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Abstract

In the last decade, the continuous and alarming growth of space debris prompted
many space agencies all over the world to adopt debris mitigation strategies.
Present guidelines indicate the need to deorbit new satellites launched into low
Earth orbit (LEO) within 25 years from their end of life. At present, a space-
proven technology suitable to carry out a complete deorbit utilizes classical chemi-
cal propulsion. However, a deorbit maneuver by means of chemical rocket strongly
affects the satellite propulsion budget, thus limiting the operational life of the
satellite. These issues bring the need to develop innovative deorbiting technolo-
gies. One of these consists in using electrodynamic tethers that, through its
interaction with the Earth ionosphere and magnetic field, can take advantage of
Lorentz forces for deorbiting. Previous studies have shown the effectiveness of
such a technology to deorbit LEO satellites from different altitudes and inclina-
tions in a relatively short time. This work addresses some of the issues of deorbit
systems based on electrodynamic tether systems. First, a passive elastic-viscous
damping device installed at the attachment point of the tether to the spacecraft
is studied to damp the low and yet continuous injection of energy into the system
produced by Lorentz forces that, in the long run, can bring the tether to instabil-
ity. Second, the issues related to the in-orbit deployment of a tape-shaped tether
from a non-tumbling spacecraft are attacked to find simple and effective solutions.
The chosen strategy is to deploy a tethered tip mass following a pre-determined
flight path fed forward to a linear proportional-derivative closed-loop control op-
erated by a brake system mounted on the deployer reel. Lastly, an optimization
process for bare electrodynamic tether systems has been developed. The analysis
focuses on the deorbiting performances of electrodynamic tether systems from
LEO high ranking hot spot regions (e.g., sun-synchronous orbits), and includes a
realistic mass budget of a deorbiting system suitable for small satellites.
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Summary

The concept of Tether Satellite System was proposed to NASA and ASI at the
beginning of ’70s by Mario Grossi and Giuseppe Colombo. A tether satellite
system is a space system that consists of the fundamental elements:

� the mother spacecraft must carry the sub-satellite and the tether until they
are deployed;

� typically, the tether is several kilometer long and is made of high-strength
material. Its main task is to keep mechanically connected the mother space-
craft with the sub-satellite;

� the sub-satellite is deployed from the mother spacecraft taking advantage
of the gravity gradient.

To date, several space applications which involve the use of space tether systems
have been proposed. Among the others, they include the Momentum Exchange
Tethers, the active debris removal missions by means of tethered nets or harpoons,
the tethered formation flight, the electric solar wind sails, the Tethered Electro-
magnetic soft-Docking concept, the ElectroDynamic Tethers, etc. The purpose
of this thesis is the investigation of end-of-life deorbit devices based on the Bare
Electrodynamic Tethers technology (BETs). The work that was carried out by
the Author during his Ph.D. experience and that eventually led to the writing of
this thesis was done in the framework of the FP7 “BETs Project” (BETs) funded
by the European Commission in the 3-year-period 2012-2014.

The Bare Electrodynamic Tethers Project had the aim to research and develop
a new technology based on electrodynamic tethers suitable to deorbit satellites at
the end of their operational lives. The leading requirement of the investigation was
to develop a reliable, competitive, and effective system. Within BETs Project,
the deployment control of tape-shaped tether was investigated, plasma-tether
interaction models were validated in plasma chambers, an extensive test campaign
on debris impacts and survivability of the tether was conducted, and prototypes
of the key subsystems were built by the BETs team. To be successful in their
mission, BETs partners had to solve a number of issues that characterize the
electrodynamic tethers. In this context the BETs research team at University of
Padova, of which I was part of, took care of the dynamical aspects of the tethered
system.

A BET system is composed of a passive reeling deployer from which a tethered
tip mass is to be deployed with the aid of a low-thrust propulsion system located
inside the tip mass itself. The deployer has a mechanical brake system positioned
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in the inner supporting ring utilized in a feedback loop to control the tether
deploying velocity. Tether in-line thrusters are to be turned on at the beginning
of the deployment maneuver to provide a continuous and stable unreeling force
without transmitting sudden tugs to the relative high-inertia reel, which would
occur in case of a spring-initiated deployment. Once the deployment maneuver
has ended the conductive bare tape-shaped tether starts to collect electrons from
the Earth ionosphere that are re-emitted back through a plasma contactor, thus
producing an electric current flowing inside the tether. In turns, the current
interacts with the magnetic field according to Lorentz law producing drag forces
distributed along the tether.

Several studies on electrodynamics tethers dynamic have been carried out since
early 2000s. One of the most severe dynamical issue that must be dealt with is
the stability of the tether dynamics throughout the deorbit maneuver. The inter-
action between tether and plasmasphere, in fact, produces a continuous injection
of energy into the system that increases the amplitude of the tether oscillations
over time. This effect can produce a reduction of the system efficiency and, in the
worst case, cause dynamic instability (e.g., tether rolling around the mother satel-
lite). In the last two decades many authors studied the dynamic instabilities of
space tethers and the countermeasures that could be employed to prevent them.
They included the use of internal tether frictions, active longitudinal damping
devices, active current controls, movable booms, etc. In the first part of the the-
sis, new insights were gained on the use of a mechanical damper, installed at the
attachment point between tether and spacecraft, to dissipate part or the whole
of the oscillation energy of an electrodynamic tether. Unlike what has been done
up to now, an investigation utilizing a damped two-bar model was used: the first
bar represents the damper (a few meters long fishing rod) whereas the second
bar is the tether. The final goal of the investigation was to maximize the energy
transfer from the electrodynamic tether into the damper and thus its dissipation.

The deployment of a tether in space has been a critical phase for past teth-
ered mission. Some of them experienced failures or malfunctions in orbit, mostly
due to malfunctioning of the deployer control subsystem or ejection mechanism.
Nonetheless, there have also been fully successful tethered space mission. Among
all, the two NASA missions SEDS-1 and SEDS-2 that were specifically designed to
test dedicated hardware and control strategies for the deployment of a multi-km
tether from a non-spinning orbiting object (i.e., a DELTA-II second stage). The
purpose of the work in the second part of the thesis is to study the issues related
to the deployment of a BETs system and to find simple and effective solutions.
Building on the success of the SEDS-2 deployment, we chose to utilize a strategy
similar to the one implemented in that mission, that is to deploy the tip mass fol-
lowing a pre-determined flight path fed forward to a linear proportional-derivative
closed-loop control operated by a brake system mounted on the deployer reel. This
is to be done by controlling instantaneous tether length and velocity by means
of a suitable set of sensors (e.g., incremental encoders) in order to force the tip
mass to follow the reference trajectory.

6



In the last part of the thesis a new optimization process for BETs systems
has been studied. Within BETs Project, bare electrodynamic tether systems
have been studied overall to deorbit high-mass satellites, say of the order of 1000
kg. Investigation results on deorbiting performances suggest that BETs could
be highly competitive on deorbiting mid-to-high mass satellites from high LEO
(<1000 km) at every inclination. Instead, here we focused on the study of a scaled-
down version of an EDT system suitable to provide deorbiting services to small
satellites with mass in the 100-200 kg range. To do this a very common (and
therefore densely populated by space debris) mission profile has been selected,
that is a mid-LEO sun-synchronous orbit. The study was carried out by means
of two software which were developed specifically for BETs Project. First, a
preliminary semi-analytical study has been carried to find the optimized BET
configuration for a given set of input variables such as orbit altitude, inclination,
satellite mass, etc. Subsequently, the results thus obtained were used as input
in an accurate tether simulator that utilizes a comprehensive model that takes
into account both lateral and longitudinal motion of the tether along with all
the latest environment routines. Results from the two software have shown to be
comparable and this study points out that their combined use can be effective in
finding an efficient and reliable configuration of BET systems used for deorbiting
purposes.
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Sommario

Proposto alla NASA e all’ASI agli inizi degli anni ’70 da M. Grossi e G. Colombo,
il concetto di satellite a filo è un sistema spaziale costituito da tre elementi fon-
damentali:

� il satellite-base, oltre al bus e al payload, deve contenere il sub-satellite e il
tether fino al suo dispiegamento;

� il tether è un filo ad elevata resistenza, tipicamente lungo qualche chilometro,
che deve mantenere il collegamento tra il satellite-base e il sub-satellite;

� il sub-satellite è rilasciato dalla base e si estende per effetto del gradiente
di gravità.

Ad oggi, le proposte di utilizzo dei satelliti a filo sono diverse e varie. Tra le
principali si annoverano i sistemi a filo per lo scambio del momento angolare, le
missioni di rimozione attiva di detriti spaziali tramite reti e arpioni, il volo in
formazione tramite fili, le vele solari con fili elettrostatici, il soft-docking elet-
tromagnetico, i fili elettrodinamici, etc. Lo scopo di questa tesi è l’indagine su
dispositivi per il rientro di satelliti a fine vita basati sulla technologia dei fili
elettrodinamici (Bare Electrodynamic Tethers). La ricerca condotta durante il
periodo del dottorato dall’autore è stata effettuata all’interno del progetto FP7
finanziato dalla Commissione Europea nel triennio 2012-2014 denominato “BETs
Project”.

Il progetto BETs (Bare Electrodynamic Tethers) aveva il compito di ricercare
e sviluppare una nuova technologia basata sull’uso di fili elettrodinamici per il
rientro in atmosfera di satelliti alla fine della loro vita operativa. Il requisito
principale dell’indagine era quello di sviluppare un sistema affidabile, compet-
itivo ed efficacie. All’interno del progetto BETs si è studiato il controllo del
dispiegamento di un filo a nastro, i modelli di interazione tra un filo conduttore
e un plasma sono stati validati in laboratorio, esaurienti test sulla capacità di so-
pravvivenza di un filo ad un impatto iperveloce sono stati condotti, i sottosistemi
principali sono stati prototipati. Per terminare il progetto con successo, i part-
ners del team BETs hanno anche dovuto affrontare e risolvere alcuni problemi
che caratterizzano i sistemi a filo elettrodinamico. In questo contesto, il team di
ricerca dell’Università di Padova, di cui facevo parte, si è occupato degli aspetti
dinamici di tali sistemi.

Un sistema BET è composto da un meccanismo di dispiegamento passivo a
rocchetto (deployer) attorno al quale è avvolto il filo e dal quale il sub-satellite,
sempre connesso tramite il filo al satellite-base, deve essere dispiegato con l’aiuto
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di un sistema di propulsione a bassa spinta installato all’interno del sub-satellite
stesso. Il deployer è dotato di un sistema di frenaggio posizionato sull’albero del
rocchetto, utilizzato per controllare la velocità di uscita del tether attraverso un
controllo in feedback. I propulsori, che agiscono lungo l’asse longitudinale del
filo, devono essere accesi all’inizio della manovra di dispiegamento per fornire
una forza continua e stabile al sub-satellite senza provocare strattoni al sistema.
Una volta che la fase di dispiegamento è giunta a termine il filo, costruito con
materiali conduttivi, comincia a catturare gli elettroni dal plasma della ionosfera
che poi saranno riemessi da un plasma contactor (catodo), producendo cos̀ı una
corrente elettrica all’interno del filo. A sua volta, la corrente elettrica interagisce
con il campo magnetico terrestre secondo la legge di Lorentz producendo le forze
di drag responsabili del decadimento dell’orbita del satellite-base.

Nei primi anni 2000 sono stati portati avanti svariati studi sui sistemi a filo
elettrodinamico. Uno dei problemi carattistico di questi sistemi è la loro stabilità
dinamica durante la manovra di rientro. L’interazione tra il filo e la plasmasfera,
infatti, produce una continua immissione di energia nel sistema che tende ad au-
mentare l’ampiezza delle oscillazioni del filo. Questo fenomeno porta solitamente
a una riduzione dell’efficienza del sistema e, nei casi peggiori, alla sua instabilità
dinamica, facendo per esempio arrotolare il filo attorno al satellite-base. Negli
ultimi due decenni molto autori hanno studiato le instabilità dinamiche dei sis-
temi a filo e con esse le possibili contromisure che possono essere adottate per
previrle. Queste contromisure comprendono l’uso dell’attrito interno del filo, lo
smorzamento attivo delle oscillazioni longitudinali del filo, il controllo attivo della
corrente elettrica, l’utilizzo di estensioni mobili, etc. Nella prima parte di questa
tesi, nuove scoperte sono state fatte sull’uso di un sistema di smorzamento passivo
basato sul meccanismo massa-molla-smorzatore da applicare all’interfaccia tra il
filo e il satellite-base. L’intenzione è quella di dissipare in modo completamente
passivo una parte o la totalità dell’energia di oscillazione del filo elettrodinam-
ico. Diversamente da quanto fatto finora, lo studio è stato effettuato facendo
uso di un modello semplificato a due barre smorzate: la prima barra rappresenta
lo smorzatore (si immagini una canna da pesca lunga alcuni metri), mentre la
seconda barra modelliza il filo. Lo scopo finale della ricerca è stato quello di
massimizzare il trasferimento dell’energia cinetica dal filo allo smorzatore, e qui
dissiparla.

In passato, il dispiegamento di un filo nello spazio ha sempre rappresentato una
fase critica per le missioni spaziali che utlizzavano tale tecnologia. Alcune hanno
subito degli insucessi o malfunzionamenti in orbita, il più delle volte dovuti al
malfunzionamento del sottosistema di controllo del dispiegamento o del mecca-
nismo di eiezione del sub-satellite. Tuttavia ci sono state anche missioni che si
sono concluse con un pieno successo. Tra le altre, ricordiamo le due missioni della
NASA denominate SEDS-1 e SEDS-2, le quali erano state progettate specifica-
mente per testare un deployer e le strategie di controllo per il dispiegamento di
un filo lungo 20 km. L’obiettivo della seconda parte della tesi è stato quello di
studiare i problemi relativi allo spiegamento di un sistema con tecnologia BETs
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e di trovarne soluzioni efficaci e semplici. Motivati dal successo della missione
SEDS-2, è stato scelto di utilizzare la stessa strategia di dispiegamento utiliz-
zata in tale missione. Essa prevede il dispiegamento del sub-satellite seguendo
una traiettoria predefinita tramite l’uso di un controllo in retroazione operato
dall’attuatore (sistema frenante) montato sul deployer. In breve, ciò è possibile
se velocità e posizione istantanee del filo sono controllate attraverso un appropri-
ato set di sensori (per esempio degli encoders incrementali) con lo scopo di forzare
il sub-satellite a seguire la traiettoria di riferimento predeterminata.

Nell’ultima parte della tesi è stato sviluppato un nuovo processo di ottimiz-
zazione per sistemi BETs. All’interno del BETs Project, i sistemi a filo elet-
trodinamico sono stati studiati soprattutto per il rientro di satelliti con massa
elevata, per esempio sopra i 1000 kg. I risultati di varie indagine condotte sulle
performance di rientro suggeriscono che i sistemi BETs possono essere altamente
competitivi per manovre di rientro di satellite con massa medio-alta da orbite
basse (<1000 km di altezza) ad ogni inclinazione orbitale. Nello studio di ot-
timizzazione, invece, ci siamo focalizzati sullo studio di una versione ridotta (in
dimensione e massa) di un sistema BETs, utile per effettuare manovre di rientro
per satelliti più piccoli con massa compresa tra i 100 e i 200 kg. Per far ciò, è
stato scelto un profilo di missione molto comune (e quindi con una densità di
detriti spaziali molto alta), ossia un’orbita eliosincrona polare. Lo studio è stato
compiuto facendo uso di due software sviluppati ad-hoc per BETs Project. Per
prima cosa, uno studio semi-analitico è stato effettuato per trovare la configu-
razione del sistema BETs ottimale per un insieme di dati iniziali fissati come
l’altezza orbitale di partenza, l’inclinazione, la massa del satellite-base, etc. Suc-
cessivamente, i risultati provenienti dal primo modulo sono stati usati come input
per un software di simulazione che implementa un modello flessibile del filo. Gra-
zie ciò, esso riesce a simulare sia il moto longitudinale che laterale del filo. I
due software hanno fornito risultati compatibili tra di loro e lo studio di ottimiz-
zazione ha dimostrato che il loro uso combinato può essere efficacie per trovare
una configurazione efficiente e sicura di un sistema BETs.
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Dear Mother, dear Father, dear Sister,

Though I’m past one hundred thousand miles, I’m feeling very still, and I think
my spaceship knows which way to go. Tell my wife I love her very much, she
knows.1

1“Space Oddity”, David Bowie (1969)
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1 Introduction

After I spent a long time thinking on how I could start the introduction of my
thesis, I finally decided to begin with a question for who will venture in its reading:
how History, as we know it, would have changed if the European exploration of the
American continent was stopped (or strongly slowed down) by some catastrophic
event? Let me explain. Imagine that we are back to the end of 15th century.
Christopher Columbus has just discovered the New World disclosing to powerful
and greedy European kingdoms an unprecedented chance to get their hands on
a gargantuan source of every conceivable riches: a new, endless, virgin territory
that must be, they hope, full of precious natural resources that can profusely flow
toward their ever-empty treasuries. Europe has been an unique theater of war
ceaselessly in the last one thousand years after the fall of the ancient Empire, but
now that a boundless new continent is at hand all sovereigns start to consider
it as a relief valve to lower the pressure on the European front and are planning
to launch, as soon as possible, massive exploration campaigns toward the West
Indies. At least those Super Powers that can afford a fleet of robust galleons
suitable to cross the old Sea of Atlas...

It’s a veritable rush! All Great Powers are rushing to the New World to put
flags in the name of their Kings before someone else does it. They are rushing
to enlarge Royal Navies, to build bigger and sturdier vessels which can better
deal with the sudden Ocean’s storms. They rush to strengthen their intelligence
networks to figure out enemies intents quickly enough to plan efficient counter-
strategies and prevent them taking possession of this or that resource. They rush
to develop new technologies that can be of paramount importance when engaging
a deadly foe and that could well tip the balance in their favor during uncertain
disputes. They are rushing to make their people compact to face national enemies
in the name of the immortal Glory and, overall, in the name of Gold and Silver
and who knows what other riches the New World will amaze them with. Some
of them rush because along with the New World they also see new potential
flourishing commercial opportunities... In brief, they are all rushing.

Everybody rushes to launch his own fleet and do not have time to bother about
the possible consequences that all these sudden changes will bring to the world.
Hundreds of vessels sails toward the Indies and sometimes sails back East with
their bays full of valuable goods, sometimes with nothing but a halved sick crew
and a lot of work for the dockyards to fix beaten up boats. But sometimes they
do not come back at all. Powerful storms, unknown seas full of insidious cliffs and
shallows, continuous skirmishes between rival fleets, frequent mutinies of weary,
undisciplined, eager crews, pirates attacks, hurricanes and new violent natural
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1 Introduction

catastrophic events, great naval combats for the possession of some strategic islet.

These and other unforeseen events are the causes of a continuous decimation of
fleets that, in turn, is slowly but unavoidably making the Indies seas and shores
a giant shipwreck graveyard. Also, the ships that are damaged either along the
new routes that connect the Old with New World or off-shore of recent conquered
islands are sunk on the spot because bringing them back to homeland to have them
repaired is way too expensive in terms of money, time, and manpower. Often the
damaged ships are sunk too close to the docks, thus increasing the probability
of damaging other ships coming from Europe, originating a vicious circle that
soon has turned most of the New World harbors dangerous to be approached.
Unfortunately, European Kings are deaf to ship commanders protests, which are
quickly growing more and more nervous about the increasing risks of damaging
or even have their vessel sunk at the end of an exhausting and dangerous Ocean
crossing, right where weary crews should find shelter, right in the harbors. “Come
on, the Ocean is so big, you will find another way in”all Sovereigns keep on saying
to their fleet commanders, “just fetch Us some more gold”. Commanders have no
choice: they must keep on doing their work despite the risks. Thus, after have
their ships hulls strengthen in any manner that master carpenters could figure
out, they lay up for the usual old routes praying their good stars.

And things go on with the same routine for many years, until... One day two
cargo ships, filled with thousands pounds of inestimable treasuries, collide while
maneuvering in front of a dock built on a big island of the New World, trying
to avoid the shipwrecks that emerge from the quite sea surface, and eventually
sink. As the two big cargoes are definitely obstructing the access to the dock,
it must be closed for an unspecified lapse of time until the entrance is somehow
cleared. It also happens that this dock is the only possible access to the island,
which is packed with precious natural resources, thus its closure will also have
the consequence of preventing any further exploration and exploitation of the
island, causing a huge damage to the European Kingdoms for many years. On
orders of the most powerful Kings, all the fleets are soon made return home and
all the sea routes to the New World are deserted. What if a similar disaster
would repeat? What if other important docks of the New World are to be closed?
For these reasons the tradings are to be stopped temporarily, and with them the
exploration of the New World, until a remedy is found. At least, if it is not too
late...

Now, from what I am aware of, History did not go exactly that way. Or, better
said, the History did not end that way. The rush to the New World exploration
actually happened, along with thousands shipwrecks caused by uncountable naval
combats and Oceanic storms, but most likely a dock was never shut down because
its gateways were obstructed by wrecks. Thus, the exploration of the new over-
seas territories never stopped. However, the careful and well-informed reader will
surely have noticed that the script of the previous paragraphs is also well suited to
tell another story, that is the story of the human space era. In fact, if we replace
“Christopher Columbus”with“Yuri Gagarin, “New World”with“Universe”, “ship”

20



Figure 1.1: The evolution of the formation of the debris cloud produced by
the collision between two spacecraft in 2009.

with “spacecraft”, “dock” with “orbit”, “route” with “launch window”, “Kingdoms”
with “cold war Super Powers”, “wreck” with “space relict”, and so on, we get in
brief (with some due adjustments) the story of the space experience of Mankind
from the first successful launch of a satellite in 1957 to the present exploitation of
near-Earth orbits under a particular perspective: the problem of the ever-growing
number of manmade space debris. Just like happened after the discovering of the
American continent by Columbus, when the technologies needed to put a man-
made object (or a human being) into orbit were sufficiently mature, all the nations
that were capable of producing and handling such technologies (actually, as it will
be clear later on, at the beginning of the space era there were only two of them:
the Soviet Union and the United States) rushed to invest money on extremely
expensive space programs, develop cutting edge technologies, and eventually put
hundreds of spacecraft into Earth orbit with massive launch campaigns. During
the cold war, the supremacy of the world was contended by two counterposed
ideologies and nobody was caring about the “shipwrecks” that the rush to the
space dominance would provoke.

Unfortunately, if the high numbers of shipwrecks that studded the American
shores never stopped the New World exploration, the huge amount of manmade
debris originated by the human space activity since its earliest phases may well
pose serious hazards to the near future space missions. As a proof of this, on
February 10, 2009, for the first time in history two big space “cargoes” have
crushed while orbiting the Earth: the defunct Russian communications satel-
lite Cosmos 2251 collided with the operational U.S. commercial communications
satellite Iridium [1]. Figure 1.1 sharply shows the formation of a so called debris
cloud originated by the collision. The economic loss was surely remarkable (the
revenue of one big communications satellite can reach 1 M$ per day!), however
the attention of the worldwide scientific community was focused on something
else: up to that moment a collision between two in-orbit spacecraft had been
considered possible but highly unlikely to happen. On top of that, the incident
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Figure 1.2: Historical evolution of manmade object orbiting the Earth.

originated a tremendous number of new space debris. Experts report that about
2000 pieces of debris measuring at least ten centimeters and many thousands of
smaller objects were created after the collision. Figure 1.2 shows the evolution
of the number of official manmade objects (both operational and idle) of >10cm
size that are being tracked by the U.S. National Aeronautics and Space Admin-
istration (NASA). The hike of the fragmentation debris curve in 2009 due to the
collision is well visible.

Another even more remarkable hike is sharply showed in Fig. 1.2 in corre-
spondence of year 2007: the one due to the intentional self-destruction of a Chi-
nese spacecraft. On 11 January 2007 an old Chinese meteorological spacecraft,
Fengyun-1C, was hit and destroyed by a ground-to-space missile during an anti-
satellite test [2]. Regardless of any common sense and prudence, the People’s
Republic of China intentionally provoked the explosion and destruction of one of
its own satellite, giving birth to what is considered the most severe orbital debris
cloud in History. Extending from 200 km to more than 4000 km in altitude, the
debris originated by the test frequently transit the orbits of hundreds of opera-
tional spacecraft, including the human space flight regime, posing new risks to
current and future space systems. On top of that, the majority of the debris were
thrown by the explosion into long-duration orbits, with decay time measured in
decades and even centuries. Two months after the test, more than 1200 debris
had been officially cataloged by the U.S. Space Surveillance Network (SSN), and
nearly 400 additional debris were being tracked. While the final tally of large (>
5 cm size) debris could well exceed 2000, the number of objects with a size of 1 cm
or more is estimated to be as large as 35,000. Both values represent an increase
of more than 15% of the known debris environment at the start of 2007. A hilar-
ious sign of fate wanted that the Chinese anti-satellite test was conducted right
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1.1 No more space in space: the space junk issue

one month before the United Nations Committee on the Peaceful Uses of Outer
Space (COPUOS) adopted a set of space debris mitigation guidelines designed to
contain the growth of debris orbiting the Earth....

The little story I wrote at the beginning of this introduction definitely does not
want to have any moralizing purpose, indeed it was thought only to make the
reader think about the “irresponsible” decisions (or, better said, non-decisions)
that historically Human kind never missed to made when it came to ignore the
possible future consequences of their actions in the name of immediate benefits,
not only with respect to the New World and space exploration (what about the
global warming?). Of course, this thesis is about manmade space debris, the
hazards that they represent for future human space missions, and the strategies
that we could undertake to mitigate their negative effects, so from now on we
will focus only on these issues. Thus, I would like to propose an adapted form of
the question that is at the beginning of the introduction: how will the destiny of
the Human space History evolve (involve?) if we do not take action to mitigate
the hazards stemming from our own rubbish? In the following sections the space
debris issue is briefly presented along with the debris mitigation strategies that, in
the last decade, the scientific community is trying to put into effect, with the aim
of reducing the impact risks between operational spacecraft with the thousands
idle objects of any dimensions that are orbiting the Earth uncontrolled.

1.1 No more space in space: the space junk issue

The total number of space launches from 1957 up to present date is not known
precisely. Nonetheless, all available sources agree on the fact that more than 5000
launch vehicles have crossed (or tried to cross) the Karman line (about 100 km
from sea level) bringing successfully into Earth orbit more than 7500 spacecraft.
In particular, Space Launch Report archive lists 5424 total launches that took
place between 4th October 1957 and 31st December 2014, of which 458 ended
with a failure [3, 4]. The launch vehicle that was used (and still used!) the
most is with no doubt the Russian Semyorka, which is better known as Soyuz:
about 1700 total launches in 52 years, something like one every 11 days. The
non-governmental website www.claudelafleur.qc.ca reports that to date, basing
on trustworthy sources, the 59.05% (3216) of launches have been carried out by
Russia, 29.56% (1610) by the United States, only 4.44% (242) by European coun-
tries, 3.97% (216) by China an the remaining 2.98% (162) by the rest of the world
[6]. About 51% of the total launches have been for military use, most of them
carried out by URSS and US during the cold war era. Figure 1.3 clearly depicts
that after the fall of Berlin Wall and the subsequent dissolution of the Soviet
Union and the end of the cold war the number of military launches drastically
dropped to an average of about 20% of the total, leaving room to the raise of
other governments missions along with commercial satellites. The number of the
latter have experienced a remarkable hike between 2010 and 2014 mostly due
to the viral diffusion of CubeSats and small satellites, meaning that in the next
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Figure 1.3: Evolution of the number of launched spacecraft from 1957 to
date.

future the near-Earth space will most likely become more and more crowded with
non-governmental satellites, starting an intense commercial exploitation of Earth
orbits.

1.1.1 Space debris

One could wonder: what happened (happens) to all the spacecraft once their
operational lives come to an end? When a spacecraft operational life ends it
means that all its subsystems cease to function. In particular, the defunct satellite
does not communicate with the groundstation and the navigation system does
not control its orbit anymore. In brief, due to the (quasi)total absence of any
dissipating force in space, a no-more operational satellite will maintain its kinetic
energy intact and will be bound to wander uncontrolled around the Earth forever,
and no way to make it stop! Actually, if the satellite orbit is low enough (let’s
say, below 600 km of altitude) the residual atmospheric drag will slowly deorbit
into the Earth atmosphere within few decades. So, what exactly a space debris
is? The answer is: every manmade object of any size that is orbiting uncontrolled
the Earth is a space debris: dead satellites, fragments of satellites originated by
disintegration, erosion, and collisions, launchers upper stages, dust from solid
rocket motors and nuclear power plants coolant, etc. More than 23000 objects
with size >10cm in Low Earth Orbit (LEO) and <0.5-1m in Geostationary orbit
(GEO) are being regularly tracked by the U.S. Space Surveillance Network, of
which 95% are space debris and the rest 5% are operational satellites. However,
if smaller objects are considered, the number of space debris increase drastically.
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Figure 1.4: Space debris distribution around the Earth (European Space
Agency).

According to NASA and ESA (the European Space Agency) there are 300000
objects larger than 1cm below 2000km of altitude. If the considered size is further
decreased, experts estimate that there are something like 10 millions objects with
size smaller than 1cm. [7]

Up to now only the relevant numbers of launches and space debris have been
reported. The next step is to understand what happens when a small space debris
(let’s say, with size <10cm) hit an operational satellite. The short answer is: a
hypervelocity impact happen. Now, the long answer. We deal with hipervelocity
when an object velocity is so high that, in case of impact with another object,
the inertial forces stemming from the impact are comparable or higher than the
material strength. Roughly, the hypervelocity threshold can be set to the refer-
ence value of 2.5-3km/s for metals. In this regime, even the most resistant metal
behaves like a fluid. Thus, the main consequence of a hypervelocity impact is
usually the vaporization of the impactor and, under certain circumstances, of the
target. The impact velocity of a space debris with an operational satellite can
reach the 16 km/s. At this speed, a single event impact can cause the complete
destruction of the satellite (even when space debris of very limited size are in-
volved) if proper countermeasures are not taken. Figure 1.5 shows the result of
a 10-km/s impact of a 1-cm diameter aluminum sphere on a 10-cm thick metal
plate [8]. Note that the sphere that appears in the figure cannot be the one that
impacted the plate: because the impactor must have been vaporized, we imagine
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Figure 1.5: ESA space debris studies: hypervelocity impact sample.

that it was positioned inside the crater just to give an idea of its dimension. Thus,
everyone can now understand that a space debris impact is “bad”.

Nevertheless, when a space debris impacts an operational satellite, the destruc-
tion (or damage) of the satellite is not the only consequence. In fact, a space
debris impact usually produces other space debris (debris clouds) and, if we see
the problem under a macroscopic point of view, we will notice that we could be
dealing with a slow, yet relentless, chain reaction. This theory takes the name of
Kessler Syndrome after the U.S. scientist Donald J. Kessler that in 1978 formu-
lated it for the first time [9]. In brief, the Kessler syndrome is a realistic scenario
in which the density of space debris has reached a certain threshold value that
represents a point of no return, that, if passed, will lead to a cascade effect. Col-
lision between objects would then cause other collisions, generating higher and
higher number of space debris with no possibility to stop the chain reaction.

Clearly, we still did not reach the Kessler threshold but the two catastrophic
events of 2007 and 2009 have made the scientific community to worry about it
like never before. That’s why international strategies for the debris mitigation
have been settled in 2007 and research groups started to work worldwide to find
new viable techniques to mitigate the formation of new space debris.

1.1.2 International agreement on space debris mitigation

As it was already mentioned above, in February 2007 the Scientific and Technical
Subcommittee (STSC) of the United Nations’ (UN) Committee on the Peaceful
Uses of Outer Space (COPUOS) adopted by consensus a comprehensive set of
space debris mitigation guidelines designed to curtail the growth of the Earth’s
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orbital debris population [10]. The new document culminates a multi-year work
plan involving the review of space debris mitigation guidelines by the Inter-Agency
Space Debris Coordination Committee (IADC) and the drafting of a similar set
of guidelines for Member States of the UN and other international organizations.
The document states that“Member States and international organizations should
voluntarily take measures, through national mechanisms or through their own
applicable mechanisms, to ensure that these guidelines are implemented, to the
greatest extent feasible, through space debris mitigation practices and procedures.
The STSC document lists seven guidelines.

Guideline 1: Limit debris released during normal operations Space systems
should be designed not to release debris during normal operations. If this is not
feasible, the effect of any release of debris on the outer space environment should
be minimized.

Guideline 2: Minimize the potential for break-ups during operational phases
Spacecraft and launch vehicle orbital stages should be designed to avoid failure
modes which may lead to accidental break-ups. In the case that a condition
leading to such a failure is detected, disposal and passivation measures should be
planned and executed to avoid break-ups.

Guideline 3: Limit the probability of accidental collision in orbit In devel-
oping the design and mission profile of spacecraft and launch vehicle stages, the
probability of accidental collision with known objects during the system’s launch
phase and orbital lifetime should be estimated and limited. If available orbital
data indicate a potential collision, adjustment of the launch time or an on-orbit
avoidance maneuver should be considered.

Guideline 4: Avoid intentional destruction and other harmful activities Rec-
ognizing that an increased risk of collision could pose a threat to space opera-
tions, the intentional destruction of any on-orbit spacecraft and launch vehicle
orbital stages or other harmful activities that generate long-lived debris should
be avoided.

Guideline 5: Minimize potential for post-mission break-ups resulting from
stored energy In order to limit the risk to other spacecraft and launch vehicle
orbital stages from accidental breakups, all on-board sources of stored energy
should be depleted or made safe when they are no longer required for mission
operations or post-mission disposal.

Guideline 6: Limit the long-term presence of spacecraft and launch vehicle
orbital stages in the low Earth orbit (LEO) region after the end of their
mission Spacecraft and launch vehicle orbital stages that have terminated their
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operational phases in orbits that pass through the LEO region, should be removed
from orbit in a controlled fashion. If this is not possible, they should be disposed
of in orbits which avoid their longterm presence in the LEO region.

Guideline 7: Limit the long-term interference of spacecraft and launch vehi-
cle orbital stages with geosynchronous (GEO) region after the end of their
mission Spacecraft and launch vehicle orbital stages that have terminated their
operational phases in orbits that pass through the GEO region should be left in
orbits which avoid their long-term interference with the GEO region.

Though the STSC agreement do not obligate the subscribing Countries to follow
the seven guidelines, it surely represent a fundamental step toward a significative
reduction of hazards relative to the space debris issue.

1.1.3 End-of-life mitigation strategies

Apart from the mitigation strategies pinpointed by the STSC international agree-
ment, several active space debris mitigation strategies have been studied in the
last decade. They involve the use of end-of-life devices to deorbit a spacecraft once
its operational life has come to an end. In the following we summaries, without
claiming to be exhaustive, the most common and promising among them. [7]

1.1.3.1 Drag augmentation devices

A drag augmentation device deorbit efficacy relies on the possibility of drastically
increasing the front area of the satellite. In fact, in low orbits the main cause of
natural orbit decay is due to the energy dissipated by the airdrag. The decay rate
is directly proportional to the area-to-mass ratio of the object, thus if the satellite
cross-sectional area is intentionally increased the decay rate will also increase.
Since the effectiveness of a drag augmentation device relies on the density of the
residual atmosphere, this kind of deorbiting technique is particularly effective for
orbits which altitude does not exceed, roughly, 700-800 km.

1.1.3.2 Solar sails

Solar sails utilizes the solar radiation pressure to thrust a satellite in a desired
direction. Solar photons transfer their momentum to the sail by impinging on its
surface and the efficiency of the momentum exchange process increases with the
reflectivity of the material. However, if a solar sail attitude is left uncontrolled
the decay effect averaged on one orbit would probably be close to null. Thus, an
oriented planar solar sail is needed to provide a low but continuous thrust in the
opposite direction of satellite velocity. This means that the deorbiting system
should be able to determine and control the attitude of the sail, that is no easy
task if low power and mass requirements have to be meet. Moreover, solar sails
do not work well below 600-800 km because of the oxygen erosion and residual
air drag.
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1.1.3.3 Chemical propulsion

Chemical rockets is very old and thus reliable technology. They could be em-
ployed at the end of one satellite life to give one last ∆V to decrease its orbital
energy and lower the perigee, thus drastically decreasing the satellite decay time.
Unfortunately, their impact on the satellite mass (and power) budget are usually
too high to be implemented when dealing with orbit altitude > 600km.

1.1.3.4 Electrodynamic tethers

Multi-km electrodynamic tethers (EDTs) are deployed from the defunct satellite
along the local vertical at the end of its life. They are made of conductive mate-
rials and are able to collect electrons from the ionospheric plasma by means of an
anodic device, that may consists of a tip-probe located on one tether extremity or
the bare tether can operate as anode itself. The collected electrons are re-emitted
back to the ionosphere by plasma contactor (cathode), thus an electric current
is made flow inside the tether. This in turn interacts with the Earth magnetic
field and, according to Lorentz law, produces a drag force that make the mother
satellite deorbit. The principal advantage of electrodynamic tethers is that, once
deployed, it is completely passive and are able to deorbit satellite from whatever
inclination and altitudes up to 1000 km, and more, in relatively short time.

Apart from end-of-life deorbit devices, several research teams all over the world
are studying Active Debris Removal strategies which imply the use of dedicated
space mission to rendezvous defunct satellites, capture them, and eventually de-
orbit them into the Earth atmosphere [11, 12, 13]. However, the treatment of
these technologies go beyond the scope of this work.

1.2 In this thesis: bare electrodynamic tethers as
deorbiting devices

The work that was carried out by the Author during his Ph.D. experience and
that eventually led to the writing of this thesis was done in the framework of the
FP7 “BETs Project” (BETs) funded by the European Commission in the 3-year-
period 2012-2014 (project 262972) [14]. BETs project had the aim to research
and develop a new technology based on electrodynamic tethers (EDTs) suitable to
deorbit satellites at the end of their operational lives. The leading requirement of
the investigation was to develop a reliable, competitive, and effective system. In
this context, deployment control of tape-shaped tether was investigated, plasma-
tether interaction models were validated in plasma chambers, an extensive test
campaign on debris impacts and survivability of the tether was conducted, and
prototypes of the key subsystems were built by the BETs team. To be successful in
their mission, BETs partners had to solve a number of issues that characterize the
electrodynamic tethers. In this context the BETs research team at University of

29



1 Introduction

Figure 1.6: Operation scheme of a bare electrodynamic tether system.

Padova, of which I was part of, took care of the dynamical aspects of the tethered
system.

An essential sketch of the operation of a bare electrodynamic tether (BET) is
shown in Fig. 1.6. While moving along its orbit with a relative velocity vrel with
the surrounding ionospheric plasma, the bare tether continuously cuts the Earth
magnetic field B. This results in a motional electric field Em:

Em = (vrel ×B) · ût (1.1)

where ût is the tether direction. The motional electric field generate an elec-
tric current I that flows through the tether: while the electrons are collected by
the bare tether from the plasma ionosphere, a plasma contactor serve as a cath-
ode that re-emit the electrons back to the ionosphere, thus closing the electrical
circuit. The electric current, in turn, interacts with the Earth magnetic field
producing electrodynamic forces Fel according to Lorentz law:

Fel =

ˆ

l

I (s) ût ×Bds (1.2)

where s is the arc-length along the tether. These forces are the responsible of the
drag action of the BET. The amplitude of these force increases with increasing
electric current that can be obtained with longer, thicker, wider tethers. Roughly,
the decay time of the satellite is proportional to r6

L2 cos2 i
, where r is the geocentric

orbit radius, L is the tether length, and i is the orbit inclination.
A BETs system is composed of a passive reeling deployer from which a tethered

tip mass is to be deployed with the aid of a low-thrust propulsion system located
inside the tip mass itself (see Fig. 3.1). The deployer has a mechanical brake
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system positioned in the inner supporting ring utilized in a feedback loop to con-
trol the tether deploying velocity. Tether in-line thrusters are to be turned on
at the beginning of the deployment maneuver to provide a continuous and stable
unreeling force without transmitting sudden tugs to the relative high-inertia reel,
which would occur in case of a spring-initiated deployment. Once the deployment
maneuver has ended the conductive bare tether starts collect electrons from the
Earth ionosphere, beginning the deorbiting phase. The tape-shaped tether con-
figuration was preferred to the cylindrical one due to its lower mass and higher
efficiency. The electron collection of an electrodynamic tether per unit length de-
pends on the perimeter of its cross section, thus a tape-shaped tether produces the
same electrical current of a cylindrical tether of the same perimeter but weights
much less. Moreover, a recent study has highlighted that tape-shaped tethers
have a much higher survivability to orbital debris impacts than cylindrical ones
[19, 20].

Within the framework of the new debris mitigation policies, the technologies
based on electrodynamic tethered system have gained a renewed interest, after
the space missions in the 90s and 2000s, as they could provide (relatively) simple
and low-cost solutions for propellantless end-of-life deorbiting subsystems. Unlike
drag sails and balloons, EDTs function very effectively at higher altitudes in
LEO where drag sails and balloons are very ineffective and chemical thrusters
require a large mass of propellant for deorbiting. In the ‘90s and early ‘00s
essential breakthroughs into tether dynamics and plasma physics in space was
gained thanks to several space tethered missions, such as SEDS-I and II, TSS-1
and 1R, PMG and TiPS [17]. Moreover, reliable and light deployers were designed
and tested successfully in orbits (e.g., SEDS-I and SEDS-II). Robust open and
close loop control mechanisms have been designed and successfully employed for
tether deployment [18].

Several studies on electrodynamics tethers dynamic have been carried out since
early 2000s [20, 22]. One of the most severe dynamical issue that must be dealt
with is the stability of the tether dynamics throughout the deorbit maneuver.
The interaction between tether and plasmasphere, in fact, produces a continuous
injection of energy into the system that increases the amplitude of the tether oscil-
lations over time. This effect can produce a reduction of the system efficiency and,
in the worst case, cause dynamic instability (e.g., tether rolling around the mother
satellite) [21]. In the last two decades many authors studied the dynamic instabil-
ities of space tethers and the countermeasures that could be employed to prevent
them. In early ‘90s Beletsky and Levin proposed some possible ways of damp-
ing space tethers oscillations involving internal tether friction, active longitudinal
damping, and active current control in the case of EDTs. Furthermore, they also
proposed a way to optimize the libration damping with a movable boom model-
ing the tether as a continuum body (cfr. Chapter 7 of [22]). Levin treated space
tether missions once more in 2007, yet without elaborating further on dynamic
stabilization [23]. After Beletsky and Levin work many other authors continued
the study of tether stabilization, overall by means of active control of the electric
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current in EDTs [24, 25, 26]. However, Peláez et al. studied the effect of a me-
chanical spring-dashpot for both longitudinal and lateral oscillation damping by
modeling the electrodynamic tether as a rigid rod (dumbbell model) [19]. Loren-
zini and Menon proposed independently to employ a rotational damper to damp
transversal oscillations of an inert tether utilizing impedance-matching methods
[27, 28]. The task of the work reported in Chapter 2 is to gain additional insights
on the use of a mechanical damper, installed at the attachment point between
tether and spacecraft, to dissipate part or the whole of the oscillation energy of
the tether. Unlike what has been done up to now, we conduct the investigation
utilizing a damped two-bar model: the first bar represents the damper (a few
meters long fishing rod) whereas the second bar is the tether. The final goal
of the investigation is to maximize the energy transfer from the electrodynamic
tether into the damper and thus its dissipation.

The deployment of a tether in space has been a critical phase for past tethered
mission. Some of them experienced failures or malfunctions in orbit, mostly due
to malfunctioning of the deployer control subsystem or ejection mechanism (see
Ref [29] for a list of tethered missions). In the ‘90s one of the two TSS NASA/ASI
(Agenzia Spaziale Italiana) missions, which provided important information on
tether dynamics and plasma physics, experienced a failure in the deployer subsys-
tem [17]. The missions ATEX [30] and MAST [31] also developed problems early
on deployment due to ejection mechanisms. The same happened to the Japanese
CubeSat mission STARS [32], whereas the European YES2 achieved a full tether
deployment but the swing-and-cut technique was not sufficiently accurate, likely
due to a problem in the deployment control system, and the deorbited payload
(FOTINO) was not recovered [33]. Nonetheless there have also been fully suc-
cessful tethered space mission. Among all, the two NASA missions SEDS-1 and
SEDS-2 that were specifically designed to test dedicated hardware and control
strategies for the deployment of a multi-km tether from a non-spinning orbiting
object (i.e., a DELTA-II second stage). In both missions a 20-km tether was
deployed from a passive deployer with a spring-based release system. In par-
ticular, in SEDS-1 the tether was deployed through a librating maneuver and
subsequently cut (hence the term swing-and-cut) to let the tip mass deorbit in
the atmosphere following a pre-determined flight path that ended off the coast of
Mexico. The prediction of the re-entry trajectory was sufficiently precise to allow
the team personnel stationing at pre-selected sites to make photographic observa-
tions of the event [17]. The purpose of the work in Chapter 3 is to study the issues
related to the deployment of a BETs system and to find simple and effective so-
lutions. Building on the success of the SEDS-2 deployment (with a final libration
amplitude of 4° out of a goal of 10°, [34]), we chose to utilize a strategy similar to
the one implemented in that mission, that is to deploy the tip mass following a
pre-determined flight path fed forward to a linear proportional-derivative closed-
loop control operated by a brake system mounted on the deployer reel. This is
to be done by controlling instantaneous tether length and velocity by means of a
suitable set of sensors (e.g., incremental encoders) in order to force the tip mass
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to follow the reference trajectory. However, there are two principal differences
between SEDS-2 and BETs systems. First, a BET system uses a tape-shaped
tether that has to be stored in a reeling mechanism (that is with non-negligible
inertia), whereas SEDS-2 utilized a spool with no moving parts. Second, as a
consequence of the inertia of the reel, the release of the tip mass in a BET system
cannot be done with springs, as it was in SEDS-2, and a low-thrust propulsion
system must slowly initiate the deployment maneuver similarly to what was done
with the TSS missions. [35, 36]

Finally, in Chapter 4 a new optimization process for BETs systems has been
studied. Within BETs Project, bare electrodynamic tether systems have been
studied overall to deorbit high-mass satellites, say of the order of 1000 kg. Inves-
tigation results on deorbiting performances suggest that BETs could be highly
competitive on deorbiting mid-to-high mass satellites from high LEO (<1000 km)
at every inclination. Instead, here we focused on the study of a scaled-down ver-
sion of an EDT system suitable to provide deorbiting services to small satellites
with mass in the 100-200 kg range. To do this a very common (and therefore
densely populated by space debris) mission profile has been selected, that is a
mid-LEO sun-synchronous orbit. Sun-synchronous orbits, in fact, represent one
of the three high-ranking hotspots regions identified by ESA. The study was car-
ried out by means of two software which were developed specifically for BETs
Project. First, a preliminary analysis has been carried to find the optimized BET
configuration for a given set of input variables such as orbit altitude, inclination,
satellite mass, etc. Subsequently, the results thus obtained were used as input
in an accurate tether simulator that utilizes a comprehensive model that takes
into account both lateral and longitudinal motion of the tether along with all
the latest environment routines. Results from the two software have shown to be
comparable and this study points out that their combined use can be effective in
finding an efficient and reliable configuration of BET systems used for deorbiting
purposes.
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2 Passive Damping System for the
Stabilization of BETs

The purpose of this study is to analyze by means of analytical and numerical tools
the effects on the dynamics of space tethers system produced by the insertion of a
mechanical spring-dashpot damping system. Ideally, the damper is to be applied
at the interface between the tether and the spacecraft and it should be shaped
like a long (on the order of 10 m) and thin rod, i.e. a deployable boom to be
unfolded during the tether deployment phase. Previous works had highlighted
that a rotational spring-dashpot damper can be useful at adsorbing the tether
kinetic energy and thus at stabilizing its dynamic during the deorbiting maneuver.
In this section I attack the same physical problem from an analytical point of view
trying to answer in a more rigorous way the following driving questions:

� is a mechanical damping device effective in adsorbing the tether kinetic
energy?

� does a mechanical spring-dashpot damper improve the dynamical stability
of the tether system?

� if so, which is the optimal damper configuration that maximize the tether
kinetic energy dissipation?

Provided that the first two questions get positive answers, the problem of choosing
a correct configuration of the damper coefficients arises: which damping coeffi-
cient will provide the most efficient energy dissipation? Will the elastic element
be useful to this scope? More in general, for given orbital, geometric and mass
parameters values of the system I sought a function that can provide the best
damper configuration:

(b∗, k∗) = f̂ (orbit, tether geometry, physical parameters) (2.1)

where (b∗, k∗) is the optimal pair of damping-elastic coefficients of the dashpot
device. As it will be shown in the next sections, from a linearized study it is
possible to infer that the answers to the first two driving questions are positive
and there actually is an optimization function f̂ that can provide the optimal
damper coefficients.

Table 2.1 reports the nomenclature used in this chapter according to [4].
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2 Passive Damping System for the Stabilization of BETs

Table 2.1: Nomenclature.

a circular orbit radius ϕi out-of-plane angle of bar i

b angular damping coefficient ω orbital mean motion

b∗ optimal damping coefficient ωi i-th system natural
frequency

b∗d damping coefficient @
max(TDE)

Ω1 angular velocity of 1st bar

b∗k damping coefficient @
min(MKE)

cx cos(x) Non-dimensional variables and parameters

Ed dissipated energy by damper A Λ (3 + δ1 + 3δ2)

Ek tether kinetic energy B (1− Λ) (2 + δ2)

k angular elastic coefficient D −Λ (2 + δ2)

k∗ optimal elastic coefficient E (1− Λ) (3 + δ2)

kcr critical elastic coefficient β b/ (ωmBΛL2)

L sum of two bars lengths δi mi/mB

Li length of bar i κ k/ (ω2mBΛL2)

mB tip mass κ∗ optimal elastic coefficient

mi mass of bar i κcr critical elastic coefficient

nsim number of integrated orbits η 12/ (4AE + 9BD)

MKE Mean Kinetic Energy τ non-dimensional time ωt

sx sin(x) τ̂ relaxation time

t dimensional time Λ L1/L

TDE Total Dissipated Energy

ui unit vector of bar i Superscripts

αi real part of i-th eigenvalue ẋ dx/dt

ϑi in-plane angle of bar i ẍ d2x/dt2

µ Earth gravitational constant x
′

dx/dτ

ρAL aluminum volumetric mass
density

x
′′

d2x/dτ 2
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2.1 The damped two-bar model

Figure 2.1: Synodic reference frame.

2.1 The damped two-bar model

The aim of the present study is to characterize the dynamics of space tether which
lateral librations are damped by means of a rotational spring-dashpot damper.
In the present study the tether system was modeled with a two-bar model: the
first bar represents the damper, the second the electrodynamic tether (see Fig.
2.1). This model have been already studied by Pelàez et al. and we here took
advantage of it using the same method to find the equation of motions of the two-
bar model [1]. Figure 2.1 depicts the orbital reference frame Oxyz (unit vectors
i,j,k): the x axis is along the local vertical pointing the space, the z axis lays on
the orbital plane positively oriented with the instantaneous spacecraft velocity
and the y axis completes the orthonormal frame. The orbit is supposed to be
circular with radius equal to the semi-mayor axis a, thus with a mean motion:

ω =

√
µ

a3

In-plane angles ϑ1 and ϑ2 define the attitude of the two bars in the orbit plane and
the out-of-plane angles ϕ1 and ϕ2 define the angular displacements orthogonally
the orbit plane. The physical model can be described as follows: a damper of
mass m1, a conductive tether of mass m2 and an end mass mB are attached to the
spacecraft and the total length of the system is L = L1+L2. The bars are assumed
to be individually rigid and that their masses are negligible with respect to the
spacecraft mass, thus the center of mass of the system is in O. Previous studies
have shown that the main instabilities associated with the tether libration arise
through a coupling between the in-plane and the out-of-plane tether motions with
the system going eventually unstable in the orbit plane. For this reason, in the
present work the tether dynamics has been studied by first analyzing the in-plane
motion and later the 3D coupled dynamics. Although an analytical study was
carried out through the linearization of the in-plane equations of motion only, it is
worth pointing out that the damping device works on both the in-plane and out-
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2 Passive Damping System for the Stabilization of BETs

of-plane oscillations and thus it can also take energy out of coupled oscillations
like a tether skip-rope motion. Peláez et al. derived the equations of motion of
the two-bar model taking into account the gravitational forces together with a
simplified model of the Lorentz forces. In order to investigate the free vibration
response of the damped two-bar model the electrodynamics terms were removed
from the equations of motion. In turn, derivative and proportional terms of the
damping device were added (i.e. a spring-dashpot model). To find the complete
two-bar equations of motion the correct Lagrangian equation and generalized
forces must be calculated.

2.1.1 Lagrangian equation

In this paragraph the method used to find the Lagrangian equation of the damped
two-bar model is reported. The procedure is the same that was utlized by Peláez
et al. in [2] and [1], thus we will just report the main passages.

With respect to the synodic frame depicted in Fig. 2.1, a point mass m orbiting
the Earth is subjected to:

1. gravitational attraction of the Earth;

2. the inertial forces deriving from the non-Newtonian nature of the synodic
frame;

3. all other external forces.

The gravitational force acting on m is conservative, thus they can be represented
with the potentinal Vg. This can be linearized in the neighboorhood of the center
O of the synodic frame:

Vg = −ω2

[
a2 − xa+

(2x2 − y2 − z2)
2

]
(2.2)

where ω is the orbital frenquency, a is the circular orbit radius, and (x, y, z) are
the cartesian coordinates in the synodic reference frame. Also the inertial forces
can be obtained from a velocity-dependent potential [4]:

Vi = γ0 · x−
‖ω × x‖2

2
− ω · (x× ẋ) (2.3)

where, for a circular orbit, γ0 = −ω2ai is the acceleration of the reference frame
origin and ω = −ωj is orbital angular velocity. Equation (2.3) thus becomes:

Vi = −ω2
2ax+ z2 + x2

2
+ ω (zẋ− xż) (2.4)

The generalized coordinates vector q of the two-bar system can be defined con-
sidering the damper and tether attitude angles:

q = (ϑ1, ϕ1, ϑ2, ϕ2)
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2.1 The damped two-bar model

The four coordinates are independent and do not contain the time explicity. These
two properties, together with the fact that the gravitational and inertia forces are
conservative, makes the system to be a natural system. Thus, the kinetic energy
of the point mass m can be expressed as follows:

T =
1

2
m

n∑
r=1

n∑
s=1

∂x

∂qr
·
∂x

∂qs
q̇rq̇s (2.5)

where n = 4 is the dimension of q and x is the position of the point mass m
expressed in the synodic reference frame. The cartesian coordinates of m can be
expressend in function of the in-plane and out-of-plane angles, in particular for a
point mass located generally along the first bar the position vector becomes

x1 = (lcϕ1cϑ1,−lsϕ1, lcϕ1sϑ1) , 0 < l < L1 (2.6)

In turn, the position vector of a point mass located along the second bar (point
B in Fig. 2.1) is

x2 = (L1cϕ1cϑ1 + lcϕ2cϑ2,−L1sϕ1 − lsϕ2, L1cϕ1sϑ1 + lcϕ2sϑ2) , 0 < l < L2

(2.7)
In the two previous equations following notations, which maintain valid through-
out the document, have been introduced:

sinx = sx

cosx = cx (2.8)

Once the potential and the kinetic terms of a generic point mass have been ex-
pressed as functions of its position and velocity, the contributions to the La-
grangian equation of damper, tether, and tip mass can be expressed in function
of the generalized coordinates vector q using expressions (2.4) and (2.5). Be-
fore proceeding with the Lagrangian components, we define the following four
functions:

V̌g,i (l) =
1

2
ω2
[
2alcϕicϑi + l2

(
1− 3c2ϑic

2ϕi
)]

(2.9)

V̌a,i (l) =
1

2
ω
[
−2alωcϕicϑi − l2c2ϕi

(
ω + 2ϑ̇i

)]
(2.10)

Ťi (l) =
1

2
l2
(
ϕ̇2
i + ϑ̇2

i c
2ϕi

)
(2.11)

Ľi (l) =
1

2
l2
[
c2ϕi

(
3ω2c2ϑi +

(
ω + ϑ̇i

)2)
+ ϕ̇2

i

]
(2.12)

Equations (2.9)-(2.12) are expressions of specific energies, [J/kg]. They will be very
useful in defining potential, kinetic, and Lagrangian equations in the following
paragraphs.
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Damper Taking into consideration a point mass m1located along the first bar
(i.e. the damper), after taking x = x1, the gravitional potentials and kinetic
terms becomes:

V 1
g = m1V̌g,1 (l) =

1

2
m1ω2

[
2alcϕ1cϑ1 + l2

(
1− 3c2ϑ1c

2ϕ1

)]
(2.13)

V 1
a = m1V̌a,1 (l) =

1

2
m1ω

[
−2alωcϕ1cϑ1 − l2c2ϕ1

(
ω + 2ϑ̇1

)]
(2.14)

T 1 = m1Ť1 (l) =
1

2
m1l2

(
ϕ̇2
1 + ϑ̇2

1c
2ϕ1

)
(2.15)

Note that the gravitational potential V 1
g has been normalized so that it is null

in the center O of the synodic frame, that is V 1
g (l = 0) = 0. The Lagrangian

equation of m1 can thus be calculated as L1 = T 1 − V 1
g − V 1

a :

L1 = m1Ľ1 (l) =
1

2
m1l2

[
c2ϕ1

(
3ω2c2ϑ1 +

(
ω + ϑ̇1

)2)
+ ϕ̇2

1

]
(2.16)

To calculate the Lagrangian equation L1 of the first bar we must integrate Eq.
(2.16) over the whole damper length:

L1 =
1

2L1

m1

L1ˆ

0

s2
[
c2ϕ1

(
3ω2c2ϑ1 +

(
ω + ϑ̇1

)2)
+ ϕ̇2

1

]
ds

=
1

3
m1Ľ1 (L1) =

1

6
m1L1

[
c2ϕ1

(
3ω2c2ϑ1 +

(
ω + ϑ̇1

)2)
+ ϕ̇2

1

]
(2.17)

Tether Similarly to what was done in the previous paragraph, we now consider
a point mass m2 that is positioned along the second bar (i.e., the tether). Sub-
stituting x = x2 in Eqs. (2.2), (2.4), and (2.5) the energy contributions of the
generic mass can be found to be as follows:

V 2
g = m2

[
V̌g,1 (L1) + V̌g,2 (l)

]
+

+m2ω2L1l [(cϕ1cϕ2 (c (ϑ1 − ϑ2)− 3cϑ1cϑ2) + sϕ1sϕ2)] (2.18)

V 2
a = m2

[
V̌a,1 (L1) + V̌a,2 (l)

]
+

+m2ωL1l [s (ϑ1 − ϑ2) (sϕ1cϕ2ϕ̇1 − sϕ2cϕ1ϕ̇2) +

−c (ϑ1 − ϑ2) cϕ1cϕ2

(
ϑ̇1 + ϑ̇2 + ω

)]
(2.19)

T 2 = m2
[
Ť1 (L1) + Ť2 (l)

]
+

+m2L1l
[
c (ϑ1 − ϑ2) cϕ1cϕ2ϑ̇1ϑ̇2+

+ (cϕ1cϕ2 + c (ϑ1 − ϑ2) sϕ1sϕ2) ϕ̇1ϕ̇2 +

+s (ϑ1 − ϑ2)
(
cϕ1sϕ2ϑ̇1ϕ̇2 − cϕ2sϕ1ϑ̇2ϕ̇1

)]
(2.20)
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2.1 The damped two-bar model

where 0 < l < L2. The Lagrangian equation of a point mass along the second bar
can then be calculated as usal taking the difference between the kinetic energy
and the potentials:

L2 = m2
[
Ľ1 (L1) + Ľ2 (l)

]
+

m2L1l
[
ω2 (3cϑ1cϑ2cϕ1cϕ2 − sϕ1sϕ2) +

+c (ϑ1 − ϑ2) cϕ1cϕ2

(
ω
(
ϑ̇1 + ϑ̇2

)
+ ϑ̇1ϑ̇2

)
+

−s (ϑ1 − ϑ2) sϕ1cϕ2

(
ω + ϑ̇2

)
ϕ̇1 +

+s (ϑ1 − ϑ2) sϕ2cϕ1

(
ω + ϑ̇1

)
ϕ̇2 +

+ (c (ϑ1 − ϑ2) sϕ1sϕ2 + cϕ1cϕ2) ϕ̇1ϕ̇2 (2.21)

Integrating L2 over the whole length of the second bar it is possible to find the
Lagrangian equation of the second bar:

L2 =
1

L2

L2ˆ

0

L2 (s) ds =

= m2

[
Ľ1 (L1) +

1

3
Ľ2 (L2)

]
+

1

2
m2L1L2

[
ω2 (3cϑ1cϑ2cϕ1cϕ2 − sϕ1sϕ2) +

+c (ϑ1 − ϑ2) cϕ1cϕ2

(
ω
(
ϑ̇1 + ϑ̇2

)
+ ϑ̇1ϑ̇2

)
+

−s (ϑ1 − ϑ2) sϕ1cϕ2

(
ω + ϑ̇2

)
ϕ̇1 +

+s (ϑ1 − ϑ2) sϕ2cϕ1

(
ω + ϑ̇1

)
ϕ̇2 +

+ (c (ϑ1 − ϑ2) sϕ1sϕ2 + cϕ1cϕ2) ϕ̇1ϕ̇2 (2.22)

where L2 (s) is found starting from Eq. (2.21) taking the substitution l→ s and
m2 → m2.

Tip mass In the two-bar model the tip mass is modeled like a point mass po-
sitioned at the end of the second bar. It is possible to calculate its gravitational
and kinetic contribution by substituting the position vector (2.7) into Eqs. (2.2),

45



2 Passive Damping System for the Stabilization of BETs

(2.4), and (2.5) taking l = L2:

V B
g = mB

[
V̌g,1 (L1) + V̌g,2 (L2)

]
+

+mBω
2L1L2 [(cϕ1cϕ2 (c (ϑ1 − ϑ2)− 3cϑ1cϑ2) + sϕ1sϕ2)] (2.23)

V B
a = mB

[
V̌a,1 (L1) + V̌a,2 (L2)

]
+

+mBωL1L2 [s (ϑ1 − ϑ2) (sϕ1cϕ2ϕ̇1 − sϕ2cϕ1ϕ̇2) +

−c (ϑ1 − ϑ2) cϕ1cϕ2

(
ϑ̇1 + ϑ̇2 + ω

)]
(2.24)

TB = mB

[
Ť1 (L1) + Ť2 (L2)

]
+

+mBL1L2

[
c (ϑ1 − ϑ2) cϕ1cϕ2ϑ̇1ϑ̇2+

+ (cϕ1cϕ2 + c (ϑ1 − ϑ2) sϕ1sϕ2) ϕ̇1ϕ̇2 +

+s (ϑ1 − ϑ2)
(
cϕ1sϕ2ϑ̇1ϕ̇2 − cϕ2sϕ1ϑ̇2ϕ̇1

)]
(2.25)

Thus, the Lagrangian contribution of the tip mass is:

LB = mB

[
Ľ1 (L1) + Ľ2 (L2)

]
+

mBL1L2

[
ω2 (3cϑ1cϑ2cϕ1cϕ2 − sϕ1sϕ2) +

+c (ϑ1 − ϑ2) cϕ1cϕ2

(
ω
(
ϑ̇1 + ϑ̇2

)
+ ϑ̇1ϑ̇2

)
+

−s (ϑ1 − ϑ2) sϕ1cϕ2

(
ω + ϑ̇2

)
ϕ̇1 +

+s (ϑ1 − ϑ2) sϕ2cϕ1

(
ω + ϑ̇1

)
ϕ̇2 +

+ (c (ϑ1 − ϑ2) sϕ1sϕ2 + cϕ1cϕ2) ϕ̇1ϕ̇2 (2.26)

The complete Lagrangian equation Once the three Lagrangian contributions
of damper, tether, and tip mass have been calculated the complete Lagrangian
equation of the two-bar model is found by adding these three contributions:

L = L1 + L2 + LB =

=
1

6
(m1 + 3 (m2 +mB))L2

1

[
c2ϕ1

(
3ω2c2ϑ1 +

(
ω + ϑ̇1

)2)
+ ϕ̇2

1

]
+

+
1

6
(m2 + 3mB)L2

2

[
c2ϕ2

(
3ω2c2ϑ2 +

(
ω + ϑ̇2

)2)
+ ϕ̇2

2

]
+

+
1

2
(m2 + 2mB)L1L2

{
cϕ1cϕ2c (ϑ2 − ϑ1)

[
ϑ̇1ϑ̇2 + ω

(
ϑ̇1 + ϑ̇2

)]
+

+s
(
ϑ̇1 − ϑ̇2

)
sϕ2cϕ1

(
ω + ϑ̇1

)
ϕ̇2 − s

(
ϑ̇1 − ϑ̇2

)
sϕ1cϕ2

(
ω + ϑ̇2

)
ϕ̇1+

+ [c (ϑ1 − ϑ2) sϕ1sϕ2 + cϕ1cϕ2] ϕ̇1ϕ̇2 +

+ω2 (3cϑ1cϑ2cϕ1cϕ2 − sϕ1sϕ2)
}

(2.27)
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2.1 The damped two-bar model

2.1.2 Damper viscous and elastic terms

The end mass is placed at the end of the tether. In a realistic mission scenario
involving an electrodynamic tether system for deorbiting purposes the end mass
is used to enhance the system stability by increasing the restoring gravitational
forces and also for assisting the system deployment. However, in order to keep
the deorbiting device competitive from a mass point of view, the end mass is
usually much lighter than the spacecraft to be deorbited. Since the dissipated
energy in a dashpot device is a function of the relative velocity between two
bodies, the damper is thought to be installed on the spacecraft, whose attitude,
considering its relative high inertia, can be assumed in a first-order analysis to
be fixed with respect to the orbital frame. The rotational spring-dashpot device
used in this work is modeled as a spherical damper [5]. The elastic contribution
of the spherical damper is linearly proportional to the angle γ between the unit
vector i and the unit vector u1 of the first bar:

u1 = (cϕ1cϑ1,−sϕ1, cϕ1sϑ1) (2.28)

The overall elastic torque tends to restore the position of the first bar along the
local vertical (x axis), thus its direction is always perpendicular to the plane
defined by vectors i and u1:

Mk = kγ
u1 × i

‖u1 × i‖
= kfk (u1 × i) (2.29)

where:

u1 × i = (0, cϕ1sϑ1, sϕ1)

fk (ϑ1, ϕ1) =
γ

sin γ
=

sin−1 (‖u1 × i‖)
‖u1 × i‖

=
sin−1

(√
1− c2ϑ1c2ϕ1

)
√

1− c2ϑ1c2ϕ1

The viscous torque component in a spherical damper is proportional to the in-
stantaneous angular velocity (relative to the orbital frame) of the first bar and
its direction is the opposite of that defined by the angular velocity vector. Con-
sequently, the damping torque is simply:

Mb = −bΩ1 (2.30)

In Eqs. (2.29) and (2.30) b and k are the dimensional damping and elastic
coefficients, with dimension [kg · m/s2] and [kg · m2/s2] respectively. Equation
(2.31) yields the first bar angular velocity Ω1 with respect to the orbital frame:

Ω1 = u1 × u̇1 =

=
(
sϑ1ϕ̇1 − cϕ1sϕ1cϑ1ϑ̇1

)
i− c2ϕ1ϑ̇1j−

(
cϑ1ϕ̇1 + cϕ1sϕ1sϑ1ϑ̇1

)
k(2.31)
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2 Passive Damping System for the Stabilization of BETs

Considering the very low torsional stiffness of long tethers, the motion about the
longitudinal axis was neglected. Equation (2.32) defines the virtual work done by
the generalized forces expressed in terms of the generalized coordinates:

dW = M ·Ω1dt = Qϑ1dϑ1 +Qϕ1dϕ1 (2.32)

Thus, the generalized forces associated with the proportional and derivative terms
of the damping system are computed by means of Eqs. (2.33) and (2.34) and then
added to the right-hand side of the equations of motion (see Par. 2.1.3):

Qb,qi = Mb ·
∂Ω1

∂q̇i
= −

b

2

∂ ‖Ω1‖2

∂q̇i
(2.33)

Qk,qi = Mk ·
∂Ω1

∂q̇i
= kfk (u1 × i) ·

∂Ω1

∂q̇i
(2.34)

The in-plane and out-of-plane components of the viscous terms are:

Qb,ϑ1 = −bc2ϕ1ϑ̇1

Qb,ϕ1 = −bϕ̇1 (2.35)

The same components of the elastic terms are:

Qk,ϑ1 = −kfksϑ1cϕ1

Qk,ϕ1 = −kfksϕ1cϑ1 (2.36)

2.1.3 Equations of motion

The Lagrangian equations that describe the dynamic of the damped two-bar
model are shown in Eqs. (2.38)–(2.41). They have been written in a more compact
non-dimensional form making use of the non-dimensional parameters defined in
the Nomenclature at the beginning of this Chapter. Briefly, the equations of
motion were first obtained in dimensional form starting from the undamped two-
bar Lagrangian function by adding the terms listed in Eqs. (2.35) and (2.36) to
the right hand side of the equations:

d

dt

(
∂L
∂q̇i

)
−
∂L
∂qi

= Qb,qi +Qk,qi (2.37)

The four equations thus obtained are very long and not easy to deal with. We
can partially remedy to this fact manipulating them algebrically with the aim
to reduce their length and presente them in a more intelligible form. First, the
non-dimensional time is adopted in the derivative terms such as:

dx

dt
= ω

dx

dτ
,
d2x

dt2
= ω2

d2x

dt2
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2.1 The damped two-bar model

At this point, it is possible to substitute all dimensional mass and geometry
parameters with their non-dimensional equivalent (i.e., δi and Λ factors). Sub-
sequentially, the equations relative to first and second bar are divided for the
common factors ω2mBΛL2 and ω2mB (1− Λ)L2, respectively. These three pas-
sages are sufficient to make the equations of motion non-dimensional, nevertheless
it will turn out to be much useful to carry on one last passage, that is to group
together all similar geometry and mass factors by means the A, B, D, and E pa-
rameters. In this manner the equations of motion of the damped two-bar model
assume a shorter and a little bit more handy form. Moreover, all these measures
will be useful in the subquent analytical study. At last, note that from now on
also the damping and the elastic coefficients assume non-dimensional form taking
advantage of β and κ coefficients. Concluding, the four equations of motion are
reported in the following paragraphs.

Equation of motion relative to the first bar, in-plane dynamics

Acϕ1ϑ
′′

1 +
3

2
Bc (ϑ1 − ϑ2) cϕ2ϑ

′′

2 +
3

2
Bs (ϑ1 − ϑ2) sϕ2ϕ

′′

2

− 2Asϕ1ϕ
′

1

(
1 + ϑ

′

1

)
− 3Bc (ϑ1 − ϑ2) sϕ2ϕ

′

2

(
1 + ϑ

′

2

)
+

3

2
Bs (ϑ1 − ϑ2) cϕ2

(
ϑ

′2
2 + 2ϑ

′

2 + ϕ
′2
2

)
+ 3sϑ1

(
Acϑ1cϕ1 +

3

2
Bcϑ2cϕ2

)
+ 3

(
βcϕ1ϑ

′

1 + κfksϑ1

)
= 0 (2.38)

Equation of motion relative to the first bar, out-of-plane dynamics

Aϕ
′′

1 +
3

2
B [cϕ1cϕ2 + c (ϑ1 − ϑ2) sϕ1sϕ2]ϕ

′′

2

− 3

2
Bs (ϑ1 − ϑ2) sϕ1cϕ2ϑ

′′

2 + 3Bs (ϑ1 − ϑ2) sϕ1sϕ2ϕ
′

2

(
1 + ϑ

′

2

)
+ Asϕ1cϕ1ϑ

′

1

(
2 + ϑ

′

1

)
+

3

2
Bc (ϑ1 − ϑ2) sϕ1cϕ2

(
ϑ

′2
2 + 2ϑ

′

2 + ϕ
′2
2

)
− 3

2
Bsϕ2cϕ1ϕ

′2
2 + cϕ1

(
3

2
Bsϕ2 + Asϕ1

)
+ 3sϕ1cϑ1

(
Acϑ1cϕ1 +

3

2
Bcϑ2cϕ2

)
+ 3

(
βcϕ1ϕ

′

1 + κfkcϑ1sϕ1

)
= 0 (2.39)
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2 Passive Damping System for the Stabilization of BETs

Equation of motion relative to the second bar, in-plane dynamics

Ecϕ2ϑ
′′

2 −
3

2
Dc (ϑ1 − ϑ2) cϕ1ϑ

′′

1 +
3

2
Ds (ϑ1 − ϑ2) sϕ1ϕ

′′

1

− 2Esϕ2ϕ
′

2

(
1 + ϑ

′

2

)
+ 3Dc (ϑ1 − ϑ2) sϕ1ϕ

′

1

(
1 + ϑ

′

1

)
+

3

2
Ds (ϑ1 − ϑ2) cϕ1

(
ϑ

′2
1 + 2ϑ

′

1 + ϕ
′2
1

)
+ 3

(
Esϑ2cϑ2cϕ2 +

3

2
Dsϑ2cϑ1cϕ1

)
= 0 (2.40)

Equation of motion relative to the second bar, out-of-plane dynamics

Eϕ
′′

2 −
3

2
D [cϕ1cϕ2 + c (ϑ1 − ϑ2) sϕ1sϕ2]ϕ

′′

1

− 3

2
Ds (ϑ1 − ϑ2) cϕ1sϕ2ϑ

′′

1 + 3Ds (ϑ1 − ϑ2) sϕ1sϕ2ϕ
′

1

(
1 + ϑ

′

1

)
− 3

2
Dc (ϑ1 − ϑ2) cϕ1sϕ2

(
ϑ

′2
1 + 2ϑ

′

1 + ϕ
′2
1

)
+ Esϕ2cϕ2

[
3c2ϑ2 +

(
1 + ϑ

′

2

)2]
+

3

2
Dsϕ1cϕ2

(
ϕ

′2
1 − 1

)
− 9

2
Dcϑ1cϕ1cϑ2sϕ2 = 0 (2.41)

2.2 Analytical study

The equations of motion of the two-bar model are strongly non-linear, as it can be
seen by inspection of Eqs. (2.38)-(2.41). For this reason, it is not possible to carry
out an analytically study on the complete equations of motion (i.e., the 3D case).
To enable it, it is necessary to reduce the two-bar dynamics to a bi-dimensional
case and linearize the equations. As it was already stated in the previous sections,
when we deal with electrodynamic tethers it has been highligthed that the main
instabilities associated with the tether libration cause the system to go eventually
unstable (i.e., libration amplitude growing more and more) in the orbit plane.
Thus, the in-plane dynamics was selected to study, in a first stage, the behaviour
of the damped two-bar model. For the sake of completeness the same study was
conducted also on the out-of-plane dynamics, returning very similar results as
in the in-plane case. For this reason the out-of-plane case (2D case) will not be
treated in this work. In turn, the out-of-plane dynamics was obviously taking
into account in the numerical study considering the complete dynamics equations
(2.38)-(2.41).

2.2.1 In-plane linearized equations

The in-plane equations of the damped two bar model can be found by setting the
out-of-plane angles (and their derivatives) to zero, that is ϕi = ϕ

′
i = ϕ

′′
i = 0, i =
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2.2 Analytical study

1, 2. Equations (2.42) and (2.43) can then be referred as the in-plane equations :

Aϑ
′′

1 +
3

2
Bc (ϑ1 − ϑ2)ϑ

′′

2 +
3

2
Bs (ϑ1 − ϑ2)ϑ

′

2

(
2 + ϑ

′

2

)
+ 3sϑ1

(
Acϑ1 +

3

2
Bcϑ2

)
+ 3

(
βϑ

′

1 + κϑ1

)
= 0 (2.42)

Eϑ
′′

2 −
3

2
Dc (ϑ1 − ϑ2)ϑ

′′

1 +
3

2
Ds (ϑ1 − ϑ2)ϑ

′

1

(
2 + ϑ

′

1

)
+ 3

(
Esϑ2cϑ2 +

3

2
Dsϑ2cϑ1

)
= 0 (2.43)

Equations (2.42) and (2.43) are associated with the corrispective 3D equations of
motion (2.38) and (2.40), whereas equations (2.39) and (2.41) do not enter in the
linearized study since they describe the out-of-plane dynamics. In order to obtain
a set of two linear second-order differential equations Eqs. (2.42) and (2.43) must
be linearized about the local vertical (ϑ1 = ϑ2 = 0). Thus, the linearized in-plane
equations for small oscillations are found to be as follows:

ϑ
′′

1 + ηE

[
βϑ

′

1 +

(
A+

3

2
B + κ

)
ϑ1 +

3B

4E
(3D − 2E)ϑ2

]
= 0

ϑ
′′

2 +
3

2
ηD

[
βϑ

′

1 +

(
A+

3

2
B + κ

)
ϑ1 +

A

3D
(2E − 3D)ϑ2

]
= 0

(2.44)

The linearized damper contributions were obtained by linearizing the expressions
of Qb,ϑ1 and Qk,ϑ1 in Eqs. (2.35) and (2.36) considering that:

lim
(ϑ1,ϕ1)→0

fk = lim
γ→0

γ

sin γ
= 1

An inspection of Eq. (2.44) shows a coupling between the dynamics of the two
bars. This coupling accounts for a continuous exchange of energy between the
two bars that can be exploited by the damper. The goal then is to search for
the pair of values (β∗, κ∗) that maximizes the transfer of kinetic energy from the
tether to the damper where the energy is dissipated.

2.2.2 System stability and eigenfrequencies

The set of equations (2.44) can be analytically solved by means of Laplace trans-
form thus enabling the investigation of how the damping and elastic coefficients
affect the natural frequencies and the stability of the damped two-bar system.
Taking the Laplace transform of the set of equations (2.44) yields:s2 + E (β1s+ κ1) −

3

4
Bκ2

3

2
D (β1s+ κ1) s2 +

A

2
κ2

(Θ1

Θ2

)
= v (2.45)
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2 Passive Damping System for the Stabilization of BETs

where:

κ1 = η

(
A+

3

2
B + κ

)
, κ2 = η (2E − 3D) , β1 = ηβ

and v = v
(
ϑ10, ϑ20, ϑ

′
10, ϑ

′
20

)
is a constant terms vector. In order to study the

system dynamic response the eigenvalues of the coefficients matrix in (2.45) must
be evaluated by setting its determinant equal to zero:

det = s4 + Eβ1s
3 +

(
Eκ1 +

A

2
κ2

)
s2 +

3

2η
β1κ2s+

3

2η
κ1κ2 = 0 (2.46)

The resulting polynomial is a quartic function that can be solved analytically.
Before doing that, we can study the stability of the system taking advantage of
Routh–Hurwitz stability criterion.

Asymptotic stability: the critical elastic coefficient The Routh-Hurwitz tab-
ular matrix relative to the polynomial (2.46) can be built as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Eκ1 +
A

2
κ2

3

2η
κ1κ2

Eβ1
3

2η
β1κ2 0

∆11 ∆12

∆21

∆12

(2.47)

where

∆11 = Eκ1 +
κ2

2

(
A−

3

Eη

)

∆12 =
3

2η
κ1κ2

∆21 =
3

2η
β1κ2 − Eβ1

∆12

∆11

The Routh-Hurwitz stability criterion states that if all elements of the first column
of matrix (2.47) have the same sign, then the system associated with determinant
(2.46) is asymptotically stable. After some manipulation and several algebric
passages, it is possible to state that:

the linear time invariant system described by the set of equations
(2.44) is asymptotically stable if κ1 > 0.
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2.2 Analytical study

More precisely, the system is asymptotically stable if the damper elastic coefficientκ
is greater than a particular value called critical elastic coefficient κcr. Ultimately,
the condition of asymptotic stability is defined by the following condition (2.48):

κ > κcr = −

(
A+

3

2
B

)
= −

[
3 + Λδ1 +

δ2

2
(3− Λ)

]
(2.48)

By inspection of (2.48) it is possible to state that κcr is always negative:

κcr < 0 (2.49)

In other words, Eq. (2.48) tells us that, to have a stable system, we could choose
a negative value of the elastic coefficient, provided that it is still greater than κcr.
At a first glance this fact could raise some doubts: what does negative elastic
coefficient means? And why doesn’t it lead the system to immediate instability?
The answer is actually simple: the value of κcr is negative unlike in a classical
spring-dashpot system, for which negative values of the elastic coefficient imply
instability, because the term κϑ1 in Eq. (2.44) is not the only restoring force
acting on the two-bar system. The total restoring force is indeed a sum of terms
associated with the gravitational gradient (i.e., the tether tension) and the spring
elastic coefficient of the damper. Virtually, we could define a system total elastic
coefficient

κtot = A+
3

2
B + κ (2.50)

where the parameters A and B, defined in the Nomenclature, are positive by
definition and are associated with the gravitational gradient. It is worth to point
out that, from a quick inspection of A and B, it is possible to state that the
absolute value of κcr increases when the system mass parameters as well as the
overall tether length L increase.

System eigenvalues Concerning the nature of the system eigenvalues, in general
there are two cases of interest [4]. In the first case there are two solutions which
are complex conjugates of each other:

s1,2 = α1 ± iω1

s3,4 = α2 ± iω2

We may refer to this case as underdamped case. In the second case there are two
real solutions and two complex conjugates solutions:

s1,2 = α1 ± iω1

s3 = α21

s4 = α22

We refer to the second case as overdamped case. More in general, solving the
fourth-order polynomial (2.46) yields the eigenvalues of the system:
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s1,2 = U +
√
T + S ±

√
2T − S +

R
√
T + S

s3,4 = U −
√
T + S ±

√
2T − S −

R
√
T + S

(2.51)

where R, S, T , and U are constants that are functions of the system mass and
geometry properties and also of the damping and elastic coefficients. Unluckily,
these constants are far too complex to allow an analytical evaluation of the roots
(see the Appendix of [4] for an explicit formulation). Nonetheless, after several
algebraic manipulations and with the aid of a computational software program
we found results of general validity as reported in the following. Note that the
results reported below are valid for every pair of (β, κ) ∈ I ⊂ R2 with β > 0 and
κ > κcr.

1. For all solutions described in Eq. (2.51) the real part is U±
√
T + S whereas

the imaginary part is
√

2T − S ± R√
T+S

.

2. The real parts associated with both the first eigenfrequency (s1,2) and the
second eigenfrequency (s3,4) are always negative. This fact is another proof
that the damped two-bars system is asymptotically stable for any pair of
(β, κ) ∈ I.

3. The imaginary part iω1 =
√

2T − S + R√
T+S

is practically always equal

to
√

3 and is equal to the first in-plane librational natural frequency ω1

(adimensionalized by the orbital rate ω) as found by Peláez et al. [1, 2]:

ω1
∼=
√

3 ∀ (β, κ) ∈ I

4. The quantity
√

2T − S − R√
T+S

represents the (nondimensional) second

natural frequency of the system, ω2. For a given value of the elastic coeffi-
cient κ there exists a value of the damping coefficient, the critical damping
coefficient βcr, above which ω2 disappears and the quantity above becomes
real. The value of βcr depends on the mass and geometric system charac-
teristics and the elastic coefficient:√

2T − S −
R

√
T + S

∈ R for β > βcr (δ1, δ2,Λ, κ)

5. As it was mentioned above, similarly to what happens in a classic spring-
dashpot system, for values of the damping coefficient lower than the critical
one we can say that the system is underdamped. If the damping coefficient
is higher than βcr the system will be overdamped.
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Figure 2.2: Eigenvalues real part as a function of the damping coefficient.

6. For given values of the system mass and geometric parameters along with
the elastic coefficient, the second natural frequency ω2 is a function of the
damping coefficient: it decreases from a maximum value ω20 = ω2 (0) down
to ω2 (βcr) = 0 for β = βcr.

By means of Eq. (2.51) it is possible to evaluate numerically the trends of real
and imaginary parts of the system eigenvalues and thus investigate the system
stability and natural frequencies. To do this we assigned to the mass and geometry
parameters typical values, that is, L1 = 10m, L2 = 3000m, a damper mass equal
to 1kg and a tether mass of 4kg. Figure 2.2 shows the real parts of the system
eigenvalues as a function of b for different values of k utlizing dimensional damper
parameters. The first eigenvalue real part α1 is very small compared to α2, thus
only one curve were included. See Fig. 2.3 for a more detailed plot of α1 trends.
Note that for b ≥ bcr, α2 splits in two real components α21 and α22. The first
important result that must be pointed out here is that for any b > 0 all the real
parts are negative (α1 is also negative even though much close to zero). As it
was stated above, this fact let us infer that the damped two-bar model is always
asymptotically stable. Concerning the system eigenfrequencies, Figure 2.4 shows
the imaginary parts as a function of b. Note that the first natural frequency
ω1 is always equal to

√
3 for any value of the damping coefficient, whereas ω2

decreases for increasing values of b and becomes null at bcr. For increasing values
of the elastic coefficient the critical damping coefficient increases and, with it, the
second natural frequency ω20.
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Figure 2.3: First mode of vibration decay constant in function of the damp-
ing coefficient. The dashed line fits the maximum (in absolute
value) values of λ1 for different values of the elastic coefficient.

Figure 2.4: Eigenvalues imaginary part (natural frequencies) as a function
of the damping coefficient.
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2.2.3 Analytical solution and damper optimization

The set of differential equations (2.44) was solved by means of Laplace transform.
In order to study the system energy trends it was decided in the present work to
perturb the equilibrium position of the two-bar system (i.e., the local vertical) by
adopting an initial angular velocity ϑ̇20 6= 0. Considering this, the solutions of

Θ1 and Θ2 in the frequency domain are found as follows [with v =
(

0, ϑ̇20

)
]:


Θ1 (s) =

3

4

Bκ2

det
ϑ̇20

Θ2 (s) =
s2 + Eβ1s+ Eκ1

det
ϑ̇20

(2.52)

After some manipulations, the solutions can be rewritten in the compact form:



Θ1 (s) =
3

4
Bκ2ϑ̇20

4∑
i=1

[
1

(s− si)
·

4∏
j=1

1

(si − sj)

]

Θ2 (s) = ϑ20

4∑
i=1

[
s2i + Esiβ1 + Eκ1

(s− si)
·

4∏
j=1

1

(si − sj)

]
j 6= i

(2.53)

Equations (2.53) were rewritten in a convenient form to calculate their Laplace
anti-transform. Thus, taking the anti-transform we get the solutions of the
damped two-bar model in the time domain:



ϑ1 (τ) =
3

4
Bκ2ϑ̇20

4∑
i=1

[
esiτ ·

4∏
j=1

1

(si − sj)

]

ϑ2 (τ) = ϑ̇20

4∑
i=1

[
esiτ

(
s2i + Esiβ1 + Eκ1

) 4∏
j=1

1

(si − sj)

]
j 6= i

(2.54)

The real parts of solution s3 and s4 are always negative and it is true that
|< (s3,4)| � |α1| for every β > 0. For this reason the contribution associated
with the exponential terms es3,4 can be safely neglected without loss of accuracy.
Thus, after many further manipulations it is possible to obtain the in-plane lin-
earized solutions of the damped two-bar model in the form as in the following
Eq. (2.55): {

ϑ1 (τ) = A11e
α1τ sin (ω1τ + ξ11)

ϑ2 (τ) = A21e
α1τ sin (ω1τ + ξ21)

(2.55)
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In an overdamped system, that is the case of interest in this study, we have:

A11 =
3

4

ϑ̇20

ω1

Bκ2 ·

√
1

Q1

A21 =
ϑ̇20

ω1

·

√
P1

Q1

ξ11 = − tan−1

(
(α21 − α1) (α1 − α22) + ω2

1

(α21 + α22 − 2α1)ω1

)

ξ21 = − tan−1

(
P2

Q2

)

where

P1 =
[
α2
1 + E (α1β1 + κ1) + ω2

1

]2
+
(
E2β2

1 − 4Eκ1
)
ω2
1

Q1 =
[
(α1 − α21)

2 + ω2
1

]
·
[
(α1 − α22)

2 + ω2
1

]
P2 = (α1 − α21) (α1 − α22)

(
α2
1 + Eα1β1 + Eκ1

)
+ 2α2

1

−α1 (α21 + α22 − Eβ1)− α21 (α22 + Eβ1)− E (α22β2 + κ1)

Q2 = ω1

[
α2
1 (α21 + α22 + Eβ1) + 2α1 (Eκ1 − α21α22)

−E (α21α22β1 + κ1 (α21 + α22)) + (α21 + α22 + Eβ1)ω
2
1

]
With the aid of numerical analysis it is possible to demonstrate that all coefficients
appearing in Eq. (2.55), with the only exception of α1, are essentially independent
of the damping and elastic coefficients β and κ. In Eq. (2.55), α1 is the decay
constant of the first mode of vibration system that determines the relaxation time
of the damped oscillation τ̂ = |1/α1|. In other words, the more negative α1 is the
quicker the oscillation damps out. The decay constant is strongly dependent on
the damping and elastic coefficients:

α1 = U +
√
T + S = f1 (δ1, δ2,Λ, β, κ) (2.56)

This fact provides an opportunity to control its value through the values of β and
κ. Specifically, given a certain value of the elastic coefficient κ, we can analyze
the partial derivative of Eq. (2.56) with respect to the damping coefficient and
look for a global minimum of the function (see Appendix in [5] for the explicit
formulation):

∂α1

∂β
= U +

√
T + S +

Ṡ

2U̇
= f2 (δ1, δ2,Λ, β

∗, κ) = 0 (2.57)

Equation (2.57) was analyzed to find that a value β∗ does exist and is unique
in R+. Figure 2.5 shows the trend of the decay constant as function of β and κ
obtained by solving Eq. (2.57) for several values of κ. The black dashed line in
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2.2 Analytical study

Figure 2.5: Decay constant as a function of non-dimensional damping and
elastic coefficients. The black dashed line fits the points defined
by the pairs of (β∗, κ) values.

the figure fits the points defined by the pairs of (β∗, κ) values. Figure 2.5 shows
that higher (in absolute value) decay constant values are obtained for negative
elastic coefficients, hence the more negative the value of κ the higher α1. These
considerations let us to conclude that tether oscillations are damped out faster
for negative values of k with the relaxation time vanishing as k tends to kcr (see
Fig. 2.6). However, the negative value of κ cannot be decreased at will because
the damper dynamics becomes unstable when κ ≤ κcr. Thus, it is true that the
optimal κ is

κ∗ = lim
κ→κ+cr

κ

but for κ very close or equal to κcr the system becomes unstable independently of
the value of β. This means that the best dissipation is indeed attained for negative
values of κ which are slightly higher (less negative) than κcr. Consequently,
the best (β∗, κ) pair is a tradeoff between dissipation efficiency and dynamics
stability requirements. Figure 2.7 shows the trends of b∗ and bcr as functions of
the elastic coefficient. Note that the optimized system is always overdamped (see
the damping ratio curve ζ in Fig. 2.7).

As a further proof of the positive effects of a damper device in a two-bar model,
Fig. 2.8 shows that the adoption of an optimal damping coefficient yields the
fastest relaxation time. In fact, the solid black line in the figure is associated
with b = b∗ and, being the steepest curve, it implies that the system is damped
in the quickest time. Moreover, Fig. 2.9 shows how the elastic coefficient affects
the damping mechanism. As it was already stated above, the more negative k
the faster the damping of oscillations. The fastest damping occurs for k = k∗ ∼=
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2 Passive Damping System for the Stabilization of BETs

Figure 2.6: Oscillation relaxation time as a function of the elastic coefficient.
The instability area (blue striped area) marks the k ≤ kcr zone.
For the case taken into account in this paper kcr ∼= −1.975.

Figure 2.7: Optimal and critical damping coefficients as functions of the
elastic coefficient. The ζ curve represents the damping ratio
between optimal and critical damping coefficients.
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2.3 Numerical results and comparison

Figure 2.8: Tether oscillation decay envelopes for different values of the
damping coefficient assuming k = 0.

−1.975 kg ·m2/s2 (actually for a value slightly higher than k∗ to avoid damper
instability). Note that the curves in Fig. 2.9 refer to the optimized cases where
the optimal values of b were found by solving the implicit Eq. (2.57).

2.3 Numerical results and comparison

In this section the results that were obtained by taking advantage of the analytical
solutions reported in Eqs. (2.55) and (2.57) are compared with those resulting
from the numerical integration of the 3D equations of motion. In order to study
the free vibration response of the damper two-bar system the initial in-plane
angular rate was set to 0.02 °/s. The value of the initial angular velocity has
been chosen taking into account that to get realistic oscillation amplitudes the
in-plane angle (and also the out-of-plane in the 3D case) should not exceed the
90°. Please note that for oscillations going beyond this threshold the system
would not go necessarily unstable. The 90° value, in fact, is just a physical
constraint of the tether system: ideally, when the attitude angles reach this value
it would mean that the tether is touching the mother spacecraft, thus introducing
a perturbation on the system dynamic which effects go beyond the purposes of
this study. Furthermore it is useful to remind that the primary scope of all the
work presented here is to research and develop innovative concepts and technology
devoted to stabilize an electrodynamic tether around the local vertical, thus well
far from the 90° limit.
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2 Passive Damping System for the Stabilization of BETs

Figure 2.9: Tether oscillation decay envelopes for different values of the elas-
tic coefficient (for b = b∗).

2.3.1 Oscillation envelopes

In this subsection we compare the time envelopes of damper and tether oscillation.
The time envelopes have been built joining the peaks of the periodic oscillations,
providing a simple and clear way to depict how fast the libration decay with time.
Figure 2.10 depicts the envelopes of the oscillations of both the damper and the
tether for different values of the elastic coefficient. It is worth pointing out that
all curves were constructed assuming b = b∗ (dimensional in this section), with
values given by Eq. (2.57). The dashed and solid lines are associated with the
analytical solution and the 3D equations integration, respectively, whereas darker
colors characterize more negative elastic coefficients. The oscillations decay from
an initial value to zero in different time spans depending on the value of the elastic
coefficient. The initial tether oscillation amplitude is always around 12° whereas
the damper, as it could be expected, experiences increasing initial amplitudes for
decreasing values of the elastic coefficient. In fact the negative spring acts on the
first bar enhancing its oscillation proportionally to the absolute value of the elastic
coefficient. Through the inspection of Fig. 2.10 it is possible to compare the
analytical and 3D results. First of all, the trends of the two models are very similar
(in some cases they are superimposed). The major differences can be spotted in
the damper plot (Fig. 2.10-left) for the most negative elastic coefficients. This can
be ascribed to the nonlinear contribution in the 3D equations that can become
significant for high values of the oscillation (the small angles hypothesis is no
longer valid). Another important difference is that the value of kcr for the 3D
nonlinear case is lower than for the linearized case (-1.46 against -1.975). This
mean that 3D damper system goes unstable for less negative values of the elastic
coefficients and thus the benefits coming from the use of a negative spring are
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2.3 Numerical results and comparison

Figure 2.10: Damper (left) and tether (right) oscillation decay envelopes vs.
time for different values of the elastic coefficient (for b = b∗).

more restrained than for the linearized system. However, this is true only at a first
glance. In fact, while it is true that the linearized system is asymptotically stable
for any k > kcr, it is also possible to note that for k = −1.75 the damper initial
in-plane angle is about 80°, that is very close to the limit condition of ϑ1 = 90°.
This in turns means that values lower than k ≈ −1.75 are not practical. Aside
from the differences between the two mathematical models, the results reported
in Figure 2.10 let us make two important conclusion:

1. By adopting a value of b = b∗ the tether oscillations are dissipated efficiently
by the damper, thus providing stability to the system.

2. For decreasing (more negative) values of the elastic coefficient the tether
oscillations damp out more quickly. The fastest damping occurs for values
of k slightly higher than kcr (note that for k = kcr the damper system is
unstable).

2.3.2 An energy approach

In this subsection the analytical and numerical results are compared under an
energetic point of view. In fact, assuming that the damper is effective in adsorbing
the tether kinetic energy and that there exists an optimal configuration of the
damper parameters it is reasonable to state that:

1. the optimal (b∗, k) pair is the one that minimize the tether kinetic energy;

2. the optimal (b∗, k) pair is the one that maximize the dissipated energy.

The optimal damper configuration should be the one for which the tether kinetic
energy is minimized and the dissipated energy is maximized at the same time.
To carry on such a study we introduced two new parameters, that is the Mean
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2 Passive Damping System for the Stabilization of BETs

Figure 2.11: Typical energy trends as functions of the damping coefficient
for different values of L1: 5, 10, and 15 m. Curves were ob-
tained setting k = 0 and nsim = 50.

Kinetic Energy (MKE ):

MKE =

´ Tsim
0

Ekdτ

Tsim
(2.58)

and the Total Dissipated Energy (TDE ):

TDE =

´ Tsim
0

Eddτ

nsim
(2.59)

Equation (2.58) defines the MKE that is the kinetic energy of the second bar
(i.e. the tether) averaged over a given number of orbits nsim that corresponds
to a simulation non-dimensional time equal to Tsim = 2πnsim. Equation (2.59)
defines the TDE that is the amount of energy dissipated by the damping device
per orbit. Theoretically, as stated above, the minimum value of relaxation time
should corresponds to a minimum of the MKE and a maximum of the TDE. In
fact, a faster decay time means that in the time span considered the oscillations
of the tether are smaller and, consequently, that the damper is working in the
most efficient way.

2.3.2.1 Linearized model typical energy trends

Figure 2.11 depicts the typical trends of MKE and TDE in function of the damp-
ing coefficient obtained by means the analytical solution of the in-plane linearized
model. It can be noted from Fig. 2.11 that the MKE and TDE graphs exhibit
global minima and maxima, respectively, in correspondence of the same value of
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2.3 Numerical results and comparison

Figure 2.12: MKE (left) and TDE (right) levels as a functions of the
damper’s elastic coefficient (for b = b∗k and b = b∗d, respectively).

the damping coefficient (1146 kg ·m2/s for the system under study, L1 = 10m,
assuming k = 0) as it was expected. This value of the damping coefficient co-
incide exactly with the optimal one found by means Eq. (2.57), meanings that
the statements 1 and 2 of Par. 2.3.2 are true for the linearized case. Also, longer
dampers (i.e, increasing L1) implies higher energy dissipation efficiency along with
lower kinetic energy levels, while the optimal damping coefficient moves toward
higher values. On the contrary, variations of the damper mass coefficient δ1 does
not lead to appreciable changes neither in energy levels nor in the value of the
damping optimal coefficient.

2.3.2.2 Non-linear models energy trends

What about the non-linear cases? To investigate if statements 1 and 2 of Par.
2.3.2 hold true also in the in-plane and 3D non-linear models we carried out several
simulations adopting different values of k, each one providing the curves for MKE
and TDE as in Fig. 2.11. For all simulations we recorded four parameters:

1. the damping coefficient in correspondence of the MKE global minimum
(b∗k);

2. the minimum value of MKE ;

3. the damping coefficient in correspondence of the TDE global maximum
(b∗d);

4. the maximum value of TDE.

Combining these parameters in different ways it was possible to draw Figures 2.12
and 2.13. Figure 2.12 shows the trends of the minimum values of MKE (left) and
the maximum values of TDE (right) for different values of the elastic coefficient.
It is possible to observe that negative values of the elastic coefficient lead to lower
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Figure 2.13: Optimal damping coefficients b∗k (left) b∗d (right) vs. elastic co-
efficient.

levels of kinetic energy (down to 45-50%) and higher levels of dissipated energy
(up to 60%). Therefore, we can infer that adopting negative values of k improves
simultaneously the kinetic energy transfer from the tether to the damper and its
dissipation due to viscous damping. Note that for the 3D case initial angular
velocities were set to ϑ̇20 = ϕ̇20 =

√
2 · 0.01 deg/s to let the initial kinetic energy

be the same as in the in-plane cases. At last, Figure 2.13 shows the pairs of values
(b∗, k) considering the b∗k and b∗d values respectively [items (1) and (3) in the pre-
vious list]. The in-plane linearized curves in Figures 2.12 and 2.13 are obtained
by solving the implicit Eq. (2.57). All results reported in this paragraph clearly
show how the information on the damped two-bar system derived from the lin-
earized model through analytical computation are consistent with those obtained
from the non-linear models obtained through numerical simulations. The 3D case
exhibits some differences with respect to the 2D models. For example, the opti-
mal values of damping coefficients b∗k and b∗d are, with the elastic coefficient being
equal, always slightly smaller (about 5%) than for the 2D cases. Also note that
for all non-linear models the value of the critical elastic coefficient kcr has shown
to be higher (less negative) than in the linearized model: -1.25 and -1.3 kg ·m2/s2

for the in-plane and 3D cases, respectively. However, the trends of all results are
very similar. Consequently we can conclude that the linearized model provides
reliable information on the dynamic response of the damped two-bar model and
indeed this model was instrumental in optimizing the pair (b, k) that provides an
efficient energy dissipation.

2.4 Preliminary results from lump masses model
simulations

Within the BETs Project a Simulator was developed at University of Padova to
simulate the deorbiting of a generic spacecraft from a generic Low Earth orbit
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2.4 Preliminary results from lump masses model simulations

Table 2.3: Configuration of EDT tether system for the preliminary Simula-
tor survey.

Parameter Value

Conductive tether
length

3000m

Inert tether length 3000m

Conductive tether
mass

8.1kg

Inert tether mass 3.15kg

Tether width 2cm

Tether thickness 50µm

Spacecraft mass 1000kg

Tip mass 20kg

by means of a bare electrodynamic tether. It utilizes a lump masses model and
takes into account in-orbit realistic environment conditions, such as Earth mag-
netic field, Earth gravitational field, thermal fluxes, plasma characteristics etc.
[6, 7]. In this section we report the first results obtained integrating the damper
equations in the Simulator code. The pictures that will follow will be presented
two by two: the plots on the left refer to the case without damper, whereas the
graphs on the right are relative to the simulations carried out taking into account
the damper. The elastic and damping coefficients have been set to optimal val-
ues taking advantage of the analytical study reported in the previous sections.
Table 2.3 summarizes the main system variables that were used as input in the
simulations.

2.4.1 Selection of damper coefficients

The analysis conducted by means the linearization of the equations of motion
reported in Par. 2.2.3 gives us a powerful tool to determine the optimal damper
configuration. Through Eq. (2.57), in fact, we can easily find the optimal damp-
ing coefficient b in function of the physical system parameters and of the elastic
coefficient k. From previous work we are aware of some tether configurations that
are suitable to deorbit heavy-class spacecraft (in the order of 1000 kg) [6, 7]. The
values in Table 2.3 describe one of this standard configuration that has proven
to be effective in deorbiting a 1000kg-class spacecraft from LEO orbits at every
inclination. Thus, replotting Fig. 2.6 using the new mass and geometry values
listed in Table 2.3 we get the updated Fig. 2.14. As it was said in Par. 2.3.1, the
three-dimensional model (both in-plane and out-of-plane motion) experiences a
lower value of the critical elastic coefficient kcr (about 15% less). The red dashed
line has been plotted taking advantage of data extrapolation from numerical sim-
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Figure 2.14: optimal damping coefficient vs. elastic coefficient for the tether
configuration displayed in Table 2.3. The black solid line comes
from the analytical solution (Eq. (2.57)), whereas the dashed
red line was plotted making use of extrapolation data obtained
from 3D model numerical simulations. The values of the elas-
tic and damping coefficients used in the preliminary Simulator
study was chosen between those contained in the red circle.

ulations of the 3D model and represents the actual k − b∗ curve of the damped
two-bar model. Figure 2.14 (right) reports the detail of the extrapolated k − b∗
curve in the neighbourhood of the 3D critical elastic coefficient. After a numerical
optimization process we have found that the best damper configuration, for the
case under study described by Table 2.3, is as follows:

k = −3.6 kg ·m2/s2

b = 50 kg ·m2/s (2.60)

In Par. 2.3.1 it was explained how a negative elastic coefficient could lead to have,
during the deorbit, damper attitude angles bigger than the 90° limit imposed
by the actual system configuration. It was also explained that the passing of
this practical limit does not necessarily mean that the system is undergoing a
dynamical instability. After some preliminary simulations, however, we decided
to adopt an angular stop for the damper in order to limit its oscillation to a
precise value to avoid any problem linked to the above mentioned practical limit.
Due to numerical issues that goes beyond the scope of this work we opted for a
“soft stop”, that is the elastic coefficient goes from negative to high positive values
in a finite range. In the simulations which results are reported below this range
was set to 18-23°, with the elastic coefficient going from -3.6 to 50 kg ·m2/s2.

2.4.2 Simulations results

In this paragraph the results obtained by means the Simulator are displayed. The
pictures are shown two by two: pictures on the left refer to the no-damper case,
whereas pictures on the right are related to the damped case.
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2.4 Preliminary results from lump masses model simulations

2.4.2.1 Deorbit profiles

The main advantage that comes with adopting a rotational damper is clear in this
first comparison: without damper the deorbit ends with a dynamical instability
at about 650 km of altitude, whereas the simulation with damper completes
successfully the deorbit maneuver (final altitude less than 200 km). By close
inspection of Fig. 2.15 it can also be seen that the damped case has a slightly
higher decay rate.

Figure 2.15: Deorbit time profiles. The solid red line is the theoretical decay
profile calculated taking into account the EDT forces. (Left:
no damper case, right: damped case)

2.4.2.2 Damper and tether attitude

Figures 2.16 and 2.17 depict the in-plane and out-of-plane attitude angles of both
the rigid rod (plots on the right) and the spacecraft-tip mass segment. It can
be seen that the librational oscillations are slightly lower in the damped case,
overall in the out-of-plane. The “soft stop” behavior adopted for the damper is
well visible in Fig. 2.16-right.
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Figure 2.16: In-plane attitude angles time profiles. (Left: no damper case,
right: damped case)

Figure 2.17: Out-of-plane attitude angles time profiles. (Left: no damper
case, right: damped case)

2.4.2.3 Lump masses displacements

Figure 2.18 depicts the linear distance calculated from the spacecraft to the tip
mass. This gives a good measure on how much the system is experiencing lon-
gitudinal oscillations due to the tension peaks generated by the electrodynamic
forces. Longitudinal oscillations are coupled with lateral libration and vibrations
and in the long run they can induce dynamical instability (as it probably hap-
pened in the no-damper case). Figures 2.19 and 2.20 depict the deflections from
the local vertical of each lump masses throughout the deorbit maneuver. As it
was already told in the previous paragraph, the damper produces a “smoothing”
action of both in-plane and out-of-plane motions, the dynamics in fact appear to
be much more regular with respect to the no-damper case.

70



2.4 Preliminary results from lump masses model simulations

Figure 2.18: Distance between spacecraft and the tip mass. (Left: no
damper case, right: damped case)

Figure 2.19: displacements of lump masses from the local vertical (x -axis)
measured in the in-plane. The, x coordinate is time, y coor-
dinate is the number of the lump masses (8 lump masses + 1
tip mass) and the z coordinate is the displacement. (Left: no
damper case, right: damped case)
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Figure 2.20: displacements of lump masses from the local vertical (x -axis)
measured in the out-of-plane. The, x coordinate is time, y
coordinate is the number of the lump masses (8 lump masses
+ 1 tip mass) and the z coordinate is the displacement. (Left:
no damper case, damper: damped case)

2.4.2.4 Frequencies spectrum

The Fast Furier Transform (FFT) of both in-plane and out-of-plane motions are
reported in Figures 2.21 and 2.22 for two different positions along the tether, that
is in correspondence of the half of the tether and of the tip mass (the end of the
tether). While performing the numerical simulations, data was saved on hard
disk with a sample time of 200 s for limited memory resources reasons. Data
sampling, in turn, limits the analyzed frequency spectrum to about 15 times the
orbital frequency. This fact does not allow us to individuate the first longitudinal
mode of vibration of the tether, which is in the order of some hundreds times the
orbital frequency. In any case, sampled data allow us to study the frequencies
of tether lateral motions which are responsible of dynamic mechanism that lead
the system to dynamical instability, such as librational motion and the skip-rope
motion. Figure 2.21 shows the FFT of lateral motions in correspondence of the
half of the tether. The stabilizing action of the damper is quite clear: the damping
system “clean” the spectrum removing most of the frequencies leaving only some
orbital frequency multiples, such as the orbital frequency itself (ω), the first out-
of-plane mode of vibration (2ω), the first in-plane mode of vibration (between ω
and 2ω) and the frequencies associated with lateral vibrations (about 7ω). The
same could be said about Fig. 2.22.
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2.5 Conclusions

Figure 2.21: frequency spectrum analysis of in-plane and out-of-plane mo-
tions in correspondence of mid-tether. (Left: no damper case,
right: damped case)

Figure 2.22: frequency spectrum analysis of in-plane and out-of-plane mo-
tions in correspondence of the end of the tether (tip mass).
(Left: no damper case, right: damped case)

2.5 Conclusions

The free-vibration response of a system consisting of a long tether and a damper
has been investigated by means of different mathematical models with the goal of
finding an optimal configuration of the damper device aimed at minimizing the
tether oscillations. The damped model is a natural evolution of the undamped
two-bar model used by several authors to study the lateral dynamics of an electro-
dynamic tether driven by Lorentz forces. The analytical solution of the linearized
equations of motion in the orbit plane has highlighted the existence of an optimal
combination of damping and elastic coefficients that minimize the tether kinetic
energy and simultaneously maximize its dissipation through the viscous damper.
Thus, we can state that an optimization equation like f̂ does exists and it is
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in an implicit form. Moreover, results obtained through numerical simulations
have shown a good match between the analytical model and the non-linear mod-
els (both in 2D and 3D). The transfer of energy from the tether to the damper
device has proven to be effective when the appropriate values of the elastic and
damping coefficients are adopted.
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3 Tether Deployment Strategies

The study of the dynamics of a tether during deployment operations within BETs
Project was firstly started by my predecessor (Zanutto D., see [1]). In his work all
mayor issues concerning the deployment of a tether from an orbiting spacecraft
were introduced and analyzed. A librating deployment has been preferred to a
spinning one and a passive reeling deployer equipped with a brake system was
designed and prototyped at DLR-Bremen in their Work Package. Deployment
is carried out with the help of a low-thrust propulsion system mounted on the
tip mass which is necessary to unwind the tether out of the deployer keeping
it constantly taut. Two kinds of software were developed to find out the best
way to deploy a multi-kilometer tether in space. The first one was used to study
and derive tether reference trajectories during deployment through a numeri-
cal optimization (REference TRajectories Optimization tool, RETRO) Reference
trajectories provide tether length and speed time profiles to be implemented in
the second software (Deployment Dynamic Simulator, DDS), that simulates the
deployment maneuver taking into consideration as much as possible the actual
mechanical system (e.g., reel, brake system, friction) as well as possible attitude
errors at the beginning of the deployment maneuver and external perturbations
acting on the deploying tether. With respect to previous work, RETRO was opti-
mized and improved allowing for faster and more effective numerical trajectories
optimization. Thanks to this, a new family of reference trajectories were found
that allow for complete deployment of 6-km and 10-km tether in less than 1.5
hours with residual librations very close to zero. In the DDS software the inertia
equation of the reel has been added along with an Archimedean spiral model to
simulate the tether unwinding from the reel. A Proportional-Derivative feedback
brake system control has been implemented. An extensive error sensitivity anal-
ysis was carried out to monitor the effectiveness of the control system when the
tether system is subjected to errors/perturbations. The results show that the PD
control that utilize the new reference trajectories is very robust when the deploy-
ment starts with an in-plane angle equal to 40° (measured from the local vertical
toward the orbital velocity vector direction). Simulations have also underlined
that the forces due to the gravity gradient can be sufficient to complete the de-
ployment with the propulsive system turned off after a well-determined time from
the deployment start. This in turn means that the thruster is used for a shorter
time span during deployment thus reducing the propellant mass required for a
complete deployment maneuver.
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3.1 BETs Project system configuration summary

In this section I summarize the main characteristics of BETs system that are
crucial for the study of tether deployment. Please note that the subsystems
configuration that are described hereafter refer to the last available Deliverables
handed in by the BETs consortium (February 2014, [2, 3])

3.1.1 Dumbbell model

Like in previous deployment survey, I modeled the tether as a rigid rod (dumbbell
model) with time-varying length. It is worth to remind that this assumption is
valid because the tether, during deployment process, is kept taut by the tension
due to the brake friction on one side and by the thrust force acting on the tip mass
together with gravity gradient on the opposite side. Furthermore, simulations
show that deployment is always carried out in less than one orbit period thus not
allowing enough time for lateral oscillations to be excited.

3.1.2 Librating deployment

A tether librating deployment from a non-spinning spacecraft has been preferred
to a spinning deployment because it can be used in a wider range of spacecraft
classes. Most likely, the deployer will be attached at one of the outer side of
the spacecraft. In this study I assume that deployment operations start from a
spacecraft in which the attitude is (at least in the early stage of deployment) 3-
axis stabilized by the satellite attitude control system. The initial tether attitude,
in fact, significantly influences the tether dynamic at the end of deployment:
final residual librations proved to be quite sensible to initial spacecraft attitude
conditions with a minimum encountered at a specific tether angle (see later on).

3.1.3 Low-thrust propulsion subsystem

A low-thrust propulsion system will act on the tip mass along the tether longitu-
dinal axis (see Fig. 3.1). Thus, the tether will be unwinded taking advantage of
both gravity gradient (that is very weak at the beginning of the maneuver) and
thruster action. The propulsion system should be selected taking into account the
long hibernation period before it is activated. Most likely, the propulsion system
will consist of a tank containing pressurized gas connected to a certain number of
nozzles arranged in a proper geometry to guarantee a directional thrust stability
around the tether longitudinal axis.
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3.1 BETs Project system configuration summary

Figure 3.1: sketch of a possible deployment system configuration.

3.1.4 Passive deployer

The deployer has been designed and prototyped by DLR-Bremen (Fig. 3.2). It is
a passive non-motorized reeling mechanism equipped with a brake system. The
configuration is the result of a trade-off between mass, reliability and simplicity
requirements.

Figure 3.2: section of the deployer prototype. In evidence the reel inside
the box around which the tape tether is to be rolled up.

3.1.5 Brake control system

The deployer is equipped with a brake mechanism which is used to indirectly (i.e.,
through friction) control the tether exit velocity (Fig. 3.3). The brake control
system is necessary to ensure a proper end-of-deployment tether residual libration,
that we want to be as small as possible. The brake action will be commanded by
the PD Control Law.

3.1.6 PD control law

The feedback control loop that controls the brake action is a linear Proportional-
Derivative law based on errors with respect to the length and length rate time
profiles provided by the reference trajectory. The proportional term is depen-
dent on the difference between actual and reference length time profile, while the
derivative term is proportional to the difference between actual and reference exit
speed time profile. During in-orbit operations, instantaneous tether length and
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Figure 3.3: a detail of the brake system.

speed must be measured and provided to the brake control subsystem by a proper
set of sensors (e.g., incremental encoder coupled with the reel shaft).

3.2 Reference trajectories

3.2.1 Why do we need reference trajectories?

The answer to this question is simple: we need to find good reference trajectories
because they provide the information (i.e., length and speed time profiles vs
time) that the tether must follow to reach the desired final dynamic state (e.g.,
small libration angle and low longitudinal velocity) starting from given initial
conditions. Although the dumbbell model equations are relatively compact, they
are strongly non-linear. A linearized analysis can provide useful information only
under the assumptions of small librations and a constant tether length, hence
it is not applicable to deployment. For this reason, I carried out by means of
our software RETRO a numerical optimization of the deployment maneuver and
solved a boundary problem for a non-linear dynamic system to find the best
trajectory that the tether must follow to be deployed in space. The reference
trajectory is then used by the brake feedback control; when the control works
properly it guarantees a correct deployment of the tether, ideally following exactly
the reference trajectory.

3.2.2 Reference trajectory numerical optimization

Reference trajectories were found by means of a numerical optimization process
(see Fig. 3.4 for the conceptual scheme). Referring to [1, 2, 4], below I briefly
explain how this process works.

1. The optimization software takes as input the first iteration (attempt) of the
brake friction profile defined by a certain number of pivot points, the system
parameters (e.g., tether length, thickness, width), the attitude of the tether
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system at the beginning of deployment and the desired tether attitude at
the end of deployment (e.g., aligned with local vertical and in stationary
conditions). The pivot points define the brake friction profile in function
of the tether length (i.e., T = T (l)) in a discretized way. Subsequently the
finite number of friction values are interpolated with a spline to provide a
continue function to the numerical integrator.

2. The numerical optimization is carried out by means of a Multidimensional
Unconstrained Non-Linear Minimization, that utilizes the Nelder-Mead Mat-
lab routine (FminSearch). The algorithm tries to minimize a linear function
(the ”Cost Function”) that depends on non-linear differential equations and
a certain number of variables, for instance each pivot point of the brake
profile is a variable. The algorithm also does not pose any other constrains
to the search of the minimum (hence the term ”Unconstrained”). Conse-
quently, if any constrains are to be added (i.e., brake force always positive)
they must be written manually in the code.

3. Nelder-Mead algorithm simply tries to minimize a determined cost function
which depends on the tether dynamics during deployment maneuver:

F = C1 (lend − lgoal)2 + C2

(
l̇end − l̇goal

)2
+

+C3 (ϑend − ϑgoal)2 + C4

(
ϑ̇end − ϑ̇goal

)2
(3.1)

The cost function was designed to be dependent on the square of the differ-
ence between the actual and the goal values of tether length, speed, in-plane
angle and in-plane angular velocity at the end of deployment. Each compo-
nent is multiplied by a constant weight factor. Varying the four weights the
importance of each component in the numerical minimization is changed.
In particular, the components associated with the tether in-plane angle and
in-plane angular velocity have shown to be crucial for obtaining good ref-
erence trajectories. The C3 and C4 weights must be greater than C1 and
C2 by some orders of magnitude to take into account the different scales
among the variables. The algorithm modifies at each iteration the previ-
ous brake friction profiles changing the value of only one pivot point at a
time, integrates the dynamic equations to obtain the new iteration values
of end-of-deployment length, length rate, in-plane angle and in-plane angu-
lar velocity and calculates the new cost function value. The out-of-plane
dynamics was not included in the cost function because during deployment
it does not affect significantly the end-of-maneuver tether attitude.

4. When the cost function variation falls under a predefined tolerance the
software returns the optimal trajectory and it saves the length and the
speed time profiles which will be used later on in the DDS.

There is a problem with using an unconstrained numerical optimization: there
are thousands of local minimum of the cost function. As a consequence, the final
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Figure 3.4: conceptual scheme of RETRO.

trajectory is highly dependent on the first brake friction iteration, on the cost
function weights, which must be very carefully defined through many attempts,
and on the number of pivot points.

3.2.3 Deployment dynamics equations

The equations of motion of a tether during deployment from an orbiting spacecraft
can be found utilizing the Lagrangian equation of the system in a similar fashion
as reported in [5]. Considering a length-varying dumbbell model the generalized
coordinates vector becomes:

q̄d = (ϑ, ϕ, l) (3.2)

The Synodic reference frame used in this section is the same ad in Fig. 2.1.
Following the procedure described in [5], the kinetic energy, the gravitational
potential, and the potential associated with apparent forces of a point mass can
be found:

Td =
1

2
mB

[
l̇2 + l2

(
c2ϕϑ̇2 + ϕ̇2

)]
(3.3)

Vg,d =
1

2
mBω

2l
[
2acϑcϕ+ l

(
1− 3c2ϑc2ϕ

)]
(3.4)

Vi,d = −
1

2
mBω

2l

[
2acϑcϕ+ lc2ϕ

(
1 + 2

ϑ̇

ω

)]
(3.5)

Thus the Lagrangian equation of the point mass at the end of the tether being
deployed is:

LB,d =
1

2
mB l̇

2 +
1

2
mBl

2

[
c2ϕ

((
ω + ϑ̇

)2
+ 3ω2c2ϑ

)
+ ϕ̇2

]
(3.6)
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The Lagrangian equation of a length-varying bar is calculated integrating Eq.
(3.6) over the whole tether length:

Lbar,d =
1

2
ρll̇2 +

1

6
ρl3
[
c2ϕ

((
ω + ϑ̇

)2
+ 3ω2c2ϑ

)
+ ϕ̇2

]
(3.7)

Finally, the complete Lagrangian equation of the varying-length dumbbell model
is the sum of Eq. (3.6) and (3.7):

Ld =
1

2
(mB + ρl) l̇2 +

1

6
l2 (3mB + ρl)

[
c2ϕ

((
ω + ϑ̇

)2
+ 3ω2c2ϑ

)
+ ϕ̇2

]
(3.8)

The equations of motions are eventually calculated from the Lagrangian Ld as
described in Par. 2.1.3 (see Eq. (2.37)). The resulting three equations of motions
are reported in (3.9)-(3.11):

ϑ̈ = −3
2mB + ρl

3mB + ρl

(
ω + ϑ̇

) l̇
l
+ 2

(
ω + ϑ̇

)
ϕ̇ tanϕ− 3ω2sϑcϑ (3.9)

ϕ̈ = −3
2mB + ρl

3mB + ρl
ϕ̇
l̇

l
− sϕcϕ

[
3ω2c2ϑ+

(
ω + ϑ̇

)2]
(3.10)

l̈ = −
ρl̇2

2 (mB + ρl)
+ l

2mB + ρl

2 (mB + ρl)

[
c2ϕ

((
ω + ϑ̇

)2
+ 3ωc2ϑ

)
+ ϕ̇2

]
+
Fthrust − Fbrake − F0

(mB + ρl)
(3.11)

Equation (3.9) describes the in-plane motion, Eq. (3.10) the out-of-plane motion,
and Eq. (3.11) describes the motion along the tether longitudinal axis, that is the
motion of the tether being unrolled. Taking into consideration the last equation, it
can be seen by inspection that the first term is proportional to ρl̇2and it represents
the convective term associated with the tether mass flowing out of the deployer.
The contribution of this term is very small in this study and its role is equivalent
to a small increase of the brake force. If properly rearranged, the terms inside
the square brackets can be clearly associated to the different contributions:

gravity gradient Coriolis centrifugal︷ ︸︸ ︷
ω2
[(

1 + 3c2ϑ
)
c2ϕ− 1

] ︷ ︸︸ ︷
+2ωϑ̇c2ϕ

︷ ︸︸ ︷
+c2ϕϑ̇2 + ϕ̇2

The gravity gradient and the centrifugal terms are always positive, whereas Cori-
olis term is negative/positive when in-plane angular velocity is negative/positive.
The last term on the right side of Eq. (3.11) represents the contributions of
the external forces, i.e. the propulsion system thrust, the brake force, and the
intrinsic friction originated inside the reeling mechanisms.
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3.2.4 Reference trajectories

Now let us concentrate on the reference trajectories. In this study we considered
different system configurations with respect to the initial in-plane angle and the
tether length. First of all, both BETs “standard” lengths of 6km and 10km
were considered. Concerning the initial in-plane angle, it is the direction which
the deployment device should be pointing at the beginning of the deployment
maneuver, more precisely the angle ϑ in the xz plane from the local vertical.
During the present study we derived reference profiles for the 0°, 20°, 40° and
60° cases. A preliminary sensitivity analysis sharply highlighted that the tether
system experiences a minimum in the errors/perturbations sensibility around the
initial in-plane angle value of 40°. For the sake of clarity, therefore, in this section
only the results of the most representative case are going to be reported: the 0°
case as a reference case and the best case at 40° (see Table 3.1). The 20° and 60°
cases results are reported in Appendix of [2].

Table 3.2 lists the main system parameters which are common for all cases. The
thruster and the reel friction forces have been assumed to be equal to 250mN and
100mN, respectively. Tether cross section is the standard 2cm x 50µm, the ballast
mass is equal to 20kg and the initial orbital height is equal to 1000km.

Table 3.3 shows the initial tether attitude for the analyzed cases. The initial
tether attitude is given as an input in the numerical optimization. All variables
at the initial time (beginning of deployment) are equal to zero except for the
initial in-plane angle: deployment in CASE 1 and CASE 3 start with the tether
aligned along the local vertical (ϑ0 = 0°) while CASE 2 and CASE 4 start at 40°
with respect to the local vertical toward the orbital motion. At the end of the
deployment, we always want the tether to be aligned with the local vertical with
zero velocity (i.e., with zero residual libration). Consequently, the final attitude
variables are all set to zero (see Table 3.4), with the only exception for the final
length, which must be 6 km or 10 km, according to the cases.

In Figs. 3.5-3.8 results for each cases listed in Table 3.1 are shown. In every
figure four plots are reported:

� Figure A: Reference Trajectory. This plot shows the reference trajectory in
space of the tip mass throughout the deployment maneuver. The coordi-
nates are expressed in the Synodic frame and we report only the trajectory
in the orbital plane, as the libration in the out-of-plane is small and does
not pose any problem for the tether stability. The abscissa corresponds to
the Synodic x axis that is parallel to the local vertical (LV). The ordinate
corresponds to the Synodic z axis that is parallel to the local horizon (LH).
The blue circle indicates the position of the tip mass at the end of deploy-
ment, that is when the tether length reaches the goal value (6 km or 10
km).

� Figure B: Brake Tension Profile. The brake profile shows the values in
Newtons of the brake friction in correspondence to the 25 (16) pivot points
(in red) which are uniformly distributed along the deployed tether length.
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Table 3.1: deployment reference cases summary.

CASE 1 CASE 2 CASE 3 CASE 4

Initial in-plane angle ϑ0 0° 40° 0° 40°

Tether length L 6 km 6 km 10 km 10 km

Table 3.2: common tether system parameters.

Fthrust F0 Tether
Width

Tether
Thickness

Ballast
Mass

Orbit
Altitude

250 mN 100 mN 2 cm 50 µm 20 kg 1000 km

Table 3.3: tether attitude state vector at the beginning of the deployment.
In-plane angle is equal to 0° for CASES 1 and 3 and 40° for CASE
2 and 4.

ϑ0 ϑ̇0 ϕ0 ϕ̇0 l0 l̇0

0°/40° 0 °/s 0° 0 °/s 0 m 0 m/s

Table 3.4: goal tether attitude state vector at the end of the deployment.
Final length is equal to 6km for CASE 1 and 2 and 10km for
CASES 3 and 4.

ϑend ϑ̇end ϕend ϕ̇end lend l̇end

0° 0 °/s 0° 0 °/s 6/10
km

0 m/s
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In the optimization algorithm the brake profile is fixed for each iteration
at a discrete number of points. Since the dynamics equations integration
needs to know the brake friction value in a much higher number of points,
these are provided by means of cubic spline interpolation. The spline is
plotted with the black solid line.

� Figure C: Tether Attitude. The upper subplot reports the in-plane libration
of the tether throughout deployment, while the bottom subplot shows the
tether in-plane angular velocity. A good deployment trajectory implies that
both of these variables take a value close to zero at the end of deployment.

� Figure D: PD Time Profiles. Length and length rate time profiles that
represent the actual output of the optimization process. They will be used
by the PD Brake Control as reference profiles to be compared to the actual
values computed in the DDS.
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Reference Trajectory: CASE 1

Table 3.5: summary of reference CASE 1.

Initial in-plane angle ϑ0 Tether length L Deployment time

0° 6 km 67.02 min (64% of Torb)

Figure 3.5: CASE 1 optimization results: A) reference trajectory; B) brake
tension profile; C) tether attitude; D) PD tether length and
length rate profiles.
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Reference Trajectory: CASE 2

Table 3.6: summary of reference CASE 2.

Initial in-plane angle ϑ0 Tether length L Deployment time

40° 6 km 85.32 min (81% of Torb)

Figure 3.6: CASE 2 optimization results: A) reference trajectory; B) brake
tension profile; C) tether attitude; D) PD tether length and
length rate profiles.
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Reference Trajectory: CASE 3

Table 3.7: summary of reference CASE 3.

Initial in-plane angle ϑ0 Tether length L Deployment time

0° 10 km 81.4 min (77% of Torb)

Figure 3.7: CASE 3 optimization results: A) reference trajectory; B) brake
tension profile; C) tether attitude; D) PD tether length and
length rate profiles.
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Reference Trajectory: CASE 4

Table 3.8: summary of reference CASE 4.

Initial in-plane angle ϑ0 Tether length L Deployment time

40° 10 km 73.77 min (70% of Torb)

Figure 3.8: CASE 4 optimization results: A) reference trajectory; B) brake
tension profile; C) tether attitude; D) PD tether length and
length rate profiles.
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3.2.5 Results interpretations

As it can be seen by inspection of Figs. 3.5-3.8, the end-of-deployment conditions
are exactly as desired, that is in-plane angle and in-plane velocity equal to zero.
This means that the tether ends its deployment perfectly aligned with the local
vertical and it remains still in that position until the electrodynamic effect begins
to excite lateral oscillations. In all cases the deployment time remains below one
orbital period and always below 1.5 hours. This is quite good because it means
that the deorbiting operations can start within a short time after the spacecraft
has deployed the tether. Moreover, the low deployment time also avoids that the
external perturbations excite the tether motion during the deployment. There are
some important differences between the ϑ0 = 0° and the ϑ0 = 40° that are worth
noting. The brake profiles in the former cases are much more irregular than in the
latter cases. Furthermore, the minimum value of the tether longitudinal velocity
considerably increases in CASES 2 and 4: this is an improvement with respect to
CASES 1 and 3 because it means that the length rate of the tether is always well
far away from zero. In fact, if the length rate should decrease to zero or, worse, to
negative values the tether deployment would be interrupted. However, the most
important difference between the ϑ0 = 0° and the ϑ0 = 40°cases is surely the fact
that in the former cases the libration amplitude can reach or even go beyond -60°
in the in-plane. It is worth reminding here that the libration instability would
occur when the one of the tether attitude angle reaches the limit of ± 90°, hence
leading to a mission failure because the tether would start to roll around the
spacecraft. In addition, the ± 90° limit is a theoretical limit: simulations have
highlighted that libration instability can be predicted when the tether attitude
angles reach an even lower value. Thus in the 0° cases the margin from instability
conditions is much less than 30°. On the contrary, the deployment trajectories
in the 40° cases experiences a more limited maximum libration amplitude, that
is between -40° and 40°, considerably increasing the stability margin. In the
section dedicated to the error sensitivity analysis it will be shown that ejecting
the tip mass at 40° toward the orbital velocity direction can bring many additional
improvements concerning libration stability during deployment.

3.3 Closed-Loop Brake Control

3.3.1 Reel inertia and Archimedean Model

The reel inertia has been included in the dynamics equations to simulate more
accurately the tether unwinding process. Referring to Fig. 3.9, the reel moment
of inertia is given by Eq. (2.37):

Ireel =
1

2
mo

(
r20 + r2ext

)
+

1

2
lrolρ

(
r20 + r2rol

)
(3.12)

where lroland rrol are functions of the reel position angle ψ (see Eqs. (3.14) and
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Figure 3.9: definition of reel geometric parameters (left) and Archimedean
spiral model for rolled tether (right).

(3.15)), mo is the inert reel mass and ρ is the tether linear density. Since the reel
loses mass as the tether is unwinded the moment of inertia is a time-dependent
function of ψ. Please note that the reel position angle is equal to zero when the
tether is completely unrolled. Equation (3.13) describes the rotational motion of
the reel subjected to the external torques:

Ireelψ̈ = Tdyn + Tthrust + T0 + Tbrake (3.13)

where Tdyn is the torque due to gravitational gradient, convective, Coriolis, and
centrifugal terms, Tthrust is the torque originated by the propulsion system acting
on the tip mass, T0 is the torque due to the reel mechanism friction, and Tbrake
is the control torque stemming from the brake action commanded by the PD
feedback control. Figure 3.9 sketches the Archimedean spiral used to model the
rolled tether in which ψ is the reel angular position. The general Archimedean
equation is reported in Eq. (3.14) along with the specific equation that suits the
case of a thin tether rolled around a reel:

r (ψ) = a+ bψ ⇒ rrol (ψ) = r0 +
h

2π
ψ (3.14)

Once the radius is known as a function of the position angle also the rolled portion
length of the tether can be related to ψ:

lrol (ψ) =

ψ̂

0

√
r (ψ)2 + ṙ (ψ)2dψ =

=
1

4πh

[
(c0 + hψ)

√
(c0 + hψ)2 + h2 − c0

√
h2 + c20+

+h2 ln

c0 + hψ +
√

(c0 + hψ)2 + h2

c0 +
√
h2 + c20

 (3.15)

92



3.3 Closed-Loop Brake Control

Figure 3.10: operational scheme of DDS. In evidence, the PD brake control
feedback loop (gray block).

where c0 = 2πr0 and h is the tether thickness. The tether length rate during
deployment can be easily calculated through Eq. (3.16):

l̇ = rrolψ̇ =

(
r0 +

h

2π
ψ

)
ψ̇ (3.16)

In this manner it is possible to express both the length and the speed of the
tether as functions of the reel position angle and its derivative. Consequently, in
the dynamics equations of the reference trajectories, l and l̇ will be substituted
with ψ and ψ̇, respectively.

3.3.2 Proportional-Derivative feedback loop

Figure 1.6 shows the scheme of the PD brake control feedback loop that has been
implemented in the DDS. The loop is based on the reel dynamics integration.
Once the integrator has provided the actual reel position angle and the reel angu-
lar velocity, the instantaneous value of tether length and speed can be calculated
through Eqs. (3.15) and (3.16). In Fig. 1.6 these equations are ideally contained
in the three blocks labeled with f1 (ψ), f2 (ψ), and f3 (ψ). When l and l̇ have been
calculated, libration dynamics is computed (inside the yellow block) to provide
the actual tether attitude. At the same time, instantaneous length and speed
of the tether are used in the feedback block (the light gray block) to compare
them with the reference time profiles provided by the reference trajectories, that
are represented in the figure by the input red parallelogram-shaped block. In this
block, the brake control system will generate the Tbrake torque following the linear
control law given in Eq. (3.20). This component will be added to all other external
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torques, that is the reel friction, the propulsion system thrust, and gravitational
and inertial components. The sum of all external torques is then divided by the
instantaneous reel inertia providing to the integrator the instantaneous reel an-
gular acceleration. The loop continues until the deployment is completed. Worth
to be underlined is the fact the PD feedback only uses the length and the length
rate time profiles obtained through the reference trajectories optimization while
it does not use the brake friction reference time profile, which was used in the
numerical optimization only as input for the Nelder-Mead algorithm. Equations
(3.17)-(3.20) provide the external torques computed at each integration step:

Tdyn =
l (2mB + ρl)− ρl̇2

2 (mB + ρl)

[
c2ϕ

((
ω + ϑ̇

)2
+ 3ωc2ϑ

)
+ ϕ̇2

]
· rrol (3.17)

Tthrust = Fthrust · rrol (3.18)

T0 = F0 · rbearing (3.19)

Tbrake =
[
kl (l − lref ) + kdl

(
l̇ − l̇ref

)]
· rbreak (3.20)

where l and l̇ are previously computed by means of Equations (3.15) and (3.16).
The rolled radius is given by Eq. (3.14), rbearing and rbreak are constants that
depend on the deployer geometry, lref and l̇ref are from the reference trajectories
and kl and kdl are the proportional and derivative gains of the PD control. Their
values were chosen as follows:

kl = 10−2 kg/s2

kdl = 5 · 10−1 kg/s

Let us spend a few words on the PD control gains. In this work their values have
been chosen as the minimum values that guarantee the controlled trajectories to
have a good tracking of the reference trajectories. This procedure is suitable for
this preliminary study. A more rigorous procedure should take into account the
transfer function of the brake system that, at the present time, is not available.
However, the values used in this work are in line with those adopted in [4] in
which an analysis of the control system response over the deployment phase was
conducted A perturbation term was introduced in the in-plane libration dynamics
equation to simulate a thruster misalignment with the longitudinal tether axis.
In Eq. (3.21) α is the periodic component, β is the secular component of the
misalignment:

Mthrust = Fthrust · l sin (α sin (ωtrhust · t) + β) (3.21)

where Mthrust is the torque generated by the thruster misalignment which arm
is equal to the instantaneous tether length l and ωthrust is the frequency of the
periodic oscillation. These two variables will be used in the error sensitivity
analysis. It must be pointed out that the only way to have a secular component in
the misalignment term is to have the tip mass not spinning about the longitudinal
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line. Considering that a long tether does not have any torsional stiffness, this
condition is very unlikely to happen. A very small external perturbation or a
small thruster misalignment will be sufficient to make the tip mass spinning about
its longitudinal axis, thus averaging out the effects of all thruster misalignment.
Anyway, regardless to the fact that β angle is not an issue, we studied its potential
effect on the deployment libration stability. After all the steps described through
equations from (3.12) through (3.21), the dynamics set of Equations (3.9)-(3.11)
used in the RETRO tool have been transformed as reported in the followings:

ϑ̈ =
(
ω + ϑ̇

)[
2ϕ̇ tanϕ− 3

l̇

l

(2mB + ρl)

(3mB + ρl)

]
− 3ω2sϑcϑ+

3Mthrust

l2 (3mB + ρl) c2ϕ
(3.22)

ϕ̈ = −3
2mB + ρl

3mB + ρl
ϕ̇
l̇

l
− sϕcϕ

[
3ω2c2ϑ+

(
ω + ϑ̇

)2]
(3.23)

ψ̈ =
(Tdyn + T0 + Tthrust + Tbrake)

Ireel
(3.24)

Equations (3.22) and (3.23) represent the libration dynamics whereas the last Eq.
(3.24) describes the reel angular motion.

3.3.3 Controlled trajectories: reference cases (zero-error
cases)

In this section the results obtained with the DDS simulator are reported. In
particular, the zero-error cases are considered, that is assuming the same con-
ditions as in the four reference cases listed in Table 3.1. Before analyzing the
system sensitivity to external perturbations/errors, in fact, we need to know if
the PD control can guarantee a correct tether deployment under ideal conditions,
precisely under the reference cases conditions with no external perturbations nor
initial attitude errors. In Figure 3.11 the black points represent the tip mass
end-of-deployment position in the PD-controlled cases, whereas the blue circles
represent the tip mass final positions in the reference trajectories. As it can be
noted, the black points are always inside the blue circles. This means that the
PD brake control law works very well in all reference conditions.

Figure 3.12 shows various results obtained from DDS simulations of CASE
4. The solid black lines (PD-controlled) are always superimposed to the dashed
blue lines (references), with the only exceptions of the length rate and brake
friction profiles. Nevertheless, this does not represent an issue: the fact that the
deployment ends with a speed not perfectly equal to zero can be easily solved by
making the brake to increase its friction action while deploying the last hundreds
meters of the tether. The controlled brake time profile differs from the reference
one for two reasons: first, the equations implemented in RETRO do not take in
account that the arm of the unwinding torque changes during the deployment
(solid black line of Fig. 3.12-C); second, the brake profile in RETRO was given
through a spline interpolation of a discrete number of pivot points, whereas in the
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Figure 3.11: results from zero-errors condition simulations. The four plots
report the controlled trajectories together with the respective
reference trajectories for all the reference cases (in order, A
- case 1, B - case 2, C - case 3, D - case 4). The solid black
line is the PD-controlled trajectory, the dashed blue line is the
reference trajectory.
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Figure 3.12: time profiles from PD-controlled simulations for CASE 4, solid
black lines refers to PD-controlled trajectory, dashed blue line
referes to reference trajectories. A) tether attitude; B) tether
length and speed profiles; C) reel mass and geometrical param-
eters; D) brake friction and reel angular velocity time profiles.

Figure 3.13: external torques time profiles: A) dynamic torque components;
B) all torques.
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deployment simulator it is computed at each integration step. Furthermore, the
brake time profile is not used in the feedback loop, thus the difference between
reference and PD-controlled brake profiles does not represent a problem. Figure
3.13 shows the trends of the dynamic torque (panel A) and of all external torques
(panel B). Something interesting is here evidenced: as already stated above, the
convective term produces a negligible torque, the gravitational and the centrifugal
terms are always positive whereas the Coriolis term is negative at the beginning
of the maneuver. Although the sum of all dynamic components is always positive
it can be noted that when the Coriolis term become positive after about 2000s
from the start of deployment the dynamic torque grows quickly and considerably.
This change in the dynamic torque profile is in correspondence of the first “curve”
in the trajectory. This is a critical point of the deployment maneuver because at
this point the length of unwinded tether is still not enough to guarantee a strong
gravity gradient force and the in-plane libration angle is large. Figure 3.13-B also
shows that after 2000s the dynamic torque becomes about five times higher than
the reel friction value. In summary, we can speculate that after the tip mass
has undergone its first “sudden curve” along its trajectory, that is about after
2000-2500 s from the beginning of the maneuver, the gravity gradient could be
sufficient to carry out deployment without the aid of the in-line thruster. This, in
turn, could lead to a significant saving of propellant mass. This hypothesis was
preliminary validated through some dedicated simulations, the results of which
are reported in Section 3.5.

3.4 Error Sensitivity Analysis

In this section the most important results of the error sensitivity analysis are
reported. The analysis was conducted on the main system parameters and is
divided in two parts. In the first part an error on one reference variable at a
time was introduced. More precisely, the conditions of the tether at end of the
deployment were studied in the case one variable among those listed below was
altered with respect to the reference conditions (Table 3.1):

� initial in-plane angle ϑ0: spacecraft attitude control pointing errors were
assumed not to exceed the conservative value of 5°;

� initial out-of-plane angle ϕ0: same as for ϑ0;

� propulsion thrust Fthrust: a thrust error up to -50% was assumed;

� reel friction F0: reel friction is very relevant to deployment dynamics; to be
conservative, deployment maneuver was studied when a friction force error
up to 50% is introduced;

� periodic thruster misalignment α: up to 20°;
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� secular thruster misalignment β: as discussed in the previous Section 3.3.2
this variable is not going to be an issue in an operative mission; for this
reason a maximum variation of ±3° was considered.

In the second part of the error sensitivity analysis all the previous variable errors
were combined in a reasonable “worst case” set of errors/perturbations.

3.4.1 Single-variable error analysis

In the following tables the results of the error sensitivity analysis are reported.
In each table it is possible to compare the final attitude conditions in the ϑ0 = 0°
and the ϑ0 = 40° cases, first for the 6-km cases and then for the 10-km cases. The
results reported in Table 3.9 and Table 3.10 are the maximum in-plane amplitudes
(in degrees) reached by the tether after the deployment is completed, i.e. the so-
called residual libration. This measure gives us an idea on the quality of the
deployment process: if the maximum in-plane angle after deployment is close to
zero it means the maneuver ended with a correct attitude of the tether. The
out-of-plane angle was not taken into account because the motion on this plane is
much more stable than in the in-plane and, moreover, by ejecting the tip mass in
the orbital plane (with errors) the out-of-plane dynamics is almost negligible. The
REF column shows the maximum angles for the zero-error cases which are taken
here as reference values. Analyzing the results, it can be firstly noticed that the
10-km cases are in general less sensitive to errors and external perturbations than
the 6-km cases. This is because in the 10-km cases the tether has a longer time
to acquire a correct attitude after the first critical “curve”. Apart from this, the
results show that the final tether attitude conditions have a significant sensitivity
to only two perturbations: the initial in-plane ejection angle error ∆ϑ0 (Figures
3.14 and 3.15) and the secular thruster misalignment β (Figures 3.16 and 3.17).
However, the latter one is only a theoretical error, as it was previously stated. On
the contrary, the errors on initial out-of-plane angle ∆ϕ0, thrust error ∆Fthrust,
reel friction error ∆F0, and the periodic thruster misalignment α do not influence
noticeably the final tether attitude.

The most important result, in any case, is the fact that if the deployment begins
with an initial ejection in-plane angle of 40° (CASES 2 and 4) the sensitivity of
the tether to any error or external perturbations is reduced almost to zero. As
it has been stated above, simulations were also carried out for initial in-plane
angle values of 20° and 60° but the results obtained were not as good as in the
40° case (see [2]). This result is also consistent with the fact that the sensitivity
is higher for negative errors of initial in-plane angle ϑ0: a qualitative explanation
is that in the first part of the deployment (more or less during the first 2000-
2500s) the in-plane angle becomes negative with respect to the initial angle and,
consequently, if the tip mass is ejected at +40° with respect to LV this negative
values is significantly reduced. Concerning the β angle, tether sensitivity to this
parameter is very high because it introduces a significant constant perturbation
torque throughout deployment. Although the things are much better in the 40°-
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Table 3.9: single variable error analysis results for 6-km long tethers
(CASES 1 and 2)

∆ϑ0 -5° -3° -2° -1° REF +1° +2° +3° +5°

CASE 1 31.18 13.92 8.00 3.35 0.70 3.46 5.99 8.08 11.3

CASE 2 1.16 0.82 0.64 0.46 0.29 0.14 0.18 0.36 0.79

(a) residual libration for initial in-plane angle errors.

∆ϕ0 -5° -2° -1° REF +1° +2° +5°

CASE 1 0.66 0.40 0.13 0.00 0.13 0.40 0.66

CASE 2 0.28 0.28 0.29 0.29 0.29 0.28 0.28

(b) residual libration for initial out-of-plane errors.

∆Fthrust -50% -30% -15% REF +15% +30% +50%

CASE 1 0.54 0.42 0.51 0.70 0.95 1.20 1.54

CASE 2 0.24 0.26 0.27 0.29 0.31 0.33 0.35

(c) residual libration for thruster force errors.

∆F0 -50% -30% -15% REF +15% +30% +50%

CASE 1 0.80 0.75 0.73 0.70 0.67 0.65 0.61

CASE 2 0.3 0.3 0.29 0.29 0.29 0.28 0.28

(d) residual libration for reel friction force errors.

α REF +1° +2° +5° +20°

CASE 1 0.70 1.00 1.63 3.41 9.76

CASE 2 0.29 0.24 0.24 0.14 0.58

(e) residual libration for periodic misalignment er-
rors.

β <-2° -2° -1° -0.5° REF +1° +2° +5°

CASE 1 28.32 0.70 19.26 24.56 26.11

CASE 2 44.05 4.82 - 0.29 3.12 4.58 4.52

(f) residual libration for secular misalignment errors.
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Table 3.10: single variable error analysis results for 10-km long tethers
(CASES 3 and 4)

∆ϑ0 -5° -3° -2° -1° REF +1° +2° +3° +5°

CASE 3 17.52 6.57 3.75 1.73 0.22 1.00 2.00 2.86 4.3

CASE 4 0.31 0.37 0.42 0.49 0.56 0.64 0.73 0.82 1.02

(a) residual libration for initial in-plane angle errors.

∆ϕ0 -5° -2° -1° REF +1° +2° +5°

CASE 3 0.37 0.28 0.23 0.22 0.23 0.28 0.37

CASE 4 0.59 0.57 0.56 0.56 0.56 0.57 0.59

(b) residual libration for initial out-of-plane errors.

∆Fthrust -50% -30% -15% REF +15% +30% +50%

CASE 3 0.79 0.38 0.31 0.22 0.13 0.06 0.10

CASE 4 0.66 0.61 0.58 0.56 0.52 0.49 0.46

(c) residual libration for thruster force errors.

∆F0 -50% -30% -15% REF +15% +30% +50%

CASE 3 0.20 0.22 0.21 0.22 0.22 0.24 0.25

CASE 4 0.53 0.56 0.54 0.56 0.55 0.56 0.56

(d) residual libration for reel friction force errors.

α REF +1° +2° +5° +20°

CASE 3 0.22 0.57 0.57 1.29 4.38

CASE 4 0.56 0.57 0.60 0.66 1.04

(e) residual libration for periodic misalignment er-
rors.

β -3° -2° -1° -0.5° REF +1° +2° +5°

CASE 3 13.68 0.22 7.61 11.90 16.44

CASE 4 22.62 9.21 3.44 - 0.56 1.27 2.18 2.72

(f) residual libration for secular misalignment errors.
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Figure 3.14: 6-km long tether cases, PD-controlled trajectories (solid black)
adherence with reference trajectories (dashed blue) with ∆ϑ0 =
−5° error. A) CASE 1, ϑ0 = 0°; B) CASE 2, ϑ0 = 40°.

Figure 3.15: 10-km long tether cases, PD-controlled trajectories (solid
black) adherence with reference trajectories (dashed blue) with
∆ϑ0 = −5° error. A) CASE 3, ϑ0 = 0°; B) CASE 4, ϑ0 = 40°.

Figure 3.16: 6-km long tether cases, PD-controlled trajectories (solid black)
adherence with reference trajectories (dashed blue) with β =
−1° error. A) CASE 1, ϑ0 = 0°; B) CASE 2, ϑ0 = 40°.
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Figure 3.17: 10-km long tether cases, PD-controlled trajectories (solid
black) adherence with reference trajectories (dashed blue) with
β = −1° error. A) CASE 3, ϑ0 = 0°; B) CASE 4, ϑ0 = 40°.

cases, we remind once again that secular misalignment is very unlikely to occur as
the tip mass will surely spin about the tether longitudinal axis (as it was reported
in previous tether missions with a non-stabilized tip mass), thus averaging every
thruster misalignment errors around the zero bias.

3.4.2 Worst cases analysis

Table 3.11 reports the combination of error/perturbations that were chosen to
represent the “worst case” condition. Figure 3.18 and 3.19 show once again the
great improvement in error insensitivity that takes place passing from 0° to 40°
values of the initial in-plane angle.

Table 3.11: combination of error and external perturbations for the worst
case scenario.

WORST CASE ∆ϑ0 ∆ϕ0 ∆Fthrust ∆F0 α β

VALUE -2° +2° -30% +50% +5° -0.5°
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Figure 3.18: 6-km long tethers, PD-controlled trajectories (solid black) ad-
herence with reference trajectories (dashed blue) with worst
case error combination. A) CASE 1, ϑmax = 29.36°; B) CASE 2,
ϑmax = 1.09°.

Figure 3.19: 10-km long tethers, PD-controlled trajectories (solid black) ad-
herence with reference trajectories (dashed blue) with worst
case error combination. A) CASE 3, ϑmax = 13.56°; B) CASE 4,
ϑmax = 1.35°.

3.5 The Limited Firing Time Case

Analyzing the results obtained from zero-errors cases (Par. 3.3.3) it has been
noticed that, at a certain point of the deployment maneuver, the torque due
to gravity gradient, Coriolis and centrifugal terms, becomes much bigger than
the torque originated by the reel friction. More precisely, a preliminary studies
show that after about 2000 seconds from the beginning of the maneuver the
thrusters can be safely turned off because gravity gradient and centrifugal forces
are sufficient to conclude the deployment. This means that for more than half
of the deployment maneuver the aid of the propulsion system is not necessary,
thus saving a significant amount of propellant mass and volume of the propulsive
system. Figure 3.20 shows the result of a simulation carried out under worst case
conditions described in Table 3.11 for the CASE 2 (6-km tether, in-plane initial
angle equal to 40°). In this simulation the thruster was turned off after 2000
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s from the beginning of the maneuver. The residual libration is equal to 0.76°,
that is the tether ends up almost perfectly aligned with the local vertical. Figure
3.20-B shows the trends of all external torques during deployment. Please note
that the brake feedback control reacts at the switching off of the thruster: the
brake torque (black dashed line) is almost instantaneously reduced to zero at t =
2000 s and is starts to grow again after some time to counteract the ever growing
dynamic torque.

Figure 3.20: simulation with 2000-s limited firing time, worst case conditions
for CASE 2. Red star indicates the point at which thruster
was turned off. A) Trajectory adherence; B) Torques trends
throughout the maneuver.

3.6 Conclusions

This work addresses key issues relative to the thrust-aided deployment of a multi-
km tape-shaped tether in space by means of a librating maneuver. In particular,
the study was conducted on a proposed system configuration that utilizes a reel-
ing passive deployer equipped with a closed-loop controlled brake system and a
low-thrust propulsion system on board the tip mass, which are suitable for deploy-
ing tape tethers. The control strategy involves the use of a feed-forward reference
trajectory and a feedback proportional-derivative control law. A family of length-
velocity reference trajectories that guarantee a correct deployment of tape tethers
with total length of 6km and 10km were found utilizing the Nelder-Mead numer-
ical optimization algorithm. Furthermore, the set of reference trajectories covers
several values of the initial tip mass ejection angle, that is, ϑ0 =0, 20, 40, and
60deg. For all the cases analyzed, the residual libration amplitudes of the tether
about the local vertical at the end of deployment were minimized (in all cases
ϑend < 1deg) to provide the tether system with the highest dynamic stability
margin during deorbiting of the mother spacecraft. Subsequently, the sensitivity
of the system to errors and external perturbations was tested by means of a spe-
cialized software to find an initial in-plane angle equal to 40deg (measured from
local vertical toward the satellite flight direction) provides a robust deployment
tolerant of worst-case errors combination.
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4 An Optimization Method for
BET Systems

At a first glance, a deorbit device that makes use of an electrodynamic tether to
drag a spacecraft down into the atmosphere may appear to be a simple system.
It basically consists of a long tether, a cathode, some simple electronic, and an
inert tip mass and the system is meant to be entirely passive and autonomous.
Indeed, the reality is quite different. The tethered system needs a deployer to be
deployed in a proper way before electric current can start to flow inside it, which
dimensions and weight depends on the tether length, thickness, and width. A
remarkable portion of the tether length must be non-conductive for dynamical
stabilization purposes and the amount of this fraction depends on several vari-
ables, e.g. the starting orbit altitude and inclination, the tip mass, the average
electric current flowing in the conductive portion of the tether. In turns, the
electric current and the probability to have the tether cut by space debris (i.e.
the system reliability) depend on tether geometry and orbital parameters. More-
over, also the mass and volumetric characteristics of the electronic box, cathode,
and tip mass subsystems depend on all the other components, making an elec-
trodynamic tether system difficult to be optimized. Table 4.1 shows a qualitative
description of the interdependency of BETs subsystems together with cut prob-
ability and deorbit time. The table is built answering the following question:
if one subsystem configuration is fixed giving it as an input, how much does it
directly influence the other subsystems? It is easy to see by inspection that al-
most all subsystems are interdependent with several other subsystems. Moreover,
most of the dependencies are classified as strong, and, in particular, all of table
items has at least one strong relation with another subsystem. Table 4.1 also
highlights that the most important component of a BET system is with no doubt
the conductive tether that influences all other subsystems characteristics. Other
important subsystems are the inert portion of the tether, the tip mass, and the
stabilization strategies, whereas the subsystems that affect a least number of sub-
systems are the electronic, the cathode, and deployer together with the deorbit
time. In any case, the most important thing that we can infer from Table 4.1 is
that the change of the characteristics of a single subsystem affects at least another
subsystem, giving birth to a chain reaction that can, in some cases, influence the
whole BETs system. As a representative example, let us suppose to change the
conductive portion of the tether configuration by extending its length and dou-
bling its cross section. This would lead to shorter deorbit time and higher cut
probability. Moreover, the inert portion of the tether should be increase in length

109
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Table 4.1: Interdependency of BETs subsystems (how much first column
depends on first row items). Yellow color indicates weak depen-
dences, red color strong dependences. The Stabilization strate-
gies row group additional devices meant to stabilize tether dy-
namic, such as rotational dampers, shock absorbers, current con-
trol algorithms.
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roughly by the same amount of the conductive one the tip mass together with
all other stabilization strategies must be adjusted to guarantee a proper dynamic
stability during deorbitng. Finally, the deployer size would increase considerably
to be able to store a longer tether, whereas the electronic and the cathode shoud
be redimensioned to deal with higher electric currents.

In this chapter we attack the problem of finding an optimized configuration of a
BETs system when a mission profile and system requirements are provided. The
work here presented was conducted in close collaboration with our partners at the
Technical University of Madrid (Universidad Politécnica de Madrid, UPM) whom
developed an optimization analytical algorithm and a simple simulation software
that can be usefully used to discard most of improper BETs configurations in a
realist end-of-life deorbiting mission.
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Table 4.2: Optimization process input and output.

Initial input Final output

Orbit height (H0) Conductive tether geometry and mass (Lc × w × h, mc)

Orbit inclination (i) Tip mass (mB)

Inert tether geometry and mass (Li × w × h, mi)

Deployer mass and volume (mD, VD)

Cathode mass and volume (mC , VD)

Electronic box mass (mE)

Rotational damper parameters (if needed)

Shock absorber parameters (if needed)

Current control parameters (if needed)

4.1 Overview of the method

The process devised within the present work aims to optimize a bare electrody-
namic tether system when a mission profile is provided as an input. The main
output of the optimization are the conductive tether geometry and the tip mass,
whereas secondary results are the mass and/or the geometry of inert tether, de-
ployer, electronic box and cathode mass, and the stabilization devices configu-
ration. Table 4.2 summarizes the initial input and final output of the process.
The optimization process was designed taking into account all the work that has
been done within the BETs Project, in particular the two simulation software,
BETsMA, developed at UPM, and Flexible Tether Simulator (FTS), developed
at UniPD. [1, 2, 3]

The optimization method is composed of three main steps. The first step con-
sists of a preliminary analysis carried out by means of BETsMA optimization
module that implements a semi-analytical algorithm to find the optimized BET
configuration for a given set of input variables such as orbit altitude, inclination,
satellite mass. As a second step, once the optimized configuration has been found,
BETsMA deorbiting module simulates the deorbiting maneuver making use of a
simplified tether model; in particular, it assumes a rigid tether aligned with the
local vertical. BETsMA deorbiting module outputs include deorbit time, tether
survival probability, satellite trajectory and mass of BET main subsystems, like
the hollow cathode, deployer subsystem and electric module. Finally, in the third
step the results obtained from BETsMA are used as input in the FTS that utilizes
a more complex model that takes into account both lateral and longitudinal mo-
tion of the tether along with all the latest environment routines. Within this step
several stabilization strategies can also be simulated by means FTS dedicated
tools (e.g. inert portion of tether, rotational damper, shock absorber), thus the
simulations results are much more accurate than those found in the second step.
Deorbit time, tether attitude, tether tension, tether temperature, current pro-
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file, and orbit propagation are calculated with relative high accuracy throughout
deorbiting maneuver. Subsequent numerical simulations carried out with FTS
are used to gradually refine the tether system configuration. If an acceptable
set of results is not obtained at the end of the refinement process (e.g. because
of insufficient dynamical stability, excessive deorbit time), the optimization pro-
cess must be restarted at step 1 and a different conductive tether geometry must
be selected (e.g. longer tether, narrower cross section, thicker tether) and the
new configuration must go through the procedure again. The iterative process
stops when results obtained with FTS are acceptable. It must be clear since now
that the BET optimization process described in this chapter does not provide an
unique optimal configuration, indeed different choices made at step one and two
can lead to different acceptable “optimal” configurations at step three. For this
reason, user’s experience together with a good knowledge of tethered system are
crucial to obtain good results. Unluckily, as explained above, BET systems com-
plexity does not allow (up to now) for an easy and unique optimization process.
Nonetheless, the devised procedure here described is unquestionably a useful tool
to the user that would like to pinpoint suitable solutions to the essential question
that troubles BET deorbiting systems designers:

for a given mission profile, which is the best system configuration
to provide reliable and competitive deorbit performances?

In the next sections we provide an example of an optimization procedure for a
selected practical case. The orbit profile defined in Par. 4.1.3 is used as input.
The results of the optimization process are shown in Par. 4.2. The two software
utilized in the study are briefly described in the following two subsections.

4.1.1 BETsMA

The software BETsMA is divided in two modules. The first, the Optimization
Module, utilizes a semi-analytical algorithm developed by Sanmartin et al. [4] to
find the tether geometry (width, thickness, and length) that minimizes certain
objective functions involving tether-to-spacecraft mass ratio, cut probability, and
deorbit time for given values of the starting orbit and the spacecraft mass. Tether
geometry is of primary importance impact on the mission performance. For exam-
ple, longer tethers provide faster deorbiting but increase both front area exposed
to debris impacts and tether mass, and the high electrodynamic forces can induce
serious dynamical instability eventually leading to catastrophic failures. Tether
figures of merit, like cut probability by tether-to-spacecraft mass ratio, are writ-
ten as integrals from the initial to the final altitude. The functions inside the
integral depend on tether geometry because they involve physical models like
survivability against debris impact and tether current profile. At each altitude,
these functions are evaluated by making an average over many orbital periods;
a rigid bare tether aligned with the local vertical that carries out a sequence of
quasi-circular orbits along the deorbiting maneuver is also assumed.While using
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Figure 4.1: User interface of the Optimization and Deorbit modules of
BETsMA.

this module the user must make some choices regarding the maximum accept-
able cut probability together with the possible tether width and thickness. Thus,
more than one tether configuration can be pointed out from each optimization
process. It should be clear at this point that the Optimization Module does not
provide the absolute optimal tether geometry, indeed it is extremely useful to
discard most of the unsuitable configurations and to individuate narrow ranges
of suitable values of tether length and width for given cut probability values. The
user’s experience together with historical results on past tethered projects should
be capitalized to complete the first optimization process and pinpoint the best
conductive tether configuration to be used as input in the next optimization step
which takes advantage of the FTS accurate tether model. The second module of
BETsMA, the Deorbiting Module, utilizes a LV-pointing dumbbell model to ob-
tain a more accurate computation of the deorbiting maneuver, providing deorbit
time, probability of cut and an estimation of the mass of each subsystems. As
opposed to the optimization tool, the deorbiting module does not assume circu-
lar orbit and it does not involve any average. The orbit is computed by using
DROMO, a robust and efficient orbit propagator based on special perturbations
methods [5]. The program also provides a preliminary mass budget for all the
tether subsystems, which estimations are based on scaling algorithms provided
by BETs Project consortium members. Figure 4.1 shows the user’s interface of
BETsMA modules. The interested reader is invited to refer to BETsMA manual
for more details on the models used in the software.
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4.1.2 Flexible Model Simulator

The FTS software was developed in FORTRAN at University of Padova by Dr.
Denis Zanutto within BETs Project during his Ph.D (2010-2012) [3] and sub-
sequently improved by Dr. Marco Pertile and the author of this thesis in the
following years. The tether flexible model implemented in FTS is able to provide
the user with accurate information on the deorbit of a spacecraft. The dumbbell
model used in BETsMA is useful to quickly get early preliminary results for the
integration of the dynamic equations is much faster. Nevertheless it says nothing
about libration, lateral, and longitudinal dynamics of the tether, thus it is unable
to predict dynamical instability of the system. Moreover, during the deorbit the
tether is usually not aligned with the local vertical and, due to electrodynamic
and aerodynamic drags, it bends laterally giving birth to the well known skip-rope
motion, heavily influencing the efficiency of the electrodynamic drag. The flexible
model is in turn able to provide the user with all of these information, together
with more accurate deorbit time and orbit propagation, nevertheless paying a
tribute in terms of higher computation time. Hereafter we describe briefly the
FTS model, for more detailed information please refer to [3, 6]. The FTS imple-
ments a lump masses model, that is the tether is modeled with a number of lump
masses connected with straight massless elastic elements (springs and dampers)
to simulate lateral and longitudinal tether dynamics. Elements bending and tor-
sional stiffness are not taken into account as they can be reasonably neglected
for a tape-shaped tether. The characteristics of the orbit propagation model are
described below:

� Gravitational forces: a 4x4 gravity potential harmonic expansion model
is used to calculate the gravitational forces of each lump mass, mother
satellite, and tip mass.

� Electrodynamic forces: the current collection is assumed to take place
in the Orbital Motion Limited (OML) regime and the electric current and
voltage profiles are calculated following an asymptotic formulation provided
by Bombardelli. [7]

� Thermal gradient: temperature distribution along the conductive tether
is important because it affects its electric and mechanical characteristics,
thus influencing the electrodynamic interaction and eventually the system
dynamic. Thermal fluxes originated by Sun, albedo, Earth, atmospheric
drag, ionospheric electrons impact, and ohmic losses are considered.

� Atmospheric density: the NRLMSISE00 model is used to find air density
to calculate air drag.

� Earth magnetic field: the IGRF model is used.

� Ionospheric electron density: the IRI2007 model is used.

114



4.1 Overview of the method

Apart from environmental and lump masses dynamical models, some instability
countermeasures have also been implemented in the code. In fact, experience ma-
tured through a copious number of simulations together with literature teaching
tells us that we cannot have a dynamical stable BET configuration without adopt-
ing some strategies to limit inborn dynamical instabilities of an electrodynamic
tether. The user can choose to simulate several stabilizing strategies:

� Inert tether: gravitational forces have a stabilizing effect on the tether
as they always tend to restore the alignment with local vertical. With the
scope of increasing these forces a non-conductive (inert) tether is introduced
between the electrodynamic tether and the tip mass for the configuration
with the cathode installed in the mother spacecraft.

� Rotational mechanical damper: a passive damping rotational damper
located at the interface between the conductive tether and the mother space-
craft, like the ones described in Chapter 2, can be simulated.

� Current control: various current control strategies can be activated to
prevent excessive amplitude of the electrodynamic forces.

� Shock absorber: electrodynamic forces amplitude and direction undergo
(relative) quick and wide variations along the orbit with a strong dependence
on orbit altitude. As a consequence of this, tether can experience high
peak tension loads that help instability mechanisms to take place. A shock
absorber can then be installed inside the tip mass with the scope of soften
and damp tension peaks induced by sudden ED forces variations.

The numerical integration of the equation of motion is carried out with widely
used commercial integrators, nonetheless the author has developed an ad-hoc
implicit integrator based on a 5th order RADAU scheme in collaboration with
Dr. Gonzalo Sánchez-Arriaga. The implicit integrator, named RIGON5, was
designed to be 100% compatible with FTS FORTRAN code, and it has proven
to be useful (sometimes indispensable) when dealing with relative short tethers
combined with high electrodynamic forces. In this cases, in fact, the differential
equations integration originate stiff problems that are well solved by utilizing
implicit integrators. For more information of RIGON5 please contact the author.

4.1.3 A practical case: near-polar sun-synchronous orbit

According to ESA there are some regions of space around the Earth that are
particularly subject to space debris hazard due to their extensive utilization. In
particular there are three so called high ranking hotspot regions that are defined
as follows:

� altitude 800 km, inclination 98 degrees;

� altitude 850 km, inclination 71 degrees;
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4 An Optimization Method for BET Systems

� altitude 1000 km, inclination 82 degrees.

Among these orbits, for a BET system those defined by the first region (i.e.
sun-synchronous orbits) is among the most severe. The amplitude of the electro-
dynamic drag forces, in fact, depends in first place on the motional electric field
Em generated along the tether due to tether-to-plasma relative velocity vrel and
geomagnetic field B. The motional electric field component Em along the tether
direction ût reads:

Em = (vrel ×B) · ût (4.1)

If the tether is left uninsulated (bare tether) and the electrical circuit is closed
through the ionosphere by means of a plasma contactor, the motional electric field
component Em makes an electrical current to flow in the tether. This current,
in turn, interacts with the Earth magnetic field producing electrodynamic forces
according to Lorentz law:

Fel =

ˆ

l

I (s) ût ×Bds (4.2)

where I is the electric current flowing inside the tether and s is the arc-length
along the tether. At high-inclination orbits the angle between the magnetic field
vector and the relative velocity is very small, resulting in a low motional electro-
magnetic field and, in turn, in a low electrodynamic force. By inspection of Eqs.
(4.1) and (4.2), it can be easily seen that for high-inclination orbits Fel is close
to be perpendicular to vrel, thus considerably exciting the out-of-plane libration
whereas the drag component of the forces are modest. These facts lead to have
lower deorbiting efficiencies (i.e., longer deorbit time) than those achievable at
lower inclinations. For this reason in this work the first region was chosen as the
mission profile, for if it will be demonstrated that an BET system is effective in
deorbiting a spacecraft from a sun-synchronous orbit it will possibly be effective
also in the other two hotspot regions. The starting orbit was fixed as in Table
4.3. Concerning the selection of the mass of the spacecraft to be deorbited, it
must be noted that not all the subsystems of an BET system can be scaled down
in the same way. This fact poses a lower limit in the mass-range in which a BET
system is competitive. This limit could be fixed roughly around 100 kg. For this
reason a 125 kg value was assigned to the spacecraft mass taking into account
also the mass of the BET system, again choosing the most severe configuration.
Lastly, the tether should be deployed from the mother spacecraft toward Earth
to get an electron current flowing toward the cathode that we suppose installed
on the spacecraft. Starting simulation year was set to 2000 that corresponds to
a maximum of F10.7 solar flux. Refer to Fig. 4.10 for a complete sketch of the
tethered system.
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4.2 Step 1: tether geometry

Table 4.3: Summary of the mission profile selected for a BET system pre-
liminary optimization.

ITEM VALUE

Starting altitude (H0) 750 km

Orbit inclination (i) 98.7 deg

Spacecraft mass (including BET
system) (Ms)

125 kg

Deployment direction toward Earth

Starting date 1st Jan 2000

Table 4.4: Summary of tether geometry and mission performance after
STEP 1 of optimization process.

Item Value

Cut probability, Nc 1.154%

Mass ratio, mc/Ms 2.7%

Deorbit time, td 73.78 days

Tether length, Lc 2.5 km

Tether width, w 1 cm

Tether thickness, h 50 µm

Tether mass, mc 3.375 kg (Al)

4.2 Step 1: tether geometry

The first step consists in selecting the geometry of the conductive tether segment
using the optimization module of BETsMA. Table 4.4 summarizes the charac-
teristics of the optimal conductive tether segment and the deorbit performance
of the mission as in Table 4.3. A brief summary of the procedure followed to
obtain the results in Table 4.4 is reported below. The calculations were carried
out using MASTER to model the space debris flux and the final altitude was
set to Hf = 350km, where aerodynamic drag over the satellite and the tether is
strong. A potential drop at the Hollow Cathode equal to 20 V was considered.
The optimization algorithm indicates that a tether of length equal to 2.5 km,
width 1cm and thickness 50 µm is the most appropriate. Therefore, using a con-
ductive segment of 3.4 kg (aluminum density is equal to 2700 kg/m3) the satellite
is deorbited from 750 km to 350 km in 73 days and tether cut probability is about
1,15%. We remark that recent tests in the CISAS Hypervelocity Impact Facility
at University of Padova suggest that BETsMA survivability model is conservative
[8].
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4 An Optimization Method for BET Systems

Figure 4.2: Function Π1 versus tether length for different tape widths. (h =
50 microns).

I part: optimal length

The fist step in the optimization procedure of BETsMA consists in selecting
the optimal tether length that best suit the mission profile. This is done by
an analytical algorithm that takes into consideration all main variables of the
tethered system, such as tether geometry, average current inside the tether, orbit
altitude and inclination (that are necessary to calculate average debris impact
flux). Figure 4.2 shows the product of probably cut Nc and tether to spacecraft
mass ratio against tether length for a given tether thickness that was fixed to
t = 50 microns (this value derives from BETs Project tether prototype). The
product Π1 = Nc · mc

Ms
must be minimized to get a combination of low impact

probabilities together with light tethers. By inspection of Fig. 4.2 the value of Π1

has a minimum equal to 1.006 ·10−3 in correspondence of L/h2/3 = 1.842 ·106m1/3

(or L = 2.5 km). It’s worth to note that the optimal length does not change
with respect to tether width. In turn, the value of Π1 decreases with increasing
tether width. This apparently paradoxical result is readily explained by the fact
that if a tether is hit by a debris which size is smaller than tether width the
probability that the tether is cut is low. The cut probability after one single
impact increases and reaches values close to (or equal to) 100% when the impact
size becomes comparable with tether width. Since overall debris flux decreases
rapidly for increasing debris size (see Fig. 4.3), wider tethers guarantee lower cut
probabilities Nc.
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4.2 Step 1: tether geometry

Figure 4.3: Debris flux according to MASTER for different debris dimen-
sion. (h = 50 microns).

II part: deorbit performance

After the length of the conductive tether is selected we can get some information
on the system deorbit performances. Utilizing Fig. 4.2 the product Π2 = td · mc

Ms

can be found. One fundamental characteristic of Π2 is that it’s value depends
only on tether length whereas it is not dependent on tether width; this result
is obtained from analytic calculations, more information on this matter can be
found in [4]. If the tether length has been fixed in earlier steps together with
spacecraft mass (in this work S/C mass is provided as input) then an unique
value of Π2 can be obtained, in particular by inspection of Fig. 4.2 Π2 is found
to be equal to 1.991 days in correspondence of L = 2.5 km. This, in turn, means
that the product tdmc is constant and is equal to C = Π2Ms. The deorbit time
is therefore inversely proportional to the conductive tether mass, that is:

td =
C

mc

=
C∗

w
(4.3)

where the constant C∗ = C
ρAlLh

is fixed for given tether length and thickness. Fig-

ure 4.4 depicts Eq. (4.3) showing the relation between deorbit time and tether
width. This fundamental relation clearly states that we can obtain faster de-
orbiting maneuver by increasing the tether width, and viceversa. Anyway, the
optimal tether width must be chosen taking into consideration others performance
parameters as it is done in the next paragraph.
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4 An Optimization Method for BET Systems

Figure 4.4: Function Π2 versus tether length for different tape widths. Due
to the no-dependence of Π2 on tether width the curves are su-
perimposed. (h = 50 microns).
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Figure 4.5: Mission performance curve for L = 2.5 km. Deorbit time versus
tether width.
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4.3 Step 2: dumbbell model simulations

III part: tether width

The final step of BETsMA optimization process is to pinpoint the optimal tether
width. Figure 4.6 depicts level curves of cut probability, tether to spacecraft mass
ratio, and deorbit time in function of tether length and width. Note that, for given
tether length, cut probability and mass ratio increase with lower widths, whereas
mass ratio increases with increasing width. Thus, choosing a wider tether would
deliver a safer system and lower deorbit time but also a heavier tether. This
condition would be the best choice for the deorbiting maneuver but it would be
rather unsuitable under the spacecraft mass budget point of view. For this reason
the selection of the tether width must be a tradeoff between deorbit performance
and tether mass budget. In particular, we shall choose the highest tether width
that provide an adequate tether to spacecraft mass ratio.

To start, it is convenient to fix the maximum acceptable cut probability to 3% to
guarantee a sufficient system reliability. For L = 2.5 km this condition is verified
for roughly w > 0.75 cm. Table 4.5 summarizes the results obtained for different
tether width. To select a proper tether width to start the iteration process of
the tether system optimization we must consider that the mass of the conductive
tether usually represents about 15% of the final total BET system mass, that
includes tip mass, inert tether portion, deployer, electronics box, cathode, and
possible devices for dynamic stabilization purposes. Also, we do not want the
BET system mass to be more than 15-20% of the total spacecraft mass to keep the
system competitive with other deorbiting technologies. For these reasons a tether
width equal to w = 1.00 cm seems to be a good starting point. The corresponding
deorbit performance terms are: cut probability Nc = 1.154%, conductive tether
to spacecraft mass ratio mc

Ms
= 2.7%, and deorbit time td = 73.78 days.

4.3 Step 2: dumbbell model simulations

Once conductive tether geometry is known, BETsMA deorbiting module is used
to obtain relevant information about the full tether system and the deorbiting
mission profile. Table 4.6 summarizes some of the most important output of the
deorbiting module. The oscillation of the deorbiting profile showed in the left
panel of Fig. 4.7 is due to the fact that both eccentricity (Fig. 4.7, right) and
inclination undergo small changes throughout the maneuver. The variation of
these orbit elements causes the cut probability to be slightly higher compared
with the value in Table 4.3. In turn, the deorbit time has remained practically
unvaried. The deorbit module of BETsMA also provides the profiles of the
electric current flowing in the conductive tether (average and in correspondence
of the anode) and the anodic voltage as in Fig. 4.8. The code estimates that the
maximum average current along the tether and anode voltage are equal to 1.4 A
and 170 V, respectively. These values are important for the design of tether
electrical system and the plasma contactor. Other quantities along the
deorbiting like the motional electric field, ionospheric plasma variables and
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4 An Optimization Method for BET Systems

Table 4.5: Values of performance parameters of the tether system for dif-
ferent tether width. (h = 50 microns)

Width, w
[cm]

Cut probability,Nc

[%]
Mass ratio, mc

Ms

[%]
Deorbit time, td

[days]

0.50 7.451 1.350 147.56

0.75 2.468 2.025 98.38

1.00 1.154 2.700 73.78

1.25 0.652 3.375 59.03

1.50 0.414 4.050 49.19

1.75 0.285 4.725 42.16

2.00 0.208 5.400 36.89

2.25 0.158 6.075 32.79

2.50 0.125 6.750 29.51

2.75 0.101 7.425 26.83

3.00 0.084 8.100 24.59

Figure 4.6: Mission performance parameters versus the conductive tether
geometry. (h = 50 microns)
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4.3 Step 2: dumbbell model simulations

Table 4.6: Mission performances computed with BETsMA deorbiting mod-
ule.

ITEM VALUE

Cut probability, Nc 1.22%

Deorbit time, td 74 days

Average Maximum
Current

1.4 A

Maximum Anode
Voltage

170 V

Total BET mass 21.9 kg

Figure 4.7: Orbital parameters during deorbiting in function of time: alti-
tude (left) and eccentricity (right).

evolution of the orbital elements are also provided by the software but are not
reported here.

Finally, BETsMA also provide an early estimation of all main subsystems mass
and calculates the mass ratio of the BET system on spacecraft total mass.
Figure 4.9 shows that by utilizing the tether geometry pinpointed in STEP 1
the tethered system mass percentage is about 17.5%, that is exactly half-way in
the range of 15-20% that we fixed above. The mass estimations are done taking
advantage of simple mathematical algorithms provided by each member of the
BETs Project consortium. Please note that an inert portion of tether with
length equal to the conductive one was assumed in the simulation as a first
attempt. This assumption has proven to be suitable to dynamically stabilize the
tether throughout deorbiting with most of BETs configurations.
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Figure 4.8: Electric current flowing in the tether (left) and anodic voltage
(right) in function of time during deorbiting.

Figure 4.9: Preliminary mass budget of the BET deorbit system.
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4.4 Step 3: Flexible Model Simulator and final optimization

4.4 Step 3: Flexible Model Simulator and final
optimization

BETsMA optimization and simulation tools are fundamental in the early design
phases of a BET system as it can rapidly pinpoint essential system parameters.
It focuses on the conductive tether segment, which is the core of the tether sys-
tem. A BET system is characterized by a remarkable number of variables and
their determination must be carried out through a complicated trade-off process.
BETsMA is able to quickly discard most of the unappropriated system configu-
ration thus greatly limiting the suitable ranges of system variables, allowing the
designer to easily identify some optimal fundamental system parameters, such
as tether length, width and thickness. However, some models implemented by
BETsMA do not take into account several critical aspects of a space electrody-
namic tether system. In particular, the software does not simulate the actual
tether attitude during deorbiting and therefore cannot predict those dynamical
instabilities that have been subject of deep investigation in the early 2000s by
several authors [9, 10]. Furthermore, rigid dumbbell model does not consider nei-
ther the longitudinal flexibility nor the lateral bending of the tether. The former
property can give rise to high frequency longitudinal modes of vibration that can
couple with tether librational motion, which phenomena can adversely affect the
dynamical stability of the system. Lateral bending might become relevant over-
all in inclined orbit missions where out-of-plane and in-plane librational motions
couple giving birth to the so-called “skip rope motion” [10], a mechanism that
can excite the tether eventually bringing it to dynamical instability. For these
reasons, the use of BETsMA cannot be sufficient to preliminary design a BET
system and the more accurate model implemented in FTS is needed to study the
dynamical behavior of a BET system during deorbiting missions.

4.4.1 I part: instability countermeasures

In this study only two strategies among those listed in Par. 4.1.2 were used to keep
the system simple and light, as the design of a deorbiting system for spacecraft
of the class of small satellites impose a strict mass budget to keep it competitive
with other deorbiting technologies. In particular two measures were utilized in the
simulations: an inert portion of tether and a shock absorber. The length of the
inert tether and the stiffness of the shock absorber depend on the mission profile
and they are subjected to the system optimization process. Figure 4.10 depicts a
sketch of a tether modeled with lump masses. As stated above, the configuration
here reported refers to the configuration with the electron emitter positioned in
the spacecraft, that is conventional electric current (positive charges) flows from
spacecraft to the tip mass.
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Figure 4.10: Lump masses model. The blue cube is the mother spacecraft,
the red sphere is the tip mass, whereas black spheres represent
the lump masses.

4.4.2 II part: first attempt with BETsMA configuration

In this paragraph simulation results obtained utilizing the configuration provided
by BETsMA optimization process are reported. As first attempt, it was decided
to use an inert tether of length 2.5 km, as it was done in STEP 2, together
with an optimized shock absorber and a tip mass of 7 kg. Table 4.7 reports the
main results obtained simulating a deorbit maneuver by means FTS utilizing the
system configuration defined in Table 4.4. Figure 4.11-left depicts the deorbiting
profile of the 125-kg spacecraft. The oscillating altitude is due to the fact that
the initial circular orbit becomes somewhat eccentric during the maneuver, as it
was also predicted by BETsMA deorbit module. The EDT system carries out a
complete deorbit in 44 days, thus much faster than BETsMA prediction. This
result can be regarded to the impossibility of BETsMA to determine the tether
attitude. In fact, in high-inclination orbits an inclined tether (i.e., displaced from
local vertical) can produce higher electrodynamic forces than a tether aligned with
the local vertical. In such orbits high out-of-plane oscillations determine higher
electrical current and, in turn, higher drag forces that lead to lower deorbit time.
Nevertheless, the higher deorbit velocity has a cost in terms of dynamical stability.
By inspection of Fig. 4.11-right it can be noted that the tether libration is pretty
high, in particular the three lump masses closest to the spacecraft repeatedly
reach higher altitudes than the spacecraft, meaning that the tether bending is
remarkable. This is confirmed from Fig. 4.13-right from which it is possible to see
that the absolute distance between spacecraft and tip mass reaches 3 km (out of
5 km total) several times throughout the maneuver. However, Figure 4.12 shows
that the spacecraft-tip mass vector oscillation is limited in the -40 ö 40 degrees,
both in the in-plane and in the out-of-plane, meaning that we still have some
safety margin before instability occurs (i.e., the tether start to roll up around
the spacecraft). Indeed, it is not possible to predict with reasonable precision
how big this safety margin is. Therefore, for the sake of conservativeness, some
adjustments to the initial configuration must be done to keep the tether libration
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4.4 Step 3: Flexible Model Simulator and final optimization

Figure 4.11: Deorbit profile of spacecraft (left) and radial displacements of
lump masses with respect to orbital frame (right).

Figure 4.12: In-plane (left) and out-of-plane (right) angles of spacecraft-tip
mass vector during deorbit maneuver. Tether attitude is cal-
culated considering the instantaneous angles between the local
vertical and the spacecraft-tip mass vector projected onto the
orbital plane and the orthogonal one.

more restrained.

4.4.3 III part: shock absorber and final optimized
configuration

Since the deorbit time found with the flexible tether simulator was lower than the
one computed with BETsMA deorbit module, we can safely decrease the tether
dimensions (i.e., length and thickness) to make the system lighter, more stable
but still with a low (if not lower) cut probability. Starting from the tether con-
figuration obtained from BETsMA, a numerical simulation campaign was carried
out with the aim of further optimizing the tether system, this time taking into
account dynamical issues. Table 4.7 reports a full summary of all the simulated
system configurations. Several simulations were run to find the best shock ab-
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Figure 4.13: Average electric current flowing through electrodynamic por-
tion of tether (left) and absolute distance between spacecraft
and tip mass (right).

sorber parameters (i.e., stiffness and damping parameters). A tip mass of 7 kg
was chosen as first attempt for all cases. Case 1 refers to the system configuration
outlined by BETsMA optimization module and it was already described in Par.
4.3. In Case 2 the conductive tether was shortened and results showed a higher
dynamical stability together with higher deorbit time. In subsequent Case 3 also
the inert tether was shortened to try to lower the system mass, but this has proven
not to be a good solution as the dynamical stability worsened considerably. In
the last Case 4 it was decided to utilize a thinner and shorter conductive tether
maintaining a 2.5-km inert tether. This configuration has proven to be the light-
est and most stable one and still with a reasonable deorbit time now matching
the one predicted from BETsMA (see Table 4.6). Once the conductive and inert
tether length and cross section were fixed further simulations were run to verify
if the tip mass could be reduced without affecting the system stability. It turned
out that the optimal system configuration was that outlined by Case 4 adopting a
6-kg tip mass. In summary, a shorter and thinner conductive tether was selected
to lower system mass together with electrodynamic forces amplitude. Also the
tip mass is 1 kg lighter, whereas the length of the inert portion of the tether was
left unchanged to ensure a robust dynamic stability. Due to the lower current
(1.5 A maximum) the deorbit time has increased and now it matches the one
predicted by BETsMA. Figures 4.14-4.16 depict the optimal configuration sys-
tem deorbit variables in function of the time. With respect to Case 1, the higher
level of stability can be noted from Figs. 4.14-right and 4.16-right. With this sys-
tem configuration no lump masses experience positive radial displacements (with
respect to the spacecraft) and the absolute distance between spacecraft and tip
mass never drops below the 80% of the total tether length (60% in CASE 1).
From Fig. 4.15-right it is possible to see that the range of tip mass attitude angle
in the out-of-plane is roughly ±40deg and it remains unaltered with respect to
Fig. 4.12-right, whereas the in-plane angle undergoes more restrained oscillation:
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4.5 Conclusion

Figure 4.14: Deorbit profile of spacecraft (left) and radial displacements of
lump masses with respect to orbital frame (right) for the final
optimized configuration.

Figure 4.15: In-plane (left) and out-of-plane (right) angles of spacecraft-tip
mass vector during deorbit maneuver for the final optimized
configuration.

±15deg of Fig. 4.15-left versus ±20deg of Fig. 4.12-left. Current profile, depicted
in Fig. 4.14-left, shows that the average current flowing in the tether is substan-
tially lower throughout the maneuver. This fact can be regarded as the first cause
of the higher system dynamical stability together with the higher deorbit time:
as it was already explained it Par. 4.1.3, roughly lower current levels correspond
to lower electrodynamic forces.

4.5 Conclusion

A preliminary design of an end-of-life deorbiting system for a 100-kg class mi-
crosatellite based on bare electrodynamic tether technology has been carried out.
The study has been conducted by means of two synergistic ad-hoc software devel-
oped within the FP7 program BETs Project : BETsMa, developed at the Tech-
nical University of Madrid, and the Flexible Tether Simulation (FTS), developed
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4.5 Conclusion

Figure 4.16: Average electric current flowing through electrodynamic por-
tion of tether (left) and absolute distance between spacecraft
and tip mass (right) for the final optimized configuration.

at the University of Padova. The process flow from initial mission profile defini-
tion to final optimal system configuration selection has been described. In order
to define an exemplifying mission profile, a densely populated sun-synchronous
orbit has been selected among the three high-ranking hotspots regions identified
by ESA. Subsequently, the first step of the preliminary design has been carried
out utilizing the BETsMA optimizing module. Thanks to an innovative semi-
analytical algorithm, this tool is able to pinpoint a restricted set of BET system
configurations optimized for the given mission profile. Once the first attempt
of optimal configuration was outlined, the second step of the design has been
carried out by means the BETsMA deorbit module, based on a dumbbell-model
simulator, that provides the profiles of fundamental system variables. The third
and last step has been conducted through an extensive numerical simulation cam-
paign utilizing the Flexible Tether Simulator. After a trade-off between system
mass, deorbit time, and tether dynamical stability the final optimal configuration
of the BET deorbiting system was defined. The mission selected is one of the
most severe for the tether system due to the high inclination and the relatively
low satellite mass (about 100kg). This work demonstrated that bare tethers can
efficiently deorbit the satellite with a low cut probability in just few months. In
this respect, the determination of the tether geometry is crucial and an appropri-
ate set of numerical tools must be used. For instance, this work showed that, if
tether attitude is considered in high orbit inclination missions, then deorbit time
decreased with respect to simulations carried out with simple dumbbell models.
This has an important impact on the performance of the mission. In fact, the
initial configuration designed with BETsMA estimated a tether mass about 22
kg. However, for Case 4 in Table 4.7, we find a total mass of 14.4 kg distributed
as follows: conductive tether 1.5 kg, inert tether 0.8 kg, electrical system 1 kg,
deployer system 5.4 kg, and plasma contactor 5.7 kg. The main cause of the
difference between the total masses is due to deployer subsystem, which is much
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lighter in the optimized case because of the shorter conductive tether. To the
14.4 kg the tip mass contribution should be added, nonetheless at the moment of
the writing of this work the option of using the deployer as the tip mass is still
under consideration. Also, it must be taken into account that the above mass
estimations are based on preliminary empirical algorithms provided by each of
BETs Project partner. However, a proper integration process of all subsystems
has not been done yet so that the sum of masses provides an overrated estimation
due to redundancies. The integration process of the BET system could deliver a
lighter configuration, let’s say about 10% of the small satellite mass. For heavier
satellites, the percentage would be even smaller because the mass of some sub-
systems, like the plasma contactor or the electrical system, would be essentially
the same as for a small satellite.
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