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Introduzione

La stima e la modellazione della volatilita finanziaria ¢ stata una delle aree di
ricerca piu attive degli ultimi 20 anni vista la sua cruciale importanza nell’asset
pricing, nel risk management e nell’allocazione del portafoglio. Tuttavia, il prob-
lema principale e che la volatilita non ¢ direttamente osservabile. Gli approcci piu
comuni per affrontare la latenza della volatilita sono i modelli parametrici (Gen-
eralized) Autoregressive Conditional Heteroskedasticity ((G)ARCH) introdotti da
Engle (1982) e Bollerslev (1986) e i modelli di volatilita stochastica (SV) (vedere
per esempio, Taylor (1986)).

Con la crescente disponibilita di dati ad alta frequenza e utilizzando gli sviluppi
teorici legati alla teoria della variazione quadratica, la stima della volatilita si e
evoluta dai modelli latenti alle misure realizzate non parametriche. Andersen,
Bollerslev, Diebold, and Labys (2001) e Barndorff-Nielsen and Shephard (2002)
hanno introdotto la varianza realizzata che ¢ definita come la somma dei rendi-
menti al quadrato all’interno di un intervallo di tempo. In teoria, la varianza
realizzata ¢ uno stimatore non distorto e altamente efficiente che converge alla
varianza integrata quando la lunghezza dell’intervallo di campionamento intra-
giornaliero tende a zero. Inoltre, Christensen and Podolskij (2007) e Martens
and van Dijk (2007) hanno proposto una diversa misura della varianza realizzata
basata sul range. Lo stimatore ¢ definito come la somma dei range al quadrato
(dove il range ¢ la differenza tra il massimo e prezzo minimo osservato nel corso
di un determinato intervallo). Si tratta di uno stimatore consistente e altamente
efficiente della volatilita integrata ed e circa cinque volte piu efficiente della vari-
anza realizzata. In seguito a quest’operazione, la volatilita diventa osservabile ed ¢
possibile modellizzarla in modo da ottenere previsioni che sono necessarie in molte
applicazioni finanziarie. L’implementazione degli stimatori realizzati utilizzando
dati ad alta frequenza incontra tuttavia diverse difficolta. Infatti, tali stimatori
sono basati sulle ipotesi secondo le quali i prezzi seguono un processo continuo e
sono inoltre sensibili agli effetti microstrutturali, elementi che possono provocare
gravi problemi riguardo la consistenza dello stimatore.

Questa tesi di dottorato di ricerca si propone di modellizzare e prevedere la
volatilita, e contribuisce alla letteratura dell’econometria per la finanza in tre di-
rezioni diverse. Il primo capitolo, un lavoro co-autorato con il Professore Massi-
miliano Caporin, considera la modellizzazione e la previsioni della volatilita sulla
base dello stimatore realizzato basato sul range ed esplora le performance di speci-
ficazioni alternative che tengano conto del comportamento specifico e dei fatti
stilizzati delle serie storiche della volatilita finanziaria. Il secondo capitolo si con-
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viii Introduzione

centra sulle determinanti economiche della volatilita e analizza la capacita predit-
tiva delle variabili macroeconomiche e finanziarie. Infine, il terzo capitolo studia
la valutazione di stimatori alternativi della volatilita e di un set di modelli di
previsione della volatilita da un punto di vista economico.

Pitl in dettaglio, il primo capitolo! si focalizza nella stima della volatilita re-
alizzata attraverso lo stimatore basato sul range in 16 azioni scambiate al New
York Stock Ezchange (NYSE), si considera 'effetto microstrutturale dei dati ad
alta frequenza e si correggono le stime seguendo la procedura di Martens and
van Dijk (2007). Inoltre, il modello per le serie di volatilita realizzata prende
in considerazione l'effetto asimmetrico sulla volatilita causata dai rendimenti ri-
tardati e la dipendenza di lungo termine, la wvolatility clustering della volatilita
e la non Gaussianita delle innovazioni del modello. In particolare, si specficifa
un modello Autoregressive Heterogenuos (HAR) introdotto da Corsi (2009), effetti
leverage riguardo ai rendimenti e presenza di innovazioni caratterizzate da varianze
GARCH o GJR-GARCH e con una distribuzione Normal Inverse Gaussian (NIG).
L’analisi empirica dell” abilita predittiva nelle 16 azioni considerate suggerisce che
I'introduzione degli effetti asimmetrici rispetto ai rendimenti e la volatilita nel
modello HAR portano ad un significativo miglioramento della performance delle
previsioni.

Nel secondo capitolo, si esamina il ruolo che le variabili macroeconomiche e
finanziarie hanno nella modellazione e nella previsione della volatilita giornaliera.
Il punto di partenza sono le serie stimate nel primo capitolo e si estende il modello
includendo variabili economiche e finanziarie che contengono informazioni relative
allo stato presente e futuro dell’economia. E stato eseguita un’analisi empirica
dentro e fuori campione in 16 serie di volatilita di titoli azionari. I risultati sug-
geriscono che le variabili macroeconomiche e finanziarie, in particolare le proxy
per le aspettative di rischi di mercato e rischi di credito, sono significativamente
correlate con il primo componente principale delle serie di volatilita e hanno un
potere altamente esplicativo. Successivamente, si considera un esercizio di previ-
sione fuori campione per analizzare il miglioramento che deriva dall’introduzione
delle variabili macroeconomiche che hanno avuto piu potere esplicativo nel’analisi
nel campione. Variabili come il VIX e credit default swap per il settore bancario
statunitense producono miglioramenti significativi nella accuratezza delle previ-
sioni. Infine, esplorando I'impatto durante la crisi finanziaria 2008-2009, si osserva
una maggiore correlazione tra i credit default swap e la volatilita che riflette un au-
mento del rischio di credito percepito, mentre non si ottiene alcun miglioramento
significativo nella previsioni fuori campione .

Nell'ultimo capitolo, si esamina e confronta la prestazione di stimatori alterna-
tivi della volatilita realizzata e di diversi modelli di previsione di serie storiche dal
punto di vista economico. Nello specifico, si considera un investitore che specula
sul futuro livello della volatilita e investe in un strategia buy-and-hold su opzione
che dipende dal livello atteso per la volatilita, e di conseguenza risente delle dif-
ferenze tra i diversi stimatori e modelli di previsione utilizzati. La strategia di

1'Una versione ridotta di questo lavoro & stata publicata in Advances in Theoretical and Applied
Statistics (SIS2010 Scientific Meeting), Springer Book.
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trading viene implementata settimanalmente su opzioni dove il sottostante ¢ S&P
500 Index e la volatilita viene stimata da una serie ad alta frequenza relativa allo
S&P 500 Futures. Gli stimatori considerati sono la volatilita realizzata e la volatil-
ita realizzata basata sul range in entrambi i casi nelle versioni robuste all’effetto
microstrutturale ed alla presenza di salti. Le previsioni si ottengono con mod-
elli Autoregressive Fractional Integrated Moving Average (ARFIMA). Inoltre, per
tenere conto della possibilita di confondere memoria lunga con processi con memo-
ria corta e cambiamenti strutturali nei livelli, si considera il modello ARFIMA con
break strutturali, recentemente introdotti da Grassi and Santucci de Magistris
(2011) e Varneskov and Perron (2011). I principali risultati mostrano che le stime
ottenute con il metodo basato sul range e corretti per la presenza di effetti mi-
crostrutturali e discontinuita nel processo del prezzo producono i rendimenti piu
elevati. Inoltre, la scelta dello stimatore realizzato per la volatilita sembra essere
pit importante rispetto ai modelli di previsione. Infine, si osserva come sia possi-
bile ottenere profitti positivi annualizzati fino ad oltre il 60% nel periodo di trading
considerato e che parte da Ottobre 2005 fino ad arrivare alla crisi finanziaria del
2008-2009.






Introduction

The estimation and modeling of financial volatility asset has been one of the
most active research areas because of its crucial importance in asset pricing, risk
management and portfolio allocation. However, the main problem is that volatil-
ity is not directly observable. Common approaches to deal with the latency of
the volatility are the parametric (Generalized) Autoregressive Conditional Het-
eroskedasticity ((G)ARCH) family of models introduced by Engle (1982) and
Bollerslev (1986) or the stochastic volatility (SV) models (see, for example, Taylor
(1986)).

With the growing availability of high frequency price data and based on the
theory of quadratic variation, the estimation of volatility has moved from la-
tent volatility model to non-parametric realized measures. Andersen, Bollerslev,
Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard (2002) introduced
the realized variance as the sum of squared returns over non-overlapping inter-
vals within a sampling period. In theory, the realized variance is an unbiased
and highly efficient estimator that converges to the integrated variance when the
length of the intra-day intervals goes to zero. In addition, Christensen and Podol-
skij (2007) and Martens and van Dijk (2007) proposed the realized range-based
variance. This estimator is defined as the sum of the squared ranges (i.e. the
difference between the maximum and minimum prices observed during a period)
over non-overlapping intervals. It is a consistent and highly efficient estimator of
the integrated volatility and it is about five times more efficient than realized vari-
ance. Then, volatility becomes observable and it is possible to model it in order
to obtain forecasts that are needed in many financial applications. In practice, the
implementation of realized estimation measures in the reality of high frequency
data faces various difficulties. These estimators are based on the assumptions that
the prices follow a continuous sample path and they are sensitive to microstructure
noise, which can cause severe problems for the estimator’s consistency.

This PhD thesis aims at modeling and forecasting volatility, and contributes to
the financial econometrics literature in three different directions. The first chap-
ter, a joint work with Professor Massimiliano Caporin, considers the modeling and
forecasting of volatility based on the realized range estimator and explores the per-
formance of alternative specifications that take into account the distinct behavior
and stylized facts of financial volatility time series. The second chapter focuses on
the economic determinants of financial volatility and analyzes the predictive abil-
ity that macroeconomic and financial variables have when forecasting volatility.
Finally, the third chapter deals with the evaluation of alternative estimators and
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xii Introduction

forecasting models of volatility from an economic point of view.

More in detail, in the first chapter?, we concentrate on the estimation of volatil-
ity through the realized range-based for 16 stocks traded at the New York Stock
Exchange (NYSE) and we consider the impact of the microstructure noise in high
frequency data and correct our estimations following the procedure of Martens
and van Dijk (2007). In addition, we model the volatility series accounting for
the asymmetric effect on volatility caused by lagged returns and the long-range
dependence, the volatility clustering in the volatility and non-Gaussianity of the
innovations of the model. In particular, we specify an Heterogenuos Autoregres-
sive (HAR) model introduced by Corsi (2009), leverage effects with respect to the
return and the volatilityy, GARCH and GJR-GARCH variance and the Normal
Inverse Gaussian (NIG) distribution. The empirical analysis of the forecast per-
formance in 16 stocks suggests that the introduction of asymmetric effects with
respect to the returns and the volatility in the HAR model results in significant
improvement in the point forecasting accuracy.

In the second chapter, we investigate the role that macroeconomic and financial
variables play when modeling and forecasting daily stocks volatility. We depart
from the estimated series in chapter 1 and we extend the model including eco-
nomic and financial variables that capture the present and the future state of the
economy. We perform an in-sample and out-of-sample empirical analysis in 16
series of stock volatility. We find that macroeconomic and financial variables, in
particular proxies for market risk expectation and credit risk, are significantly cor-
related with the first principal component of the volatility series and they have a
highly in-sample explanatory power. Then, we consider an out-of-sample forecast-
ing exercise to analyze the improvement that results from the introduction of the
macroeconomic variables that better perform in our in-sample analysis. Variables
such as the VIX and the credit default swap index for the US bank sector produce
significant improvements in the forecasting accuracy. Last, exploring the impact
during the 2008-2009 financial crisis, we observe a higher correlation between the
credit default swap index and the volatility reflecting an increase in the perceived
credit risk, while there is no significant improvement in the out-of-sample predic-
tions.

In the last chapter, we examine and compare the performance of alternative
realized estimators of volatility and of different time series forecasting models from
an economic point of view. We consider an investor that speculates on the future
level of the volatility and invests in a buy-and-hold option strategy depending
on his expected level of volatility, that is obtained from different estimators and
forecasting models. We implement the trading strategy with weekly S&P 500
Index options and compute volatility from a high frequency series for S&P 500 fu-
tures. The volatility estimators are based on the realized volatility and the realized
range and they are robust to microstructure noise and jumps while out-of-sample
forecast are obtained with Autoregressive Fractional Integrated Moving Average
(ARFIMA) models. Additionally, to account for the possibility of confusing long

2A short version of this work has been published in Advances in Theoretical and Applied
Statistics (SIS2010 Scientific Meeting), Springer Book.
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memory with process with short memory and structural change in levels we take
into consideration the ARFIMA model with random level shift component recently
introduced by Grassi and Santucci de Magistris (2011) and Varneskov and Per-
ron (2011). The main results show that realized range based estimator corrected
for the presence of microstructure noise and discontinuities in the price process
produces the highest returns. Moreover, the choice of the realized estimator for
the volatility seems to be more important than the forecasting models. Finally,
positive annualized profits of up to more than 60% are obtained for the trading
period before the financial 2008-2009 crisis.






Chapter 1

Modeling and Forecasting
Realized Range Volatility

1.1 Introduction

In the last years, realized volatility measures, constructed from high frequency
financial data and modeled with standard time series techniques, have shown to
perform much better than traditional generalized autoregressive conditional het-
eroskedasticity (GARCH) and stochastic volatility models, when forecasting con-
ditional second order moments. Most of the works that forecast volatility through
realized measures, have concentrated on the realized variance (RV') introduced
by Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen and
Shephard (2002). The RV is based on the continuous time price theory and it
is defined as a function of the sum of squared intra-day returns. The RV is a
highly efficient and unbiased estimator of the quadratic variation and converges to
it when the intraday measurement period goes to zero. Later on, Martens and van
Dijk (2007) and Christensen and Podolskij (2007) introduced the realized range
volatility (RRV'), another realized estimator consistent for the quadratic variation.
The RRV is based on the difference between the minimum and maximum prices
observed during a certain time interval. This new estimator tries to exploit the
higher efficiency of the range relatively to that of the squared daily close-to-close
return in the estimation of quadratic variation.

When dealing with high frequency financial market data, the asymptotic prop-
erties of the simple estimators are highly affected by the microstructure noise (non
continuous trading, infrequent trade, bid ask bounce). As a result, an important
part of the literature has presented different corrections to restore the efficiency
of realized estimators for the volatility. These studies aimed at improving over
the first generation of models, whose purpose was to construct estimates of real-
ized variances by using series at a moderate frequency (see Andersen, Bollerslev,
Diebold, and Labys (2003)). Some of the corrections presented to the RV are the
Two Time Scale Estimator (TTSE), the sub-sampling method of Zhang, Mykland,
and Ait-Sahalia (2005), the generalization introduced by Zhang (2006). We also
mention the approach for identifying the optimal sampling frequency by Bandi
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2 Modeling and Forecasting Realized Range Volatility

and Russell (2008), through a minimization of the MSE.

Furthermore, kernel estimation was introduced by Hansen and Lunde (2006),
while Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) provide a gener-
alization of this approach. Differently, Martens and van Dijk (2007) proposed
a correction for the RRV based on scaling the range with the daily range, while
Christensen, Podolskij, and Vetter (2009) presented another approach based on an
adjustment by the variance of the noise and a constant which has to be estimated
by simulation methods.

With the availability of new observable series for the volatility, many authors
have applied traditional discrete time series models for their forecast (and implic-
itly for the forecast of returns volatility). Financial data is characterized by a
series of well-known stylized facts. Being able to capture them, will result in a
more accurate prevision of our variable of interest. These stylized facts are also
observable over realized variance series and require appropriate modeling strate-
gies. The presence of long-memory in volatility, documented in several studies, has
been modeled through different specifications: Andersen, Bollerslev, Diebold, and
Labys (2003) introduced an ARFIMA model, and their forecasts for the RV gener-
ally dominate those obtained through GARCH models; Corsi (2009) presented the
Heterogenous Autoregressive (HAR) model, that reproduces the hyperbolic decay
of the autocorrelation function by including the sums of RV over different horizons
in order to capture the time strategies of the agents in the market. The second
model has the advantage to be much simpler to estimate. Additionally, asymme-
try, leverage effects, and fat tails should also be taken into account. Martens, van
Dijk, and de Pooter (2009) specified a flexible unrestricted high-order AR model.
They also considered leverage effects, days of the week effects and macroeconomics
announcement. Differently, Corsi, Mittnik, Pigorsch, and Pigorsch (2008) intro-
duced two important extensions specifying a GARCH component modeling the
volatility of volatility and assuming non-Gaussian errors. Their results suggested
an improvement in the accuracy in the point forecasting and a better density
forecast.

In this chapter, we model and forecast volatility through the realized range
volatility with data on 16 stocks quoted at the New York Stock Exchange (NYSE).
Our main objective is to study the prediction performance of the range as a proxy
of the volatility. An accurate forecast of financial variability should have important
implications in asset and derivative pricing, asset allocation, and risk management.
In the first part of this chapter, we construct and analyze the realized range series,
and correct it from the microstructure noise following Martens and van Dijk (2007).
In the second part, we implement time series techniques to model and capture the
stylized facts within the volatility equation to gain in forecasting accuracy. In
details, we consider an HAR model, we introduce leverage effects with respect to
the return and the volatility, a GARCH and a GJR-GARCH specification for the
volatility of volatility, introduced by Bollerslev (1986) and Glosten, Jagannathan,
and Runkle (1993), respectively. Furthermore, in order to capture the statistical
feature of the residuals of our model, we also consider a Normal Inverse Gaussian
(NIG) distribution.



1.2 Data and correction procedure 3

The remainder of this chapter is structured as follows. In section 1.2, we present
the data and the correction procedure. In section 1.3 and 1.4, we present the model
and the forecast evaluation framework. We discuss the results for the estimation
and forecast in section 1.5 and 1.6. Finally, section 1.7 presents the results and
futures steps.

1.2 Data and correction procedure

Let us consider a price process at time ¢ that follows a geometric Brownian
motion
dpy = ppedt + opdW; (1.1)

where g is the drift and o is the volatility, and W; is a standard Brownian mo-
tion. Then, the logarithmic price follows a Brownian motion with drift (¢*) and
volatility (o). The objective is to define a measure of the return variation over
a subinterval that is assume to be a trading day and it is define between [0, 1].
Given a high frequency series of prices, we define the ith interval of length A
of an equidistant partition on day ¢, for i = 1,...,n, where n = 1/A, the last
price pflz = Pt_1+in, the low price pi"l = Min(_1a<j<iaPi-1+; and the high price
p?i = MAaT(;i—1)A<j<iaPi—14+j observed in the ith interval of length A on day t. The
realized range estimator RRV,> is defined as

1 n
RRVA = 32 S (In pd —in pl2)? (1.2)
=1

A2 is the 2" moment of the range of a standard Brownian motion over the unit
interval and equal to 4log(2) in this case. If the logarithmic price process follows
a drift-less process then

VR(RRVA — IV) =4 N(0,AIQ) (1.3)

where IV is the integrated volatility, /Q) is the integrated quarticity and A =~
0.4073. As a consequence, under the assumption that there are no market frictions
and there is continuous trading, the RRV,” is an unbiased and consistent estimator
of the integrated variance and it is five time more efficient than RV, see for example
Christensen and Podolskij (2007).

In the reality, there are evidences against these assumptions and the realized
estimators become inconsistent and biased (see for example McAleer and Medeiros
(2008)). Hence, a corrected version for the RRV should restore the efficiency of this
estimator over the RV. In this paper, we follow Martens and van Dijk (2007) that
proposed a correction based on scaling the realized range with a ratio involving the
daily range and the realized range over the previous trading days.! Basically, the

!The out-of-sample forecasting exercise is repeated using the bias corrected range-based
bipower variation of Christensen, Podolskij, and Vetter (2009), a consistent and robust esti-
mator of the integrated variance in the presence of jumps and microstructure noise. The results
are very similar to the ones reported in the work and the conclusions are not affected.
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scaling bias correction is not difficult to implement because it does not require the
availability of tick by tick data. The idea of Martens and van Dijk (2007) is based
on the fact that the daily range is almost not contaminated by market frictions.
The simulation results of Martens and van Dijk (2007) confirm the theory that the
range is more efficient than the RV, and in the presence of market frictions the
scaling correction removes the bias and restores the efficiency of the realized range
estimator over the realized volatility. Therefore, the scaled RRV,> is defined as:

i RRVi

RR‘{S?@G = <
et \ZL RRVA,

) RRVA (1.4)

where RRV; = RRV,® (with A = 1 day) is the daily range and ¢ is the number
of previous trading days used to compute the scaling factor. If the trading intensity
and the spread do not change, ¢ must be set as large as possible. However, in the
reality only recent history should be taken into consideration.

Our database includes more than seven years of 1 minute high, low, open and
close prices for 16 stocks quoted at the NYSE: Boeing (BA), Bank of America
(BAC), Citigroup Inc. (C), Caterpillar Inc. (CAT), FedEx Corporation (FDX),
Honeywell International Inc. (HON), Hewlett-Packard Company (HPQ), In-
ternational Business Machines Corp. (/BM), JPMorgan Chase & Co. (JPM),
Kraft Foods Inc. (K FT), PepsiCo, Inc. (PEP), The Procter & Gamble Company
(PG), AT&T Inc. (T), Time Warner Inc. (TWX), Texas Instruments Incorpo-
rated (TXN) and Wells Fargo & Company (W FC).

The original sample covers the period from January 2, 2003 to March 30, 2010,
from 09:30 trough 16:00 for a total of 1823 trading days. We construct the series
for the range for the one, five, thirty minutes and daily sampling frequency (i.e.
A=1, 5, 30 minutes or 1 day). We correct them using one, two and three previous
months (i.e. ¢=22, 44 or 66). The results of the corrections show that, after
scaling with different ¢, the mean volatility stabilized across the different sampling
frequencies. We choose to sample every five minutes and to correct for the presence
of noise with the 66 previous days, as in Martens and van Dijk (2007).

Table 1.1 reports descriptive statistics for the logarithm of the range based
volatility estimators and for the returns. A statistical analysis of the return and
the volatility series confirms the presence of the stylized facts vastly documented
in the literature. The annualized volatility range from 15.5205% to 33.8154% and
the mean of the log series range from -4.8362 to -3.4884. The skewness parameter
ranges from 0.5266 to 1.1342 and the kurtosis ranges from 3.0242 to 5.6782. More-
over, the returns exhibit excess of kurtosis ranging from 6.0939 to 25.094. The
summary statistics seems to be similar across the different series.

Plots of the volatility series and the sample autocorrelation functions (ACF) of
the logarithmic volatility series for some of the assets are presented in figure 1.1.
We can observe a common period of high volatility that corresponds to the 2008-
2009 financial crisis and the long-memory pattern in the hyperbolic and slowly
decay of the ACF that is present in the logarithmic volatility series.
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1.3 The models for the observed volatility se-
quences

Different models have been presented to capture the stylized facts that finan-
cial series exhibit. Based on the statistical features briefly mentioned before, we
consider the HAR model of Corsi (2009) to capture the long-memory pattern.
The long-range dependence is captured by aggregating the volatility over differ-
ent periods, on a daily, weekly and monthly basis. Each of whom represents the
different preferences of the individuals in the market. This representation can be
seen as a long and restricted lagged autoregressive process, with the advantages
of a simple estimation that regress today’s volatility in its past averages (daily,
weekly, monthly). We account for asymmetric effects with respect to the volatil-
ity and the returns. Moreover, following Corsi, Mittnik, Pigorsch, and Pigorsch
(2008) we also include a GARCH specification to account for heteroskedasticity in
observed volatility sequences and a standardized Normal Inverse Gaussian (NIG)
distribution to deal with the observed skewness of the residuals. Finally, to ac-
count for asymmetric effects in the variance equation or volatility of the volatility
we consider a GJR-GARCH specification of Glosten, Jagannathan, and Runkle
(1993).

We thus estimate the following model:

he = a4 051 (he—1)he—1 + Bahi—1 + Buwh—14—5) + Bmht—1:4—22) + (1.5)
+YrBRi—1 + Yirl (Ri—1)Ri—1 + \/0r€
or = w+ frov_1 + oqui_y + drup_y I (u—1)
|1 ~ d(0,1)

where A, is the log RRV Gy 044, M—14—j) is the HAR component defined as

1 J
h—1:4—j) = 7 > hiy, (1.6)
=1

with 7 = 5 and 22 in order to capture the weekly and monthly components.
I(hy—1) is an indicator for RRV,2.q4,_, bigger than the mean over s = 5, 10,22, 44
and 66 previous days and the unconditional mean (full) up to t—1. These variables
capture the asymmetric effects with respect to the volatility. R; = In(ps'/ps ;) is
the return, with p§ the closing price for the day ¢t and I(R; ;) is an indicator
for negative returns in t — 1, that captures the asymmetric effects with regard
to the lagged return. w; = /o€ is the error term. The full specification for oy
is a GJR-GARCH model to account for the asymmetric effect in the volatility
of the volatility, where I(u;_1) is an indicator for u;—; < 0, w > 0, 81 > 0,
a1 > 0 to guarantee the conditional variance to be positive and 8; + a3 < 1 and
B+ a1 + %¢1 < 1 to guarantee stationarity under symmetry of the density of the
standardized residuals.
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Initially, we consider 21 alternative specifications for the mean equation, three
possible variance equations and two different distributions for the innovations.
Combining those three elements, we have a total of 126 models. After an in-sample
selection, we decide to concentrate on six different specifications for the mean
equation that account for all the discussed stylized facts. The specifications for
the mean are the AR(1) (/), the HAR model of Corsi (2009) (II), the HAR model
with asymmetric effects with respect to the historical volatility and the returns
and the lagged returns (I17), the HAR with asymmetric effects with respect to
the returns and lagged returns (/V'), the HAR model with only asymmetric effects
with respect to the returns (V') and finally the HAR model with symmetric effects
for the past weekly volatility and the returns (V7). The last five models also
include an AR(1) term. Finally, we have 36 models that are used to compute one-
step-ahead rolling forecast for the volatility series and to assess the importance of
the variable. Because of a space restriction, we only present estimation results for
some of the considered models.

1.4 Forecast evaluation

In order to test the out-of-sample ability of the different models we implement
two different procedures, the Diebold and Mariano (1995) test and the Models
Confidence Set approach of Hansen, Lunde, and Nason (2010) based on two loss
functions the Mean absolute error (MAE) and the Mean squared error (MSE):

: 1 & .
MAE(G) = L3 |0? - 52 (1.7
t=i
: 1 & .
MSE(i) = —> (o] — 67,) (1.8)

t=i
where o7 is the true and unknown variance at time ¢ and 67, is the forecast

volatility for the model i for period ¢. Since o7 is not observable, we replace

it by hy, our volatility series and a proxy for the volatility o2. As pointed out
by Patton (2011), the MSE loss function is robust to the presence of noise in the
volatility proxies, resulting in an unbiased model ranking. As the author states, the
introduction of proxies for the true volatility generates distortions in the rankings
of competing forecasts based in common used loss functions.

The Diebold and Mariano (1995) test (DM) is a test for the equal predictive
ability between two competing models. Under the null hypothesis of equal expected

loss differential we have:
Ho = E[L(i)] — E[L(j)] = E[L(2) — L(j)] = E[dL(i,5)] = 0 (1.9)

where L(i) represents a loss function for the model i and dL(i, j) is the loss dif-
ferential equation between the two models i and 7, for a given loss function. The
test statistic is given by

DL(i, j)

el T/ (1.10)
V(DL(i, j))

tL(i’j> =
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where DL(i,7) = 1/m >, dL(i,7) and V(DL(i,j)) is an heteroskedasticity and
autocorrelation consistent variance estimator and it is asymptotically distributed
as a standardized normal and allows for a simple evaluation of the null hypoth-
esis. As pointed out by Caporin and McAleer (2011) a limitation of the forecast
evaluation based on Diebold and Mariano (1995) type tests is that they represent
pairwise comparisons, so that it is not possible to exclude a priori the possibility
of having different model rankings associated with different robust loss functions.
Then, we also consider the Model Confidence Set approach (MCS) of Hansen,
Lunde, and Nason (2010). The goal of the MCS is to identify the set of models
that contains the best out-of-sample forecasting models given a level of confidence.
The procedure sequentially eliminates the worst performing models from an initial
set. Starting from M, a set that contains all the original models that produced
out-of-sample forecasting and dL(i,j) the loss differential equation between two
models for a given loss function, the null hypothesis of the MCS is defined as

Hy = E[dL(i,5)] = 0 (1.11)

fori > j,and Vij € M, the original set. Hy can be tested with two test statistic
based on different deviation methods:

DL j) ‘ (1.12)

\/V(DL(i,5))

. 9
tsq= >, <DL(”)> (1.13)
ijertj>1 M/ V(DL(i, j))

When the null hypothesis is rejected for a given «, the procedure excludes the
worst performing models. The procedure is repeated until the null hypothesis of
equal predictive ability for the remaining models is not rejected, resulting in the
M7, set containing the best models.

tp maa:z,]eM‘

1.5 Estimation results

We estimate the models with a Quasi-Maximum Likelihood procedure for the
16 stocks and for the entire sample from January 2003 to March 2010. The aim
is to assess the impact and significance of our different variables in our models.
Tables 1.2, 1.4, 1.3 and 1.5 present the estimation result for the 2003- 2010 pe-
riod. In particular, table 1.2 reports the estimated parameters of the HAR model
with constant variance and Normal distribution and the table 1.3 shows the same
specification for the mean equation model with GJR-GARCH variance and NIG
distribution (model I7) for the 16 stocks. Moreover, tables 1.4 and 1.5 provide
the estimated parameters of the HAR with lagged and asymmetry over the return
(model IV') with constant variance and Normal distribution and GJR-GARCH
variance and NIG distribution respectively.

Estimation results suggest that the HAR components are highly significant
for the three variance specifications and the two different distributions for all the



8 Modeling and Forecasting Realized Range Volatility

assets. The sum of the estimated parameters (3,4, 3, and 5,,), range from 0.85 to
0.97, suggesting a highly persistent process. The lagged and asymmetric effects
with respect to the return improve the goodness of fit of the model. The first one
is highly significant in most of the 16 stocks and it increases the volatility after
a negative return while the second one is highly significant in the 16 series and
negative, which implies that a negative return tends to increase the volatility more
than a positive return.

On the contrary, the asymmetric effects with respect to the volatility, in the
different horizons tend to be not significant. The asymmetric effect on the previous
five days is marginally significant for some models?. The sign and significance of
the coefficients in the mean equation remain stable for the different specifications
in the variance equation. The inclusion of the GARCH and GJR specifications
improve the fitting of the models. The models that best fit the series are the ones
that include the HAR and leverage effects, with GARCH and GJR variances.

Moreover, we perform three different Normality tests for the residuals: the
Jarque-Bera test (JB), the Kolmogorov-Smirnov test (K.S) and the Lilliefors test
LL. Under the null hypothesis, in the three tests, the residuals should be normal.
P-values reported in tables 1.2 and 1.4 reject the null hypothesis of the three test
in all the assets. This is an argument to introduce a non Gaussian distribution. As
we said, the estimated parameters of the mean equation for the models with NIG
distribution are similar to the models with Normal distribution. The estimated
parameters of the NIG distribution (ay;¢ and Byjg) capture the right skewness
and excess of kurtosis displayed in the residuals.

Tables 1.6, 1.7, 1.8 and 1.9 report three different Likelihood ratio test for the 16
stocks. In the first test (LR1), we want to analyze the introduction of asymmetric
effects in the mean equation with respect to the HAR model for the three variance
specifications and the two distributions for the innovations. Whereas in the second
and third tests ((LR2) and (LR3) respectively), we examine the introduction of
the different variance specifications for the same mean equation and distribution
for the residuals. In the LR2 test the restricted model has constant variance, and
the unrestricted models GARCH and GJR-GARCH variances, while in the LR3
test the restricted model has GARCH variance and the unrestricted models GJR-
GARCH variance. P-values for the first and the second test favor the introduction
of asymmetric effects with respect to the return and the volatility in the mean
equation and GARCH and GJR-GARCH specifications for the variance equation
in all the series. P-values for the last test reject the null in most of the cases.

1.6 Forecast results

To examine the predictive accuracy of the different models, we compute one-
day-ahead out-of-sample rolling forecast from January 3, 2006 to March 30, 2010
for the 16 stocks. We estimate the models until December 30, 2005 and then we re-
estimate each model at each recursion expanding the data set by one observation.

In non reported table
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We analyze the results for the out-of-sample forecast in two different subperiods.
In particular, we study the performance of the alternative models for the full out-
of-sample (1067 days) and during the financial crisis, from September 15, 2008
to July 30, 2009 (200 days). As we said, after the in-sample analysis, we decide
to compute forecasts with six different specifications for the mean equation with
three alternative variance equations and two distributions for the innovations. The
six specifications for the mean are: the simple AR(1) (), the HAR model of Corsi
(2009) (I1), the HAR model with symmetric effects with respect to the historical
volatility the returns and the lagged returns (I17), the HAR with asymmetric
effects with respect to the returns and lagged returns(/V'), the HAR model with
only asymmetric effects with respect to the returns (V) and the HAR model with
symmetric effects for the past weekly volatility and the returns (V' 1). In particular,
the last four models include the different effects that resulted highly significant and
relevant in the previous analysis for all the series.

In order to evaluate and compare the performance of the different volatility
models, we implement the Diebold and Mariano (1995) test based on the M AE
and the M SE, a robust loss function in the sense of Patton (2011) and we consider
the Model Confidence Set (MCS) approach of Hansen, Lunde, and Nason (2010)
based on the same two loss function®. Tables 1.10 and 1.11 report the results
for the Diebold and Mariano (1995) test and MCS for the HAR model with the
three different variance equations and the two distributions for the residuals for
the 16 stocks for the full sample. The goal is to analyze the performance of the
different variance and distributional assumption leaving the mean equation con-
stant. Although the results of pairwise comparison with the Diebold and Mariano
(1995) test vary across different stocks, the MCS procedure allows for a comparison
between all the models.

In particular, the HAR model with GJR-GARCH specification for the variance
and the NIG distribution for the innovations belongs to the set of best models in 15
out of 16 stocks. Table 1.12 provides the Diebold and Mariano (1995) test for equal
predictive accuracy between the HAR model and the five competing specifications
for the mean equation with same variance specification and distribution for the
residual of the 16 stocks and the full out-of-sample forecasting. As an example,
consider the first t-statistic of the first column for (BA) and equal to —4.51. This
t-statistic is the result of the Diebold and Mariano (1995) test of equal predictive
accuracy between the HAR model and the AR(1) model with constant variance
and Normal distribution. As we expected, the t-statistic strongly rejects null
hypothesis in favor of the HAR model.

Results show that in 12 out of 16 stocks, the models with asymmetric effects
with respect to the return and the volatility (/11, IV, V and VI) perform signifi-
cantly better than the HAR model (/1) in at least one of the different specifications
for the variance and the distribution for the innovations. In particular, in 8 out
of 16 series there is at least one model with asymmetric effects with respect to
the return and the volatility for each specification for the variance and the dis-
tribution for the residuals that performs better than the HAR models. At the

3In this version, we present the results based on the M SFE loss function.
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same time, the HAR model outperforms the simple AR(1) model in all the assets
and three variances and distribution assumptions. Consider the seventh column
for HP(Q. Each of the four models with asymmetric effects perform significantly
better than the HAR model at 1% level. On the contrary, in four assets none of
the models perform better than the HAR. Although these four assets belong to
different sectors, it seems that the long memory component of the series dominates
the asymmetric effects.

The results for the MCS procedure when the 36 models are included in the
initial set for the 16 stocks and the full out-of-sample forecasting are reported in
table 1.14. In 13 out of 16 stocks, the p-values associated with the HAR model
with different specifications for the variance and distribution for the residuals range
from 0 to 0.22. Consequently, the null hypothesis of equal predictive performance
cannot be rejected at lower significance levels. However, at 25% level, the HAR
model remains out of the set of best models in these 13 series and at the 15% level,
in six stocks we exclude the six different HAR models from the best set. Regarding
the four series where the HAR models display the same performance than the
competitors, they are included in the best set at the 10%. Last, the set of best
models for the different assets includes models with asymmetric effects with respect
to the volatility and the return and with different specifications for the variance
and the distribution of the innovations while, as we expected, the AR(1) model for
the mean equation is always excluded at the lowest significant levels. In contrast
to the estimation results, the performance of the different models varies across the
stocks. However, the introduction of different effects in the mean equation of the
volatility provides a significant improvement in the forecast accuracy.

Since the full out-of-sample forecasting includes the 2008-2009 financial crisis,
we also analyze the performance of the models during this period (200 days).
Table 1.13 and 1.15 report the Diebold and Mariano (1995) test and MCS for the
same 36 models considered before for the 16 stocks and the out-of-sample period
during financial crisis. Contrary to the results of the analysis of the full out-of-
sample forecasting, asymmetric effects in the mean equation do not improve the
performance of the models during periods of high volatility. T-statistics for the
Diebold and Mariano (1995) test (in table 1.13) do not reject the null hypothesis
of equal performance between HAR and the four models with asymmetric effects
in 12 out of 16 series. This result is confirmed by the MCS approach were most
of the best set includes the HAR models. However, an interesting result emerges
from table 1.15. P-values associated to HAR models for the bank’s stocks (BAC,
C, JPM and WFC) exclude them from the best models at reasonable levels.

1.7 Conclusions

In this chapter, we have modeled and forecasted price variation through the
realized range volatility introduced by Martens and van Dijk (2007) and Chris-
tensen and Podolskij (2007). We have estimated the series for 16 stocks traded
at NYSE for different sampling frequencies and corrected them with the scaling
procedure of Martens and van Dijk (2007). After the corrections, the volatility
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stabilizes across different sampling frequencies and scaling factors, which suggest
that the bias caused by the microstructure friction was removed, restoring the
efficiency of the estimator. We have considered a model which approximates long
memory, has asymmetric effects with respect to the return and the volatility in
the mean equation, and includes GARCH and GJR-GARCH specifications for the
variance equation (which models the volatility of the volatility). A non Gaussian
distribution was also considered for the innovations.

The estimation results of the different considered models in the 16 stocks sug-
gest that the introduction of asymmetric effects with respect to the returns and
lagged returns induces a significant improvement in the in-sample fit. We docu-
ment a strongly significant increment of the volatility after negatives returns, or
leverage effects. Moreover, GARCH and GJR-GARCH specification for the vari-
ance equation improve the fitness of the models while NIG coefficients are able to
capture the right skewness and excess of kurtosis of the series.

In the last part of this work, we have computed one-step-ahead rolling forecast
for the 16 assets. The forecast comparison analysis reflects the findings of the
in-sample analysis. Taking into consideration the asymmetric effects in the mean
equation produces more accurate and statistically significant predictions than the
HAR model. As we expected, models with GARCH and GJR-GARCH specifica-
tions and the two different distributions for the innovations do not lead to more
accurate point forecasts than models with constant variance.

Finally, the HAR components with asymmetric effects are able to capture most
of the variability during the out-of-sample prevision. In order to improve this
performance, the introduction of financial and macroeconomics variables should
be considered. Other future steps are the possible correction for jumps in the
volatility series and an economic analysis of the performances of the models.
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1.8 Tables and Figures

Table 1.1: Descriptive statistic

Return Volatility
Mean  St.Dev  Skew Kurt Mean  St.Dev Skew Kurt gannual

BA 0.0553  0.0191  0.2344  7.9256 —3.9939  0.7969 0.9001 4.3752  23.5871%
BAC —0.0421 0.0382 —0.3529 25.094 —4.1253  1.5707 1.085 3.4125 29.8134%
C —0.0989 0.0395 0.4240 27.401 —3.8379 1.5529 0.9733 3.2486 33.8154%
CAT 0.0498  0.0220 —0.1815 8.8372 —3.7869 0.8657  1.0246  4.3198 26.6612%
FDX 0.0244  0.0198 —0.2691 8.2731 —4.004 0.8678  0.6636  3.3228 23.7768%
HON 0.0369  0.0183 —0.0622 6.9394 —3.9711 0.7762 0.9930 4.8865 23.7787%
HPQ 0.0655  0.0196  0.1723  9.8753 —3.9128 0.7815 0.6730 41872 24.4143%
IBM 0.0231  0.0143  0.0016 9.005 —4.5841 0.8338 1.1342 5.0097 17.7876%
JPM 0.0229  0.0291  0.3502  17.860 —3.9327 1.2644 0.9281 3.3023 28.1828%
KFT —0.0012 0.0131 —0.1650 8.1409 —4.4415  0.7469 0.8114 4.2079 18.6216%
PEP 0.0252  0.0117 —0.5823 19.314 —4.773  0.7775 1.1291 5.4579  15.9629%
PG 0.0201  0.0117 —0.0886 10.540 —4.8362 0.7868 1.227 5.6782 15.5205%
T 0.0068  0.0159  0.4430 10.769 —4.2059 0.8508  0.8970  4.3824 21.5056%
TWX 0.0057  0.0196  0.0910 11.832 —3.9856 0.9131 1.0217 4.1886 24.4534%
TXN 0.0154  0.0217 —0.2859 6.0939 —3.4884 0.7079 0.5266 3.7832 29.6711%
WFC 0.0158  0.0322 0.7732  23.786 —4.1098 1.5129 0.9280 3.0242 28.7103%

Note: Descriptive statistics for the returns and the of the log(RRV) series for the 16 stocks: Boeing (BA),
Bank of America (BAC), Citigroup Inc. (C), Caterpillar Inc. (CAT), FedEx Corporation (FDX), Honeywell
International Inc. (HON), Hewlett-Packard Company (HPQ), International Business Machines Corp. (IBM),
JPMorgan Chase & Co. (JPM), Kraft Foods Inc. (KFT), PepsiCo, Inc. (PEP), The Procter & Gamble
Company (PG), AT&T Inc. (T'), Time Warner Inc. (TW X), Texas Instruments Incorporated (X N) and Wells
Fargo & Company (W FC). g®*"ual js the mean annualized volatility in percentage terms.
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Table 1.2: HAR model - Normal distribution and Constant variance

BA BAC C CAT FDX HON HPQ IBM JPM KFT PEP PG T TWX TXN  WFC

o —0.196* —0.061> —0.051> —0.183* —0.157" —0.266* —0.258° —0.206* —0.086" —0.438* —0.258" —0.279*% —0.200° —0.125* —0.223° —0.059°
(0.060)  (0.031)  (0.024) (0.055) (0.064) (0.065) (0.065) (0.053) (0.034) (0.102) (0.072) (0.069) (0.055) (0.046)  (0.056)  (0.031)
B 0.359*  0521*  0507* 0386  0.393°  0.360°  0.407*  0.418°  0.493*  0.293*  0.294*  0.360°  0.414°  0.369*  0.329°  0.420°
(0.025)  (0.020) (0.024) (0.023) (0.025) (0.022) (0.022) (0.025) (0.022) (0.025) (0.024) (0.024) (0.024) (0.022) (0.025)  (0.023)
B 03882 0303  0.352° 04168  0.283*  0.420%° 03728 0.430° 03632 0.407* 0458  0.460° 0371  0413%  0.465° 04212
(0.041)  (0.037)  (0.036)  (0.042) (0.042) (0.042) (0.042) (0.039) (0.037) (0.045) (0.043) (0.042) (0.040) (0.043) (0.042)  (0.039)
Bm 02022 01597  0.125*  0.1482  0.283*  0.143*  0.55*  0.106* 0.1212 0201 0.193*  0.122°  0.166°  0.185*  0.142%  0.142°
(0.034)  (0.028) (0.023) (0.035) (0.039) (0.036) (0.037) (0.029) (0.027) (0.043) (0.037) (0.035) (0.032) (0.033) (0.033)  (0.029)
YRT - - - - - - - - - - - - - - - -

YIRT - - - - - - - - - - - - - -

w  0181* 0223* 0190 0193  0202° 0198 0201*° 0.155°  0.187®  0.265* 0.188° 0.182* 0185  0.163* 0.163*  0.202°
(0.004)  (0.004) (0.004) (0.004) (0.005) (0.004) (0.004) (0.003) (0.004) (0.006) (0.004) (0.004) (0.004) (0.003) (0.004)  (0.005)

ania - - - - - - - - - - - - - -

Modeling and Forecasting Realized Range Volatility

Bnic - - - - - - - - - - - - - -

LLF -981.56 -1163.8 -1022.3 -1037.4 -1074.5 -1058.5 -1072.0 -845.46 -1009.8 -1310.9 -1012.9 -985.03 -1000.3 -891.30 -893.31 -1078.2
AIC  1973.1 2337.6 2054.6  2084.9 2159.0 2127.0  2154.0 1700.9 2029.6 2631.8  2035.9 1980.0  2010.6 1792.6 1796.6  2166.5
BIC  2000.4 2364.9 2081.9  2112.2 2186.3 21542  2181.3 1728.2 2056.9 2659.1 2063.2  2007.3 20379 1819.8 1823.9  2193.8

Ljao 0.018 0.043 0.011 0.142 0.069 0.003 0.258 0.015 0.042 0.374 0.013 0.186 0.014 0.085 0.001 0.194
Ljao 0.031 0.109 0.027 0.287 0.145 0.005 0.202 0.017 0.080 0.313 0.005 0.400 0.057 0.054 0.002 0.440
JB 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LL 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.021 0.001

Note: Estimation results for the 16 series of stock volatility for the period January 2003 to March 2010. LLF is the Log-likelihood function, AIC is the Akaike Information Criteria
M and BIC is the Bayesian information criterion. LJ3g and LJso are the Ljung Box test for 30 and 40 lags. JB is the Jarque-Bera test for Normality, K S is the Kolmogorov-Smirnov
and LL is the Lilliefors test. Standard errors in bracket. "a", "b" and "c" indicate significance at the 1%, 5% and 10%.
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Table 1.4: HAR model with asymmetric effects with respect to the returns - Normal distribution and Constant variance

BA BAC C CAT FDX HON HPQ IBM JPM KFT PEP PG T TWX  TXN WFC

o —0402* —0.319° —0.290* —0.357° —0.298® —0.495° —0.435° —0.387* —0.365* —0.703* —0.510° —0.515* —0.452* —0.348® —0.317* —0.259°
(0.072)  (0.049) (0.034)  (0.069) (0.082) (0.084) (0.073) (0.064) (0.048) (0.117) (0.090) (0.084) (0.071)  (0.060) (0.065)  (0.046)
0.319*  0.469°  0.428*  0.344®  0.365° 0318 0347 0.367*  0.439°  0.243*  0.253°  0.319*  0.369°  0.333*  0.302*  0.386*
(0.026)  (0.020) (0.025) (0.025) (0.025) (0.023) (0.024) (0.027) (0.022) (0.028) (0.025) (0.025) (0.025) (0.022) (0.026)  (0.023)
0.396*  0.305°  0.363*  0.430°  0.289°  0.442%  0.396*  0.449°  0.374% 0416  0.455°  0.468*  0.382% 0411  0471*  (.421°
(0.041)  (0.037)  (0.035)  (0.042) (0.042) (0.041) (0.042) (0.039) (0.035) (0.046) (0.043) (0.042) (0.040) (0.042) (0.041)  (0.038)
Bm 0196  0.162° 0148 01432 0279  0.127* 0157 0.107*  0.111*  0.196*  0.195°  0.115*  0.156°  0.182*  0.144®  0.141%

(0.033)  (0.028)  (0.023)  (0.035) (0.039) (0.036) (0.038) (0.028) (0.026) (0.043) (0.037) (0.035) (0.032) (0.033) (0.033)  (0.028)
ypr 1615 2120°  1.399*  1.958° 0191  1.364 0519 —0.444 2091  6.281° 2301 1588  3.288°  2814* 0163  1.164°

(1.093)  (0.504) (0.285)  (1.02)  (1.209) (1.155) (0.900) (1.299) (0.660) (1.895) (1.418) (L.667) (1.274) (0.996) (0.905)  (0.635)
Yipr  —T.948% —6.696° —6.422° —(.344* —5305° —8.144* —T7.160° —8.469*° —8.754% —13.86 —13.50° —11.94* —11.59®° —8.544® —3.995* —6.296

(1.810)  (0.766)  (0.530)  (1.53)  (L767) (1.954) (1.358) (2.054) (1.071) (2.880) (1.898) (2.451) (2.014) (1.569) (1.310) (1.030)

w 0177 0214* 0178  0.191* 0198  0.194* 0.196° 0.149* 0.177* 0.262* 0.8 0177  0.181* 0.160° 0.161*  0.195°
(0.004)  (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.003) (0.004) (0.006) (0.004) (0.004) (0.004) (0.003) (0.004)  (0.005)

aNiG - - - - - -

Modeling and Forecasting Realized Range Volatility

\%ZNQ - - - - - - - - - - -

LLF -963.45 -1125.7 -968.65 -1026.1 -1059.9 -1039.7 -1050.8 -813.10 -961.43 -1300.3 -989.53 -963.17 -979.05 -873.77 -880.79 -1045.1
AIC 19409  2265.4 1951.3  2066.3  2133.9 20934  2115.7  1640.2 1936.8  2614.7 1993.0 1940.3 1972.1 1761.5 17755  2104.2
BIC 1979.1 2303.6 1989.5 21045 21721 2131.6  2153.9 1678.4 1975.0 26529  2031.2 1978.5 2010.3 1799.7 1813.7 21424

Ljso 0.018 0.050 0.001 0.123 0.055 0.001 0.136 0.004 0.135 0.298 0.007 0.315 0.010 0.053 0.002 0.329
Ljao 0.028 0.127 0.005 0.250 0.093 0.002 0.094 0.005 0.250 0.205 0.002 0.612 0.035 0.041 0.006 0.634
JB 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LL 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.019 0.001

Note: Estimation results for the 16 series of stock volatility for the period January 2003 to March 2010. LLF is the Log-likelihood function, AIC is the Akaike Information Criteria
m and BIC is the Bayesian information criterion. LJsg and LJ4o are the Ljung Box test for 30 and 40 lags. JB is the Jarque-Bera test for Normality, K .S is the Kolmogorov-Smirnov
and LL is the Lilliefors test. Standard errors in bracket. "a", "b" and "c" indicate significance at the 1%, 5% and 10%.
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Table 1.6: Likelihood-ratio test

BA I-Co II-Co III-Co IV-Co V-Co VI-Co I-Ga II-Ga III-Ga IV-Ga V-Ga VI-Ga I-Gj II-Gj III-Gj IV-Gj V-Gj VI-Gj
Normal

LR1 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000

LR2 - - - - - - 0.000 0.000 0.004  0.003 0.003 0.003 0.000 0.000 0.006 0.005 0.005 0.006

LR3 - - - - - - - - - - - - 0.001 0.316 0.255 0.220 0.304 0.313
NIG

LR1 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000 - - 0.000 0.000 0.000 0.000

LR2 - - - - - - 0.000 0.000  0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LR3 - - - - - - - - - - - - 0.000 0.613 1-0.3 0.405 0.495 0.506

BAC I-Co II-Co III-Co IV-Co V-Co VI-Co I-Ga II-Ga III-Ga IV-Ga V-Ga VI-Ga I-Gj II-Gj III-Gj IV-Gj V-Gj VI-Gj
Normal

LR1 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000

LR2 - - - - - - 0.000 0.000  0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LR3 - - - - - - - - - - - - 0.000 1-140 0.000 0.000 0.000 0.000
NIG

LR1 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000

LR2 - - - - - - 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LR3 - - - - - - - - - - - - 0.000 0.172 1-19. 1-20. 1-22. 0.226

C ILCo ILCo IICo IV-Co V-Co VICo LGa ILGa IILGa IV-Ga V-Ga VIGa LGj ILGj IILGj IV-Gj V-Gj VIGj

Normal
LR1 - - 0.000  0.000 0.000 0.000 - - 0.000 0.000  0.000 0.000 - - 0.000  0.000 0.000 0.000
LR2 - - - - - - 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LR3 - - - - - - - - - - - - 0.000 0.001 0.050 0.030 0.018 0.017
NIG
LR1 - - 0.000  0.000 0.000 0.000 - - 0.000 0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000
LR2 - - - - - - 0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LR3 - - - - - - - - - - - - 0.000 0.000 0.060 0.026 0.012 0.011

CAT I-Co II-Co III-Co IV-Co V-Co VI-Co I-Ga II-Ga III-Ga IV-Ga V-Ga VI-Ga I-Gj II-Gj III-Gj IV-Gj V-Gj VI-Gj
Normal

LR1 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000

LR2 - - - - - - 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LR3 - - - - - - - - - - - - 0.039 0.273 0.095 0.072 0.108 0.115
NIG

LR1 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000

LR2 - - - - - - 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LR3 - - - - - - - - - - - - 0.000 0.159 0.044 0.042 0.062 0.086

Note: Likelihood Ratio test for the 16 series of stock volatility for the period January 2003 to March 2010 to test the introduction of different asymmetric effects and
heteroskedasticity specifications. See the note in table 1.12 for the description of the models. The LR1 is a likelihood ratio test to asses the significance of the introduction of
asymmetric effects in the mean equation. The HAR is the restricted model. LR2 tests the introduction of heteroscedasticity in the variance equation. The restricted model
contains constant variance. Finally, LR3 tests the introduction of asymmetric effects in the variance equation. A GARCH variance is specified in the restricted model.
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Table 1.8: Likelihood-ratio test (cont.)

JPM I-Co II-Co III-Co IV-Co V-Co VI-Co I-Ga II-Ga III-Ga IV-Ga V-Ga VI-Ga I-Gj II-Gj III-Gj IV-Gj V-Gj VI-Gj
Normal

LR1 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000 - - 0.000 0.000 0.000 0.000

LR2 - - - - - - 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LR3 - - - - - - - - - - - - 0.002 0.005 0.025 0.023 0.044 0.043
NIG

LR1 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000

LR2 - - - - - - 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LR3 - - - - - - - - - - - - 0.000 0.002 0.005 0.004 0.008 0.007

KFT I-Co II-Co III-Co IV-Co V-Co VI-Co I-Ga II-Ga III-Ga IV-Ga V-Ga VI-Ga I-Gj II-Gj III-Gj IV-Gj V-Gj VI-Gj

Normal
LR1 - - 0.000 0.000 0.002 0.003 - - 0.000  0.000 0.002 0.003 - - 0.000 0.000 0.002 0.003
LR2 - - - - - - 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LR3 - - - - - - - - - - - - 1-193  0.000 0.000 0.000 0.000 0.000
NIG
LR1 - - 0.000 0.000 0.002 0.002 - - 0.000  0.000 0.002 0.002 - - 0.000 0.000 0.002 0.002
LR2 - - - - - - 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LR3 - - - - - - - - - - - - 0.000 0.248 1-592 1-600 1-128 1-365

PEP I-Co II-Co III-Co IV-Co V-Co VI-Co I-Ga II-Ga III-Ga IV-Ga V-Ga VI-Ga I-Gj II-Gj III-Gj IV-Gj V-Gj VI-Gj
Normal

LR1 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000

LR2 - - - - - - 0.000 0.000  0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LR3 - - - - - - - - - - - - 0.000 0.000 0.000 0.000 0.000 0.000
NIG

LR1 - - 0.000  0.000 0.000 0.000 - - 0.000  0.000 0.000 0.000 - - 0.000 0.000 0.000 0.000

LR2 - - - - - - 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LR3 - - - - - - - - - - - - 0.000 0.000 0.001 0.001 0.001 0.001

PG 1Co ILCo II-Co IV-Co V-Co VICo IGa ILGa IIIGa IV-Ga V-Ga VIGa LGj ILGj IILGj IV-Gj V-Gj VLGj

Normal
LR1 - - 0.000  0.000 0.000 0.000 - - 0.000 0.000  0.000 0.000 - - 0.000  0.000 0.000 0.000
LR2 - - - - - - 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LR3 - - - - - - - - - - - - 0.000 0.054 0.033 0.035 0.036 0.039
NIG
LR1 - - 0.000  0.000 0.000 0.000 - - 0.000 0.000 0.000 0.000 - - 0.000 0.000 0.000 0.000
LR2 - - - - - - 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LR3 - - - - - - - - - - - - 0.000 0.102 0.060 0.059 0.059 0.071

Note:Likelihood Ratio test for the 16 series of stock volatility for the period January 2003 to March 2010 to test the introduction of different asymmetric effects and heteroskedasticity
specifications. See the note in table 1.12 for the description of the models. The LRI is a likelihood ratio test to asses the significance of the introduction of asymmetric effects in
the mean equation. The HAR is the restricted model. LR2 tests the introduction of heteroscedasticity in the variance equation. The restricted model contains constant variance.
Finally, LR3 tests the introduction of asymmetric effects in the variance equation. A GARCH variance is specified in the restricted model.
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Table 1.10: Out-of-sample forecast evaluation DM test and MCS - HAR model - Full sample

BA

1I-Co-NO
1I-Ga-NO
II-Gj-NO
11-Co-NI
[1-Ga-NI
II-Gj-NI

BAC

11-Co-NO
1I-Ga-NO
I-Gj-NO
I1-Co-NI
[1-Ga-NI
11-Gj-NI

C

1I-Co-NO
11-Ga-NO
I1-Gj-NO
I1-Co-NI
I1-Ga-NI
I1-Gj-NI

CAT

I1-Co-NO
I1-Ga-NO
I1-Gj-NO
I1-Co-NI
I1-Ga-NI
I1-Gj-NI

11-Co-NO

2.33P

1.80¢
—2.48P
—1.05
—1.30

11-Co-NO

0.86
—0.06
-1.97°
—0.85
—0.26

11-Co-NO
—2.24P
—2.24b
—2.17°
—2.61*
—2.52P

11-Co-NO
—0.20
—0.21
—2.752
—0.25
0.69

1I-Ga-NO

-1.22
—-2.63*
—1.75¢
—2.15P

1I-Ga-NO

—1.52
—2.47°
—1.64¢

—1.05

1I-Ga-NO

—0.20
—0.89
—2.792
—1.73¢

II-Ga-NO

—0.08

—2.35P

—0.06
0.92

DM
II-Gj-NO

—2.53P
—1.60
—2.00P

DM
I1-Gj-NO

—1.98P
—0.82
—0.25

DM
I1-Gj-NO

—0.93
—2.732
—2.04%

DM
I1-Gj-NO

—2.42b
—0.06
0.99

ILCo-NI IL-GaNI II-Gj-NI

1.82¢
2.91%

0.54 -

II-Co-NI II-Ga-NI II-Gj-NI

1.92¢
1.85¢

1.2 -

II-Co-NI II-Ga-NI II-Gj-NI

—2.02P
—0.22

2.19P -

II-Co-NI II-Ga-NI II-Gj-NI

3.56%
3.802

2.16° -

MSE
0.23
0.22
0.22
0.23
0.22
0.22

MSE
0.31
0.31
0.30
0.31
0.31
0.30

MSE
0.27
0.28
0.28
0.27
0.27
0.27

MSE
0.23
0.23
0.23
0.23
0.23
0.22

MCS
PUR
0.01
0.01
0.02
0.01
0.01

1.00P

MCS
PUR
0.00
0.00
0.00
0.00
0.00

1.00P

MCS
pur
0.31P
0.00
0.00
0.01
0.00
1.00°

MCS
PUR
0.00
0.00
0.03
0.00
0.03

1.00®

FDX

1I-Co-NO
1I-Ga-NO
II-Gj-NO
11-Co-NI
[I-Ga-NI
II-Gj-NI

HON

1I-Co-NO
II-Ga-NO
II-Gj-NO
II-Co-NI
[I-Ga-NI
1-Gj-NI

HPQ

II-Co-NO
1I-Ga-NO
11-Gj-NO
I1-Co-NI
1I-Ga-NI
I1-Gj-NI

IBM

I1-Co-NO
I1-Ga-NO
I1-Gj-NO
11-Co-NI
11-Ga-NI
I1-Gj-NI

11-Co-NO

1.40
—1.05
2.57
3.04%
3.02%

11-Co-NO

0.39
1.11
—3.66%
—2.77
—1.53

11-Co-NO
1.18
1.08
—1.32
—0.72
1.01

1I-Co-NO
—2.42P
—2.862
—2.37°
—2.45P
—2.19P

1I-Ga-NO

-3.902
1.42
2.74%
2.49P

1I-Ga-NO

0.91
—2.712
—2.48P

—1.46

I1I-Ga-NO

0.52
—1.94¢
—1.50

0.67

11-Ga-NO

0.33
1.07
—0.44
0.42

DM
II-Gj-NO  II-Co-NI
2.26" -
3.172 2.16P
3.052 1.90¢
DM
II-Gj-NO  II-Co-NI
—3.032 -
—3.072 2.12°
—2.31P 2.52P
DM
II-Gj-NO  II-Co-NI
—1.76° -
—1.54 0.37
0.48 1.87¢
DM
II-Gj-NO  II-Co-NI
1.02 -
—0.89 —2.04P
0.39 —0.42

II-Ga-NI II-Gj-NI

—1.75¢ -

II-Ga-NI  II-Gj-NI

2.20° -

II-Ga-NI  II-Gj-NI

3.05% -

II-Ga-NI  II-Gj-NI

1.13 -

MSE
0.25
0.24
0.24
0.25
0.24
0.23

MSE
0.23
0.23
0.23
0.23
0.23
0.22

MSE
0.23
0.23
0.23
0.23
0.23
0.23

MSE
0.20
0.21
0.21
0.21
0.21
0.21

MCS
PUr
0.00
0.00
0.00
0.00
0.05
1.00P

MCS
por
0.01
0.01
0.01
0.01
0.01

1.00P

MCS
pur
0.03

0.122

0.122

0.122

0.122

1.00®

MCS
PUR

1.00P
0.03

0.00
0.03
0.00
0.03

Note: Forecast performance evaluation for the HAR model with different variance specifications and distributions for the 16 series of stock volatility for the full out-of-sample
period (1067 observation). Co is a constant variance specification, Ga is a GARCH and Gj is a GJR — GARCH variance specification. NO is Normal distribution and NT
indicates Normal Inverse Gaussian distribution. The DM is a test for equal predictive accuracy between two models based on the M SFE loss function. Under Ho, both models
have the same performance. T-statistic in the table. "a", "b" and "c¢" indicate significance at the 1%, 5% and 10%. Positive T-statistic favors the row model. The MCS is a
procedure to determine the "best" models from a collection of models based on the M SE loss function. pvg are the p-values for the range deviation method. "a" and "b" denote

that the model belongs to the 10% and 25% MCS.
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1.8 Tables and Figures
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Table 1.12: Out-of-sample forecast evaluation DM test - Full sample

BA BAC C CAT FDX HON HPQ IBM JPM KFT PEP PG T TWX TXN WEFC

1I-Co-NO - - - - - - - - - - - - - - - -
III-Co-NO  1.26 2.15° 1.74° 1.61 033 1.97° 3.18 244> 2732 113 004 143 150 —046 0.32 1.83°
IV-Co-NO 1.31 222> 1.82¢ 198> 0.37 221> 3300 242> 2842 143 0.10 1.60 160 —0.25 0.33 1.59
V-Co-NO  1.25 1.99® 1.77¢ 1.87¢ 047 220° 3412 2520 252> 093 027 1.83° 1.8 0.78 039 1.71°
VI-Co-NO 120 1.71° 1.68° 1.17 043 203> 3.29¢0 2612 250> 023 026 1.75° 1.78° 0.58  0.37 1.89°
II-Ga-NO - - - - - - - - - - - - - - - -
MI-Ga-NO  1.39 1.64° 1.81° 1.76° 0.48 2.12> 289 260* 297 120 062 1.78° 148 0.07 026 1.87¢
IV-Ga-NO 145 1.56 1.91° 1.74° 048 235> 297 258 3.06* 142 067 192 1.53 0.23 0.36 1.64¢
V-Ga-NO  1.37 144 1.82° 158 0.58 240> 3.17* 262* 2722 089 0.76 2.08> 1.96°> 0.93 040 1.79°
VI-Ga-NO 1.28 126 1.74° 125 055 2.19° 3.09% 276> 278 021 0.74 201> 1.90° 082 043 213°
1I-Gj-NO - - - - - - -
MI-Gj-NO 140 1.41 1.89° 1.68¢ 0.51 216> 2.90* 2612 2992 1.25 092 1.74° 156 019 032 2.05°
IV-Gj-NO 144 1.22 195 1.67° 0.50 228> 298 2612 3.07*° 147 099 1.84° 161 030 040 1.82¢
V-Gj-NO  1.35 124 1.88° 1.50 0.60 2.50° 3.15* 2612 2.73* 096 1.02 200> 1.99® 089 047 1.83°
VI-Gj-NO  1.28 1.57 1.82¢ 121 0.56 2.06° 3.07* 280* 279 0.19 100 1.94° 1.90° 084 049 228
1I-Co-NI - - - -
II-Co-NI  1.81° 2.05° 1.85¢ 1.25 0.20 2.50° 298 278 297 158 059 1.55 1.88 011  0.30 1.94°
IV-Co-NI  1.85° 2.07° 1.83° 208> 0.27 255> 3.14*> 270 3.08 1.79¢ 0.64 1.70° 1.91¢ 0.29 040 1.72°
V-Co-NI  1.68° 1.94° 1.82¢ 208> 056 243> 3.36* 273 275* 1.18 0.76 201> 210> 121 043 1.73°
VI-Co-NI  1.64° 1.77¢ 1.76° 0.71 0.54 2.17° 3.242 2812 271* 052 074 1.97° 200> 0.92 045  2.01°
II-Ga-NT - - - -
III-Ga-NI  1.56 2.02> 1.84° 1.60 0.32 2.54> 3.012 278 3.09%° 1.70° 0.79 1.68 1.86° 0.39  0.21 2.25°
IV-Ga-NI 145 1.96° 1.90° 1.78° 0.33 2.58 3.08¢ 2712 3.18 187 067 1.78° 1.85¢ 0.50  0.36  1.99P
V-Ga-NI  1.54 1.84° 1.85° 1.78° 0.63 2.50° 3.36* 2.752 2842 121 0.87 205> 219® 126 046 1.96°
VI-Ga-NI 120 1.51 1.83° 1.04 062 241> 328 283 289 051 0.84 204> 212> 111 047 2.36°
11-Gj-NI - - - - - - - - - - - - - - - -
III-Gj-NI  1.83° 1.82° 1.87° 1.63 0.30 2.53° 2992 280* 3.01* 1.72° 0.73 1.68 1.87¢ 041 021 227"
IV-Gj-NI ~ 1.88¢ 1.77¢ 1.92° 1.87¢ 0.31 2.58 3.05° 2.69* 3.09% 1.83° 0.80 1.80° 1.86° 0.45  0.36 2.03°
V-Gj-NI ~ 1.70° 1.63 1.90° 1.85° 0.62 251> 3.31* 2.74* 278 131 0.84 206> 213> 122 043 1.99°
VI-Gj-NI  1.65° 1.46 1.87° 1.08 0.60 2.40° 3.232 286> 283 0.78 0.82 203> 205> 1.07 047 242°

Modeling and Forecasting Realized Range Volatility

Note: Diebold and Mariano (1995) test for the row model vs. the HAR model with same variance equation and distribution assumption. Forecast performance evaluation for the 16
series of stock volatility for the full out-of-sample period (1067 observation). Model I is an AR(1) specification, ITisan HAR, III isan HAR~+Ium(ht—1)hi—1+Ri—1+I(R¢—1)Re—1,
IV isan HAR+ Ri—1 +I(Rt—1)R¢—1, Visan HAR+ I(R¢—1)Ri—1 and VI isan HAR+ Is(ht—1)ht—1 + I(Rt—1)Rt—1. Co is a constant variance specification, Ga is a GARCH
and Gj is a GJR variance specification. NO is Normal distribution and NI indicates Normal Inverse Gaussian distribution. The DM is a test for equal predictive accuracy
Umnémmznéoso&&mvmmm&oznrmgm@HOmmm:zoSow.G:QmwmoaUodwEo&@_mwmﬁwar@mmgmvowmgambom.H-mamﬁmingnwmnmvym._Am_x_AU_Amz&_Ao_AE&omnmmwmamowzommnar@

% 1%, 5% and 10%. Positive T-statistic favors the row model. Results for the model I not reported to save space.
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Table 1.14: Out-of-sample forecast evaluation

MCS - Full sample

1I-Co-NO
II1-Co-NO
IV-Co-NO
V-Co-NO
VI-Co-NO
II-Ga-NO
I11-Ga-NO
IV-Ga-NO
V-Ga-NO
VI-Ga-NO
II-Gj-NO
III-Gj-NO
IV-Gj-NO
V-Gj-NO
VI-Gj-NO
11-Co-NI
IT1-Co-NI
IV-Co-NI
V-Co-NI
VI-Co-NI
II-Ga-NI
I11-Ga-NI
IV-Ga-NI
V-Ga-NI
VI-Ga-NI
II-Gj-NI
I11-Gj-NI
IV-Gj-NI
V-Gj-NI
VI-Gj-NI

BA

0.102
0.102
0.102
0.102
0.102
0.102
0.89
1.00P
0.89P
0.61°
0.102
0.89
0.89
0.61P
0.61P
0.102
0.102
0.102
0.102
0.102
0.102
0.61P
0.61P
0.61P
0.102
0.102
0.89P
0.89
0.61P
0.61P

BAC

0.242
0.91°
0.91P
0.91°
0.87°
0.242
0.91°
0.87°
0.81°
0.242
0.242
0.91°
0.87°
0.52P
0.87°
0.242
0.91°
0.91°
0.87°
0.52P
0.242
1.00P
0.91°
0.91P
0.79P
0.242
0.91°
0.91°
0.87°
0.52P

C

0.212
0.91
1.00P
0.91
0.47°
0.212
0.38
0.47°
0.47°
0.242
0.212
0.88P
0.88P
0.75
0.38°
0.212
0.38
0.38
0.38°
0.30P
0.162
0.30P
0.242
0.30P
0.212
0.192
0.38
0.38P
0.38P
0.30P

CAT

0.182
0.182
0.182
0.182
0.182
0.182
0.77°
0.182
0.182
0.182
0.182
0.77°
0.53
0.182
0.182
0.01

0.102
0.152
0.01

0.01

0.182
0.182
0.182
0.182
0.182
0.182
0.77°
1.00®
0.77°
0.182

FDX

0.08
0.02
0.02
0.04
0.02
0.08
0.08
0.08

0.112
0.09
0.02
0.02
0.02
0.04
0.02

0.112
0.08

0.112

0.112

0.112
0.3°
0.3°
0.3°

1.00°

0.89

0.112

0.112

0.25P
0.3°
0.3°

HON

0.102
0.212
0.28P
0.28P
0.28P
0.102
0.47°
0.54P
0.54P
0.47°
0.102
0.54P
0.54P
1.00P
0.54P
0.02
0.07
0.07
0.07
0.07
0.07
0.27°
0.142
0.102
0.102
0.07
0.47°
0.36°
0.28P
0.28P

HPQ

0.09
0.232
0.232
0.232
0.232
0.112
0.95P
0.89P
0.95P
0.89P
0.09
0.95P
0.95P
0.95P
0.95P
0.09
0.232
0.232
0.232
0.232
0.09
0.232
0.232
0.232
0.232
0.09
0.95P
0.95P
1.00°
0.95P

IBM

0.192
0.44°
0.31°
0.81°
1.00°
0.192
0.31P
0.192
0.31°
0.48°
0.122
0.31°
0.192
0.31°
0.81P
0.192
0.81°
0.31°
0.31
0.44°
0.192
0.44>
0.192
0.31P
0.44°
0.192
0.96"
0.31°
0.44>
0.96"

JPM

0.07
0.07
0.07
0.07
0.07
0.07

0.59P

0.59P

0.59

1.00P
0.07

1.00P
1.00P
0.59P
1.00P
0.01
0.07
0.07
0.07
0.07
0.01
0.07
0.07
0.07
0.07
0.07
1.00P
0.59P

0.59

1.00P

KFT

0.06
0.40P
0.62
0.40P
0.06
0.07
0.62P
0.68
0.40°
0.06
0.40P
0.68°
1.00P
0.40P
0.07
0.04
0.06
0.07
0.04
0.04
0.06
0.40P
0.40°
0.06
0.06
0.06
0.68°
0.68°
0.40P
0.06

PEP

0.79P
0.27°
0.46P
0.792
0.79»
0.27°
0.89P
0.89P
0.79P
0.79P
0.79P
0.98°
1.00°
0.98
0.98P
0.242
0.46°
0.27°
0.27°
0.27°
0.27°
0.89
0.87°
0.792
0.79P
0.46°
0.95P
0.95°
0.89
0.89

PG

0.08
0.28
0.35P
1.00P
0.61°
0.08
0.08
0.08
0.222
0.08
0.08
0.08
0.222
0.35
0.28P
0.08
0.08
0.08
0.28P
0.19*
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.19*
0.28P
0.28P

T

0.192
0.54P
0.54P
0.54P
0.54P
0.182
0.54P
0.54P
0.54P
0.54P
0.26°
0.99P
0.99P
1.00°
0.68°
0.05
0.182
0.192
0.05
0.05
0.05
0.28
0.28
0.28P
0.26°
0.05
0.68°
0.54P
0.54P
0.54P

TWX

0.202
0.03
0.03

0.202

0.202

0.25P

0.222

0.26"

1.00P

0.33

0.222

0.222

0.25P

0.33

0.26"
0.05
0.03
0.03

0.102
0.05

0.102

0.102

0.202

0.25P

0.222

0.202

0.202

0.202

0.33

0.26°

TXN

0.40°
0.33
0.33
0.43°
0.40P
0.69
0.63°
0.69P
0.92°
0.92P
0.63°
0.68°
0.69
1.00°
1.00°
0.33°
0.33°
0.43°
0.43°
0.50P
0.43°
0.43°
0.69°
1.00P
1.00
0.43°
0.43°
0.69
0.69
0.92P

WFC

0.00
0.27°
0.00
0.212
0.27°
0.00
0.27°
0.00
0.00
0.34P
0.00
0.92°
0.00
0.00
1.00°
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.27°
0.00
0.00
0.34P

Note: Forecast performance evaluation for the 16 series of stock volatility for the full out-of-sample period (1067 observation). Model I is an AR(1) specification, IT is an HAR,

II]is an mkmn_:&ﬁsm?ﬁ\w::\ﬁ +Ri—1 +NAmu\vaﬁ\T IVisan HAR+ Ri—1 ITNANWN\HVmw\T Visan m\»mn__.&mmu\pvmw\p and VI is an E.N»NWL_:N@QS\HVNN&\H +Nmmw\ﬁvmu\w. Co

is a constant variance specification, Ga is a GARCH and Gj is a GJR variance specification. NO is Normal distribution and NI indicates Normal Inverse Gaussian distribution.

The MCS is a procedure to determine the "best" models from a collection of models based on the M SE loss function. p-values for the range deviation method in the table.

and "b" denote that the model belongs to the 10% and 25% MCS. Results for the model I not reported to save space.
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Chapter 2

The predictability of Realized
Range: the role of macroeconomic
and financial variables

2.1 Introduction

During the last decades an increasing attention has been paid to the estimation
and modeling of volatility asset because of its crucial importance in risk manage-
ment, asset pricing and portfolio allocation. With the availability of high frequency
data Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen and
Shephard (2002) introduced a new approach for measuring and estimating daily
volatility. The realized variance, defined as the sum of squared intra-daily returns,
provides a more accurate measure of price variation. Christensen and Podolskij
(2007) and Martens and van Dijk (2007) proposed the realized range-based vari-
ance an estimator that is defined as the sum of the squared ranges. What is more,
an observable volatility series modeled with time series techniques can be used
to obtain forecast of the realized estimation of the volatility. While a large part
of the literature has focused on the estimation and on the correction of the bias
introduced by the microstructure noise present in the high frequency price series?,
another part has centered on modeling and forecasting realized volatility.

The long memory in financial volatility has been documented by many au-
thors, it is associated with the slow decay of its autocorrelation function and it
has been modeled with different approaches. Andersen, Bollerslev, Diebold, and
Labys (2003) presented an Autoregressive Fractionally Integrated Moving Aver-
age (ARFIMA) model and Corsi (2009) introduced the Heterogenous Autoregres-
sive (HAR) model, that approximates the hyperbolic decay of the autocorrelation

!Some references for the topic include Zhang, Mykland, and Ait-Sahalia (2005), Bandi, Rus-
sell, Bandi, and Russell (2006) and Bandi and Russell (2008), Hansen and Lunde (2006) and
Barndorfl-Nielsen, Hansen, Lunde, and Shephard (2008) for the realized volatility estimator
and Martens and van Dijk (2007) and Christensen, Podolskij, and Vetter (2009) for the real-
ized range-based estimator. McAleer and Medeiros (2008) review the literature on the realized
volatility.
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30 Realized Range and the role of macroeconomic and financial variables

function by including the sums of RV over different periods (that is, by mean
of a restricted autoregressive process with a large number of lags). Moreover,
different models have been presented to tackle the stylized facts present in finan-
cial data in order to obtain more accurate forecasts. For instance, Corsi, Mit-
tnik, Pigorsch, and Pigorsch (2008) proposed extensions to explicitly account for
non-Gaussianity and volatility cluster in the volatility. Andersen, Bollerslev, and
Diebold (2007) and Bollerslev, Kretschmer, Pigorsch, and Tauchen (2009) modeled
and forecasted realized volatility considering jump component. Andersen, Boller-
slev, and Diebold (2007) provide a practical framework for measuring significant
jumps in financial asset prices. They found that jumps dynamics are much less per-
sistent (and predictable) than continuous sample path dynamics. Moreover, they
demonstrated important gains in terms of volatility forecast accuracy by explicitly
differentiating the jump from the continuous sample path component. Bollerslev,
Kretschmer, Pigorsch, and Tauchen (2009) presented a multivariate discrete-time
volatility model that jointly incorporates the returns, the realized volatility and
jumps.

In addition, the predictive power of macroeconomic and financial variable has
been also studied with alternative approaches, in different markets and instru-
ment, considering different sample periods and predictor variables that are related
to the sampling frequency of the studied variable. While financial data is avail-
able on a daily basis, most of macroeconomic data is sampled at least at monthly
frequency. Among others, recent contributions in the literature are Christiansen,
Schmeling, and Schrimpf (2010), Paye (2010) for monthly series, while Fernandes,
Medeiros, and Scharth (2009) and Martens, van Dijk, and de Pooter (2009) con-
sidered daily series of volatility and macroeconomic and financial variables. Chris-
tiansen, Schmeling, and Schrimpf (2010) studied the predictability by macroeco-
nomic fundamentals and financial variables of monthly volatility in foreign ex-
change, bond, equity, and commodity markets. They considered a large number
of potential predictors from the return predictability literature? as well as prox-
ies for the macroeconomic activity as inflation and industrial production growth.
They found that economic variables provide information about future volatility
in foreign exchange, bond, and commodity markets, both from an in-sample and
out-of-sample perspective while their results for stocks are less significatives. Paye
(2010) analyzed the ability of financial and economic variables to forecast monthly
aggregate stock return volatility and rarely found statistical difference between the
performance of macroeconomic fundamentals and univariate benchmarks.

At the daily frequency, Fernandes, Medeiros, and Scharth (2009) modeled the
VIX with a parametric and semi parametric long memory specifications, controlling
for macroeconomic and financial market conditions and including proxies for the
present and future real economic and macroeconomic activity and liquidity in the
market. They found an in-sample negative relationship between the VIX and
contemporaneous and lagged S&P 500 index returns, positive correlation between
the VIX and the S&P 500 index volume and a decreasing relation with lagged oil
futures returns. In the out-of-sample analysis they remarked the importance of the

2See for example Welch and Goyal (2008).
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persistence of the VIX while their semi parametric model with economic variables
presented a good performance across different forecasting horizons. An alternative
approach is to consider macroeconomic announcements. Martens, van Dijk, and
de Pooter (2009) analyzed the forecasting performance for different horizons of
time series models for daily realized volatility for the S&P 500 index including
macroeconomic news announcements. They concluded that the introduction of
these effects results in a more accurate prevision of the volatility. Finally, Caporin,
Rossi, and Santucci de Magistris (2011) presented an extension of the HAR model
for estimating the presence of jumps in volatility and incorporated the credit-
default swap in the dynamics of the jump size and intensity. Moreover, they
studied the relation between the first principal component of the volatility jumps
estimated from a set of 36 stocks quoted at the New York Stock Exchange (NYSE)
and the same set of financial and policy daily variables of this work. Their results
suggest that the credit deterioration of US bank sector, proxied by the credit
default swap index of the US bank sector, impacts on an increase of the volatility
over some days during the 2008-2009 financial crisis.

In this chapter, we wish to disentangle the role that related macroeconomic and
financial variables play when modeling and forecasting daily stocks volatility. We
analyze in-sample the effect of potential predictors that capture the present and
the future state of the economy as well as the present and the future stock market
condition. Then, we consider an out-of-sample forecasting exercise to analyze the
improvement that results from the introduction of the macroeconomic variables
that better perform in our in-sample analysis. Our empirical study is based on
seven years of volatility series estimated from our database of high frequency prices
for 16 stocks quoted on the New York Stock Exchange (NYSE). Following Caporin
and Velo (2011) we construct volatility series through the realized range volatility,
introduced by Martens and van Dijk (2007) and Christensen and Podolskij (2007)
and consider the correction procedure of Martens and van Dijk (2007) to account
for the presence of Microstructure noise in high frequency data. Moreover, we
implement a model that accounts for long memory, leverage effects with respect
to the return and the volatility, GARCH and GJR-GARCH specifications for the
volatility of volatility and the Normal Inverse Gaussian (NIG) distribution to deal
with the non-Gaussianity of the innovation.

To study the relationship and the forecasting predictive power of macroeco-
nomic and financial information, we consider nine different daily variables. In
particular, we use proxies for the U.S stock market performance and the trading
activity on S&P 500, the expectation about future conditions of the market or
volatility through the VIX. Moreover, we include variables to account for the real
economic activity through commodity prices, macroeconomic condition in the US
by means of a US dollar exchange rate index and the Federal Fund deviation, mea-
sure of liquidity and proxies for the credit risk represented by the credit spread
and the credit default swaps index for the US bank sector; many of them intro-
duced by Fernandes, Medeiros, and Scharth (2009). The results of the empirical
analysis suggest that macroeconomic and financial fundamentals have a significant
explanatory power when we use them as regressors on the first common factor of
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the 16 series of volatility. The effects of the different variables are the expected and
indicate a link between volatility and financial activity and the perceived credit
risk in the market. When we use the variables to improve the predictive accuracy
of the 16 volatility series we obtain different results. The variables related with the
U.S stock market performance and proxies for the credit risk produce a significant
improvement in the out-of-sample accuracy in 8 out of 16 stocks.

The rest of the chapter is structured as follows. In section 2.2, we present the
volatility estimators and the macroeconomic and financial variables. In section 2.3
we discuss the in-sample performance of the macroeconomic and financial variables
while in section 2.4 we present our forecasting framework. Section 2.5 shows the
result for the forecasting analysis and we present the conclusions in section 2.6.

2.2 Volatility estimation

To obtain our volatility series we follow Caporin and Velo (2011) and estimate
the realized range volatility (RRV') introduced by Martens and van Dijk (2007)
and Christensen and Podolskij (2007). The RRV is an unbiased and consistent
estimator of the integrated variance and in theory, it is five time more efficient than
RV. In the reality, high frequency data is contaminated by microstructure noise
that result in a realized estimator that is inconsistent and biased. To remove this
bias and restore the efficiency of the estimator, we implement Martens and van
Dijk (2007) correction, based on scaling the range with the daily range.> The idea
behind this correction is the fact that the daily range is almost not contaminated
by market frictions. The RRV,® is defined as

1 n
RRVS = 35 3 (In pi! — In pi5y)? (2.1)

=1

where pz 9 and péoz are the high and low prices observed in the ith interval of
length A of an equidistant partition of day ¢, and \ is the scaling factor. Therefore,
the scaled RRV/? is defined as:

>y RRV,y
RR‘{S@& € - < !
et \ XL RRVA,

> RRVA (2.2)

where RRV; = RRV” (with A = 1 day) is the daily range and ¢ is the number
of previous trading days used to compute the scaling factor. If the trading intensity
and the spread do not change, ¢ must be set as large as possible. However, in the
reality only recent history should be taken into consideration.

3The out-of-sample forecasting exercise is repeated using the bias corrected range-based
bipower variation of Christensen, Podolskij, and Vetter (2009), a consistent and robust esti-
mator of the integrated variance in the presence of jumps and microstructure noise, and the
same set of macroeconomic and financial variables. The results are very similar to the ones
reported in the work and the conclusions are not affected.
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Our empirical analysis in based on 16 stocks quoted on the NYSE: Boeing (BA),
Bank of America (BAC), Citigroup Inc. (C'), Caterpillar Inc. (CAT'), FedEx Cor-
poration (F'DX), Honeywell International Inc. (HON), Hewlett-Packard Com-
pany (HPQ), International Business Machines Corp. (IBM), JPMorgan Chase
& Co. (JPM), Kraft Foods Inc. (KFT), PepsiCo, Inc. (PEP), The Procter
& Gamble Company (PG), AT&T Inc. (7T), Time Warner Inc. (TWX), Texas
Instruments Incorporated (T'X N) and Wells Fargo & Company (W FC'). We con-
struct and correct* the volatility series from a high frequency database with prices
sampled at one minute frequency from January 2, 2003 to March 30, 2010, from
09:30 trough 16:00 and a total of 1887 trading days.

2.3 Macroeconomic determinants of volatility

To analyze the impact that macroeconomic and financial information has on
the stock volatility, we extract the first common factor of the 16 series of volatility
performing a principal components analysis and we regress it on the different
variables. In particular, we consider the following proxies. The return on S&P 500
that reflects the condition and the performance of the US stock market and the
financial sector in general. We expect that a positive performance of the market
will produce a reduction in the volatility of the stocks. We consider the returns
over three different periods (daily, weekly and monthly); the volume on S&P 500
which reflects the level of activity in the market. As early documented in the
literature, an increase in the volume tends to increase the volatility. We also include
the VIX, a model free implied volatility index based on the S&P 500 monthly
options that represents the expected future of volatility over the next month. As
Fernandes, Medeiros, and Scharth (2009) have stated high VIX levels typically
reflect pessimism while low VIX levels would mirror complacency among market
participants. Therefore, we expect the VIX to be positively correlated with the
realized range volatility. We include the UBS commodity index that is composed of
a set of 19 commodity futures from seven different sectors to capture the evolution
of the real economic activity. The index should be negatively correlated with the
stock volatility. The US dollar exchange rate index reflects the macroeconomic
condition of the US economy as well as the Federal Fund rate deviation between
the target and effective rates. We expect the appreciation of the dollar to be
negatively correlated with the volatility. We also consider the credit spread and
the credit default swap index for the US banks sector that represent the credit risk
and they should be positively correlated with stock volatility. Finally, the term
spread is a measure of liquidity.

Our linear model for the first component is

fCt =a+ /\/«Tt—l + € (23)

4As in Caporin and Velo (2011) we sample every five minutes and to correct with the 66
previous days, where a more detailed description of the volatility series can be found.
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where z; is a k-dimensional vector that contains the macroeconomic explana-
tory variables: the daily, weekly and monthly S&P 500 logarithmic returns (AS P,
ASP, and ASP,,), the S&P 500 volume change (AV,?F), the logarithmic of the
VIX (VIXy), the daily, weekly and monthly DJ-UBS Commodity Index log return
(UBSy, UBS,, and UBS,,), the first difference of the logarithmic of the US dollar
foreign exchange index value (AUSd,), the credit spread defined as the excess
yield on Moody’s seasoned Baa corporate bond over the Moody’s seasoned Aaa
corporate bond (C'Sg,), the term spread (7'5;) defined as the difference between
the 3-month and 10-Year treasury constant maturity rates, the difference between
the effective and the target Federal Funds rates (F'F,;) and the credit default swap
index (CDS) for the US bank sector (C'DSy).

Since the aim of this work is to concentrate on the forecasting ability of eco-
nomic and finance variable, we present and discuss the result for the regression of
the first component of the volatilities in the lagged variables. A contemporaneous
analysis is performed and presented in table 2.1. We regress the first component
in three different periods. The objective is to analyze the impact of the economic
and financial proxies in the full sample as well as to the period before and during
the 2008-2009 financial crisis. The first component accounts for the 80% of the
variability of the 16 volatility series.

The outcomes are presented in table 2.2. We first consider the result of the
regression of all the variables on the full sample. On the one side, the returns
on S&P 500 are only significant at the monthly level and negatively correlated.
On the other side, the S&P 500 changes in volume are significant and positive.
Moreover, the VIX is significant and positively correlated. Regarding the effect of
the commodity index and the exchange rate index both of them are not significant
in any of the considered periods (full, precrisis and crisis). The last four remaining
variables are significant. The credit spread is positively correlated while the term
spread is negatively correlated. Finally, the difference between the effective and
target Federal Fund rates, and the credit default index for the bank sector in the
US are positively correlated with the first component of the log volatility. The R-
squared for the regression of all the variables is 88%, suggesting a high predictive
power of this variable on the volatility. The effect of the variables in the periods
corresponding to the 2008-2009 precrisis and the crisis are similar. Finally, we
regress the first component in some of the variables. We consider the returns and
the volume on S&P 500, the VIX, the credit spread and the credit default spread.
These variables have also an 88% of R-squared, which suggest a large predictive
power. They are significant and have the same effect as before. During the crisis
most of the variable maintain their effects, except for the credit spread that is
negatively correlated but insignificant. The partial r? displays nonzero correlation
only for the VIX and the credit default swap index. The 72 for the VIX is lower
during the 2008-2009 financial crisis while the r? of the CDS increases considerably
during the crisis. As Caporin, Rossi, and Santucci de Magistris (2011) suggest,
the effect of the credit default swaps is an evidence of the perceived credit risk
during the financial crisis.

To analyze the improvement in the performance accuracy that results when con-
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sidering macroeconomic and financial variables in volatility forecasting, we propose
to include the last set of five variables in our model for the logarithmic volatility
series of 16 stocks.

2.4 The models for the volatility with macroe-
conomic variables

In order to forecast volatility we present a model for the series that take into
consideration the stylized facts documented in the literature for financial series.
We follow Caporin and Velo (2011) and consider the HAR model of Corsi (2009)
to capture the long range pattern aggregating the volatility over different peri-
ods. Moreover, we include asymmetric effects with respect to the returns and
the volatility as well as lagged returns. We specify two different equations for
the volatility of the volatility, early introduced by Corsi, Mittnik, Pigorsch, and
Pigorsch (2008), with a GARCH and a GJR-GARCH specification, where the last
one accounts for the asymmetric effects in the variance term. Finally, we consider
two different distributions for the innovations the Normal and the Normal Inverse
Gaussian (NIG), where the former is able to capture the observed skewness of the
errors. Then, we extend this model including a set of lagged macroeconomic and
financial variables that reflect the market expectations of economic and financial
activity. We estimate the following model:

hy = a4 05Is(he—1)he—1 + Bahi—1 + Buwh—14—5) + Bmht—1:4—22) + (2.4)
+'YRRt—1 + VIRI(Rt—1>Rt—1 + X.I‘;Ll + \/OTtEt
oy =w+ Bio1 +aqul y + dru T (upq)
|1 ~ d(0,1)

where h; is the log RRVcqieds, Mi—1:4—5) is the HAR component defined as

1 J
h(t—l:t—j) = - Z I, (2'5>
J k=1

where 7} is a k-dimensional vector of five macroeconomic explanatory variables:
the returns over three different periods and the volume on S&P 500 (ASP;, ASP,,
ASP,, and AV?), the VIX (VIX,), the credit spread (C'Sy) and the credit default
spread (CDS,;). j = 5 and 22 are the weekly and monthly HAR components.
Is(hi—1) is an indicator for RRVeqieat—1 bigger than the mean over s = 5 previous
days and the unconditional mean (s = full) up to t — 1. These variables capture
the asymmetric effects with respect to the volatility. R; = In(pf/p§ ,) is the
return, with p? the closure price for the day ¢ and I(R;_;) is an indicator for
negative returns in ¢ — 1, that captures the asymmetric effects with regard to the
lagged return. u, = /0. is the error term. The full specification for o, is a GJR-
GARCH to account for the asymmetric effect in the volatility of the volatility,
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where I(u;—1) is an indicator for u;—; < 0, w > 0, f; > 0, a5 > 0 to guarantee
the conditional variance to be positive and 81 + a1 < 1 and ;1 + a5 + %<Z51 <1to
guarantee stationary under symmetry of the density of the standardized residuals.

We concentrate on the six different specifications for the mean equation con-
sidered in Caporin and Velo (2011) and that account for all the discussed stylized
facts. Then, we compute one-step-ahead rolling forecast for the volatility series
with these 36 models and the macroeconomic variables. The models are the AR(1)
(I), the HAR model of Corsi (2009) (II), the HAR model with asymmetric effects
with respect to the historical volatility and the returns and the lagged returns
(III), the HAR with asymmetric effects with respect to the returns and lagged re-
turns(IV), the HAR model with symmetric effects with respect to the returns (V)
and finally the HAR model with symmetric effects for the past weekly volatility
and the returns (VI).

Estimation results for the HAR model with asymmetric effects with respect
to the returns and lagged returns with GJR-GARCH variance and NIG distri-
bution (IV) are presented in tables 2.5 and 2.6 for 16 stocks. The estimated
coefficients for the HAR are significant with the same sign that for the model
estimated without the macroeconomic variables. The sum of the estimated pa-
rameters (84, B and (3,,) ranges from 0.68 to 0.85. Although they suggest a
persistent process, they are smaller than the sum of the coefficients without the
macro variables. Variables such the VIX may capture some of this persistence.
Lagged returns are positively correlated while the asymmetric effects for the re-
turn are highly significant and they are still negative, inducing an increment of
the volatility after a negative return.

We briefly discuss the effect of the macroeconomic and financial variables. The
estimated coefficients and their significance are similar to the results presented for
the OLS regression for the first principal component. Positive daily, weekly and
monthly S&P 500 index returns decrease the volatility while the S&P 500 volume
has the opposite effect. As we expected, the VIX, a measure of the monthly implied
volatility in S&P 500 options is positively correlated. Finally, the credit spread
and credit default swap, which capture the credit risk, are significant in most of
the series and they have a positive impact.

2.5 Forecast results

To analyze the effect of the introduction of macroeconomic variables in the
out-of-sample forecasting accuracy of the different models, we compute one-day-
ahead out-of-sample rolling forecast from January 3, 2006 to March 30, 2010 for 16
stocks for a total of 1067 days period. We estimate the models with and without the
economic and financial variables until December 30, 2005 and then we re-estimate
each model at each recursion expanding the data set by one observation.

Based on the results discussed in Caporin and Velo (2011) we compute fore-
casts with six different models for the mean equation with the economic variables.
Those are combined with three variance specification and two distributions for the
innovations. Overall, we have a total of 72 models.



2.5 Forecast results 37

These models include the variables that capture the stylized effects vastly doc-
umented in the literature and five lagged macroeconomic variables: the S&P 500
returns over different horizons, S&P 500 volume, the VIX, the credit spread and
the credit default swaps for the banking sector, which display a highly predictive
in-sample ability. To evaluate the performance of the different volatility models,
we implement the Diebold and Mariano (1995) test based on the Mean Absolute
error (MAE) and the mean square error (MSE). As Patton (2011) state, the MSE
is a robust loss function to the presence of noise in the volatility proxies that re-
sults in an unbiased model ranking. Moreover, we perform the Model Confidence
Set (MCS) procedure of Hansen, Lunde, and Nason (2010) based on the same two
loss functions.

First, consider the Diebold and Mariano (1995) tests for the full out-of-sample
period in tables 2.7 and 2.8. The first table (2.7) displays t-statistics for the
Diebold and Mariano (1995) test for 36 models estimated with the economic
and financial variables versus the HAR model for the same variance specifica-
tion and distributions of the error terms. As an example, the second row of the
table presents the t-statistic for the test of equal performance between the HAR
model with normal distribution and constant variance versus the HAR model with
macroeconomic variables and the same specification for the variance and distribu-
tion. The test rejects the null hypothesis in 12 out of 16 series in favor of the model
that includes the macro variables with constant variance and normal distribution.
Moreover, when we consider different specifications for the variance and different
distributions the test tends to reject the equal performance. For example, the test
also rejects in 14 out of 16 stocks the null hypothesis in favor of the model with
macroeconomic fundamentals for the NIG distribution and constant and GARCH
variance. Only for Time Warner Inc. (TWX), the introduction of asymmetric ef-
fects and macroeconomic variables does not improve the performance of the HAR
model for any of the variance and distribution assumptions.

Table 2.8 presents the result for the Diebold and Mariano (1995) test between
the six specification for the mean equation with and without the introduction of the
macroeconomic variable (and the different variance and distribution assumptions).
For example, the third row of the first column is the Diebold and Mariano (1995)
test for the HAR model with symmetric effects with respect to the volatility and
the returns and lagged returns versus the same specification for the mean equation
with macroeconomic and financial variables for Boeing Co (BA). In 8 out of 16
stocks, the introduction of the macroeconomic variables produces an improvement
in the forecast accuracy of most of the models. For instance, for Bank of America
(BAC), any model with the economic variables perform significatively better than
the competitor without the explanatory variables, while for Texas Instruments
Incorporated (TXN) the introduction of the macroeconomic variables produces a
more accurate forecast only for the case of the AR(1) model.

Tables 2.10 and 2.11 report the result for the Model Confidence Set approach
(MCS) of Hansen, Lunde, and Nason (2010). In contrast to the Diebold and
Mariano (1995) test, the MCS procedure defines, for a given level of confidence,
the set of models that contains the best out-of-sample forecasts. This is a procedure
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that allows for a comparison of all the models at the same time, eliminating the
worst performing specifications that belong to an initial set. Our initial set of
models covers 72 specifications, 36 models without economic and financial variables
and 36 models which include them. In 8 out of 16 stocks, the models without
macroeconomic variables are excluded from the best set at the 25% level, with
7 of them excluding the models at the 10% level. Moreover, the models with
macroeconomic variables always belong to the best set of each stock.

We now consider the forecast result for the 2008-2009 financial crisis. Table
2.9 displays the t-statistics for the Diebold and Mariano (1995) test. Only in
one stock, Kraft (KFT) the models that include macroeconomic variables perform
better than the models without economic variables. The introduction of financial
and economic variables seems to be irrelevant in the pairwise comparison, since
they are not able to produce any improvement in the forecast accuracy. Table 2.12
and 2.13 present the result of the MCS procedure. The models without economic
variables are excluded from the best set in 4 out of 16 stocks at the 10% and in 5 out
of 16 at the 25%. These results seem to be counterintuitive and they are opposite
to the results of the in-sample analysis for the 2008-2009 financial crisis of the first
principal component, where the macroeconomic variables are significant and seem
to have a large predictive power with an R-squared of almost 70%. During the
financial crisis, the models with these variables do not produce better forecasts
than simpler models.

2.6 Conclusions

In this Chapter, we have examined the importance of introducing macroeco-
nomic variables when forecasting financial volatility. Following Caporin and Velo
(2011), we have estimated and forecasted price variation through the realized range
volatility proposed by Martens and van Dijk (2007) and Christensen and Podolskij
(2007). We have estimated and corrected due to the presence of microstructure
noise 16 volatility series of stocks traded at NYSE. Moreover, we have consid-
ered nine macroeconomic and financial variables that contain information of the
economic activity and financial market and that were included in our model to
produce one-step-ahead volatility forecast. The model has taken into considera-
tion long memory, asymmetric effects with respect to the return and the volatility
in the mean equation, and we have included a GARCH and GJR-GARCH specifi-
cations for the variance equation (which models the volatility of the volatility) as
well as a non Gaussian distribution for the innovations.

To evaluate the explanatory power of the macroeconomic variables, we use
them as regressors on the first principal component of 16 series of volatility. We
find that S&P 500 changes in volume and the VIX are significant and positively
correlated, which is expected. The value of the US dollar and our commodity
index does not affect the volatility. Finally, the credit spread and the credit default
swap of the US banking sector, two indicators of the credit risk, impact positively
in the first component of the log volatility. The effects of these variables do not
change during the crisis, while the high R-squared obtained for the different periods
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suggests a high predictive power of this variable on the volatility. The same results
are obtained when considering the estimation of the single series of volatility with
different specifications for the variance and distribution assumptions.

Finally, we have computed one-step-ahead rolling forecast including the most
representative macroeconomic variables in the models for the 16 stocks. Pairwise
comparisons, through the Diebold and Mariano (1995), favor the introduction of
the macroeconomic variable in 8 out of 16 assets, where these 8 stocks belong to
different sectors. When testing for the improvement of the accuracy through the
Model Confidence Set approach of Hansen, Lunde, and Nason (2010), in 8 out of
16 stocks, models without macroeconomic variables are excluded from the best set.
On the contrary, taking into consideration the macroeconomic variables during the
financial crisis does not result in a better performance.

In conclusion, although the strong correlation found between stock volatility
and different economic and financial indicators, the role of these variables depends
on each stock when forecasting. Future research may consider the introduction of
non-linearities in the models as well as the analysis of alternative class of instru-
ment such as bond, commodity or foreign exchange markets in different forecasting
horizons.
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2.7 Tables and Figures

Table 2.1: The effects of contemporaneous macroeconomic and financial variables

Full Pre crisis Crisis Full Pre crisis Crisis
B r? 8 r? 8 r? I} r? 8 r? B r?
Cons —14.262 - —15.082 - —24.43 - —13.442 - —14.612 - —20.50P -
(3.322) (1.577) (19.27) (1.858) (1.508) (9.558)
ASPy; 13.45 0.016 2094 0.022 1294 0.051 1258 0.015 21.21 0.022 11.25 0.049
(10.44) (14.87) (24.07) (10.37) (15.85) (18.43)
ASP, —7.608 0.015 —10.97 0.018 —-0.779 0.000 -—9.244°¢ 0.024 —11.97 0.021 —2.663 0.007
(5.565) (13.75) (8.168) (4.856) (16.84) (6.867)
ASP, —10.46 0.093 —14.51° 0.096 —4.089 0.026 —10.302 0.110 —15.85> 0.114 —4.009 0.029
(3.675) (7.439) (4.795) (3.012) (7.256) (3.998)
AVSP 1.539*  0.052 1.611* 0.067 1.691* 0.064 1.572* 0.054 1.643* 0.069 1.759*  0.065
(0.017) (0.025) (0.189) (0.019) (0.026) (0.207)
VIXy 4217 0.248 4.404*  0.296 9.541* 0.321 3.846* 0.275 4.034* 0.290 7.079* 0.283
(0.612) (0.220) (1.492) (0.329) (0.190) (0.895)
UBSy —5.517 0.002 —3.010 0.000 —4.617 0.002 - - - - - -
(5.895) (9.403) (25.63)
UBS, —1.797 0.000 —3.261 0.003 2.180  0.002 - - - - - -
(5.612) (7.414) (14.61)
UBS,, 1.704  0.004 0.301 0.000 4.015 0.016 - - - - - -
(1.448) (1.927) (10.39)
AUSdy 6.367  0.000 6.941 0.000 15.92  0.008 - - - - - -
(25.45) (34.62) (107.4)
Sy 0.963*  0.057 1.498* 0.020 —1.788* 0.085 1.027* 0.072 1.968* 0.041 —0.833* 0.032
(0.090) (0.417) (0.398) (0.067) (0.299) (0.288)
TSy —0.114* 0.009 —-0.133* 0.014 —0.621* 0.020 - - - - - -
(0.006) (0.006) (0.216)
FF,; 0.333¢ 0.001 0.891* 0.005 0.763* 0.016 - - - - - -
(0.189) (0.226) (0.109)
CDS, 1.288% 0.236  0.961* 0.080 1.151* 0.186 1.278* 0.246 0.865* 0.075 1.437 0.286
(0.037) (0.069) (0.069) (0.034) (0.054) (0.056)
R? 0.89 - 0.81 - 0.72 - 0.88 - 0.80 - 0.70 -

Note: The first principal component of the logarithmic RRV of the 16 stocks is regressed on 13 contemporaneous
macroeconomics and financial variables. Newey-West errors in bracket. r2 is the partial 2. R? is the adjusted
R-squared. "a", "b" and "c" indicate significance at the 1%, 5% and 10%. Full indicates the full in-sample period
(1580 observations), Pre crisis indicates the period before the financial crisis (1193 observations) and Crisis
indicates the 2008-2009 financial crisis period (200 observations).
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Table 2.2: The effects of lagged macroeconomic and financial variables

Full Pre crisis Crisis Full Pre crisis Crisis
[3 r‘z J 7’2 5 T2 ﬁ 7,2 6 T2 ’3 7>2
Cons —14.852 - —14.04* - —19.19 - —13.752 - —13.822 - —16.07¢ -
(1.172) (1.409) (13.94) (0.727) (1.328) (8.978)
ASP,; —0.298 0.001 —-0.521 0.001 -—1.392 0.000 —-0.605 0.001 —0.269 0.001 0.669  0.000
(5.650) (12.52) (17.22) (4.896) (13.05) (8.226)
ASP, —6.985 0.012 —-9.795 0.012 —2.174 0.003 —8.105 0.018 —11.23 0.016 —2.856 0.007
(6.251) (13.20) (11.27) (6.061) (15.09) (10.42)
ASP, —9.925 0.081 —13.59° 0.075 —7.146 0.074 —9.713* 0.095 —14.73> 0.090 —7.037 0.080
(2.890) (7.184) (8.435) (2.479) (6.909) (4.801)
AVSP 0.853* 0.016 0.887* 0.019 0.927 0.019 0.879* 0.017 0.888* 0.018 0.981* 0.019
(0.023) (0.027) (0.297) (0.024) (0.028) (0.317)
VIX,y 4479*  0.243  4.064* 0.239 7.423* 0.216 3.977 0.264 3.770* 0.241 5475* 0.181
(0.226) (0.213) (1.306) (0.134) (0.173) (0.924)
UBS, —0.716 0.001 —1.234 0.001 0.875 0.001 - - - - - -
(8.246) (9.816) (48.04)
UBS, 0.151  0.001 —0.697 0.000 3.298  0.004 - - - - - -
(6.116) (7.474) (18.30)
UBS,, 1.745 0.004 1.019 0.001 2.727  0.007 - - - - - -
(1.527) (1.793) (12.40)
AUSd, 4.668  0.000 —7.881 0.000 3148  0.032 - - - - - -
(37.77) (41.28) (83.94)
CSy 0.8322  0.040 1.273* 0.013 —1.110* 0.032 0.943* 0.058 1.829* 0.031 —0.345 0.005
(0.057) (0.353) (0.302) (0.047) (0.269) (0.257)
TSy —0.148* 0.015 —0.141* 0.014 —0.497* 0.012 - - - - - -
(0.005) (0.006) (0.191)
FF, 0.344> 0.001  0.323  0.000 0.592>  0.009 - - - - - -
(0.165) (0.198) (0.254)
CDS, 1.321*  0.237  1.147 0.099 1.286* 0.235 1.298* 0.242 0.993* 0.086 1.500* 0.320
(0.029) (0.057) (0.070) (0.027) (0.046) (0.048)
R? 0.88 - 0.78 - 0.71 - 0.88 - 0.78 - 0.68 -

Note: The first principal component of the logarithmic RRV of the 16 stocks is regressed on 13 lagged macroeco-
nomics and financial variables. Newey-West errors in bracket. r2 is the partial r2. R? is the adjusted R-squared.
"a", "b" and "c¢" indicate significance at the 1%, 5% and 10%. Full indicates the full in-sample period (1580
observations), Pre crisis indicates the period before the financial crisis (1193 observations) and Crisis indicates
the 2008-2009 financial crisis period (200 observations).
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Table 2.3: HAR model with macroeconomic and financial variables - Normal dis-
tribution and Constant variance

BA BAC C CAT FDX HON HPQ IBM

o —1638 —2268° —1.916° —1221*° —1.305* —1.899° —0.670° —1.1312
(0.203)  (0.292) (0.308) (0.272)  (0.290) (0.310)  (0.220)  (0.248)
B 0277 0433*  0.408° 0331  0.332° 0305  0.328°  0.331°
(0.027)  (0.025)  (0.027) (0.026) (0.028) (0.026)  (0.028)  (0.028)
Bo  0.360°  0.291%  0.371*  0.394% 0233 0.379°  0.372* 0418
(0.044)  (0.040)  (0.040)  (0.046) (0.047) (0.043)  (0.047)  (0.042)
Bn  0.008° 0003 0013 0068 02058 —0.007 0.31*  0.060°
(0.047)  (0.035) (0.033) (0.043) (0.054) (0.048) (0.045)  (0.036)

YRT - - - - - - - -

YVIRT - - - - - - - -

ASP; —163> —3.9612 —3.893* —1.9912 —2.720® -2.888% —2.74% —3.460%
(0.819)  (0.772)  (0.680)  (0.734)  (0.904)  (0.803)  (0.825)  (0.703)
ASP, —1.855% —1.605* —1.0912 —2.219* —1.5442 —2.235% -1941*> —1.701*
(0.441)  (0.455)  (0.382)  (0.441)  (0.470) (0.437) (0.431)  (0.419)
ASP, —0.854* —0.423° 0.032 —0.354 —0.825* —0.912*% -—1.1238 —0.853*
(0.256)  (0.241)  (0.206)  (0.261)  (0.284)  (0.279)  (0.280)  (0.243)
AVSP 02262 0171 0.170*  0.1982  0.121°  0.111°  0.133>  0.108P
(0.051)  (0.060)  (0.057)  (0.054) (0.058)  (0.058)  (0.063)  (0.051)
VIX; 01672 0283 03282  0.116°  0.087  0.160> —0.029  0.058
(0.061)  (0.067)  (0.077)  (0.065) (0.063)  (0.065)  (0.059)  (0.055)
CS; 0043 0115 0.022  0.060°  0.070°  0.099°  0.063°  0.039
(0.034)  (0.035)  (0.030) (0.035) (0.041)  (0.037)  (0.036)  (0.030)
CDS; 0.054*  0.2488  0.184* 0.0482  0.076  0.033°  0.021  0.052*
(0.019)  (0.027)  (0.020)  (0.018)  (0.025) (0.019) (0.018)  (0.016)

w 0.1688  0.194®  0.1822  0.174*  0.188%  0.180°  0.183®  0.147
(0.005)  (0.004)  (0.005)  (0.004)  (0.004) (0.004)  (0.004)  (0.003)

8 _ _ _ _ _ _ _ _

b1

anig - - - - - - - -

ﬁNIG - - - - - - - -

LLF  -834.48 -946.41 -899.57 -862.36 -925.43 -888.16 -901.67 -730.34
AIC 1692.9 1916.8 1823.1 1748.7  1874.8 1800.3 1827.3 1484.6
BIC 1757.3 1981.2 1887.5 1813.1 1939.2 1864.7  1891.7  1549.0

Ljso 0.001 0.008 0.025 0.075 0.034 0.191 0.184 0.002
Ljo 0.001 0.031 0.023 0.093 0.084 0.126 0.135 0.004
JB 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LL 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Note: Estimation results for the 16 series of stock volatility for the period January 2004 to March 2010. LLF
is the Log-likelihood function, AIC is the Akaike Information Criteria and BIC is the Bayesian information
criterion. LJzg and LJso are the Ljung Box test for 30 and 40 lags. JB is the Jarque-Bera test for Normality,
K S is the Kolmogorov-Smirnov and LL is the Lilliefors test. Standard errors in bracket. "a", "b" and "c" indicate
significance at the 1%, 5% and 10%.
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Table 2.4: HAR model with macroeconomic and financial variables - Normal dis-
variance (cont.)

tribution and Constant

Ba

B

Bon
YRT

YIRT

ASPy
ASP,
ASP,
AVSP
VIXq4
CSy

CDSy

B
(5]

o1

aNiG

ﬂ]\"[()

LLF
AIC
BIC

Ljso
Ljao
JB
KS
LL

JPM

—2.643°
(0.331)
0.3722
(0.027)
0.350°
(0.041)
—0.054
(0.037)

—2.683°
(0.768)
—1.923°
(0.422)
—0.6822
(0.237)
0.185%
(0.054)
0.379°
(0.073)
0.049
(0.032)
0.221*
(0.024)

0.169*
(0.004)

-837.60
1699.2
1763.5

0.227
0.169
0.001
0.000
0.001

KFT

~1.007
(0.280)
0.2528
(0.027)
0.3982
(0.048)
0.1332
(0.048)

—1.112
(1.114)
~1.907
(0.651)
—1.057
(0.352)
0.227°
(0.064)
—0.018
(0.073)
0.063
(0.045)
0.035
(0.024)

0.2502
(0.006)

-1147.8
2319.7
2384.1

0.285
0.198
0.001
0.000
0.001

PEP

—2.0492
(0.368)
0.2012
(0.027)
0.4212
(0.048)

0.083
(0.051)

—1.6122
(0.601)
—2.7322
(0.441)
—0.971°
(0.275)
0.156"
(0.063)
0.186°
(0.068)
0.062°
(0.036)
0.035¢
(0.018)

0.1762
(0.004)

-869.97
1763.9
1828.3

0.004
0.004
0.001
0.000
0.001

PG

—1.4172
(0.274)
0.266*
(0.028)
0.4532
(0.046)

0.043
(0.045)

—2.296°
(0.750)
—2.1382
(0.450)
—0.913°
(0.291)
0.134P
(0.058)
0.048
(0.059)
0.093°
(0.036)
0.033¢
(0.017)

0.1762
(0.004)

-872.21
1768.4
1832.8

0.291
0.299
0.001
0.000
0.001

T

—0.7212
(0.235)
0.3432
(0.028)
0.3532
(0.046)
0.1528
(0.039)

—1.354¢
(0.819)
—2.2202
(0.444)
—0.940°
(0.270)
0.119¢
(0.062)
0.000
(0.061)
0.034
(0.034)
0.047*
(0.017)

0.1802
(0.004)

-887.93
1799.8
1864.2

0.001
0.004
0.001
0.000
0.001

TWX

~1.807°
(0.327)
0.296°
(0.024)
0.379°
(0.047)
0.056
(0.046)

~1.088
(0.763)
—1.7462
(0.392)
—0.638°
(0.231)
0.155%
(0.053)
0.229°
(0.067)
0.093%
(0.035)
0.051*
(0.018)

0.1528
(0.003)

-758.14
1540.2
1604.6

0.087
0.014
0.001
0.000
0.001

TXN

—0.583°
(0.179)
0.279*
(0.028)
0.4582
(0.047)
0.110°
(0.039)

—3.1532
(0.661)
—1.7512
(0.386)
—0.450¢
(0.235)
0.1662
(0.053)
—0.015
(0.049)
0.075°
(0.033)
0.008
(0.015)

0.1512
(0.004)

-752.11
1528.2
1592.6

0.000
0.000
0.001
0.000
0.025

WFC

—1.7152
(0.317)
0.363*
(0.028)
0.3872
(0.041)
0.058°
(0.034)

—3.482°
(0.833)
—2.018°
(0.432)
—0.160
(0.227)
0.123°
(0.062)
0.2712
(0.076)
0.020
(0.030)
0.1632
(0.024)

0.1772
(0.005)

-877.97
1779.9
1844.3

0.158
0.277
0.001
0.000
0.001

Note: Estimation results for the 16 series of stock volatility for the period January 2004 to March 2010. LLF
is the Log-likelihood function, AIC is the Akaike Information Criteria and BIC is the Bayesian information
criterion. LJ3p and LJyo are the Ljung Box test for 30 and 40 lags. JB is the Jarque-Bera test for Normality,
K S is the Kolmogorov-Smirnov and LL is the Lilliefors test. Standard errors in bracket. "a", "b" and "c" indicate
significance at the 1%, 5% and 10%.
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Table 2.5: HAR model with asymmetric effects with respect to the returns and
macroeconomic and financial variables - NIG distribution and GJR-GARCH vari-
ance

BA BAC C CAT FDX HON HPQ IBM

a  —1425° —1920° —1485° —1.176 —1.400*° —1.695* —0.797* —1.166°
(0.269)  (0.269)  (0.309) (0.234) (0.248)  (0.271)  (0.184)  (0.219)
B 0.268° 0413  0.335* 0323 0.301°  0.268° 0307  0.287*
(0.033)  (0.028)  (0.029) (0.031) (0.029) (0.029) (0.031)  (0.031)
B 0.361*  0.287% 0403  0.369*  0.287% 04122 0387  0.455°
(0.044)  (0.035)  (0.042) (0.041)  (0.045)  (0.043)  (0.043)  (0.043)
Bm 0127 0055 0084 0.110° 0.184* 0036  0.115*  0.058
(0.042)  (0.030) (0.034) (0.037) (0.046) (0.041) (0.037)  (0.037)
e 3503% 3.324° 2,065 3.942°  1.745°  3.580°  1.820° 1817
(1132)  (0.492) (0.434) (0.971) (1.032) (L.124) (1.051) (1.435)
e —6.139" —5849* —5832* —6.232° —2.844° —3937° —8458* —7.284
(1.858)  (0.737)  (0.753)  (1.494) (1.602) (1.738) (1.724)  (2.206)

ASP; —1.826° —4.623* —2975% —2.73028 -2.730® —3.929* —0.907 —1.992P
(1.054)  (1.006)  (0.992)  (1.020)  (1.070)  (1.095)  (1.020)  (1.000)
ASP, —1.923* —1.554% —1.433* -2.363% —1.575* —2317* —1.7252% —1.5172
(0.443)  (0.443)  (0.509)  (0.437)  (0.423)  (0.440)  (0.453)  (0.450)
ASP,, —0.676% —0.279 0202 —0.080 —0.550> —0.439° —0.853* —0.747%
(0.238)  (0.217)  (0.260)  (0.230)  (0.241)  (0.237)  (0.260)  (0.245)
AVSP 01912 0.1582  0.154*  0.187*  0.111>  0.114>  0.104°  0.102°
(0.052)  (0.052)  (0.054) (0.049)  (0.052)  (0.051)  (0.055)  (0.049)
VIX, 0108 02342 0236 0.103° 0.124>  0.144®8  —0.039  0.037
(0.058)  (0.059)  (0.074)  (0.055)  (0.054)  (0.055)  (0.050)  (0.046)
CS; 0057  0.030  —0.037 0.055°  0.062°  0.098  0.080°  0.068>
(0.030)  (0.032)  (0.033) (0.029) (0.035)  (0.030) (0.032)  (0.029)
CDS, 0.039>  0.204*  0.1362  0.034  0.064*  0.011 0.016  0.031°
(0.018)  (0.024)  (0.021)  (0.017)  (0.020)  (0.016)  (0.017)  (0.015)

w 0.1522  0.1542  0.004> 0.1042  0.014>  0.008*  0.163*  0.003°
(0.010)  (0.036)  (0.001) (0.027)  (0.006)  (0.003)  (0.036)  (0.001)
By 8.279 0.094  0935* 0278  0.859%  0.894®>  0.000  0.9462
(0.033)  (0.197)  (0.017)  (0.170)  (0.048)  (0.030)  (0.198)  (0.017)
a; 0.112°>  0.1222  0.0498  0.158  0.046®  0.056*  0.145>  0.038
(0.052)  (0.042)  (0.013)  (0.055) (0.018)  (0.017)  (0.061)  (0.012)
o —0.015 —0.122> —0.018 —0.095  0.030 0.003  —0.092 —0.029°
(0.072)  (0.058)  (0.018) (0.068)  (0.033)  (0.023) (0.072)  (0.015)

oy 1708%  1454%  2025°  1.902*  1.737*  1.513*  1464*  1.699°
(0.219)  (0.160)  (0.330) (0.229) (0.237)  (0.158)  (0.154)  (0.202)
Byrc  0518% 04058  0.615*  0.767  0.603°  0.506°  0.3412  0.282°
(0.123)  (0.105)  (0.204) (0.158) (0.154)  (0.108)  (0.086)  (0.106)

LLF  -780.79 -833.32 -791.01 -769.19 -828.94 -770.41 -831.41 -658.65
AIC  1599.5 1704.6 1620.0  1576.3 1695.8 1578.8  1700.8  1355.3
BIC 17015 1806.5 1721.9  1678.3 1797.8 1680.7  1802.7  1457.2

Ljs 0011 0027 0111 0202 0078 0409  0.129  0.051
Ljp 0012 0082 0189 0196  0.149  0.377  0.098  0.104
JB : . . . . . . -
LL . . . . . . . .

Note: Estimation results for the 16 series of stock volatility for the period January 2004 to March 2010. LLF
is the Log-likelihood function, AIC is the Akaike Information Criteria and BIC is the Bayesian information
criterion. LJzg and LJsop are the Ljung Box test for 30 and 40 lags. JB is the Jarque-Bera test for Normality,
K S is the Kolmogorov-Smirnov and LL is the Lilliefors test. Standard errors in bracket. "a", "b" and "c" indicate
significance at the 1%, 5% and 10%.
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Table 2.6: HAR model with asymmetric effects with respect to the returns and
macroeconomic and financial variables - NIG distribution and GJR-GARCH vari-

ance (cont.)

YRT

YIRT

ASP,
ASP,
ASP,
AVSP
VIX,4
CSy

CDSy

B

ay

QNG

ﬁNIC

LLF
AIC
BIC

Ljso
Ljao
JB
KS
LL

JPM

—2.398°
(0.297)
0.359°
(0.030)
0.3162
(0.038)

0.013
(0.032)
2.589°
(0.688)

—7.6842
(1.029)

—0.574
(1.105)
—2.124°
(0.428)
—0.341
(0.215)
0.161®
(0.053)
0.327°
(0.065)
0.010
(0.029)
0.186*
(0.021)

0.099*
(0.025)
0.275
(0.172)
0.163*
(0.056)
—0.094
(0.065)

1.654°
(0.200)
0.4802
(0.121)

-746.75
1531.5
1633.4

0.296
0.363

KFT

—1.787®
(0.243)
0.2422
(0.031)
0.416*
(0.043)

0.048
(0.042)
5.280°
(1.814)

—8.9642
(2.809)

~1.308
(1.055)
~1.601°
(0.533)
—0.668"
(0.261)
0.175%
(0.054)
0.120°
(0.057)
0.064"
(0.032)
0.026
(0.019)

0.1422
(0.040)
0.341¢
(0.174)
0.1442
(0.051)

—0.144P
(0.070)

1.51°
(0.169)
0.6372
(0.121)

-1014.7
2067.5
2169.5

0.060
0.049

PEP

—1.901°
(0.315)
0.181*
(0.032)
0.4532
(0.047)
0.095P
(0.043)
3.309¢
(1.702)

—11.37
(2.687)

—1.048
(0.932)
—2.267
(0.442)
—0.532>
(0.247)
0.145%
(0.053)
0.173*
(0.060)
0.042
(0.029)
0.023
(0.017)

0.045%
(0.013)
0.6302
(0.093)
0.132°
(0.041)
—0.053
(0.052)

1.7942
(0.256)
0.643°
(0.177)

-769.36
1576.7
1678.6

0.054
0.026

PG

—1.377
(0.246)
0.238*
(0.030)
0.4822
(0.044)

0.053

(0.039)
3.199°
(1.718)

—8.978%
(2.629)

—1.510
(1.037)
—1.788"
(0.455)
—0.491°
(0.251)
0.124P
(0.050)
0.043
(0.051)
0.1007
(0.031)
0.016
(0.017)

0.015>
(0.007)
0.8702
(0.053)
0.052°
(0.019)
—0.029
(0.024)

1.6232
(0.214)
0.4342
(0.135)

-787.92
1613.8
1715.7

0.463
0.575

T

—0.8032
(0.203)
0.309°
(0.030)
0.3622
(0.044)
0.1642
(0.037)
5.034®
(1.426)

—10.35
(2.174)

—1.472
(1.143)
—1.9672
(0.466)
—0.611°
(0.243)
0.110°
(0.053)
—0.008
(0.051)
0.042
(0.028)
0.032¢
(0.016)

0.012>

(0.005)
0.8932

(0.040)
0.055°

(0.019)
—0.042¢
(0.023)

1.6072
(0.193)
0.439°
(0.119)

-797.23
1632.4
1734.4

0.021
0.058

TWX

—1.657*
(0.288)
0.324%
(0.032)
0.349°
(0.043)
0.083P
(0.040)
3.321°
(0.936)

—4.3722
(1.491)

—2.7342
(1.013)
—1.833*
(0.393)
—0.305
(0.213)
0.104P
(0.046)
0.1812
(0.058)
0.078"
(0.029)
0.045*
(0.016)

0.0852
(0.025)
0.326¢
(0.185)
0.1402
(0.049)

—0.111°
(0.062)

1.5952
(0.181)
0.482°
(0.123)

-647.91
1333.8
1435.7

0.274
0.050

TXN

—0.5872
(0.172)
0.2732
(0.034)
0.4622
(0.048)
0.1162
(0.038)
2.5442
(0.931)

—5.307®
(1.447)

—2.8572
(0.930)
—1.761*
(0.428)
—0.217
(0.237)
0.1612
(0.055)
~0.019
(0.048)
0.062°
(0.031)
0.010
(0.016)

0.042>
(0.016)
0.6112
(0.130)
0.084P
(0.032)
0.036
(0.046)

2.078°
(0.311)
0.260°
(0.149)

-709.50
1457.0
1558.9

0.004
0.012

WFC

—1.589*
(0.277)
0.337°
(0.031)
0.3592
(0.038)
0.1172
(0.031)
2.220°
(0.618)

—5.9442
(0.972)

—2.340°
(1.064)
—2.493*
(0.441)
0.021
(0.208)
0.058
(0.055)
0.243°
(0.066)
—0.026
(0.029)
0.138*
(0.021)

0.1442
(0.029)
0.075
(0.171)
0.162°
(0.058)
—0.108
(0.070)

1.647°
(0.212)
0.5522
(0.131)

-801.38
1640.7
1742.7

0.200
0.444

Note: Estimation results for the 16 series of stock volatility for the period January 2004 to March 2010. LLF
is the Log-likelihood function, AIC is the Akaike Information Criteria and BIC is the Bayesian information
criterion. LJ3p and LJyso are the Ljung Box test for 30 and 40 lags. JB is the Jarque-Bera test for Normality,

K S is the Kolmogorov-Smirnov and LL is the Lilliefors test. Standard errors in bracket.

significance at the 1%, 5% and 10%.

"

a", "b" and "c¢" indicate
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Table 2.7: Out-of-sample forecast evaluation DM test I - Full sample

BA BAC C CAT FDX HON HPQ IBM JPM KFT PEP PG T TWX TXN WEFC

1I-Co-NO-MS 1.84° 298 1.36 201> 225> 237° 167° 130 277 1.82° 242> 1.89° 1.56 1.70° 1.17 2.88
I11-Co-NO-MS 1.95¢  3.302 1.84¢ 222> 147 230> 203> 140 288 1.72° 1.84¢ 1.78° 1.58 1.07  1.02 2942
IV-Co-NO-MS 2.01» 3.38 1.87¢ 226" 159 242> 211> 145 2922 1.84° 1.90° 1.83° 1.66° 127 1.0l 2992
V-Co-NO-MS 1.83¢ 291> 1.65° 1.98> 1.65° 233> 218> 153 2792 155 2.00° 1.92° 1.71° 161 107 2912
VI-Co-NO-MS 1.78¢ 2.89* 1.63 1.91° 1.60 232> 215> 156 2.74% 1.18 1.99® 1.88° 1.69° 1.58  1.04 2972
II-Ga-NO-MS 1.33 2922 142 2120 254P 258 160 1.45 3.03* 1.80° 248> 225® 1.64° 1.63 1.36 2.862
111-Ga-NO-MS 1.54 3.322 1.80° 2320 1.78° 244> 201® 1.60 3.1920 1.80° 2.13> 216> 153 1.17 112 2.77®
IV-Ga-NO-MS 1.74¢  3.392 1.86° 2.35P 1.89° 258 2.10P 1.65° 3.222 1.64° 216> 222> 163 134 115 285
V-Ga-NO-MS 1.49  2.842 1.68° 2.09° 1.95° 254> 215> 1.68° 3.07* 1.55 219> 228> 1.76° 1.59 124 2.862
VI-Ga-NO-MS 119 2.822  1.69¢ 2.03> 1.91° 252> 204> 1.74° 3.03* 1.13 220" 227" 175 159 125 2942
11-Gj-NO-MS 1.27 249> 144 216> 244> 081 1.58 144 3.02* 1.91° 254> 1.19 1.53 1.83° 131 2962
111-Gj-NO-MS 1.38  2.90* 1.79¢ 233> 156 098 1.85° 1.53 3.192 0.94 201> —031 141 135 113 2922
IV-Gj-NO-MS 0.95 3.03* 1.85° 237> 1.81° 129 154 159 3220 1.92° 219° 1.85° 1.52 148 120 3.022
V-Gj-NO-MS 124  2.55° 1.68 2.11P 187 1.34 207" 1.60 3.062 1.62 221> 196> 147 1.73° 124 2942
VI-Gj-NO-MS 047 244P 1.67° 205> 1.83° 0.68 1.90° 1.67° 3.032 1.14 203> 1.78° 148 1.70° 1.28 3.032
I1-Co-NI-MS 1.88¢ 2892 1.35 2.36° 1.83¢ 230> 1.93° 1.66° 2.842 1.62 232 220> 183 197" 097 2732
I11-Co-NI-MS 1.98°  3.132 1.83° 247° 139 229° 216 1.80° 3.08 1.81° 2.00> 2.12° 1.93° 1.56 0.77 2.892
IV-Co-NI-MS 2.06> 3232 1.86° 251 143 235> 227> 1.83° 3132 1.95¢ 2.02° 212> 197" 1.72¢ 0.79 2912

V-Co-NI-MS 1.84° 2.85% 1.64° 234> 1.73° 223> 235> 1.85¢ 3.02*2 145 204> 228> 1.94° 1.95° 0.87 2.852
VI-Co-NI-MS 1.79¢  2.81* 1.65¢ 228> 1.70° 2.19° 231> 1.89° 298 1.14 203> 227> 1.93° 1.87° 0.88 2932
I1-Ga-NI-MS 1.56  3.11* 146 242> 223> 255> 208> 1.72° 3.0020 1.71° 248> 235> 1.94° 1.95° 123 2712
I11-Ga-NI-MS 1.05 3.36* 1.73° 2.52° 1.68° 258 233> 1.85° 3.272 1.90° 220" 222° 197> 1.68° 094 2772
IV-Ga-NI-MS 1.31  3.50* 1.84¢ 2.56° 1.73¢ 2622 237" 1.90° 3.302 2.07° 220° 225> 200> 1.82° 1.0l 2.802
V-Ga-NI-MS 0.34  3.042 1.67° 238> 206" 249> 251 1.92¢ 3162 1.52 2257 238> 203> 1.94° 111 2.73
VI-Ga-NI-MS —1.23 3.022 1.68° 232> 203> 246°> 246®> 1.95° 3132 120 226° 238> 201> 1.90° 1.12 2902
I1-Gj-NI-MS 0.65 3.042 1.38 240> 223> 249® 1.86° 1.73° 2.95% 1.74° 236" 235> 1.93° 1.96° 1.22 2662
I11-Gj-NI-MS 1.16  3.37* 1.66° 2.51° 1.65° 253> 1.98> 1.83° 322* 1.81° 205> 227" 192¢ 1.67° 096 2.762
IV-Gj-NI-MS 1.32  3.45* 1.78° 254> 1.72° 258 206" 1.89° 3.26® 1.93° 2.09° 220° 196> 1.81° 1.02 2.76*
V-Gj-NI-MS 0.62 3.03* 1.61 237> 208> 243> 236> 1.90° 3.09% 154 206> 233> 200° 1.94° 1.10 2.74*

VI-Gj-NI-MS 041 297 162 230° 201> 240°> 1.98® 1.95¢ 3.06* 1.18 2.01®> 240> 1.98> 1.94° 1.09 283

Note: Diebold and Mariano (1995) test for the row model vs. the HAR model without macroeconomic variables. Forecast performance evaluation for the 16 series of stock
volatility for the full out-of-sample period (1067 observation). Model I is an AR(1) specification, II is an HAR, I1] is an HAR + Iym(ht—1)ht—1 + Rit—1 + I(R¢—1)Ri—1, IV
isan HAR+ Ry—1 + I(R¢—1)Rt—1, Visan HAR+ I(R¢—1)R¢—1 and VI is an HAR + Is(ht—1)ht—1 + I(R¢—1)R¢—1. Co is a constant variance specification, Ga is a GARCH
and Gj is a GJR variance specification. NO is Normal distribution and NI indicates Normal Inverse Gaussian distribution, M S indicates that the model includes the set of 5
macroeconomic variables (see section 2.4). The DM is a test for equal predictive accuracy between two models based on the M SE loss function. Under Ho, both models have the

same performance. T-statistic in the table. "a", "b" and "c" indicate significance at the 1%, 5% and 10%. Positive T-statistic favors the row model. Results for the model I not
reported to save space. Results for the model I not reported to save space.
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Table 2.9: Out-of-sample forecast evaluation DM test - Crisis

BA BAC C CAT FDX HON HPQ IBM JPM KFT PEP PG T TWX TXN WFC

II-Co-NO-MS 1.08 073 0.67 092 0.72 1.10 122 128 1.21 196> 116 1.00 136 1.24 0.11 0.88
I1I-Co-NO-MS 1.63 039 078 0.60 064 1.18 0.66 058 0.67 1.69° 1.13 027 141 1.38 0.03 0.16
IV-Co-NO-MS 1.65¢ 038 057 072 067 1.23 072 072 061 1.68 117 037 144 1.39 0.00 0.38

V-Co-NO-MS 1.46 019 030 062 0.72 0.95 0.70 060 0.55 1.95° 1.20 0.31 1.66¢ 1.30 —0.09 0.27
VI-Co-NO-MS 1.47 037 027 0.67 0.70 0.97 068 0.54 047 195 119 036 1.67¢ 137 0.00 0.07
II-Ga-NO-MS 0.71 059 076 111 1.01 1.36 115 1.38  1.36 2.02° 135 140 1.52 1.23 0.39 0.98
III-Ga-NO-MS 1.26 1.19 059 064 097 1.35 0.58 037 079 1.79¢ 1.18 046 1.51 1.22 0.25 0.05
IV-Ga-NO-MS 1.39 1.06 050 086 1.04 1.43 0.70 062 064 1.73° 123 0.65 1.54 1.25 0.27 0.30
V-Ga-NO-MS 1.08 068 032 081 1.09 1.15 0.58 053 0.54 1.94° 1.27 0.58 1.83° 1.18 0.25 0.26
VI-Ga-NO-MS 0.66 0.80 030 084 1.03 1.15 0.64 046 042 2.00> 123 062 1.84° 1.26 0.33 0.00
II-Gj-NO-MS 0.89 092 072 114 096 1.20 1.27 126 135 206> 133 1.28 157 1.22 0.39 1.04
I1I-Gj-NO-MS 1.15 1.68¢ 046  0.66  0.90 1.12 062 015 0.6 1.10 098 0.27 1.50 1.30 0.25 0.19
IV-Gj-NO-MS 0.73 149 040 089 1.02 1.23 0.15 035 0.62 1.85° 1.21 0.27 1.60 1.35 0.29 0.47
V-Gj-NO-MS 1.01 128 021 086 1.05 0.97 0.62 026 053 206> 126 0.18 1.87° 1.34 0.27 0.40
VI-Gj-NO-MS —-0.12  1.11 0.17 089 1.04 0.95 0.75 018 042 2.08> 1.02 0.10 1.80° 1.29 0.36 0.07
II-Co-NI-MS 1.15 052 047 134 041 1.09 1.62 132  1.01 239> 0.92 154 1.46 1.19 —-0.13 0.67
III-Co-NI-MS 1.24 0.75 038 1.08 0.57 1.04 1.00 043 049 225> 094 1.03 149 126 —0.30 0.02
IV-Co-NI-MS 1.30 070 029 110 0.51 1.08 1.03 070 044 226> 097 1.03 148 125 —-032 0.22
V-Co-NI-MS 1.19 034 —0.03 1.08 0.65 0.81 113 0.63 041 241 095 097 1.62 1.16 =035 0.18
VI-Co-NI-MS 1.20 041 —-0.04 124 0.60 0.84 1.13 056 035 240° 092 1.01 1.65° 122 -026 —0.09
II-Ga-NI-MS 0.99 074 0.65 142 0.75 1.29  1.72¢ 143 115 239® 1.25 1.55 1.56 1.17 0.13 0.84
I1I-Ga-NI-MS 0.19 1.02 024 107 0.84 1.25 098 037 0.63 226> 115 1.05 1.53 122 —-0.08 -0.10
IV-Ga-NI-MS 0.68 1.02 022 119 0.83 1.33 1.03 070 051 228> 1.19 1.07 1.52 126  —0.05 0.13
V-Ga-NI-MS -036 073 004 119 1.01 1.03 120  0.64 041 243> 118 095 1.71° 1.09 -0.03 0.10
VI-Ga-NI-MS -1.97* 085 —0.00 1.27 0.93 0.99 1.20 057 029 241 116 095 1.73¢ 111 0.02 —-0.21
II-Gj-NI-MS 0.51 079 053 138 0.75 1.20  1.65¢ 137 1.10 236> 110 153 151 1.07 0.10 0.86
I1I-Gj-NI-MS 0.44 1.25 009 1.03 0.86 1.17 0.83 0.8 0.62 230> 1.09 1.00 1.45 1.06 —0.10 —0.07
IV-Gj-NI-MS 0.91 1.22 009 1.12  0.86 1.23 0.73 046 049 231> 108 1.03 145 113 —-0.06 0.14
V-Gj-NI-MS —-0.25 098 —-0.13 115 1.03 0.89 1.02 043 039 243> 1.02 091 167 095 —0.05 0.11
VI-Gj-NI-MS —-0.16 1.09 —-0.14 124 094 0.85 089 032 030 243> 100 093 1.68 1.07 0.00 —0.19

Note: Diebold and Mariano (1995) test for the row model vs. the same specification without macroeconomic variables. Forecast performance evaluation for the 16 series of stock
volatility for the Crisis period from September 2008 to July 2009 (200 observation). Model I is an AR(1) specification, IT is an HAR, II] is an HAR + Iym(ht—1)ht—1 + Re—1 +
I(Ri—1)R¢—1, IV isan HAR+ Ri—1+I(R¢t—1)Ri—1, Visan HAR+I(R¢t—1)R¢—1 and VI isan HAR+ Is(hi—1)ht—1+ I(R¢—1)R¢—1. Co is a constant variance specification, Ga
isa GARCH and Gj is a GJR variance specification. NO is Normal distribution and NI indicates Normal Inverse Gaussian distribution. M S indicates that the model includes
the set of 5 macroeconomic variables (see section 2.4). The DM is a test for equal predictive accuracy between two models based on the MSE loss function. Under Ho, both

models have the same performance. T-statistic in the table. "a", "b" and "c¢" indicate significance at the 1%, 5% and 10%. Positive T-statistic favors the row model. Results for
the model I not reported to save space.
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Table 2.10: Out-of-sample forecast evaluation MCS - Full sample

BA BAC C CAT FDX HON HPQ IBM

11-Co-NO 0.01 0.03 036> 002 001 002 013 0.28°
I11-Co-NO 0.06 0.06 0.72> 002 001 0.04 0.13 0.28°
IV-Co-NO 0.08 0.08 0.72> 002 001 0.04 013 0.28°
V-Co-NO 0.08 0.06 0.72> 0.02 0.01 0.04 0.13* 0.29°
VI-Co-NO 0.06 0.06 0.65> 0.02 0.01 0.04 0.13* 0.56°
1I-Ga-NO 0.06 0.03 036> 002 001 002 013 0.28°
1I-Ga-NO 0.08 0.08 058 002 001 0.04 013 0.28°
IV-Ga-NO 0.08 0.08 0.72> 002 001 004 013 0.28°
V-Ga-NO 0.08 0.06 065> 002 001 0.04 013 0.28"
VI-Ga-NO 0.08 0.06 0.38> 0.02 001 004 0.13 0.28°
1I-Gj-NO 0.06 0.03 036> 002 001 002 013 0.28"
II1-Gj-NO 0.08 0.09 072> 002 001 0.04 0.3 0.28°
IV-Gj-NO 0.08 0.08 0.72> 002 001 0.04 013 0.28°
V-Gj-NO 0.08 0.06 065> 002 001 0.08 013 0.28°
VI-Gj-NO 0.08 0.06 058 002 001 004 013 0.31°
I1-Co-NI 0.01 0.03 036> 002 001 0.02 013 0.28°
TI1-Co-NI 0.06 0.06 0.58 002 001 0.02 013 0.28°
IV-Co-NI 0.06 0.08 049> 002 001 0.02 0.13 0.28°
V-Co-NI 0.06 0.06 058 002 001 0.02 013 0.28°
VI-Co-NI 0.01 0.06 038 002 001 002 013 0.28°
II-Ga-NI 0.01 0.03 026> 002 001 0.02 013 0.28°
I1I-Ga-NI 0.08 0.08 038 002 001 004 013 0.28°
IV-Ga-NI 0.08 0.09 038 002 001 004 013 0.28"
V-Ga-NI 0.08 0.06 0.38> 0.02 006 0.04 0.13 0.28°
VI-Ga-NI 0.01 0.06 036> 002 006 004 013 0.28°

11-Gj-NI 0.0l 0.03 032> 002 001 0.02 013 0.28°
I11-Gj-NI 0.08 0.08 058 002 001 004 013 0.52°
IV-Gj-NI 0.08 0.08 058 002 001 004 013 0.28°
V-Gj-NI 0.08 0.06 058 002 001 004 093> 0.28°
VI-Gj-NI 0.08 0.06 049> 002 0.01 0.04 0.13* 0.56°

1I-Co-NO-MS 0.40° 0.35® 0.38° 0.02 0.09 0.74> 0.132 0.28P
III-Co-NO-MS  0.40° 0.81® 0.72> 0.112 0.01 0.74> 0.132 0.28P
IV-Co-NO-MS 1.00° 0.83> 1.00® 0.112 0.01 0.74> 0.132 0.29
V-Co-NO-MS 0.40° 0.35° 0.72°>  0.02 0.06 0.74> 093> 0.56
VI-Co-NO-MS 0.212  0.35> 0.72> 0.02 0.01 0.74> 0.13* 0.56°
II-Ga-NO-MS 0.162 0.35®> 0.36® 0.02 0.87° 0.74> 0.132 0.28°
I11-Ga-NO-MS 0.168 0.91> 0.72> 0.182 0.06 0.74> 0.13* 0.28°
IV-Ga-NO-MS 0.40° 0.91® 0.72> 0.18 0.06 1.00> 0.93*> 0.31°
V-Ga-NO-MS 0.16 0.35> 0.72> 0.02 0.09 0.74> 0.93> 0.52°
VI-Ga-NO-MS 0.08 0.35> 0.72> 0.02 0.06 0.74> 0.13* 0.58"
1I-Gj-NO-MS 0.08 0.35* 0.36° 0.02 009 004 013 0.28°
[I-Gj-NO-MS 0.08 0.35*> 0.72> 0.18 0.01 0.04 0.13* 0.28°
IV-Gj-NO-MS 0.08 0.35* 0.72> 043> 006 0.06 0.132 0.28°
V-Gj-NO-MS 0.08 0.35> 0.72> 0.02 0.06 0.04 0.13* 0.28°
VI-Gj-NO-MS 0.06 0.35° 0.72> 0.02 0.06 0.04 0.13* 0.52°
11-Co-NI-MS 0.40° 0.35° 0.36®> 0.02 006 008 0.13* 0.56°
T11-Co-NI-MS 0.40> 0.35® 0.72> 0.112 001 0.08 0.13* 0.73"
IV-Co-NI-MS 0.40° 0.35° 0.72° 0.182 0.06 0.08 097 0.87°
V-Co-NI-MS 0.16 0.35> 0.72> 0.02 0.06 0.06 0.97° 0.87°
VI-Co-NI-MS 0.08 0.35° 0.65* 0.02 0.06 0.04 0.93> 1.00°
I1-Ga-NI-MS 0.168 0.35> 0.36> 0.43> 1.00> 0.74> 0.13* 0.56°
T11-Ga-NI-MS 0.08 0.83* 0.58> 043> 0.09 0.74> 0.93> 0.58°
IV-Ga-NI-MS 0.08 1.00> 0.72> 043> 0.09 0.74> 0.97° 0.87°
V-Ga-NI-MS 0.01 0.35® 0.58> 0.43> 0.79> 0.74> 1.00® 0.87°
VI-Ga-NI-MS 0.01 0.35> 0.65° 0.18 0.79* 0.64> 0.93> 1.00°
I11-Gj-NI-MS 0.06 0.35*> 0.36> 043> 0.79* 0.74> 0132 0.56°
I11-Gj-NI-MS 0.08 0.91*> 058> 043> 0.06 0.74> 0.13 0.56°
IV-Gj-NI-MS 0.08 0.91* 0.72> 1.00> 0.06 0.74> 0.132 0.85°
V-Gj-NI-MS 0.08 0.35® 0.58> 043> 0.79* 0.64> 0.97° 0.87°
VI-Gj-NI-MS 0.01 0.35> 0.58> 0.18 048> 0.08 0.13® 1.00°

Note: Forecast performance evaluation for the 16 series of stock volatility for the full out-of-sample period (1067
observation). See the note in table 2.7 for the description of the models. The MCS is a procedure to determine
the "best" models from a collection of models based on the M SFE loss function. p-values for the range deviation
method in the table. "a" and "b" denote that the model belongs to the 10% and 25% MCS. Results for the model
I not reported to save space. Results for the model I not reported to save space.
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Table 2.11: Out-of-sample forecast evaluation MCS - Full sample (cont.)

JPM KFT PEP PG T TWX TXN WFC

II-Co-NO 0.05 0.15* 0.21*> 0.15* 0.08 0.30° 0.49®>  0.00
111-Co-NO 0.182  0.15* 0.86° 0.66®> 0.42> 0.02 0.49*> 0.07
IV-Co-NO 0.39>  0.22* 086> 0.77° 042> 0.02  0.49®>  0.00
V-Co-NO 0.30° 0.152 0.84> 0.77° 0.42° 0.30° 0.49®> 0.07
VI-Co-NO 0.182  0.15* 0.84> 0.77° 0.42> 0.232 049> 0.07
1I-Ga-NO 0.05 0.15* 0.21*> 0.15* 0.08 0.30°> 0.49®>  0.00
I11-Ga-NO 0.39>  0.22* 084> 0.15* 0.42°> 0.30° 0.49®>  0.07
IV-Ga-NO 0.42° 0222 084> 0.152 042> 0.30® 0.49®>  0.00
V-Ga-NO 0.39>  0.15* 0.29° 0.48> 0.42°> 0.30° 0.49®>  0.00
VI-Ga-NO 0.48% 0.15* 029> 0.15 0.42°> 0.30°> 0.49®> 0.07
1I-Gj-NO 0.05 0.15* 0.21> 0.15* 0.08 0.30° 0.49®>  0.00
11-Gj-NO 0.42° 0.222 0.84> 0.152 0.42° 0.30° 0.49®>  0.07
IV-Gj-NO 0.42° 0.44> 0.84> 048> 0.42° 0.30° 049> 0.07
V-Gj-NO 0.42° 0.15* 0.84> 0.66° 0.42° 0.30° 049> 0.07
VI-Gj-NO 042> 0.152 0.84> 048> 042> 0.30° 049> 0.07
11-Co-NI 0.02 0.5 0.21* 0.15* 0.08 0.02 0.49> 0.00
I11-Co-NI 0.11*  0.15* 0.29° 0.15* 0.29®  0.02  0.49®>  0.00
IV-Co-NI 0.112  0.15* 0.20° 0.15* 0.32°> 0.02 049>  0.00
V-Co-NI 0.09 0.15* 0.21* 0.66> 0.08 0.232 049>  0.00
VI-Co-NI 0.09 0.15* 0.21*> 048 0.08 0.02 049>  0.00
1I-Ga-NI 0.02 0.15* 0212 0.15* 0.08 0.29° 0.49°> 0.00
IT1-Ga-NI 0.182  0.15 0.84> 0.152 0.42°> 0.29° 0.49®>  0.00
IV-Ga-NI 0.182  0.22* 0.84> 0.15* 0.42°> 0.30° 0.49®>  0.00
V-Ga-NI 0.11*  0.15* 029> 0.41> 042> 0.30° 0.49®>  0.00
VI-Ga-NI 0.30°  0.152 0.29> 0.41> 042 0.30> 0.49°  0.00
11-Gj-NI 0.05 0.152 0.21*> 0.15*8 0.08 0.30° 0.49*>  0.00
I11-Gj-NI 0.42° 0.222 0.84> 0.152 042> 0.30> 049> 0.07
IV-Gj-NI 0.42° 0.61° 0.84> 041> 042> 030> 049>  0.00
V-Gj-NI 0.42°  0.15* 0.29® 0.66° 0.42°> 0.30> 049> 0.00
VI-Gj-NI 0.48° 0.152 0.29® 0.66® 0.42°> 0.30> 0.49>  0.07

II-Co-NO-MS 0.48> 0.61> 092° 077> 042> 048> 083> (0.242
I1I-Co-NO-MS 0.48> 0.72°> 0.92* 0.77° 0.71® 030> 0.49° .93
IV-Co-NO-MS 0.48> 0.72°> 0.92> 0.77° 0.77° 030> 0.49° 0.74P
V-Co-NO-MS 0.48> 0.61° 0.92> 0.86> 0.71> 0.30> 0.49° 0.69"
VI-Co-NO-MS 048> 0.222 092> 0.77° 0.71> 030> 0.83°> 0.95"
TI-Ga-NO-MS 0.48°  0.61°> 0.92°> 0.77° 0.52° 048> 1.00> 0.202
1I-Ga-NO-MS 0.77°  0.72°> 0.92> 0.77° 0.52>  0.30®  0.95°  0.69"
IV-Ga-NO-MS 0.99® 0.72°> 0.92> 0.77° 0.71> 034> 099> 0.61P
V-Ga-NO-MS 0.77°  0.61°> 0.92> 0.89®> 0.76® 048> 099> 0.242
VI-Ga-NO-MS 0.73>  0.222 0.92> 0.89*> 0.76® 048> 099> 0.74P
1I-Gj-NO-MS 0.48°  0.72°> 1.00°> 0.48° 0.42° 0.97° 0.99> 0.242
111-Gj-NO-MS 0.77°  0.222 0.92° 0.152 0.42> 0.30> 0.83> 0.74P
IV-Gj-NO-MS 0.99®  1.00> 0.93> 0.66° 0.55° 0.46°> 0.99> 0.74P
V-Gj-NO-MS 0.73*>  0.61°> 0.93*> 0.77° 042> 048> 0.99° 0.61°
VI-Gj-NO-MS 0.73>  0.222 0.92> 0.77° 042> 048> 0.99° 1.00P
11-Co-NI-MS 0.48> 0.222 0.90> 0.89® 0.42° 048> 049> 0.07
I11-Co-NI-MS 0.48°> 0.61°> 0.92°> 0.96> 0.76° 0.30> 0.49> 0.08
IV-Co-NI-MS 0.50°  0.72> 0.92° 0.96° 0.77° 0.30> 0.49>  0.07
V-Co-NI-MS 0.48°>  0.222  0.90°> 1.00> 0.55° 0.46°> 0.49> 0.07
VI-Co-NI-MS 0.48°>  0.152 0.90°> 0.99> 0.52° 0.34>  0.49>  0.08
11-Ga-NI-MS 0.48> 0.61° 0.92> 0.89® 0.55* 0.60> 0.95°  0.07
I11-Ga-NI-MS 0.73%  0.72> 0.92°> 0.89> 0.92> 0.46°> 0.83> 0.08
IV-Ga-NI-MS 0.77°  0.9° 0.92> 094> 092> 048> 083> 0.08
V-Ga-NI-MS 0.73>  0.44> 0.92°> 0.94> 0.90° 0.48> 0.83*> 0.07
VI-Ga-NI-MS 0.73%  0.222 0.92°> 0.96° 0.77° 048> 0.83*> 0.202
11-Gj-NI-MS 0.48> 0.61> 0.92° 0.89> 0.71> 1.00> 0.95> 0.07
11-Gj-NI-MS 0.77°  0.72° 0.92> 1.00® 0.92> 048> 049> 0.202
IV-Gj-NI-MS 1.00° 0.9 0.92° 096" 1.00° 0.60° 0.83* 0.08
V-Gj-NI-MS 0.77°  0.61°> 0.92> 0.89*> 0.92> 0.94> 0.83°> 0.202
VI-Gj-NI-MS 0.73>  0.222 0.92> 1.00° 092> 0.97° 083> 0.242

Note: Forecast performance evaluation for the 16 series of stock volatility for the full out-of-sample period (1067
observation). See the note in table 2.7 for the description of the models. The MCS is a procedure to determine
the "best" models from a collection of models based on the M SFE loss function. p-values for the range deviation
method in the table. "a" and "b" denote that the model belongs to the 10% and 25% MCS. Results for the model
I not reported to save space. Results for the model I not reported to save space.
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Table 2.12: Out-of-sample forecast evaluation MCS - Crisis

BA BAC C CAT FDX HON HPQ IBM

11-Co-NO 0.05 0228 032> 0.19% 0.00 0.02 0.39> 0.62°
I11-Co-NO 0.00 0.43° 0.32> 0.19* 0.00 0.02 0.39*> 0.70°
IV-Co-NO 0.00 0.54> 0.75> 0.192 0.00 0.02 0.39> 0.70°
V-Co-NO 0.00 0.41®> 075> 0.19* 0.00 0.02 0.39> 0.84°
VI-Co-NO 0.00 0.41®> 0.75> 0.192  0.00 0.02 0.39*> 0.84°
1I-Ga-NO 0.162 0.232 0.04 0.19% 0.00 0.02 0.39> 0.62°
1I-Ga-NO 0.01 0.10* 0.08 0.19*° 0.00 0.02 0.39> 0.84P
IV-Ga-NO 0.01 023 058 019 0.00 0.02 0.39> 0.70°
V-Ga-NO 0.01 0.10* 0.58> 0.19* 0.00 0.02 0.39> 0.84P
VI-Ga-NO 0.01 0.03 0.58> 0.192 0.00 0.02 0.39*> 0.84°
1I-Gj-NO 0.05 023 0122 019 0.00 0.02 0.39®> 0.62°
II1-Gj-NO 0.01 0.03 0.122 0.192 0.00 0.02 0.39*> 0.84°
IV-Gj-NO 0.01 0108 058> 0.19% 0.00 0.02 0.39> 0.70°
V-Gj-NO 0.0l 0.03 058 0.19*° 0.00 0.02 0.39> 0.84P
VI-Gj-NO 0.00 0.03 0.75° 0.19% 0.00 0.02 0.39> 0.86°
I1-Co-NI 0.05 0.23* 0.122 0.19* 0.00 0.02 0.39®> 0.62°
TI1-Co-NI 0.01 0.232 0.32> 0.192 0.00 0.02 0.39*> 0.84°
IV-Co-NI 0.01 0.41> 0.75* 0.19* 0.00 0.02 0.39*> 0.84°
V-Co-NI 0.00 0.232 0.75* 0.192  0.00 0.02 0.39*> 0.84°
VI-Co-NI 0.00 0.222 0.75° 0.19% 0.00 0.02 0.39> 0.84P
I1-Ga-NI 0.05 0.222 0.04 0.19* 000 0.02 0.39® 0.62°
I1I-Ga-NI 0.01 0.10® 0.04 0.19% 0.00 0.02 0.39> 0.86"
IV-Ga-NI 0.01 0.26° 0.32* 0.19> 000 0.02 0.39®> 0.84°
V-Ga-NI 0.01 0.102 0.58> 0.192 0.00 0.02 0.39*> 0.84°
VI-Ga-NI 0.00 0.10* 058> 0.19* 0.00 0.02 0.39> 0.84"

11-Gj-NI 0.05 0.222  0.08 0.192 0.00 0.02 0.39*> 0.62°
I11-Gj-NI 0.01 0.03 004 0190 0.00 0.02 0.39> 0.86"
IV-Gj-NI 0.01 0.222 0.32> 0.19* 0.00 0.02 0.39*> 0.84°
V-Gj-NI 0.01 0.03 058 0.19% 0.00 0.02 0.39> 0.84P
VI-Gj-NI 0.01 0.03 0.75> 0.19* 0.00 0.02 0.39> 0.86"

II-Co-NO-MS 1.00° 043> 0.32°> 0192 0.00 0.02 0.39®> 0.86"
MI-Co-NO-MS ~ 0.39®> 0.54> 0.75° 0.19* 0.00 0.02 0.39> 0.93
IV-Co-NO-MS 0.41> 0.54> 1.00° 0.192 0.00 0.02 0.46"> 0.93P
V-Co-NO-MS 0.162 0.41*> 0.75* 0.192  0.00 0.02 0.52®> 0.99"
VI-Co-NO-MS 0.168 0.41> 0.75> 0.192 0.00 0.02 0.46> 0.93°
II-Ga-NO-MS 0.39> 041> 0.32° 0.192 1.00> 0.75> 0.39> 0.86"
I11-Ga-NO-MS 0.168 0.54> 0.58> 0.192 0.00 0.75° 0.46> 0.86°
IV-Ga-NO-MS 0.28> 0.54> 0.75° 0.192  0.00 0.75® 0.52> 0.86"
V-Ga-NO-MS 0.05 0.26° 0.75* 0.19* 0.00 0.02 0.39*> 0.93°
VI-Ga-NO-MS 0.01 0.41®> 075> 0.19*2 0.00 0.02 0.39> 0.86°
1I-Gj-NO-MS 0.53> 0.54° 0.32° 0.192 023 0.75> 0.39> 0.84P
[I-Gj-NO-MS 0.162 0.54> 058> 0.192  0.00 0.75"> 0.52> 0.84P
IV-Gj-NO-MS 0.05 0.90> 0.75* 0.192 0.00 0.75* 0.39*> 0.84°
V-Gj-NO-MS 0.05 0.54> 075> 0.19%2 0.00 0.02 0.52> 0.84°
VI-Gj-NO-MS 0.00 0.54> 0.75> 0.192  0.00 0.02 0.52"> 0.84°
1I-Co-NI-MS 0.53* 0.26° 0.04 0.19% 0.00 002 052> 0.84P
T11-Co-NI-MS 0.16* 0.52> 0.58> 0.36® 0.00 0.02 0.79* 0.86°
IV-Co-NI-MS 0.162 0.54> 0.75> 046> 0.00 0.02 0.85> 0.99°
V-Co-NI-MS 0.05 023 075> 0.19* 0.00 0.02 0.85> 0.97°
VI-Co-NI-MS 0.05 0.23® 0.75> 046> 0.00 0.02 0.85* 0.93°
11-Ga-NI-MS 0.53> 0.41> 0.122 0.55> 0.72°> 0.69> 0.85> 0.86P
T11-Ga-NI-MS 0.01 0.54> 0.32> 094> 0.00 1.00® 0.85*> 0.86°
IV-Ga-NI-MS 0.01 0.54> 058> 094> 0.00 0.75* 0.96®> 1.00°
V-Ga-NI-MS 0.00 0.41®> 0.58> 0.55° 0.232  0.02 1.00® 0.97°
VI-Ga-NI-MS 0.00 0.52> 058> 081> 0.00 0.02 0.96°> 0.93°
11-Gj-NI-MS 0.05 0.52® 0.04 094> 0.72® 0.02 0.85*> 0.86°
I11-Gj-NI-MS 0.05 0.54> 0.122 094> 0.00 0.75> 0.85*> 0.86°
IV-Gj-NI-MS 0.168 1.00> 0.58> 1.00° 0.00 0.75° 0.52° 0.86°
V-Gj-NI-MS 0.01 0.52®> 032> 081> 023 0.02 0.85> 0.86°
VI-Gj-NI-MS 0.00 0.54> 032> 094> 0.00 0.02 0.52*> 0.86°

Note: Forecast performance evaluation for the 16 series of stock volatility for the Crisis period from September
2008 to July 2009 (200 observation). See the note in table 2.7 for the description of the models. The MCS is a
procedure to determine the "best" models from a collection of models based on the MSE loss function. pvg are

the p-values for the range deviation method. "a" and "b" denote that the model belongs to the 10% and 25%
MCS.
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Table 2.13: Out-of-sample forecast evaluation MCS - Crisis (cont.)

JPM KFT PEP PG T TWX TXN WFC

1I-Co-NO 0.198  0.00 043> 0.37° 0.27° 038 0.162 0.02
I11-Co-NO 0.27°  0.00 0.17* 0.46°> 0.27® 0.33> 0.162 0.172
IV-Co-NO 0.27°  0.00 0.17* 0.46®> 0.27° 033>  029®  0.02
V-Co-NO 027° 0.00 0.17* 046> 0.01 0.38* 0.33*> 0.202
VI-Co-NO 028> 0.00 0.17* 046° 0.01 0.38* 0.16* 0.60°
1I-Ga-NO 0.192  0.00 043> 037 0.27° 038 0162 0.02
I11-Ga-NO 0.27°  0.00 043> 0.37° 0.27° 038> 051> 0.02
IV-Ga-NO 0.27°  0.00 0.17* 0.37° 0.27° 0.38> 057"  0.02
V-Ga-NO 0.29*  0.00 0.17* 037° 0.17* 0.38*> 0.33> 0.18
VI-Ga-NO 0.75*  0.00 0.17* 037> 0.17* 0.38*> 0.33> 0.97°
1I-Gj-NO 0.192  0.00 043> 037 0.27° 0.38* 0162 0.02
1I-Gj-NO 0.27°  0.00 0.43> 037° 0.27° 0.38*> 0.50>  0.02
IV-Gj-NO 0.28°  0.00 043> 037 0.27° 0.38" 051>  0.02
V-Gj-NO 0.29°  0.00 043> 037° 017 0.38* 0.33> 0.172
VI-Gj-NO 0.75  0.00 043> 037° 0.01 038> 0.33> 0.98"
I1-Co-NI 0.19* 0.00 0.43°> 0.37° 0.17* 0.38> 0.162 0.02
TI1-Co-NI 0.198  0.00 0.17* 0.37° 0.27° 033> 033>  0.02
IV-Co-NI 027°  0.00 017 037 0.27° 0.38> 050> 0.02
V-Co-NI 0.27°  0.00 0.17* 037° 017 0.38"> 0.50>  0.02
VI-Co-NI 027° 0.00 017 037" 0.01 0.38* 0.33> 0.43P
11-Ga-NI 0.198  0.00 043> 0.37° 0.27° 038> 0.162 0.02
IT1-Ga-NI 0.27°  0.00 043> 0.37° 0.27° 0.38> 0.94>  0.02
IV-Ga-NI 0.27°  0.00 0.170 0.37> 0.27° 0.38> 0.94>  0.02
V-Ga-NI 0.29®  0.00 0.17* 0.37° 0.17* 0.38> 0.82> 0.172
VI-Ga-NI 0.29®  0.00 0.17* 0.37° 0.17* 0.38> 0.33°  0.60P
I1-Gj-NI 0.19*  0.00 0.43> 037° 0.27°> 0.38* 0162 0.02
I1I-Gj-NI 0.27°  0.00 0.43* 0.37° 027" 0.38> 094> 0.202
IV-Gj-NI 0.28*  0.00 0.43® 037" 027" 038> 094> 0.18
V-Gj-NI 0.29°  0.00 0.17* 0.37> 0.27° 0.38> 0.84> 0.43°
VI-Gj-NI 0.75*  0.00 0.17* 0.37° 0.17* 0.38> 0.33°  0.99"

II-Co-NO-MS 0.29°  0.01 0.44® 0.37° 0.27° 078> 0.162  0.02
I1I-Co-NO-MS 0.75*  0.00 0.43® 0.37° 0.60> 0.38> 0.29° (.43
IV-Co-NO-MS 0.75*  0.00 0.44® 0.37° 0.71> 047> 0.16 0.98"
V-Co-NO-MS 0.92>  0.00 043* 0.37° 052> 058> 0.162 0.98
VI-Co-NO-MS 0.92>  0.00 0.43® 037" 027> 059 0.16* 0.98
II-Ga-NO-MS 0.75°  0.01 0.44> 0.37° 0.27° 1.00> 0.94>  0.02
1I-Ga-NO-MS 0.98% 0.00 044> 0.37° 0.88> 047> 094> 0.172
IV-Ga-NO-MS 0.92°>  0.00 0.44® 0.37° 088> 0.56° 0.94° 0.60"
V-Ga-NO-MS 0.92>  0.00 0.43* 0.37° 088> 0.63> 094> 0.60
VI-Ga-NO-MS 0.92°>  0.00 0.43® 0.37° 088> 0.59® 094> 0.60
11-Gj-NO-MS 0.75* 0.122  1.00> 0.37° 0.27° 0.86°> 094> 0.02
II-Gj-NO-MS 1.00°  0.00 0.43° 0.37° 088> 047° 0.94> 0.43°
IV-Gj-NO-MS 0.92>  0.01 0.44> 0.37° 0.88> 0.58> 1.00> 0.98P
V-Gj-NO-MS 0.92>  0.00 044> 0.37° 0.88> 0.78> 0.94> 1.00
VI-Gj-NO-MS 0.92°>  0.00 0.43® 0.37° 0.79> 0.75> 0.94> 0.99"
11-Co-NI-MS 0.192 0.82° 0.44> 037> 0.27° 056> 0.03  0.02
I11-Co-NI-MS 0.29* 0.82®> 043> 0.86> 0.88> 0.38> 0.03  0.02
IV-Co-NI-MS 0.29°  1.00> 0.43> 0.86> 0.88> 047> 0.03 0172
V-Co-NI-MS 0.29® 0.82> 0.43® 046> 0.71> 047> 003 0.18
VI-Co-NI-MS 0.29° 0.82> 043> 0.56> 0.71* 047> 0.03 0.8
11-Ga-NI-MS 0.27°  0.82> 044> 0.37° 0.27° 059  0.33°  0.02
I11-Ga-NI-MS 0.92> 0.82® 0.44® 0.56> 1.00® 0.56> 0.50>  0.02
IV-Ga-NI-MS 0.92° 0.82> 044> 056> 0.88> 0.56° 0.51° 0.172
V-Ga-NI-MS 0.75*  0.82> 0.43® 0.56> 0.88> 0.56> 0.50° 0.182
VI-Ga-NI-MS 0.75°  0.82® 0.43> 0.56> 0.88> 0.56> 0.50> 0.182
11-Gj-NI-MS 0.27%  0.82® 044> 0.37° 0.27° 0.59> 0.29>  0.02
11-Gj-NI-MS 0.92° 0.82® 0.44P 086> 0.88> 047> 033> o0.17®
IV-Gj-NI-MS 0.92°> 0.93> 044 1.00° 0.88> 0.56° 0.50° 0.43P
V-Gj-NI-MS 0.75°  0.82° 0.43® 0.56> 0.79> 0.56°> 0.33° 0.43P
VI-Gj-NI-MS 0.75°>  0.82° 0.43® 056> 0.79> 059> 0.33> .43

Note: Forecast performance evaluation for the 16 series of stock volatility for the Crisis period from September
2008 to July 2009 (200 observation). See the note in table 2.7 for the description of the models. The MCS is a
procedure to determine the "best" models from a collection of models based on the M SFE loss function. pvgr are
the p-values for the range deviation method. "a" and "b" denote that the model belongs to the 10% and 25%
MCS.



Chapter 3

Realized Volatility: Estimation,
Forecasting and Option trading

3.1 Introduction

During the last years, with the increasing availability of high frequency financial
data, the development and modeling of realized estimators of volatility have grown
considerably!. The main goal is to obtain the most accurate estimation of the
variation of the price process and the most precise forecasting that is needed in
many financial applications. The realized volatility (RV'), introduced by Andersen,
Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard (2002),
is defined as the sum of squared intra-day returns and in theory, it is an unbiased
and highly efficient estimator of the integrated variances and it converges to it when
the length of the intra-day interval goes to zero. Moreover, the realized range
volatility (RRV'), introduced by Martens and van Dijk (2007) and Christensen
and Podolskij (2007), is another realized estimator consistent for the quadratic
variation and it is based on the difference between the minimum and maximum
prices observed during a certain intra-day interval. In theory, it is more efficient
than the realized volatility.

Large part of the literature has concentrated and dealt with the Microstruc-
ture Noise that affects high frequency market data and as a consequence, the
properties of the realized estimators that become biased and inconsistent. For
example, some of the corrections for the realized variance are Zhang, Mykland,
and Ait-Sahalia (2005) and Zhang (2006), Bandi and Russell (2008), Hansen and
Lunde (2005) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), and
Martens and van Dijk (2007) and Christensen, Podolskij, and Vetter (2009) for
the realized range. In addition, the literature has also focused on modeling and
forecasting the observed volatility with time series technique and analyzed the
predictive accuracy from a statistical approach. The long memory behavior of
realized volatility series has been modeled through different models. Among oth-
ers, Andersen, Bollerslev, Diebold, and Labys (2003) considered an Autoregressive
Fractionally Integrated Moving Average (ARFIMA) model, where forecasts for the

1See for example McAleer and Medeiros (2008).
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RV generally dominate GARCH models. Corsi (2009) presented the Heterogenous
autoregressive (HAR) model, a high order autoregressive model that reproduces
the hyperbolic decay of the autocorrelation function observed in the data and
that shows remarkably good forecasting performance. Moreover, other stylized
facts of volatility (asymmetry, leverage effects, and fat tails) have been modeled
to improve the forecasts. Martens, van Dijk, and de Pooter (2009) compared the
performance of the ARFIMA models and HAR model with a flexible unrestricted
high-order autoregressive model including leverage effects, days of the week ef-
fects and macroeconomics announcement. Corsi, Mittnik, Pigorsch, and Pigorsch
(2008) introduced two important extensions to the standard models, a GARCH
component modeling the volatility of volatility and non-Gaussian innovations, re-
sulting in an improvement in the accuracy of the point forecasting and a better
density forecast. Finally, Bollerslev, Kretschmer, Pigorsch, and Tauchen (2009)
developed a multivariate discrete-time volatility model that jointly incorporates
the returns, the realized continuous sample path and jump variation measures.

An alternative approach to determine the best estimator and model to ob-
tain the most accurate forecast of volatility is to adopt an economic criteria. In
the univariate context, Bandi, Russell, and Yang (2008) evaluated and compared
the quality of several realized estimators based on the profits from option pric-
ing and trading. In their work, agents price short-term options with alternative
volatility estimates on the S&P 100 index before trading with each other at av-
erage prices. In the multivariate case and considering the utility that an investor
derives from alternative variance forecasts in a portfolio allocation problem, Flem-
ing, Kirby, and Ostdiek (2003) measured the economic value of using intradaily
returns to construct estimates of daily return volatility and they found substantial
gains when switching from daily to intradaily returns to estimate the conditional
covariance matrix. More recently, de Pooter, Martens, and van Dijk (2008) ex-
amined the economic significance of determining the optimal sampling frequency
of realized covariance matrix and they found that choosing the optimal sampling
frequency is relevant for the out-of-sample performance of portfolios constructed
using realized covariances with the optimum near to the hour, while Bandi, Rus-
sell, and Zhu (2008) compared the utility of a representative investor for optimal
portfolio weights constructed from forecast for daily variance/ covariance based on
optimally-sampled procedures as well as 5 and 15 minute intervals.

The aim of this work is to analyze the performance of alternative volatility
estimators and forecasting models in an economic set up, based on the profit
that derives from a buy-and-hold option trading strategy that speculates on the
future level of the volatility. We consider an agent that invests in a straddle (a
combination of a call and a put option, with same exercise price and expiration
date) depending on his expected level of volatility during the trading period. At the
beginning of the period, the agent estimates and forecasts volatility with different
estimators and models. Then, if high (low) volatility is expected he buys (sells)
the straddle. Different estimators and models should result in different results. To
evaluate the different strategies we consider the mean returns and the cumulative
returns from a dynamic investment exercise. The trading strategy is implemented
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with weekly options based on the S&P 500 and traded at the Chicago Board
Options Exchange (CBOE) for the period between October 2005 and October
2009.

More in details, we compute volatility series from a high frequency series on
S&P 500 Futures from January 1996 to October 2009 with estimators related
to the realized volatility, which are based on the intradaily returns, as well as
with estimators related to the realized range volatility, which are based on the
intradaily range. In particular, the selected estimators are robust to the presence
of microstructure noise and jumps in the price process. In order to obtain out-of-
sample forecasts to drive our trading strategies, we fit these series with ARFIMA
models. The long memory behavior of volatility series has been widely documented
in the literature an ARFIMA models are able to capture the long range component
of volatility series. In addition, to deal with the possibility of confusing long
memory with process with short memory and structural breaks, as pointed out
by Lu and Perron (2010) and Perron and Qu (2010), among others, we consider
the ARFIMA model with random level shift component of Grassi and Santucci de
Magistris (2011) and Varneskov and Perron (2011).

Our results suggest that some models and estimators generate positive mean
and cumulative returns with different performances before the 2008-2009 financial
crisis. In our set up and based on the profits obtained through the different
strategies, the choice of the variance estimator seems to be more important than
the specification of the time series model. In general, models tend to work better
in prediction of low volatility than high volatility. The model and estimator that
perform better during the period before the financial crisis resulted in annualized
return higher than the 50%.

The rest of the chapter is organized as follows. In section 3.2, we present
the volatility estimators and the data. In section 3.3, we perform a statistical
descriptive analysis of the volatility series. In section 3.4, we present the models
for the volatility and the forecasting framework. In section 3.5, we introduce our
trading strategies and timing. Section 3.6, introduces the hedging in our strategies.
The payoffs are introduced in 3.7. In section 3.8 we describe the estimation results.
Finally, section 3.9 and 3.10 discuss the trading results and exhibit the conclusions
of the chapter.

3.2 The data, volatility estimators and correc-
tions

3.2.1 Volatility estimation

Let us consider a price process that follows a continuous sample path semi
martingale, at time ¢, the logarithmic price is:

t t
Dt =P0+/O Mudu-i-/o oudWu (3.1)
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where = (u¢)i>o is the drift (locally bounded and predictable), o = (0¢)i>0 is
the volatility (cadlag?), and W = (W;);>0 is a standard Brownian motion. The
objective is to define a measure of the return variation over a subinterval. This
subinterval is assume to be a trading day and it is define between [0,1]. The
quadratic variation (QV') is a natural measure of sample path variability for the
semi martingales and it is defined by

(p) = plimy, o0 zn:(Pti - pti,l)z (3.2)

i=1
for any partition 0 =ty < t; < ... <t, = 1, such that max,<;<,{t; —t;i—1} — 0 as
n — oo.

In this framework, QQV is induced only by the continuous path variation and it
is equal to the integrated volatility (/V)

1
v = / o? du (3.3)
0

IV is our object of interest and it is central in financial economics.

With the increasing availability of high-frequency data, Andersen, Bollerslev,
Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard (2002) introduced
the realized variance. Considering a series of high frequency prices p recorded at
the discrete points i/n for ¢ = 1,...,n we define the intraday return

Tin,A = Pi/n — P(i-1)/n (3-4)

where A = 1/n, and the realized variance at sampling frequency n by

RV™ =3 "riAa (3.5)
i=1
Moreover, they showed that
RV"™ —, IV (3.6)

as n — 0o (A — 0). In addition, Barndorff-Nielsen and Shephard (2002) derived
the distribution for RV™ in relation to IV as

VIRV — IV) =4 MN(0,21Q) (3.7)

where M N is a mixed normal distribution and I() is the integrated quarticity, a
latent variable that can be estimated through the realized quarticity.

The realized range volatility (RRV'), was introduced by Martens and van Dijk
(2007) and Christensen and Podolskij (2007) and as they state the main idea of
the RRV is to reduce the information loss of RV by replacing squared returns
with squared ranges. Defining the range by:

Spiaam = 1aAX (pi71+% — Piz1 ) (3.8)

2it is right continuous with left limits.
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for N =nm and i =1,...,n, then we have
1 &,
RRV, ;m = N 2 Spiaam (3.9)

where N is the number of recorded prices per day, n is the number of interval
during the day, m is the number of high frequency prices for each n and W is s
standard Brownian Motion and

Aem = B[] max (We —Ws)
0<s,t<m m m

Under certain conditions, Christensen, Podolskij, and Vetter (2009) showed
that

" (3.10)

RRV,y =, IV (3.11)
as n — 0o (A — 0) and derive the derived the distribution for RRV,, ,, as
VA(RRVjy — IV) =4 MN(0, AIQ) (3.12)

where M N is a mixed normal distribution and 1@ is the integrated quarticity, A
is a decreasing function in m that takes values between 2 and 0.4 (for m =1 or
00). As a consequence, for any m > 1, the RRV/, ,, is more efficient than RV™.

3.2.2 Volatility estimation and the Microstructure noise

In presence of Microstructure noise in the high frequency data, the RV becomes
biased and inconsistent and several works have introduced different modifications
to mitigate the impact or these errors. Zhang, Mykland, and Ait-Sahalia (2005)
proposed a subsampler method and consistent estimator in the presence of noise
for the IV, where the RV is estimated across non-overlapping grids of returns and
averaged. The Two Time Scale Estimator (7°S) is defined by

75 _ L~ pue) _ P
RV = —N"RV RV (3.13)
K ] n

where k is the number of subgrids, n is the number of returns or observations in
the full grid and n* in each subgrid and RV® and 7 are

nk
RV® =312 o (3.14)
=1
and .
1 n—K+1
__ 1 (k) _ - 3.15
n= 1 kZ::ln % (3.15)

Moreover, Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) introduced
a kernel-based estimator that incorporates the realized autocovariances and is de-
fined by
h—1

H
RV = RVA 437 k(=) (3 + 7-1) (316)
h=1
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where k() is a non stochastic weight function, with z€[0, 1] and 4y, is the realized
autocovariances.

The Microstructure noise in the price also impacts in the range introducing a
bias. Christensen, Podolskij, and Vetter (2009) proposed a robust estimator based
on the range for the I'V in the presence of errors. The realized range volatility
bias corrected (RRV,) is given as

1 n
RRan,BnC; -3 Z(Spm,mm - 2&71\7)2 (3'17)

2m =1

where w? is the variance of the noise process. Moreover, @3 is a consistent
estimator of this measure, and it is defined as

Iy RVN
Finally,
Mem = E| max  (W.e —W2)[] (3.19)

t:n%:w,s:ni:fw

where N is the number of recorded prices per day, n is the number of interval
during the day, m is the number of high frequency prices for each n and W is a
standard Brownian Motion. The authors show that as m, n — oo

RRV,2C —, IV (3.20)

and they derive its asymptotic distribution.

3.2.3 Volatility estimation and jumps

A generalization of the price process defined in equation 3.1 can include a
jump component with the continuous semimartingale component. In this context,
The RV and the RRV estimate the total QV', being not informative about I'V.
Formally, if we consider a price process with a continuous sample path and a Jump
component, the logarithmic price is:

t t Ny
Pt =pot /0 prudu + /0 o dWu+Y_J; (3.21)
i=1

where N, is the number of jumps and J = (J;);=1.n, is the jump component
and the QV is defined as

1 Ny
(p) = /O o2 du+Y J; (3.22)
=1

In order to disentangle the continuous from the discontinuous sample path
movements in the asset prices, Barndorff-Nielsen and Shephard (2004) presented
a robust estimator of the I'V. The realized bipower variation was defined by
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n—1

RVEY =3 " Jriaallrainaal (3.23)

=1

Moreover, Christensen, Podolskij, and Vetter (2009) define the realized range-
based bias corrected bipower variation (RRVPVEY) as

n—1

RRVn'?TZBC = 39 Z |SP¢A,A,m - 2@NHSP¢+1A,A,WL - 2(’:)]\7’ (324>
1m i—1

that is a robust estimator of the IV in the presence of noise and jumps.

3.2.4 Volatility data

Our volatility estimators are constructed from high frequency series on the
S&P 500 Futures from January 1996 to October 2009. In order to analyze the
performances of estimators that are robust to microstructure noise and jumps,
we consider seven realize measures based on the return and the range, previously
presented. We consider four realized measures based on the return: the realized
volatility (RV'), the realized bipower variation (RV 5V, the Two Time Scale Esti-
mator (RVT9) and the realized kernel (RVX). Moreover, we compute daily volatil-
ity series with the realized range volatility (RRV/, ), the corrected version and the
realized range-based bias corrected (RRVfg ) and the range-based bipower vari-
ation bias corrected (RRV,%)5¢) estimators of Christensen and Podolskij (2007)
and Christensen, Podolskij, and Vetter (2009). The seven estimators are computed
with two different sampling frequencies 1 and 5 minutes.

Finally, since our interest is to obtain the volatility forecasting for the time
to expiration of the traded options or portfolio, we work on a weekly base. In
particular, we aggregate volatility from Friday to Thursday because the options
are listed each Friday morning and expire one week later. The point is to simplify
our forecasting and work only one period ahead.

3.2.5 Options data

The Weeklys are options that are listed with only one week to expiration.
The first weekly option was launched on October 28, 2005 by the Chicago Board
Options Exchange (CBOE) and it was based on the Standard & Poor’s 500 Stock
Index (SPX). They have an European exercise style, they may be exercised only on
its expiration date, the Friday following the Friday of the listing of the options. The
Short-term Standard & Poor’s 500 index options are AM-settled. Our database,
obtained from OptionMetrics, consists in daily prices for the S&P 500 Weekly
options from November 2005 to October 2009. In total we have 208 trading periods,
one per each week.



60 Realized Volatility: Estimation, Forecasting and Option trading

3.3 Preliminary data analysis

Descriptive statistics of the daily and weekly logarithmic realized series of
volatility are displayed in table 3.1 and plots of the logarithmic volatility series and
their sample autocorrelation functions (ACF) for some of the estimators are pre-
sented in figures 3.1. A statistical analysis of the different estimators for the daily
and weekly volatility series confirms the characteristic of the different estimation
methods. The mean annualized volatility ranges from 14.2147% to 16.2589% for
the daily series. This difference is related to the presence of microstructure noise
that biased the simple estimator, in particular at the highest sampling frequency
or 1 minute. Moreover, the standard deviation is lower for the range estima-
tors, which reflects the more efficiency of the range-based method. The skewness
parameter ranges from 0.3967 to 0.8296 and the kurtosis ranges from 3.4161 to
3.9737.

As documented in the literature, the series display volatility clustering and
show some periods of high level of volatility associated with different crisis (2000,
2009). The presence of these shifts in the volatility are important since they may
cause an upward bias in the estimation of the long memory parameter (see for
example, Lu and Perron (2010) and Perron and Qu (2010)). The ACF exhibits
the typical hyperbolic decay of the long range series. In particular, the ACF
decays to zero questioning the presence of shifts. According to Varneskov and
Perron (2011), the autocorrelation function of a long memory process with shift
has two components. The first one which is associated with the autocorrelation of
the ARFIMA process and the second one which accumulates the shifts. The last
component becomes more important when increasing the number of lags, making
the convergence of the ACF to be different from zero. This pattern is not observed
in the ACF of the series.

After the preliminary analysis of the statistical characteristic of the series that
suggests the presence of a dominating long range process and the plots that display
possible shifts in the series, we estimate the long memory parameter with alter-
native semiparametric models and two different bandwidths. Estimation results
in table 3.1 show values in the non-stationary region with d decreasing with the
largest bandwidth, a result that suggests the presence of level shifts in the series
that impose an upward bias.

Last, in order to formally test the presence of structural changes in the level
and long memory, we perform the Perron and Qu (2010) test. This test is based on
the difference in the estimates of d from different number of frequencies included
in the log-periodogram regression. T-statistic for the test are presented in the
figure 3.2. In almost all the series, the null hypothesis of long memory cannot be
rejected. We think that non-stationary of d in the semiparametric estimation may
be caused by the presence of a large shifts associated to the 2008-2009 financial
crisis.
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3.4 The models for the volatility

The volatility forecast plays a central role in our work. In particular, the
implementation of the strategies (buy and sell) is based on the expected level of
volatility and the estimated confidence interval associated with this prediction.
Since we are modeling weekly volatility, we only need a one step ahead forecast.
In total, we compute rolling forecasts for one step ahead with 6 different models
and 14 volatility series. The resulting 42 forecast series and associated confidence
intervals at 90%, 92.5%, 95%, 97.5% and 99%, define the trading strategies.

3.4.1 Long memory process

Given y;, a weekly measure of logarithmic volatility, we fit an Autoregressive
Fractionally Integrated Moving Average ARFIMA (p,d,q) process introduced by
Granger and Joyeux (1980) and Hosking (1981) defined by

O(L)(1 = L)y = O(L)es (3.25)

where (1 — L)? is a fractional differencing operator, L is the lag operator and
O(L)y=1—¢L—...—¢p,LP and O(L) = 146, L+ ... +6,L7 are the autoregressive
and moving average operator with no common roots. ¢; is a white noise sequence
with zero mean and finite variance (o2).

We estimate the ARFIMA(p,d,q) with an autoregressive approximation tech-
nique, proposed by Beran (1994). Following Hosking (1981), it is possible to
recover a MA(oo) and AR(o0) expansion of an ARFIMA (p,d,q) process as

Yo = Z%m_i and y = Zﬂ'iyt—i + e (3.26)
i=1

i=1

Given the series {y;,t > 0}, an approximate innovation sequence {u;} can be
obtained as

t—1
Ut = Yt — Z TiYt—i (3.27)
i=1

for ¢« = 2...,n Finally, a Quasi maximum likelihood estimation for the vector of
parameters 6 is obtained by the minimization of

2
U

LogLike(y;, 0) = 2nlog(oe) + (3.28)
=2

ol
One of the advantages of this procedure is that since the AR(c0) representa-

tion does not required the series to be stationary, the quasi maximum likelihood

estimator is defined for any stationary and non stationary fractional processes.
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3.4.2 Long memory and structural breaks

As early discussed, processes with structural breaks display similar stylized
facts than long memory process. As a result, spurious long memory can be caused
by the presence of these shifts. In order to jointly consider the presence of long
memory and level shifts in the series we introduced the ARFIMA model with
random level shift of Grassi and Santucci de Magistris (2011) and Varneskov and
Perron (2011). The authors assume a data generating process (DGP) with ran-
dom level shift component and an ARFIMA process. As Grassi and Santucci de
Magistris (2011) point out this procedure provides estimation of the ARFIMA
parameters and the probability and the magnitude of the shifts allowing to disen-
tangle the long memory component from the shift process. The ARFIMA model
with random level shift is an extension of the univariate model with short memory
and jump or level shift component of Lu and Perron (2010). Assume the following

GDP
Ty = U + Yt (329)

where y, is an ARFIMA (p,d,q) process with AR(oco) representation, given by 3.26,
and v; is a random shift component defined by

Vy = Vy_1 + Ykt (330)

where k; ~ N (0, Ug) and &; = Y4K;. Y is a binomial variable equals to 1 when
the shift occurs with probability a.

In order to estimate the model, the authors recover the state space representa-
tion and implement the algorithm propose by Lu and Perron (2010). The model
is specified in the first difference of the data

Azy =y — yp1 + 0 (3.31)
Then, they have the following state space form

Az = ZY; + 0 (3.32)
Yi=TY: 1+ He

where Y; = [y, yi-1,---,ye—n) and Z = [1,—1,0,...,0] are M x 1 vectors, T is
an M x M matrix where the first row represents the parameters of the truncated
AR(c0) in M of the ARFIMA process, H; = [1,0,...,0]" is a M x 1 vector and
€; is a vector of innovations with variance covariance matrix (). The likelihood
function® is obtained with a Kalman filter on the state space model in 3.32.

3See Grassi and Santucci de Magistris (2011), Varneskov and Perron (2011) and Lu and Perron
(2010) for a detailed explanation of the estimation methodology. Paolo Santucci de Magistris
kindly provided the estimation code.
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3.5.1 The strategy

The aim of this chapter is to analyze the performance of different estimators and
models when forecasting volatility adopting an economic and monetary approach.
We compare the profits and losses from a buy-and-hold strategy that speculates
on the future or expected level of volatility and that is driven by forecasts based
on alternative realized estimators and models. We operate in an options exchange
market and the trading consists in buying and selling straddles, the investor’s
portfolio. Bandi, Russell, and Yang (2008) also evaluate and compare the quality
several volatility estimators in the context of an economic metric. However, they
operate in an artificial option market and obtain the profits from option pricing
and trading.

Our strategy takes place every week in two step. We denote by ¢ each week
(from Friday to Thursday) and by #(0) and ¢(7) the beginning and the end of each
week t. The trading strategy and the timing are the following:

e at t(0) the volatility is estimated and the forecast is obtained for ‘7t+1|t (one

week ahead) with the associated confidence interval [CT,, fl\t; ﬁ:;ﬁt] for
different models,

e at ¢(0) the portfolio is formed and the trading (buy or sell the straddle)
is implemented based on the confidence interval associated to the volatility
forecast,

e at t(7T') the options expire and the cost and benefit are realized.

A straddle is a strategy that involves taking a position in a call and a put
with the same strike price and expiration date. If high volatility is expected, the
investor will buy a straddle or go long, while if low volatility is expected, he will
sell a straddle or go short. At #(0), the investor trades contracts that are closest
at-the-money. Finally, the investor decides between three different positions: he
can go long or buy a straddle, go long or buy and go short or sell or only to go
short or sell a straddle during the trading.

3.5.2 The determination of high-low expected volatility

A straddle is a combination of options that benefits from the movement of the
price of the underlying stock and it does not depend on the direction of movement.
In our strategy, we associate large changes in the price with periods of high volatil-
ity. Then, an investor who expects high volatility in a given period, which implies
a change in the price in any direction, will buy a straddle. At the same time, an
investor who expects low volatility will sell or go short in the same derivatives.

In this paper, we want to evaluate from an economic approach, the perfor-
mances of different estimators and forecast models for volatility. Then, we analyze
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the profits which results from the trading of a strategy that speculates on volatility
and that is driven by competing models.

The main point is to decide whether a week of low or high volatility is ex-
pected. The investor compares his own forecast with the future level of volatility
expected by the market (VEM). To obtain this measure, the investor extracts
the volatility implied by the option prices. He computes the implied volatility
with the Black and Scholes (IVP%) model* Since the investor is not interested
on volatilities which are higher or lower than the market expectation, but which
are significantly different, he compares the market expectation with the estimated
confidence interval. i

Given the forecasted confidence interval [C1, ;,; CI,, ] for a = 0.01, 0.025,
0.05, 0.075 and 0.10 and the VEM (i.e. the IVP%) we can define the investor’s
trading rule based as:

StratVEM = { iof Cft_+1|t >VEM;+ X\  he buys a straddle

if Cly <VEM,+ X,  he sells a straddle

where )\; is the volatility risk premium.

In order to estimate the volatility risk premium, we exploit the information
content of the realized volatility and the implied volatility, regressing the weekly
realized estimation of volatility on the Black-Scholes implied volatility of the op-
tions.

The relation between realized and implied volatility has been studied in differ-
ent works. For example in Christensen and Prabhala (1998), Bandi and Perron
(2006), Christensen and Nielsen (2006) and Nielsen and Frederiksen (2011). More-
over, different approaches to estimate the volatility risk premium have been intro-
duced (see for example Bollerslev, Gibson, and Zhou (2011) and Garcia, Lewis, Pa-
storello, and Renault (2011) and the references therein). Bandi and Perron (2006)
and Christensen and Nielsen (2006) find that the realized and implied volatility
are fractional cointegrated and as a consequence, the estimation of the relation be-
tween them with OLS is inconsistent. Following Christensen and Nielsen (2006), a
time series p-vector x; is fractional cointegrated if the elements of z; are I(d) and
there exists a linear combination that is I(d.) with d and d, positive and real num-
ber and d > d.. Robinson (1994) presents a narrow-band least squares (NBLS), a
semiparametric method, and proves its consistency in situations where the error
term is correlated with the regressors as a result of fractional cointegration, for
the d > 1/2 and d. > 0. Christensen and Nielsen (2006) introduce the limiting
distribution for the stationary fractional cointegration case where (d > 1/2,d, > 0
and d — d. < 0). Finally, Nielsen and Frederiksen (2011) consider the case where
the regressors and the errors have long memory (including the non-stationary case
of d > 1/2) but the errors have less memory than the regressors d > d. > 0 and

4In a previous version, we also consider the VIX as an alternative measure. The VIX is a
model-free implied volatility index that represents the expected future volatility of the S& P 500
by the options over the next month. Although it is a natural quantity for the volatility in the
market, it is constructed for a different period of time than the strategy implemented by the
investor. The trading based on the VIX results in negative results.
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d —d. < 1/2. They extend the previous works and present a fully modified NBLS
estimator.

To estimate the volatility risk premium (\), we regress RV on IV 5% with the
fully modified NBLS estimator

RV, = A+ BIVPS 1+ ¢ (3.33)

In particular, we compute a risk premium measure for each realized estimator
and two different samples. One for the period before the crisis (October 2005 to
September 2008) and another one for the full sample (October 2005 to October
2009). Then, each estimated series of risk premium is used in the trading decision
in the previous equation. Estimated volatility risk premiums range from 1% to
10% for the alternative estimators of volatility.

3.5.3 The payoffs

The benefit and cost of a long position in a straddle, at the end of the week ¢
are defined as

7T1l€ frg |St(T) —_ Kt| and COSti - (Ct +pt) (334>

i — costt = |Syry — Ki| — (e + pr) (3.35)

and the benefit and the cost of a short position in a straddle are equal to

71-; = (Ct —|—pt) and Costf = |St(T) - Kt| (3'36>

m; — cost; = (¢t + i) — |Sur) — K| (3.37)

where, Sy(r) is the level of the S&P 500 at the end of the week or the settlement
price, K; is the strike price of the put and the call that expires at the end of the
week t, and ¢; and p; are the prices of the call and put options that expire at the
end of the week t.

3.6 Hedging

The delta of a stock is the ratio of the change in the price of the stock option
and the change in the price of the underlying stock. In other words, it is the
number of units of the stock the investor should hold for each option shorted in
order to create a riskless portfolio. The delta of a call is positive, whereas the
delta of a put is negative. Based on preliminary results, we decide to introduce a
static delta hedging to reduce the high volatility of the returns that result from
the different trading decisions.
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3.6.1 Delta hedging of straddles

Based on the Black and Scholes Model the delta® of a call option can be defined
by:

Acan = N(d1) (3.38)

Using a delta hedging for a long position in the call option involves maintaining
a short position of A,y shares for each option purchased.
The delta of a put option is given by

Aput = N(dy) — 1 (3.39)

since A, is negative, a long position in the put option should be hedged with
a long position in the stock.

Our strategy involves taking a position in a straddle, that is a combination of a
call and a put option with the same strike and expiration date. In order to hedge
our straddle, we need to hedge the call and the put at the same time. Basically,
the delta of a portfolio is the sum of the delta of the individual options in the
portfolio.

Hedging a long position in a straddle

To hedge a long position in a straddle we have to hedge a long position in a
call and a put. The hedging of a long position in the call, implies opening a short
position in the underlying stock equal to N(d;), that has to be closed at the end
of the contract. The hedging of the long position in the put implies opening a long
position in the stock equal to (N (d;) — 1), which also has to be closed.

e at t(0), the investor has to:

— go short in A,y = N(dy) x Sy (for the call)
— go long in Ay, = (N(dy) — 1) x Sy (for the put)

e at t(7), the investor has to:

— close the short position in A, = N(dy) x St (for the call)
— close the long position in A, = (N(dy) — 1) x St (for the put)

The benefit and cost of a long position in a straddle, at the end of the week,
are equal to

m "= 1Sy = Kol + N(dh) x Syo) = (N(dh) = 1) x Sy (3.40)

COSti_h = (Ct +pt> + N(dl) X St(T) — (N(d1> — 1) X St(()) (34].)

54, — In(St0)/K)+(r+02/2)T
L= a/VT
continuously compounded risk-free interest rate, o the volatility of the stock and T' the time to
expiration, see for example Hull (2008)

, where Sy(gy is the level of the stock, K the strike price, r is the
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my " — costy " = |Syry — Ki| — (ce + pe) + (Sury — Sio)) x (1 =2 x N(dy)) (3.42)

where, Sy is the level of the S&P 500 at the begging of the week used in the
hedging, Syry is the level of the S&P 500 at the end of the week or the settlement
price, K; is the strike price of the put and the call that expires at the end of the
week t, and ¢; and p; are the prices of the call and put options that expire at the
end of the week ¢.

Hedging a short position in a straddle

To hedge a short position in a straddle we have to hedge a short position in a
call and a put. The hedging of a short position in the call implies opening a long
position in the underlying stock equal to N(d;). The hedging of the short position
in the put implies opening a short position in the stock equal to (N(d;) —1). Both
positions have to be closed.

e at ¢(0), the investor has to:

— go long in A,y = —N(dy) x Sp (for the call)
— go short in A, = —(N(dy) — 1) x Sy (for the put)

e at t(7T), the investor has to:

— close the long position in Ay = N(dy) x Sy (for the call)
— close the short position in Ay, = (N(d;) — 1) x Sr (for the put)

The benefit and the cost of a short position in a straddle are equal to

Wf*h = (ct —I—pt) + N(d1) X St(T) - (N(dl) - 1) X St(O) <3'43>

COStf_h = ‘St(T) - Kt| + N(dl) X St(O) - (N(dl) - ].) X St(T) (344)

wf_h — costf_h = (¢t + i) — |Sur) — Ki| = (Seery — Sioy) X (1 =2 x N(dy)) (3.45)

where, Sy (o) is the level of the S&P 500 at the begging of the week used in the
hedging, Syry is the level of the S&P 500 at the end of the week or the settlement
price, K; is the strike price of the put and the call that expires at the end of the
week t, and ¢; and p; are the prices of the call and put options that expire at the
end of the week ¢.

As we said, the investor can introduce a static hedging to cover his position.
The hedge will be set up at the begging of each week (¢(0)) and close at the end

(t(T)).
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3.7 The comparison of the profits

In order to compare the performance of the different strategies we compute two
different metrics. RT(%) is the time series mean of the profits minus cost over the
exposure of the strategy (expressed in % terms).

RT(%) = — i (i — costy) (3.46)

ly ;= expoy

The exposure (expo;) can be considered as the initial investment that the investor
incurs at the begging of the week (at time #(0)). In the case of the long position,
it is equal to the cost of the portfolio. Whereas in the case of the short position,
the exposure is equal to the call and put premiums. We also define the RT (abs)
that is the time series average of the absolute profits minus cost of the strategy.

tf
RT(abs) = ;Z(m — costy) (3.47)

ft=1

The cost was defined in subsection 3.5.3 and depends on the position. We compute
the standard deviation (Std) of the mean and mean absolute returns and the
Sharpe Ratio (SR), which is define as the return over the standard deviation.

Moreover, in order to replicate a realistic situation, we suppose that the investor
has an initial wealth of V; = $100,000 and he will be only able to invest up to
20% of the capital. At each trading week, the investor forms the portfolio. In the
case the investor buys a straddle, the 20% of the capital is used to pay the cost
of the strategy. While if the investor sells the straddle, the 20% represents the
maximum exposure in case of a possible loss, that could be unlimited. Audrino
and Colangelo (2009) implement the same exercise to analyze the performances
of trading strategies with predicted option returns. As they say, the remaining
capital is required as initial margin.

3.8 Estimation results

Consider the estimation of the ARFIMA models for the weekly series estimated
with the RV'™ and RV®™ (see table 3.2). The memory parameter d ranges from
0.6 to 0.7 indicating that the series is non-stationary. In these models we are not
taking into consideration the presence of a level shift component and although the
preliminary analysis of the series suggests a truly long memory component, a large
shift is present at the end of the series related to the 2008-2009 financial crisis. As
a consequence, we expect the estimated parameter to be upward biased. The AR
and MA estimated coefficients are small and not significant.

Now consider the results of the ARFIMA with shift component models. The
estimation of d for the (0,d,0) specification is still in the non stationary region.
The probability of the shift is equal to 0.17, which represent a shift every six week,
a very high probability. When introducing the AR and MA components, the es-
timation of the long memory parameters ranges from 0.32 to 0.46 displaying a
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stationary long range component. The AR and MA coefficients are marginally sig-
nificant. As in the (0,d,0) case, the probability of shift is very high and marginally
significant. As Varneskov and Perron (2011) pointed out, this is an evidence of
the spurious break phenomenon in structural models. When a long memory com-
ponent dominates the series, the estimation of the probability of the shifts tries to
capture the persistent process by overestimating the number of shifts.

The results described above are very similar across alternative realized estima-
tors with non-stationary estimation of d in the ARFIMA models, stationary long
memory estimated parameters in the ARFIMA with shift component for p=1 and
q=0 and p=0 and q=1. Moreover, the estimated probability of shifts is very high
or non significant. These two patterns suggest the presence of a truly long mem-
ory process. Last, the non-stationary values of d are not a problem for Beran’s
procedure and we think that these results are consequence of a large shift present
at the end of the series.

After the in-sample analysis and in order to evaluate the performance of the
different models, the out-of-sample forecasts are obtained using three different
specifications® for the ARFIMA and the ARFIMA with shift component models,
they are the (0,d,0), (1,d,0) and (1,d,0).

3.9 Trading results

We start analyzing the number of transactions for the three different possible
strategies, the buying, selling and the buying and selling, for the different estima-
tors and models and the length of the confidence intervals for the IV 2% measure of
market volatility expectation. Long positions are not taken by the investor except
for two trades for some of the estimators in 208 weeks (less than 1%). This result
implies that the models are not able to capture periods of high volatility i.e. the
lower limit of the forecasted confidence intervals is always smaller than the Black-
Scholes implied volatility. For the selling strategy positive profits are obtained for
the alternative confidence interval. An alternative and natural measure for the
market expectation would be the VIX, however, and as we said this model-free
implied volatility index is obtained for options with a different time to expiration
and it reflects the market beliefs over the next 30 day period.

The number of transactions for the short positions vary across the alternative
estimators and between the two different forecasting models. Table 3.3 displays the
mean return, standard deviation and the number of trades for the selling strategy
for the full trading period and the ARFIMA(0,d,0) and ARFIMA(0,d,0) with shift
models and where the expected level of volatility is compared with the IV 5. At
the 99% and for the strategies based on the ARFIMA model the minimum number
of transactions is four, which is the same for the ARFIMA with shift specification,
in both cases for the RVE!'™ estimator. The maximum number of trades is very
different accross models and it is equal to 15 and 30 respectively. In general, the

5We do not consider the (1,d,0) specification since it seems to have a common root and it
results in convergency problem during the mazimization.
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strategies based on the realized range estimators produce more trade than the one
associated to returns. Moreover, for the 95% and 90% confidence interval, the
trades range from 16 to 68 and from 24 to 81. In 208 weeks, this represents a
maximum of one trade every two and a half weeks.

First, to evaluate the performance of the estimators and the time series models,
we consider the mean return. At the 99% interval, almost all the estimators
produce positive mean return with weekly means ranging from -0.18% to 3.79%
and different standard deviations, which implies an economic difference in their
performance. When the confidence intervals become narrower the returns are
positive for the ARFIMA models while they become negative for the ARFIMA
with shift specification and the standard deviations increase. A thinner confidence
interval produces more trades and eventually it becomes erratic, increasing the
volatility of the profits. In addition, at the 90% interval, the standard deviation
for the models with shift are higher. The maximum mean return is produced by the
RRVBVBESM egtimator and the ARFIMA(0,d,0) with random level shift model.
Table 3.4 shows the results for the ARFIMA (1,d,0) and ARFIMA(1,d,) with
shifts. The number of trades is higher while the mean returns are similar to the
previous models and to the (0,d,1) specification, not reported in the table. Since
the performance of the different autoregressive and moving average specifications
are very similar, we concentrate on the result for the (0,d,0) case.

Secondly, considered the high volatility of the weekly returns, we decided to
introduce static delta-hedging. A reduction in the return and in the standard
deviation is expected as a consequence of the cost of the implementation of the
hedge and because of the diminution of the risk associated with price changes. Ta-
ble 3.5 displays mean absolute returns for the selling strategies (with and without
hedge). For the 99% interval, the reduction in the standard deviation is small, on
the contrary, in some cases there is a significant increment in the variability of the
profits with respect to the no hedged strategy and the returns become negative.

Thirdly, we present the results of the dynamic investment. As we said, the in-
vestor starts with an initial wealth of $100, 000 and at each trading week he invests
up to 20% of the accumulated capital. The variability of the different strategies
is displayed in figure 3.3 with the evolution of the capital. Table 3.6 presents
the results for the no hedged strategies. The annualized returns for the different
trading rules range from negative to positive values implying a very different per-
formance across estimators and different model specifications. Similar to the mean
returns, the estimator and model that produces the highest annualized return is
the RRVBVBCSm an estimator based on the range and robust to the presence of
noise and jumps in the price process, and the ARFIMA(0,d,0) with shift model
and it is equal to 43,5%. The associated Sharpe Ratio is 1.66. The last one is also
the highest. The performance of estimators based on the returns is also among
the more profitable strategies. When we consider narrower confidence intervals,
the annualized returns decline and become negative. At the 95% level, almost
all the estimators and models result in negative accumulated returns. Table 3.7
displays the result of the introduction of the delta-hedging (ate the 99% level).
As discussed before, hedged strategies show smaller returns and lowers than the
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10%. Associated SR ratios are also smaller compared to the non hedged strategies.
Then, the reduction in the standard deviation is proportionally higher than the
reductions in the returns. For some estimators there is a considerable reduction
in the number of weekly losses.

An interesting point is that the considered period includes the 2008-2009 fi-
nancial crisis. During this period and in a few weeks most of the strategies suffer
big losses (see figure 3.3). Table 3.8 presents mean returns for the trades car-
ried out during the period before the financial crisis, until September 2008 and
for 150 weeks. Mean returns are positive for the different confidence intervals
and as we expected considerably higher than for the full sample period. At the
99% confidence interval, the returns range from 0.41% to 3.9% and the number of
trades between 4 and 19. Interestingly, when the strategies are based on narrower
confidence intervals, mean returns are still positive. At the 92% confidence inter-
val, RRVBVBCS5m produces a 5.01% weekly return and at the 90% level, we have
weekly returns equal to 4.43%, 4.91% and 4.94% for three different estimators,
the RVEVS™ the RRVBVBCS™ and the RVEY:'™ and the forecast obtained with
the ARFIMA(0,d,0) model. The maximum mean return is obtained with almost 1
trade every 3 weeks. The dynamic investment exercise reflects the previous result
(see table 3.9). The maximum annualized return is obtained with the 92% confi-
dence interval. The RRV BVBC5m produces 65% annualized returns with a Sharpe
ratio equal to 1.38. At the 99% we obtain higher values for the SR but with smaller
returns and equal to 49.8% for the same estimator and the ARFIMA(0,d,0) with
shift forecasts.

Finally, table 3.10 displays the performance of the strategies based on the
(1,d,0) specification for the two models and the 90% interval. The annualized
returns are similar to the previous specification. The introduction of the delta
hedge reduces the annualized return but differently to the case of the full trading
sample, the Sharpe ratios do not decrease suggesting a reduction in the volatility
of the profits. Audrino and Colangelo (2009) construct trading strategies using
predicted option returns with one month call and put options. They obtained
returns of 56% with 50% standard annualized deviation for a period between 2002
and 2006. Similarly, the performance of our strategy produce high and positive
annualized return. Despite the annualized returns for the trades carried out before
the crisis are higher than the profits for the trades in the full sample period, the
estimators that result in highest annualized profit are the same. These estimators
are based on the range and corrected for the presence on noise and jumps. The
performance of the different models for forecasting seems to be less important than
the choice of the estimator.

3.10 Conclusions

In this Chapter, we have analyzed the economic performance of different re-
alized estimators of volatility and of alternative time series forecasting models.
Speculating on the future level of the volatility, we have defined a buy-and-hold
option trading strategy that was implemented with weekly options based on the
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S&P 500 and traded at the Chicago Board Options Exchange (CBOE) for the
period between October 2005 and October 2009.

We have constructed volatility series with estimators related to the realized
volatility and to the realized range volatility. In particular, the estimators con-
sidered are robust to the presence of microstructure noise and jumps in the price
process. We have obtained one-step-ahead rolling forecasts with ARFIMA mod-
els. Moreover, to account for the possibility of confusing long memory process and
structural breaks, we have considered the ARFIMA model with random level shift
component, recently introduced in the literature by Varneskov and Perron (2011)
and Grassi and Santucci de Magistris (2011).

We find that some estimators for the volatility of the underlying asset and some
time series models generate high positive mean and annualized profits. The esti-
mator based on the range and corrected for noise and jumps produces the highest
returns, when they are modeled by the ARFIMA model. Based on the returns
obtained through the different strategies, the choice of the realized estimator for
the volatility seems to be more important than the specification of the model
that tends to work better in prediction of low volatility than high volatility, since
only our strategy that speculates in lower future volatility is implemented by the
investor.

Finally, in order to simulate a possible real situation we implement a dynamic
investment exercise, where the investor is allowed to invest only the 20% of his
wealth. Despite the limited profit of our short straddle strategy, the models that
better perform produce a mean annual return of 65%, associated to a Sharpe ratio
of 1.38.

Future steps are the introduction of other corrected estimators of the volatility
for the presence of microstructure noise and jumps in the price process. Moreover
the introduction of non-Normal distribution for the innovation and a GARCH term
in the models may result in an improvement of the confidence interval estimation
as suggested by Corsi, Mittnik, Pigorsch, and Pigorsch (2008). Last, in order to
optimize the trading decision, an maximization of the profit based on the confi-
dence interval and alternative estimators for the volatility risk premium should be
consider.
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Table 3.1: Descriptive statistic and Semiparametric estimation of d

Daily

m=0.5 m=0.7
Mean St.Dev Skew Kurt gannual dgph dw dgph dw
RY1Im —9.398 0.918 0.667 3.772 16.258% 0.66 0.66 0.69 0.63
RV5™ —9.519 0.961 0.520 3.621 15.436% 0.65 0.64 0.65 0.59
Ry BV:Im —9.595 0.888 0.829 4.383 14.670% 0.58 0.60 0.65 0.62
Ry BVsm —9.611 0.969 0.536 3.635 14.782% 0.65 0.62 0.66 0.59
Ry KAm —9.573  0.987 0.517 3.675 15.138% 0.63 0.63 0.64 0.57
RV K5m —9.675 1.022 0.396 3.642 14.495% 0.64 064 060 0.55
Ry TSim —9.484 0.952 0.528 3.681 15.674% 0.64 064 0.66 0.60
Ry TS5m —9.704 1.023 0.449 3.612 14.306% 0.60 0.63 0.59 0.54
RRVIm —9.489 0.906 0.493 3.470 15.435% 0.66 0.65 0.69 0.63
RRV®™ —9.439  0.907 0.600 3.759 15.861% 0.65 0.64 0.68 0.62
RRVBCIm —9.471  0.903 0.622 3.416 15.584% 0.68 0.68 0.65 0.63
RRyBCSm —9.445 0.884 0.713 3.891 15.747% 0.65 0.65 0.68 0.63
RRVBVEBCIm —9.649 0.887 0.660 3.720 14.214% 0.62 063 062 0.61
RRVBVBC5m —9.529 0.880 0.740 3.973 15.093% 0.65 0.64 0.69 0.63

Weekly
m=0.5 m=0.7

Mean St.Dev Skew Kurt gornual dgph  dw dgph dw

RV1Im —7.787 0.888 0.666 3.658 16.226% 0.67 0.64 0.65 0.61
RV®™ —7.889  0.910 0.550 3.559 15.477% 0.67 0.62 0.61 0.59
Ry BV:Am —7.987 0.857 0.860 4.405 14.625% 0.67 0.61 0.57 0.59
Ry BV:Sm —7.980 0.915 0.570 3.617 14.818% 0.69 062 0.63 0.59
Ry KAm —7.927 0919 0.596 3.644 15.236% 0.65 0.61 0.59 0.58
Ry K:5sm —8.003 0.919 0.564 3.733 14.666% 0.67 0.62 0.59 0.59
RyTSm —7.862 0.906 0.580 3.609 15.686% 0.67 062 063 0.61
RyTS5m —8.033 0.924 0.597 3.676 14.471% 0.64 0.61 0.57 0.57
RRVIm —7.888 0.879 0.497 3.399 15.350% 0.64 0.60 0.60 0.61
RRV®™ —7.831 0.873 0.618 3.711 15.806% 0.65 0.61 0.61 0.60
RRVBCAm —7.858 0.860 0.654 3.430 15.538% 0.60 0.59 0.59 0.61
RRVBCHm —7.839 0.851 0.731 3.863 15.683% 0.64 061 061 0.61
RRVBVECIm —8.030 0.837 0.710 3.790 14.199% 0.57 0.55 0.58 0.57
RRVBVBCSm —7.925 0.848 0.767 4.021 15.016% 0.68 0.62 0.63 0.61

Note: Descriptive statistics for the logarithmic daily and weekly volatility series and estimation of the d parameter
with alternative semiparametric methods. ¢@""%4! js the mean annualized volatility in percentage terms. dgph
is the GPH estimator and dw is the LW estimator. Total number of observations is 721 for the weekly series.
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Figure 3.2: Perron and Qu (2010) test

75

Note: t-statistic for the Perron and Qu (2010) test for spurious long memory as function of m = T® with

1/2 < a < 1/3 and b = 4/5. Total number of observations is 721 for the weekly series.
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Table 3.2: Estimation results for the RV1™ and RV°™ weekly series

loglik

a

0.566
(0.056)

0.133
(0.013)
0.176®
(0.070)
0.305°
(0.110)
-405.02

a

0.563*
(0.057)

0.1722
(0.018)
0.176°
(0.099)
0.248°
(0.128)
-459.22

b

0.4432
(0.137)
0.138
(0.128)

0.129
(0.014)
0.210°
(0.087)
0.266*
(0.097)
-404.22

b

0.420°

(0.124)
0.164

(0.117)

0.169*
(0.020)
0.231¢
(0.119)
0.197¢
(0.100)
-457.90

C

0.465
(0.101)

0.118
(0.089)
0.130°
(0.014)
0.207°
(0.084)
0.267*
(0.097)
-404.20

C

0.439°
(0.094)

0.148°
(0.082)
0.169*

(0.020)
0.231¢

(0.118)
0.197°

(0.099)
45777

vam

d

0.324
(0.316)
0.487
(0.415)
—0.239
(0.246)
0.1282
(0.015)
0.219P
(0.093)
0.2592
(0.094)
-404.15

e

0.656
(0.031)

0.191°
(0.010)

-426.63

RV™

d

0.664*
(0.100)
0.874%
(0.112)

—0.9632
(0.044)
0.168*
(0.021)
0.242°
(0.119)
0.191°
(0.097)
-457.58

e

0.632°
(0.031)

0.2222
(0.011)

-480.91

f

0.600°

(0.052)
0.085

(0.066)

0.190°
(0.010)

-425.74

0.5712
(0.052)
0.093
(0.065)

0.2212
(0.011)

-479.84

g

0.605
(0.046)

0.080
(0.057)
0.190°
(0.010)

-425.73

0.575°
(0.045)

0.090
(0.057)
0.2212
(0.011)

-479.79

h

0.710%
(0.070)
0.8872
(0.117)

—0.9212
(0.082)
0.190°
(0.010)

-426.03

h

0.580°
(0.065)
—0.064
(0.883)
0.150
(0.837)
0.2212
(0.011)

-479.76

Estimation results for the ARFIMA(p,d,q) with random level shift model (column a-d) and
ARFIMA(p,d,q) model (column e-h) for the weekly logarithmic series of volatility.

significance at the 1%, 5% and 10%. 721 observations

non

a", "b" and "c¢" indicate
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Table 3.3: Mean returns and standard deviation I - Selling strat. - Full sample -
No hedge

99 95 90
Est. Model RT(%) Std Sell RT(%) Std Sell RT(%) Std Sell
RV (0,d,0) 2.78% 0.155 11  0.14% 0296 34 —1.43% 0.347 51
RV (0,d,0) 2.26% 0.154 11 —0.79% 0.330 46 0.91% 0.375 64
RYBV:im (0,d,0) 2.60% 0.166 16  0.56% 0.318 46  3.06% 0.393 74
RV BV:5m (0,d,0) 281% 0271 24  040% 0372 60 2.78% 0.417 87
Ry KAm (0,d,0) 0.72% 0218 9  045% 0.288 35 0.84% 0.372 63
RV K5m (0,d,0) 0.58% 0214 9 —0.56% 0331 41 1.68% 0.384 70
RyTSIm (0,d,0) 1.38% 0.233 13 0.38% 0303 44 0.66% 0.378 64
RyTS5m (0,d,0) 0.29% 0214 10 —0.78% 0.327 40 1.94% 0.382 69
RRV™ (0,d,0) -0.38% 0306 35 1.97% 0384 74 251% 0401 85
RRV®™ (0,d,0) 2.66% 0.167 14 —0.68% 0330 45 253% 0.373 66
RRVBCAm (0,d,0) -0.60% 0267 19 0.18% 0354 54 0.89% 0.382 73
RRVBCHm (0,d,0) 2.19% 0.151 11  0.37% 0313 42 1.17% 0.361 57
RRVBVECIm —((),d,0) —0.87% 0288 35 147% 0389 78 0.80% 0.403 85
RRVBVBCSm () d,0) 241% 0261 22 —0.18% 0.363 56 3.37% 0.402 83
RV (0,d,0)s 1.48% 0126 7 220% 0204 28 —1.41% 0.343 47
RV (0,d,0)s 1.92% 0.147 10 1.51% 0233 34 —1.10% 0.354 55
RYBV:im (0,d,0)s 2.39% 0154 12 0.02% 0310 40 1.56% 0.379 61
RYBVsm (0,d,0)s 2.62% 0180 17 —0.12% 0.364 55 0.30% 0.395 73
Ry K1m (0,d,0)s 0.35% 0.083 4  0.79% 0273 26 —1.39% 0.337 47
RV K5m 0,d,0s  —0.18% 0.198 7 —0.34% 0.300 30 —0.00% 0.352 53
Ry TS1m (0,d,0)s 1.92% 0.147 10 0.72% 0.284 37 —1.76% 0.346 51
RYyTS5m (0,d,0)s 1.18% 0113 7 —029% 0.299 30 —0.18% 0.353 54
RRVI™ (0,d,0)s 1.40% 0.230 30 0.45% 0354 61 2.14% 0391 79
RRV®™ (0,d,0)s 1.86% 0.144 10 1.20% 0.252 36 —0.42% 0.346 51

RRyBCAm (0,d,0)s 1.45% 0.184 17 —0.29% 0.316 47 —0.16% 0.374 68
RRYBCSm (0,d,0)s 1.12%  0.123 8 —0.25% 0.309 38 —0.71% 0.344 49
RRVEVEGIm ((),d,0)s 0.56% 0.226 30 0.89% 0.372 68 1.02% 0.399 81
RRVBVBCSm —((.d,0)s 3.79% 0181 19 —0.96% 0.354 51 1.82% 0.381 72

Note: Mean returns (weekly) and standard deviation for the IVZS and different confidence
intervals. sell is the number of weeks with short positions. We have in total 208 weeks of
trading. First part of the table corresponds to the ARFIMA (p,d,q) model while the second part
to the ARFIMA (p,d,q) with level shift component.
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Table 3.4: Mean returns and standard deviation II - Selling strat. - Full sample -
No hedge

99 95 90
Est. Model RT(%) Std Sell RT(%) Std Sell RT(%) Std Sell
RV (1,d,0 2.78% 0.155 11  0.13% 0.300 36 —0.54% 0.355 54
RV5™ (1,d,0 2.26% 0.154 11 —0.18% 0.313 46  0.79% 0.376 66
Ry BV:Am (1,d,0 2.35% 0.193 18 —0.24% 0.337 48 2.67% 0.396 76
RV BVSm (1,d,0 2.19% 0278 24 1.31% 0382 66 2.90% 0417 88
Ry K1m (1,d,0 0.72% 0218 9  1.06% 0292 38 0.78% 0.383 67
RV K5m (1,d,0 0.14% 0204 8 —0.20% 0333 44 1.75% 0385 70

)
)
)
)
)
RyTSm (1,d,0) 1.38% 0233 13 0.39% 0307 45 047% 0.387 68
RYTS5m (1,d,0) 0.52% 0211 9 —0.27% 0.330 43 143% 0.390 72
RRV™ (1,d,0) —0.76% 0.308 36 1.82% 0386 74 2.40% 0.400 85
RRV™ (1,d,0) 3.01% 0168 14 —1.19% 0337 48 2.02% 0.373 67
RRVBCIm (1,d,0) —0.68% 0267 20 0.18% 0356 57 1.02% 0.38 75
RRVBCHm (1,d,0) 2.19% 0.151 11 -0.11% 0315 45 0.86% 0.364 61
RRVBVBCIm (1 .4.0) —1.44% 0299 36 0.74% 0381 73 1.21% 0412 88
RRVBVBCSm —(1.d,0) 2.22% 0278 26 0.46% 0371 60 3.34% 0.410 86

RRv5m
RRVBC‘lm
RRvBC,Sm
RRV}-}VBCJM
RRvBVBC.Sm

1,d,0)s 1.86% 0.144 10 -0.23% 0311 39 —0.51% 0.345 51
1,d,0)s 1.16% 0.179 15 —-0.28% 0.316 47 —0.16% 0.374 68
1,d,0)s 1.12% 0123 8 —0.25% 0309 37 —094% 0.339 49
1,d,0)s —-1.40% 0295 32 0.86% 0374 70 1.27% 0.400 83
1,d,0)s 3.08% 0.198 21 —0.81% 0.355 53 2.44% 0387 T4

RVIm (1,d,0)s 1.48% 0126 7 238% 0202 27 —0.73% 0.328 46
RV (1,d,0)s 1.92% 0.147 10 1.47% 0233 33 —1.16% 0.353 55
Ry BV:Am (1,d,0)s 2.39% 0.154 12 —0.17% 0.314 40 1.30% 0.374 62
Ry BVsm (1,d,0)s 2.38% 0.184 18 0.51% 0348 55 042% 0393 71
RV K:1m (1,d,0)s 0.35% 0.083 4  0.34% 0281 27 —1.59% 0.335 46
RV K5m (1,d,0)s  —0.18% 0.198 8 —0.34% 0.300 30 —0.00% 0.352 53
Ry TS1m (1,d,0)s 1.83% 0136 8  037% 0291 36 —1.99% 0.344 50
RYTS5m (1,d,0)s 0.02% 0203 8 —047% 0298 29 —0.54% 0.347 54
RRV™ (1,d,0)s 1.06% 0.227 28 051% 0354 62 229% 0.392 80

(

(

(

(

(

Note: Mean returns (weekly) and standard deviation for the IVES and different confidence
intervals. sell is the number of weeks with short positions. We have in total 208 weeks of
trading. First part of the table corresponds to the ARFIMA (p,d,q) model while the second part
to the ARFIMA (p,d,q) with level shift component.



3.11 Tables and figures

79

Table 3.5: Mean absolute returns and standard deviation - Selling strat. - Full
sample - No hedge vs. Hedge

Est.

RV™

RVsm
RvBV,lm
RvBV,Bm
RvK,lm
RvK,Sm
RvTS,lm
Rv’TS,Sm
RRV'™
RRV™

R RVBC’lm
RRvBij
RRvBVBC,lm,
RRvBVBC,E\m,

RV™

Ry
RvBV,lm
RvBV,Sm
RvK,lm
RvK,Sm
RVTS’lm
Rv’I'S,Sm
RRV'™
RRV™™

R RvBC,lm

R RvBC,5m
RR‘/BVBC,Im
RRvBVBC,Bm,

Model

No hedge
RT(abs) Std
0.984  5.734
0.838  5.702
0.966  5.966
0.606  12.46
-0.005  11.46
-0.064  11.40
0.211 11.83
-0.181  11.33
-0.539  13.11
0.826  5.427
-0479  12.38
0.750  5.292
-0.638  12.73
0.463 1225
0.376  3.343
0.593  4.512
0.713  4.684
0.839  5.509
0.140  2.483
-0.447  10.65
0.593  4.512
0.466  4.495
0.506  6.773
0.505  3.975
0.561  5.703
0.283  3.241
0.204 7.214
1.254  6.184

99

Hedge
RT(abs) Std
0.971  5.678
0.825  5.623
0.938  5.761
-0.099 18.16
-0.473  17.59
-0.569  18.29
-0.242  17.66
-0.663  17.99
-0.663  18.09
0.822  5.319
-0.923  17.56
0.743  5.229
-0.913  18.13
-0.055  17.67
0.355  3.163
0.577  4.373
0.682  4.536
0.759  5.286
0.162  2.586
-0.903  17.39
0.574  4.365
0.491  4.568
0.658  6.439
0.493  3.837
0.553  5.695
0.289  3.228
0.385  6.563
1.148  5.923

No hedge
RT(abs) Std
-0.194  13.01
-0.426  13.66
-0.072  13.44
-0.093  14.52
-0.166  13.14
-0.375  13.72
-0.145  13.33
-0.462  13.62
0.375 1535
-0.434  13.64
-0.365  14.67
-0.190  13.43
0.019 1543
-0.256  14.37
0.800  6.692
0.483  8.098
-0.249  13.26
-0.247  14.32
-0.044  12.53
-0.412  13.20
0.014 1276
-0.381  13.18
-0.180  13.96
0.483  7.866
-0.552  13.41
-0.420  13.32
-0.067  14.66
-0.505  14.15

Hedge
RT(abs) Std
-0.518  17.81
-0.783  18.35
-0.512  18.28
-0.670  19.37
-0.443  18.30
-0.730  19.42
-0.559  18.41
-0.742  19.07
-0.023  19.93
-0.735  18.21
-0.602  19.06
-0.500  18.02
-0.440  20.14
-0.775  19.01
0.946  6.283
0.643  7.146
-0.554  17.78
-0.738  18.84
-0.264  17.37
-0.679  18.66
-0.254  17.44
-0.594  18.40
-0.534  18.38
0.651  7.306
-0.751  17.72
-0.578  17.50
-0.438  19.25
-0.930  18.55

Note: Mean absolute returns (weekly) and standard deviation for the IV 59 and different con-
fidence intervals. sell is the number of weeks with short positions. We have in total 208 weeks
of trading. First part of the table corresponds to the ARFIMA(p,d,q) model while the second
part to the ARFIMA (p,d,q) with level shift component.
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Table 3.6: Dynamic investment - Selling strat. - Full sample - No hedge

99 97 95 92 90

Est. Model An. ret. SR An. ret. SR An. ret. SR An. ret. SR An. ret. SR

RV™ (0,d,0) 30.3% 135 —0.90% —0.02 —-8.90% —0.20 -18.2% —0.39 -25.5% —0.51
RV5™ (0,d,0) 23.5%  1.05  4.61% 011 —194% -0.40 -14.6% -0.28 —6.96% —0.12
Ry BV:Im (0,d,0) 274% 114 —-1.15% —0.02 —6.18% —0.13 —134% —0.25 14.7%  0.26

RV BV:Sm (0,d,0) 225% 057  2.76%  0.06 —11.4% —0.21 -7.90% -0.13 9.25%  0.15

RV K1m (0,d,0) 1.26%  0.04 7.22%  0.19 -532% —0.12 -11.7% —0.22 -7.45% —0.13
RV E5m (0,d,0) -0.05% —0.00 -5.03% —0.12 -17.6% —0.36 —5.50% —0.10 0.16%  0.00
RYTSAm (0,d,0) 7.74% 023 1.81%  0.04 —6.91% —0.15 —274% —0.55 —9.49% —0.17
Ry TS:5m (0,d,0) -3.07% —0.09 —4.79% —0.11 —19.2% —0.40 —125% —0.24 2.96%  0.05
RRV™ (0,d,0) —14.4% -032 -19.9% -040 3.15% 005 7.18%  0.12  7.69%  0.13
RRV®™ (0,d,0) 28.3% 117 1.22%  0.03 —18.5% -0.38 —124% -—0.24 104%  0.19
RRVBCAm (0,d,0) —14.4% —0.37 —-20.6% —0.49 -123% -024 -14.6% -027 -7.70% —0.13
RRV BC5m (0,d,0) 22.8% 1.04 411% 010 —7.74% —0.17 -171% —0.34 —-3.28% —0.06
RRVBVBCIm (0 d,0) -17.7% -0.42 -104% —0.19 -2.45% —0.04 —-1.97% -0.03 -10.0% -0.17

RRVBVECS S —(().d,0) 18.0% 047 —-458% —0.10 -162% -0.31 18.7% 0.32 17.7% 0.30

Rym (0,d,0)s 148% 081 21.3% 093 205%  0.69 —10.1% —023 -252% —0.51
RV (0,d,0)s 195% 092  402% 153 105% 031 —23.9% —048 —234% —0.45
RV BVIm (0,d,0)s 25.2% 113 294%  1.01 -109% -024 -20.2% -—0.39 -0.66% —0.01
Ry BV:Sm (0,d,0)s 27.0%  1.03  1.58%  0.03 -157% —0.30 -13.1% —0.23 -14.1% —0.24
Ry Kim (0,d,0)s 3.00% 025 29.2% 119 —0.96% —0.02 -164% —0.36 —24.8% —0.51
RV K5m (0,d,0)s -7.26% —0.25 14.1% 039 -13.7% -0.31 —204% -—041 -13.9% -0.27
Ry TS1m (0,d,0)s 19.5% 092  263% 1.04 —231% -0.05 -9.99% —0.22 -28.0% —0.56
Ry TSsm (0,d,0)s 11.6% 070 2.82% 007 —131% —0.30 —242% —049 —156% —0.30
RRV'™ (0,d,0)s 9.24% 027 -25.0% —0.52 -9.88% —0.19 -2.61% —0.04 4.40%  0.07
RRV®™ (0,d,0)s 189% 090 181% 067 573% 015 —21.1% —0.42 -172% —0.34
RRVBCIm (0,d,0)s 11.9% 045 —0.26% —0.00 —14.2% —0.31 —5.67% —0.11 -16.8% —0.31
RRVBCHm (0,d,0)s 10.7%  0.60  243% 090 —134% -0.30 -21.6% —045 —19.5% —0.39
RRVBVBCIm —((.d.0)s 0.23%  0.00 -17.7% -0.36 -6.91% -0.12 -3.91% -0.06 —7.67% —0.13
RRVBVBCSm (0.d,0)s 43.5% 166 —9.16% —0.20 -—222% -—043 -9.18% —0.17 1.89%  0.03

Note: Annualized mean returns for the dynamic investment allocation for the IV 3% and different
confidence intervals. SR is the Sharpe Ratio. We have in total 208 weeks of trading. First part of
the table corresponds to the ARFIMA (p,d,q) model while the second part to the ARFIMA (p,d,q)
with level shift component.
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Table 3.7: Dynamic investment - Selling strat. - Full sample - No hedge vs. Hedge

99
No hedge Hedge
Est. Model Week g. Week 1. An. ret. SR Week g. Week 1. An. ret. SR
RyIm (0,d,0) 10 1 30.3%  1.35 10 1 8.83%  0.69
RV5™ (0,d,0) 9 2 23.5%  1.05 9 2 7.01% 055
Ry BV:im (0,d,0) 12 4 27.4%  1.14 14 2 7.62%  0.61
RV BV:sm (0,d,0) 18 6 22.5%  0.57 19 5 553%  0.41
Ry KAm 0,d,0 7 2 1.26%  0.04 7 2 2.29%  0.20
Ry Hom Eo,d,0§ 7 2 —0.05% —0.00 7 2 2.4407[0 0.21
Ry TSAm (0,d,0) 10 3 7.74%  0.23 10 3 4.73% 035
RyTS5m (0,d,0) 7 3 -3.07% —0.09 7 3 1.06%  0.09
RRV'™ (0,d,0) 20 15 —14.4% —0.32 25 10 -0.15% —0.01
RRV®™ 0,d,0 11 3 28.3%  1.17 12 2 4.70%  0.45
RRVBCAm Eo;dp; 12 7 714.45/0 —0.37 13 6 72.515% -0.17
RRVBCSm (0,d,0) 9 2 22.8%  1.04 9 2 4.00%  0.38
RRVBVECIm —(().d,0) 18 17 —17.7% —0.42 27 8 1.81%  0.12
RRVBVBCsm —(0.d,0) 17 5 18.0% 047 18 4 7.09%  0.52
RV1™ (0,d,0)s 6 1 14.8%  0.81 6 1 —0.96% —0.18
RV5™ (0,d,0)s 8 2 19.5%  0.92 2 331% 032
Ry BV:Im (0,d,0)s 10 2 25.2%  1.13 10 2 3.80%  0.38
Ry BV:Sm (0,d,0)s 4 27.0%  1.03 14 3 3.23% 032
Ry f1m (0,d,0)s 3 1 3.00% 025 1 0.11%  0.01
Ry K5m (0,d,0)s 5 2 -7.26% —0.25 5 2 —1.63% —0.20
RyTSAm (0,d,0)s 8 2 19.5%  0.92 8 2 3.25%  0.32
RYTS5m (0,d,0)s 6 1 11.6%  0.70 6 1 4.08%  0.40
RRVIm (0,d,0)s 18 12 9.24% 027 23 7 2.28%  0.16
RRV®™ (0,d,0)s 8 2 18.9%  0.90 8 2 0.33%  0.04
RRVBCGAm (0,d,0)s 13 4 11.9%  0.45 14 3 1.33%  0.10
RRVBC5m (0,d,0)s 6 2 10.7%  0.60 6 2 —0.33% —0.04
RRVBVECIm (0 d.0)s 17 13 0.23%  0.00 25 5 4.10%  0.30
RRVBVECS™ (0 d,0)s 16 3 43.5%  1.66 17 2 9.63%  0.77

Note: Annualized mean returns for the dynamic investment allocation for the IV and different
confidence intervals. SR is the Sharpe Ratio. Week g. and Week [. are the number of weekly
gains and losses. We have in total 208 weeks of trading. First part of the table corresponds to the
ARFIMA (p,d,q) model while the second part to the ARFIMA(p,d,q) with level shift component.
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Table 3.8: Mean returns and standard deviation I - Selling strat. - Before crisis -
No hedge

99 95 90
Est. Model RT(%) Std Sell RT(%) Std Sell RT(%) Std Sell
RV™ (0,d,0) 2.42% 0150 9  2.81% 0.193 18 1.17% 0253 27
RVO™ (0,d,0) 2.08% 0.143 8  2.19% 0.227 23  290% 0282 35
Ry BVAm (0,d,0) 2.64% 0.152 10 2.72% 0.222 24 4.94% 0.301 43
RV BV:Sm (0,d,0) 390% 0210 19 2.81% 0283 35 4.43% 0.331 50
Ry Kdm (0,d,0) 1.38% 0127 6  3.22% 0.197 21 3.38% 0.287 37
Ry K5m (0,d,0) 1.66% 0.132 7 265% 0236 24 441% 0.300 41
Ry TS1m (0,d,0) 2.42% 0.150 9 2.54% 0.213 23  3.20% 0.286 37
Ry TS5m (0,d,0) 1.14% 0113 6 2.17% 0227 23 4.13% 0.284 38
RRV™ (0,d,0) 217% 0.183 15 3.53% 0.268 34 4.30% 0.287 42
RRV®™ (0,d,0) 2.52% 0155 9 1.92% 0.225 22 4.12% 0270 34
RRVBC1m (0,d,0) 1.10% 0.145 9  2.82% 0.241 24 2.79% 0.267 33
RRV BCom (0,d,0) 2.01% 0140 8 2.97% 0.194 20 3.43% 0262 31
RRVBVBCIm (0 d,0) 1.73% 0.167 14 3.00% 0270 35 3.56% 0.276 38
RRVBVECS™ —((,d,0) 3.32% 0190 15 2.11% 0.269 31 491% 0.310 47
RV™ (0,d,0)s 1.29% 0123 6 281% 0.193 18 1.16% 0.247 25
RV (0,d,0)s 2.08% 0.143 8 2.75% 0.197 20 1.13% 0.256 31
Ry BVAm (0,d,0)s 242% 0.150 9 2.49% 0.211 22 3.39% 0284 33
Ry BV:Sm (0,d,0)s 2.89% 0.182 15 2.93% 0282 34 280% 0.309 44
RV KAm (0,d,0)s 0.41% 0.090 4 281% 0.189 16 1.39% 0.241 26
Ry K:5m (0,d,0)s 1.14% 0.113 6  2.00% 0221 19 295% 0.262 32
Ry TS1m (0,d,0)s 2.08% 0143 8 3.01% 0.199 21 1.01% 0.255 30
RYTS5m (0,d,0)s 1.00% 0.112 6  2.22% 0219 18 2.88% 0.263 32
RRV™ (0,d,0)s 217% 0.183 15 1.05% 0.232 24 3.74% 0275 38
RRV®™ (0,d,0)s 2.01% 0.140 8  2.59% 0.191 17 1.73% 0240 26
RRyBCAm (0,d,0)s 1.67% 0124 9 234% 0.190 20 2.26% 0.260 31
RRV BC5m (0,d,0)s 1.14% 0.113 6 2.58% 0.191 18 1.49% 0.237 24
RRVBVBCIm ((.d,0)s 1.42% 0.162 13  2.65% 0.262 31 3.44% 0.276 37
RRVBVBCSm (0.d,0)s 3.58% 0170 13 1.82% 0.265 28 3.09% 0.285 40

Note: Mean returns (weekly) for the the IV and different confidence intervals. sell is the
number of weeks with short positions. We have in total 150 weeks of trading. First part of the
table corresponds to the ARFIMA (p,d,q) model while the second part to the ARFIMA(p,d,q)
with level shift component.
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Table 3.9: Dynamic investment - Selling strat. - Before crisis - No hedge

19.5% 0.74 334% 088 31.9% 075 389% 0.89 40.6% 0.93
43.7% 146 31.3% 089 182% 043 65.0% 1.38 61.9% 1.27

R RvBVBC, 1im
R RvBVBC,Sm

99 97 95 92 90

Est. Model An. ret. SR An.ret. SR An.ret. SR An.ret. SR An.ret. SR
RVIm (0,d,0) 311% 132 31.0% 1.05 34.9% 1.15 23.0% 067 6.44% 0.16
RV™ (0,d,0) 26.0% 116 349% 115 225% 0.63 17.3% 043 29.1% 0.66
RV BVAm (0,d,0) 34.4% 144 341% 1.09 31.5% 0.90 18.4% 043 63.5% 1.34
RV BV:5m (0,d,0) 53.0% 1.61 482% 1.33 27.7% 0.62 31.5% 0.64 50.1% 0.96
Ry KAm (0,d,0) 16.2% 081 33.0% 1.12 41.6% 135 33.6% 0.80 36.5% 0.81
RV K5m (0,d,0) 201% 0.96 32.7% 1.08 29.0% 0.78 459% 1.06 53.5% 1.14
RyTSIm (0,d,0) 31.1%  1.32 34.8% 115 292% 087 4.16% 0.10 33.6% 0.75
Ry TS5m (0,d,0) 133% 074 331% 112 222% 062 284% 0.69 50.0% 1.12
RRVm (0,d,0) 25.3% 0.88 247% 0.06 409% 097 51.9% 120 52.8% 1.17
RRV™ (0,d,0) 324% 133 314% 1.04 186% 0.52 21.7% 0.55 51.1% 1.21
RRVBCIm (0,d,0) 11.4% 050 16.1% 0.60 31.5% 083 23.0% 0.56 28.8% 0.68
RRVBCHm (0,d,0) 25.0% 114  33.0% 112 374% 1.23 16.5% 042 39.6% 0.96

(0.d,0)

(0.d,0)

RV'™ (0,d,0)s 15.0% 0.77  31.2% 1.33  34.9% 115 29.2% 091 6.55% 0.16
RV5™ (0,d,0)s 26.0% 116 49.8% 1.83 338% 1.09 11.0% 029 5.65% 0.14
Ry BV:im (0,d,0)s 31.1% 132 38.7% 1.29 28.5% 0.86 124% 0.30 37.0% 0.83
RYBVSm (0,d,0)s 37.0% 1.29 47.1% 133 29.7% 0.67 21.6% 046 24.9% 0.51
Ry 1m (0,d,0)s 418% 029 342% 135 353% 1.19 333% 108 10.0% 0.26
Ry Ksm (0,d,0)s 13.3% 0.74 438% 1.63 201% 058 17.5% 044 31.7% 0.77
RyTS1m (0,d,0)s 26.0% 116 40.7% 152 378% 121 28.7% 083 4.16% 0.10
RY/TS5m (0,d,0)s 11.3% 0.64 20.0% 073 236% 068 10.0% 0.26 304% 0.73
RRV'™ (0,d,0)s 25.3% 0.88 10.3% 030 6.20% 0.17 21.7% 0.54 43.9% 1.01
RRV™ (0,d,0)s 25.0% 114 26.8% 095 31.5% 1.05 10.2% 027 148% 0.39
RRYBCAm (0,d,0)s 204% 105 195% 0.74 275% 0.92 33.8% 0.89 21.2% 0.51
RRVBCHm (0,d,0)s 13.3% 074 26.8% 095 31.3% 1.04 15.7% 044 11.7% 0.31
RRVBVECIm (0.d,0)s 15.3% 0.60 185% 053 27.0% 0.65 31.9% 0.75 38.6% 0.89
RRVBVECSm ((.d,0)s 49.8% 1.87 325% 094 144% 034 263% 0.61 31.9% 0.71

Note: Annualized mean returns for the dynamic investment allocation for the IV and different
confidence intervals. SR is the Sharpe Ratio. We have in total 150 weeks of trading. First part of
the table corresponds to the ARFIMA (p,d,q) model while the second part to the ARFIMA (p,d,q)
with level shift component.
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Table 3.10: Dynamic investment I - Selling strat. - Before crisis - No hedge vs.
Hedge

90
No hedge Hedge
Est. Model Week g. Week 1. An. ret. SR Week g. Week 1. An. ret. SR
RV'm (1,d,0) 19 10 16.0% 0.38 21 8 6.97%  0.47
RVo™ (1,d,0) 24 12 29.6%  0.67 26 10 13.3% 0.83
RYBV:.im (1,d,0) 29 13 57.9% 1.24 32 10 17.4%  1.08
Ry BVm (1,d,0) 34 17 52.6%  1.01 36 15 21.8% 1.26
Ry K1m (1,d,0) 26 12 43.8% 0.95 28 10 18.2%  1.03
Ry &:5m (1,d,0) 27 13 49.0%  1.05 29 11 18.2%  1.04
Ry TSAm (1,d,0) 24 13 33.6% 0.75 26 11 15.8%  0.90
Ry TS5m (1,d,0) 26 12 53.4%  1.18 28 10 21.0% 1.23
RRV™ (1,d,0) 28 14 50.5% 1.13 31 11 23.1% 1.32
RRV™ (1,d,0) 24 11 41.6% 0.98 27 8 21.3%  1.23
RRVBCAm (1,d,0) 22 11 28.8%  0.68 25 8 14.8% 1.01
RRVBCm (1,d,0) 22 9 35.5%  0.87 25 6 16.8%  1.05
RRVBVECIm —(1.4,0) 27 14 47.7%  1.04 30 11 28.2%  1.43
RRVBVBCSm —(1.4,0) 32 16 64.2%  1.32 35 13 24.7%  1.40
RYm (1,d,0)s 16 8 19.6%  0.56 18 6 8.90%  0.64
RVo™ (1,d,0)s 19 12 10.0% 0.24 21 10 5.71%  0.39
RV BV:Im (1,d,0)s 24 11 38.7%  0.87 26 9 9.21%  0.63
RV BVm (1,d,0)s 27 15 20.5%  0.43 29 13 8.95%  0.63
Ry KAm (1,d,0)s 17 10 11.0%  0.29 19 8 7.81%  0.54
RV K5m (1,d,0)s 22 10 3L.7%  0.77 24 8 15.0%  0.95
Ry TSim (1,d,0)s 18 12 4.16%  0.10 20 10 4.37%  0.30
Ry TS5m (1,d,0)s 20 11 22.9%  0.57 22 9 13.0% 0.83
RRV™ (1,d,0)s 25 13 43.9%  1.01 28 10 23.4% 130
RRV™ (1,d,0)s 17 9 14.8%  0.39 19 7 821%  0.57
RRVBCAm (1,d,0)s 20 11 21.2%  0.51 23 8 10.2%  0.79
RRVBCm (1,d,0)s 17 8 15.0%  0.40 19 6 8.58%  0.58
RRVBVECIm (1 d.0)s 25 13 40.6% 0.93 28 10 21.9%  1.29
RRVBVECS™ (1.d.0)s 28 13 46.2%  1.00 30 11 15.9% 0.9

Note: Annualized mean returns for the dynamic investment allocation for the IV 25 and different
confidence intervals. SR is the Sharpe Ratio. Week g. and Week [. are the number of weekly
gains and losses. We have in total 150 weeks of trading. First part of the table corresponds to the
ARFIMA (p,d,q) model while the second part to the ARFIMA (p,d,q) with level shift component.
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Table 3.11: Dynamic investment II - Selling strat. - Before crisis - No hedge vs.
Hedge

92
No hedge Hedge

Est. Model Week g. Week 1. An. ret. SR Week g. Week 1. An. ret. SR
RVm (0,d,0) 16 8 23.0%  0.67 18 6 10.8%  0.85
RV (0,d,0) 19 11 17.3%  0.43 21 9 11.2%  0.74
Ry BVAm (0,d,0) 19 10 18.4%  0.43 21 8 5.94%  0.42
Ry BVom (0,d,0) 29 15 31.5%  0.64 30 14 13.8%  0.89
Ry K1m (0,d,0) 20 10 33.6%  0.80 22 8 18.0%  1.05
Ry K:5m (0,d,0) 24 9 45.9%  1.06 26 7 21.3% 125
Ry TS1m (0,d,0) 18 12 4.16%  0.10 20 10 4.25%  0.29
RyTS5m (0,d,0) 21 11 28.4%  0.69 23 9 14.6%  0.94
RRVI™ (0,d,0) 26 12 51.9%  1.20 29 9 23.3% 133
RRV5™ (0,d,0) 18 8 21.7%  0.55 20 6 12.2%  0.78
RRVBGIm (0,d,0) 20 10 23.0%  0.56 23 7 10.2%  0.79
RRVBC5m (0,d,0) 16 8 16.5%  0.42 18 6 11.9%  0.75
RRVBVECIm () d,0) 24 12 38.9%  0.89 27 9 20.1% 121
RRVBVBCS™ (0 d,0) 30 11 65.0% 1.38 32 9 18.3% 1.14
RVm (0,d,0)s 15 5 29.2% 091 16 4 8.75%  0.63
RV (0,d,0)s 17 10 11.0%  0.29 19 8 7.37%  0.53
Ry BV:Am (0,d,0)s 18 10 12.4%  0.30 20 8 5.93%  0.41
RV BV:5m (0,d,0)s 25 14 21.6%  0.46 27 12 9.52%  0.68
RV Am (0,d,0)s 15 7 33.3%  1.08 17 5 11.2%  0.86
Ry Kom (0,d,0)s 18 9 17.5%  0.44 20 7 9.07%  0.65
RyTS1m (0,d,0)s 18 8 28.7%  0.83 19 7 10.5%  0.83
RyTS5m (0,d,0)s 16 10 10.0%  0.26 18 8 7.55%  0.54
RRVI™ (0,d,0)s 20 12 21.7%  0.54 23 9 10.1%  0.78
RRV>™ (0,d,0)s 15 8 102%  0.27 17 6 7.72%  0.53
RRVBC:1m (0,d,0)s 19 7 33.8%  0.89 21 5 10.9%  0.86
RRVBC5m (0,d,0)s 14 7 15.7%  0.44 16 5 8.54%  0.58
RRVBVBCIm (().d,0)s 23 12 31.9%  0.75 26 9 15.6%  1.02
RRVBVECS™ (0 d,0)s 23 11 26.3%  0.61 25 9 8.91%  0.62

Note: Annualized mean returns for the dynamic investment allocation for the IV and different
confidence intervals. SR is the Sharpe Ratio. Week g. and Week [. are the number of weekly
gains and losses. We have in total 150 weeks of trading. First part of the table corresponds to the
ARFIMA (p,d,q) model while the second part to the ARFIMA(p,d,q) with level shift component.
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