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Riassunto

Come  possiamo  rappresentare  i  numeri  e  fare  calcoli  matematici?  Questa

domanda  è  l'obiettivo  principale  del  presente  lavoro  e  cade  nel  campo  della

cognizione matematica, il quale si interessa dei processi cognitivi e neurologici che

sottendono le abilità matematiche.

L'ipotesi  della  linea  numerica  mentale  (MNL)  prevede  che  i  numeri  siano

rappresentati mentalmente sottoforma di una misura continua (analogica) con valori

numerici crescenti da sinistra a destra. La MNL viene considerata uno dei migliori

modelli per la rappresentazione mentale dei numeri. Molti studi hanno esaminato la

MNL considerando l’effetto  SNARC (Spatial-Numerical  Association  of  Response

Codes) come prova per una connessione univoca tra spazio e numero. Tuttavia, è

stato dimostrato che la rappresentazione mentale di valori piccoli a sinistra e di valori

più grandi esiste anche per grandezze diverse dalla numerosità, compresa la durata

temporale  e la grandezza fisica.  Queste  osservazioni convergono con l'idea di un

sistema  dove  diverse  grandezze  (ad  esempio  tempo,  spazio  e  numerosità)

condividono risorse neurali e concettuali, definito sistema generale di elaborazione

delle  grandezze (GMS).  Questo solleva un'importante  domanda sulla  natura delle

informazioni rappresentate lungo la MNL: si tratta esclusivamente di informazioni

numeriche? 

Il presente lavoro è diviso in 4 capitoli.  Il capitolo 1 affronta diversi problemi

riguardanti  la  rappresentazione  mentale  dei  numeri.  La  ricerca  nel  campo  della

cognizione matematica ha una lunga storia e ha fatto notevoli progressi negli ultimi

decenni; a volte questo grande volume di dati rende difficile ottenere una visione

globale di quello che è lo stato dell'arte. Per questo motivo il Capitolo 1 offrirà una
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panoramica dei diversi modelli di rappresentazione mentale dei numeri, sia innati che

acquisiti,  precisi  o  approssimati,  simbolici  o  non  simbolici.  Prima  di  tutto  sono

elencate le principali scoperte sulla rappresentazione mentale dei numeri; in secondo

luogo  verrà  presentata  una  carrellata  sulla  letteratura  che  mostra  come  le

rappresentazioni  di  tempo,  spazio,  intensità  e  numero  interagiscano  tra  loro  e

probabilmente condividano meccanismi di elaborazione; questo fornirà un adeguato

contesto  teorico  necessario  alla  chiara  comprensione  dei  lavori  sperimentali

presentati nei capitoli successivi. Una gran quantità di risultati scientifici dimostra

che la rappresentazione e l'elaborazione dei numeri siano associate all'attivazione di

una  rappresentazione  di  natura  spaziale.  Una  delle  posizioni  canoniche  della

cognizione  numerica  a  tal  riguardo  afferma  che  la  codifica  spaziale  è  una

componente  imprescindibile  della  rappresentazione  mentale  a  lungo  termine  dei

numeri.  Secondo  questa  idea,  che  porta  il  nome  di  ipotesi  della  linea  numerica

mentale, i numeri sarebbero rappresentati come una linea continua con i numeri più

piccoli a sinistra e quelli più grandi a destra. Tuttavia l'origine dell'associazione tra

numeri e spazio non è stata ancora totalmente chiarita. Verranno presentati degli studi

che dimostrano come la codifica spaziale dei numeri non sia, in effetti, stabile nè

necessariamente il risultato di un'associazione a lungo termine, ma al contrario sia

una rappresentazione flessibile costruita a partire dalle necessità di elaborazione delle

informazioni  specifiche  per  i  compiti  che  ogniuno  di  noi  si  trova  a  svolgere

quotidianamente. Inoltre saranno presi in considerazione studi sull'associazione dei

numeri con grandezze prive di caratteristiche spaziali.

Nel Capitolo 2 viene presentata una serie di tre studi sperimentali ed in ognuno di

essi è stato impiegato un metodo di risposta basato sulla produzione di numerosità. I

partecipanti  hanno  eseguito  un  compito  di  aritmetica  approssimata  su  numeri
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presentati, a seconda dello studio, in notazione simbolica o non simbolica. In tutti gli

studi presentati i partecipanti sono stati istruiti ad utilizzare un metodo di risposta

caratterizzato dalla produzione di numerosità non simboliche, essi infatti fornivano la

risposta  al  compito  specifico  nel  quale  erano impegnati  attraverso la  produzione,

sullo schermo di un computer, di un insieme di punti la cui numerosità era controllata

dalla rotazione di una manopola posta davanti ai partecipanti e connessa al computer.

Un  apposito  programma  si  occupava  di  registrare  il  grado  di  rotazione  della

manopola ed aggiornare il numero di punti presentati sullo schermo.

Lo  studio  1  presenta  due  esperimenti  in  cui  i  partecipanti  giudicavano  la

numerosità media tra due insiemi di punti presentati in sequenza. Nell'Esperimento 1

di questo studio, i partecipanti utilizzavano una scala di numerica di risposta da 0 a20

(scala  categorica),  mentre  nell'Esperimento  2 la  risposta  è  stata  data  attraverso  il

metodo di risposta basato sulla produzione di numerosità. I risultati di questo studio

hanno  mostrato  come  le  risposte  siano  state  fornite  secondo  un  modello  di

integrazione  Average.  Questo  suggerisce  una  linearità  nella  scala  risposta  per

entrambi i metodi usati nel compito di aritmetica approssimativa. Più importante, i

due operandi mostravano di esercitare la stessa influenza sulla risposta fornita dai

partecipanti, il che esclude un effetto sequenza o recenza legata ai compiti impiegati .

Questi due esperimenti sono serviti  come strumento di validazione del metodo di

risposta basato sulla produzione di numerosità al fine della sua applicazione negli

studi successivi.

Lo Studio 2 presenta un esperimento in cui il  metodo di  risposta basato sulla

produzione di numerosità è stato utilizzato per testare l'effetto della forza necessaria

a ruotare la manopola usata per portare a termine un compito di aritmetica mentale.

In particolare si è verificata l'influenza della variabile Forza sull'effetto denominato
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Operational Momentum (OM). L'effetto OM è la tendenza sistematica a sovrastimare

i risultati di addizione e a sottovalutare i  risultati  di sottrazioni in condizioni che

impediscono  un  esatto  conteggio.  In  questo  esperimento  la  forza  necessaria  per

ruotare la manopola è stata manipolata in tre blocchi tra i soggetti. La letteratura ha

suggerito  che  l'effetto  OM possa  dipendere  da  una  rappresentazione  spaziale  dei

numeri;  tuttavia  i risultati  di  questo  studio  dimostrano  che  l'eliminazione  di  un

feedback  psicomotorio  quale  la  forza  richiesta  per  ruotare  la  manopola,  porta

all'annullamento  della  differenza  tra  addizioni  e  sottrazioni.  I  risultati  di  questo

studio  forniscono  evidenze  sperimentali  dell'influenza  di  una  grandezza  priva  di

connotazioni  spaziali  quale  la  Forza su un fenomeno di  aritmetica mentale  come

l'effetto  OM.  Questo  risultato  è  particolarmente  interessante  considerando  che  la

Forza fosse una variabile interamente irrilevante per lo svolgimento del compito.

Lo  Studio  3  presenta  un  esperimento  sul  confronto  tra  quattro  diversi  effetti

classicamente considerati esempi dell'automaticità dell'attivazione di codici spaziali

durante l'elaborazione di informazioni numeriche.

Gli  effetti  che  sono  stati  considerati  in  questo  studio  sono  l'effetto  SNARC,

l'effetto distanza, l'effetto di congruenza delle dimensioni e l'effetto OM. L'effetto

SNARC:  la  tendenza  ad  essere  più  veloci  nel  rispondere  a  numeri  piccoli  sulla

sinistra e a numeri più grandi a destra. L'effetto distanza: il fatto per cui numeri vicini

tra loro sono piu difficili da discriminare rispetto a numeri distanti tra loro. L'effetto

di congruenza delle dimensioni: il fatto che i numeri sono identificati come maggiori

o minori di 5 più rapidamente se la loro dimensione fisica è congruente con la loro

grandezza numerica. Ultimo ma non meno importante, l'effetto OM. Tali effetti sono

stati testati insieme per indagare i rapporti che li legano con un approccio basato

sulle differenze individuali. La presenza di ognuno degli effetti è stata verificata. Al
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fine  di  valutare  la  correlazione  tra  i  vari  effetti  in  esame,  è  stato  calcolato  il

coefficiente di regressione lineare di ciascun effetto su ognuno dei partecipanti.  I

risultati  di  questo  studio,  anche  se  non  conclusivi,  puntano  in  direzione  di  una

rappresentazione  mentale  comune tra  gli  effetti  numerici  testati  (effetto  SNARC,

effetto  di  congruenza  della  dimensione,  effetto  distanza).  L'effetto  OM,  inoltre,

sembra correlare negativamente con l'effetto SNARC, suggerendo una connessione

tra i due, ma contraddicendo la teoria della linea numerica mentale.

Nel capitolo 3 si traggono conclusioni sul lavoro sperimentale presentato tenendo

conto di diversi quadri esplicativi. Il presente lavoro di ricerca utilizza un metodo di

risposta per compiti numerici relativamente poco noto: il metodo di risposta basato

sulla  produzione  di  numerosità.  Questo  metodo  presenta  una  vasta  gamma  di

applicazioni e apre nuovi scenari nel campo della cognizione matematica, fornendo

un valido strumento per comprendere nel dettaglio le implicazioni dell'azione nella

cognizione matematica. Gli esperimenti qui presentati, inoltre, forniscono indicazioni

chiare rispetto al ruolo del feedback psicomotorio con caratteristiche non spaziali in

compiti  di  aritmetica  mentale  portati  a  termine  attraverso  un  metodi  di  risposta

basato sulla produzione di numerosità, mettendo così in discussione l'interpretazione

classica dell'effetto OM come effetto derivato da una rappresentazione puramente

spaziale dei numeri. Considerando che le informazioni riguardanti la forza sono state

presentate attraverso un feedback tattile mentre le informazioni numeriche sono state

presentate visivamente, tale integrazione tra modalità sensoriali diverse è coerente

con l'ipotesi di un sistema generale per le grandezze. 

Lo studio 3 confrontando, a nostra conoscenza per la prima volta, diversi effetti

legati  all'ipotesi  della  linea  numerica  mentale,  fornisce  nuove  informazioni  sui

meccanismi  di  elaborazioni  condivisi  a  questi  classici  effetti  nel  campo  della
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cognizione  matematica.  I  nostri  risultati,  anche  se  non  conclusivi,  rinnovano  la

domanda sulla natura della rappresentazione mentale dei numeri.

Parole  chiave:  Aritmetica  mentale;  Forza,  Operational  Momentum;  SNARC;

Effetto Distanza; Effetto di congruenza delle dimensioni.
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Abstract

How  do  we  represent  numbers  and  make  mathematical  calculations?  This

question  is  the  main  focus  of  the  present  work  and  it  falls  in  the  domain  of

mathematical cognition,  the field of knowledge concerned with the cognitive and

neurological processes that underline mathematical abilities.

The mental  number  line,  with its  analogue left-to-right  orientation of  growing

numerical  values,  is  often  regarded  as  the  best  candidate  to  the  role  of  mental

representation of numbers. Many studies have examined the so-called mental number

line taking the Spatial-Numerical Association of Response Codes (SNARC) effect as

evidence for a unique connection between space and number. However, left-to-right

orientation has been shown to extend to other dimensions, including duration and

physical size. Such observations converge with the notion of a general magnitude

system, where different magnitudes share neural and conceptual resources. This rise

an  important  question  about  the  nature  of  the  information  represented  along  the

mental number line: is it exclusive to number or not?

The present work is divided in 4 chapters. Chapter 1 addresses several issues in

mental representations of numbers. Research in mathematical cognition has a long

history and has made considerable progress over the last decades; sometimes this big

volume of data makes it difficult to gain a global view of what the state-of-the-art is.

For  this  reason,  Chapter  1  will  offer  an  overview  of  the  different  mental

representations  of  numbers,  whether  innate  or  acquired,  precise  or  approximate,

symbolic or non symbolic. On the one hand, the most important insight gained on

mental  representations  of  numbers  are  listed;  on  the  other,  literature  on  the
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representation  of  time,  space,  number  and  intensity,  related  with  number

representation, are revised to show the similarities between these domains, and how

those are indicative of common processing mechanisms. The theoretical background

specific for the present work is introduced. A great body of evidences point out that

the representation and processing of numbers is associated to an activation of spatial

codes. One of the classical view of numerical cognition on this subject states that

spatial  codes are an imprescindible component of the long-term representation of

numerical  magnitude  information.  According  to  this  idea,  refereed  to  as  number

mental line hypothesis, numbers are systematically associated to spatial codes, as if

numerical  magnitudes  were  represented  along  a  spatial  continuum  with  small

numbers to the left and large numbers to the right. Nevertheless, the origin of the

association between numbers and space is not completely clear to date. Studies will

be presented showing that the spatial  coding of numbers is  not stable and is  not

necessarily  the  result  of  long-term  memory  associations  but,  on  the  contrary,  a

flexible type of representation built during cognitive processing as the result of task

demands  and spatial  coding preferences.  Moreover,  studies  on  the  association  of

numbers with others, non-spatial, magnitudes will be reviewed.

In Chapter 2 a series of three studies are presented, in all of them a numerosity

production  method  of  response  was  used.  Participants  performed  approximate

arithmetic task on symbolically presented numbers, they were instructed to respond

by the production of a dot pattern, the set size of which was controlled by a rotating

knob.  Study  1  shows  two  experiments  in  which  participants  judged  the  average

numerosity between two sequentially presented dot patterns. In Experiment 1, the

response  was  given  on  a  0–20  numerical  scale  (categorical  scaling),  and  in

Experiment  2,  the response  was given by the production  of  a  dot  pattern of  the
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desired  numerosity  (numerosity  production).  Data  showed  that  responses  were

shaped according to an averaging integration model. This suggests the linearity in the

response scale of both of the response methods in the approximate arithmetic task.

More  important,  the  two  operands  were  found  to  have  the  same  influence  in

determining the  result.  These  two experiments  served as  a  validation tool  of  the

numerosity production method of response to be applied in the sequent studies.

Study 2  proposes  one  experiment  using  the  numerosity  production  method of

response to test the influence of the force required to respond on the Operational

Momentum (OM) effect. The OM effect is the finding of a systematic tendency to

overestimate  the  results  of  addition  problems  and  underestimate  the  results  of

subtraction  problems  under  conditions  that  prevent  exact  calculation.  In  this

experiment the force required to turn the knob has been manipulated in three between

subjects  blocks.  It  has  been suggested  that  the  OM effect  depend  on the  spatial

representation  of  numbers;  by  showing  that  the  elimination  of  psycho-motor

feedback nullifies  the  difference  between addition  and subtraction,   evidence  are

provided that the OM effect is modulated by information from a magnitude different

from space (required force), even when such information is entirely task-irrelevant.

Study  3  proposes  an  experiment  on  the  comparison  of  four  different  effects

classically considered examples of the automatic spatial organization of numerical

information. The spatial-numerical association of response codes (SNARC), that is,

the tendency to be faster in responding to small numbers on the left and to bigger

number on the right. The distance effect, that is, close numbers are more difficult to

compare than numbers far apart.  The size congruency effect, that is,  numbers are

identified more rapidly as bigger or smaller than 5 if their physical size is congruent

with the correct answer. And last but not least, the OM effect. Those effects have
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been  tested  together  to  investigate  the  relationship  among  them  with  an  inter-

individual differences approach. The presence of all the effects object of this study

was verified in the participants set. Linear regression have been used to calculate the

coefficient of each subject for each effect in order to test the correlation between all

the effects this study take into consideration. The result of this study, even if not

conclusive, point in the direction of a common representational mechanism underling

the tested numerical  effects  (SNARC, size congruency,  distance ).  Moreover,  the

operational bias seem to have a negative correlation only with the SNARC effect,

suggesting a connection between the two, but weekending the mental number line

account of those effects

In Chapter 3 conclusions are drawn upon the presented experimental work taking

into  account  different  explanatory  frameworks.  The  present  research  work  use  a

relatively  unknown  method  of  response  to  numerical  tasks;  the  numerosity

production method of response. This method shows a wide range of applications and

opens  new  scenarios  in  mathematical  cognition,  providing  a  good  instrument  to

understand in detail the implications of action in mathematical cognition. Moreover,

the experiments here presented provide clear  indications for a role of non-spatial

psycho-motor feedback in arithmetical calculations carried out with the numerosity

production method of response, thus challenging the classical interpretation of OM

as  an  effect  derived  from a  purely  spatial  representation  of  numbers.  Moreover,

considering  that  the  force  information  was  presented  haptically  but  numerical

information visually, such integration across sensory modalities is consistent with the

General magnitude system hypothesis suggesting that representations of magnitudes

are multimodal. Study 3 comparing, at our knowledge for the first time, different

effects connected to the mental number line hypothesis, provide new insight on the
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shared processing undergoing these classical findings of mathematical cognition. Our

findings,  although  not  conclusive,  renew  the  question  on  the  nature  of  the

representation of numbers.

Keywords:  non-symbolic  arithmetic;  Force;  Operational  Momentum;  SNARC;

Distance effect; size-congruency effect; 
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Chapter 1

Concepts in mathematical cognition

Introduction

The  present  work  will  make  use  of  many  concepts  taken  from  the  field  of

mathematical cognition, that is the branch of cognitive science that studies cognitive,

developmental and neural bases of numbers and mathematics. To get a first grip on

the  core  question  motivating  this  whole  field  of  research  let's  ask:  what's

mathematics?  Mathematics  is  a  system  to  symbolically  represent  and  virtually

manipulate  quantities;  a  system  so  resourceful  that  when  it  comes  to  formally

building  models  of  the  physical  world  no  conceptual  instrument  matches

mathematics for power and flexibility. Thus, what are the psychological foundations

of the human mastery of this system?

I will now briefly review the answers to this question that experimental research

on human and non-human animal cognition suggests. Binet (1890) was the first to

report  about  numerosity.  He  informally  investigated  the  ability  of  children  to

compare  the  numerosity  of  two  presented  collections  of  simple  objects.  Binet

(1890/1969, p. 87) concluded: “if [the child] judges one group more numerous than

another, it is because it occupies more space on the paper”. In 1929, De Marchi was

the  first  to  use  investigate  numerical  evaluation  of  collectivities  in  a  proper

experiment. According to De Marchi, the evaluation of collectivities refers to “the

process by which a perceived aggregate is expressed by numerals in conditions that

exclude any possibility of numbering its elements” (De Marchi, 1929/1986, p. 184).
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De Marchi acknowledged that variables influencing numerical evaluation—such as

the duration of exposure, size of the surface, occupied by the single collectivities,

density  of  the  exposed  elements  (dots),  or  space  and  time  disposition—could

together influence the evaluation in an experiment. Years later, studies on these same

collectivities  studied  by  De  Marchi,  now  addressed  as  numerosity,  lead  to  the

conclusion  that  mathematical  abilities   are  independent  from  language  or  other

symbol  systems.  This  is  known because  the  ability  to  estimate  quantities  and to

manipulate arithmetically those estimates exists in non-human animals. A variety of

studies have demonstrated that non-human animals, including rats, lions, and various

species  of  primates,  have  an  approximate  sense  of  numbers  (for  a  review,  see

Dehaene,  1997).together  with infants  (Feigenson,  Dehaene,  & Spelke,  2004)  and

adult humans without any schooling in mathematic (Deaheane, 1997). These findings

suggest that numbers and arithmetic thinking is based on a non-verbal system for

estimating and manipulating discrete and continuous quantity, a system shared with

many non-human species. From this base knowledge, it is reasonable to suppose that

the neural substrate for this system was born far back in the evolution in order to

capture  important  properties  of  the  world  which  individuals  must  represent  to

effectively drive their actions. 

Terminology

Many of the terms that the reader is going to encounter from here on posses a

more specific meaning in the present work than in everyday speech. For this reason,

before deepen the discussion a clarification on the terminology that will be in use is

in order. Despite number are associated spontaneously, by most western people, with
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arabic digits, they can also be represented as sequence of words or in an analogue

format  (I.e  dots  or  any set  of  objects);  from here  on  I'll  address  those  different

number representations as follow: numerosity, is used for the mumeric properties of a

set of objects;  symbolic codes or numerical notations, identify the system used to

present numerical informations (i.e. Arabic numerals, Roman numerals, and number

names);  and the  internal  mental  numerical  representations, correspond to entities

internal to the subject and concerning both to the system of numerical notation and

numerosity.  Moreover,  according  to  McCloskey  and  Macaruso  (1995),  the  term

number  will be used for format-independent aspects of numerical cognition, while

the term  numeral will be reserved to modality-specific representations (i.e. verbal,

analogue,  arabic numerals).  As defined by Dehaene (2009),  “Symbolic  arithmetic

deals with how we understand and manipulate numerals and number words” (p. 233).

From which  it  follows  that,  “Nonsymbolic  arithmetic is  concerned with  how we

grasp and combine the approximate cardinality or “numerosity” of concrete sets of

objects (such as visual dots, sounds, and actions)”. The term number system will be

used  to  refer  to  the  set  of  entities  and  causal  connections  that  allow  for  the

arithmetical  manipulation  of  real  world  quantities  representations.  Such a  system

forcibly posses a usefully invertible mapping between those internal representations

and  the  real  word  entities  it  represent:  the  numbers  obtained  through  arithmetic

processing  correctly  refer  through  the  inverse  mapping  back  to  the  represented

reality.

Numerical Estimation and Manipulation in Animals

In considering the literature on numerical estimation and manipulation in animals,

the evidence that they estimate and manipulate arithmetically a continuous quantity
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as time are reviewed. Many animals measure and remember continuous quantities, as

has been shown in a variety of experimental paradigms. One of them is the peak

procedure. A trial of this paradigm begins with the onset of a stimulus signaling the

availability of food at the end of a fixed interval (feed latency). Responses made at or

after the interval has elapsed trigger the delivery of food. Response prior to that time

did not trigger the delivery of food and have no other consequences. On 20-50% of

the trials, food is not delivered even with a response after the feed latency has past

(probe trials).  The data analyzed in  Peak-procedure come from these unrewarded

trials. On such trials, the subject begins to respond some while before the interval

ends  (in  anticipation  of  its  ending)  and  continues  for  some  while  after,  before

abruptly stopping. The interval during which the subject responds circumscribe its

subjective  estimate  of  the  fixed  interval  (Church,  Meck,  &  Gibbon,  1994).

Interestingly, the trial-to-trial variability in the onsets and offsets of responding is

proportional to the latency. That is, the probabilities that the subject begin or stop

responding are determined by the proportion of the feed latency that has elapsed.

This property of time representation is called scalar variability.

Many animals also count and remember numerosities (Brannon & Roitman, 2003;

Church  & Meck,  1984;  Dehaene,  1997;  Dehaene,  Dehaene-Lambertz,  & Cohen,

1998;  Gallistel,  1990;  Gallistel  &  Gelman,  2000).In  a  common  paradigm  for

assessing counting and numerical memory in animals, the subject must press a lever

a target number of time in order to unlock the gate of a feeding box. Pressing too

many times gives no penalty. Trying to open the box too soon incurs a 10-second

time-out, which the subject must endure before returning to the lever to complete the

requisite number of presses (Mechner, 1958; Platt & Johnson, 1971). The number of

presses at which subjects are maximally likely to stop pressing and try to enter the
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alcove, maximizes at or slightly after the required number. Moreover, as the target

number gets larger, the variability in the stopping number also gets proportionately

greater. That is, also behavior based on number shows scalar variability The fact that

behavior based on numerosity exhibits scalar variability just like the scalar variability

seen in behavior based on magnitude of continuous quantities like duration suggests

that numerosity is represented in the brains of animals by mental magnitudes, that is

by analogue dimensions, rather than by discrete symbols like words. Considering a

system using  discrete  entities  to  represent  numerosity  there  is  no  reason  for  the

variability of response to be related with the size of the targets number. Thus, the

nature of the variability in a target number suggests that the representation of that

number is something that behaves like a continuous quantity, a magnitude. A number

system is  that if  the mental entities representing magnitudes in the real word are

manipulated  in  a  meaningful  way  to  drove  actions.  Considerable  experimental

literature  demonstrate  that  laboratory  animals  arithmetically  manipulate  mental

magnitudes representing numerosity  and duration.  Non-human animals  have been

found able to add, subtract, divide and order durations and numerosities in such a

way that  their  mental  operations on subjective quantities enable these animals  to

behave  effectively  in  relation  to  the  tasks  (For  reviews,  see  Sarah  T.  Boysen &

Hallberg,  2000;  Elizabeth  M.  Brannon  &  Roitman,  2003;  S.  Dehaene,  1997;

Gallistel, 1990; Spelke & Dehaene, 1999).

Comparable Mental Magnitudes for Numerosity and Duration

Gibbon  (1977),  to  explain  the  generation  of  mental  magnitudes  representing

durations, had proposed that the ability to perceive duration was formally equivalent
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to a flow of impulses directed to  an accumulator,  so that  the accumulation grew

proportionally  to  the  duration  of  the  flow.  When  the  flow  ended,  the  resulting

accumulation, representing the duration of the interval, was read into memory. Meck

and Church (1983) pointed out that this mental accumulator model could be modified

to make it generate mental magnitudes representing numerosities; they proposed that

to get magnitudes representing numerosity, the equivalent of a pulse former (device

that,  upon  receiving  a  fix  amount  of  a  signal  outputs  a  rectangular  pulse,)  was

inserted into the stream of impulses,  so that  for each count  there was a  discrete

increment in the contents of the accumulator, as happens when a cup of liquid is

poured into a graduated container. At the end of the count, the resulting accumulation

is read into memory where it represents the numerosity. This discrete version of the

accumulation  model  was  originally  proposed  to  explain  behavior  based  on  the

numerosity of serial events, but it may be generalized to the case where the items to

be counted are presented all at once. In the case of a visual array to be enumerated, to

each item in the array a unitarian magnitude can be assigned and then accumulated

across  space,  rather  than  over  time.  This  improved  model  is  the  origin  of  the

hypothesis  that  the  mental  magnitudes  representing  duration  and  the  mental

magnitudes representing numerosity are essentially the same, differing only in the

process mapping the real stimuli to this metal representation. Put another way, both

numerosity  and  duration  are  represented  mentally  by  continuous  magnitudes.

Furthermore, Meck and Church (1983) comparing the representation of number and

time in the rat,  found that the ratio between the standard deviation and the mean

(coefficient of variation) of the behavioral measurement in use, was the same for

number and time, which is further evidence for the hypothesis that the same system

is used in both cases. 
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Nuerosity as Mental Magnitude in Humans

From a phylogenetic prospective it would be bizarre to think that humans do not

share with their more and less distant vertebrate relatives, for example pigeons and

chimpanzees,  the  mental  mechanism  for  representing  countable  and  uncountable

quantity  by  means  of  a  number  system.  Moyer  and Landauer  (1967;  1973)  first

suggested  that  humans  represent  integers  with  mental  magnitudes  when  they

discovered what has come to be called the  symbolic distance effect. When subjects

have to judge the numerical order of Arabic numerals as rapidly as possible, their

reaction  time depend on the  relative  numerical  distance:  the  greater  the  distance

between the two numbers, the more quickly the task is carried out. Subsequently,

Parkman (1971) showed further that the greater the numerical value of the smaller

digit, the longer it takes to judge their order, that is the to be called  size effect. A

single  law can  be  used  to  summarized  those  two  effects:  the  time  to  judge  the

numerical  order  of  two  numbers  is  a  function  of  the  ratio  of  the  numerical

magnitudes that they represent. It is evident how this can be recollected to a more

general low: the discriminability of two magnitudes is a function of their ratio, that

is, Weber's law applies to symbolically represented numerical magnitude. The  size

and distance effects in human judgments of the ordering of discrete and continuous

quantities are robust. They are observed when the numerosities being compared are

visual arrays of dots and when they are represented symbolically by Arab numerals

(Buckley & Gillman,  1974).  Moreover  the symbolic  distance and  size  effects are

observed both in the single digit and in the double digit range (Dehaene, Dupoux, &

Mehler, 1990; Hinrichs, Yurko, & Hu, 1981). One might think that the facts about

which numbers were greater than which were some how stored and simply retrieved.

Nevertheless, it take longer to look up the ordering of 2 and 3  than 2 and 6 and this
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suggests that the comparison that underlies these judgments use mental magnitudes.

On this  hypothesis,  the  comparison that  mediates  the  judgment  of  the  numerical

ordering of two Arabic numerals uses the same mental magnitudes and the same

comparison  mechanism  used  by  the  non-verbal  numerical  system  that  we  are

assumed  to  share  with  many  non  human  animals.  Reinforcing  this  hypothesis,

Brannon and Terrace's (2002) using a numerical ordering task on visually presented

dot arrays find that the reaction time functions of humans and monkeys are almost

exactly the same.

Considering the evidence from the symbolic size and distance effects that humans

represent number with mental magnitudes, it seems likely that they share with the

non-human animals a non-verbal counting mechanism that maps from numerosities

to the mental magnitudes that represent them. Given that, it should be possible to

demonstrate  non-verbal  counting  in  humans  when verbal  counting  is  suppressed.

Presenting subjects with Arabic numerals on a computer screen and asking them to

press a key as fast as they could without counting until it felt like they had pressed a

number of times equal to the value of the numeral, the results from humans looked

very much like the one from pigeons and rats (Whalen, Gallistel, & Gelman, 1999).

The mean number of presses increased proportionally to the target number and the

standard deviations of the distributions of presses increased in proportion to their

mean, so that the coefficient of variation was constant. This finding suggests that

subjects could count non-verbally, comparing the mental magnitude thus generated to

an other mental magnitude derived from numerals via a learned mapping. Moreover,

it implies that, given a numeral, the mental magnitude mapped from that numeral

approximate the mental magnitude generated by counting the numerosity signified

by that given numeral.
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In another task of the same experiment,  subjects  were asked to observe a dot

flashing at irregular intervals. To prevent verbal counting, the rate of flashing (8 per

second) was twice as fast  as what  it's  considered the maximum speed for verbal

counting (Mandler & Shebo, 1982). As in the first experiment, the mean estimated

number increased in proportion to the number of flashes and the standard deviation

increased  in  proportion  to  the  mean  estimate.  This  result  show  that  the  mental

magnitude generated from a symbol is  comparable to  the one generated by non-

verbal counting, in both cases, the variability in the mapping is scalar. In a control

experiments  with  the  same  task,  Whalen,  Gallistel,  and  Gelman  (1999),  asked

subjects to count aloud their presses (condition  a) or to say "the" coincident with

each press (condition  b). In all conditions, subjects were asked to press as fast as

possible. The variability data from the condition where subjects were required to say

"the"confirmed that the coefficient of variation was constant (scalar variability) as in

Whalen,  Gallistel,  & Gelman (1999). Differently,  In the condition where subjects

counted aloud, one would expect counting errors, as double counts and skips to, main

source of variability. Assuming the probability of a counting error as approximately

equal  at  any  step  of  a  count,  the  resulting  variability  in  final  counts  should  be

binomial rather than scalar, that is, it should increase in proportion to the square root

of the target value, rather than in proportion to the target value. This is what was in

fact observed in the aloud counting conditions: the variability was much less than in

the  non-verbal  counting  conditions  and  it  was  binomial  rather  than  scalar.  The

different  patterns  of  variability  in  the  counting-aloud  and  non-verbal  counting

conditions support the idea that subjects in the non-verbal counting conditions were

not subvocally counting. Summarizing, humans are able of non-verbal counting just

like  non-human  are.  Moreover,  the  mental  magnitudes  generated  by  non  verbal

counting appear to be comparable to the ones generated by symbolically presented
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integers. This may suggests that the linguistic representation of numerosity is based

on,  and  find  its  meaning  in,  the  non-verbal  counting  system.  Another  feature

characterizing our representation of numbers beside the  symbolic size and  distance

effects  is the Spatial-Numerical Association of Response Codes, or SNARC, effect.

That is the finding of faster reaction times for small numbers when responses are

made with the left  compared to the right hand and the opposite pattern for large

numbers. (Dehaene,  Bossini,  & Giraux,  1993).  This  finding lead to the idea that

analog numerical magnitudes are represented via a positional coding along a spatial

continuum in which numerical magnitudes are assumed to be mapped onto mental

space from left  to  right in  ascending order.(e.g.,  Daar  & Pratt,  2008; Fias,  2001;

Dehaene  et  al.,  1993).  This  is  the  mental  number  line  hypothesis  (MNL).  The

SNARC effect was first described by Dehaene and colleagues (1993), and has been

observed and investigated in multiple studies since ( for reviews: Fias, & Fischer,

2005; Hubbard, Piazza, Pinel, & Dehaene, 2005; Wood, Willmes, Nuerk, & Fischer,

2008). Interestingly, the SNARC effect can be observed in tasks that do not require

encoding the magnitude of the numbers presented, ordinal processing was not part of

the requirements of the parity judgment task of the original experiment. This has led

researchers  to  think  of  the  SNARC  effect  as  an  automatic  association  between

numbers  and space.  The mental  number line is  a  useful  metaphor to  capture the

spatial  coding  of  numbers,  however  it  must  not  be  taken  literary.  There  is  no

evidence  for  topographic  organization  of  number-selective  neurons  (Nieder,

Friedman,  &  Miller,  2003;  Verguts  &  fias,  2004).  Rather,  because  the  spatial

association of numbers are highly task-dependent, a careful position would consider

those associations as part of our strategic use of knowledge, and as a result (Fias, &

Fischer, 2005, p. 52). Moreover, evidences of the flexibility of spatial associations

challenges the appropriateness of the number line metaphor. The existence of vertical
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as  well  as  horizontal  SNARC  (Schwarz  &  Keus,  2003)  and  the  systematic

association  of  odd  numbers  with  left  space  and  even  numbers  with  right  space

(Nuerk,  Iversen,  & Willmes,  2004).  Further  research  will  have  to  determine  the

extent  to  which  the  wide  range  of  spatial  numerical  association  can  help  as

understanding the strategic nature of the cognitive representation of numbers.

Nonverbal  counting  would  be  pointless  without  the  ability  to  arithmetically

manipulate mental magnitudes so generated. Barth (2001) tested adults humans on

addition,  subtraction,  multiplication  and  division  of  non-verbally  estimated

numerosities  (dot  arrays  or  tone  sequence),  subjects  were  presented  with  two

numerosities  in  rapid  sequence,  each  presentation  too  quickly  to  be  verbally

countable. Then, they were presented with a third numerosity. Subjects indicated if

the  result  of  the  first  two numerosities  was  greater  or  smaller  than  the  third  by

pressing one of two buttons. Bath's experiments establish by direct test the human

ability  to  manipulate  non-verbal  estimates  of  numerosity  in  accord  with  the

prescribed  arithmetic  operation.  Moreover,  the  accuracy  of  the  comparisons  was

inversely proportional to the ration between the magnitudes to be compared. This

result  suggests  that  the  scalar  variability  found  in  the  nonverbal  estimates  of

numerosity  extend  to  the  mental  arithmetic  operated  with  such  magnitudes.

Moreover, in  a study by McCrink, Dehaene, and Deahene-Lambertz (2007) it has

been argued that also the spatial representations of numerical magnitude extend to

the domain of mental arithmetic. The authors found  a cognitive bias in numerical

estimations after mental calculation for the processing of non-symbolic numerosities.

Participants viewed moving dot patterns being added or subtracted from one another

and indicated whether the numerosity of a final set of dots was correct or incorrect.

Surprisingly, in the case of addition, the subjects’ estimated outcomes tended to be
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larger than the actual outcomes, whereas the estimations tended to be smaller than

the  actual  outcomes  with  subtraction.  McCrink  and  colleagues  (2007)  used  the

metaphor of a mental number line for analogue magnitude representations (Dehaene,

1997)  to  explain  their  finding.  They  speculated  that  mental  calculations  are

functionally  equivalent  to  movements  along the  spatial-numerical  continuum and

assumed  that  the  overestimation  after  addition  and  the  underestimation  after

subtraction reflect the subjects' tendency to move “too far” to either the right or left

side. Since the observed effects are reminiscent of a perceptual phenomenon called

representational momentum (Freyd & Finke, 1984), which represents the tendency of

subjects to misjudge the stopping point of a moving object, McCrink and colleagues

(2007) labelled the observed judgement bias after mental calculation the operational

momentum (OM) effect. This phenomenon will be referred to as operational bias in

order to disentangle the name from the specific space-related explanation.

Interestingly,  a  recent  study  of  Pinhas  and  Fischer  (2008)  demonstrated  that

spatial response biases also emerge after mental calculations with exact numbers and

provided thus first direct empirical evidence that the operational bias generalizes to

symbolic  arithmetic.  Participants  viewed  addition  and  subtraction  problems  with

Arabic digits and indicated the result by pointing to corresponding locations on a

visually  presented  line  that  represented  the  numerical  interval  from 0  to  10 (see

Siegler  & Opfer,  2003,  for  a  similar  method).  The  analysis  of  the  pointing  end

locations revealed that motor responses were systematically biased to the left side

after subtracting and to the right side after adding. The finding of an operational bias

for number processing has been interpreted as evidence that each approximate mental

calculation, even when the input magnitude information is presented symbolically as

Arabic numeral, relies on the same analogue magnitude code as the processing of
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non-symbolic numerosity information.

Common magnitude system

Resuming,  the  combined  efforts  of  many  researchers  are  advancing  our

understanding  of  how  number  is  represented. Researchers  studying  numerical

reasoning in adult humans, developing humans and non-human animals are using a

suite of behavioral and neurobiological methods to identify the cognitive format and

neural substrates of numbers and numbers manipulation. The image emerging from

this  effort  is  that  adult  humans  share  with  non-human  animals  a  system  for

representing  number  as  language-independent  mental  magnitudes  and  that  this

system  emerges  early  in  development.  The  foundations  of  these  mathematical

abilities  were probably present  early in our evolutionary history and can be seen

early  in  human  development.  Similarly,  although  adult  humans  use  language  to

exceed  the  precision  of  this  phylogenetically  old  system,  they  nevertheless

simultaneously possess a phylogenetically and developmentally conservative system

for  representing  number  without  language.  This  representational  system,  usually

referred to as common magnitude system (CMS), would codes for quantity across

modalities,  with  the  mental  representation  proportional  to  the  magnitude  being

represented. This system treats discrete quantities (e.g., three items) as analogous to

continuous magnitudes, and due to increasing variability as the quantity represented

increases,  this system operates as a function of Weber’s law. As the ratio of two

magnitudes approaches 1:1 they become harder to discriminate, and beyond a certain

threshold determined by the subject’s ‘Weber constant’ they cannot be discriminated

at  all  (e.g.,  Brannon,  &  Terrace,  1998;  Brannon,  &  Terrace,  2000;  Cantlon,  &
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Brannon, 2006; Halberda, & Feigenson, 2008; Jordan, & Brannon, 2006; Church, &

Meck,  1984;  Xu,&   Spelke,  2000). The  mental  number  line  hypothesis  is  an

alternative to—but not necessarily in contrast with—the idea of analog numerical

magnitudes  sharing  a  common  representation  with  other  magnitudes,  like  time,

space,  and sensorimotor  magnitudes  since different  kinds of magnitudes in  many

cases must be combined to drive important behavioral decisions (Dehaene,  1997;

Gallistell & Gellman, 2000; Brannon & Roitman, 2003; Walsh, 2003;  Lourenco &

Longo, 2011).

Evidence  for  AMS  comes  from  a  growing  number  studies  reporting  within

magnitude  interferences,  i.e.  interactions  between  numerical  magnitude  and

magnitudes  in  sensorimotor  control  (for  a  review, see  Bueti,  &  Walsh,  2009;

Lindemann, Abolafia, Girardi, & Bekkering, 2007; Andres, Davare, Pesenti, Olivier,

&  Seron,  2004).  Here  is  presented  a  short  review  on  some  example  of  within

magnitude interferences, the relation between number and space have been already

shown so it will be not further mentioned here.

Number  and  Time.  Recent  experiments  demonstrated  a  connection  between

number magnitude and time (e.g., Vierck & Kiesel, 2010; Xuan, Zhang, He, & Chen,

2007). For example, Xuan et al. (2007) Asked participants to judge which of two

successively presented stimuli displays were shown for a longer duration. In one of

their experiments, the displays contained irrelevant digits that were either small or

large and that could be displayed for short or long durations. If digit values were

congruent with the display duration, i.e. small digits with short durations or large

digits  with  long  durations,  fewer  errors  were  made.  This  experiment  clearly

established a connection between digit magnitude and time on perceptual processing.

Number and Intensity.  There  are  only  few studies  that  points  to  a  connection
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between number magnitude and intensity  up until  now (Vierck and Kiesel  2010;

Lindemann, Abolafia, Girardi, & Bekkering, 2007). For istance, Vierck and Kiesel

(2010) used a parity judgment task and asked participants to press a force-sensitive

key weakly or forcefully for odd or even numbers. They found a congruency effect

between  the  mode  of  response  (weak/forceful)  and  the  number  magnitude

(small/large),  that  is,  when  weak  responses  were  related  to  small  numbers  and

forceful responses were associated with large numbers, responses were faster and

error rates smaller. The above findings provide indirect evidence for a connection

between number magnitude and intensity.

In  light  of  the  discussed  evidences  it  seems  to  me  unnecessary  to  invoke  a

specifically spatial representation of numbers, as claimed by the mental number line

hypothesis, because space and number draw upon common magnitude mechanisms.

Nether the less those two hypothesis are not mutually exclusive because an abstract

magnitude representation may relate on different specific representations depending

on the specific task demands, including a spatial one. Thus, in order to provide direct

evidences for this general magnitude account of number representation, a series of

experimental works have been designed.
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Chapter 2

Three experimental studies

Study 1: A Functional Measurement Study on Numerosity

The  way  that  approximate  numerical  magnitudes  are  manipulated  in  order  to

judge  (as  opposed  to  calculate)  the  result  of  an  arithmetic  operation  can  be

conceptualized as a multi-attribute judgment, with which the result is derived from

the integration of the operands with a specific integration rule. This conceptualization

allows  for  the  application  of  the  tools  of  Information  Integration  Theory  (IIT)

(Anderson,  1981;  Anderson,  1982) to  the study of  mental  arithmetic.  Busemeyer

(1991)  summarizes  some  of  the  applications  of  IIT  to  the  problem  of  intuitive

estimations of algebraic operations on symbolic quantities (numbers) and continuous

quantities (line lengths, tones, or weights). Moreover, in the field of IIT, many works

use functional measurements to assess numerosity (Cuneo, 1982; Shanteau, Pringle

& Andrews, 2007). Interestingly,  at  my knowledge, no study has yet applied this

approach to the investigation of the way in which the results of arithmetic operations

with discrete quantities are computed or approximated. Thus, in the present work, the

applicability of the IIT approach to arithmetic of mental quantities was tested through

the evaluation of the shape of the response function and of the goodness of fit of the

model to behavioral data. Two different response methods have been used to support

the generality of the result and to confront their peculiar features. Participants judged

the average numerosity between two sequentially presented dot patterns to perform

an approximate arithmetic task. In a first experiment, the response was given on a 0–
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20 numerical scale, a well known method called categorical scaling, whereas in a

second experiment, the response was given by the production of a dot pattern the

numerosity  of  which  was  controlled  by  the  rotation  of  a  knob  a  relatively  new

method  called  numerosity production  (Lindemann  &  Tira,  2011). The  matching

results  of  the  two  condition  would  validate  the  numerosity  production  response

method as a viable method to asses mental magnitudes.

Functional measurment

IIT describes  the  psychological  processes  underlying  multi-attributes  decision-

making and proposes a general method that is applicable to several contexts.  IIT

proposes a theoretical framework (cognitive algebra),  which is accompanied by a

methodology  (functional  measurement)  that  is  relevant  to  the  evaluation  of  its

adaptation to the real contexts of the proposed models. IIT conceives the cognitive

processes that lead to the integration of more information in a single concept (from

physical  stimuli  S  to  a  behavioral  response  R),  as  divided  into  three  phases:

evaluation, integration, and response. Each of these phases is governed by a specific

function (s=V(S), r=I(s1,s2, …, sn), R=M(r)). This evaluation process leads to the

assignment of an implicit value s to the individual constituent parts of the stimulus S.

This  is  followed  by  an  integration  of  these  values  that,  in  turn,  leads  to  the

formulation of an overall judgment. At this level, the different models that describe

the ways the operation of integration is performed play a crucial role. The cognitive

algebra framework provides  three models  of the integration process:  the additive

model  (Anderson,  1962),  the  multiplicative  model  (Anderson & Shanteau,  1970;

Anderson  &  Weiss,  1971),  and  the  weighted  average  model  (Anderson,  1965;

Norman, 1976), also known as averaging. Thus, from this perspective, an algebraic

operation can be considered as a process of the evaluation of a stimulus S, in which
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the operands are the constituent parts (S1, S2) of that stimulus. From this point of

view, the process of evaluation includes the assignment of internal and subjective

values, s1 and s2 to S1 and S2. This is followed by an integration of these internal

values  with  an  integration  function.  This  leads  to  the  formulation  of  an  overall

judgment,  which  represents  the  result  of  the  algebraic  operation.  The  functional

measurement theory includes, besides each s value, a weight parameter. The weight

represents  the  importance,  assumed  by  the  particular  attribute  in  the  overall

judgment, and it is indicated by the parameter w in the models. Despite the fact that

the theoretical formulation implies a distinction between scale values and weights, in

both  the  additive  and  multiplicative  models,  the  two  parameters  are  not  really

distinguishable (Anderson, 1981). The effect of each attribute cannot be separated

into a scale value and a weight. Conversely, the averaging model has the capability,

under specific conditions, to distinguish between scale values and weights (Zalinski

& Anderson, 1989). The averaging model of IIT represents the subject’s response to

a multi-stimulus situation, as a weighted average. Each stimulus has two parameters:

the weight w, which conveys the importance of the stimulus on the final judgment,

and the scale value s, which represents its position on the dimension of response

(Zalinski  &  Anderson,  1991).  The  averaging  model  represents  the  integrated

response, r, as:

r=
∑ wt st

∑ wt

,

 t= 1,2, . ..                                                                (1)

whereas, in a two stimuli situation, becomes:

r=
w1s1+w2 s2

w2+w 2                                                                              (2)

The  weight-value  representations  are  common,  but  they  are  arbitrary  in  most
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formulations.  Each  weight  in  a  standard  regression  model,  for  example,  is

confounded  with  the  unit  of  the  scale.  The  averaging  model  makes  weight

mathematically  identifiable,  and  the  empirical  success  of  the  model  makes  it

psychologically  meaningful  (Zalinski  &  Anderson,  1991).  The  averaging  model

assigns weight and scale values to each stimulus. If all of the levels of one factor

have the same weights wAi = wA, then the model is said to be equally weighted; if at

least  one of the levels  differs,  then the model  is  said to be differently weighted.

Functional measurement makes use of the joint manipulation of at least two factors,

according to a factorial design; the second block of each experiment was carried out

for  this  purpose.  From now on,  it  will  be  refer  to  as  the  factorial  design  block.

Moreover, to differentiate the averaging model from the additive and multiplicative

models, one or more factors at a time must be excluded from the factorial design; this

is called a sub-design. The first experimental block of each experiment was meant

explicitly for this purpose. From now on, the first block will be referred to as a sub-

design block.

Experiment 1: categorical scaling

The  aim  of  Experiment  1  was  to  study  the  integration  rule,  involved  in

approximate averaging operations of discrete quantities, and to evaluate the goodness

of  the  fit  of  the  averaging  model  to  the  data.  First,  dot  sets  were  presented  to

participants  with the instruction to indicate  the numerosity of the sets  on a 0–20

numerical scale. Later, the participants were asked to indicate on the same 0–20 scale

the  average  numerosity  between  two  sequentially  presented  dot  sets.  To  test  the

integration rule  that  was involved in the task,  the number of presented dots was
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systematically  varied  in  a  factorial  design  and in  sub-designs.  If  the  participants

responded on a linearly distributed scale, and if they used an averaging integration

rule to evaluate the averaging numerosity,  then the plot of the complete factorial

design was expected to be a bundle of parallel lines, along with lines that represent

sub-designs, intersecting the bundle.

Method

Participants. Fifteen undergraduate female students from the University of Padua

participated in the experiment. The average age of participants was 21.5 years (SD

= .5). A convenience sampling was used, and the participants received no payment.

Apparatus. Participants used a keyboard and a computer screen in a quiet room.

The distance between the subject and screen was 70 cm. A Python program was

developed  in  order  to  process  the  input  from  the keyboard  and  to  control  the

presentation of stimuli. Importantly, the spatial pattern of the appearance of the dots

was  unpredictable.  Precisely,  with every  .6  degree  of  clockwise  rotation,  one

additional dot (2 mm in diameter, .16° of visual angle) was presented at a randomly

chosen free position within an unmarked circular target area of 140 mm in diameter

(11.42° of visual angle), centered on the screen. The minimum distance between the

two dots was .25 mm (.02° of visual angle).

Materials. The  random  dot  patterns  were  presented  in  white  on  a black

background.  A circular  gray area with a  radius of 140 mm was presented to  the

participants just before the dot pattern, as an attention clue. Patterns of 0, 17, 38, 60,
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or 82 dots composed the presented stimuli; with an exception of the zero, the number

sequence is a geometric series on a logarithmic scale. Stimuli consisted in white dots

displayed in random positions in order to prevent the constitution of patterns that

may have otherwise influenced the results. Random patterns are usually considered

as  preferable to  other  configurations  because  the perceptual structures  of  the  dot

patterns could affect their apparent visual numbers (Frith & Frith, 1972; Ginsburg,

1976;  Krueger,  1972).  A circular  area  with  a  fixed  radius  was  used  in  order  to

prevent the number of dots from being proportional to the occupied area. A similar

configuration has been widely used in many other experiments on this topic such as

the studies by Knops, Viarougue, & Dehaene (2009) and Piazza, Izard, Pinel,  Le

Bihan, & Dehaene, (2004).

Procedure and Design. Participants were required to rate the numerosity of the

presented dot patterns on a 0–20 numerical scale (Anderson, 1962). Participants were

instructed to consider the response scale with none (zero) and very many (20) as

scale ends. Participants were also instructed to type the numerical scale point value

that they rated on a keyboard. Each subject was shown three blocks: the training

block  and  the  sub-design  block;  for  which  the  subjects  were  asked  to  rate  the

numerosity of sets of dots; and the factorial design block, for which the subjects were

asked to rate the average numerosity between two sequentially presented dots sets

(the experimental procedure is depicted in Figure 1). Participants were instructed to

respond as quickly and accurately as possible and to not to try to count the dots.

Each trial was composed of a presentation part  and a production part.  In each

presentation part, a circular gray area was shown at the center of the screen for 1000

ms, followed by the presentation of a dot pattern for 2000 ms. This gray area/dot
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pattern sequence was repeated twice. At the end of the presentation part of the trial, a

hash  mark  (#)  was  presented  for 1000 ms.  The  disappearance  of  the  hash  mark

indicated the beginning of the response phase, in which the participants could type

their responses. Participants typed their responses on a field on the screen by typing

on a keyboard. After the participants made their judgments, they pressed abutton to

move on to the next trial, which started after an inter-trial interval of 500 ms.

Two subjects were excluded from data analyses because they did not show any

response consistency.  Training block.  Eleven trials  were administered in  order to

familiarize the participants with the specific task and response method before the

experimental  blocks  were  given.  Unlike  the  experimental  blocks,  in  the  training

blocks, only one quantity per trial was shown and feedback for the participants was

provided after each trial. The training block provided stimuli with a number of dots

that ranged from 0–100, which represents the two anchors of the scale (Anderson,

1982). As a form of feedback, the computer provided the closest value on the 0–20

scale  to  the  number  of  shown dots,  divided  by  5.  This  training  allowed  for  the

calibration of the judgments of numerosity and minimized the variability, caused by

inter-individual differences in the perception of non-symbolic numerosity (see Izard

& Dehaene, 2008).

Sub-designs block. Two dot patterns were presented. The participants were asked

to rate the numerosity of one of them, either the first or the second, as indicated by a

signal (number 1 or 2), presented after the disappearance of the second dot pattern.

Each pattern could have one of five different numbers of dots: 0, 17, 38, 60, and 82.

This five-by-five design yielded 25 pattern pairs.  However,  because no judgment

different from 0 is plausible or informative, in response to “an empty” screen as a
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stimulus, target patterns with 0 dots were omitted; accordingly, only 20 (i.e., 4x5)

pattern pairs were presented. Each pattern pair was presented twice, and each time,

the  pattern  pair  was  presented  with  a  different  indication  of  the  pattern  to  rate

(number 1 or 2) for a total of 40 trials, presented in randomized order. In summary,

five responses were collected for each dot pattern to be evaluated, the mean of the

five responses was used in the following statistical analysis.

Factorial  design  block. Participants  had  to  rate  the  average  quantity of  dots

between two presented patterns.  Each pattern could have one of five numbers of

dots:  0,  17,  38,  60  and  82.  This  five-by-five  design  yielded  25  pattern  pairs.

However, because no judgment different from 0 is plausible for pattern pairs with 0

dots, the (0, 0) pair was not presented; accordingly, only 24 (i.e., 5x5-1) pattern pairs

were presented.  Each pattern pair was presented 5 times for a total of 120 trials,

presented in randomized order. In summary, five responses were collected for each

pair of dot patterns to be evaluated, and the mean of the five responses was used in

the following statistical  analysis.  Each complete  session of the experiment  lasted

approximately  30 minutes.  Before  every  block,  instructions  were  printed  on  the

screen. Participants were requested to read the instructions and explain them back to

the experimenter to verify that they understood correctly.

Results

Psychophysical function. The shape of the response function of the sub-design

block was tested. The shape of the response function using a magnitude estimation

response methods is generally best described by a power function, R = α×nβ with an
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exponent β smaller than 1 (Izard & Dehaene, 2008; see also Siegler & Opfer, 2003).

In order  to  test  the  shape of  the  response  function  of  the numerosity  production

response method, a logarithmic regression analysis wasperformed (see for instance

Seber  &  Wild,  2003)  for  the  estimations  of  each  numerosity,  averaged  across

subjects. Remarkably, the regression of the averaged data fits very well in r2 = .76,

and the resulting response function was y = .93 × n.73.

Model  identification. The  responses  were  analyzed  in  order  to  assess the

plausibility  of  integration  models.  The  classic  approach,  used  by  the functional

measurement for the individuation of the integration function of the model, is the

analysis of variance (ANOVA). The theorem of parallelism (Anderson, 1981) argues

that if the integration model is additive, the graph of marginal means will appear as a

bundle of parallel lines. Morever, any observed deviation from the parallelism will be

purely due to the component of error. Thus, an ANOVA was conducted. Because of

the interaction between the two factors (1st and 2nd dot pattern) was not significant

(F(15,14)  =  1.52,  p =  .08),  the  deviation  from  parallelism  can  be considered

negligible, and the multiplicative model can be discarded from the candidates (see

Figure 2). Moreover, a significant main effect was found for both factors: 1st dot

pattern (F(4,14) = 198.45, p < .001, ηp
2= .309) and 2nd dot pattern (F(4,14) = 254.52,

p < .001, ηp
2 = .36). The test of the opposite effects (Anderson, 1981) is used to

distinguish an additive model from an averaging one.  This test  makes use of the

methodology of the sub-designs (Norman, 1976; Anderson, 1982). This methodology

consists of associating the full factorial design with one or more sub-design(s) that

exclude(s) one or more factor(s) at a time; the first experimental block was created

explicitly for this purpose. The two factors (1st and 2nd dot pattern) were modified,
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adding to each one a level based on the responses of the sub-designs, referred to in

the 1st  and 2nd dot pattern.  If  the model  was not  additive but averaging, then a

significant interaction of the two factors was expected. Indeed, the ANOVA showed a

significant  interaction  effect  (F(15,14)  =  2.30,  p <  .001,  ηp
2 =  .014).  Then,  the

parallelism observed in the full factorial design, along with the significance of the

interaction,  obtained when  the  sub-designs  were  added,  might  be  considered  as

evidence in favor of the averaging model with equal weights within factors. It is the

so-called equal-weight averaging model (EAM)(Wang & Yang, 1998). Moreover, for

every  factor,  the  significance  of  the  main  effect  was  found  to  be  practically

unaffected by the introduction of the new level, 1st dot pattern (F(4,14) = 199.00, p <

.001, ηp
2 = .251), 2nd dot pattern (F(4,14) = 249.52, p < .001, ηp

2 = .296).

Model estimation. After the model was identified, the averaging model parameters

for each participant were estimated with the R-average method (Vidotto & Vicentini,

2007;  Vidotto,  Massidda,  &  Noventa,  2010)  and  the  implemented  R-average

package,  version  0.4-0.  The following analyses  were  computed  on the  estimated

model parameters of all the participants, except when noted. The adaptation of the

models  to  the  data  was  evaluated,  in  terms  of  the  adjusted  r2  for  each  subject,

showing that the model fit the data very well for all of the participants of Experiment

1 with median r2
adj = .84 (ranging between .78 and .99). As previously mentioned, the

differential-weights model (DAM) was rejected, due to the lack of significant effects

in the interaction between the linear components of the factors (Anderson, 1982).

The EAM weights of the 1st and 2nd dot patterns were compared1, revealing no

significant difference (t(14) = -.60,  p = .21). Under a principle of parsimony, this

notion led us to opt for an averaging model with equal weights between factors (wA
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= wB), which was called a  simple averaging model  (SAM). A generalized linear

mixed model (GLMM) was then applied to the s parameters of the SAM model,

using the participants as random variables and the two factors, numerosity (0, 17, 38,

60, 82) and dot pattern (1st, 2nd), as fixed variables. The results showed a significant

effect  of  the  factor  numerosity  (χ2(4)  =  1786.61,  p <  .001)  with  a  strong  and

significant linear component. No statistically significant difference was found in the

main  effect  for  the  dot  pattern  (χ2(1)  =  2.82,  p =  .27)  or  interaction  between

numerosity  and  dot  pattern  (χ2(4)  =  3.66,  p  = .17),  showing  that  the  difference

between the two dot patterns in the s parameters was negligible.

Worth noting is that the maximum level of uniqueness (for w) is a common ratio

scale. The unit of this scale is arbitrary because all the weights may be multiplied by 
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Figure 1: Experiment 1: plot of the subjects’ estimations using categorical scaling method (mean 

responses are on the y-axis). In the complete factorial design, the number of dots identifies dashed 

lines for different numerosities of the 1st patterns while numbers of dots for the 2st pattern are in the 

x-axis. In the two sub-designs, 1st and 2nd identify continuous lines for the 1st and 2nd dot patterns 

while numbers of dots for the pattern are in the x-axis.



a constant without changing the model prediction” (Anderson 1982, p. 89). Now,

considering log(w), the origin of scale is arbitrary but no more the unit, indeed all the

log(w) may be added by a constant with no change in the model prediction (Vidotto,

2013). In such a way the mean of log(w) has the property to be reference invariant

and the standard deviation of log(w) has the property to be absolutely invariant for

any vertical translation; indeed, the t-test for differences was applied to log(w).

Response  latencies. The  average  latency  to  perform a  categorical scaling  was

4177.63 ms with a standard deviation of 1969.01 ms. It is important to note that the

latencies were not correlated with the number of dots (r = .04). This result ensures

that the participants were not using counting strategies; otherwise, an increase in the

reaction time with increasing numerosity would have been expected (Akin & Chase,

1978; Mandler & Shebo, 1982; Trick & Pylyshyn, 1993).

Experiment 2: numerosity production

The aim of Experiment 2 was to test  the appropriateness of a new method of

numerosity  production  to  IIT  studies.  Participants  were  asked  to indicate  the

numerosity  of  one presented  dot  pattern  or  the  average numerosity  between two

sequentially presented dot patterns by producing that number of dots on the screen.

Participants controlled the number of dots of their responses by turning a knob in a

clockwise or counterclockwise direction. To test the appropriateness of the method,

the number of presented dots was varied systematically in a factorial design and sub-

design. As in the previous experiment, the integration rule was also studied and the

goodness of fit  of the averaging model  to the data was evaluated.  If  participants
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responded on a linearly distributed scale, the plot of the complete factorial design

would have been expected to form the shape of a bundle with parallel lines.

Method

Participants. Fourteen  undergraduate  female  students  from  the  University  of

Padua participated in the experiment. The average age of participants was 20.2 years

(SD = .5). A convenience sampling was used. he participants received no payment.

Apparatus.  The apparatus was identical to that in Experiment 1, except for the

response  device.  The  response  device  was  a  custom-made  knob  of  4.50  cm  in

diameter and 1.50 cm in height. The response device was also mounted on a small

box (6 cm × 15 cm × 15 cm) and placed on a table. The knob was connected to a

computer with a USB interface and could be rotated both clockwise and counter-

clockwise. Knob rotation axis was parallel to the Cartesian z-axis. A Python program

was developed to process the knob input and to control the stimulus presentation.

The more the knob was rotated in a clockwise direction, the greater the number of

dots that appeared on the screen. Rotation in the opposite direction decreased the

number of dots, until no dots were left on the screen. Importantly, the spatial pattern

of the appearance or disappearance of  the dots was unpredictable.  With every .6

degree of clockwise rotation, one additional dot (2 mm in diameter) was presented at

a randomly chosen free position within an unmarked circular target area of 70 mm in

diameter,  centered  on  the  screen.  Counter-clockwise  rotation  deleted  randomly

selected dots from the display. The minimum distance between the two dots was .25

mm. The maximum number of dots was limited to 300.
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Materials. The  materials  used  in  Experiment  2  were  the  same  as  those  in

Experiment 1.

Procedure  and  Design. The  procedure  and  design  were  identical  to those  of

Experiment 1, except for the response method that consisted of rotating the knob to

produce the desired quantity of randomly distributed white dots. Thus, the response

method in this  experiment  was a  numerosity  production,  instead  of  a  categorical

scaling. At the beginning of the response phase, participants could rotate the knob in

order  to  perform the  numerosity  production  task.  Participants  always  started  the

response  phase  with  zero  dots  on  the  screen  and  turned  the  knob  clockwise  to

increase the number of dots or counter-clockwise to decrease it.

Results

Psychophysical function. As for the data of the sub-design in Experiment 1, in

order to test the shape of the response function of the categorical scaling response

method, a logarithmic regression analysis was performed for the estimation of each

numerosity,  averaged  across  subjects.  The  regression  of  the  averaged  data  fitted

acceptably with r2 = .58. The resulting response function was, y = .15 × n.58. 

Model identification. In Experiment 2, the responses were analyzed in order to

assess the plausibility of integration models by performing a 5x5 ANOVA with 1st

and 2nd dot pattern as factors. Because the interaction between the two factors was

not  significant  (F(15,110)  = .82,  p = .64),  the deviation from parallelism can be

considered  negligible,  and  the multiplicative  model  can  be  discarded  for  this
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experiment,  as it  was  for Experiment  1.  Moreover,  a  significant  main effect  was

found for every factor, 1st dot pattern (F(4,11) = 162.35, p < .001, ηp
2 = .28), 2nd dot

pattern (F(4,11) = 227.90, p < .001, ηp
2 = .358). The two variables (1st and 2nd dot

pattern) were modified, adding to each one a level that was made from the ratings on

single-dot patterns (the sub-design). If the model was not additive, but averaging, it

was  expected  that  the  addition  of  the  new levels  to  the  factors  would  involve  a

significant  interaction  between  the  two. Subsequently,  the  ANOVA  showed  a

significant  interaction  effect (F(15,110)  =  2.21,  p <  .001,  ηp
2 =  .01).  Then,  the

parallelism between the factors of the full factorial design and the interaction, caused

by the adding of sub-designs (see Figure 3) was found to be evidence in favor of

EAM, as in Experiment 1. Moreover, for each factor, the significance of the main

effect was found to be practically unaffected by the introduction of the new level, 1st

dot  pattern (F(4,11)  = 172.12,  p <  .001,  ηp
2 = .241),  2nd dot  pattern  (F(4,11)  =

229.78, p < .001, ηp
2 = .298).

Model estimation. After the model was identified, the averaging model parameters

for each participant  were estimated with the same procedure that  was previously

applied in Experiment 1. The adaptation of the models to the data was evaluated in

terms of adjusted r2, showing that the model fitted the data very well for almost all of

the participants with median r2adj = .85 (ranging between 71 and 99). As previously

mentioned, the DAM was rejected because it did not present a significant effect in

the interaction between the linear components of the factors. The EAM weights of

the first and the second dot patterns were compared, which revealed no significant

difference (t(11) = 1.79, p = .56). This led us to opt for a SAM. A GLMM was then

applied to the s parameters of the model, using the participants as random variables
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and the two factors of numerosity (0, 17, 38, 60, 82) and dot pattern (1st, 2nd), as

fixed  variables.  The  main  effect  for  numerosity  was  found  to  be  statistically

significant (χ2(4) = 4044.78, p < .001) but that was not true for dot pattern (χ2(1) =

1.50, p=.13) or for the interaction between numerosity and dot pattern (χ2(4) = 5.02,

p =  .10).  This  shows  that  the  difference  between  the  two  dot  patterns  in  the  s

parameters was negligible.

Response  latencies. The  average  latency  to  perform a  categorical  scaling  was

3880.13 ms (SD = 2229.38). Importantly, the latencies were not correlated with the

number of dots (r = .039), ensuring that the participants were not using counting

strategies, which was also the case in Experiment 1.

Discussion and conclusions

In both experiments, the participants responded quickly, and their response times

did  not  increase  with  numerosity.  This  reveals  that  the participants  did  not  use

counting strategies but instead,  based their judgments on approximate numerosity

estimation. In both of the experiments, the results of the analysis on the estimated

averaging values seemed to indicate that the subjects’ estimations are best described

by an EAM. Moreover, the weights of the two dot patterns do not appear to differ

significantly,  suggesting  the  use  of  a  SAM.  Accordingly,  the  scale  values vary,

depending only on the numerosity of the stimulus and are unaffected by its position

(1st or 2nd dot pattern). This demonstrates that neither the effect of primacy nor the

effect  of  recency influence  the  evaluation  of  the  average  numerosity,  despite  the

sequential temporal order of the presentation of the stimuli (Busemeyer, 1991). In
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other words, this means that the participants give the same importance to the two

quantities of each trial during averaging operations. In both experiments, the adjusted

r2 showed that SAM was able to explain a very great portion of variance for almost

all  of  the  participants; this  supports  the  explanatory  capability  of  the  averaging

model,  applied  to mental  arithmetic  problems with  discrete  quantities.  Since  the

participants  were  instructed  to  perform an averaging operation,  the  factorial  plot

should exhibit parallelism, if the response measure was on a linear scale. As shown

in Figures 2 and 3, and according to the results of the full factorial design ANOVA

(without sub-designs), the rating data (Figure 1) and the numerosity production data

(Figure 2) show clear parallelism. This allows researchers to validate the numerosity

production, as a response measure on a linear scale, a prerequisite for a method to

study  stimulus  interaction,  and  for  the  analysis  of  non-linear  integration  rules

(Anderson, 1982). 
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Figure 2: Experiment 2: plot of the subjects’ estimations using numerosity production method (mean 

responses are on the y-axis). In the complete factorial design, the number of dots identifies dashed 

lines for different numerosities of the1st pattern while the numbers of dots for the 2nd pattern are in 

the x-axis. In the two sub-designs, 1st and 2nd identify continuous lines for the 1st and 2nd dot 

patterns while the numbers of dots for the pattern are in the x-axis.
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The linearity of the response scale and the similar  trends of the two response

methods paves the way for further interesting possibilities of application of the IIT

framework for the numerosity production response method. The applicability of IIT

to  mental  arithmetic  problems  with  discrete  quantities  is  supported  with  the

following  factors:  the  linearity  of  the  scale  observed  with  both  of  the  response

methods and the high explanatory capability demonstrated by the averaging model in

both experiments. On the other hand, since a series of stimuli were used, composed

by dot collectivities, distributed on a fixed radius circular area and manipulated the

number of dots, it may be argued that the density of dots in each stimulus may have

influenced  the  participants’ impressions  of  numerosity  (Krueger,  1972;  Allik  &

Tuulmets, 1991; Shanteau et al., 2007). We believe that the variation in density, along

with the levels of the factors, do not weaken our conclusions. This is because even if

the numerosity judgment was based on the density of the stimulus, it does not change

the way that the internal representations of the stimuli were integrated. Furthermore,

this  does  not  change  the  conclusions  about  the  parallelism  and  linearity  of  the

response  functions.  Since  the  effect  of  over-  or  under-evaluation,  linked  to  the

specific density of each level of each factor is proportional to the size of the stimulus,

and  since  it  remains  constant  for  that  level  to  every  proposition  in  the  factorial

design, this does not affect the nature of the model but affects only its scale values.

The averaging model of IIT was established as a viable instrument in assessing

mental arithmetic with discrete quantities; it is able to properly describe behavioral

data,  distinguishing  between  the  value  of  the  evaluation  of  a  stimulus  and  its

importance  in  the  integration  process.  Moreover,  a  new numerosity  production

method  was  tested  for  the  linearity  of  its  response  scale.  Finally,  averaging

operations with discrete quantities appear to not be affected by the presentation order
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of  the  dot  patterns.  For  all  of  these reasons,  the  IIT framework  seems  to  be  a

promising  approach,  particularly for  future  applications  in  the  field  of  mental

arithmetic with discrete quantities.

e factorial
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Study 2: Influence of Response Force on the Operational Bias Effect

It  has  been  argued  that  our  ability  to  learn  and  engage  in  highly  complex

mathematical thinking  is  ultimately  grounded in  inborn  mechanisms to  represent

numerical  quantities  as  analog  magnitudes  (Dehaene,  2004).  Already,  pre-verbal

infants  are  able  to  extract  numerical magnitude  from sensory  input  and perform

rudimentary arithmetic computations on them (Wynn, 1990; Xu & Spelke, 2000).

Also,  later  in  life,  a  tight  connection  between symbolic  numerical  skills  and the

analog number code prevails.  For instance,  adults  take increasingly more time to

decide which of two digits is larger as the absolute difference between the digits gets

smaller.  This  so-called  numerical  distance  effect  suggests  that  the  process  of

comparing two  digits  is  similar  to  comparing  two  physical  (analog)  magnitudes

(Moyer,  &  Landauer, 1967).Several  authors  have  claimed  that  analog  numerical

magnitude shares a common representation with other magnitudes, like time, space,

and sensorimotor magnitudes since different kinds of magnitudes in many cases must

be combined to drive important behavioral decisions (Dehaene, 1997; Gallistell &

Gellman, 2000; Brannon & Roitman, 2003; Walsh, 2003; Lourenco & Longo, 2011).

For example, spatial information of actions can be used to make predictions about

the  immediate  sensorimotor  consequences  of  those  actions  (Rossetti &  Pisella,

2002). This representational system—usually referred to as analog magnitude system

(AMS)--codes  for  magnitude  across  modalities,  with  the  mental  representation

proportional to the magnitude being represented. Evidence for AMS comes from a

growing number studies reporting within magnitude interferences, i.e. interactions

between numerical magnitude and magnitudes in sensorimotor control (for a review,

see  Bueti,  &  Walsh,  2009;  Lindemann,  Abolafia,  Girardi,  &  Bekkering, 2007;
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Andres, Davare, Pesenti, Olivier, & Seron, 2004). For instance, recent experiments

demonstrated a connection between number magnitude and time (e.g. Xuan, Zhang,

He,  & Chen,  2007),  reaction  times  and  kinematics  in  grasping  actions  (Andres,

Davare,  Pesenti,  Olivier,  &  Seron,  2004;  Lindemann,  Abolafia,  Girardi,  &

Bekkering, 2007) and motor force (Vierck, & Kiesel, 2010). In addition, a common

neural  substrate  has  been  reported  for  number,  size,  and  luminance  in  the

intraparietal sulcus (Pinel, Piazza, Le Bihan, & Dehaene, 2004).

Alternative  to—but  not  necessarily  in  contrast  with—the  idea  of  a  shared

magnitude system, the mental number line hypothesis proposes that analog numerical

magnitude is  represented via a positional  coding along a spatial  continuum (e.g.,

Daar  & Pratt,  2008;  Fias,  2001;  Dehaene  et  al.,  1993).  Numerical  magnitude  is

assumed to be mapped onto mental space from left to right in ascending order. This

idea  is  supported  by  a  great  amount  of  research  showing  systematic  mappings

between number and space (for a review, see Hubbard, Piazza, Pinel, Dehaene, 2005)

—the most  prominent  demonstration  of  this  mapping being the  spatial-numerical

association of response codes effect (SNAe factorialRC effect ); (Dehaene, Bossini,

& Giraux,  1993),  which  describes  the  finding  of  faster  reaction  times  for  small

numbers when responses are made with the left compared to the right hand and the

opposite pattern for large numbers.

Based on a recent study by McCrink, Dehaene, and Deahene-Lambertz (2007), it

has been argued that spatial representations of numerical magnitude also extend to

the domain of mental arithmetic. The authors found that participants systematically

overestimate  the  results of  addition  operations  and  underestimate  the  results  of

subtraction –operations—an effect originally labeled operational momentum, which

will  be  refered  to  as  operational  bias  in  order  to  disentangle  the  name from the
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specific space-related explanation of the phenomenon. The operational bias is usually

interpreted  as  evidence  for  the  idea  that  mental  calculations  are functionally

equivalent  to  attentional  shifts  along  the  mental  number  line,  and  that  the

overestimation after addition and the underestimation after subtraction reflects the

subject tendency to move “too far”  to  either  the left  or the right.  However,  it  is

important  to  note  that the  task  used  by  McCrink  and  colleagues  had  no  spatial

component. In so far, the mental number line interpretation of the operational bias is,

to a considerable degree, based on earlier findings in support of a spatial coding of

numerical magnitude. We argue that it is unnecessary to invoke a specifically spatial

representation  of  numbers  to  explain  the operational  bias.  Next  to  the  original

interpretation  of  the  operational  bias,  several  alternative explanations  have  been

provided  (McCrink,  &  Wynn,  2009).  According  to  one  very  parsimonious

hypothesis, operational biases result from the use of the heuristic that "when adding,

accept  more"  and  "when  subtracting,  accept  less".In  principle,  increasing  and

decreasing non-spatially  represented analog numerical magnitudes  could have the

potential to elicit an over- and undershoot for additions and subtractions respectively.

Therefore,  we consider  the  idea  that  the  operational  bias  is  driven  by processes

within the shared magnitude system an alternative to the mental number line account.

In  order  to  test  the  shared  magnitude  account  of  the  operational  bias,  it  was

investigated  whether  required  response  force  can  modulate  the  operational  bias.

Participants were instructed to solve symbolic addition and subtraction problems and

to generate a response by rotating a knob to produce the desired quantity of randomly

distributed  white  dots.  Crucially, by  changing  the  resistance  of  the  knob,  the

Required Force to turn the knob was manipulated. The Required Force to turn the

knob has been varied in a three-level between-subject fashion (null, low, high). In the
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low and high force conditions,  the knob was equipped with extension springs of

increasing newton-millimeter rate; the further the knob was rotated in a clockwise

direction, the more dots were presented on the screen and the more tense the spring,

increasing the force required to turn the knob. In the null force condition, no spring

was  used  and  the  knob  was  free  to  rotate.  The  operational  bias  effect  has  been

assessed by comparing the response to addition and subtraction operations  in the

calculation task of each force condition.

It has been shown that mental calculations with carry-overs over the decade break

are performed slower and are more error prone (Deschuyteneer, De Rammelaere, &

Fias,  2005),  resulting  in  more  working memory load,  as  compared to  multi-digit

calculations  without carry-overs  (DeStefano  &  LeFevre,  2004;  Imbo,

Vandierendonck, & De Rammelaere, 2007). Since additions and subtractions with

carry or borrowing involve apparently different cognitive processes than calculations

without carry-over, the requirement to perform carry operations was systematically

varied. Operations with the zero as the second operand were additionally included .

These  zero  operations  have  been  suggested  to  provide  a  measure  of  the  “pure

operational  momentum effect”  (Pinhas  &  Fischer,  2008)  without  activation  of  a

second magnitude.

Based on the shared magnitude account of the operational bias, a modulation of

the operational bias effect by Required Force was predicted. Based on the proposed

coupling of  numerical  and  sensorimotor  magnitudes,  the  operational  bias  was

expected to be positively correlated with Required Force.

Method

Participants. One hundred and five  undergraduate  students  from the  Radboud

University Nijmegen (26 males) participated in the experiment in return for 7.5 euros
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or  course  credits.  All  reported having  normal  or  corrected-to-normal  vision.  The

average age of participants was 23.9 years (SD = 4.8). There were 35 participants

randomly assigned to each of the three force conditions.

Apparatus. A keyboard, a computer screen, and a custom-made knob of 5.20 cm

in diameter and 2.80 cm in height mounted on a small box (9 cm × 15 cm × 6.50 cm)

placed in a quiet room were used. The knob was connected to a computer via a USB

interface, and its rotation axis was parallel to the Cartesian z-axis. In two of the three

experimental conditions, two different springs inside the device ensured that the knob

switched back to its  initial  position when the participant let  go of the knob (low

force= 0.72 n/mm, high force=1.4 n/mm). A Python program was developed using

the Expyriment package (Krause & Lindemann, 2013), to process the knob input and

control  the stimulus presentation.  The more the knob was rotated in a  clockwise

direction, the greater the number of dots that appeared on the screen. Rotation in the

opposite direction decreased the number of dots until none were left on the screen.

Importantly, the spatial pattern of the appearance or disappearance of the dots was

unpredictable. The distance between subject and screen was 70 cm. Precisely, with

every .6 degree of clockwise rotation, one additional dot (2 mm in diameter, .16° of

visual angle) was presented at a randomly chosen free position within an unmarked

circular target area of 140 mm in diameter (11.42° of visual angle), centered on the

screen center. The minimum distance between two dots was .25 mm (.02° of visual

angle). The maximum number of dots was limited to 300. Each production phase

started with an empty screen (i.e. zero dots).

Materials. The random dot patterns were presented in a white color on a black
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background, and numerals were presented in a white sans-serif font (height: 4 mm,

width: 3-7 mm). All Arabic two-digit numbers served as targets for the number task

(first block). For the calculation task (second block), a list of 24 addition and 24

subtraction operations was compiled (see Table 1).

Table 1: Addition and Subtraction operations used in the mental calculation task. The results were not

presented during the experiment.

Addition

operations

Subtraction

operation

Addiction  Zero

operation

Subtraction  Zero

operation

Results

13 + 21 (n)

21 +14 (n)

12 + 24 (n)

14 + 23 (n)

13 + 29 (c)

29 + 14 (c)

18 + 29 (c)

12 + 41 (n)

18 + 36 (c)

24 + 32 (n)

19 + 38 (c)

41 + 17 (n)

19 +  43 (c)

14 + 49 (c)

16 + 48 (c)

53 + 14 (n)

16 + 57 (c)

28 + 46 (c)

47 + 28 (c)

57 – 23 (n)

69 – 34 (n)

98 – 62 (n)

58 – 21 (n)

91 – 49 (c)

61 – 18 (c)

74 – 27 (c)

74 – 21 (n)

72 – 18 (c)

68 – 12 (n)

71 – 14 (c)

89 – 31 (n)

81 – 19 (c)

82 – 19 (c)

82 – 18 (c)

79 – 12 (n)

92 – 19 (c)

92 – 18 (c)

91 – 16 (c)

34 + 0

35 + 0

36 + 0

37 + 0

42 + 0

43 + 0

47 + 0

53 + 0

54 + 0

56 + 0

57 + 0

58 + 0

62 + 0

63 + 0

64 + 0

67 + 0

73 + 0

74 + 0

75 + 0

34 – 0

35 – 0

36 – 0

37 – 0

42 – 0

43 – 0

47 – 0

53 – 0

54 – 0

56 – 0

57 – 0

58 – 0

62 – 0

63 – 0

64 – 0

67 – 0

73 – 0

74 – 0

75 – 0

34

35

36

37

42

43

47

53

54

56

57

58

62

63

64

67

73

74

75

56



29 + 47 (c)

51 + 32 (n)

63 + 21 (n)

12 + 73 (n)

52 + 34 (n)

93 – 17 (c)

97 – 14 (n)

97 – 13 (n)

98 – 13 (n)

98 – 12 (n)

76 + 0

83 + 0

84 + 0

85 + 0

86 + 0

76 – 0

83 – 0

84 – 0

85 – 0

86 – 0

76

83

84

85

86
Letters in parentheses indicate the Calculation type, c:carry operations, n: no-carry operations.

We used stimuli  with random positions  to  prevent  the  constitution of  patterns

which may influence the results. Random patterns are usually considered a reference

in respect to other configurations to evaluate their effect and increase or decrease

their apparent visual number (Frith & Frith, 1972; Ginsburg, 1976; Krueger, 1972). a

circular area with a fixed radius was used to prevent the number of dots from being

proportional to the occupied area. A similar configuration was widely used in many

experiments (e.g.,  Knops, Viarougue, &configurations to evaluate their  effect and

increase or decrease their apparent visual number (Frith & Frith, 1972; Ginsburg,

1976; Krueger, 1972). A circular area with a fixed radius was used to prevent the

number of dots from being proportional to the occupied area. A similar configuration

was widely used in many experiments (e.g., Knops, Viarougue, & Dehaene, 2009;

Piazza, Izard, Pinel, LeBihan, & Dehaene, 2004).

Procedure and Design

Numerosity production response method. Participants were required to produce a

random dot pattern that corresponded to a previously presented target number, or the

result of an operation, by rotating the knob with their right hand. If participants had

the feeling that the numerosity of the dots was equivalent to the requested number,

they finished their estimation with a key-press by their other hand. Each trial of each
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block  started  with  a  centrally  presented  attentional  cue  (‘#’ symbol),  which  was

replaced after 500 ms by a two-digit target number, or an operation, depending on the

block.  As  soon  as  the  space  bar  was  pressed,  the target  number,  or  operation,

disappeared  and  the  knob  could  be  rotated.  The  numerosity productions  always

started from zero. Once participants made their judgment with a key-press and let go

of  the  knob,  the  next  trial  started  after  an  inter-trial-interval  of  500 ms.Training

block. Before the actual experiment started, participants were familiarized with the

numerosity  production  response method in  a  short  training session  (20 randomly

chosen trials from the number block stimuli set,  always including 10 and 99). In

contrast to the experimental session, written feedback about the amount of produced

dots was provided after each trial. This training served as a calibration of numerosity

judgments and minimized the variability caused by inter-individual differences in the

perception of non-symbolic numerosities (see Izard & Dehaene, 2008).

Numerosity  judgment  block.  Every  participant  performed  first  a  numerosity

judgment  task  in  which  they  indicated  the  approximate  magnitude  of  two-digit

numbers. Each two-digit numeral (10 to 99) was presented once, resulting in a total

of 90 trials. The order of trials was randomized. Mental calculation block. The task in

the calculation block comprised 144 trials in total. Instead of a single number, an

addition  or  subtraction  problem  was  presented  with  the  instructions  for  the

participant to indicate the result of the presented problem as quickly and accurately

as possible. A list of 24 addition and 24 subtraction operations has been compiled

(see  Table  1).  Each  problem  comprised  two  operands.  No  decade  numbers  or

symmetric numbers (e.g., 22, 33) occurred as operand or result. Operands and result

of  one  problem never  had  the  identical  decade  or  unit  digits.  For  additions  and

subtractions, half of the first and half of the second operands were odd numbers. The
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outcomes  of  addition  and  subtraction operations  were  matched.  Half  of  the

operations  required  a  carry  operation;  the  other  halves  were  no-carry  operations.

Operands were chosen to approximately match the average results between the carry

and the no-carry operations; indeed the mean result of the carry operations was 59.5

(SD=16.6) and 60.0 (SD=11.8) for the no-carry operations (see Table1). Furthermore,

48  zero  operations  were  added  by  generating  for  each  addition  and  subtraction

problem a corresponding problem with the same result but with zero as the second

operand. The trial order was randomized in both blocks. Each complete session of

the experiment lasted for approximately 45 minutes. Before every block, instructions

were printed on the screen. Participants were requested to read the instructions and

explain them back to an experimenter as proof of their clear understanding.

Results

Response Latencies. The average latency to perform judgments was 3439.67 ms with

a standard deviation of 2596.75 ms. Importantly, the latencies were not correlated

with the number size  (r = -.06). This result ensured that the participants were not

using counting strategies;  otherwise,  an increase in the reaction time would have

been  expected  with  increasing  numerosity  (Akin  and Chase,  1978;  Mandler  and

Shebo, 1982; Trick and Pylyshyn, 1993).

Numerosity  Judgment  Task.  If  participants  were  capable  of  accurately  judging

numerosity,  the number of produced dots should increase linearly with the target

number. The shape of the response function using a magnitude estimation response

method is generally best described by a power function, y=αn β , with an exponent β

smaller than 1, that indicates a tendency to underestimation (Izard & Dehaene, 2008;

see also Siegler & Opfer, 2003). In order to test the shape of the response function,
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an individual  log-log  regression  was  performed(see,  for  instance,  Seber  & Wild,

2003), regressing the log of the shown number against the log of the given judgment.

Because a production response method was used instead of an estimation, the β is

expected to be bigger than 1,  indicating an overproduction of dots as found in a

previous study (Lindemann & Tira 2011). The resulting average response function

was y=-.03n 1.05;  remarkably,  the regressions  fit  the  judgments  of  all  participants

nicely,  median  r2 =.96  (ranging  between  r2 =.88  and  r2 =.99).  The  slope  of  the

regression function was significantly larger than one t(104)=8.98,  p<0.001,  d=1.76,

indicating that participants, on average, produced too many dots. This numerosity

overproduction,  which increases with number size, is in line with the empirically

well-established tendency of participants to underestimate perceived non-symbolic

numerosities  (e.g.,  Izard  & Dehaene,  2008).  Participants  varied  in their  response

functions with exponents ranging between 0.85 and 1.20. That is, some participants

showed  a  logarithmically  compressed  relationship  between  asked  and  produced

quantity, while others showed an expanded relationship.

Mental  Calculation  Task.  Individual  logarithmic  regressions  analyses  were

performed, regressing the log of the correct result of the proposed operations, against

the  log  of  the  given  judgment.  The regressions  fit  the  estimations  very  well  for

almost all participants, median  r2 =.91 (ranging between  r2 =.78 and  r2 =.99). The

resulting  average  response  function  was  y=-.06n 1.04.  The  slope  of  the  regression

function was significantly larger than one t(104)=11.98, p<0.001, d=1.77, indicating

that  participants,  on  average,  produced  too  many  dots.  Again,  some  participants

showed  a  logarithmically  compressed  relationship  between  asked  and  produced

quantity, while others showed an expanded relationship. To analyze the variability of

the  estimations,  the  standard  deviations  of  the  estimations  were  individually
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regressed  against  the correct  results.  The  slope  of  the  regression  function  was

significantly  larger  than  zero  t(104)=27.00,  p<0.001,  d=5.29,  reflecting  that  the

precision of judgments decreases with number size.

To  investigate  the  effects  of  Required  Force  on  mental  arithmetic  it  was

calculated, for each participant, the constant judgment error, defined as the average

error between correct outcomes and responses (Schutz & Roy, 1973).
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Figure 3: Mean constant error in the calculation task, as a function of Operation (addition, 

subtraction), Calculation Type (carry, no-carry, zero) and Required Force (null, low, high) factors. 

Continuous lines represent the high level of the Required Force factor, while dashed and dotted lines 

represent respectively the low and null level of the same variable.



As can be seen in figure 3, the constant error seems greater after addition than

after subtraction for no-carry and zero types of calculation in both low and high

Required Force conditions, which is a clear evidence of OM effect. On the other

hand, in the null Required Force conditions (no matter which type of calculation),

and in all the conditions of the carry type of calculation, the constant error shows

trends incompatibility with the OM effect. To test our hypotheses, the constant error

was  submitted  to  a  three-way  repeated-measures  ANOVA,  including  the  factor

Required Force (null,  low, high) as the between-participants variable,  and factors

Calculation Type (carry, no-carry, zero) and operation (addition, subtraction) as the

within-participants variables. The factor Calculation Type reached significance with

F(2, 204)=8.69,  p<.001, ηp
2 =.07 (carry=44.89, no-carry=42.55, zero=44.53). More

interestingly,  two  interactions  reached  significance,  i.e.  the  interaction  between

Required Force and Operation, with F(2, 102)=5.95, p<.01, ηp
2 = .10 (figure 4), and

the  interaction  between  Calculation  Type  and  Operation,  with  F(2,  204)=16.42,

p<.001, ηp
2 =.13 (figure 3).
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As can be seen in figure 4, the interaction between Required Force and Operation
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Figure 4: Interaction between Operation (addition, subtraction) and Required Force (null, low, high) 

factors. Continuous lines represent the high level of the Required Force factor, while dashed and 

dotted lines represent respectively the low and null level of the same variable.



seems  to  indicate  that  the  grater  overestimation  in  additions  compared  with

subtractions  depends  on  the  force  required,  in  that  it  reverses  when  no  force  is

required.  Moreover,  the  interaction  between Calculation Type and Operation (see

figure 5) seems due to the different trends of the carry type of calculation compared

with the no-carry and zero types of calculation.

Thus, considering that either the force required or the type of calculation seems to
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Figure 5: Interaction between Operation (addition, subtraction) and Calculation Type (carry, no-carry,

zero) factors. Continuous lines represent the carry level of the Calculation Type factor, while dashed 

and dotted lines represent respectively the zero and no-carry level of the same variable.



modulate the OM effect, two new ANOVAs were carried out, one for the carry type

of calculation and one for the no-carry and zero types of calculation, to investigate

the role  of the force required in  the different  types  of calculation. In the former

ANOVA, with the between-participants factor Required Force (null, low, high) and

the  within-participants  factor  Operation  (addition,  subtraction),  only  the  factor

Operation reached significance with  F(1, 102)=16.21,  p<.001, ηp
2 =.13 (addition=

42.74,  subtraction=  47.05).  The  interaction  failed  to  reach  significance. In  the

ANOVA,  for  the  other  two  Calculation  Type  conditions,  with  one  between-

participants  factor  Required  Force  (null,  low,  high)  and  two  within-participants

factors,  i.e  Calculation  Type  (no-carry  vs.  zero)  and  Operation  (addition  vs.

subtraction),  the significant sources of variance were Calculation Type, with  F(1,

102)=10.11,  p<.01, ηp
2 = .10 (zero=44.53 vs. no-carry=42.55) and Operation, with

F(1,  102)=11.37,  p<.01,  ηp
2 =  0.09 (addition=44.51,  subtraction=42.57).  The

interaction between Required Force and Operation was significant, too, with  F(2,

102)=5.24,  p<.01, ηp
2 =.09, whereas the interaction between Calculation Type and

Operation failed to reach significance (F(2, 102)<1).
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Figure 6: Interaction between Operation (addition, subtraction) and Required Force (null, low, high) 

factors in the ANOVA without the carry level of the Calculation Type  factor. Continuous lines 

represent the high level of the Required Force factor, while dashed and dotted lines represent 

respectively the low and null level of the same variable.



As can be seen in figure 6, the trends show that the expected overproduction in

addition compared  to  subtraction  occurs  in  the  high  and  low  Required  Force

conditions  only,  and disappears  when the  force  required  is  null.  Indeed,  planned

comparisons  confirmed  that  the  difference  between  addition  and  subtraction  is

significant in the high and low Required Force conditions together (F(1, 102)=21.22,

p<.001, ηp
2 = 0.17), whereas no significant difference was found between addition

and subtraction in the null Required Force condition F(1, 102)<1. Moreover, the last

planned comparison, carried out to check for parallelism of the trends of the high and

low Required Force conditions, confirmed that the difference between addition and

subtraction in the high Required Force condition does not differ from the difference

between addition and subtraction in the low Required Force condition (F(1, 102)<1).

Discussion and Conclusions

The current study investigated whether the operational bias can be accounted for

by a shared magnitude mechanism. Participants were instructed to solve addition and

subtraction problems and generate a dot cloud as a response to the rotation of a knob.

The crucial manipulation consisted of a between-subject variation of the force that is

required to rotate the knob (null, low and high Required Force). Based on the idea

that  numerical  magnitude and sensorimotor  magnitudes  are  linked by a  common

system (Lindemann, Abolafia,  Girardi,  & Bekkering,  2007), a positive correlation

was predicted between the operational bias and Required Force. Importantly, in line

with our prediction, the operational bias in the low and high force group was larger

than the operational bias in the null force group. This finding supports the idea of a

functional  role  of  shared  magnitude  codes  for  solving  mental  addition  and
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subtraction.

The modulation of the operational bias by required motor force shows how the

operational bias effect is influenced by the presence of a non-spatial sensorimotor

magnitude, which it is difficult to explain by a mere spatial shifts of attention on the

mental  number line.  Importantly,  an  operational  bias  was  observed  only  when

numerical  magnitude was positively  correlated  with motor  force.  In  the  no force

condition, in which numerical magnitude was not correlated with motor force, the

operational bias was absent. Our results extend earlier evidence for the involvement

of shared magnitude codes in number processing (Andres, Davare, Pesenti, Olivier,

& Seron, 2004; Lindemann, Abolafia, Girardi, & Bekkering, 2007; Vierck, & Kiesel,

2010)  to  mental  calculations.  The  fact  that  the  operational  bias  is  sensitive  to

demands on force processing supports the idea that a shared magnitude system is

functionally involved in mental arithmetic.

It might be objected that since the knob had to be rotated clockwise to increase the

number of dots, activation of the mental number line is driving the operational bias.

Importantly,  the operational  bias  was absent  in  the null  force condition and only

significant in low and high force conditions. If the rotation direction was responsible

for our findings, the operational bias should also appear in the null force condition.

However, our findings do not argue against the mental number line account of the

operational bias, but suggest that the explanation may be more complex, involving a

general representation of magnitudes. A study from Pinhas and Fischer (2008) has

provided more direct evidence for a spatial mechanism underlying the operational

bias.  The authors  found that  participants locate  the position of a number slightly

leftwards after subtractions and slightly rightward after additions, compared to its

actual  position.  An interesting  question  for  future  research  is  how far  attentional

68



shifts in  space  and  processes  within  a  shared  magnitude  system  are  related.

According to the idea of shared representations for space, number, and sensorimotor

magnitudes, it  might be envisioned that both couplings of mental arithmetic with

space and force are driven by a common system (Walsh, 2003).

Aside from the modulation of the operational bias by required motor force, the

results from the present experiment are congruent with results from previous studies.

First, the good fits of the estimations suggest that participants had no difficulties with

our tasks; moreover, the subjects in both tasks responded quickly, and their response

times do not increase with the number size, which reveals that they did not use a

counting  strategy  but, instead,  based  their  judgments  on  approximate  numerosity

estimation (Akin and Chase, 1978; Mandler and Shebo, 1982; Trick and Pylyshyn,

1993).

Second,  in  the  numerosity  judgment  task,  it  was  found  that  dots  were

systematically overproduced compared to the target, and so the number of dots in the

visually  presented  set  were  systematically  underestimated.  The  overproduction

tendency was verified by a linear regression on log-transformed values with results

in line with previous studies (Izard & Dehaene, 2008).

Third, in the mental calculation task, it  was found that precision of judgments

decrease with  number  size.  Other  studies  on  non-verbal  approximate  number

processing have previously reported that variability estimates increase proportionally

to  number  magnitude,  a property  called  'scalar  variability'  (Whalen,  Gallistel,  &

Gelman, 1999; Cordes, Gelman, Gallistel, & Whalen, 2001; Izard & Dehaene, 2008).

The  present  study  confirms  the  notion  that  accuracy  of  number  representations

decreases  with  number size  and provide,  thus,  new support  for  the adherence  of

internal number representations to the Weber’s law.
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Fourth, in the mental calculation task the analysis of the first sub-design, shows

that participants produced systematically more dots when indicating the outcome of

an addition problem than when indicating the result of a subtraction problem, thus,

providing empirical  evidence  of  operational  bias  effect.  This  result  replicates  the

finding  of  a  response  bias  after cross-notational  arithmetic  as  previously

demonstrated (Phinhas and Fisher, 2008; Lindemann and Tira, 2001).

The analysis on performance in the mental calculation task also showed that the

operational bias effect was not present if the operations required a carry or borrow

operation; the difference between addition and subtraction operations was not only

reduced  for  carry  operations,  but  even  reversed.  Carry  operation  involves  a

decomposition  of  the  place-value system  and  results  in  an  increased  load  of

phonological  working  memory  resources  (DeStefano  &  LeFevre,  2004;

Deschuyteneer et al., 2005; Kalaman & Lefevre, 2007; Imbo et al., 2007). Therefore,

one might assume that the processing of carry operations, which is strongly based on

verbal  processing  strategies,  engages  fewer  non-verbal  analog  representations  of

numerical magnitude information. Furthermore, this could explain the lack of effect

of the variable Required Force on Carry operations. An alternative explanation for

the  absence  of  the  operational  bias  effect  for  carry  operations  could  be  that

participants ignored  or  approximated  the  unit  values  of  the  proposed  two  digit

numbers.  Considering carry  operations,  in  the  case  of  an  addition,  this  heuristic

would result in an underestimation of the outcome, and in the case of a subtraction in

an overestimation. However, this approximation would leave the difference between

addition  and  subtraction  in  no-carry  and zero  operations  virtually  unaffected  on

average. Considering the mean result of the operations presented in this work against

the mean values resulting by the application of this heuristic (Figure 7), it is possible

70



to see how this could explain the inverse OM effect in carry operations.
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Figure 7: Plot of the operations' results in the calculation task divided by Operation (addition, 

subtraction) and Calculation Type (carry, no-carry, zero). Dashed lines represent the correct outcome 

of the operations, while continuous lines represent the modified operations' results, computed 

ignoring the units value of the two operands.



Number magnitude has been demonstrated to be connected to several domains, as,

space (e.g.,  Dehaene et al.,  1993) and time (e.g.,  Xuan et al.,  2007) for example.

Walsh  (2003)  proposed  a  system  located  in  the  inferior  parietal  lobe,  in  which

magnitudes of different domains are represented together and are used as the basis

for action. Within this framework, the operational bias effect has been interpreted as

support  for  an  analog  representation  of  symbolic  and  non-symbolic  numerical

magnitude information (McCrink et al., 2007; Pinhas & Fischer, 2008). Our findings

extend  the  existing  knowledge  on  magnitude  interferences  to mental  arithmetic,

supporting the idea of an involvement of the AMS in mental arithmetic.
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Study 3: Individual differences in the representation of numbers

As seen in the introductory sections, one of the most influential representations of

numbers takes the form of a mental number line. Different behavioral measures are

assumed to tap into this representation and to reveal different aspects of it. One of

these measures, by showing an association between sides of space and magnitude of

numbers, is thought to reflect the spatial orientation of the MNL, that is, the SNARC

effect.  The  distance  effect  is  used  to  characterize  the  precision  of  the  MNL by

assessing  the  degree  of  overlap  between  the  representations  of  two  different

numerosities. Behaviorally, as seen in the introduction section,  the distance effect

corresponds to slower reaction times when comparing two numbers separated by a

smaller  numerical  distance.  The more  precise  the  MNL, the  less  participants  are

impacted by the numerical distance between the numbers to be compared, resulting

in a smaller distance effect. the distance effect was investigated in the context of

symbolic comparison tasks 

Interesting example of within magnitude interferences commonly explained with

the NML is the size-congruency effect. Henik and Tzelgov (1982) showed that when

Arabic numerals  physical  size is  systematically manipulated,  judgments of which

numeral  is  larger  (in  size  or  number) showed  congruency  effects  between  the

attended and unattended dimensions.

Studies that have examined the SNARC effect, as well as other well-established

effects tap into the MNL representation, focused more on the cognitive mechanisms

that underlie these effects, and less on individual differences in these measures of

73



numerical representations. Because, as seen before in this work, the MNL hypothesis

and the mechanisms of the SNARC effect are still debated, a better understanding of

how  individual  differences  in  the  SNARC  relate  to  individual  differences  in

numerical and arithmetical processes may shed light on the underlying mechanisms

of Number representation.  Viarouge, Hubbard and McCandliss (2014) verified the

stability of the individual differences of SNARC effect on diverse sessions, that is,

subject  tested  in  two sessions  sowed similar  effects.  If  the  SNARC does  indeed

represent  a stable  feature of individuals cognition,  then it  would be important  to

know how it relates to other cognitive processes, such as numerical comparison and

mental calculation.

The aim of  studying the relationship of the SNARC effect  to  other  numerical

(distance effect and size-congruency effect) and arithmetical (operational bias effect)

measures, was to investigate the cognitive mechanisms underlying those measures

with  an individual  differences  approach.  That  is,  assuming that  the  SNARC, the

distance effect,  the size congruency effect and operational bias  are all  behavioral

indicators of a unified mental number line, these measures should share common

variance from a participant to an other.  The correlation between all  those effects

suppose to be signature for the MNL has not yet been directly tested. To date, only

two studies concerning the correlation between the SNARC and the distance effect

has  been performed (Schneider,  Grabner  & Paetsch,  2009;  Viarouge,  Hubbard &

McCandliss, 2014). Schneider,  Grabner and Paetsch (2009) conducted a study on

children that  yielded contradictory results  concerning the correlation between the

SNARC and the distance effect. Viarouge, Hubbard & McCandliss (2014) studying

the relation between SNARC and the distance effect in adults, reported a significant

correlation between the two effects. The aim of this study was to broaden the existing
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knowledge  about  the  connection  among  those  effects  seeking  for  a  underlying

behavioral sign of a common processing.

Method

Participants. Thirty-six undergraduate students from the Padova University (14

males)  participated  in  the  experiment.  Participants  were  all  right-handed,  native

Italian  speakers,  all  reported  having  normal  or  corrected-to-normal  vision.  The

average age of participants was 24.19 years (SD = 5.71). Participants received no

compensation for their participation and were naıve to the study hypotheses.

Tasks. Three  tasks  were  used:  a  parity  task,  odd/even  judgment  on  visually

presented  Arabic  digits;  a  symbolic  comparison  task,  comparison  of  a  visually

presented Arabic number to a reference number; and a mental calculation task with a

numerosity production response method, solve an arithmetic problem presented in

Arabic format via the production of a non symbolic numerosity. In all three tasks,

participants were instructed to give their response as quickly and as accurately as

possible.

Parity task. Stimuli were Arabic digits between 1 and 9, excluding 5, presented in

Microsoft  Sans Serif  font  26 pt.  All  stimuli  were presented in the middle of the

screen, in withe on a black background. On each trial,  participants were asked to

indicate the parity of the presented number by pressing either the most leftward or

the most rightward button of the response box using their left and right index fingers.

For each trial, a fixation point (a cross of 26 pt font size) appeared in the center of the

screen for 1 s, followed by the target digit, which disappeared as soon as participants
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responded or after 1.5 s. There was an inter-trial interval (ITI) of 1 s between each

experimental  trial.  The  Parity  task  section  was  divided into  four  blocks  between

which the participants were allowed to take a short break. The position of the fingers

on the buttons remained constant throughout blocks and across participants, that is,

right  index  finger  on  the  right  button,  left  index  finger  on  the  left  button.  The

assignment  between  the  parity  and  the  response  buttons  was  switched  between

blocks,  and the  order  of  the  blocks  was  counterbalanced  across  the  participants.

Blocks 1 and 3 were designed as training blocks to help reinforce the response button

mapping; here each of the 8 digits were presented twice in a random order. In the

experimental blocks (2, 4), each of the 8 digits were presented 9 times, resulting in a

total of 72 trials per block, randomized within each block and with the same parity-

button assignment of the respective training block (1-2, 3-4).

Comparison task. The design of the comparison task was similar to the design of

the parity task, with some exception: each of the 8 digits were presented 10 times per

experimental block, half of the time in 26 pt font and the other half in 36 pt font,

comprising a total of 80 trials per experimental block. Moreover, participants were

asked to decide as quickly and accurately as possible whether the presented digit was

more  or  less  than  5  by  pressing  the  left  or  right  response  button  with  the

corresponding index finger. The order of the assignment between the responses and

the  buttons  was  counterbalanced  across  participants  and  across  the  two  groups

defined by the parity task button-mapping orders (Table 2).
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Table 2. Experimental design. Each session began with a parity task, followed by a comparison task

and an approximate arithmetic task.

Sequence 1 Parity-Sequence 1 Comparison-Sequence 1 Calculation

Sequence 2 Parity-Sequence 1 Comparison-Sequence2 Calculation

Sequence 3 Parity-Sequence 2 Comparison-Sequence1 Calculation

Sequence 4 Parity-Sequence2 Comparison-Sequence2 Calculation

Mental calculation task. The design of the mental calculation task was similar to

the design presented in Study 2, with some exception: only no-carry operations and

low required force have been used. The mental calculation task section was divided

into two blocks between which the participants were allowed to take a short break.

Block 1 was designed as training block to help reinforce the numerosity production

response  method;  here  20  random  two-digits  numbers  were  presented  with  the

request  to  produce  such  a  numerosity  via  the  numerosity  production  response

method. In Block 2, for each trial an addition or subtraction problem was shown, the

participant was instructed to indicate the result of the presented problem as quickly

and accurately as possible. A list of 24 addition and 24 subtraction operations has

been compiled for a total of 48 trials (see Table 3). Each problem comprised two

operands.  No  decade  numbers  or  symmetric  numbers  (e.g.,  22,  33)  occurred  as

operand or result. Operands and result of one problem never had the identical decade

or unit digits. For additions and subtractions, half of the first and half of the second

operands were odd numbers. The outcomes of addition and subtraction operations

were matched.
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Table 3: Addition and Subtraction operations used in the mental calculation task. The results were not

presented during the experiment.

Addition operations Subtraction operation Results

13 + 21

21 +14

12 + 24

14 + 23

12 + 41

24 + 32

41 + 17

53 + 14

51 + 32

63 + 21

12 + 73

52 + 34

57 – 23

69 – 34

98 – 62

58 – 21

74 – 21

68 – 12

89 – 31

79 – 12

97 – 14

97 – 13

98 – 13

98 – 12

34

35

36

37

53

56

58

67

83

84

85

86

Material and Procedure. Participants took part in a forty minutes experimental

session. The three different tasks were programmed using E-prime software (Parity

and Comparison tasks)(Schneider, Eschman, & Zuccolotto, 2012) on a Dell 32-bit

personal computer, equipped with a 26’’ screen ;and with the Expyriment Python's

package (Krause, Lindemann, 2013) on a Acer 3.33 GHz 64-bit personal computer,

equipped with a 26’’ screen.  The two computers were in the same room and the

testing  conditions  (room  and  experimental  set  up)  were  kept  constant  across

participants. A two buttons response box was used for response collection in both the
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parity  and comparison tasks,  while,  in  the  approximate  arithmetic  task  the  same

rotating knob keyboard used of Study 2 were in use.

Results

Standard regression  analysis  assumes  independence  between  different

observations;  an assumption that  is usually  violated by data  from within-subjects

designs. This problem can be circumvented regressing a dependent variable on an

independent  variable  individually  for  each  participant  and  then  comparing  the

extracted  value  for  slopes  between  conditions  or  against  a  population  value  via

standard  significance  tests.  This  procedure,  commonly  known  as regression

coefficient analysis (RCA; Lorch & Myers, 1990, Method 3), only assumes a linear

relationship  between  dependent  and  independent  variables  for  each  individual

participant and can be used for both, continuous and dichotomous predictors (Ahn,

Jung, & Kang, 2002; Lorch & Myers, 1990; Myers & Broyles, 2000). Each of the

effects  considered  in  this  experiment  was  tested  using  the  RCA  technique

implemented with R statistical package (R Core Team, 2013) as described by Pfister,

Schwarz, Carson, and Jancyzk, (2013)

Analysis of the SNARC effect. Correct trials with reaction times between 150 and

1200  ms  were  included  in  the  analysis,  as  previously  used  in  SNARC  studies

(Schwarz & Muller, 2006). For each participant, more than 86% of the total number

of trials  respected this  criterion.  For each participant  and each of  the 8 numbers

tested were calculated the difference in reaction times between the position of the

response-button (dRT = mean RT right – mean RT left). For each participant was

then computed  the slope of  the  linear  regression of  the  8 numbers  on the  dRTs,

representing  the  amplitude  of  the  SNARC  effect  (Fias,  Brysbaert,  Geypens,  &
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D’Ydevalle, 1996; Lorch, & Myers, 1990). Showing an advantage for left-sided over

right-sided responses for small numbers and an advantage for right-sided responses

for large numbers, a negative slope indicates the presence of a SNARC effect. A t-

test was then performed on the obtained regression slopes to test whether the slopes

were significantly different from 0. The Cohen's d effect size was calculated. The t-

tests performed on the regression slopes showed a significant SNARC effect across

the 36 participants (mean slope = -0.25,  t(35) = -3.60,  p  < .001,  d  = -1.21). This

result replicated previous findings and confirmed the presence of a global SNARC

effect in our group of participants.

80



Figure 8: SNARC effects (RT right -RT left ) as a function of the 

corresponding target number clearly show a negative slope.
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Analysis  of  the  distance  effect  and  size-congruency  effect.  The  data  from the

comparison  task  were  analyzed  to  probe  both  the  distance  effect  and  the  size-

congruency effect.  As with the parity task,  only correct trials  with reaction times

between 150 and 1200 ms were included in the analysis. For each participant, more

than 82% of the total number of trials respected this criterion. In order to calculate

the amplitude of the distance effect, the trials were grouped based on the absolute

value of the distance to the reference digit 5, and computed for each participant the

average reaction time for the four distances (1, 2, 3 and 4). For each participant was

then computed the slopes of the regression for the four distances, the two font sizes

and their interaction, against the average reaction times. The slope of the distances

represented  the  amplitude  of  the  distance  effect  and  the  slope  of  the  font  size

represented the amplitude of the size-congruency effect in each subject. In the first

case, a negative slope shows a decrease in reaction times as the distance between the

target and the reference digit increases, which is the distance effect. In the second

case a positive slope shows a decrease in reaction times when the font size of the

number matched the relation between the target and the presented number, which is

the size-congruency effect.

All participants showed a decrease in their average reaction time with increasing

numerical distance. A t-test performed on the 36 slopes showed a significant distance

effect across our group of participants (mean slope = -0.36, t(35) = -4.09, p < .0.001,

d = -1.38). 
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Figure 9: Reaction times as a function of the corresponding distance of 

the stimulus number from the target number clearly show a negative 

slope, that is the distance effect.

Moreover, all participants showed a decrease in their average reaction time when

the font size of the presented number matched the relation with the target number. A

t-test performed on the 36 slopes showed a significant size-congruency effect across

our group of participants (mean slope = -.44, t(35) = -3.82, p < .001, d = -1.29).
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Figure 10: Reaction times as a function of the congruency conditions of 

the stimulus clearly show shorter RT for the congruent condition than for

incongruent, that is the size congruency effect.

Analysis of the operational bias effect. Trials with estimations equal to zero or

three  time  away  from  the  subject  average  estimation  were  not  included  in  the

analysis. For each participant, more than 91% of the total number of trials respected

this  criterion.  For each  participant  was  calculated  the  constant  judgment  error,

defined as the average error between correct outcomes and responses (Schutz & Roy,

1973). For each participant was then computed the slope of the linear regression of

the operation on the constant error. Showing higher estimates for addition compared
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with subtractions, a positive slope indicates the presence of a operational bias effect.

A t-test were then performed on the obtained regression slopes to test whether the

slopes were significantly different from 0. The t-tests performed on the regression

slopes showed a significant operational bias effect across the 36 participants (mean

slope = -.20,  t(35) = -4.46,  p  < .0001,  d  = -1.50). This result replicated previous

findings and confirmed the presence of a global operational bias effect in our group

of participants.
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Figure 11: Error (estimation - target) as a function of the operation (+, 

-) of the stimulus arithmetical problem, clearly show higher 

overestimation for addition than for subtraction, that is the operational 

bias effect.
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Links between the different tasks. The correlation between the SNARC effect, the

distance effect, the size-congruency effect and the operational bias effect was tested

using  the  Pearson  product-moment.  The  standardized  amplitude of  each  of  the

effects, calculated at a participant level, was regressed against the same measure of

each of the other effects to explain the variance in the mean amplitude of each of the

others correlation coefficient (Pearson, 1895).

As can be seen in Table 3, the only two significant correlations can be observed

between  the  mean  amplitude  of  the  SNARC  effect  and the  amplitude  of  the

congruence effect (Pearson’s r = -.43, p < .05), and between the mean amplitude of

the distance effect and the amplitude of the congruence effect (Pearson’s r = .66,  p

< .05).

Table 3. Pearson product-moment correlation coefficients and relative probability values. 

Distance Congruence Operational_Bias SNARC

Distance 0.66 (p < .001) -0.07 (p = .68) -0.31 (p =.07)

Congruence -0.10 (p = .55) -0.43 (p <.05)

Operational_bias -0.30 (p =.08)

SNARC

Discussion

The present study intended to test if the SNARC effect, the distance effect, the

size  congruency  effect  and  operational  bias  share  common  variance  from  a

participant to an other, thus indicating their belonging to a stable, task independent,

mental representation of numbers such as the mental number line. Basic step to study
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the relationship between different cognitive effects on a subject level is to find those

effects in the set of participants. 

During the parity task, participants were instructed to press one of two buttons if a

presented number was even and the other button if odd. The results show that, on

average, responses to small numbers (1,2,3, and 4) given with the left hand and to big

numbers (6,7,8,  and 9) with the right,  were faster than responses to big numbers

given with the left hand and to small numbers with the right. That is, on average

participants showed a statistically significant SNARC effect.

During the comparison task, participants reported whenever a sown number was

bigger or smaller  than the target  number 5.  The data show how, on average,  the

bigger was the distance between the presented and the target number, the faster was

the  response.  Thus,  participants  showed  statistically  significant  distance  effect.

Moreover, during the magnitude comparison task the numbers to be compared were

presented alternatively in two font size. The font size of the number was an irrelevant

dimension  for  the  completion  of  the  task,  nevertheless  the  result  shows  shorter

reaction times when the font size of the stimulus number was congruent with the

numerical value of the presented number in respect to the target,  that is,  when a

number smaller than the target was presented in small fount and vice versa.

In the last of the three tasks, the mental calculation task, participants were asked

to mentally calculate the result of a symbolically presented addition or subtraction,

and to express that result  controlling the numerosity of a dot pattern. The results

show how bigger estimations followed additions and smaller estimations followed

subtraction, even if the true outcomes between them were matched. This discrepancy

in the estimation of the results between addition and subtraction is the operational

bias.
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Summarizing, the participants showed a SNARC effect, a distance effects, a size

congruency effect, and an operational bias effect, replicating all together the result of

previous studies.

The multiple regression analysis operated on the individual amplitude of each one

of the considered effects reveals that the relative contributions of SNARC effect and

distance  effects  represent  significant,  yet  distinct,  contributions  in  explaining

variation in the size of the size-congruency effect on a participants level. Differently

from  what  found  by  Viarouge,  Hubbard  and  McCandliss  (2014)  no  statistically

significant correlation was found between the SNARC and the distance effect. Our

results show that participants with a stronger size congruency effect have weaker

SNARC effect and a stronger distance effect. Whereas, SNARC effect do not show

statistically significant correlation with the distant effect.

More interesting the operational bias effect seem to share variance with none of

the  considered  numerical  effects.  This  may  be  due  to  the  increase  complexity

involved in a calculation task compared to a number task.

Several  studies  using  transfer  paradigms  (Proctor,  Yamaguchi,  Zhang,  &  Vu,

2009; Yamaguchi & Proctor, 2009) reveal the influence of task-defined mappings on

processing  of  task-irrelevant  stimulus  attribute  in  sequential  tasks.  That  is,  when

response selection is performed based on associations between specific stimuli and

responses, after an associations are learned, these associations remain in memory and

affect performance in subsequent tasks if those particular stimulus features occur and

retrieve the learned associations (Bae, Choi, Cho, & Proctor, 2009).

To test the possible effect of mapping sequence from a task to the sequent one, the

regression coefficients derived from the magnitude comparison task and from the

mental  arithmetic  task  should  have  submitted  to  separate  two-way  ANOVAs,
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including the factors parity task mapping sequence (1,2) and magnitude comparison

task (1,2) as the between-participants variables. Nevertheless, the small sample size

for each one of the resulting four, between participants, design cells (9) would be

inadequate to perform such tests. 

Thus, it is only possible to speculate about an influence of the mapping sequence

on  the  result  of  both  the  magnitude  comparison  and  mental  arithmetic  tasks.

However, for completeness in the discussion of the results it will be shown how the

correlation  data  seems to  draw a  picture  that  might  have  failed  to  get  statistical

support due to the possible influence of the mapping sequence. From this point of

view the  operational  bias  effect  might  correlate  to  the  SNARC effect  while  the

SNARC effect, the distance effect and the congruence effect might all correlate. It is

possible that those results failed to get statistically significant due to the effects of the

mapping seguence

 This  result  would  support  the  idea  of  a  shared  representation  of  numbers  in

number tasks; more over the correlation of the operational bias with the SNARC

effect could support the idea of a shared representational mechanism between them.

Nevertheless, the negative value of this  correlation speaks against the idea of the

NML as common basis for the two phenomenons.

To clarify the relationship between the tested effects with better confidence a new

experiment based on the experience of this study would be in order. 
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Chapter 3

General Conclusion and Discussion

The present work showed a wide corpus of scientific literature about adult humans

sharing with non-human animals a non-verbal system for representing discrete and

continuous quantity. These quantities have the properties of continuous magnitudes,

that  is,  errors  in  estimations  about  magnitudes  are  not  equiprobable  but  tend  to

distribute as a Gaussian curve around the estimation. The brains of tested human and

non-human animals perform arithmetic operations with mental magnitudes; they add,

subtract,  multiply,  divide  and  order  them. The  processes  that  map  numerosities

(discrete quantities) and magnitudes (continuous quantities) into mental magnitudes.

Moreover, the operations that the brain performs on those mental magnitudes, lead to

approximate,  but still  valid results  used to effectively drive behavior.  From those

considerations, it is reasonable to think of a neural substrate for this system, evolved

far back in time to drive action in a complex environment.

Despite these notions, a lot abut the fine nature of the mental representation of

number  is  still  unclear;  two  general  accounts  was  described  for clarifying  and

building hypotheses about the mental representation of number and its overlapping

with  the  representations  of  space:  the  mental  number  line  hypothesis  and  the

common magnitude system hypothesis. The first one assume the analog numerical

magnitudes to be represented via a positional coding along a spatial continuum in

which numerical  magnitudes are  mapped onto mental  space from left  to  right  in

ascending  order.  Instead,  the  second  representational  system,  would  represent

numerical magnitudes in a format, analogous to continuous magnitudes, shared with
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other  magnitudes,  like  time,  space,  and  sensorimotor  magnitudes.  This  second

position assume that, even if the findings about the within magnitude interferences

tend to emphasize the relations between the dimensions of space and number. The

fact  that  there  are  so  many studies  that  report  a  relationship  between  those

dimensions,  and  not  others,  can't  by  itself  led  to  the  impression that  there  is  a

phylogenetically privileged relationship among the dimensions of space, time, and

number (Dehaene, Izard, Spelke, & Pica, 2008; Dehaene, Spelke, Pinel, Stanescu, &

Tsivkin, 1999; Srinivasan & Carey, 2010; Walsh, 2003). Indeed, many studies shows

evidence for interaction among quantitative dimensions beyond space and number

that can hardly be explained by the MNL hypothesis.

The experimental works here presented build up from this knowledge to clarify

and refine those models of number representation. The first study was composed by

two experiments and its aim was two folded; first to validate a new response method

to be used in  numerosity  and arithmetical  tasks  (numerosity  production response

method). This was done comparing the results derived with this new method to the

results from a classical method of response (categorical scaling).

The second aim was to compare the influence of primacy and recency between the

two operands on the estimated result of an averaging operation. In both experiments,

the  reaction  times  of  the  participants  were  short  and  did  not  increase  with

numerosity, that is, responses were not produced using counting strategies, that is

important for the validity of both the results and the new response method. In both of

the experiments, the results of the analysis on the estimated averaging values seemed

to indicate that the weights of the two dot patterns did not differ significantly. As a

consequence, the scale values were affected only by the numerosity of the stimulus

and not by its position (1st or 2nd dot pattern). This result demonstrates that neither
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the effect of primacy nor the effect of recency influence the evaluation of the average

numerosity, despite the sequential temporal order of the presentation of the stimuli

(Busemeyer, 1991). In other words, this means that the participants give the same

importance to the two quantities of each trial during averaging operations. This result

legitimate the use of sequential presentation of stimuli in non-symbolically presented

arithmetical  tasks,  reducing  the  fear  of  primacy  and  recency  effects.  Since  the

participants were instructed to perform an averaging operation one might object on

the  generalizability  of  this  result  to other arithmetic  operations.  The  averaging

operation was chose because at the moment was the only one enabling the evaluation

of  the  weight  between  the  operands.  Future  development  of  IIT framework  will

hopefully provide with tools able to evaluate the operands' weights even in additions

and subtractions.

Since an averaging operation was performed, if the response measure was on a

linear scale, the factorial plot should exhibit parallelism. According to the ANOVA

on  the  full  factorial  design,  both  the  rating  data  (Figure  1)  and  the  numerosity

production data  (Figure 2) show clear parallelism, thus validating the numerosity

production, as a response measure on a linear scale, a prerequisite for a method to

study  stimulus  interaction,  and  for  the  analysis  of  non-linear  integration  rules

(Anderson, 1982). Moreover, as a consequence of those results the IIT framework

was established for the first time as a viable instrument in testing mental arithmetic

with discrete quantities.

Aim of study 2 was to investigated whether a shared magnitude mechanism can

account for the operational bias. This experimental question started from the idea of a

common system linking numerical  magnitude  and sensorimotor  magnitudes.  In  a

mental arithmetic task using a numerosity production method of response, the force
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required to rotate the knob was manipulated in a three between participants levels. A

positive correlation between the operational bias and the factor Required Force was

expected. In line with our prediction and with the results of Lindeman et al. (2007),

the operational bias in the low and high force group was larger than the operational

bias in the null force group. This finding supports the idea of a functional role of

shared magnitude codes for solving mental addition and subtraction.

The modulation of the operational bias by the required motor force shows how the

mental representations underling the operational bias effect are, at some stage of the

processing,  influenced  by  the  presence  of  a  non-spatial  sensorimotor  magnitude.

Importantly, an operational bias was observed only when numerical magnitude was

positively correlated with motor force. In the no force condition, in which numerical

magnitude was not correlated with motor force, the operational bias was absent. Our

results  extend earlier  evidence for the involvement of shared magnitude codes in

number processing (Andres, Davare, Pesenti,  Olivier, & Seron, 2004; Lindemann,

Abolafia,  Girardi,  &  Bekkering,  2007;  Vierck,  &  Kiesel,  2010)  That  in,  the

sensitivity  of  the  operational  bias  to  demands  in  force  processing  supports  the

involvement of a shared magnitude system is functionally in mental arithmetic. Aside

from the modulation of the operational bias by required motor force, the results from

study 2 are in general congruent with results from previous studies. 

Study  3  intended  to  test  with  an  inter-individual  differences  approach  a  few

important  effects  in  the  field  of  mathematical  cognition.  The SNARC effect,  the

distance effect, the size congruency effect and operational bias were tested together

to investigate the possibility of them sharing common variance from a participant to

an  other,  thus  suggesting  their  belonging  to  a  stable,  task  independent,  mental

representation of numbers. All participants took part in three different tasks, a parity
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judgment task where they had to  discriminate  between even and odd numbers,  a

magnitude  comparison  task  where  they  were  instructed  to  discriminate  between

number smaller or bigger than 5, and a mental arithmetic task, in which they had to

judge the result of symbolically presented additions and subtractions. By means of

these tasks, the presence of all the effects object of this study was verified in the

participants  set.  Moreover,  linear  regression  have  been  used  to  calculate  the

regression coefficient of each subject for each effect and test the correlation between

the  regression  coefficients  of  all  of  them.  The  result  of  this  study,  even  if  not

conclusive, point in the direction of a common representational mechanism underling

the tested numerical effects (SNARC, size congruency, distance ). On the over hand

the operational bias seem to have a negative correlation only with the SNARC effect.

This might suggest a connection between the two, but for the negative polarity of this

correlation,  the derivation of those effects  from a stable  mapping of numbers on

mental space might seem improbable. Due to shortcomings in a piece of design in

Study 3 a new study to clarify the relationship between the tested effects with an

higher level of certainty is in order. Nevertheless Study 3 demonstrated the existence

of  an  inter-individual  correlation  between  the  SNARC  effects  and  the  size

congruence effect, and between the distance effect and the size congruence effect.

Altogether  the  present  research  work,  by  showing  firstly  non-spatial  within

magnitude  interferences  between  number  and  a  sensorimotor  magnitude,  and

secondly a negative correlation between the SNARC effect and the operational bias,

supports the idea of a more more complex account for the number representation

than the NML hypothesis. Walsh (2003) proposed a system located in the inferior

parietal lobe, in which magnitudes of different domains are represented together and

are used as the basis for action. Within this framework, the operational bias effect has
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been  interpreted  as  support  for  an  analog  representation  of  symbolic  and  non-

symbolic numerical magnitude information (McCrink et al., 2007; Pinhas & Fischer,

2008). Our findings extend the existing knowledge on magnitude interferences to

mental  arithmetic,  supporting  the  idea  of  an  involvement  of  the  AMS in  mental

arithmetic. Those findings do not argue against the mental number line account of the

operational bias, but suggest that the explanation may be more complex, involving a

general representation of magnitudes of which the mental number line could be a

part.  According  to  the  idea  of  shared  representations  for  space,  number,  and

sensorimotor magnitudes,  it  might be hypothesized that both couplings of mental

arithmetic  with  space  and force  are  driven by a  common system (Walsh,  2003).

Future  works  will  have  to  investigate  how  far  attentional  shifts  in  space  and

processes within a shared magnitude system are related.
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