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ABSTRACT 

Ipilimumab is a monoclonal antibody against cytotoxic T-lymphocyte-associated antigen 

4 (CTLA-4) that belongs to a new class of immunotherapeutic drugs called immune 

checkpoint inhibitors (ICI) which prevent the feedback inhibition of activated T cells and 

hold great promise to treat cancer. Indeed, it has been demonstrated that ipilimumab 

increases overall survival (OS) of metastatic melanoma patients, but a durable 5-year 

survival benefit is observed in a proportion of patients ranging from 12% to 49% and, the 

treatment has mild to severe immune-related adverse events (irADR). In this context, the 

development of reliable biomarkers is of great importance to select patients with higher 

possibility to benefit from this treatment. In this respect, immune profiling could play a 

significant role, and, in particular, the monitoring of myeloid-derived suppressor cells 

(MDSC), which are predictive of OS and response to chemotherapy in many types of 

cancer, and thus represent a promising biomarker also for response to ICI. However, the 

validation of the predictive significance of MDSCs is challenged by the phenotypic 

complexity of these cells, that lacks an international consensus on the minimal 

requirements for MDSC monitoring.  

To meet this request, we organised the first proficiency panel to harmonize human MDSC 

phenotyping in collaboration with the Cancer Immunoguiding Program. Hence, we 

proceeded to the first phase, that consisted in phenotyping three batches of PBMC 

distributed to the 23 participating laboratories. We also analysed data from the 23 

laboratories and observed that the quantification of MDSCs across different laboratories 

was affected by high variance, and we identified some parameters responsible for the 

high heterogeneity of results. Results of this first step will set the basis for the second step 

which is expected to reduce inter-laboratory variance.  

From this experience, we developed a standardized approach to monitor the circulating 

levels of four MDSC subsets in melanoma patients undergoing ipilimumab treatment. 

These results were included in a wide dataset together with other tumor-associated and 

immunological parameters (TIPs) and used to identify early predictors of OS and toxicity 

through a multivariate non-parametric statistical approach.   
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We followed the variations of TIPs during ipilimumab treatment and identified two 

immune profiles predictive of OS. The immune profile of patients with better prognosis 

included: lower baseline levels of IL-6, CRP and VEGF and higher post-treatment 

frequencies of CD3+ T cells and CD4+/CD279+ T cells. On the other hand, patients with 

worse prognosis presented higher post-treatment levels of MDSC1 and 2 and of CD8+/PD-

1+ T cells. In addition, the development of grade 3 irADR was negatively associated to the 

levels of CD3+ and CD4+/PD-1+ T cells and of eosinophils, while positively associated to an 

increased variance of MDSC4. In conclusion, we demonstrated that the monitoring of the 

immunological correlates has the potential to identify patients with better prognosis 

following ipilimumab treatment, thus guiding a more rational use of this therapy.  
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RIASSUNTO 

Ipilimumab è un anticorpo monoclonale diretto contro cytotoxic T-lymphocyte-associated 

antigen 4 (CTLA-4) e appartiene a una nuova classe di farmaci immunoterapeutici chiamati 

immune checkpoint inhibitors (ICI). Questi farmaci prevengono la fisiologica inibizione 

dell’attivazione dei linfociti T e costituiscono una promettente terapia per la cura del 

cancro. Infatti è stato dimostrato che ipilimumab è in grado di aumentare la sopravvivenza 

dei pazienti affetti da melanoma metastatico. Tuttavia il farmaco produce una 

sopravvivenza stabile a 5 anni in una parte variabile dei pazienti trattati (12-49%) e inoltre 

può comportare effetti collaterali con eziologia di tipo immunologico (irADR) di grado 

medio o alto. Risulta quindi importante identificare biomarcatori che siano in grado di 

discriminare i pazienti con più alta probabilità di trarre beneficio da questo tipo di 

trattamento. A tal fine può essere importante tracciare un profilo immunologico del 

paziente, e in particolare monitorare i livelli circolanti di cellule soppressorie di 

derivazione mieloide (MDSC). Infatti i livelli circolanti di queste cellule sono stati associati 

a una minor sopravvivenza e risposta a trattamenti chemioterapici in diversi tipi di cancro, 

e quindi possono avere un ruolo potenzialmente predittivo anche nei confronti della 

risposta agli ICI. Tuttavia la validazione del potere predittivo delle MDSC si deve scontrare 

con la complessità fenotipica di queste cellule e con la mancanza di un consenso 

internazionale circa la definizione da applicare per il loro monitoraggio.  

Per cercare di dare una risposta a questi problemi, abbiamo organizzato in collaborazione 

con il Cancer Immunoguiding Program, un pannello internazionale di armonizzazione del 

fenotipo delle MDSC. Attualmente è stata completata la prima fase che consisteva nel 

fenotipizzare tre campioni di cellule mononucleate da sangue periferico da parte dei 23 

laboratori partecipanti. Analizzando i dati provenienti da questi 23 laboratori abbiamo 

osservato che la quantificazione delle MDSC presentava un’alta varianza e abbiamo 

identificato alcuni dei parametri responsabili di tale eterogeneità. I risultati di questa 

prima fase sono le fondamenta per la progettazione della seconda fase da cui ci 

aspettiamo una riduzione della varianza tra i diversi laboratori.  

L’esperienza maturata con il pannello di armonizzazione ci è servita per sviluppare un 

metodo standardizzato per il monitoraggio di quattro sottopopolazioni di MDSC circolanti 
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in pazienti affetti da melanoma e in trattamento con ipilimumab. Questi risultati assieme 

ai valori di altri parametri, associati al tumore o al profilo immunologico del paziente 

(TIPs), sono stati elaborati con metodi statistici multivariati e non-parametrici atti ad 

individuare dei marcatori precoci di sopravvivenza e tossicità in risposta al trattamento 

con ipilimumab.  

Grazie al monitoraggio dei livelli di questi parametri durante la terapia con ipilimumab, è 

stato possibile individuare due profili predittivi di sopravvivenza. I pazienti con migliore 

prognosi hanno minori livelli basali di IL-6, CRP e VEGF e maggiori livelli di linfociti T, in 

particolare della sottopopolazione CD4+/CD279+ al termine della terapia. Al contrario, una 

ridotta sopravvivenza si accompagna a maggiori livelli di MDSC1-2 e di linfociti T CD8+/PD-

1+ post-trattamento. Inoltre lo sviluppo di irADR di grado 3 è inversamente correlato con 

i livelli di linfociti T (CD3+ e CD4+/PD-1+) e di eosinofili, mentre è direttamente correlato 

con un aumento nella varianza dei valori di MDSC4. In conclusione questo studio ha 

dimostrato che le modificazioni del profilo immunologico associate al trattamento con 

ipilimumab possono dare informazioni sulla prognosi del paziente e quindi indirizzare le 

scelte cliniche verso un uso più razionale di questo tipo di terapia.  
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INTRODUCTION 

A historical overview of the tumor immunology: from the concept of 

immunosurveillance to the cancer immunoediting theory  

The idea that the immune system can control growing tumors was formally enunciated by Burnet 

and Thomas in the hypothesis of cancer immunosurveillance1. According to this theory, malignant 

transformation naturally occurs in the body as a result of genetic changes, but tumors do not 

become clinically detectable because they are eliminated by the immune system which recognises 

the new antigenic determinants expressed on their surface. The higher incidence of cancer in 

immunodeficient or transplanted patients constituted an early evidence supporting the 

immunosurveillance theory2,3. However, the long-term follow up of these patients revealed that 

this high risk was partially explained by an impaired natural protection against oncogenic virus4, 

and similar findings were observed also in mice with induced immunodeficiency5. In the same 

years, the hypothesis of immunosurveillance was further challenged by the work of Stuntman and 

colleagues demonstrating that athymic nude mice did not developed spontaneous or chemical-

induced tumors with a higher rate than immunocompetent controls6. At that time, these results 

constitutes an important proof against the hypothesis of cancer immunosurveillance, but it is now 

clear that those results were affected by a major pitfall. Indeed, nude mice are not completely 

immunodeficient, as they were considered at that time, but, on the contrary, they still possess 

myeloid cells, natural killer cells (NK) and B lymphocytes, which can thus provide a reduced, but 

sufficient, anti-tumor immunity. Some decades afterwards, the improved knowledge in the field 

of tumor immunology and important technological discoveries brought about a renewed interest 

in the theory of cancer immunosurveillance. In particular, the development of transgenic and 

knoc-out mice lacking NK, T and B lymphocytes finally provided strong and convincing data in 

favour of cancer immunosurveillance7-9. Indeed, RAG1-2-/- mice failed to control both chemical-

induced and natural occurring carcinogenesis10 and, since the impairment of their immune system 

is confined only to lymphocytes, these results constitutes an important evidence that these cells 

play a major role in the surveillance of nascent tumors. In fact, previous studies have already 

demonstrated that IFN-, a cytokine produced by T cells, block the growth of transplanted 

tumors11 but Shankaran et al., definitively proved that lymphocytes and IFN- block the formation 

of chemical-induced tumors in a synergic fashion10 . The clinical relevance of tumor-infiltrating T 

lymphocytes (TIL) was recently investigated by Galon and colleagues in the context of human 

colorectal carcinoma in which they demonstrated that a massive infiltration of T cells is associated 
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with better prognosis of patients and it constitutes a discriminating parameter for the choice of 

the therapeutic approach applied after the resection of primary colorectal cancer12. 

Albeit from the late 1990s the hypothesis of immunosurveillance lived a period of renaissance, 

this concept finds its intrinsic caveat in the fact that microscopic neoplasia can often overwhelm 

the immune control and thus become clinically detectable. In fact, a number of experiments 

revealed that the immune system exerts both a host-protective and tumor-sculpting effect on 

developing malignancies (reviewed in Dunn7). A striking evidence of this phenomenon is that 

tumors formed in immune-competent mice fails to be immunogenic when transplanted into a 

second immune-competent host, while tumors developed in an immunodeficient animal are then 

effectively rejected upon transfer in an immune-competent recipient10. As a consequence, Robert 

Schreiber and colleagues believed that the original immunosurveillance theory was no longer 

appropriate to fully describe the interaction between immunity and tumors, and they proposed 

to use the broader term “cancer immunoediting” to explain the ambivalent behaviour of the 

immune system towards cancer7.  

 

Figure 1: The three Es of cancer immunoediting 
The three Es of cancer immunoediting refers to ‘Elimination’, ‘Equilibrium’, and ‘Escape’. Elimination: 
the development of tumor is kept in check by the immunosurveillance. Equilibrium: tumor cells that 
have survived the immune surveillance are in balance with immunity of the host. Escape: tumor  cells 
grow and overwhelm the control of the host immune system. (Dunn et al. Immunity, 2004) 
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According to the “cancer immunoediting” theory, the crosstalk between cancer and immune 

system results from three processes: Elimination, Equilibrium and Escape (Figure 1). The original 

idea of immunosurveillance is included in the elimination phase in which the growth of a growing 

tumor is controlled by the immune system. This phase corresponds to the theory of 

immunosurveillance, if the tumor is completely eliminated by the immune system. However, if 

the elimination of the tumor is incomplete, then a second phase takes place, called the equilibrium 

phase, in which the genetic instability of malignant cells gives rise to low-immunogenic clones that 

have a higher probability to survive in an immune-competent host and are therefore favoured in 

the Darwinian selection of tumor variants. In the equilibrium phase, the tumor is not yet clinically 

apparent because the immune system is still able to control the growth of the majority of 

malignant cells. If this equilibrium phase breaks, the third phase of cancer immunoediting, called 

escape phase, takes place. This phase can be achieved only if cancer cells become able to suppress 

the immune system and can therefore expand in uncontrolled manner becoming clinically 

detectable (reviewed in7). The concept of cancer immunoediting is now considered a pillar of 

tumor immunology and, indeed, in 2011 Hanahan and Weiberg acknowledged immune escape as 

an important hallmark of cancer13.  

The concept of tumor microenvironment 

Different types of leukocytes infiltrate the tumors having a beneficial as well as a deleterious 

action on disease progression, but the tumor microenviroment is far from being composed only 

of immune cells14. Indeed, stromal cells, like fibroblasts, shape and sustain the complex 

architecture of cancer, and vascular endothelial cells formed blood vessels supporting the 

nutritional requirements of the growing mass.  Even if these ancillary cells do not belong to the 

hematopoietic lineage, they are included in the definition of immune contexture because they can 

take part in the modulation of immunity within the tumor mass15. The purpose of this section is 

to give a brief overview of the nature and the function of the players composing the tumor 

microenvironment with a special focus on their ability to modulate immunity in favour of 

malignant cells.  

Most of the immunological contexture is composed of infiltrating leukocytes belonging both to 

innate and acquired immunity (reviewed in 14). The leukocytes mainly involved in tumor 

eradication are T lymphocytes and they are characterized by high specificity of action due to their 

antigen specificity. T cells can be classified in two main subsets according to expression of the two 

co-receptors CD4 and CD8: CD4 is expressed both by T helper (Th) and regulatory T cells (Treg), 

while CD8 is a marker of cytotoxic T lymphocytes (CTL)16. CTL are able to destroy malignant cells 
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upon recognition of antigens presented on MHC I molecules by the cancer cells16. However, as 

antigen presentation by tumor cells is often inefficient17, the effective recognition of antigens by 

CD8+ cells could occur also via cross-presentation on MHC I molecules by antigen presenting cells 

18. On the other hand, tumor antigens could be presented to T lymphocytes also by MHC II 

molecules, recognized by CD4+ Th cells which activate a variety of immune cells through ligand-

dependent interactions and secretion of cytokines16. Immune infiltrates characterized by high 

CD8+ cells and memory T cells are prognostic of better diseases control while association between 

CD4+ cells and clinical outcome is more controversial (reviewed in 15). Albeit a T cell infiltrate is 

generally associated with better prognosis, studies on melanoma revealed that TIL have blunted 

functions that can be rescued after a period of in-vitro culture19. Indeed, several mechanisms are 

known to limit T cell functions in the tumor milieu. The main mechanism of negative regulation of 

T cells is the induction of exhaustion20, a process characterized by expression of multiple inhibitory 

receptors on T cells which impair their activation and effector functions21, and generation of 

regulatory T cells capable of directly suppressing the T cell response22.  

The innate immunity could contribute to tumor elimination through short-lived responses 

mediated mainly by NK and natural killer T cells (NKT) (reviewed in 23). However, tumors are able 

to impair also the action of innate cytotoxicity and indeed intra-tumoral NK cells are often 

anergic24.  

Myeloid cells are the leukocytes characterized by the strongest ambivalence. In fact, on one side 

myeloid dendritic cells and M1 macrophages are responsible of efficient antigen presentation and 

contribute to the immune attack towards malignant cells, but on the other side several myeloid 

cells can prevent or suppress anti-tumor immunity (reviewed in 25). M2 macrophages, 

plasmacitoid dendritic cells and myeloid-derived suppressor cells (MDSC) are key suppressive 

players and, albeit each subset is provided with specific suppressive machinery, they share some 

characteristics like the expression of ligands for immune checkpoint molecules (i.e PDL-1), the 

production of suppressive cytokines (i.e. IL-10) and the activation of indoleamine-2,3-dioxygenase 

(IDO) (reviewed in 14).  

An important contribution to the immunological contexture is given by stromal cells like fibroblast, 

vascular endothelial cells and extracellular matrix. These components shape the architecture of 

cancer and can impede immune infiltration through a direct physical barrier26 or can contribute 

to immune evasion actively participating to immune suppression27. For example, a recent study 

by Zhang et al. demonstrated that fibrocytes represents a novel subsets of MDSCs present in the 

blood of cancer patients28.  
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The coordination of this dynamic interplay between immune players, stromal cells and cancer is 

orchestrated by a variety of cytokines and chemokines. High expression of CX3CL1, CXCL9 and 

CXCL10 is associated with infiltration of effector and memory T cells29 while the CCR4 - CCL22 axis 

drives the trafficking of suppressor cells30. Moreover, a recent study indicates that production of 

reactive nitrogen species within the tumor microenvironment results in nitration of CCL2 which 

results in a hindered T cell infiltration31. On the other hand, cytokines are more involved in shaping 

the functional properties of the immune contexture. There are cytokines with direct suppressive 

function like IL-10 and TGF-, while cytokines classically involved in inflammation, like GM-CSF or 

IL-6, could mediate immune suppression through induction of MDSCs25,32. 

Immunotherapy of cancer 

The increasing comprehension of the mechanisms involved in the relationship between cancer 

and the immune system shed light on the possibility to manipulate these interactions in favour of 

cancer therapy. The early attempts to exploit an immune reaction to cure cancer came from the 

studies using Coley’s toxin or Bacillus Calmette-Guerin33,34 while the first immunotherapy 

approach consisted in the administration of cytokines like IL-2 or IFN- which either sustain T cells 

proliferation35 or have a broader anti-proliferative effect on malignant cells36. A rush in the 

development of immunotherapy began in 1970s thanks to the improved knowledge of tumor 

immunology and important technological discoveries which guided the development of modern 

immunotherapeutics consisting in antibodies, cytokines, vaccines and cellular therapy (reviewed 

in 37). 

The revolution started with the discovery of the hybridoma technology in the 1970s38. This 

technique permits a large scale production of epitope-specific murine antibodies (monoclonal 

antibodies – mAb) that could be used either for cancer treatment or to implement diagnostics. 

The first therapeutic mAbs were targeted to tumor antigens and induced effective complement- 

and cell-dependent lysis of the tumors but the results were characterized also by unexpected 

toxicity (reviewed in 37) due to inter-species cross-reaction. The production of fully human mAbs 

solved this problem and nowadays many antibodies of this kind are commonly used as drugs39. 

The distribution of mAbs depend on the degree of vascularisation of the tumor but, when this 

requirement is fulfilled, they can function also as carriers for radioisotopes, toxins or 

chemotherapy. Recently, research went beyond tumor-specific mAbs and developed a new class 

of mAbs targeted to regulators of immune response called immune checkpoints40. These 

molecules are exposed on T cells and can act either as negative or positive regulators of T cell 

response. Ipilimumab and pembrolizumab, two mAbs blocking negative regulators of T cells are 



18 
 

the first immune checkpoint inhibitors approved by the Food and Drug Administration (FDA)41,42, 

while other mAbs with immune-stimulatory functions are under development (reviewed in 43). 

The discovery of tumor-associated antigens resulted in different strategies of therapeutic 

vaccination for cancer (reviewed in 44). The road toward an efficient vaccination protocols is an 

example of how advancements in tumor immunology are translated to clinical protocols in order 

to implement cancer immunotherapy. Indeed, the first vaccines were based on administration of 

whole tumor cells derived either from autologous or allogeneic tumors. These cells were 

inactivated by radiation and their immunogenic potential was enhanced by chemical treatment or 

genetic manipulation in order to secrete immune activating cytokines like GM-CSF and IL-244. 

However, the efficacy of these treatments was not confirmed by phase III clinical studies, and 

therefore subsequent efforts have been invested to enhance the immunogenic potential of 

vaccines. In particular, many studies focused on boosting antigen presentation of tumor antigens, 

through the use of activated and polarised dendritic cells pulsed with autologous tumor lysate in 

order to convey an efficient and specific response against the tumors45,46. Sipuleucel T is a vaccine 

composed of autologous dendritic cells pulsed with prostatic acid phosphatase antigen and 

activated with GM-CSF is the only vaccination protocol approved by FDA for cancer treatment47. 

The experience reached in the field of cancer vaccines offered a paradigm that could be applied 

to the other immunotherapeutic approaches: an effective immune rejection of cancer can be 

obtained only by properly stimulating and activating the immune effector cells, and the general 

level of immune suppression must be taken into account, and eventually ablated, to reach the 

proposed therapeutic effects.  

Following this rationale, cancer vaccination can be effective when the immunity of the patient is 

functional, but if a deeper impairment is present, adoptive cell transfer (ACT) should be preferred 

in order to supply the suppressed natural immunity with new functional effector cells48. The first 

attempts to generate a de-novo immune response against cancer were pioneered by S. Rosenberg 

and collaborators who isolated TIL from melanoma biopsies and re-infused these cells into 

patients after a period of in-vitro activation, thus obtaining a complete and durable eradication of 

the tumor in some patients49. Following this experience, over the years many other groups 

contributed to implement ACT with natural occurring TILs or with autologous lymphocytes bearing 

an engineered T cell receptor with higher affinity for cancer cells50. The same procedures have 

been applied also to NK and NKT cells which can be activated in-vitro with specific cocktails of 

cytokines and re-injected as lymphokine-activated killer (LAK) or cytokine-induced killer (CIK), 

respectively51,52. The major obstacle of these approaches is that patients must undergo a 
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preparative lymphodepletion and must be infused with high doses of IL-2, to sustain the efficacy 

of ACT, and this treatment has a high toxicity and must be managed only by highly specialized 

centres48.  

A novel strategy to implement ACT is to eradicate the suppressive network present in the tumor 

by combinatorial approaches like adding a cycle of chemotherapy, radiation or targeted therapy 

to deplete suppressive leukocytes prior to ACT (reviewed in 53,54). Another strategy to boost the 

activation of transferred T cells is to combine ACT with immune checkpoint blockade, and the 

efficacy of this approach is currently under clinical investigation54. 
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Myeloid-derived suppressor cells as key players in the immune suppression of 

tumors 

The first studies describing myeloid cells endowed with suppressive capability dated back to the 

late 1990s55,56, and they were followed by a number of studies further describing the suppressive 

potential of myeloid cells characterised by different stages of maturation and distinct phenotypes 

(reviewed in 57). These cells were often addressed as “immature myeloid cells” or “suppressive 

myeloid cells” but neither of these names seemed accurate. In 2008 a group of leading scientists 

in the field proposed to find a new acronym to unequivocally identify cells of myeloid origin, 

displaying an impaired differentiation and endowed with immune-suppressive functions which 

were often induced under pathological conditions, especially in cancer58. As a result, the acronym 

myeloid-derived suppressor cells (MDSC) which is now in use. 

It has been demonstrated that MDSCs can be induced by some pathological conditions, from 

infection to autoimmune diseases and their level seems to increase also with age59, but MDSCs 

were originally identified in cancer25. Indeed, our group has demonstrated that MDSCs can be 

induced in-vitro from bone marrow progenitors by adding a cocktail of cytokines, commonly 

secreted by the tumors32. Nevertheless, there are some factors that seem to be more involved in 

the development of MDSCs and they comprehend a number of pro-inflammatory cytokines (GM-

CSF, IL-6, S100A8, S100A9, prostaglandins) but also angiogenic factors like vascular endothelial 

growth factor (VEGF). Several groups demonstrated the link between tumor-derived factors and 

MDSC expansion60-62, and several associations between the levels of pro-inflammatory factors and 

the circulating levels of MDSCs have been reported also in patients with cancer (reviewed in 63).  

Phenotype of mouse MDSCs 

MDSCs were originally identified in mice by using the combination of the myeloid markers CD11b 

and Gr-164. Further studies elucidated that CD11b+/Gr-1+ cells are not a homogeneous cell 

population, but rather a heterogeneous collection of myeloid cells, endowed with different 

suppressive ability. At present, it is well known that there are at least two main subsets of MDSCs 

present in tumor-bearing mice, one monocytic and one granulocytic, and these populations can 

be properly identified by using a set of accessory markers. In particular the differential expression 

of Ly6C and Ly6G, the two isoforms of Gr-1, allow the identification of granulocyic MDSC (G-MDSC) 

as CD11b+/Gr-1high/Ly6C-/Ly6Ghigh and monocytic MDSCs (M-MDSC) as CD11b+/Gr-

1int/Ly6Chigh/Ly6G- 57. The appropriate definition of these subsets is important in view of their 

differential localization and suppressive power. Indeed, several studies demonstrated that G-

MDSC are mostly located in the secondary lymphoid organs while M-MDSC constitutes the 
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majority of immune suppressive cells at the tumor site. This is intriguing considering that M-MDSC 

are endowed with a higher suppressive capability than G-MDSCs, on a per cell basis65-67. Other 

potential markers have been proposed to identify the two main subsets, like CD124, CD115, CD40, 

CD49d, CD244, but as these markers are shared also by inflammatory monocytes and neutrophils, 

a suppressive assay is always required for a complete definition of MDSCs57. A good surrogate for 

phenotypic definition of MDSCs is the expression of the  chain of interleukin-4 receptor (IL4R 

or CD124) which has been implicated also in MDSC function and survival68,69 and it is express also 

by human MDSCs70,71.  

Phenotype of human MDSCs 

The phenotypic characterization of human MDSCs is hampered by the lack of a specific marker, 

and by the absence of a homologue of the murine Gr-1; therefore, pan-myeloid markers like 

CD11b or CD33, are used to define MDSCs in humans, together with lineage-specific markers. 

Indeed, three main classes of MDSCs with distinct lineage-commitments have been identified in 

the blood of cancer patients: monocytic, granulocytic and immature MDSCs. M-MDSCs are 

characterized by the expression of CD14 and frequently presented a downregulation of HLA-DR 

and enhanced IL4R expression70,72. G-MDSCs are characterised by the expression of markers 

specific of the polymorphonuclear lineage like CD15 and CD66b and could be detected both in 

low- and high-density polymorphonuclear cells (LD-PMN, HD-PMN)73,74. This definition is based on 

the behaviour of PMN during density gradient separation: LD-PMN co-stratify with peripheral 

blood mononuclear cells (PBMC) while HD-PMN have a higher density and therefore lay below the 

PBMC layer, on the top of erythrocytes. G-MDSC belonging to LD-PMN are generally defined as 

CD14-/CD15+/CD66b+/CD11b+/SSCint 75 while those included in HD-PMN are characterized by 

expression of IL4R and high side scatter (SSC)70. Immature MDSCs (I-MDSCs) are a cell subset 

that do not express the markers of mature immune cells like lymphocytes, monocytes and 

granulocytes76,77. As a consequence, they stain negative for an antibody cocktail containing 

markers of mature leukocytes (Lineage cocktail) and they also show a low expression of HLA class 

II, which is peculiar of immature cells. I-MDSCs (Lineage-/HLA-DR-/CD33+/CD11b+) circulating in 

the peripheral blood of patients with solid tumors have a phenotype similar to promyelocytic-like 

suppressive cells induced in-vitro from healthy bone marrow using a cocktail of GM-CSF and G-

CSF78.   

The expansion of a number of MDSC phenotypes has been described in cancer patients, all of 

them falling in one of the three above mentioned categories and showed in Figure 2. This result 

depends on the lack of a standard maker combination to define human MDSCs, which led to 
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different combinations of common myeloid markers to define myeloid cells populations as 

MDSCs. It is tempting to speculate that some of the subsets are partially or completely overlapping 

inside each category, but so far this possibility has never been proved. This situation is further 

complicated by the plasticity of MDSCs which can express also other markers (like S100A8, 

S100A9, CD79) in response to the tumor-derived factors to which they are exposed (reviewed in 

63). Hence, the definition of human MDSC phenotype is an issue that must find a correct answer, 

also in view of the potential role of these cells as biomarker of response to cancer treatment. To 

address this problem, the Cancer Immunoguiding Program recently organised an international 

proficiency panel to harmonize the immunophenotyping of circulating human MDSC using 

cryopreserved samples.  
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Figure 2: Overview of described human MDSC phenotypes in cancer patients  
The main MDSCs subsets reported in literature were classified as monocytic, granulocytic and 
immature and further divided on the basis of their phenotype. (Solito et al., Annals of the New York 
Academy of Science, 2014) 

Overview of the suppressive mechanisms of human MDSCs 

It has been demonstrated that MDSCs are only capable to suppress the T cell response but also of 

influencing the behaviour of other immune players, like NK  cells, in the context of a cross-talk 

between myeloid cells and cancer (reviewed in 25). Besides, recent studies recognise that MDSCs 

have pleyotropic functions that are not limited to the immune suppression because, these cells 
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are involved also in the metastatic process79, in angiogenesis80 and in the interplay with cancer 

stem cells81. In particular, MDSCs support metastasis development in different ways: they prepare 

the pre-metastatic niche by creating an immune suppressed milieu82 and by re-arranging the 

architecture of extracellular matrix through secretion of metalloproteinase 980,83, but they also 

exert a more direct influence on the metastatic potential of cancer cells inducing the epithelial-

mesenchimal transition84. 

Concerning the immune-suppressive potential, one of their main task is to deprive the tumor 

micro-environment of essential amino acids, like L-arginine or L-tryptophan, through activation of 

Arginase-1 (Arg-1), inducible Nitric Oxide Synthase (iNOS) or Indolamine-2,3-Dyoxigenase (IDO), 

respectively (reviewed in 85). L-arginine depletion reduced the expression of the  chain of T cell 

receptor thus limiting the proliferation of activated T cells86; on the other hand, an altered L-

tryptophan metabolism leads to L-kynurenine production and activation of a down-stream 

pathway that is responsible for induction of regulatory T cells. Another important function is to 

induce an oxidative stress through a coordinated activation of Arg-1, iNOS and NADPH oxydase 

that leads to production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) 

which hamper the correct function of T cell receptor, block proliferation of T lymphocytes and 

alter the trafficking of these cells (reviewed in 60,63). A third mechanism of immune suppression is 

the direct activation and expansion of regulatory T cells triggered by IL-10 production, activation 

of tolerogenic pathways, like the L-kynurenine pathway, and ligand-dependent interactions25. 

MDSCs are also able to convert Th17 cells into regulatory T cells through a mechanism that is 

dependent on TGF-secretion and retinoic acid87.  
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Figure 3: Principal pathways involved in immune suppression by MDSCs 
Main mechanisms of suppression induced by MDSCs. a) MDSC induce regulatory T cells b) MDSCs 
starve T cells of amino acids that are essential for their growth and differentiation. c) MDSCs induce 
an oxidative stress through production of ROS and RNS. d) MDSC interfere with T cell migration and 
viability and they cross-talk with different immune players. (adapted from Gabrilovich et al., Nature 
Review Immunology, 2012) 

MDSCs are predictors of the clinical evolution of cancer 

Given the pivotal role exerted by MDSCs in the process of immune escape, it is reasonable to 

conceive a relationship between the expansion of these cells and the clinical evolution of cancer. 

Indeed, the frequency of circulating MDSCs has been frequently correlated with the stage of 

different solid tumors63,87-89 and with the level of circulating tumor cells78. Besides, it has been 

demonstrated that MDSC levels are significantly decreased after tumor excision thus proving a 

direct association between tumor burden and the presence of these cells_ENREF_8889-92. As the 

frequencies of circulating MDSCs reflect tumor progression, they constitute a good predictor of 

survival or time-to-progression (reviewed in63). This correspondence was also used to predict 

response to chemotherapy77,78,93 and the study by Walter et al., was the first to demonstrate a 
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correlation between circulating MDSCs and response to a tumor vaccine94. In this study, renal cell 

carcinoma (RCC) patients were treated with a multipeptide vaccination protocol preceded by a 

single-dose cyclophosphamide and six MDSCs subsets were monitored by flow cytometry: RCC 

patients expanded 5 out of six MDSC subsets at baseline and, of note, two MDSC populations 

significantly correlated with survival after vaccination94. Recently, several efforts have been made 

to find reliable biomarkers of response following immune checkpoint blockade treatment. A 

number of parameter were screened but, apart from lymphocytes count, the only promising 

biomarker is the circulating level of MDSCs (reviewed in 95). Indeed, in this context the levels of 

MDSCs can have a double prognostic significance: on one side they reflect the tumor burden while, 

on the other hand, they can be considered as an index of the degree of immune suppression that 

counteracts T-cell activation triggered by ipilimumab.  
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Melanoma 

Epidemiology, pathogenesis and staging 

Melanoma is a skin cancer derived from the malignant transformation of melanocytes, the 

pigmented cells of the skin96. Albeit it accounts only for the 4% of total skin cancers, with 76.000 

new diagnosis in 2014 according to the American Society of Cancer, it is characterised by high 

mortality (American Cancer Society) and is indeed responsible for the 80% of deaths from skin 

cancer and the 5-year survival is about 14%.  

Melanoma is characterised by a stepwise mechanism of carcinogenesis in which each 

transforming event is characterized by defined genetic changes96. Indeed, the genetic instability 

of melanoma is characterised by a set of defined alterations, which could be targeted by specific 

inhibitors, and a multitude of random mutations that are peculiar of each patients and could give 

rise to a plethora of new epitopes recognised by TIL. Indeed the first protocol of adoptive cell 

therapy designed by Rosenberg have been carried out using TILs49. Melanoma carcinogenesis is 

divided in five steps by Clark according to histological changes which could be related to particular 

genetic mutations97 (reviewed in 96) (Figure 4). In the first step a benign nevus, composed of 

melanocytes, grows stimulated by a constitutive activation of the mytogen-activated protein 

kinases (MAPK) cascade, often resulting from mutation of the BRAF gene. The presence of nevi is 

considered benign as long as their growth is controlled by onco-suppressor genes like PTEN and 

CDKN2A, but when mutations occur at this site, the negative regulation is lost and a pre-malignant 

lesion develops (dysplastic nevus). Further progression of the dysplastic nevus is associated with 

decreased differentiation of cancer cells into melanocytes regulated by an oncogene: the 

microphtalmia-associated transcription factor (MITF). The last steps of carcinogenesis are 

characterised by enhanced motility of malignant cells, which start a vertical growth phase invading 

the dermis and progressively spreading to the whole body as metastatic lesions. The major 

alterations present in this phase affect genes involved in shaping the architecture of the tumor or 

coding for adhesion molecules and matrix metalloproteinases.  
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Figure 4: Molecular and biological changes occurring during oncogenesis of melanoma 
Main biologic events, according to Clark’s model, and molecular changes in the progression of 
melanoma. (adapted from Miller et al., New England Journal of Medicine, 2006) 

Melanomas are classified in four stages according to the TNM categories defined by the American 

Joint Committee on Cancer98. The biological parameters considered for the staging procedure are: 

the thickness, the ulceration and the mitotic rate of the primary lesion (T), the number and the 

burden of metastatic lymph nodes (N), the presence of distant metastasis and the levels of serum 

lactate dehydrogenase (LDH) (M). Stage I and II melanoma are characterised by lesions with 

different degree of thickness and ulceration but strictly confined to the skin, while stage III 

melanoma present metastasis to one or more lymph nodes. Stage IV melanoma, which is called 

also metastatic melanoma, is indeed characterised by presence of distant metastasis; the 

localization of the metastasis defined the sub-groups: M1a distant metastasis confined to skin or 

lymph nodes, M1b lung metastasis, M1c all other visceral metastasis with normal LDH levels or 

any distant metastasis combined with elevated LDH.  

Immunological features of melanoma patients 

As described above, TIL could be isolated and manipulated to destroy cancer cells, and 

interestingly, the efficacy of ACT using natural occurring TIL was first demonstrated in 
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melanoma49. Besides, the high genetic instability of melanoma could create a variety of new 

epitopes which may drive the activation of a higher number of TIL endowed with wider specificity 

and affinity for tumor antigens48,99,100. In fact, a variety of antigens have been identified on the 

surface of melanoma cells and they can be classified in three main groups: i) germ cell antigens 

like NY-ESO-1 and MAGE-1 which are normally expressed in male germ cells and silenced in 

somatic cells but re-expressed on malignant melanocytes; ii) differentiation antigens that 

characterised both normal ad melanoma cells and include tyrosinase, melan-A MART-1  and 

gangliosides; iii) unique antigens stemming from random mutations in melanoma cells (reviewed 

in 101). The exposure of these tumor-antigens on melanoma cell surface depends on the genetic 

background of each cancer, and it is thus important to design personalised approaches of 

immunotherapy like ACT with autologous TIL or vaccination with dendritic cells pulsed with a 

lysate of autologous tumor48.  

Despite the evidence that immune effectors can play a significant role in controlling tumor growth 

both spontaneously or in response to therapeutic manipulation , it is clear that in most 

circumstances cancer cells survive their attack as the disease progresses. Several mechanisms 

underlying immune escape have been proposed in melanoma and they induce structural and 

functional changes both in tumor and stromal cells (reviewed in 102).  On one hand, melanoma 

cells become less immunogenic due to down-regulation of antigen exposure or absence of co-

stimulatory molecules, and on the other side they attract suppressive leukocytes through a 

pattern of secreted chemokines and cytokines. In particular, increasing Treg cells infiltration was 

found in nevi during melanocytes’transformation, suggesting that these cells induce 

immunotolerance early during melanoma evolution. Moreover, tumor Ag-specific Treg were 

found in the blood of patients with metastatic melanoma, and they produced IL-10 and 

suppressed T-cell responses in a cell contact-dependent manner.  

In addition, melanoma is characterised also by infiltration of innate cells, like macrophages, 

neutrophils and plasmacytoid DCs, all endowed with suppressive and tumor-promoting functions 

(reviewed in 103). Moreover, several studies reported an expansion of circulating MDSC in 

melanoma patients, and melanoma cells can induce MDSCs from monocytes of healthy donors in-

vitro104. CD14+/HLA-DRlow/- was the first phenotype associated to MDSC expansion in melanoma 

and the suppressive activity of CD14+/HLA-DRlow/- cells on T cell proliferation was dependent on 

transforming growth factor . Subsequent studies demonstrated that ex-vivo derived 

CD14+/HLA-DRlow/- MDSCs induced Treg105 and activated Arg-1 and STAT-3, two important factors 

driving MDSC suppression106. Besides, in a recent publication, we demonstrated that IL4R, which 



30 
 

is not only a phenotypic but also a functional marker of murine MDSCs69,71, was expressed on 

human monocytes endowed with suppressive activity, suggesting that IL4R could be a valuable 

marker also for human MDSCs70. Moreover, also granulocytes separated from melanoma patients 

showed a significant up-regulation of IL4R, though the presence of these cells did not correlate 

with a suppressive phenotype.  

Melanoma often matched with induction of systemic inflammation,and indeed the levels of acute 

phase proteins, like C-reactive protein, or inflammatory mediators like IL-6 are strong predictors 

of survival in melanoma patients102,107,108.  

Serum proteins as biomarkers of melanoma 

Biomarkers are tumour- or host-related factors that could be easily measured, i.e. in the serum, 

and are associated with tumour behaviour and patient prognosis. A good number of proteins 

present in the serum of melanoma patients have been correlated with tumor burden or survival 

and they are often used as early biomarkers for recurrence (reviewed in 109). The strongest 

predictors of tumor burden and survival are LDH and S100B levels110.  

The first evidence of correlation between serum LDH levels and prognosis of melanoma dated 

back to 1954 and several studies confirmed this finding109. LDH is a sensible indicator of liver 

metastasis111 and  it is particularly useful to discriminate between patients with better or worse 

prognosis in the metastatic disease. For these reasons LDH is the only serum protein included as 

parameter for melanoma staging by the American Joint Committee on Cancer98.  

S100B belongs to a class of calcium-dependent proteins that are involved in signal transduction 

via inhibition of protein phosphorylation, regulation of enzyme activity and calcium homeostasis 

(reviewed in 112). In-vitro studies demonstrated that S100B inhibits calcium-dependent 

phosphorylation of p53, resulting in impaired function of this protein and a consequent 

uncontrolled tumor growth113. S100 proteins could also exert extracellular function by binding to 

their receptor RAGE, but the direct consequences of this interaction are still under investigation114. 

The association between levels of S100B and melanoma are  known since 1980115, but a recent 

retrospective study on 670 patients with metastatic melanoma clearly identified this protein as a 

marker of tumor burden and as a predictor of survival116. Recently, a multivariate analysis on more 

than 1100 patients with advanced melanoma demonstrated that LDH and S100B are strong 

independent predictive markers for survival in these patients110.  

Proteins involved in inflammatory processes like VEGF, C-reactive protein and IL-6 have been 

recently identified as additional biomarkers of melanoma progression.  
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C-reactive protein (CRP) is an acute-phase factor produced by the liver under a variety of 

inflammatory and stressing conditions including cancer117. Elevated cytokines levels, and in 

particular IL-6, increase CRP production118 and indeed, Tartour et al. investigated the possible 

correlations between IL-6, CRP levels and survival in melanoma patients treated with IL-2119. A 

trend towards association between IL-6 and CRP was observed and both parameters correlated 

with patients outcome. These data were further confirmed in a larger cohort where only CRP 

results to be an independent predictive factor for reduced survival120. The association between 

elevated levels of CRP and negative prognosis was confirmed by Allin et al. in a large prospective 

study including patients with different types of cancer and healthy donors108. The long follow-up 

phase, characterising this project, permits to highlight also a direct association between elevated 

baseline CRP levels in healthy individuals and increased risk of developing different types of 

cancer.  

Interleukin-6 (IL-6) is type 2 inflammatory cytokine whose de-regulation plays a major role in 

inflammatory-associated diseases like autoimmune arthritis121. Studies on melanoma cell lines 

indicated that IL-6 is a negative regulator of primary melanomas whereas it stimulates the 

proliferation of melanoma cells isolated from metastatic disease122. Indeed, high levels of IL-6 have 

been extensively correlated with tumor burden and metastasis in melanoma patients107 and 

Mouawad et al. showed that low IL-6 levels were associated with control of the disease and 

response to a therapeutic regimen based on cisplatin, IL-2 and IFN-.  

Melanoma treatment 

The recommended treatment for melanoma depends on the stage of the tumor: the preferred 

option for early stage melanoma is surgery, possibly combined with adjuvant regimen, while a 

more aggressive approach, including systemic chemotherapy, radiotherapy and immunotherapy, 

is necessary for the management of advanced disease.   

First line therapy for early stage melanoma includes surgical excision of the primary lesion, and 

complete lymphadenectomy recommended in the presence of metastasis to the lymph nodes.  

(reviewed in 124). High risk patients often undergo also adjuvant therapy following surgical 

resection to minimise the risk of recurrence. If surgery and adjuvant regimens are effective for 

control of primary melanomas, the scenario becomes much more complex when patients 

presented with metastatic disease.  

Interferon 2b (IFN2b) was the first agent to significantly improve the OS of metastatic 

melanoma patients125. The mechanism of action of this cytokine is not completely understood. 
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The examination of tumor biopsies taken before and after therapy with IFN2b demonstrated an 

enrichment in the infiltration of T lymphocytes and dendritic cells in the tumors, thus suggesting 

an immunological mechanism of action for this therapy126. For a long period several strategies 

aimed at improving an immune rejection of melanoma have been pursued with contrasting 

results. Indeed, vaccination and adoptive cell therapy with autologous TILs have demonstrated 

some clinical benefit but the only immunotherapeutic regimen approved until 2011 was the 

administration of high doses of IL-2 (reviewed in 124). This cytokine acts sustaining T cell 

proliferation but its efficacy is limited to highly selected patients and it comes at the cost of high 

toxicity. High dose IL-2 is currently approved only for the treatment of metastatic melanoma, 

although it is a treatment given only in specialized and experienced centers.  

Regarding chemotherapy, the alkylating agent dacarbazine, and its oral-available pro-drug 

temozolomide, are the only chemotherapeutic drugs approved for the treatment of metastatic 

melanoma (reviewed in 124). However, only 10-15% of patients treated with dacarbazine 

experienced tumor regression, but this response does not increase OS 127. Different combinatorial 

regimens have been tested to improve the efficacy of chemotherapy in melanoma, but with 

negligible benefits in terms of survival and displaying  higher toxicity.  

Chemotherapy is considered harmful for the immune system and it is well known that 

myelosuppression is one of the most frequent side effect of chemotherapeutic drugs. However, a 

number of studies, mostly in mouse models, suggest that conventional chemotherapy could 

improve immune-rejection of the tumors by inducing immunogenic cell death (ICD) of malignant 

cells (reviewed in 128). ICD is characterised by alterations in the composition of the plasma 

membrane of dying cells and by the release of specific transductors of immunogenic signals that 

promote engulfment of dying cells, presentation of tumor antigens, and production of pro-

inflammatory cytokines by dendritic cells, thus boosting anti-tumor response129. A similar 

induction of ICD was seen also upon administration of radiotherapy in pre-clinical models of 

melanoma130 or upon infection with oncolytic-virus in humans131. Another possible synergy 

between chemotherapy and immune-rejection is the activation of genes involved in the immune 

response and leukocyte activation following dacarbazine administration which was demonstrated 

to improve the response to Melan-A vaccination132.   

Another possible synergic effect on tumor eradication can be achieved by combination of 

chemotherapy and immunotherapy which on one side directly kills cancer cells and on the other 

side activates the suppressed immune system to mount a robust anti-tumor response (reviewed 

in 133). Early reports have suggested that chemotherapeutic agents administered in combination 
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with IL-2 or IFN can improve the response rate in melanoma patients134,135, but an overview of 18 

studies comparing standard chemotherapy to chemoimmunotherapy demonstrated that the 

increased response rate did not translate into a survival benefits for these patients136. However, 

the introduction of ICI opens the way for new combinatorial strategies, in particular for patients 

with brain metastasis who showed an increased overall response rate when treated with the 

combination of ipilimumab and fotemustine137 (reviewed in39).  

The improved knowledge of the genetic instability of melanoma and the progress of tumor 

immunology led to a revolution in the management of melanoma which results in the approval of 

two new class of drugs for the treatment of metastatic melanoma by FDA in 2011 (reviewed in138). 

The discovery of the activating mutations in the MAPK pathway, which promote uncontrolled 

proliferation of melanocytes, set the basis for the approval of sorafenib, a non-selective BRAF 

inhibitor. Unfortunately this drug failed to show any benefit139-141, but when specific inhibitors for 

the kinases involved in the MAPK pathway entered into clinical trials, they showed extremely 

promising results (reviewed in 138). Two BRAF inhibitors, dabrafenib and vemurafenib and one MEK 

inhibitor, trametinib showed significant effects in terms of tumor regression compared to 

dacarbazine. The toxicity profile of these drugs is milder than classical chemotherapy but the 

kinetics of response is characterised by high initial tumor response followed by development of 

resistance at a median of five to seven months. The second class of drugs that contributes to the 

therapeutic revolution in the field of metastatic melanoma is that of immune checkpoint 

inhibitors39. These drugs are monoclonal antibodies inhibiting key negative regulators of T cell 

activation like Cytotoxic T cell antigen 4 (CTLA-4) and Programmed Death 1 (PD-1). They act 

releasing the brake on T cells exerted by the suppressive network active at the tumor site, and 

therefore enhance the probability of tumor-specific T cells to attack the malignant clones. At 

present time, two ICI have been approved by the FDA for the treatment of metastatic melanoma: 

ipilimumab and pembrolizumab which are targeted to CTLA-4 and PD-1, respectively. These drugs 

are characterised by a low rate and a delayed onset-time of response, but also longer duration of 

the clinical benefits in responding patients. The encouraging data from clinical studies indicate 

that a combination of targeted therapy with BRAF or MEK inhibitors and ICI could feasibly maintain 

the high frequency of response typical of targeted therapy and prolonged the control of the 

disease in patients responding also to the immunotherapy approach.  
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Ipilimumab: a novel immune checkpoint inhibitor for the treatment of 

metastatic melanoma  

The biology of immune checkpoints 

T cell response starts with the recognition by T cell receptor (TCR) of the peptide-major 

hystocompatibility complex (MHC) on APC but this event is not sufficient for full activation of T 

cells. Indeed, the magnitude and the quality of T cell response depend on the integration between 

signals deriving from co-stimulatory and co-inhibitory receptors, expressed by the lymphocyte and 

known as immune checkpoints molecules16. In physiological conditions, immune checkpoints are 

crucial for maintaining self-tolerance and to prevent hyper-activation of adaptive response 

towards pathogens which could eventually damage the surrounding tissues (reviewed in40). 

Positive regulators of T cell response include ICOS, CD137 and CD28, the master positive regulator 

of T cell activation; in contrast, several negative regulators have been described: CTLA-4, PD-1, 

LAG-3, Tim-3, BTLA, A2aR (Figure 5). Amplification of signalling through inhibitory receptors 

participating to immune checkpoint is a useful strategy for the treatment of autoimmune arthritis 

and transplant rejection142. However, a wider field of application was found for mAb blocking 

these inhibitory immune checkpoint molecules for cancer treatment (reviewed in43). In fact, the 

expression of inhibitory immune checkpoints could be deregulated by tumors and their blockade 

unleash the potential of anti-tumor responses. Several immune checkpoint molecules represents 

promising targets for therapeutics, but, at the moment, only two ICI have been approved by the 

FDA for treatment of metastatic melanoma: ipilimumab and pembrolizumab, which are directed 

to CTLA-4 and PD-1 , respectively41,42.   
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Figure 5: Immune checkpoint molecules regulate T cell responses 
Multiple ligand-receptor interactions between T cells and APCs convey co-stimulatoy and co-
inhibitory signals are known as  immune checkpoints. A T cell response is initiated following antigen 
recognition by T cell receptor (Signal 1), but the onset of T cell response results from the balance of 
stimulatory and inhibitory signals delivered by immune checkpoint molecules. (Pardoll et al., Nature 
Review Cancer 2012) 

CTLA-4 is a key negative regulator of T cell activation, opposed to the stimulatory receptor CD28143 

(Figure 6). CTLA-4 is mainly expressed on T cells after activation143,144, while Treg have a 

constitutive expression of this marker due to positive regulation of CTLA-4 expression by the Treg-

associated transcription factor FoxP3145. Indeed, it has been demonstrated that CTLA-4 

participates to the suppressive function of Tregs146,147. CTLA-4 presents a complex trafficking 

behaviour: conventional T cells store CTLA-4 in cytoplasmic vescicles and TCR stimulation 

promotes its exposure on the cell surface144; however, CTLA-4 is also repetitively endocytosed by 
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T cells with the result that only a small fraction of the CTLA-4 pool is exposed on the cell surface148. 

For a long time, expression of CTLA-4 was thought to be confined on T cells but recent reports 

described its expression also on myeloid cells149,150 and tumors151, albeit its functional role on 

these cells remained largely unknown. In contrast, a large number of mechanisms have been 

proposed that account for the inhibitory activity of CTLA-4 towards T cell activation and they 

consist of both cell-intrinsic and cell-extrinsic pathways (reviewed in 152). Cell-intrinsic pathways 

include all functional mechanisms acting on the cell that express CTLA-4, namely T cells, while cell-

extrinsic pathways are those in which CTLA-4 carries out its effects through other cells. The most 

important mechanism of action of CTLA-4 blockade lays in the inhibition of the co-stimulatory 

signal delivered by CD28 to T lymphocytes upon TCR engagement143. Indeed, CTLA-4  competes 

with CD28 for binding to their common ligands, CD80 and CD86,  expressed by APC153 and, since 

CTLA-4 possesses a higher affinity for the ligands than CD28, the inhibition is efficient and stable; 

recent reports demonstrated that CTLA-4 can also physically remove CD80 and CD86 form APC 

resulting in a further elongation of CD28 blockade154. In addition, CTLA-4 can oppose the co-

stimulatory effect of CD28 also by delivering an intra-cellular inhibitory signal to T cell, thus 

decreasing the phosphorylation of several key proteins in the TCR signalling cascade155,156. 

 

Figure 6: Ipilimumab blocks negative signaling from CTLA-4 
A) T cells requires two signals for full activation: the first signal is delivered by the T cell receptor 
(TCR) while the second involves co-stimulation through the interaction of CD28 on T cells with B7 
molecules (CD80, CD86) on APCs. B) upon T-cell activation, CTLA-4 is recruited to the plasma 
membrane and, binding with higher affinity than CD28 to B7 molecules, it delivers an inhibitory signal 
that block T cell activation. C) ipilimumab blocks CTLA-4 cell-intrinsic and cell-estrinsic functions, thus 
releasing the brake on T cell activation. (Postow et al., Clinical Cancer Res 2012) 
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PD-1 is another negative regulator of T cell function whose blockade has been exploited for cancer 

treatment. Similar to CTLA-4, also PD-1 expression is induced upon activation on T cell surface157 

and its expression is elevated in circulating T lymphocytes from patients with chronic infection, 

like HIV, and cancer158-160. As expected, PD-1 is mostly expressed by antigen-experienced cells 

belonging to the memory compartment159 and further up-regulated when memory T cells enter 

the effector phase161. Evidence of PD-1 expression have been observed also on Treg162. PD-1 can 

bind to PDL-1 and PDL-2 which could be expressed by myeloid cells and tumors (reviewed in163). 

In the tumor microenvironment, the major PD-1 ligand that is expressed is PDL-1164 (reviewed in 

163) and its expression could be further up-regulated by IFN-. In contrast to CTLA-4 that blocks 

T cell activation at the time of antigen exposure in secondary lymphoid organs, the major role for 

PD-1 have been observed in the periphery where it limits the effector functions of previously 

activated T cells (reviewed in40). In this context, PD-1 acts by modifying the duration of T cell-APC 

contact166, by inducing a functional impairment called T cell exhaustion21 and by enhancing the 

proliferation of Treg162.  

In the last years, ipilimumab and pembrolizumab, two mAb targeting CTLA-4 and PD-1, 

respectively, have been introduced for melanoma treatment. These immune checkpoint inhibitors 

were the first treatment demonstrating a significant increase in the survival of stage IV melanoma 

patients41,42. As both drugs rescue T cell activation at different levels (ipilimumab mainly by 

counteracting CD28 signalling and by reducing Tregs, while pembrolizumab by inhibiting 

exhaustion of CD8+ T cells), clinical approaches of combination are currently under investigation. 

Ipilimumab: from pre-clinical model to the clinical practice  

Ipilimumab is a fully human IgG1 mAb approved for the treatment of metastatic melanoma at the 

dose of 3mg/kg. It was approved in the United States in 2011 and in Europe in 2012. Evidence 

from preclinical models indicated that ipilimumab monotherapy was safe and effective in rejecting 

a large number of transplantable tumors, in particular in mice with low tumor burden and 

transplanted with cell lines that were historically considered immunogenic167. This result is not 

surprising considering the pharmacodynamics of ICI; indeed, these drugs can revert suppression 

of an existing anti-tumor immunity but they are not able to generate an ex-novo immune response 

towards cancer. However, subsequent studies indicated that in case of poorly immunogenic 

tumors, the combination of ICI and vaccination is a feasible and effective option168 to establish an 

effective anti-tumor response.  

During clinical development, phase II studies with escalating dose and different schedule of 

treatment lead to the determination of the minimum effective dose characterised by acceptable 



38 
 

toxicity, that is 3mg/kg (reviewed in 169). In phase III studies ipilimumab treatment produced a 

significant advance in terms of OS compared to a vaccination strategy with gp100 vaccine41 and 

to dacarbazine, the standard chemotherapeutic regimen for melanoma170. Four pattern of tumor 

response to ipilimumab were noted: i) immediate tumor regression in baseline lesions without 

development of new lesions, ii)durable stable disease followed by slow reduction of tumor 

burden, iii) response in the presence of new lesions and iv) response following an increase in total 

tumor burden171. Histological studies revealed that edema or leukocyte infiltration accounted for 

the apparent increased volume of some lesion in responding patients. Given this peculiar pattern 

of response, that differs from that of standard chemotherapy, new immune-related criteria were 

defined for assessment of disease progression following ICI treatment. Treatment with ipilimumab 

was typically associated with the onset of irADR which were strongly related to its immune-based 

mechanism of action. The onset of irADR was common and an incidence of 64% was reported in a 

pooled analysis of 14 studies evaluating various doses of ipilimumab172. According to this study, 

the irADR were tipically manageable, but about 20% of patients developed serious toxicity which 

required a prompt management by expert clinical oncologists.  Most of immune-mediated irADR  

involved mainly the skin, the gastrointestinal mucosa, the liver and the endocrine system 

(reviewed in173). While the onset of rash, diarrhea and colitis can be rapid but readily resolved 

with administration of glucocorticoids, endocrine irADR were more severe and, in some cases, life 

threatening.  

Biomarkers for immune checkpoint inhibitors 

The introduction of ipilimumab in the clinical practice was welcomed with enthusiasm by clinical 

oncologists and the subsequent approval of pembrolizumab has open new options for 

therapeutics. In the next years the opportunity to have different ICI on the market will bring about 

the need for definition of which immune checkpoint pathway is more active, and thus constitute 

a better target, in each patient. Moreover, ipilimumab, as single agent, produces log-term benefits 

in about 12% to 49% of patients39,174 and this response comes at the cost of a toxicity profile that 

can be serious and a consistent economic burden for the health care system173. Hence, there is an 

urgent need for predictive biomarker that can guide clinical oncologist in the selection of patients 

that have a higher probability to respond to ipilimumab and to direct other patients to alternative 

therapeutic strategies. Given the multiple cell-intrinsic and cell-extrinsic mechanisms of action of 

CTLA-4, the search for predictive biomarkers involves a large number of immune players and 

tumor-related factors in particular T lymphocytes, myeloid cells, serum proteins and the genetics 

of the tumor.  
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Only few studies identified baseline parameters predictive of survival or response to ipilimumab, 

here named predictive biomarker, while a larger number of factors, associated with the 

mechanism of action of ipilimumab, can predict patient’s prognosis when assessed after 

treatment; these markers will be named early response marker to distinguish them from 

predictive biomarkers (reviewed in 175).   

An overview of the studies identifying predictive biomarkers indicate that patients with higher 

probability to benefit from ipilimumab treatment are those presenting an active immune system 

with low frequencies of MDSCs176 and high absolute lymphocyte count177-179. In this context, the 

presence of humoral and cellular responses to NY-ESO-1 was correlated with OS in ipilimumab-

treated patients, and this parameter may help the identification of patients with an existing anti-

tumor immunity which in turns have more probability to respond to ipilimumab180,181. Recent 

studies performing gene expression profiling on melanoma biopsies from patients undergoing 

ipilimumab treatment revealed that clinical response was associated with a Th1 signature and 

expression of IFN- inducible genes at baseline182; in addition, the Th1-associated markers were 

further up-regulated after the treatment182. However, conflicting results came from another study 

in which clinical response to ipilimumab was correlated with high baseline expression of FoxP3 

and IDO, genes typically associated with suppressive populations183. Two recent studies pointed 

out that immune rejection of cancer in response to ICI is antigen-specific both in humans and in 

mice, and the antigenic drivers of this process are mutant neo-epitopes arising from the genetic 

instability of tumors99,100. One of these studies deals with melanoma patients, and authors 

brilliantly demonstrated that this mutant immunologic signature was predictive of response to 

the treatment and the neo-epitopes, composing this signature, were homologous to known viral 

and bacterial antigens that T cells are likely to recognize100.   

In addition to immunological parameters, low tumor burden (indicated by levels of LDH and S100B 

below the upper limit of normal)179,  low serum VEGF178 and low levels of inflammatory indexes 

(like C-reactive protein and erythrocyte sedimentation rate)177,179 are also predictive of improved 

OS following ipilimumab treatment. Gene expression profiling of melanoma biopsies indicated 

that expression of melanoma-associated genes (NY-ESO-1, MAGE-A, MELAN-A, TYR) and cell 

signalling molecules involved in tumorigenesis are reduced in in post-treatment biopsies of 

responding patients182.  

A large number of studies identified immunological and tumor-related parameters as early 

response markers. Overall activation of T cells was seen in responding patients with increased 

expression of T cell activation markers (ICOS184-186, Ki67185, HLA-DR187), increased number of 
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circulating177-179,188 and TIL183, expansion of the central memory subset187 and increased 

phosphorylation of effector molecules down-stream to TCR signalling189. Only a minority of studies 

confirmed T cell activation by functional studies, although Ipilimumab was shown to increase the 

response to melanoma antigens181,187 and the humoral immunity following vaccination against 

influenza and pneumococcus187. Since Treg express CTLA-4 constitutively, it is reasonable to argue 

for Treg depletion via antibody-dependent cell-mediated cytotoxicity following administration of 

anti-CTLA-4 antibodies; however, conflicting results were observed concerning modulation of Treg 

by ipilimumab. Indeed, some authors reported that increasing frequency of circulating Treg 

correlates with an improved progression-free survival181, while others observed a marked 

reduction of the levels of Treg in patients with longer survival or clinical response to 

ipilimumab177,190. The same controversial trend was observed also for tumor-infiltrating Treg181,183. 

In contrast, the monitoring of circulating MDSCs produced more homogeneous results with 

several authors indicating a strong correlation between reduced frequencies of monocytic, 

granulocytic and immature MDSCs and improved response or survival following ipilimumab 

treatment176,181,191.  
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Technical issues on biomarkers development 

A relevant issue related to the immunomonitoring of patients undergoing ICI therapy is the 

increasing need to compare parallel biomarker datasets generated in different laboratories 

(reviewed in175). Indeed, many efforts have been made to identify possible predictive biomarkers 

and early response markers for ipilimumab but, the results are of difficult interpretation since 

standardized reference interval are not available for most of immunological markers. Hence, since 

standardization of assays across laboratories is often difficult to achieve, an alternative approach 

is assay-harmonization. Organization of proficiency panels joined by a large number of 

experienced laboratories is a common strategy for assay harmonization. The aim of proficiency 

panels is to identify a set of parameters impacting on variance of a certain assay and subsequently 

find a consensus on a list of mandatory, harmonized parameters to be applied to single-laboratory 

protocols in order to generate comparable results. The Cancer Imunoguiding Program, a European 

network of leading scientists in the field of immunology, is the sponsor of a variety of proficiency 

panels to harmonize immunological assay like: ELISPOT, tetramer staining, intracellular cytokines 

staining or immunophenotyping of circulating MDSCs192-194. Another important target for 

immunomonitoring of cancer patients is the development of guidelines for a uniform report of 

the results. Indeed, this is a key step for sharing results with collaborating laboratories and, 

subsequently, for the integration of multiple datasets. The Minimal Information about T cell Assay 

(MIATA) project, developed by a large number of leading scientists195, and the Minimum 

Information about a Flow Cytometry Experiment, developed by International Society for 

Advancement of Cytometry196, are projects along this line of research.  
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AIM OF THE STUDY 

Ipilimumab, an antibody that blocks the function of the immune checkpoint Cytotoxic T- 

Lymphocytes Antigen-4 (CTLA-4), was the first immunomodulatory antibody approved for the 

treatment of metastatic melanoma. Given its immune-mediated mechanism of action, it is 

important to monitor the immune profile of patients receiving this therapy, to understand the 

mechanisms set in motion by the treatment and to correlate them to the clinical responses. In 

particular, there is a great interest in monitoring suppressive populations able to divert T cell 

functions, and one of the key suppressive players expanded in cancer patients are myeloid-derived 

suppressor cells (MDSCs). The immunophenotyping of MDSCs is performed by multicolour flow 

cytometry and is characterised by a high degree of complexity given the fact that several myeloid 

phenotypes have been described, ranging from immature cells to more differentiated cells such 

as monocytes and granulocytes, and moreover a specific marker of such cells is still missing. At 

present, a uniform methodology for the phenotyping of MDSCs by flow cytometry is missing.  

To overcome this obstacle, our group organised, under the umbrella of the Cancer Immunoguiding 

Program, a proficiency panel to harmonize the phenotypic definition of human MDSCs. The first 

purpose of the panel is to identify a robust markers combination for identification of a number of 

non-overlapping MDSC subsets; the panel also provides individual feedback to each participant 

laboratory in order to guide the harmonization of the experimental procedures used to phenotype 

circulating MDSCs. This combined effort will hopefully drive to a consensus on the minimal 

requirements for MDSC phenotyping that, in turns, will be used as a diagnostic tool to monitor 

MDSCs.  

An interesting application of MDSC phenotyping is the monitoring of these cells in melanoma 

patients undergoing ipilimumab treatment, potentially linking their level to therapy outcomes. 

Indeed, given the relatively recent knowledge of the immunological profile of toxicity, and the 

high cost of ipilimumab treatment, it is of great interest to develop robust predictive biomarkers 

supporting a more rational use of this drug, including the selection of patients with a higher 

probability to respond to the drug. To this end, the present study was designed to collect a wide 

dataset composed of clinical information and of tumor-associated and immunological parameters 

that we analysed using a multivariate non-parametric statistical approach in order to identify the 

parameters useful for implementing the clinical management of patients treated with ipilimumab.   
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MATERIALS AND METHODS 

HARMONIZATION OF IMMUNOPHENOTYPING OF MYELOID-

DERIVED SUPPRESSOR CELLS 

Selection of the donors 

Immunophenotyping of 10 putative subsets of MDSCs was performed on cryopreserved samples 

from three healthy donors (HBC-480, HBC-514, L29_3). The donors were centrally pre-selected by 

the organising committee among a set of PBMC samples derived from leukapheresis of healthy 

donors. All donors gave their informed consent before enrolment. The organising committee 

analysed the PBMC samples from different leukapheresises by flow cytometry and chose the 

donors with the most significant expansion of the 10 putative MDSC subsets. Two vials of each 

donors were then shipped to the participant laboratories in dry-ice and stored in liquid nitrogen 

upon arrival.  

Guidelines for the first step of the proficiency panel  

Experiment guidelines were sent to participants in order to indicate the mandatory parameters 

which must be fulfilled in the first experimental step of the proficiency panel and, as indication, 

exemplary staining cocktails, protocol and gating strategy were provided.  

The proposed staining cocktails contain 7 markers commonly used for MDSC recognition plus a 

dead-cell marker (DCM): HLA-DR, CD14, CD15, CD11b, CD33, Lineage cocktail (defined as 

CD3/14/19/56), CD124. This markers combination allows the identification of 10 myeloid subsets: 

MDSC1 CD14+/CD124+ 70, MDSC2 CD15+/CD124+ 70, MDSC3 Lin-/HLA-DR-/CD33+ 78, MDSC4 

CD14+/HLA-DRlow/- 72, MDSC5 CD15+/CD14-/CD11b+ 74, MDSC6 CD15+/FSClow/SSChigh 197, MDSC7 

CD15-/CD14+/CD33high/HLA-DRlow 198, MDSC8 CD15+/CD33high, MDSC9 CD14-/CD15-/CD33high and 

MDSC10 Lin-/HLA-DRlow/CD11b+ 199. Participants were asked to perform the staining twice, in two 

separate days, in order to calculate intra-laboratory variance. For each donor in each of the two 

experimental runs, participants were asked to determine cell viability, and test and report the 

number of total cells, singlets, monocytes and lymphocytes plus 10 putative MDSC phenotypes 

using one 8-color panel and/or three 4-color flow cytometry panels.  

In addition guidelines indicated to use at least one million PBMCs for tube, not to perform a resting 

period after thawing the cells, and not to fix the stained cells.  
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Each group was asked to perform data analysis using their own gating strategy and to report it in 

single layouts; moreover, groups were asked to determine the absolute number of the requested 

cell populations with or without the presence of a DCM.  

Experimental procedure used by our laboratory 

In addition to panel design, our group was one of the laboratories that participated to the 

proficiency panel. As some parameters were free of choice in the panel’s guidelines, this section 

describes the protocols we chose for staining, acquisition and analysis of the samples.  

We identified the 10 putative MDSC subsets according to all mandatory parameters described in 

the panel’s guidelines. The 8-color staining cocktail used in our laboratory is composed of: anti-

CD11b Alexa 700 (clone ICRF44, BD Pharmingen), anti-CD14 APC-H7 (clone MP9, BD Bioscience), 

anti-CD15 V450 (clone MMA, BD Biosciences), anti-CD33 PECy7 (clone P67.6, BD Biosciences), 

anti-CD124 PE (clone 25463, R&D SYSTEMS), Lineage cocktail (anti-CD3-14-19-56) (clone UCHT1, 

M5E2, HIB19, NCAM16.2, BD Biosciences and BD Pharmingen), anti-HLA-DR APC (clone L243, BD 

Biosciences). The Live/Dead (L/D), an amine-reactive dye, was chosen as DCM because it resists 

to cell-fixation with unaltered staining capability. 

PBMC were thawed at 37°C, then washed in ice-cold IMDM (Gibco) supplemented with 10% 

heath-inactivated fetal bovine serum (FBS) (Gibco), 1% Pen-Strep (Lonza), 1% Hepes (Lonza), 1% 

- Mercaptoethanol, AAG (Asparagine 0.24mM, Arginine 0.55mM, Glutamine 1.5mM) (Sigma-

Aldrich) and spinned at 1300 rpm for 6 minutes at 4°C. Cells were counted using trypan blue to 

exclude dead cells. The viability ranged from 94 to 77% and the yield after thawing ranged from 

37 to 58%.  

In each experimental run we prepared 4 tubes per donor, 3 tubes were used as controls (unstained 

cells, FMO control for HLA-DR and for CD124) while one tube contained the 8-color staining. FMO 

are fluorescence minus one controls, which contain all the antibodies of the staining cocktail with 

the exception of the antibody for which a control is needed200. For each donor, 1x106 PBMCs were 

distributed in each tube, washed with staining buffer and subsequently centrifuged at 1300 rpm 

for 6 min at 4°C. The supernatant was discharged and the cells were resuspended in 25μl of Fc-

Receptor blocking solution (Miltenyi Biotec) and incubated at 4°C for 15 minutes. Then, an 

appropriate quantity of staining buffer was added in order to reach the final volume of 100l. 

Afterwards, anti-CD124 PE antibody was added and incubated at 4°C for 10 minutes. 

Subsequently, a mixture of diluted antibodies (plus L/D) was added to the tubes and incubated at 

4°C for 20 minutes . Anti-HLA-DR was added only in FMO CD124 and MIX tubes. Cells were washed 
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with staining buffer and subsequently centrifuged at 1300 rpm for 6 min at 4°C. The supernatants 

were discharged and cells resuspended in 350μL of staining buffer for immediate acquisition using 

a LSRII flow cytometer (BD Biosciences) equipped with 4 lasers (405nm, 488nm, 561nm, 640nm). 

The staining buffer used was the Hanks' Balanced Salt Solution for Flow Cytometry supplemented 

of 1% FBS: 137mM NaCl (Sigma-Aldrich), 5mM KCl (Sigma-Aldrich), 0.3mM Na2HPO4 (Sigma-

Aldrich), 0.7mM KH2PO4 (Sigma-Aldrich), 0.4mM MgSO4 (Sigma-Aldrich), 0.3mM MgCl2 (Sigma-

Aldrich), 5mM Glucose (Sigma-Aldrich), 4mM NaHCO3 (Sigma-Aldrich), 1mM EDTA (Sigma-

Aldrich). 

We set-up compensation on the base of automated compensation using BD Comp beads and the 

antibodies included in the staining cocktails. L/D was substituted with anti-HLA-DR V500 (BD 

Bioscience). The compensation matrix generated by BD FACS Diva software was manually edited 

to adjust overcompensation wrongly introduced by the software. Data were analyzed using FlowJo 

software (Three Star Inc). 

To identify the 10 putative MDSC subsets, the following gating strategy was adopted: first set-up 

of a morphological gate based on FSC and SSC properties, then exclusion of doublets and dead 

cells (when required) according to the properties of each sample. After these preparative steps, 

the 10 putative MDSC subsets were identified as shown in Figure 1 of the Results. The gate for 

HLA-DRlow/- cells was based on the FMO HLA-DR control performed for each sample. The gate for 

CD14+/CD124+ cells was set-up considering the fluorescence of FMO CD124 and CD14- cells for 

each sample. The same strategy was used for CD15+/CD124+ cells. The gating strategy for MDSC 

identification did not change between analyses with or without exclusion of dead cells. The 

absolute number of all requested populations was reported in a file with or without the dead cell 

marker. 

Central data analysis  

Results from the 23 participating laboratories were centrally collected and analysed. Absolute 

numbers of the 10 putative MDSC subsets were normalized on the count of lymphocytes + 

monocytes. Variance was measured as %CV = (standard deviation/mean)*100. Comparison 

between %CV or normalized frequencies of myeloid subsets of different groups was performed 

using the Wilcoxon Signed-Rank test. Significance level was set for P<0.05.  
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IMMUNOMONITORING OF MELANOMA PATIENTS TREATED WITH 

IPILIMUMAB  

Patients 

Thirty-seven patients with a diagnosis of stage IV melanoma were enrolled in the study. A 

description of the clinical characteristics of these patients is reported in Table 1. Exclusion criteria 

for the administration of ipilimumab were the presence of brain metastases with symptoms or 

requiring treatment and an history of autoimmune disease. Ipilimumab was administered after at 

least another line of treatment, and therefore previous use of systemic chemotherapy, 

radiotherapy or BRAF inhibitors was allowed. 21 age- and gender-matched healthy donors were 

used as controls. The study was approved by the ethical committee of Istituto Oncologico Veneto 

and all the patients enrolled provided a written informed consent before blood withdrawal. 

Patients received four administrations of ipilimumab (3 mg/kg) every three weeks, as approved 

by the Italian Medicine Agency during the registration phase. In case of onset of immune-related 

adverse reactions to the treatment, requiring corticosteroids treatment, the therapy was 

discontinued and eventually resumed when patients recovered from toxicity. Disease progression 

was monitored by computered axial tomography (CAT) 12 weeks after the first infusion of 

ipilimumab and further confirmed with an additional CAT at week 16. Response to the treatment 

was assessed using the immune-related Response Criteria171. Patients presenting stable disease, 

partial and complete response were considered responders, while patients with progressive 

disease were included in the non-responder group. Follow-up of patients continued until disease 

progression and afterwards patients were provided with the best alternative therapeutic 

approach. Patients who presented, at any time within the observation period, immune-related 

adverse drug reactions (irADR) with severity above grade 3 were called ADR+ while patients 

without irADR or with an irADR severity below grade 3 were named ADR-.  

Study design  

Peripheral blood from melanoma patients was collected at baseline (W0) and 12 weeks after the 

first dose of ipilimumab was administered (W12). Additional blood samples were collected from 

patients every twelve weeks until disease progression. Blood samples were withdrawn in EDTA-

treated vacutainer tubes (BD Bioscience) and processed immediately from healthy donors and 

from patients. A set of parameters associated with the immune system and tumor burden were 

monitored at W0 and W12. Circulating levels of myeloid and T cell subsets were evaluated by 
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multicolor flow cytometry, while hematological parameters were evaluated by the Central 

Laboratory of the University Hospital of Padova. All collected parameters are listed in Table 1.  

CLASSIFICATION NAME ABBREVIATION 

HEMATOLOGICAL 
PARAMETERS 

C-reactive protein CRP 

S100B  

Vascular-endothelial growth factor VEGF 

Lactate dehydrogenase LDH 

Interleukin - 6 IL-6 

SUBSETS OF 
MYELOID CELLS 

CD14+/IL4R+ MDSC1  

CD15+/IL4R+ MDSC2  

CD15-/Lin-/HLA-DR- /CD33+ /CD11b+ MDSC3  

CD14+/HLA-DRlow/- MDSC4  

CD15+/V500high/SSChigh Putative eosinophils 

CD15-/Lin-/HLA-DR+/CD33dim Putative dendritic cells (DC) 

T CELL SUBSETS 

CD3+  

CD3+/CD4+  

CD3+/CD8+  

CD3+/CD4+/PD-1+  

CD3+/CD8+/PD-1+  

PD-1+ within CD3+/CD4+  

PD-1+ within CD3+/CD8+  

CLINICAL DATA 

Stage  

Circulating tumor cells CTC 

Eastern Cooperative Oncology Group 
performance status  

ECOG PS 

Number of doses  

Time-to-progression TTP 

Overall survival OS 

Immune-related adverse drug reaction irADR 

 
Table 1: Parameters monitored in melanoma patients  
The table indicates the classification and the abbreviation of each parameter included in the dataset 
used in this study .  

In addition, for each blood sample, plasma and PBMCs of patients and healthy donors were 

cryopreserved. PBMC and plasma were isolated from peripheral blood by density gradient 

centrifugation on Ficoll-Paque PLUS (GE Healthcare-Amersham). Peripheral blood was diluted 1:3 

in PBS, stratified on Ficoll-Paque PLUS and centrifuged 30 minutes at 1800 rpm at 20°C. After 
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centrifugation plasma was collected, centrifuged to discard possible contaminating cells, and 

aliquoted for cryopreservation at -80°C. PBMCs were aspirated, washed 3 times with PBS 1% 

human serum type AB (HS) (LONZA), and stored in liquid nitrogen. 

Characterization of the immune profile by flow cytometry 

The presence of circulating myeloid and T cell subsets was assessed in whole blood samples by 

multi-color flow-cytometry, in order to identify 4 subsets of MDSCs, putative eosinophils and 

dendritic cells (DC) and different subsets of T lymphocytes. The myeloid subsets were identified 

using the staining panel previously reported for the MDSC panel. The staining panel for 

identification of T cell subsets is composed of: anti-CD3 ECD (clone UCHT1, Beckman Coulter), anti-

CD4 FITC (clone SK3, BD Bioscience) anti-CD8 APC-H7 (clone SK1, BD Bioscience), anti-PD-1 PE 

(clone PD1.3.1.3, Miltenyi Biotec). 

For myeloid subsets phenotyping, 150l of fresh blood were washed with staining buffer and 

subsequently incubated with Fc-Receptor Blocking reagent (Miltenyi Biotec) at 4°C for 15 minutes. 

Afterwards, cells were stained with anti-IL4R (anti-CD124) PE antibody and incubated at 4°C for 

10 minutes. Later, the mixture of properly diluted antibodies (plus L/D) was added to the tubes 

and incubated at 4°C for 20 minutes. Cells were then washed with staining buffer and centrifuged 

at 1300 rpm for 6 min at 4°C. For T lymphocytes phenotyping, the procedure was the same with 

the exception that 50l, instead of 150l, of blood were used per tube and the total incubation 

time for antibody-staining was reduced from 30 to 20 minutes. After the washing step, red blood 

cells were lysed using Cal-Lyse whole blood lysing solution (Life Technologies) according to 

manufacturer instructions. Absolute counts of T cell subsets was determined using TruCount tubes 

(BD Bioscience). Data acquisition was performed using a FACSCalibur or a LSRII (Becton Dickinson) 

flow cytometer. Data were analyzed using FlowJo software (Three Star Inc). Autofluorescence, 

FMO controls for HLA-DR, CD124 and PD-1 and isotype control for CD124 were used as negative 

controls. Exemplary gating strategies for phenotyping of myeloid and T cell subsets are shown in 

Figure 5-6-7-9 of the Results section.  

Standardization of the immunophenotyping assay 

To standardize the staining panels for myeloid and T lymphocytes’ subsets, a dilution of 

antibodies that maximize the signal to noise ratio was chosen on the basis of single antibodies 

titration.  
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In addition, a protocol to monitor the performance of antibodies targeted to HLA-DR and IL4R 

was set-up, by using an EBV-B cell line that constitutively expresses these markers at high 

expression intensity. To reduce inter-assay variance, we used a single batch of B cell-line, fixed 

and permeabilized before cryopreservation. For each staining, the control cell-line was run in 

parallel to blood staining, labelling the cell-line with the same amount of anti-HLA-DR or anti-IL4R 

antibodies used for blood staining (Fig. 1 A). We acquired the control cells before acquiring the 

blood sample, and we could thus determine whether the mean fluorescence intensity (MFI) of 

HLA-DR or IL4R were included in the range of tolerance. The range of tolerance was built by 

repeated staining of the control cells performed before the beginning of the study. To this end, 

we calculated the MFI of HLA-DR and IL4Rof control cells in repeated measurements and we set 

the borders of tolerance within the mean ± 2x standard deviation of our measures (Fig. 1 B). 

 

Figure 1: Standardization of antibody performance 
Panel A shows a representative HLA-DR staining on reference B cell-line. Panel B reports the MFI 
values for reference B cell-line in independent experiments (black dot n=23), the tolerance range (red 
lines) and the 10th and 90th percentile of the measures (blue lines). Results describing the trend of 

HLA-DR and IL4R MFI are reported in the left and right plots of panel B, respectively.  

Another source of experimental variation might be the performance of the flow-cytometer. We 

weekly check the performance of the flow cytometer using the automatic protocol provided by 

Diva software. In addition, to assess the potential variation of the performance of the flow 

cytometer, we monitored the performance of the instrument during every experiment using a 

protocol after Perfetto et al. 201. A pool of commercial fluorescent particles was used and a 

tolerance range was defined on the basis of the MFI of the brighter peak of fluorescence emitted 

by the particles (Fig. 2 A). Hence, before starting the study, the multicolor particles were acquired 

several times using the same voltages determined for antibody staining of patients’ blood. A range 

of tolerance was built on the basis of the fluorochrome MFI associated to the marker to monitor. 

The range of tolerance is included within the mean ± 2x standard deviation of the measures (Fig. 

2 B). Every time a patient’s sample was run, the control multicolor particles were acquired in order 

to determine whether the MFI of the particles lay within the tolerance range.  
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Figure 1: Standardization of flow cytometer performance 
Panel A is representative of the fluorescence of multicolor particles in the APC channel. Panel B 
reports the MFI values of multicolor particles for independent experiments (black dot n=36), the 
tolerance range (red lines) and the 10th and 90th percentile of the measures (blue lines). The left and 
right plots of panel B describe the trend of MFI of APC (fluorochrome coupled to anti -HLA-DR 

antibody) and of PE (fluorochrome associated with anti -IL4Rantibody, respectively.  

Statistical analysis  

Wilcoxon Rank Sum test was used to compare the frequencies of myeloid and T cell subsets among 

healthy donors and melanoma patients at baseline, while Wilcoxon Signed Rank test was used to 

determine the level of significance among immunological parameters measured at W0 and W12.  

For identification of survival biomarkers, we defined OS as the time occurring between baseline 

and death or last contact with the patient.  

To identify two groups of patients with homogenous characteristics in terms of hematological 

parameters and myeloid and T cell subsets, the Cluster-K-means algorithm was used. Wilcoxon 

Rank Sum test was used to compare baseline and post-treatment levels of hematological or 

immunological parameters between the two clusters. Difference in OS between the two clusters 

was tested using Log-Rank test and the survival curves of the two groups were built according to 

Kaplan-Meier method.  

For univariate survival analysis, patients were divided in two groups according to the cohort-

median value of each hematological and immunological parameter at baseline or following 

ipilimumab treatment. Difference in survival between patients presenting values below or above 

the median for each parameter was tested using the Log-Rank test and the survival of each group 

was reported using Kaplan-Meier method.  

Correlations between hematological and immunological parameters were assessed at baseline 

and after ipilimumab treatment using Spearman Rank Order Correlation analysis.  

To identify potential correlations between survival and onset of toxicity, patients were divided 

according to the development of immune-related adverse events, and the difference between 

their OS was evaluated using the Log-Rank test. Survival curves were reported according to 
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Kaplan-Meier. A 2x2 contingency table was built on the basis of patients’ survival status and 

toxicity and the degree of correlation was tested using Fischer Exact Test.  

The association between toxicity and tumor-associated or immunological parameters (TIPs) was 

tested dividing the cohort in two groups according to the onset of irADR with severity above grade 

3. The level of significance among levels of TIPs was determined using Wilcoxon Rank Sum test or 

NonParametric Combination test202 to compare inter-group differences, while Wilcoxon Signed 

Rank test or NonParametric Combination test were used to compare intra-group variation of TIPs 

between W0 and W12.  

Results were considered statistically significant with P<0.05. All the statistical analysis were 

performed using SigmaPlot software v12.00 (Systat Software Inc.) and MiniTab software v17 

(Minitab Ltd.). 
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RESULTS 

HARMONIZATION OF IMMUNOPHENOTYPING OF HUMAN MYELOID-

DERIVED SUPPRESSOR CELLS 

At present, at least 7 myeloid cell subsets have been identified as MDSCs that encompass 

promyelocyte-like cells, monocytes and granulocytes. This heterogeneity, associated to the lack 

of a specific marker, hampered the identification of a simple and robust method of identification 

of these cells by flow cytometry. To overcome this obstacle, in collaboration with Dr. Walter 

(Immatics Biotechnologies, Tubingen) and Prof. Bronte (University of Verona) our group designed 

a proficiency panel to harmonize the phenotype of human MDSCs, under the umbrella of the 

Cancer Immunoguiding Program (CIP).  

Design of the MDSC-proficiency panel 

As preparative steps, we sent out two questionnaires to all the groups that published at least one 

paper on mouse and human MDSCs, exploring their interest in participating to the panel along 

with a number of questions referring to the procedures used for MDSCs identification. Participants 

were required to be experienced in multicolour flow cytometry. The panel design was based on a 

consensus of opinions from the preparatory process and it envisions a two steps approach. In the 

first step participants were asked to quantify 10 predefined phenotypes of putative MDSCs by 

multicolour flow-cytometry on centrally preselected cryopreserved PBMCs of three healthy 

donors (HBC-480, HBC-514, L29_3) using their own staining protocol, antibody clones, 

fluorochromes and gating strategy. We provided individual feedback for the results of each 

laboratory as compared to the entire group and we determined the inter- and intra-laboratory 

variance of results, indentifying a set of critical parameters influencing these indexes of variation. 

In the second step, laboratories will again perform quantification of 10 predefined MDSC 

phenotypes on blinded PBMC samples, but a number of mandatory harmonization guidelines 

deduced from the first step will be given. 

Guidelines for the first phase of MDSC proficiency panel 

The staining cocktail, proposed in the panel’s guidelines, contains 7 markers commonly used for 

MDSC recognition plus a DCM: HLA-DR, CD14, CD15, CD11b, CD33, Lineage cocktail (defined as 

CD3/14/19/56), CD124. This marker combination allows the identification of 10 myeloid subsets: 

MDSC1 CD14+/CD124+ 70, MDSC2 CD15+/CD124+ 70, MDSC3 Lin-/HLA-DR-/CD33+ 78, MDSC4 

CD14+/HLA-DRlow/- 72, MDSC5 CD15+/CD14-/CD11b+ 74, MDSC6 CD15+/FSClow/SSChigh 197, MDSC7 
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CD15-/CD14+/CD33high/HLA-DRlow 198, MDSC8 CD15+/CD33high, MDSC9 CD14-/CD15-/CD33high and 

MDSC10 Lin-/HLA-DRlow/CD11b+ 199(Fig.1). The list of the 10 putative MDSC subsets to be reported 

and the minimal composition of the staining cocktail are listed in Table 1.  

OBLIGATORY MYELOID PHENOTYPES 
TO BE DETERMINED 

MINIMAL COMPOSITION OF THE STAINING 
COCKTAIL 

MDSC1 = CD14+ CD124+ Anti-CD11b 

MDSC2 = CD15+ CD124+ Anti CD14 

MDSC3 = Lin- CD33+ HLA-DR- Anti-CD15 

MDSC4 = CD14+ HLA-DRlow Anti-CD33 

MDSC5 = CD15+ CD14- CD11b+ Anti-HLA-DR 

MDSC6 = CD15+ FSClow SSChigh Anti-CD124 (IL4R) 

MDSC7 = CD15- CD14+ CD33hi HLA-DRlow 
Lineage cocktail as defined here by anti-

CD14/CD19/CD3/CD56 

MDSC8 = CD15+ CD33hi Dead cell maker 

MDSC9 = CD14- CD15- CD33hi  

MDSC10 = Lin- HLA-DRlow CD11b+  

 
Table 1: Mandatory parameters for MDSC proficiency panel 
Table shows the 10 phenotypes to be determined (left column), and the minimal number of markers 
to be used (right column) for identification of the 10 putative MDSC subsets.  

Each participating laboratory was asked to perform the staining twice, in two separate 

experimental runs, and to report the number of total events, singlets, monocytes, lymphocytes 

and myeloid subsets in the presence or absence of the DCM. The reason of the repetition of the 

staining is to calculate intra-laboratory variance that gives an estimate of the reproducibility of 

results in each laboratory. Besides, as some MDSC subsets may be damaged by thawing 

procedures, we asked participants to perform analysis with or without the presence of a DCM, to 

prove whether some MDSC subsets were underestimated by the exclusion of dead cells. We also 

asked to use one 8-colors staining panel and/or three 4-colors panel staining, in order to include 

in the panel also the laboratories with flow cytometers equipped only for 4-colors analyses. 

Protocol of thawing and staining, fluorochrome and clone of antibodies, gating strategy and choice 

of negative controls were left free of choice. A detailed description of the mandatory instructions 

and the protocol used in our laboratory is reported in Material and Methods section. Twenty-

three laboratories from Europe and the United States of America participated to this first step of 

the proficiency panel, results were centrally collected and analysed in our laboratory and in the 

laboratory of Dr. Walter at Immatics Biotechnologies.  
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Figure 1: Exemplary gating strategy for the identification of 10 putative MDSCs subsets 
Exemplary gating strategy included in the panel’s guidelines  is reported. Preliminary doublets 
exclusion (FSC-H vs FSC-A)(A) followed, when required, by dead cell exclusion (B) was suggested 
before proceeding with the identification of 10 myeloid subsets indicated in the figure with letters 
from C to N.  
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Determination of intra- and inter-laboratory variance 

To ascertain the variance among results, we calculated the % coefficient of variation (standard 

deviation/mean x 100). Intra-laboratory variance was defined as the variance of results between 

the first and second experimental runs in each laboratory, while inter-laboratory variance was 

defined as the variance occurring in results obtained by the 23 different laboratories in the two 

experimental runs.  

Intra-laboratory variance ranged from 24 to 52% (Fig. 2 A), and was almost uniform among the 

different subsets, but inter-laboratory variance was higher, ranging from 64 to 310%, Fig. 2 C, and 

with high variation in the different subsets. In fact, variance was higher when assessing 

granulocytic subsets (MDSC2-5-6-8, range 200-310%), intermediate for immature MDSCs (MDSC3-

10, range 100-170%), and presented the lower coefficient of variation with monocytic MDSCs 

(MDSC 4-7, range 64-75%). A different matter is related to MDSC1 cell subset estimation, that 

shows a very high variance (range 180-210%), but this was likely due to other parameters used for 

CD124+ cell identification (see later). We also observed that the use of DCM significantly increased 

intra-laboratory variance (P<0.001 on overall MDSC populations according to Wilcoxon Signed 

Rank test) (Fig. 2A), while inter-laboratory variance does not change significantly (Fig. 2C). We 

reported individual results for three MDSC subsets, representative of the three main classes of 

MDSCs, as an example of the great variation in the quantification of these cells (Fig. 2 B).  

 



59 
 

Figure 2: Intra-laboratory and inter-laboratories variance  
Immunophenotyping of 10 putative MDSCs subsets was performed on PBMC of 3 healthy donors 
(HBC-480, HBC-514, L29_3) in two independent experimental runs. Intra-laboratory and inter-
laboratory variance are shown in panel A) and C), respectively. Black bars showed average %CV from 
analyses performed without exclusion of dead cells, while white bars refers to analyses considering 
only live cells. (P<0.001 on overall MDSC populations according to Wilcoxon Signed Rank test for 
difference in intra-laboratory variance). n=18 evaluable labs reporting data for the 8 -color panel. 
Laboratories that did not report all requested data were not considered evaluable,  while laboratories 
performing 4-color panels were excluded in order to perform analysis on a more homogeneous 
cohort. Panel B) showed an example of the frequencies of monocytic (MDSC4 – upper panel), 
granulocytic (MDSC5 – central panel) and immature (MDSC10 – lower panel) MDSCs, normalized on 
the count of lymphocytes+monocytes, reported by each laboratory performing either one 8 -color 
panel or three 4-color panels; the two paired-histograms refer to the two independent experimental 
runs performed by each laboratory (black bars = first run, grey bars = second run). Missing values “m”.  

In order to reduce variance, we normalized data by diving the number of each MDSC subset on 

the total count of lymphocytes plus monocytes and by reporting the value to 100. This 

normalization reduced the variance between laboratories for 7 out of 10 subsets (Fig. 3 A) but 

heterogeneity of the results was still very high even after normalization, and thus we set out to 

identify potential parameters responsible for this high spread. As shown in Figure 3 B, the use of 

DCM affects the quantification of the myeloid subsets, as it brings about a significant reduction of 

granulocytic subsets and, to a minor extent, also of immature subsets. On the contrary, the 

quantification of monocytic MDSCs (MDSC 4-7) is unaffected by the use of DCM. A possible 

explanation of these results lies in the fragile nature of granulocytes that are more prone to death 

during the thawing procedure, as compared to monocytic cells.  

Identification of critical parameters influencing the variance of results 

By analysing a number of parameters potentially affecting the variance, we found that an 

important source of variation was the gating strategy adopted by the groups to identify MDSCs 

subsets. To dissect the influence of the gating strategy on inter-laboratory variance, we compared 

the variance of 9/18 groups adherent to a homogeneous gating strategy, which corresponds to 

the strategy exemplified in the panel’s guidelines, to those who were using a number of different 

gating strategies, distinct from that proposed in the guideline (9/18). Indeed, we detected a 

significant difference in the overall coefficient of variation when we compared these two groups 

(Fig. 3 C, P=0.0012 on overall MDSC populations according to Wilcoxon Signed Rank test). To 

minimise the interference on variance analysis given by other covariates, we considered for this 

analysis 18/23 laboratories that identify the 10 putative MDSC subsets using an 8-color panel and 

analysing data without DCM.  
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Figure 3: Candidate parameters affecting inter-laboratory variance 
Immunophenotyping of 10 putative MDSCs subsets was performed by staining the PBMCs of 3 healthy 
donors (HBC-480, HBC-514, L29_3) in two independent experimental runs.  Panel A shows average 
%CV (n=14 evaluable labs reporting data for the 8-color panel) of the frequencies of the ten MDSC 
subsets normalized according to different strategies. Results are reported without normalization 
(Black bars) and normalized on the number of singlets (yellow bars), lymphocytes (blue bars) and 
lymphocytes + monocytes (red bars) for each MDSC subset. Panel B shows the average normalized 
frequencies of MDSC subsets (n=18 evaluable labs reporting data for the 8 -color panel), normalized 
on lymphocytes + monocytes identified either excluding (white bar) or not (black bars) the dead cells.  
C) Average %CV (n=18 evaluable labs reporting data for the 8-color panel) of the frequencies of MDSC 
subsets identified either using an homogenous gating strategy (white bar) o r not (black bars). 
Differences between data have been tested using Wilcoxon Signed Rank test and labelled as *** when 
P<0.001 or as **** when P<0.0001. 

As previously stated, the inter-laboratory variance for MDSC subsets identified by CD124 marker 

(MDSC1 and MDSC2) was high, ranging from 178 to 210% for MDSC1 and from 251 to 310% for 

MDSC2. To identify the possible sources of high variance for these subsets, we harmonized CD124-

independent parameters which may otherwise influence the analysis: to this end, we considered 

only 16/23 laboratories that used an 8-color panel, analysed data without dead cell marker and 

chose one of the two most used anti-CD124 clones for identification of CD124+ cells; in addition, 

we based our analysis on MDSC1 because the low frequencies of MDSC2 would lead to high %CV 

even in the presence of low relative difference between measurements. We identified two 

possible parameters responsible for the high variance of MDSC1: the gating strategy and the anti-

CD124 clone. Indeed, CD124 is a marker characterized by a dim intensity and a unimodal 

distribution of the signal, and identification of positive cells brings about a certain degree of 
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complexity. Indeed, participants identified CD124+ cells following two distinct gating strategy: 

9/16 groups set the gate for CD124+ cells only considering cells with high intensity of this marker 

(Fig. 4 Ai), while 7/16 included also cells with a dim expression (Fig. 4 Aii). This decision determined 

a very high difference in MDSC1 quantification, given equal clones used for staining (Fig. 4 B), and 

thus the overall variance for MDSC1 raised, but the %CV was similarly reduced when we separated 

the results on the base of the gating strategy (Fig. 4 C). The second main source of variation 

between data lies on the choice of anti-CD124 clone. 20/23 laboratories used two clones for 

CD124 identification (n=13 clone hIL4R-M57, n=7 clone 25463) and we recorded a discrepancy 

between their staining potential: on equal gating strategy, clone 25463 identified higher 

frequencies of MDSC1 than clone hIL4R-M57 (Fig. 4 D).  

 

Figure 4: Parameters affecting inter-laboratory variance for MDSC1 
Quantification of MDSC1 was included in the immunophenotyping of the 10 putative MDSCs subsets 
performed on PBMC of 3 healthy donors (HBC-480, HBC-514, L29_3) in two independent experimental 
runs. Figure shows results relative only to MDSC1. In this analysis 16 laboratories out of 23 were 
included as they performed an 8-color panel staining that included either anti-CD124 clones hIL4R-
M57 or 25463, and data were analysed without exclusion of dead cells. A) Two different exemplary 
gating strategies for determination of CD124+ cells. CD124+ cells determined as those expressing a 
high fluorescence intensity for this marker (i) or as those dimly fluorescent (ii). Panel B shows the 
average normalized frequencies of MDSC 1 normalized on lymphocytes + monocytes identified either  
including cells with high (black bars) or high + dim (grey bars) fluorescence . Comparison between 
different gating strategies was performed on equal clones (either hIL4R -M57 or 25463) as indicated 
on the top of the plot. C) Average %CV of the frequencies of MDSC1 determined as those expressing 
a high fluorescence intensity for CD124 (gated on high) or as those dimly fluorescent (gated on dim) 
or any gating strategy (all). Panel D depicts the average frequencies of MDSC 1 normalized on 
lymphocytes + monocytes identified either using anti-CD124 clone hIL4R-M57 (black bars) or 25463 
(grey bars). Comparison between different staining potential was performed on equal gating strategy 
as indicated on the top of the plot. 

Immature MDSCs are defined as myeloid cells with low or negative expression of HLA-DR and 

negative for the staining of Lineage cocktail. In the panel’s guidelines we proposed to use a Lineage 
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cocktail properly excluding T, B and NK cells plus monocytes. However, only 12/23 laboratories 

used the proposed Lineage cocktail. 6/23 used a cocktail including markers only for T, B 

lymphocytes and NK cells while 5/23 used a Lineage cocktail with a richer composition including 

markers for T, B lymphocytes and NK cells, monocytes and granulocytes. This discrepancy probably 

increased the variance of the results (range 100-170% Fig. 2 C) and the addition of a granulocytic 

marker in the Lineage cocktail led to identification of more defined, albeit lower, percentage of 

immature subsets (data not shown).  

Future perspectives for the second experimental step  

Results from the first phase of the proficiency panel demonstrate that participants identified the 

10 putative MDSC subsets with good intra-laboratory reproducibility but with a very high inter-

laboratory variance, thus supporting the need of an effort for the harmonization of human MDSC 

determination. Such large variance may be partially corrected by normalizing the results on an 

internal control (number of lymphocytes plus monocytes) and using a homogenous gating strategy 

for MDSC identification. To this end, we are currently setting up an in-silico panel to clearly assess 

the influence of the gating strategy on the spread of the results and to identify a robust gating 

strategy that will be used in the second step of the proficiency panel. Other aspects that require 

attention are the use of DCM and the identification of CD124+ cells. Indeed, as the presence of 

DCM significantly impacted on intra-laboratory variance and on quantification of granulocytic 

subsets, we will discuss with the participants whether it is recommendable to include the DCM in 

the staining. Other issues open for discussion are the harmonization of CD124 staining, and the 

composition of the Lineage cocktail. 
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IMMUNOMONITORING OF MELANOMA PATIENTS TREATED WITH 

IPILIMUMAB  

Clinical characteristics of the cohorts 

We enrolled 37 patients affected by metastatic melanoma and selected to receive ipilimumab. 

The mean age of the cohort was 63 years (range 33-83) and it was composed of 25 males (68%) 

and 12 females (32%). In parallel, we enrolled also 21 healthy donors matched for age and gender: 

the mean age of this cohort was 58 years (range 37-87) and it was composed of 14 males (67%) 

and 7 females (33%). Clinical characteristics of melanoma patients and healthy controls are 

detailed in Table 2.  

At baseline, all melanoma patients were affected by metastatic disease (stage IV) and the majority 

of them (n=25, 67%) presented with IV M1c stage, which is characterized by the presence of 

visceral metastasis and/or elevated LDH levels, eight patients (22%) had stage IV M1b with lung 

metastasis and normal LDH levels, and only a minority of patients had distant metastasis restricted 

in the skin and normal LDH levels (stage IV M1a, n=4, 11%). Albeit the high prevalence of late stage 

patients, the Eastern Cooperative Oncology Performance Status (ECOG PS) was good for most of 

the patients (n=27, 73% ECOG PS ≤ 1).  

Most of the patients were previously genotyped for B-RAF and N-RAS mutations (n=35, 99,3%). 

59% of the patients did not carry any mutations in these genes while 31% presented B-RAF 

mutations and were pre-treated with B-RAF inhibitors. Only one patient have a mutation on N-

RAS.  

Baseline levels of circulating tumor cells (CTC) was also available from 11 patients (36%) who 

presented elevated or stable CTC post-treatment. However, this low number of patients reduced 

the power of any statistical association with immune parameters and therefore we did not include 

this parameter in our statistical analysis. 

Ipilimumab treatment was successfully completed for 28 patients (75%), while one fourth of the 

patients discontinued the treatment because of toxicity or death (n=9, 25%). The median time to 

progression was 12 weeks and partial response was achieved by 19% of the patients (n=7), 11% 

had a stable disease (n=4), and 70% of the patients did not control the disease (n=25). Complete 

responses were not achieved in this group of patients. OS was evaluated: one-year survival rate 

was 43% while 62% of the patients were still alive when survival was measured at the common 

minimum time of follow-up, that is 29 weeks for this study (W29).  
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 PATIENTS HEALTHY DONORS 

N 37 21 

Age (mean, range) 63 (33-83) 58 ( 37-87) 

Gender M/F (n, %) 25/12 (68/32%) 14/7 (67/33%) 

  n %  

ECOG PS 
≤ 1 27 73  

2 10 27  

Stage 

M1a 4 11  

M1b 8 22  

M1c 25 67  

Mutations (n=32) 

WT 19 59  

B-RAF 10 31  

N-RAS 1 0,3  

ND 2 0,7  

CTC (n=11) W0 4 36  

Variation of CTC (W12-W0) 

up 4 36  

down 2 18  

stable 5 46  

Ipilimumab therapy 
completed 28 75  

not completed 9 25  

Response W12 

Median TTP 12 weeks   

CR 0 0  

PR 7 19  

SD 4 11  

PD 25 70  

Survival 

Median OS 32 weeks   

1-year OS n=28 11 43%  

Alive W29 23 62  

Deceased W29 14 38  

 
Table 2: Baseline characteristics of melanoma patients and healthy donors  
Response was assessed 12 weeks upon enrollment according to immune-related response criteria and 
classified as follows: complete response (CR), partial response (PR), stable disease (SD), progressive 
disease (PD). Eastern Cooperative Oncology Performance Status (ECOG PS), Circulating Tumor Cells 
(CTC), week 0 (W0), week 12 (W12). 
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Evaluation of the immune profile of melanoma patients at baseline  

The first step of this study compared the immune profile of melanoma patients with healthy 

donors to evaluate the modifications induced by melanoma in the immune system of these 

patients. To this end, we investigated different populations of circulating myeloid cells, T cells and 

serum proteins named haematological parameters herein. 

Among the myeloid cells analysed, we considered four subsets of MDSCs, eosinophils and putative 

dendritic cells (DCs). Given the high heterogeneity of phenotypes attributed to MDSCs, we chose 

to monitor the presence of two monocytic, one immature ad one granulocytic subsets because 

they are the most common MDSC subsets found in the whole blood of cancer patients57. Since we 

phenotyped MDSCs on whole blood, it was not possible to monitor also the levels of low-density 

polimorphonuclear cells that often co-purify with PBMCs in cancer patients and constitute a 

subsets of granulocytic MDSCs75. The phenotypes of MDSCs subsets assayed in this study are 

reported in Figure 5: MDSC 1 (CD14+/IL4R+, panel B), MDSC 2 (CD15+/IL4R+, panel D), MDSC 3 

(CD15-/Lin-/HLA-DR-/CD33+/CD11b+, panel E), MDSC 4 (CD14+/ HLA-DR low/-, panel C). 
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Figure 5: Identification of four MDSC subsets in whole blood by multicolour flow 
cytometry 
A) Gating strategy to identify MDSCs consists in the definition of a morphological gate, set on FSC vs 
SSC parameters, followed by exclusion of doublets and dead cells and further definition of MDSC 
subsets as illustrated in panels B-E. B) and C) illustrate the gating strategy to identify monocytic MDSC: 

MDSC1 (CD14+/IL4R+, panel B) and MDSC4 (CD14+/ HLA-DR low/-, panel C); panel D exemplified the 

gating strategy for granulocytic MDSC2 (CD15+/IL4R+) while panel E shows the gating strategy for 
immature MDSC3 (CD15-/Lin-/HLA-DR-/CD33+/CD11b+). The MDSC subsets reported belong to 
different patients indicated in the figure with the acronym PDO plus the serial number of the sample. 

FMO controls were used for HLA-DR and IL4Relectronic gating.  

Eosinophils were defined using the pan-granulocytes marker CD15 and considering their peculiar 

intense autofluorescence at 520nm, when excited with the 405nm violet laser. The use of 

autofluorescence to identify eosinophils was previously reported by other authors203,204 and it is 

primary due to flavins contained in their granules. The gating strategy to identify eosinophils is 

depicted in Figure 6.  

 
 
Figure 6: Identification of eosinophils in whole blood by multicolour flow cytometry 
Peripheral blood leukocytes were analysed using a morphological gate set on FSC vs SSC parameters. 
After exclusion of doubles and dead cells, the eosinophils’ population was defined on the basis of 
CD15 expression and of high autofluorescence in the V500 channel. To confirm that gated cells belong 
to the myeloid lineage, the pan-myeloid markers CD33 and CD11b were also used. As shown in the 
overlay representation, eosinophils have high SSC and a characteristic autofluorescence in the V500 
channel. 

Finally we identified a subset of myeloid cells which did not express markers of mature 

lymphocytes, granulocytes and monocytes and expressed high levels of HLA-DR (CD15-/Lin-/HLA-

DR+/CD33dim). This phenotype is compatible with the phenotypic definition of DCs. The gating 

strategy for this putative DCs subset is depicted in Figure 7.  
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Figure 7: Identification of putative dendritic cells in whole blood by multicolour flow 
cytometry 
Putative DCs were identified among blood leukocytes by using a morphological gate set on FSC vs SSC 
parameters. After exclusion of doubles, dead cells and CD15+ granulocytes, mature monocytes and 
lymphocytes were excluded by a progressive gating on Lineage - cells and putative DCs  were identified 
on the basis of the high expression of HLA-DR and of a dim expression of CD33. In the overlay 
representation, these cells are characterized by peculiar SSC properties, i.e. lower than monocytes 
but higher than lymphocytes.  

Melanoma patients showed a significant expansion of MDSC-1, -2 and -4 subsets in the blood, and 

had reduced frequencies of eosinophils compared to healthy donors, while putative DCs and 

MDSC 3 levels did not differ significantly from the control group of healthy donors, matched by 

age and gender (Fig. 8 C-F). Both subsets of MDSCs expressing IL4Rhad a significant expansion 

(MDSC1 P<0.001, Fig. 8 A, and MDSC2 P=0.009, Fig. 8 B), along with MDSC4 (P=0.004, Fig. 8 D). In 

addition, melanoma patients presented significantly lower levels of circulating eosinophils 

compared to healthy donors (P= 0.001, Fig 8 E). 
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Figure 8: Baseline levels of myeloid cells in stage IV melanoma patients and healthy 
donors. 
Baseline levels of myeloid subsets in melanoma patients (MEL, n=27 to 33 depending on t he myeloid 
subset considered) and age- and gender-matched healthy donors (HD n=21) are shown. Each box plot 
show first and third quartiles and median values of the myeloid subset indicated at the top of the 
plot. Outlier are plotted as individual points. Wilcoxon Rank Sum test was used to compare the 
frequencies of myeloid subsets between the two groups (** P<0.01, *** P<0.001). Values were 
considered statistically significant for P<0.05. 

Frequencies of T cell subsets were assessed on whole blood by restricting the analysis among 

PBMCs (Fig. 10 A), and absolute counts of these cells were obtained using Trucount tubes (Fig. 10 

C). We considered both total CD3+ T cells (Fig. 9 B) and their major sub-population: CD3+/CD4+ and 

CD3+/CD8+ T cells (Fig. 9 C-D). In addition, we decided to monitor PD-1 expression on both T cell 

subsets. The expression of PD-1 was evaluated as frequency and as absolute numbers of 

CD3+/CD4+/PD-1+ and CD3+/CD8+/PD-1+ cells; we also quantified PD-1 expression within each T cell 

subsets (Fig. 9 E-F). Gating strategy is reported in Figure 9. Cumulative results are depicted in 

Figure 10.  

At baseline melanoma patients did not show an altered frequency of total CD3+ T cells and T cell 

subsets compared to healthy donors (Fig. 10 A), but the absolute count of total T lymphocytes was 

significantly reduced (Fig. 10 C, P<0.001). This was primary due to a reduction in the number of 

CD3+/CD4+ cells while the number of CD3+/CD8+ cells was unaffected (Fig. 10 C, P<0.001 for 

CD3+/CD4+ cells). Of note, we observed a significant up-regulation of PD-1 expression on CD4+ T 

cells compared to healthy donors (Fig. 10 B) and indeed, the count of PD-1+ cells was elevated in 

both lineages of T cells compared to controls (Fig 10 C P=0.007 for CD3+/CD4+/PD-1+ cells and 

P<0.001 for CD3+/CD8+/PD-1+ cells).  
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Figure 9: T cell subsets identification in whole blood by flow cytometry 
PBMCs were included in the analysis using a morphological gate set on FSC vs SSC parameters (A). 
After exclusion of doublets, CD3+ T cells were considered (panel B). CD4+ and CD8+ T cells were 
identified as reported in panels C and D, respectively. PD-1+ cells were quantified within each T cell 
subset (panels E-F), setting the gate on FMO control.  
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Figure 10: Baseline frequencies and absolute numbers of T cell subsets in melanoma 
patients and healthy donors 
(A) Baseline frequencies of T cell subsets in melanoma patients (PT, n=37) and age- and gender-
matched healthy donors (HD n=21). (B) frequencies of PD-1+ cells within the CD4+ or CD8+ subsets of 
T lymphocytes. (C) absolute count of T cell subsets in a group of patients (n=22) and healthy donors 
(n=10). Each box plot shows first and third quartiles and median values of the T cell subset indicated 
at the top of the plot. Outlier are plotted as individual points. Wilcoxon Rank Sum test was used to 
compare the frequencies of T cell subsets between melanoma patients and healthy donors (* P<0.05, 
** P<0.01, *** P<0.001). Values were considered statistically significant for P<0.05. 

We also assessed the levels of serum factors of melanoma patients that are associated either with 

the immunological status of patients or with tumor-burden. In detail, we considered circulating 

levels of: i) C-reactive protein (CRP) and interleukin-6 (IL-6), which are proteins associated with 

inflammation and MDSCs expansion32,107,108, and ii) vascular endothelial growth factor (VEGF), 

lactate dehydrogenase (LDH) and S100B, which are related to angiogenesis, tumor burden and 

contribute to staging of metastatic melanoma (LDH)57,179. As shown in Table 3, about half of the 

patients presented consistent alteration of CRP and S100B levels at baseline, while a lower 

proportions of patients had altered VEGF, IL6 and LDH levels compared to the upper limit of 

normal (ULN).  
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Baseline Post-treatment 

%Below 
ULN 

%Above 
ULN 

%Below 
ULN 

%Above 
ULN 

C-reactive protein (CRP) 50 50 53 47 

Interleukin 6 (IL6) 79 21 65 35 

Vascular endothelial growth factor 
(VEGF) 

70 30 65 35 

S100B 47 53 29 71 

Lactate dehydrogenase (LDH) 65 35 40 60 

 
Table 3: Haematological parameters in melanoma patients. 
Percentage of patients with values of serum factors below or above the ULN at baseline and post -
treatment. 

In conclusion, melanoma patients significantly expanded three subsets of MDSCs (MDSC 1-2-4) 

and had lower frequencies of eosinophils compared to healthy donors. Besides, patients 

underwent significant alterations in the T cell compartment showing lower numbers of T 

lymphocytes, especially CD4+ T cells, and an up-regulation of PD-1 on CD4+ T cells. Finally, patients 

presented altered levels of serum proteins associated with inflammation and tumor burden such 

as CRP and S100B.  

Immune profile of melanoma patients during ipilimumab treatment 

Since ipilimumab exerts its major functions through modulation of the T cell response, we 

investigated whether the administration of the drug was able to induce also a modification in the 

immune profile of patients. To this end, we compared the parameters evaluated at baseline (W0) 

also after 12 weeks (W12), when patients underwent to their first clinical evaluation of response 

via CAT. 

In the myeloid compartment we observed a significant reduction of immature MDSC3 in post-

treatment samples compared to baseline (Fig. 11 C, P=0.024) and a significant expansion in the 

putative DC subset Lin-/HLA-DR+/CD33dim (Fig. 11 F, P=0.017). On the other hand, MDSC 1-2-4 and 

eosinophils, which were significantly altered at baseline compared with healthy donors, did not 

change significantly upon treatment with ipilimumab (Fig. 11 A-B-D-E). 
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Figure 11: Evaluation of myeloid subsets during ipilimumab treatment  
Levels of myeloid subsets monitored in melanoma patients at W0 (n=20 to 24 depending on the 
myeloid subset considered) and at W12 (n=20 to 24 depending on the myeloid subset considered). 
Each box plot shows first and third quartiles and median values of the myeloid subset indicated at the 
top of the plot. Outliers are plotted as individual points. Wilcoxon Signed Rank test was used to 
compare the frequencies of myeloid subsets in melanoma patients at different time-points (*P<0.05). 
Values were considered statistically significant for P<0.05. 

Ipilimumab treatment did not change total percentage of CD3+ T cells, nor their absolute number 

(Fig. 12 A-B). On the contrary, following treatment PD-1 expression was significantly up-regulated 

on both CD4+ and CD8+ T cell subsets (Fig. 12 A, P=0.003 for CD3+/CD4+/PD-1+ cells and P=0.016 for 

CD3+/CD8+/PD-1+ cells). This effect was not due to an expansion of CD4+ or CD8+ T cells, whose 

frequencies and absolute numbers remained stable (Fig. 12 A-C), and it is even more significant 

when considering the percentages of PD-1+ cells within the CD4+ or CD8+ gate (Fig.12 B, P<0.001 

within CD4+ T cells and P<0.001 in CD8+ T cells).  
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Figure 12: Changes of T cell subsets following ipilimumab treatment  
Frequencies and absolute numbers of T cell subsets monitored in melanoma patients at W0  (n=29 for 
percentages and n=16 for absolute count) and at W12 (n=29 for percentages and n=16 for absolute 
count). Panel A shows the frequencies of T cell subsets referred to PBMC. Panel B shows the frequency 
of PD-1+ cells referred to CD4+ or CD8+ subsets while the absolute count of T cell subsets are reported 
in panel C. Each box plot shows first and third quartiles and median values of the T cell subset 
indicated at the top of the plot. Outlier are plotted as individual points. Wilcoxon Signed Rank test 
was used to compare the frequencies of T cell subsets in melanoma patients at different time -points 
(* P<0.05, ** P<0.01, *** P<0.001). Values were considered statistically significant for P<0.05. 

We monitored also the potential effect of ipilimumab on hematological parameters, but the levels 

of these serum proteins remained stable upon treatment with the exception of a significant 

increase in circulating S100B (Fig 13, P=0.036). 
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Figure 13: Evaluation of hematological parameter during ipilimumab treatment  
Serum levels of proteins at W0 (n=37 to 34 depending on the considered parameter) and at W12 (n= 
31 to 29 depending on the considered parameter). Each box plot shows first and third quartiles an d 
median values of the hematological parameter indicated at the top of the plot. Outlier are plotted as 
individual points. Wilcoxon Signed Rank test was used to compare levels of hematological parameter 
in melanoma patients at different time-points (* P<0.05). Values were considered statistically 
significant for P<0.05. 

Overall, ipilimumab treatment did not alter significantly the immune profile of the patients in this 

study with the exception of a significant up-regulation of PD-1 on both CD4+ and CD8+ T cell subsets 

and an increase in serum levels of S100B.  

Identification of early predictors of toxicity 

It has been demonstrated that ipilimumab treatment is associated with a toxicity profile mainly 

due to irADR consequent to an impairment of tolerance towards self-antigens173. We investigated 

whether toxicity was correlated with tumor-associated and immunological parameters (TIPs), like 

myeloid subsets, T cell subsets and hematological parameters. To this end, we grouped the 

patients on the basis of development or absence of grade 3 immune-related adverse reactions 

(ADR+ and ADR-) and we compared W0, W12 frequencies and absolute (W12/W0) or relative 

(W12 minus W0) variations of TIPs among the groups.  

We observed that patients with lower incidence of irADR expressed higher levels of PD-1 on CD4+ 

T (Fig. 14 B P=0.011), however, the presence of irADR was mainly reflected by post-treatment 

measures of TIPs. In fact, upon treatment, we observed a further up-regulation of PD-1 expression 

on CD4+ and CD8+ T cells of ADR- patients compared to baseline (Fig. 14 B-D P<0.001 and Fig. 14 

C-E P=0.003). Besides, after ipilimumab treatment patients without grade 3 toxicity were 
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characterised by a significant expansion of CD3+ T cells (Fig. 14 A P=0.006) and by a significant 

decrease of immature MDSC3 (Fig. 14 F P=0.04). On the contrary, ADR+ patients failed to up-

regulate PD-1 expression on T cells, that, in turns, were significantly reduced compared to ADR- 

patients (Fig. 14 A P=0.05) at W12. The presence of toxicity was associated also to a trend toward 

lower frequency of eosinophils (Fig. 14 H) and wider variance in MDSC4 (Fig. 14 G) at W12.  

 
 
Figure 14: Early predictors of toxicity 
Box plots report median, first and third quartiles of TIPs measured at W0 and W12 in patients without 
ADR- or with ADR+. Outlier are plotted as individual points. Significance of intra-group variations 
between W0 and W12 values were assed using Wilcoxon Signed Rank Test while Wilcoxon Rank Sum 
Test was used to compare inter-group variations (* P<0.05, ** P<0.01, *** P<0.001)). Values were 
considered statistically significant for P<0.05. 

Since high grade toxicity is a sign of hyper-activation of the immune system, some authors 

correlated the development of irADR to efficacy of ipiliumab treatment205,206. However, we did not 

find evidence of association between toxicity and OS (P=1,00 using Fischer Exact Test, P=0.950 

using Log-Rank test Fig. 15), in line with a recent report179. 
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Figure 15: Correlation between immune-mediated toxicity and clinical efficacy of 
ipilimumab 
A) Pie plot represents proportions of ADR+ and ADR- patients according to their survival status at W29 
(Dec= deceased). B) Kaplan-Meier estimates of survival for ADR+ and ADR- patients. Values were 
considered statistically significant for P<0.05.  

In conclusion, our results indicate that the development of toxicity was not predictive for longer 

OS in response to ipilimumab, but it is associated with reduced CD3+ T cells, increased variance in 

MDSC4 and lower frequencies of eosinophils at W12. Interestingly, we observed an also an 

association between lower toxicity and reduced baseline expression of PD-1 on CD4+ T cells. 

Besides, ADR- patients expanded T lymphocytes, and in particular PD-1 expressing T cells, upon 

treatment.  

Identification of biomarkers associated with overall survival  

Ipilimumab treatment has demonstrated survival advantages in pre-treated metastatic melanoma 

patients, when compared to gp-100 peptide vaccine41, but validated predictors of OS are still 

missing. We exploited our dataset of TIPs, to identify potential biomarkers of OS. We defined OS 

as the time occurring between baseline and death or last contact with the patient and we planned 

three different statistical strategies for survival analysis. We first performed an exploratory 

unsupervised multivariate analysis, dividing the cohort of patients in two clusters, characterized 

by homogeneous levels of TIPs, and subsequently testing for a difference in OS between the two 

clusters. The second step was to divide the patients on the basis of their survival status (alive vs 

deceased) at a homogeneous time-point and test whether there was a difference in the levels of 

TIPs in the group of alive and deceased patients. In the third step, results of this analysis were 

further confirmed using univariate survival analysis in which patients were stratified on the basis 

of the cohort-median value of the TIP under investigation and testing whether a significant 

difference in OS was present between the two groups.  
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Cluster analysis of tumor-associated and immunological parameters 

In this analysis we considered the frequencies and absolute variations of TIPs at W0 and at W12. 

Parameters were analysed in three homogeneous groups: hematological values (CRP, IL6, VEGF, 

S100B), myeloid cells (MDSC1-2-3-4, eosinophils, putative DCs), and T lymphocytes 

(L1=%CD3+/CD4+, L2=%CD3+/CD8+, L3=%CD3+/CD4+/PD-1+, L4=%CD3+/CD8+/PD-1+, L5=%PD-1+ in 

CD3+/CD4+, L6=%PD-1+ in CD3+/CD8+, L7=%CD4/%CD8, L8=%CD3+). In each group, two clusters 

with homogeneous baseline values were identified using Cluster K means algorithm and 

difference in OS between clusters was tested using the Log-Rank test. 

Results of this analysis do not demonstrate significant correlations between clusters of baseline 

TIPs and OS, a part from a trend towards better prognosis in patients with lower baseline levels of 

hematological parameters IL-6, CRP, VEGF and S100B and higher levels of T lymphocytes (Fig. 16). 

 

Figure 16: Kaplan-Meier estimates for overall survival 
Survival of cluster 1 and 2 using Kaplan-Meier curves in panel A,B,C. Median baseline levels of the 
indicated TIPs are shown in panels D,E,F. Difference between baseline values of TIPs in the two 
clusters was tested using Wilcoxon Rank Sum test. Values were considered statistically significant for 
P<0.05.  

 On the contrary, when we analysed post-treatment levels, or the variation of TIPs following 

treatment, we observed significant associations with OS. Indeed, higher absolute variations in 

hematological parameters, and in particular significantly higher absolute variations of VEGF (Fig. 

17 C, P=0.013), conveyed a survival advantage (Fig. 17 A, P<0.001). 
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Analogously, lower frequency of putative DCs and MDSC subsets, (significant for MDSC 1-2-4), 

coupled to an increased presence of eosinophils in the blood of patients following ipilimumab 

treatment described an immune profile of patients with better prognosis (Fig. 17 B). In particular, 

the main difference between the two clusters consisted in a significant reduction of the MDSC 

subsets expanded at baseline (MDSC1-2-4) in patients with longer OS (Fig. 17 E, P<0.001 for 

MDSC1, P=0.004 for MDSC2, P=0.03 for MDSC4). On the contrary, greater relative variations of T 

cell subsets upon treatment were associated with prolonged OS (Fig. 17 C). Indeed, the group of 

patients with better prognosis presented significantly higher CD3+, CD3+/CD4+, CD3+/CD8+ T cells 

and a major up-regulation of CD4+ T lymphocytes expressing PD-1 (Fig. 17 F, P<0.001 for CD3+, 

P<0.001 for CD3+/CD4+, P=0.019 for CD3+/CD8+ , P<0.001 for CD3+/CD4+/PD-1+ cells).  

 
Figure 17: Kaplan-Meier estimates for overall survival 
Absolute variations of hematological parameters (A-D), post-treatment levels for myeloid subsets (B-
E) and relative variations of T lymphocytes (C-F) were considered for cluster analysis. Kaplan-Meier 
curves are referred to OS of the two clusters shown in panels A-B-C, while panels D-E-F reported 
median variations of the indicated TIPs. Difference between TIPs in the two clusters was tested using 
Wilcoxon Rank Sum test. Values were considered statistically significant for P<0.05. 

Univariate survival analysis 

To identify potential TIPs representing early predictors of OS, we performed a univariate analysis. 

We thus divided the patients in two groups, alive or deceased at W29; we considered this time 

interval as homogenous because it represents the minimum period of follow-up of the cohort 

following ipilimumab treatment. For each group, we compared W0, W12, the relative or absolute 
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variations of TIPs in the two groups. When a trend toward association between a parameter and 

the survival status was identified, we confirmed the result by testing the difference between OS 

of patients characterized by values below or above the median of the group for that parameter.  

This strategy revealed some interesting associations between TIPs and OS and the description of 

results will be divided in three parts accounting for the three main classes of TIPs: haematological 

parameters, T cell subsets and myeloid subsets.  

Haematological parameters 

When we considered parameters involved in inflammatory conditions like CRP and IL-6, we found 

that patients deceased at W29 presented significantly higher levels of CRP post-treatment (Fig. 18 

A, P=0.023). Albeit not statistically significant, the same tendency was present also considering 

baseline CRP values (Fig. 18 A, P=0.058). Indeed, survival analysis confirmed the tendency towards 

a worse prognosis for patients presenting with CRP levels above the median of the cohort at 

baseline (Fig. 18 B). In the same way, we detected a significant association between both W0 and 

W12 levels of IL-6 and prognosis (Fig. 18 D, P= 0.015 and P= 0.011, respectively). The survival 

analysis confirmed that lower levels of IL-6 in the serum are strongly predictive of longer OS in 

patients treated with ipilimumab (Fig. 18 E-F, P=0.006 baseline, P=0.041 post-treatment).  

 

Figure 18: Survival estimates according to levels of CRP and IL-6 
W0 and W12 values of CRP and IL-6 are reported in panels A and D, dividing the cohort of patients in 
two groups on the basis of the survival status at W29. Box plot report median, first and third quartiles. 
Outlier are plotted as individual points. Wilcoxon Rank Sum Test was used to compare inter-group 
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variations (* P<0.05). Kaplan-Meier curves referred to survival analysis are reported in panels B-C-E-
F. Panels A-B-C show association between OS and CRP levels while panels C-D-E depict results about 
IL-6. Values were considered statistically significant for P<0.05.  

We then correlated OS with B-RAF mutations, LDH, S100B and VEGF. Patients were divided in two 

groups on the basis of: i) presence (B-RAF mut) or absence (WT) of mutations in V600 codon of 

the B-RAF gene; ii) LDH above or below the median value of the cohort at W0; iii) S100B above or 

below the median value of the cohort at W12; iii) ECOG PS below or above 1. Results indicate that 

the presence of B-RAF mutations or elevated levels of LDH do not affect OS (Fig. 19 A, B), while 

patients with reduced levels of S100B after ipilimumab treatment have a trend toward longer OS 

(Fig. 19 C). As expected, the ECOG performance status is a good predictor of OS (Fig.19 F, P=0.01).  

Besides, we tested whether a significant difference was present between W0 and W12 levels or 

relative variations of VEGF between patients alive or deceases at week 29. The pattern of 

association between VEGF and survival is peculiar; in fact patients with lower baseline levels of 

this protein have a tendency toward a better prognosis (Fig. 19 D), but when we considered the 

relative variation of this parameter, we found that increasing levels of VEGF at W12 were 

associated with longer survival (Fig. 19 E). Hence, the involvement of serum VEGF levels in 

prediction of survival must be further investigated. 

  

Figure 19: Survival estimates according to the clinical characteristics of the patient  
A-B-C-F) Kaplan-Meier estimates for OS according to mutational status of BRAF, LDH at W0, S100B at 
W12 and ECOG PS are shown. D-E) W0, W12 levels and relative variations of VEGF in patients alive or 
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deceased at W29 are shown. Box plots report median, first and third quartiles. Outlier are plotted as 
individual points. Wilcoxon Rank Sum Test was used to compare inter-group variations. Values were 
considered statistically significant for P<0.05. 

T cell subsets 

Ipilimumab releases the inhibitory signals triggered by CTLA-4 on T cells and it is currently believed 

that it activates tumor-specific T cells, whenever they are pre-existing (Snyder NEJM 2014). We 

divided the cohort in two groups according to the survival status at W29. According to this analysis, 

we observed a significant up-regulation of CD3+ T cells frequency in patients alive at W29 (Fig. 20 

A, P=0.023) while survival was not associated with a preferential expansion of CD4+ or CD8+ T cells 

(data not shown), but rather to PD-1 frequencies on the two T cell subsets. Indeed, after 

treatment, PD-1 expression was significantly up-regulated on CD4+ and CD8+ T cells of patients 

alive at W29 (Fig. 20 C P=0.003, Fig 20 E P=0.013) while patients deceased at same time-point had 

stable PD-1 expression on CD4+ cells but statistically increased frequencies of PD-1+ cells within 

CD8+ T lymphocytes (Fig. 20 E, P=0.031). We further confirmed these results using Log-rank 

survival analysis comparing the difference in terms of OS in patients presenting levels of T cell 

subsets below or above the median value of the cohort. Univariate survival analysis confirmed the 

association between increased number of CD3+ T cells and OS and it also demonstrated that an 

increased number of CD3+/CD4+/PD-1+ cells is associated with longer OS (Fig. 20 D P=0.05), while 

a higher absolute variation of PD-1 expression in the CD8+ counterpart predicted a worse 

prognosis (Fig. 20 F P=0.026).  
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Figure 20: Changes in T cell subsets during ipilimumab treatment and association with 
OS 
W0 and W12 frequencies of T cell subsets are reported in panels A, C and E according to the survival 
status of patients at W29. Box plot report median, first and third quartiles. Outlier are plott ed as 
individual points. Significance of intra-group variations between baseline and post-treatment values 
were assed using Wilcoxon Signed Rank Test (* P<0.05). Panels B-C-E) Kaplan-Meier curves estimating 
OS on the base of absolute variation of: CD3+ cell number (B), CD3+/CD4+/PD-1+ cell number (D), and 
frequency of PD-1+ cells within CD8+ T lymphocytes (E). Values were considered statistically significant 
for P<0.05.  
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Myeloid-Derived Suppressor Cells 

We and others demonstrated that MDSC levels correlate with OS in cancer patients78,94,207 

(reviewed in 63); We thus explored the potential association between levels of myeloid subsets 

and OS in ipilimumab-treated patients. To this end we considered W0, W12, absolute and relative 

variation of myeloid subsets and we divided the cohort of patients in two groups according to the 

median value of the parameter under investigation. Difference in OS between the two groups was 

tested using the Log-Rank test and reported using Kaplan-Meier curves (Fig. 21)  

Two out of 3 MDSC subsets expanded at baseline were significantly associated with OS (Fig. 21 A-

B, P=0.024 for MDSC1, P=0.049 for MDSC2). On the contrary, the association between MDSC4 and 

survival stemming from cluster analysis (Fig. 17) was not confirmed by univariate survival analysis 

(P=0.445, data not shown).  

 
 
Figure 21: Kaplan Meier estimates for overall survival according to post-treatment 
frequencies of MDSCs  
Survival curves of patients with levels of MDSC1 (A) and MDSC2 (B) below or above the median of the 
cohort at W12. Values were considered statistically significant for P<0.05.  

In conclusion, our results indicate that OS is associated with some immunological parameters of 

melanoma-treated patients. In fact, multivariate clustering analysis revealed multiple associations 

between survival and hematological parameters, myeloid and T cell subsets. These results were 

confirmed by univariate analysis and we identified two immunological profiles with opposite 

prognosis: lower baseline levels of CRP, IL-6, a better performance status and an expansion of 

CD3+ and CD4+/PD-1+ T cells post-treatment characterize patients with prolonged OS. On the other 

hand, patients with higher frequencies of MDSC1, MDSC2, and CD8+/PD-1+ T cells at W12 had 

significantly reduced OS.  
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Correlation between immune parameters predictors of survival.  

To assess whether early predictors of survival are inter-connected, we correlated baseline and 

post-treatment levels of such TIPs using the Spearman test.  

We found significant correlations within each class of TIPs, and results are shown in Table 4 and 

Figure 22. For example, IL-6 and CRP, two proteins associated with inflammation, were tightly 

connected both at baseline and post-treatment (P<0.001 W0, P=0.007 W12). CRP and IL-6 levels 

significantly correlated also with VEGF levels (P= 0.001 and P=0.002, respectively). We also 

observed a strong correlation between MDSC1 and MDSC2 (P=0.027 W0, P=0.0006 W12), which 

similarly express IL4R.  

Interestingly, significant correlations were present also between different classes of TIPs. For 

example, there was a striking correlation between baseline levels of CRP and the three subsets of 

MDSCs expanded at baseline in melanoma patients, i.e. MDSC1-2-4 (Fig. 22 A-B-C, P<0.001 for 

MDSC1-2-4). This association was not statistically significant for other myeloid subsets, and for 

MDSC3, which were not expanded by these patients at baseline (Table 4). Analogously, baseline 

levels of IL-6 are significantly correlated with MDSCs expansion, in particular with MDSC1 and 

MDSC4 (Fig. 22 D-E, P<0.001 for both MDSC subsets) and the association with MDSC1 was 

maintained also post-treatment (Fig. 22 F P=0.013). Finally, the T cell compartment was not 

significantly linked to serum proteins, but we observed a significant inverse correlation between 

MDSC4 and CD8+ T cells which was present both at baseline and post-treatment (Table 3, P=0.009 

W0 and P=0.026 W12).  

 

 

 

 

 

 

 

 

 

 



85 
 

TIME-POINT 1ST VARIABLE 2ND VARIABLE R P 

BASELINE 

CRP IL-6 0,753 0,0000002 

CRP VEGF 0.525 0.0011 

CRP MDSC1 0.661 0.000114 

CRP MDSC2 0.614 0.000871 

CRP MDSC3 -0.212 0.241 

CRP MDSC4 0.566 0.000785 

CRP Eosinophils -0.269 0.135 

CRP 
Lin-/HLA-DR-

/CD33dim 
-0.267 0.138 

IL-6 VEGF 0.512 0.00211 

IL-6 MDSC1 0.690 0.000067 

IL-6 MDSC2 0.318 0.128 

IL-6 MDSC3 -0.020 0.912 

IL-6 MDSC4 0.589 0.00066 

IL-6 Eosinophils -0.212 0.257 

IL-6 
Lin-/HLA-DR-

/CD33dim 
-0.125 0.506 

MDSC1 MDSC2 0.425 0.027 

MDSC4 CD3+/CD8+ T cells -0.449 0.00904 

POST-TREATMENT 

CRP IL-6 0.488 0.00745 

IL-6 MDSC1 0.498 0.013 

MDSC1 MDSC2 0.648 0.000608 

MDSC4 CD3+/CD8+ T cells -0.436 0.0261 

 
 
Table 4: Correlation between levels of tumor-associated and immunological parameters 
Baseline and post-treatment levels of TIPs were correlated using Spearman Correlation. The two 
variable undergoing the correlation test are indicated as “1 st variable” and 2nd variable”. Values were 
considered statistically significant for P<0.05.  
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Figure 22: Correlation between serum proteins and MDSCs 
Spearman Correlation was used to assess correlation between CRP levels and frequencies of MDSC1 
(A), MDSC2 (B) and MDSC4 (C) at W0; IL-6 levels and frequencies of MDSC1 (D) or MDSC4 (E) at W0; 
IL-6 levels and MDSC1 frequencies at W12. R, coefficient of correlation. Values were considered 
statistically significant for P<0.05.  

The results from this correlation analysis revealed a net of connections that could open new 

working hypothesis. For example, the correlations between IL-6, CRP, MDSC1 and MDSC2 suggest 

a possible connection between cancer-associated inflammation and expansion of MDSCs and it is 

of particular interest if we consider that these four parameters are among the strongest predictors 

of OS identified by this study.  

  



87 
 

DISCUSSION 

Ipilimumab was the first ICI showing an OS benefit in metastatic melanoma and a number of 

studies demonstrated the predictive role of immunological parameters as surrogate biomarkers 

of clinical response to this treatment (reviewed in 175). Besides, the identification of predictive and 

pharmacodynamic biomarkers is fundamental to select patients with higher probability of 

response to this expensive treatment, also in the view of the promising effect of combined 

approaches using PD-1 and CTLA-4 blockade. Circulating levels of MDSCs have been correlated to 

tumor burden and OS in different types of cancer, and some studies demonstrated their 

prognostic role for the outcomes of different chemotherapeutic regimens (reviewed in 63), thus 

becoming a promising biomarker also for response to immunotherapy. However, the validation of 

the predictive significance of MDSCs in multicenter studies is complicated by the phenotypic 

complexity of human MDSCs, thus creating a challenge in finding a consensus on the minimal 

requirements for MDSC monitoring. To meet this request, we organised the first proficiency panel 

to harmonize human MDSC phenotyping. Compared to other proficiency panels, the MDSC panel 

was challenging in terms of number of participants, complexity of the staining panel and number 

of subsets to be identified. Given these premises, it is not surprising that the quantification of the 

10 requested MDSC subsets was characterised by a high inter-laboratory variance, increasing from 

monocytic to immature and granulocytic subsets. The number and the international origin of the 

participating laboratories indicate that the high inter-laboratory variance observed in the panel 

could be similarly implied also in studies on human MDSC published. On the contrary, the intra-

laboratory variance was acceptable indicating that the participating laboratories were 

experienced in the field of multicolour flow cytometry.  

We identified three critical parameters that impacted on the quantification of MDSC phenotyping: 

the choice of reagents, the use of a DCM and the gating strategy. As staining reagents were 

relatively free of choice, a considerable number of different antibodies were used to identify 

MDSC subsets using an 8-color staining panel. As a result, we observed that the clone of anti-

CD124 antibody and the composition of the Lineage cocktail significantly influenced the 

quantification of CD124+ MDSCs and immature MDSCs, respectively. Indeed, this problem was 

also identified by previous proficiency panels in which a partial standardization of reagents was 

suggested194, especially for culturing of PBMCs intended to functional T cell assays193,208,209. 

The MDSC proficiency panel introduced the use of a DCM, and we observed that the quantification 

of several MDSC subsets, and in particular of granulocytic ones, was significantly reduced by dead 

cell exclusion. Hence, these results open the discussion whether it is worth to quantify also dead 
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MDSCs because they were most likely present and alive in the fresh sample, or whether inclusion 

of dead cells could alter MDSC quantification due to unspecific binding of antibodies to other cell 

types. 

Besides the choice of the reagents, we found that the gating strategies used for identification of 

MDSC subsets had a significant influence on the variance of results. Indeed, when we included in 

the analysis only those laboratories which applied a homogenous gating strategy, similar to that 

proposed in the panel’s guidelines, we observed a significantly improved inter-laboratory 

performance. This was not unexpected since most of the proficiency panels based on flow 

cytometry similarly recommended to harmonize the gating strategies across laboratories. In a 

multimer-based proficiency panel, results were audited in order to exclude wet-laboratories 

which regularly used a wrong gating procedure194. However, since identification of MDSC subsets 

derive from a complex combination of signals, we believe that a more adequate approach is to 

train the participating laboratories to perform a properly gating pipeline through an in-silico panel, 

as done in ICS proficiency panels193,210. In addition, this in-silico approach may be further used by 

participants as learning module for training operators in order to reduce intra-laboratory variance. 

Overall, we demonstrated that it is feasible to conduce a proficiency panel including such a large 

number of participants and identifying a high number of myeloid subsets using 8-color flow 

cytometry. In this first step, we provided individual feedback of performance for each laboratory 

and we identified a number of parameters that must be harmonized in the second step, hence 

establishing the foundation for the development of a robust assay for MDSC phenotyping.  

From this experience, we developed a method to reduce inter-assay variance of MDSC 

phenotyping and we used this standardized approach to monitor the circulating levels of four 

MDSC subsets in melanoma patients receiving ipilimumab. Several non-overlapping MDSC 

phenotypes have been described198, classified as immature, monocytic and granulocytic subsets, 

but most of the studies reduced MDSC monitoring to only one phenotype. We believe that all the 

subsets should be investigated in clinical studies for a complete overview of MDSC expansion, and 

the results from the first phase of the proficiency panel demonstrated that this is a feasible 

objective. To date, only the study by Walter and colleagues monitored six MDSC subsets 

simultaneously in renal cell carcinoma patients, and found that five out of six subsets were 

significantly expanded in the blood and, moreover, that the levels of two out of the six subsets 

were negatively associated with OS in response to a multipeptide-based vaccination protocol94. In 

line with these results, we observed that also melanoma patients significantly expanded more 

than one MDSC subset, thus suggesting the presence of immune suppression in these patients. In 
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particular, the cohort under investigation expanded three MDSC subsets (MDSC1-2-4) which were 

originally discovered in melanoma patients and further described also in other types of cancer 

(reviewed in 63). In addition, in a previous study we demonstrated that the expression of IL4R on 

monocytes (MDSC1) of cancer patients was directly correlated with inhibition of T cell 

proliferation70. Evidence form mouse models indicated that IL4R is involved in MDSC function69,71 

and survival69, but the functional role of this marker in human MDSCs in still under investigation. 

Recently Kitano and colleagues addressed the problem of standardization of MDSCs, and 

developed a computational algorithm-based method to perform a uniform analysis of the levels 

of MDSC4 in melanoma patients treated with two different doses of ipilimumab (3mg/kg or 

10mg/kg)176. This was the first study reporting a significant association between baseline levels of 

MDSC4 and OS, independently of LDH levels and absolute lymphocytes count, but the prognostic 

significance of MDSCs was restricted only to patients receiving the higher dose of ipilimumab. In 

our study, in which ipilimumab was administered at 3 mg/kg, we did not observed any association 

between baseline levels of MDSCs and OS. Nevertheless, we identified, by cluster analysis, that 

post-treatment levels of MDSC4 were significantly reduced in the group of patients with longer 

survival and that a significant inverse correlation between these cells and CD8+ T cells was present 

at W0 as well as at W12. A similar inverse correlation was observed, in two independent studies, 

both in non-treated lung cancer patients211 and in melanoma patients receiving 

ipilimumab176.These findings probably reflect the balance between suppressive and effector 

leukocytes characterising the immunological profile of cancer patients, and ipilimumab could alter 

this equilibrium by boosting T cell responses which, in turns, contrast the action of immune 

suppression exerted by MDSCs.  

This is not the first evidence of a prognostic role for MDSCs, in fact the levels of MDSCs have been 

associated to OS and response to different chemotherapeutic regimens both at baseline and post-

treatment77,78,88,93,207,211,212. However, in view of the immune-mediated effect of ipilimumab, lower 

levels of suppressive cells could represent not only an estimator of clinical benefit but also a 

pharmacodynamic biomarker, reflecting the shift from immune escape to immune-response. In 

fact, using a multivariate non-parametric statistical approach, we demonstrated that a survival 

benefit can be estimated on the base of decreasing levels of monocytic and granulocytic MDSCs, 

expressing IL4R (MDSC1 and MDSC2) and a parallel increase in the number of T cells, which 

indeed may reflect the conversion from escape to rejection phase. The role of MDSCs as a 

biomarker for ipilimumab treatment was demonstrated in a number of studies, mostly reporting 

correlations between MDSC4 and clinical response181,191,213. Only one study monitored 
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granulocytic MDSC in ipilimumab-treated patients describing a significant reduction of the 

granulocytic subset coupled with down-regulation of Arginase-1 expression on the whole myeloid 

compartment190. 

Given the reliability of MDSCs as biomarker of clinical outcomes to ipilimumab treatment, it 

remains to be clarified whether ipilimumab targets MDSCs or, conversely, if the decreasing levels 

of MDSCs observed following ipilimumab treatment simply reflect the shrinkage of the tumor in 

response to immune rejection. Even if a direct evidence of CTLA-4 expression by MDSCs is still 

missing, we believe that it would be important to understand the possible direct targeting of 

MDSCs by anti-CTLA-4, and different intriguing hypothesis could be derived by the experience 

matured on DCs. Indeed, from one side, CTLA-4 expressing DCs showed an impaired maturation 

profile, reduced stimulatory function214 and produced IL-10 215, as MDSCs. On the other side, CTLA-

4 could act on DCs also by reverse signalling through CD80/CD86. Grohmann and colleagues 

demonstrated that CD80/CD86 ligation by CTLA-4-Ig induced IDO expression in DCs and a 

consequent functional impairment of T cells216; Since IDO has a role in the mechanism of MDSC 

suppression85, the reverse signalling described for DCs could be active also in these cells and, 

according to this hypothesis, ipilimumab would relieve T cell activation both following a T-cell 

intrinsic pathway and through reduction of the suppressive function of MDSCs. 

Another strategy to track the onset of immune rejection triggered by ipilimumab is to monitor the 

activation and functional status of T cells. In fact, absolute lymphocyte count is one of the first 

parameter identified as strongly associated to clinical effect of ipilimumab176-179,183,188, and many 

studies characterized the immune correlates of this drug. As expected, T cells of responding 

patients displayed an activated phenotype, expressing ICOS or HLA-DR186,187,217, increased antigen 

specific responses180,187 and boosted IFN- production which was correlated to a Th1-associated 

signature at the tumor site182. However, less is known about the expression of other immune 

checkpoint molecules in response to the blockade of CTLA-4. We also monitored the levels of PD-

1 expression on T cells in response to ipilimumab and we found that melanoma patients expressed 

significantly higher levels of PD-1 in the CD4+ compartment at baseline. Moreover, T cells further 

up-regulated PD1 on both CD4+ and CD8+ T cell subsets upon treatment. Of note, post-treatment 

variation of PD-1 expression on the two subsets was differently associated with OS: in fact, 

patients with longer OS increased the absolute count of CD4+/PD-1+ T cells during the treatment, 

while those with higher expression of PD-1 on the CD8+ counterpart had a reduced OS.  

Only one study investigated the expression of PD-1 on T cells during ipilimumab, and it showed an 

up-regulation of this marker on T cells after the first dose, followed by a sudden down-regulation 
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of PD-1 expression at the end of the treatment. Interestingly, also the relative frequencies of Tregs 

were evaluated in this study, and the variation of these cells had the same trend of expression of 

PD-1 on T lymphocytes190.  

Since in our cohort of patients the expansion of CD4+/PD-1+ T cells was associated with reduced 

toxicity, we speculated that increasing frequencies of these cells was due to an expansion of Tregs. 

This hypothesis is based on the fact that PD-1 and CTLA-4 play an important role in Treg induction 

and functional activity163,218. In addition, the constitutive expression of CTLA-4 on Tregs suggests 

a potential effect of ipilimumab on this cell subset145. However, this hypothesis is only partially 

supported by evidence from the literature because the presence of Tregs was monitored in 

ipilimumab-treated patients with conflicting results which make the predictive power of Treg not 

extensively reliable177,181,183,190.  

On the contrary, the association between higher PD-1 expression on CD8+ T cells and reduced OS 

suggests the induction of an exhausted phenotype on cytotoxic T cells. However, in a recent report 

PD-1 and Lag-3 expression were significantly down-regulated following blockade of PD-1 and/or 

CTLA-4 on the surface of CD8+ T cells specific for antigenic mutant epitopes driving the immune-

rejection of the tumor99. Hence, further characterisation of CD8+/PD-1+ cells is needed because 

PD-1 expression alone does not permit to define unambiguously an exhausted cell, which is indeed 

characterised by the expression of multiple inhibitory checkpoint molecules like Tim-3, Lag-3, 

BTLA-421. 

In addition to circulating MDSC and T cell subsets, we observed that the pro-inflammatory 

cytokine IL-6 was a strong estimator of OS in response to ipilimumab, while a trend toward 

association was present between survival and other markers of inflammation like VEGF and CRP. 

Given the predictive and prognostic power of inflammatory proteins and MDSCs described so far, 

it is important to consider that baseline levels of these parameters were highly interconnected, 

thus supporting the existence of an immunological loop associated with OS in response to 

ipilimumab. In fact, CRP and IL-6 significantly correlated with the circulating levels of the MDSC 

subsets expanded at baseline (MDSC1/MDSC2/MDSC4). These correlations suggest the presence 

of a suppressive net at the tumor site, spreading to the circulation, in which inflammatory proteins 

induce MDSCs and regulate their suppressive functions as previously demonstrated in murine 

models219 (reviewed in 25) and in human cells in-vitro 32,220. In addition, the down-stream mediator 

of IL-6 signalling, signal transducer and activator of transcription 3 (STAT-3), regulated the 

suppressive activity of tumor-infiltrating MDSC from head and neck squamous cell carcinoma 

patients through modulation of arginase 1 activity221. The connection observed in our study 
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between IL-6, MDSC levels and OS suggests the hypothesis of a combination therapy of anti-IL-6 

mAb and immune-checkpoint inhibitors. From one side, IL-6 blockade could enhance the efficacy 

of immune checkpoint inhibitors by disrupting the mechanisms of immune escape at the tumor 

site, and from the other side, it could also reduce the toxicity of this treatment, which is 

characterised by autoimmune responses. Indeed, blockade of IL-6 pathway is currently approved 

for the treatment of autoimmune diseases, like rheumatoid arthritis, and combinations of anti-IL-

6 and chemotherapy are already under development in phase I studies for cancer treatment 

(reviewed in 222).  

 In addition to prediction of survival, the present study was also designed to identify an immune 

profile associated with the development of irADR due to ipilimumab treatment. Albeit early 

reports indicated that the onset of irADR was prognostic of response to ipilimumab205,206, the 

potential link between irADR and clinical benefit awaits further confirmation from large 

perspective studies. Our results indicate that the development of toxicity was not predictive for 

longer OS in response to ipilimumab. However in our study, toxicity was associated with a defined 

immune profile characterised by reduced CD3+ T cells, increased variance in MDSC4 and lower 

frequencies of eosinophils. In addition, patients with lower toxicity significantly expanded PD-1+ T 

lymphocytes compared to those experiencing grade 3 irADR. As the prediction of toxicity was less 

investigated in clinical studies, our results constitute a first attempt to characterise the immune 

profile of patients prone to toxicity and are supported only by the study of Wang and colleagues. 

In this study, Authors observed that the onset of irADR was associated with lower frequencies of 

proliferating, Ki67+, CD4 and CD8 T lymphocytes185. In particular, patients free from toxicity 

expanded a subset of CD4+ T cells expressing eomesodermin, a transcription factor that regulates 

the generation of memory T cells223 and, similarly to our results, was associated to increased PD-

1 expression224. 

In conclusion, this study explored different aspects of immunomonitoring of ipilimumab-treated 

melanoma patients and it constitutes from one side a preparatory step for the development of a 

robust assay for MDSC identification, and from the other side it defines the immune profile of 

patients that most likely benefit from ipilimumab treatment. Our results should be further 

validated in an independent cohort of ipilimumab-treated patients, nevertheless they constitute 

an important first step towards identification of biomarkers that improve the clinical use of 

immune checkpoint inhibitors.  
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