, ARRB1, ATP5G2, 

AZI2, HAND2, HBEGF, P2RX4, P2RX6, 

SFMBT1, SLC25A12, UBA52, USP24 

23 13 Cardiovascular system 

development and function, 

Developmental disorders, Organ 

morphology 

AMT, DLGAP4, ELF4, EPB41L4A, 

FAM214B, MEGF9, SEMA4F, SPRTN, 

USP32, ZNF263 

16 10 Cancer, Gastrointestinal disease, 

Cell to cell signaling and 

interaction 

CCDC126, FAM118A, FAM53C, GALE, 

GJC1, GPR153, GPR160, MAN2A2, 

NEO1, PPARGC1B,  

16 10 Cancer, Cellular Movement, 

Tissue Morphology 

CTPS1, HABP4, NAGA, PSMD7, 

SEC14L1, TDG, TRIM5, WARS, LIPT2 

13 8 Carbohydrate Metabolism, 

Developmental Disorder, 

Hereditary Disorder 

LIPT2 2 1 Organ,  Morphology, 

Riproductive System 

Development and Function, 

Endocrine System Development 

and Function  

ATP8B4 2 1 Cancer, Organismal Injury and 

Abnormalities, Reproductive 

System Disease 
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In parallel, ANalysis THrough Evolutionary Relationship (PANTHER) showed that hsa-

let-7g, hsa-let-7f, hsa-let7i and hsa-miR-125b up-regulation might determine changes in 

29 metabolic pathways 18 of which are signalling pathways (Figure 5) mostly involving 

RAF1. Notably, RAF1 is one of the 18 focus molecules identified by IPA in the network 

reported in Figure 4A. 

. 

Figure 5. Pathway analysis performed using PANTHER. Panther gene ontology (GO) 
analysis for the 91 down-regulated target genes. Several metabolic pathways are 
affected, the majority of them is represented by signalling pathways , shaded in blue. 

 

RAF1, pERK1/2 and c-Myc expression in K562 FHC-silenced 

cells 
We noticed that, in the “Cell Death and Survival, Hematological System Development 

and Function, Hematopoiesis” network (Figure 4A), the 18 focus molecules potentially 

modulated by hsa-let-7g-5p, hsa-let-7f-5p, hsa-let-7i-5p and hsa-miR-125b-5p, converge 

on a central hub represented by the ERK1/2 kinase. In particular, 6 of them directly 

impact on this kinase; RAF-1, VEGFB, CD69 and IRS2 are known activators, PPP2CA 

acts as inhibitor, while SOCS1 might act either as inhibitor or activator depending on the 

cellular context. The potential involvement of ERK1/2 is further supported by the 
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observation that the pathways identified by PANTHER analysis all depend on the 

activation of this molecule. Thus, we decided to investigate RAF1 expression and 

ERK1/2 activation in the FHC-silenced cells by real-time PCR and western blot analysis, 

respectively. The experiments were performed in duplicate on RNAs and protein extracts 

from two independent sets of cells.. 

 

Figure6. FHC silencing in K562 cells reduces proliferation rate via RAF1/MAPK pathway inhibition and is 
associated with  c-Myc down-regulation. A) Real-time PCR of RAF1 mRNA performed on K562 shRNA, 
K562 shFHC and K562shFHC/pc3FHC. Results are representative of two different experiments B) Western Blot 
analysis for pERK1/2 was performed on 50µg of total protein extract from K562shRNA and K562shFHC 
cells. Total ERK1/2 was used as loading control. Results are representative of three different experiments. 
C) Western Blot analysis for pERK1/2 and FHC was performed on 50µg of total protein extract from 
K562shRNA and K562 shRNA+FHC. Total ERK1/2 and γ-Tubulin were used as loading controls. Results 
are representative of two different experiments. D) Equal number of starved silenced and un-silenced cells 
were plated into a 96-well plate, incubated for 72 h and analysed by MTT assay. Proliferation of FHC-
silenced cells is reduced of about 35% compared to controls. Data are presented as mean ± standard 
deviation. E) Real-time PCR of c-Myc mRNA performed on K562 shRNA, K562 shFHC and 
K562shFHC/pc3FHC . Results are representative of two different experiments. 

 

Panel A of Figure 6 shows that RAF1 levels are significantly altered by FHC silencing, 

thus confirming the microarray data. Panel B shows that ERK1/2 phosphorylation is also 

severely impaired in the silenced cells compared to control. To further correlate ERK1/2 

phosphorylation and FHC expression levels, we analysed pERK1/2 after FHC over-

expression. Panel C of Figure 6 shows that, in the control cells, an FHC over-expression 
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of the order of about 37% is accompanied by an increased ERK1/2 phosphorylation. The 

role of ERK1/2 in the control of cell proliferation has been largely demonstrated [32]. 

Therefore, we analysed the proliferation rate of the silenced and un-silenced K562 cells 

by MTT assayThe experiments were performed in triplicate and the results, reported in 

Panel D of Figure 6, indicate that the proliferation of FHC silenced cells is reduce of 

about 35% compared to the controls It has been reported that in the 3’ untranslated region 

of c-Myc mRNA there are multiple potential binding sites for Let-7 miRNAs family 

members. Moreover, the overexpression of Let-7 in cell cultures is accompanied by a 

decrease in c-Myc mRNA levels. Consequently, we determined by qRT-PCR the amounts 

of c-Myc mRNA in K562 cells silenced or not for FHC, finding that c-Myc mRNA was 

down-regulated to an extent of about 35% following FHC-silencing (Panel E of Figure 6).  
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Discussion 
While the biochemical bases of ferritin function in iron uptake and deposition have been 

clearly established, and the respective roles of the two subunits determined, other aspects 

of its biological functions still remain to be clarified. Since the middle of last century, a 

robust body of data indicates that intracellular FHC is not only essential for iron 

metabolism but is also involved in critical metabolic pathways from the signalling 

cascades of CXCR4 [7] and G-CSFR [33] to Apo-B biogenesis [34].  

We are interested in studying whether different intracellular amounts of FHC might affect 

gene expression profile of a given cell; proteome and transcriptome analysis has already 

revealed that the silencing of FHC is accompanied, in different cell types, by profound 

modifications in the steady-state amount of key proteins and transcripts [15, 27]. This 

phenomenon can be at least partially attributed to perturbations of the oxidative state of 

the cell induced by FHC-silencing, but the type and the amount of transcripts potentially 

regulated by FHC suggest the existence of additional mechanisms that still require to be 

investigated. In this work, as first step toward the dissection of the molecular basis of 

FHC-modulated gene expression, we performed an integrated analysis of miRNA and 

mRNA expression patterns in K562 FHC-silenced cells.  

We have utilised K562 cells in which the expression of FHC has been stably knocked-

down by shRNA interference and whose transcriptome profile is already established [27]. 

By using a microRNA PCR Panel, we found that 4 out of 84 analysed miRNAs, namely 

hsa-let-7g-5p, hsa-let-7f-5p, hsa-let-7i-5p and hsa-miR-125b-5p, are consistently and 

significantly up-regulated in FHC-silenced K562 cells compared to control cells. The 

correlation among FHC amounts and the expression of the four miRNAs is further 

supported by transient silencing and reconstitution experiments. 

The Let-7 human miRNA family is composed by 14 members widely considered as 

tumor suppressors. Let-7 miRNAs regulate, among others, the expression of the 

oncogenes Ras [35], Myc [36, 37] and HMGA2 [38]; accordingly, we found that, in FHC-

silenced K562 cells, the up-regulation of Let7-g, -f and -i, is accompanied by an 

important reduction of Myc expression.  

Different members of the Let-7 family regulate highly overlapping set of genes, thus 

suggesting a redundant function. On the other hand, the regulation of their expression is 

elicited at multiple levels, and, in certain cancers, only specific members appear to be 

deregulated [39]. Therefore, an emerging question is whether different members of a 
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miRNA family undergo a differential regulation within the same cell. Our data point in 

this direction, since FHC-silencing is accompanied, in K562 cells, by a selective up-

regulation of three out of 9 Let-7 miRNAs analysed. 

miR-125b, a member of the miR-125 family, is an intriguing molecule, acting either as 

tumor suppressor or as an oncogene in different cancer types [40, 41]. Recently, miR-

125b has been utilized as biomarker to distinguish cell lines derived from acute (HL60) 

and chronic (K562) myeloid leukemias and it has been proposed that in K562 it may act 

as a tumor promoting agent [42].  

Our results demonstrate that RAF1, one of the target genes of miR-125b, is down-

regulated in the FHC-silenced K562 cells. Moreover, we have shown, in these cells, a 

reduced activation of pERK1/2, that plays a central role in all the pathways in which the 

miRNA-regulated genes are involved. ERK1/2 MAP kinases regulate growth, survival 

and cell cycle progression in mammalian cells upon phosphorylation-induced activation 

[43]. Our data show that FHC knock-down may negatively regulate, through the 

modulation of miR-125b expression, the ERK activation thus suggesting that, in our 

experimental model, hsa-miR-125b may prevalently act as tumor suppressor molecule. 

Consistent with this hypothesis is also the significant reduction in proliferation rate of 

FHC-silenced cells. A correlation among FHC levels, has-miR-125b and ERK1/2 

activation is further supported by the decreased miRNAs amount (data not shown) and 

the augmented phosphorylation of the MAPK in FHC over-expressing cells (Panel C of 

Figure 6). 

In this study, the profile of the four up-regulated miRNAs has been integrated with the 

transcriptome analysis by combining data obtained from the microRNA targets prediction 

software with a correlation-based approach. This test is based on the assumption that, 

since miRNAs tend to down-regulate the expression of their targets, the expression 

profiles of miRNAs are expected to be inversely related with those of their true target 

genes. This analysis led to the identification of 91 down-regulated genes, the majority of 

whom appear to be candidate targets of a single miRNA, while 15 are subjected to 

multiple miRNA regulation. IPA revealed that the highest scored pathways in which these 

genes are involved are: “Cell Death and Survival, Hematological System Development 

and Function, Hematopoiesis” and “DNA Replication, Recombination and Repair, Cell 

Cycle, Cancer”. The role of FHC in the processes of cell differentiation and neoplastic 

transformation has been investigated for a long time, starting from the observation that its 

intracellular amounts can significantly vary when comparing differentiated with 
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undifferentiated cells, or transformed versus non transformed cells [44, 5]. Both the 

central role of FHC in iron homeostasis and its ability in modulating different 

transduction pathways, are consistent with its increased expression during differentiation 

and neoplastic transformation. We believe that the identification of FHC-dependent 

miRNA/mRNA networks implies that different amounts of the ferritin subunit contribute, 

in K562 cells, to the remodelling of gene expression taking place during these cellular 

processes through the action of let-7g, let-7f, let-7i and miR-125b. This observation is 

further strengthened by the comparison of the miRNAs-regulated pathways, reported in 

this manuscript, with those highlighted in our previous work on FHC-silenced K562 

undergoind differentiation [27]. It is interesting to note that, among the common 

pathways, “Cell Death and Survival” and “Hematological System Development and 

Function” rely on the ERK1/2 activation which is severely affected by FHC silencing. 

In conclusion, the data presented in this study add a further level of complexity to the 

relationship among iron and miRNAs, demonstrating that the intracellular amounts of 

FHC subunit are able to regulate let-7g, let-7f, let-7i and miR-125b expression, as well as 

the repertoire of their down-stream genes. Even though an increasing body of evidence 

suggests that the redox state of the cell might significantly influence Let7 and 125-b 

levels [45, 46], we believe that the FHC interference on miRNA expression deserves 

further analysis.  
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Chapter 4 
The hypothesis that miRNAs could regulate alternative translation of many mRNAs is 

indirectly supported by the integration of the two types of evidence: the multiple and non-

canonical active ORFs in human mRNAs, provided by GTI-seq data, and miRNA-mRNA 

binding outside 3’UTRs thanks to CLASH technique. Looking for overlapping region 

identified in both the experimental evidences, we identified many genes in which one or 

more miRNAs could interfere with translation of main annotated ORF or with ORFs 

located in the 5’ UTR respectively to the annotated ORF, or even downstream it. These 

regions are evolutionary conserved and the miRNA footprints tend to overlap mRNA 

regions involved in RNA fold stabilization. We selected most significant cases of genes 

and we provided experimental evidence of TIS activity. We obtained direct evidence of 

miRNA-TIS interaction causing suppression of protein expression in 60% of tested cases. 

This non canonical miRNAs function surely deserve further investigation, to better 

characterize the mechanisms of AT regulation, more specifically we need to understand if 

and how the miRNA-based regulation of mRNA alternative translation impact on cell 

processes and on disease.  

 Nowadays multiple proofs of functional and regulatory role of the non coding have been 

adduced and it is always more evident that there are a huge redundancy of control 

throughout all the different steps of extended variety of biological networks. miRNAs 

appear key modulators of information and understanding the interplay of miRNAs and 

DNA, coding RNA or other targeted elements is crucial. Further studies need to be 

performed to elucidate post-transcriptional and transcriptional role of miRNAs. Profiling 

miRNAs that are bound to their target have already been useful, as we discovered 

potential new miRNAs function thanks to the integration of data from CLASH technique 

and from GTI-seq. Further experimental data on active miRNA binding, as HITS-CLIP or 

PAR-CLIP, would adduce proof of their functionality and would not be mere prediction, 

rather experimental evidences. Experimental evidences of new functions would drive to 

targeted sequencing experiments and, improving the technique potential. 
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Abstract 
We previously demonstrated that non-canonical binding of a miR-142-3p to a translation 

initiation site of C/EBPβ multi-ORF mRNA is able to change the ratio between protein 

isoforms with different properties, thus impacting on the cell phenotype. There is an 

increasing appreciation of the high prevalence of alternative translation in mammals. 

Complex translation patterns are known, with multiple ORFs in the same mRNA that can 

influence each other in different ways. New evidence indicates that miRNAs can 

frequently bind 5’UTR and coding regions of mRNAs. We provide novel data on the 

overlap of active translation initiation sites (TISs) of mRNAs, experimentally defined 

using GTI-seq, with miRNA-binding sites, experimentally determined using CLASH 

technique. We identified many genes in which one or more miRNAs could interfere with 

translation of the main annotated ORF, or with ORFs starting in the 5’ UTR and 

downstream the main TIS. We propose a new mechanism relevant to increase our 

understanding of the complex cross talk between protein-coding and non-protein coding 

RNAs. We model how the binding of a miRNA to a TIS can produce different regulatory 

effects, according to the involved ORF types coexisting in mRNAs, and to their 

regulatory relations. Increased evolutionary conservation of miRNA footprints 

overlapping TISs, their propensity to fall in regions stabilizing mRNA fold, as well as 

direct experimental evidence of miRNA-mRNA interactions corroborate the proposed 

hypothesis. The miRNA-based regulation of mRNA alternative translation surely 

deserves further investigation to clarify if and how it impacts on cell processes and on 

disease. 
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ABBREVIATIONS LIST 

 

5’TIS: 5’ Translation Initiation Site 

AT: Alternative Translation 

aTIS: annotated Translation Initiation Site 

BP: Biological Process (Gene Ontology) 

CC: Cellular Components (Gene Ontology) 

CDS: Coding Sequence 

CLASH: Cross Linking Ligation And Sequencing of Hybrids 

CLIP: Cross Linking Immuno Precipitation 

dTIS: downstream Translation Initiation Site 

GTI-seq: Global Translation Initiation sequencing 

IRES: Internal Ribosome Entry Site 

LRS: Leak Ribosomal Scanning 

MF: Molecular Function (Gene Ontology) 

miRNA: microRNA 

NMD: Nonsense Mediated Decay 

ORF: Open Reading Frame 

PIC: Pre Initiation Complex 

TIS: Translation Initiation Site 

uORF: upstream Open Reading Frame 

UTR: Untraslated Region 
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Introduction 
Non-canonical binding of a miRNA to the translation initiation site is able to change 

isoforms ratio of an mRNA whose alternative translation can generate multiple protein 

isoforms with different properties. This equilibrium consequently determines cell fate and 

ultimately induces phenotype changes relevant to cancer-induced immune tolerance 

(Sonda et al., 2013).  

There is an increasing appreciation of the high prevalence of alternative translation (AT) 

in mammals (Kochetov, 2008;Menschaert et al., 2013;Smith et al., 2005;Vanderperre et 

al., 2013;Wang et al., 2004). The importance of protein synthesis studies is increasing, 

with the growing list of genetic diseases caused by mutations that affect mRNA 

translation (Valasek, 2012). The emerging scenario shows complex translation patterns of 

many mRNAs, in which multiple ORFs influence each other and/or the formation of 

secondary structures that can modulate ribosome activity (Morris and Geballe, 

2000;Skabkin et al., 2013). On the other hand, new data indicate that miRNAs act in a 

non-canonical ways to regulate gene expression at different levels (Kosaka et al., 

2013;Mittal and Zavolan, 2014) and they can bind more frequently 5’UTR and coding 

sequences (CDS) regions of mRNAs than 3’UTR, where canonical target sites are 

expected.  

In this manuscript we discuss whether and how much miRNAs can contribute to the 

regulation of AT and we provide new data supporting the pervasiveness and perhaps the 

biological significance of this intriguing miRNA function. 

 

AT: a widespread post-transcriptional regulation mechanism 

with underappreciated complexity 
Proteome complexity in terms of multiplicity of different functional protein isoforms 

emerges not only from alternative splicing of RNA transcripts and the use of alternative 

promoters, but also from use of alternative translation initiation sites (TIS). The 

importance of AT in eukaryotes, both in terms of prevalence and functional relevance, is 

becoming apparent from recent studies, which added considerable evidence to earlier 

reports on AT in either specific genes or gene categories.  

Translation can be divided mechanistically into three steps: initiation, elongation and 

termination. As the rate-limiting step of translation, initiation involves ribosome loading, 
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scanning, and TIS selection before elongation commitment. Normally, translation 

initiation requires the pre-initiation complex (PIC) assembly and recruitment to the 

mRNA, which is a CAP-dependent process. The PIC then scans the 5’ UTR of the mRNA 

until it encounters a start codon. Normally it is assumed that the first AUG encountered 

by the ribosome serves as TIS. However, one or more potential initiation sites could exist 

upstream of the main ORF, forming uORFs. Likewise, TIS downstream the main start 

codon could also potentially serve as initiators.  

After the elongation step, the translation stops when the ribosome encounters a stop 

codon, and termination occurs with the concerted action of release factors, that triggers 

peptide release, tRNA dissociation and ribosome separation. In some cases, the 40S 

subunit remains associated with the mRNA and could re-initiate translation from a 

downstream TIS (re-initiation).  

Inefficient recognition of a TIS can lead to initiation downstream (leaky ribosomal 

scanning; LRS). On the basis of LRS model, the presence of uORFs in mRNAs (at least 

one uORF was reported in 50% of mammalian transcripts), can suppress the translation 

efficiency of the main ORF. In other cases, the uORF translation could also stimulate the 

translation of the main ORF (ATF4) (Kochetov et al. 2008). 

According to the LRS model, the TIS sequence context is deemed to be important in 

determining the strength of a given AUG codon, with optimal (GCCRCCAUGG) and 

suboptimal consensus sequences known. Bioinformatic analyses showed that downstream 

alternative TIS (dTIS) following a suboptimal TIS are under negative selection in 

vertebrates, with stronger selection in genes with weaker primary TIS (Bazykin and 

Kochetov, 2011). Moreover, the authors of this study noticed that genes with multiple 

conserved TISs are enriched for olfactory receptors and transcription factors. It was also 

proposed that other mRNA features, such as stable secondary structures over or near the 

TIS, could also influence AUG recognition. In addition to these cis sequence elements, 

the stringency of TIS selection is also subject to regulation by trans-acting factors such as 

eIF1 and eIF1A.  

Apparently, different ORFs of the same mRNA can regulate or influence each other in 

complex ways.  

By definition, uORFs encode peptide different from that encoded by the main ORF, 

whereas alternative overlapping ORFs can be in frame or out of frame. According to the 

leaky ribosomal scanning model, suboptimal 5’ TIS are not used with 100% efficiency 

and the ribosome goes ahead to start translation from downstream TIS. Different in frame 
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ORFs (with shorter ORFs being suffixes of the longer ORF) can generate proteins sharing 

the C-terminal part and differing in the N-terminal domains. The alternative inclusion of 

functional domains in different isoforms may differentiate, to some extent, their 

functional activity. For instance, two isoforms (Ora1α and Ora1β) arising from in frame 

alternative translation of the plasma membrane store-operating channel Ora1 mRNA 

display distinct plasma membrane mobility, since the shorter isoforms lack the 

phospholipid-binding domain (Fukushima et al., 2012). Recently, PTENα, a N-terminal 

extended isoform of PTEN, translated through alternative initiation at an upstream in 

frame TIS was discovered (Liang et al., 2014). Isoforms with different N-terminal signals 

can be targeted to distinct cell compartments: RNase Z isoforms display dual 

nuclear/mitochondrial targeting since the shortest isoform does not include the 

mitochondrial targeting sequence.  

Moreover, ORFs in different frames may produce, by AT of the same mRNA, proteins 

with completely different sequences and functions. A relevant example is AltPrP, a 

protein produced by alternative use of a downstream out of frame TIS of the PrP (prion 

protein) mRNA, with a different amino acid sequence from the PrP (Vanderperre et al., 

2011). AltPrP is a protein integrated in the outer mitochondrial membrane. AltPrP 

expression from PrP cDNA is constitutively negatively regulated and it is increased by 

proteasome inhibition and endoplasmic reticulum stress.  

Recently, it was shown that cells proteome includes many previously disregarded small 

peptides (Slavoff et al., 2013) and the products of AT were directly detected by proteomic 

studies (Slavoff et al., 2013; Vanderperre et al., 2013), thus supporting the high 

prevalence of AT in Eukaryotes. 

Many human genes undergoing alternative translation play important roles in tumorigenesis 

and development. Notable examples include OCT4, a transcription factor with a pivotal 

role in embryonic stem cells self renewal (Cao et al., 2009;Gao et al., 2012;Wang et al., 

2009), and the massively regulated, multi isoform, and multi functional P53 gene 

(Candeias et al., 2006).  

It is worth notice also that intronless genes cannot use alternative splicing to generate 

multiple proteins and AT is used instead as main mechanism for diversity generation. 

Many human genes as histone genes and G-protein-coupled receptor genes are 

predominantly intronless (Grzybowska, 2012). Besides, about 70% of single-copy, 

primate-specific human transcriptional units are intronless (Tay et al., 2009). 
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As anticipated, another important mechanism of AT is re-initiation (Jackson et al., 2012). 

Translation can be described as a cyclical process, consisting of initiation, elongation, 

termination, and ribosome recycling. In some cases, the recycling of post-translation 

complexes is incomplete: the 40S ribosomal subunit remains bound to mRNA, and 

termination is followed by re-initiation, usually downstream of the stop codon (Skabkin et 

al., 2013). In yeast, eIFs binding to the large ribosomal subunit lasts for several rounds of 

elongation and critically enhances the re-initiation capacity of post-termination 40S 

ribosomes (Szamecz et al., 2008;Valasek, 2012). In this view, the translation of small 

upstream ORFs (uORFs) can modulate the efficiency of use of downstream start sites. 

The uORFs are translated using TISs located 5’ (5’ TIS) to the main/annotated TIS 

(aTIS). As many as 44% of human mRNAs 5’UTRs include one or more uORFs 

(Kochetov et al., 2008). An uORFs shorter than 30 codons and the intercistronic distance 

(between uORF and the next TIS) longer than 37 nucleotides have been shown to favor 

efficient re-initiation (Luukkonen et al. 1995).  

The uORFs are quite common in certain classes of genes, including two-thirds of 

oncogenes and many other genes involved in the control of cellular growth and 

differentiation. They can influence the translation of downstream ORFs with different 

mechanisms (Morris and Geballe, 2000). At least three possible fates are available to a 

ribosome after translating an uORF: 1) The ribosome may remain associated with the 

mRNA, continue scanning, and re-initiate further downstream, at either a proximal or 

distal AUG codon; 2) Another option for the ribosome is to stall during either the 

elongation or termination phase of uORF translation, creating a blockade to additional 

ribosome scanning (in the known cases, ribosome stalling is mediated by the peptide 

structure encoded by the uORF); 3) In addition to influencing the action of ribosomes 

during and after termination, uORFs may affect gene expression by altering mRNA 

stability. 

Translation can be also initiated in a 5’-CAP recognition-independent way by the usage 

of secondary structures known as internal ribosome entry sites (IRES). IRES sequence 

elements form complex secondary structures that directly recruit ribosomes and drive 

translation particularly in special conditions as cellular stress, apoptosis or hypoxia (Liu 

and Qian, 2014).  

After the use of an IRES, both LRS and re-initiation are possible, in principle (Kochetov 

et al., 2008). In addition, non AUG codons can be used for TIS, and they are frequently 
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used in 5’TIS (Touriol et al., 2003), an example being the extended-C/EBPα isoform, 

which is translated from a non-AUG codon  (Muller et al., 2010). 

A prediction of all possible short and long ORF for each mRNA produced by the human 

genome is feasible, but is expected to result in a massive number of putative AUG and 

non-AUG TISs, including an exceedingly large proportion of false positives. A recent 

study exploited global translation initiation sequencing (GTI-seq), to achieve detection of 

alternative translation initiation in mammalian cells with single-nucleotide resolution 

(Lee et al., 2012). This study used cycloheximide (CHX) and lactimidomycin (LTM) to 

selectively inhibit ribosome translocation and thus capture initiation events by deep 

sequencing of ribosome-protected mRNA fragments (RPF). RPF reads alignment to 

mRNA sequences defined read peaks pinpointing 16,863 active TIS in about 10,000 

human transcripts and showed that 50% of the transcripts contain multiple TISs, 

supporting the idea of AT prevalence. In addition, 42% of transcripts showed an inactive 

aTISs, with translation initiating from different TISs, at least in cells considered in the 

study. Translation initiation downstream the aTIS was observed in 27% of transcripts 

with TIS peaks, with upstream TIS associated to suboptimal consensus sequences when 

both 5’TIS and aTIS were active. Besides, increasingly stable folded structures, shortly 

after the 5’TIS of transcripts with repressed aTIS initiation, were observed. In particular, 

more stable structure were present in correspondence of suboptimal 5’TIS codons, 

indicating the correlation of TIS selection with the sequence context of an optimal 5’TIS 

or with the intervention of secondary structures in TIS selection. 

 

miR-142-3p non-canonical binding on a TIS controls AT of the 

C/EBPβ mRNA, thus promoting macrophage differentiation 

and acquisition of immunosuppressive function in cancer. 
In a recent work, we identified a mini-circuit involving miR-142-3p, which is activated 

by tumor-released IL-6 family cytokines during tumor-induced myelopoiesis (Sonda et 

al., 2013). We demonstrated that miR-142-3p downregulation eventually promotes 

macrophage differentiation and acquisition of an immunosuppressive function in the 

tumor environment. The circuit includes the C/EBPβ intronless transcription factor gene. 

C/EBPs are a family of transcription factors that regulate the expression of tissue specific 

genes during differentiation of many cell types (Morris and Geballe, 2000).  
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The C/EBPβ mRNA is a known example of in frame AT. It encodes three protein 

isoforms that are produced by alternative use of aTIS and in-frame dTISs. These isoforms 

have different molecular weight and transcription activity: LAP* and LAP are considered 

to act as activating proteins, whereas the truncated LIP isoform, lacking the transcription 

activation domain is deemed an inhibitory isoform (Abreu and Sealy, 2010;Albergaria et 

al., 2013;Park et al., 2013). Indeed, the C/EBPβ mRNA presents a small out-of-frame 

regulatory uORFs immediately upstream the major TIS, modulating the ratio of isoforms 

produced by AT of in-frame ORFs (Morris and Geballe, 2000).  

The miR-142-3p downregulates gp130 (the common subunit of the interleukin-6 cytokine 

receptor family involved in signaling after ligand interaction) by canonical binding to its 

mRNA 3' UTR and impacts on the ratio of the three C/EBPβ transcription factor 

isoforms, mainly by moving the equilibrium towards LIP. In turn, miR-142-3p 

transcription is controlled by the isoforms ratio, with LIP acting as transcriptional 

inducer.  

A peculiar characteristic of this regulatory circuit is that miR-142-3p exerts its regulatory 

activity on C/EBPβ by a non canonical binding to the mRNA coding sequence, in a 

region including one of three in frame TIS (aTIS an dTIS1-2) of the C/EBP mRNA. The 

RNA duplex is stabilized by an imperfect pairing, involving 17/23 nt of the miRNA, with 

two bulges in the so-called seed region in the 5’ of the miRNA. In this way, miR-142-3p 

interferes with a complex equilibrium of regulated re-initiation, possibily involving, 

secondary structures and other modulator factors such as eIF2, and it plays a key role in 

the activation the macrophage differentiation and the acquisition of their 

immunosuppressive functions in cancer. 

We asked whether this non-canonical function of a microRNA was a special case or 

rather the regulation of pervasive AT by miRNAs was a more widespread phenomenon. 

In this paper, we present new data supporting the latter hypothesis, suggesting that novel, 

non-canonical regulatory roles for miRNA related to AT regulation are possible. 
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miRNAs regulate gene expression at different levels with 

diverse mechanisms and they frequently bind mRNAs before 

3’UTR 
Several, non-canonical miRNA functions have been discovered in last years in terms of 

target recognition mode and regulatory actions. Regarding unusual regulatory actions, it 

is known that miRNAs can be imported in a signal-dependent way into the nucleus (Liao 

et al., 2010) and subsequently guide chromatin remodeling complexes to specific genome 

sites, eventually silencing gene transcription (Zardo et al., 2012) or promoting de-novo 

methylation of DNA (Sinkkonen et al., 2008). Furthermore, miRNAs may act as cell-to-

cell communication mediators through exosomal vesicles, which are delivered to other 

cells and are detectable in body fluids (Chiba, 2012).  

Regarding target recognition, it is generally accepted that miRNAs usually bind to the 

3’UTR sequence of their mRNA targets, but targeting 5’ untranslated regions (5’UTR) 

(Lytle et al., 2007) and CDS regions (Helwak et al., 2013;Huang et al., 2008;Tay et al., 

2008) has been reported. Moreover, microRNA targets containing simultaneous 5'-UTR 

and 3'-UTR interaction sites are also known (Lee et al., 2009).  

Anyway, the majority of characterized miRNA target sites are in the 3’UTRs of mRNAs, 

and large-scale studies examining the effects of either introducing or deleting a miRNA 

have shown that sites in 3’UTRs generally are more effectively suppressor of target 

expression than those in either 5’UTRs or CDS (Bartel, 2009). Besides, highly repetitive 

ORFs containing many miRNA sites can generally be subject to significant and, in some 

cases, substantial repression by the cognate miRNA and that repeats occur frequently 

within families of paralogous C2H2 zinc-finger genes (Schnall-Levin et al., 2011), 

suggesting the potential for their coordinated regulation.  

Recent reports support that miRNA binding outside the 3’UTR is more common than 

previously expected. Liu et al. (2013) (Liu et al., 2013) used crosslinking 

immunoprecipitation (CLIP) for identification of a conspicuous number of argonaute-

bound target sequences that contain miRNA binding sites. They described sequences, 

thermodynamic and target structure features essential for target binding by miRNAs in 

the 3' UTR, CDS and 5' UTR regions of target messenger RNA (mRNA) and showed 

that, out of 6,666 AGO tags, 61% mapped to 3′ UTRs, 37% to CDS, and 2% to 5′ UTRs.  

In a recent seminal study, Helwak et al., 2013 (Helwak et al., 2013) exploited 

crosslinking, ligation, and sequencing of hybrids (CLASH) technique to unveil miRNA-
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target pairs as chimeric reads in deep-sequencing data. More than 18,000 high-confidence 

miRNA-mRNA interactions were reported; around 60% of seed interactions are non-

canonical, containing bulged or mismatched nucleotides. Overall, 60% of all target sites 

were mapped to the CDS, whereas 35% and 5% were mapped to the 3’UTR and to the 

5’UTR, respectively. The proportions of miRNA targets associated by CLASH to the 

CDS are slightly higher compared to previous CLIP-seq experiments, likely because in 

this study the mapping of sequencing reads to a transcriptome database can consider 

target sites overlapping splice junctions. Notably, different miRNAs vary in the relative 

proportions of targets in 5′ UTRs, coding sequences, and 3′ UTRs. Targets in CDSs were 

shown to be significantly up-regulated upon miRNA depletion, and up-regulation of sites 

in the CDS is about half of that in 3′ UTRs (Helwak et al., 2013). 

These reports suggest that miRNA binding outside the 3’UTR allow a miRNA-target 

interaction, which is non-canonical in terms of the mRNA region involved but canonical 

in terms of functional consequences, i.e. suppression or negative regulation of target 

expression. Interesting exceptions are provided by the previously cited study by (Sonda et 

al., 2013), that indicated a miR-142-3p-based isoform ratio regulation of the target gene 

and by Orom et al. (2008) (Ørom et al., 2008), who showed that miR-10a binds a TOP 

motif in the 5′UTR of ribosomal protein mRNAs and alleviates its translational repression 

during amino acid starvation, exerting eventually a positive control of global protein 

synthesis. In this case, the miRNA contributes to a complex translational regulatory 

system, and acting together with other, less characterized, regulators (Miloslavski et a., 

2014). 

Emerging data about the prevalence of AT and about the complexity of translation 

patterns, coupled with the new findings of frequent binding of miRNAs to 5’UTR and 

CDS regions of mRNAs suggest that, as we demonstrated for C/EBPβ mRNA and miR-

142-3p, the miRNA binding to alternatively translated target mRNAs can interfere with 

AT regulation.  
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Hypothesis: miRNAs binding to mRNAs can 

interfere with alternative translation regulation in 

different ways 
miRNA binding to either mRNA 5’UTR or to CDS may: 

• Interfere with ribosome scanning of mRNAs, thus impacting on TIS 

recognition efficiency; 

• Perturb the equilibrium among the efficiency of translation of in frame or out 

of frame AT ORFs; 

• Reduce uORF translation, thus secondarily affecting the translation efficiency 

of downstream ORFs whose translation depends on re-initiation; 

• Reduce the translation of uORFs inhibitory of downstream ORFs translation, 

ultimately increasing its translation efficiency. 

As previously said, N-terminal proteomics and ribosome profiling data showed that 

alternative translation is highly prevalent in mammals. TISDdb reports that in average 1.4 

and 2 translation initiation sites per mRNA are used in human and mice, respectively, 

considering only one cell type per species (Wan and Qian, 2014). According to 

Vanderperre et al. 2013, the majority (88%) of mRNAs present alternative ORFs (3.8 per 

mRNA in average) and alternative proteins represent the 55% of the proteome. Many 

eukaryotic proteins show N-terminal heterogeneity presumably due to AT (Liu and Qian, 

2014) and, as previously discussed, studies on several genes, as C/EBP factors, Ora1 

genes, PTEN, PrP and OCT4 isoforms, state that AT is has particularly relevant 

biological roles. In Figure 1 we exemplify possible multi ORF mRNAs structures and 

propose how miRNA interactions with different TISs can produce diverse regulatory 

effects, under different scenarios. Conceivably, the miRNA binding over a TIS can 

directly induce ribosome stalling and/or interact with secondary structures in the mRNA, 

and ultimately modulate the TIS recognition efficiency. miRNAs binding to the main TIS 

(aTIS) can interfere with ribosomal scanning (Figure 1A). In mRNA with multiple in 

frame, interdependent ORFs the miRNA can recognize and bind the aTIS, reduce the 

aTIS recognition efficiency and favor the usage of dTIS, perturbing the ratio of long and 

N-truncated isoforms. If the different ORFs are out of frame, the miRNA binding can act 
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as a switch and trigger the production of protein products with completely different 

sequence and properties.  

It has been estimated that about 50% of mammalian transcripts contain at least one uORF 

(Calvo et al. 2009). In the same study, uORF-mediated translational regulation has been 

experimentally validated for one hundred eukaryotic transcripts, including around 30 

human transcripts. uORFs can positively or negatively influence the translation of the 

following ORF(s) with different mechanisms, briefly reviewed above. The binding of a 

miRNA to a 5’TIS in an inhibitory uORF can affect downstream TIS usage (Figure 1 B): 

the miRNA-induced inhibition of uORF translation can stimulate the downstream aTIS 

usage. This example can fit either uORF whose translation is inhibitory of aTIS usage and 

uORF encoding peptides inhibitory of aTIS usage. If instead the translation starting from 

the 5’TIS increases the efficiency of the downstream TIS usage by the so-called re-

initiation mechanism, the miRNA-induced inhibition of the uORF translation can 

decrease also the aTIS usage (Figure 1C). 

Many mRNAs display both uORFs, multiple in frame (and/or out of frame) ORFs, and 

also ORFs located in the 3’UTR regions (defined according to the position on the main 

ORF). Figure 1 C sketches a more complex structure of mRNAs. The translation of these 

ORFs can be interdependently regulated and the binding of a miRNA to one of the TISs 

can produce different regulatory effects, according to the involved ORF types, and to 

their regulatory relations. 
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Figure 1. Examples of possible regulatory effects due to interactions between miRNAs and different multi 
ORF mRNAs structures, under the assumption that the miRNA binding over a TIS can induce either 
ribosome stalling or interact with secondary structures in the mRNA, and ultimately modulate the TIS 
recognition efficiency. A) miRNAs interference with ribosomal scanning. The pre-initiation complex scans 
the 5’ UTR of the mRNA until it encounters a start codon: normally the first TIS is used. In mRNA with two 
alternative TISs, the miRNA binding to the most 5’ TIS (annotated TIS, aTIS) can reduce its usage in favor 
of the downstream one (dTIS), thus perturbing the ratio between long and truncated protein isoforms. If the 
different ORFs are out of frame, the miRNA binding can trigger the production of a protein product with 
completely different sequence and properties. Many mRNAs present uORFs in the 5’UTR, which can affect 
the main TIS usage. B) Generally, 5’ ORFs are inhibitory: in this case the miRNA binding to the 5’TIS can 
reduce uORF translation and thus stimulate the downstream aTIS usage. C) In other cases, the translation of 
the uORF starting from the 5’TIS is able to increase the efficiency of the downstream TIS usage, by the 
socalled re-initiation mechanism. The miRNA binding to the 5’TIS in mRNAs presenting re-initiation can 
decrease the aTIS usage. D) As known for several genes, mRNAs may present complex structures, including 
5’ and 3’TIS, along with one or more dTIS in addition to the aTIS: the translation of multiple ORFs can be 
interdependently regulated. In these cases, the binding of a miRNA to one of the TISs can produce different 
regulatory effects, according to the involved ORF types, and to their regulatory relations. 
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Experimentally determined miRNA binding sites overlap with 

active TISs in human mRNAs  
We considered the information about 6,693 genes with at least one proven active TIS, 

according to GTI-seq experiments, and merged these data with results on miRNA binding 

to human RNAs (belonging to 6,957 genes) experimentally determined using clash 

technique, obtaining a group of 3,624 unique genes and 4,064 mRNAs in the merged 

dataset. As done before, and following the study by Lee et al (2012) providing the 

original translation initiation data, the position of the main ORF as reference defined the 

aTIS. We thus tagged as 5’TIS the TIS upstream the aTIS, dTIS the TIS downstream the 

aTIS (i.e. included in the main ORF), and 3’TIS the TIS associated to ORFs starting after 

the end of the main ORF and located in the 3’UTR (Figure 2A). It is worth notice that, in 

the considered group of genes, the majority (2,164, 59.7%) is associated with 2 or more 

different active TISs (Figure 2B). The ring plot in the same figure shows the proportions 

of different types of TISs in the considered merged datasets (Figure 2C).  

 

 
Figure 2. A) Schematization of the different types of TIS considered: the annotated TIS (aTIS) was defined 
by the position of the main annotated ORF, as in Lee et al (2012); 5’TIS are upstream the aTIS; dTISs are 
located downstream the aTIS but they are included in the main ORF; 3’TISs are located after the end of the 
main ORF, (i.e. in the mRNA region annotated as 3’UTR). B) Distribution of number of genes according to 
the number of experimentally determined TISs per gene. C) Proportions of different types of TISs in the 
4,064 considered mRNAs. 
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We believe that the observation of numerous genes with multiple TISs can be only in 

minimal part due to the existence of several mRNAs belonging to the same gene, since 

our data include 1.2 mRNAs per gene, in average. Anyway, the following results are all 

based on analyses considering the correct data granularity, i.e. mRNA positions of TIS 

and miRNA binding sites.  

We considered 10,775 mRNAs with at least one active TIS and 7,388 mRNAs that can 

bind a miRNA, for a total of 396 different miRNAs represented. The first data integration 

focused on the identification of the subset of mRNAs in which the miRNA binding site is 

overlapping an active TIS (i.e. at least one nt in the start codon is included in the miRNA 

binding region), found 264 possible interactions between 96 unique miRNAs (28.1% of 

the 342 unique miRNAs in the merged dataset) and active TISs. Involved TISs are 

located into 197 mRNAs, belonging to 197 unique genes, accounting for 5.4% of the 

3,624 unique genes in the merged dataset.  

Many genes with roles in translation and chromatin structure regulation are involved in 

possible miRNA-TIS interactions. The group of mRNAs in which at least one TIS is 

bound by a miRNA include many histone proteins, proteins involved in nucleosome and 

chromatin assembly and/or in DNA conformation change, ribosomal proteins, and other 

proteins involved in translation and translation regulation. We wondered whether the 

observed gene types could be biased due to the set of 3,624 genes included in the 

“merged dataset”, restricted to genes represented both in the Lee et al (2012) GTI-seq 

dataset and in the Helwak et al., 2013 CLASH dataset. Thus we analysed the GO terms 

and Reactome pathways enrichment of the 197 genes involved in possible miRNA-TIS 

interactions using as background the whole set of genes in the “merged dataset”. In this 

way, we exclude that the enriched categories were due to a bias in the composition of the 

dataset. Table 1 shows a selection of non-redundant GO categories and pathways 

significantly enriched (p-value <0.0001) in the set of 197 genes perhaps involved in 

miRNA-TIS interactions.  
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Functiona

l 

Category 

Type 

ID Term P value 
Odds 

Ratio 

Gene 

Cou

nt 

GO BP 

GO:0006414 translational elongation 9.45E-23 15.87 33 

GO:0000184 
nuclear-transcribed mRNA catabolic 

process, nonsense-mediated decay 
3.47E-22 14.07 34 

GO:0006415 translational termination 5.71E-22 16.72 31 

GO:0006614 
SRP-dependent cotranslational 

protein targeting to membrane 
4.00E-20 12.80 32 

GO:0006413 translational initiation 5.97E-19 10.23 34 

GO:0006612 protein targeting to membrane 2.43E-18 9.64 34 

GO:0000956 
nuclear-transcribed mRNA catabolic 

process 
6.92E-18 8.84 35 

GO:0016071 mRNA metabolic process 1.36E-12 3.84 53 

GO:0006886 intracellular protein transport 1.28E-09 3.36 45 

GO:0046907 intracellular transport 1.85E-09 2.85 61 

GO:0006334 nucleosome assembly 2.40E-07 7.17 14 

GO:0034728 nucleosome organization 5.99E-07 5.99 15 

GO:0090304 nucleic acid metabolic process 3.06E-05 1.88 100 

GO:0006323 DNA packaging 4.62E-05 4.14 14 

GO CC 

GO:0005840 Ribosome 7.93E-18 8.39 36 

GO:0030529 ribonucleoprotein complex 6.64E-18 4.99 59 

GO:0065010 
extracellular membrane-bounded 

organelle 
9.57E-09 2.68 61 

GO:0005829 Cytosol 9.92E-09 2.41 87 

GO:0000786 nucleosome 2.37E-08 11.95 12 

GO:0044815 DNA packaging complex 1.23E-07 9.76 12 

GO MF 

GO:0003735 structural constituent of ribosome 8.38E-19 10.57 33 

GO:0003723 RNA binding 3.67E-11 2.88 82 

GO:0003676 nucleic acid binding 2.01E-08 2.36 103 

GO:0097159 organic cyclic compound binding 2.96E-05 1.90 117 

GO:1901363 heterocyclic compound binding 4.28E-05 1.87 116 

Reactome 

156842 Eukaryotic Translation Elongation 3.12E-20 14.16 33 

975956 
Nonsense Mediated Decay (NMD) 

independent of the Exon Junction 
3.12E-20 14.16 33 
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Complex (EJC) 

72764 Eukaryotic Translation Termination 3.14E-19 14.29 31 

975957 

Nonsense Mediated Decay (NMD) 

enhanced by the Exon Junction 

Complex (EJC) 

3.49E-19 11.93 34 

157279 
3' -UTR-mediated translational 

regulation 
1.57E-18 11.13 34 

156827 

L13a-mediated translational 

silencing of Ceruloplasmin 

expression 

1.57E-18 11.13 34 

72689 
Formation of a pool of free 40S 

subunits 
2.22E-18 12.17 32 

72737 
Cap-dependent Translation 

Initiation 
1.60E-17 10.00 34 

72613 Eukaryotic Translation Initiation 1.60E-17 10.00 34 

72706 
GTP hydrolysis and joining of the 

60S ribosomal subunit 
2.70E-17 10.24 33 

72766 Translation 5.80E-16 7.62 37 

74160 Gene Expression 1.04E-10 3.30 70 

1643685 Disease 1.67E-10 3.36 62 

72702 
Ribosomal scanning and start codon 

recognition 
5.68E-07 7.12 14 

212300 PRC2 methylates histones and DNA 3.91E-07 7.42 14 

4839726 Chromatin organization 4.44E-07 5.06 19 

171306 Packaging Of Telomere Ends 8.57E-06 8.25 10 

2559580 
Oxidative Stress Induced 

Senescence 
1.83E-05 4.52 15 

774815 Nucleosome assembly 2.30E-05 6.21 11 

606279 

Deposition of new CENPA-

containing nucleosomes at the 

centromere 

2.30E-05 6.21 11 

157579 Telomere Maintenance 4.32E-05 5.68 11 

Table 1. GO terms and Reactome pathways significantly enriched in the set of genes with active TISs 
overlapping miRNA-binding sites. 

 
Interestingly, these genes are highly enriched in genes encoding for ribosomal proteins or 

for playing roles in translational initiation, elongation and termination, in the post-
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transcriptional regulation of gene expression and in non-sense-mediated decay. Genes 

involved in possible miRNA-TIS interactions are also enriched in histone genes 

(nucleosome CC, nucleic acid binding MF, and DNA packaging BP), which are 

intronless, as mentioned above and other genes involved in gene expression regulation, as 

SET, encoding a protein that inhibits nucleosomes acetylation. At least 62 of the 

considered genes are known to be involved in one “disease” pathway, 70 in gene 

expression pathway, 15 in oxidative stress induced senescence and 11 in telomere 

maintenance and in nucleosome assembly.  

Characterization of miRNA-TIS interactions 

Position relative to TISs 
In considered miRNA-TIS interactions, the overlap between miRNA-binding sites and 

TIS positions shows a slight but significant propensity for microRNA binding sites to lie 

more frequently downstream the TIS (11.1 and 13.4 Nt respectively in the region 5’ and 

3’ to the TIS; binomial two sided test p-value=0.002).  

 

Evolutionary conservation of miRNA footprints 
We evaluated the conservation of miRNA binding sites in coding regions of mRNAs, 

using PhyloP 100 Vertebrate conservation as local basewise conservation score. Very 

interestingly, we found that the third (wobble) base conservation scores were significantly 

higher (11% more conserved) in miRNA binding sites than in the rest of coding sequence 

(t-test p-value = 0.002), suggesting that miRNA binding sites are under evolutionary 

selection.  

 

Possible meddling in the mRNA folding 
We investigated if miRNA binding sites tend to fall in regions that appear particularly 

important for the stabilization on the mRNA structure. To answer this question, for each 

mRNA, we predicted the minimum free energy (mfe) structure of the whole sequence, 

using RNAfold. We considered the part of the RNAfold "dot plot" base pairing matrix, 
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that gives pairing in the minimum free energy structure and compared it with the miRNA 

binding sites.  

We observed that in 215/264 (81.4%) interactions at least one continuous stretch of 5 or 

more paired nucleotides is included in the miRNA binding region. In 72/264 (27.3%) 

interactions at least one stretch of 10 or more paired nucleotides is included in the 

miRNA binding region. In these cases, the miRNA attachment is predicted to perturb the 

folding. Panel C of the figure in Supplementary File 2 shows, for each miRNA-mRNA 

interaction (in abscissa), the boxplot of the distribution of the length of continuous 

stretches (1 or more nt) of paired nucleotides in the minimum free energy structure of the 

considered mRNA. For comparison, the longest stretch of paired nucleotides overlapping 

with the miRNA binding site is shown as red dot. Red dots fall over the median and over 

the third quartile value in respectively 82.6 and 57.6% of interactions. Since when the 

miRNA footprint contains two or more continuous stretches near each other we counted 

only the longest one, we probably underestimated the number of paired nucleotides 

involved in miRNA-binding that could interfere with mRNA 3D structure. We can 

conclude that miRNA binding regions tend to fall in regions stabilizing the RNA folding. 

miRNA-TIS interactions classified by TIS type 
The identified 264 putative miRNA-TIS interactions involve 64 5’TIS, 68 aTIS, 128 dTIS 

and 4 3’TIS (Figure 3A). Figure 3B reports the numbers of unique miRNAs according to 

the category of the TIS overlapping the miRNA-binding site. A specific miRNA can bind 

more than one position in the mRNA and thus the miRNA-binding sites can overlap 

several TISs of different categories, in the same or in different mRNAs. The Venn 

diagram in Figure 3C shows that some miRNAs have binding sites overlapping only one 

TIS category (we observed 27 miRNAs whose binding sites overlap only dTISs), whereas 

other groups of miRNA-binding sites overlap to two or more TIS categories.  
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Figure 3. A total of 264 putative miRNA-TIS interactions were identified. A) Proportions 
of TISs types included in the set of active TISs overlapping miRNA-binding sites. B) 
Number of different miRNAs putatively interacting with each TIS type. C) Intersections 
of miRNA sets interacting with considered TIS types. 

Only miR-92a-3p has experimentally determined binding sites that overlap all the four 

TIS types. Interestingly, many miRNAs can potentially interact with a few TISs in 

specific mRNAs, whereas others exhibit more pervasive potential interactions with many 

TISs, as miR-615-3p that overlaps 17 different TISs (Figure 4).  
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Figure 4. For each miRNA, the number of putative miRNA-TIS interactions are 

shown, with colour code indicating the TIS type.  

 
According to our data, miR-92a-3p binding sites overlap with 15 different TIS (in 14 

mRNAs) including 2 5'TISs, 4 aTIS and 8 dTIS and 1 3’TIS. On the other hand, we 

observed that 44 mRNAs have two or more miRNAs with a binding site overlapping a 

TIS. Of them, specific mRNAs, as those encoding HIST1H2BK and HIST1H3B can 

potentially interact with up to 6 different miRNAs (Table 2).  
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Gene symbol mRNA refseq miRNAs 

Names N 

HIST1H2BK NM_080593 hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-320a, hsa-miR-

424-5p,  

hsa-miR-423-5p, hsa-miR-1180 

6 

HIST1H3B NM_003537 hsa-let-7b-5p, hsa-miR-320a, hsa-miR-330-3p, hsa-miR-

193b-3p, 

hsa-miR-652-3p, hsa-miR-877-5p 

6 

RPS16 NM_001020 hsa-miR-17-3p, hsa-miR-24-3p, hsa-miR-149-5p, hsa-miR-

1296, 

hsa-miR-1303 

5 

HIST1H4C NM_003542 hsa-miR-17-5p, hsa-miR-100-5p, hsa-miR-425-3p, hsa-

miR-874 

4 

RPS9 NM_001013 hsa-miR-342-3p, hsa-miR-423-5p, hsa-miR-935, hsa-miR-

1296 

4 

EEF1G NM_001404 hsa-miR-17-5p, hsa-miR-193a-3p, hsa-miR-18a-3p 3 

HIST1H2BO NM_003527 hsa-miR-320a, hsa-miR-296-3p, hsa-miR-92b-5p 3 

RPL31 NM_000993 hsa-miR-100-5p, hsa-miR-18a-3p, hsa-miR-615-3p 3 

RPL36A NM_021029 hsa-miR-331-3p, hsa-miR-1226-3p, hsa-miR-1260b 3 

RPS17 NM_001021 hsa-miR-222-3p, hsa-miR-320a, hsa-miR-615-3p 3 

ASCC3 NM_006828 hsa-miR-425-5p, hsa-miR-1226-3p 2 

ASNS NM_001673 hsa-miR-17-5p, hsa-miR-23a-3p 2 

CHCHD2 NM_016139 hsa-miR-221-3p, hsa-miR-1229-3p 2 

DLST NM_001933 hsa-miR-503-5p, hsa-miR-92b-5p 2 

EIF4G1 NM_182917 hsa-miR-615-3p, hsa-miR-455-3p 2 

GHITM NM_014394 hsa-miR-92a-3p, hsa-miR-484 2 

GNB2L1 NM_006098 hsa-miR-29b-3p, hsa-miR-183-5p 2 

HIST1H3H NM_003536 hsa-miR-320a, hsa-miR-378a-3p 2 

HIST2H2BF NM_001024599 hsa-miR-18a-3p, hsa-miR-760 2 

LARS NM_020117 hsa-miR-92a-3p, hsa-miR-92b-3p 2 

NDUFA2 NM_002488 hsa-miR-99a-5p, hsa-miR-100-5p 2 

NPM1 NM_002520 hsa-miR-320a, hsa-miR-296-3p 2 

RPL12 NM_000976 hsa-let-7b-5p, hsa-miR-222-3p 2 

RPL13A NM_012423 hsa-miR-26a-5p, hsa-miR-92a-3p 2 

RPL27 NM_000988 hsa-miR-92a-3p, hsa-miR-324-5p 2 

RPL32 NM_001007074 hsa-miR-186-5p, hsa-miR-769-3p 2 
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RPL9 NM_000661 hsa-let-7a-5p, hsa-miR-18a-5p 2 

RPLP1 NM_001003 hsa-miR-877-5p, hsa-miR-1180 2 

RPS10 NM_001204091 hsa-miR-1296, hsa-miR-3176 2 

RPS12 NM_001016 hsa-miR-30c-5p, hsa-miR-181b-5p 2 

RPS23 NM_001025 hsa-miR-92a-3p, hsa-miR-1915-5p 2 

RRM2 NM_001165931 hsa-miR-26a-5p, hsa-miR-30c-5p 2 

TMX2 NM_015959 hsa-miR-196a-5p, hsa-miR-296-3p 2 

Table 2. List of genes and mRNAs with binding sites for two or more different miRNAs overlapping with active 
TISs. 

As shown in Table 3 A the mRNA of the intronless gene HIST1H4C, encoding a member 

of the histone H4 family, includes an active aTIS and 12 dTISs, three of which overlap 

the binding sites of four different miRNAs.  

 

Gene 

Symbol 

Gene 

ID 

Gene 

descriptio

n 

RefSe

q 

mRN

A 

TIS 

type 

TIS 

posi

tion 

in 

mR

NA 

Positio

n 

relative

ly to 

aTIS 

Fr

a

me 

OR

F 

leng

th 

Star

t 

cod

on 

overlapping 

miRNAs 

A) mRNA possibly interacting with multiple miRNAs 

HIST1H4

C 
8364 

Histone 

cluster 1, 

H4c 

NM_

00354

2 

aTIS 1 1 1 104 
AT

G 
- 

dTIS 85 85 1 76 
GG

C 
hsa-miR-874 

dTIS 146 146 1 15 
GT

C 

hsa-miR-100-

5p, hsa-miR-

425-3p 

dTIS 241 241 1 7 
CT

G 
hsa-miR-17-5p 

B) Active 5' TIS overlapping miRNA binding sites 

ASNS 440 

Asparagin

e 

Synthetase 

NM_

00110

1 

5'TIS 150 -102 0 30 
CT

G 
miR-23A-3p 

5'TIS 210 -42 0 10 
CT

G 
miR17-5p 

aTIS 252 1 0 562 
AT

G 
- 
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C) Active aTIS, overlappping miRNA-binding sites and followed by active dTIS(s) 

TRAP1 10131 

TNF 

Receptor-

Associated 

Protein 1 

NM_

01629

2 

aTIS 90 1 1 705 
AT

G 
miR-149-5p 

dTIS 
133

8 

124

9 
1 289 

GT

T 
- 

D) Not active aTIS, overlapping miRNA-binding sites and followed by active dTIS(s) 

SRSF9 8683 

Serine/argi

nine-rich 

splicing 

factor 9 

NM_

00376

9 

aTIS 147 1 1 221 
AT

G 
miR-935 

dTIS 549 403 1 88 
GG

G 
miR-30d-5p 

E) Active dTISs overlapping with miRNA-binding sites 

VMP1 81671 

Vacuole 

Membrane 

Protein 1 

NM_

03093

8 

aTIS 274 1 1 407 
AT

G 
- 

dTIS 316 43 1 393 
AT

G 
miR-25-3p 

Table 3. Selected examples of genes with miRNA-mRNA interactions involving TISs. In the table we report 
active TISs overlapping miRNA-binding sites, plus the reference aTIS (main ORF) position also if non active 
and/or non overlapping miRNA binding sites. A) The mRNA of the HIST1H4C presents 12 different active 
dTIS (data not shown) and 3 of them overlap with the binding site of a miRNA. B) In the ASNS mRNA, two 
miRNAs can interact with two active 5’TISs. C) In the TRAP1 mRNA the active aTIS overlaps the miR-149-
5p binding site and it is followed by at least one active dTIS. D) SRSF9 is an example of mRNA presenting a 
miRNA binding site overlapping an inactive aTIS, which is followed by active dTIS(s). E) VMP1 mRNA 
presents two active dTIS (data not shown), one of which, in frame with the aTIS. possibly interacts with a hsa-
miR-25-3p.*The aTIS (main ORF) is reported for reference also if it is non-active and/or non-overlapping 
miRNA binding sites.  

miRNA binding sites overlapping active 5’ TISs 
We identified 43 miRNAs whose binding sites overlap one of 64 TISs located in the 

5’UTR of one of 55 different mRNAs. Supplementary Files 3 and 4 report details 

regarding 55 involved genes and the results of functional enrichments. This group 

comprises genes encoding proteins regulating translation and involved in RNA splicing. 

Enriched Reactome pathways comprise Gap junction trafficking and regulation, Gap 

junction degradation, as well as Cell-extracellular matrix interactions, Adherens junctions 

interactions, Deadenylation-dependent mRNA decay, and Nonsense-Mediated Decay 

(NMD). 

An interesting example of mRNA in which a 5’ TISs can interact with miRNAs is ASNS, 

encoding Asparagine Synthetase (Table 3 B). hsa-miR-23a-3p and hsa-miR-17-5p 

binding sites overlap two different 5’TISs, directing the translation of uORFs. 
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miRNA binding sites overlapping active aTISs 
As said before, aTIS in 58 mRNAs (58 genes) are overlapping binding sites of 45 

different miRNAs, for a total of 68 possible interactions. Of these aTIS, 33 (48.5%) are 

associated to one or more additional active TIS included in the main ORF (dTIS). Figure 

5 shows that the majority of dTIS (22, 66.7% of mRNAs with active aTIS and dTIS(s) are 

in frame with the aTIS, and thus encode proteins differing for the N-terminal region from 

the main isoform. In 14 mRNAs we observed multiple dTIS in frame with the aTIS. The 

remaining cases are out of frame and encode totally different proteins, 7 with single dTIS 

out of frame and 4 mRNAs presenting more than one dTIS out of frame. In total, 18 

mRNAs present multiple dTISs active after an active aTIS (Figure 5)..  

 

 

 
Figure 5. Among mRNAs with aTIS putatively interacting with miRNAs in our dataset, one half are 
associated to active dTIS. The majority of dTIS are in frame with the aTIS, and thus encode proteins 
differing for the N-terminal region from the main isoform. In 23 mRNAs we observed multiple active dTIS 
in frame with the aTIS. The remaining cases are out of frame and encode totally different proteins, partly 
with a single dTIS out of frame and partly presenting more than one dTIS out of frame. Moreover, 28 
mRNAs present multiple dTISs active after an active aTIS. 

The enrichment results regarding genes with aTISs putatively interacting with miRNAs 

are similar to those obtained considering the whole set of genes. The most represented 

elements are constituent of the ribosome and proteins involved in either DNA packaging 

or in non-sense mediated RNA decay (Supplementary Files 3 and 4). Among possible 

miRNA-aTIS interactions we considered the example of TRAP1 (Table 3 C). This gene 

encodes for TNF Receptor Associated Protein 1, a mitochondrial chaperone (member of 

the heat shock protein 90 family), with ATPase activity that interacts with tumor necrosis 

factor type I and may  regulate cellular stress responses. hsa-miR-149-5p overlaps the 

TRAP1 main ORF start codon, that is followed by an active dTIS in frame with the main 
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ORF (705 amino acids), from which a N-term truncated peptide of 289 amino acids may 

be produced 

 

miRNA binding sites overlapping not active aTISs followed by 

active dTIS(s) 
We then considered those mRNAs with inactive aTISs followed by active dTIS (CDS). 

These case are of special interest since we can hypothesize that they represent mRNAs in 

which the aTIS was found inactive by GTI-seq experiments due to the binding of a 

miRNA covering the canonical aTIS. We found two genes in which the inactive aTIS is 

overlapping a miRNA-binding site and it is followed by one or more active dTIS: SRSF9 

(serine/arginine-rich splicing factor 9) and COG4 (component of oligomeric golgi 

complex 4), respectively interacting with hsa-miR-935 and hsa-miR-615-3p. SRSF9 

mRNA in an interesting example of a complex combination of ORFs: the same mRNA 

hosts, in addition to the aTIS one 5’TIS and three dTIS. According to data, the aTIS 

encoding a 221 residues peptide and overlapping hsa-miR-935 binding site is inactive, 

whereas the other TISs are active. In particular, among dTISs, two encode short (91 and 

64 residues) peptides and are out of frame respectively to the main ORF, whereas the 

third dTIS is in frame with the aTIS, corresponds to a 88 amino acids ORF and overlaps 

the binding site for hsa-miR-30d-5p. 

 

miRNA binding sites overlapping active dTISs 
Many considered mRNAs present ORFs included in the main annotated ORF, starting 

with dTISs. Among them, 93 mRNAs present one or more dTISs overlapped by the 

binding site one of 66 different miRNAs. Also in this group of genes we found many 

ribosomal proteins and histone genes, as well a few genes involved in cellular responses 

to stress (Supplementary Files 3 and 4).  

Table 3 E shows, as an example, that in the VMP1 mRNA, presenting two active dTISs, 

the second one, in frame with the main ORF (aTIS) overlaps hsa-miR-25-3p binding site. 

The main VMP1 ORF encodes the (multi-pass) vacuolar Membrane protein 1, a stress-

induced protein that plays a role in the initial stages of the autophagic process. When 

overexpressed, VMP1 promotes formation of intracellular vacuoles followed by cell 
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death. The alternative dTIS overlapping with hsa-miR-25-3p binding site hypothetically 

encodes a VMP1 isoform lacking the 14 N-terminal residues. 
 

Direct experimental evidence of functional 

miRNA-TIS interactions 
To further test the robustness of our hypothesis, we selected 10 putative miRNA-TIS 

interactions for experimental investigation using luciferase reporter assay. Selected 

interactions included 9 miRNA footprints putatively interacting with one of three 

different miRNAs (hsa-miR-23a-3p, hsa-miR-615-3p and has-miR-1226-3p) and 

overlapping different types of TISs (3 5’ TISs, 1 aTISs, and 6 dTISs) according to the 

above-described set of interactions. 

Moreover, we also considered JUNB (Jun B proto-oncogene, alias AP1) gene, in which 

the hsa-miR-1226-3p binding site (positions 32-49 in the mRNA, covering 18 nt) is only 

one nucleotide far from a 5’ TIS (positions 51-53 in the mRNA). As previously 

explained, the gene was not included in previous results since we used stringent criteria 

for the definition of putative miRNA-TIS interactions strictly focusing on cases in which 

the TIS is comprised in the stretch of nucleotides pairing with the miRNA. Since miR-

1226-3p is 26 nt long, we reasoned that the occupancy due to miRNA binding could 

anyhow influence the TIS usage. JunB plays key biological roles, since it regulates gene 

activity following the primary growth factor response. It is also associated with many 

diseases, including anaplastic large cell lymphoma, and it is related to key pathways, as 

mucin expression in cystic fibrosis via IL-6, IL-17 signaling pathways and G-protein 

signaling Ras family GTPases in kinase cascades. Moreover, a recent study about human 

endothelial cells activation (Schmid et al. 2013) reported evidence of translational control 

of JunB expression, and demonstrated that the variations of protein expression following 

activation are not attributable to transcriptional control through TFs. Due to the 

importance of JunB, and since this putative miRNA-TIS interaction represented an 

“extreme” case, we thought that it deserved experimental investigation.  

Supplementary File 5 contains detailed materials and methods regarding the validation 

experiments. In brief, for seven mRNAs (ASNS, EIF3B, EIF4G1, PPIA, RPS17, 

TAGLN2 and UQCC1) wild type miRNA footprint regions of around 100 nt were 
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obtained by PCR amplification of the HEK293T cells cDNA. For other three mRNAs 

(BAG66, JUNB, and RPL5), by annealing of synthetic oligonucleotides, both wild type 

and mutated miRNA footprint regions were obtained. Footprint regions were cloned in 

Dual-Luciferase miRNA Target Expression Vector. Each construct was co-transfected 

both with miRNA mimics and with scramble miRNA. All experiments were done in 

triplicate. 

The comparison of luciferase activity observed in mimics and scramble RNA co-

transfections showed a reduction of luciferase expression in 9 out of 10 tested wild type 

footprint sequences. In 6 cases, the difference is statistically significant with p-value < 

0.05 (Figure 6 A-B). These results indicate that all tested TIS (originally belonging to 

annotated, 5’ or downstream ORFs) are active and that in 60% of them the tested miRNA 

really binds to the footprint region suppressing the protein expression. 

 
Figure 6. Validations by Luciferase reporter assay of miRNA-mRNA interactions involving miRNA 
binding sites overlapping TISs. Panel A reports relative luciferase activity measurements (average and 
standard error) for co-transfections with miRNA mimics and with scramble miRNA (CTRL) of constructs 
containing, for each gene, the wild type miRNA footprint region overlapping the TIS. Below the gene name 
the type of TIS tested is indicated, whereas tested miRNAs are indicated on the top. Asterisks indicate 
statistically significant reductions of reporter expression (t-test p-value <0.05 *;  <0.01 **,  <0.001 ***). 
Panel B reports relative luciferase activity measurements for co-transfections with miRNA mimics and with 
scramble miRNA (CTRL) of constructs containing, for each gene, the wild type and the mutated (MM) 
miRNA footprint region overlapping the TIS, providing a rescue experiment for tested interactions. 

 

Moreover, rescue experiments, carried out for BAG66, JUNB, and RPL5, showed a 

complete restoration of expression when the miRNA mimics was co-transfected with 

constructs containing the mutated footprints. For the two interactions (RPL5/miR-615-3p 

and JUNB/miR-1226-3p) in which the mimics-induced silencing was statistically 

significant this result is particularly relevant. Experimental evidence demonstrates that 
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tested footprint regions are directly responsible for the miRNA-mRNA interaction 

probably interfering with protein synthesis. 

In summary, the validation experiments provided direct functional evidence of miRNA-

TIS interactions in 60% of tested cases, giving further support to the hypothesis that 

miRNA binding in regions overlapping with TISs can interfere with protein expression. 

 

Outlook 
The hypothesis that miRNAs could regulate alternative translation of many mRNAs is 

indirectly supported both by GTI-seq data providing information about the frequency of 

multiple and non-canonical active ORFs in human mRNAs and by the commonness of 

miRNA-mRNA binding outside 3’UTRs. The integration of the two types of evidence 

allowed us to identify many genes in which one or more miRNAs could interfere with 

translation of main annotated ORF or with ORFs located in the 5’ UTR respectively to 

the annotated ORF, or even downstream it. We demonstrated that miRNA-binding 

regions overlapping TISs are evolutionary conserved and that the miRNA footprints tend 

to overlap mRNA regions involved in RNA fold stabilization. We displayed how the 

binding of a miRNA to one of the TISs can produce different regulatory effects, 

according to the involved ORF types co(existing) in mRNAs, and to their regulatory 

relations. For each ORF type, we selected a few genes for which we provided 

experimental evidence of TIS activity. We obtained direct evidence of miRNA-TIS 

interaction causing suppression of protein expression in 60% of tested cases. Both in the 

experimentally investigated set of genes and in the largest group of putative interactions 

collected in this study, many interesting genes and miRNAs are represented that surely 

deserve further investigation, to better characterize the mechanisms of AT regulation by 

miRNAs. These studies will tell us if and how the miRNA-based regulation of mRNA 

alternative translation impact on cell processes and on disease.   
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Conclusions 
In this work we have extensively characterized miRNAs and other small RNAs under 

diverse points of view. 

We expanded the knowledge of miRNAs and moRNAs expressed by CD34+ cells and 

identified and validated a few elements that can contribute to PMF pathogenesis. We 

considered small RNA sequencing data of CD34+ cells of healthy subjects and PMF 

patients. In addition to 784 miRNAs annotated in miRBase, our in-house pipeline 

miR&moRe let us discover 34 new miRNAs expressed in our samples. Most miRNAs 

were expressed in their isoform variants, not as the annotated sequence. We also detected 

in CD34+ sequences aligning to hairpins outside known and novel miRNAs that 

correspond to expressed microRNA-offset RNAs, called moRNAs. Myeloproliferative 

disorders are clonal hematopoietic stem cell neoplasias, miRNAs and moRNAs 

deregulation can be implied in tumor physiopathology. We then looked for differentially 

expressed small RNAs in PMF CD34+ samples respect to control samples recognizing 37 

sRNAs with significant differentially expression (DE). Noteworthy, among them 2 

moRNAs are included and one was highly expressed in normal CD34+ cells but not 

detected at all in considered PMF samples. Very likely, moRNAs can function as 

miRNAs but biological roles and mechanisms of function still deserve investigation. We 

validated the differential expression of six selected DE on PMF granulocytes samples. 

Target predictions of these validated small RNA and functional enrichment analysis 

showed that miRNA targets are enriched in many interesting pathways involved in tumor 

development and progression, as signaling by FGFR, DAP12 signaling and Oncogene 

Induced Senescence. Hopefully identified and validated elements can help in the 

understanding the mechanisms that contribute to PMF pathogenesis and in formulating 

new targeted therapies. 

In order to have more awareness in applying normalization methods when managing 

RNA-seq data of small RNA dataset, we evaluated the performance of normalization 

algorithms formulated for long RNAs, applied to human small RNA datasets. We 

simulated multiple matrixes with a controlled number of differentially expressed 

elements. We chose five normalization methods among the most cited and widespread, 

implemented in R packages. Each algorithm is based on different hypothesis on statistical 

shape and characteristics of data and we tested their impact on the downstream analysis in 
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a differential expression test. To quantify normalization algorithms performances we 

calculated ROC curves and AUC curves. ROC curves showed that algorithms do not 

perform significantly differently applied to the same simulated scenarios and we are not 

able to definitively prefer a normalization algorithm as the best. All the algorithms 

produced a high false positive rate and AUC curves showed us only small differences in 

the performances. We are far from reaching the consensus on the best normalization 

algorithm and there is still room to improve normalization methods for RNA-seq analysis. 

We were later interested in studying whether different intracellular amounts of FHC 

might affect miRNA and gene expression profiles. As first step toward the dissection of 

the molecular basis of FHC-modulated gene expression, we performed an integrated 

analysis of miRNA and mRNA expression patterns in K562 FHC-silenced cells. By using 

a microRNA PCR Panel, we found that 4 out of 84 analysed miRNAs were consistently 

and significantly up-regulated in FHC-silenced cells. 

The profile of the four up-regulated miRNAs has been integrated with the transcriptome 

analysis by combining data obtained from the microRNA targets prediction software with 

a correlation-based approach. This analysis led to the identification of 91 down-regulated 

targets. IPA revealed that the highest scored pathways in which these genes are involved 

are: “Cell Death and Survival, Hematological System Development and Function, 

Hematopoiesis” and “DNA Replication, Recombination and Repair, Cell Cycle, Cancer”. 

It is interesting to note that, among the common pathways, “Cell Death and Survival” and 

“Hematological System Development and Function” rely on the ERK1/2 activation that 

our results demonstrate to be severely affected by FHC modulation. In conclusion, we 

believe that the identification of FHC-dependent miRNA/mRNA networks implies that 

different amounts of the ferritin subunit contribute, in K562 cells, to the remodelling of 

gene expression taking place during these cellular processes through the action of let-7g, 

let-7f, let-7i and miR-125b 

The hypothesis that miRNAs could regulate alternative translation of many mRNAs is 

indirectly supported by the integration of the two types of evidence: the multiple and non-

canonical active ORFs in human mRNAs, provided by GTI-seq data, and miRNA-mRNA 

binding outside 3’UTRs using CLASH technique data. Looking for overlapping regions 

in both the experimental evidences, we identified many genes in which one or more 

miRNAs could interfere with translation of ORF. These regions are evolutionary 

conserved and the miRNA footprints tend to overlap mRNA regions involved in RNA 

fold stabilization. We selected most significant genes and we provided experimental 
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evidence of miRNA-TIS interaction causing suppression of RNA expression in 60% of 

tested cases. This non canonical miRNA function surely deserve further investigation, to 

better characterize the mechanisms of AT regulation.  

miRNAs appear key modulators of information and understanding the interplay of 

miRNAs and DNA, coding RNA or other targeted elements is crucial. Although a general 

picture of miRNAs-mediated pathway is emerging, many questions remain. Further 

studies need to be performed to elucidate post-transcriptional and transcriptional role of 

miRNAs in different processes and diseases. 

 


