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Abstract

Floodplains, and rivers therein, constitute complex systems whose simulation involves

modelling of hydrodynamic, morphodynamic, chemical, and biological processes which

act, affecting each other, over a wide range of time scales (from days to centuries).

Floodplain morphology and stratigraphy are shaped by the interplay of water flow,

erosion, and deposition consequent to repeated flood events, as the river dissecting the

floodplain evolves through feedbacks between bars, channels, vegetation and sediment

characteristics shaping the floodplain itself.

The first topic of this thesis concerns the mutual interactions that leads to self-

formed floodplains, produced by the sedimentary processes associated with the migra-

tion of river bends and the formation of abandoned oxbow lakes consequent to the cutoff

of mature meanders. The second topic addresses the presence of internal boundary con-

ditions able to affect the main flow field and thus the curvature-driven flow that drives

bend migration. Point bar deposits and oxbow lakes are the products of lateral bend

migration and meander cutoffs. The sediment deposits characterizing these geomorphic

units link together the long term evolution of an alluvial river and the surrounding

floodplain, altering the soil composition and, hence, bank strength controlling the rate

of channel meandering. On the other hand, a localized forcing internal to the main flow

field (e.g., a variation in bed slope or in flow discharge) propagates either upstream or

downstream, affecting the river dynamics. Multivariate statistical and spectral tools

may disclose the complexity of the resulting planform geometries, either simulated or

natural, ensuring an objective comparison.
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Chapter 1

Introduction

Floodplains, and rivers therein, constitute complex systems whose simulation involves

modelling of hydrodynamic, morphodynamic, chemical, and biological processes which

act, affecting each other, over a wide range of time scales (from days to centuries).

Floodplain morphology and stratigraphy are shaped by the interplay of water flow,

erosion, and deposition consequent to repeated flood events (Howard, 1996). This long-

term interaction is controlled by the planform configuration, as the river dissecting the

floodplain evolves through feedbacks between bars, channels, floodplain, vegetation and

sediment characteristics (Kleinhans, 2010), shaping the floodplain itself (Figure 1.1).

1.1 Sediment and vegetation

Sediment accumulates across the floodplain mainly as a consequence of over-bank flood-

ing events and lateral accretion associated with channel migration (Day et al., 2008).

Neck and chute cutoffs of meanders, channel avulsions, crevasse splay sedimentation,

over-bank spilling of tie and tributary channels, and floodplain channel occurrence also

contribute to design the floodplain structure (Howard, 1996; Slingerland and Smith,

2004; Day et al., 2008; Swanson et al., 2008; David et al., 2016). On the other hand,

sediment is continuously removed from the floodplain and swept back to the channel

as a consequence of channel migration, i.e., bank erosion and channel cutting (Dunne

et al., 1998; Aalto et al., 2008; Swanson et al., 2008; Lauer and Parker, 2008; Klein-

hans, 2010). Understanding how sediment is transported onto a floodplain and where

fine material likely accumulates is fundamental for both morphological and environmen-
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tal reasons. The interplay of vertical accretion, channel migration and sediment sorting

controls floodplain stratigraphy and, hence, the structure of aquifers and the possible

location of oil and gas reservoirs (Howard, 1996). In addition, silt and clay particles are

responsible for the fate and the transport of chemical species (carbon, nutrients, heavy

metals, pollutant in general) adsorbed on their surface (Alin et al., 2008).

Figure 1.1: A Landsat detail of Jurua River floodplain, Brazil (source:

http://earthexplorer.usgs.gov). Actual size of frame area is about 85 × 31 km.

River flows from left to right. Many of the typical features concerning river-

floodplain systems are visible: skewed meanders, point bars at the inner side of

bends, scroll bars, ancient river paths, incipient forming cutoffs, recent cutoffs still

flooded, older oxbow lakes covered by vegetation of the Amazon rainforest.

Riparian vegetation affects and, in turn, is affected by morphodynamic processes

(van Oorschot et al., 2016). Focusing on the active role, vegetation moderates the

erosion processes, enhances the deposition of sediment (Zen et al., 2016), and, when

flooded, affects the hydraulic resistance on the basis of plant characteristics, e.g. density,

height, thickness (van Oorschot et al., 2016). On the other hand, rivers provide water,

nutrients and sediment through flooding and the groundwater flow (Perucca et al.,

2006), but can also erode, undermine or uproot vegetated areas (Zen et al., 2016).

1.2 Floodplain structure

Point bars, scroll bars, and oxbow lakes are widespread floodplain features generated by

the lateral migration of meander loops. As a consequence, they alter the sedimentary

structure of the previous floodplain configuration, causing a heterogeneous distribution

of the erosion resistance to the river migration. Thus floodplain is simultaneously
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formed and destroyed (Kleinhans, 2010). As a mender migrates eroding the outer

bank, the point bar surface at the inner bank develops a characteristic ridge-and-swale

topography (Miall, 1985), resulting in preserved scroll bars parallel to the channel axis

(Nanson, 1980). Scroll bars are fundamental geomorphic building units, and potential

reservoirs for water, oil and gas (van De Lageweg et al., 2014). Coarse grained sediments

typically accumulate on the ridge basement, while finer sediment (silt and clay) deposits

on the upper part (Nanson, 1980), yielding an heterolithic stratification of interbedded

sand and mud deposits with lateral accretion surfaces (van De Lageweg et al., 2014).

Sedimentation may occur in old scroll bars by decanting, consequently to the creation

of crevasse-splays through the main channel levees (Gautier et al., 2007). Vegetation

constitutes an important element in the formation of the ridge-and-swale configuration

of point bars (Swanson et al., 2008), affecting the processes of bar-floodplain conversion

(Schuurman et al., 2016; van Oorschot et al., 2016).

Oxbow lakes are typical landforms of flat floodplain environments (Gagliano and

Howard, 1984) which form as a result of cutoff events in response to channel shift-

ing processes (Gay et al., 1998; Hooke, 2004; Constantine et al., 2010; Grenfell et al.,

2012). As a cutoff occurs, point bar formation and outer bank erosion stop instan-

taneously favouring a progressive shallowing and narrowing of the abandoned reach

(Toonen et al., 2012) because of a subsequent infilling by fine grained sediments form-

ing less erodible plugs. Production of oxbow lakes creates accommodation space for

sediment storage in floodplains, important to the development of lentic sedimentary en-

vironments, landforms and ecosystems, and carbon and pollutant reservoirs (Lewin and

Ashworth, 2014). The repeated cutoff events that determine the formation of oxbow

lakes, removing older, well developed meanders, limit the planform complexity of the

channel and, consequently, ensure the establishment of statistically stationary evolving

planform configurations (Camporeale et al., 2005; Frascati and Lanzoni, 2010). Oxbow

lake geometry is thus a story-holder of the river migration dynamics (Schwenk et al.,

2015) and a control factor for the future evolution of the system.

The effects of floodplain heterogeneity on meandering dynamics has been addresses

by various researchers, as meandering patterns throughout complex floodplain deposits

differ from those typical of homogeneous floodplain deposits (Hudson and Kesel, 2000),

and channel sinuosity is affected by the characteristics of the floodplain surface (Lazarus

and Constantine, 2013). In their pioneering works, Howard (1996) and Sun et al. (1996)
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(a) (b)

(c) (d)

(e) (f)

Figure 1.2: Examples of self-formed floodplains (source: Google Earth Pro). Geo-

morphic features are from: (a) Darling River, Australia, 31◦ 44’ S 143◦ 15’ E; (b)

Ob River, Russia, 61◦ 9’ N 75◦ 22’ E; (c) Chulym River, Russia, 57◦ 7’ N 86◦ 1’

E; (c) Chulym River, Russia, 57◦ 11’ N 87◦ 41’ E; (e) Ucayali River, Peru, 7◦ 25’

S 75◦ 0’ W; (f) Jurua River, Brazil, 4◦ 19’ S 66◦ 35’ W.
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used simplified models, coupling the flow field solution derived by Johannesson and

Parker (1989) and the bank erosion law of Ikeda et al. (1981) to reproduce the geomet-

ric forms of individual meanders observed in natural sedimentary environments with

different erodibility (point bars, floodplain, and oxbow lake deposits). More recently,

(Güneralp and Rhoads, 2011) and Motta et al. (2012b) published two similar works

dealing with the influence of a priori, statistically-generated heterogeneous floodplain

on rates and patterns of migration of meandering streams. Both studies concluded that

adopting a relatively simple flow field model, and prescribing a priori the erodibility

distribution across the valley allow to generate bend complexity and planform irregu-

larity similar to those observed in alluvial rivers, both visually and in their spectra of

planform curvature. Furthermore, in the last years, the role of floodplain erodibility

produced by vegetation cover has gained progressively more attention and recognition

of its relevance (e.g., Perucca et al., 2006; Solari et al., 2016; van Oorschot et al., 2016;

Zen et al., 2016).

Physiographic constraints, e.g. valley width (Nicoll and Hickin, 2010), and tectonic

shift (Schumm, 1986) can also play an important role in determining floodplain evolu-

tion, as well as localized variations in the flow field forcing, e.g. a variation in the valley

slope or the confluence of a tributary.

1.3 Numerical modeling

The wide variability of the time scales characterizing the changes in channel planform,

floodplain morphology, and vegetation dynamics and the complexity of the additional

processes that contribute to shape the terrain (climate changes influencing the hy-

drological and sedimentological regimes, weathering of sediment stored on floodplains,

multiplicity of bank erosion processes) preclude the use of deeply detailed models able

to encompass the entire bio-morphodynamic behaviour of a floodplain-river systems

(Howard, 1996; Perucca et al., 2006). As a consequence, relatively simplified models

have been developed by suitably selecting the physical processes to be taken into ac-

count and simplifying the relative process laws (see, among others, Howard, 1996; Sun

et al., 1996; Camporeale et al., 2005; Perucca et al., 2006; Lanzoni and Seminara, 2006;

Frascati and Lanzoni, 2010; Güneralp and Rhoads, 2011; Motta et al., 2012a; Frascati

and Lanzoni, 2013; Zen et al., 2016).

The complex structure of the flow field within river bends has been disclosed since
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the last century (Einstein, 1926). The interplay between the lateral pressure gradient

associated with a lateral slope of the free surface developing in a bend because of the

curved trajectories, the free vortex effect generated by an inner flow faster than the outer

flow, and the topographic steering due to longitudinal fluctuations of bed elevations

leads to the establishment of a three-dimensional helicoidal flow (Seminara, 2006) along

the river bend. The secondary flow circulation that establishes in the cross sections

drives the sediments motion through the section itself and along the reach. Erosion and

deposition processes, in turn, are responsible for the dynamics of the system leading to

the river migration (Figure 1.3).
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ut
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Qf

Deposition

Inner bank
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n
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Secondary flow

circulation

Three-dimensional

helicoidal flow

Figure 1.3: Sketch of the flow field that establishes into a river bend and of the

erosion and deposition processes leading to channel migration.

However, most of the mathematical frameworks and applications concerns constant

flow field properties over the entire domain, thus they introduce a relatively strong lim-

itation in modelling a natural scenario which might include, e.g., variation in the valley

slope due to a knickpoint, variation in the discharge because of a tributary confluence,

backwater effects (Figure 1.4).
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Figure 1.4: A Landsat detail of the confluence of Arkansas River into Mississippi

River, US (source: http://earthexplorer.usgs.gov). Actual size of frame area is

about 65× 92 km. Mississippi flows from top to bottom, while Arkansas from left

to right.

1.4 Aims and outline of the thesis

In the present contribution the attention is focused on two particular aspects of the

river-floodplain dynamics. The first concerns the role of floodplain heterogeneity on

determining the planform shape of the channel, whose dynamics, in turn, contributes

to build up the sedimentological structure of the floodplain itself. The second aspect is

related to the role of internal localized forcing factors able to modify the flow conditions

of the domain, and thus the curvature-driven secondary flow. The first topic will be

referred to as self-formed floodplain, the second topic as boundary conditions internal

to the flow domain. The ultimate goal is to build up a model of the floodplain-river

system based on a reliable procedure broadening the domain of applicability domain

of the existing mathematical models. In order to keep the lowest possible level of

complexity, the present work accounts for neck cutoff meandering river, ignoring the

chute-dominated cases.
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The thesis is organized as follows. Chapter 2 provides the fundamental ingredients

necessary to build a numerical framework able to simulate the dynamics of meandering

rivers. The relevant variables are outlined, as well as the various mathematical tools

required to deal with the flow field into sinuous rivers and the floodplain dynamics.

Chapter 4 focuses on the interplay between river dynamics and self-formed floodplains.

A test case will disclose the roles of the involved elements (floodplain, oxbow lakes,

scroll bars), and statistical and spectral tools will be used to compare quantitatively

planforms generated by numerical models and natural planforms. The methods of

analyses are outlined in Chapter 3. Chapter 5 deals with the presence of an internal

boundary condition affecting the flow field. An extension of an existing mathematical

model will be developed and applied to a real case, considering different scenarios.

Finally, Chapter 6 closes the thesis and provides some suggestions for future research.
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Chapter 2

Mathematical modelling of

meander dynamics

This chapter outlines the mathematical and numerical tools required to build a model

able to handle the long-term migration of meandering rivers flowing above heterogeneous

floodplains. The main quantities and variables involved in the problem are outlined in

Section 2.1. The frame of the numerical modelling builds upon other models available

in literature, e.g. Camporeale et al. (2005); Lanzoni et al. (2006); Lanzoni and Seminara

(2006); Frascati and Lanzoni (2009). It consists of a migration model for the river axis

(Section 2.2), a model for the floodplain structure (Section 2.3), and a morphodynamic

model for the curvature-driven flow field (Section 2.4).

2.1 References and notations

With reference to the sketch of Figure 2.1, let (x∗, y∗, z∗) be a Cartesian reference system

with x∗ the longitudinal flow direction, and (s∗, n∗, z∗) a orthogonal intrinsic reference

system. Hereafter the superscript ∗ will denote dimensional quantities. Moreover, R∗ is

the local curvature radius of the river axis, and θ the local angle of the axis tangent with

respect to the longitudinal direction. The curvature by definition is C∗ = 1/R∗. As far

as the channel cross section is concerned, 2B∗0 and D∗0 are the width and the depth of a

reference straight rectangular channel having the same flow discharge, 2B∗0D
∗
0U
∗
0 , bed

slope S, and characteristic grain size d∗s of the considered meandering river (e.g., d∗50),

with U∗0 the cross-sectionally averaged velocity. In addition, η∗ and H∗ are the local

17



bed elevation and the free surface elevation with respect to a given datum, while D∗ =

H∗ − η∗ is the local flow depth. The local velocity components along the longitudinal,

transverse and vertical direction are u∗, v∗, and w∗, respectively.

η*

n*

z*

H*

A A’

D*

2B0*

D0*

x*

y*

A

A’

s*R*

n*

θ

b)a)

Figure 2.1: Reference systems and notation for a) the river planform and b) the

cross-section.

The next step is to scale the above relevant quantities through the uniform flow

parameters. Hence:

(x∗, y∗, s∗, n∗, R∗) = B∗0 (x, y, s, n,R) (2.1a)

(z∗, η∗, H∗, D∗) = D∗0 (z, η,H,D) (2.1b)

(u∗, v∗, w∗) = U∗0 (u, v, w) (2.1c)

A curvature parameter may be defined as follows:

ν0 =
B∗0
R∗0

(2.2)

where R∗0 is a reference radius of channel axis curvature, e.g. the minimum value

attained along the investigated reach. The fundamental hypothesis for deriving the

mathematical model is that ν0 is a small parameter, i.e. the river planforms are made

by sufficiently gentle and wide bends such that the local curvature radius is much

larger than the cross section width. The dimensionless local curvature C turns out to

be (Frascati and Lanzoni, 2013):

C = − 1

ν0

∂θ

∂s
(2.3)

The relevant morphological parameters are the half width to depth ratio β, the Shields
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number τ∗ and the dimensionless grain size ds, defined as follows:

β =
B∗0
D∗0

(2.4a)

τ∗ =
CfU

∗
0
2

∆gd∗s
(2.4b)

ds =
d∗s
D∗0

(2.4c)

where g is the gravity acceleration, ∆ = (ρs − ρ)/ρ is the submerged specific gravity of

the sediment (ρs ' 2650 kg / m3, ρ = 1000 kg / m3), and Cf is the friction coefficient.

Velocity and depth are related together through the Froude number:

F0 =
U∗0√
gD∗0

(2.5)

Finally, the sediment motion leads to a volumetric discharge per unit width denoted as

q∗s , which may be scaled as:

Φ =
qs
Rpν

(2.6)

where ν ' 10−6 m2/s is the kinematic viscosity of water, and Rp is the Reynolds particle

number:

Rp =

√
g∆d∗s

3/2

ν
(2.7)

Hereafter, under dominant bedload transport Φ is computed through the formula of

Parker (1990). The particle Reynolds number, which controls the intensity of suspended

load transport (see, e.g., Frascati and Lanzoni, 2010) is also considered to evaluate the

threshold above which suspended load takes place (Van Rijn, 1984a). In this case the

total load predictor of Engelund and Hansen (1967) is used to compute Φ. Moreover,

Rp is used to establish whether the river bed is flat or dune-covered (Van Rijn, 1984b)

when computing the friction coefficient Cf through theEngelund and Hansen (1967)

method.

2.2 The long-term migration of the river

The long-term migration of river planforms is driven by the complex interplay of the

processes of erosion at the inner bank and deposition at the outer bank, possibly leading

to spatial and temporal variation of the local channel width (Figure 1.3). Among others,

the affecting factors may be the type of bank failure, the composition of the banks
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and of the slumped block material, and the vegetation properties. The erosion and

deposition processes usually occur at different times and different time scales (Asahi

et al., 2013). However, many meandering rivers tend to have a near constant width as

channel sinuosity evolves (Parker et al., 2011), showing a normal distribution of channel

widths when the fluvial system is subjected to a steady-forcing discharge (Wickert

et al., 2013). Eventually, the typical ridge-and-swale bar topography develops (van De

Lageweg et al., 2014). This scenario requires an active communication between bank

erosion at the outer bend, i.e. bank pull, and bank growth at the inner bend, i.e.

bank push (Eke et al., 2014; van De Lageweg et al., 2014; Schuurman et al., 2016). As

a consequence, a constant width of the river cross section may be assumed as a first

approximation, and the river path may be described by its centerline.

Referring to the planimetric sketch of Figure 2.1, the configuration of the channel

axis at a certain time t may be described by the current distribution of angles θ (s∗, n∗)

formed by the local tangent to the channel axis with the longitudinal direction. In-

deed, Seminara et al. (2001) demonstrated that the planimetric evolution at the generic

location s along the river axis is described by the following integro-differential equation:

∂ζ

∂s
=
∂θ

∂t
− ∂θ

∂s

∫ s

0
ζ
∂θ

∂s
ds (2.8)

where the lateral migration velocity ζ and the time t are scaled as:

ζ∗ = U∗0 ζ (2.9a)

t∗ =
U∗0
B∗0

t (2.9b)

Equation (2.8) drives the lateral migration of the river path across the floodplain over

the time, producing a local displacement ξn (s) normal to the channel axis:

dξn (s)

dt
= ζ (s) (2.10)

Because of the previous assumption of nearly constant cross section width, the relation

proposed by Ikeda et al. (1981) to model the river migration across the valley surface

may be assumed. In dimensionless form, the relation reads:

ζ = E Ub (2.11)

where E is a dimensionless long-term erosion coefficient, while Ub = U∗b /U
∗
0 is the dimen-

sionless excess near-bank velocity, i.e. the difference between the longitudinal velocity
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U
∣∣
n=1

at the outer bank (n = n∗/B∗0 = 1) and the longitudinal velocity U
∣∣
n=−1 at the

inner bank (n = n∗/B∗0 = −1) All the involved terms are function of the coordinate s

along the river centerline.

x

y

Pi (t)

Pi (t+∆t)

xP (t)xP (t+∆t)

yP (t)

yP (t+∆t)

ξ

s (t)

s (t+∆t)

θ

n (t)

Figure 2.2: Sketch of the migration of a point P lying on the channel axis, due to

the displacement from the configuration s(t) to the new configuration s(t + ∆t).

Quantities may be either dimensional or dimensionless, the scaling factor being B∗0 .

The problem outlined so far is solved numerically by discretizing the dimensionless

river centerline s through a polyline made by N points Pi(xi, yi), defined with respect

to the Cartesian reference system of Figure 2.1. As described by the sketch in Figure

2.2, the differential equation (2.10) is solved numerically trough finite differences. At

each dimensionless time step tk+1 = tk + ∆tk, the migration of the ith node in the

direction n normal to s is computed through a time marching procedure of the form

(Crosato, 1990):

xk+1
i = xki −∆tki

ζki + ζk−1i

2
sin θki , (2.12)

yk+1
i = yki + ∆tki

ζki + ζk−1i

2
cos θki , (2.13)
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where xk+1
i = xi(t

k+1), yk+1
i = yi(t

k+1), and ζki = Eki U
k
bi. The value θki of the local

tangent angle is computed by backward and forward averaging (Lanzoni and Seminara,

2006):

θki =
1

2

(
arctan

yki+1 − yki
xki+1 − xki

+ arctan
yki − yki−1
xki − xki−1

)
(2.14)

This angle is also used to discretize the geometrical relationship (2.3) and to determine

the local value of the dimensionless curvature Cki :

Cki = − 1

ν0

θki+1 − θki−1
2∆ski

(2.15)

where ∆ski is the dimensionless distance between two consecutive points. The possible

numerical anomalies arising from the curvature computation (Schwenk et al., 2015) are

filtered out by using a Savitzky-Golay smoothing filter (Orfanidis, 1995; Motta et al.,

2012a). The time step size ∆tki is controlled by requiring that:

∆tki ≤ α
(

∆ski
Eki U

k
bi

)
max

(2.16)

where α is a parameter defining the threshold between stable and unstable computa-

tions, to be chosen empirically (α ∼ 10−2) on the basis of a balance between com-

putational effort and accuracy of the numerical solution (Crosato, 1990; Lanzoni and

Seminara, 2006).

Since the deformation experienced by the channel axis at each time step leads to con-

tinuous variations of ∆ski , the mesh is periodically re-built to maintain quasi-uniformity

of the node spacings, adding or removing nodes to maintain the value of ∆ski into the

range 2/3 and 4/3.

The progressive elongation of the channel axis produces neck cutoffs, whereby the

upstream and downstream portions of a bend loop approach each other and eventually

intersect. The meander loop is then bypassed, and the older, more sinuous reach is

abandoned by the active river, forming an oxbow lake when sedimentation closes its

ends. These processes may last many years (Gagliano and Howard, 1984) but, because

of the long time scales characterizing the evolution of the river planform, they can

be assumed to occur instantaneously in the simulation model. Following Howard and

Knutson (1984) and Sun et al. (1996), the presence of potential neck cutoffs is detected

by controlling the dimensionless distance between a given point Pi and the nearby points

Pi+r located sufficiently downstream (e.g., r ≥ 8). This control is made through the
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algorithm developed by Camporeale et al. (2005) which improves the computational

efficiency of the model. When the computed Cartesian distance between nodes Pi and

Pi+r is lower than a threshold value, say ∆sr = 2.2, all the points Pi+j , j = 1, r− 1 are

removed from the computational grid, defining a new oxbow lake (Figure 2.3). A few

nodes upstream of Pi and downstream of Pi+r (e.g., Pi−q, Pi+r+q, q = 1, 2, 3) are also

removed to prevent the formation of a high-curvature river reach (Frascati and Lanzoni,

2009) that, in nature, is unlikely to persist owing to the rapid smoothing action of the

current and the along river propagation of the geometric disturbances generated by the

cutoff even (Hooke, 1995; Camporeale et al., 2008).

(a) Natural cutoff process.

P i

scroll bar

neck cutoff

P i+r
abandoned

reach

P i-q
P i+r+q

active

reach
E f

Eb

Eo

(b) Numerical cutoff process.

Figure 2.3: Example of (a) a natural neck cutoff process producing a different

geomorphic environment inside the oxbow lake contour (Darling River, Australia,

31◦ 33’ S 143◦ 30’ E, source: Google Earth Pro), and of (b) the numerical modelling

of neck cutoff occurrence, with the formation of two new environments, namely

the oxbow lake formed by the abandoned reach and the inner scroll bar bounded

by the previous element. Symbols are as follows: r determines the points that are

considered to check the occurrence of a incipient neck cutoff; q is the number of

point removed to avoid the presence of a high-curvature river reach after a cutoff;

Ef , Eb, and Eo are the erodibility coefficients assigned to the pristine floodplain,

the scroll bar environment and the oxbow lake environment, respectively.

The alternate form of cutoff, the chute cutoff, is not treated in this dissertation.

As observed above, the total length of the channel and the bed slope change over

time due to the elongation driven by migration and the shortening due to cutoff occur-

rences. As a consequence, suitable relations must be imposed in order to keep consistent

23



steady flow and sediment transport conditions. Assuming a constant discharge and a

temporally constant floodplain gradient, the relevant physical parameters between two

time steps k and k + 1 are updated as follows:

βk+1

βk
=

(
Ckf

Ck+1
f

)1/3(
σkT
σk+1
T

)1/3

(2.17)

τk+1
∗
τk∗

=

(
Ckf

Ck+1
f

)−1/3(
σkT
σk+1
T

)2/3

(2.18)

dk+1
s

dks
=

(
Ckf

Ck+1
f

)1/3(
σkT
σk+1
T

)1/3

(2.19)

where σT is the river sinuosity, defined as the ratio of the dimensionless intrinsic length

L = L∗/B∗0 (computed along the channel centerline) to the dimensionless Cartesian

length lx = l∗x/B
∗
0 (obtained projecting the river axis on the longitudinal axis x oriented

in the direction of the floodplain gradient).

2.3 Floodplain features

The model described so far has been found to effectively reproduce typical meander

shapes observed in nature (simple bends, compound bends and multiple loops) for a

constant (in time and space) floodplain erodibility (Frascati and Lanzoni, 2009). The

bank erosion coefficient, however, generally depends on soil properties, deposition and

consolidation processes, groundwater dynamics (Han and Endreny, 2014), and distribu-

tion of riparian vegetation (Perucca et al., 2007; Motta et al., 2012a,b; Wickert et al.,

2013). To mimic these heterogeneities, the valley surface is, as a first approximation,

schematized by three different geomorphic units with different local coefficients E (Fig-

ure 2.3), depending on the soil properties as well as on the vegetation cover.

The first geomorphic unit is the pristine floodplain, with coefficient E = Ef . It

corresponds to the undisturbed floodplain consisting sediment deposited by repeated

flooding events, not yet impacted and consequently reworked by the river migration.

The second geomorphic unit corresponds to the oxbow lake environment, with co-

efficient E = Eo. It mimics the fine-filled abandoned channel reach which leads to

the formation of plugs that may obstruct the lateral migration of the active channel

(Toonen et al., 2012). Finally, the third geomorphic unit corresponds to the scroll
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bar environment, with coefficient E = Eb. It mimics the floodplain area bounded by

an oxbow lake, characterized by the typical ridge-and-swale sequence. In particular,

coarse-grained sediments typically accumulates on the ridge, while finer sediment (silt

and clay) deposit in the upper part (Nanson, 1980) because of the temporary flow ex-

pansions (van De Lageweg et al., 2014). The structure of vegetation reflects the local

topography and hydrological conditions (Zen et al., 2016) contributing to the erosional

complexity of the scroll bodies.

100 B0
*

Figure 2.4: Example of a simulated planform dynamics, with the formation

of scroll bars (older are dark green, younger are light green) and oxbow lakes

(gray stripes bounding the previous elements, corresponding to the abandoned

bends).

All the erosion coefficients are kept constant over time in order to maintain the

modelling framework at the lowest possible level of complexity, thus temporal vari-

ations caused, e.g., by soil compaction and biological dynamics are not considered.

Furthermore, incision, soil uplift, and subsidence are not accounted for, assuming that

the floodplain surface is infinitely large and keeps its elevation constant over time. Pos-

sible changes in the hydrological regime and flow unsteadiness associated with flood

waves are neglected as well.

Spatial variability ensuing from the meandering dynamics is accounted for as follows.

All the progressively formed geomorphic environments (oxbow lakes and scroll bars)

are saved as polygons given by the abandoned mesh nodes (Figure 2.4). As the generic

node Pi of the active channel axis migrates laterally, the river may encounter three

different environments during its lateral migration onto the valley. The winding number
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algorithm of Hormann and Agathos (2001) is used to identify whether the current point

lies within a pre-saved geomorphic unit and, hence, to choose the appropriate local

erosion coefficient.

2.4 The flow field

This section briefly summarizes the key points of two mathematical models of channel

morphodynamics adopted in this works, namely the model developed by Ikeda et al.

(1981), hereafter referred to as IPS model, and the model developed by Zolezzi and

Seminara (2001), hereafter referred to as ZS, similarly to the approach of Frascati

(2009). Both models are based on the assumption of a secondary bidimensional flow

driven by the curvature distribution and superimposed to the primary uniform flow

travelling the channel.

The use of two models entailing a different level of approximation is motivated by

the importance that the coupling of the flow field and the sediment balance equations

has on the quantitative reproduction of observed river planforms. The former model

however, assumes empirically the form of the channel cross-section.

The IPS model has been widely used (see, among the others, Perucca et al., 2005;

Güneralp and Rhoads, 2011; Schuurman et al., 2016). The decoupling of the equations

governing the flow field and the sediment conservation does not allow to solve for the

bed configuration, thus an empirical relation is required. The dimensionless excess

near-bank velocity Ub takes the type:

Ub = U∗0 F

[
ν0, β, Cf , τ∗, C,

∫ s

0
C(ξ) eλ0(s−ξ) dξ

]
(2.20)

where the characteristic exponent λ0 = −2βCf drives the convolution integral which

accounts for the effect of the upstream curvature distribution on the downstream reach

(downstream influence).

The ZS morphodynamic model solves the steady flow field in a movable bed river

with variable curvature of the channel axis. It was derived by integrating over the depth

the continuity equation and the Reynolds-averaged Navier-Stokes equations (RANS),

written in intrinsic coordinates, and by introducing a parametrization of the secondary

flow driven by the channel axis curvature (Zolezzi and Seminara, 2001). The extension

of the model to cases involving width variations was developed by Frascati and Lanzoni

26



(2013). The resulting equations are fully coupled to the Exner sediment balance equa-

tion, also written in curvilinear coordinates, and closed by means of a suitable sediment

transport law. All the relevant equations are then linearized, by expanding in terms of

small parameters, taking advantage of the typically wide character of river bends (small

curvature ratio ν0). Eventually, the following functional relationship is found:

Ub = U∗0F

[
ν0, β, Cf , τ∗, C,

∫ s

0
C(ξ) eλmj(s−ξ) dξ

]
(2.21)

where λmj (m = 0,∞; j = 1, 4) are characteristic exponents for the mth lateral Fourier

mode which are crucial to determine, through the related convolution integrals, whether

flow and bed topography at a given position s are affected by the river reach located up-

stream (downstream influence) or downstream (upstream influence) (Zolezzi and Sem-

inara, 2001; Lanzoni and Seminara, 2006). The four exponents are the solutions of the

four-order ordinary differential equation that arises from the linearized continuity and

momentum equations coupled with the sediment balance equation. Chapter 5 will show

how these solutions can be particularized to satisfy internal boundary conditions. Figure

2.5 shows three examples of the trends followed by the characteristic exponents λmj as

functions of the values of the half width to depth ratio β, compared with the behaviour

of the characteristic exponent λ0 resulting from the IPS approach. It is worthwhile

to note that, generally, λm1 is real positive, λm4 is real negative. They describe non-

oscillatory spatial perturbations which decay fairly fast either downstream or upstream.

The other two exponents λm2 and λm3 are complex conjugate, having respectively equal

real parts (λm2r = λm3r) and opposite imaginary parts λm2i = −λm3i. They describe

oscillatory spatial perturbations which decay fairly slowly, spreading their influence over

a considerable channel length (Lanzoni et al., 2006). Moreover, λm3r can be negative

or positive, depending whether the aspect ratio β is smaller or larger than a threshold

value, βr . Channels characterized by aspect ratios β < βr are defined subresonant,

leading to a downstream influence, as in the IPS model. On the contrary, channels

characterized by aspect ratios β > βr are defined superresonant, leading to a upstream

influence. This latter condition can not emerge when using the IPS model, as the latter

is driven by a first-order ordinary differential equation because of the uncoupling of

the sediment balance equation and the flow field. Subresonant meanders are typically

upstream skewed and migrate downstream, while superresonant meanders are typically

downstream skewed and migrate upstream (Lanzoni et al., 2006; Lanzoni and Seminara,

2006).
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Figure 2.5: Typical behaviour of the four characteristic exponents λmj of the ZS

approach as a function of the half width to depth ratio β, for three different sce-

narios. Continuous lines correspond to the real parts, dashed thin lines correspond

to the imaginary parts, while the dashed thick line corresponds to the characteristic

exponent λ0 of the IPS approach. The three scenarios are characterized by the fol-

lowing parameter sets: a) τ∗ = 0.1, ds = 0.005, flat bed; b) τ∗ = 0.3, ds = 0.001,

dune-covered bed; c) τ∗ = 0.6, ds = 0.0001, dune-covered bed.
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Further details about the derivation, performances, and limitations inherent in lin-

earization of the flow field model may be found in Zolezzi and Seminara (2001) and

Frascati and Lanzoni (2013).

In order to increase the computational efficiency in the numerical implementation,

the convolution integrals appearing in the expressions for the velocity perturbation

(2.20) and (2.21) are evaluated using Simpson rule, truncating the integration when the

function to be integrated, that decayes exponentially, is smaller than a given tolerance,

say 10-4 (Lanzoni and Seminara, 2006).
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Chapter 3

Statistical tools

Three different statistical and spectral methodologies will be used in this thesis to

analyse objectively the similarities/differences between the river planforms, namely the

Fourier Analysis (FA), the Singular Spectrum Analysis (SSA), its multivariate version

Multivariate Singular Spectrum Analysis (MSSA), and the Principal Component Anal-

ysis (PCA).

3.1 Fourier Analysis

The Fourier Analysis (FA) is a linear technique that has been widely adopted in the

study of meandering planforms (Marani et al., 2002; Güneralp and Rhoads, 2011; Motta

et al., 2012b). The considered time- or space-based discrete signal X, formed by N

equidistant samples with interval = 1/fk (with fk the sampling frequency), is processed

using the Discrete Fourier Transform (DFT) to obtain an equivalent signal Y in the

domain of frequencies or wavenumbers. The kth component of the resulting vector Y

reads:

Yk =
N−1∑
n=0

Xne
−ik 2π

N
n (3.1)

where k ranges from 0 to N − 1, i is the imaginary unit. The absolute value of Yk

measures the total amount of information contained at the given frequency k. The whole

distribution of absolute values of Y is called power spectrum, and is used to identify

the most important components, i.e., the modes or trigonometric basis functions that

mostly contribute to the reproduction of the overall signal. The power spectrum is used

to compare the spatial signals of the meander curvatures, both numerically generated
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and observed, on the same number of modes, in order to disclose the possible affinities

of their respective structure.

3.2 Singular Spectrum Analysis

Singular Spectrum Analysis (SSA) is a technique of time series analysis incorporating

the elements of classical time series analysis, multivariate statistics, multivariate geom-

etry, dynamical systems and signal processing. In particular, SSA gives adaptive filters

associated with the dominant oscillations of the system, clarifying the characteristics of

the possible noise affecting the data (Vautard and Ghil, 1989). The numerical proce-

dure is here summarized, basing on Ghil et al. (2002). The starting point is to embed a

time (space) series Xi, (i = 1, N) into a vector space of dimension M . This corresponds

to represent the behaviour of the data set by a succession of overlapping views through

a sliding M -point window. The embedding procedure thus builds a sequence X̃j of

M -dimensional vectors from the original data series Xi, by using lagged copies of the

same data:

X̃j = [Xj ,Xj+1, . . . ,Xj+M+1] (3.2)

where j = 1, N ′, and N ′ = N −M + 1.

The M ×M lag-covariance matrix CX may be estimated directly from the data as

a Toeplitz matrix with constant diagonals; that is, its entries depend only on the lag

|m− n| (Vautard and Ghil, 1989). The generic entry of the covariance matrix reads:

cmn =
1

N − |m− n|

N−|m−n|∑
j=1

Xj Xj+|m−n| (3.3)

Performing a Singular Value Decomposition (SVD) of CX gives the M eigenvalues

λk, taken in decreasing order of magnitude, and the corresponding eigenvectors ρk (k =

1,M). Projecting the original time series onto each eigenvector yields the corresponding

principal components (PCs):

Akj =
M∑
l=1

Xj+l−1 ρk,l (3.4)

Finally, the kth reconstructed component (RC) associated with the direction ρk reads:

Rki =
1

Mi

Ut∑
l=Lt

Ak,i−l+1 ρk,l (3.5)
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where Mt, Lt, and Ut differ between the central part of the signal and its end points:

(Mt, Lt, Ut) =



(
1

i
, 1, i

)
if i ≤M − 1(

1

M
, 1,M

)
if M ≤ i ≤ N ′(

1

N − i+ 1
, i−N +M,M

)
if i ≥ N ′ + 1

(3.6)

No information is lost in the reconstruction process, since the sum of all individual

RCs gives back the original signal. In particular, the RCs may be arbitrary superim-

posed to obtain the desired signal smoothing, without necessary respecting their order

based on the eigenvalues decreasing order. The choice of the window length M is based

on a trade-off between the quantity of extracted information versus the degree of statis-

tical confidence in that information. The former requires a window as wide as possible

(large M), whereas the latter requires as many repetitions of the features of interest as

possible (large N/M).

The eigenvalues of the covariance matrix provide the information needed to filter

out the real signal from noise. The generic eigenvalue λk equals the partial variance

in the direction ρk, and the sum of all λk gives the total variance of the original time

series Xi. The singular values (SV) are defined as the square roots of the eigenvalues,

λ
1/2
k . The singular value spectrum leads to a possible separation between fundamental

components of the inspected signal and higher-order noise, thus it is an indicator of the

signal complexity due to its splitting along the M components. In particular, the faster

the spectrum decays, the larger is the separation between the fundamental signals and

noises, and thus the less is the signal scattering. On the contrary, the larger is the

spectrum mildness, the higher is the signal complexity due to the possible weight of

higher-order noise. The SSA is used in two different cases. In the first, the technique

investigates the intrinsic structure of the temporal trend of three geometric parameters

describing the meander shapes. In the second it is used to disclose the structure of the

spatial signal of the meander curvature, as well the FA.

3.3 Multivariate Singular Spectrum Analysis

The Multivariate Singular Spectrum Analysis (MSSA) is an extension of SSA to a

multivariate input signal composed by L channels. The algorithm follows the steps

described above, slightly differing for the structure of the lag-covariance matrix CX,
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which now assembles the local contributions of the component-based lag-covariance

matrices in order to take into account the multi-dimensionality of the signal. As a

consequence, CX has dimensions LM × LM and LM eigenvalues. The MSSA is used

for inspecting the structure of both the temporal and the spatial trends of the meander

geometry.

3.4 Principal Component Analysis

The Principal Component Analysis (PCA) is a technique already considered in the

analysis of river planforms by Frascati and Lanzoni (2009). It may be used to reduce a

large set of variables to a small set that still contains most of the information embedded

in the original set. In particular, PCA performs a change in the reference system by

converting a M -dimensional sample of data X, possibly correlated among each others,

in a set Y of linearly uncorrelated data through an orthogonal transformation, based

on the eigenvectors of the correlation matrix C, if the variances of individual variates

are very different. The generic element cij of the covariance matrix corresponds to the

correlation between the ith and the jth components of the given input data sample X

having N samples and M components (i.e., i and j ranges from 1 to M). As a result,

the correlation matrix C has dimensions M ×M and is symmetric. The eigenvectors

of C, sorted following the the descending order of the relative eigenvalues λk (being

k = 1, . . . ,M), form an orthonormal basis on which the pristine data X are projected

to obtain a new set of data Y having the same dimensions of X.

The eigenvalues are associated with the measure of the total amount of variance

information carried by the eigenvector directions. Data similarity can be then effec-

tively evaluated by looking at the the variance distribution (the eigenvalues) along the

principal directions (the eigenvectors). This approach facilitates the identification of

the differences that contribute the most to the formation of the deviations among sig-

nals coming from the various samples. As a consequence, the new data set Y allows

to reduce the dimensionality of the problem while retaining as much as possible of the

variance information contained in the original data set X.

In the present work, PCA was used for two different purposes. The first purpose is to

normalize the data that will be used by the input to MSSA through the projection along

the correlation eigenvectors. No dimensions are neglected after PCA with reference

to the eigenvalue spectrum, i.e. the dataset keeps the initial dimensionality M . The
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second is to carry out an overall comparison between natural planforms and numerically

generated paths. In the latter case, X is a N ×M matrix referring to N rivers coming

from different databases, such that the ith row contains the M quantities related to the

ith river path, either natural or synthetically generated.
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Chapter 4

On the floodplain heterogeneity

This Chapter concerns the interaction between the long-term dynamics of a meandering

river and its self-formed floodplains. Differently from Howard (1996) and Sun et al.

(1996), a more refined mathematical approach is implemented to compute the curvature-

driven flow field. The widely used IPS approach is used to highlight the intrinsic

limitations of the planforms resulting from its application. The long-term changes in

channel dynamics are strictly related to the structure of the evolving floodplain.

The aim of this part of the thesis is twofold: i) to evaluate the mutual interaction

between a self-formed heterogeneous floodplain and the meandering river which flow

above it, and ii) to propose a new suite of statistical tools and metrics to analyse

objectively the spatial and temporal signals generated numerically and to use these

tools to compare the modelled planforms against observed geomorphic features. An

extensive database of numerically generated meander planforms was created, evolving

in time up to a statistically-stationary evolving state by varying the relevant parameters

within physically plausible ranges. Three different statistical tools were used to evaluate

quantitatively the influence of the adopted mathematical models and their accuracy

in reproducing natural planforms. In particular, Singular Spectrum Analysis (SSA)

and its Multivariate extension (MSSA) were used to inspect the time structure of the

numerically generated signals; Fourier analysis (FA), Principal Component Analysis

(PCA) as well as SSA and MSSA were used to compare numerically generated planforms

with those observed in a wide range of environmental conditions.

The remaining of this Chapter is organized as follows. Section 4.1 describes a test

case comparing together the planforms generated by considering in terms of different

37



erodibility either three geomorphic units (pristine floodplain, oxbow lakes, and scroll

bars) or only two different units (pristine floodplain and scroll bars) thus turning off

of the effects of the third environment (the oxbow lakes). A set of numerical runs

based on different self-formed heterogeneity scenarios (Section 4.2) is then analysed

with reference to their time evolution (Section 4.3). Section 4.4 compares numerically

generated planforms with a set of natural planforms through the three different statisti-

cal and spectral tools mentioned above, namely the Fourier Analysis (FA), the Singular

Spectrum Analysis (SSA), its Multivariate extension (MSSA), and the Principal Com-

ponent Analysis (PCA). Finally, Section 4.5 discusses the effects on river dynamics of

a self-formed floodplain having heterogeneous erodibility distribution.

4.1 A test case: two vs. three erodibility environments

The test case considered in this section was designed to evaluate qualitatively the inter-

actions between the long-term evolution of meanders and the floodplain heterogeneity

formed by the river migration. The parameters were chosen arbitrarily.

The erosional coefficient of the pristine floodplain to be used in the migration law

(2.11) was set equal to E = Ef = 10−8. Referring to the sketch in Figure 2.3, six

scenarios were investigated by accounting or excluding the effect of the oxbow lakes

and considering three different erosional resistance Eb for the scroll bars, assumed to

be either equal, larger (softening scenario), or smaller (hardening scenario) than that

of the pristine floodplain. Since oxbow lakes in the long term are often filled by fine

grained sediments forming less erodible plugs, they tend to contrast the river migration

when the channel flows again through them. In order to maintain the lowest possible

level of complexity, the oxbow lake infilling is assumed to occur instantaneous after

the cutoff, and the erodibility coefficient E = Eo of the oxbow lake area is set equal

to Eo/Ef = 1/10. Similarly, the scroll bar area bounded by the oxbow inner bank is

assumed to switch instantaneously to the erodibility coefficient Eb.

Table 4.1 summarizes the six investigated scenarios.

The first case (hereafter referred to as HC) consists of a floodplain which, in term

of erodibility, is not modified by the river evolution. In other words, the river has no

memory about its own past configurations. As a consequence, all the three erosional

resistances are equal Ef = Eo = Eb.

The second case (hereafter referred to as OO) considers the possible formation of
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Table 4.1: Different scenarios considered for the erosional resistance of the various

geomorphic units (i.e. pristine floodplain with erodibility Ef , oxbow lakes with

erodibility Eo, and scroll bars with erodibility Eb) used for the test case. The

scenarios account for the presence of oxbow lakes which are less erodible than the

surrounding floodplain, or exclude this effect assuming that the oxbow lakes are not

distinguishable from the pristine floodplain. These two scenarios are then coupled

with those assuming that the scroll bars are as erodible as the pristine floodplain

(HC, OO), more erodible (SG, SGC) and less erodible (GS, GSC) than the pristine

floodplain.

ID oxbow lakes Eo/Ef scroll bars Eb/Ef

HC no 1 no 1

OO yes 1/10 no 1

SG no 1 softening 3

SGC yes 1/10 softening 3

GS no 1 hardening 1/3

GSC yes 1/10 hardening 1/3

oxbow lakes having erosional resistance lower than the pristine floodplain. No scroll

bar effects are accounted for (Eb = Ef ).

The third and the fourth cases (hereafter referred to as SG and SGC) concern

the formation of scroll bars which are more erodible than the surrounding floodplain,

such the river migration experiences a faster displacement throughout these areas. The

erodibility coefficient is set equal to Eb/Ef = 3. These two scenarios might roughly

correspond to a river which flows in a valley formed mainly by fine material and trans-

ports coarser sediment which is deposited on the inner bend point bars during floods.

Thus, the effect that the coarser material layers have on the erodibility of the scroll

bars dominates over the effect given by the fine layers. Alternatively, the SG and SGC

scenarios may be assume to mime a river dynamics which is faster than the compaction

of bar soil and the development of vegetation cover. Oxbow lakes may be excluded

(SG), Eo = Ef , or included (SGC), Eo/Ef = 1/10.

The fifth and the sixth cases (hereafter referred to as GS and GSC) assume that

scroll bars are less erodible than the surrounding floodplain, such the river migrates

much slowly when it flows across these areas. The erodibility coefficient is set equal
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to Eb/Ef = 1/3. These two scenarios might roughly correspond to a river which flows

in a valley formed mainly by coarse sediment and deposits in prevalence fine sediment

on the point bars. Thus, the effect on erodibility due to the finer layers of the scroll

bars is stronger than that due to the coarser layers. Alternatively, the GS and GSC

scenarios may mime the rapid formation of a vegetation cover that stabilizes the point

bar. Again, oxbow lake effect may be excluded (GS), Eo = Ef , or included (GSC),

Eo/Ef = 1/10.

All runs started from the same initial morphology consisting of a straight chan-

nel perturbed on the transverse direction with small random fluctuation normally dis-

tributed (with zero mean and standard deviation equal to 0.01 ×B∗0)

The initial dimensionless parameters in this test case are β = 20, τ∗ = 0.7, ds =

0.0005, Rp = 400, which correspond to 2B∗0 = 175 m, D∗0 = 4.30 m, S = 5.8×10−4, and

d∗s = 2.1 mm (i.e. coarse sand). Assuming a Strickler coefficient equal to Ks = 25 m1/3

s-1, the uniform flow velocity, the discharge and the Froude number read, respectively:

U∗0 = KsD
∗
0
2/3S1/2 = 1.59 m/s (4.1a)

Q = 2B∗0D
∗
0U
∗
0 = 1190 m3/s (4.1b)

Fr =
U√
gD0

= 0.245 (4.1c)

According to Latrubesse (2008), the considered river may be classified as a large

river, being the discharge larger than 1000 m3/s. Several approaches have been provided

in the literature to discriminate channel patterns. The discharge/slope approaches of

Leopold and Wolman (1957) and Lane (1957) provide respectively Slim = 5.8×10−4 and

Slim = 1.2 × 10−3 as threshold to discriminate between brained rivers (S > Slim) and

meandering rivers (S < Slim). According to the former classification, the considered

test case falls on the braided-meandering threshold, whereas it is largely in the meander

domain when considering the latter classification. The approach of Parker (1976) relates

the threshold slope to the Froude number, giving Slim = 6.1×10−3. Recent approaches

have been based on the stream power, which reads:

ω =
γQS

2B∗0
= 39 W/m2 (4.2)

Combining the empiric formulas of Van den Berg (1995) and of Makaske et al. (2002)

gives the threshold between braiding and meandering (denoted as ωV DB) and the

threshold between meandering and lateral stillness (denoted as ωMAK) in function of
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the mean grain size (Kleinhans and van den Berg, 2011). Applying the coupled ap-

proaches to the current test case confirms that the river likely lies in the domain of

meandering rivers:

ωMAK = 7 W/m2 < ω = 39 W/m2 < ωV DB = 68 W/m2 (4.3)

Kleinhans and van den Berg (2011) proposed a new empirical relation to split the

meandering domain into two subdomains, namely meandering with scroll occurrence

and meandering with braiding and chute occurrence. The dataset used to develop such

classification is mainly focused on large grain diameters (most of them ranges between

3 and 8 cm thus referring to rough gravel rives), with few data about sand and, in

general, fine sediment. As a consequence the classification criterion law might not be

able to describe all the scenarios typical of large alluvial rivers.

The six simulations listed in Table 4.1 were run by using the ZS mathematical

approach in order to compute the excess near-bank velocity.

Figure 4.1 shows the simulated migration history for the six different erodibility

scenarios, after a scaled time equal to 20 times the time tfc at which the first cutoff

occurs. Scenarios characterized by the formation of oxbow lakes and scroll bars harder

than the pristine floodplains (OO, SGC, GS, and GSC) show that the river migration

influences a floodplain region of width of about 100 B∗0 that exhibits a sinuous spatial

trend. On the other hand, the remaining two scenarios (the homogeneous case, HC,

and the softening scenario without oxbow lakes, SG) are characterized by a migration

area that is nearly straight and has a width of about 200 B∗0 .

In order to characterize quantitatively the simulated landforms, a suite of three

geometric parameters, referred to the half meander metrics (i.e., related to reaches

defined by two consecutive inflection points of the channel axis), are used here (Howard

and Hemberger, 1991; Frascati and Lanzoni, 2009). They are the half meander length

Lh, the half meander sinuosity σh, and the half meander asymmetry Ah. The first

corresponds to the intrinsic distance between two planimetric inflection points, while

the latter two are defined as follows:

σh =
Lh
lh

(4.4a)

Ah =
Luh − Ldh
Lh

(4.4b)

where lh is the Cartesian length between two inflection points, while Luh and Ldh are
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Figure 4.1: Migration history of the river planforms, simulated using the ZS ap-

proach and starting from a straight path slightly perturbed in the transverse direc-

tion. The initial dimensionless parameters read β = 20, τ∗ = 0.7, ds = 0.0005.

Darker paths are older, while lighter paths are younger. Left panels refer to runs

carried out by assuming oxbow lakes as erodible as the surrounding floodplain; right

panels refer to runs affected by the formation of oxbow lake less erodible than the

surrounding floodplain. Row panels describe the effects of the scroll bar erodibil-

ity: in the upper panels the scroll bars are assumed as erodible as the surrounding

floodplain; in the central panels the scroll bars are more erodible than the pristine

floodplain (softening behaviour); in the lower panels the scroll bars are less erodible

than the pristine floodplain (hardening behaviour).

the intrinsic lengths of the channel axis upstream and downstream of the point of

maximum curvature Cmax along the considered half meander. Note that Ah ranges

in the interval (-1, 1) and determines whether the half meander is upstream skewed

(Ah < 0), downstream skewed (Ah > 0), or symmetric (Ah = 0). The metrics are

averaged over the Nh half meanders forming the river path at time t. The temporal

trends of these mean values are plotted in Figure 4.2.
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Figure 4.2: See caption at next page.
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Figure 4.2: Time evolution of (a) the half meander length Lh, (b) asymmetry

Ah, and (c) sinuosity σh, averaged over the river reach at each time step. Sim-

ulations were carried out by means of the ZS flow field model and by considering

the six different erodibility scenarios listed in the Table 4.1. Dashed vertical lines

correspond to the time tfc of first cutoff occurrence and to the time tse at which

the planform evolution can be considered statistically stationary. The time interval

t/tfc < 1 is characterized by growing meanders starting from an initial, slightly

perturbed, straight path. The intermediate time interval 1 < t/tfc < 4 repre-

sents a phase in which cutoffs start their filtering action, removing older bends and

possibly changing the floodplain structure through the formation of oxbow lakes

and scroll bars. Later on (t/tfc > 4) the planform configurations attain a statisti-

cally stationary evolution, for which the normalized frequency distributions of the

observed quantities were computed (d, e, and f panels).

The river begins initially to elongate monotonically (t < tfc, where tfc is the time

of occurrence of the first cutoff), and the floodplain area reworked by the channel mi-

gration increases as well. The initial condition (straight, slightly perturbed channel)

leads to an artificial regularity of the meander trains which implies that adjacent me-

anders approach neck cutoffs nearly simultaneously (Frascati and Lanzoni, 2010). The

second phase, starting after the first cutoff occurrence (t > tfc) shows that the pos-

sible heterogeneity introduced by the formation of oxbow lakes and point bars begins

to affect the meander evolution process, as the trajectory referred to the homogeneous

case (HC) strongly separates from the others affected by any floodplain heterogeneity.

The separation is more remarkable in the trends of Lh and σh. At a later stage of

evolution (t > tse) cutoffs remove older meanders limiting the planform geometrical

complexity and leading to a statistical stationary evolution state, i.e. to time signals

that oscillate about nearly constant values. This condition is attained at t/tfc ranging

from ∼ 2 for the active oxbow case to ∼ 4 for the SG case, thus this latter value will be

considered as the starting time of stationary evolution conditions for all the scenarios.

The stationary-evolving signals of Lh and σh referred to the three scenarios with active

oxbow lakes (i.e. OO, SGC, GSC) are nearly superimposed, as shown by the frequency

distributions. In the case of Ah, the GSC signal differs from the OO and SGC signals.

In general, the presence of less erodible oxbow lakes leads to meanders which are on
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average shorter and downstream skewed (i.e. positive Ah), whereas by excluding this

effect leads to upstream skewed meanders, as often observed in nature (Seminara et al.,

2001). From a modelling point of view, considering the oxbow lakes less erodible rules

out the effects of scroll bar units and, hence, the processes acting on them (e.g. sed-

imentary processes, vegetation dynamics). On the other hand, the trends of the GS

signals are very close to OO, SGC and GSC signals. Thus, considering only hardening

scroll bars without any oxbow lake effect could be assumed representative of generally

hardening structures. Under statistically steady conditions the trends of the SG signals

are close to the trends of the homogeneous cases, HC, despite the differences observed

during the initial and intermediate evolution phases.

4.2 A synthetic database of meanders

A numerically generated database was built to cover a relatively wide range of natural-

equivalent cases by considering 18 sets of initial parameters, namely β, τ∗, ds, and bed

type (Table 4.2). Simulations were carried out using both the ZS and the IPS flow field

models described in Chapter 2. All the runs started from a common initial morphology

consisting of a straight channel perturbed in the transverse direction with small random

fluctuations normally distributed (zero mean and standard deviation equal to 0.01).

Recalling the results of the test case described in Section 4.1:

• introducing different sets of floodplain heterogeneities formed by the river migra-

tion leads to different planform shapes both in space and in time;

• the scenario with hardening scroll bars can approximate the behaviour emerging

when considering less erodible oxbow lakes.

For these reasons, and in order to limit the number of simulations, only the effect of

the scroll bars is accounted for. The abandoned channel reaches were thus split in

two regions delimited by the channel axis. The inner part was considered as belonging

to the scroll bar because of aggradation, whereas the outer half part was considered

as belonging to the surrounding floodplain. As a consequence, only three different

erodibility scenarios were considered, concerning the scroll bar erodibility coefficient

Eb. The first scenario, hereafter denoted as hardening case, prescribes that the scroll

bar geomorphic units are less erodible than the pristine floodplain (Eb/Ef = 1/8). This
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Table 4.2: Sets of initial parameters used in the numerical simulations carried

out by using the ZS and IPS models. Here, β is the half-width to depth ratio,

τ∗ is the Shields number, ds is the mean sediment size scaled by the flow depth,

while initial bed configuration may be either plane of dune-covered. Moreover,

τse = tse/tfc is the time (scaled by the time of first cutoff occurrence) at which

statistically-stationary conditions are attained. For a certain set of parameters, the

largest value of τse is considered with reference to the three erodibility scenarios

here investigated.

run β τ∗ ds bed type τ ZSse τ IPSse

1 10 0.2 0.001 dune-covered 40 10

2 10 0.2 0.01 dune-covered 5 20

3 10 0.7 0.01 plane 2.5 5

4 10 1.2 0.01 plane 4 10

5 15 0.2 0.0001 dune-covered 13 5

6 15 0.2 0.001 dune-covered 10 10

7 15 0.2 0.01 dune-covered 4 50

8 15 0.7 0.001 plane 2 2

9 15 0.7 0.01 plane 4 5

10 15 1.2 0.01 plane 2 10

11 20 0.2 0.0001 dune-covered 3 10

12 20 0.2 0.001 dune-covered 5 30

13 20 0.2 0.01 dune-covered 4 50

14 20 0.7 0.0001 plane 3 2

15 20 0.7 0.001 plane 2 3

16 20 0.7 0.01 plane 1.5 7.5

17 20 1.2 0.001 plane 2 5

18 20 1.2 0.01 plane 1.5 20
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occurrence describes the prevalence of fine-grained sediment in the point bar deposits

(Rowland et al., 2005). The second scenario, hereafter denoted as homogeneous case,

consists of preserved geomorphic units that have an erosion coefficient equal to that of

the pristine floodplain (Eb = Ef ), so that the river dynamics does not introduce any

variation in the floodplain sedimentary structure. Finally, the third scenario, hereafter

denoted as softening case, considers the scroll bars more erodible than the pristine

floodplain (Eb/Ef = 8), such that the lateral migration rate of the river increases when

a heterogeneous environment is reworked. Differently from the test case in Section

4.1, the differences between Ef and Eb were increased to emphasize the heterogeneity

effects. The three different scenarios allow to understand how intrinsic features of river

planforms may vary, in order to evaluate the mutual interactions between the long-

term evolution (i.e. tens-hundreds of years) of meanders and the floodplain self-formed

heterogeneity.

For each simulation, the time tse at which the computed planforms attained sta-

tistically stationary evolving features was determined through the trends of the three

geometric quantities Lh, σh, and Ah introduced in Section 4.1, and scaled by the time tfc

at which the first cutoff occurs. Table 4.2 summarizes the values of τse = tse/tfc found

for the 18 sets of initial parameters, for both the ZS and the IPS approaches. In fact,

given an initial set of parameters, the different flow fields determined by either the ZS

or the IPS models provide different migration histories, yielding different characteristic

values for both tfc and tse. Total simulation time for all runs lasted at least twice tse

to ensure that the three morphometric parameters oscillate in time around a constant

value, i.e. to arrive at statistically-stationary evolving planforms. It is noteworthy that

the river attains the statistically-steady evolving conditions (i.e. the time tse) before

having completely reworked the pristine floodplain.

All the spectra analysed in the next sections were normalized to the total spectrum

density.

4.3 Time analyses

Applying Singular Spectrum Analysis, SSA, and Multivariate Singular Spectrum Anal-

ysis, MSSA (see Chapter 3 for details), to the time series of the half meander metrics

may help to disclose the structure and the degree of complexity embedded in the river

planforms after the statistically-stationary evolving phase is attained. The various met-
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rics are averaged over the entire river reach.

Figure 4.3 shows the SSA spectra computed for Lh, Ah, and σh for three different

window length, i.e. m = 10, 20, and 30. In all cases, a slow decay of the Singular

Values (SVs) is evident, showing that a large number of Reconstructed Components

(RCs), is necessary to reproduce the signal. However, the different spectra have simi-

lar shapes and values across the tested metrics and simulated scenarios. The spectra

concerning Lh and σh show a slightly larger variability of the tails and, hence, of the

related noise. The fundamental SVs (related to the larger eigenvalues) for the harden-

ing and the homogeneous cases are invariably above those of the softening case which,

in turn, tends to exhibits higher-order noise components (i.e. the signals are above the

others for smaller eigenvalues), distinctive of more complex signals. On average, IPS-

generated channel paths show stacks better defined, whereas ZS-generated planforms

exhibit almost overlapping Lh and σh stacks for the hardening and the homogeneous

scenario. In addition, when adopting the ZS flow field model, the Ah spectra for the

hardening case fall between those concerning the softening cases (which are above) and

those concerning the homogeneous cases (which are below). On the contrary, a different

trend is observed for the IPS-generated planforms; the homogeneous-case spectra, in

fact, lie between the softening and the hardening spectra.
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Figure 4.3: Normalized SSA spectra of half meander length Lh, half meander

asymmetry Ah, and half meander sinuosity σh, averaged over the entire river reach

at each time step and compared over the three different heterogeneity scenarios.

The adopted window sizes are m = 10 (a), m = 20 (b), and m = 30 (c). The

time series refer to statistically-stationary evolving meander planforms. The upper

panels refers to ZS flow field simulations, the lower to IPS flow field simulations.

MSSA was performed by considering, for each simulation, the time series of Lh,

Ah, and σh as a multi-dimensional signal. This three-component signal was previously

normalized by PCA (see Chapter 3). The resulting spectra (Figure 4.4) show char-

acteristics that are very similar to the corresponding SSA spectra. The largest SVs

of the hardening case spectra are above, whereas the softening case spectra move to

the top when considering higher-order SVs. The spectra obtained with the ZS model

are almost overlapped for the hardening and the homogeneous scenarios, whereas the

stacks referring to the softening case have more defined boundaries. On the other hand,

the IPS model leads to a much clearer separation of the spectra for the intermediate

components, while the tails tends to overlap, as for the ZS-generated series.
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Figure 4.4: Normalized MSSA spectra of half meander multi-channel signal, com-

posed by the length Lh, the asymmetry Ah, and the sinuosity σh, averaged over

the entire reach at each time step and compared over the three different hetero-

geneity scenarios. The three-channel signals were previously normalized through

PCA. Three different window sizes were adopted: m = 10 (upper panels), m = 20

(central panels), and m = 30 (lower panels). The time series refer to statistically-

stationary evolving meander planforms. Left panels refer to ZS flow field simula-

tions, while right panels refer to IPS flow field simulations.
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4.4 Spatial analyses

At the present, no general methods are available to analyse nonlinear spatio-temporal

patterns (Frascati and Lanzoni, 2010). Expedients may be resorting to either spatial

patterns, such as series of local curvatures (Perucca et al., 2005), or quantities which try

to synthesize the overall behaviour of the system. Here the multivariare approaches fol-

lowed by Howard and Hemberger (1991) and Frascati and Lanzoni (2009) is employed,

in order to analyse spatial series of different metrics of meandering planforms through

Fourier Analysis (FA), Singular Spectrum Analysis (SSA) and the Multivariate exten-

sion (MSSA), and Principal Component Analysis (PCA) (see Chapter 3). To this aim,

three different databases were considered.

The first database consists of 52 natural planforms of meandering rivers, obtained

from literature data or extracted from Landsat or Google Maps images (Table 4.3), and

selected in order to include paths from different continents and environments.

Table 4.3: Database of natural river paths used for the multivariate statistical

comparisons with numerically generated meanders. Data sources are as follows: 1,

http://earthexplorer.usgs.gov; 1, http://maps.google.com; 2, Lancaster and Bras

(2002); 3, Latrubesse (2008); 4, Stølum (1998).

River Location Data source

Beaver Canada 2, 5

Birch Creek Alaska, US 3

Chet Russia 2

Chinchaga Canada 2

Chulym Russia 1

Curuca 1 Brazil 1

Curuca 2 Brazil 1

Darling Australia 2

Dishna Alaska, US 3

Dulgalakh Russia 1

Envira Brazil 1

Fly Papua New Guinea 1, 5

Javari Brazil, Peru 1

River list continues on next page
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River list continues from previous page

River Location Data source

Jurua 1 Brazil 1, 4, 5

Jurua 2 Brazil 1, 4, 5

Jurua 3 Brazil 1, 4, 5

Kemchug 1 Russia 1

Kemchug 2 Russia 1

Kwango 1 Angola, Congo 1, 5

Kwango 2 Angola, Congo 1, 5

Kipo-Kulary Russia 1

Melozitna Alaska, US 3

Mississippi 1 US 1

Mississippi 2 US 1

Murray 1 Australia 1

Murray 2 Australia 1

Murray 3 Australia 1

North Fork Kuskokwim 1 Alaska, US 1

North Fork Kuskokwim 2 Alaska, US 1

Nan Thailandia 5

Okavango Angola 2

Orthon Bolivia 2

Porcupine Alaska, US 1

Preacher Alaska, US 3

Purus 1 Brazil 1, 5

Purus 2 Brazil 1, 5

Ramu Papua New Guinea 1

Rio Bravo Mexico, US 2

Rio Madre De Dios Peru 1

Sittang Myanmar 2

Takotna Alaska, US 3

Tarauaca 1 Brazil 1

Tarauaca 2 Brazil 1

River list continues on next page
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River list continues from previous page

River Location Data source

Tarauaca 3 Brazil 1

Teklanika Alaska, US 3

Tym 1 Russia 1

Tym 2 Russia 1

Tym 3 Russia 1

Tym 4 Russia 1

Tym 5 Russia 1

Vakh Russia 1

Yana Russia 1

End of river list

The second database groups the 18 ZS-generated configurations corresponding to

the 3 scenarios assumed for the erosional resistance of the scroll bar environments (hard-

ening, homogeneous, and softening). Thus it consists of 18 × 3 planforms extracted

randomly from the statistically-stationary configurations resulting from the runs listed

in Table 4.2. Similarly, the third database concerns the IPS-generated paths (18 × 3).

Four groups of post-processing analyses were performed on these databases: binning

and MSSA of half meander metrics, FA and SSA of full meander curvature, and a PCA

which aims to globally compare the different planforms (i.e. natural or numerically

generated) through a suite of statistical parameters describing the spatial distribution

of the geometrical features.

Half meander metrics

Figure 4.5 shows the binning of the three half meander metrics, either Lh, Ah, and

σh, computed for the various channel paths, natural or synthetic. Means and standard

deviations of the binned values are reported in figure 4.6

The frequency of Lh in natural rivers decreases with the increasing values, with

the maximum close to 100 (times B∗o). A similar trend is shown by ZS-generated paths

related to the hardening scenario, even if some values are larger than 100. The softening

and the homogeneous ZS planforms are characterized by more scattered binned values
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Figure 4.5: Binning of the spatial series of the three half meander metrics: the

length Lh (left panels), the asymmetry Ah (central panels), and the sinuosity

σh (right panels). The first row (gray markers) refers to the natural planforms,

while the second and the third rows (coloured markers) refer to the ZS-simulated

paths and to the IPS-simulated paths, respectively. The plot of Lh for the IPS

simulations (bottom left) shows a lower number of points because some values

exceed the maximum limit of the x-axis.
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Figure 4.6: Means and standard deviations of the binned spatial series of the three

half meander metrics: the length Lh (left panels), the asymmetry Ah (central

panels), and the sinuosity σh (right panels). The first row (gray markers) refers

to the natural planforms, while the second and the third rows (coloured markers)

refer to the ZS-simulated paths and to the IPS-simulated paths, respectively.
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Figure 4.7: Normalized MSSA spectra of the spatial three-channel signals com-

posed by the half meander length Lh, half meander asymmetry Ah, and half mean-

der sinuosity σh for natural planforms (left panels) and synthetic paths generated

by using the ZS (central panels) and the IPS (right panels) flow field models.

Three different window sizes were adopted: m = 2 (upper panels), m = 5 (central

panels), and m = 8 (lower panels). The multivariate signals were pre-processed

by PCA. Thick lines link the average values for each spectral component. The

coloured number are the RSS (residual sum of squares) between the simulated av-

erage trends and the average trends of natural planforms, which are repeated for

comparison purposes in the simulated path panels.
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of Lh, which, similarly to the IPS-generated paths, do not show any kind of clustering.

Analogous conclusions may be derived from the σh binning, even though differences

are less pronounced and clustering is stronger. Binning plots of Ah reveal that both

natural and simulated half meanders exhibit a wide range of skewness. Nevertheless,

numerically generated planforms (especially IPS ones) are characterized by a slightly

higher frequency of upstream skewed meanders.

In summary, the heterogeneity produces variability in terms of half meander length

and sinuosity, whereas the asymmetry does not show any predominant common be-

haviour.

MSSA applied to the spatial distribution of Lh, Ah, and σh involves a three-channel

matrix for each planform, either natural or simulated, previously normalized via PCA.

Figure 4.7 illustrates the MSSA spectra, and their average values for each component,

referred to the different erodibility scenarios. Three windows size were employed to

investigate the interplay among adjacent half meanders (m = 2) and longer features

(m = 5 and m = 8), leading to a lag-covariance matrix of rank m × 3 = 6, 15 and 18

respectively. The trends suggest qualitatively similar behaviours for all the tested win-

dow sizes. The steepness of the spectra, on average, is higher for the homogeneous cases

while the hardening case exhibits the mildest spectrum steepness, independently on the

considered flow field model. As a consequence, the hardening scenario is characterized

by a more spatially structured geometry signal, and, in term of MSSA spectral be-

haviour, a closer similarity with the average trends associated with natural geometries,

especially when using the ZS model.

Full meander curvature

The distribution of the curvature of the full meanders (i.e. the channel reaches composed

by two consecutive half meanders and, hence, containing three consecutive inflection

points of the axis) is here inspected trough Fourier Analysis (FA) and Singular Spectrum

Analysis (SSA). Both techniques split the input signal in a set of primitive components,

but FA approximates the signal with a series of sinusoidal functions, whereas SSA

embeds the input signal in a vector space of given dimension m. Since both natural and

simulated full meanders are discretized by polylines, the local curvature Ci is defined at

the ith node of the channel axis, yielding discrete signals.

Figure 4.8 shows the power spectra, normalized to the power density, of all the
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Figure 4.8: Power spectra of the distributions of full meander curvature, normalized

to the total power density, for natural planforms (left panel), ZS-simulated paths

(upper row), and IPS-simulated paths (lower row). Solid lines connect the average

value per harmonic. The numbers correspond to the RSS (residual sum of squares)

between the simulated average trends and the average trend of natural planforms,

which is repeated for comparison purposes in the simulated path panels.

considered meanders. Signals were previously detrended, thus the zero harmonics van-

ish. The first component of the binned spectra invariably exhibit the highest power,

and then the following harmonics decreases monotonically. The average trend most

similar to that of natural rivers is attained for hardening scroll bar scenarios, which

slightly overestimates the first and second harmonics and overlaps to the natural trend

for the higher harmonics. The average trend of the softening scenarios shows a larger

overestimation of the first harmonic, whereas in the homogeneous case differences with

respect to the natural case emerge also in correspondence of the spectrum tails. The two

flow field models do not produce significant variations between them and the natural

database. In other words, the FA analysis of channel axis curvature appears to poorly

discriminate between different signals.

The SSA spectra of the meander curvature distribution carried out with three differ-

ent window size (m = 5, 10, and 15) are reported in Figure 4.9. The general behaviour
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of the average trends consists of an exponential decay with a slope break after a num-

ber of components roughly equal to half of the considered window length m. Unlike

the Fourier analysis, differences occur when using different flow field models, and for

the various heterogeneity scenarios. In particular, the major differences between the

natural and the simulated paths are observed for to the homogeneous scenarios, where

the second-third components are generally lower with respect to the natural case, es-

pecially for the IPS-simulated paths. In the presence of heterogeneity, ZS-generated

meanders disclose a diffuse shift of the mean trend with respect to the natural paths.

The strongest agreement is observed for the IPS-generated meanders and on hardening

behaviour of the scroll bars.

In summary, FA and SSA analyses prove that introducing any kind of self-formed

heterogeneity on the valley surface leads to variation in the distribution of the local

curvature of the channel axis, even though the differences in the mean spectrum trend

with respect to natural patterns are in general relatively limited. The analyses of

channel axis curvature thus seems to poorly discriminate between different planforms.

(a) m = 5
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(b) m = 10

(c) m = 15

Figure 4.9: Normalized SSA spectra of the distributions of the full meander curva-

ture, for natural planforms (left panels), ZS-simulated paths (upper rows), and IPS-

simulated paths (lower row). Three different window sizes were adopted: m = 5

(panels a), m = 10 (panels b), and m = 15 (panels c). Solid lines connect the

average value per component. The numbers correspond to the RSS (residual sum

of squares) between the simulated average trends and the average trends of nat-

ural planforms, which are repeated for comparison purposes in the simulated path

panels.
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Overall spatial comparison

Following the approach of Frascati and Lanzoni (2009), a suite of 16 morphometric

variables was introduced to characterize through Principal Component Analysis (PCA)

the complexity embedded in meandering geometries and to emphasize the subtle differ-

ences which may emerge between apparently similar configurations. The set includes

quantities related to three different scales: half meander, full meander and whole reach.

Regarding the half meander scale (denoted with the subscript h), the considered quanti-

ties are four statistics of the length Lh, the asymmetry Ah and the sinuosity σh, namely

the mean, the variance, the skewness and the kurtosis of their spatial distribution along

the channels. The full meander scale (denoted with the subscript f) is represented by

the mean sinuosity, defined as:

σf,mean =
1

Nf

Nf∑
i=1

Lfi
lfi

(4.5)

where Lf and lf are the intrinsic and the Cartesian lengths of the full meander, respec-

tively, while Nf is the number of full meanders forming the reach. Further quantities

referred to the full meander scale (e.g. asymmetry) are redundant with respect to the

half meander quantities. Finally, the reach scale (denoted with the subscript t) is anal-

ysed in terms of variance and kurtosis of the distribution of the local curvature, and

the reach sinuosity:

σt =
Lt
lt

(4.6)

where Lt and lt are the intrinsic and the Cartesian lengths of the reach, respectively.

The suite of considered parameters is summarized in Table 4.4.

The PCA is performed on the matrix that results by assembling the row vectors

containing the above defined 16 statistical variables for each path, either natural or

simulated. The aim is to convert the original data set in an equivalent data set with a

lower dimensionality, but ensuring a relatively small loss of information.

The closer affinity with the natural planforms displayed by the synthetic meanders

in the hardening scenario is confirmed by the PCA results shown in Figure 4.10. The

scatter plot of the first three components, a1, a2, and a3, relative to the three largest

eigenvalues, is shown, with the two-dimensional projections of the resulting combina-

tions of pairs.

The three components account for about the 55 % of the total variance. The spatial
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Table 4.4: Suite of morphometric parameters considered to characterize the me-

ander planforms, either natural of numerically generated, and to compare them

through PCA.

Characteristic scale Variable Description

Half meander Lh,mean average half meander length

Lh,var variance of the half meander length

Lh,skew skewness of the half meander length

Lh,kurt kurtosis of the half meander length

Ah,mean average half meander asymmetry

Ah,var variance of the half meander asymmetry

Ah,skew skewness of the half meander asymmetry

Ah,kurt kurtosis of the half meander asymmetry

σh,mean average half meander sinuosity

σh,var variance of the half meander sinuosity

σh,skew skewness of the half meander sinuosity

σh,kurt kurtosis of the half meander sinuosity

Full meander σf,mean average half meander length

Whole reach σt sinuosity of the reach

Ct,var variance of the curvature distribution

Ct,kurt kurtosis of the curvature distribution

distribution is relatively significant, with a clear separation of the markers related to

the homogeneous case , which are more spread (in particular the IPS-simulated paths),

and the markers related to the natural planforms, which are very close among each

other. Softening case and hardening case markers lie between the previous two sets,

with the latter partially overlapping the natural path cluster, in particular the ZS-

simulated paths. The first two components, a1 and a2, account for about the 45 % of

the total variance. The clustering of the softening scenario markers is evident, as well

as the proximity of the hardening scenario markers to those characterizing the natural

paths, which are mainly concentrated in the quadrant where a1 is positive and a2 is

negative. The markers corresponding to the homogeneous case are very spread, and

mainly localized in the negative a1 half plane, thus showing an opposite behaviour with

respect to the natural path cluster. The degree of clustering decreases with the order of
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Figure 4.10: Three-dimensional scatter plot of the first three components of mor-

phometric data of natural rivers and simulated paths processed by Principal Com-

ponent Analysis (PCA), coupled with the projections in orthogonal two-dimensional

reference systems (lateral panels). Each axis is labelled with the respective per-

centage of variance.

the components, as the total variance accounted for the components and the difference

in variance between two consecutive components progressively decrease. Indeed, while

in the a1 - a3 plane the clustering clearly emerges, in the a2 - a3 plane only the natural

path cluster remains nearly clear.

Analogously to SSA, MSSA and FA, the normalized spectrum of PCA is an indicator

of the splitting of information along the Principal Components. (Figure 4.11).

The spectrum decays nearly exponentially (i.e. linearly in the semi-log plot), with

the successive 13 out of 16 eigenvalues carrying the residual variance (about 45 %), not

described by the first three components, up to small values of the order of 10-3. As a

consequence, the application of PCA to the selected set of morphometric parameters

allows to reduce the dimensionality of the problem through a basis transformation,

without dropping a significant amount of information.
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Figure 4.11: Normalized eigenvalue spectrum of the correlation matrix of the

Principal Component Analysis (PCA).

4.5 Discussion

River migration, point bar deposits and oxbow lake formation concur together to shape

the lowland floodplain environment. On one hand, oxbow lakes are the inevitable

product of the reworking action of the meandering process, whereby the continuous

elongation of bends driven by erosion at the outer bank and deposition at the inner bank

is eventually limited by cutoff occurrence. On the other hand, they contribute, together

with point bar complexes, to alter the sedimentological structure of the floodplain and,

consequently, exert a strong control on meander evolution by varying the soil erodibility

of an otherwise homogeneous floodplain.

Soil heterogeneities caused by oxbow lakes depend on the type and amount of sed-

iment filling (Constantine et al., 2010). Neck cutoffs, as those considered in the simu-

lations, tend to produce oxbow lakes with relatively large diversion angles that favour

aggradation of the entrances of the abandoned channel. The oxbow lake then become

quickly disconnected from the river, and the resulting accommodation space is mainly

filled by wash load delivered during floods. In some cases, sediment-laden flow can be

conveyed from the main river by tie channels that develop as oxbow lakes become iso-
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lated (Rowland et al., 2005). The filling process may last for many decades, depending

on the rate of sediment supply, and eventually leads to the formation of sediment plugs

that slow meander migration (Hudson and Kesel, 2000). The sedimentary structure

associated to point bars may have a significant impact on floodplain erodibility. Mud-

dominant inclined heterolithic strata typical of scroll bars can form as a consequence of

the bank pull-bar push dynamics related to lateral channel migration (van De Lageweg

et al., 2014). Additional erosion-resistant barrier to lateral channel migration are asso-

ciated to the fine-grained deposits forming on the most distal parts of point bars (the

counter point bars defined by Smith et al. (2009)).

The hardening scenario of the present simulations can then be considered as repre-

sentative of erosion resistant oxbow fill and counter point bar deposit in rivers with high

enough sediment loads, possibly reinforced by the vegetation growth. Conversely, the

softening scenario could be related to the case of sandy point bars deposits and oxbow

lakes that either exist as open water bodies for many decades, owing to a relatively low

supply of sediment, or are intercepted soon after their formation in highly active rivers,

with rapid migration and large cutoff rates.

Present results show that the heterogeneity in floodplain composition associated

with the formation of preserved geomorphic units, together with the choice of a reliable

flow field model to drive channel migration, are two fundamental ingredients for repro-

ducing correctly the long-term morphodynamics of alluvial meanders (Schuurman et al.,

2016). The model should be able to account for the whole range of morphodynamic

conditions (subresonant and superresonant) and, hence, to reproduce the wide variety

of bends (upstream-skewed, downstream-skewed, compound, multiple loops) observed

in nature, without invoking spatial heterogeneities of the bank resistance to erosion.

The spectral analyses of Section 4.3 applied to the temporal evolution of half me-

ander metrics showed that the simulated meander geometry is strongly affected by the

self-formed heterogeneity of the floodplain. In particular, SSA and MSSA showed that

the planforms obtained for the softening scenario invariably have a more complex struc-

ture with respect to the homogeneous and the hardening case. In other words, the river

paths obtained for the the hardening cases have a shorter memory of their past states,

which reflects in a relatively more elementary structure of the temporal distribution of

half meander metrics.

Similarly, the spatial analyses of Section 4.4 showed that floodplain heterogeneities
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associated with scroll bar units produced by the migration process itself add a further

degree of complexity to the channel patterns. From a purely geometrical point of view,

all morphological analyses of spatial features concur to establish that patterns gener-

ated by assuming scroll bars less erodible than the surrounding floodplain are more

akin to natural meander shapes. Moreover, even in the presence of river-induced flood-

plain heterogeneities, ZS-created patterns are still those that better resemble natural

landforms. Differently from the results of the time analysis of half meander metrics,

the analysis of the meander geometry showed that the spatial trends related to the

hardening scenarios have a more complex structure with respect to the softening and

the homogeneous cases. Simulating the river migration with the assumption that scroll

bars are less erodible than the surrounding floodplain leads to planforms which are

relatively highly correlated in space and less correlated in time, if compared to the case

of more erodible scroll bars or a homogeneous floodplain.

Clearly, other processes can affect the distribution of heterogeneities across a flood-

plain, and deserve attention in future research. Oxbow lakes created by chute cutoffs

(non treated in the simulations) generally have lower diversion angles than neck cutoffs.

The enhanced delivery of coarse sediment from the active channel thus tends to slow the

closure of the abandoned reach (Constantine et al., 2010), with a consequently mod-

ified (likely smaller) resistance to erosion when the active meandering river migrates

again into the oxbow. Geological constraint (e.g., rock outcrops), land use and vege-

tation patterns matter as well. In many cases, woodland species are densest along the

boundaries of the active river and oxbow lakes, while grassland species prevail on the

remaining floodplain. The high density of large roots in cutbanks thus decreases bank

erodibility (Allmendinger et al., 2005). Nevertheless, when vegetation is confined to the

tops of tall cutbanks, the erosion at the toe of the bank eventually undermines even

root-reinforced slopes (Constantine et al., 2009). These eco-morphodynamic processes

still need to be inserted in long-term models of alluvial river evolution.
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Chapter 5

On the floodplain singularities

This Chapter concerns the numerical modelling of the dynamics of meandering rivers

affected by an internal boundary condition which introduces localized changes in the

flow field, e.g. a variation in the discharge or in the valley slope. The goal is to extend

the applicability of the existing morphodynamic model described in Chapter 2 to a

wider range of scenarios, relaxing the hypothesis of a unique uniform flow determining

the river behaviour.

The Chapter is organized as follows. Section 5.1 concerns the extension of the

mathematical framework introduced in Section 2.4 in order to handle internal boundary

conditions depending on the resonance conditions (subresonance or superresonance).

Section 5.2 describes the application of the model extension to a real case, namely a

treat of the Lower Mississippi River affected by the confluence with the Arkansas River.

Four different scenarios are considered, and the results of simulations are outlined in

Section 5.3. Finally, Section 5.4 discusses the effects of a boundary condition within

the domain, and the possible applications of the developed framework.

5.1 Mathematical framework

The widely used mathematical models for the flow field in a meandering river, e.g. the

IPS model of Ikeda et al. (1981) and the ZS model of Zolezzi and Seminara (2001) (see

Chapters 2 and 4), are based on the assumption that the flow field may be split in two

components. The first is relative to the main, uniform flow that establishes throughout

the river reach; the second describes the secondary flow driven by the curvature distri-
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bution. However, the hypothesis of uniform flow narrows the potential applicability of

the mathematical frameworks, since natural rivers seldom exhibit geometric properties

(i.e., slope, cross section) that keep constant for sufficiently long distances. The usual

way to proceed is to assume average properties, if their variance is relatively small and

uniformly distributed in space. On the other hand, the averaging does not work if vari-

ations are localized or slowly growing/diminishing. For example, localized variations

are determined by the discharge input due to a tributary or by a change in the valley

slope. In both cases, flow conditions changes between upstream and downstream due

to the singularity, and also a transition channel reach occurs. A typical slowly varying

condition concerns the backwater effect that arises in the proximity to the river mouth,

where depth progressively increases and velocity decreases. As a first approximation,

this setting can be reduced to the previous case by assuming a series of subreaches with

progressively different flow conditions.

The problem may be outlined through the sketch in Figure 5.1. The meandering

channel is characterized by the presence of a singular section where one or more changes

in the main flow field are introduced. As a consequence, also the secondary flow field

driven by the channel axis curvatures is affected by these changes. Labelling the intrinsic

coordinate of the singular section as s = L0, the part of the channel in the range

0 ≤ s ≤ L0 is hereafter defined as upstream subreach, while the part in the range

L0 ≤ s ≤ L1 is hereafter defined as downstream subreach.

s = 0

s = L0

s = L1

u

d

Figure 5.1: Sketch of a meandering river affected by a singular section (s = L0)

which introduces variations in the main flow and in the curvature-driven secondary

circulation. The reach is split in a upstream subreach u (0 ≤ s ≤ L0) and in a

downstream subreach d (L0 ≤ s ≤ L1).

At the leading order of approximation (the main, uniform flow), the required condi-

tions are the conservation of the liquid flux Qw and of the sediment flux Qs upstream
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(superscript u) and downstream (superscript d) of the singular section (superscript s):

[
Qw

Qs

]u
s=L0

+

[
∆Qw

∆Qs

]s
=

[
Qw

Qs

]d
s=L0

(5.1)

where ∆Qw and ∆Qs are the possible flux variations in the correspondence of the

singular section s = L0. As shown in Chapter 2, the relevant parameters within a reach

are the cross section width 2B∗0 , the bed slope S, the characteristic grain size d∗s, and

one among the water discharge Q∗w, the stream velocity U∗0 , and the flow depth D∗0.

Thus four dimensional parameters (superscript ∗) can be defined for each subreach.

Since (5.1) is a system of two equations, the problem has six degrees of freedom: six of

the eight dimensional quantities listed above (four per each channel subreach) need to

be assigned a priori, whereas the remaining two are given by the constraint imposed by

equations (5.1). A discontinuity of the cross section geometry in correspondence of the

singular section thus occurs in terms of uniform conditions. If the changes in uniform

conditions between the two subreaches are not very different, they may be treated as

concentrated into the singular section s = L0.

Analogous conditions are required for the curvature-driven secondary flow. Hence

the coupling between the curvature-driven flow of the upstream subreach in correspon-

dence of its downstream end, i.e. the singular section s = L0, and the analogous

curvature-driven flow of the downstream subreach in correspondence of its upstream

end, i.e. again the singular section s = L0, has to be considered.

The IPS model (Ikeda et al., 1981) can not be used to satisfy the continuity require-

ments. Indeed, it accounts only for the upstream influence of the curvature distribution

(Lanzoni et al., 2006; Lanzoni and Seminara, 2006), and the information can propa-

gates only downstream. Any perturbation localized in the singular section could not

influence the upstream part. On the other hand, the ZS model (Zolezzi and Seminara,

2001) is characterized by four particular solutions that, combined together, can be used

to satisfy the continuity requirements. This particularity of the ZS model is strictly

linked to its ability to handle both sub- and super-resonance conditions or, in other

words, the upstream and the downstream influence. In the following the ZS model will

be extended in order to treat coupled meandering domains.
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The solution of Zolezzi and Seminara (2001)

Following the notation of Chapter 2, the dimensionless solution of the fully coupled

morphodynamic framework of Zolezzi and Seminara (2001) reads:


U

V

D

H

 =


1

0

1

1

+ ν0


u

v

d

h

+O
(
ν20
)

(5.2)

where (U, V ) = (U∗, V ∗)/U∗0 are the dimensionless velocity components while (D,H) =

(D∗, H∗)/D∗0 are the dimensionless flow depth and the free surface elevation, given

by the sum of the uniform flow components and of the dimensionless perturbations

(u, v) = (u∗, v∗)/U∗0 , (d, h) = (d∗, h∗)/D∗0 driven by the curvature distribution. The

latter are then decomposed as follows:


u

v

d

h

 =


0

0

d̄1C + d̄2C′ + d̄3C′′

h̄1C + h̄2C′ + h̄3C′′

n+
∞∑
m=0


um sin(Mn)

vm cos(Mn)

dm sin(Mn)

hm sin(Mn)

 (5.3)

where h̄i and d̄i (i = 1, 2, 3) are coefficients depending on the aspect ratio β, the

Shields number τ∗, the friction coefficient Cf and the sediment transport intensity Φ.

In addition, C is the local curvature having first- and second-order derivatives C′ and C′′,
respectively. Finally n is the dimensionless transverse coordinate, which ranges from -1

to +1, while M = (2m+ 1)π/2 emerges from the Fourier series decomposition.

The vectorial form of the solution for the terms in the Fourier expansion reads:

Qm (s) = Âm

4∑
j=1

Tmj gj0
∫ s

s0

eλmj(s−t)C (t) dt+

4∑
j=1

Tmjcmjeλmj(s−s0) + Âm

4∑
j=1

Lmj (s)

(5.4)
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where:

Qm (s) =



um

vm

dm

hm


Tmj =



1

φmj

δmj

ξmj


Lmj (s) =



gj1C
9∑

k=1

φmjkCk−1

9∑
k=1

δmjkCk−1

9∑
k=1

ξmjkCk−1


(5.5)

The terms φmj , δmj , ξmj , φmjk, δmjk, and ξmjk are functions of β, τ∗, Cf , Φ, while gj0

and gj1 depend on the vertical decomposition of the flow field (Zolezzi and Seminara,

2001). Moreover, Âm = 2(−1)2/M2, while the four coefficients cmj are associated

with the particular solutions of the mathematical problem for each Fourier mode m.

They are determined through the boundary conditions imposed at the upstream and

downstream ends of the considered reach (Lanzoni and Seminara, 2006). Hereafter,

for the sake of simplicity, the following compact notations will replace the extended

convolution integrals appearing in (5.4):

I (λ, s, s0) =

∫ s

s0

eλm(s−t)C (t) dt (5.6)

I (−λ, s, s0 + L) =

∫ s0+L

s
e−λm(t−s)C (t) dt (5.7)

Two situations can occur, depending on the values of the characteristic exponents

λmj , namely the subresonant conditions or the superresonant conditions.

In the subresonant conditions, one of the eigenvalues is real and positive (i.e. λm1 >

0), two eigenvalues are complex conjugate with negative real part (i.e. λrm2 = λrm3 < 0,

λim2 = −λim3), and the fourth eigenvalue is real and negative (i.e. λm4 < 0). The

solution may be rewritten as follows:

Qm (s) = −ÂmTm1 g10 I (−λm1, s, s0 + L) + Âm

4∑
j=2

Tmj gj0 I (λmj , s0, s) +

+Tm1cm1 e
−λm1(s0+L−s) +

4∑
j=2

Tmjcmj eλmj(s−s0) + Âm

4∑
j=1

Lmj (s)(5.8)

where L is the value attained by the intrinsic coordinate s at the downstream end

of the investigated reach.
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In the superresonant conditions, one of the eigenvalues is real and positive (i.e.

λm1 > 0), two eigenvalues are complex conjugate with positive real part (i.e. λrm2 =

λrm3 > 0, λim2 = −λim3), and the fourth eigenvalue is real and negative (i.e. λm4 < 0).

The solution may be rewritten as follows:

Qm (s) = −Âm
3∑
j=1

Tmj gj0 I (−λmj , s, s0 + L) + ÂmTm4 g40 I (λm4, s0, s) +

+

3∑
j=1

Tmjcmj e−λmj(s0+L−s) + Tm4cm4 e
λm4(s−s0) + Âm

4∑
j=1

Lmj (s)(5.9)

Each of the 4 components (um, vm, dm, hm) of the flow field is composed by 5

terms: the contribution given by the downstream distribution of the curvature propa-

gating upstream, the contribution given by the upstream distribution of the curvature

propagating downstream, the effects of the downstream boundary conditions extending

upstream, the effect of the the upstream boundary conditions extending downstream,

and the contribution given by the local curvature and its derivatives. For each mode

m, the subresonant scenario requires three boundary conditions assigned at the up-

stream reach end while the remaining one must be assigned at the downstream reach

end. Conversely, the superresonant scenario requires only one boundary condition at

the upstream reach end and the remaining three must be assigned at the downstream

reach end.

As discussed above, the goal is to couple the curvature-driven perturbations across

the singular sections S = L0. Hence:


u

v

d

h


u

s=L0

=


u

v

d

h


d

s=L0

(5.10)

In order to limit the mathematical and numerical efforts, the hypothesis is to assume,

as a first approximation, that the h̄i and d̄i (i = 1, 2, 3) referred to the upstream and the

downstream subreaches are very similar. As a consequence, equation (5.10) simplifies
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as follows with (5.3):

∞∑
m=0


um sin(Mn)

vm cos(Mn)

dm sin(Mn)

hm sin(Mn)


u

s=L0

=

∞∑
m=0


um sin(Mn)

vm cos(Mn)

dm sin(Mn)

hm sin(Mn)


d

s=L0

(5.11)

The problem hence simplifies in forcing the perturbations to be equal at each Fourier

mode m = 0,∞: 
um

vm

dm

hm


u

s=L0

=


um

vm

dm

hm


d

s=L0

(5.12)

The unknowns are 8 (i.e. 4 coefficients cumj for the upstream part and 4 coefficients cdmj

for the downstream part, for each mode m) thus further 4 conditions should apparently

be introduced in addition to the requirement (5.12). In practice, however, some terms

can be neglected because of their exponential decaying character (Figure 5.2).
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Figure 5.2: Typical behaviour of the exponential terms appearing in the solution

of the ZS model for five values of the characteristic exponent λmj .
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Moreover, the possible resonance conditions of the two subreaches must be coupled.

The feasible combinations read:

• subresonant upstream subreach, subresonant downstream subreach (SUB-SUB);

• superresonant upstream subreach, superresonant downstream subreach (SUPER-

SUPER);

• subresonant upstream subreach, superresonant downstream subreach (SUB-SUPER);

• superresonant upstream subreach, subresonant downstream subreach (SUPER-

SUB);

Hereafter the four possible cases will be analysed in order to obtain a solution for the

values of cumj and cdmj .

SUB-SUB case

The scenario in which both the upstream and the downstream subreaches are sub-

resonant is here considered. Both subreaches require 3 boundary conditions at their

respective upstream end, and the remaining one at their downstream end. Since the

upstream subreach shares its downstream end with the upstream end of the downstream

subreach, the following conditions occur:

• 3 boundary conditions (vm|0, dm|0, hm|0) at the upstream end of the upstream

subreach;

• 4 internal conditions (eq. 5.12) at the singular section required by the continuity

of the perturbed flow;

• 1 boundary condition (um|L1
) at the downstream end of the upstream subreach.
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The curvature-driven flow field for the upstream and the downstream subreaches then

reads:

Qu (s) = −ÂmT um1 g
u
10 I (−λum1, s, L0) + Âm

4∑
j=2

T umj guj0 I
(
λumj , 0, s

)
+

+T um1c
u
m1 e

−λum1(L0−s) +
4∑
j=2

T umjcumj e
λumj s + Âm

4∑
j=1

Lumj (s) (5.13)

Qd (s) = −ÂmT dm1 g
d
10 I

(
−λdm1, s, L1

)
+ Âm

4∑
j=2

T dmj gdj0 I
(
λdmj , L0, s

)
+

+T dm1c
d
m1 e

−λdm1(L1−s) +
4∑
j=2

T dmjcdmj e
λdmj(s−L0) + Âm

4∑
j=1

Ldmj (s)(5.14)

Evaluating the previous equations at s = L0:

Qu (L0) = −ÂmT um1 g
u
10 I (−λum1, L0, L0) + Âm

4∑
j=2

T umj guj0 I
(
λumj , 0, L0

)
+

+T um1c
u
m1 e

−λum1(L0−L0) +

4∑
j=2

T umjcumj e
λumj L0 + Âm

4∑
j=1

Lumj (L0) (5.15)

Qd (L0) = −ÂmT dm1 g
d
10 I

(
−λdm1, L0, L1

)
+ Âm

4∑
j=2

T dmj gdj0 I
(
λdmj , L0, L0

)
+

+T dm1c
d
m1 e

−λdm1(L1−L0) +
4∑
j=2

T dmjcdmj e
λdmj(L0−L0) + Âm

4∑
j=1

Ldmj (L0)

(5.16)

and, removing the terms equal to zero:

Qu (L0) = Âm

4∑
j=2

T umj guj0 I
(
λumj , 0, L0

)
+

+T um1c
u
m1 +

4∑
j=2

T umjcumj e
λumj L0 + Âm

4∑
j=1

Lumj (L0) (5.17)

Qd (L0) = −ÂmT dm1 g
d
10 I

(
−λdm1, L0, L1

)
+

+T dm1c
d
m1 e

−λdm1(L1−L0) +

4∑
j=2

T dmjcdmj + Âm

4∑
j=1

Ldmj (L0) (5.18)

Assuming that L0 and L1 − L0 are sufficiently large leads to a rapid decay of the

exponential terms such that they may be neglected (Figure 5.2). Subtracting these
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relations and rearranging in order to obtain the explicit relations to be applied at the

singularity, the resulting equation reads:

T um1c
u
m1 − T dm2c

d
m2 − T dm3c

d
m3 − T dm4c

d
m4 =

= −Âm


4∑
j=2

T umj guj0 I
(
λumj , 0, L0

)
+ T dm1 g

d
10 I

(
−λdm1, L0, L1

)
+

+

4∑
j=1

[
Lumj (L0)− Ldmj (L0)

]
(5.19)

This equation provides a linear system of 4 equations in the 4 variables cum1, c
d
m2, c

d
m3,

and cdm4 that, in matrix form, reads Ac = B, where:

A =
1

Âm



1 −1 −1 −1

φum1 −φdm2 −φdm3 −φdm4

δum1 −δdm2 −δdm3 −δdm4

ξum1 −ξdm2 −ξdm3 −ξdm4


c =



cum1

cdm2

cdm3

cdm4


(5.20)

B =



−
4∑

j=2

guj0 I
(
λumj , 0, L0

)
− gd10 I

(
−λdm1, L0, L1

)
−

4∑
j=1

[
Lu
u,mj (L0)− Ld

u,mj (L0)
]

−
4∑

j=2

φumj g
u
j0 I

(
λumj , 0, L0

)
− φdm1 g

d
10 I

(
−λdm1, L0, L1

)
−

4∑
j=1

[
Lu
v,mj (L0)− Ld

v,mj (L0)
]

−
4∑

j=2

δumj g
u
j0 I

(
λumj , 0, L0

)
− δdm1 g

d
10 I

(
−λdm1, L0, L1

)
−

4∑
j=1

[
Lu
d,mj (L0)− Ld

d,mj (L0)
]

−
4∑

j=2

ξumj g
u
j0 I

(
λumj , 0, L0

)
− ξdm1 g

d
10 I

(
−λdm1, L0, L1

)
−

4∑
j=1

[
Lu
h,mj (L0)− Ld

h,mj (L0)
]


(5.21)

The complete solution requires 4 additional relations concerning cum2, c
u
m3, c

u
m4, and

cdm1 (e.g. free meandering conditions at the extremes, thus they are all zero).

SUPER-SUPER case

The scenario in which both the upstream and the downstream subreaches are super-

resonant is here considered. Both subreaches require 3 boundary conditions at their
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downstream ends, while the remaining one is applied at their upstream end. Since the

upstream subreach shares its downstream end with the upstream end of the downstream

subreach, the following conditions occur:

• 1 boundary conditions (um|0) at the upstream end of the upstream subreach;

• 4 internal conditions (eq. 5.12) at the singular section required by the continuity

of the perturbed flow;

• 3 boundary conditions (vm|L1
, dm|L1

, hm|L1
) at the downstream end of the up-

stream subreach.

The curvature-driven flow field for the upstream and the downstream subreaches then

reads:

Qu (s) = −Âm
3∑
j=1

T umj guj0 I
(
−λumj , s, L0

)
+ ÂmT um4 g

u
40 I (λum4, 0, s) +

+

3∑
j=1

T umjcumj e
−λumj(L0−s) + T um4c

u
m4 e

λum4 s + Âm

4∑
j=1

Lumj (s) (5.22)

Qd (s) = −Âm
3∑
j=1

T dmj gdj0 I
(
−λdmj , s, L1

)
+ ÂmT dm4 g

d
40 I

(
λdm4, L0, s

)
+

+

3∑
j=1

T dmjcdmj e
−λdmj(L1−s) + T dm4c

d
m4 e

λdm4(s−L0) + Âm

4∑
j=1

Ldmj (s)(5.23)

Evaluating the previous equations at s = L0:

Qu (L0) = −Âm
3∑
j=1

T umj guj0 I
(
−λumj , L0, L0

)
+ ÂmT um4 g

u
10 I (λum4, 0, L0) +

+

3∑
j=1

T umjcumj e
−λumj(L0−L0) + T um4c

u
m4 e

λum4 L0 + Âm

4∑
j=1

Lumj (L0) (5.24)

Qd (L0) = −Âm
3∑
j=1

T dmj gdj0 I
(
−λdmj , L0, L1

)
+ ÂmT dm4 g

d
40 I

(
λdm4, L0, L0

)
+

+

3∑
j=1

T dmjcdmj e
−λdmj(L1−L0) + T dm4c

d
m4 e

λdm4(L0−L0) + Âm

4∑
j=1

Ldmj (L0)

(5.25)
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and, removing the terms equal to zero:

Qu (L0) = ÂmT um4 g
u
40 I (λum4, 0, L0) +

+

3∑
j=1

T umjcumj + T um4c
u
m4 e

λum4 L0 + Âm

4∑
j=1

Lumj (L0) (5.26)

Qd (L0) = −Âm
3∑
j=1

T dmj gdj0 I
(
−λdmj , L0, L1

)
+

+

3∑
j=1

T dmjcdmj e
−λdmj(L1−L0) + T dm4c

d
m4 + Âm

4∑
j=1

Ldmj (L0) (5.27)

Assuming that L0 and L1 − L0 are sufficiently large leads to a rapid decay of the

exponential terms such that they may be neglected (Figure 5.2). Subtracting these

relations and rearranging in order to obtain the explicit relations to be applied at the

singularity, the resulting equation reads:

T um1c
u
m1 + T um2c

u
m2 + T um3c

u
m3 − T dm4c

d
m4 =

= −Âm

T um4 g
u
40 I (λum4, 0, L0) +

3∑
j=1

T dmj gdj0 I
(
−λdmj , L0, L1

)
+

+
4∑
j=1

[
Lumj (L0)− Ldmj (L0)

]
(5.28)

This equation provides a linear system of 4 equations in the 4 variables cum1, c
u
m2, c

u
m3

that, in matrix form, reads Ac = B, where:

A =
1

Âm



1 1 1 −1

φum1 φum2 φum3 −φdm4

δum1 δum2 δum3 −δdm4

ξum1 ξum2 ξum3 −ξdm4


c =



cum1

cum2

cum3

cdm4


(5.29)
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B =



−gu40 I (λum4, 0, L0)−
3∑

j=1

gdj0 I
(
−λdmj , L0, L1

)
−

4∑
j=1

[
Lu
u,mj (L0)− Ld

u,mj (L0)
]

−φum4 g
u
40 I (λum4, 0, L0)−

3∑
j=1

φdmj g
d
j0 I

(
−λdmj , L0, L1

)
−

4∑
j=1

[
Lu
v,mj (L0)− Ld

v,mj (L0)
]

−δum4 g
u
40 I (λum4, 0, L0)−

3∑
j=1

δdmj g
d
j0 I

(
−λdmj , L0, L1

)
−

4∑
j=1

[
Lu
d,mj (L0)− Ld

d,mj (L0)
]

−ξum4 g
u
40 I (λum4, 0, L0)−

3∑
j=1

ξdmj g
d
j0 I

(
−λdmj , L0, L1

)
−

4∑
j=1

[
Lu
h,mj (L0)− Ld

h,mj (L0)
]


(5.30)

The complete solution requires 4 additional relations concerning cdm2, c
d
m3, c

d
m4, and

cum4.

SUB-SUPER case

The scenario in which the upstream subreach is subresonant while the downstream

subreach is superresonant is here considered. The first requires 3 boundary conditions at

its upstream end and the remaining one at its downstream end, while the latter requires

one boundary condition at its upstream end and the remaining 3 at its downstream end.

Since the upstream subreach shares its downstream end with the upstream end of the

downstream subreach, the following conditions occur:

• 3 boundary conditions (vm|0, dm|0, hm|0) at the upstream end of the upstream

subreach;

• 2 internal conditions (eq. 5.12) at the singular section required by the continuity

of the perturbed flow;

• 3 boundary conditions (vm|L1
, dm|L1

, hm|L1
) at the downstream end of the up-

stream subreach.

The two required conditions at the shared point s = L0 are given by the continuity of two

out of four perturbation components, namely arbitrarily the longitudinal perturbation

velocity and the continuity of the transverse perturbation velocity.
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Hence, referring to the subresonant upstream subreach:

uum (L0) = −Âmgu10 I (−λum1, L0, L0) + Âm

4∑
j=2

guj0 I
(
λumj , 0, L0

)
+

+cum1 +
4∑
j=2

cumj e
λumj L0 + Âm

4∑
j=1

Luu,mj (L0) (5.31)

vum (L0) = −Âmgu10 φum1 I (−λum1, L0, L0) + Âm

4∑
j=2

guj0 φ
u
mj I

(
λumj , 0, L0

)
+

+φum1 c
u
m1 +

4∑
j=2

φumj c
u
mj e

λumj L0 + Âm

4∑
j=1

Luu,mj (L0) (5.32)

Referring to the superresonant downstream subreach:

udm (L0) = −Âm
3∑
j=1

gdj0 I (−λmj , L0, L1) + Âmg
d
40 I (λm4, L0, L0) +

+
3∑
j=1

cdmj e
−λdmj(L1−L0) + cdm4 + Âm

4∑
j=1

Ldu,mj (L0) (5.33)

vdm (L0) = −Âm
3∑
j=1

gdj0 φ
d
mj I (−λmj , L0, L1) + Âmg

d
40 φ

d
m4 I (λm4, L0, L0) +

+
3∑
j=1

φdmj c
d
mj e

−λdmj(L1−L0) + φdm4 c
d
m4 + Âm

4∑
j=1

Ldu,mj (L0) (5.34)

Assuming that L0 and L1 − L0 are sufficiently large leads to a rapid decay of the

exponential terms such that they may be neglected (Figure 5.2). As a consequence, the

problem simplifies as follows:

uum (L0) = Âm

4∑
j=2

guj0 I
(
λumj , 0, L0

)
+ cum1 + Âm

4∑
j=1

Luu,mj (L0) (5.35)

vum (L0) = Âm

4∑
j=2

guj0 φ
u
mj I

(
λumj , 0, L0

)
+ φum1 c

u
m1 + Âm

4∑
j=1

Luu,mj (L0) (5.36)

udm (L0) = −Âm
3∑
j=1

gdj0 I (−λmj , L0, L1) + cdm4 + Âm

4∑
j=1

Ldu,mj (L0) (5.37)

vdm (L0) = −Âm
3∑
j=1

gdj0 φ
d
mj I (−λmj , L0, L1) + φdm4 c

d
m4 + Âm

4∑
j=1

Ldu,mj (L0)

(5.38)

82



Finally, matching the two velocity components:

cum1 − cdm4 = −Âm
4∑
j=2

guj0 I
(
λumj , 0, L0

)
− Âm

3∑
j=1

gdj0 I (−λmj , L0, L1) +

−Âm
4∑
j=1

[
Luu,mj (L0)− Ldu,mj (L0)

]
(5.39)

φum1 c
u
m1 − φdm4 c

d
m4 = −Âm

4∑
j=2

guj0 φ
u
mj I

(
λumj , 0, L0

)
− Âm

3∑
j=1

gdj0 φ
d
mj I (−λmj , L0, L1) +

−Âm
4∑
j=1

[
Luu,mj (L0)− Ldu,mj (L0)

]
(5.40)

The previous equation constitutes a linear system of 2 equations in the 2 variables cum1

and cdm4, that, in matrix form, reads Ac = B, where:

A =
1

Âm

 1 −1

φum1 −φdm4

 c =

 cum1

cdm4

 (5.41)

B =



−
4∑
j=2

guj0 I
(
λumj , 0, L0

)
−

3∑
j=1

gdj0 I (−λmj , L0, L1) +

−
4∑
j=1

[
Luu,mj (L0)− Ldu,mj (L0)

]
−

4∑
j=2

guj0 φ
u
mj I

(
λumj , 0, L0

)
−

3∑
j=1

gdj0 φ
d
mj I (−λmj , L0, L1) +

−
4∑
j=1

[
Luu,mj (L0)− Ldu,mj (L0)

]



(5.42)

SUPER-SUB case

The scenario in which the upstream subreach is superresonant while the downstream

subreach is subresonant is here considered. The first requires one boundary condition at

its upstream end and the remaining 3 at its downstream end, while the latter requires

3 boundary conditions at its upstream end and the remaining one at its downstream

end. Since the upstream subreach shares its downstream end with the upstream end of

the downstream subreach, the following conditions may be considered:
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• 1 boundary conditions (um|0) at the upstream end of the upstream subreach ;

• 6 internal conditions (eq. 5.12) at the singular section required by the continuity

of the perturbed flow;

• 1 boundary condition (um|L1
) at the downstream end of the upstream subreach.

Referring to (5.9) for the curvature-driven flow field in the upstream subreach and

to (5.8) for the curvature-driven flow field in the downstream subreach, respectively:

Qu (s) = −Âm
3∑
j=1

Tmj I (−λmj , s, L0) + ÂmTm4 I (λm4, 0, s) +

+
3∑
j=1

Tmjcmj e−λmj(L0−s) + Tm4cm4 e
λm4 s + Âm

4∑
j=1

Lmj (s) (5.43)

Qd (s) = −ÂmTm1 I (−λm1, s, L1) + Âm

4∑
j=2

Tmj I (λmj , L0, s) +

+Tm1cm1 e
−λm1(L1−s) +

4∑
j=2

Tmjcmj eλmj(s−L0) + Âm

4∑
j=1

Lmj (s)(5.44)

Evaluating the previous equations at s = L0:

Qu (L0) = −Âm
3∑
j=1

T umj I
(
−λumj , L0, L0

)
+ ÂmT um4 I (λum4, 0, L0) +

+

3∑
j=1

T umjcumj e
−λumj(L0−L0) + T um4c

u
m4 e

λum4 L0 + Âm

4∑
j=1

Lumj (L0) (5.45)

Qd (L0) = −ÂmT dm1 I
(
−λdm1, L0, L1

)
+ Âm

4∑
j=2

T dmj I
(
λdmj , L0, L0

)
+

+T dm1c
d
m1 e

−λdm1(L1−L0) +
4∑
j=2

T dmjcdmj e
λdmj(L0−L0) + Âm

4∑
j=1

Ldmj (L0)

(5.46)
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Removing the terms equal to zero:

Qu (L0) = ÂmÂmT um4 I (λum4, 0, L0) +
3∑
j=1

T umjcumj + T um4c
u
m4 e

λum4 L0 +

+Âm

4∑
j=1

Lumj (L0) (5.47)

Qd (L0) = −ÂmT dm1 I
(
−λdm1, L0, L1

)
+ T dm1c

d
m1 e

−λdm1(L1−L0) +
4∑
j=2

T dmjcdmj +

+Âm

4∑
j=1

Ldmj (L0) (5.48)

Assuming that L0 and L1 − L0 are sufficiently large leads to a rapid decay of the

exponential terms such that they may be neglected (Figure 5.2). As a consequence, the

problem simplifies as follows:

T um1c
u
m1 + T um2c

u
m2 + T um3c

u
m3 − T dm2c

d
m2 − T dm3c

d
m3 − T dm4c

d
m4 =

= −ÂmT um4 I (λum4, 0, L0)− ÂmT dm1 I
(
−λdm1, L0, L1

)
+

−Âm
4∑
j=1

[
Lumj (L0)− Ldmj (L0)

] (5.49)

The previous equation constitutes a linear system of 4 equations in the 6 variables cum1,

cum2, c
u
m3, c

d
m2, c

d
m3, and cdm4. In order to overcome the indefiniteness, the assumption of

the upstream and downstream most contributing coefficients, in terms of their respective

eigenvalues, are assumed equal to zero, i.e. cum1 = 0 and cdm4 = 0. The matrix form

reads Ac = B, where:

A =
1

Âm



1 1 −1 −1

φum2 φum3 −φdm2 −φdm3

δum2 δum3 −δdm2 −δdm3

ξum2 ξum3 −ξdm2 −ξdm3


c =



cum2

cum3

cdm2

cdm3


(5.50)
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B =



−I (λum4, 0, L0)− I
(
−λdm1, L0, L1

)
−

4∑
j=1

[
Luu,mj (L0)− Ldu,mj (L0)

]
−φum4 I (λum4, 0, L0)− φdm1 I

(
−λdm1, L0, L1

)
−

4∑
j=1

[
Luv,mj (L0)− Ldv,mj (L0)

]
−δum4 I (λum4, 0, L0)− δdm1 I

(
−λdm1, L0, L1

)
−

4∑
j=1

[
Lud,mj (L0)− Ldd,mj (L0)

]
−ξum4 I (λum4, 0, L0)− ξdm1 I

(
−λdm1, L0, L1

)
−

4∑
j=1

[
Luh,mj (L0)− Ldh,mj (L0)

]


(5.51)

The complete solution requires 2 additional relations concerning cum4 and cdm1 (e.g. full

free-meandering conditions), beyond the assumption a priori that cum1 = 0 and cdm4 = 0.

Summary

The Figure 5.3 shows a framework of the four different resonance cases rising from

the coupling of two meandering subreaches and mathematically debated above. Each

subreach (i.e. upstream of downstream with respect to the internal boundary condition)

is affected by four terms related to the boundary conditions, either internal or external.

The first case, i.e. SUB-SUB case, corresponds to the coupling of two subreaches

which are both subresonant. As a consequence, the internal boundary conditions de-

termines one term affecting the upstream subreach and three terms affecting the down-

stream subreach. The remaining terms must be externally imposed. On the contrary,

the SUPER-SUPER case considers two superrresonant subreaches, thus the internal

boundary conditions determines three terms in the upstream subreach and one term in

the downstream subreach. The mixed cases sets either one or two terms per subreach,

respectively in the SUB-SUPER case and in the SUPER-SUB case. In general, the

combination of the two resonance conditions leads to which and how many coefficients

cimj (where i may be u if they are related to the upstream subreach or d if they are

related to the downstream subreach) are driven by the singular section.

It is noteworthy that the effect of the boundary conditions driven by cimj decays

exponentially (Figure 5.2) with the distance computed from the reach end where they

establish, either an external end or the internal boundary conditions. As mentioned

above, if λmj < 0 the boundary condition applies in the upstream end of the considered

subreach and propagates downstream, whereas if λmj > 0 the exponent of the expo-
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Figure 5.3: Framework of the four different resonance cases which rise from the

coupling of two subdomains: SUB-SUB case (top left panel), SUPER-SUPER case

(top right panel), SUB-SUPER case (bottom left panel), and SUPER-SUB case

(bottom right panel). Each of the four coefficients related to either the upstream

or the downstream subreach is marked by an arrow showing the direction of prop-

agation of its information. A solid arrow originating from white circle means that

the related coefficient cimj is determined by the internal boundary condition. On

the contrary, a dashed arrow means that the related coefficient must be externally

imposed in the end which is not the singular section.
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nential term is considered anyway negative and the boundary condition moves from the

downstream end toward upstream. In general, assuming a numerical tolerance ε below

which the the exponential term may be considered as negligible, the threshold equation

for the generic coefficient cimj is as follows:

e−|λmj |L = ε (5.52)

Thus, the maximum dimensionless distance L = L∗/B∗0 (i.e. scaled by the half width

B∗0) along the reach affected by a certain boundary condition and computed from the

end where the boundary condition is applied reads:

L =
L∗

B∗0
= − ln ε

|λmj |
(5.53)

The length of the effect of the boundary conditions, either internal or external, depends

on the values of the respective characteristic exponent λmj and on the adopted numerical

tolerance ε.
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5.2 Application to the Mississippi River

The Mississippi River has the third largest drainage area of all world rivers, extending

over 12 % of North America and 45 % of the contiguous United States (Nittrouer

et al., 2011). For the purposes of this work, the part of the Mississippi comprised from

Memphis (Tennessee, US) to Natchez (Mississippi, US) is considered. The goal is to

examine the effect given by the confluence of the Arkansas River in correspondence to

Arkansas Post, at the border between Arkansas and Mississippi, US (Figure 5.4).

Figure 5.4: Composition of Landsat images of the Mississippi River be-

tween Memphis, Tennessee (US) and Natchez, Mississippi (US) (source:

http://earthexplorer.usgs.gov). Cartesian distance between the upstream and the

downstream end is about 410 km, while the intrinsic length is about 600 km. River

flows from the top to the bottom of the image.
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The intrinsic length of the upstream Mississippi subreach up to the tributary con-

fluence is about 250 km, while the intrinsic length of the downstream subreach from

the tributary confluence to the downstream end is about 350 km. The total length

of the investigated river planform turns out to be about 600 km. Through the Ruler

Tools of the software Google Earth Pro, which handle both planimetric lengths and

local elevations of the terrain, the mean bed slope of the Mississippi is evaluated to

be S ' 10−4 for both the upstream and the downstream subreaches. On the basis of

Landsat images (source: http://earthexplorer.usgs.gov), the average widths of the two

subreaches are 2B∗0
u = 1000 m and 2B∗0

d = 950 m respectively. Moreover, the width

distribution lies in the range 0.30 < (B∗/B∗0)u < 2.20 in the upstream subreach, while

in the range 0.40 < (B∗/B∗0)d < 2.15 in the downstream subreach.

year

2009 2010 2011 2012 2013 2014 2015 2016

Q
 (

m
 3
 /

s)

0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

19 969

18 000

Figure 5.5: Average daily discharge of Mississippi River at Vicksburg gauge sta-

tion (USGS 07289000), from 2009 to 2015. The blue dashed line represents the

average value, i.e. ∼ 20000 m3/s, while the orange dashed line represents a value

corresponding to the 90 % of the average value, i.e. ∼ 18000 m3/s.

The mean daily discharge of the Mississippi River is available from the gauge station

USGS 07289000 at Vicksburg, Mississippi, US, located about 250 km downstream of

the Arkansas River confluence. The temporal series from 2009 to 2015 is represented

in Figure 5.5. The trend shows a general concentration of floods in the first half of

each year, followed by a reduction of discharge in the second parts. The average value

reads ∼ 20000 m3/s, however a 10 % reduced value will be considered as reference, i.e.
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Qd ∼ 18000 m3/s. This choice ensures that the daily discharges are generally above

this threshold in winter and spring and below this threshold in summer and fall. Thus,

discharge is considered constant for the entire year and equal to the diminished value.
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Figure 5.6: Average daily discharge of Arkansas River at Murray Dam gauge station

near Little Rock (USGS 07263450), from 2009 to 2015. The blue dashed line

represents the average value, i.e. ∼ 1200 m3/s, while the orange dashed represents

a value corresponding to the double of the average value, i.e. ∼ 2400 m3/s.

The mean daily discharge of the Arkansas River is available from the gauge station

USGS 07263450 at Murray Dam near Little Rock, Arkansas, US, located about 100 km

upstream of the confluence into the Mississippi River. The temporal series from 2009

to 2015 is represented in Figure 5.6. The trend shows a relatively large variability, with

some distinguishable peaks in the summer periods. The average value reads ∆Q ∼ 1200

m3/s.

The discharge in the subreach of Mississippi River upstream of the confluence with

the Arkansas River thus reads Qu = Qd − ∆Q = 16800 m3/s, as given by the first of

conditions (5.1). Assuming a Strickler coefficient Ks = 30 m1/3/s for both subreaches,

the flow depths turn out to read D∗0
u = 11.20 m and D∗0

d = 12.00 m for the upstream

and the downstream subreaches, respectively.

Finally, the characteristic grain size of the sediment forming the river bed is required

in order to complete the information of the set of governing equations. The grain

size distribution is available for both the subreaches from the measurement champaign
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carried out by Nordin and Queen (1992). In the upstream subreach, the major part of

the sediment ranges from medium to medium-coarse sand, thus a characteristic mean

diameter d∗s
u = 0.5 mm is assigned; in the downstream subreach a characteristic mean

diameter d∗s
d = 0.4 mm is assigned, as the major part of the sediment lies in the medium

sand range.

The above described scenario, with the assumption of uniform flow, is hereafter

referred to as RUN-0 and considered as the reference scenario.

Two additional possible scenarios are now introduced, namely RUN-1 and RUN-2.

The first additional scenario is characterized by a discharge ∆Q = 2400 m3/s within

the Arkansas River, doubled with respect to the reference case (Figure 5.6). As a

consequence, the discharge in the downstream subreach of the Mississippi reads Qd =

19200 m3/s, and the depth D∗0
d = 12.50 m. The second additional scenario considers

the Arkansas River as not bringing any discharge, i.e. ∆Q = 0 m3/s, therefore the

discharge in the downstream Mississippi subreach turns out to be Qd = 16800 m3/s,

and the depth D∗0
d = 11.55 m.

Finally, a third further scenario, hereafter referred to as RUN-3, assumes a stronger

downstream sediment fining in the River Mississippi. As confirmed by the measurements

of Nordin and Queen (1992), the distribution of the grain sizes tends toward finer and

finer sediment sizes moving downstream subreach, because of the typical concavity of

the longitudinal profile of sand-bed rivers which decreases the suspended load (Wright

and Parker, 2005; Frings, 2008). Hence, a characteristic grain size d∗s
d = 0.2 mm is

assumed in the downstream subreach, keeping all of the other quantities equal to the

ones related to RUN-0.

The various sets of input parameters are summarized in the Table 5.1.

The implemented numerical model follows the framework outlined in Chapter 2,

suitably modified by inserting the mathematical extension derived in Section 5.1 in

order to deal with the coupling of two meandering subdomain. The friction coefficient

is derived from the assumed Strickler coefficient Ks as:

Cf =
g

K2
s D
∗
0
1/3

(5.54)

where g is the gravity acceleration, and D∗0 is the uniform flow depth of the considered

subreach, either upstream of downstream of the confluence with Arkansas River. The

sediment transport intensity is computed through the total load predictor of Engelund

and Hansen (1967).
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Table 5.1: Sets of input parameters considered for the simulation of the Mississippi

River migration in the presence of the confluence with the Arkansas River conflu-

ence. The upstream (u) and downstream (d) subreaches are explicitly accounted

for. Symbols are as follows: Q is the discharge, 2B∗0 is the cross section width, D∗0

the flow depth, S is the bed slope, and d∗s is the characteristic grain size. More-

over, β = B∗0/D
∗
0 is the aspect ratio, τ∗ = D∗0S/∆d

∗
s is the Shields number (with

∆ ' 1.65 the submerged specific gravity of the sediment), and ds = d∗s/D
∗
0 is the

dimensionless grain size.

Simulation RUN-0 RUN-1 RUN-2 RUN-3

Subreach u d u d u d u d

Q (m3/s) 16800 18000 16800 19200 16800 16800 16800 18000

2B∗0 (m) 1000 950 1000 950 1000 950 1000 950

D∗0 (m) 11.20 12.00 11.20 12.50 11.20 11.55 11.20 12.00

S 10-4 10-4 10-4 10-4 10-4 10-4 10-4 10-4

d∗s (mm) 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.2

β 44.67 39.48 44.67 37.99 44.67 41.15 44.67 39.45

τ∗ 1.36 1.82 1.36 1.90 1.36 1.75 1.36 3.65

ds (× 10-5) 4.47 3.47 4.47 3.47 4.47 3.47 4.47 1.66

Simulation period is 300 years, with a time step assumed constant and equal to 2

years. The current configuration of the Mississippi is scaled by the mean of the two half

widths, i.e. B∗0
avg = (B∗0

u + B∗0
d)/2 = 488 m and discretized trough a polyline. The

default point spacing is ∆s/B∗0
avg = 1, and the mesh is periodically regridded during

the simulation in order to keep the spacing in the range 4/5 < ∆s/B∗0
avg < 6/5.

The average migration rate of bends in the Lower Mississippi River is about 40

m/year in the upstream subreach and 60 m/year in the downstream subreach (Hudson

and Kesel, 2000). For the sake of simplicity, here an average migration rate equal to

ζ∗ = 50 m/year is assumed, which corresponds to about ζ∗day = 13 cm/day. Thus, the

erodibility coefficient E of the dimensionless migration law (2.11) is chosen such that:

1

L∗

∫ L∗

0
ζ∗ (s) ds = ζ∗day (5.55)

where L∗ is the total length of the investigated reach. Since the river axis is discretized
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through a polyline of N points nearly equispaced, the condition becomes:

1

N

N∑
i=1

EU∗0Ubi = ζ∗day (5.56)

where U∗0 = Q/(2B∗0D
∗
0) is the uniform flow velocity, evaluated as the average between

the uniform flow velocities of the two subreaches, and Ubi is the dimensionless excess

near-bank velocity, computed at the ith point of the axis. Finally, the erodibility

coefficient to be used for the migration law (2.11) reads:

E = N
ζ∗day
U∗0

(
N∑
i=1

Ubi

)−1
(5.57)

A constant erodibility coefficient is thus assigned to the floodplain at each time step,

by using the latter equation. In addition, the floodplain is assumed to be homogeneous,

thus neglecting the possible effects given by the progressive occurrence of oxbow lakes

and scroll bars.

5.3 Results

Figure 5.7 reports an overall summary of the simulations, showing the characteristic

discharge input and the simulated planform dynamics, over a time of 300 years. Dif-

ferences in the migration history are qualitatively visible. All the simulated dynamics

show a progressive lateral growth of the bends, with the formation of both upstream-

and downstream-skewed meanders and of neck cutoffs. RUN-0 exhibits a lower number

of cutoffs in the downstream subreach if compared to the other scenarios. The down-

stream subreach near y∗/B∗0 ' 400 is similar for all the runs with the current sediment

grain size (i.e. RUN-0, RUN-1, and RUN-2), whereas it is characterized by a faster

dynamics, with the formation of a pair of oxbow lakes, when a finer sediment is taken

(RUN-4). Similarly, the last part of the downstream subreach (y∗/B∗0 ' 200) is more

active in RUN-3 and RUN-4. On the other hand, the behaviour of the upstream sub-

reach is somehow similar for all the simulations, leading to compound bends and some

cutoffs. In particular, the planforms close to y∗/B∗0 ' 800 are almost equal. RUN-

0, however, shows generally a more twisted path, with a faster migration in the very

upstream subreach (y∗/B∗0 ' 1000), as well as RUN-4.

A quantitative comparison is given by the temporal trend of the half meander metrics

introduced in Section 4.1, namely the length Lh, the asymmetry Ah and the sinuosity
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Figure 5.7: Simulated planform dynamics of the Mississippi River considering four

different flow discharge scenarios. RUN-0 corresponds to the actual mean flow

discharge flowing in the Mississippi and Arkansas River, RUN-1 and RUN-2 have,

respectively, a doubled and a zero discharge flowing in the Arkansas River; RUN-4

assumes a stronger downstream fining in the Mississippi (see Table 5.1). Arkansas

River confluence is marked with the dashed line. The Mississippi River flows from

top to bottom.
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Figure 5.8: Time evolution of the simulated half meander length Lh, asymmetry

Ah, and sinuosity σh averaged over the upstream (left panels) and the downstream

(right panels) subreaches of the Mississippi River, determined with respect to the

confluence with the Arkansas River. RUN-0 corresponds to the actual scenario;

RUN-1 and RUN-2 are characterized by a doubled and a zero discharge flowing

from the Arkansas River; RUN-4 assumes a stronger downstream fining in the

downstream Mississippi subreach (see Table 5.1).
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σh. All the parameters are spatially averaged over a given entire subreach at each

time step (Figure 5.8). The trends relative to the upstream subreach show differences

among them significantly smaller than those observed for the downstream subreach. In

particular, the most visible difference is in the Lh trends, starting from a time t = 200

years, when the trajectories associated with RUN-1 and RUN-2 diverge from those of

RUN-0 and RUN-3. Average asymmetries and sinuosities have more similar trends,

with Ah starting from slightly negative values (implying upstream-skewed meanders on

average), getting slightly positive and then approaching zero with some oscillations.

Sinuosity generally increases from 1.2 to about 1.7, with RUN-3 trend characterized by

the larger fluctuations.

Time evolution of Lh in the downstream subreach are significantly different among

each other, ranging from 20 to 35 times the characteristic half width B∗0
avg. Similarly

to what happens in the upstream subreach, Ah changes from initially negative values

to positive ones (superresonant behaviour on average), while the sinuosities get slightly

larger values with respect to the upstream subreach. In general, the most different

time evolution is that observed in RUN-3, i.e. the downstream fining scenario. The

variation of discharge in the Arkansas River also induces some variations in the planform

geometry. These differences in the half meander metrics are trigged by the internal

boundary given by the presence of the Arkansas River confluence that induces localized,

short-time variations, e.g. a faster or slower migrating meander, and anticipated or

postponed cutoff occurrence.

5.4 Discussion

Currently most of the models used to simulate the evolution of meandering rivers im-

plements governing equations based on relatively simplified assumptions, such as those

of constant width, constant depth and uniform energy gradient. The first was recently

relaxed by (Frascati and Lanzoni, 2013). Here the goal was to relax the assumption that

at the leading order of approximation uniform flow conditions establish along the con-

sidered river reach. Thus the possible presence of two river subreaches, defined on the

basis of hydrological factors (e.g., a tributary confluence), geological factors (e.g., vari-

ation in the valley slope), or geographic factors (e.g., localized narrowing of the valley)

is here considered. All of these changes may be assumed as acting over a short length

of the river such that, as a first approximation, the variations can be assumed to be
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concentrated in a singular section splitting the domain in two subreaches characterized

by uniform flow conditions.
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Figure 5.9: Comparison among simulated paths of the Mississippi River according

to the four considered scenarios, after a simulation time of 300 year (see Table

5.1). Arkansas River confluence, i.e. the singular section which splits the domain

in two subreaches, is marked with the dashed line. River flows from top to bottom.

The ZS model, owing to the presence of four particular solutions, ensures the cou-

pling between the main uniform flow and the curvature-driven secondary flow that take

place in the two subreaches. The resulting modelling framework was used to study the

effects of the confluence of the Arkansas River in the Lower Mississippi River. Four dif-

ferent scenarios were considered by assuming the actual conditions as a reference case,

and by varying the discharge delivered by the Arkansas River and the sedimentolog-

ical characteristics of the downstream subreach. Simulations shows that the different

effects triggered by the singular section are relatively localized and, rather than pro-

ducing strong variation in the overall river dynamics (Figure 5.9), determine variations
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at the meander scale and in the short term (∼ 50 − 100 years). The localized effects

associated with the internal boundary conditions become clear by considering the expo-

nential decaying of the terms controlling the boundary conditions, i.e. those containing

the coefficients cimj . The river reach directly involved by the presence of the internal

discontinuity is relatively short. However, the effects propagate as a chain reaction

because of the river migration, up to involving the entire reach.

Figure 5.10: Historical maps developed by the Mississippi River Commission in

1944, showing the planform dynamics of a reach of the Mississippi River, starting

from 1765.

Mississippi River constitutes a highly dynamic system (Figure 5.10), owing to the

presence of many forcing factors acting within his huge catchment. As a consequence,

more refined simulations should include forcing factors like the presence of confluences,

the structure of the catchment, and the flood variability (Gutierrez et al., 2014). How-

ever, the low complexity model developed in this thesis provides a first robust attempt

to treat spatially varying flow conditions as a sequence of uniform flows that estab-

lish in different subreaches, affecting the secondary flow fields responsible for channel

migration. Including an internal boundary condition rather than considering a unique
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uniform flow turns out to be crucial in the accuracy of short term simulations of meander

evolution.

The developed framework may be extended to more complex scenarios by splitting

the main domain in more than two subreaches coupled together through the shared

singular sections. In this way, this generalized mathematical framework can be used

to analyse a wider range of scenarios that exclude the presence of a single uniform

flow throughout the investigated river reach, e.g. in addition of the above considered

examples (tributary confluences, backwater effect), the presence of knickpoints into

the domains of highly dynamics systems (Finnegan and Dietrich, 2011; Sylvester and

Covault, 2016), or anthropogenic effects on fluvial systems (Edwards et al., 2016).
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Chapter 6

Conclusions and future

developments

The aim of this thesis was twofold: i) to investigate how a self-formed floodplain,

produced by the migration of river bends and the cutoff of mature meanders, can affect

the river dynamics itself; ii) to consider the presence of a boundary condition internal

to the investigated river reach, able to affect the main flow field and thus the curvature-

driven secondary flow.

The first aim requires to account for the presence of heterogeneous floodplain fea-

tures due to the occurrence of cutoffs (oxbow lakes) and bend migration (scroll bars)

that modify the superficial structure of the floodplain through which the river flows.

From a numerical point of view, the role of oxbow lakes (leading to the formation of

clay plugs that slow down the river migration) can be included together with that of

other geomorphic units (ridge-and-swale topography of the scroll bars, vegetation cover)

which contribute to generate heterogeneities in terms of floodplain erodibility.

Statistical and spectral analyses (SSA, MSSA, PCA and FA) proved to be useful

tools for a quantitative description of the complex meander shapes.

The role of the self-formed floodplain heterogeneities is crucial since they drive the

long-term migration of meandering rivers, affecting the temporal evolution and the

spatial distribution of half meander metrics, eventually leading to a closer statistical

similarity between simulated and natural planform shapes. The difference in erodibility

between floodplain, oxbow lakes and points bars thus results a crucial ingredient for the

numerical simulations of meander dynamics. Indeed, it is able to affects the migration
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history in addition to the well known effects of bank erosion due to by the curvature-

driven flow field.

The presence of boundary conditions internal to the flow field is another ingredient

that can play a significant role in meander dynamics. It can be handled mathematically

by splitting the domain in two subreaches, which need to be suitably coupled at the

internal boundary section. The presence of an internal forcing generates perturbations

which can propagate either upstream or downstream. Localized internal flow variations

may derive from a change in discharge (because of a tributary confluence), bed slope

(because of a knickpoint), bed sediment composition or cross section geometry. The

mathematical framework may be easily extended to domains which contain more than

one internal boundary. The application of the methodology developed in the present

thesis to a real case, namely a reach of the Lower Mississippi close to the confluence

with the Arkansas River, revealed that variations in the tributary discharge or bed

sediment composition lead to short-term variations at the meander scale in terms of

planform dynamics, rather than long-term, reach scale effects. The present mathemat-

ical framework may be extended to more complex scenarios by splitting the domain

in more than two parts. For example, a gradually-varying flow can be treated as a

sequence of local uniform flow and coupled together by internal boundary conditions,

instead of considering a unique uniform mean flow.

The ultimate goal is to provide robust and reliable tools for the study of river dy-

namics, widening the range of applicability of existing mathematical frameworks possi-

bly within an interdisciplinary perspective, including geological, geomorphological, and

biological factors. To this aim, various hypotheses about river morphodynamics and

floodplain features imposed in this thesis still need to be relaxed. Variations in cross-

sectional geometry, resulting for example from the bank pull-bar push interplay and

leading to channel width modulations, as well temporally varying boundary conditions

(e.g., fluctuations in formative discharge and sediment supply) surely has to be con-

sidered. Temporal gradients in point bar erodibility (due, for example, to vegetation

dynamics) and in the accommodation space over the floodplain (due to either uplift or

subsidence) are additional physical processes acting at different temporal scales that

should be accounted for when dealing with long term evolution of alluvial rivers. Sim-

ilarly, periodic climatic variations associated with glaciations and droughts, affecting

the flooding frequency of the floodplain, are other issues that needs to be tackled. Fi-
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nally, a probabilistic approach, driven by data assimilation techniques would possibly

be required to fully reproduce the complexity of alluvial river systems.
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