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Abstract

DNA and RNA play an essential role in the life of each living organism. The two molecules
have different characteristics and properties but their functions are strictly related. DNA
encodes all the genetic instructions needed by the main cell activities in the so-called
genome. DNA is related to RNA through the gene expression process, which transcribes the
information encoded by DNA into RNAs. Opposite to the static information provided by
DNA, the set of transcribed RNAs at a specific instant represents the current state of each
cell and, at the end, it provides a dynamic characterization of its activity. For this reason,
transcriptome analysis represents a powerful tool to identify the dynamic behavior of an
organism, such as the response to environmental stimuli or the pathological mechanisms
involved in diseases.

In recent years, transcriptomic analyses were revolutionized by the advent of RNA
sequencing (RNA-Seq), a new methodology that applies current Next Generation Sequencing
(NGS) techniques to RNA molecules. RNA-Seq enables to investigate at high resolution
all the RNA species present in a sample, characterizing their sequences and quantifying
their abundances at the same time. In practice, millions of short transcript sub-sequences,
called reads, are sequenced from random positions of the input RNAs using the same NGS
platforms employed in DNA sequencing. Unfortunately, no information is provided about
which transcripts have generated the reads or from which part of the transcripts they come
from. For this reason, reads represent at the same time the output of the sequencing process
and the input of complex RNA-Seq data analysis pipelines. The first task in many RNA-Seq
data analysis pipelines consists in identifying the relation between the sequencing output (i.e.
reads) and the sequenced transcripts. The most common approach to this problem consists in
aligning the reads against a reference genome. Once the reads are positioned in the genome,
it is possible to infer which transcripts have generated them analyzing the read locations. The
information coming from the positions and the number of reads could be employed in a wide
range of downstream analyses. For example, counting the number of reads aligned to a gene
could give a measure of its expression level, whereas studying which reads are located across
exon junction could identify different isoforms. At first glance, these tasks may seem very
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simple, but the implementation of both the single steps and the whole analysis workflow are
in fact complex and still not well defined.

The aim of this Ph.D. research project was the improvement and the assessment of
the computational methods involved in the RNA-Seq data analysis pipeline. Among all
the analysis steps in the pipeline, this thesis is focused on the read alignment problem.
Read alignment is identified as one of the most critical steps, both for its almost ubiquitous
presence in the different RNA-Seq analysis workflows and for its complexity. The study of
this pivotal task was carried out through several steps. First, a complete characterization of
the problem was performed, analyzing the alignment challenges both from a methodological
and a computational point of view. In addition, the algorithms and data structures employed
in the alignment process were analyzed together with different ways of modeling the read
alignment problem. Then, state of the art methods for RNA-Seq read alignment were
identified performing a thorough literature search about RNA-Seq, which revealed the
presence of many available methods. At the same time, the literature search highlighted that
the identification of a suitable alignment method for a specific application is challenging,
mainly due to the lack of accurate comparative analyses. Thus, a comprehensive benchmark
analysis of fourteen splice aware alignment methods and four splice unaware tools was
designed and performed. The simulation of several datasets describing real scenarios and the
definition of a comprehensive set of accuracy and efficiency metrics were performed in order
to assess the different alignment methods. The assessment revealed considerable differences
between methods’ performance, highlighting often a poor correlation between accuracy and
popularity. Finally, the effect of the alignment accuracy on the reliability of an expression
level quantification study was assessed for a subset of alignment methods.

Overall, this thesis considers the RNA-Seq read alignment problem and presents a
thorough characterization of its characteristics and challenges. In a fast evolving research
field such as RNA-Seq, the information resulting from the assessment of state of the art
methods provides some valuable guidelines for the definition of robust and accurate analysis
pipelines.
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Chapter 1

Introduction

In every living organism, DNA molecules encode all the genetic instructions required to
build the RNAs and proteins that are needed to the growth, development, functioning and
reproduction of the cell. However, DNA represents a static set of instructions and so is not
able to explain the dynamic behavior of an organism, such as the evolution through diverse
developmental stages or the response to environmental stimuli. Great part of organisms’
dynamicity and complexity is indeed explained by gene expression, i.e. the process that
transforms the information encoded in the genome into a functional product. In the gene
expression process, each cell can activate a specific set of genes required for executing
regulatory actions as well as functions or responses to stimuli; the genes are activated through
their transcription into RNA copies. Since RNA transcription is the activation of several
processes and control mechanisms that make up the complex gene expression machinery,
substantial insights can be drawn from the study of organisms’ transcriptomes.

Hybridization-based approaches such as microarrays, have been the most used solutions
for gene expression profiling and differential expression (DE) analysis for many years, thanks
to their high throughput and relatively low costs [1].

In 2008, the advent of a new methodology called RNA sequencing (RNA-Seq), has
revolutionized transcriptomics research enabling the simultaneous characterization of the
sequences of the transcripts present in a cell and the quantification of their expression
levels [1–5]. Compared to previous approaches, RNA-Seq methodology offers several key
advantages:

• It is not limited to the detection of transcripts corresponding to well-annotated genomic
sequences, but can be used to perform novel transcript discovery or to sequence
non-model organisms;
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• It does not have an upper limit for quantification, thus ensuring a large dynamic range
of expression levels over which transcripts can be detected;

• It achieves high levels of reproducibility for technical replicates [2, 6];

• Transcript sequences can be read at single-base level.

The possibility of sequencing transcriptomes at single-base resolution is borrowed from
Next-Generation Sequencing (NGS) platforms, which represent the technological framework
of the RNA-Seq methodology. Next-Generation Sequencing technologies produce enormous
amount of data, enabling to sequence entire genomes and transcriptomes in a single instru-
ment run at dramatically reduced time and costs. In practice, millions of short sequences,
called reads, are sequenced from random positions of the input RNAs using the same NGS
platforms employed in DNA sequencing.

Despite being already widely used, RNA-Seq is a very recent methodology that is
experiencing a fast and continuous development of both experimental and computational
procedures. In particular, the number of available methods for performing each step of
RNA-Seq data analysis has grown at such a fast pace so to prevent the definition of a unified
and standardized computational pipeline.

In this scenario, the research described in this thesis was originally motivated by the need
of identifying robust computational methods for the analysis of RNA-Seq data, focusing
on one of the most critical and widely performed tasks such as the alignment of RNA-Seq
reads. All the contributions described in this thesis, and related to the study, improvement
and assessment of the RNA-Seq analysis pipeline, are the results of the research activity
carried out within this Ph.D. program.

This chapter provides a brief overview of the RNA-Seq read alignment problem, high-
lighting challenges and open issues. The motivations of the research are described together
with the aim and the main objectives of the thesis. In addition, the structure of the thesis is
presented in the last section.
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1.1 Motivations and objectives

RNA-Seq provides nearly unlimited possibilities in modern transcriptome analyses, resulting
in a wide variety of applications. However, the study of high-throughput RNA sequencing
data requires the design of sophisticated analysis pipelines involving many computational
steps.

While many downstream steps in the pipeline are specific for the particular application,
few preliminary tasks are common to the great majority of studies. These common steps
involve the processing of sequencing reads and have a pivotal role in the accuracy and
reliability of the several downstream analyses.

The millions of reads produced by current NGS technologies are sequenced from random
positions of the input RNAs. So, the output of the sequencing process are just millions
of transcript sub-sequences, but no information is provided about which transcripts have
generated them or from which part of the transcripts they come from. Therefore, the first
step in any RNA-Seq data analysis consists in identifying the relation between the available
reads and the transcripts present in the sequenced sample.

The most common approach to this problem consists in aligning the reads against a
reference sequence, such as a genome or a transcriptome. Once the reads are positioned
in the genome, it is possible to infer which transcripts have generated them by analyzing
the read locations. The information coming from the positions and the number of reads are
then employed by the different downstream analyses. For example, counting the number of
reads aligned to a gene could give a measure of its expression level, whereas studying which
reads are located across an exon junction could identify different isoforms. At first glance,
identifying the position of each read in the reference genome may seem very simple, but the
alignment of RNA-Seq reads is in fact complex and challenging, both in terms of accuracy
and efficiency.

The source of such complexity are both biological and technical factors. For example,
the presence of low complexity regions and polymorphisms such as insertions, deletions and
single nucleotide polymorphisms (SNP) makes challenging the identification of a perfect
match between the read and the reference sequence. Furthermore, the sequencing process is
not error free, resulting in reads that are not perfect copies of the transcript sub-sequence
which generated them and requiring some flexibility during the alignment process. In addition,
the presence of splicing and alternative splicing makes it impossible to find a continuous
location in the genome for reads covering an exon junction. Indeed, the removal of introns
during the splicing process requires the identification of long gaps during the alignment of
such reads against a genome. In particular, it is the need for RNA-Seq alignment methods to
handle intronic gaps (i.e. splice awareness) which makes the alignment problem even harder.
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From the computational point of view, the sizes of the reference genomes (from hundreds
of thousands up to billions of bases) and the large amount of reads (tens or hundreds of
millions) makes the read mapping a computationally intensive task. Typically, finding the
correct positions of available reads in a large reference genome requires tens of GB of RAM
and many CPU hours on a multicore machine.

In order to achieve feasible resource requirement and provide a rigorous modeling of the
mapping process, current alignment methods exploit efficient data structures and algorithms
employed in many string alignment contexts. The first generation of alignment methods
employed a hash table to create an index of the genome, using short nucleotide sequences as
table’s keys and coding in each table’s entry the locations of the associated key. The second
generation of mapping methods exploited suffix arrays and suffix trees to index the genome
and modeled the alignment process as the traversal of such data structures. Both class of
methods have strengths and weaknesses and allow achieving different trade-off between
efficiency and accuracy. Currently, the modeling of the alignment process and the research
of efficient data structures, algorithms and strategies are still open problems.

Due to the pivotal importance of read alignment in the RNA-Seq analysis pipeline and
the challenges in terms of accuracy and efficiency described above, in recent years there
was a considerable effort of the research community in the development of splice aware
alignment methods. However, the complexity of the alignment problem and the increasing
number of available methods have prevented the definition of a unified and standardized
computational pipeline and the possibility to assess the performance of the different methods.
In this uncertain scenario, this thesis is aimed at achieving the following objectives:

• a thorough definition of the read alignment problem, identifying the most important
characteristics and challenges

• the identification of the state of the art RNA-Seq read alignment methods and the
assessment of their performance, both in terms of alignment accuracy and efficiency

• the assessment of the role of RNA-Seq read alignment in the accuracy of expression
level quantification analyses

These objectives are designed to assess and improve the reliability of the alignment step
consequently increasing the accuracy of the overall RNA-Seq analysis pipeline.
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1.2 Structure of the thesis

In order to better outline the RNA-Seq scenario, in Chapter 2 some prerequisite topics such
as transcription and gene expression, Next Generation Sequencing technology, RNA-Seq
experimental procedures and data analysis are introduced. In Chapter 3, the read alignment
problem is presented, analyzing its characteristics and challenges from both a methodological
and a computational complexity point of view. In addition, the available alternatives to read
alignment are briefly described and discussed. State of the art methods for RNA-Seq read
alignment are then identified performing a thorough literature search that involved more than
2000 peer reviewed publications in the context of RNA-Seq. The literature search highlights
that RNA-Seq alignment, a common task in the great majority of RNA-Seq analysis pipelines,
remains in a state of confusion mainly due to a lack of accurate and systematic benchmarking
studies. With the purpose of addressing this issue, in Chapter 4 a thorough benchmark
analysis of read alignment methods is designed. In this chapter, the simulation of datasets
representing several real scenarios is described together with the definition of a complete
set of accuracy and efficiency metrics. In Chapter 5, these metrics and datasets are then
employed to assess the performance of fourteen splice aware algorithms. The same analysis
is performed also on four splice unaware tools and it is described in Chapter 6. The effects
of employing some of these mapping methods on the accuracy of a common downstream
analysis are then assessed in Chapter 7. Specifically, the effects on the expression level
quantification are investigated, using both real and simulated data together with different
read preprocessing policies and read alignment strategies. Finally, strengths, limitations and
future developments of the present study are discussed in Chapter 8.





Chapter 2

RNA sequencing background

Four topics are at the basis of this thesis: RNA and gene expression, Next-Generation
Sequencing technologies, RNA-Seq experiment and RNA-Seq data analysis pipelines.

RNA and gene expression represent the biological context of a RNA-Seq study. The
identification and quantification of transcripts performed through the RNA-Seq methodology
enable a thorough characterization of the cell’s activities. Due to the fundamental role of
RNA in many cell’s functions and processes, the study of this molecule has a pivotal role in
many research fields such as medicine, biology and pharmacology.

Next-Generation Sequencing technologies represent the technological framework of the
RNA-Seq methodology and they have a major role in many strengths and weaknesses of this
novel methodology. Several NGS platforms exist, each one achieving unique characteristics
and features that should be related to the specific objective of the RNA-Seq study.

RNA sequencing shares many experimental steps with DNA sequencing and requires
only few specific experimental procedures. Unfortunately, both the common and specific
steps involved in a RNA-Seq experiment are the source of many biases that are impossible
to eliminate. Therefore, it is important to know the different sources of bias and design the
experiment to minimize the ones which could impact the final results.

Once the experiment is completed, RNA-Seq data are processed through a complex
analysis pipeline. Several step and computational methods are involved in the analysis
of RNA-Seq data, in order to both mitigate the experimental biases and fully exploit the
information contained in the sequenced sample.

The RNA-Seq experiment and data analysis as well as the employed Next-Generation
Sequencing technologies are strictly related to the overall accuracy and reliability of a RNA-
Seq study. For this reason, an introduction to these topics is provided in the following
sections.
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2.1 Biological context

In all known living organisms, DNA stores the whole information needed to make functioning
the cells. DNA (deoxyribonucleic acid) is a nucleic acid and its molecule is composed
by monomer units called nucleotides; each nucleotide consists of a deoxyribose sugar,
a phosphate group and a nitrogenous base. Nucleotides can be of four different kinds,
depending on the base that they comprise: adenine (A), cytosine (C), guanine (G) or thymine
(T). The nucleotides are concatenated to one other by a phosphodiester bond which joins the
5’ end on one nucleotide to the 3’ end of the previous one, forming a strand. In each molecule,
two strands are then bound together through hydrogen bonds between the corresponding
nitrogenous bases, following a precise base pairing rule: adenine only matches thymine,
while cytosine only binds to guanine. Due to the fixed base pairing rule, the two strands
are complementary since one DNA strand could univocally determine the sequence of its
antiparallel strand. The DNA molecule stores the biological information through the specific
sequence in which the four nucleotides appear, encoding in such sequences all the organism’s
hereditary information.

A specific DNA region which encodes a particular functional product or a regulatory
function is called gene and the process which converts the encoded information into the
final product is called gene expression. The conversion is performed through a first step of
transcription in which the genetic information encoded in the DNA is transcribed into a
RNA molecule. Similarly to DNA, Ribonucleic acid (RNA), is a nucleic acid and has a very
similar chemical structure. However, RNA differs from DNA:

• strand structure: RNA is single stranded, DNA is double stranded

• base composition: RNA contains uracil (U) in place of thymine

• sugar composition: RNA contains ribose sugar instead of deoxyribose, which makes it
less stable than DNA

Depending of the final product, the transcribed RNAs molecules could be classified as:

• coding RNA: RNAs whose final product is a protein. The results of transcription is
a messenger RNA (mRNA), which would be decoded by a ribosome into an amino
acid sequence through the translation process. In eukaryotic organisms, the result of
transcription is a precursor mRNA (pre-mRNA) which would be processed to obtain
the final mRNA.

• non-coding RNA: RNAs which do not code for a protein. Non-coding RNAs (ncRNAs)
have control and regulatory functions and are involved in many cellular processes.
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Examples of ncRNAs are ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), microR-
NAs (miRNAs), piwi-interacting RNAs (piRNAs), small interfering RNAs (siRNAs),
small nuclear RNAs (snRNAs), small nucleoar RNAs (snoRNAs) and long ncRNAs
(lncRNAs).

In regards to coding RNA, mRNAs have a pivotal role in the translation of the genomic
information encoded in the DNA (genotype) into the physical characteristics of an organism
(phenotype). Proteins are one of the most important macromolecules in a living organism,
accomplishing several functions such as responding to stimuli, transporting molecules and
catalyzing metabolic reactions. Although several molecules, such as minerals, water and
fats, shape the organisms’ cells, proteins provide the framework for their correct functioning
and organization. Different from prokaryotes transcription, which create a mature mRNA,
in eukaryotic organisms the result of transcription is a pre-mRNA which has to undergo
some post-transcriptional modifications. The first modification consists in the addition of a
methylated guanine nucleotide at the 5’ end of RNA, through a process called “capping”;
the 5’ methylated cap would help the cell to recognize mRNA from other molecules and
protects it from degradation. The 3’ end of mRNA is modified as well, adding a long tail of
adenine bases, called poly-A tail. Similar to capping, this modification prevents mRNA to be
quickly degraded: the longer the poly-A tail is, the longer the mRNA resists to degradation
and the more it is translated into proteins. The last modification step is called splicing and
consists in removing the non-coding regions (i.e. introns) and concatenating together the
remaining coding sequences, called exons. During the splicing process, the order of exons
is always preserved, while some exons can be removed along with introns, giving rise to
different RNAs. This process, called alternative splicing, enables the production of different
proteins (isoforms) starting from the same gene, dramatically increasing the coding potential
of eukaryotic genomes. For example, in human ~95% of genes having more than one exon
are alternatively spliced [7], allowing to produce more than 200000 protein coding transcripts
from about 22000 genes [8].

On the other hand, non-coding RNAs are not translated into a protein but they have a
fundamental role in cell development and differentiation. In addition, they are involved in
several cellular processes such as RNA processing (snRNAS and snoRNAs), translation
(rRNAs and tRNAs), gene expression and transcription (lncRNAs) [9–12].
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2.2 Next Generation Sequencing

Since the discovery of the structure of DNA [13], huge progress have been made in under-
standing the complexity and diversity of living organism genomes. In this context, a major
role is played by DNA sequencing, i.e. the determination of the precise order of nucleotides
that constitute a DNA molecule. The first sequencing technique was developed in 1975 by
Frederick Sanger [14], in which E. coli DNA polymerase was used to copy single-stranded
DNA molecules. Just two years later, Sanger’s group was able to sequence the first genome
using this technique [15]. However, this sequencing method achieved low automation and
throughput, allowing to sequence just few hundreds of nucleotides at a time.

The major breakthrough happened some time later, when the same research group
introduced the “dideoxy chain-termination” method for sequencing DNA molecules, also
known as the “Sanger method” or "Chain termination method" [16]. The new method allowed
a faster and more accurate DNA sequencing, even if the low throughput still remained the
main issues.

In early 90’, the advent of capillary electrophoresis defined the first milestone in the
so-called “high-throughput” sequencing, allowing to sequence up to 96 DNA sequences in
parallel. The method records the light emission signal produced by labelled deoxynucleotides
(dNTPs) during the synthesis of the DNA template complementary strand. Finally, an
algorithm translates the recorded fluorescent emissions into DNA sequences, called “reads”.

Between 2007-2008, the continuous trend in increasing the sequencing throughput leaded
to the development of the so called “Next-Generation Sequencing” (NGS) technologies,
which at the same time greatly reduced sequencing costs and increased the throughput by
a factor of 100-1000 [17, 18]. The main advantage of this new sequencing techniques is a
massive parallelization which allows sequencing of millions of fragments at the same time.
The high parallelization reduces the costs due to the reagents needed and drastically increases
the throughput per run.

Nowadays, these advances have brought the cost of sequencing a human genome down to
around US$1,000 and they have enabled the use of sequencing as a clinical tool [19]. On the
other hand, these advancements are not without limitations since some existing problems are
exacerbated and new problems arise. For example, data produced by NGS platforms show
a higher error rate (0.1–15%) and read lengths generally shorter (35–700 bp for short-read
approaches) than those of traditional Sanger sequencing platforms [20]. Although some long-
read sequencing technologies mitigate the length limitation, they remain considerably more
expensive and at the same time show lower throughput than other platforms. A complete
characterization of modern NGS technologies is presented in the next section.
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2.2.1 Next Generation Sequencing platforms review

Many NGS platforms share some common steps, such as DNA template fragmentation,
adapter ligation and clonal amplification. However, each technology exploits different
techniques and strategies [21–23].

Short read next generation sequencing technologies fall under two broad classes: sequenc-
ing by synthesis (SBS) and sequencing by ligation (SBL). In the first class of methods, a
polymerase is used and a signal (e.g. a fluorophore or a change in ionic concentration) reveals
the strand elongation through the incorporation of a nucleotide. In SBL approaches, the DNA
fragment is hybridized with a probe sequence bound to a fluorophore which is then ligated
to an adjacent oligonucleotide for imaging. The base complementary to specific positions
within the probe is then identified through the emission spectrum of the fluorophore. In order
to better distinguish signal from background noise, both classes of methods usually create
many identical copies of the DNA fragment exploiting bead-based or solid-state generation
strategies (Figure 2.1).

Fig. 2.1 Amplification strategies a) Bead-based amplification methods, b) Solid state amplifi-
cation methods. Image taken from [23].

Bead-based preparation methods use beads covered with deoxynucleotides (dNTPs),
primers, DNA polymerase and oligonucleotide fragments complementary to adapters. DNA
templates are then ligated to adapters sequences and are captured in micelles along with
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the beads. Finally, emulsion PCR (emPCR) [24] is performed within the micelle, resulting
in many copies of the same DNA template on each bead. In solid-state methods [25] the
amplification is performed directly on a solid support containing forward and reverse primers
complementary to DNA templates. PCR is then used to create the second strand from
the immobilized primers and the unbound DNA templates are then removed. Template
concentration and location should be properly handled to avoid overlapping clonal cluster. In
order to increase the cluster density, and consequently the sequencing throughput, some NGS
platforms have recently introduced patterned flow cells. Patterned flow cells are prearranged
microwells on the solid support that optimize the cluster spacing. The area between the
microwells is devoid of DNA probes, ensuring that DNA clusters only form within the wells.
The microwells fixed locations provide even and consistent spacing between adjacent clusters,
allowing accurate resolution of clusters during imaging.

In the context of long-read technologies, the leading approach is single-molecule real-time
(SMRT) sequencing, in which the sequence of nucleotides is detected in real-time. SMRT
methods differ from short-read approaches in that they do not require chemical cycling for
each dNTP added and they do not perform a clonal amplification of DNA fragments to
generate a stronger signal.

In the next sections are described four short-read platforms (SOLiD, Illumina, 454 and
Ion Torrent) and two long-read platforms (PacBio and Oxford Nanopore).
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SOLiD

The SOLiD platform exploits a sequencing by ligation approach employing a two-base-
encoded probe [26], i.e. each fluorometric signal represents a dinucleotide. After cluster
generation or bead deposition onto a slide, the two-base-encoded probe is added to the DNA
library (Figure 2.2), followed by degenerate or universal bases. The probe is ligated onto
an adapter complementary anchor and then imaged. Next, some degenerate bases and the
fluorophore are cleaved from the probe, leaving a 5’ phosphate. The process is repeated
several times until the entire strand is elongated. At this point, all anchors and probes
are removed and many other rounds are performed to ensure every base in the template is
sequenced. Since each signal represents a dinucleotide, the output is not directly associated
with a single nucleotide. To identify which of the 16 possible dinucleotide combinations is
the correct one, four fluorescent signals are employed, each one representing a subset of four
dinucleotide combinations. This technique allows decoding the information during the data
analysis and leads to the term color-space data, in opposition with classic base-space data, to
identify the SOLiD output.

Fig. 2.2 SOLiD sequencing. Main steps involved in the SOLiD sequencing process. Colored
elements: probe (dark blue), degenerate bases (pink), anchor (light purple), adapter (red).
Image taken from [23].



14 RNA sequencing background

Illumina

The Illumina system is a sequencing by synthesis platform using a cyclic reversible termina-
tion (CRT) approach. Similar to Sanger sequencing, a CRT approach prevents the elongation
using terminator molecules in which the ribose 3’-OH group is blocked [27, 28]. After solid-
state template amplification, a mixture of DNA polymerase, primers and modified nucleotides
are added to the flow cell. The modified nucleotides are 3’ blocked and labelled with a base-
specific cleavable fluorophore. At each cycle, fragments in each cluster incorporate just one
nucleotide while the unbound dNTPs are washed away (Figure 2.3). The slide is then imaged
and the dNTPs are identified through total internal reflection fluorescence (TIRF) microscopy
using either two or four laser channels. The fluorophores are then cleaved and removed
and the 3’-OH group is regenerated with the reducing agent tris(2-carboxyethyl)phosphine
(TCEP). Several cycles of nucleotide addition, strand elongation and cleavage are performed
until the end of the sequencing process.

Fig. 2.3 Illumina sequencing. Main steps involved in the Illumina sequencing process. Image
taken from [23].



2.2 Next Generation Sequencing 15

Ion Torrent

Ion Torrent is a sequencing by synthesis platform employing a bead-based template enrich-
ment and a single-nucleotide addition (SNA) approach. Unlike CRT, the SNA approach
requires that each of the four dNTPs is added iteratively during the sequencing reaction. As a
consequence, the SNA approach does not require the nucleotides to be 3’ blocked, since the
elongation is prevented by the absence of the next dNTP in the sequencing reaction. In the
particular case of homopolymer regions, the nucleotides identification relies on the detection
of a proportional increase in the signal due to the incorporation of multiple dNTPs. Ion
Torrent is the first NGS system without optical sensing [29], exploiting the detection of H+

ions that are released during each dNTP incorporation. As each dNTP is incorporated, the
H+ ion release results in a variation of 0.02 unit in pH, which is detected by an integrated
complementary metal-oxide semiconductor (CMOS) and an ion-sensitive field-effect tran-
sistor (ISFET) device (Figure 2.4). However, the pH variation detected by the sensors is
imperfectly proportional to the number of dNTPs detected, resulting in limited accuracy in
measuring homopolymer regions.

Fig. 2.4 Ion Torrent sequencing. Main steps involved in the Ion Torrent sequencing process.
Image taken from [23].
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454

454 pyrosequencing [30] is the first NGS instrument ever developed. It belongs to the
sequencing by synthesis class and exploits a single-nucleotide addition approach. After
bead-based template amplification, beads are distributed on a microplate along with primers
and beads containing an enzyme cocktail. A single nucleotide species is then added to the
plate and DNA polymerase synthesizes the complementary strand incorporating the available
dNTPs. A pyrophosphate molecule is the by-product of this reaction and along with ATP
sulfurylase transforms adenosine 5’ phosphosulfate (APS) into ATP. ATP is involved in the
conversion of luciferin to oxyluciferin by luciferase, resulting in a bioluminescence signal.
Finally, incorporated bases are degraded using apyrase and the next dNTP is added to the
wells. The light emissions due to the incorporation of one or more identical dNTPs is then
detected by a charge-coupled device (CCD) camera (Figure 2.5).

Fig. 2.5 454 sequencing. Main steps involved in the 454 pyrosequencing process. Image
taken from [23].
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PacBio

PacBio is currently the most widely used long-read platform employing a SMRT approach
[31]. The process starts with the ligation of the DNA templates to hairpin adapters at each
end, resulting in the ’SMRTbell’, a circular DNA molecule containing the double-stranded
DNA template in the middle and constant single-stranded DNA (ssDNA) regions at each
end. A size selection protocol is then performed, followed by the attachment of primers and
DNA polymerase to the ssDNA regions of the SMRTbell. The library is added to a particular
flow cell with several thousands of individual picolitre wells with transparent bottoms, called
zero-mode waveguides (ZMW) [32]. Polymerase is fixed to the bottom on the well and
allows the DNA strand to progress through the ZMW (Figure 2.6). A mixture of labelled
dNTPs is added and the nucleotide incorporation per well is monitored with a laser and
a camera. The sensors allow detecting the color and the duration of the emitted light as
the nucleotide momentarily pauses during the activity of the polymerase at the bottom of
the ZMW. Before the next labelled nucleotide is incorporated, the polymerase cleaves the
fluorophore during strand elongation, allowing it to diffuse away from the sensor area. In
addition, the circular shape of the SMRTbell allows each template to be sequenced many
times since the polymerase would repeat the traverse through the circular molecule. These
multiple passes are exploited to create a consensus read of insert, called circular consensus
sequence (CCS).

Fig. 2.6 PacBio sequencing. Main steps involved in the PacBio process. Image adapted from
[23].
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Oxford Nanopore

Oxford Nanopore platform is different from any other sequencing system since it does not
monitor incorporations or hybridizations of nucleotides guided by a template DNA strand.
A nanopore sequencer directly identifies the DNA sequence of a native ssDNA molecule
passing it through a protein pore as current is passed through the pore [33]. In details, while
a motor protein moves the DNA into the pore, a voltage change occurs modulating the
current passing through the pore (Figure 2.7). Various parameters, including the duration
and magnitude of the current shift, define the so-called squiggle space. Through the analysis
of the squiggle space data it is possible to identify the particular DNA sequence passing
through the pore. In the library preparation process, DNA is fragmented to 8–10 kb and two
different adapters, a leader and a hairpin, are ligated to either end of the fragmented dsDNA.
The leader adapter consists of a double-stranded fragment containing a tether sequence to
help direct the DNA to the membrane surface and a sequence to direct the DNA into the pore.
The harping links the two DNA strands, allowing for both the full forward and full reverse
strand of a double-stranded DNA molecule to be sequenced and associated.

Fig. 2.7 Oxford Nanopore sequencing. Main steps involved in the Oxford Nanopore process.
Image taken from [23].
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Platforms comparison

As summarized in Table 2.1, each sequencing platform achieves different throughput, cost
and error profile. Even if the SOLiD platform shows one of the highest accuracies, the
short read length and some known substitution errors and AT/GC-rich under representation
biases [35, 36] limit its popularity. Similarly to SOLiD, the Illumina platform shows some
under-representation in AT/GC-rich regions [36–38] and a tendency towards substitution
errors [39]. However, Illumina dominates the short-read sequencing industry, probably due
to the maturity of its technology and the wide range of platform options. Both the Ion Torrent
and the 454 platforms achieve higher read lengths compared to the other short read systems,
but the employed SNA approach results in a higher indel error rate and a difficult handling of
homopolymer regions [40].

In the context of long read platform, PacBio is the most widely used platform. One
of the main limitation of this system in the high indel error rate (up to 15%) for a single-
pass sequencing (i.e. the molecule is not sequenced multiple times) [41]. However, if the
molecule is sequenced more times the accuracy quickly increases, reaching 99.999% for a
molecule sequenced 10 times [42]. Compared to PacBio, Oxford Nanopore technologies
are not very widespread, mainly due to several limitations on fragment size and accuracy
on homopolymer regions [43]. On the other hand, the small dimension of the USB-based
ONT MinION platform (MK1 dimension are 3 cm × 10 cm) could be a benefit in several
scenarios, such as rapid clinical responses and hard-to-reach field locations.
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Table 2.1 Summary of NGS platforms. Data taken from [23] and [34]; 2016 update.

Platform Read length
(bp)

Reads Throughput
(Gbp/run)

Runtime Error profile Instrument
cost (US$)

Cost per
Gb (US$)

SOLiD 5500xl 50(SE) ~1400M 160Gb 10d ⩽ 0.1%, AT bias $251000 $70
SOLiD 5500xl 75(SE) ~1400M 240Gb 10d ⩽ 0.1%, AT bias $251000 $70
Illumina MiSeq v2 150(PE) 24-30M 4.5-5.1Gb 24h 0.1%, substit. $99000 $212
Illumina MiSeq v2 250(PE) 24-30M 7.5-8.5Gb 39h 0.1%, substit. $99000 $142
Illumina MiSeq v2 75(PE) 44-50M 3.3-3.8Gb 21-56h 0.1%, substit. $99000 $250
Illumina MiSeq v3 300(PE) 44-50M 13.2-15Gb 21-56h 0.1%, substit. $99000 $110
Illumina NextSeq
500/550 High output

75(PE) 800M 50-60Gb 18h <0.1%, substit. $250 $41

Illumina NextSeq
500/550 High output

150(PE) 800M 100-120Gb 29h <0.1%, substit. $250 $33

Illumina HiSeq 2500
v2 Rapid run

100(PE) 600M 50-60Gb 27h 0.1%, substit. $690 $52

Illumina HiSeq 2500
v2 Rapid run

150(PE) 600M 75-90Gb 40h 0.1%, substit. $690 $45

Illumina HiSeq 2500
v2 Rapid run

250(PE) 600M 125-150Gb 60h 0.1%, substit. $690 $40

Illumina HiSeq 2500
v3

50(PE) 3000M 135-150Gb 5.5d 0.1%, substit. $690 $78

Illumina HiSeq 2500
v3

100(PE) 3000M 270-300Gb 11d 0.1%, substit. $690 $45

Illumina HiSeq 2500
v4

50(PE) 4000M 180-200Gb 2.5d 0.1%, substit. $690 $58

Illumina HiSeq 2500
v4

100(PE) 4000M 360-400Gb 5d 0.1%, substit. $690 $45

Illumina HiSeq 2500
v4

125(PE) 4000M 450-500Gb 6d 0.1%, substit. $690 $30

Illumina
HiSeq 3000/4000

150(PE) 2500B 650-750Gb 1-3.5d 0.1%, substit. $900 $22

Illumina HiSeq X
2 flow cells

150(PE) 6000B 1800Gb 3d 0.1%, substit. $1000 $7

454 GS Junior+ 400 avg.
(SE, PE)

0.1M 70Mb 18h 1%, indel $108000 $19500

454 GS FLX
Titanium XL+

700 avg.
(SE, PE)

1M 700Mb 23h 1%, indel $45000 $9500

Ion PGM 314 200(SE) 0.4-0.5M 30-50Mb 23h 1%, indel $49 $25-3500
Ion PGM 314 400(SE) 0.4-0.5M 60-100Mb 3.7h 1%, indel $49 $25-3500
Ion PGM 316 200(SE) 2-3M 300-500Mb 3h 1%, indel $49 $700-1000
Ion PGM 316 400(SE) 2-3M 600-1Gb 4.9h 1%, indel $49 $700-1000
Ion PGM 318 200(SE) 4-5.5M 0.6-1Gb 4h 1%, indel $49 $450-800
Ion PGM 318 400(SE) 4-5.5M 1-2Gb 7.3h 1%, indel $49 $450-800
Ion Proton 200(SE) 80M Up to 10Gb 4h 1%, indel $224 $80
Ion S5 520 200(SE) 3-5M 0.6-1Gb 2.5h 1%, indel $65 $2400
Ion S5 520 400(SE) 3-5M 1.2-2Gb 4h 1%, indel $65 $1200
Ion S5 530 200(SE) 15-20M 3-4Gb 2.5h 1%, indel $65 $950
Ion S5 530 400(SE) 15-20M 6-8Gb 4h 1%, indel $65 $475
Ion S5 540 200(SE) 60-80M 10-15Gb 2.5h 1%, indel $65 $300
Pacific BioSciences
RS II

~20Kb ~550000 0.5-1Gb 2.5h 13% single pass,
⩽1% circular
consensus read,
indel

$695 $1000

Oxford Nanopore
MK 1 MinION

Up to
200Kb

>100000 Up to 1.5Gb Up to
48h

~12%, indel $1000 $750

bp, base pairs; d, days; Gb, gigabase pairs; h, hours; AT, adenine thymine; indel, insertions and deletions; Kb,
kilobase pairs; M, million; Mb, megabase pairs; PE, paired-end; SE, single-end; substit, substitutions.
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2.2.2 Typical RNA sequencing experiment

RNA-Seq data can be employed in several downstream analyses and the design of the RNA
experiment should reflect the specific goal of the study. Indeed, the choice of the right
RNA preparation techniques, library preparation procedures and sequencing technologies
can considerably affect the reliability and accuracy of the final analyses. The choices of
sequencing depth, read coverage, read length, coverage uniformity, number of replicates
(technical / biological), library type, etc. allow to shape the experiment to better fit specific
requirements. For example, long reads are very important for de novo transcript assembly,
while they have a minor effect on gene quantification. Conversely, the presence of replicates
is extremely important for differential expression analysis, whereas they are less useful in
de novo transcript assembly. The best tradeoff between these options highly depends on the
available budget and the kind of downstream analysis. By the way, the different procedures
for RNA processing, library preparation and sequencing introduce several experimental
biases that are impossible to eliminate. For this reason, it is important to know the different
sources of bias and design the experiment to minimize the ones which could impact the final
analysis.

2.2.3 RNA processing

The first step in a RNA-Seq experiment is isolating and purifying RNAs. First, the cells
are disrupted and the RNAs are extracted from the total cell lysate. The cell disruption is
achieved using chaotropic agents and detergents and, depending on the sample / experimental
protocol, a mechanical disruption could also be performed. The extraction of RNA from the
cell lysate is usually performed by organic solvents or solid-phase extraction onto silica. In
order to assess how the isolation step achieves both a preservation of RNA integrity and a
separation of RNA from cellular materials, the RNA quality and quantity is usually assessed
at the end of these steps.

The RNA extracted using the above procedure consists of several types of RNAs: more
than 80-90% of total RNA is ribosomal RNA (rRNA) while messenger RNA (mRNA)
represents less than 5% of the total RNA. If the study is not focused on rRNA, then a rRNA
removing step is mandatory otherwise the great majority of reads would come from ribosomal
RNAs. Moreover, the increased sequencing depth allows the identification of low expressed
transcripts and rare variants. There are two methods that are commonly used for rRNA
depletion: selection of target RNAs via hybridization to oligo-dT and removal of not-target
RNAs via hybridization [44]. They work following opposite approaches, since the first one
allows directly selecting mRNA while the second one selectively removes ribosomal RNA.
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The first method uses oligo-dT to recover poly-adenylated RNAs by duplexing with their
poly-A tails. For instance, mature mRNAs are selected by this process, while immature
mRNAs and non-polyadenylated ncRNAs are lost. Poly-A selection method requires a high
proportion of mRNA with minimal degradation and usually produces a higher overall fraction
of reads falling onto known exons. The second method uses oligos that are complementary
to highly conserved rRNA sequences. Different from the first method, this technique allows
preserving non-polyadenylated RNAs and it is widely used for prokaryotic organism.

The last step before library preparation is RNA fragmentation. The RNA sequences are
usually longer than current read lengths, therefore a fragmentation step is useful to both
improve the transcriptome coverage and reach the appropriate size for sequencing. The
original protocols performed the fragmentation step after the cDNA conversion, which is still
mandatory when the first strand synthesis is performed using oligo-dT or when the goal is to
sequence full length RNA transcripts. However, in recent years fragmentation of RNA before
cDNA conversion is becoming more popular. The most commonly used RNA fragmentation
techniques are enzymatic, heat, metal ion and sonication. The fragment sizes is determined
by the NGS platform and the specific sequencing application. For example, gene expression
analysis does not require long fragments while for analysis of transcription start and stop
sites or alternative splicing a large insert size would be advisable.

2.2.4 Library preparation

The RNAs obtained by the previous steps are still not suitable for the sequencing process.
Since RNA is much more labile than DNA and RNases are harder to inactivate compared to
DNases, RNA extraction is a critical procedure.

Current sequencing technologies work with DNA as input, so the RNA must be converted
to double stranded complementary DNA (cDNA). The conversion of RNA into cDNA
ensures the stability of the sample’s information content. The current protocols use a
particular type of polymerase known as reverse transcriptase (RT) to synthesize DNA from
a RNA template. Reverse transcriptase requires a primer annealed to DNA or RNA to
initiate the polymerization. There are several techniques for first-strand priming, the most
used are oligo-dT and random primers. The first technique is one of the oldest first strand
priming methods and uses oligo-dT to prime synthesis of the poly-A tail of mature RNA.
Since the priming sequence is the same for all the mRNAs, they should be equally primed
independently from their coding sequence. On the other hands, this technique works only
for polyadenylated RNAs; for instance, not mature mRNAs or bacterial mRNAs are lost by
this method. Obviously, this method requires to not fragment the RNA before the priming
process. An important problem that affects this priming technique is the not uniformity
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in sequence coverage [1]. Indeed, the RT is not a highly processive polymerase and so it
could prematurely terminate resulting in a higher coverage in the 3’-end compared with the
5’-end. The second technique employs primers with random sequences and it is probably the
most used first strand synthesis method. Compared with oligo-dT, this technique shows a
reduced 3’ coverage bias since the random primers could anneal throughout the length of the
RNA. However, the priming process is not completely random and some nonuniformity in
transcript coverage is still present [45]. Other advantages of this technique are the possibility
to use RNA fragmentation and the recovering of non-polyadenylated RNAs.

After the first strand synthesis is completed, the second cDNA strand must be synthesized.
As for the first strand synthesis, several options exist. One of the oldest and most used
techniques employs E. coli DNA polymerase I for the synthesis, while E. coli RNase H is
used to nick the RNA template and creates the RNA fragments that act as primers. The
last step consists in the repairing of nicks and it is performed by T4 DNA ligase. This
second strand synthesis procedure is highly efficient and well optimized, but has the major
drawback of losing the RNA 5’ end. This disadvantage was tackled by some new techniques,
which pre-ligates an adapter to the 5’ end of the RNA template and uses oligos that are
complementary to this adapter to prime the second strand synthesis.

Once the cDNAs are ready, the next step in library preparation consists in adding adapter
sequences at the ends of the fragments. Adapters are required by the different sequencing
platforms both for clonal amplification and for priming the sequencing reaction. Even if they
have the same function, the adapter composition is specific for the particular sequencing
platform. Moreover, adapters could contain several optional elements employed by particular
techniques (e.g. multiplexing, paired-end sequencing). For instance, adding to each library
a specific tag (called index or barcode) in the adapter sequence allows the identification of
which sequence comes from which library. This procedure allows to pool different libraries
in a single sequencing reaction, saving both time and money. The process of pooling libraries
from different experiments is known as multiplexing. Another useful procedure involves
adapters containing sequencing priming sites for the opposite sides of the fragment. These
adapter elements allow sequencing of both ends of the fragment (paired-end sequencing),
resulting in a higher coverage. The additional information coming from having both ends
of the fragments could be used to increase the accuracy in isoform detection [46] and in the
mapping/assembly process [47].

Additional information about RNA strandedness could be collected by using so called
strand-specific protocols [48], i.e. protocols which allow creating libraries that retain the
strand orientation of the original RNA. Several strand specific protocols exist [49], falling
into two main classes. The first class works marking one strand, either through a bisulfite
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treatment on the RNA or during the synthesis of the second strand, and performing then a
degradation of the unmarked strand. The second class of methods marks the 5’ end and the 3’
end of the original mRNA with different adapters, employing a known orientation pattern
in the attaching process. One of the most used protocols belongs to the first class and is
based on the idea of performing the cDNA conversion and removing one of the two strands
selectively, by using dUTP for the synthesis of the second strand. The knowledge of which
strand a read comes from may be exploited by many applications such as the identification of
antisense transcripts, the determination of expression levels of coding/noncoding overlapping
transcripts and the determination of the transcribed strand of noncoding RNAs.

The final step in library preparation entails a number of PCR cycles to enrich for product
that has adapters ligated to both ends. However, amplification is the source of several biases,
as the well documented relation between GC content and PCR amplification efficiency
[37, 50]. For this reason, it is advisable to minimize the amplification steps, even if it is
challenging for samples with low input.

2.2.5 Sequencing

Sequencing is the last step in the data production process. There are several sequencing
platforms available, each one using different proprietary technologies and chemistries. The
current leading platform is Illumina, followed by IonTorrent and PacBio. Legacy platforms
such as SOLiD and 454 are still used, even if they have been employed less frequently in
recent years. Each sequencing platform has unique strengths and weaknesses, so the choice
of platform depends on the goal of the study. For instance, a transcriptome assembly study
could benefit from PacBio long reads, while for a differential expression study the Illumina
high sequencing depth could be the best choice.
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2.3 RNA sequencing analysis pipeline

The output of a RNA-Seq experiment, as any other NGS experiment, consists of one or
more read files. In order to achieve useful information from the reads, the analysis of RNA
sequencing data requires the design of a complex analysis pipeline (Figure 2.8). The first part
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Fig. 2.8 RNA-Seq analysis pipeline. Flowchart of a typical RNA-Seq analysis pipeline. The
first part of the pipeline (Data preprocessing) handles sequencing reads. The second part
(Data analysis), exploits the processed RNA-Seq data to perform a variety of downstream
analyses.

of the pipeline (Data preprocessing) analyzes the available reads, with the goal of accurate
identification of the relation between the read sequences and the sequenced transcripts. Once
the raw RNA-Seq data are processed, the second part of the pipeline (Data analysis) exploits
the collected information to perform a wide range of downstream analyses, depending on
the particular application. A more detailed description about data preprocessing and data
analysis stages is provided in the next sections.
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2.3.1 Data preprocessing

Once the reads are produced by the sequencing platform, many processing steps are per-
formed in order to exploit the information contained in the reads sequences. Except for some
conversion format procedures, the first task in the read analysis is a quality control step to
assess the overall outcome of the sequencing process. This step allows the identification of
possible issues and the application of a specific set of corrections. Once the quality of the
reads is assessed, the next step involves the identification of which transcripts are present
in the sequenced sample. This goal is achieved by aligning the available reads against a
reference sequence such as a genome or a transcriptome. A brief description of the steps
involved in the data preprocessing stage is presented below.

Quality control and reads preprocessing

Reads coming from sequencing output are usually analyzed in order to assess the quality of
the dataset and identify potential sequencing errors, contamination and PCR artifacts. The
quality control step involves the analysis of GC content, sequence quality (bases quality
values), overrepresented k-mers, duplicated reads and adapters presence. Unfortunately,
the evaluation of the previous elements is not trivial due to the dependency of many of
these metrics on the particular experiment and organism. For example, the threshold for GC
content level should be set depending on the organism, while the rate of duplicated reads
would be different in experiment involving low or high input quantities. Once the correct
scenario for the particular dataset is defined, there are many tools to perform reads quality
control, as the popular software FASTQC [51].

When one or more of the previous analyses highlight some issues, several procedures
could be adopted depending on the detected problem. For example, once an adapter sequence
is detected at the end of a read or poor quality bases are identified, a common action consists
in trimming this part of the read. On the other hand, in the case of contamination or a
low quality read the usual procedure consists in removing the entire read from the dataset.
Software such FASTX-Toolkit [52], NGS QC Toolkit [53], CutAdapt [54] and Trimmomatic
[55] can be used to perform trimming and filtering. However, the definition of a robust
procedure for read trimming and deleting is challenging and it is often specific for the
particular dataset and experiment. In addition, the chosen tradeoff between overall quality
and number of preserved reads could have a major role in the accuracy of many downstream
analyses.
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Read alignment

After quality control, the next step of read processing is the read alignment. The term read
alignment or read mapping refers to the process of finding the read locations in a reference
sequence such as a genome.

Read alignment has a pivotal role in the RNA-Seq analysis because it represents the step
which extracts the information produced by sequencing and finally makes the reads usable
and informative. Therefore, alignment accuracy would heavily affect the reliability of many
downstream analyses, making this process the most critical step in the data preprocessing
part of the RNA-Seq analysis pipeline.

The read alignment process is particularly challenging both in terms of efficiency and
accuracy. The sizes of the reference genomes (from hundreds of thousands up to billions of
bases) and the large amount of reads (tens or hundreds of millions) make read mapping a com-
putationally intensive task. Typically, finding the correct positions of available reads in the
reference genome requires tens of GB of RAM and many CPU hours on a multicore machine.
What makes alignment even harder is the presence of sequencing errors, low complexity
sequences, polymorphisms, insertions and deletions which require inexact matches between
the read and the reference sequence and smart alignment strategies to avoid repetitive regions.
In addition, the main challenge is identifying splice junctions correctly, since the reads come
from transcriptome but the alignment reference sequence is the genome. For this reason,
the alignment process should properly handle intron sized gaps, intron signals, incomplete
annotation, alternative splicing and pathological splicing events. The alignment methods
able to perform spliced alignment are called splice aware tools, as opposed to classic DNA
aligners identified as splice unaware tools. Software such as STAR [56] and TopHat2 [57]
are examples of widely used splice aware aligners.

Even though a genome is employed as reference sequence is the great majority of RNA-
Seq studies, few alternatives exist. First, reads can be mapped to the transcriptome using
a splice unaware tool such as BWA [58] and Bowtie2 [59], with the main advantage of
requiring a low computational effort. However, aligning reads against a transcriptome has the
main limitation to preclude the discovery of new and unannotated transcripts and its accuracy
is heavily affected by the reliability of the available annotation. The second option consists
in de novo assembly of the reads into a transcriptome using tools such as SOAPdenovo-
Trans [60], Trans-ABySS [61] and Trinity [62] and then performing an unspliced alignment
against the inferred transcriptome. Although assembly methods allow de-novo transcripts
discovery, they are more computationally intensive than read alignment, resulting in efficient
applications only on small genomes (e.g. archaea genomes).
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The pivotal importance of the alignment step and the consequent big effort of the bioin-
formatics community resulted in the availability of a large number of splice aware methods.
Since 2009, more than 20 splice aware software were developed by the research community,
making the choice of the right aligner a non-trivial step.

Postprocessing

Depending on the particular downstream analysis, a read alignment postprocessing step
may be necessary. Typical postprocessing actions involve file format conversion, alignment
sorting, alignment filtering and generation of alignment statistics. Alignment statistics usually
report the number of aligned/unaligned reads, reads mapped to multiple locations, potential
PCR duplicates, etc. These statistics are useful to identify potential issues (e.g. very low
percentage of mapped reads) rather that to assess the accuracy of the alignment process (e.g.
a high percentage of mapped reads does not necessarily mean that the reads are mapped
correctly). Software such as SAMTOOLS [63] and Picard [64] are commonly used for read
alignment postprocessing.

2.3.2 Data analysis

Once the reads are aligned to a reference sequence, and an optional preprocessing step
is performed, the second part of the RNA-Seq analysis pipeline exploits this information
through a wide range of analyses. Preprocessed RNA-Seq data could be employed in
several applications to both identifying transcript characteristics and quantifying transcript
abundances.

The most common application involves the quantification of gene/transcript expression
levels among samples followed by differential expression analyses. A brief description of this
analysis is presented below. However, RNA-Seq data are suitable for many other analyses
such as alternative splicing analysis, gene fusion discovery, allele specific expression, non-
coding RNA discovery, single nucleotide variants identification, etc. making RNA-Seq one
of the most powerful and flexible techniques for transcriptomic studies.

Quantification and differential expression analyses

Estimation of gene/transcript expression level is the most common application of RNA-Seq
studies. The idea behind expression level quantification is that the number of reads that map
to each transcribed sequence is a good proxy of its expression level. Quantification could be
performed at the transcript, gene or exon level, depending on which coding units is employed
to summarize the raw counts of mapped reads. The number of reads overlapping the chosen
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feature is used as a digital measure of its expression level and is called counts. Provided with
the read alignment file and an annotation file, usually in GTF, GFF or BED format, tools
such as featureCounts [65], HTSeq-count [66] and BedTools [67] are able to compute the
counts of each feature included in the input annotation. As any other downstream analysis,
the reliability of expression level quantification heavily relies on the accuracy of the read
alignment step. In addition, it was demonstrated that even the choice of annotation has a
strong impact on the quantification results [68].

Unfortunately, raw read counts are not suitable for comparing expression levels within
and between samples since these values are affected by several biases. In order to remove
or at least mitigate these effects, several normalization techniques were developed to both
handle within-sample and between-sample biases. Within-sample normalization allows an
unbiased comparison of expression levels within the sample, handling effects such as the
different feature lengths. Instead, between-sample normalizations like TPM (transcripts per
million) [69], TMM [70], DESeq[71] and UpperQuantile [6] allow a fair comparison of
expression levels between the samples, correcting effects such as differences in the library
sizes. In the context of DE analysis, between-sample differences have to be corrected while
some within-sample biases may cancel out when comparing samples. Finally, the widely
used RPKM (reads per kilobase of exon model per million reads) [2] and FPKM (fragments
per kilobase of exon model per million mapped reads) [72] are examples of approaches that
perform both types of normalizations. Sophisticated tools such as Cufflinks [72], RSEM
[73] and eXpress [74] are able to quantify at the gene/transcript level and at the same time
perform a normalization procedure.

Finally, differential expression analysis is performed employing a test statistics which
selects the genes/transcripts for which expression levels (i.e. normalized counts) are signifi-
cantly different between the compared conditions. Several tools have been developed for this
task, both using parametric and non-parametric approaches. Methods such as edgeR [75] and
DESeq2 [76] employ a negative binomial model to describe the data, while EBSeq [77] and
baySeq [78] exploit a Bayesian approach, also based on the negative binomial model. Other
approaches exploit the sample variance to create discrete expression level distributions and
analyze them using a regular linear model [79]. On the other hand, non-parametric methods
such as NOISeq [80] or SAMseq [81] estimate the null distribution from the counts alone
with minimal assumptions about the data. Several independent studies have revealed that no
single method clearly outperforms the others and performance is highly dependent of the
particular dataset [82–84].





Chapter 3

Read alignment

The output of the sequencing process consists of millions of reads, short sequences repre-
senting fragments of the transcripts in the original sample. As seen in the previous chapter,
the alignment of millions of reads against a reference genome is a common step in the great
majority of RNA-Seq studies, whereas only few studies rely on read assembly. The alignment
process allows the identification of which fragments belong to each transcript, mapping each
read to the region of the genome from which it originated. Unfortunately, performing an
accurate and efficient alignment of several millions of NGS reads against a reference genome
is challenging.

In this chapter, different aspects of the read alignment problem are explained and analyzed.
Since the mapping of RNA reads shares many challenges with the alignment of DNA reads,
the most important aspects and issues in mapping NGS short sequences are described together
with the peculiarities of RNA-Seq data. Moreover, a brief analysis of de-novo transcriptome
assembly is discussed, since this method represents an alternative option to read alignment in
some contexts. The state of the art techniques adopted in the sequence alignment problem
and implemented in the available RNA-Seq aligner tools are reviewed, based on a thorough
literature search that involves more than 2000 peer reviewed publications in the context
of RNA-Seq. For each tool, its adopted mapping strategies, specific characteristics and
implementation choices are briefly described.
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3.1 The read alignment problem

In the context of NGS reads, the term read alignment or read mapping refers to the process of
finding the position of a read in a reference sequence. In this thesis, and more generally in the
context of RNA-Seq, the term read alignment is a synonym for read mapping. However, the
two terms have slightly different meanings: a mapping is the region where a read sequence is
placed and it is regarded to be correct if it overlaps the true region, whereas an alignment is
the detailed placement of each base in a read and it is regarded to be correct only if each base
is placed correctly. In other words, the alignment process consists of more than searching
from where the read likely came in the reference sequence, it requires the identification of a
base to base correspondence. The idea behind the read alignment is that the read originated
from the same sequence (or a similar one) used as reference sequence in the alignment
process. Depending on the experiment and the kind of analysis, the reference sequence could
be a transcriptome, a genome, a set of contigs, a chromosome, etc. The read alignment
process represents a solution to the problem of identifying what is the composition of the
sequenced sample. Indeed, the output of the sequencing process are simply nucleotide
sequences with no additional information about which element in the sample or which part
of it have generated them. The mapping of the reads against the right reference sequence
allows the identification of this missing information and makes the NGS data usable.

3.1.1 From DNA to RNA read alignment

RNA-Seq was first introduced in 2008; consequently, the problem of aligning RNA-Seq
reads was addressed only in recent years. However, despite the pivotal role in the analysis
of RNA-Seq data, the alignment of sequencing reads is a very important task in several
sequencing contexts. The alignment of genomic sequences had a pivotal role even in pre-
NGS era, where sequence alignment tools such as BLAT [85] an SSAHA [86] made some
of the most important genomic studies possible, including the Human Genome Project. In
the context of NGS read alignment, the first milestone was probably the development of
the ELAND aligner in 2006 [87]. ELAND was provided to costumers buying the Solexa
Genome Analyzer, allowing end users to perform alignment procedures since then performed
only by large genome sequencing centers. After 2006, a large number of read aligners were
developed resulting in more than 20 new tools in the next 3 years, including popular tools
like MAQ [88], SOAP [89], RazerS [90], mrFAST [91], SHRiMP [92] and BFAST [93].
The second milestone could be identified by the development of two famous aligner tools
in 2009: BWA [58] and Bowtie [94]. Both tools exploited the Burrows-Wheeler transform,
introducing some innovations and smart algorithms to obtain fast and accurate read alignment.
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In the same year, the standard sequence alignment output file format (SAM file format) was
introduced together with a tool to handle it (SAMtools)[63]. At the end of 2009, the progress
achieved in the field of NGS read alignment allowed the mapping of several millions of
short DNA reads containing few mismatches and small gaps in few hours using a desktop
computer. The main challenges at the time were handling longer reads (> 50-75bp) and
allowing more than 2-3 mismatches and indels in the read alignment.

Between 2008 and 2009, the advent of RNA-Seq data introduced a new big challenge
in the context of NGS read alignment: spliced alignments. Spliced alignment refers to the
need of identify a long gap in the read alignment against the genome due to the presence of
introns in the reference sequence. The transcriptome of eukaryotic organisms is affected by
splicing, which removes intron sequences and joins exons together. Since RNA-Seq reads
come from transcriptome, some reads could be sequenced from an exon-exon junction region
of the transcript, corresponding to no contiguous sequence in the genome. The alignment
of such reads against the genome requires handling of intron size gap properly, identifying
the exon-exon junction and splitting the read across on the two sides of the intron. Read
mapping tools able to properly manage spliced alignment are called splice aware aligners, in
opposition with classic DNA-Seq aligner identified as splice unaware tools. The first read
aligner developed to properly handle spliced alignments was QPalma [95] in 2008. QPalma
employed a machine learning approach, in which data from known splice junctions are used
to train the software on identifying exon-exon junctions. However, the tool had the main
limitation to require an accurate annotation as input in order to perform spliced alignment,
making it impossible to find novel junctions. In 2009, the first method to perform spliced
alignments with no input annotation was developed and implemented by the TopHat [96]
aligner. TopHat exploited the Bowtie alignment engine to perform unspliced alignment and
identify candidate exon regions. Reads flanking potential exon-exon sites within neighboring
regions are the clustered together to form potential splice junctions’ sequence. Finally, Bowtie
is employed to align the remaining reads against the inferred splice junction sequences. After
TopHat, a lot of effort was put by the bioinformatic research community on the spliced
alignment problem, resulting in more than 20 tools published from 2008 to 2016.

3.1.2 RNA sequencing read alignment challenges

The alignment of reads against a genome is a special case of the string matching problem,
which requires modeling and incorporating the characteristic of DNA/RNA sequences and
sequencing technologies in order to achieve an accurate result. In this section, the alignment
problem is analyzed describing the most important aspects and the related challenges.
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Mapping criteria

Since the true position of a read in the reference sequence is unknown, an important aspect
of the problem is the definition of mapping criteria. Ideally, the alignment process should
identify the most probable mapping position for a read given the available information. The
definition of ’most probable mapping position’ is what defines the alignment criteria of each
method. Since the setting of a probabilistic framework for read mapping is complex, in
practice there are two main approaches: i) alignment scoring and ii) errors threshold.

The alignment scoring method uses a scoring function to assign a value to each alignment.
There are several scoring functions, usually inspired by the Smith-Waterman scoring system
[97], that assign different penalties to matches, mismatches, gap open, gap extension and gap
end. Depending on the alignment strategies, the alignment of a read is chosen among the ones
that passes a threshold and has the highest score. These methods allow modeling of different
aspects of the read alignment process, combining and weighting them in a deterministic
way. On the other hand, defining a smart scoring function and assigning reasonable penalties
values is not trivial.

Error threshold methods are instead based on the definition of a maximum number of
allowed errors in the alignment process. Depending on the implementation, the term ’errors’
could refer to mismatches, insertions and deletions between the read and the reference
genome. More complex approaches are able to apply different thresholds depending on the
position in the read. This method is conceptually simpler compared to alignment scoring,
since defining a maximum number of allowed errors is easier than defining a penalty score
system. However, this simplicity is paid for in terms of lack of flexibility and difficulties in
handling complex situations.

Multireads

The term multiread (or multimapper) refers to read than cannot be mapped unambiguously,
since the adopted mapping criteria identifies more than one possible location originating the
fragment in the genome. In practice, this is due to repetitive sequences in the genome or a
high number of mismatches and gaps. In order to provide one candidate position for each
read, some alignment methods try to prioritize multimappers using some criteria while other
methods simply discard or report all the multireads. Due to the ambiguity associated with
these read mappings, the great majority of downstream analyses simply remove them, while
only few post-alignment programs are able to handle them.
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Base quality scores

Base quality scores are measures of correctness of each base in the read, provided as output
by some sequencing technologies. The base quality score employs the phred scheme, where
the score Q is equal to −10log10(e) and e is the probability that the base is wrong. Quality
scores provide a useful information about the reliability of each base in the read and for this
reason they are often employed in the alignment process. Some tools exploit the quality
score to perform a pre-processing step, removing or trimming low quality reads while other
aligners use the quality score during the mapping process. For example, the quality value
could be employed in the computation of an alignment score or could be used to identify a
possible mismatch.

Polymorphisms and sequencing errors

Alignment methods should allow inexact matching between the read and the reference se-
quence to account for the presence of polymorphisms and sequencing errors. Mismatches
make the alignment problem harder, since inexact matching algorithms have a higher com-
putational complexity compared to exact alignment procedure. In order to make easier
the alignment process, some methods allow providing a set of known single nucleotide
polymorphisms (SNPs) as input. Other tools try to identify SNPs by analyzing overlapping
reads, exploiting the idea that the same polymorphism would be shared by all the reads
mapping in the same region. At the same time, this procedure allows the identification of
sequencing errors by looking for genome mismatches that are not shared by overlapping
reads. A different approach consists in employing Smith-Waterman-like algorithms, usually
applying a heuristically bounded version or reducing the size of the problem to a portion of
the read. Irrespective of the chosen solution, many state of the art methods try to limit the
number of available mismatches (usually up to 2-3 mismatches per read) in order to achieve
a reasonable execution time.

Insertion and deletions

The presence of insertion and deletions (indels) necessitates inserting or deleting nucleotides
during the mapping process. Insertions and deletions are commonly identified by the term
gaps, especially in the computer science field. Compared to mismatches, gaps represent a
bigger challenge in the alignment process. Similar to mismatches, gaps are usually handled
by Smith-Waterman-like algorithms and the number, size and location of allowed gaps are
limited.
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Paired-end reads

Paired-end reads result from sequencing both ends of a DNA fragment. The mapping of
paired-end reads could improve the accuracy of the alignment, exploiting the estimated
distance between the two ends to better identify the correct location in the genome. The extra
information provided by paired-end reads could be exploited in different mapping strategies.
Some methods align independently the two mates, performing an extra step at the end of the
alignment to recover the distance information and exploiting it to rearrange some alignment
locations. Other methods try to align the two reads at the same time, limiting the alignment
positions to a defined window. Exploiting the distance information results particularly useful
for multimapper or complex reads (i.e. high rate of mismatches and gaps), employing the
unambiguously aligned mate as an anchor and trying to identify the correct location in the
nearest genomic regions.

End-to-end and local alignment

The alignment of a read could be performed in two different ways, called end-to-end align-
ment and local alignment. End-to-end alignment refers to the mapping of the entire read
sequence against the reference genome, while local alignment refers to aligning only a
portion of the read, usually avoiding to align few bases at the ends of the read. Since first
generation sequencing reads were very short (< 50bp), the first mapping methods performed
only end-to-end alignment. Indeed, a full length alignment reduced repetitive region issues
and did not result in too high of a computational requirement. However, the introduction of
longer reads increased the required computational effort and the number of mismatches and
gaps to handle. In particular, the longer reads produced by many sequencing technologies
resulted in low quality ends which required a significant amount of time to be properly
handled by the aligners. In this scenario, many tools changed their mapping policy from
end-to-end to local alignment. Local alignment helps managing adapter sequences at the end
of the reads, reducing the amount of effort in read preprocessing. Obviously, the unaligned
portion of the read could result in a less informative data, depending on the downstream
analysis. Nowadays, many state of the art aligners allow choosing both kinds of alignment or
automatically choose the most appropriate one for each read.

Spliced alignment

Spliced alignment is the major challenge in RNA-Seq read alignment and the main difference
between DNA and RNA mapping tools. RNA-Seq reads require to correctly align on the
genome reads that come from exon-exon junctions in the transcriptome, introducing long
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gaps in the alignment due to the presence of introns. In eukaryotic model organisms the
intron length ranges from tens to tens of thousands nucleotides, while the usual read length is
just 100 bp. The complexity of spliced alignment is further increased when the read spans
more than one exon-exon junction or the overlap between the read and the exon is just few
bases long. The huge challenge represented by spliced alignment is addressed by current
state of the art methods using many different strategies, each one having peculiar strengths
and weaknesses.

Annotation and de-novo splicing detection

Detection of spliced alignment could be performed in three ways: using a known set of
splicing sites, detecting de-novo splicing sites and using and hybrid approach employing
both techniques. The first class of methods use an input annotation, usually a set of exon
coordinates, to assist the alignment process. A common approach consists of creating a set
of candidate junctions, exploiting the information contained in the annotation, and applying a
splice unaware aligner to these junction sequences. These methods are very fast but have the
main limitation of heavily relying on the accuracy of the annotation and the impossibility to
find novel junctions. These class of methods are often referred to as transcriptome alignment
methods. The second class of methods try to infer the exon-exon junctions from the available
reads, using different strategies to recover this information from the data. Compared to
the previous class of methods, performing de-novo splicing detection results in a more
complex task and longer execution time. However, these methods can identify un-annotated
exon-exon junctions. The last class of methods tries to combine the strengths of the two
previous approaches, being able to perform de-novo splicing detection and, if an annotation
is available, integrate this extra information to assist the alignment process.

3.1.3 An alternative solution: de-novo transcriptome assembly

The main alternative option to aligning RNA-Seq reads against a reference sequence consists
in performing a de-novo transcriptome assembly. Similar to DNA assembly, transcriptome
assembly creates contiguous segments of sequence data (called contigs) exploiting the
overlapping sequences between reads. State of the art methods for de-novo transcriptome
assembly include well known tools such as SOAPdenovo-Trans, Trans-ABySS and Trinity.
Assembly methods have the main advantage of not relying on the availability and accuracy
of a reference genome. In addition, assembly methods are not affected by the multiread issue
and allow de-novo transcript discovery. On the other hand, transcriptome assembly is more
computationally intensive than read alignment, resulting in efficient applications only on
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small genomes such as bacteria and archaea. Compared to alignment methods, assembly
requires a higher sequencing depth in order to achieve an accurate assembly result, especially
for the detection of low abundance transcripts. In addition, the use of assembly based analysis
was demonstrated to underperform compared to alignment guided analysis [98]. Since the
majority of studies involve human or model organisms for which a high quality genome is
available, assembly methods are limited to organisms having small genomes or no reference
genome.



3.2 Data structures and algorithms 39

3.2 Data structures and algorithms

The alignment of a read against a reference genome is a particular case of the more generic
computer science problem of finding the position of a string (query) in a text (reference).
For this reason, the read alignment methods exploit many concepts developed in computer
science to obtain efficient and accurate alignment procedures.

Even in the simpler case of finding an exact match between the read and the reference
genome, an efficient algorithm is required. A naive approach which consists of sliding the
read along the reference genome would results in an unfeasible complexity of O(NMm) when
N is the size of the genome, M is the number of reads and m is the read length. Regarding the
accuracy, the methods should be able to handle repetitions, mismatches, insertions, deletions
and intronic gaps, which significantly increase the complexity of the alignment problem.

Therefore, all the methods rely on some sort of preprocessing of the input data, both on
reads or reference genome. The first NGS read aligner methods performed a preprocessing on
the reads [87, 88], while the most common approach in recent years consists of preprocessing
the reference genome, building a so-called genome index. An index is a data structure which
allows fast exact matching between the query and the reference sequence. Even though the
creation of an index requires extra computation, it could be stored and reused for any other
string matching problem on the same reference text. All the current and many past read
alignment methods employ a genome index, though different methods use different data
structures and implementations.

The next section describes the main index implementations and the algorithms employed
for exact and inexact matching in the context of RNA-Seq read alignment and, more generally,
NGS read alignment.

3.2.1 Hashing methods

Hashing methods build a hash table representation of the genome, where ideally each read
sequence is a key and the associated table element is the list of its positions in the genome.
Using this approach, the alignment process of error free reads would result in a table look-up
for each read in the read set (Figure 3.1). However, this does not work in practice due to
the current read lengths: for a read of length 100, the hash table would contain 4100 ≈ 1060

elements. The adopted workaround consists in using k-mers as keys, employing key lengths
significantly smaller than read lengths. In this way, the alignment process consists of selecting
a k-mer for each read, called seed, and mapping it to the genome using the hash table.

Then, for each possible location, the procedure tries to extend the seed alignment to a full
read alignment using a Smith-Waterman-like approach. The strategy of performing an exact
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Fig. 3.1 The hashing algorithm. (A) The genome sequence is cut into overlapping 3-mers and
the position of each 3-mer in the genome is stored in a hash table. (B) The read is cut into
3-mers and each read 3-mer is compared to genome 3-mers using a hashing procedure. (C)
Positions for each read 3-mer are sorted and compared to the other 3-mers. (D) Compatible
positions are kept. Figure adapted from [99].

.

alignment of a read portion (seed) and then extend it to a full alignment allowing mismatches
and gaps is called seed&entend.

Using this approach, the size and the position of the seed in the reads are critical. A
small seed requires a smaller hash table but would result in more genomic locations. On the
other hand, using a larger seed would increase the probability of containing an error or a gap
which does not allow mapping to the correct location. In addition, the location of the seed
in the read could affect the alignment accuracy, since the error probability in not uniform
along the read for some sequencing technologies (e.g. Illumina). In order to overcome some
of the above limitations, many methods employ a multi seed approach. Instead of using
a single seed, these methods extract several substrings from the read sequence and map
them independently. The different seed alignments are then exploited to identify a final read
alignment, employing the usual full alignment extension procedure. In addition, the use of
multiple seeds permits finding reads with errors in the seed sequences, if there is at least one
seed with no errors.

3.2.2 Suffix array and Burrows–Wheeler transform methods

This class of methods exploit some fast string searching characteristics from suffix trees
[100] and suffix arrays [101]. A suffix tree for a string is a tree in which there is a one-to-one
relation between the suffixes of the string and the paths from the root to the leaves. In the
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context of read alignment, a suffix tree of the genome sequence could be used to identify an
exact match of a read in O(m), through a simple path from the tree’s root to a leaf (Figure
3.2). Despite the great performance in exact alignment, a suffix tree for a large genome
requires a significant amount of memory to be stored.

Fig. 3.2 The suffix tree of the genome sequence "GATTACA". Dotted arrows indicate that the
tree continues there. Double circle indicate that a suffix ends there. Figure taken from [99].

Suffix arrays (SA) represent a solution to the memory issue, even though the alignment
procedure is a little bit more difficult. A suffix array is defined as the set of suffixes of a
string sorted lexicographically (Figure 3.3). In order to reduce the memory requirements, it
is possible to store only the position of the beginning of the suffixes instead of storing all the
suffixes, using then the genome sequence to recover the entire suffix. The suffix positions
and the suffix sequences allow to traverse the suffix array in a way similar to the traversal
method for suffix trees, enabling fast string matching.

Among the common applications of SA due to its fast matching properties, the most impor-
tant is the one which involves the Burrows–Wheeler transform [102]. The Burrows–Wheeler
transform (BWT) is a text transformation which is strongly related with the suffix array.
The strong relation between the two elements are exploited by the FM-Index [103], which
describes an efficient algorithm, called backward search, to perform an exact match on the
BWT using some information derived from the SA. Even though the backward search algo-
rithm is very efficient in retrieving exact matches, the extension to inexact matches is still an
open problem. Methods employing BWT for entire read alignment usually adopt heuristics
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Fig. 3.3 Suffix array of the genome sequence "GATTACA". Last column is the Burrows-
Wheeler transform. The "$" character indicates the end of the sequence. Image adapted from
[99].

or define ad hoc mapping strategies to overcome the inexact matching limitation. On the
other hand, BWT based methods are useful to align a small part of a read in a seed&extend
approach. Similar to a hash table, the SA or BWT can be used to align one or more read’s
seeds allowing no mismatches or gaps, performing then a full read alignment extension using
a Smith-Waterman approach.

3.2.3 Implementation choices

Data structures and algorithms play a pivotal role in the success of a mapping tool but an
equally important role is played by the implementation choices. For example, the read
alignment process could be easily parallelized since each read is mapped independently.
The great majority of tools exploit multi-threading, loading into a shared memory space the
genome index and splitting the read set between the available threads. In the processing of
each read, the use of Single Instruction Multiple Data (SIMD) instructions and bit-wise string
comparison operations allow the tool to further increase the speed of the alignment process.
Another important aspect in the software development is a smart use of the memory and its
hierarchical organization. Avoiding frequent disk operations to retrieve reads or genome
index as well as designing algorithms and data structure to exploit cache locality and fit
entirely in RAM have a huge impact on the speed of alignment tools.
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3.3 Available methods and state of the art

In order to identify the available methods for RNA-Seq read alignment, a literature search was
performed on about 2000 peer reviewed publications involving RNA-Seq studies. The 2000
publications were randomly sampled by the available articles in the PubMed archive in the
period from 2011 to 2016, looking for the keyword "RNA-Seq" in the article title or abstract
(~7000 publications). In addition, the research was initially not limited to RNA-Seq read
alignment methods but included also transcriptome assembly methods and splice unaware
tools. The goal of including the two main alternatives to the RNA-Seq reads mapping was to
have a clear and unbiased perspective of view of the currently employed methods.

The bibliographic research highlights many interesting trends about the choice of RNA-
Seq alignment and assembly methods. The great majority of methods are used by only a few
publication per year, while a small subset of methods shows a consistent high usage among
the studied period. Based on the method usages per year, a subset of 14 tools was identified
as representative of the most popular algorithms in the context of RNA-Seq reads (Figure
3.4).
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Fig. 3.4 Comparative usage of the methods identified through the literature search, stratified
by year. The figure shows the 14 most employed tools among all the identified methods.
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Focusing on alignment methods, even though TopHat2, STAR, GSNAP, CLC and
Novoalign result the most employed RNA-Seq aligners, the literature search reveals a
long list of RNA-Seq mapping tools. In order to identify the state of the art methods, the
list was filtered by removing tools that are no longer maintained, requiring a last update
after 2012/2013. The final list resulted in fourteen splice aware methods: CLC Genomic
Workbench [104], ContextMap2 [105], CRAC [106], GSNAP [107], HISAT [108], HISAT2
[108], MapSplice2 [109], Novoalign [110], Olego [111], RUM [112], SOAPsplice [113],
STAR [56], SUBREAD [114] and TopHat2 [57].

Not surprisingly, TopHat and TopHat2 are the most employed tools in this subset, being
used by ~35% of the publications on average. Even though they are far from TopHat in
terms of usage, the literature search identifies STAR, GSNAP, CLC and Novoalign as the
most adopted alternatives for RNA-Seq read alignment. Interestingly, the second most
adopted tool is Bowtie/Bowtie2 (~30%) followed by BWA (~8%). Both Bowtie and BWA
are splice unaware tools, so they cannot be employed in every kind of RNA-Seq study. Other
splice unaware aligners are on the list, highlighting the common trend of employing splice
unaware tools in the context of RNA-Seq. This is a common error in the RNA-Seq research
community, since splice unaware tools are not generally suitable for any kind of RNA-Seq
study and their application should be limited to simple organisms or transcriptome alignment.
In addition, the literature search revealed that a very small number of publications used
de-novo reads assembly methods instead of read alignment methods.

In order to identify the alignment techniques and strategies adopted by state of the art
read alignment methods, the fourteen splice aware tools resulting from the literature search
were analyzed. In addition, 4 very popular splice unaware methods were considered since
they play as alignment core engine in many splice aware tools and can be used as stand
alone in studies involving organisms with no or negligible splicing. Both lists of methods are
described in what follows.
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3.3.1 Splice aware methods

The 14 splice aware methods result in a variety of alignment strategies and policies, which
make it difficult to identify a common trend in the way the alignment problem is addressed.
Indeed, each tool adopts specific solutions to handle mismatches, SNPs, insertions, deletions,
spliced alignments and paired-end reads. The only common elements between the tools are
the adoption of the SAM file format, the possibility of exploiting multi-threading parallelism
and the use of genome indexing strategies to achieve faster alignment procedures. In addition,
all the tools are designed to work on a command line interface, which makes them feasible
for execution on High Performance Computing (HPC) clusters. Among the listed tools, only
CLC seems to be primary designed to work with a graphic interface. Regarding the use of
an input annotation in the identification of exon junctions, two algorithms entirely rely on it
(CLC and Novoalign), three methods do not utilize any kind annotation (CRAC, SOAPsplice,
SUBREAD) while the remaining work both with and without this additional input. The
most important characteristics of each of these 14 state of the art splice aware methods are
described in the following section.

CLC Genomic Workbench

CLC Genomic Workbench is a commercial software to analyze and visualize NGS data.
For RNA-Seq data, it allows performing many analyses and processing steps including read
alignment on a reference genome. The alignment algorithm is based on an uncompressed
suffix array and uses a seed and extend approach [115]. Each base position of the read is
considered as start position of a seed candidate, which is elongated as long as there are fully
matching rows in the SA. The resulting list of seeds is prioritized by decreasing length and
read offset and then a banded Smith-Waterman algorithm [116] is applied to the first 100
seed candidates.

ContextMap2

ContextMap2 is an RNA-Seq aligner developed in Java that uses a context-based approach to
identify the best alignment for each read. The read context is defined as a set of reads all
originating from the same stretch of the genome and likely corresponding to transcripts of the
same or overlapping genes. The first step of the algorithm consists in an un-spliced alignment
which is performed, depending on the user’s choice, using Bowtie, Bowtie2 or BWA. The
second step identifies read alignments close to each other and assigns these reads to the same
context. The next step defines additional alignments for each read in the same context trying
to identify spliced alignments. Specifically, the tool exploits the reads aligned locally (not
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end-to-end) or which exceeded the max mismatch threshold to identify exon junctions. Then,
it tries to create spliced alignments for previously fully aligned reads using the candidate
junctions. At the end of this step, several different alignments have been created for each
read, resulting in multiple alignments both within and between contexts. In the last step, the
algorithm performs a multiple alignment resolution using a scoring function to determine the
best alignment for each read, both within and between contexts.

CRAC

CRAC is a C++ multi-purpose tool for analyzing RNA-Seq data which includes an alignment
algorithm. The alignment algorithm employs a double-indexing strategy, using a FM-
Index for the genome and a Gk array [117] for the reads. Moreover, CRAC uses local
coverage information in the alignment process. The tool bases the alignment algorithm on the
assumption that a for a given genome length, a sequence of length k will match on average a
unique genomic position with high probability, if k is computed in the right way [118]. For
each read, the tool considers the k-mers starting at any position in the read and it computes
two distinct k-mer profiles called the location profile and the support profile. The location
profile records the k-mer exact matching locations on the genome and its number while
the support profile registers for each k-mer the number of reads sharing it. The genomic
locations of a k-mer are computed using the genome FM-index, while the support of a k-mer
is obtained by interrogating the reads Gk arrays. The k-mers having no exact matching
locations are analyzed with their support profiles in order to identify SNP, sequencing errors,
indels, splice alignments or chimeric alignments.

GSNAP

GSNAP (Genomic Short-read Nucleotide Alignment Program) is SNP-tolerant read aligner
available as a part of the GMAP package [119]. The tool is developed in C and it uses a
suffix array and a hash table for genome indexing. The genome index consists of a list of
genomic positions for each k-mer in the genome. The alignment process is performed by
computing all possible seeds of length k in a read and then using the index to obtain a set of
genomic positions for each seed. The set of genomic positions and the number of overlapping
intervals is used by the algorithm to identify a set of possible read alignments. The set is
then filtered using a scoring function based on mismatch and gap penalties. Splice alignment
identification is assisted by input annotation and/or by a maximum entropy model which uses
frequencies of nucleotides neighboring a splice site to identify true and false splice sites.
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HISAT

HISAT (Hierarchical Indexing for Spliced Alignment of Transcripts) is a spliced aligner for
RNA-Seq data and will be the core alignment engine for TopHat next version, TopHat3. The
tool is developed in C++ and relies on Bowtie2 implementation to handle many indexing
operations. HISAT uses an indexing scheme based on the Burrows-Wheeler transform and
the FM-index, employing a whole-genome FM-index and several local FM-indexes. The
hierarchical indexing strategy is designed to perform fast alignments requiring low memory
usage and to handle short anchored reads. In the alignment process, for each read HISAT first
tries to find candidate locations across the genome using the global FM-index. In the second
step, the tool selects one of the local indexes for each candidate and uses it to align the rest of
the read. Spliced alignments are identified using input annotation and/or a two-step method.
First, HISAT collects candidate splice sites supported by reads with long anchors, then it
uses the splice sites collected thus far to align short-anchored reads.

HISAT2

HISAT2 is an enhanced version of HISAT and it is a successor to both HISAT and TopHat2. It
extends the hierarchical indexing strategy introduced in HISAT using a new implementation
of the FM-index. The new indexing scheme is called a Hierarchical Graph FM-index (HGFM)
and relies on a graph FM-index (GFM), which is an extension of BWT to graphs [120].

MapSplice2

MapSplice2 is a software for mapping RNA-Seq reads developed in Python and C++. It is an
updated version of MapSplice and it introduces multi-threading and an improved mapping
sensitivity. MapSplice2 splits each read into segments and maps them to the genome by
using Bowtie. The unmapped segments are used to infer splice junctions through several
steps. First, splice junctions that appear in one or more segments are analyzed to determine a
splice significance score based on the quality and diversity of alignments that include the
splice. In addition, a remapping step is performed to identify spliced alignments involving
small exons. Last, the best candidate alignment is chosen by selecting the alignment showing
the highest quality match and highest confidence splice junctions.

Novoalign

Novoalign is a C++ commercial software for read alignment that can handle both DNA
and RNA reads. Since the tool is not specifically developed for RNA-Seq reads and can
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not perform de-novo spliced alignments, some preprocessing and post-processing steps are
required. As preprocessing step, the tool requires the creation of transcripts and splice
junction sequences from the reference genome using the available annotation. The transcript
sequences, splice junction sequences and genome are used by the tool to build a reference
index using a k-mer hash table. Novoalign uses the index to perform an iterative search to
find the best alignment and any other alignments with similar score. The score assigned
to each alignment is computed using the Needleman-Wunsch algorithm with affine gap
penalties [121]. In addition, read base qualities are employed in a position specific scoring
schema. At the end of the alignment process, a postprocessing step is required to convert the
spliced alignment coordinates back to genome coordinates.

Olego

OLego is a tool specifically designed for de novo mapping of spliced RNA-Seq reads. Olego
is implemented in C++ and adopts a multiple-seed-and-extend scheme using very small seeds
(12-14 nt). Using the same approach as in BWA, each read is continuously mapped to the
genome through a BWT and FM-index. Reads that could not be mapped by the previous step
are segmented into multiple small seeds and each seed is mapped independently. The seeds
are then clustered in order to identify potential spliced alignments with the constraint that the
distances between clusters are less than twice the specified maximum intron size. Candidate
alignments are scored and ranked according to an E-value calculated from the uniqueness
and the number of aligned seeds. The holes between seeds within each candidate exon are
filled by realigning the seeds employing banded dynamic programming which allows indels
and substitutions. Multiple alignments are solved prioritizing the most reliable alignments
according to a regression model that combines splice-site motif score and intron size to infer
the strength of exon junctions.

RUM

RUM (RNA-Seq Unified Mapper) is a RNA-Seq aligner tool implemented in Perl. The
tool is implemented as a three-stage pipeline built on top of Bowtie and BLAT. In the first
stage, the reads are mapped against the genome using Bowtie. Bowtie is also run against the
transcriptome, since Bowtie could erroneously align a read having a small anchor to the start
of the intron instead of to the adjacent exon. The genome and transcriptome alignments are
filtered and merged, using a set of rules based on annotation and paired-end information to
solve ambiguous cases. In the second stage, the unaligned reads by Bowtie are mapped using
BLAT. A complex post-processing is then performed on BLAT output in order to reduce the
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number of false alignments and to utilize paired-end information. The final stage consists of
merging the Bowtie and BLAT alignments using similar rules to the first Bowtie merging
step.

SOAPsplice

SOAPsplice is a de novo mapping tool for spliced RNA-Seq reads which uses the BWT
to index the reference genome in the main memory. SOAPsplice performs an end-to-end
alignment of each read allowing a limited number of mismatches and gaps. Then, the tool
trims several bases at the 3’ end of unaligned reads and repeats the end-to-end alignment for
the remaining part of the read. The reads that are not mapped by the previous procedure are
candidates for spliced alignments. SOAPsplice splits the unmapped reads in two segments
and tries to map the longest 5’ end segment first. The remaining segments are aligned
following several criteria for segment length, number of mismatches, splicing signals and
intron length. For reads longer than 50bp, SOAPsplice splits the reads in multiple sub-reads
performing the alignment procedure described above on each sub-read. In the final step,
the tool uses two main strategies to filter out false positives spliced alignments. The first
strategy exploits the pair-end relationship of paired-end reads to ensure the accuracy of
inferred junctions. The second strategy involves detected junction having sub-reads mapping
locations not connected with each other at the same segmentation point. In order to improve
the accuracy of this type of junctions, the tool requires that the number of junction reads is
greater than the 25% of the average number of spliced reads supporting the non-segmented
read junctions.

STAR

STAR (Spliced Transcripts Alignment to a Reference) is an alignment algorithm designed
for RNA-Seq data mapping. The tool is implemented in C++ and uses an uncompressed
suffix array to index the genome. In the first part of the alignment process, STAR performs
a sequential search for a Maximal Mappable Prefix (MMP) in both forward and reverse
directions of the read sequence. Given a read and a read location, the MMP is defined as
the longest continuous substring that matches exactly one or more substrings of the genome,
starting from the given read location. When one or more mismatches does not allow the
MMP search to reach the end of a read, the MMP is extended allowing for alignments with
mismatches. If the extension procedure does not achieve a good genomic alignment, the
tool performs a soft clipping of the remaining part of the read identifying a possible low
quality tail, poly-A tail or library adapter sequence. In the second part of the alignment
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process, STAR identifies read alignments by stitching together all the seeds that were aligned
to the genome in the first phase. Starting from uniquely aligned seeds, the aligned seeds are
clustered together by proximity allowing for any number of mismatches and for one indel. A
local alignment scoring scheme, with penalties for matches, mismatches, insertions, deletions
and splice junctions is employed in the stitching process to score the accuracy of different
solutions.

Subread(Subjunc)

The Subjunc aligner is an RNA-Seq read aligner implemented in C language and included in
the Subread package. The tool employs a hash table to index the reference genome, using
16bp sequences extracted from the genome every three bases as keys. The alignment process
employs a multi seed strategy, called seed-and-vote. The seed-and-vote paradigm uses a large
number of short overlapping and equi-spaced seeds for each read, called subreads, mapping
each seed independently without mismatches. The paradigm allows all the seeds to vote on
the candidate location for the read, using a voting procedure similar to the q-gram counting.
The alignment between the subreads that make up the winning voting block are performed
using conventional dynamic programming algorithms allowing mismatches and indels. In
order to identify spliced alignments, the tool selects the two most voted mapping locations
for each read. A candidate exon-exon junction is then identified when a splicing site (a donor
site ‘GT’ and a receptor site ‘AG’) exists and the distance between the two sets of subreads
is consistent. The discovered putative exon–exon junctions are employed in a second scan
step to identify the final positions of the reads, considering all mapping possibilities between
exonic and spliced alignments.

TopHat2

TopHat2 is a spliced aligner for RNA-Seq reads built using Bowtie2 as core read-alignment
engine. The alignment process is performed in three main steps: a transcriptome mapping
step, which is used only when annotation is provided, a genome mapping step and finally a
spliced mapping. In the transcriptome mapping step, the annotation is employed to create
the transcript sequences. Bowtie2 is then used to index the transcriptome and align the
reads. Reads that were potentially misaligned or unmapped due to unknown transcripts in the
previous mapping step are aligned to the genome using Bowtie2. The unmapped reads from
the last mapping step are exploited to find novel splice sites based on known splicing signals.
In order to do this, the unmapped reads are split into small non-overlapping segments which
are then aligned independently against the genome. The tool identifies segments that are
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mapped within a maximum intron size and re-aligns the entire read to that genomic region in
order to identify the most probable location of the splice site. The genomic regions flanking
the candidate splice sites are concatenated in order to create a novel transcriptome. In the
last alignment step, TopHat2 re-aligns the unmapped reads against the novel transcriptome
using Bowtie2.

3.3.2 Splice unaware methods

The 4 splice unaware tools in this section represent widely used NGS read mappers, achieving
together more than 16000 citations on peer reviewed publications. Beside the field of DNA-
Seq data, these tools are important in the context of RNA-Seq data for two main reasons.
First, many splice aware tools employ one of these mappers as core alignment engine in their
implementation. Second, these tools find a direct application in the context of RNA-Seq
data on organism having no or negligible splicing. Similar to splice aware methods, these
tools are designed to work on a command line interface, allow multithreading execution and
exploit genome indexing strategies to achieve faster alignment procedures.

Bowtie

Bowtie is a DNA read aligner and is not specifically developed to work with RNA-Seq
data. However, Bowtie is used as core alignment engine by many splice aware tools and
is also applied to align RNA-Seq reads ignoring spliced reads. Bowtie is one of the first
tools employing BWT and FM-Index in the context of short read alignment and introduces
also some extensions to the FM-Index. In order to extend the exact-matching algorithm
employed in the FM-Index, Bowtie introduces a quality-aware backtracking algorithm that
allows mismatches. The tool performs a randomized depth-first search through the space
of possible alignments using a greedy approach base on the base qualities. In addition, the
tool presents a novel strategy to avoid excessive backtracking called double indexing. This
strategy relies on an auxiliary genome index containing the BWT of the genome with its
character sequence reversed. The use of both indexes allows an alignment policy that limits
the backtracking algorithm dividing the reads in multiple segments. First, the tool defines
the first bases (about 30bp) on the high quality end of the read as a seed, limiting to two the
number of allowed mismatches in this part of the read. The seed consists of two halves: a
high quality part (usually the 5’ end) and a low quality part. The algorithm uses both indexes
to find a potential alignment starting from the seed, trying to minimize first the number of
mismatches in the high quality part of the seed. The alignment process continues alternating
the use of the 2 indexes between the 2 halves of the seed and the nonseed part of the read.
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Bowtie2

Bowtie2 is the successor of Bowtie and introduces many new features like local alignments,
gapped alignments and unlimited read lengths. Bowtie2 is implemented in C++ and employs
a FM-Index to represents the reference genome. In addition, the tool uses an extension of
the BWT, called bi-directional BWT, to efficiently switch between right-to-left and left-to-
right alignments. The alignment process starts by extracting substrings (seeds) at regular
intervals from each read and its reverse complement. Each seed is aligned allowing up to
one mismatch in order to identify candidate genomic locations. If a read results in a high
number of candidate genomic locations per seed, Bowtie2 performs a re-seeding procedure
to reduce the ambiguity in the candidate location and reduce the computational effort. In
addition, the seeds are prioritized for lower number of candidate positions, since each seed
can describe many genomic locations. Finally, the tool proceeds by repeatedly selecting a
genomic location and trying to identify a full length alignment extending the seed alignment
through a SIMD-accelerated dynamic programming algorithm using a Smith-Waterman-like
scoring scheme.

BWA

BWA (Burrows-Wheeler Alignment) is a DNA-Seq reads aligner and is one of the first
tools using BWT and FM-Index. Similar to Bowtie, BWA is used as core alignment engine
in several splice aware tools. The tool allows performing both exact alignment using the
FM-Index backward search and inexact alignment using a bounded backtracking algorithm
developed ad hoc. Essentially, the inexact alignment algorithm uses backward search to
identify distinct substrings from the reference genome and the search process is bounded by
the number of allowed differences (mismatches or gaps). Several strategies are then applied
to reduce the complexity and increase the accuracy, including setting a limit on the maximum
allowed differences in the first part of the read (seed) and assign different penalty scores for
mismatches, gap opens and gap extensions.

BWAMEM

BWAMEM is a read aligner implemented as a component of the BWA package that exploits
the canonical seed-and-extend paradigm. The tool employs a variant of the FM-index, called
FMD-index, which builds both forward and reverse strand DNA sequences in one index. The
use of a FMD-index instead of a bidirectional BWT improves the speed of exact alignment
since only one index is used in the search process. In the first part of the alignment process,
the tool splits the read in many segments (seeds) searching for supermaximal exact matches
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(SMEM) for each seed. Formally, a maximal exact match (MEM) is an exact match that
cannot be extended in either direction of the match, while a SMEM is a MEM that is not
considered in other MEMs on the seed sequence. In order to reduce unsuccessful seed
extensions, the seeds mapping close to each other are then clustered together and small
clusters are filtered out. The algorithm extends the seed with a banded affine-gap-penalty
dynamic programming technique using a heuristic similar to the X-dropoff heuristic in
BLAST [122]. In addition, BWAMEM defines a minimum difference between the best end-
to-end alignment score and the best local alignment score to automatically choose between
the two alignment options.





Chapter 4

Design of a benchmark analysis for RNA
sequencing read alignment methods

Interestingly, in the current scenario the main issue is not the lack of available solutions,
since a lot of splice aware algorithms have been developed in recent years. The main problem
is instead the state of confusion deriving by so many methods with conflicting claims of
superiority, mainly due to a lack of thorough and systematic benchmarking studies. A
solution to this problem is presented in the next chapters, where an in-depth comparative
analysis of the current state of the art methods is performed.

In this chapter, two important methodological steps of the benchmark analysis are
introduced and described. The first step consists in simulating a set of realistic dataset
describing several real scenarios and different organisms. For the analysis of splice aware
tools, reads are created from H.sapiens and P. falciparum genomes, simulating different level
of complexity. In the context of splice unaware tools, the S. cerevisiae genome is employed
to create several libraries adding an Illumina error model. The second methodological step
involves the definition of a complete set of metrics to assess each method. Metrics at base,
read and junction level are designed in order to provide a complete view and describe different
aspects of the alignment process. In addition, several computational metrics for execution
time and memory usage are defined.



56 Design of a benchmark analysis for RNA sequencing read alignment methods

4.1 Data simulation

In order to perform an accurate comparative analysis, the simulation of several datasets is a
pivotal step. The use of simulated data allows knowing the true position of each reads in the
genome, making possible to precisely assess the performance of each tool. On the contrary,
the use of real data would lack this information and only allow collecting the number of
aligned and unaligned reads. The latter is not completely informative, since a high percentage
of mapped reads is not necessarily associated to the fact that those reads are mapped to the
right positions. For this reason, the use of simulated data seems the best choice in the context
of comparing RNA-Seq alignment methods.

4.1.1 RNA sequencing data simulators

The generation of simulated data is a very sensitive step that must be carefully considered.
There are many RNA-Seq simulators available and each one is specifically designed for
benchmarking alignment, quantification, normalization or differential expression. Simulators
employed in the assessment of downstream RNA-Seq analysis, as differential expression,
must be able to capture complex properties of RNA-Seq data as biological variability,
positional bias, gene-gene correlation, realistic null distributions, etc. On the other end, for
benchmarking alignments, it is not mandatory to capture those properties, since alignment
algorithms do not use these complex information. In the context of alignment, the important
factors to capture are indels, substitutions, sequencing error, realistic splice junctions, etc. For
this reason, the BEERS simulator [112] and the Flux simulator [123] have been employed in
the generation of simulated data.

BEERS simulator

BEERS was specifically designed to benchmark alignment algorithms. In order not to be
biased against a particular set of gene models, BEERS is capable of using many different
sets of annotations and merges them. For example, human data are simulated combining
ten annotation tracks: RefSeq, GeneID, Aceview, Augustus, ENSEMBL, UCSC, Vega,
GenCode, GenScan and lincRNA. The simulator first chooses a set of N gene models
at random (default N=30000) and then creates alternate splice forms; both the number
of alternate forms and the percentage of signal coming from splice forms are simulation
parameters. Then, BEERS introduces polymorphisms (insertions and deletions) according
to a specified rate. The empirical distribution of gene expression levels is generated from
an input gene quantification file, allowing to mimic several real data scenarios; the same
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file is used also to determinate the distribution of intronic signal. Finally, BEERS simulates
reads by choosing a gene at random, choosing a fragment of normally distributed length and
adding random base and tail errors. One parameter allows setting random base error rate
whereas tail errors are set according to three parameters: i) the percent of low quality tails,
ii) the quality of the low quality tail and iii) the length of the low quality tail. Setting a read
length of M bases, the simulator reports M bases of the fragment from either end and puts
them into a FASTA file. The tool is able to generate paired-end reads of different lengths and
can also simulate strand specific reads. Several output log files contain the true coordinates
of each read, the true junctions spanned, the set of gene models used and the alternate splice
forms generated.

Flux simulator

Flux is a widely adopted RNA-Seq simulator, developed to model and study many aspects of
RNA-Seq data. Flux models gene expression, reverse transcription, fragmentation, library
preparation and sequencing, producing simulated data that are suitable for many kinds of
analyses. Even though it was not specifically developed to benchmark alignment algorithms
like BEERS, it presents a set of features that make it feasible for simple comparative analysis
of alignment methods. Compared to BEERS, it has the main limitation of not simulating
indels and providing less options for error and substitution simulations. On the other hand,
Flux data could be used for the assessment of post alignment tasks such as expression
level quantification and normalization, whereas BEERS data are limited to the mapping
step. Flux data simulation starts by generating an expression level profile for the transcripts
specified in the provided input annotation. Starting from a global number of expressed
RNA molecules, the simulator assigns expression levels to each expressed transcript using
a modified Zipf’s Law [124]. In addition, Flux simulates two biological modifications of
annotated transcripts such as variable transcription start sites and poly-A tail lengths. The
next simulation step consists in simulating the fragmentation process, allowing to choose
among in silico versions of enzymatic digestion, nebulization and hydrolysis. In addition, it
is possible to select whether fragmentation is carried out before or after reverse transcription.
The reverse transcription process is modeled separately for first and second strand synthesis.
Both poly-dT primers and random primers techniques can be simulated and optionally a
position weight matrix can be employed to describe sequence bias. Finally, Flux can perform
an optional size selection step before the in silico PCR amplification, which captures both
GC preferential biases and sequence biases. The last step in data simulation consists in the in
silico sequencing, where the fragments in the library are sub-sampled and the sequences of
an arbitrary end (single-end reads) or of both ends (paired-end reads) are obtained; Illumina
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style sequencing errors could be introduced during this step. The desired library size, read
length and strandedness could be set through simulation parameters. Detailed log files about
the several simulation steps are produced together with a FASTA file containing the simulated
reads.

4.1.2 Simulated data for splice aware methods comparison

BEERS was employed in the creation of many simulated libraries to benchmark splice aware
alignment methods. Data were simulated from two genomes, H.sapiens (human) and P.
falciparum (the most deadly malarial parasite) in each of three levels of complexity for a total
of six conditions, each generated in triplicate for a total of 18 datasets. Each dataset consists
of 10 millions 100 base paired-end strand-specific reads, giving a total of 2 ·109 bases per data
set. The human genome was employed due to its pivotal importance, while the P. falciparum
genome was chosen because it is a commonly studied organism very different from human
[125]. Moreover, the P. falciparum genome is 80% AT rich making it a good candidate
for testing the performance of the alignment methods on handling low complexity regions.
Human data was limited to chromosomes 1-22, X and Y. For human, 30,000 transcript
models were chosen at random from a conglomeration of 858,063 gene models obtained
by combining ten annotation tracks: RefSeq, GeneID, Augustus, ENSEMBL, Aceview,
Vega, GenCode, GenScan, UCSC and lincRNA. For each gene an alternate splice form was
generated by randomly including/excluding exons. Thus, a total of 60,000 transcript models
were used. Expression levels were taken from an exponential distribution with λ=0.01 applied
to a random 2/3 of the transcripts, the rest were left unexpressed. Intron signal was introduced
at levels representative of real data (approximately 40% intronic reads). Intron signal is
introduced by inserting one intron back into the edited transcript before fragmentation. The
used fragment length distribution has minimum length equal to 100 bases, mean equal to 200
bases and maximum length equal to 500 bases. The three levels of complexity, identified by
the labels T1, T2 and T3, were achieved by combining different levels of substitution rate,
indel rate and error rate. Table 4.1 summarizes the characteristics of each complexity level.
T1 simulates data with low polymorphism and error rates, similar to aligning most regions of

Table 4.1 Simulated levels of complexity

Level ID Substitution rate Indel rate Error rate

T1 0.001 0.0005 0.005
T2 0.005 0.002 0.01
T3 0.03 0.005 0.02
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human RNA-Seq reads to the reference human genome. In particular, the substitution rate is
0.001, the indel rate is 0.0005 and the error rate is 0.005, which is a typical low Illumina error
rate [34]. The T2 complexity level data has moderate polymorphism and error rates, similar
to model organisms. Finally, the reads in T3 are designed to represent highly polymorphic
regions in the reference genome which is common in organisms different from human. T3
also represents polymorphism rates which can be observed when aligning across different
(but similar) species. The simulated levels of complexity make it possible to test the different
alignment method performance on a wide set of real case scenarios.

4.1.3 Simulated data for splice unaware methods comparison

Data employed in the comparison of splice unaware methods were generated using Flux.
The choice of Flux instead of BEERS was motivated by the need to use the data both in the
mapping (Chapter 6) and post mapping (Chapter 7) assessments.

The S. cerevisiae genome was used to simulate 6 libraries of 10 million 100 base
paired-end strand-specific reads. The S. cerevisiae is a species of yeast and its genome was
employed due to the low number of introns, resulting in only ~0.24% of reads coming from
exon junctions. This low number of spliced reads makes it safe to employ splice unaware
tools. Gene expression levels were taken from an exponential distribution, starting from
an initial pool of 5000000 expressed RNA molecules. In the read simulation, RNA was
fragmented before reverse transcription using in silico hydrolysis. Then, first strand synthesis
was performed using random hexamer primers and the fragments were size selected by gel
segregation filtering the fragment lengths through a normal distribution with mean equal to
300 and standard deviation equal to 50. Finally, errors in the reads were added using the
built-in Flux error model, which employs a Markov model to generate an error profile similar
to the one observed in Illumina data.
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4.2 Assessment metric definitions

An extensive set of metrics was defined in order to assess the most important aspects of
the mapping process. First, a literature search was performed to identify metrics already
employed in similar studies [112, 126, 127]. Then, additional metrics were defined with the
goal of finding the smallest set of indices able to describe the most important characteristics
of the RNA-Seq data alignment. The resulting set of metrics was organized into three levels,
one for each basic concept of RNA-Seq data alignment. As such, the metrics are based on
events defined as follows: a single base of a single read aligning to the right location (base
level), a single read having at least one base aligning to the right location (read level) and a
single read crossing a single intron (junction level). In practice, the metrics where computed
comparing the ground truth available as output of the read simulation process to the SAM
files resulting from the read alignment using the different tools. Specifically, the information
contained in the FLAG, POS and CIGAR fields of the SAM file were exploited to identify
the read location; details about the SAM file format are provided in Appendix A. Metrics
are then based on standard measures of accuracy for each type of event. In particular, the
standard accuracy metrics precision and recall are computed for each level. Alternatively, the
results can be presented as FNR (False Negative Rate) and FDR (False Discovery Rate) using
the relations FNR = 1 - Recall and FDR = 1 - Precision. In addition to accuracy metrics,
some computational metrics were introduced in order to analyze the performance of the tools
in term of execution time and memory usage.

4.2.1 Base level metrics

The base level metrics focus on the behavior of the aligner with single base resolution,
resulting in the strictest metrics. The base-wise accuracy involves individual bases of the
reads and whether they align uniquely and to the correct location. A single base resolution
is very important in studies involving the identification of SNPs, insertion and deletions,
so these metrics provide useful indications about the accuracy of the mapping tool in these
scenarios. Since some cases are ambiguous, some flexibility was introduced. For example, if
a TT sequence in the reference is replaced by T in the read, then the aligner will typically
choose one of the two T’s to be the aligned base and the other to be the deleted base. In
this case, it is not reasonable to indicate which one of the two T’s was retained and which
was lost. Therefore, the tools are credited for specifying either of the two possibilities. The
design of the metrics results from the identification of some basic concepts involved in the
alignment of a single base. These basic concepts represent the events that could happen in
the mapping process of a single read’s nucleotide, including:
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• Aligned base: a base is defined as “aligned” if its read is aligned and its CIGAR
character in the SAM file is different from “S” and “H” (clipping).

• Unaligned base: a base is defined as “unaligned” if its read is unaligned or its read is
aligned and its CIGAR character in the SAM file is “S” or “H” (clipping).

• Ambiguously aligned base: a base is defined as “ambiguously aligned” if its read is
ambiguously aligned.

• Correctly aligned base: a base is defined as “correctly aligned” if it is aligned
(uniquely, not ambiguously) and the CIGAR character in the SAM file is the same as
the corresponding one in the simulator file.

• Incorrectly aligned base: a base is defined as “incorrectly aligned” if it is aligned
(uniquely, not ambiguously) and the CIGAR character in the SAM file is different from
the corresponding one in the one in the simulator file.

• Insertion: a base is called “insertion” if its CIGAR character in the SAM file is an “I”

• Deletion: a base is called “deletion” if its CIGAR character in the SAM file is a “D”

Starting from the basic concepts described above, the base level metrics are defined as follow:

• Base level precision: (# correctly aligned bases) / (# uniquely aligned bases)

• Base level recall: (# correctly aligned bases) / (total # bases)

• Insertion precision: (# insertions called correctly by the tool) / (# insertions called by
the tool)

• Insertion recall: (# insertions called correctly by the tool) / (total # of real insertions)

• Deletion precision: (# deletions called correctly by the tool) / (# deletions called by
the tool)

• Deletion recall: (# deletions called correctly by the tool) / (total # of real deletions)
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4.2.2 Read level metrics

The read level metrics focus on the read as a unit and are appropriate for studies that do not
require a single base accuracy, as for example gene level quantification. Indeed, in gene
level quantification it is generally sufficient to get the correct location of the read without the
constraint of having every single base correctly aligned. For example, popular tools such as
featureCounts, HTSeq-count and BedTools count a read if at least one read base is found to
overlap a gene.

Thus, accuracy is measured at the read level in terms of percentage of reads for which at
least one base is in the right location. The basic concept involved in the read level analysis
are:

• Aligned read: a read is defined as “aligned” if the SAM bit flag 0x4 is unset.

• Unaligned read: a read is defined as “unaligned” if the SAM bit flag 0x4 is set.

• Ambiguously aligned read: a read is defined as “aligned ambiguously” if either read
in the read pair (fragment) was aligned, but has multiple entries in the SAM file.

• Correctly aligned read: a read is defined as “aligned correctly” if it is aligned
(uniquely, not ambiguously) and at least one base of the read is mapped to the right
position.

• Incorrectly aligned read: a read is defined as “aligned incorrectly” if it is aligned
(uniquely, not ambiguously) and no base of the read is mapped to the right position.

As consequence, the read level metrics are defined as follow:

• Read level precision: (# correctly aligned reads) / (# uniquely aligned reads)

• Read level recall: (# correctly aligned reads) / (total # reads)

4.2.3 Junction level metrics

Aligning over a junction is one of the most important features for RNA-Seq aligners. This
feature is so important that it defines one of the most relevant ways to classify an NGS
aligner: “splice aware” versus “splice unaware”. Even if a tool is able to perform spliced
alignment and identify the need to split a read, the correct identification of both junction sides
is particularly hard. The challenges mainly arise from two scenarios: i) a short anchor in
one or both the junction sides or ii) a high sequence similarity between the read and the near
exon. In the first case, the short anchor could be mapped to the wrong position due to the
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ambiguity of aligning just a few bases. In the second case, the alignment of the exonic part
of the read could be extended by few bases in the near intron, due to the similarity between
the two sequences. Finally, both cases result in the wrong identification of at least one side of
the junction. The accurate identification of exon bounds is an important task in many studies,
thus this metrics allow to describe the performance of the aligner in this kind of analyses.
The metric definition is achieved by the identification of some basic concepts:

• Correctly called junction: A junction is defined as being called correctly if both the
junction start and the junction end sites were identified correctly.

• Incorrectly called junction: If at least one junction site was called incorrectly, the
whole junction is classified as an incorrectly called junction.

The junction level metrics are defined in the most strict way, requiring both sides of the
junction to be correctly identified. The resulting accuracy metrics are:

• Junction level precision: (# junctions called correctly by the tool) / (# junctions called
by the tool)

• Junction level recall: (# junctions called correctly by the tool) / (total # of real
junctions)

4.2.4 Computational burden metrics

The alignment process is a computational expensive task, especially when applied to large
genomes and many read set. Depending on the adopted algorithm and implementation, each
tool would result in different computational requirement. In order to assess the performance
of the different methods, a few metrics were designed to measure the execution time and the
memory usage.

• Total run time: the tool execution time from the start to completion of the alignment
process

• Total CPU time: the total time the CPUs spent performing the alignment process. If
only one thread/CPU is used, this time is the same of Total run time; if more than one
thread/CPU is employed, this time is the sum of the times spent by each thread/CPU.

• Maximum memory usage: the maximum amount of RAM memory used during the
alignment process





Chapter 5

Comparative analysis of splice aware
alignment methods

Despite the pivotal importance of RNA-Seq read alignment, there have been only two
extensive RNA-Seq alignment benchmarking studies which consider both the accuracy and
the performance of several splice aware aligners. In 2011, Grant et al. [112] performed the
first comprehensive comparison study, benchmarking seven splice aware tools and four splice
unaware methods. In the same year, the RNA-Seq Genome Annotation Assessment Project
(RGASP) consortium completed the "Sequence Mapping and Assembly Assessment Project
(SMAAP) RGASP3/dnGASP", a collaborative effort among researchers to compare and
evaluate six spliced aligners and four alignment pipelines [127]. Both studies demonstrated
that choice of alignment methods is critical for the accuracy of a RNA-Seq study and
highlighted many aspects of the alignment process that need further attention.

Since then alignment methods have undergone considerable development, resulting in
both new methods and updated versions of existing tools.

Ideally, a good RNA-Seq aligner should be able to accurately align several kinds of data
(different organisms, error rates, etc.) in many different scenarios. The reads simulation
described in section 4.1.2 was performed to obtain several kinds of data, so the last step
consists in defining a set of different scenarios to analyze. In this chapter, the 14 splice aware
alignment methods described in section 3.3.1 are assessed in terms of accuracy and efficiency,
first introducing a complete set of analyses and then reporting the most relevant results on
these scenarios.
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5.1 Tested scenarios

• Alignment using the default parameters: the common approach to read mapping
consists in studying the aligner’s manual and running the tool providing as input the
read files and the suggested set of parameters. Since this approach is employed in
the great majority of RNA-Seq studies, the accuracy of the alignment methods in this
scenario was assessed.

• Role of input annotation: for many organisms a high quality annotation is available
and providing it as input for the aligner could potentially increase the accuracy of read
mapping. This potential improvement was assessed by comparing the performance of
each tool providing and omitting the annotation as input. In addition, the role of the
annotation was studied in the context of short anchored reads, where the use of known
exon boundaries should improve the splice junction identification. Finally, the different
role of annotation in detecting canonical (i.e. the removed intron contain GT at the 5’
splice site and AG at the 3’ splice site) and non-canonical junctions was analyzed.

• Role of parameters tweaking: each alignment tool has several parameters and many
of them could influence the accuracy of the alignment. Typically, these parameters
control how the tool handles mismatches, insertions, deletions, spliced alignments and
more generally the most critical aspects in the alignment process. In order to identify
the most important parameters and how far the accuracy obtained using the defaults
is from the best achievable results, a search in the parameter space was performed
for each tool. This analysis allows the assessment of how far the default is from a
reasonable value.

• Role of read preprocessing: performing a read preprocessing, usually removing low
quality reads or low quality read’s tails, could reduce the number of unmapped or
incorrectly mapped reads. However, defining a minimum quality threshold is not trivial
and removing too many reads or parts of them could bias some downstream analyses.
For this reason, it is very important to understand if an aligner is able to handle such
kind of data. The accuracy of the different tools in this scenario was assessed by
aligning both preprocessed and unpreprocessed data.

• Multimappers: a common question in the context of read alignment is how to handle
multireads. Many downstream analyses simply discard them, whereas more sophisti-
cated approaches try to exploit them. To identify the recall and precision in the case
of multimappers, the multiread with the most correct bases aligned was chosen and
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any further calculations were based on this best alignment. This analysis allows the
identification of which aligner is closer to solving the ambiguity about the location of
these reads and would be more suitable for subsequently exploiting this information in
downstream analyses.

• Insertions and deletions: the correct detection of indels has a major role in many
studies involving human, since indels can alter human traits and cause diseases. Un-
fortunately, the identification of insertions and deletions represents one of the most
challenging tasks in the alignment process. To assess the performance of the alignment
methods on this complex task, a specific analysis was designed to collect accuracy
metrics about indel detection.

• Alignment speed and memory requirement: reads alignment is a computationally
expensive task, which often requires many hours and tens of GB of RAM. Understand-
ing which aligner has the best performance in terms of execution time and memory
requirements, achieving at the same time a high level of accuracy, is an important
information. To measure the amount of resources employed by each tool, the global run
time, the single CPU time and the maximum amount of RAM memory were collected.

In the following sections a more complete description of each analysis is provided, together
with the most interesting and important results. Generally, the aligners show comparable
results on P. falciparum and human dataset, resulting in a consistent trend between the two
organisms. For this reason, while the results on both human and P. falciparum datasets are
described in the following sections, the figures in this chapter show only the results on human
datasets. The most relevant figures about the assessment on the P. falciparum datasets are
presented in Appendix B. For both organisms, the details about the alignment parameters are
described in Baruzzo et. al [128].
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5.2 Results using the aligner tools default parameters

For each tool, the alignment parameter configurations were designed starting from the default
parameters. When the tool provided specific preset parameters or precise suggestions to
increase the quality of the alignment, these suggestions were followed. In addition, the
parameters related to the read (read length, fragment length, inner mate distance, etc.), or
related to the kind of genome (suggested seed size, k-mer size. etc.) were set if the default
values were not feasible for the current data. Since in the real scenario the users have only
a standard knowledge of the dataset, the information about the error rate, indel rate and
polymorphism rate coming from the read simulation were not exploited. For the alignment of
human libraries, RefSeq [129] was used as provided annotation, whereas for the mapping of
P. falciparum libraries the standard annotation provided by plasmoDB [130] was employed.
Since the data were generated by a random selection of gene models from different annotation
tracks, no biases were introduced. In addition, several tools present a set of parameters to
optimize the execution time or the memory usage, defining different trade-offs between
these two elements. Since the amount of memory is usually a minor concern compared
to the execution time, the parameters which achieved the best execution time were chosen.
Importantly, only the performance parameters that allowed a lower execution time without
any loss of accuracy were employed.

5.2.1 Base level

The base level metrics are the strictest and they require the highest degree of accuracy from
each tool. There are three ways to be wrong at the base level: a base can either be not aligned
at all, aligned to the wrong place, or aligned ambiguously to several places.

On both P. falciparum and human libraries, the base level precision is usually high. The
great majority of the aligners shows a precision greater than 95% in the most complex library,
while on less complex libraries the precision is often greater than 98%. On the other hand,
the base level recall shows a more variable trend, highlighting serious issues in some tools.
As an example, the base precision and recall for human dataset are shown in Figure 5.1 while
the results broken down by different classes of misalignment (aligned to wrong location,
aligned ambiguously, and non-aligned) are given in Figure 5.2. Interestingly, the accuracy in
terms of base level precision and recall is consistent between the two organisms, meaning
that the tools seem robust to different kind of genomes.

On human T1 libraries, the best recall is achieved by MapSplice2 (97.82%), the worst by
CRAC (86.07%), while on P. falciparum the best recall is achieved by CLC (99.32%), the
worst by CRAC (92.36%). ContextMap2, GSNAP, MapSplice2, STAR appear to be the best
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Fig. 5.1 Default parameters - Base level precision and recall for the human datasets. The
tools are sorted by descending recall. While the precision is almost always greater than 90%
across tools and complexity levels, the recall shows a more variable trend.



70 Comparative analysis of splice aware alignment methods

0% 25% 50% 75% 100%
mapsplice2

star
gsnap

contextmap2
hisat

hisat2
novoalign

rum
olego

tophat2
soapsplice

subread
clc

crac

gsnap
mapsplice2

star
novoalign

contextmap2
rum

hisat2
subread

hisat
soapsplice

olego
clc

tophat2
crac

0% 25% 50% 75% 100%

novoalign
gsnap

clc
star

mapsplice2
rum

contextmap2
soapsplice

crac
subread

hisat2
olego
hisat

tophat2

0% 25% 50% 75% 100%

aligned correctly aligned ambiguously aligned incorrectly unaligned

H
um

an T1
percent of total bases

H
um

an T2
H

um
an T3

Fig. 5.2 Default parameters - Base level statistics for the human datasets. For each dataset, the
bars show the percentage of bases aligned correctly, aligned ambiguously, aligned incorrectly
and unaligned by each tool. The tools are sorted by descending percentage of bases aligned
correctly. Increasing the complexity of the datasets from T1 to T3, the aligning performance
changes drastically for the majority of the tools.
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for both organisms, followed by RUM and Novoalign. Curiously, for T1 level complexity
CLC is the best aligner on P. falciparum but second from the worst for human. In contrast
to T1, P. falciparum and human T2 libraries show a significant difference in performance.
GSNAP shows the best recall on human (98.88%), while the worst are CRAC (78.83%) and
TopHat2 (81.19%). Five tools maintain a recall greater than 95% (ContextMap2, GSNAP,
MapSplice2, Novoalign, STAR). On P. falciparum the best recall is achieved by CLC
(98.94%), the worst by TopHat2 (72.15%). GSNAP, MapSplice2 and Novoalign perform best
on T2 complexity on both organisms, followed by ContextMap2 and STAR. The T3 libraries
show a large difference amongst the tools. On human the best recall is achieved by Novoalign
(90.27%) while the worst belongs to TopHat2 (12.53%). Similarly, on P. falciparum TopHat2
has the worst recall at 2.07%, while CLC has the best at 91.81%. Novoalign, GSNAP, CLC,
STAR, MapSplice2, and RUM are the only tools able to exceed 50% on both organisms.

In conclusion, on all P. falciparum datasets CLC is consistently the best at the base
level, while Novoalign and GSNAP also perform well. For human libraries, Novoalign,
GSNAP, MapSplice2 and STAR are the best options. A very important result is the TopHat2
performance on libraries T2 and T3, where the tool is consistently among the worst performers
on both human and P. falciparum libraries. This is notable because TopHat2 is being used in
more than 35% of all publications.

5.2.2 Read level

At the read level, a read is considered to be properly aligned as long as it is not a multi-
mapper and at least one of its bases is aligned to the correct position. Read level analysis is
most relevant for gene level quantification, because a read that has at least one base aligned
correctly will usually increment the correct gene.

Read level results reveal a trend similar to the base level. For both organisms, the read
level precision is almost always greater than 97-98% across tools and complexity levels.
Due to the greater flexibility in the metric definition, read level precision is usually higher
compared to base level precision. Read level recall shows the same variable trend identified at
base level. On both organisms, there is a huge variability between tool accuracies, especially
for the most complex libraries. The different read level performance of the tools on human
can be seen in Figure 5.3 and Figure 5.4.

For human and P. falciparum T1 libraries, all the tools except CLC map more than 96%
of the reads and show an average precision of ~99%. Even though T1 libraries already
show variability in the read level recall, this trend is more evident in T2 libraries. In human,
the read level recall range is between 97.83%(GSNAP) and 81.20%(TopHat2), while in
P. falciparum the range goes from 99.43%(CLC) to 72.18%(TopHat2). The high level of
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Fig. 5.3 Default parameters - Read level precision and recall for the human datasets. The
tools are sorted by descending recall.
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complexity of T3 libraries amplifies the differences between tools and highlights the poor
performance of some tools in handling complex data. In T3 libraries the read level accuracy
ranges from 2.08%(TopHat2) to 98.27%(Novoalign) for human, while for P. falciparum the
range goes from 12.53%(TopHat2) to 97.26%(Novoaling).

These results highlight that the default settings of many tools are not flexible for handling
data of different complexity, suggesting that these tools are not feasible options without
tweaking the input parameters. Consistent with base level analysis, Novoalign, CLC, STAR,
GSNAP and MapSplice2 result as the most robust and best performing tools on both organ-
isms also at the read level.

5.2.3 Junction level

Accuracy of junctions’ identification is one of the most important aspects of a good splice
aware aligner since this information is used extensively in many downstream analysis
programs. In particular, software for reconstructing alternative splicing events depend heavily
on these junction calls. In junction level analysis, an algorithm is defined to call an event
correctly if it aligns the read not ambiguously and it properly identifies the left and right
boundaries of the intron. The results for the human datasets are shown in Figure 5.5.

As for the base and read level analyses, precision is fairly high for most algorithms. On
the other hand, junction recall is often low even in the less complex libraries, highlighting that
spliced alignments is one of the most challenging tasks in the mapping process. For example,
in dataset T2 the majority of tools show a junction recall less than or equal to 75%, while
for the same dataset a value of ~75% defines the lower bound for read recall. CRAC and
SOAPsplice are consistently the worst performers on T1 and T2 libraries, while CRAC and
TopHat2 achieve the poorest recall on the T3 library. Again, human and P. falciparum dataset
show consistent results, even if the average recall is higher in the P. falciparum genome.
Curiously, CLC is the top performer in all datasets except for human T1 and T2 which are
two of the least complex datasets. Among the different complexity level and organisms, the
most consistently accurate performers are CLC, STAR and Novoalign.
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Fig. 5.5 Default parameters - Junction level precision and recall for the human datasets. The
tools are sorted by descending recall. The precision is almost always greater than 97-98%
across tools and complexity levels, the recall shows a more variable trend.
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5.3 Effect of input annotation

In order to improve the alignment accuracy, many tools allow providing an annotation as
input. In particular, the use of a high quality annotation could increase the ability to identify
splicing junctions. A set of tests both providing and omitting the annotation was performed
to quantify the improvement due to the extra information available.

The two conditions were not compared on CLC Genomic Workbench and Novoalign,
because these tools are able to perform spliced alignment only with annotation. Conversely,
CRAC, SOAPsplice and Subread do not allow to provide any kind of annotation as input.
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Fig. 5.6 Effect of annotation - Junction level precision and recall for the human T2 dataset.
The improvement due to the annotation is negligible for many methods, only GSNAP, OLego,
RUM, STAR and TopHat2 show some relevant differences

As expected, the results highlight that the use of the annotation rarely provides a signifi-
cant improvement at the read and base level, both in P. falciparum and human. Indeed, at the
base level the annotation improves performance only for those bases near splice junctions.
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The further away a base is from a junction the less annotation will help and if the read does
not cross a splice junction at all then annotation is unlikely to make a difference to any of its
bases. Similarly, the annotation would rarely affect the read level accuracy. As a proof, the
most significant difference at the read and base level on human T1 is shown by RUM and
TopHat2, where providing the annotation brings a recall improvement of ~1.5% and ~1%,
respectively.

On the other hand, the use of annotation shows its most relevant effects at the junction
level, both in P. falciparum and human. Often, using the annotation allows increasing the
junction recall while has a minor effect on the precision. In both organisms, the only relevant
differences were identified in GSNAP, OLego, RUM, STAR and TopHat2. An example of
this improvement is shown in Figure 5.6.

5.3.1 Short anchored read

Reads extended by only few bases in one of the spanned exons (less than 10bp), can be very
difficult to align, keeping in mind that introns typically are thousands if not tens of thousands
of bases in length. Indeed, these short sequences (heretofore referred to as “anchors”) may
be easily aligned to the adjacent next intron, soft/hard clipped, or aligned in a wrong position,
depending on the algorithm. If an anchor has length one, then there is in fact a 25% chance
it will align perfectly to the adjacent intron and in general an anchor of length n has a 1/4n

chance of aligning to the adjacent intron perfectly. In this context, the input annotation could
help define the exon boundaries consequently improving the ability to accurately align short
anchors. In order to study the ability of the tools to handle short anchors, a set of accuracy
metrics was collected for the reads containing such anchors. First, reads having an anchor
of length less than or equal to 8bp were identified, filtering for reads that spanned only one
junction and that had no indels, which represents the easiest case. In this way, the results
would be mainly affected more by the ability of each tool to handle the short anchored reads,
than by the ability to manage other alignment issues.

The results show a highly variable performance between tools, as show in Figure 5.7.
CRAC, GSNAP, SOAPsplice have the most trouble with short anchors, while STAR and
MapSplice have trouble with anchors of one or two bases, but perform well on longer anchors.
HISAT, HISAT2 and ContextMap2 were remarkably accurate even on the shortest anchors,
even without annotation. The tools that better exploit the extra information available through
the input annotation are RUM and TopHat2.
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Fig. 5.7 Analysis of small anchors in junction calls - human T1 dataset. Precision and recall
are shown as a function of anchor size from one to eight bases. Tests are performed both
providing (with ann.) and omitting (w/o ann.) annotation as input.
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5.3.2 Canonical vs. non canonical junctions

In the identification of a spliced alignment, one of the most challenging case is when the
first base of an intron matches the first base of the following exon. Such cases can often be
resolved by prioritizing canonical signals, but there is considerable latitude in how aligners
deal with this issue in general.
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Fig. 5.8 Analysis of splice signal in junction calls - human T1 dataset. Precision and recall
are shown separately for canonical and non-canonical splice junctions. Identification of
non-canonical junctions is more challenging than canonical junctions.
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As the gene models were taken from real annotation, the vast majority of splice junctions
are canonical (between 98% and 99%). As such, combining all splice junctions into one
metric hides any differential performance on non-canonical junctions. Therefore, analyses of
both canonical and non-canonical junctions were performed separately.

The results show that all algorithms have significantly lower accuracy on non-canonical
junctions as compared to canonical junctions, and no algorithms’ performance on non-
canonical junctions improves very much with annotation. The effect of the annotation in this
scenario for human T1 dataset is shown in Figure 5.8

ContextMap2, HISAT, HISAT2 and STAR do the best overall with GSNAP, RUM and
TopHat2 show moderate performance. OLego, CRAC and SOAPsplice have the worst
performance on non-canonical junctions.
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5.4 Effect of parameters tweaking

Each algorithm has at least several if not dozens of parameters and many of them could
directly affect the alignment accuracy. However, it is almost impossible to perform an
appropriate parameter tweaking in the real scenario, since there is no way to assess the
final accuracy. Indeed, it was determined from the literature search that a large number
of investigators do not modify the parameters and simply use the defaults. It is important
therefore to explore the effect of the parameters on performance and to favor those algorithms
which perform well with defaults. At the same time, collecting some indicators about the
role of each parameter could be useful to develop a set of best practices for each aligner.

For each algorithm the parameter space is enormous and each alignment can require
many hours to run even with many nodes on a compute cluster, thus a heuristic strategy
to search the parameter space must be used which may not necessarily produce a global
optimum. Therefore, for each tool, the subset of parameters and values to test were designed
following these criteria:

• Indications found on the tool manual about the role and importance of each parameter

• Suggestions from the tool’s authors about the role and importance of each parameter

• Use of common parameters which were demonstrated to have a major role in the
alignment (e.g. number of allowed mismatches, seed/k-mer length, etc.).

Parameter optimization was performed on the T3 complexity datasets because those are
the datasets where there is the greatest room for improvement. Unfortunately, it is generally
not possible to optimize both precision and recall at the same time, or even to optimize either
one at the base, read and junction level simultaneously. Since precision is already high in most
cases, the focus was on optimizing the recall, which was done independently for the base,
read and junction level. Globally, a total of 10900 different parameter configurations were
tested during the tuning process. For each tool, the parameter configurations which achieved
the highest recall at the base, read and junction level and the list of tweaked parameters are
shown in Appendix C. The complete list of tested configurations and a set of indicators about
the role of each parameter are presented in Baruzzo et al. [128].

For human data, the effects of parameter tweaking are shown in Figure 5.9, Figure 5.10
and Figure 5.11. Except for RUM the parameter tweaking always improved the recall at the
base, read and junction level in both human and P. falciparum. ContextMap2, HISAT, HISAT2
and TopHat2 show the highest recall improvements at any level, followed by SOAPsplice
and Subread. Interestingly, at the junction level ContextMap2 and TopHat2 show poor
performance using the default settings, while after tuning they become some of the best
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Fig. 5.9 Effect of parameter tweaking - Precision and recall at the base and read level for
the human T3 datasets. For each tool, the figures show the precision and recall at the base
level (top) and read level (bottom) for the “default” and the “tuned” alignments. The “tuned”
alignment is the best configuration (in terms of base recall (top) and read recall (bottom))
achieved by the tweaking process.
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Fig. 5.10 Effect of parameter tweaking at the base and read level for the human T3 dataset.
The bars show the percentage of bases/reads aligned correctly, aligned ambiguously, aligned
incorrectly and unaligned by each tool. For each tool, the figures show the alignment statistics
for the “default” and the “tuned” alignments. The “tuned” alignment is the best configuration
(in terms of base recall (top) and read recall (bottom)) achieved by the tweaking process.
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options. On the contrary, the best performers with the default settings (CLC, Novoalign,
GSNAP and STAR) show only small improvement from parameters tweaking, still achieving
some of the highest recalls. In addition, in the great majority of cases the precision achieved
after parameter tuning are comparable to the ones using the default parameters. In just a few
cases, the greater number of bases/reads/junctions aligned correctly brings also an increasing
number of incorrectly aligned ones, resulting in lower precision.
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Fig. 5.11 Effect of parameter tweaking at the junction level for the human T3 dataset. For
each tool, the figure shows the precision and recall at the junction level for the “default” and
the “tuned” alignments. The “tuned” alignment is the best configuration (in terms of junction
recall) achieved by the tweaking process.
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5.5 Effect of read preprocessing

A common task in many RNA-Seq studies consists in performing a read preprocessing step.
Reads preprocessing is performed just before the alignment process and consists in discarding
low quality reads or trimming them, both to remove low quality tails or adapter sequences. In
order to study the role of this step on the mapping accuracy, a specific analysis was designed
simulating the scenario of reads containing adapter sequences. Starting from 500000 read
pairs in the human T1 dataset, adapter sequences of length 10, 20, 30, 40 and 50 bp were
simulated at fragment ends, using the Illumina Universal Adapter as template. In addition,
errors were introduced in the added adapter sequences at the same rate as the T1 dataset.
Then, the popular tool CutAdapt was employed to identify and remove the adapter sequences.
Finally, both the trimmed and untrimmed version of the dataset were aligned by each tool,
using the same default alignment settings described in the previous sections.

Results are shown in Figure 5.12. The performances at the read and base level show
similar trends, even if precision and recall at the base level are lower due to stricter metric
definitions. The results show that most algorithms are robust to short adapters, while medium
length adapters are more challenging. Once the adapter sequences reach 50 bases they cause
considerable problems for all algorithms, both with or without trimming. On the other
hand, trimming is always necessary for HISAT, OLego and TopHat2, even on short length
adapters. The poor performance of HISAT, OLego and TopHat2 on the untrimmed datasets
are probably related to the inability to perform local alignment, since these tools are the
only ones that do not implement the soft-clipping feature. GSNAP, Novoalign and STAR are
consistently the best performers on both preprocessed and unpreprocessed data.
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Fig. 5.12 Effect of preprocessing at the read level for the human T1 "adapter" dataset. The
bars show the percentage of reads aligned correctly, aligned ambiguously, aligned incorrectly
and unaligned by each tool on datasets containing adapter sequence of lengths 10, 30 and 50
bases. The labels "not trimmed" and "trimmed" refer to the trimmed and untrimmed versions
of the dataset.
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5.6 Multimappers

The percentage of reads mapped to multiple locations depends heavily on the chosen aligner,
the read lengths and the organism. For example, on a typical RNA-Seq study involving
human the percentage of 100bp paired-end reads mapped to multiple locations is usually
lower than 5-10% [127, 131]. Due to the ambiguity deriving from these reads, the common
approach in many downstream analyses consists in discarding multimappers. However,
multimappers are crucial for the correct operation of some popular tools such as RSEM,
Cufflinks and eXpress. Therefore, if one of the multiple alignments is the correct one, one of
these post-mapping processing tools may be able to "rescue" it. To include the multimapping
reads in the analysis, the recall/precision were redefined as follows. For each multimapping
read, the alignment with the most correct bases is considered the "best" and is used in the
precision/recall computation as if it were a unique alignment of that read.

Figure 5.13 and Figure 5.14 show the results on the human datasets. The tools show
consistent results across different organisms and complexity levels, both at the read and base
level. The "best" multimappers is very often the correct one, highlighting the ability of the
alignment tools to identify the correct location in the set of the candidate ones. Generally,
including the best multimapper results in a higher recall and a slightly lower precision.
The different improvements achieved by the tools depend both on the initial percentage of
multireads, which differs between tools, and the ability to identify the correct alignment even
in the most ambiguous cases. On the T1 and T2 human libraries, the percentage of "best"
multireads that are correctly mapped is always greater that 90%, except for CLC (<60%)
and SOAPsplice (~78%). On the T3 library, the percentage of rescued multireads correctly
mapped drops by ~10%, compared to the T1 and T2 libraries. Again, CLC shows the worst
performance, aligning correctly only ~68% of the "best" multimappers. The same trends are
shown also in the P. falciparum libraries, even though the initial percentage of ambiguously
mapped reads is generally lower compared to human libraries.
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Fig. 5.13 Multimapper analysis at the base level for the human datasets. The bars show
the percentage of bases aligned correctly, aligned ambiguously, aligned incorrectly and
unaligned by each tool. The labels "not included" and "included" refer to considering the
best multimapper as if it were aligned unambiguously and including it in the analysis.
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Fig. 5.14 Multimapper analysis at the read level for the human datasets. The bars show
the percentage of reads aligned correctly, aligned ambiguously, aligned incorrectly and
unaligned by each tool. The labels "not included" and "included" refer to considering the
best multimapper as if it were aligned unambiguously and including it in the analysis.
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5.7 Insertions and deletions

The identification of insertions and deletions represents one of the most challenging tasks
in the alignment process. First, indel detection requires complex scoring functions and
similarity/distance measures to be properly handled. For example, the commonly used
Hamming distance does not manage indels properly, while the use of a scoring function
requires the definition of a set of penalties for gap open, gap extension and gap close. Second,
indel detection is computationally expensive since it requires time consuming backtracking
and dynamic programming procedures. Last, the wide range of indel lengths (e.g. 1bp-
10000bp in human [132, 133]) requires flexible procedures to correctly handle insertions and
deletions of different sizes, even though large indels are usually easier to identify compared
to small indels.

Despite these issues, the correct identification of indels is a primary goals in many
sequencing studies. Indels have a major role in the onset and progression of several diseases
[134–136] and are a major determinant of human biological diversity [137, 138]. The number
of indels in human genomes is second only to the number of single nucleotide polymorphisms
and one of the main challenge in their identification is the low alignment quality [139, 140].

For this reason, a specific set of statistics on insertion and deletion accuracy were collected
at the base level. The results on human dataset are shown in Figure 5.15 and Figure 5.16.

Between insertions and deletions the tools show similar trends: algorithms showing poor
accuracy with insertions tended to also have poor accuracy with deletions. Deletions seem
easier to identify compared to insertions, even if the difference is small. In the less complex
libraries T1 and T2, only half of the tools achieve an indel recall of at least 50% highlighting
the current difficulties of many tool in handling this complex feature. As a consequence, in
the most complex dataset T3 only CLC and Novoalign show a recall higher than 50% in both
insertions and deletions identification. Among the tested tools, CLC and Novoalign followed
by GSNAP and Subread show the best performance on insertion detection. As for deletion
identification, the list of best performers is the same with also RUM that performs well.

Again, these results underline that the choice of the right aligner has a pivotal role in
alignment accuracy, especially in a challenging task as indel detection. Unlike previous
results, indel identification shows a considerable difference between tool performances even
in the less complex dataset T1. In the same dataset T1, just a few tools achieve an indel recall
higher than 75%, which is far from the base level recall achieved in the same dataset. As for
previous analyses, P. falciparum datasets show a similar trend across libraries, achieving only
slightly higher recalls compared to human.
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Fig. 5.15 Insertion level precision and recall for the human datesets. The tools are sorted by
descending recall. For each tool, the figure shows the insertion precision and recall at the
base level
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Fig. 5.16 Deletion level precision and recall for the human datasets. The tools are sorted
by descending recall. For each tool, the figure shows the deletion precision and recall at the
base level
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5.8 Alignment speed and memory requirement

Aligning tens of millions of reads against a large genome is a computational expensive task
which could require several GB of memory and long execution times even on a HPC machine.
The aligners try to mitigate these issues by designing specific heuristics or approximations and
exploiting efficient data structures and algorithms. However, each aligner’s implementation
results in a unique way to use the previous elements, resulting in different performances
among tools. In this scenario, it is very important to identify both which are the most efficient
tools and the minimum amount of memory and execution time required to achieve a specific
level of accuracy. For this reason, the metrics defined in section 4.2.4 were employed to
measure CPU time, execution time and memory usage on the default alignment described in
section 5.2.

The tools were executed on a HPC cluster with a Platform Load Sharing Facility (LSF)
job scheduling system. The cluster consists of 144 IBM iDataPlex Nodes (16 physical cores
per node; 192 or 256 GB of RAM per node) using a Red Hat Linux 6.4. A job was designed
for each alignment run and 16 threads were reserved for each job. The performance metrics
were not computed for CLC since the tool works mainly with a graphic interface which
makes the performance profiling in a cluster environment difficult to test.

The results on the human datasets are shown in Figure 5.17, Figure 5.18, and Figure 5.19.
As for alignment accuracy, the different tools show a highly variable scenario both in terms

of execution time and memory usage. The fastest tools on both human and P. falciparum are
HISAT2, HISAT and Subread. STAR and Subread have comparable results on all libraries
except for P. falciparum T2 and T3, where Subread is substantially faster than STAR. The
slowest tools are Mapsplice2, RUM, ContextMap2, OLego and TopHat2. Novoalign has
no multi-threading option in its free license version, so it is difficult to precisely assess its
performance. Unlike previous analyses, the human and P. falciparum results differ sensibly
in terms of execution times. Indeed, the different genome sizes result in faster execution
time on P. falciparum datasets compared to human libraries. The fastest tools on human
are consistently the best performers also on P. falciparum, while the performance of the
other tools sometimes differs between the two organisms. In addition, the execution times
increase in the most complex datasets for all tools due to the additional effort required by
these libraries. The CPU time metrics underline how the different tools exploit parallelism.
Tools having a run time close to the CPU time (divided by 16, as in figure 5.18) highlight
a better use of parallelism in terms of work load distribution. The different tool rankings
between CPU time and Run time performance are due to this parallelism ability. Interestingly,
OLego and ContextMap2 show often a considerable variability on both CPU time and Run
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Fig. 5.17 Performance in terms of run time for the human datasets. For each dataset and
tool, the bars show the average run time (in minutes) computed on the three replicates. The
error bars show the variability of this measure. The tools are sorted by ascending average run
time. Note: Novoalign has no multithreading in its free license versions. In order to obtain
comparable results, the Novoalign run time was divided by the number of used threads (16).
However, this is only an underestimation since the real scalability could be lower than the
ideal one.
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Fig. 5.18 Performance in terms of CPU time for the human datasets. For each tool, the
figures show the real CPU time divided by the number of threads used (16). For each dataset
and tool, the bars show the average CPU time (in minutes) computed on the three replicates.
The error bars show the variability of this measure. The tools are sorted by ascending average
CPU time.
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Fig. 5.19 Performance in terms of maximum memory usage for the human datasets. For each
dataset and tool, the bars show the average maximum memory usage (in MB) computed on
the three replicates. The error bars show the variability of this measure. The tools are sorted
by ascending average memory usage.
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time. This variability was confirmed by additional tests, underling a high sensibility to the
particular input dataset.

Finally, identifying a trend between alignment accuracy and alignment speed seems to be
non-trivial. Tools achieving a low alignment accuracy at the base, read and junction level
show both high alignment speed (HISAT2, HISAT) and long execution time (OLego). On
the other hand, STAR is the fastest among the most accurate tools and achieved an excellent
alignment speed even compared to less accurate tools. GSNAP and Novoalign are usually
slower than STAR, especially on the human datasets.

As for maximum memory requirements, HISAT2, HISAT, OLego and SOAPsplice are
consistently the most efficient tools across organisms and complexity levels. ContextMap2
and RUM show the highest requirements in terms of memory in human libraries, followed
by Novoalign and GSNAP. In the P. falciparum datesets, ContextMap2 is still the worst
performer, followed by Novoalign, RUM and MapSplice2. As for execution time, the P.
falciparum datasets show lower requirements even in terms of maximum memory usage.
Since the amount of memory employed during the alignment process is mainly affected
by the size of the genome index, the lower length of P. falciparum genome compared to
human results in a considerable reduction of the required amount of RAM. Interestingly,
the most efficient tools in terms of memory (HISAT2, HISAT and OLego) are among the
worst performers in terms of accuracy at the base, read and junction level. On the other hand,
some of the most accurate tools (STAR, GSNAP and Novoalign) have considerable memory
requirements.





Chapter 6

Comparative analysis of splice unaware
alignment methods

Splice unaware algorithms solve an easier problem compared to splice aware methods, mainly
since no splicing detection is required. For this reason, these algorithms result in fewer
alignment parameters and implemented features, compared to splice aware tools.

Unlike splice aware methods, the class of splice unaware aligners is well studied and
many comparison analyses have been performed [99, 126, 141–146]. For this reason, the
main goal of the following comparative analysis is to assess and update existing results,
rather than perform a thorough study of all the alignment aspects.

In this chapter, the simulated libraries described in section 4.1.3 were employed to assess
the accuracy and efficiency of the 4 popular splice unaware alignment methods described in
section 3.3.2: Bowtie, Bowtie2, BWA and BWAMEM.
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6.1 Tested scenarios

The low number of implemented features and the large number of tests already performed in
the literature result in a limited number of metrics and analyses compared to splice aware
methods. In this scenario, two main aspects were investigated in the study of splice unaware
methods:

• Alignment using the default parameters: as for splice aware methods, the common
approach to read mapping consists in running the tools with the default parameters.
Compared to splice aware methods, there are less alignment parameters and their
tweaking is rarely necessary. The accuracy of the different tools were assessed in terms
of precision and recall using the base level and read level metrics.

• Alignment speed and memory requirement: unspliced alignments are less compu-
tationally expensive than spliced alignments, both for the lack of splicing junction
detection and for the less complex alignment strategies implemented. However, the
alignment of several millions of reads could still require many hours and GBs of RAM.
To measure the amount of resources employed by each tool, the metrics described in
section 4.2.4 were employed to assess the global run time, the single CPU time and the
maximum amount of RAM memory.

In the following sections these two analyses are described and the most relevant results
are presented and discussed. The details about the alignment parameters are described in
Appendix D.
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6.2 Results using the aligner tools default parameters

For each tool, the alignment command was designed starting from the default settings. Then,
specific options to increase the quality of the alignment, usually at the cost of longer execution
time and memory requirement, were set if available. Unlike splice aware tools, none of the
tested methods have performance parameters to optimize execution time against memory
usage.

6.2.1 Base level

At the base level, each base is considered as aligned correctly, aligned incorrectly or un-
aligned. Unlike previous analyses, no multireads were reported by the tools using the default
parameters. Base level results are shown in Figure 6.1 and Figure 6.2.

B
ow

tie

B
ow

tie
2

B
W
A

B
W
A
M
EM

0.900

0.925

0.950

0.975

1.000

pr
ec

is
io
n

re
ca

ll

pr
ec

is
io
n

re
ca

ll

pr
ec

is
io
n

re
ca

ll

pr
ec

is
io
n

re
ca

ll

Algorithm

va
lu

es

S. cerevisiae base level

Fig. 6.1 Default parameters - Base level precision and recall for the S. cerevisiae datasets.
The chart shows the average precision and recall across replicates; the SD across replicates
is lower than 0.2%. Since the tools achieve comparable performance, the y-axis is scaled
between the values 0.9 and 1.

At the base level, the mapping strategies of Bowtie and Bowtie2 seem to slightly outper-
form the BWA and BWAMEM ones. The results show comparable performance in terms of
precision, while the recall shows some minor differences between tools. Bowtie2 achieves
the best performance with a precision of ~97% and a recall of ~96%, followed by Bowtie
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Fig. 6.2 Default parameters - Base level statistics for the S. cerevisiae datasets. The bars
show the percentage of bases aligned correctly, aligned incorrectly and unaligned by each
tool. The bars represent the average percentages across replicates; the SD across replicates
is lower than 0.2%. Since the tools achieve comparable performance, the y-axis is scaled
between the values 0.9 and 1.

(respectively, ~96% and ~94%) and BWAMEM(~96% and ~93%). A similar trend is shown
by the percentage of mapped bases where BWA and Bowtie achieve the lowest percentage of
incorrectly mapped bases.
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6.2.2 Read level

Since quantification on simple organism is often performed counting the number of reads
overlapping an exon, a poor performance in these metrics would result in inaccurate in-
ferences of the expression levels. Read level results are shown in Figure 6.3 and Figure
6.4.
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Fig. 6.3 Default parameters - Read level precision and recall for the S. cerevisiae datasets.
The chart shows the average precision and recall across replicates; the SD across replicates
is lower than 0.2%. Since the tools achieve comparable performance, the y-axis is scaled
between the values 0.9 and 1.

As for base level, the tools show very good accuracy both in terms of precision and recall.
While precision shows a more uniform behavior, it is again the recall that results in a more
variable trend. The best tradeoff between precision and recall is achieved by BWAMEM,
followed by Bowtie2 and BWA. BWAMEM and Bowtie2 show also the highest number of
aligned reads, while BWA achieves the lowest percentage of incorrectly mapped reads.
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Fig. 6.4 Default parameters - Read level statistics for the S. cerevisiae datasets. The bars
show the percentage of reads aligned correctly, aligned incorrectly and unaligned by each
tool. The bars represent the average percentages across replicates; the SD across replicates
is lower than 0.2%. Since the tools achieve comparable performance, the y-axis is scaled
between the values 0.9 and 1.
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6.3 Alignment speed and memory requirement

Splice unaware tools have usually lower requirements in terms of memory usage compared
to splice aware tools. As for the execution time, even though splice unaware tools require
less computation due to the easier scenario (i.e. no spliced alignments), the high degree
of efficiency achieved in recent years by the splice aware algorithm makes the execution
time comparable for some tools. In this scenario, it is important to identify the differences
in resource usages since one of the advantages of using splice unaware tools on simple
organisms is the lower resource requirements. The performance in terms of alignment speed
and memory requirement are assessed measuring the CPU time, run time and memory usage
(section 4.2.4).

The tools were executed on a HPC cluster with a Sun Grid Engine (SGE) job scheduling
system. The cluster consists of 2 nodes each equipped with four sixteen-core AMD Opteron
6378 (64 core in total) and 256 GB RAM, using a Fedora Linux 20. A job was designed for
each alignment run and 4 threads were reserved for each job. The resource profiling results
are shown in Figure 6.5, Figure 6.6, and Figure 6.7.
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Fig. 6.5 Performance in terms of run time for the S. cerevisiae datasets. For each tool, the
bars show the average run time (in minutes) computed on the six replicates. The error bars
show the variability of this measure.

Bowtie achieves the lowest execution time, showing a run time almost 7 times faster than
Bowtie2. BWAMEM is the second best performer, followed by BWA and Bowtie2. The
same trend is observed also in CPU time measurements, where all the tools show also a good



106 Comparative analysis of splice unaware alignment methods

0

50

100

Bo
w

tie

Bo
w

tie
2

BW
A

BW
AM

EM

Algorithm

cp
u 

tim
e 

 (i
n 

m
in

ut
es

)

 S. cerevisiae − CPU time

Fig. 6.6 Performance in terms of CPU time for the S. cerevisiae datasets. For each dataset
and tool, the bars show the average CPU time (in minutes) computed on the six replicates.
The error bars show the variability of this measure.
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Fig. 6.7 Performance in terms of maximum memory usage for the S. cerevisiae datasets. For
each dataset and tool, the bars show the average maximum memory usage (in MB) computed
on the six replicates. The error bars show the variability of this measure.
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level of parallelism. Indeed, except for BWA, the CPU time achieved by each tools is almost
4 times the run time (4 is the number of used threads), highlighting a good scalability in the
parallel computation. Comparing the CPU time of splice unaware tools to the CPU time of
splice aware methods on the P. falciparum datasets highlights some interesting facts. Even
on a bigger genome (the P. falciparum genome is ~23.3Mb while the S. cerevisiae genome is
~12.5Mb), some splice aware tools are able to achieve better than or comparable CPU time
compared to the tested splice unaware algorithms. Especially comparing the performance on
the less complex P. falciparum libraries T1 and T2, the use of a splice unaware method instead
of a splice aware tool seems to not bring any benefit in terms of computational time. As for
the memory usage, the four tools show some differences in the required amount of RAM.
BWAMEM has the highest memory requirement, employing ~30% more memory compared
to BWA. On the other hand, Bowtie2 shows a lower memory requirement compared to its
previous version. Comparing to splice aware methods, in the least complex P. falciparum
library the great majority of the tools require more than 2GB of RAM to handle a 23.3Mb
genome, while splice unaware tools use less than 900MB of RAM to work on a 12.5Mb
genome. However, a straightforward comparison with splice aware tools is more complex
here, since the different genome sizes have a direct effect on the amount of memory used.
In addition, the different indexing (i.e. BWT vs. Hash/SA) and compression strategies
employed by the splice aware algorithms make it difficult to compare the two classes of
methods.





Chapter 7

Effects of read alignment on expression
level quantification

The results of the aligner comparison highlight several differences between tool accuracies,
especially among splice aware tools. The performance differences, particularly on more
complex datasets, would considerably affect the accuracy of many downstream analyses. On
the other hand, even if Bowtie2 and BWAMEM outperform their previous versions, splice
unaware tools show smaller differences in terms of precision and recall. For these tools,
the different performances could bring only minor effects on the reliability of downstream
analyses.

In order to assess the effect of the four splice unaware tools on a common downstream
analysis, an expression level quantification study was performed. Expression level quan-
tification is one of the most common downstream analyses in RNA-Seq studies and it is
described in section 2.3.2. Briefly, quantification analyses exploit the idea that the number of
reads that map to each transcribed sequence (called counts) is a good proxy of its expression
level. Quantification could be performed at the transcript, gene or exon level, depending on
which coding unit is employed to summarize the raw counts of mapped reads. After some
processing and normalization, counts provide a digital measure of expression levels.

In this chapter, a set of suitable test datasets for an expression level analysis is identified
and described, focusing on real or simulated data which could ensure some sort of ground
truth to exploit during the assessment. Second, a set of metrics to assess the expression level
quantification accuracy is introduced. Finally, several data processing workflows are defined,
including different read preprocessing options, alignment tools and alignment strategies.
These different workflows allow a better understanding of the role of each data processing
choice in the final quantification accuracy. In the last section, quantification accuracy results
are shown and discussed.
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7.1 Selection of test datasets

In order to assess quantification accuracy, some ground truth information about the true
expression level in the sample is required. These true abundance values would be compared
to the measured expression levels and an accuracy index would be produced.

The easy way to obtain a ground truth information about the true expression level is
simulating data. Using the right simulator, it is possible to obtain a simulated read library
and the expression levels employed during the simulation. The main advantage of employing
simulated data is the complete control on data characteristics and the availability of complete
ground truth information. Unlike simulation for alignment benchmarking, here some complex
effects (e.g. length bias, GC content bias, etc.) must be modeled in order to produce realistic
data. However, simulating the entire range of biases which affect real data is challenging and
usually simulators employ approximations or simplifications in the data generation process.

On the other hand, using real data makes it impossible to know the ground truth informa-
tion about the level of expression. Quantitative Real-Time PCR (qPCR) [147] is commonly
employed to assess the fold differences in expression levels, providing an indirect relative
abundance measure [148–150]. Alternatively, standard transcripts with known sequences
and concentrations, called spike-ins [151], could be added to sample. Spike-ins try to mimic
some properties of the endogenous transcripts, such as different GC content and length, main-
taining at the same time a minimal sequence homology with the transcripts in the samples.
This characteristic allows minimization of the confounding alignment of spike-in reads to
the reference genome, resulting in a more accurate detection of spike-in fragments. Unlike
simulated data, the use of spike-in techniques allows accounting of the entire complexity of
real data but provides a less accurate estimation of the true expression level.

In order to exploit the strengths of the two class of approaches, both real data containing
spike-ins and simulated data were employed in the assessment process.

7.1.1 Real data

Real data consist of 6 libraries of Mycobacterium tuberculosis H37RV sequenced using an
Illumina HiSeq 1000 platform. An Illumina Truseq stranded mRNA preparation kit with a
Ribo-Zero rRNA Removal Kit (Bacteria) was employed during library preparation. The six
libraries consist of 100bp strand-specific paired end reads; each library contains between ~30
and ~45 millions read pairs. Before sequencing, two mixtures of Ambion ERCC Spike-In
Control Mixes (Thermo Fisher Scientific [152]) were added to samples. The ERCC RNA
Spike-In Control Mixes are pre-formulated sets of 92 polyadenylated transcripts from the
ERCC plasmid reference library. The two mixtures, called Mix1 and Mix2, contain 92
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transcripts spanning a 106-fold concentration range (Figure 7.1) and having different GC
content and lengths (Figure 7.2).
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Fig. 7.1 Spike-in concentrations
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Fig. 7.2 Spike-in GC content (left) and lengths (right)

The known spike-in concentration levels were employed as ground truth in the assessment.
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7.1.2 Simulated data

A subset of the simulated data used in the benchmarking of splice unaware mapping methods
(section 4.1.3) were employed in the current assessment. The dataset consists of 6 S.
cerevisiae libraries of ~1 million 100 base paired-end strand-specific reads simulated using
the Flux simulator. The use of the S. cerevisiae genome results in only ~0.24% of reads
coming from exon junctions.

The Flux Simulator assigns to the transcripts specified in the annotation random expres-
sion ranks x which are then converted into relative expression levels y by the following
modified Zipf’s Law:

y = y0xkexp−
x
a−( x

b )
2

where y0 is the initial number of molecules, x denotes the rank number of a gene, k < 0
is the exponent of the intrinsic power law, while a and b control the exponential decay. The
number of expressed RNA molecules provided by the simulator was employed as ground
truth in the assessment. Data were generated using in silico fragmentation and first strand
synthesis with random primers. Finally, a size selection step was simulated, employing a
normal distribution with mean equal to 300 and standard deviation equal to 50 as probability
distribution over fragment sizes to be retained in the final set. In the simulation of the
sequencing process, errors in the reads were added using the built-in simulator error model,
which employs a Markov model to generate an error profile similar to the one observed in
Illumina data.

7.2 Metric definitions

The expression level quantification accuracy was assessed in terms of Pearson coefficient of
correlation r. Correlation is widely employed as accuracy metrics in studies involving the
comparison between the estimates and the known expression levels [151, 153, 154].

However, correlation alone is not completely informative since is not able to capture
effects such as data dispersion. For this reason, the relative error between the inferred
expression level and the true expression level was computed. Since the inferred and true
expression levels could be expressed in different scales, the values were expressed in terms
of fraction over the total amount (e.g. a spike-in concentration value would be divided by the
sum of all the concentration values) and the relative error was computed using such computed
values.
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In addition, a visual inspection of the plots representing the relation between true and
inferred expression values was performed to identify possible undetected effects.

7.3 Quality control and read preprocessing

In order to identify the role of read quality control and preprocessing in the final quantifi-
cation accuracy, both raw and preprocessed reads were analyzed. Read quality control was
performed using FASTQC. The quality reports highlight the presence of adapter sequences
in the real data and a low quality tail in the read sequence, especially in the simulated data
(Figure 7.3 and Figure 7.4).

Fig. 7.3 Base quality distribution for simulated data (library 1).

The overall base qualities are higher in real data than in simulated data, suggesting that
the built-in Flux Simulator error model generates a considerable amount of low quality bases.

In order to improve the quality of the data, some read preprocessing steps were performed
using FASTX-Toolkit:

1. Adapters removal: adapter sequences at the end of the reads were removed
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Fig. 7.4 Base quality distribution for real data (library 1).

2. Low quality read tails trimming: nucleotides showing a quality value lower than 20
were trimmed (from the end of the sequence).

3. Short read discarding: reads whose length after trimming was lower than 70 bases
were discarded

After these steps, some read pairs lost one of the two mates resulting in several single read
sequences (i.e. singleton). For each library, singletons were collected in an additional file
and exploited during the mapping process. The results of read preprocessing are summarized
in Table 7.1 and Table 7.2. The considerable number of low quality bases in the simulated
dataset resulted in a high number of discarded reads (~21.8% read pairs lose one mate). On
the other hand, the higher quality of real data allowed more than 99.7% of read pairs to pass
the preprocessing thresholds.
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Table 7.1 Effect of preprocessing on simulated dataset

Dataset Read pairs
Preproc. read pairs Removed read pairs Singleton reads

Number % Number % Number %

Sim1 1000200 767213 76.71% 15346 1.53% 217641 21.76%
Sim2 1000442 767100 76.68% 15593 1.56% 217749 21.77%
Sim3 1000938 766080 76.54% 15550 1.55% 219308 21.91%
Sim4 1001010 767282 76.65% 15579 1.56% 218149 21.79%
Sim5 1000133 765480 76.54% 15729 1.57% 218924 21.89%
Sim6 1000741 767137 76.66% 15463 1.55% 218141 21.80%

Table 7.2 Effect of preprocessing on real dataset

Dataset Read pairs
Preproc. read pairs Removed read pairs Singleton reads

Number % Number % Number %

Real1 34978376 34892984 99.76% 796 0.002% 84596 0.24%
Real2 35830466 35756662 99.79% 501 0.001% 73303 0.20%
Real3 40779711 40672542 99.74% 1011 0.002% 106158 0.26%
Real4 30027891 29962557 99.78% 866 0.003% 64468 0.21%
Real5 30835876 30771421 99.79% 404 0.001% 64051 0.21%
Real6 44947217 44836985 99.75% 17323 0.039% 92909 0.21%
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7.4 Read mapping

With the aim of assessing the role of read mapping on quantification accuracy, both the raw
and preprocessed reads were aligned using several splice unaware tools. The tools involved
in section 6.1 comparisons (BWA, BWAMEM, Bowtie and Bowtie2) were employed in this
test.

In addition to different alignment methods, the effect of different alignment strategies
involving single-end (SE) and paired-end (PE) mapping modes was analyzed. Indeed, the
tested tools allow mapping of both single-end and paired-end reads.

Moreover, specific alignment strategies were developed to rescue singleton reads. Since
expression level quantification relies on the number of mapped reads in a specific region,
the use of singletons would affect the counting process and potentially change the overall
accuracy. Obviously, while read pairs could be mapped both in SE and PE mode, singleton
could be mapped only in SE mode. The final set of designed alignment strategies on both
raw and preprocessed reads is summarized in the following list:

• M_SE: raw read pairs (M) were mapped in single-end mode (SE)

• M_PE: raw read pairs (M) were mapped in paired-end mode (PE)

• P_SE: preprocessed read pairs (P) were mapped in single-end mode (SE)

• P_PE: preprocessed read pairs (P) were mapped in paired-end mode (PE)

• PS_SE: preprocessed read pairs (P) and singletons (S) were mapped in single-end
mode (SE)

• PS_PE: preprocessed read pairs (P) were mapped in paired-end mode (PE) while
singletons (S) were mapped in single-end mode

The mapping statistics achieved using the previous mapping modes are shown in Table
7.3 and Table 7.4. BWAMEM and Bowtie2 show the highest percentage of mapped reads,
both on real and simulated dataset. On the other hand, Bowtie achieves the lowest percentage
of aligned reads on real dataset, while on simulated data Bowtie and BWA show the lower
number of mapped reads. Except for Bowtie, all the tools in PE mode achieve a percentage
of mapped reads greater than or equal to the corresponding SE mode, even if the differences
are negligible. Similarly, raw and preprocessed dataset show comparable percentages of
mapped reads. Curiously, BWA in M_SE mode maps an unusual low number of reads, while
the same dataset mapped in PE mode achieves the typical percentage of aligned reads.
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Table 7.3 Mapping statistics on the simulated datasets. The statistics labeled as (total) show
the percentage of mapped reads calculated with respect to the total number of raw reads.

Mode Aligner
% mapped read % mapped read (total)

avg SD avg SD

M_SE BWA 85.601% 0.044% 85.601% 0.044%
M_SE BWAMEM 99.670% 0.005% 99.670% 0.005%
M_SE Bowtie 98.734% 0.031% 98.734% 0.031%
M_SE Bowtie2 98.820% 0.021% 98.820% 0.021%
M_PE BWA 97.129% 0.036% 97.129% 0.036%
M_PE BWAMEM 99.844% 0.003% 99.844% 0.003%
M_PE Bowtie 97.487% 0.048% 97.487% 0.048%
M_PE Bowtie2 98.821% 0.021% 98.821% 0.021%
P_SE BWA 98.692% 0.029% 75.625% 0.082%
P_SE BWAMEM 99.997% 0.000% 76.625% 0.073%
P_SE Bowtie 99.572% 0.028% 76.299% 0.081%
P_SE Bowtie2 99.855% 0.021% 76.516% 0.078%
P_PE BWA 99.892% 0.016% 76.545% 0.077%
P_PE BWAMEM 100.000% 0.000% 76.627% 0.073%
P_PE Bowtie 99.152% 0.042% 75.978% 0.084%
P_PE Bowtie2 99.855% 0.021% 76.516% 0.078%
PS_SE BWA 98.692% 0.028% 86.392% 0.054%
PS_SE BWAMEM 99.997% 0.000% 87.535% 0.041%
PS_SE Bowtie 99.573% 0.028% 87.163% 0.053%
PS_SE Bowtie2 99.855% 0.021% 87.410% 0.048%
PS_PE BWA 99.743% 0.016% 87.312% 0.048%
PS_PE BWAMEM 99.999% 0.000% 87.536% 0.041%
PS_PE Bowtie 99.205% 0.040% 86.841% 0.058%
PS_PE Bowtie2 99.855% 0.021% 87.410% 0.048%
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Table 7.4 Mapping statistics on the real datasets. The statistics labeled as (total) show the
percentage of mapped reads calculated with respect to the total number of raw reads.

Mode Aligner
% mapped read % mapped read (total)

avg SD avg SD

M_SE BWA 98.218% 0.282% 98.218% 0.282%
M_SE BWAMEM 99.881% 0.024% 99.881% 0.024%
M_SE Bowtie 95.823% 0.583% 95.823% 0.583%
M_SE Bowtie2 99.708% 0.058% 99.708% 0.058%
M_PE BWA 98.744% 0.300% 98.744% 0.300%
M_PE BWAMEM 99.894% 0.026% 99.894% 0.026%
M_PE Bowtie 92.318% 0.919% 92.318% 0.919%
M_PE Bowtie2 99.708% 0.058% 99.708% 0.058%
P_SE BWA 98.225% 0.282% 97.998% 0.299%
P_SE BWAMEM 99.881% 0.024% 99.651% 0.033%
P_SE Bowtie 95.841% 0.583% 95.620% 0.599%
P_SE Bowtie2 99.708% 0.058% 99.478% 0.065%
P_PE BWA 98.745% 0.300% 98.518% 0.316%
P_PE BWAMEM 99.894% 0.026% 99.664% 0.034%
P_PE Bowtie 92.352% 0.915% 92.139% 0.930%
P_PE Bowtie2 99.708% 0.058% 99.478% 0.065%
PS_SE BWA 98.225% 0.282% 98.107% 0.292%
PS_SE BWAMEM 99.881% 0.024% 99.762% 0.032%
PS_SE Bowtie 95.840% 0.583% 95.726% 0.592%
PS_SE Bowtie2 99.708% 0.058% 99.589% 0.067%
PS_PE BWA 98.745% 0.300% 98.627% 0.310%
PS_PE BWAMEM 99.894% 0.026% 99.775% 0.033%
PS_PE Bowtie 92.355% 0.915% 92.245% 0.927%
PS_PE Bowtie2 99.708% 0.058% 99.589% 0.067%
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7.5 Quantification and normalization

Quantification was performed at the exon level, counting the number of reads overlapping
the annotated regions, i.e. exons on simulated dataset and spike-ins on real dataset. The raw
number of reads was computed using BEDTools. More sophisticated methods such as Cuf-
flinks, RSEM and eXpress were not employed since the specific scenario (e.g. no multireads,
no multiple isoforms, etc.) would not benefit from the advanced features implemented by
these methods. In order to mitigate the length bias, the raw read counts were divided by the
feature length. No between-library normalization were implemented since the assessment
did not require any inter-library count computation.

7.6 Results of quantification assessment

The Person coefficient of correlation was computed between the normalized count and the
known expression level for each library, both on real and simulated data. Table 7.5 and Table
7.6 show for each combination of aligner and mapping mode the average correlation among
the 6 libraries and the corresponding standard deviation.

The results highlight a high consistency between tool performances. Neither the choice
of the aligner nor the adopted mapping mode show any significant difference in terms of
correlation (Wilcoxon-test p-value > 0.05). Similarly, the relative error analyses and the
visual inspection of the inferred expression level plots do not show any significant difference
between the tested options. An example for a single real dataset is shown in Figure 7.5,
where the results achieved by two different modes such as M_SE and PS_PE are compared.
The figure highlights how using two very different workflows (i.e. M_SE uses raw data
and a single-end mapping mode, whereas PS_PE employs preprocessed data and a pair-end
mapping mode) does not result in any considerable difference in terms of correlation and
overall agreement between spike-ins true concentrations and computed counts.

The comparisons performed in section 6.2 show a ~3% difference at the read level
recall between the worst (Bowtie) and the best (BWAMEM) performer. This performance
difference seems to not affect the expression level accuracy, suggesting that such small
variations could be negligible for a quantification study involving simple organisms.

In addition, this analysis shows that the adoption of a more complex (and more expensive)
paired end sequencing protocol does not bring any improvement in a quantification study
where splicing in not a primary issue. Similarly, read preprocessing does not seem to
significantly improve the overall quantification accuracy.
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Table 7.5 Quantification accuracy (Pearson correlation coefficient) on the simulated datasets

Mode Aligner
Correlation

avg SD

M_SE BWA 0.923 0.031
M_SE BWAMEM 0.926 0.029
M_SE Bowtie 0.924 0.031
M_SE Bowtie2 0.924 0.030
M_PE BWA 0.926 0.029
M_PE BWAMEM 0.926 0.029
M_PE Bowtie 0.922 0.031
M_PE Bowtie2 0.925 0.030
P_SE BWA 0.925 0.030
P_SE BWAMEM 0.925 0.029
P_SE Bowtie 0.925 0.030
P_SE Bowtie2 0.925 0.029
P_PE BWA 0.926 0.029
P_PE BWAMEM 0.926 0.029
P_PE Bowtie 0.924 0.030
P_PE Bowtie2 0.926 0.030
PS_SE BWA 0.924 0.030
PS_SE BWAMEM 0.925 0.030
PS_SE Bowtie 0.924 0.030
PS_SE Bowtie2 0.925 0.030
PS_PE BWA 0.925 0.030
PS_PE BWAMEM 0.926 0.030
PS_PE Bowtie 0.923 0.030
PS_PE Bowtie2 0.925 0.030
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Table 7.6 Quantification accuracy (Pearson correlation coefficient) on the real datasets

Mode Aligner
Correlation

avg SD

M_SE BWA 0.969 0.013
M_SE BWAMEM 0.970 0.012
M_SE Bowtie 0.966 0.015
M_SE Bowtie2 0.970 0.012
M_PE BWA 0.970 0.012
M_PE BWAMEM 0.970 0.012
M_PE Bowtie 0.964 0.016
M_PE Bowtie2 0.970 0.012
P_SE BWA 0.969 0.013
P_SE BWAMEM 0.970 0.012
P_SE Bowtie 0.966 0.015
P_SE Bowtie2 0.970 0.012
P_PE BWA 0.970 0.012
P_PE BWAMEM 0.970 0.012
P_PE Bowtie 0.964 0.016
P_PE Bowtie2 0.970 0.012
PS_SE BWA 0.969 0.013
PS_SE BWAMEM 0.970 0.012
PS_SE Bowtie 0.966 0.015
PS_SE Bowtie2 0.970 0.012
PS_PE BWA 0.970 0.012
PS_PE BWAMEM 0.970 0.012
PS_PE Bowtie 0.964 0.016
PS_PE Bowtie2 0.970 0.012
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Fig. 7.5 Comparison of spike-in true concentrations and RNA-Seq normalized counts in
log-log scale. The figure shows the result on a real dataset using the mode M_SE (left) and
PS_PE (right). Pearson’s correlation r between spike-in true concentrations and normalized
counts is also reported.



Chapter 8

Conclusions

RNA-Seq has become one of the most adopted methodologies in transcriptomic studies,
providing nearly unlimited possibilities in modern transcriptome analyses. Exploiting the
incredible progress achieved by NGS technologies, RNA-Seq allows sequencing at single
base resolution all the RNA species present in a sample, characterizing their sequences
and quantifying their abundances at the same time. NGS platforms produce millions of
short transcript sub-sequences, called reads, sequenced from random positions of the input
RNAs. Unfortunately, the sequencing process does not provide any information about which
transcripts have generated the reads or from which part of the transcripts they come from. In
order to identify the relation between the sequencing output (i.e. reads) and the sequenced
transcripts, the common approach consists in aligning the reads against a reference genome
and then inferring which transcripts have generated them by analyzing the read locations.
At first glance, the read alignment tasks may seem very simple, but its implementation is in
fact complex and still not well defined. In recent years there was a considerable effort of the
research community in the development of RNA-Seq read alignment methods, resulting in
more than 20 published tools since 2009. However, the large number of available methods
has made the definition of a robust and unified computational pipeline difficult, mainly due
to the lack of comprehensive assessment studies.

The main result of this thesis is the systematic assessment of the read alignment step with
the goal of improving recommendations for RNA-Seq pipelines. The relevance of this topic
is testified by a recent publication in Nature Methods (Baruzzo et. al [128]). Three main
objectives were designed and achieved in order to accomplish the final goal: i) a thorough
definition of the read alignment problem, ii) the identification of the state of the art RNA-Seq
alignment methods and the assessment of their performance and iii) the assessment of the
role of RNA-Seq read alignment in the accuracy of expression level quantification analyses.
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Definition of the read alignment problem

The thorough definition of the read alignment problem was achieved by identifying the most
important characteristics and challenges. The analysis revealed that intron size gap and
indel are the most challenging situations in the alignment process and that the chosen data
structures and algorithms have a major role in the final accuracy. With regards to the available
tools, both hash based and BWT based approaches have strengths and weaknesses, so it is
difficult to identify a priori the best solution. Hash based methods allow handling of errors
during the alignment process, at least when many seeds are employed for each read. However,
the alignment accuracy and efficiency are strongly affected by the non-trivial choice of seed
sizes and positions. On the other hand, BWT methods are very fast and memory efficient, but
they have some limitations in handling inexact matches. Mismatches and gaps in the reads
are managed through seed&extend strategies or heuristics, whose accuracies strongly depend
on the number of allowed errors. Many of the most recent NGS read mappers are based
on BTW methods rather than hash based methods. The first generation of short DNA read
aligners, tools like BLAST, BLAT, MAQ, Eland and SOAP, were based on hashing methods
while after the publication of tools like BWA and Bowtie, BWT methods have become more
popular. Even in the context of RNA-Seq aligners, the current trend shows more BWT based
methods (e.g. ContextMap2, HISAT, HISAT2, MapSplice2, TopHat2, etc.) than Hash based
methods (Novoalign and Subjunc). Finally, few methods employ uncompressed suffix arrays
instead of Burrows–Wheeler transform (CLC Genomic Workbench and STAR) to achieve
higher alignment speed at the cost of larger memory requirements.

Identification and assessment of state of the art RNA-Seq alignment methods

The second objective involved the identification of the state of the art RNA-Seq alignment
methods and the assessment of their performance. State of the art methods for RNA-Seq read
alignment were identified by a thorough literature search that involved more than 2000 peer
reviewed publications in the context of RNA-Seq. The literature search highlighted that the
majority of RNA-Seq studies employ TopHat/TopHat2, followed by Bowtie/Bowtie2 and
BWA/BWAMEM. While TopHat2 is a splice aware alignment method, both Bowtie/Bowtie2
and BWA/BWAMEM are splice unaware methods so their use should be limited to simple
organisms or transcriptome alignment. However, the literature search revealed that the use
of these tools is very often not limited to these scenarios, resulting in many unsuitable
applications of these methods. Finally, the literature search highlighted that RNA-Seq read
alignment remains in a state of confusion mainly due to a lack of accurate and systematic
benchmarking studies. With the purpose of addressing this issue, a thorough benchmark
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analysis of splice aware and splice unaware read alignment methods was designed and
performed.

The analysis of state of the art splice aware algorithms highlighted some interesting
results. First, there is a considerable difference between tool’s accuracy, making the choice
of the right aligner a pivotal step in many RNA-Seq studies. Section 5.2 shows that the
differences between aligner performances are detectable even in the less complex datasets
and a great variability of methods performance is observed in the case of complex datasets.
Generally, the tools show a high precision in the different metrics, meaning that the reads that
they are able to align are usually in the right position. On the other hand, it is the recall that
better discriminates the tools performance, with many tools that are able to align only few
reads when the dataset are complex. In many applications where the number of aligned reads
is important (e.g. quantification and DE studies), this would have a major role. The results are
consistent between the tested organisms, human and P. falciparum, suggesting that the tool’s
performance do not depend on the particular organism and that the alignment strategies are
general enough to handle very different genomes. At the base, read and junction level, it is
possible to identify in CLC, Novoalign, STAR and GSNAP the best performing tools in terms
of accuracy. These same tools show effective default settings compared with other tools,
which instead require a most complex parameters tweaking in order to achieve acceptable
results in the most complex datasets (Figure 5.9). A tool with a smart and effective default is
preferable due to the impossibility of performing an accurate tuning in the real scenario, so
these tools guarantee reliable results on a larger variety of input datasets. Interestingly, the
most widely used RNA-Seq aligner (i.e. TopHat2) shows poor performance with the default
parameters as well as in many other tested scenarios.

Regarding the employment of a reliable annotation as input to the alignment process, it
seems to not considerably affect the alignment accuracy, even if it helps in some particular
scenario. Specifically, the use of annotation does not result in any considerable improvement
at the read and base level, whereas a few tools show minor improvements at the junction
level (Figure 5.6). Generally, the 2-pass aligners (e.g. STAR) achieve comparable results
with and without annotations, while some 1-pass aligners (e.g GSNAP and STAR-1-pass)
show some benefits from the presence of an input annotation. Since a reliable annotation is
not always available, the small performance differences between providing and omitting an
input annotation is a remarkable result. In this case, it is important to underline that CLC
and Novoalign have the limitation to rely on an input annotation to detect splice junctions,
even if these tools achieve excellent results when it is provided as input. On the other hand,
the results shown in section 5.5 underscore that a major role in the alignment accuracy is
played by the read preprocessing. The results underscore how few tools are not able to handle
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unpreprocessed reads, resulting in poor results when a preprocessing step is not performed.
This limitation is mainly due to the lack of soft-clipping and local alignment features, that
would be even more important with future longer reads. As for multimappers, the tests
show that many tools are able to identify the right location among the reported ones. This
result suggests that the use of post-alignment tools able to properly exploit the multimapper
information, instead of discarding them, could result in more accurate downstream analyses.

Another resulting trend is the one that relates the tools accuracy to the algorithm and
data structure employed. Among the four best performing tools, CLC and STAR use an
uncompressed suffix array, Novoalign exploits a hash table while GSNAP use both a suffix
array and a hash table. None of these tools relies entirely on the Burrows Wheeler transform,
which is instead exploited by almost all the remaining tools. BWT based methods have
the main advantage of requiring a low amount of memory and allowing fast execution
time. On the other hand, the use of suffix array (especially with no compression) requires
a considerable amount of memory. The use of a BWT with a FM-Index was probably a
good choice for the first generation of RNA-Seq aligners, where the main constraint was
the low amount of available RAM. However, since RAM price decreased in recent years
and many machine today mount at least 32GB of memory, the use of uncompressed data
structure has become more popular. In 2013, STAR was one of the first tools to exploit the
higher amount of memory resulting in lower execution time. Similarly, GSNAP updated its
core alignment engine to exploit a suffix array. The last generation of BWT based algorithms
(e.g. HISAT and HISAT2) still rely on memory efficient data structure and are able to
achieve faster alignment than STAR and GSNAP. However, these tools seem to still not
guarantee a comparable level of accuracy. Even though the progress in terms of efficiency
and accuracy allows the identification of a set of reliable aligners, our results highlight that
there are still two main challenges that need to be addressed: junction identification and indel
detection. Junction level metrics show the worst results compared to base and read level
metrics, highlighting that junction detection is still one of most complex task in the alignment
process. Short anchored reads and non-canonical junctions are two of the most complex
situations in which current state of the art aligners need to be improved (Figures 5.7 and
5.8). The second challenge involves indel detection and it is probably the one which needs
more attention. Indel detection is intrinsically a complex task and the results in section 5.7
highlight that just few aligners reach an acceptable accuracy in this respect. Indel discovery
has a major role in the study of many diseases, including cancer, and a higher accuracy would
be necessary to fully explore these phenomena.

While the splice aware tools analysis highlights several new outcomes, the performed
comparison of splice unaware methods largely confirms the literature results. BWAMEM
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and Bowtie2 outperform their previous versions in terms of accuracy, showing comparable
precision but achieving higher recall both at the base and read level. Unlike previous studies,
the distinct analysis at the read and base level allows highlighting some interesting results.
Bowtie and Bowtie2 achieve better results at the base level (Figure 6.1), while at the read
level (Figure 6.3) BWAMEM and BWA outperform Bowtie2 and Bowtie, respectively. This
is an unusual trend, especially compared to splice aware tools where the best performers at
the base level are usually the best performers even at the read level. The different behaviors
between base and read levels are probably due to the different alignment policies adopted
by the tools. Bowtie and Bowtie2 perform an end-to-end alignment by default, while BWA
and BWAMEM adopt a local alignment policy. An end-to-end strategy requires finding a
full alignment for each read, discarding reads that are not completely aligned. This approach
would result in both a lower number of mapped reads (due to the constraint on the full
alignment) and a higher execution time (due to the extra amount of effort to completely
align complex reads). As a consequence, this approach obtains a higher number of correctly
aligned bases. On the contrary, local alignment strategies allow both mapping a higher
number of reads (due to the soft-clipping of complex read portion) and a lower amount of
computation (due to the lower number of bases to align). In this way, the latter approach has
a higher number of correctly mapped reads. By analyzing Bowtie2 and BWAMEM mapping
strategies and the related results, it is easy to identify in the above alignment policies (i.e. end-
to-end vs. local) the explanation for the different speeds and alignment accuracies at the read
and base level. The results in terms of accuracy are largely consistent with the literature on
alignment benchmarking. Moreover, this thesis results highlight that the gap between splice
aware and splice unaware methods in terms of resource usage is continuously diminishing.
In terms of computational time, many splice aware methods achieve the same speed of the
tested unspliced aligners, whereas splice aware tools are still more expensive in terms of
memory usage. Since the main application of splice unaware tools on simple organism is due
to the lower computational requirements compared with splice aware methods, these results
suggest that soon the benefits in terms of speed and memory will be negligible.

A questionable limitation of the alignment methods assessment presented in this thesis is
that the conclusions are based only on simulated data. Obviously, the conclusions based on
data produced from a RNA-Seq read simulation are as accurate as the simulated data resemble
real data. However, there is no ground truth with real data, resulting in the impossibility of
performing any accuracy analysis. Metrics such as the percentage of mapped/unmapped reads
are not reliable indices of the accuracy of the alignment process. For example, increasing
the number of allowed mismatches would probably result in a higher number of aligned
reads but at the same time it could increase the probability of mapping the reads to the wrong
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positions. An alternative approach could be to compare the alignment outputs of different
methods and to infer the correct read position based on the agreement between the several
tools [155]. However, this approach provides only a heuristics way to assess the alignment
accuracy and it is limited by the accuracy of the analyzed methods itself. In this scenario, the
use of simulated data is the most reasonable option, even if the choice of the right RNA-Seq
data simulator has a pivotal role in the reliability of the final results. While many simulators
are available in the context of NGS data [156], just few simulators are specifically developed
for RNA-Seq application. In the context of RNA-Seq alignment benchmarking, BEERS
and Flux are the most reliable simulators and indeed they are the only two tools that were
specifically designed to generate realistic RNA-Seq reads.

Assessment of RNA-Seq read alignment in the accuracy of quantification

The last objective was related to the assessment of the role of RNA-Seq read alignment in
the accuracy of a very common downstream analysis such as expression level quantification.
The performance in terms of quantification accuracy of BWA, BWAMEM, Bowtie and
Bowtie2 were studied on both real and simulated data. Different from splice aware methods,
these tools showed small performance differences in the alignment accuracy, allowing to
identify if expression level quantification accuracy is sensitive to minor changes in the
alignment output. The results in section 7.6 reveal that the different alignment methods
do not affect the quantification accuracy, suggesting that such small alignment accuracy
variations are negligible in the context of expression level analyses. Even employing different
read preprocessing policies and several alignment strategies seems to not affect the final
quantification result. Therefore, in the context of expression level quantification on simple
organisms the adoption of different analysis workflows seems to be irrelevant.

Arguably, the considerable differences between tools performance observed in the context
of splice aware alignment methods would instead result in significant changes in quantifi-
cation accuracy. However, the assessment on expression level accuracy in the context of
complex organisms is difficult due to the presence of alternative splicing and the need of
a reliable gene model. In addition, the assessment would require the adoption of complex
quantification methods in order to achieve a gene level or transcript level quantification.
As results, different quantification methods should be tested introducing another level of
variability. Although such assessment represents a complex challenge, an effort in designing
this analysis will be part of future works.

In the study of quantification accuracy, an interesting methodological question arises
regarding the definition of accuracy metrics. Currently, the correlation between the inferred
and the known expression levels is the most common way to assess quantification accuracy.
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However, correlation is not able to fully describe quantification accuracy and for this reason
other auxiliary metrics are usually employed. Even combining different metrics, the definition
of a robust index for the assessment of quantification accuracy is challenging. To further
investigate this open problem, the study of the available accuracy indices and the design of
novel metrics will be part of future works.

Final remarks

The current trend of increasing read lengths and the rising of new sequencing technologies
make it difficult to foresee what will be the leading alignment approach in the future. Even
keeping unvaried the current error rates, longer reads would result in a larger number of errors
per read and consequently new challenges to address. In the near future, the advent of longer
reads would probably require to redefine some of the mapping strategies and alignment
policies currently employed.

Based on the idea of redefining the mapping process, concepts of "lightweight alignment",
"alignment free" and "pseudo alignment" have been introduced in the last two years. The
intuition behind these terms is that in some context the mapping process could be redefined
so that the base-by-base matching between the read sequence and the reference sequence is
no longer required. Instead, information theory techniques, k-mer frequencies and similarity
measures are used to define mapping criteria between the read and the reference sequence.
These concepts were first implemented by tools such Kallisto [157], Salmon [158] and
Sailfish [159] in the field of transcript quantification abundance, where a perfect end-to-end
match between the read and the reference is often not necessary. Indeed, quantification
studies simply need to assign the reads to the correct genomic features, in order to count
how many reads overlap that genomic region. For this reason, no information about the
precise position of the read inside the feature is usually necessary since the knowledge of the
relation between the read and the feature is enough for the objectives of this kind of studies.
Compared to a typical expression level analysis (i.e. read alignment and quantification),
pseudo alignment methods achieve at the same time a comparable level of accuracy and a
speed-up factor between 20 and 100 in many scenarios [157, 159]. For applications where a
base-by-base matching between the read and the reference sequence is not necessary, these
methods have the potential to revolutionize the mapping and quantification process.





Appendix A

SAM file format

SAM (Sequence Alignment/Map) format is the standard file format for read alignment
output. The information about the read mappings is presented in a TAB delimited text format
consisting of a header section (optional) and an alignment section. This appendix contains
only a brief description of the SAM file format in the context of RNA-Seq read alignment;
the complete file format specification is presented in [63].

A.1 Header section

Header lines start with ‘@’ and contain several auxiliary information about the alignment
process such as the name and version of the employed aligner, the mapping tool command
used, the reference sequences names and lengths, the sorting order of the alignments, etc. If
present, the header section must precede the alignments section.
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A.2 Alignment section

In the alignment section, the alignment of each read is reported in a single line. Each line
contains 11 mandatory fields describing several alignment information (Table A.1).

Table A.1 Overview of SAM file mandatory fields. Table adapted from [63]

Field# Field name Type Regexp/Range Brief description

1 QNAME String [!-?A-~]{1,254} Read NAME
2 FLAG Int [0,216-1] bitwise FLAG
3 RNAME String \*|[!-()+-<>-~][!-~]* Reference sequence NAME
4 POS Int [0,231-1] 1-based leftmost mapping POSition
5 MAPQ Int [0,28-1] MAPping Quality
6 CIGAR String \*|([0-9]+[MIDNSHPX=])+ CIGAR string
7 RNEXT String \*|=|[!-()+-<>-~][!-~]* Ref. name of the mate/next read
8 PNEXT Int [0,231-1] Position of the mate/next read
9 TLEN Int [-231+1,231-1] Observed Template LENgth

10 SEQ String \*|[A-Za-z=.]+ Read SEQuence
11 QUAL String [!-~]+ ASCII of Phred-scaled base QUALity+33

1. QNAME: Read identifier; reads having the same QNAME are regarded to come from
the same fragment (e.g. paired-end reads). If a read is a multimapper, then it may
occupy multiple alignment lines.

2. FLAG: Combination of bitwise flags; each bit is associated to a specific alignment
information (Table A.2).

Table A.2 Overview of bitwise FLAGs. Table adapted from [63]

Bit Bit(hex) Description

1 0x1 read paired
2 0x2 read paired in paired properly according to the aligner
4 0x4 read unmapped
8 0x8 mate unmapped

16 0x10 read reverse strand
32 0x20 mate reverse strand
64 0x40 the first read in the read pair

128 0x80 the second read in the read pair
256 0x100 secondary alignment
512 0x200 not passing filters, such as platform/vendor quality controls

1024 0x400 PCR or optical duplicate
2048 0x800 supplementary alignment
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3. RNAME: Reference sequence name; usually it contains the chromosome name.

4. POS: Leftmost mapping POSition of the first matching base. Position coordinate is
1-based (i.e. the first base in the reference sequence has coordinate 1).

5. MAPQ: MAPping Quality; it equals ceil(−10log10P(mapping position is wrong))

6. CIGAR: CIGAR string; it contains a sequence of CIGAR operations (Table A.3).

Table A.3 CIGAR operations. Table adapted from [63]

Operation Description

M alignment match (sequence match or mismatch)
I insertion to the reference
D deletion from the reference
N skipped region from the reference (intron)
S soft clipping (clipped sequences present in SEQ)
H hard clipping (clipped sequences NOT present in SEQ)
P padding (silent deletion from padded reference)
= sequence match
X sequence mismatch

7. RNEXT: Reference sequence name of the primary alignment of the NEXT read (read
mate).

8. PNEXT: Position in the RNEXT sequence of the primary alignment of the NEXT
read (read mate).

9. TLEN: Signed observed Template LENgth; for read pairs, if both the reads are mapped
to the same reference, the TLEN equals the number of bases from the leftmost mapped
base to the rightmost mapped base.

10. SEQ: Read SEQuence; the length of the sequence must equal the sum of lengths of
M/I/S/=/X operations in CIGAR.

11. QUAL: ASCII encoding of base QUALity plus 33; it is the same as the quality string
in the Sanger FASTQ format.
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B.1 Results using the aligner tools default parameters

B.1.1 Base level
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Fig. B.1 Default parameters - Base level precision and recall for the P. falciparum datasets.
The tools are sorted by descending recall.
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Fig. B.2 Default parameters - Base level statistics for the P. falciparum datasets. For each
dataset, the bars show the percentage of bases aligned correctly, aligned ambiguously, aligned
incorrectly and unaligned by each tool. The tools are sorted by descending percentage of
bases aligned correctly.
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B.1.2 Read level

no
vo

al
ig

n

cl
c

gs
na

p

m
ap

sp
lic

e2

cr
ac

st
ar

ru
m

co
nt

ex
tm

ap
2

so
ap

sp
lic

e

su
br

ea
d

ol
eg

o

hi
sa

t2

hi
sa

t

to
ph

at
2

0.00

0.25

0.50

0.75

1.00

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

P. falciparum T3

cl
c

m
ap

sp
lic

e2

gs
na

p

no
vo

al
ig

n

cr
ac

co
nt

ex
tm

ap
2

st
ar

su
br

ea
d

ru
m

so
ap

sp
lic

e

ol
eg

o

hi
sa

t2

hi
sa

t

to
ph

at
2

0.00

0.25

0.50

0.75

1.00

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

P. falciparum T2

cl
c

co
nt

ex
tm

ap
2

su
br

ea
d

m
ap

sp
lic

e2

gs
na

p

no
vo

al
ig

n

cr
ac

st
ar

ru
m

so
ap

sp
lic

e

hi
sa

t2

ol
eg

o

hi
sa

t

to
ph

at
2

0.00

0.25

0.50

0.75

1.00
pr

ec
is

io
n

re
ca

ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

pr
ec

is
io

n
re

ca
ll

P. falciparum T1

va
lu
es

va
lu
es

va
lu
es

Fig. B.3 Default parameters - Read level precision and recall for the P. falciparum datasets.
The tools are sorted by descending recall.
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Fig. B.4 Default parameters - Read level statistics for the P. falciparum datasets. For each
dataset, the bars show the percentage of reads aligned correctly, aligned ambiguously, aligned
incorrectly and unaligned by each tool. The tools are sorted by descending percentage of
reads aligned correctly.
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B.1.3 Junction level
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Fig. B.5 Default parameters - Junction level precision and recall for the P. falciparum
datasets. The tools are sorted by descending recall.
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Fig. B.6 Effect of annotation - Junction level precision and recall for the P. falciparum
datasets.
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B.3 Effect of parameters tweaking

Fig. B.7 Effect of parameter tweaking - Precision and recall at the base and read level for the
P. falciparum T3 dataset. For each tool, the figures show the precision and recall at the base
level (top) and read level (bottom) for the “default” and the “tuned” alignments. The “tuned”
alignment is the best configuration (in terms of base recall (top) and read recall (bottom))
achieved by the tweaking process.
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Fig. B.8 Effect of parameter tweaking at the base and read level for the P. falciparum T3
dataset. The bars show the percentage of bases/reads aligned correctly, aligned ambiguously,
aligned incorrectly and unaligned by each tool. For each tool, the figures show the alignment
statistics for the “default” and the “tuned” alignments. The “tuned” alignment is the best
configuration (in terms of base recall (top) and read recall (bottom)) achieved by the tweaking
process.
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Fig. B.9 Effect of parameter tweaking at the junction level for the P. falciparum T3 dataset.
For each tool, the figure shows the precision and recall at the junction level for the “default”
and the “tuned” alignments. The “tuned” alignment is the best configuration (in terms of
junction recall) achieved by the tweaking process.
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Fig. B.10 Insertion level precision and recall for the P. falciparum datasets. For each tool,
the figure shows the insertion precision and recall at the base level. The tools are sorted by
descending recall.
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Fig. B.11 Deletion level precision and recall for the P. falciparum datasets. For each tool,
the figure shows the deletion precision and recall at the base level. The tools are sorted by
descending recall.
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B.5 Alignment speed and memory requirement

Fig. B.12 Performance in terms of run time for the P. falciparum datasets. For each dataset
and tool, the bars show the average run time (in minutes) computed on the three replicates.
The error bars show the variability of this measure. The tools are sorted by ascending average
run time. Note: Novoalign has no multithreading in its free license versions. In order to
obtain comparable results, the Novoalign run time was divided by the number of used threads
(16).
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Fig. B.13 Performance in terms of CPU time for the P. falciparum datasets. For each tool,
the real CPU time was divided by the number of threads used (16). For each dataset and tool,
the bars show the average CPU time (in minutes) computed on the three replicates. The error
bars show the variability of this measure. The tools are sorted by ascending average CPU
time.
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Fig. B.14 Performance in terms of maximum memory usage for the P. falciparum datasets.
For each dataset and tool, the bars show the average maximum memory usage (in MB)
computed on the three replicates. The error bars show the variability of this measure. The
tools are sorted by ascending average memory usage.





Appendix C

Parameters tweaking

C.1 CLC Genomic Workbench

Alignment command

For the tweaking, this set of parameters was tested: Mapping, mismatch cost, insertion cost,
deletion cost, length fraction, similarity fraction and maximum number of hits for a read.

Tested parameters

For the tweaking, the parameters in Table C.1 were tested. About 20 different parameter
combinations were considered during the tweaking process.

Table C.1 CLC Genomic Workbench tweaking parameters and values

Parameters Tested values Note

Mapping “Map to gene regions only (fast)”;
“Also map to inter-genic regions”

Default = “Map to gene
regions only (fast)”

mismatch cost 1; 2 Integer, Default = 2,
Range [1,3]

insertion cost 1; 3 Integer, Default = 3,
Range [1,3]

deletion cost 1; 3 Integer, Default = 3,
Range [1,3]

length fraction 0.5; 0.8 Default = 0.8,
Range [0,1]

similarity fraction 0.5; 0.8 Default = 0.8, Range
[0,1]

maximum number of hits for a read 1; 10; 30 Integer, Default = 10,
Range [1,30]
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Best configurations

Table C.2 CLC Genomic Workbench best configurations (highest recall) for the base, read
and junction level on the human T3 dataset

Parameters Base level Read level Junction level

Mapping “Also map to inter-
genic regions”

“Also map to inter-
genic regions”

“Map to gene regions
only (fast)”

mismatch cost 2 1 1
insertion cost 3 1 1
deletion cost 3 1 1
length fraction 0.8 0.5 0.5
similarity fraction 0.8 0.5 0.5
maximum number of hits for a read 30 30 30

Table C.3 CLC Genomic Workbench best configurations (highest recall) for the base, read
and junction level on the P. falciparum T3 dataset

Parameters Base level Read level Junction level

Mapping “Map to gene regions
only (fast)”

“Map to gene regions
only (fast)”

“Map to gene regions
only (fast)”

mismatch cost 2 1 1
insertion cost 3 1 1
deletion cost 3 1 1
length fraction 0.8 0.8 0.8
similarity fraction 0.8 0.8 0.5
maximum number of hits for a read 30 30 10

Conclusions

The use of “maximum number of hits for a read” greater than or equal to the default (10)
seems to improve the results. The main difference between P. falciparum and human is
related to the mapping options: the option “Also map to inter-genic regions” makes the
results slightly worse on P. falciparum while improves them on human. At the base level,
the default values for the cost parameters perform significantly better than any other tested
values. On the other hand, at the read and junction level the use of cost parameters lower than
default results in a recall improvement. Summarizing, the default on P. falciparum is very
close to the best achieved. On human, the default is good (compared with the other tools), but
the tweaking could still improve the alignment results. In order to balance the performances
at the base, read and junction level the default setting plus “maximum number of hits for a
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read” set at 30 seem a good choice. On human, the option “Also map to inter-genic regions”
could increase the quality of the results.

C.2 ContextMap2

Alignment command

java -Xms16000M -Xmx128000m -XX:+ UseConcMarkSweepGC
-XX:NewSize =300M -XX:MaxNewSize =300M
-jar ContextMap_v2 .6.0. jar mapper -reads <reads file>
--pairedend -gtf <gtf file> --noncanonicaljunctions
-aligner_name bwa -aligner_bin <bwa path>
-indexer_bin <bwa path> -indices <bwa index>
-genome <genome directory> -o <output path> -t 16
-seed <SEED> -seedmismatches <SEED_MISMATCHES>
-mismatches <MISMATCHES> -mmdiff <MMDIFF>
-maxhits <MAXHITS> -minsize <MINSIZE>

Tested parameters

For the tweaking, the parameters in Table C.4 were tested. About 950 different parameter
combinations were considered during the tweaking process.

Table C.4 ContextMap2 tweaking parameters and values

Parameters Tested values Note

-seed <SEED> 10; 20; 30 Default = 20 (or 30
using Bowtie1)

-seedmismatches <SEED_MISMATCHES> 0; 1; 2 Default = 0 (or 1
using Bowtie1)

-mismatches <MISMATCHES> 3; 4; 5; 6; 7; 8; 9; 10; 12; 15;
17; 20; 25; 30; 35; 40; 45;
50; 55; 60

Default = 4

-mmdiff <MMDIFF> 0; 1; 2 Default = 0
-maxhits <MAXHITS> 10; 20; 50 Default = 10 (or 3

using Bowtie2)
-minsize <MINSIZE> 5; 10; 15 Default = 10
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Best configurations

Table C.5 ContextMap2 best configurations (highest recall) for the base, read and junction
level on the human T3 dataset

Parameters Base level Read level Junction level

-seed <SEED> 20 20 20
-seedmismatches <SEED_MISMATCHES> 0 0 0
-mismatches <MISMATCHES> 35 35 35
-mmdiff <MMDIFF> 0 0 0
-maxhits <MAXHITS> 10 10 10
-minsize <MINSIZE> 10 10 10

Table C.6 ContextMap2 best configurations (highest recall) for the base, read and junction
level on the P. falciparum T3 dataset

Parameters Base level Read level Junction level

-seed <SEED> 20 20 20
-seedmismatches <SEED_MISMATCHES> 0 0 0
-mismatches <MISMATCHES> 35 35 60
-mmdiff <MMDIFF> 0 1 0
-maxhits <MAXHITS> 10 10 10
-minsize <MINSIZE> 10 10 10

Conclusions

The parameters SEED_MISMATCHES , MMDIFF , MAXHITS_VALUES and MINSIZE_VALUES do
not affect significantly the results at any level. The default values seem to be a good choice
for these parameters. Both organisms highlight the important role of MISMATCHES and SEED .
Increasing the first one and not changing the second one is very beneficial for the majority
of metrics. Determining a value that balances the junction level precision and recall seems
difficult.
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C.3 CRAC

Alignment command

crac -i <crac index> -k <K> -r <reads file 1> <reads file 2>
--sam <output sam file> --reads -length <read length>
--no -ambiguity --max -locs <MAX_LOCS>
--min -percent -single -loc <MIN_PERCENT_SINGLE_LOC>
--min -percent -multiple -loc <MIN_PERCENT_MULTIPLE_LOC>
--summary <summary file> --nb -threads 16

Tested parameters

For the tweaking, the parameters in Table C.7 were tested. About 440 different parameter
combinations were considered during the tweaking process.

Table C.7 CRAC tweaking parameters and values

Parameters Tested values Note

-k <K> 16; 18; 19; 20; 21; 22; 23; 24; 25;
26; 27

Integer, Default = 22
(for Human)

––no-ambiguity with and without this option Default = without this
option

––max-locs <MAX_LOCS> 300; 400; 1000 Default = 300
––min-percent-single-loc
<MIN_PERCENT_SINGLE_LOC>

0.1; 0.15; 0.2 Default = 0.15

––min-percent-multiple-loc
<MIN_PERCENT_MULTIPLE_LOC>

0.4; 0.5; 0.6 Default = 0.5

Best configurations

Table C.8 CRAC best configurations (highest recall) for the base, read and junction level on
the human T3 dataset

Parameters Base level Read level Junction level

-k <K> 20 19 19
––no-ambiguity without this option without this option without this option
––max-locs <MAX_LOCS> 1000 1000 1000
––min-percent-single-loc
<MIN_PERCENT_SINGLE_LOC>

0.15 0.15 0.15

––min-percent-multiple-loc
<MIN_PERCENT_MULTIPLE_LOC>

0.5 0.5 0.5
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Table C.9 CRAC best configurations (highest recall) for the base, read and junction level on
the P. falciparum T3 dataset

Parameters Base level Read level Junction level

-k <K> 18 18 16
––no-ambiguity without this option without this option without this option
––max-locs <MAX_LOCS> 1000 1000 1000
––min-percent-single-loc
<MIN_PERCENT_SINGLE_LOC>

0.15 0.15 0.15

––min-percent-multiple-loc
<MIN_PERCENT_MULTIPLE_LOC>

0.5 0.5 0.5

Conclusions

As stated in the manual, the most important parameter is K . The right value for this parameter
depends on the organism more than on the quality of the data. The value K =22 proposed for
human seems to be a good choice, even if slightly better results were achieved using K =19
or K =20. On the P. falciparum dataset, the test results suggest a value around 18. The other
tested parameters show negligible effects.

C.4 GSNAP

Alignment command

gsnap -D <index output path> -d <index name> -A sam
--max -mismatches <MAX_MISMATCHES>
--indel -penalty <INDEL_PENALITY>
--gmap -min -match -length <GMAP_MIN_MATCH_LENGTH>
--pairexpect <PAIR_EXPECT> --pairdev <PAIR_DEV>
--merge -distant -samechr --ordered --novelsplicing 1
--use -splicing <index name>.splicesites
--nthreads 16 --batch 5 --expand -offsets 1
<read file 1> <read file 2> > <output sam file>

Tested parameters

For the tweaking, the parameters in Table C.10 were tested. About 630 different parameter
combinations were considered during the tweaking process.
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Table C.10 GSNAP tweaking parameters and values

Parameters Tested values Note

––max-mismatches <MAX_MISMATCHES> 2; 3; 4; 5; 6; 7; 8; 9; 10; 15;
20; 25; 30; 35

Default = (readlength +
index_interval-1)/kmer -
2 ; should be around
4 for both human and
P. falciparum using this
formula

––indel-penalty <INDEL_PENALITY> 1; 2; 3; 4; 5 Default = 2
––gmap-min-match-length
<GMAP_MIN_MATCH_LENGTH>

7; 10; 12; 15; 17; 20; 25 Default = 20

––pairexpect <PAIR_EXPECT> default; <fragment length mean> Default = 200
––pairdev <PAIR_DEV> default; <fragment length SD> Default = 100

Best configurations

Table C.11 GSNAP best configurations (highest recall) for the base, read and junction level
on the human T3 dataset

Parameters Base level Read level Junction level

––max-mismatches <MAX_MISMATCHES> 15 15 2
––indel-penalty <INDEL_PENALITY> 1 1 5
––gmap-min-match-length
<GMAP_MIN_MATCH_LENGTH>

10 10 15

––pairexpect <PAIR_EXPECT> <fragment length mean> <fragment length mean> <fragment length mean>
––pairdev <PAIR_DEV> <fragment length SD> <fragment length SD> <fragment length SD>

Table C.12 GSNAP best configurations (highest recall) for the base, read and junction level
on the P. falciparum T3 dataset

Parameters Base level Read level Junction level

––max-mismatches <MAX_MISMATCHES> 15 20 2
––indel-penalty <INDEL_PENALITY> 1 1 5
––gmap-min-match-length
<GMAP_MIN_MATCH_LENGTH>

10 7 15

––pairexpect <PAIR_EXPECT> <fragment length mean> <fragment length mean> <fragment length mean>
––pairdev <PAIR_DEV> <fragment length SD> <fragment length SD> <fragment length SD>

Conclusions

The important role of GMAP_MIN_MATCH_LENGTH and MAX_MISMATCHES is confirmed on
both P. falciparum and human. On T3 library, using GMAP_MIN_MATCH_LENGTH lower than
or equal to default with MAX_MISMATCHES ⩾ 15 allows increasing all the metrics. On P.
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falciparum for example, all the metrics have an improvement between 3% and 9% simply
increasing MAX_MISMATCHES to 15 and decreasing GMAP_MIN_MATCH_LENGTH to 15. In
addition, the effects of GMAP_MIN_MATCH_LENGTH and MAX_MISMATCHES seem related, so
changing only one of the two parameters did not bring any improvements. The parameters
related to fragment length (PAIR_EXPECT and PAIR_DEV ) do not affect the results while a
small INDEL_PENALITY (lower than or equal to default) slightly improves the base and read
level recalls.

C.5 HISAT

Alignment command

hisat --threads 16 --time --reorder
--end -to-end -N <NUM_MISMATCH> -L <SEED_LENGTH>
-i S,1,<SEED_INTERVAL> -D <SEED_EXTENSION> -R <RE_SEED>
--pen -noncansplice <PENALITY_NONCANONICAL>
--mp <MAX_MISMATCH_PENALITY>,<MIN_MISMATCH_PENALITY>
--known -splicesite -infile <genome name>.splicesites.txt
--novel -splicesite -outfile splicesites.novel.txt
--novel -splicesite -infile splicesites.novel.txt
-f -x <index name> -1 <read file 1> -2 <read file 2>
-S <output sam file>

Tested parameters

For the tweaking, the parameters in Table C.13 were tested. About 820 different parameter
combinations were considered during the tweaking process.
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Table C.13 HISAT tweaking parameters and values

Parameters Tested values Note

––end-to-end with and without this option Default = without this
option

-N <NUM_MISMATCH> 0; 1 Integer, Default = 0,
Range = [0,1]

-L <SEED_LENGTH> 15; 18; 20; 22 Integer, Default = 22
-i S,1,<SEED_INTERVAL> 0.25; 0.5; 0.75; 1.15 Default = 1.15
-D <SEED_EXTENSION> 15; 20; 25 Default = 15
-R <RE_SEED> 2; 3; 5 Default = 2
––pen-noncansplice
<PENALITY_NONCANONICAL>

0; 3; 12; 20; 30 Default = 3

––mp <MAX_MISMATCH_PENALITY>, ... 1; 3; 6 Default = 6
––mp ..., <MIN_MISMATCH_PENALITY> 0; 1; 2 Default = 2

Best configurations

Table C.14 HISAT best configurations (highest recall) for the base, read and junction level
on the human T3 dataset

Parameters Base level Read level Junction level

––end-to-end without this option without this option without this option
-N <NUM_MISMATCH> 0 0 0
-L <SEED_LENGTH> 20 20 20
-i S,1,<SEED_INTERVAL> 1.15 1.15 1.15
-D <SEED_EXTENSION> 15 15 15
-R <RE_SEED> 2 2 2
––pen-noncansplice
<PENALITY_NONCANONICAL>

3 3 20

––mp <MAX_MISMATCH_PENALITY>, ... 1 1 1
––mp ..., <MIN_MISMATCH_PENALITY> 0 0 0
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Table C.15 HISAT best configurations (highest recall) for the base, read and junction level
on the P. falciparum T3 dataset

Parameters Base level Read level Junction level

––end-to-end without this option without this option without this option
-N <NUM_MISMATCH> 0 0 0
-L <SEED_LENGTH> 20 20 20
-i S,1,<SEED_INTERVAL> 1.15 1.15 1.15
-D <SEED_EXTENSION> 15 15 15
-R <RE_SEED> 2 2 2
––pen-noncansplice
<PENALITY_NONCANONICAL>

20 20 20

––mp <MAX_MISMATCH_PENALITY>, ... 1 1 1
––mp ..., <MIN_MISMATCH_PENALITY> 0 0 0

Conclusions

Tests suggest that MAX_MISMATCH_PENALITY and MIN_MISMATCH_PENALITY have a very
important role in the quality of alignment. Both on human and P. falciparum, there is a
significant improvement on all metrics setting these parameters properly: using a small value
for MAX_MISMATCH_PENALITY and MIN_MISMATCH_PENALITY (1 and 0/1, respectively), the
base and read level recalls increase more than 60% while the junction recall increases more
than 45%. Moreover, a value of PENALITY_NONCANONICAL greater than the default seems to
slightly improve the results. The Bowtie2-like parameters (NUM_MISMATCH , SEED_LENGTH ,
SEED_INTERVAL , SEED_EXTENSION and RE_SEED) seem have no effects on the quality of
the results. The use of Bowtie2-like parameter ––end-to-end does not change the results.

C.6 HISAT2

Alignment command

hisat2 --threads 16 --time --reorder
--end -to-end -N <NUM_MISMATCH> -L <SEED_LENGTH>
-i S,1,<SEED_INTERVAL> -D <SEED_EXTENSION> -R <RE_SEED>
--pen -noncansplice <PENALITY_NONCANONICAL>
--mp <MAX_MISMATCH_PENALITY>,<MIN_MISMATCH_PENALITY>
--sp <MAX_SOFTCLIPPING_PENALITY>,<MIN_SOFTCLIPPING_PENALITY>
--known -splicesite -infile <genome name>.splicesites.txt
--novel -splicesite -outfile splicesites.novel.txt
--novel -splicesite -infile splicesites.novel.txt
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-f -x <index name> -1 <read file 1> -2 <read file 2>
-S <output sam file>

Tested parameters

For the tweaking, the parameters in Table C.16 were tested. About 830 different parameter
combinations were considered during the tweaking process.

Table C.16 HISAT2 tweaking parameters and values

Parameters Tested values Note

––end-to-end with and without this option Default = without this
option

-N <NUM_MISMATCH> 0; 1 Integer, Default = 0,
Range = [0,1]

-L <SEED_LENGTH> 15; 18; 20; 22 Integer, Default = 22
-i S,1,<SEED_INTERVAL> 0.25; 0.5; 0.75; 1.15 Default = 1.15
-D <SEED_EXTENSION> 15; 20; 25 Default = 15
-R <RE_SEED> 2; 3; 5 Default = 2
––pen-noncansplice
<PENALITY_NONCANONICAL>

0; 3; 12; 20 Default = 3

––mp <MAX_MISMATCH_PENALITY>, ... 1; 2; 3; 6 Default = 6
––mp ..., <MIN_MISMATCH_PENALITY> 0; 1; 2 Default = 2
––sp <MAX_SOFTCLIPPING_PENALITY>, ... 1; 2; 3 Default = 2
––sp ..., <MIN_SOFTCLIPPING_PENALITY> 0; 1; 2 Default = 1

Best configurations

Table C.17 HISAT2 best configurations (highest recall) for the base, read and junction level
on the human T3 dataset

Parameters Base level Read level Junction level

––end-to-end without this option without this option without this option
-N <NUM_MISMATCH> 1 1 1
-L <SEED_LENGTH> 20 20 20
-i S,1,<SEED_INTERVAL> 0.5 0.5 0.5
-D <SEED_EXTENSION> 25 25 25
-R <RE_SEED> 5 5 5
––pen-noncansplice
<PENALITY_NONCANONICAL>

12 12 12

––mp <MAX_MISMATCH_PENALITY>, ... 1 1 1
––mp ..., <MIN_MISMATCH_PENALITY> 0 0 0
––sp <MAX_SOFTCLIPPING_PENALITY>, ... 3 3 3
––sp ..., <MIN_SOFTCLIPPING_PENALITY> 0 0 0
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Table C.18 HISAT2 best configurations (highest recall) for the base, read and junction level
on the P. falciparum T3 dataset

Parameters Base level Read level Junction level

––end-to-end without this option without this option without this option
-N <NUM_MISMATCH> 1 1 0
-L <SEED_LENGTH> 20 20 22
-i S,1,<SEED_INTERVAL> 0.5 0.5 1.15
-D <SEED_EXTENSION> 25 25 15
-R <RE_SEED> 5 5 2
––pen-noncansplice
<PENALITY_NONCANONICAL>

20 20 20

––mp <MAX_MISMATCH_PENALITY>, ... 1 1 1
––mp ..., <MIN_MISMATCH_PENALITY> 0 0 0
––sp <MAX_SOFTCLIPPING_PENALITY>, ... 3 3 2
––sp ..., <MIN_SOFTCLIPPING_PENALITY> 0 0 1

Conclusions

The behavior of HISAT2 parameters is very similar to HISAT: MAX_MISMATCH_PENALITY
and MIN_MISMATCH_PENALITY are the most important parameters at the base and read level.
Again, a value of PENALITY_NONCANONICAL greater than the default seems to slightly im-
prove the results. At any level, using a MAX_SOFTCLIPPING_PENALITY greater than or equal
to default (e.g. 2 or 3) slightly improves the results while MIN_SOFTCLIPPING_PENALITY
seems to have no effect on the results. The Bowtie2 parameters (NUM_MISMATCH , SEED_LENGTH ,
SEED_INTERVAL , SEED_EXTENSION and RE_SEED) seem have no effects on the alignment.
The use of Bowtie2 parameter ––end-to-end does not change the results.

C.7 MapSplice2

Alignment command

python mapsplice.py --threads 16
--non -canonical -double -anchor
--min -map -len <MIN_MAP_LENGTH> --splice -mis <SPLICE_MISMATCHES>
--max -append -mis <APPEND_MISMATCHES> --ins <INSERTION_LENGTH>
--del <DELETION_LENGTH> --filtering <FILTER>
--output <output path> -c <genome fasta files>
-x <index name> -1 <read file 1> -2 <read file 2>



C.7 MapSplice2 163

Tested parameters

For the tweaking, the parameters in Table C.19 were tested. About 1080 different parameter
combinations were considered during the tweaking process.

Table C.19 MapSplice2 tweaking parameters and values

Parameters Tested values Note

––min-map-len <MIN_MAP_LENGTH> 15; 20; 25; 33; 50; 66; 75 Default = 50
––splice-mis <SPLICE_MISMATCHES> 0; 1; 2 Integer, Range = [0,2],

Default = 1
––max-append-mis <APPEND_MISMATCHES> 0; 1; 2; 3 Integer, Range = [0,3],

Default = 3
–––ins <INSERTION_LENGTH> 6; 8; 10 Integer, Range = [0,10],

Default = 6
––del <DELETION_LENGTH> 6; 8; 10 Integer, Range = [0,10],

Default = 6
––filtering <FILTER> 1; 2 Integer, Range = [1,2],

Default = 1

Best configurations

Table C.20 MapSplice2 best configurations (highest recall) for the base, read and junction
level on the human T3 dataset

Parameters Base level Read level Junction level

––min-map-len <MIN_MAP_LENGTH> 25 25 25
––splice-mis <SPLICE_MISMATCHES> 2 0 2
––max-append-mis <APPEND_MISMATCHES> 3 3 1
––ins <INSERTION_LENGTH> 10 6 10
––del <DELETION_LENGTH> 6 10 6
––filtering <FILTER> 1 2 1
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Table C.21 MapSplice2 best configurations (highest recall) for the base, read and junction
level on the P. falciparum T3 dataset

Parameters Base level Read level Junction level

––min-map-len <MIN_MAP_LENGTH> 25 25 25
––splice-mis <SPLICE_MISMATCHES> 2 0 2
––max-append-mis <APPEND_MISMATCHES> 3 3 1
––ins <INSERTION_LENGTH> 6 6 10
––del <DELETION_LENGTH> 6 6 6
––filtering <FILTER> 1 1 1

Conclusions

MIN_MAP_LENGTH , SPLICE_MISMATCHES and APPEND_MISMATCHES are the most important
parameters at the read and junction level. At the base level, the tweaking of the parameters
does not result in any significant improvement. INSERTION_LENGTH , DELETION_LENGTH
and FILTER seem to have negligible effects at all levels.

C.8 Novoalign

Alignment command

novoalign -d <output index file> -f <read file 1> <read file 2>
-F FA -o SAM -r All 10
-i PE <FRAGMENT_LENGTH_MEAN>,<FRAGMENT_LENGTH_SD>
-t <A_SCORE>,<B_SCORE> -h -1 -1
-v 0 70 70 "[ >]([^:]*)" > <output sam file> 2>alignment.log

Tested parameters

For the tweaking, the parameters in Table C.22 were tested. About 16 different parameter
combinations were considered during the tweaking process.
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Table C.22 Novoalign tweaking parameters and values

Parameters Tested values Note

-t <A_SCORE>,... default; 10; 12; 13; 20 Default = log4(N), where
N is the reference genome
length

-t ...,<B_SCORE> 2; 3; 4.5 Default = 4.5
-h -1 -1 with and without this option Default = without this op-

tion
-i PE
<FRAGMENT_LENGTH_MEAN>,
<FRAGMENT_LENGTH_SD>

with and without this option Default <FRAG-
MENT_LENGTH_MEAN>
= 250; Default <FRAG-
MENT_LENGTH_SD> =
50

Best configurations

Table C.23 Novoalign best configurations (highest recall) for the base, read and junction level
on the human T3 dataset

Parameters Base level Read level Junction level

-t <A_SCORE>,... 10 10 10
-t ...,<B_SCORE> 4.5 4.5 4.5
-h -1 -1 with this option with this option with this option
-i PE
<FRAGMENT_LENGTH_MEAN>,
<FRAGMENT_LENGTH_SD>

without this option without this option without this option

Table C.24 Novoalign best configurations (highest recall) for the base, read and junction level
on the P. falciparum T3 dataset

Parameters Base level Read level Junction level

-t <A_SCORE>,... default default default
-t ...,<B_SCORE> default default default
-h -1 -1 without this option without this option without this option
-i PE
<FRAGMENT_LENGTH_MEAN>,
<FRAGMENT_LENGTH_SD>

without this option without this option with this option

Conclusions

The default setting achieves very good results, comparable with the best tested configuration.
Decreasing B_SCORE from the default value results in an improvement in the junction
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precision while all the other metrics result in worse performance. Given a fixed value of
B_SCORE , decreasing A_SCORE seems to slightly improve the results at any levels. The other
tested options show negligible effects on the results.

C.9 Olego

Alignment command

olego --output -file output_1.sam --num -threads 16
--regression -model <regression model> --verbose
--max -total -diff <TOTAL_DIFF> --allow -rep -anchor
--word -size <WORD_SIZE> --max -word -diff <MAX_WORD_DIFF>
--word -max -overlap <WORD_MAX_OVERLAP>
--min -anchor <MIN_ANCHOR>
--junction -file <junction file> <olego index> <read file 1>

olego --output -file output_2.sam --num -threads 16
--regression -model <regression model> --verbose
--max -total -diff <TOTAL_DIFF> --allow -rep -anchor
--word -size <WORD_SIZE> --max -word -diff <MAX_WORD_DIFF>
--word -max -overlap <WORD_MAX_OVERLAP>
--min -anchor <MIN_ANCHOR>
--junction -file <junction file> <olego index> <read file 2>

perl mergePEsam.pl -v output_1.sam output_2.sam output.sam

Tested parameters

For the tweaking, the parameters in Table C.25 were tested. About 1000 different parameter
combinations were considered during the tweaking process.
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Table C.25 Olego tweaking parameters and values

Parameters Tested values Note

––max-total-diff <TOTAL_DIFF> 4; 5; 6; 7; 8; 9; 10 Float or Integer; Default
= 0.06

––word-size <WORD_SIZE> 13; 14; 15; 16 Default = 15
––max-word-diff <MAX_WORD_DIFF> 0; 1; 2 Default = 0
––word-max-overlap <WORD_MAX_OVERLAP> 0; 1 Default = 1
––allow-rep-anchor with or without this option Default = without this

option
––min-anchor <MIN_ANCHOR> 5; 8; 11 Default = 8

Best configurations

Table C.26 Olego best configurations (highest recall) for the base, read and junction level on
the human T3 dataset

Parameters Base level Read level Junction level

––max-total-diff <TOTAL_DIFF> 10 10 10
––word-size <WORD_SIZE> 13 13 13
––max-word-diff <MAX_WORD_DIFF> 2 2 2
––word-max-overlap <WORD_MAX_OVERLAP> 1 1 1
––allow-rep-anchor without this option without this option without this option
––min-anchor <MIN_ANCHOR> 11 11 11

Table C.27 Olego best configurations (highest recall) for the base, read and junction level on
the P. falciparum T3 dataset

Parameters Base level Read level Junction level

––max-total-diff <TOTAL_DIFF> 10 10 10
––word-size <WORD_SIZE> 14 14 13
––max-word-diff <MAX_WORD_DIFF> 2 2 2
––word-max-overlap <WORD_MAX_OVERLAP> 1 1 1
––allow-rep-anchor without this option without this option without this option
––min-anchor <MIN_ANCHOR> 11 11 11

Conclusions

Both human and P. falciparum take advantage from the tuning of some parameters. Increasing
MAX_WORD_DIFF , TOTAL_DIFF and MIN_ANCHOR results in an improvement on all metrics.
At any level, the parameter tweaking on Olego seems to not bring a significant improvement:
the best results achieved after the tweaking are the worse compared with the tuning of the
other tools. In conclusion, Olego seems not able to manage very complex datasets.
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C.10 RUM

Alignment command

rum_runner align --index -dir <index directory> --name <job name>
--output <output path> --chunks 16 <read file 1> <read file 2>
--verbose --preserve -names
--blat -min -identity <BLAT_MIN_IDENTITY>
--blat -rep -match <BLAT_REP_MATCH>
--blat -step -size <BLAT_STEP_SIZE>
--blat -tile -size <BLAT_TILE_SIZE>

Tested parameters

For the tweaking, the parameters in Table C.28 were tested. About 750 different parameter
combinations were considered during the tweaking process.

Table C.28 RUM tweaking parameters and values

Parameters Tested values Note

––blat-min-identity <BLAT_MIN_IDENTITY> 75; 88; 90; 93; 95; 98 Default = 93
––blat-rep-match <BLAT_REP_MATCH> 256; 1024; 4096 Default = 256
––blat-step-size <BLAT_STEP_SIZE> 6; 8; 10; 11; 12; 13; 14 Default = 6
––blat-tile-size <BLAT_TILE_SIZE> 8; 10; 11; 12; 13; 14 Default = 12

Best configurations

Table C.29 RUM best configurations (highest recall) for the base, read and junction level on
the human T3 dataset

Parameters Base level Read level Junction level

––blat-min-identity <BLAT_MIN_IDENTITY> 93 93 93
––blat-rep-match <BLAT_REP_MATCH> 256 256 256
––blat-step-size <BLAT_STEP_SIZE> 6 6 6
––blat-tile-size <BLAT_TILE_SIZE> 12 12 12



C.11 SOAPsplice 169

Table C.30 RUM best configurations (highest recall) for the base, read and junction level on
the P. falciparum T3 dataset

Parameters Base level Read level Junction level

––blat-min-identity <BLAT_MIN_IDENTITY> 88 88 75
––blat-rep-match <BLAT_REP_MATCH> 4096 4096 4096
––blat-step-size <BLAT_STEP_SIZE> 10 10 6
––blat-tile-size <BLAT_TILE_SIZE> 8 8 8

Conclusions

The parameter BLAT_MIN_IDENTITY has a major role in the quality of the alignment. On P.
falciparum, a value lower than default shows better results in terms of recall. The parameter
values seem more related to the particular genome than the quality of the data. Indeed,
applying the best P. falciparum configurations on human there is no improvement on the
metrics.

C.11 SOAPsplice

Alignment command

soapsplice -d <index> -1 <read file 1> -2 <read file 2>
-o <output file> -p 16 -f 2 -l 0 -I <FRAGMENT_LENGTH_MEAN>
-m <MISMATCHES> -g <INDEL> -i <TAIL> -a <SHORT_LENGTH>

Tested parameters

For the tweaking, the parameters in Table C.31 were tested. About 460 different parameter
combinations were considered during the tweaking process.

Table C.31 SOAPsplice tweaking parameters and values

Parameters Tested values Note

-m <MISMATCHES> 0; 1; 2; 3; 4; 5 Range = [0, 5];
Default = 3

-g <INDEL> 0; 1; 2 Range = [0, 2];
Default = 2

-i <TAIL> 5; 7; 10; 25; 33; 42; 50; 58; 66; 75 Default = 7
-a <SHORT_LENGTH> 6; 8; 10; 20; 25 Default = 8
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Best configurations

Table C.32 SOAPsplice best configurations (highest recall) for the base, read and junction
level on the human T3 dataset

Parameters Base level Read level Junction level

-m <MISMATCHES> 5 5 5
-g <INDEL> 2 2 1
-i <TAIL> 33 66 5
-a <SHORT_LENGTH> 8 8 8

Table C.33 SOAPsplice best configurations (highest recall) for the base, read and junction
level on the P. falciparum T3 dataset

Parameters Base level Read level Junction level

-m <MISMATCHES> 5 5 5
-g <INDEL> 2 2 1
-i <TAIL> 33 66 5
-a <SHORT_LENGTH> 8 8 8

Conclusions

MISMATCHES seems to be the most influential parameter. Increasing the value of MISMATCHES
results in a higher recall at the read and base level, while the junction recall seems to be
mainly influenced by SHORT_LENGTH . Additionally, the parameter TAIL plays an important
role, especially at the read and base level. With regards to INDEL , the default value shows
the best results.

C.12 STAR

Alignment command

STAR --runThreadN 16 --genomeDir <index path>
--readFilesIn <read file 1> <read file 2>
--outFileNamePrefix <output alignment prefix>
--twopassMode Basic --outSAMunmapped Within
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--limitOutSJcollapsed <NUM_COLLAPSED_JUNCTIONS>
--limitSjdbInsertNsj <NUM_INSERTED_JUNCTIONS>
--outFilterMultimapNmax <NUM_MULTIMAPPER>
--outFilterMismatchNmax <NUM_FILTER_MISMATCHES>
--outFilterMismatchNoverLmax <RATIO_FILTER_MISMATCHES>
--seedSearchStartLmax <SEED_LENGTH>
--alignSJoverhangMin <OVERHANG>
--alignEndsType <END_ALIGNMENT_TYPE>
--outFilterMatchNminOverLread <NUM_FILTER_MATCHES>
--outFilterScoreMinOverLread <NUM_FILTER_SCORE>
--winAnchorMultimapNmax <NUM_ANCHOR>
--alignSJDBoverhangMin <OVERHANG_ANNOTATED>
--outFilterType <OUT_FILTER>

Tested parameters

For the tweaking, the parameters in Table C.34 were tested. About 2600 different parameter
combinations were considered during the tweaking process.
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Table C.34 STAR tweaking parameters and values

Parameters Tested values Note

––limitOutSJcollapsed
<NUM_COLLAPSED_JUNCTIONS>

1000000; 5000000 Default = 1000000

––limitSjdbInsertNsj
<NUM_INSERTED_JUNCTIONS>

1000000; 5000000 Default = 1000000

––outFilterMultimapNmax
<NUM_MULTIMAPPER>

10; 100 Default = 10

––outFilterMismatchNmax
<NUM_FILTER_MISMATCHES>

3; 5; 8; 10; 20; 25; 33 Default = 10

––outFilterMismatchNoverLmax
<RATIO_FILTER_MISMATCHES>

0.3; 1 Default = 0.3

––seedSearchStartLmax
<SEED_LENGTH>

12; 30; 33; 50 Default = 50

––alignSJoverhangMin <OVERHANG> 3; 5; 8; 15 Default = 5
––alignEndsType
<END_ALIGNMENT_TYPE>

“Local”; “EndToEnd”;
“Extend5pOfRead1”;
“Extend3pOfRead1”

Default = “Local”

––outFilterMatchNminOverLread
<NUM_FILTER_MATCHES>

0; 0.66 Default = 0.66

––outFilterScoreMinOverLread
<NUM_FILTER_SCORE>

0.3; 0.66 Default = 0.66

––winAnchorMultimapNmax
<NUM_ANCHOR>

50; 200 Default = 50

––alignSJDBoverhangMin
<OVERHANG_ANNOTATED>

1; 3 Default = 3

––outFilterType <OUT_FILTER> “Normal”; “BySJout” Default = “Normal”
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Best configurations

Table C.35 STAR best configurations (highest recall) for the base, read and junction level on
the human T3 dataset

Parameters Base level Read level Junction level

––limitOutSJcollapsed
<NUM_COLLAPSED_JUNCTIONS>

1000000 1000000 1000000

––limitSjdbInsertNsj
<NUM_INSERTED_JUNCTIONS>

1000000 1000000 1000000

––outFilterMultimapNmax
<NUM_MULTIMAPPER>

100 100 100

––outFilterMismatchNmax
<NUM_FILTER_MISMATCHES>

33 33 33

––outFilterMismatchNoverLmax
<RATIO_FILTER_MISMATCHES>

0.3 0.3 0.3

––seedSearchStartLmax
<SEED_LENGTH>

12 12 12

––alignSJoverhangMin <OVERHANG> 15 15 15
––alignEndsType
<END_ALIGNMENT_TYPE>

“Local” "Local" "Local"

––outFilterMatchNminOverLread
<NUM_FILTER_MATCHES>

0 0 0

––outFilterScoreMinOverLread
<NUM_FILTER_SCORE>

0.3 0.3 0.3

––winAnchorMultimapNmax
<NUM_ANCHOR>

50 50 50

––alignSJDBoverhangMin
<OVERHANG_ANNOTATED>

3 3 3

––outFilterType <OUT_FILTER> “BySJout” “BySJout” “BySJout”
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Table C.36 STAR best configurations (highest recall) for the base, read and junction level on
the P. falciparum T3 dataset

Parameters Base level Read level Junction level

––limitOutSJcollapsed
<NUM_COLLAPSED_JUNCTIONS>

1000000 1000000 1000000

––limitSjdbInsertNsj
<NUM_INSERTED_JUNCTIONS>

1000000 1000000 1000000

––outFilterMultimapNmax
<NUM_MULTIMAPPER>

100 100 100

––outFilterMismatchNmax
<NUM_FILTER_MISMATCHES>

33 33 33

––outFilterMismatchNoverLmax
<RATIO_FILTER_MISMATCHES>

0.3 0.3 0.3

––seedSearchStartLmax
<SEED_LENGTH>

12 30 12

––alignSJoverhangMin <OVERHANG> 15 15 15
––alignEndsType
<END_ALIGNMENT_TYPE>

“Local” "Local" "Local"

––outFilterMatchNminOverLread
<NUM_FILTER_MATCHES>

0 0 0

––outFilterScoreMinOverLread
<NUM_FILTER_SCORE>

0.3 0.3 0.3

––winAnchorMultimapNmax
<NUM_ANCHOR>

50 50 50

––alignSJDBoverhangMin
<OVERHANG_ANNOTATED>

3 3 1

––outFilterType <OUT_FILTER> “BySJout” “BySJout” “BySJout”



C.13 Subread(Subjunc) 175

Conclusions

The default options of STAR achieve one of the best results on the T3 datasets. However,
tweaking some parameters is possible to further improve the metrics. The important roles
of NUM_FILTER_MISMATCHES , END_ALIGNMENT_TYPE , OVERHANG , NUM_FILTER_SCORE ,
SEED_LENGTH are confirmed on both human and P. falciparum. Increasing the number
of allowed mismatches and leaving the default value for END_ALIGNMENT_TYPE improves
the results. At the same time, increasing OVERHANG and decreasing SEED_LENGTH and
NUM_FILTER_SCORE increases the recall at all levels.

C.13 Subread(Subjunc)

Alignment command

subjunc -i <index> -r <read file 1> -R <read file 2>
-T 16 --allJunctions --SAMoutput -o <output alignment>
-d <MIN_FRAGMENT_LENGTH> -I <INDEL> -m <NUM_HIT_SUBREADS>
-M <MISMATCHES> -n <NUM_EXTRACTED_SUBREADS>
-p <NUM_HIT_PAIR_SUBREADS> --complexIndels

Tested parameters

For the tweaking, the parameters in Table C.37 were tested. About 1060 different parameter
combinations were considered during the tweaking process.

Table C.37 Subread tweaking parameters and values

Parameters Tested values Note

-d <MIN_FRAGMENT_LENGTH> 0; 50 Default = 50
-I <INDEL> 3; 5; 8; 10; 15; 20 Default = 5
-m <NUM_HIT_SUBREADS> 1; 3; 5 Default = 3
-M <MISMATCHES> 3; 5; 8; 10; 20; 30 Default = 3
-n <NUM_EXTRACTED_SUBREADS> 5; 10; 15 Default = 10
-p <NUM_HIT_PAIR_SUBREADS> 1; 3 Default = 1
––complexIndels With and without this option Default = without this

option
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Best configurations

Table C.38 Subread best configurations (highest recall) for the base, read and junction level
on the human T3 dataset

Parameters Base level Read level Junction level

-d <MIN_FRAGMENT_LENGTH> 0 0 0
-I <INDEL> 10 10 10
-m <NUM_HIT_SUBREADS> 1 1 1
-M <MISMATCHES> 20 20 20
-n <NUM_EXTRACTED_SUBREADS> 15 5 15
-p <NUM_HIT_PAIR_SUBREADS> 1 1 1
––complexIndels without this option with this option without this option

Table C.39 Subread best configurations (highest recall) for the base, read and junction level
on the P. falciparum T3 dataset

Parameters Base level Read level Junction level

-d <MIN_FRAGMENT_LENGTH> 0 50 50
-I <INDEL> 10 5 5
-m <NUM_HIT_SUBREADS> 1 1 1
-M <MISMATCHES> 20 30 30
-n <NUM_EXTRACTED_SUBREADS> 5 5 15
-p <NUM_HIT_PAIR_SUBREADS> 1 1 1
––complexIndels with this option without this option without this option

Conclusions

The tweaking of the parameters allows to considerably increase the alignment quality,
both on P. falciparum and human. The most influential parameters are MISMATCHES ,
NUM_HIT_SUBREADS and NUM_HIT_PAIR_SUBREADS . Increasing MISMATCHES and decreas-
ing NUM_HIT_SUBREADS and NUM_HIT_PAIR_SUBREADS , the read and base level show a re-
call improvement of 20-30%. With regards to NUM_EXTRACTED_SUBREADS , a value different
from the default seems to be helpful in many cases as well as the use of ––complexIndels.
The parameters INDEL and MIN_FRAGMENT_LENGTH do not affect the results.
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C.14 TopHat2

Alignment command

tophat2 --output -dir <output path> --num -threads 16
--mate -inner -dist <INNER_MATE_MEAN>
--mate -std -dev <INNER_MATE_SD> --b2 -very -sensitive
--read -mismatches <NUM_MISMATCHES>
--read -gap -length <NUM_GAP_LENGTH>
--read -edit -dist <NUM_EDIT_DIST>
--read -realign -edit -dist <NUM_REALIGN_EDIT_DIST>
--max -insertion -length <NUM_INSERTION_LENGTH>
--max -deletion -length <NUM_DELETION_LENGTH>
--max -multihits <NUM_MULTIHITS>
--GTF <gtf file> <index> <reads file 1> <reads file 2>

Tested parameters

For the tweaking, the parameters in Table C.40 were tested. About 230 different parameter
combinations were considered during the tweaking process.

Table C.40 TopHat2 tweaking parameters and values

Parameters Tested values Note

––b2-very-sensitive With and without this option Default = without this
option

––coverage-search With and without this option Default = without this
option

––read-mismatches <NUM_MISMATCHES> 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14;
15; 16; 17; 18; 19; 20; 21; 22; 23;
24; 25; 26; 27; 28; 29; 30; 31; 32;
33; 34; 35

Default = 2

––read-gap-length <NUM_GAP_LENGTH> 3; 4; 5; 6; 7; 8; 9; 10; 16; 25; 26; 35 Default = 2
––read-edit-dist <NUM_EDIT_DIST> 5; 7; 10; 16; 25; 26; 35 Default = 2
––read-realign-edit-dist
<NUM_REALIGN_EDIT_DIST>

0; autoset-default Default = value such
that the tool will not try
to realign reads already
mapped in earlier steps.

––max-insertion-length
<NUM_INSERTION_LENGTH>

4; 5; 9; 10; 16; 24 Default = 3

––max-deletion-length
<NUM_DELETION_LENGTH>

4; 5; 9; 10; 16; 24 Default = 3

––max-multihits <NUM_MULTIHITS> 100 Default = 20
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Best configurations

Table C.41 TopHat2 best configurations (highest recall) for the base, read and junction level
on the human T3 dataset

Parameters Base level Read level Junction level

––b2-very-sensitive with this option with this option with this option
––coverage-search without this option without this option without this option
––read-mismatches <NUM_MISMATCHES> 18 18 25
––read-gap-length <NUM_GAP_LENGTH> 25 25 25
––read-edit-dist <NUM_EDIT_DIST> 25 25 25
––read-realign-edit-dist
<NUM_REALIGN_EDIT_DIST>

default default default

––max-insertion-length
<NUM_INSERTION_LENGTH>

24 24 24

––max-deletion-length
<NUM_DELETION_LENGTH>

24 24 24

––max-multihits <NUM_MULTIHITS> 100 100 100

Table C.42 TopHat2 best configurations (highest recall) for the base, read and junction level
on the P. falciparum T3 dataset

Parameters Base level Read level Junction level

––b2-very-sensitive with this option with this option with this option
––coverage-search without this option without this option without this option
––read-mismatches <NUM_MISMATCHES> 18 18 27
––read-gap-length <NUM_GAP_LENGTH> 25 25 35
––read-edit-dist <NUM_EDIT_DIST> 25 25 35
––read-realign-edit-dist
<NUM_REALIGN_EDIT_DIST>

default default default

––max-insertion-length
<NUM_INSERTION_LENGTH>

24 24 24

––max-deletion-length
<NUM_DELETION_LENGTH>

24 24 24

––max-multihits <NUM_MULTIHITS> 100 100 100

Conclusions

TopHat2 shows both the worst results using the default settings and the highest improvement
by the tweaking of the parameters. This behavior suggests that performing the tweaking of
the parameters is very important and highly recommended for this tool. The junction level
precision/recall achieved by tweaking the parameters is one of the best, compared to the
other tools. The most important parameters is NUM_MISMATCHES . In the performed tests, the
tuning of NUM_MISMATCHES results in a recall improvement of more than 70% at any level.
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Alignment notes for splice unaware tools

D.1 Bowtie

Version

1.1.2

Index

bowtie -build -f <genome file> <index name>

Alignment

bowtie --best --sam -X 2000 -p 4 <index name>
-q -1 <read file 1> -2 <read file 2> > <output sam file>

D.2 Bowtie2

Version

2.2.9

Index

bowtie2 -build -f <genome file> <index name>

Alignment
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bowtie2 --very -sensitive -X 2000 --time -p 4 -x <index name>
-q -1 <read file 1> -2 <read file 2> -S <output sam file>

D.3 BWA

Version

0.7.15-r1140

Index

bwa index -p <index name> -a is <genome file>

Alignment

bwa aln -t 4 <index name> <read file 1> > <output sai file 1>

bwa aln -t 4 <index name> <read file 2> > <output sai file 2>

bwa sampe -n 2000 <index name>
<output sai file 1> <output sai file 2>
<read file 1> <read file 2> > <output sam file>

D.4 BWAMEM

Version

0.7.15-r1140

Index

bwa index -p <index name> -a is <genome file>

Alignment

bwa mem -t 4 <index name> <read file 1> <read file 2> > <output sam
file>



Appendix E

Publications and side projects

The full Ph.D. research activity has more widely dealt with the implementation of computa-
tional methods for the analysis of RNA-Seq data, including collateral studies not described in
this thesis. Side projects not described in this thesis include: definition and implementation
of an optimal analysis pipeline for Mycobacterium tuberculosis; development of software
for RNA expression level quantification; development of methods for differential expression
analysis on RNA-Seq time series data.

E.1 Journal papers

• G. Baruzzo, K. Hayer, E. Ji Kim, B. Di Camillo, G. Fitzgerald, G. Grant. “Simulation-
based comprehensive benchmarking of RNA-seq aligners”. Nature Methods, 2016.

E.2 Abstracts and short papers

• G. Baruzzo, F. Finotello, E. Lavezzo, A. Serafini, R. Provvedi, S. Toppo, L. Barzon,
R. Manganelli and B. Di Camillo “Benchmarking RNA-Seq mapping strategies for
paired-end reads “ at Network Tools and Applications in Biology (NETTAB) 2014

• G. Baruzzo, K. Hayer, E. J. Kim, B. Di Camillo, G. Grant “Benchmark Analysis of
RNA-Seq Aligners” at Intelligent Systems for Molecular Biology (ISMB) 2016

• N. Lahens, E. Ricciotti, O. Smirnova, E. Toorens, E. Ji Kim, G. Baruzzo, K. Hayer, T.
Ganguly, J. Schug, G. Grant “A comparison of Illumina and Ion Torrent platforms in
a study of differential gene expression” at Intelligent Systems for Molecular Biology
(ISMB) 2016
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E.3 Commentary articles

• G. Baruzzo, K. Hayer, E. Ji Kim, B. Di Camillo, G. Fitzgerald, G. Grant. "Comprehen-
sive Benchmarking of RNA-Seq Aligners Indicates Large Variation in Performance" in
"Principles of Systems Biology, No. 13". Cell Systems, 4(1):3–6, 1 2017.
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