


Summary

The first protein structure to be determined in 1962 was hemoglobin, a globe-like, water-

soluble and relatively rigid protein with enzymatic activity. Since then, the science of

protein structures and function has been biased towards this type of proteins, termed

”globular”. Experimental and computational methods for the determination of protein

features have been mainly designed on globular proteins, however, over the last decades

accumulating experimental evidences demonstrate that there is much more than glob-

ularity in the protein conformational space. The definition non-globular proteins

(NGPs) encompass a full spectrum of phenomena, including tandem repeation, intrin-

sically disordered regions, aggregating domains and transmembrane domains. During

my PhD I worked at the characterization of these phenomena through the development

of new resources for the identification, collection and description of NGPs.

Tandem repeat proteins (TRPs) are characterized by a repeated sequence which

codes for a modular architecture, where structural modules are called ”units”. They

are widespread in all type of organisms, where they carry out fundamental functions. In

addition, their explosion in number in eukaryotes suggests an important role in the evo-

lution of complex organisms. TRPs sequences diverge quickly while maintaining their

fold, hampering detection by traditional methods for sequence analysis. The same

holds true for functional annotation, which usually relies on the transfer of knowledge

between conserved sequences. On the other side, the challenges of repeats detection by

structure lies in the multidimensional nature of the data. Addressing these challenges,

sequence- and structure-based methods were built recently for the identification of re-

peat proteins, however a limited number of them address the problem of the annotation

of repeat units. However, data about unit position could be a powerful tool not only

to classify TRPs, but also to understand TRPs evolution and assess conservation at

the sequence level, since the repeat unit is the evolutionary module of repeated struc-

tures. Moreover, the collection of an alphabet of tandem repeat units could be useful

for protein engineering applications, as repeat proteins are extensively used in protein

design. RepeatsDB is a database of tandem repeat protein structures annotated with

the position of repeat units and insertions, i.e. non-repeated segments of structure that

occur either inside a repeat unit or between two of them. I addressed the problem of

the annotation of repeat proteins by contributing to RepeatsDB and related resources,
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starting from the curation of RepeatsDB data. I provided insights on TRPs role in the

human proteome by characterizing them in terms of function, protein-protein interac-

tion networks and impact on diseases. As a case-study of this phenomenon, I dissected

the interactome of Collagen V, a repeat protein associated to Ehlers-Danlos syndrome,

in order to identify genotype-phenotype correlations in relation to the interaction net-

work model. Moreover, I compared the sequence-based classification of repeats to the

structural one provided by RepeatsDB. This work was based on the observation that

the improvement of TRPs recognition and classification is essential to shed a light on

the so called dark proteome, i.e. the large fraction that we know almost nothing about.

On this line, I took care of the curation and improvement of RepeatsDB database. The

new version of the database was populated taking advantage of ReUPred, predictor of

tandem repeat units to which I contributed to develop. The quality of RepeatsDB data

is guaranteed by an extensive manual validation, a time-consuming task which requires

community annotation efforts. To facilitate this process I developed RepeatsDB-lite,

web server for the prediction and refinement of tandem repeats in protein structure.

I also contributed to the new release of MobiDB database, addressing the problem of

intrinsically disordered proteins (IDPs) annotation. IDPs are devoid of order in

their native state. The discovery of intrinsic disorder and its prevalence and functional

importance is transforming the field of molecular biology. It was shown to be prevalent

in the human proteome, to play important signaling and regulatory roles and to be fre-

quently involved in disease. As intrinsic disorder is emerging as a general phenomenon,

databases are collecting and presenting disorder related data in a systematic manner.

During my PhD I had the opportunity to contribute to MobiDB, database of protein

disorder and mobility annotations that describes several aspects of NGPs structure and

mechanism of function. MobiDB has been a major contributor by providing consensus

predictions and functional annotations for all known protein sequences, driving the field

ahead.

A common feature of TRPs, IDPs and other NGPs is that they are characterized by

low-complexity regions (LCRs), where the distribution of amino acids deviates

from the common amino acid usage. LCRs have been estimated at 20% and 8% of

all known sequences of eukaryotes and non-eukaryotes, respectively. The functional

importance of LCRs is strictly related to their non-globular arrangement and their in-

volvement in disease has also been extensively discussed. Overcoming early reluctance
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to consider these regions for biological studies, mainly due to their unknown properties

and annoying statistical features, there is an intensification of research on low complex-

ity. I contributed to the field with a critical review focusing on the definition of sequence

features of low complexity regions and their relationship to structural features.

Finally, I exploited the knowledge acquired on NGPs in the previous studies to de-

sign one of the first sequence-based methods for the prediction of protein solubility,

SODA. SODA uses the aggregation propensity, intrinsic disorder, hydrophobicity and

secondary structure preferences from the sequence to evaluate solubility changes intro-

duced by a mutation. Solubility is an important, albeit not well understood, feature

determining protein behavior. The main envisaged applications of SODA are in pro-

tein engineering, where it can help the design of proteins with more favourable surface

properties and the study of the impact of protein mutations in disease insurgence.
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632

The Brain- is wider than the Sky-

For- put them side by side-

The one the other will contain

With ease- and You- beside-

The Brain is deeper than the sea-

For- hold them- Blue to Blue-

The one the other will absorb-

As Sponges- Buckets- do-

The Brain is just the weight of God-

For- Heft them- Pound for Pound-

And they will differ- if they do-

As Syllable from Sound-

Emily Dickinson
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Introduction

1.1 Principles of protein structure

In 1962 the Nobel Prize for Chemistry was given to John Kendrew and Max Perutz,

who independently determined the structure of myoglobin (1) and hemoglobin (2),

respectively. Since then, tens of thousands of different protein structures have been de-

termined and enable scientists to understand the architectural and energetic principles

of proteins, as well as their mechanism of function. The natural proteins are mapped to

the primary database of protein annotation, the Universal Protein Resource - UniProt

(www.uniprot.org). UniProt contains sequence information, functional annotations,

cross-references to other resources on structure. Protein structure is organized in a

hierarchical manner (3), for which scientists have devised a hierarchical vocabulary to

describe protein architecture, described in next section.

1.1.1 Primary structure

The primary structure (backbone) of a protein refers to the ordered sequence of amino

acids composing the polypeptide chain. The general structure of the 20 amino acids

that can make up protein is

H2N − CH(R)− COOH

1





1.1 Principles of protein structure

Figure 1.2: Ramachandran plot (4) with the most favoured (dark green) and additional allowed (light

green) regions. Examples of relative orientation of amino acids in three secondary structure elements

(antiparallel β-sheet, right-handed α-helix and left-handed α-helix) are provided, together with exemplary

steric distorsion where two oxigen atoms are too close to each other. Author: Krzysztof Brzozowski.

”R” refers to the variable side-chain. Proteins exclusively use the L form of the two

possible enantiomers of amino acids, L and D. The variable side-chain confers unique

properties, i.e. acidity, basicity, hydrophobicity and hydrophilicity. This way, proteins

are provided the chemical toolkit to assemble the amino acid modules in unique complex

structures with unique properties and interaction with environment, which ultimately

defines their function. The assembly of amino acids is achieved through amide bond

between their α amino and carboxylic groups. When linked in the polypeptide chain

(see Figure 1.1, Primary), amino acids are also called residues. Their sequence, or

indeed primary structure, is rendered in the direction from the first amino acid with a

free α-amino group (N-terminus) to the last with free carboxylic group (C-terminus).

This convention is due to the direction of protein synthesis.
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1. INTRODUCTION

1.1.2 Secondary structure

The polypeptide chain folds up into local spatial elements termed secondary structure.

Ramachandran in the late ’60s gave an elegant description of the regularity of these

local conformational elements through the Ramachandran plot (4), in Figure 1.2. Most

of the possible arrangements of adjacent residues fall into four main classes, mapped

into the plot of the two dihedral angles around the α-carbon atom of the peptide

bond (Cα). The torsion angles are φ (phi) and ψ (psi), corresponding to the rotation

of the two adjoining amide plains around the bond connecting them to the Cα, and

respectively x and y axes of the plot. Adjacent residues conformations are described

by the φ,ψ value pairs which determine the local element of secondary structure (see

Figure 1.1, Secondary).

• α-helices are righthand-spiral conformations (i.e. helix) in which the polypeptide

chain takes turn allowing every backbone NH group to donate a hydrogen bond

to the backbone C=O group of the amino acid located three or four residues

earlier along the protein sequence (the average is 3.6 residues per turn). The dis-

tribution of constituting amino acids usually originates helix sides with different

physicochemical properties.

• β-sheets are another basic building block of proteins. They are constituted by

β-strands, fully extended element having 2 residues per turn and unable to allow

intra-chain interactions. These elements are stabilized by inter-chain H bonds,

and the assembly is defined parallel or antiparallel according to the relative ori-

entation of the two interacting strands.

• proteins reverse the direction of their polypeptide chain through secondary struc-

ture elements called turns. They come in several variants, depending on the

involved amino acids, and thus occupy different regions in the Ramachandran

plot.

Other secondary structure arrangements are present in nature, however the exhaus-

tive description of these elements goes beyond the scope of the present dissertation.

Secondary structure elements are easily identified in an automated way through the

Define Secondary Structure of Proteins (DSSP) software (5) when the 3D structure

is provided. It is based not on angles but on the pattern of intra-backbone hydrogen
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1.1 Principles of protein structure

bonds. As already introduced, indeed, the conformations of secondary structure ele-

ments such as α-helices and β-sheets are stabilized by a specific pattern of hydrogen

bonds. Among all possible shapes, these two where selected exactly because capable of

efficiently packing atoms in a compact way and of pairing backbone amide and carboxyl

groups in energetically favourable bonds (6). Protein energetics and the mechanisms

driving their folding will be deepened in section 1.2.

1.1.3 Amino acids secondary structure preference

The different 20 amino acid types have different physical and chemical characteristics,

including polarity, shape, dimensions. As already apparent from the Ramachandran’s

prediction of the allowed φ and ψ angles (4), the different secondary structure elements

place some constraints to the amino acids that they can include. This has been con-

firmed by statistical analysis of amino acid frequencies in secondary structure elements

of protein structures (7) and by the analysis of mutations which disrupt secondary

structure elements (8, 9). These studies demonstrate the thermodynamic preferences

of the different secondary structure elements for certain amino acids. This framework

is at the basis of the prediction of protein secondary structure arrangement when only

the sequence is provided.

1.1.4 Tertiary structure

Secondary structure elements are local and usually proceed along one axis of the pro-

tein chain. The atoms in different secondary structure elements may establish contacts

and further compact the protein structure, shaping its three-dimensional arrangement

(tertiary structure). The tertiary structure (see Figure 1.1, Tertiary) optimizes the

various attraction forces between amino acids in the chain and with the environment.

The evolution of biological molecules took place in aqueous solvent. Inside living or-

ganisms these environments include the cell cytosol, interstitial fluids, multi-cellular

fluid environment such as blood, saliva, lymph, etc. As a result, most proteins evolved

to bear the following properties:

• Compactness: Due to the highly crowded environment (10) in which proteins

exist, their structure must be dense enough and still retain the ability to diffuse

freely.
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• Solubility: Proteins need to be water-soluble.

• Binding specificity: As a consequence of the previous property, proteins binding

needs to be specific. Non-specific binding to each other or other molecules, in

this kind of environment, may result in deleterious aggregation.

The proteins described by the listed features are termed globular. They achieve this

state by exploiting the different properties of their composing amino acids. Indeed,

they contain both polar and non-polar amino acids. To remain water-soluble, they

fold so as to allow polar residues to be on the surface and non-polar residues buried

in the core, thus termed ”hydrophobic core” (11). The partitioning of polar/non-

polar residues is to a large extent due to the secondary elements mentioned above.

β-sheets are very efficient in the burial of non-polar residues, whereas α-helices allow

simultaneous externalization of polar and internalization of non-polar ones (12). The

physico-chemical properties driving the folding process are better described in section

1.2.

1.1.5 Quaternary structure and protein interaction

The three levels of structural hierarchy exist in all proteins, but the third is not nec-

essarily the final level. Some proteins include more than one chain. In such cases,

the native state of the macromolecule may be constituted by the assembly of multiple

folded protein subunits (not directly linked in the same polypeptide chain) in a multi-

subunit complex, namely the quaternary structure of a protein. Quaternary structure

(see Figure 1.1, Quaternary) is the number and arrangement of the different members

involved in a multi-subunit complex. These complexes include organisations from sim-

ple homodimers (two copies of the same structure) to large oligomers and complexes

with defined or variable numbers of subunits. When the complex is made up by sev-

eral copies of the same protein, the copies are called ”monomers”. Proteins can form

biomolecular complexes also with nucleic acids and other cofactors. Virtually all cel-

lular processes include key players which are complexes (13). In this sense, it should

be noted that many cellular proteins tend to physically interact with other members of

the biochemical pathway in which they are involved (14). Therefore, the identification

of a protein interactions, i.e. the description of the protein-protein interaction (PPIs)

network, is essential to understand their function. These interactions make up the
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so-called interactomics of the organism, while aberrant PPIs are the basis of multiple

diseases. The interaction that a protein is able to establish are the result of biochemical

events steered by electrostatic forces, and similar to the ones that drive their folding,

described in section 1.2.

1.1.6 Determination and classification of protein structures

The function that a protein assumes and the interaction that it can establish depend

on its structure. Therefore, protein structure determination is of utmost importance in

the study of living organisms, in drug design and as a necessary background informa-

tion for protein design. Several techniques have been designed to build atomic models

of biomolecules. These techniques include X-ray crystallography, Nuclear Magnetic

Resonance (NMR) spectroscopy, and electron microscopy. X-ray crystallography (15)

is based on the purification and crystallization of a single protein species. The crystal

is illuminated with a finely focused beam of X-rays, producing a diffraction pattern of

regularly spaced spots. Several two-dimensional images are taken at different orienta-

tions mounting the crystal on a goniometer. Finally, the three-dimensional model of

the structure is reconstructed using the mathematical method of Fourier transforms.

The method has been a more commonly used technique and obtaining protein structure

information is a routine, highly automated procedure. Yet, it requires crystallization

of the protein, which can take months. On the other hand, NMR spectroscopy (16)

allows the study of a protein nearly under physiological conditions. NMR uses a large

magnet to probe the intrinsic spin properties of atomic nuclei. The sample is placed

in a magnetic field and the NMR signal is produced by excitation of the nuclei sample

with electromagnetic radiation (radio frequency waves) into nuclear magnetic reso-

nance, which is detected with sensitive radio receivers. The magnetic resonance of a

molecule is determined by its electronic structure and its individual functional groups,

therefore the molecular structural details can be derived by its NMR signal. Even if

this technique offers the possibility to determine the structural behaviour of a protein

in its native environment, NMR spectroscopy experiments are hard to automate. All

the information derived by structural determination techniques is stored in the Pro-

tein Data Bank (PDB, www.pdb.org), database of protein and nucleic acid structures

(17). At the moment of writing, the database contains atomic coordinates of more than
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140,000 structures of natural or designed biomolecules, of which about 80% is deter-

mined by X-ray crystallography and 9% by NMR spectroscopy. Other methods provide

minor contributions. Proteins contained in the PDB can be classified in groups shar-

ing structural similarities. The two main resources for protein structure classification

are the Structural Classification of Proteins, SCOP (http://scop2.mrc-lmb.cam.ac.uk/,

(18)) and CATH (http://www.cathdb.info/, (19)), which states for Class, Architec-

ture, Topology and Homology. They are both based on structural similarities between

proteins, at all levels from the secondary to the quaternary. Proteins sharing 3D simi-

larities are grouped into ”folds”. It was shown (20) that the clustering of these groups

does not map perfectly to the clustering of their primary structures (sequences), in-

dicating a non-linear relationship between the protein sequence and structure. This

relationship will be described in section 1.3.

1.2 Principles of protein folding

Proteins are physical entities subjected to the physical forces that dominate our uni-

verse, and in order to understand the principles of their folding and functioning it is

necessary to introduce some concepts about thermodynamics. The field that describes

proteins in terms of forces and energies is termed structural biophysics, which can be

in turn be separated into two major fields:

• Energetics studies the principal forces that affect protein folding and stability.

• Dynamics studies the conformational changes of the polypeptide chain during

folding, including those that occur in the native state.

The basic principles of thermodynamics applied to the description of proteins will be

summarized in following subsections.

1.2.1 Basic principles of thermodynamics

Thermodynamics exploits the energy characterization of states in nature to predict the

direction and probability of processes, e.g. folding vs. unfolding of a property. In an

isolated system (cannot exchange matter or energy with its surroundings), spontaneous

processes tend to increase the system entropy, that is the number of possible configu-

rations of the system (21). Biological system, however, are not isolated. They do not
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1.2 Principles of protein folding

exist in a state of constant volume and energy. In such systems, the most convenient

way to define the direction of a process is the Gibbs free energy, symbolized by G. It

represents the energy which is ”available” to systems under constant temperature and

pressure and not volume (22). The G is defined as:

G = U + pV − TS (1.1)

where U is the internal energy of the system, p is pressure, V is volume, T is the

temperature, S is the entropy. Alternatively,

G = H − TS (1.2)

where H is the so called enthalphy, a quantity which represents the internal energy of

the system, plus the product of its pressure and volume. The total enthalpy of a system

cannot be measured directly: only a change in energy carries a physical meaning, such

as in classical mechanics. What one can measure is the difference in enthalphy, ∆H,

with respect to a reference. Consequently, the same holds for the Gibbs free energy,

measured as ∆G. Spontaneous processes tend to decrease the free energy of the system,

so they have negative ∆G. Thus, by measuring the free energy change of any process,

one would be able to assess the spontaneity or not of the process (23).

1.2.2 Folding and denaturation

Proteins native structures represent the state of minimum Gibbs free energy in the

systems where they are placed. In physiological environment, in the case of globular

proteins this minimum corresponds to the folded structure but in other conditions this

may change. It was shown by Hisen Wu in the early ’30s (24) that in specific conditions

protein lose their structure (a process called ”denaturation”). In these states, there-

fore, the conformation corresponding to the lowest Gibbs free energy is the unfolded

one. It was also found that after removing the agents that caused the change of envi-

ronment, some proteins can automatically retake their native structure, this is called

”renaturation” or ”refolding”. Experiments on denaturation and renaturation lay the

foundation for the theory of protein folding (25). Within a cell, protein folding must be

thermodynamically favourable in order it to be spontaneous. However, protein folding

decreases the number of possible configurations of the protein, that is, the entrophy.

Such events are common in bio-systems, because over-compensated by other factors. In
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protein folding, the ordering of polypeptide chain is coupled with the effects on water

around the protein and by the formation of favourable non-covalent interactions. In

the Gibbs free energy formula, the free energy changes resulting from chemical bonding

are represented by ∆H, while -T∆S represents the difference in the system’s degree of

order.

1.2.3 The hydrophobic effect

The main force which drives protein folding is the so called hydrophobic effect (26),

already anticipated in section 1.1, together with hydrogen bonding. The hydrophobic

effect is the process through which the polypeptide chains minimize the number of

hydrophobic side-chains exposed to water, collapsing into the protein core away from

the hydrophilic environment. The process starts from the unfolded state of the protein,

where the hydrophobic surfaces are exposed to the water molecules which, in response,

tend to aggregate around them in ordered states. The hydrophobic collapse breaks the

ordered state of water molecules thus introducing entropy in the system. Within the

core of the globular folded protein, the large number of hydrophobic chains interact

via van der Waals forces. In the meantime, the backbone secondary structure elements

are stabilized by hydrogen bonds enveloped in a hydrophobic environment. Since the

strength of hydrogen bonds is influenced by their surroundings, the hydrogen bonds

buried in the hydrophobic core contribute more than the ones in the surface to the

stability of the native state.

1.2.4 Energy landscape of protein folding

Until now protein folding was presented as a two state process (unfolded/folded). In

very small and globular protein, this simplistic view is justifiable, because protein

folding is a highly cooperative process and in those cases it happens very fast. However,

protein folding happens at very different speed rates according to the protein type, in

some cases being much more gradual. This should not be surprising, as because of

the very large number of degrees of freedom in an unfolded polypeptide chain, the

molecule has an enormous number of possible conformations. This observation was

firstly made by Cyrus Levinthal, and it is known as the Levinthal’s paradox (27). The

astronomical number of possible states of a protein structure should slow down the

process of its sequential sampling of all possible conformation to a time longer than the
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reduced, and the whole process is directed towards the native state. However, even

though nature has reduced the frustration in proteins, some degree of it remains and

it can be represented by the local minima in the energy landscape of proteins. The

representation in Figure 1.3 shows how:

• The folding process involves both a decrease of enargy and of entropy of the

protein. The protein native state corresponds to the global minimum of the

landscape.

• Many local minima are involved in the folding process, represented by the ragged

walls of the funnel. The local minima are kinetic obstacle to the descending to

the native state, and even if they do not change the overall free energy between

unfolded and folded state they influence the speed of the process, as the protein

needs to overcome these energetic barriers to proceed to the folded form.

• The folding process may happen through different paths, represented by the fun-

nel walls.

• During the folding process, different thermodynamic intermediates are formed.

Among these, the molten globule (30), a compact conformation with similar sec-

ondary structure elements to that of the native form. This form lacks though the

tertiary structure organization, having the side-chains in a loosely packed con-

formation. Thus, it tends to change into the native state, which is more stable,

ending the folding process.

1.2.5 Protein folding and solubility

The processes focused until now are the ones determining the folding of a protein in

an aqueous solute. Life (and proteins) originated in water and water still plays an

undeniable role in cells accounting for 70% or more of total cell mass. Protein folding

is determined in large part to the interaction with water and therefore protein stability

and solubility are inevitably linked. Both depend on extrinsic factors (temperature,

pH, ionic strength, etc.) and intrinsic factors (amino acid composition, etc.). How-

ever, they can be modulated (almost) independently. Removing charges may lead to

lower solubility, sometimes with no impact in folding and stability (31). Redistributing

charges on the surface may lead to altered folding and/or stability with low impact in
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solubility (31). An impairment in both the processes, on the other hand, may impact

on aggregation propensity, thus leading to pathogenic pathways. Knowledge about

how intrinsic factors influence solubility is limited due to the difficulty of obtaining

quantitative solubility measurements (32). The issues in measuring protein solubility

may relate to the formation of gel-like or supersaturated solutions in those methods

that require the increase in protein concentration (33), or the difficulties in comparing

results from different experiments when taking advantage of protein precipitants (31).

As a consequence, solubility remains a protein feature not well understood, and still

remains a major issue in the detailed structural and functional characterization of many

proteins and isolated domains (34, 35). The dissection of the phenomenon is of critical

importance not only for its role in protein homeostasis (36, 37), but also because in-

soluble regions in proteins tend to aggregate (37), leading to a variety of diseases such

as Alzheimer’s (38) and amyloidoses (39). Aggregation as a flip side of low protein

solubility also represents a biotechnological complication. Soluble expression remains

a serious bottleneck in protein production (40) and low solubility in drugs may make

them ineffective (41) or even toxic (42). Targeted mutagenesis, usually without affect-

ing protein structure or function, has been demonstrated in a number of cases to be

a valuable tool to alter protein solubility (43). Especially in the absence of structural

knowledge, the identification of residues to mutagenize benefits from dedicated predic-

tion methods. In addition, predictors can contribute to the identification of pathogenic

mutations in solubility-related diseases (44, 45).

1.3 Relationship between protein sequence, structure and

function

The complex nature of protein sequence/structure relationship has just been introduced

in the previous sections. A central challenge in biology is to rationalize the mass of

biochemical and biophysical knowledge about proteins collected through very different

methods in order to decipher the structural, functional and evolutionary clues encoded

in the language of biological sequences. The connection between all this ”levels of

information” is not so straightforward. This is mainly due to the fact that protein

sequences are subject to several disparate evolutionary pressures. They have to fold fast

and smoothly, avoiding incorrect and non-functional alternative structures or even the
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formation of pathogenic aggregates. They need to acquire a certain level of specificity

in their function, however the very nature of evolution tends also to be conservative

and efficient by re-using structural and functional elements that are already available,

eventually modifying their specificity or their context to perform new function. All

this forces, sometimes conflicting, complicate the protein sequence-structure-function

relationship making it difficult to predict despite its deterministic nature.

1.3.1 Sequence-structure-function paradigm

At the center of the classical biology, lies the idea introduced in the previous section that

a protein function depends on a well-defined 3D structure, as the unique spatial pattern

of properly placed amino acids residues creates a special physico-chemical microenvi-

ronment tailored for the tight and extremely specific interaction with the environment.

So, the detailed description of this structure hold the key to understanding the protein

role. In turn, the structure is perfectly encoded in the protein sequence as a specific

pattern of amino acids is driven through the folding funnel to acquire a specific folded

state. However, to fully understand the nature of protein sequence-structure-function

relationships, two concepts must be introduced to extend the paradigm:

• The evolutionary relationship between protein sequences (presented in this sec-

tion).

• The insufficiency of the mantra ”function requires (globular) structure” which

came into light in the last decades (introduced in next section, 1.4).

1.3.2 Sequence evolution

The relationship between two different proteins may be assessed by their sequence

similarity. Very similar proteins in terms of sequence should have the same structure

and therefore function. They probably share a recent ancestry, thus they are defined

homologous. Instead, proteins showing very different structure have usually different

3D arrangements and role. However, this relationship is not linear. Early studies by

Chotia and Lesk (46, 47) showed a strong non-linear relationship between sequence and

structural similarity in 346 homologous proteins. Very similar sequences showed mod-

est structural differences, but structural differences increased dramatically as sequence

identities dropped below 15-20%. The signal of similar structure get blurred in the
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twilight zone of 20-35% of sequence identity, while the 40% has been established as a

threshold to discriminate similar and non-similar protein structures (48). The relation-

ship to function is even more complex, due to the phenomenon of convergent evolution,

which is the independent evolution of similar specificity, thus function (49). Proteins

with distinct three-dimensional fold and sequence pattern may evolve to perform the

same function, and even acquire structural similarities which are not directly related

to a common evolution. The complexity of the protein sequence-structure-function

relationships is the reason why the problem has not yet been solved, as we are not

able to predict the structure and function of all proteins based only on their sequence

data (50, 51). The general picture is complicated even more from the fact that, as

the French biologist Francis Jacob said (52), ”nature tends to re-use the old working

solutions on new entities”. This happens at all levels of protein evolution: at the level

of the functions, the basic pathways of all living organisms are the same and they are

determined and regulated by the same features (53), at the level of the structures, the

wide diversity of folds in existence today have probably evolved from the combination

of peptidic ancestors (54, 55, 56), and at the level of the sequence, where the functional

units, the ”domains”, have been recycled in many different proteins which similarity is

still detectable (57).

1.3.3 Protein families

As introduced in section 1.1, a domain is a part of the protein structure which often

can be independently stable and folded (58). Domains are characterized by a compact

structure (59), autonomous folding (60) and independent function and evolution (61).

Nature often brings several domain together to form multi-domain proteins, combin-

ing their function (61). Such as secondary and tertiary structure modules which serve

as building blocks for protein structures, on a higher level domains serve as building

blocks for protein function. Many domains in eukaryotic multidomain proteins can be

found as independent proteins in prokaryotes (62), suggesting that domains in mul-

tidomain proteins have once existed as independent proteins. The sequence similarity

between different versions of the same domain in evolution are still trackable, and base

the classification of proteins provided by Pfam database (63). Groups of related pro-

tein sequences, named families, are collected in the protein families database, Pfam

(64). Pfam (www.pfam.xfam.org) classifies protein families detected through protein
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sequence analysis via the HMMER package (65) from a seed alignment to produce a

Hidden Markov model (HMM) representing the protein family. HMM are statistical

models based on multiple alignments and particularly well-suited to capture the dif-

ferential variability of protein sequences. Pfam is a collection of HMMs, where each

represents a particular non-overlapping protein family. Families are also grouped into

clans in order to establish evolutionary relations between large, divergent families (64).

Pfam is based on the concept that the relationship between protein sequences can be

identified by their similarity, or homology, which is a hint of common evolution. These

evolutionary-related groups of protein sequences often share three-dimensional struc-

tures and functions. The same concept lay the basis for all existing methods for protein

structure and function annotation by homology based inference (66).

1.3.4 Domain architecture

The evolutionary unit in proteins is the domain. Multiple domain arrangements arise

from events such as recombination, exon-shuffling, gene fusion, domain loss (57). The

representation of protein sequences as sets of ordered functional domains is termed

”protein architecture” and provides a useful way of investigating protein evolution.

Multidomain proteins are likely to have emerged from selective pressure during evolu-

tion to create new combinations of functions (61). Various proteins have diverged from

common ancestors by different combinations and associations of domains. The domain

organization therefore is an advantage both in protein folding, with each domain being

able to individually fold and accelerating the process, and in the diversification of pro-

tein roles. Through the combination of different domains, some proteins are involved

in structural support and movement, others in enzymatic activity, and still others in

interaction with the outside world. Indeed, the functions of individual proteins are as

varied as their unique amino acid sequences and complex three-dimensional physical

structures.

1.3.5 Protein function

Protein function is how a protein interacts with other molecules in the cell environment

and the consequences of this interaction. A critical function of proteins is their activity

as enzymes, which are needed to catalyze almost all biological reactions. The most

intuitive way to envisage the interaction between a biological catalyst and its substrate
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only a simplification of how proteins work in the cell, as a static picture of how they

function in a specific moment, environment and condition. Such as a single photo

shoot compared to a video, this picture is reductive compared to the whole ensemble of

protein states in space and time, during its life-cycle and activity. Protein structures

are, nevertheless, highly dynamic, and their biological functions depend intimately

on this. The dynamics or motions in a protein allow its conformation to change and

respond to the presence of other molecules and/or to variations in the environment (68).

Biological and biochemical processes such as signal transduction, antigen recognition,

protein transport and enzyme catalysis rely on this ability to change conformation or to

adapt to change. In order to introduce this framework in the lock-and-key model, Daniel

Koshland proposed the ”induced fit” model (67). In this theory, the active site and the

binding portion of the substrate are not exactly complementary, however, the active

site is flexible and can remodel its shape until the substrate is completely bound. Once

the reaction is completed, the reaction products will move away from the enzyme and

the active site returns to its initial shape. Even if still simplistic for the vast ensemble of

protein interaction mechanisms, this theory introduces a fundamental concept for the

study of protein interactions: the two partners can recognize each other even in cases

of imperfect structural compatibility. In addition, protein function is not limited to

enzymatic activity. Other roles require fast adaptability, such as antibodies. Antibodies

bind to specific foreign particles (e.g. belonging to infectious agents) to recognize

them and trigger the protective reaction of the body. Other proteins are messenger

proteins, such as some types of hormones. This protein specie is exploited to quickly

and efficiently transmit signals to coordinate biological processes. Other proteins are

incorporated in the hydrophobic environment of cell membranes, or function as ”gates”,

or ”pores”, to control the flux of materials between different compartments. Moreover,

some macromolecules are used for transport and storage of atoms and small molecule

throughout the body. Finally, a large number of proteins provide structural support

inside and outside of the cells. These ”structural proteins” are often active not only

as structural components but also as platforms for PPIs. By looking at the variety of

protein roles, it becomes evident that the protein universe includes much more than

the case of the spherical-like, water-soluble, relatively rigid and highly specific globular

enzyme as it was the first protein ever crystallized, the hemogobin (Figure 1.4).
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1.4 Non-globular proteins

Non-globular proteins (NGPs) encompass different molecular phenomena that defy the

traditional view of the sequence-structure-function paradigm. NGPs include intrin-

sically disordered regions, tandem repeats, aggregating domains and transmembrane

domains. These protein species will be presented in this section. Although growing

evidence suggests that NGPs are central to many human diseases (69, 70), and more

in general to the evolution of complex organisms (71, 72, 73, 74) functional annota-

tion is very limited (75, 76, 77). This is mainly because traditional methods for the

description and classification of proteins were designed tailored on globular proteins,

basing on their typical sequence conservation and structural features. Despite all the

efforts done in order to increase the quality of these methods, indeed, the description

of eukaryotic and prokaryotic proteomes remained far from completion. It was esti-

mated than about 50% of all residues in the human proteome lack Pfam annotation

(77), which is annotation transfered by sequence homology. Even lower is the coverage

in terms of structural annotation, as only 4% of the eukaryotic proteome features a

detailed structural description and about half of it is inaccessible to homology model-

ing, that means, that absolutely no information is available or derivable about their 3D

arrangement (78). Due to this limited coverage of existing methods, it became evident

that they were simply not suitable for the description of all biological phenomena. To

fully comprehend human molecular physiopathology and biology as a whole, a better

understanding of NGPs is crucial, as it is the development of specialized method for

their description.

1.4.1 Tandem Repeat Proteins

Tandem Repeat (TR) proteins convey the least complicated relationship between a

sequence and the corresponding three-dimensional structure. Indeed, they consist of

repetitive sequence stretches ranging from less than 5 to more than 60 amino acids

(79). These give rise to a modular protein structure composed by the repetition of the

same structural unit. A repeat ”unit” is defined as the smallest structural building

block forming the repeat region. The repeat region may include insertions, i.e. non-

repeated segments occurring either inside a single repeat unit or between consecutive

repeats (80). The protein repeat sequences can be described by two parameters: period
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Figure 1.5: Schematic of a linear (or open) solenoid protein domain. License: Creative Commons

Attribution 3.0 Unported. Author: Bubus12.

and number of units/repetitions (see Figure 1.6). The period (or repeat length) is the

number of amino acids contained in each repetition. In addition, from the multiple

alignment between the unit sequence, it is possible to derive the consensus sequence,

which is the representative model of the repeated sequences.

1.4.1.1 Solenoids

Scientific literature about repeat proteins is dominated by a specific type of repeats: the

solenoids (81, 82). Even if the complete classification of TRPs will be presented lately

in the present thesis, here the specific class of solenoids is presented as a case-study of

repeat structure, mechanism of function and evolution. The simplest types of solenoids

contain hairpins with two elements of secondary structure (α/α, β/α, β/β), one flanking

the other in such a way that the start and end of the unit fall on the same axis and

the succession of units can continue along that axis (81). More complex structures

include units with three or four elements of secondary structure, or curved axis along

which the superhelix elongates. Figure 1.5 shows the schema of a linear solenoid, with

repeated β-α-β units. The resulting shapes allow the formation of diverse interfaces

for interaction, as well as cooperative multivalent interactions. In addition, the overall
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folding is often exploited for their function. A striking example is the interaction be-

tween the transcription factor NF-κB and the 6-ankyrin-repeat protein IκBα (in Figure

1.6), which regulates NF-κB by sequestering it in the cytoplasm. This solenoid repeat

completes the folding of the two C-terminal units only upon binding to NF-κB, in a

process which was shown to be critical for high-affinity binding. In addition, the differ-

ent stability of IκBα when it is bounded or not to NF-κB was demonstrated to play a

role in transcriptional regulation (91). As exemplified by the case of IκBα, the specific

properties of TRPs structure (discussed in section 4.1.2) are due to the mechanism of

their folding and motivate their widespread distribution among organisms.

1.4.1.3 Organism distribution

TRPs are prevalent in eukaryotes, but also present in Bacteria and Archaea (79). The

higher number in eukaryotes suggests that TR protein development has been an impor-

tant process during evolution of multicellular organisms (92, 93). It has been pointed

out (73) that most eukaryotic repeat proteins have few similarities with prokaryotic

ones, suggesting that they arose after the two lineages diverged. While prokaryotic

TRs usually intervene in specialized secretion systems and pathogen virulence factors

(73), the most frequent classes of repeat proteins perform functions unique to eukary-

otes. In particular, eukaryotic TRs are often hubs in the PPI networks, i.e. they are

characterized by high number of interactors. This concept is extensively discussed in

this thesis in section 4.1.2. The reason can be summarized as follows: the repetition of

the same architectural domain is the most common evolutionary strategy for the design

of long and extended structural proteins, which are often exploited as PPI platforms.

However, the importance of repeat proteins relates to several other biological functions.

The elasticity and antigenicity stand out as functional properties. Repeat proteins are

involved in processes such as biomineralization (94), adhesion (95), ice crystallization

(96), and pathogenesis (97, 98). Some repeat structures are incorporated in membranes

as pores (99). Different structural properties and, consequently, function are observed

based on the repeat length. For this reason, TRPs have been classified basing on this

parameter (79).
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1.4.1.4 Identification

A large-scale analysis of repeat protein features would require a large set of protein

sequences, or structures, identified as repeated and classified. However, the identifi-

cation of TRPs represents an issue both for sequence-based and for structure-based

methods. TRPs evolve quickly while maintaining their fold, hampering detection by

traditional methods for sequence analysis. The same holds for modeling and functional

characterization, which usually relies on well-conserved sequence features. As a result,

specialized methods were built for the identification of repeat proteins (100). Sequence-

based strategies, based on homology search (101) or domain assignment (102, 103),

mostly underestimate TRs due to the presence of highly degenerate repeat units (77).

A recent study to understand and improve Pfam coverage of the human proteome (77)

showed that five among the ten largest sequence clusters not annotated with Pfam are

repeat regions. Alternatively, methods requiring no prior knowledge for the detection

of repeated substrings can be based on self-comparison (104, 105), clustering (106, 107)

or hidden Markov models (108, 109). Some others rely on complexity measurements

(100) or take advantage of meta searches to combine outputs from different sources

(110, 111). Methods recognizing TR proteins based on the modularity of their 3D

structure have also been developed (112, 113, 114, 115, 116).

1.4.1.5 Prediction of repeat units

Existing methods for TR protein identification do not deal with the TR structures

classification problem. TR classification was originally described in (79) by manual

inspection and based on the unit length and unit structural features, since these fea-

tures determine the global arrangement of the repeat region. The identification of

single repeat units has so far been addressed by few automatic methods, including

ConSole (115), which exploits the modularity of protein contact maps, and TAPO

(116), evaluating the periodicities of atomic coordinates and other types of structural

representation. Both are available through a Web server interface that allows the user

to evaluate one protein at a time, while the automatic identification of units inside a

TR protein structure allows to scale up this type of information. This data could be a

powerful tool not only to classify TR structures, but also to understand TR evolution

23



1. INTRODUCTION

and assess conservation at the sequence level, since the repeat unit is the TR evolu-

tionary module. Moreover, the collection of an alphabet of TR units can also be useful

for protein engineering applications (117). RAPHAEL (114) is a support vector ma-

chine classifier for the identification and classification of repeat structures. It reliably

solves three problems of increasing difficulty: (1) recognition of repeat domains, (2)

determination of their periodicity and (3) assignment of insertions. RepeatsDB (80),

database of repeat protein entries, was built through systematic annotation of the PDB

by RAPHAEL. The database entries were annotated with units and classified based

on repeat length and structural features, as proposed by Kajava (79), through manual

curation. RepeatsDB classification will be described in section 4.2.

1.4.1.6 Evolution

Also due to the difficulties in TRPs detection, the characterization of their evolution is

still an open problem. The mechanisms behind the expansion of internal repeat dupli-

cation and level at which these duplications occur are not well understood. Different

mechanisms appear to be involved in the origin of different repeat types (92). Moreover,

right after the generation of a repetition, two properties come into play and influence

TRP evolution. Repeat segments have an intrinsic tendency of to self-propagate at the

DNA level, generating further repetitions (118). This property characterizes both cod-

ing and non-coding repeat sequences and was demonstrated to accelerate the evolution

of a functional genome (119). On the other hand, arrays of perfect tandem repeats

falling into coding sequences are correlated with disorder and aggregation and found

to be counter-selected (120). Jorda et al. suggested that immediately after the du-

plication, consecutive sequence repetitions are prone to differentiate, in order to avoid

erratic pairing and ensuing structural misfolding. The tendency to a diversification

process would explain TRPs sequence diversity versus structural conservation (79).

Indeed, the symmetry exhibited by repeat protein structures is encoded by symmet-

ric signals hidden in irregular sequences. These mechanisms are considered sources of

hypermutability and have given rise to a high polymorphism rate compared with the

background rate of point mutations (79, 121). The combination of the two discussed

properties makes TRPs them a vast source of genome variability (122), and explains

why TRPs have been especially exploited for functions which require quick adaptability.
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Figure 1.7: An ensemble of NMR structures of the Thylakoid soluble phosphoprotein TSP9, which

shows an intrinsically disordered protein chain. Licence: Public domain. Source: http://www.ebi.ac.uk/.

1.4.2 Disordered proteins

Intrinsically disordered proteins (IDPs) and regions (IDRs) are devoid of order in their

native state (123, 124) (see Figure 1.7). More specifically, IDPs cover a spectrum of

phenomena from fully unstructured to partially structured including random coils (fully

unstructured), (pre-)molten globules, and flexible linkers connecting multi-domain pro-

teins. Intrinsic disorder is prevalent in the human proteome (125), appears to play

important signaling and regulatory roles (126) and is frequently involved in disease

(127). The discovery of intrinsic disorder and its prevalence and functional importance

is transforming the field of molecular biology, as it demonstrated the insufficiency of

the assumption that proteins become functional by assuming a well-defined structure.

1.4.2.1 Sequences

IDPs properties are encoded in their peculiar sequences. IDRs are characterized by high

content of polar and charged amino acids, thus they are usually depleted in hydrophobic

residues (127). Thanks to this specific composition they are prone to interact with

the solvent, differently from globular domains which fold driven by the hydrophobic

25



1. INTRODUCTION

effect. Furthermore, their internal charges promote disorder because of electrostatic

repulsion resulting from equally charged residues (128). Two independent studies to

assess sequence composition of intrinsically disordered proteins, focusing respectively

on the amino acids preferred at the surface of globular proteins or on those found

less frequently in secondary structures (129, 130), identified three disorder-promoting

amino acids, namely Glycine, Serine and Proline. The latter might be surprising, due

to its hydrophobic side chain. However, Proline is a very atypical amino acid since

the backbone has hydrogen bond acceptors but no donor, and for this reason it is

costly from an energetic point of view to sequester it from the solvent. Proline has

a role in disorder as secondary structure breaker, to prevent amloid-like aggregation,

assemblying the peculiar polyproline type II helices and as a fundamental component

of elastomeric proteins (131). The role of other specific residues in protein disorder,

namely Glutamic acid (132) and Serine (133).

1.4.2.2 Function

The early emphasis in the field was on proteins that are mostly or fully disordered,

namely MAP2 (134), tau (135), Myelin basic protein and α-synuclein (136). These

proteins escaped the characterization by the dominant experimental methods such as X-

ray crystallography, and the experimental challenges related to them attracted attention

to the phenomenon. However, there protein universe is far more complex than the

simplistic semantic separation between ”structure” and ”disorder”. All proteins have

some movements, and no protein is completely chaotic (137). The term ”disorder”

may come into play when a protein lacks tertiary structure, but it may include regions

without any regular secondary structure or regions with transient secondary structure

elements which can switch from one type to the other (e.g. α-helix or β-sheets to

coiled coils). Furthermore, the definition of a protein as intrinsically disorder is largely

supported by its mechanism of function. IDRs functional advantages are provided by

(137):

• High entropy. IDRs are characterized by inherent dynamic movement, which

create a less restricted space.

• Accessibility. Site accessibility is essential in binding of other molecules and for

the post-translational modification (PTM) of the protein.

26



1.4 Non-globular proteins

• Plasticity. IDRs may respond to reaction with other molecules by changing

shape, even becoming more ordered, and triggering other reactions.

Thanks to these properties, disorder may provide the necessary mobility to a flexible

linker connecting domains (129), facilitate the different conformational requirements

for binding the modifying enzymes as well as their receptors in PTMs (138), undergo

transitions to more ordered states upon binding to their targets (139) and host short

linear motifs (SLiMs). SLIMs are short disordered segments of proteins that mediate

functional interactions with other proteins or other biomolecules (RNA, DNA, sugars

etc.). Depending on the partner proteins that recognize them, these sites can facilitate

a diverse set of functions including targeting a protein to a specific subcellular location,

determining the modification state of a protein, controlling the stability of a protein,

and regulating the context-dependent activity of a protein (140). The biophysical

mechanisms exploited by IDRs are of fundamental importance in protein signaling

and regulation (137). Signaling pathways consist in a cascade of interactions that

trigger some activity in the cell, usually characterized by high speed and precision

(141). Regulation at the cellular level involve IDRs in gene transcription (142), protein

degradation (143) as well as through allosteric effects or PTMs which may result in

the fast masking and unmasking of interaction sites. The speed and precision of IDRs

binding derive from their

• Low affinity. The entropic cost of IDRs binding, which restricts their degree of

freedom, is usually high and makes the interaction transient.

• High specificity. The binding surface is usually high with respect to the IDR

volume, and it responds to the binding by shaping in such a way that the inter-

action becomes highly speicific.

Firthermore, several newly recognized functional mechanisms (144) have been added

to IDRs functional classification. For example, the central role of intrinsic disorder

in the formation of membraneless organelles, such as nucleoli and stress granules, by

liquid-liquid phase separation has been characterized recently (145, 146, 147, 148).
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1.4.2.3 Detection

A wide range of experimental observations on the structure-function relationship of

IDPs/IDRs is furthering our understanding of disordered states and of the manners in

which they function (149, 150, 151). As intrinsic disorder is emerging as a general phe-

nomenon, several different methods have been developed for the detection of intrinsic

disorder. Experimental approaches for the study of IDPs have been collected and dis-

cussed (152, 153). In practice, multiple techniques are usually employed to aggregate

evidences intrinsical disorder. In addition, a number of bioinformatics methods have

been developed to extract disorder information from protein sequences taking advantage

of their peculiar features (154, 155). Databases are collecting and presenting disorder

related data in a systematic manner. One of the major repositories for experimentally

determined disorder is the DisProt database (156), containing manually curated infor-

mation on IDPs from the literature. Although invaluable as a gold standard, DisProt

being manually annotated represents only a fraction of the known protein sequences

posing a bottleneck for large-scale analysis of intrinsic protein disorder. Several disor-

der prediction methods where designed to overcome this limitation. A comprehensive

resource that collects several sources of disorder annotation is MobiDB (157), providing

consensus predictions and functional annotations for all UniProt proteins.

1.4.3 The relationships between repeats and disorder

Even if for different reasons, TRPs and IDPs share the binding character. Both the

protein species are hubs in the protein-protein interaction network, and their high

connectivity makes them essential as well as potentially lethal in case of deletion, a

phenomenon known as the centrality-lethality rule (158). This is the reason why the

description of their mechanism of action and inherent properties is extremely important

not only to characterize essential functions in organisms but also to understand their

molecular physiopathology. On this line, it is important to note that the typical TRP

and the typical IDP are hubs in a different way. An extended molecule such as the

spectrin repeat, which serves as a platform for cytoskeletal protein assemblies (159), is

characterized by multiple interactions at the same time and this is an essential aspect

of its function. Molecules like spectrin are termed ”party hubs”, or static hubs, because

their interactions are not exclusive. On the other side, a highly promiscuous protein
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such as the tumor suppressor p53 (160), with disordered tails, has an incredibly high

number of interactors considered its limited length. The number of partners is justified

from its disorder properties, so it has the low affinity but high specificity necessary to

easily adapt to a new partner, quickly and efficiently. This is a ”date hub”, or dynamic

hub, characterized by a number of alternative interactions, influencing each other in a

dynamic way. The link between repeats and disorder is not limited to their binding

properties. As already presented in the example of NF-κB (91), the peculiar folding

landscape of TRPs is characterized by cases where some units are unfolded in the native

form. With a number of semi-stable intermediates and a linear pathway where each unit

stabilizes the following one, the folding funnel of repeats can be represented as much

shorter and wider than the globular one in terms of minimization of the free energy and

entropy (161), therefore it is more similar to the one of disordered proteins (162). The

yet not fully characterized overlapping between the two phenomena has been observed

in correlating perfect repeats with the tendency to be unstructured (120), in observing

how amino acid repeats accumulate in disordered regions of proteins (163) and how

they are at the basis of their evolution (124).

1.4.4 Low complexity

The difference between globular and non-globular polypeptides has its origins at the

sequence level. The easiest difference to identify is the sequence composition. NGP

composition in terms of amino acids is indeed biased towards specific properties, which

influence their folding and stability, e.g. the previously discussed case of IDPs. The

regions enriched in a specific type of amino acid are compositionally biased, or charac-

terized by Low Complexity (LC). According to conservative estimates, Low Complexity

Regions (LCRs) represent the 20% and 8% of all known sequences of eukaryotes and

non-eukaryotes, respectively (164). However there has been an early reluctance to

consider these regions for biological studies, mainly due to their ”annoying” statisti-

cal features. Due to the high redundancy of these sequences, tracing their homology

is a very difficult task. Indeed, in homology-based database searches low-complexity

stretches are often masked to avoid spurious alignments (165). Only recently, there is

an intensification of research on LCRs - e.g. (126, 127, 166, 167), reminiscent of the

paradigm shift that brought non-coding RNAs to the forefront of genomics research

in the recent past. In the definition of LCRs, multiple concepts related to sequence
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composition, periodicity and structure have been used (Table 1.1). Regarding amino

acid composition, there is no consensus about which metrics are the most appropri-

ate to measure the different related phenomena. An extended discussion about LCR

detection and related properties is included in this thesis as section 4.4.

Term Definiton

Definition based on amino acid composition

Low complexity region (LCR)
Regions with a skewed amino acid composition

Compositionally biased region (CBR)

Definition based on amino acid periodicity

Repeat motif Reiteration of residues: (...)n

Homorepeat (polyX) Consecutive runs of a single residue: (X)n

Direpeat Consecutive runs of two ordered different residues: (XY)n

Tandem repeat Pattern of residues which are directly adjacent to each other: (XYZ)n

Cryptic repeat Scrambled arrangements of repetitive motifs

Imperfect repeat Regions in which the repeat units are not the same

Definition based on structure

Intrinsically disordered protein (IDP) Protein that lacks a fixed or ordered 3D-structure

Coiled coil (CC)

Structural motif characterized by a seven-residue sequence repeat in

which alpha-helices are coiled together to form an extended rope-like

structure: (a-b-c-d-e-f-g)n

(Charged) single alpha-helix ([C]SAH)

A segment forming stable monomeric alpha-helix in aqueous solution,

typically rich in Arg/Lys/Glu forming an alternating pattern of short

runs of oppositely charged residues

Protein flexibility Ability of a protein to fold into multiple stable 3D-structures

Amyloid fibrils
Stable insoluble protein assemblies composed predominantly of beta-sheet

structures in a cross-beta conformation

Table 1.1: Overview of complexity terms and their definitions.

1.4.4.1 Structural features

Firstly, the concept of LCR is intermingled with the concept of sequence repeats. While

measuring the complexity of a sequence, if the considered window includes multiple

copies of a repeat the sequence will result redundant, and thus low complexity. Shorter

repeats will be more easily detected as low complexity, an extreme case of minimal

complexity is represented by tracts of a single repeated residue, known as homorepeats

(120). Regarding protein structure, LCRs mostly have a non-globular conformation

(168). Factors such as the sequence context (features present in the flanking regions)

and the molecular context of the protein (e.g. interacting proteins, cell tissue or state

when it is expressed) can influence their structural state. This landscape is comple-

mented by emerging concepts such as structural repeats (discussed in section 1.4.1),
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intrinsic disorder (discussed in section 1.4.2) and aggregation or protein phase separa-

tion, all formalized in the literature (see e.g. (169, 170, 171, 172)).
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Personal Contribution and Thesis outline

The leading thread of my thesis consists in the computational description of structure

and function of non-globular proteins (NGPs). Several state-of-the-art resources for the

collection of NGP sequences and structures were built in the Biocomputing UP Lab,

where I carried out my research. These resources include RepeatsDB (173), a database

of tandem repeat protein structures, and MobiDB (174), a comprehensive resource for

protein disorder annotation. During my PhD, I contributed to the development of these

resources and related tools and methods. The main focus of my research is tandem

repeat proteins (TRPs), although I also exploited the knowledge acquired in the field

to contribute to the study of other NGPs. Chapters 3 and 4 are mostly based on my

PhD publications (see ”List of publications”).

2.1 Tandem repeats

Tandem repeat regions in proteins represent the first focus of my PhD research. In

order to characterize TRP properties in terms of function, role in protein-protein inter-

action (PPI) networks and association to diseases, I firstly performed a computational

analysis of extensive datasets of TRPs derived from RepeatsDB, presented in section

4.1.2. I showed that there is a significant association between TRPs and human dis-

eases and that it can be explained by their role as hubs in PPI networks. Indeed,
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TRPs extended and modular structure makes them perfect candidates to serve as PPI

platforms. As a case-study of this phenomenon, I dissected the interactome of Collagen

V, a repeat protein associated to Ehlers-Danlos syndrome (EDS), in order to identify

genotype-phenotype correlations in relation to the interaction network model (section

4.1.3). This work was published in (175). I personally contributed to the project by col-

lecting and analyzing the data. Moving from a single example to the characterization of

the different repeat types, I analyzed the classification of TR included in RepeatsDB.

RepeatsDB defines five main classes, mainly based on repeat unit length, with sub-

classes representing specific structural arrangements. In section 4.1.1 I compared this

data to the one in Pfam database, which provides and alternative classification based

on evolutionary conserved repeat families. The comparison was published in (87). This

work highlighted that the goal to completely characterize all human proteins in terms

of their domains cannot be reached without an effort to improve TR recognition and

classification. Starting from this observation, I moved to the curation and improvement

of RepeatsDB database. A detailed structural characterization of repetitive elements

was largely missing, as repeat unit annotation in RepeatsDB was manually curated and

covered only 3% of bona fide TRPs at the time. This is the reason why we developed

Repeat Protein Unit Predictor (ReUPred, algorithm described in section 3.1.1, results

described in section 4.2.1), a novel method for the fast automatic prediction of repeat

units and repeat classification using an extensive repeat unit library derived from cu-

rated data in RepeatsDB. ReUPred, published in (176), uses an iterative structural

search against the library to find repetitive units on target structures. My contri-

butions to the development of the predictor included the identification of challenging

cases to test and improve ReUPred performances, as well as the tool benchmarking.

As a following step, we published the second release of RepeatsDB database (173).

RepeatsDB 2.0, discussed here in section 4.2.2, features information on start and end

positions for the repeat regions and units for all entries, a substantial growth of repeat

unit characterization that was possible by applying the ReUPred algorithm over the

entire Protein Data Bank (PDB). RepeatsDB is continuously updated, and therefore

requires a continuous effort in the manual curation. To facilitate this process we de-

signed RepeatsDB-lite, web server for the prediction and refinement of TR in protein

structure (algorithm described in section 3.1.2, results in section 4.2.3), published in

(177). It takes advantage of ReUPred algorithm and an extended library that covers
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all different TR classes. The web server allows an intuitive revision of the prediction

and submission of reviewed entries to RepeatsDB database. It represents a platform

to harness community annotation efforts, which have been proven to be effective in

RepeatsDB experience. Both in the case of RepeatsDB and RepeatsDB-lite, my con-

tributions include the conception, design and implementation of the data structure,

data management server and user-friendly web interface. RepeatsDB project aims at

the definition of best-practices in the annotation of repeat proteins, and represents a

powerful resource both in terms of structure and sequence data. We recently estab-

lished a collaboration with Pfam authors, aimed at the improvement of existing Pfam

domains and the creation of accurate repeat models based on structural information.

At the moment of writing, I am involved in the project as a curator of Pfam models and

I am collecting guidelines for the specific definition of repeat entries, which I included

in section 4.2.4.

2.2 Intrinsical disorder

Another database that represents a central resource for the scientific community work-

ing in the field of NGPs is MobiDB. MobiDB is a database of protein disorder and

mobility annotations that describes several aspects of NGPs structure and mechanism

of function, which has provided a major contribution to the field by providing consensus

predictions and disorder annotation for all UniProt proteins and it is also linked from

the UniProt entry page. I contributed to the development of the new release of the

database (section 4.3.1), which provides both disorder type and quality of the disorder

evidence, derived from the annotation source. Indeed, the data in MobiDB is based

on the source quality, comprising manually curated data, annotations derived from

experiments and annotations derived from predictions. The main disorder informa-

tion in MobiDB is provided by a consensus combining all available sources prioritizing

curated and indirect evidences over predictions. Predictions have been expanded to

provide new types of annotation on backbone rigidity, secondary structure preference

and disordered binding regions. MobiDB 3.0 was published in (174).
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2.3 Low complexity sequences

A common feature of TRPs, IDPs and other NGPs is that they are characterized by

a peculiar sequence which hampers their detection and analysis. In particular, several

NGPs are characterized by low complexity (LC) sequences. I contributed to a critical

review focusing on the definition of sequence features of LC regions and their connection

with structure (section 4.4.1). At the moment of writing, the manuscript was submit-

ted and accepted for review. We presented statistics and methodological approaches

that measure low complexity and related sequence properties. We illustrated the di-

chotomy between low complexity in structural repeats and unstructured regions, and

more generally the overlaps between different properties related to LC regions, provid-

ing meaningful examples. In this work, I curated the analysis of LC regions structural

properties.

2.4 Solubility

Finally, I exploited the knowledge acquired in my studies regarding NGPs to build

one of the first sequence-based methods for the prediction of protein solubility, SODA

(algorithm in section 3.2.1, results in section 4.5.1). Solubility is an important, albeit

not well understood, feature determining protein behavior. It is of high interest to the

field of protein engineering, where similar folded proteins may behave in very differ-

ent ways in solution. SODA (published in (178)) uses the aggregation propensity of

the protein sequence as well as intrinsic disorder, plus hydrophobicity and secondary

structure preferences derived from sequence features and complexity. SODA is able

to evaluate solubility changes introduced by a mutation by comparing the profiles of

the wild type and mutated sequences, and it is compatible with different types of vari-

ation including point mutations, deletions and insertions. The predictor is based on

sequence features and allows therefore the large-scale screening of protein mutations. I

contributed conceiving and implementing the web server, designed to allow large-scale

annotation, and the user interface, which provides an intuitive form to guide detailed

selection of mutations based on sequence solubility plot and, if the protein structure is

given, residues accessibility to solvent.
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Materials & methods

3.1 Prediction of tandem repeat units in structures

The main focus of my PhD research was to identify, annotate and classify repeat protein

structures. To achieve these goals we developed ReUPred, a predictor of repeat units

in protein structures which results are described in section 4.2.1. ReUPred algorithm

(176) allowed us to design a semi-automated detection and annotation pipeline of TR

proteins, which steadily increased the number of TRPs annotated in our dedicated

database, RepeatsDB (173), described in section 4.2.2. As the semi-automated anno-

tation experience proved to be efficient in the classification and description of TRPs,

we designed an easy-to-use web server for the prediction of TRs, RepeatsDB-lite (177).

RepeatsDB-lite (results described in section 4.2.3) extends the ReUPred algorithm to

all TR types and strongly improves the performance both in terms of computational

time and accuracy. The following section describes the implementation details of the

TR predictors.

3.1.1 ReUPred

ReUPred is a predictor for the classification of tandem repeat proteins and identifica-

tion of the composing repeat units. The inputs are a target protein structure and the

structural repeat unit library (SRUL). The output is a list of fragments corresponding
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to the predicted unit positions in the structure and the class assignment according to

RepeatsDB definition (80). The iterative algorithm decomposes the input structure

using a template library. A divide and conquer strategy is used to improve both ac-

curacy and speed, so the average calculation requires ca. 2 min on a standard laptop.

ReUPred was optimized by filtering the SRUL and fine-tuning parameters in order

to choose the best alignment and detect insertions between units. Each step is de-

scribed in the following section. ReUPred is implemented in Python for Linux. The

source code is distributed under the GPL license and freely available from the URL:

http://protein.bio.unipd.it/reupred/.

ReUPred algorithm The algorithm exploits the evolutionary history of tandem

repeat proteins. Solenoid units have been demonstrated to evolve from a single repre-

sentative unit to multiple copies through repeated duplications (92). Units of a solenoid

protein show a different degree of similarity, which is strongly correlated to the distance

from the middle of the repeat region. This is consistent with the observation that units

at the edges are more degenerated (73). ReUPred exploits this knowledge and tries

to mimic evolution. The objective is to predict adjacent units, i.e., to minimize the

number of residues between predicted flanking units, and obtain at least three repeated

elements. This is important since in known RepeatsDB solenoid structures, insertions

of non-repeat fragments are rare and mostly observed inside and not between units. See

Figure 3.1 for a schematic description. ReUPred uses an iterative divide and conquer

approach. Each iteration corresponds to a structural search, i.e., structural alignment

of the query structure against all SRUL elements to identify a unit. The predicted unit

corresponds to the aligned region in the query. At each cycle the algorithm forks (di-

vides). Two new input structures are created, corresponding to the N- and C-terminal

flanking fragments of the predicted unit and two new cycles (structural searches) are

performed. After the first cycle, i.e., after the ”master” unit is found, SRUL is no

longer used. Instead, a new ad hoc library is created on the fly. At the beginning of

the second cycle, only the ”master” unit populates the ad hoc library and all newly

predicted units are included for search in the following cycles. The algorithm stops

when the entire input protein is consumed, i.e., new input fragments are too short, or

the structural search does not provide any new valid alignment. The predicted units

are then collected and evaluated together (conquer). If the result does not satisfy a
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3.1 Prediction of tandem repeat units in structures

set of rules, the structural alignment filters for the ”master” unit are relaxed and the

entire iterative part is repeated from the beginning for up to four increasingly relaxed

iterations. This strategy allows to predict both easy and difficult cases automatically.

A valid solution for ReUPred is obtained when at least three units are found and their

proximity in sequence is ensured by at least one of two simple rules to measure unit

proximity: (i) the total number of gaps between units is less than 40 residues, (ii) the

number of non-adjacent units divided by the total number of predicted units is less or

equal to 0.25. Replacing the original SRUL with an ad hoc library from the second cy-

cle onward improves both computational cost and accuracy. SRUL is quite large, with

997 unit templates. Instead, the ad hoc library reaches the maximum size at the end of

the algorithm and corresponds to the number of predicted units, drastically reducing

the number of structural alignments. On the other hand, using only units from the

query structure itself increases the accuracy as these are structurally more similar to

each other than units from other proteins. The class assignment is provided by simply

reporting the classification assigned to the first ”master” unit identified from SRUL.

ReUPred accuracy strongly depends on the quality of the structural alignments at each

cycle. In particular, it is very important to correctly predict the first ”master” unit

because errors propagate. Alignments have to abide a set of rules and constraints that

are much more stringent for the ”master” search compared to successive cycles. Struc-

tural alignments are calculated using TM-Align (179), filtering by TM-Score, RMSD,

alignment length and number of gaps.

Iteration TM-Score RMSD (A) Alignment (aa) Unit gaps (%)

1 ≥0.52 ≤1.6 >21 <10

2 ≥0.47 ≤1.9 >17 <20

3 ≥0.30 ≤2.5 >16 <50

4 ≥0.23 ≤3.0 >14 <50

Table 3.1: Structural alignment constraints for the ”master” unit. TM-Score and RMSD are the same

provided by TM-Align. Coverage and gap are calculated as described in the manuscript. Different columns

correspond to different algorithm runs that are performed on cascade until a valid solution is found.

Tables 3.1 and 3.2 list all cutoff values for the cascaded four runs used to select valid

alignments for the ”master” and ”secondary” units, executed on cascade until a valid

solution is found. The parameters for structural alignments have been optimized man-

ually on the training set to maximize the number of repeat proteins, for which a valid
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Figure 3.1: Schematic description of the ReUPred algorithm. The input structure (PDB 1IQ1, chain

C) is processed iteratively until a valid solution is provided and no new fragments (subproblems) are

generated. (176)

Iteration TM-Score RMSD (A) Alignment (aa) Unit gaps (%) Length ratio (%)

1 ≥0.35 ≤1.8 ≤1.20 <40 ≥70

2 ≥0.30 ≤2.0 ≤1.15 <40 ≥70

3 ≥0.30 ≤2.5 ≤1.15 <40 ≥70

4 ≥0.30 ≤3.0 ≤1.10 <50 ≥70

Table 3.2: Structural alignment constraints for the ”secondary” units. Columns are as in Table 3.1.

The length ratio is calculated as the unit length divided by the length of the first ”master” unit.
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Class Units Detailed Classified Predicted

β 367 41 128 -

α/β 180 19 70 -

α 388 48 875 -

Total 935 108 1073 7948

Table 3.3: RepeatsDB 1.0 solenoid dataset used in ReuPred benchmarking. Units list the number of

single defined repeat units. Detailed proteins have the unit position identified manually. Those protein

for which the subclass assignment is known are classified, including ”manually” and ”by similarity”. The

predicted proteins are not classified.

output is provided, and prediction accuracy, i.e., correct unit position assignment.

Repeat unit library and datasets The SRUL constitutes a fundamental part of

the ReUPred input and represents the conformational space and diversity of bona fide

repeat units. It has been generated by extracting all structural unit fragments from

the ”detailed” solenoid proteins in RepeatsDB 1.0 (see Table 3.3 for statistics). After

filtering units shorter than 10 residues and larger than 90, the solenoid SRUL is com-

posed of 916 structural unit fragments from 108 different proteins non-redundant at

the sequence level. After clustering the sequences with CD-HIT (180) at 40% identity,

531 clusters are obtained. The largest cluster contains 17 units from 5 proteins and the

others have less than 10 units each. From the structural point of view, SRUL is biased

toward α-helical units. All-against-all structure similarity was measured by TM-Align

(179). Clustering at 0.6 TM-score generates 362 clusters, where the majority of α units

(319) fall inside a single cluster. Three different datasets have been used throughout

this work. The training set has been generated from the ”detailed” RepeatsDB 1.0

entries (108 proteins) and represents the reference for unit prediction evaluation. Since

SRUL was generated from the same protein set, to benchmark ReUPred, all units com-

ing from the target itself and all similar units (>30% sequence identity) were removed

from SRUL at each benchmarking step. Another set with all ”classified” and ”by sim-

ilarity” entries (1075 proteins) was used to test the ability to automatically classify

repeat proteins and compare unit length prediction with RAPHAEL (114). Finally,

the dataset to test the detection of repeat proteins is taken from the same paper, i.e.,

105 solenoid and 247 non-solenoid proteins with different topologies and no detectable

sequence similarity.
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3.1 Prediction of tandem repeat units in structures

Pr =
TP

TP + FP
(3.2)

Acc =
TP + TN

TP + FP + TN + FN
(3.3)

3.1.2 RepeatsDB-lite

RepeatsDB-lite is a web server designed for the prediction, visualization and analysis of

repeated regions in protein structures. It is based on an improved ReUPred algorithm

(176) using several checks to minimize errors in the unit detection step and speeding up

the calculation. A refactoring of the TR unit library allows it to cover all RepeatsDB

classes. Its ability of predicting unit position is evaluated against all manually curated

RepeatsDB entries (173). A comparison with existing methods is provided for a limited

set of solenoid examples for which predictions are available (176).

Alignment type Class Min coverage Max RMSD Min TM-Score

Repeat unit library

III-Elongated 0.8 2.3 0.35

IV-Toroid 0.6 2.8 0.4

V-Beads on a string 0.6 3.5 0.4

Intra-protein

III-Elongated - 2 0.25

IV-Toroid - 4 0.28

V-Beads on a string - 4 0.28

Table 3.4: Validation rules for RepeatsDB-lite predictions. The criteria used to include structural

alignments in RepeatsDB-lite predictions are shown per repeat class. Coverage is the fraction of residues

covered compared to the reference structure. RMSD is the root mean square deviation. The TM-score

method is used to calculate the RMSD and TM-score values.

RepeatsDB-lite algorithm RepeatsDB-lite is the evolution of the ReUPred method.

As in ReUPred, the inputs are a target structure and the TR unit library, which repre-

sents the conformational space and diversity of bona fide repeat units. The algorithm

exploits the library by aligning it against the target structure, using the same divide

and conquer approach described in section 3.1.1. Once the best unit is identified by

structural similarity with the library (called Master unit), the unit is fixed and the

algorithm forks (divides), propagating the search of the Master unit at the N- and

C-termini. Only alignments satisfying the similarity criteria described in Table 3.4 are

considered valid. Coverage, RMSD and TM-score thresholds were calculated from a

similarity network analysis and guarantee separation between subclasses. The units
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predicted in the target structure are then collected and evaluated together (conquer).

In this phase, fragments included in the region but deviating from the classical unit

structure are annotated as insertions. At the end, if the region has fewer than three

units, the next potential unit from the library is used as Master and the entire itera-

tive part is repeated from the beginning for up to four increasingly relaxed iterations.

Compared to ReUPred, the new algorithm discards structural alignments where unit

boundaries break (fall inside) secondary structure elements and is able to detect mul-

tiple regions of different repeat classes inside the same chain. For α-solenoids and

β-hairpins it also provides a finer classification that describes the unit conformational

type or fold, often corresponding to the protein family. The average execution time for

a single chain is some minutes but varies depending on the class of the master unit.

Repeat unit library The RepeatsDB-lite TR unit library represents all known re-

peat conformations, including elongated, closed and beads-on-a-string repeats, for a

total of 20 subclasses. To increase predictor speed the unit library has been structured

hierarchically in three layers. The search for the Master unit starts from the reduced

library and then propagates to other layers considering only related units, i.e. belong-

ing to the same cluster as the previous layer. The bottom layer of the unit library is

built considering all units of manually curated RepeatsDB entries. A strong reduction

is performed by excluding those with insertions (3,401 units) and with missing (non-

crystallized) residues (530 units). Units diverging from the subclass average length

and redundant units at 70% sequence identity, calculated with CD-HIT (180), are also

discarded. At the end, the bottom layer counts a total of 2591 TR units. The other

two layers are generated by reducing the structural similarity. Units are clustered at

0.5 TM-score and 80% overlap (coverage) in the middle layer (1160 units) and at 0.3

TM-score and 80% overlap for the SRUL core (top layer, 536 units).

Analysis of the prediction The RepeatsDB-lite software includes additional mod-

ules to analyze TR unit predictions. The first is a multiple structure alignment of

the units calculated with Mustang (181) useful to highlight overall unit conformation,

insertions, diverging units and prediction errors. Another output is a matrix repre-

senting the structural similarity between unit pairs. It is calculated by performing an
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all-against-all pairwise structure alignment with TM-align (179). The units in the ma-

trix are reported from N- to C-terminus and cells are colored based on the observed

sequence similarity calculated upon structural alignment and normalized by the length

of the shortest unit. From the matrix it is possible to identify patterns of similarity

useful to trace the evolutionary history of duplication events.

Benchmarking unit prediction In order to characterize TR proteins it is necessary

to identify the position of the repetitive structural elements (units). Assuming TR units

are structurally similar inside the same protein, the problem would be reduced to the

identification of the unit phase and length. Since in reality units are not homogeneous

but often include insertions and structural variation, the evaluation has to be performed

unit by unit. We considered manually curated RepeatsDB (version 2017.10.25) entries

as source of real unit annotation for benchmarking. TAPO and Console (115, 116) were

also compared on the solenoids class. The dataset is the same used in the ReUPred pa-

per (same proteins, described in section 3.1.1) with updated unit annotation according

to RepeatsDB version 2017.10.25. Unit prediction performance is measured adopting a

strategy similar to the ReUPred paper (176). To obtain a fairer evaluation and assess

the effect of incomplete data, RepeatsDB-lite was also benchmarked removing units in

the library with over 40%, 60% or 80% sequence identity with dataset proteins. Each

reference unit is paired with the predicted unit with maximum symmetric coverage (if

any). True positives (TP) are matching residues, false positives (FP) are all predicted

unit residues outside reference units, false negatives (FN) are reference unit residues

not overlapping with any matching unit and true negatives (TN) are all residues cor-

rectly predicted as not repeated. Insertion residues in the reference are masked, i.e.

not considered for the calculation of the confusion matrix. Predicted insertions are

considered negative predictions and overwrite overlapping unit predictions. When the

predictor does not identify any unit or the returned file is empty it is evaluated as a

fully negative prediction. When the reference protein contains multiple TR regions the

entire sequence is split along the middle point between regions. This is necessary to

distribute negative residues equally between regions and to perform region and class

based statistics accurately. Sensitivity (equation 3.1), specificity (equation 3.4), pre-

cision (equation 3.2), balanced accuracy (equation 3.5) and F-measure (equation 3.6)
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are calculated. Results of the comparison with other methods are presented in section

4.2.3.

Sp =
TN

TN + FP
(3.4)

Acc =
Sn+ Sp

2
(3.5)

F =
2 ∗ Pr ∗ Sn

Pr + Sn
(3.6)

3.2 Prediction of changes in protein solubility

Taking advantage of the knowledge derived from the study of protein folding, in particu-

lar in non-globular proteins, we developed a tool for the prediction of protein solubility,

SODA (178). SODA results are described in section 4.5.1; the algorithm predicts the

changes introduced by a mutation in the ”solubility profile” of a protein, based on

its aggregation, disorder and secondary structure propensities. The following section

describes the algorithm.

3.2.1 SODA

SODA predicts solubility changes introduced by a mutation by comparing the profiles

of the wild type (WT) and mutated sequences. SODA is able to evaluate difficult

types of variation including point mutations, deletions and insertions. The predictor is

entirely based on sequence features. The PASTA (182) aggregation propensity and ES-

pritz (183) intrinsic disorder scores are combined with a Kyte-Doolittle hydrophobicity

profile (184) and secondary structure propensities for α-helix and β-strand estimated

with FESS (185). When available, a protein structure can be used to improve the

prediction by masking buried residues from the solubility prediction.

Algorithm SODA prediction is based on five individual component scores (calculated

with default parameters): PASTA aggregation energy with 90% cut-off specificity (182),

ESpritz disorder propensity in X-ray prediction mode (183), the negative Kyte-Doolittle

hydrophobicity profile (184) and the two secondary structure propensities for α-helix

46



3.2 Prediction of changes in protein solubility

and β-strand calculated with FESS (185). Each score difference ∆S is summed and

normalized for the full sequence using the following formula:

∆S =

n∑

j=1

smut
j

n
−

m∑

j=1

swt
j

m
(3.7)

where smut
j and swt

j are the scores of the mutated and wild-type residue j in the

sequences and n andm are the respective sequence lengths. Note that the two sequences

may be of different length as SODA also supports insertions and deletions. When a

structure is available, the ∆S value for residues with less than 20% solvent accessible

sidechain area (calculated with DSSP) are set to 0. The final SODA score, ∆SSolubility,

is the weighted sum of the partial scores:

∆SSolubility = ∆SAggregation + w1 ∗∆SDisorder

+ w2 ∗∆SHydrophobicity + w3 ∗∆SHelix + w4 ∗∆SStrand
(3.8)

where w1,,w4 are weighting parameters set to optimize the SODA score on the PON-Sol

dataset. Their optimized values are 2, -50, 2 and 2, respectively. When the difference

(∆SAggregation) is positive, the mutated protein is more soluble (lower aggregation en-

ergy) than the WT. Similarly when ∆SDisorder is positive, the mutated protein gains

solubility because it is more disordered. Likewise, hydrophilic (charged/polar) residue

content increases solubility.

Training and evaluation SODA is trained using 5-fold cross-validation on a filtered

version of the PON-Sol dataset (186). Weights for the parameters are chosen from

a grid search on the interval [-100,..,+100], selecting the first weight optimizing the

PON-Sol prediction for each term. All variants without any solubility effect as well as

ambiguous examples from the original dataset were discarded. These are cases where

it is not possible to obtain the original sequence or containing a mismatch between

mutation and original sequence. Moreover, in order to make the benchmarking fair, a

maximum pairwise sequence identity of <30% was imposed against the CamSol dataset

(see below). A total of 142 variants classified as increasing (positive values) or decreas-

ing (negative values) solubility from 49 proteins were used for training. Table 3.5 shows

the performance of SODA and its components on the PON-Sol training set. Among the

single component scores, PASTA and hydrophobicity stand out for opposite reasons,
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with good performance for positive and negative cases respectively. SODA reaches an

accuracy of 59% overall (84 correct predictions). On the restricted dataset, including

only mutations classified in PON-Sol dataset as having stronger effect on solubility,

the accuracy is 67% (35 / 52 correct predictions, data not shown). Mutations in the

PON-Sol dataset are manually classified based on experimental evidence from the lit-

erature. Notably, SODA is very good at predicting solubility decrease. The specificity,

i.e. fraction of true positives over all positive predictions, is 72% and 100% in the full

(Table 3.5) and restricted (not shown) training sets respectively. This is somewhat

expected, as SODA uses the PASTA energy, which is known to be highly specific for

aggregation prediction. SODA is compared to other solubility predictors in section

4.5.1. The dataset is the same used in the recent CamSol paper (187) and includes

19 proteins and 56 variants from four publications: Trevino (188), Miklos (189), Tan

(190) and Dudgeon (191). All proteins have less than 30% pairwise sequence identity

to the training set and represent a real blind test.

TP TN FP FN Sensitivity Specificity Accuracy

Strand 21 45 40 36 36.8 52.9 46.5

Helix 35 35 26 46 43.2 57.4 49.3

Hydrophobicity 35 46 26 35 50.0 63.9 57.0

ESpritz 39 41 22 40 49.4 65.1 56.3

PASTA 47 31 14 50 48.5 68.9 54.9

SODA 46 38 15 43 51.7 71.7 59.2

Table 3.5: Evaluation on the PON-Sol training set. True positives (TP), true negatives (TN), false

positives (FP), false negatives (FN), and sensitivity (TP/(TP+TN)), specificity (TN/(TN+FP)) and ac-

curacy ((TP+TN)/(TP+TN+FP+FN)) values are reported as percentages. The best value is in bold and

the second best underlined.

3.3 Web resources implementation protocols

The present thesis describes two databases and two web servers. The former are Re-

peatsDB, database of TR structures described in section 4.2.2, and MobiDB, a com-

prehensive resource for the annotation of protein disorder described in section 4.3.1.

The web server were designed for TR prediction (RepeatsDB-lite, in section 4.2.3) and

solubility prediction (SODA, in section 4.5.1). The following section goes through the

detail of their implementation with a multi-tier architecture, using separate modules
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for data management, data processing and presentation functions. Figure 3.3 presents

a schema of the technologies used in websites implementation.

3.3.1 Databases

Data are stored through MongoDB, a NoSQL document oriented database manage-

ment system. ”NoSQL” means non-relational database, i.e. a database with non-fixed

structure with a key-value storage type, document storage type and so on. MongoDB

provides a schema-free, document oriented framework where documents are stored in

collections and collections in databases. Collections can contain records with different

schema documents, i.e. different number of attributes. For this reason it fits our type of

data, since we have different annotation available for different entries. In addition, Mon-

goDB provides a straightforward framework for data extraction and re-modelling, that

is the Aggregation Pipeline. Documents enter a multi-stage pipeline that transforms

the documents into aggregated results, allowing fast data processing. The Aggregation

Pipeline was extensively used both for the calculation of statistics in the characteriza-

tion of NGPs and for the visualization of aggregated data provided by the websites on

the fly.

3.3.2 Interfaces

To simplify website development and maintenance, all tiers handle the JSON (JavaScript

Object Notation) format, which is the format of documents in MongoDB, thereby elim-

inating the need for data conversion.

Back-end The ”Back-end”, or server-side, refer to the data access layer that connects

the data (stored, in our case, in MongoDB databases) to the presentation layer (the

web interface that the user navigates). In addition, this is the layer that manages user

sessions and data processing. In the case of a web-server such as RepeatsDB-lite, the

”Back-end” is the architecture that allows the interpretation of the user request, that

submits it to the predictor software and that check and finally processes the predictor

response in order to make it available to the ”Front-end”. All our web servers exploit the

Node.js functionality, which supports the implementation of REST (Representational

State Transfer) architectures. The REST architecture allows access from a web-based
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Figure 3.3: Schematic description of the technologies used in the implementation of database, front-end

and back-end. Licence: Creative Commons Attribution 3.0. Author: Lisanna Paladin.

user interface as well as programmatically through external APIs.

Front-end The ”Front-end” represents the web interface that the user is presented to

when navigating a website. Our web interfaces were developed using the AngularJS or

Angular2 (in MobiDB 3.0) framework and Bootstrap CSS style sheets. AngularJS to

Bootstrap integration is available through the angular-ui project. Angular meets huge

data requirements and allows the high speed rendering of web pages across different

platforms. Bootstrap is an open source toolkit for developing with HTML, CSS and JS

and is used to build responsive and mobile-friendly projects. These technologies were

selected to provide the overall uniform look-and-feel. The dynamic and interactive

views of biological data, i.e. the protein sequence, structure and features viewers, are

developed using state-of-the-art technologies. PV (https://biasmv.github.io/pv/) and

WebGL (http://nglviewer.org/ngl/) are used for structure visualization and the spe-

cialized libraries from BioJS (https://biojs.net/) for sequence and sequence alignment

viewer. Graphs are designed using the Plotly.js library (https://plot.ly/javascript/).

Finally, protein sequence features are visualized using a D3 library built in-house on the

50



3.3 Web resources implementation protocols

model of the neXtProt project of SIB CALIPHO group (https://github.com/calipho-

sib/feature-viewer). Major innovations where introduced to the Feature Viewer (FV)

project to meet the requirements of our data visualisations: (i) the FV project was

entirely converted from Javascript to Typescript; (ii) the new FV allows subfeatures

visualization, i.e. selected features are clickable to show details as new tracks (placed

under the ”parent” feature); (iii) on the right side of each feature, developers can now

customize specific buttons, a default button is provided to show a percentage (e.g. dis-

order coverage in MobiDB 3.0); (iv) the FV features customizable tooltips and styles

(e.g. stroke and opacity of the boxes). The new FV was specifically designed for Mo-

biDB multi-layered data (described in section 4.3.1), allowing users to visualize entry

annotation at the desired level of detail.
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Results & Discussion

4.1 Protein tandem repeats characterization

Tandem repeat (TR) regions in proteins are characterized by a repeated sequence which

codes for a modular architecture, where structural modules are called units (Figure 1.6).

TRPs structures are non-globular in the sense that, to stabilize the folded state, in-

stead of relying on a hydrophobic core of amino acid chains buried from water they

rather show an hydrophobic axis of stacking interactions between each unit and the

flanking ones. As a consequence, they show elongated shapes and allow for a higher

flexibility. Exploiting these properties, they carry out fundamental functions in all

kinds of organisms. The following chapter includes three sections. The first, section

4.1.1, presents the classification of TR included in RepeatsDB. Basing on the original

classification proposed in (79), RepeatsDB defines five main classes, mainly based on

repeat unit length, with subclasses representing specific structural arrangements. We

compared this data to the one in Pfam database of protein families, which provides

and alternative classification based on evolutionary conservation of protein sequences.

Most instances are found to map one-to-one between structure- and sequence-based

schema. Some notable exceptions are discussed. The following, section 4.1.2, describes

the large-scale characterization of a dataset of human TRPs in terms of function, role

in protein-protein interaction (PPI) networks and association to diseases. The compu-
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tational analysis highlights a significant association between TRPs and human diseases

explained by their role as hubs in PPI networks. Indeed, TRPs extended and modular

structure makes them perfect candidates to serve as PPI platforms. As a case-study of

this framework, section 4.1.3 presents the interactome of Collagen V (a repeat protein

associated to Ehlers-Danlos syndrome, EDS) in order to identify genotype-phenotype

correlations in relation to the interaction network model. It shows that heterogeneous

classical EDS manifestations may be explained by the involvement in different extra-

cellular matrix pathways.

4.1.1 Comparison of protein repeat classifications based on structure

and sequence families

RepeatsDB 1.0 (80) contained a set of detailed proteins, manually annotated with the

exact location of structural units and regions, allowing a comparison between structural

conformation and repetitive Pfam sequence families. This comparison may be useful to

explore the hypothesis of repeat evolution through sequence duplication as it assesses

the conservation of Pfam families inside each repeat subclass. Figure 4.1 summarizes

the most frequent domains/clans detectable inside the subclasses. In the following

section, we briefly review the results by RepeatsDB class.

4.1.1.1 Class I: Crystalline aggregates of unlimited size

Class I includes proteins with 1 or 2 residue-long repeats. These sequences arrange

in crystallites which are usually transported outside the organism. The structures are

characterized by unlimited size and high stability but do not correspond to biological

molecules since their function is not required inside the organisms, hence no PDB

structure is associated to this class (79).

4.1.1.2 Class II: Fibrous structures

The repeat proteins belonging to class II are fibrous structures characterized by very

short repeat length: collagens and α-helical coiled coils. The sequence repeat in these

cases corresponds to one turn of the fibrous structures. Two subclasses can be dis-

tinguished. Collagens (subclass II.1) are chains that assemble into super molecular

triple helices. A limited number of collagen structures is available in the PDB due to
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limitations in crystallization. The collagen repeat is the tripeptide Gly-X-Y (192),with

frequent prolines and hydroxyprolines in the X and Y positions. As their sequence is

usually highly degenerated and a limited number of structures is available, it is difficult

to assess the quality of the collagen Pfam domain (PF01391). The α-helical coiled coil

(subclass II.2) is characterized by a (abcdefg) n repeat, with the a and d positions

occupied by hydrophobic and the remaining by polar residues (193). They fold into

alpha-helices winding around the axis of the coiled coil structure. A limited number of

Pfam domains is associated to this subclass. The association is usually case-specific,

with each Pfam domain corresponding to one entry. Some examples are the Rabaptin

family (PF03528) and the ATP synthase (E/31 kDa) subunit family (PF01991). These

domains are usually defined by the function of the whole protein containing the repeat

region. Hence, domains retrieved from the analysis of this family are too specific to

group them into a coiled coils family.

4.1.1.3 Class III: Elongated structures

Class III is characterized by repeats forming elongated structures that can vary in

length from 5 to ca. 45 amino acids. The typical feature of this class is that the

repetitive structural units require one another to maintain structure. They split into

two categories: solenoid or non-solenoid structures. Solenoid repeats are composed by

solenoid windings of the polypeptide chain that can be made exclusively by α-helices,

only β-sheets or a mixture of the two secondary structure elements (83). Non-solenoid

structures of class III have been described more recently. They comprise the trimer

of β spirals, the single layer anti-parallel β structure and some others, including the

antiparallel β structure folded along the longest axis and the spiral β-hairpin staircase

fold. Beta-solenoids (subclass III.1) include four different manually annotated clans.

The most represented are CL0268 (the pectate lyase clan) and the Leucine Rich clan.

The hexapeptide repeat and hemolysin clans are also associated to this subclass. Some

other frequent domains are not grouped in a clan and do not show a homogeneity of

functions. Alpha-beta solenoids (subclass III.2) mainly contain LRR domains, while

alpha solenoids (subclass III.3) show an extreme sequence divergence. The Pfam do-

mains associated to this subclass are the most common types of sequence repeats. A

recent review explored alpha-solenoid diversity, identifying solenoid sequences contain-

ing HEAT, Armadillo, Pumilio, Ankyrin (ANK), LRR and tetratricopeptide (TPR)
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repeats (194). They analyzed the phylogenetic distribution of these repeat families and

concluded that they probably emerged independently several times during evolution.

This hypothesis is supported by the widespread distribution of protein functions across

the subclass. Pfam mainly collects the different repeat types in two clans: the ANKs

(clan CL0465), and the tetratricopeptide repeat clan that groups together the other re-

peat types (Armadillo, Pumilio, TPRs, HEAT, Sel1, LRRs and others; CL0020). This

division suggests that ANK-containing proteins are a functionally distinct entity inside

alpha-solenoids, and indeed they appear to have a more complex structure. A recent

study (194) assessed the distribution across organisms of three of these most common

families: the armadillo (ARM), tetratricopeptide (TPR) and ankyrin (ANK) domains.

They analyzed the typical structural arrangement of these domains, and showed that

the ANK repeat folds in a unit composed by a β-turn, two antiparallel α-helices and

a loop while the TPR repeat is composed of an α-helix-turn-α-helix motif. The ARM

superfamily folds into a module with three α-helices, with the exception of the HEAT

family, composed by two α-helices. Hence, in α-solenoids the existence of different

structural arrangements is becoming evident, corresponding to distinct functional and

evolutionarily related families. Regarding the non-solenoid class III structures, only

subclass III.4 shows a clear association with the putative cell wall binding repeat Pfam

domain (PF01473) folding into a trimer of β spirals. An interesting distribution of

Pfam domains is observed within elongated structures, considering how Leucine-rich

repeat (LRR) domains are present in all three solenoid subclasses. The structure of

LRRs has been early defined as an arc or horseshoe shape, with a concave face consist-

ing of parallel beta-strands and a convex face composed by variable secondary structure

elements (83, 195). Later, this structure was identified as an alpha/beta solenoid by

Kajava (120). LRRs are involved in receptor-based recognition, but beyond innate

immunity are associated to a widespread range of functions and functional sequence

motifs (195). Their sequences have been classified into seven classes and the corre-

sponding structures analyzed (83). LRR structural conformations cover a wide range

of the variability of subclasses III.1 and III.2 (beta- and alpha/beta-solenoids). Their

association with alpha-solenoids still needs to be investigated further.
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4.1.1.4 Class IV: Closed structures

In the repetitive ”closed” structures, the last unit interacts with the first one and all are

flanked one to the other building up a torus with a fixed number of repeats. This is the

most represented class in RepeatsDB 1.0, with a total of 3,828 structures. The repeat

length overlaps with both classes III and V, ranging from ca. 30 to 60 amino acids and

the subclasses are the TIM-barrels, β-barrels, β-trefoils, β-propellers, α/β prism and

α-barrels. TIM-barrels (subclass IV.1) are associated to the Pfam Glyco hydro tim

clan (CL0036), which groups a series of TIM-barrel families defined by their enzymatic

function (aldolases, isomerases, DNAses and others). A distinct clan associated to

subclass IV.1 are the amidohydrolases (CL0034). β-barrel structures (subclass IV.2) are

far less numerous, with only 17 examples in RepeatsDB 1.0. Domains in this subclass

associated to single entries, mostly porines, ubiquitin or, in some cases, the Pfam MBB

clan (CL0193). The latter groups together a set of β-barrels with significant sequence

similarity and different numbers of β- strands. Subclass IV.3 is mainly associated to

β-trefoil clan (CL0066). Somewhat surprisingly, the PF00331 family associated to this

subclass is not part of the β-trefoil clan, but belongs to the TIM- barrel one instead.

Almost all examples of β-propellers (subclass IV.4) are associated to at least one domain

in the Pfam Beta propeller clan (CL0186) with the sole exception of the hemopexin

domain (PF00045). The WD40 domain (PF00400) is the most important result, since

it is recognized in correspondence with about 60% of the subclass IV.4 units while

exhibiting functional diversity. The functional variability and evolutionary origin of

WD repeats was explored proposed to functionally cluster by surface similarity with the

purpose to identify common interaction partners (196). Indeed, this β-propeller domain

seems to be one of the cell’s most pervasive scaffolding and interaction domains (197).

The last clan associated to elongated repeats, the α-barrel subclass, is the 6 Hairpin

clan (CL0059) where the six helical hairpins characterizing these domains correspond

to the six alpha barrel units.

4.1.1.5 Class V: Beads on a string

The class V structures have repeat units of more than 50 residues forming globular

domains connected as beads on a string, through either flexible or rigid linkers. The

classification comprises α-beads, β-beads, α/β-beads and other as a catch-all for the
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remaining types of beads on a string. The low number of structure examples in the

database limits the analysis of the associated domains and suggests that further im-

provements to the RepeatsDB classification procedure are warranted. Subclass V.2

(β-beads) shows a clear association to two main Pfam clans: the Immunoglobulin

superfamily (CL0011) and the Ig-like fold superfamily (CL0159), which includes fi-

bronectins, filamins, integrins and other types of Ig-like binding domains. In addition,

the Sushi domain (PF00084, no clan) seems to be associated to β-bead structures.

4.1.2 Tandem Repeat proteins at a glance: functions, diseases and

role in protein-protein interaction network

We describe here the role TPRs in the human organism, by analysing their function,

localization, position in protein-protein interaction network, highlighting their ubiquity

in tissues, subcellular districts and functional pathways. TPRs are exploited as hubs of

protein-protein interactions, being critical players in the cell and probable disease tar-

gets. The present analysis is based on UniProt annotation and derived from the current

versions of UniProt and RepeatsDB, 2018 01 and 2017.10.25 respectively. The subset

of UniProt entries retrieved in RepeatsDB is collected in the ”RepeatsDB” dataset.

An additional and more extended dataset (”Repeats” dataset) of repeat proteins is

collected using the ”repeat” tag in UniProt, assigned through sequence-based methods.

Other datasets collected to test different hypothesis are the ”Hubs” and the ”Disease”,

i.e. proteins with more than 50 interactors and proteins involved in at least one disease,

respectively. Dataset sizes are reported in Table 4.1.

Repeats Disease Hubs Total

RepeatsDB 164 88 4 273

Repeats 471 17 3206

Disease 40 4070

Hubs 135

All 73112

Table 4.1: Dataset sizes in human proteome analysis and intersections.
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4.1.2.1 A structure of success

The key of TR evolutionary success may be accounted for the peculiar properties of a

modular structure (198). The assembly of several similar building blocks is the result of

a number of repetitive short-range interactions established between the contacting unit

interfaces, building an elongated central hydrophobic protein axis (79). Escaping the

globular protein paradigm of folding as a well-defined route to the native 3D structure,

the typical TR proteins assembly is rather a cluster of different parallel folding pathways

(199), with each unit contributing to the folding and stability of the flanking ones.

This is especially true for solenoids (81), but also for other types of TR proteins: e.g.

fibrous structures are stabilized by short-range and regularized inter-chain interactions

(200), and toroids are formed by the cooperative stabilization of several simple super-

secondary modules that assemble in a closed structure, with the first unit contacting the

last (201). The main player in TR regions stability is therefore the central hydrophobic

axis, rather than core. Once it is conserved, the other residues are not only able,

but prone to diverge, as demonstrated by (120) where the perfection of repeats was

correlated with the tendency to be unstructured. The extended and quickly evolving

surface of TR regions have been exploited for the specialization in protein binding

(81, 202). Further tunable factors that confer specificity to the binding are the overall

shape of the molecule (twist and curvature) as well as its flexibility. Relatively little

rearrangements at the level of the module sequence, such as deletion, insertions or

substitutions, lead to the building of units that show different angle of inclination with

respect to the protein axis. Insertions and combinations of these junction-modules

account for the global shape of the scaffold, and have been exploited for the building

of unique curvatures in repeat protein design (203). All these properties are related

to the mechanism of their evolution. Repeated stretches at the DNA level are prone

to self-expansion via tandem duplication, and the peculiar elongated arrangement of

the protein product can easily tolerate the insertion of a new structural unit (204).

As a consequence, the evolution of TR proteins usually includes a complex pattern

of insertion, deletion and rearrangement of units (205). All the described features

dictate the perfect recipe to build a binder, giving a possible explanation evolutionary

advantage of repeat structures.
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Leucine Rich Repeat (LRR) domain, with multiple disease-related missense mu-

tations localized at the interface with its interactor, the plasma glycoprotein von

Willebrand factor (the complex is crystallized as PDB code: 1M10).

• Falling into the group of ”closed repeats”, or toroids, the WD repeat-containing

protein 5 (UniProt ACC: P61964, PDB ID: 2CNX, Figure 4.5C) shows a number

of mutations linked to a reduced histone H3 binding.

• In Figure 4.5D two pathogenic substitutions are mapped in the repeat domain of

Fibronectin (UniProt ACC: P02751, PDB ID: 1FNH), a beads-on-a-string repeat.

The importance of repeat domains contribute in the disease insurgence is confirmed by

the prevalence of repeat domains in the top 20 Pfam domains ranked by association to

diseases (Table 4.2). This census of repeat proteins highlights their prominent role in

disease insurgence, as probable target of disease-related mutations.

ID Name # Type RepeatsDB Class Example Figure 4.5

PF00069 Protein kinase domain 91 Domain No

PF00046 Homeobox domain 74 Domain No

PF07714 Protein tyrosine kinase 71 Domain No

PF00520 Ion transport protein 55 Family No

PF00041 Fibronectin type III domain 49 Domain Yes V 1fnhA D

PF07679 Immunoglobulin I-set domain 46 Domain Yes V 2nziA

PF00400 WD domain, G-beta repeat 45 Repeat Yes IV 2cnxA C

PF00001 7 transmembrane receptor (rhodopsin family) 42 Family No

PF01391 Collagen triple helix repeat (20 copies) 40 Repeat Yes II 4gyxB A

PF00169 PH domain 40 Domain No

PF12796 Ankyrin repeats (3 copies) 39 Repeat Yes III 4rlvA

PF00089 Trypsin 37 Domain No

PF00038 Intermediate filament protein 35 Coiled-coil No

PF07645 Calcium-binding EGF domain 35 Domain Yes V 2vj3A

PF00018 SH3 domain 34 Domain No

PF00271 Helicase conserved C-terminal domain 33 Family No

PF13855 Leucine rich repeat 8 33 Repeat Yes III 1m10B B

PF00168 C2 domain 31 Domain No

PF00010 Helix-loop-helix DNA-binding domain 29 Domain No

PF00017 SH2 domain 29 Domain No

Table 4.2: Top 20 Pfam domains associated to diseases. Association between Pfam domains and

diseases is computed by counting the number of proteins in Homo Sapiens harbouring a specific domain

and being annotated by UniProt as involved in a disease. The Pfam ID, name are reported, together

with the number of proteins mapped to the domain and to a disease (#), the domain type as from Pfam

description, the overlap with RepeatsDB repeat regions (RepeatsDB). If the latter is true, the repeat class,

an entry example and eventually the reference in Figure 4.5 are reported.
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4.1.2.5 Centrality comes with a price

According to the observations presented here, TR proteins are highly connecting nodes

sparsely distributed along the human interactome, supporting their predominant role

as interactors, in cell signaling and transporting. The reason for the predominance

of interaction role is accounted by their peculiar properties of a modular architecture,

which have been exploited to develop binders across a plethora of pathways. This

framework has evident consequences as regards TR proteins relationship with organism

diseases. As a general rule, the highest is the number of a protein interactors, the most

critical are the possible consequence of its disruption for the organism, a phenomenon

known as the centrality-lethality rule (212). Since TR proteins show a higher number

of interactors than UniProt background, they appear to fit this framework. In addition,

we observed that the subset of disease-related TR protein show a degree higher both of

TR proteins in general and non TR proteins still associated to diseases (Figure 4.4B),

supporting the hypothesized association between TR protein role as binders and their

involvement into diseases.

4.1.3 Structural in silico dissection of the collagen V interactome

to identify genotype-phenotype correlations in classic Ehlers-

Danlos Syndrome (EDS)

As a case-study of TR association with diseases we dissected Collagen V mutations, as-

sociated with Elhers-Danlos syndrome (EDS) (213), a group of heritable collagenopathies.

Collagen V structure is not available and the disease-causing mechanism is unclear. To

address this issue, we manually curated missense mutations suspected to promote classic

type EDS (cEDS) insurgence from the literature and performed a genotype-phenotype

correlation study. Further, we generated a homology model of the collagen V triple he-

lix to evaluate the pathogenic effects. The resulting structure was used to map known

protein-protein interactions enriched with in silico predictions. An interaction network

model for collagen V was created. We found that cEDS heterogeneous manifestations

may be explained by the involvement in two different extracellular matrix pathways,

related to cell adhesion and tissue repair or cell differentiation, growth and apoptosis.
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4.1.3.1 Genotype/phenotype correlation

We aimed at characterizing different collagen V parts to analyze the pathologic ef-

fects of EDS correlated mutations. Based on literature data, pathogenic mutations

were grouped according to their corresponding abnormal phenotype and used to per-

form our analysis. Collagen V chain α1 presents the highest number of pathogenic

variants. These cause lack of collagen V secretion in the signal peptide (214). This

specific condition is generally associated with haploinsufficiency of collagen V in the

literature (215), thus they are not useful for the evaluation of the effects of collagen

V structural impairments. The most frequent phenotypes associated with mutations

affecting the N-terminus are characterized by hypermobility of joints and skin hyperex-

tensibility (216), reduced deambulation, abnormal posture, neurological complications

and reduced excretion and digestion (217, 218). Milder symptoms are associated with

mutations located in the region not forming the triple helix (219, 220). The triple helix

region appears to be related with the highest phenotypic variability, with a hypermo-

bility Beighton score ranging from 0/9 to 9/9 (216). Of note, variants in the triple helix

always present skin hyperelasticity. Bibliographic data for the C-terminal variants are

not detailed enough to get more insights about related phenotypes (221). Less relevant

information is present in the literature for chain α2 (221, 222). In addition, molecular

details for compatibility with the triple helical structure are not currently available.

However, the variability of symptoms reported for chain α2 associated variants seems

to draw a scenario comparable to chain α1.

4.1.3.2 Model construction and evaluation of mutations

We modeled the collagen V triple helix region by homology, using the collagen I crystal

structure (PDB code: 3HQV) as template. We found that variants affecting chain α1

can be grouped into two types. The first contains mutations interfering with triple

helix packing. The main effect may be reduced chain compactness as the mutated

amino acid side chains point to the geometric center of the molecule. Most pathogenic

COL5A1 missense variants related to severe and complex cEDS phenotypes involve

glycine residues, e.g. G1489D (c.4466G > A, 3) and G1564D (c.4691G > A, (223)).

Glycine is known to play a key structural role in collagens as it allows the triple helix coil

angle formation and the consequent right placement of helices. Less frequently, variants
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of this type affect residues involved in the formation of stabilizing internal hydrogen

bonds, such as E1292K (c.3874G > A, (224)). It is important to recall that collagen V

contains two α1 chains. This peculiarity promotes a plethora of pathogenic phenotypes,

as variants can independently localize on the first or second chain, either or both,

depending on which of the two alleles (mutated or wild-type) is actively translated.

Thus, the same collagen V variant may manifest different functionality depending on

trimer composition. The second type of variant covers the ones that may disrupt the

interaction between collagen V and other interacting proteins, e.g. E812D (c.2436A >

T) and N951S (c.2852A > G) found in dbSNP (222). To validate this hypothesis, we

used our model to map the interaction sites of different collagen V partners. Figure

4.6A summarizes the known position of the interactions detected along the triple helical

region, while Figure 4.7A shows the network of all interactors known to bind this region.

We found that E1292K (c.3874G>A) in one α1 chain forms an internal stabilizing bond.

Instead, when the same variant affects two α1 chains, the long lysine side chain stretches

from the groove between helices, facing the solvent. Further, E1292K localizes at the

beginning of a larger area where frequency of hydrogen bonds stabilizing the triple

helical fold decreases. This region is also known to form a fibronectin binding site

(225). We found various sites for proline and lysine hydroxylation. In particular,

collagen V hydroxyproline-rich regions are involved in protein self-assembly as well as

interaction with PPII (polyproline-II), SH2 (Src homology 2) or SH3 (Src homology 3)

domains (226). Mutation P1388S (c.4162C>T) is an example of proline substitution

located in a poly-proline region. Similar features are reported in the literature for

collagens and collagen V interactors (227). Analysis of chain α2 shows three structurally

relevant glycine substitutions, i.e. G396R (c.1186G>C), G645R (c.1933G>A), G1146A

(c.3437G>C). In addition, the P833L (c.2498C>T) mutation may interfere with two

hydrogen bonds stabilizing the triple helical structure (Figure 4.6).

4.1.3.3 Detection and analysis of interactors

COL5A1 and COL5A2 genes harbor 90% of cEDS variant where the related pheno-

types fulfill the three major diagnostic criteria (221). However, several cEDS patients

harboring collagen V variants with milder manifestation are reported, i.e. not showing

skin hyperelasticity or joint hypermobility. This observation suggested the hypothesis
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that simultaneous deregulation of different molecular pathways may promote cEDS in-

surgence. To confirm this hypothesis, we collected information about experimentally

validated and high confidence predicted collagen V interactors from protein−protein

interaction databases and manual search from the literature. A total of 24 different

interactors were found (10, 2, 1 and 11 from BioGRID (229), STRING (230) and

MatrixDB (231) and literature search, respectively). We found the most important

interactions to be with collagens, in particular collagen I and collagen VI. Other rele-

vant interactions are established during ECM organization and include proteoglycans,

fibronectin and osteonectin for a total of 25 collagen V interactors (Table 4.1.3.4). The

collected data were used to shed light on phenotypic cEDS variability. It was assumed

that for two variants, one affecting collagen V and the other affecting one of its in-

teractors, that correlate with the same specific phenotype, it can be speculated that

the same biochemical pathway is compromised (i.e. the two molecules both play a

key regulative role). Interestingly, we found that Fibronectin I and Tenascin X vari-

ants are related to other forms of EDS, where TGF-b1 variants are linked to Marfan

Syndrome, a heritable disease sharing marked joint laxity. Collagen I variants are re-

lated to cEDS (232) and EDS VII (233) insurgence, as well as Osteogenesis Imperfecta

(234), a defective connective tissue disease. Collagen II variants are related to severe

arthritis and dysplasia development. Collagen VI is linked to UCDM (Ullrich congeni-

tal muscular dystrophy, (235), while ADAMTS mutations are causative of EDS VIIC.

We then collected the OMIM annotation and category classifications of each symptom

associated to interactors disruption, in order to group different interacting proteins by

mutations/phenotype correlation. E.g. joint hypermobility was classified as a skeletal

symptom and cigarette-paper scars as skin. Our statistical analysis resulted in two

major clusters, one containing all the analyzed collagens, TGF-beta1, integrin alphaV-

beta3, DDR2 and Tenascin-X. The common feature of non-collagenous proteins inside

this cluster is that they intervene in cell migration, growth, differentiation and apop-

tosis. The diseases associated often affect joints structure and are related to dysplasia

development. Interestingly, collagen V forms a separate sub-cluster with collagen XI.

The two proteins are characterized by a high morphological affinity, in a murine model

showing dosage compensation in tendons (215). Of note, we found integrin alphaV-

beta3 in this cluster and not in the other, containing Fibronectin (FN) and the other

integrins. Integrin alphaVbeta3 is indeed not typical for collagen V containing tissues,
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but it is recruited in the EDS phenotype (236). Tenascin X was grouped with the

collagen group, and this observation is confirmed by the fact that its variants are as-

sociated with some forms of EDS (237). The second cluster contains protein that are

more strictly related to cell adhesion and tissue repair, as well as collagen assembly

and binding. This proteins are MMP2, integrin alpha2beta1, Fibronectin, Mac25 and

the proteoglycans biglycan and decorin. We identified this cluster as the skin one. The

diseases associated often related to tissue repair defect and eye involvement.

4.1.3.4 Ehlers-Danlos association to Collagen V

Most variants affecting both COL5A1 and COL5A2 are associated with cEDS (238),

a heterogeneous connective tissue disorder characterized by skin hyperextensibility,

abnormal wound healing, and joint hypermobility (239). The disease is widely het-

erogeneous, with different manifestations even between relatives harboring the same

mutation (240). Here, we provided a novel manually curated collection of collagen

V missense variants causative of cEDS outcome annotated with the corresponding

phenotypes. We performed an in silico investigation of collagen V associated cEDS

manifestations building a homology model of the collagen V triple helix, which was

used to map the pathogenic amino acid substitutions found in cEDS patients. Over

the last two decades, different hypotheses were presented in the literature to explain

disease variability (239). One explanation of this vast variability should be searched

within collagen V interacting proteins. The ECM is characterized by many different

proteins, which if mutated may in turn explain the contrasting cEDS phenotypes. In

parallel, we created a manually curated dataset of phenotypes associated to the differ-

ent variants. Our analysis confirmed the importance of the N-terminal domain as both

initiator and organizer of collagen assembly. The central region shows variants affect-

ing both the helical and non-helical sub-regions, the former have a stronger pathogenic

effect. This finding confirms the well known structural role for this specific collagen V

region. On the other hand, we found several putative binding sites of collagen V in-

teractors to localize within the extended triple helix (Figure 4.7A) and not only within

the N-terminal, suggesting a collagen V acting as a complex regulative scaffold protein.

Indeed, the N-terminal domain seems to first initiate the assembling of ECM compo-

nents, during this phase collagen may also serve as a scaffolding element. The resulting

complex then relocates to the ECM, where it is buried within other collagen fibers to
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regulate their diameter. Hypermobility of joint and skin specific manifestations are

frequently used as clinic criteria to separate different cEDS sub-types (238). Based on

our results, cEDS phenotypes may be divided into two main classes, the first present-

ing joint hypermobility sometimes coupled with skin manifestation and a second class

limited to skin manifestations. Our cluster analysis of interactors showed two well dis-

tinct molecular pathways, one relative to joint flexibility and the other to skin features.

In other words, we suggest that skin-related phenotype is related to defects in ECM

assembly and tissue repair, while joint flexibility is more generally associated to defects

in cellular migration, differentiation, remodeling and proliferation. This observation

also suggests that the interaction between collagen V impairments and variants of dif-

ferent proteins connected with collagen pathways may explain the extremely variable

phenotypes observed in cEDS patients.
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Table 4.3: Collagen V interactors. (*) Not shown in Figure 2 (175)

Interactor Test Pathway notes Interaction data Ref Associated dis-

ease

DDR1 In

tissue

Stimulates tyrosine

autophosphorylation

in SH2 or PTB dock-

ing sites. Promotes

integrin recruitment

N or O gly-

cosilated car-

bohydrates are

required for

binding

1

DDR2 In

tissue

Promotes MMP1 ex-

pression

N or O gly-

cosilated car-

bohydrates are

required for

binding

1 Mutations are

associated

to spondy-

lometaepiphyseal

dysplasia

Biglycan In vitro Biglycan and decorin

accelerate thrombin

inhibition by hep-

arin cofactor II after

binding collagen V

Both core and

GAG chains are

required binding

the collagen triple

helix

2 The protein dis-

ruption leads to

an osteoporosis-

like phenotype

Decorin In vitro Biglycan and decorin

accelerate thrombin

inhibition by hep-

arin cofactor II after

binding collagen V

The interaction is

located in the pro-

tein core. Bind-

ing site on colla-

gen triple helix

2 Mutations are as-

sociated to con-

genital corneal

dystrophy

NG2 In vitro Proteoglycans are

putative coreceptors,

which act together

with other matrix

molecules

The central do-

main flanks with

collagen

3

Galnt7* In vitro Involved in Olinked

oligosaccharide

biosynthesis

The Nterminal

propeptide in-

teracts with the

transferase

4

TSP5 In vitro Thrombospondin pro-

motes platelets aggre-

gation acting as link

between collagen V

and the basal lamina

components

Collagen V spe-

cific throm-

bospondin bind-

ing site. heparin

and fucoidin com-

peting for the

interaction

5 A functional

polymorphism

interfers with

MMP binding,

promoting the

susceptibility to

slipped disc

uPARAP In vitro Involved in ECM

degradation, cellular

adhesion and signal

transduction

uPARAPs binds

the fibronectin-

type II domain

(triple helix)

6

Continued on next page
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4.1 Protein tandem repeats characterization

Table 4.3 – continued from previous page

Interactor Test Pathway notes Interaction data Ref Associated dis-

ease

Fibronectin In

tissue

Fibronectin regulates

biological processes

such as cellular ad-

hesion, migration,

proliferation. It also

recruits the integrins

Differential splic-

ing of FN is reg-

ulated by colla-

gens, which stim-

ulate the EDA +

production

7 Mutations are

associated with

glomerulopa-

thy, fibronectin

deposition and

FNdisfunction

related EDS

MAG In vitro MAG plays a relevant

role during cellular ad-

hesion

MAG binds the

collagens (alpha1

chain) and hep-

arin

8

Mac25/

AGM

In vitro Multifunctional pro-

tein expressed in

secondary lymphoid

tissues (blood vessels)

Mac25 binds the

collagens (II and

V) and heparin

9 Mutations lead

to retinal arterial

macroaneurysm

with supravalvu-

lar pulmonic

stenosis

Heparin In vitro An essential molecule

of ECM. Bind most

collagen V interactors

Heparin binds the

collagen V HepV

motif (alpha1

chain)

10

Vitronectin In vitro Glycoprotein promot-

ing cellular adhesion

and diffusion

Vitronectin bind-

ing competes with

FN

11

Osteonectin

SPARC

In vitro Promotes plasminogen

conversion in plasmin

(thrombolytic agent).

It is also secreted by

osteoblasts during

bone formation

Osteonectin

binds the first

17 residues of

the collagen V

Nterminus

12 Various pheno-

types (e.g. adi-

posity, cataract,

myeloids) not

related to precise

mutations

Tenascin X

(TNX)

In vitro Regulates collagen in-

terfibrillar distance. It

is relevant for the

ECM organization

The complete

collagen V trimer

is required for

the binding. The

interaction is

thought indirect

and involving

decorin

13 Hypermobilty

type EDS and

TenascinX dis-

ruption EDS

Continued on next page
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4. RESULTS & DISCUSSION

Table 4.3 – continued from previous page

Interactor Test Pathway notes Interaction data Ref Associated dis-

ease

Tenascin C

(TNC)

In vitro Extracellular matrix

protein driving the

neuron and axon

migration, synap-

tic plasticity and

neuronal regeneration

The interaction

involves the colla-

gen V Nterminus,

FN typeIII and

TNC

4 Mutations are

associated with

asthma and al-

lergies related

traits

Collagen al-

pha1 (I)

In vitro Collagen V regulates

the collagen I deposi-

tion

The Nterminal

propeptide in-

teracts with the

alpha1 (1) chain

4 Caffey disease,

EDS (I and

VIIA), OI (I, II,

III, IV), bone

mineral density

variation and

osteoporosis

Collagen al-

pha2 (I)

In vitro Collagen V regulates

the collagen I deposi-

tion

The Nterminal

propeptide in-

teracts with the

alpha2 (1) chain

4 Several diseases

such as arthri-

tis, dysplasia

and Stickler

syndrome

Collagen al-

pha1 (VI)

In vitro Collagen VI is abun-

dant into the peri-

cellular environment,

where it acts as a scaf-

fold elements

The interaction

occurs between

the collagen V

Nterminus and

the globular do-

main of collagen

VI

4 Bethlem my-

opathy, Ullrich

congenital mus-

cular dystrophy

and the poste-

rior longitudinal

spinal ligaments

ossification

MMP2 In vitro Degrades denatured

collagens and TGF-

beta1

MMP2 binds the

collagen alpha

1 Nterminus

(haemoplexinlike

domain)

4 Mutations lead

to TorgWinch-

ester syndrome

TIMP1 In vitro TIMP1 expression is

regulated by TGF-

beta1

The interac-

tion involves the

TIMP1 NTR do-

main and collagen

V Nterminus

4

Continued on next page
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4.1 Protein tandem repeats characterization

Table 4.3 – continued from previous page

Interactor Test Pathway notes Interaction data Ref Associated dis-

ease

PDGFs* In vitro Growth fac-

tors/cytokines mod-

ulated by interacting

with ECM compo-

nents

PDGF AA, BB

and AB bind

collagens, how-

ever they show

low affinity for

collagen V

14 Basal ganglia

calcification,

dermatofi-

brosarcoma,

meningioma,

gastrointestinal

stromal tumor

and somatic,

hypereosinophilic

syndrome

PTPN2* In vitro PTPs are known to

be signaling molecules

regulating cell growth,

differentiation, mitotic

cycle and oncogenic

transformation

Data derived from

high throughput

affinitypurifi-

cation mass

spectrometry

experiments

15

C1QTNF2* In vitro Data derived from

high throughput

affinitypurifi-

cation mass

spectrometry

experiments

15
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4. RESULTS & DISCUSSION

4.2 Protein tandem repeats identification and annotation

This chapter describes the curation and improvement of RepeatsDB database with

respect to the first published version. A detailed structural characterization of repetitive

elements was largely missing, as repeat unit annotation in RepeatsDB was manually

curated and covered only 3% of bona fide TRPs at the time. This is the reason why

we developed Repeat Protein Unit Predictor (ReUPred, section 4.2.1), a novel method

for the fast automatic prediction of repeat units and repeat classification using an

extensive repeat unit library derived from curated data in RepeatsDB 1.0. ReUPred

(algorithm described in 3.1.1) uses an iterative structural search against the library to

find repetitive units on target structures. We tested the method on solenoid proteins,

i.e. the most canonical repeat structures constituted by the superhelical arrangement of

simple and short repeating units. The accurate prediction of repeat units from ReuPred

was exploited to increase the number of annotated repeat units in RepeatsDB by an

order of magnitude comparable to the sequence-based Pfam classification. We presented

the second release of RepeatsDB database (section 4.2.2). A substantial growth of

repeat unit characterization that was possible by applying the ReUPred algorithm over

the entire Protein Data Bank (PDB), indeed RepeatsDB now features information

on start and end positions for the repeat regions and units for all entries. A new

classification level has been introduced on top of the existing scheme, as an independent

layer for sequence similarity relationships. The quality of the data is guaranteed by an

extensive manual validation of ReUPred predictions for more than 60% of the entries.

RepeatsDB is continuously updated, and therefore requires a continuous effort in the

manual curation. To facilitate this process we designed RepeatsDB-lite (described in

section 4.2.3), web server for the prediction and refinement of TR in protein structure. It

takes advantage of ReUPred algorithm and an extended library that covers all different

TR classes. The algorithm is described in section 3.1.2, and includes updates aimed

at increasing the predictor speed and minimizing errors. The web interface allows

to predict the position of repeat units and visualize similarity relationships between

them at both the sequence and structure level, it also allows an intuitive revision of

the prediction and submission of reviewed entries to RepeatsDB. The server represents

a platform to harness community annotation efforts, which have been proven to be

effective in RepeatsDB experience.
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4.2 Protein tandem repeats identification and annotation

4.2.1 Identification of repetitive units in protein structures with Re-

UPred

In section 4.1.1 we provided a first look into the relationship between repeat structures

(RepeatsDB subclasses) and their Pfam families. In the majority of cases a strict one-

to-one relationship was found, with the expected tendency for structure to be more

conserved than sequence in the remaining cases. The LRR example however shows that

it is also possible for members of a large family to fall into different structural classes.

In order to expand RepeatsDB dataset and get a better understanding of repeat protein

evolution, we developed a method for Repreat Unit Prediction (ReUPred). ReUPred

(algorithm described in 3.1.1) was developed to predict both unit position and classify

repeat proteins to automate the time-consuming manual annotation process of detailed

annotation in RepeatsDB 1.0. See Figure 4.8 for an example on plakophilin-1. Before

benchmarking the main novel features, it is worthwhile to investigate whether ReUPred

is able to correctly discriminate real repeats from non-repeat proteins. For this purpose,

it has been compared with RAPHAEL (114) on the original datasets (see Table 4.4).

ReUPred correctly classifies 324 out of 352 domains (92% accuracy). This is only

somewhat lower than RAPHAEL on the same dataset (94.9% and 95.7%, for S > 0

and S > 1, respectively). A higher specificity could be obtained for ReUPred by setting

a stronger filter on the last step of the algorithm, but that would affect coverage on

the positive dataset. Even though ReUPred was designed to predict unit positions in

tandem repeat proteins and not extensively optimized for repeat detection, this result

demonstrates that the tool is also effective in discriminating repeat/non-repeat proteins.

Method TP FP TN FN Solenoids Non-solenoids

RAPHAEL (S > 0) 94 7 240 11 89.5 97.2

RAPHAEL (S > 1) 91 1 246 14 86.7 99.6

ReUPred 81 4 243 24 77.1 95.3

Table 4.4: The percentage of correctly classified solenoids and non-solenoids is shown together with

the component true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN).

RAPHAEL is shown with the two SVM cutoff values as reported in the original paper. (176)
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4. RESULTS & DISCUSSION

Figure 4.8: ReUPred unit prediction for Plakophilin-1 (PDB code 1XM9, chain A). The structure is

shown in cartoon representation in the top part with the schematized sequence below. Predicted units are

represented in black and gray. Dashed lines represent missing residues in the PDB file (residues 388396

and 481508). The N- and C-terminal residues flanking the missing residues are shown as spheres in the

structure. (176)

4.2.1.1 Repeat classification

ReUPred predicts units and fine classification for 83% (893 proteins) of the RepeatsDB

1.0 classified set. The class assignment is obtained by simply transferring this infor-

mation from the master unit found in SRUL. This approach has been proven to be

effective as shown in Table 4.5. ReUPred works very well for the α class (III.3 in Re-

peatsDB). Instead, it is more difficult to correctly assign α/β and β examples. The

low recall indicates that the cause of the problem is detecting units that do not have a

good template in SRUL. This is an important result, as it indicates which RepeatsDB

1.0 entries are worth manually annotating at the detailed level to improve ReUPred

sensitivity and SRUL representation of the repetitive structural element universe. Low

precision for β and α/β classes is due to a high number of false positive assignments.

Looking at the data in detail, we found some ambiguous class assignments, e.g., PDB

code 3ZYI, chain A, is annotated as α/β solenoid in RepeatsDB, but there are no helix

elements except for a small fragment (residues 309−318) which is not repeated in the

units. Since ReUPred predicts the class by transferring annotation from SRUL, if a

SRUL element is misclassified the error propagates. ReUPred could be very useful to
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4.2 Protein tandem repeats identification and annotation

guide the manual refinement of RepeatsDB class annotations.

Class Recall Precision F-Measure Accuracy

All-β 0.81 0.74 0.78 0.63

Mixed α/β 0.55 0.65 0.60 0.43

All-α 1.00 0.99 1.00 0.99

Total 0.94 0.94 0.94 0.89

Table 4.5: ReUPred classification performance on the RepeatsDB 1.0 classified dataset. See section

3.1.1 ”Performance evaluation” for details on the measures used. (176)

Class Method Recall Precision F-Measure Accuracy

All-β

TAPO 0.47 0.59 0.53 0.47

ConSole 0.39 0.69 0.50 0.46

ReUPred 0.62 0.64 0.64 0.56

Mixed α/β

TAPO 0.66 0.70 0.68 0.59

ConSole 0.62 0.69 0.66 0.57

ReUPred 0.84 0.84 0.84 0.78

All-α

TAPO 0.64 0.78 0.70 0.57

ConSole 0.50 0.74 0.59 0.46

ReUPred 0.74 0.79 0.74 0.62

Total

TAPO 0.58 0.70 0.64 0.53

ConSole 0.48 0.71 0.58 0.49

ReUPred 0.71 0.75 0.73 0.62

Table 4.6: Performance evaluation is reported for each method on all RepeatsDB 1.0 solenoid structures

(All) and for the three subclasses separately (β, α/β and α). The best value for each quality measure is

shown in bold. See section 3.1.1 ”Performance evaluation” for details on the measures used. (176)

4.2.1.2 Unit prediction accuracy

ReUPred has been evaluated for unit prediction using the metric described in section

3.1.1, i.e., penalizing predictions with a wrong phase or/and a wrong length. Table

4.6 shows a comparison with TAPO and ConSole in terms of predicted repeat residues

on the detailed RepeatsDB 1.0 set. The results are reported for each of the three

main solenoid classes and for all proteins together. ReUPred always outperforms the

other methods for all evaluation measures. In particular, the greatest improvement

is observed for the α/β subclass, with an increase of 19% accuracy compared with
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4. RESULTS & DISCUSSION

Figure 4.9: The number of predicted units on the RepeatsDB 1.0 detailed dataset. The manually

curated reference (RepeatsDB) is shown next to the three prediction methods. ReUPred predicts more

repeat units than the other two methods

Figure 4.10: Repeat unit periodicity box plot distribution on the RepeatsDB 1.0 detailed dataset.

The manually curated reference (RepeatsDB) is shown next to the three prediction methods. (176)
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4.2 Protein tandem repeats identification and annotation

Figure 4.11: Large-scale periodicity predictions on the RepeatsDB 1.0 classified dataset. The original

RAPHAEL periodicities are compared to ReUPred unit lengths as box plot. (176)

TAPO. The high accuracy for this class can be explained by the fact that mixed α/β

units represent more structurally complex elements compared to all-α units. More

information is coded in the structure unit, making it easier to discriminate wrong

structural alignments. On the other hand, the most problematic subclass is all-β.

Both recall and precision are lower for all methods compared with other subclasses.

This may be explained by the fact that β solenoid units are more degenerated in

the same protein than other solenoids and present a greater structural diversity with

many insertions (data not shown). Moreover, they are shorter compared with all-α,

generating worse structural alignments.

In addition to evaluating repeat annotations at the residue level, it is of interest to

benchmark repeat units and their length distributions. Figure 4.9 shows the number

of repeat units being identified by each method. Here again, ReUPred predicts more

units than the other two methods. Both ConSole and TAPO generate units with the

same size for a given structure and this may limit their ability to deal with insertions

in solenoid proteins. ReUPred may therefore be better able to adapt to the irregular

aspects of solenoid repeats. Figure 4.10 shows a box plot for the distribution of the

predicted repeat periodicities against the RepeatsDB 1.0 classified set. The median
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4. RESULTS & DISCUSSION

Figure 4.12: Scatter plot of RAPHAEL and ReUPred periodicities on the RepeatsDB 1.0 classified

dataset. RAPHAEL produces a single periodicity per protein, whereas all predicted units were considered

for ReUPred. (176)

repeat length and standard deviations of ReUPred are very similar to the reference

definition and on average match better than TAPO and ConSole. TAPO appears to

underpredict the repeat length in β structures, probably because it also uses sequence

information. ConSole on the other hand appears to have more difficulties with α-helices.

4.2.1.3 Expanding the universe of known solenoids

Given the good performance of ReUPred for its intended purpose, i.e., classifying

solenoid repeats and annotating their component units, it can be used to automati-

cally expand the knowledge contained in RepeatsDB 1.0. The first step consists in

establishing the baseline against the existing RAPHAEL annotations on the classified

dataset. This contains annotations for solenoid class and predicted average repeat
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4.2 Protein tandem repeats identification and annotation

Figure 4.13: Venn diagram of available annotations for RepeatsDB 1.0 classified dataset. (a) Com-

parison of proteins with bona fide solenoid assignments. (b) The number of annotated repeat units in the

dataset. The total number of repeat units in the dataset is unknown. ReUPred is able to increase the

annotation by an order of magnitude in both cases. (176)

length. Since this dataset does not provide unit annotation, the simplest way to eval-

uate the performance is to compare the length of the predicted units with the repeat

period predicted by RAPHAEL. This is the number of residues for which the symmetry

signal is maximized, generating a single period for each protein. This is a big limita-

tion, as it does not reflect the real situation where unit sizes vary inside a protein due

to insertions which are frequent in solenoids. In particular, it is very relevant for the

all-β class where almost all proteins have insertions. Figure 4.11 compares the distribu-

tion of ReUPred predicted unit length and RAPHAEL period for each solenoid class.

Overall, both are very similar, with ReUPred having a wider range of periodicities as

it is able to recognize irregularities in single repeat units. Only the distributions for

all-β repeats differ more markedly. This class contains many structures with insertions

which RAPHAEL struggles to summarize in a single fixed periodicity.

The scatter plot in 4.12 shows the correlation between the RAPHAEL period and Re-

UPred mean unit length calculated on each predicted protein. The two methods cor-

relate strongly, with a Pearson correlation coefficient of 0.88 (P value = 4.59 10290).

On average, ReUPred predicts shorter units than the RAPHAEL period, 33.7 (SD 6.5)

and 34.2 (SD 5.3) residues, respectively. When the RAPHAEL period is much larger

(extreme points above the diagonal), ReUPred wrongly predicts two units instead of

a single unit which would better represent the repetitive symmetry (e.g., PDB code

3L3F, chain X). For opposite cases, the contrary happens, i.e., ReUPred predicts a pair

of units as a single element (e.g., PDB code 3PET, chain A).
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To expand the annotation in RepeatsDB, ReUPred was used to predict all repeat units

for classified RepeatsDB solenoids. Since there is no comparison and no structural val-

idation is possible, we chose to compare the annotation to Pfam. Figure 4.13 shows the

very substantial increase in annotations both in terms of bona fide solenoid proteins

and especially in the number of identified repeat units. The latter yields an increase

of an order of magnitude compared to state-of-the-art sequence-based annotation in

Pfam.

4.2.1.4 Benchmarking

At the time of ReuPred design, detailed unit annotation was available in RepeatsDB

for only 3% of the total putative repeat protein structures. ReUPred provides both the

prediction of repetitive units and a finer classification in the RepeatsDB classification

scheme. The algorithm works by exploiting a structure repeat unit library (SRUL) and

an iterative decomposition of the input structure. While the performance was tested

on the solenoid class, the method also works for other repeat types. ReUPred has been

compared with other state-of-the-art methods, TAPO and ConSole, adopting an evalu-

ation metric which takes into consideration both phase and size of the predicted units.

Testing on a manually curated dataset obtained from the ”detailed” RepeatsDB entries,

ReUPred achieved the highest accuracy for all types of solenoids (β, α/β and α) with an

overall increase of 9% over TAPO and 13% over ConSole. To provide an extended eval-

uation, a larger dataset with classified RepeatsDB entries without unit annotation was

used. It was possible to test ReUPred ability of classifying solenoid structures and the

correlation with periods predicted by RAPHAEL. ReUPred extended unit annotation

and classification for almost all solenoids with high precision and accuracy. Moreover,

the average unit length predicted by ReUPred strongly correlates with RAPHAEL,

confirming the high quality of the predictions. Mixed α/β units are underepresented

in SRUL compared to the α and β classes, meaning that extending SRUL could yield a

better recall and higher accuracy. ReUPred has also the ability to detect unit diversity

inside a given target protein, recognizing fragment insertions that are not part of the

repeat elements.
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4.2 Protein tandem repeats identification and annotation

4.2.2 RepeatsDB 2.0: improved annotation, classification, search and

visualization of repeat protein structures.

4.2.2.1 Database description

RepeatsDB 2.0 data have been completely regenerated taking advantage of the new

ReUPred predictor (176) for automatic detection of tandem repeat units. In the new

database version all entries are annotated at the unit level, i.e. providing start and end

position for each repeated segment, and classified at the subclass level. Compared to

the old version, unit annotations have grown by more than an order of magnitude.

Data curation The initial dataset for RepeatsDB is the entire PDB (241). Repeat

candidates are extracted with RAPHAEL (114) and processed with ReUPred (176) to

confirm the presence of repeat regions and provide detailed unit information. ReUPred

is able to identify the position of repeated fragments and to assign the class and sub-

class by transferring this information from the unit library. The final dataset available

in RepeatsDB 2.0 is the result of an iterative process where the ReUPred library has

been refined manually multiple times to resolve conflicts, improve its ability to gener-

alize and include newly discovered subclasses. At the end of the process, an extensive

validation and refinement of the predictions has been carried out by expert visual in-

spection. More than 60% of the entries have been reviewed and five new subclasses

created, three for class IV (closed structures) and two for class V (beads on a string).

Innovations Apart from the new annotation pipeline, many improvements have been

introduced since the last RepeatsDB release. All positional annotations are now based

on SIFTS (242), making them consistent with both PDB (241) and UniProt (228)

references. The search engine has been completely redesigned. An intuitive search

interface allows to perform complex queries using logical operators and guides the

user through all possible searching fields. A new classification level has been added

to include evolutionary relationships among different repeat regions. An all-vs.-all

alignment of the repeat regions allowed to group them according to sequence similarity

and to identify different repeat families. The new classification has been implemented

as an independent layer on top of the existing structural features, and is available at

three different identity thresholds (40%, 60% and 90%). The web interface allows to
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navigate entry clusters, providing an overview of the representative sequences inside

each structural subclass.

4.2.2.2 Database usage

The user interface presents an intuitive summary table providing direct access to all

entries by structural class directly from the home page. For a finer search, the user can

visit either the Browse page providing subclass access or the Search page for generating

complex queries (Figure 4.14 and 4.15, top). All entry points redirect to the same result

page listing the retrieved proteins in a table (Figure 4.15, bottom). The table can be

further filtered by providing additional matching strings in the column headers. The

Browse page also provides direct access to sequence clusters, where entries are grouped

by sequence similarity. The redesigned entry page (Figure 4.16) is much more infor-

mative compared to the previous RepeatsDB version, including several cross-links to

third party resources. It also integrates several structural features useful for comparing

CATH, SCOP, Pfam and DSSP annotations with RepeatsDB data. Regions, units and

insertions are provided for all entries and correctly mapped both to UniProt and PDB

reference (SEQRES field in the PDB file) sequences thanks to the SIFTS service. The

correct mapping can strongly improve RepeatsDB impact since it is now very easy to

link repeat data with other sequence features like mutations or post-translational mod-

ifications. Thanks to a RESTful architecture, all RepeatsDB data are accessible from

external APIs and third party resources through HTTP URLs. Customized datasets

can be downloaded in JSON or text format using the browse function or RESTful web

services.

Statistics RepeatsDB provides high quality annotation for 5400 entries. Figure 4.17

compares the current RepeatsDB content to the previous version. The chart shows the

total number of entries belonging to each class. However, the new version provides unit

definition and subclass classification for all entries where the old version annotated only

a tiny fraction (327 entries, cyan bar). Moreover, in RepeatsDB 2.0 more than 60% of

the entries have been manually reviewed by expert curators (blue segment). Further

details such as the number of regions, units and genes are available from the Stats page

of the web site.
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4.2 Protein tandem repeats identification and annotation

Figure 4.14: RepeatsDB data can be retrieved in three different ways. The Browse page provides the

entry point for both the structural hierarchy and sequence clusters. (173)
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Figure 4.15: RepeatsDB data can be retrieved in three different ways. (TOP) the Search page allows

the user to perform advanced queries against a range of RepeatsDB-specific and third-party search fields.

The input can be simple text or numeric (single value or range) according to the field type and multiple

queries can be combined by boolean operators (AND, OR, NOT). Both the Browse and Search pages

redirect to the results page. (BOTTOM) This page provides a table with the list of retrieved entries and

can be further filtered (and sorted) through column header fields. Results can be displayed by PDB chain

(default), region or UniProt. (173)
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4.2 Protein tandem repeats identification and annotation

Figure 4.16: Screenshot of RepeatsDB sample entry page for PDB code 1ialA. The top part of the page

(A) reports structure information from the PDB and cross-references to third-party databases including

UniProt, MobiDB, SCOP, CATH and Pfam (when available). RepeatsDB annotations are available for

download both in text and JSON formats on the top-right corner. (B) A table provides region details such

as structural classification, start/end position, number of units, repeat period and cluster families. (C)

The feature viewer summarizes available annotation for the PDB reference sequence, i.e. the SEQRES

field in the PDB file. An overview of RepeatsDB information (regions, units and insertions) along with

secondary structure (DSSP), Pfam, SCOP and CATH tracks (when available) are shown. (D) A detailed

view of RepeatsDB annotations is highlighted in the sequence and PDB viewers. (173)
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Figure 4.17: RepeatsDB 2.0 is compared to the previous release. Entries have unit and subclass

annotation, with more than 60% manually reviewed (blue). For the old version, only a tiny fraction of

entries have unit definition (cyan) and the rest is mostly annotated only at the class level (yellow). (173)

4.2.3 RepeatsDB-lite: a web server for unit annotation of tandem

repeat proteins

Since community annotation efforts have been proven to be effective in RepeatsDB

experience, we developed RepeatsDB-lite, an interactive web server designed for the

detection, classification and refinement of repeated structural modules from PDB files.

RepeatsDB-lite (algorithm described in 3.1.2) extends the ReUPred algorithm to all

TR types and strongly improves the performance both in terms of computational time

and accuracy. RepeatsDB-lite takes a PDB structure in input and predicts TR units

and the repeat classification along the RepeatsDB schema (class, subclass, type and

fold). The server accepts either a PDB identifier (ID) or file. By default, the predictor

considers only the first PDB chain. Alternatively, the user can specify the chain ID or an

all chains mode. Submitted jobs can be retrieved using the search box or bookmarking

the result page URL. The RepeatsDB-lite output page features an intuitive visualization

of predicted TR regions and units. In addition, another page allows the user to modify

the prediction and visualize the effect on the unit alignments on the fly. The reviewed

prediction can optionally be submitted for review and inclusion in RepeatsDB.
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4.2 Protein tandem repeats identification and annotation

Figure 4.18: Result page. The header provides summarizing information about the job (PDB code:

3vbn). The tabs below allow the navigation between chain predictions. Each chain tab shows some general

information about the chain and a specific card for each region. Download buttons allow the retrieval

of text file results, while sequence, structure and alignment viewer guide data visualization. The unit

sequence similarity matrix shows the relationship between units in the region. The orange button redirects

to the form for annotation editing. (177)
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4.2.3.1 Web server description

Output page The different visualizations contained in the RepeatsDB-lite output

page (Figure 4.18) are designed to guide the analysis of the repeat structure. The page

header (Figure 4.18, top) provides general information such as the name of the input

PDB (or file), processed chains and session identifier. Multiple chains are visualized

in different tabs (Figure 4.18, middle). When multiple regions (groups of units) are

identified in the same chain, they are visualized in the same page separated in different

blocks. For each chain, regions and units are visualized in a structure and sequence

viewer. For each region (Figure 4.18, bottom) the multiple structure alignment of the

units and resulting sequence and secondary structure alignments are visualized along

with the similarity matrix (see unit similarity paragraph) representing sequence simi-

larity based on an all-against-all structure alignment. The PDB input, the predictor

output, log and mapping files (between position along the SEQRES and PDB indices

of each residue) are available for download. The manual refinement of the unit in the

single chain can be accessed through the Edit annotation button in the corresponding

chain tab.

Edit page RepeatsDB-lite includes a page for the manual refinement of unit annota-

tions (Figure 4.19). The form fields (Figure 4.19, left) allow the curator to add/delete

regions, change classification and modify unit annotation. On the right side of the page

(Figure 4.19, right), a sequence and structure viewer react to the user edits, allowing

a preliminary evaluation of the changes. Upon clicking the Submit button, the user

is redirected to the results page whose content is updated according to the provided

new annotation. Finally, the Submit to RepeatsDB button, available both in the edit

page and in the output page, allows to submit the curated annotation to RepeatsDB

for review and inclusion.

4.2.3.2 Usage example

The AntD N-acyltransferase from Bacillus cereus (PDB code: 3vbn) forms a ternary

complex of three solenoid chains (243). Each chain folds into a left-handed β-helix

of seven turns, interrupted by a loop and ending with an α-helix. The loop extends

toward the flanking subunits and provides a binding platform for the ligands (Coenzyme
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4.2 Protein tandem repeats identification and annotation

Figure 4.19: Annotation editing page of the example job (PDB code: 3vbn). The user can modify

region classification and the unit start end position. Changes are reflected in the viewers on the right.

Reviewed annotation can be submitted directly to RepeatsDB maintainers to be included in the database.

(177)

A and dTDP). RepeatsDB-lite correctly identifies five β-solenoid elements and the 27

residue long insertion between the fourth and fifth unit (Figure 4.18). It is possible

to appreciate the good phasing from the multiple structure alignment. In addition,

the similarity matrix shows some darker cells close to the diagonal indicating how

adjacent units are more similar to each other compared than distant ones. Even if

shorter, two other units are missing in the RepeatsDB-lite output. The user can add

them from the edit page and immediately see the results in the sequence and structure

viewer. By clicking the Save button the user is redirected to the result page and

the similarity matrix is recalculated as well as the sequence and structural alignment

(Figure 4.20). The latter in particular shows how the added unit diverge slightly from

the perfect superimposition pattern of the previous multiple alignment including only
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Figure 4.20: Results after resubmission of the example job (PDB code: 3vbn). By saving the re-

peat annotation edits, the user is redirected to RepeatsDB output page where he is provided a detailed

visualization of new results to evaluate the annotation quality. (177)

the first five units (Figure 4.20, top left). The similarity matrix, where two additional

elements are added (Figure 4.20, top right), shows how the last unit in particular

diverges significantly from the others. The different visualizations are designed to

guide the user in the annotation refinement process. Users are encouraged to send

the reviewed annotation to the RepeatsDB maintainers by clicking the corresponding

button.

4.2.3.3 RepeatsDB-lite performance

RepeatsDB-lite is able to predict all types of TR proteins. In Table 4.7, a compari-

son with other methods is provided. The benchmark is the same used previously for

ReUPred (176) but with updated unit annotations, i.e. considering reviewed informa-

tion from the last RepeatsDB release. The dataset includes 87 solenoid regions from 84

proteins with 679 units for a total of 19 646 repeat and 5560 non-repeat residues. The re-

gion column corresponds to the evaluated regions. RepeatsDB-lite consistently reaches

a precision above 95% and outperforms the other methods both considering balanced

accuracy and F-measure (Table 4.7). ConSole has a better precision for α-solenoids at

the cost of missing about half of the truly repeated residues (low sensitivity). Filtered
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Method Regions Sn Sp Pr Acc F

III.1, β-solenoid

TAPO 31 0.546 0.802 0.851 0.674 0.665

ConSole 31 0.510 0.811 0.848 0.661 0.637

RepeatsDB-lite 40 31 0.398 0.959 0.952 0.678 0.561

RepeatsDB-lite 60 31 0.543 0.962 0.967 0.752 0.695

RepeatsDB-lite 80 31 0.560 0.912 0.929 0.736 0.699

RepeatsDB-lite 31 0.598 0.953 0.963 0.776 0.738

III.2, α/β-solenoid

TAPO 18 0.692 0.699 0.925 0.696 0.792

ConSole 18 0.644 0.834 0.954 0.739 0.769

RepeatsDB-lite 40 18 0.558 0.912 0.967 0.735 0.707

RepeatsDB-lite 60 18 0.790 0.851 0.961 0.820 0.867

RepeatsDB-lite 80 18 0.788 0.847 0.960 0.818 0.866

RepeatsDB-lite 18 0.838 0.864 0.971 0.851 0.900

III.2, α-solenoid

TAPO 38 0.665 0.577 0.916 0.621 0.771

ConSole 38 0.552 0.820 0.955 0.686 0.700

RepeatsDB-lite 40 38 0.747 0.561 0.914 0.654 0.822

RepeatsDB-lite 60 38 0.859 0.595 0.930 0.727 0.893

RepeatsDB-lite 80 38 0.839 0.668 0.946 0.754 0.889

RepeatsDB-lite 38 0.885 0.684 0.951 0.784 0.917

III

TAPO 87 0.630 0.747 0.898 0.688 0.740

ConSole 87 0.556 0.823 0.917 0.690 0.693

RepeatsDB-lite 40 87 0.589 0.849 0.932 0.719 0.722

RepeatsDB-lite 60 87 0.737 0.850 0.945 0.793 0.828

RepeatsDB-lite 80 87 0.733 0.844 0.944 0.788 0.825

RepeatsDB-lite 87 0.778 0.855 0.950 0.816 0.855

Table 4.7: Comparison with other methods. The regions column corresponds to the number of evaluated

TR regions, i.e. for which a predictor provides an output, including fully negative predictions (zero units).

Sensitivity (Sn), specificity (Sp), precision (Pr), balanced accuracy (Acc) and F-measure (F) values are in

the range [0, 1]. Best values are in bold. (177)

versions of the RepeatsDB-lite unit library at 80, 60 and 40% sequence identity are

benchmarked to assess the effects of redundancy with the test dataset. RepeatsDB-lite

still shows a good accuracy even at 40% identity. In order to evaluate unit detection

accuracy with a higher significance, RepeatsDB-lite was evaluated against all reviewed

entries of RepeatsDB, for a total of 3666 proteins with 3835 TR regions and 29 113

units. The dataset contains 1 051 562 repeated and 193 338 non repeated residues (i.e.

outside TR units). Insertion residues (29 403) are masked, i.e. not considered in the

evaluation. Considering them as negatives does not affect the performance (data not

shown). Results for the entire dataset and each subclass are reported in Table 4.8.

RepetasDB-lite provides prediction for 3628 proteins, 136 of which contain multiple
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Classification Description Regions Sn Sp Pr Acc F

II.1 Collagen triple-helix 3 0.000 0.000 0.000 0.000 0.000

II.2 α helical coiled coil 9 0.594 0.865 0.875 0.730 0.708

II Fibrous repeats 12 0.545 0.865 0.875 0.705 0.672

III.1 β-Solenoid 325 0.561 0.926 0.911 0.743 0.694

III.2 α/β solenoid 350 0.797 0.907 0.984 0.852 0.881

III.3 α-Solenoid 888 0.784 0.628 0.943 0.706 0.856

III.4 β trefoil / β hairpins 76 0.583 0.960 0.968 0.772 0.728

III.5 Anti-parallel β layer / β hairpins 63 0.642 0.723 0.869 0.683 0.739

III Elongated repeats 1702 0.750 0.819 0.948 0.785 0.838

IV.1 TIM-barrel 538 0.669 0.731 0.932 0.700 0.778

IV.2 β-Barrel / β hairpins 77 0.682 0.863 0.970 0.772 0.801

IV.3 β-Trefoil 24 0.449 0.754 0.731 0.602 0.556

IV.4 β-propeller 849 0.677 0.845 0.968 0.761 0.797

IV.5 α/β prism 185 0.782 0.956 0.997 0.869 0.876

IV.6 α-Barrel 18 0.419 0.931 0.917 0.675 0.576

IV.7 α/β barrel 5 0.986 0.000 0.995 0.493 0.991

IV.8 α/β propeller 117 0.591 0.836 0.933 0.713 0.723

IV.9 α/β trefoil 70 0.836 0.929 0.973 0.883 0.899

IV.10 Aligned prism 45 0.856 0.978 0.998 0.917 0.921

IV Closed repeats 1928 0.685 0.826 0.961 0.755 0.800

V.1 α-Beads 13 0.758 0.652 0.980 0.705 0.855

V.2 β-Beads 42 0.813 0.779 0.975 0.796 0.887

V.3 α/β-beads 14 0.296 0.864 0.990 0.580 0.456

V.4 β sandwich beads 37 0.429 0.850 0.984 0.639 0.597

V.5 α/β sandwich beads 48 0.452 0.698 0.969 0.575 0.616

V Beads on a string 154 0.537 0.759 0.975 0.648 0.692

All 3796 0.706 0.821 0.956 0.764 0.812

Table 4.8: RepeatsDB-lite performance against RepeatsDB reviewed entries. Columns headers have

the same meaning of Table 4.7. (177)

regions. α/β solenoid (III.2), α/β prism (IV.5), α/β trefoil (IV.9) and aligned prism

(IV.10) are the best predicted subclasses, with a balanced accuracy over 0.8. In gen-

eral, the majority of the examples come from class III and IV with the former having

better sensitivity and the latter better specificity. RepeatsDB-lite fails when the unit

length and structure diverge too much. Class IV has a larger unit structural variability

that is remarkable also inside the same region. Another source of errors are those cases

for which a single unit in the reference corresponds to multiple units in the prediction

(or vice versa). Even when a unit perfectly matches multiple units in the counterpart,

these cases are strongly penalized because the evaluation algorithm selects at most one

match for each reference unit and counts non-overlapping residues as false negatives.
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Class V contains globular bead domains and the size of the dataset is much smaller

than the other two. In this case RepeatsDB-lite accuracy is lower because it identi-

fies repetitions inside domains that are generally annotated as single units by curators.

Class II includes single helix fibrous structures stabilized by inter-chain interactions and

lack structural repetitions. As unit annotation is completely arbitrary and unrelated to

structural properties, any evaluation can be considered meaningless. RepeatsDB-lite

is also able to detect the structural classification of the TR region. In particular, it

correctly detects the subclass for 77% of class III proteins and 80% of class IV (data

not shown).

4.2.4 Improving Repeat Definitions in Pfam

RepeatsDB project represents a powerful resource for the annotation of repeat proteins,

both in terms of structure and sequence. To address TRPs issues in the sequence-based

detection, we extended our collaboration with Pfam (63) curators in order to improve

existing Pfam domains and create accurate models of repeats based on structural in-

formation. Different strategies are applied when building TR Pfam models. The seed

alignment may include multiple consecutive repeat units instead of a single one as

longer HMMs are better at discriminating true positives. The tendency of repeated se-

quences to diverge is especially true for flanking units, so this solution partially escapes

the problem. The TR framework has been applied in cases like Leucine Rich Repeats

or Ankyrins, and in newly defined families. These include the bacteriophage spike do-

main used to penetrate the host cell membrane, represented by an entry containing

three copies of the repeat. However, this may lead to partial overlaps between detected

repeats and/or missing some units, since they are present in variable number in TR

regions. A different strategy is the definition of several, specific sequence models repre-

senting the same structural unit, grouped in the same clan. This has been extensively

applied in the case of HEAT repeats, characterized by high sequence diversity. These

include the Importin HEAT-like repeat, with six different and specific entries, and the

LRR Ribonuclease Inhibitor capping repeat (located at the N- or C-terminus of the

repeat region). This way, each model is found a few times along the repeat region, but

the overall coverage is high. Repeat units tend to diverge also for other reasons. Varia-

tions in the typical unit sequence may be related to a specialization of function (e.g. a

specific binding site) or structure (e.g. change in structural curvature). Functional unit
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variations are typically conserved through evolution and their recognition requires the

definition of more specific models. E.g. F-box protein Transport inhibitor response 1

(TIR1) shows a unit in the LRR region which includes the insertion of one short α-helix

in the loop between the β-strand and the following helix. The unit shares sequence sim-

ilarity with other units including a similar insertion in other LRR-containing proteins,

supporting the hypothesis that repeat units with different structural and functional

features are combined by evolution as building blocks of repeat regions similar to pro-

tein domain architectures. Indeed, while these models may have just one hit per TR

region, they show a basic repeat structure perfectly compatible with the rest of the

region. In these cases the model description is especially important, as it will guide

the user in understanding the reasons for its specificity. Strategies for the detection

of family-specific repeats are being explored along with the revision of repeat entries

descriptions.
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4.3 Intrinsically disordered proteins

In addition to the methods and databases for the annotation of repeat proteins, I

contributed to the improvement of another database developed in BioComputingUP

Lab that represents a central resource for the scientific community working in the field

of NGPs: MobiDB. We published the new release (244). Several curated datasets

for intrinsic disorder and folding upon binding have been integrated to MobiDB from

specialized databases. MobiDB 3.0 contains information for the complete UniProt

protein set and it is also linked from the UniProt entry page. A large amount of

information and cross-links to more specialized databases are intended to make MobiDB

the central resource for the scientific community working on protein intrinsic disorder

and mobility.

4.3.1 MobiDB 3.0: more annotations for intrinsic disorder, confor-

mational diversity and interactions in proteins.

4.3.1.1 Database description

MobiDB 3.0 is intended to be a central resource for large-scale intrinsic disorder se-

quence annotation. This new version is organized by both type of disorder annotation

and quality of disorder evidence (Figure 4.21). Disorder information is grouped in three

different sections: disorder, linear interacting peptides (LIPs) and secondary structure

populations. The latter represents the conformational heterogeneity of IDPs and IDRs

as the ability to populate different secondary structure populations in solution. LIPs

are structure fragments that interact with other molecules preserving an elongated

structure or folding upon binding. The data in MobiDB is organized hierarchically.

The top tier is formed by manually curated data from external databases and rep-

resents the highest quality annotations. Annotations derived from experimental data

such as X-ray and NMR chemical shifts are indirect but far more abundant. At the

bottom, predictions provide disorder annotation at lower confidence than experimental

evidence. The main disorder definition in MobiDB is provided by a consensus com-

bining all available sources prioritizing curated and indirect evidences over predictions

in analogy to the previous version (245). In the following, we will describe the main

recent improvements since the previous release. The database schema, web interface

and server have been completely redesigned and the underlying technology updated.
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Figure 4.21: Overview of different annotation data types (A) and levels of accuracy (B) in MobiDB

3.0. (174)

The feature viewer showing sequence annotations is now fully dynamic and allows the

generation of high quality images for publications with a click. Where available, Mo-

biDB annotation is projected directly onto the structure and shown in a new 3D viewer.

The look and feel and organization of the page and loading latency were also improved.

New curated data MobiDB 3.0 includes different sources of manually curated dis-

order annotations (Table 4.9). These annotations fall into two categories: disorder

and LIPs. LIPs are binding regions presumed or demonstrated to be intrinsically dis-

ordered that fold upon binding. These come under different names such as SLiMs

(short linear motifs) or MoREs (molecular recognition elements) in the literature. The

IDEAL database calls them protean segments (ProS) (246). MobiDB includes both

verified and possible ProS from IDEAL, where verified means disorder has been ex-

perimentally observed in the isolated molecule. The Database of Disordered Binding

Sites (DIBS, (247)) collects cases where a disordered region folds upon binding with a

globular domain and the Mutual Folding Induced by Binding (MFIB, (248)) database

includes disordered regions that fold upon binding with another disordered region. ELM

(249) provides SLiM annotations involved in binding and post-translational modifica-

tions. General disorder annotation, i.e. without any knowledge about transition driven

by interactions, is collected from UniProtKB (250), DisProt (251) and FuzDB (252).

UniProtKB provides manually curated disorder annotations under the region field in

the features section. FuzDB collects cases of fuzzy complexes, where conformational
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diversity has a functional role in the regulation and formation of protein complexes

or higher-order assemblies. DisProt has been recently revamped and MobiDB now

propagates DisProt disordered regions by homology transfer. Regions homologous to

experimentally characterized IDRs are mapped across homologs obtained from Gene-

Tree alignments (253). Regions with identity and similarity >80% and an alignment of

at least 10 residues are retained as homologous IDRs. Gene3D (254) contributes com-

plementary order annotation to the MobiDB consensus calculation, while Pfam (102)

is used to highlight protein domains. Lastly MobiDB also maps CoDNaS information

to highlight conformation diversity in globular regions. CoDNaS measures structural

differences among conformers of the same protein (255).

Database Type Comment URL

UniProt Curated Disorder http://www.uniprot.org/

DisProt Curated Disorder http://www.disprot.org/

FuzDB Curated Disorder http://protdyn-database.org/

ELM Curated LIPs http://elm.eu.org/

MFIB Curated LIPs http://mfib.enzim.ttk.mta.hu/

DIBS Curated LIPs http://dibs.enzim.ttk.mta.hu/

IDEAL Curated LIPs http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/

Gene3D Curated/Prediction Structure http://gene3d.biochem.ucl.ac.uk/

Pfam Curated/Prediction Domains/Families http://pfam.xfam.org/

CoDNaS Indirect Conformational diversity http://ufq.unq.edu.ar/codnas/

Table 4.9: Overview of databases integrated into MobiDB 3.0. (174)

New indirect annotations Previous releases of MobiDB provided indirect annota-

tions from the PDB through missing residues in X-ray structures and mobile regions

from NMR ensembles as calculated with the Mobi software (256). In the current re-

lease, this annotation has been complemented with additional indirect information from

experimental data in the PDB and chemical shifts from the Biological Magnetic Reso-

nance Data Bank (BMRB) (257). The new Mobi 2.0 software (244) is used to extract

LIPs and disorder information from PDB files. Disorder is encoded by three different

parameters: high-temperature, missing and mobile residues. High-temperature residues

are detected from B-factor regions for X-ray and cryo-EM structures using a threshold

proportional to the resolution of the structure. Missing residues are available for all

experimental types and obtained comparing the experimental sequence (i.e. PDB SE-

QRES entries) with the observed residues in the structure (i.e. PDB ATOM entries).
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A mobility estimate is provided for NMR structures by comparing C displacement and

local conformations in different aligned models (256). LIPs are identified by compar-

ing intra- versus inter-chain contacts calculated using RING (258). The closest atoms

between two residues are used to establish a contact which is then distinguished by

chemical type (e.g. hydrogen bond, salt bridge, stack). LIPs are identified as any

region where the number of inter-chain contacts is at least two times the number of

intra-chain contacts (244). MobiDB 3.0 better exploits the power of NMR spectroscopy

to probe the structural properties of proteins in solution, as well as their dynamics on

a wide range of timescales (259). Chemical shifts quantify structural fluctuations of

proteins up to the millisecond timescale and are relatively easy to measure. Using chem-

ical shifts to obtain information about the statistical populations of different structural

motifs allows for a more comprehensive structural description of proteins in solution

than static structures or binary definitions such as ordered and disordered (259). Mo-

biDB 3.0 uses chemical shift data from BMRB directly as reported without applying

chemical shift re-referencing methods. The software packages δ2D (260) and Random

Coil Index (RCI) (261) are used to calculate two-dimensional ensembles in terms of

secondary structure populations (259) and backbone flexibility. Secondary structure

populations are calculated only for residues with at least three atom types with mea-

sured chemical shifts, as using fewer chemical shifts results in less accurate mappings of

the populations (260). MobiDB 3.0 reports the experimental conditions at which the

chemical shifts were measured as the structural properties of some proteins can change

drastically between different conditions (e.g. binding partners, lipids, pH) and these

can help elucidate protein function (259). When an entry in MobiDB is associated to

multiple chemical shifts, an overview of the predominant secondary structure confor-

mation is provided in a consensus track. This can be expanded in the feature viewer

to show experimental conditions such as pH, temperature, binding partners, molecular

state, sample information and the title of the corresponding BMRB entries.

New predictors MobiDB 3.0 includes the same set of disorder predictors used in

the previous release: ESpritz (183), IUpred (262), DisEMBL (130) and VSL2b (263).

Consensus generation is handled by MobiDB-lite (51), which uses a stronger majority

threshold and enforces at least 20 consecutive disordered residues to provide highly

specific predictions. This is completed by a continuous representation of the fraction of
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methods predicting disorder for each residue. DynaMine (264), Anchor (265) and FeSS

(185) are now also part of the annotation pipeline. DynaMine (264) predicts back-

bone flexibility where 1.0 means complete order (stable conformation, i.e. rigid) and

0 means fully random bond vector movement (highly dynamic, i.e. flexible). Anchor

predicts binding regions located in disordered proteins, providing LIP annotations for

all proteins in the database. FeSS is a component of the FELLS method (185) pro-

viding three-state (helix, sheet, coil) secondary structure propensity. FeSS prediction

confidence can be interpreted similarly to the dynamic behavior measured by 2D in

chemical shifts, i.e. a propensity to remain in a given state of secondary structure. The

complete list of tools is available in Table 4.10.

Tool Type Description

Mobi 2.0 Indirect Missing, high-temperature and mobile residues from PDB structures

RING 2.0 Indirect Residue interactions from PDB structures, used to define LIPs

RCI Indirect Random coil index from BMRB chemical shifts

2D Indirect Secondary structure populations from BMRB chemical shifts

DynaMine Prediction Random coil index

FeSS Prediction Secondary structure prediction component of FELLS

MobiDB-lite Prediction Long disorder based on consensus

DisEMBL Prediction Disorder. Versions: 465, Hot-loops

ESpritz Prediction Disorder. Versions: DisProt, NMR, X-ray

IUPred Prediction Disorder. Versions: Short, Long

VSL2b Prediction Disorder

GlobPlot Prediction Globular regions, used as opposite of disorder

SEG Prediction Low complexity

Pfilt Prediction Low complexity

Table 4.10: Overview of tools used into MobiDB 3.0. (174)

4.3.1.2 Usage and annotated data

MobiDB now contains all sequences from UniParc, the most comprehensive non-redundant

set of protein sequences. Entries are identified also by UniProtKB (250) accession

numbers and can be retrieved by organism, taxonomy and other identifiers provided by

UniProtKB. Prediction results are combined with indirect disorder evidences derived

from PDB data (using Mobi 2) and data extracted from manually curated third party

databases. MobiDB annotations are used by DisProt (251) curators to guide the an-

notation of disorder regions. MobiDB data is made available to the public via a web
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interface allowing extensive search functionalities and RESTful services for program-

matic access. MobiDB 3.0 includes a pre-calculated consensus for all entries allowing

real-time statistics and download of entire datasets in different formats directly from the

web interface. The new database schema makes it possible to perform complex search

queries and to generate custom datasets, for example retrieving all entries with manu-

ally curated annotations. The MobiDB update has been automatized and is scheduled

every three months due to the high computational cost of generating predictions for

new sequences.
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4.4 Low complexity sequences

A common feature of TRPs, IDPs and other NGPs is that they are characterized not

only by a non-canonical structure, but also by a non-canonical sequence which hampers

their detection and analysis. In particular, several NGPs are characterized by low

complexity (LC) sequences. A low complexity (LC) sequence often shows malignant

aggregation propensity, therefore flanking identical sequences are prone to diverge,

as already discussed in section 4.1.1. This originated a continuum between repeated

structures, disordered proteins and aggregation-prone domains which is not easy to

explore from the structural point of view and even more complicated as regards the

relationship between the sequences of these proteins. This chapter presents a critical

review focusing on the definition of sequence features of LC regions and their connection

with structure. We presented statistics and methodological approaches that measure

low complexity and related sequence properties. Composition bias is often associated

with low complexity and disorder, but repeats, while compositionally biased, might

also induce ordered structures. We illustrated this dichotomy, and more generally the

overlaps between different properties related to LC regions, using examples. We argued

that statistical measures alone cannot capture all structural aspects of LC regions and

recommend the combined usage of a variety of predictive tools and measurements.

While the methodologies available to study LC regions are already very advanced, we

foresee that a more comprehensive annotation of sequences in the databases will enable

the improvement of predictions and a better understanding of the evolution and the

connection between structure and function of LC regions.

4.4.1 Disentangling the complexity of low complexity proteins

This section presents statistics and methodological approaches that measure low com-

plexity and related sequence properties. Composition bias is often associated to low

complexity and disorder, but repeats, while compositionally biased, might induce or-

dered structures. This study illustrates this dichotomy, and more generally the overlaps

between different properties related to LCRs, using examples.
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AC ID Description Length (aa) Organism

Q38PT6 Q38PT6 9HEXA 6.5 kDa glycine-rich antifreeze protein 103 Hypogastrura harveyi

P35226 BMI1 HUMAN Polycomb complex protein BMI-1 326 Homo sapiens

P20226 TBP HUMAN TATA-box-binding protein 339 Homo sapiens

P04637 P53 HUMAN Cellular tumor antigen p53 393 Homo sapiens

P32583 SRP40 YEAST Suppressor protein SRP40 406 Saccharomyces cerevisiae

P34945 SYS THET2 Serine-tRNA ligase 421 Thermus thermophilus

P0C2W0 YADA2 YEREN Adhesin YadA 422 Yersinia enterocolitica

P02930 TOLC ECOLI Outer membrane protein TolC 493 Escherichia coli (s. K12)

P35637 FUS HUMAN RNA-binding protein 526 Homo sapiens

P49711 CTCF HUMAN Transcriptional repressor CTCF 727 Homo sapiens

P15502 ELN HUMAN Elastin 786 Homo sapiens

P42566 EPS15 HUMAN Epidermal growth factor receptor substrate 15 896 Homo sapiens

Q9BVN2 RUSC1 HUMAN RUN and SH3 domain-containing protein 1 902 Homo sapiens

P10275 ANDR HUMAN Androgen receptor 920 Homo sapiens

Q8WVM7 STAG1 HUMAN Cohesin subunit SA-1 1258 Homo sapiens

Q9NZW4 DSPP HUMAN Dentin sialophosphoprotein 1301 Homo sapiens

Q8ZL64 SADA SALTY Autotransporter adhesin SadA 1461 Salmonella typhimurium

P02452 CO1A1 HUMAN Collagen alpha-1(I) chain 1464 Homo sapiens

A3M3H0 ATA ACIBT Adhesin Ata autotransporter 1873 Acinetobacter baumannii

P24928 RPB1 HUMAN DNA-directed RNA polymerase II subunit RPB1 1970 Homo sapiens

P42858 HD HUMAN Huntingtin 3142 Homo sapiens

Table 4.11: Illustrative set of proteins with LCRs, ordered by the length of the protein. License:

Attribution-NonCommercial-NoDerivatives 4.0 International.

4.4.1.1 The many shades of complexity

To illustrate the overlap between amino acid composition, periodicity and structure

we use a 2D diagram where we can compare proteins (or regions) of various degrees

of complexity from intermediate to unbiased (”normal”) sequences according to their

compositional bias and repetitiveness (Figure 4.22). This diagram applies ideally to

sequence regions with lengths in the range of 10 to 50 residues, for the sake of sim-

plicity (considering that long structural repeats have a length of about 50 residues

(79) and fragments of less than 10 residues would suffer from low-count statistical ef-

fects). Suppose that we compute for one such region two simplified measurements of

complexity: one reflecting variability of amino acid usage (compositional bias) and the

other indicating periodicity. For example, AEEAEAAEEA and a perfect direpeat like

AEAEAEAEAE have the same amino acid composition (50% A, 50% E) but differ-

ent periodicities. As a simplified measurement of amino acid variation, we can take

the percentage of the most frequent amino acid in the region (see (120) for another

measure of repeat perfection). For example, given the ten-amino acid sequence ACDE-

FEGEIE, the most abundant amino acid is E, at 40%. To measure repetitiveness, we

could calculate how distant this sequence is from a sequence with perfect repeats. A
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simple measure for that distance is how many residues we need to mutate to convert

the query sequence to a perfect repeat. The simplest instance of a repeat is the ho-

morepeat; any sequence with n% for the most frequent amino acid can be converted to

a homorepeat by changing the other residues to the most frequent residue, i.e. 100% -

n%. For our example sequence, ACDEFEGEFE, we would have to change six residues

to E, 60%, to have 10 E residues. This sets the upper limit to this value. But if a less

trivial repeat can be found using fewer mutations, this second value will be necessarily

lower. In this case, we can change ACDEFEGEFE to FEFEFEFEFE with only 40%

of changes. Using these metrics, we can conceptually position in the diagram (Fig-

ure 4.22) examples of regions of variable degrees of complexity (y-axis) and repetition

(x-axis). All perfect repeats are placed at x = 0, and homorepeats have y = 100%.

Direpeats have y = 50%, AABAAB repeats have y = 66%, ABCABC repeats have y

= 33%, and so forth. Proteins without repeats are placed in the trivial diagonal, with

a y value for the most frequent amino acid and x = 100% - y. A protein composition

with all 20 amino acids equally abundant sets 5% as the lower limit for y. Rather,

most proteins will have unbiased compositions where the most abundant amino acid

forms around 10% of the sequence (e.g. aspartate 10.7% or glutamate 9.9% in (266)).

Then, unbiased proteins, far from repeats and with the expected amino acid variation,

will populate the bottom-right corner of the diagram. We can imagine intermediate

situations, which can be constructed by adding mutations from regions with perfect re-

peats. In this manuscript, we will discuss the hypothesis that there is a border between

LCRs influenced by periodicity (i.e., repetitiveness), so that given two LCRs with the

same amino acid composition, the one with more repetitiveness might be prone to form

a structure, whereas the other one would have a stronger tendency to be disordered.

This would give a slant to the low complexity border (line separating the ”Low com-

plexity” area, Figure 4.22). Not all repeats are LCRs, but LCRs tend to be close to

short repeat sequences, since groups of short repeats have necessarily a limited number

of amino acids, and thus can be considered a low complexity unit. In other words, low

complexity can only be compositionally biased, while compositional bias can be of low

or high complexity. In order to explore how the different measurements of complex-

ity and repetition relate to this graphical representation in reality, we will take a few

proteins with LCRs, repeats of various types, and a range of structures, measure their

complexity using available methods and locate these regions in the model graph. Note
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the diversity of biological situations where low complexity plays a relevant role. In the

following sections, a series of methods that are widely used to detect low complexity in

protein sequences are introduced and applied to the dataset of the selected 21 proteins.

The methods are presented in chronological order, to facilitate the understanding of

the historical context within which each method was developed. In each section, we

discuss the features and possible functions of detected LCRs, to illustrate the current

knowledge on those regions and directions to obtain further insights about them. Re-

lated structural aspects and methods that take them into account are discussed after

this part.

SEG (1993): Detection of LCRs SEG was the first algorithm developed to specif-

ically detect LCRs within protein sequences (267), as masking of LCRs has been found

to improve the detection of homology (268). This method is based on the concept of

local complexity of a subsequence defined for a window of length L. Such subsequences

can be represented in the form of a state complexity vector, where each position repre-

sents the number of amino acid occurrences in that window. For any state complexity

vector, its compositional complexity and probability of occurrence of the particular

complexity state can be computed. Based on these values any subsequence can be clas-

sified as a low or high complexity subsequence. Here, we applied SEG to the collected

set of proteins (Table 4.11) to characterize their LCRs and putative function based

on their sequence homology with other non-related proteins. As proposed in (269), we

used the SEG algorithm with intermediary parameters (these are window length W=15,

trigger complexity k1=1.9, extension complexity k2=2.5). We found that twelve pro-

teins from the dataset contain a total of 46 LCRs, with the longest having 760 residues

(dentin sialophosphoprotein). Moreover, both elastin and Collagen alpha-1(I) chain

have eleven LCRs each. On average, the twelve LCR-containing proteins have 3.8

LCRs with an average length of 67 residues. Similarity between LCRs in different

proteins can be used to propose hypotheses about the function of the similar proteins.

However, many caveats apply i.e. in the case of low complexity sequences, matching

hits do not guarantee evolutionary relationship even with statistically significant scores.

We illustrate this with one of our example proteins: dentin sialophosphoprotein, which

contains the longest LCR of all the examples. We used the NCBI BLAST search engine

with default options to find other proteins with similar LCRs. Dentin sialophospho-

protein (DSPP; UniProt:Q9NZW4) is cleaved into two chains: dentin phosphophoryn
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(DPP; amino acids 16-462) and dentin sialoprotein (DSP; amino acids 463-1301). A

very long LCR was detected in DSP covering most of the sequence (amino acids 511-

1270). DSP is an extracellular matrix protein synthesized by odontoblasts. It is highly

acidic, and the phosphorylated protein possesses a strong affinity for calcium ions.

Therefore, DSP in the extracellular matrix can promote hydroxyapatite nucleation and

can regulate the size of the growing crystal (270, 271, 272). Apart from its calcium

binding property, DSP can initiate signaling functions from the extracellular matrix

(273, 274, 275, 276). We found a high degree of similarity of the DSP fragment of

DSPP to two hypothetical proteins, BCR41DRAFT 427036 (NCBI Reference Sequence

AC: XP 021875136.1) from Lobosporangium transversale (a fungus) and JF76 17750

(GenBank AC: KJY54264) from Lactobacillus kullabergensis (a bacterium). Both are

highly acidic sequences, rich in serine and aspartic acid. The bacterial protein possesses

three MucBP domains, which are characteristic for peptidoglycan binding proteins; the

presence of these domains suggests a function outside of the cell, probably in adhesion.

CBR type Nr.CBRs Nr.CBRP %CBRPs Nr.CBRPs in UniProt %CBRPs in UniProt

A 4 4 19 19465 19.5

D 1 1 4.8 5293 5.3

E 8 7 33.3 25438 25.5

G 7 5 23.8 8771 8.8

K 2 1 4.8 14936 15

N 2 2 9.5 5428 5.4

P 9 8 38.1 12000 12

Q 5 5 23.8 9149 9.2

S 14 13 61.9 25081 25.1

T 2 2 9.5 4216 4.2

R 0 0 0 3768 3.8

C 0 0 0 1083 1.1

H 0 0 0 2584 2.6

I 0 0 0 2178 2.2

L 0 0 0 2422 2.4

M 0 0 0 766 0.8

F 0 0 0 756 0.8

W 0 0 0 274 0.3

Y 0 0 0 562 0.6

V 0 0 0 1487 1.5

Table 4.12: Compositionally biased regions (CBR) and CBR containing Proteins (CBRPs) detected

by CAST. A single protein sequence may contain one or more CBRs of the same or even different residue

types. The last two columns refer to UniProt/Swiss-Prot entries (release 2014 05) as retrieved from LCR-

eXXXplorer. License: Attribution-NonCommercial-NoDerivatives 4.0 International.
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of 40). All 21 proteins from the dataset were detected to contain at least one CBR,

with 54 CBRs in total (mean: 2.6 CBRs/sequence, median: 2, standard deviation: 1.5)

(Table 4.12). The number of CBRs per protein vary between 1 (n=7 proteins) and 5

(n=3 proteins). CBRs vary considerably in length, with the shortest one being just 10

residues long (a P-rich region in the androgen receptor) and the longest being a S-rich

region extending over 1436 residues covering almost the entirety of the autotransporter

adhesin SadA. It is worth mentioning that in our dataset CAST did not detect half of

the possible CBR types, namely CBRs enriched in R, C, H, I, L, M, F, W, Y and V

residues. Some of these CBR types are indeed rare in the overall sequence database

(Table 4.12). Our analysis stresses the fact that composition bias is related to low

complexity (as discussed in the complexity diagram) but is more widely spread and

commonly found in many proteins. Along these lines, of the 54 CBRs detected in this

dataset using CAST, only 12 instances correspond to sequences with high sequence

complexity values (k2 > 2.5), illustrating that the majority of CBRs in this dataset

are also LCRs. Interestingly, these 12 CBRs with high complexity values correspond to

relatively long regions (often spanning along hundreds of residues) and, nevertheless,

dominated by serine-rich tracts (9 out of 12). Importantly, CAST offers the possibility

to explore another dimension of LCRs, which is the residue type characterizing each

region. In addition, when plotting the CAST score normalized by the sequence length

for each detected CBR against the Shannon entropy (Figure 4.23), we observe a cor-

relation sorted in a triangle with many points crowding the bottom-right corner (high

entropy and low normalized CAST score), which is reminiscent of the low complexity

diagram (Figure 4.22).

SIMPLE (2002): Detection of tandem and cryptic repeats The tool SIM-

PLE was first developed in 1986 to quantify the amount of simple sequences in DNA

(278). A version for proteins was developed in 2002 (279). The original aim of SIMPLE

was to identify genomic sequences with a propensity to undergo replication slippage

and to quantify the concept of cryptic simplicity, which corresponds to one or more

short sequence motifs within a sequence region, above a baseline, random concentra-

tion. The 2002 implementation extends this original concept to detect comparably

cryptic sequences at the amino acid sequence level. To provide a rich overview of the

repeat landscape of the 21 proteins in our dataset, we analyzed them using an updated
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ID Nr.repeats identified Characteristic repeat(s) frequency

Q38PT6 9HEXA 23 G (19)

TBP HUMAN 336 Q (41)

P53 HUMAN 11 AP (6)

SRP40 YEAST 794 S (168)

FUS HUMAN 175 G (60)

CTCF HUMAN 1 EP (1)

ELN HUMAN 350 A (30), GV (28)

EPS15 HUMAN 11 DPF (6)

RUSC1 HUMAN 6 PP (3)

ANDR HUMAN 351 Q (25), G (23)

DSPP HUMAN 3082 S (459)

SADA SALTY 3 NTT (2)

CO1A1 HUMAN 113 GP (17)

ATA ACIBT 21 NTK, TKTEL (3)

RPB1 HUMAN 948 SP (96)

HD HUMAN 211 P (27)

Table 4.13: Numbers and major classes of repeats identified by SIMPLE analysis. License: Attribution-

NonCommercial-NoDerivatives 4.0 International.

version of the SIMPLE tool (280). Significant repeat motifs of length 1 to 10 were

identified at a per-analysis probability cutoff of 0.99 (aggregate cutoff probability 0.9)

by awarding a score of 1 for the selected length and 0 for all other lengths. Analyses

were carried out using an 11-residue moving window. Sixteen of the sequences analyzed

using the SIMPLE method contained significant repeat motifs to some degree (Table

4.13). SIMPLE analysis provides two types of motif information: motif identity and

motif hit frequency information defined as the frequency with which a given motif is

detected as being significantly repeated within a given sequence. As examples, three of

the proteins in the test set (huntingtin, TATA-binding protein and androgen receptor)

contained significantly repeated motifs of all possible Qn motifs (from n=1 to n=10),

characteristic of a simple polyQ repeat. However, the most prominently repetitive

protein in the set was Dentin, which, as described before, contained numerous highly

repeated motifs with serine as the primary repeated amino acid. Examining the list

of motifs detected in the most repetitive proteins in the dataset reveals many similar

or closely related motifs. To portray these relationships, the motifs can be represented

graphically. As an example, Figure 4.24 shows a motif graph for Collagen alpha-1(I)

chain. The representation links different motifs identified in the sequence with their

sequence overlap. The example in Figure 4.24 shows a closely-knit set of motifs linked

to the submotifs PGP and GPP alongside others linked to PGA. Some motifs in this
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nized from the amino acid sequence by their less favorable estimated energies (282). All

the 21 sequences in our dataset contained at least one disordered segment, and nearly

45% of residues were predicted as disordered. This was lower compared to the average

residues predicted by CAST, but higher than those predicted by SEG (15%). Table

4.14 and Figure 4.25 describe the overlap between the various methods. The matrix of

overlaps is non-symmetrical (Table 4.14A), as the overlap is computed on the percent-

age of residues with a given feature. For example, 81% of SEG low complexity residues

are predicted to be in disordered regions by IUPred. However, only 27% of residues

predicted to be disordered by IUPred are found in a SEG detected region. Overall,

there is a fairly good agreement between the methods that detect low complexity and

the disordered regions detected by IUPred. Between the methods that detect low com-

plexity, the largest agreement (relative to random overlap) was observed in the case

of SEG and SIMPLE, likely because both produce relatively conservative predictions

(Table 4.14B). Interestingly, by this metrics, the overlap between IUPred and the low

complexity methods was not much lower as the overlap between CAST and the other

methods.

The low complexity diagram: a proof of principle The low complexity (LC) dia-

gram described before (Figure 4.22) allows us to situate and compare protein sequences

in a framework that reflects two simple properties that are intimately associated to low

complexity: compositional bias and repeats. These two features are measured by com-

puting the abundance of the most frequent amino acid in the tract, and by the fraction

of residues that needs to be mutated to have a perfectly repeated tract, respectively.

We calculated the properties that define the two axes of the LC-diagram for a dataset of

globular monomeric proteins (globular), a dataset of disordered proteins (IUP) (283),

and for fragments of our own protein dataset (Table 4.11) determined to be of low

complexity by the SEG, CAST, and SIMPLE methods (with a minimum length of 10

residues) (Figure 4.26). To place them in the LC-diagram, the percentage of the most

common amino acid in each sequence was determined as a function of the percentage

of the mutations to form perfect repeats. The latter quantity was calculated in a brute

force way by considering all potential fragments of the sequence of lengths between 1

and 30. From these fragments, an artificial sequence of perfect repeats was generated

by iterating these elements to be long enough to cover the original sequence region. At

least three repeats were required, therefore only fragments no longer than a third of
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do not overlap with LCRs. For example, the recently solved structure of Huntingtin

(285) does not resolve the N-terminal 90 amino acids, which contains a CBR including

the polyQ whose expansion causes Huntingtons disease, and the 2622-2660 fragment,

both of which practically overlap to the regions identified as LCRs in our SEG analysis.

Analysis of the structural properties of low complexity sequences The struc-

tural properties of LCRs can be predicted with several bioinformatics methods. To

classify the incidence of different phenomena in the dataset, we used FELLS, a pre-

dictor that aggregates sequence and structural propensity predictions in a single view

(286); this includes secondary structure, LCR, disorder and aggregation predictions dis-

played along sequence positions. We focused on four predictions: LCRs (SEG), disor-

der (ESpritz-NMR), aggregation propensity (Pasta 2.0 (287)) and secondary structure

(FESS). We classified each protein in the dataset as belonging to one category (low

complexity, disordered, aggregating, structured) if more than the 30% of its sequence is

predicted to be in that state. The results are shown in a Venn diagram (Figure 4.27). In

our dataset, focused on LCRs, only one protein falls outside the LCR and/or disorder

categories. This is Huntingtin, the longest of the 21 proteins (3142 amino acids) known

to harbor homorepeats, alpha-solenoid repeats and globular domains (285, 288). In

agreement with the sequence analyses presented before, we observe a large overlap be-

tween LCR and disorder (13 of 21 proteins), including proteins such as the Glycine-rich

antifreeze protein (Q38PT6 9HEXA), Dentin (DSPP HUMAN), and human RNA bind-

ing protein FUS (FUS HUMAN). Regarding aggregation, while three of the six proteins

classified as aggregating are also in the LCR category (TBP HUMAN, RPB1 HUMAN

and Q38PT6 9HEXA), we need to look at the sequence level (Figure 4.28). For exam-

ple, for both TBP HUMAN and RPB1 HUMAN the regions with aggregation propen-

sity (minima in the aggregation score plot) do not overlap with the LCRs (Figure 4.28).

Even in FUS, a largely disordered protein with generally low sequence complexity, its

few regions presenting aggregation propensity are localized in the small ordered part of

the protein (Figure 4.28). A possible explanation of this is that LCRs and aggregation

prone regions have different amino acid frequencies. Hydrophobic residues inducing

aggregation are probably less abundant in LCRs. This was the case in our dataset (see

Table 4.12 for CBRs). Therefore, our small dataset supports the previous association

between LCR and disorder but not to aggregation propensity. However, TBP leads
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to another turn in our story, by bringing another player relating LCR, structure and

aggregation: homorepeats. TBPs LCR is a large stretch of consecutive glutamines

(positions 55-95), which is interestingly predicted both in helical conformation and as

a disordered region. These contradictory predictions are most probably due to the lack

of detailed understanding of the conformational preferences adopted by homorepeats.

In the next section, we discuss the challenges posed by homorepeat structure prediction

and determination, and the strategies that have been proposed for their study.

Deciphering the structural basis of homorepeat function Homorepeats are an

extreme case of low complexity and in this respect, they can help us to illustrate the ori-

gin of the difficulties in relating sequence and structure in LCRs. In homorepeats, the

presence of multiple copies of a single amino acid in a protein region confers very specific

physicochemical properties to the hosting protein and enables it to perform specialized

biological tasks (289). Despite their relevance, the connection between amino acid se-

quence, 3D structure and biological function in homorepeats remains poorly understood

due to the challenges they pose to structural biology. Homorepeats and short repeats

are found in disordered regions, a property that typically precludes their crystalliza-

tion. In the case of polyQ, there are, however, examples that have been crystallized in

the presence of fusion proteins (290, 291) or specific antibodies (292, 293). These stud-

ies yield contradictory results regarding the secondary structural preferences of polyQ

tracts. This observed structural variability most likely originates from the inherent

conformational plasticity of the homorepeat regions, which cannot be captured in crys-

tallographic studies. Nuclear Magnetic Resonance (NMR), a high resolution structural

technique in solution, seems more adapted to study homorepeats. However, the sim-

ilarity of the nuclear resonance frequencies within homorepeats have hampered these

studies. Some pioneering NMR studies of polyQ homorepeats in Huntingtin (294, 295),

and the androgen receptor (296) have shown these studies are possible. These examples

show that the N-terminal flanking region of the polyQ adopts an -helical conformation

that extends towards the homorepeat. In the absence of this structured flanking region,

polyQ adopts a random coil conformation (296, 297). Homorepeats are frequent in our

LCR-focused set of 21 proteins. Using a relatively lax cutoff of 4 residues of the same

type in a window of 6 (which was identified as already inducing structural effects for

polyQ (298)), only TOLC ECOLI has no homorepeat region (as detected with dAPE
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(299)), hinting at the large overlap of LCRs with homorepeats. While there is a variety

of homorepeat types, we can observe preferences in particular sequences, like polyS in

SRP40 YEAST, DSPP HUMAN and RPB1 HUMAN, polyP in CO1A1 HUMAN, or

polyG in FUS HUMAN. Elastin has many polyA and polyG tracts, since these residues

participate in motifs discussed above that surround and support functional lysines and

prolines. PolyQ is present once in TBP HUMAN (followed by polyA), EPS15 HUMAN,

HD HUMAN, and three times in ANDR HUMAN. All overlap the predicted regions

by CAST (which identifies the Q-rich region) and IUPred (indicating disorder). While

there was no overlap with FELLS (PASTA 2.0) indicating aggregation, the aggregation

propensity regions predicted by ArchCandy (300) do overlap with the three regions (in

TBP, HD and ANDR) that are involved in polyQ repeat expansions causing disease

(301). This result suggests that ArchCandy detects aggregation of the type involved

in CAG/CAA triplet expansions. The ArchCandy analysis of our dataset identifies

aggregation regions in a subset of the proteins identified by PASTA 2.0, suggesting

that distinct methods for detection of aggregation have different sensitivity depending

on the sequence.

Analysis of repeating patterns of charged regions/residues As discussed above,

repetition within LCRs can result in structure and function. Another type of repetition

that can occur within LCRs, beyond homorepeats, are those with alternating blocks

of oppositely charged residues. To our knowledge, the only such motif that has been

characterized in detail is the Charged Single Alpha-Helix (CSAH), also often referred

to simply as Single Alpha-Helix (SAH). In these regions, generally 3 to 4 negatively

charged residues are followed by 3 to 4 positively charged ones, although only few of

such repeats are perfect. The structure of these segments is an alpha-helix that is stable

in water as a monomer. CSAH segments can act as rigid linkers, rulers or lever arms in

various proteins (302, 303, 304), and may also behave as constant force springs [PMID

25122759]. CSAHs are very rare in protein sequences, and in a number of cases are

adjacent to coiled coil segments. One of the most well-characterized segments is found

in myosin 6, where it forms the extended lever arm (302). There are currently three

methods for detecting CSAHs in protein sequences, Waggawagga (305), FT CHARGE

and SCAN4CSAH, which are generally used together for consensus predictions (306).

Of these, FT CHARGE identifies repeating charge patterns of any frequency, not just

123





4.4 Low complexity sequences

those characteristic of CSAHs. We applied the FT CHARGE method (306) allowing

all repeat frequencies to our dataset of 21 proteins. In agreement with their known low

frequency, we only found CSAHs in two of the 21 proteins: a short region in Huntingtin

(HD HUMAN, residues 2633-2664), and a 120 amino acid segment in the human tran-

scriptional repressor CTCF (CTCF HUMAN, residues 557-673, Figure 4.29). The first

20 residues of the CTCF region largely match the 11th, atypical Zinc-finger motif of the

protein as annotated in UniProt (positions 555-577). The structural information avail-

able for this protein suggests that its C-terminal part is intrinsically unstructured (307).

However, this is typically found for CSAHs because, due to their highly charged nature,

they are almost always predicted to be intrinsically disordered for most of their length

(308). However, CSAHs can adopt a stable conformation as monomers (e.g. (302)).

The notion that several structural motifs formed by LCRs are predicted to be intrin-

sically disordered is often found in the literature (309, 310, 311, 312). Most notably,

there are many segments that are predicted to form alpha-helical coiled coils and also

to be intrinsically disordered. In the case of coiled coils this can be justified on the basis

that coiled coil forming regions are generally viewed as disordered in their monomeric

state and they adopt helical conformation upon dimerization/multimerization (313).

Collagen triple-helical motifs are another example of similar behavior, providing a case

of folding upon binding/multimerization (314). In the next section, we study the over-

laps of these structural predictions to LCRs.

ID dis only dis dis + cc dis + coll cc only cc coll only coll

Q38PT6 9HEXA 0 0 0 0 0 0 48 48

SYS THET2 0 0 0 0 63 63 0 0

EPS15 HUMAN 287 228 59 0 161 102 0 0

STAG1 HUMAN 202 202 0 0 31 31 0 0

CO1A1 HUMAN 1168 390 0 778 0 0 778 0

ATA ACIBT 546 450 96 0 96 0 0 0

Table 4.15: Number of residues predicted to be in different structural states. (dis) disordered, (cc)

coiled coils, (coll) collagen. License: Attribution-NonCommercial-NoDerivatives 4.0 International.

Overlap of structural predictions and LCRs Our previous analyses suggest that

LCRs tend to lie in regions without much structure. However, there are LCRs with

repetitions that seem to provide structure, even multiple structures influenced by in-

teractions with protein partners. To illustrate the overlaps of different structural pre-
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dictions and LCRs, we use again our protein dataset. Overlaps of predictions were

computed in three steps. First, we applied IUPred (282), VSL2B (315), ncoils (316),

Paircoil2 (317) and hmmsearch (318) using Collagen.hmm (Pfam family PF01391), all

with default parameters. Then, using in-house scripts, we computed (i) the consensus

of the two disorder predicting methods, IUPred and VSL2B (only regions with a mini-

mum of 30 residues predicted by both methods were considered), and (ii) the consensus

of the coiled coil predicting methods, ncoils and Paircoil2 (only regions with a mini-

mum of 21 residues predicted by both methods were considered). Finally, we computed

the number of residues predicted to be disordered, located in coiled coil regions or in

collagen helices (according to their similarity to collagen evaluated with hmmsearch).

No residue was predicted to be both in a collagen helix and in a coiled coil: such

overlap is unrealistic because of the incompatible structural preferences of amino acids

(both Gly or Pro, abundant in collagen helices, are very rare in alpha-helical regions).

Collagen and coiled coils were predicted for two and four proteins, respectively (Table

4.15). Full overlap to disorder was found for the collagen predicted for Q38PT6 9HEXA

(Glycine-rich antifreeze protein) and partially for the coiled coils in EPS15 HUMAN

(epidermal growth factor receptor substrate 15) and ATA ACIBT (adhesin autotrans-

porter). While these overlaps might reflect reality in terms of dynamic rearrangements

of the segments, the general wisdom could be that the more specific prediction should

usually be considered, meaning that coiled coil and collagen predictions have prevalence

over disorder predictions. In this respect, disorder detection is regarded as a method

to recognize non-globular sequences that might either form fibrillar structures or be

disordered in their functional form, depending, among others, on their repetitiveness.

Multimerization: a final variable adding complexity to the study of LCRs

As discussed above, structural variability and folding upon binding are properties that

can characterize some LCRs. Thus, the structural behavior of LCRs is context de-

pendent. The interactions of LCRs with either additional copies of the same molecule

(homomultimers) or other proteins/(macro)molecules (heteromeric complexes) is a key

factor and largely influences the ability of the sequence to adopt a specific structure

or interchange between conformations. Current methods are typically either able to

predict the structure of the isolated molecule or the propensity to form specific struc-

tures, which typically stem from the underlying repeated sequence. The limitation of
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such methods is that they usually predict homomultimeric structures, because it is

impractical to consider the sequence information of all possible interaction partners.

However, there are efforts to identify interaction motifs that might fold upon partner

interaction (e.g. ANCHOR (319)). Indeed, application of this method to our protein

dataset indicates some cases where this property applies (Figure 4), and, while there

is a general overlap of folding propensity overlapping LCRs, there are also examples of

striking complementarity (e.g. DSPP HUMAN).

127



4. RESULTS & DISCUSSION

4.5 Protein aggregation and protein solubility

Finally, we exploited the knowledge acquired in the studies described in sections 4.1, 4.2,

4.4 and 4.3 to design a novel method, SODA, to predict changes in protein solubility.

SODA uses the propensity of the protein sequence to aggregate as well as intrinsic dis-

order, plus hydrophobicity and secondary structure preferences derived from sequence

features and complexity to predict a sequence-based solubility profile. SODA is able

to evaluate solubility changes introduced by a mutation by comparing the profiles of

the wild type (WT) and mutated sequences, and it is compatible with different types

of variation including point mutations, deletions and insertions. The comparison to

other recently published methods shows that SODA has state-of-the-art performance

and is particularly well suited to predict mutations decreasing solubility. The method is

fast, returning results for single mutations in seconds. A usage example estimating the

full repertoire of mutations for a human germline antibody highlights several solubility

hotspots on the surface.

4.5.1 SODA: Prediction of protein solubility from disorder and ag-

gregation propensity

SODA is a novel method to predict the effects of variations on protein solubility. It is

based on the disorder and aggregation propensities of a protein plus secondary struc-

ture and hydrophobicity in comparison to the same values of its mutated form. The

difference between the two determines the effect on solubility of the variation. SODA is

entirely based on sequence features and allows to quickly scan a large number of muta-

tions. The web server was designed to allow large-scale annotation through its RESTful

web service, while the user interface provides an intuitive form to guide detailed se-

lection of mutations based on sequence solubility plot and, if the protein structure is

given, residues accessibility to solvent. SODA can be useful for several applications.

Its main envisaged application is in protein engineering, where predicting the variation

in protein solubility upon mutation can help design proteins with more favorable sur-

face properties. This can be of interest to pharmaceutical companies designing novel

antibodies, as demonstrated by the usage example, as lack of solubility is a bottleneck

in the development of biologicals. In addition, SODA may be of use in the context of
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studying the impact of natural protein variants and their potential effect on disease

insurgence.

4.5.1.1 Benchmarking

In Table 4.16, SODA performance using only sequence information is compared with the

published solubility predictors CamSol (320), SOLpro (321) and Proso II (322). SODA

correctly predicts all variations and its accuracy is higher than the other tested methods,

even though the dataset is biased towards positive examples increasing solubility.

Trevino Miklos Tan Dudgeon Total Accuracy

SolPro 15 / 22 3 / 3 1 / 1 21 / 30 40 / 56 71.4

PROSO II 16 / 22 3 / 3 1 / 1 12 / 30 32 / 56 57.1

CamSol 22 / 22 3 / 3 1 / 1 28 / 30 54 / 56 96.4

SODA 22 / 22 3 / 3 1 / 1 30 / 30 56 / 56 100.0

Table 4.16: SODA is compared to three published methods. The dataset is the same used in the recent

CamSol paper (187) and includes 19 proteins and 56 variants from four publications: Trevino (188), Miklos

(189), Tan (190) and Dudgeon (191). Accuracy is calculated as the percentage of correct predictions over

the dataset size.

4.5.1.2 Server description

SODA provides two types of analysis, namely mutation mode and full-protein mode.

The first provides the solubility change on sequence mutation. The second generates

a profile describing the contribution to solubility of each sequence position deduced

from the effect of all possible mutations. The mutation mode requires the sequence

and a list of mutations as input. The full-protein mode requires just the sequence since

SODA automatically generates all possible single point variations (19 amino acid al-

ternatives x sequence length) and then calculates the fraction of mutations increasing

(and decreasing) the solubility for each position. In both cases, a PDB structure can

be provided to label buried/exposed residues. The input page is the same for both

modes but after input the route splits. While the mutation mode requires only sec-

onds, full-protein analysis is more time consuming, with linear complexity proportional

to sequence length. For example, evaluating a protein of 350 residues takes about 3 h.

The SODA interface is straightforward to use. The home page features an input form,

which accepts either a sequence or PDB structure. When the structure is provided (file
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or ID) the server parses the PDB file, extracts the sequence and masks buried residues.

Even though SODA is sequence based, this can help the user avoid introducing muta-

tions in the core of a globular protein, which can potentially break the fold, altering its

function and leading to meaningless results.

Mutation mode When the user chooses the mutation mode, the web server redirects

to a new submission page (see Figure 4.30). The user introduces mutations by clicking

on the stretch of residues to be modified directly from the input wild type sequence. A

new edit box pops up when residues are selected, allowing to introduce/modify/delete

residues until the save command is issued. Multiple mutation instances can be created

and submitted as a single job. The solubility profile of the WT is plotted on the top of

the page to help the user in the editing process. When a PDB input is provided, buried

residues are shaded but still editable. The results page provides a table summarizing

the comparison between WT and mutation (Figure 4.31). It provides WT/mutation

differences for SODA and its components (aggregation, disorder, secondary structure

helix and strand). Detailed SODA output is reported on the bottom, including the

wild type and mutated stretches. When a PDB file is provided, the results page also

shows the corresponding structure, highlighting the mutated region (Figure 4.31).

Full-protein mode The full-protein mode only requires the sequence or PDB file as

input. Like the mutation mode, the results page (Figure 4.32) provides the solubility

profile for the input sequence. When the structure is available, buried residues are

missing from the plot and excluded from the calculation. For each position all possible

amino acid substitutions are evaluated. The number of mutations increasing (and

decreasing) solubility is plotted. Below the plot, a table reports for each position the

list of substitutions sorted according to their impact on solubility.

4.5.1.3 Usage examples

The crystal structure of human germline antibody IGHV1-69/IGKV1-39 (PDB code

5i15) was recently determined (323). The light and heavy chains are composed of 214

and 228 amino acids respectively. SODA was used to calculate the potential effect of

mutations on each residue of the molecule (full-protein mode). It predicts the effect

of each possible point substitution on each position of the light and heavy chains,

130







4.5 Protein aggregation and protein solubility

Figure 4.33: The human germline antibody IGHV1-69/IGKV1-39 (PDB code 5i15) is shown alterna-

tively as wireframe and space fill between light (L) and heavy (H) chain. For each position, the probability

of increasing (red) or decreasing (blue) solubility upon mutation is mapped on the structure. On the left,

the light (L) and heavy (H) chains are shown as wireframe and space fill respectively, on the right the same

protein with opposite chain visualization mode is provided. (178)

detection methods, from the very beginning, rely on the protein solubility and have

proved to be practical, cheap and to have a high degree of sensitivity (326). Indeed,

sickle cell hemoglobin was demonstrated to be less soluble than the wild type (327).

There is a clear relationship between the disease and the protein solubility. SODA

correctly predicts the mutation as decreasing protein solubility.
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Conclusions

The proteomes of organisms, even the more studied such has human, are far from being

completely annotated. This is true both at the sequence level, e.g. the less than 50%

of human proteome residues is covered by a Pfam domain (77), and at the structure

level, e.g. 44% of the structures of eukaryotic proteins have not been determined and

cannot be derived from homologous proteins (78). The main reason for this lack of an-

notation is that most of the methods for protein characterization were designed for the

first (1, 2) type of proteins that were identified, namely globular proteins. Whatever

diverges from it, in terms of stability, solubility or architecture, since the very begin-

ning of protein science was considered non-functional and thus few efforts have been

done for the identification of these exceptions. Only in the last few decades, a number

of phenomena has been discovered, that not only are widespread in evolution and in

different cellular compartments and tissues, but also perform fundamental functions.

During my PhD, I focused on this type of phenomena contributing to their detection,

classification and annotation.

The main focus of this thesis is the building of resources and analysis protocols for

the characterization of protein tandem repeats, results are described in sections 4.1

and 4.2. Despite their wide distribution and functional heterogeneity, repeat proteins

still belong to the dark matter of structural biology due to the inherent difficulties of
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sequence and structural identification and classification (328). Several efforts have been

made during the years to improve the tools for their detection (328). These methods are

either sequence- or structure-based and they are used for the construction of sequence-

and structure-based databases and classification. However, the protein universe cannot

be explored without taking into account the relationship between amino acid sequences

and their 3D structures, analyzed in light of their evolutionary and functional back-

ground.

In section 4.1.1 I provided a first look into the relationship between repeat structures

and their Pfam families. In the majority of cases a strict one-to-one relationship was

found, with the expected tendency for structure to be more conserved than sequence

in the remaining cases. The Leucine Rich Repeat example however shows that it is

also possible for members of a large family to fall into different structural classes. The

comparison between structures and protein families proved beneficial to a better un-

derstanding of repeat protein evolution and design, and guided the next steps of our

analysis. In section 4.1.2 I presented a census of TRPs in the human proteome. A

central observation derived from this analysis is that TRPs localize in several different

cell compartments and human tissues, and they are involved in a plethora of differ-

ent pathways. The common denominator is that this heterogeneous group of proteins

serve as binders. The reason for preferential election as connector nodes in the inter-

action network lies in their very own nature as modular structures. They are extended

structures, with high surface to volume ratio, characterized by very few long-range in-

ternal interactions. The high availability of exposed residues prone to evolve binding

specialization allows high sequence plasticity, able to evolve and specialize fast. The

evolutionary flexibility does not only concern the amino acids in the sequence of the

TPRs, but also in the length and number of repeats (79). In many cases, TPRs can

easily tolerate the insertion of a new structural unit, thus adding a new potential bind-

ing interface free to specialize for a new interactor without compromising the binding

to the ones already present. Given the fact that the presence of a repetition at the

DNA level promotes additional duplications (204), the process of new unit insertion

is probably widespread in the TPR universe, which commonly evolved specificity for

more than one partner at the same time (81). Their structure makes them the best

eligible candidates to be highly interacting nodes in the protein-protein interaction net-

work. However, once the protein is specialized for interaction, it immediately needs the
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residues involved to be conserved and plasticity decreases dramatically, increasing the

conservation level (329). This, and their centrality in the network (212), provides an

explanation for their enrichment in disease-associated proteins. All findings therefore

suggest that the better understanding of TPRs behaviour may considerably contribute

to a better understanding of the cell system and of the pathways compromised in dis-

ease insurgency. In addition, their binding role suggests a myriad of potential uses in

the bioengineering of target recognition, which has already been demonstrated to be

a promising field of application of TRPs science (204, 208). As a case-study of TRPs

association to disease in the light of their role as platforms and hubs, in section 4.1.3 I

presented the in silico dissection of collagen V genotype-phenotype correlations in rela-

tion to its interactome. Collagen V mutations are indeed associated with EhlersDanlos

syndrome (EDS) (213), a group of heritable collagenopathies with heterogeneous phe-

notype. Collagen V structure is not available and the disease-causing mechanism is

unclear. To address this issue, we manually curated missense mutations suspected to

promote classic type EDS (cEDS) insurgence from the literature. Further, we generated

a homology model of the collagen V triple helix to evaluate the pathogenic effects. The

resulting structure was used to map known proteinprotein interactions enriched with

in silico predictions. An interaction network model for collagen V was created. We

found that cEDS heterogeneous manifestations may be explained by the involvement in

two different extracellular matrix pathways, related to cell adhesion and tissue repair

or cell differentiation, growth and apoptosis. We believe that the data presented here

can give a useful insight on collagen V specific properties and will be useful to drive

future experimental validation as well as helping in patient classification.

TRPs importance in biological systems and their potential pathogenicity motivates our

effort in their identification and annotation. In section 3.1.1 I presented ReUPred,

a predictor that we used to identify repeat structures in the Protein Data Bank and

populate the second version of RepeatsDB database. RepeatsDB was originally pre-

sented in 2014 with the goal to provide the community with a central resource for

high-quality tandem repeat protein structure annotation. It has been cited in a num-

ber of different studies regarding repeat proteins, and has been used to extract datasets

for repeat proteins analysis and to test algorithms for repeat proteins annotation. The

detailed annotation of entries performed in the first version by RepeatsDB curators

has allowed us to build a high quality Structure Repeat Unit Library (SRUL). This
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library was exploited by the ReUPred algorithm (results described in section 4.2.1)

as a gold standard to define unit position in new entries in an iterative process. The

tool takes as input a target PDB structure and aligns it against the SRUL. Through

structural alignment, it is able to annotate on the target repeat units and insertions.

The comparison of ReUPred to other tools for repeat detection shows that the pre-

dictor has state-of-the-art performances in repeat classification and is one of the few

and best performing resources for unit position annotation. Indeed, the prediction of

tandem repeat units is a challenging problems currently mainly addressed by expert

manual curation. This work has demonstrated that repeat protein annotation can be

made by repetitive template-based structural searches. Moreover, it shows that the

approach can be applied reliably on a large scale, i.e., over all uncharacterized Re-

peatsDB entries, unveiling new scenarios for the analysis of the entire repeat protein

universe. The second release of RepeatsDB (in section 4.2.2) includes a new annotation

pipeline, combining the RAPHAEL algorithm for repeat detection and ReUPred for

annotation, producing extensive annotation for all entries. The pipeline is fully auto-

mated and allows the easy regular update of the database. The iterative execution of

the pipeline already demonstrated its efficacy both because it identified a large number

of new entries, and because new subclasses were detected and added to the structural

classification scheme. RepeatsDB will benefit from regular updates, which will steadily

increase the number of available annotations. Future perspectives for the development

of the database included exploiting repeat unit definitions to create profiles for use

in detecting repeats from sequence for genome-scale analysis and the facilitation of

RepeatsDB revision process in order to achieve a complete coverage of RepeatsDB in

terms of manually curated data. In line with the former, we started a collaboration

with Pfam database to curate repeat families based on structural data. In line with

the latter, in section 4.2.3 I presented RepeatsDB-lite. It is a web server that allows

to identify units and classify the protein exploiting a structural similarity search and

the information available in RepeatsDB. The prediction outperforms existing methods

and can be applied to all types of TR proteins. The web interface allows to visualize

similarity relationships between TR units at both the sequence and structure level.

The prediction can be manually refined by the user, visualizing the effects of the edits

in real time. Annotations can be submitted to RepeatsDB for reviewed with the aim

to increase the amount of community-curated entries in the database. RepeatsDB-Lite
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can be seen as an example of gamification principles to engage a wider community

towards database curation.

Another non-globular phenomena that, for different reasons, shares the high connectiv-

ity character of TRPs is protein disorder. Intrinsically disordered proteins (IDPs) or

regions (IDRs) are devoid of order in their native unbound state (126, 330). Intrinsic

disorder is prevalent in the human proteome (125), appears to play important signaling

and regulatory roles (126) and is frequently involved in disease (127). The discovery

of intrinsic disorder and its prevalence and functional importance is transforming the

field of molecular biology. As intrinsic disorder is emerging as a general phenomenon,

databases are collecting and presenting disorder related data in a systematic manner.

MobiDB has been a major contributor by providing consensus predictions and func-

tional annotations for all UniProt proteins, driving the field ahead (157, 245). The

MobiDB upgrade I presented in section 4.3.1 is essential for several reasons. MobiDB

3.0 improves on previous releases by adding descriptions of conformational diversity

and disorder-related functions, both in terms of experimental data and predictions. A

particular field where it may have a significant impact is the establishment of a long-

awaited disorder sequence-function relationship schema. The most reliable proxy to

this goal is to assess the function of a protein by homology transfer, i.e. transferring

functional annotation based on sequence similarity. A large-scale analysis of IDP func-

tional annotations will be necessary to find adequate boundaries for transferring IDP

functions by homology. As sufficient data is now available in MobiDB 3.0, we expect

a rapid advance in the field of sequence-function correlations of IDPs. In addition,

for proteins with sufficient NMR data, MobiDB now features quantitative annotations

incorporating structure and equilibrium dynamics in a unified framework. These large-

scale quantitative annotations will help understand the biological role of order and

disorder, and serve as a basis to construct predictive models. MobiDB is widely used

by scientific community and by third party services, it is becoming a thematic hub for

IDPs and future work will focus on including IDP annotations into core data resources

such as UniProt.

From the sequence point of view, non-globular proteins are characterized by non-typical

sequences as well, as they are largely characterized by low complexity (LC). In section

4.4.1 I presented a critical review where we focused on the description of several fea-

tures of LCRs by using computational methods. We chose a dataset of proteins with
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a variety of functions and types of LCRs to test these methods and their overlapping

predictions. At the strict level of sequence, low complexity is related to composition

bias and repeats. At the level of structure, there is a direct, yet not fully understood,

relation to disorder, aggregation and flexibility. While some connections have been es-

tablished previously, we demonstrate the difficulty of defining general rules connecting

sequence features and structural properties. We hypothesize that the problem lies in

the strong non-linearities of the connections between the sequence/structure relation-

ships in low complexity sequences. On one side, the non-linearity depends from the fact

that variables used to characterize sequences cannot capture all the effects of amino

acid combinations at the structural level. The second reason for this non-linearity

lays on the unusual pattern of conservation of disordered regions, which complicates

any standalone predictions. We have tried a pragmatic approach with two sides. On

the one hand, a diagram of sequence properties that allows to explore the overlaps in

three variables (repeat perfection, composition bias and low complexity). Along this

exemplary path, we exploited the dataset to submit it to a variety of analyses and

illustrate their potential overlaps. The structural aspects were discussed separately.

The main conclusion from this latter section is that low complexity manifests itself in

apparently opposite effects: while disorder and flexibility seem to be common features

of LCRs, repetition/periodicity in sequence at multiple levels can induce structure. In

evolutionary terms, this might imply that a disordered (low complexity) sequence can

escape disorder by either gaining a richer (higher complexity) composition maintaining

aperiodicity, or by attaining a highly periodic structure. We have demonstrated the

intricacies of analyzing low complexity in protein sequences: even methods that are

supposed to study the same properties (low complexity and sequence bias) might not

share similar assumptions. Our recommendation for researchers investigating a partic-

ular protein is to use several of these methods together. The additional advantage in

having these multiple outputs is that the sequence context might be influencing the

structure adopted by a low complexity region. In this respect, joint bioinformatics

research and development efforts to make the outputs of these methods compatible

and consistent are highly desirable. We expect that ongoing efforts will lead to a more

specific classification of LCRs, aiming at the prediction of their function.

A concept tightly connected to protein folding, and consequently to the features that

determine their stability or flexibility, is protein solubility. In section 4.5.1 I presented
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SODA, a novel method to predict the changes of protein solubility based on several

physico-chemical properties of the protein. It is based on the disorder (183) and aggre-

gation (182) propensities of a protein plus secondary structure (185) and hydrophobicity

(184) of the wild type protein in comparison to the same values of its mutated form.

The difference between the two determines the effect on solubility of the variation.

SODA is entirely based on sequence features and allows to quickly scan a large number

of mutations. The web server was designed to allow large-scale annotation through

its RESTful web service, while the user interface provides an intuitive form to guide

detailed selection of mutations based on sequence solubility plot and, if the protein

structure is given, residues accessibility to solvent. SODA can be useful for several

applications. Its main envisaged application is in protein engineering, where predicting

the variation in protein solubility upon mutation can help design proteins with more

favorable surface properties (40, 41, 42). This can be of interest to pharmaceutical com-

panies designing novel antibodies (331), as demonstrated by the usage example on a

human germline antibody. Lack of solubility is indeed a bottleneck in the development

of biologicals. In addition, SODA may be of use in the context of studying the impact

of natural protein variants and their potential effect on disease insurgence (37, 38, 39),

as shown in the example of sickle cell hemoglobin.

NGPs recognition and classification is essential to shed a light on the so called ”dark

proteome”, i.e. the large fraction that we know almost nothing about. An entire com-

munity of scientists accepted the challenge, and during my PhD I had the opportunity

to work together with several of them within the framework of the NGPnet COST

Action. I contributed to this goal through the development of new resources dedicated

to NGPs, with the aim to identify and classify them. Defining not only non-globular

phenomena themselves but also their relationships, e.g. the overlap between tandem

repeat and intrinsical disorder, is of paramount importance for understanding a wide

variety of functional arrangements, molecular processes and mechanism of evolution

currently unknown. This knowledge is essential also to dissect pathogenic mechanisms

yet to be discovered, e.g. linked to protein aggregation. Finally, this opens up new

possibilities for the redesign of enzyme activities and the building of proteins tailored

to have specific properties, as demonstrated by the case of repeat proteins that are

turned into new biomaterials.
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