
Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Scienze Statistiche
SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE STATISTICHE
CICLO XXVIII

NONPARAMETRIC MODELS FOR
DEPENDENT FUNCTIONAL DATA

Direttore della Scuola: Ch.ma Prof.ssa. MONICA CHIOGNA

Supervisore: Prof. BRUNO SCARPA

Co-supervisore: Prof. MICHELE GUINDANI

Dottorando: RONALDO ROUVHER GUEDES SILVA

31 Gennaio 2016





Acknowledgements

This research was supported by the scholarship number 245612/2012-2 from CNPq/CAPES
Brazilian Science Without Borders Program. Thank you Brazil.

In real life, unlikeMCMC algorithms, different choices of starting points may lead you to
have different results. As I am happy with my results after the end of this Ph.D. I can tell that
choose to work with Bruno Scarpa, Antonio Canale, Michele Guindani, Marina Vannucci
and Francesco Versace were good choices and definitely contributed to my good starting
point. Special thanks to Monica Chiogna that was always there to give me support since the
very first e-mail sent to the Ph.D. school. Beyond the scientific community, my friend Tahir
played a great role to make possible the Ph.D. dream.

The real life beyond this Ph.D. existed and was enjoyable thanks to Giulio, Roberta,
Giovanni, Daniele, Arianna, Giulia, Elena and people I got know through them.

My family, yes, they forgave me for spending such long time far from home.





Sommario

Nel contesto dell’analisi di dati funzionali, in questa tesi, vengono presentati due modelli
Bayesiani non parametrici. Il primo modello è motivato da un problema di analisi di neu-
roimmagini, e considera funzioni correlate spazialmente e raggruppate seguendo un pro-
cesso di Dirichlet dipendente funzionale (Functional Dependent Dirichlet process) che in-
clude una struttura di dipendenza autoregressiva condizionata per modellare la selezione
spaziale. Un tale modello permette di considerare in maniera appropriata simmetrie spaziali
delle risposte funzionali nel cervello. Il secondomodello è invece motivato dalla piattaforma
italiana di bilanciamento del mercato del gas naturale e include una dipendenza temporale
tra funzioni attraverso i pesi di un processo di Dirichlet dipendente funzionale basato su un
modello lineare dinamico definito su una partizione dello spazio funzionale. Forme carat-
teristiche tipiche delle funzioni vengono modellate da curve flessibili basate su splines che
formano gli atomi del processo di Dirichlet. In entrambe le applicazioni vengono usate tec-
niche bayesiane di selezione di variabili per scegliere le funzioni di base per le splines in
ciascun cluster. Algoritmi di tipo Gibbs sampling sono sviluppati per il calcolo delle dis-
tribuzioni a posteriori. Vengono proposti studi di simulazione e applicazioni a dati reali per
verificare l’appropriatezza degli approcci proposti.





Abstract

In the framework of functional data analysis we propose two Bayesian Nonparametric mod-
els. In the first model, motivated by an application in neuroimaging, functions are assumed to
be spatially correlated and clustered together by an underlying Functional Dependent Dirich-
let process which encodes a conditional autoregressive dependence structure to guide the
spatial selection. Spatial symmetries of the functional responses in the brain can be ap-
propriately accounted for in our framework. Motivated by the Italian natural gas balancing
platform, in the second model time dependence are induced in the weights of the underlying
Functional Dependent Dirichlet process through a dynamic linear model defined over a parti-
tioned function space. Typical shape characteristics of the functions are modeled by flexible
spline-based curve estimates as atoms of the process. In both applications Bayesian variable
selection techniques are used to select significant sets of bases coefficients in each cluster.
Gibbs sampling algorithms are developed for posterior computation, simulation studies and
application to real data assess the performance of our approaches.
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Chapter 1

Introduction

1.1 Overview
Inmany applications the sample spaceΩwhere the random variables take its values is a set of
functions. Often the mathematical properties of the functions (curves) represent information
of the features of the statistical units and prior knowledge informs of their possible temporal
or spatial dependence. As examples, in the Event-Related Potentials (ERP) problem (Sec-
tion 2.1) statistical units are waveforms presenting symmetries and spatial dependence; in
the Italian Natural Gas Balancing Platform problem (Section 2.2) statistical units are time
dependent monotonic bounded curves. In both motivating applications as the sample ele-
ments are curves our framework is within Functional Data Analysis (FDA). In this branch
of statistics the dataset is called functional dataset, the set where its elements are functions,
which is a suitable way to collect information of phenomena that actually are described by
curves. For a introduction to FDA refer to Section 2.3.

ERPs represent a safe and non-invasive approach to directly measure brain activity, and
constitute an ideal tool to investigate the neural correlates of cognitive and emotional pro-
cesses in humans. ERPs are voltage fluctuations in the electroencephalogram (EEG) that
are time-locked to the presentation of external events (e.g., pictures). Thanks to their high
temporal resolution (in the order of the milliseconds), ERPs allow researchers to investigate
fast-changing brain processes and constitute a sensitive and reliable biomarker of motiva-
tional and cognitive processing (Kenemans and Kähkönen, 2001; Lang and Bradley, 2010;
Luck et al., 2011).

Versace et al. (2015) in an experiment with emotional and cigarette-related pictures iden-
tified that smokers with blunted brain responses to pleasant stimuli had lower rates of long-
term smoking abstinence constituting a new biomarker to identify smokers at higher risk of
relapse; used statistical methods include cluster analysis using 𝑘-means methods based on
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time-windows placed on the amplitude of the late positive potential and two-way ANOVA to
analyze between cluster difference. Versace et al. (2011) obtained results, in experiment with
smokers before the beginning of a smoking cessation program, to support the hypothesis that
cigarette-related cues are motivationally relevant stimuli that active brain circuits as those of
that are normally used in the processing of intrinsically emotional stimuli. Randomized tests
on time regions of interest, identified by temporal principal component analysis, was used to
compare the differences ERP waveforms recorded during the presentation of pictures with
pleasant, unpleasant, neutral and cigarette-related content.

Besides the frequent use of ANOVA on mean activity in specific time-windows others
statistical tools in the analysis of ERP data include, for example, filtering methods to remove
noise in the data from eye blink, analysis of covariance and correlation analysis. Moreover,
Maris (2012) in his paper review evaluated the use of Neyman-Pearson, permutation-based,
bootstrap-based and Bayesian approach to the statistical testing of electrophysiological data.
Groppe et al. (2011) instead review approach on mass univariate analyses consisting of thou-
sands of statistical tests and powerful corrections for multiple comparisons such as strong
control of the family-wise error rate via permutation tests (FWER), weak control of FWER
via cluster-based permutation tests, false discovery rate control, and control of the general-
ized FWER.

Modern EEG amplifiers allow for the simultaneous recording of ERPs from hundreds
of electrodes. Although these high-density electrode arrays can improve ERPs’ spatial res-
olution (Junghöfer et al., 2006), researchers not interested in uncovering the ERPs’ brain
sources often average signals (Jackson and Bolger, 2014) from neighboring electrodes. In-
deed, the spatial smearing of the EEG signals justifies the computation of average voltages
across electrodes, e.g., Bloom et al. (2013) compared within the dopaminergic system the
P2a and P3 components during an attention selection cue exposure task using cigarette-
related and neutral images. Statistical tools to their comparison constitute visual inspection
of plots, ANOVA and reduction of the ERP data using a Region of Interest (ROI) method by
averaging voltage across the electrodes in a ROI.

The previous issue is also important when conducting multiple hypotheses testing of
brain activity based on the ERP signals, since different topographies and groupings of neigh-
boring electrodes typically can lead to the computation of significantly different cluster-
based statistics and hence possibly to conflicting inferences on the channels’ activations.
For a review on randomization tests for comparison of topographies in ERP studies refer to
Maris (2004).
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Within FDA framework Meyer et al. (2015) proposed a function-on-function regression
which focus on characterizing the time-varying relationship between ERP outputs from spe-
cific electrode pairs.

However, there are no established methods to guide the decision of which electrodes
should be clustered together. Here we propose a Bayesian nonparametric approach that al-
lows to group electrodes together based on the observed multichannel ERP waveforms. Our
approach allows to flexibly model the ERP temporal dynamics, takes into account spatial
dependencies in the brain and locate symmetries in the brain response to stimuli.

In the second motivating application, the Italian natural gas balancing platform (PB-
GAS), a system where gas traders virtually sell and buy natural gas to balance the common
pipeline give rise to daily demand and supply curves, i.e., a time series in which a curve is
observed at each time, namely a time dependent functional time series. Managed by the en-
ergy regulatoryGestoreMercati Energetici (GME) with SNAM acting as central counterpart
for all daily offers. Every day SNAM submits a demand bid or supply offer for a volume of
gas corresponding to the overall imbalance of the system while the operators submit demand
bids and supply offer for the storage resource they have available.

The daily exchanged price and quantity is in the intersection of supply and demand
curves. Additionally, the curves are bounded, monotonic and clearly time dependent due
to the nature of the market; one would expect the exchanged price and quantity of today
affect those of tomorrow.

The statistical problem of predicting the price and quantity exchanging in this functional
dataset or more general in any two-curves system can be solved in many ways, e.g., by a)
separately forecast the two curves and then via their intersection pick up the predicted price
and quantity or b) by joint estimation of demand and supply curves. Another possibility is
instead c) use classical time series approach considering as dataset the intersection of the
curves. Note that, in this approach, the resulting time series is not functional.

Canale and Vantini (2014) using the approach a) bypassed the monotonicity and bound-
edness constraints on the supply and demand curves by mapping them into an unconstrained
space. The new unconstrained curves are them modeled by a functional-to-functional au-
toregressive model and mapped back to the original space. In statistical problems involving
unconstrained curves the functional autoregressive (FAR) model (Bosq, 1991) plays a cru-
cial role. In the nonparametric approach to unconstrained curves to model functional time
series refer to Ferraty and Vieu (2006) and references there in.

Regards to the approach b) to our knowledge there is no proposed method within FDA
framework. Readers interested in this statistical problem may refer to the unpublished work
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by Brumm and Mccallum (2008) where a method is proposed to solve the “simultaneous
equation problem” with application to supply and demand system.

Though the approach c) may sounds appealing, for the considered application, the whole
information present in the curves is lost and, consequently, that about the behavior of the
marketing for the next day impoverishing the analysis by the gas trader. The previous also
apply for any application where information about the curves is intended to be preserved.

Canale and Vantini (2014) cleverly bypassed curves constraints; nevertheless to our
knowledge there is no proposed method, in the context of dependent functional data, where
constraints are actually taken into account in the model. Here we pursue the approach a)
and propose a nonpararametric Bayesian model that actually can be used to model depen-
dent functional dataset arising from a number of different phenomena. Our model allows to
group curves within classes based on the features of the functions while taking into account
time dependence and curves constraints.

1.2 Main Contributions of the Thesis
In the framework of functional data analysis we propose twoBayesianNonparametricmodels
briefly described below. Besides the models, in Section 2.8 we present a method, based on
definitions and properties of splines in De Boor (2001), to be used as a guide to those who
want do input constraints in B-spline basis functions. In Section 4.1.1 we extend the probit
model applied to heterogeneous systems in Heckman (1981) and applied to stick-breaking
prior in Dunson and Rodríguez (2011) to a probit dynamic model to accommodate time
dependence over a partitioned sample space Ω by conditioning the process to proportion of
samples arising from each partition of the function space.

1.2.1 A Bayesian Nonparametric approach for the analysis of func-
tional ERP data in neuroimaging

Let 𝑦(𝑠, 𝑡) denote the functional ERP response observed at time 𝑡 = 1, … , 𝑇 in each electrode
𝑠, 𝑠 = 1, … , 𝑆. We assume that

𝑦(𝑠, 𝑡) = 𝑓(𝑠, 𝑡) + 𝜖(𝑠, 𝑡)

where the collection {𝑓(𝑠, 𝑡)}𝑇
𝑡=1 is considered to be the realization of a random function

𝑓(𝑠, ⋅) ∶ ℛ+ → ℛ and 𝜖(𝑠, 𝑡) is a spatio-temporal error process. The functions 𝑓 ’s are
assumed to be spatially correlated and clustered together by an underlying Functional De-
pendent Dirichlet process which encodes a conditional autoregressive dependence structure
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to guide the spatial selection, and uses flexible spline-based curve estimates as atoms of the
process to describe the temporal dependence. In Section 2.4 and 2.5, we review the essen-
tial about Functional Dependent Dirichlet process and conditionally autoregressive models
needed for the development of our proposed model. Bayesian variable selection techniques
are used to select significant sets of bases coefficients in each cluster. Typical shape char-
acteristics of the ERP functionals and spatial symmetries of the functional responses in the
brain can be appropriately accounted for in our framework. We illustrate the clustering be-
havior of the process and the related improvements in the detection of brain activity for the
multi-comparison problem on a simulated dataset which mimic the typical ERP waveforms
observed in real EEG experiments. We then apply our method to the analysis of a multiple
pictures-viewing task in a group of smokers interested in quitting, but prior to the onset of
treatment, and show differential activations in response to cigarette-related cues.

1.2.2 A Bayesian Nonparametric approach for the analysis of the bal-
ancing marketing

Let 𝑦(𝑡, 𝑞) denote the supply or demand curves collected at days 𝑡, 𝑡 = 1, … , 𝑇 for each
quantity 𝑞 = 1, … , 𝑄. We assume that

𝑦(𝑡, 𝑞) = 𝑓(𝑡, 𝑞) + 𝜖(𝑡, 𝑞)

where the collection {𝑓(𝑡, 𝑞)}𝑄
𝑞=1 is considered to be the realization of a random function

𝑓(𝑡, ⋅) ∶ ℛ+ → ℛ and 𝜖(𝑡, 𝑞) is a specific residual to time 𝑡. The functions 𝑓 ’s time depen-
dence are induced in the weights of an underlying Functional Dependent Dirichlet process
through a dynamic linear model. In Section 2.4 and 2.6, we review the essential about Func-
tional Dependent Dirichlet process and dynamic linear model needed for the development
of our proposed model.

The problem of forecasting 𝑓(𝑇 + 1, ⋅) (both for supply and demand curves) is solved
by predicting the latent process involved in the specification of the weights followed by the
calculation of the weights itself. Once the functions are forecasted, the predict price and
quantity are in their intersection. We illustrate the clustering behavior of the process on a
simulated dataset which mimic the typical supply curves and then apply our method to the
Italian natural gas balancing platform functional dataset.

In Chapters 3 and 4 the proposed models are presented along with their Gibbs sampling
schemes.





Chapter 2

A brief theoretical background

In addition to the presentation of the motivational applications this section is thought to be an
introduction to the main statistical theories needed in our proposed Bayesian Nonparametric
models. Concepts such as Functional Data Analysis, Dependent Dirichlet Process, Condi-
tionally Autoregressive, Dynamic Linear models, B-splines and Control Polygon, Feature
Classes and Binder’s loss are presented.

2.1 Application in neuroimaging

Event-Related Potentials (ERP) represent a safe and non-invasive approach to directly mea-
sure brain activity, and constitute an ideal tool to investigate the neural correlates of cog-
nitive and emotional processes in humans. ERPs are voltage fluctuations in the electroen-
cephalogram (EEG) that are time-locked to the presentation of external events (e.g., pic-
tures). Thanks to their high temporal resolution (in the order of the milliseconds), ERPs al-
low researchers to investigate fast-changing brain processes and constitute a sensitive and re-
liable biomarker of motivational and cognitive processing (Kenemans and Kähkönen, 2001;
Lang and Bradley, 2010; Luck et al., 2011).

The application here considered is amultiple pictures-viewing task experiment in a group
of smokers interested in quitting, but prior to the onset of treatment, to study the differential
activations in response to cigarette-related cues. The experiment was performed in the De-
partment of Behavioral Sciences at University of Texas M. D. Anderson Cancer Center by
Dr. Francesco Versace and his researching group as follows: the hydrocel geodesic sensor
net, see scheme in Figure 2.1, is placed on the scalp of the subject; a picture with cigarette-
related, emotional (pleasant and unpleasant) or neutral content is showed on the monitor and
the brain activity is recorded by electrodes placed in each of the 129 spots in the sensor net.
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Figure 2.2 illustrates examples of brain activities recorded by four of the electrodes to
highlight the different behavior of the curves between the time interval 50-100ms; the dashed
line located at 26 msmarks the stimulus starting point, i.e., when the picture is showed on the
screen. Observe that the electrodes 1 and 15 presents maximum values within this interval
while electrodes 65 and 81 their minimum values classifying the curves in two symmetric
subclasses. This well known symmetry (see Dickter and Kieffaber, 2013; Nunez and Srini-
vasan, 2006) is an important information to be accounted for and is included in our model
by informative prior with the proportion of curves falling into each subclass. In Figure 2.3
is presented the spatial configuration of some of the electrodes together with the recorded
brain activities.

Fig. 2.1 Geodesic sensor net, 128 channels

The spatial configuration confer to the data the label areal. In areal data nomenclature
the electrodes are areal units and group of electrodes regions. In this type of experiment the
response has its origin in the occipital lobe located in the back of the brain and spread out
suggesting that the waveforms recorded by each electrode are spatial correlated.

The ERP dataset are the outcomes resulting after the experiment described above. Here
we consider a single subject (grand average across subjects (Dickter and Kieffaber, 2013)
could also be used) and a single stimulus, organized in a matrix of order number of electrodes
× number of time points, a 129 × 175 matrix. In this setting a statistical unit is a curve
(outcome of one of the channels) stored in one of the rows 𝑖, 𝑖 = 1, … , 129, of the dataset
matrix, called functional dataset.
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Fig. 2.2 Real data: ERP waveforms recorded by electrodes 1, 65, 15 and 81.
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Fig. 2.3 Real data: spatial configuration of some selected electrodes.
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2.2 Application in balancing marketing

The Italian natural gas balancing platform (PB-GAS) is a system in which gas traders virtu-
ally sell and buy natural gas to balance the common pipeline. TheGestoreMercati Energetici
(GME) organizes andmanages the PB-GASwhile SNAMact to keep the gas system balance.
Every day SNAM submits a demand bid or supply offer for a volume of gas corresponding
to the overall imbalance of the system while the operators submit demand bids and supply
offer for the storage resource they have available.

Each dataset, stored in a 397×501 matrix, are the observed demand and supply curves for
397 days in the period of December 1st, 2011 to December 31rd, 2012. Figure 2.4 illustrates
the supply and demand curves observed in 397 days. Note that the curves are bounded,
monotonic and clearly time dependent due to the nature of the market; one would expect
the exchanged price and quantity of today affect those of tomorrow. In this dataset a single
curve contains 501 observations with quantity ranging from 0 to 1.2 × 107 gigajoules (GJ)
and price from 0 to 23 Euro/GJ. In this setting a statistical unit is a curve stored in one of the
rows 𝑖, 𝑖 = 1, … , 397, of the dataset matrix, called functional dataset (see Section 2.3).
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Fig. 2.4 Real data: Italian natural gas balancing platform dataset
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Fig. 2.5 Real data: two-function system, supply and demand curves. The red star represents
the exchanged quantity and price.
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Fig. 2.6 Real data: time series of exchanged quantity and price
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The daily exchanged quantity and price is in the intersection of the supply and demand
curves as illustrated in Figure 2.5 for days 1, 27, 68 and 394. The intersections of the all 397
days, the red stars in the plot, give rise to the time series illustrated in Figure 2.6.

2.3 Functional Data Analysis
In the field of Functional Data Analysis (FDA) one works with the triplet (Ω, ℬ, 𝑃 ) where Ω
is a function space,𝐵 and𝑃 are the usual 𝜎-algebra of subsets ofΩ and a probabilitymeasure,
respectively. An observation 𝑓 of a random variable 𝐹 , also named functional variable, in Ω
is called functional data. Unlike other authors, Ferraty and Vieu (2006) present formal defi-
nition of key concepts in functional data analysis and is recommended for whom that would
like to study it with mathematical rigor. For more intuitive definitions and motivational ex-
amples refer to Ramsay and Silverman (2006). In the following we alternate between the
mathematical rigor and intuition depending on what is the idea to be presented.

In FDA each sample element is a curve, surface or any mathematical object varying over
a continuum and provide information of an underlying process generating the data, e.g, a
single curve recorded by an electrode in the ERP dataset or a supply curve observed in one
of the 397 days in the Italian natural gas dataset.

At this point one, to make descriptive analyses on the datasets, could have the intuition
what is the functional mean and others statistical moments to analyze functional dataset.
These descriptive statistics and basic statistical tools to analyze and model functional data
including smoothing, time-warping, functional linear models, functional principal compo-
nents and basis function may be studied in Ramsay and Silverman (2002). Of these statistical
methods basis function is an outstanding tool for this thesis as it allows to write the functional
observation by a linear combination of 𝐿 known basis functions 𝑏𝑙,

𝑓(⋅) =
𝐿

∑
𝑙=1

𝛽𝑙𝑏𝑙(⋅), (2.1)

where the coefficients 𝛽 = (𝛽1, … , 𝛽𝐿) specifies the function 𝑓(⋅). Usually the number of
basis functions is lower than the number of observations of 𝑓 allowing a efficient storage
of functional data. Examples of basis function include Fourier series, B-spline, I-spline and
wavelet. One choose the basis accordingly to the features of the data; the Fourier basis
allows to write functions presenting periodicity, I-spline is suitable for functions presenting
monotonicity, wavelets are suitable for bounded functions and B-spline are flexible enough
to allow constraint in the coefficients such that features as monotonicity and boundedness
could be accommodated. A dense material about B-splines is found in de Boor (1978).
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2.4 Functional Dependent Dirichlet Process

In the Bayesian Nonparametric approach to statistical problems the probability measure 𝑃 on
(Ω, 𝐵, 𝑃 ), defined in section (2.3), is allowed to be uncertain. To set a prior to the random
measure 𝑃 define it on probability space (Υ, ℬ, 𝒫 ), where Υ is the space of probability
measures over (Ω, 𝐵), ℬ the usual 𝜎-algebra of subsets of Υ and 𝒫 a probability measure,
i.e., 𝑃 ∼ 𝒫 .

In this thesis we focus on the stick-breaking prior and write, following Ishwaran and
James (2001),

𝑃 =
𝐾

∑
𝑘=1

𝑝𝑘𝛿𝜃𝑘
, (2.2)

where 𝛿𝜃 is the dirac probability measure with density only in 𝜃𝑘, the so called atom, 0 ≤
𝑝𝑘 ≤ 1 are random weights with ∑𝐾

𝑘=1 𝑝𝑘 = 1 almost surely. Define,

𝑝1 = 𝑉1;
𝑝𝑘 = (1 − 𝑉1)(1 − 𝑉2) ⋯ (1 − 𝑉𝑘−1)𝑉𝑘, 𝑘 ≥ 2, (2.3)

where 𝑉𝑘
𝑖𝑖𝑑∼ Beta(𝑎𝑘, 𝑏𝑘), 𝑎 = (𝑎1, 𝑎2, ⋯ , 𝑎𝐾) and 𝑏 = (𝑏1, 𝑏2, ⋯ , 𝑏𝐾).

Potentially 1 ≤ 𝐾 ≤ ∞; computationally a finite truncation is required. Though some
experienced statistician have intuition of the suitable truncation for the general𝑃∞ theoretical
approach may be used to this task as presented in Theorem 1 and 2 in Ishwaran and James
(2001). Once a truncation level is chosen it is necessary to guarantee that ∑𝐾

𝑘=1 𝑝𝑘 = 1 with
probability 1, in the case of stick-breaking prior it is sufficient to setting 𝑉𝐾 = 1 because
1 − ∑𝐾−1

𝑘=1 𝑝𝑘 = (1 − 𝑉1) ⋯ (1 − 𝑉𝐾−1) with 𝑎 = (𝑎1, 𝑎2, ⋯ , 𝑎𝐾−1), 𝑏 = (𝑏1, 𝑏2, ⋯ , 𝑏𝐾−1),
𝑝𝑘 = 𝑉𝑘 ∏𝑙<𝑘(1 − 𝑉𝑙). From now on 𝑃 is used to indicate a truncated stick-breaking prior as
opposite to 𝑃∞ that indicates the infinite one.

Using the general definition of 𝑃 a number of process may be characterized. Examples
include the Dirichlet multinomial processes (Muliere and Secchi, 2001), 𝑚-spike models
(Liu, 1996) two-parameter Poisson-Dirichlet process (Pitman and Yor, 1997), finite dimen-
sional Dirichlet priors (Ishwaran and Zarepour, 2000a,b) and beta two-parameter processes
(Ishwaran and Zarepour, 2000c). Our foucs is on the Ferguson Dirichlet process (Ferguson,
1973a,b) in which the parameters in the beta distribution are set to 𝑎 = 1 and 𝑏 = 𝛼.

The process just described produce independent and identically distributed draws of the
𝜃 = (𝜃1, … , 𝜃𝐾) from a base measure 𝑃0 and 𝑉 = (𝑉1, … , 𝑉𝐾−1) from Beta(1, 𝛼). In Dirich-
let Process (DP) 𝑃0 is the expected value of the process and 𝛼 the concentration parameter
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expressing how close 𝑃 is to 𝑃0. Potentially a prior can be set to 𝛼 and let the data inform
about it (Escobar and West, 1995).

MacEachern (2000) proposed the Dependent Dirichlet Process (DDP) by replacing the
single random probability measure 𝑃 for a dependent collection of random probability mea-
sures 𝑃𝜒 = {𝑃𝑥 ∶ 𝑥 ∈ 𝜒} with mass 𝑉𝑥 assigned to the location 𝜃𝑥 for each value of the
covariate 𝑥 ∈ 𝜒 where 𝑥 refer to time, space, or predictors.

A simplification (computationally speaking) of the full DDP (where dependence is in-
duced in the atoms and weights of the process) is the single-𝑝 DDP model (MacEachern,
2000), i.e., 𝑝𝑘(𝑥) does not vary over 𝜒 as do the atoms 𝜃𝑘(𝑥) of the process, viz

𝑃𝑥(1, 𝛼) =
𝐾

∑
𝑘=1

𝑝𝑘𝛿𝜃𝑘(𝑥)
(⋅), 𝜃𝑘(𝑥) ∼ 𝑃0(𝑥) (2.4)

where 𝑝𝑘 = 𝑉𝑘 ∏𝑙<𝑘(1 − 𝑉𝑙) and 𝑉𝑘
𝑖𝑖𝑑∼ Beta(1, 𝛼).

As illustration of this type ofmodel, consider theANOVADDPmodel proposed inDe Io-
rio et al. (2009), where the dependence across distributions is introduced by modeling the
atoms 𝜃𝑘(𝑥) = 𝑚𝑘 + 𝐴𝜈𝑘 + 𝐵𝑤𝑘 with 𝑥 = (𝜈, 𝑤) a bivariate covariate, 𝜈 ∈ {1, … , 𝑉 } and
𝑤 ∈ {1, … , 𝑊 }. 𝑥 = (𝜈, 𝑤) is seen a as level of two treatments in a clinical trial and 𝑃𝑥

the random distributions of outcomes for each patient, where 𝑚ℎ
𝑖𝑖𝑑∼ 𝑝0

𝑚𝑘
, 𝐴𝑘(𝜈)

𝑖𝑖𝑑∼ 𝑝0
𝐴𝑘(𝜈)

and

𝐵𝑘(𝑤)
𝑖𝑖𝑑∼ 𝑝0

𝐵𝑘(𝑤)
may be interpreted as an overall mean, main effects for covariate level 𝜈 and 𝑤,

respectively. Jointly, the probability model on ℘ = {𝑃𝑥, 𝑥 ∈ 𝜒} is an ANOVA DDP(𝛼, 𝑝0)
where 𝛼 is the DP concentration parameter and 𝑝0 the base measure. Moreover, marginally
𝑃𝑥 is a DP process with base mesure 𝑃0𝑥 given by the convolution of 𝑝0

𝑚𝑘
, 𝑝0

𝐴𝑘(𝜈)
and 𝑝0

𝐵𝑘(𝑤)

with dependence among 𝜃𝑘(𝑥) defined by its covariance structure. Note that a characteristic
of the single-𝑝 model is that it does not produce independent distributions.

Others examples of the single-𝑝 model include the spatial Dirichlet process mixture by
Gelfand et al. (2005) and the extension of the DDP model incorporating dependence in the
random effects of distribution across groups by De la Cruz-Mesia et al. (2007).

Another option to the full DDP model is instead leave just the weights 𝑝𝑘(𝑥) varying with
𝑥, that is,

𝑃𝑥(1, 𝛼) =
𝐾

∑
𝑘=1

𝑝𝑘(𝑥)𝛿𝜃𝑘
(⋅), 𝜃𝑘 ∼ 𝑃0 (2.5)

where 𝑝𝑘(𝑥) = 𝑉𝑘(𝑥) ∏𝑙<𝑘(1 − 𝑉𝑙(𝑥)) and 𝑉𝑘(𝑥)
𝑖𝑖𝑑∼ Beta(1, 𝛼). As example, Reich and Fuentes

(2007) replaced 𝑉𝑘 in the stick-breaking prior by 𝑤𝑘(𝑥)𝑉𝑘, where 𝑤𝑘(𝑥) is a kernel function
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restricted to the interval [0, 1]. In this model the random distributions 𝑃𝑥 are dependent
through the weights and 𝜃𝑘 independent across 𝑘 allowing borrowing of information at dif-
ferent sites. They applied their model in a multivariate spatial setting to analyze wind field
data.

Other examples of varying-𝑝 models include the Generalized spatial Dirichlet process
models by Duan et al. (2007), the order based dependent DP by Griffin and Steel (2006) and
the Kernel stick-breaking processes by Dunson and Park (2008) and the Hybrid Dirichlet
mixture to model functional dependence in the label process through Gaussian Copula by
Petrone et al. (2009).

Due to the functional nature of our datasets we go further on these definitions towards
the Functional Dependent Dirichlet Process (FDP). In this process Ω is a function space as
in Section 2.3. To be more precise, the atoms in the DDP are suitably replaced by functional
atoms according to the application. To our purpose the base measure 𝑃0 is chosen to be B-
Splines (de Boor, 1978) due to its flexibility and easy of implementation of curve constraints.
See Section 2.8 for details.

2.5 Conditionally Autoregressive Model

The conditionally autoregressive (CAR) model, in particular the auto-normal case, is com-
monly used for incorporating the dependence present in spatially referenced data into the
covariance structure of a gaussian distribution. The CAR auto-normal model is presented
as a case on the broad class of conditional probability models to describe spatial process
developed by Besag (1974). Key aspects on its development are the assumption of a system
with finite set of sites associated with random variables 𝑆1, … , 𝑆𝑛 with conditional proba-
bility 𝑃 (𝑠𝑖|𝑠1, … , 𝑠𝑖−1, 𝑠𝑖+1, … , 𝑠𝑛) and the positivity condition by Hammersley and Clifford
(1971) stating that if 𝑃 (𝑠𝑖) > 0 for each 𝑖, then 𝑃 (𝑠1, … , 𝑠𝑛) > 0. To obtain the joint proba-
bility distribution consider for any two given realizations 𝑠 = (𝑠1, … , 𝑠𝑛) and 𝑡 = (𝑡1, … , 𝑡𝑛)
with 𝑠 and 𝑡 ∈ Ω = {𝑠 ∶ 𝑃 (𝑠) > 0}, then the required joint probability is written as

𝑃 (𝑠)
𝑃 (𝑡) =

𝑛

∏
𝑖=1

𝑃 (𝑠𝑖|𝑠1, … , 𝑠𝑖−1, 𝑡𝑖+1, … , 𝑡𝑛)
𝑃 (𝑡𝑖|𝑠1, … , 𝑠𝑖−1, 𝑡𝑖+1, … , 𝑡𝑛) , (2.6)

where the non-zero denominator is guaranteed by the positivity condition. It is know that
the joint probability distribution determines the conditional probabilities, to guarantee that
the joint probability is uniquely determined restrictions on the conditional probabilities must
be imposed to avoid many possible factorizations of 𝑃 (𝑠)/𝑃 (𝑡).
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The just mentioned factorization problem due to an arbitrary labelling of the sites in the
considered system is addressed by Hammersley and Clifford (1971) theorem in which the
set of neighbors for each site 𝑖 is determined. The neighboring scheme is valid for a broad
class of lattice (known as Bravais lattice due to Auguste Bravais).

In the most general case to define that the site 𝑗 is a neighbor of site 𝑖 it is necessary
and sufficient that the conditional probability 𝑃 (𝑠𝑖|all other variables) depends only upon to
𝑥𝑗 . At this point one may intuit we are heading to the definition of a Markov random field
and therefore obtain valid conditional probabilities to the spatial scheme. To do so a crucial
concept is the so called clique: the neighborhood configuration in which, given a set of sites
every site is a neighbor of all the other sites in the set. To understand the importance of a
clique consider 𝑄(𝑥) ≡ ln{𝑃 (𝑥)/𝑃 (0)}, assuming 𝑃 (0) > 0 to allow realization of values
equal zero in any site, is unique expanded as

𝑄(𝑥) = ∑
1⩽𝑖⩽𝑛

𝑥𝑖𝐺𝑖(𝑥𝑖) + ∑ ∑
1⩽𝑖<𝑗⩽𝑛

𝑥𝑖𝑥𝑗𝐺𝑖,𝑗(𝑥𝑖, 𝑥𝑗) + ∑ ∑ ∑
1⩽𝑖<𝑗<𝑘⩽𝑛

𝑥𝑖𝑥𝑗𝑥𝑘𝐺𝑖,𝑗,𝑘(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘)

+ … + 𝑥1𝑥2 ⋯ 𝑥𝑛𝐺1,2,…,𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) (2.7)

where the function 𝐺𝑖,𝑗,…,𝑘(𝑥𝑖, 𝑥𝑗 , … , 𝑥𝑘) may be non-null if and only if the sites 𝑖, 𝑗, … , 𝑘
form a clique.

Before define the auto-normal case it is useful pass by the general class of auto-models,
i.e., the conditional probability 𝑝𝑖(⋅) associated with site 𝑖 belongs to the exponential family
of distributions for all 𝑖.

Defined our scope, consider cliques are of size 2, meaning that if 𝑖 is neighbor of site 𝑗,
𝑗 is neighbor of site 𝑖, denoted by 𝑖 ∼ 𝑗1 in which the sites form a finite rectangular lattice.
Then the expansion (2.7) is written as

𝑄(𝑥) = ∑
1⩽𝑖⩽𝑛

𝑥𝑖𝐺𝑖(𝑥𝑖) + ∑ ∑
1⩽𝑖<𝑗⩽𝑛

𝛽𝑖,𝑗𝑥𝑖𝑥𝑗 (2.8)

where 𝐺𝑖,𝑗(𝑥𝑖, 𝑥𝑗) ≡ 𝛽𝑖,𝑗𝐻𝑖(𝑥𝑖)𝐻𝑗(𝑥𝑗) may be non-null if 𝑖 ∼ 𝑗, 𝑥𝑖𝐻𝑖(𝑥𝑖) = 𝐵𝑖(𝑥𝑖) − 𝐵𝑖(0)
and 𝐵𝑖 is linear in 𝑥𝑖. In this scenarios the conditional probability is

𝑝𝑖(𝑥𝑖; …)
𝑝𝑖(0; …) = exp

[
𝑥𝑖 {

𝐺𝑖(𝑥𝑖) +
𝑛

∑
𝑗=1

𝑏𝑖,𝑗𝑥𝑗}]
, (2.9)

1in this case ∼ stand for equivalence relation in mathematics
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where 𝛽𝑖,𝑗 ≡ 𝛽𝑗,𝑖 and 𝛽𝑖,𝑗 = 0 unless 𝑖 ∼ 𝑗. In the auto-normal case we assume the conditional
probability

𝑝𝑖(⋅) = (2𝜋𝜏2)− 1
2 exp [− 1

2𝜏2 {𝑥𝑖 − 𝜇𝑖 − ∑ 𝑏𝑖,𝑗(𝑥𝑗 − 𝜇𝑗)}
2
] (2.10)

with mean equal zero and multivariate normal joint probability, using the factorization 2.6,

𝑃 (𝑥) ∝ exp {−1
2𝑥

𝑇 𝐷−1(𝐼 − 𝐵)𝑥} , (2.11)

𝐵 = {𝑏𝑖𝑗} and D is diagonal with 𝐷𝑖𝑖 = 𝜏2
𝑖 . To ensure 𝐷−1(𝐼 − 𝐵) is symmetric set 𝑏𝑖𝑗 =

𝑤𝑖𝑗/𝑤𝑖+ and 𝜏2
𝑖 = 𝜏2/𝑤𝑖+, where𝑤𝑖𝑗 = 1 if 𝑖 ∼ 𝑗 and 0 otherwise are entries in the adjancency

matrix 𝑊𝑛×𝑛 and write

𝑃 (𝑥) ∝ exp {−1
2𝑥

𝑇 (𝐷𝑤 − 𝜌𝑊 )𝑥} , (2.12)

where 𝐷𝑤 is diagonal with elements 𝑤𝑖+ and 𝜌 ∈ (1/𝜆(1), 1/𝜆(𝑛)), where 𝜆(1) < ⋯ < 𝜆(𝑛)
are the eigenvalues of 𝐷−1/2

𝑤 𝑊 𝐷−1/2
2 guarantee (𝐷𝑤 − 𝜌𝑊 )−1 is not singular. Since 𝜌 = 0

leads to independence of the sites, say 𝑖, and 𝑗, it is often called spatial correlation or spatial
dependence. With this restrictions the full conditional probability is therefore 𝑝(𝑥𝑖|𝑥𝑗 , 𝑖 ≠
𝑗) ∼ 𝑁(𝜌 ∑𝑗 𝑤𝑖𝑗𝑦𝑗/𝑤𝑖+, 𝜏2/𝑤𝑖+). From the next Sections we adopt the notation 𝐶𝐴𝑅(𝜌, 𝜏2)
to refer to this model.

For a general definition of conditionally autoregressive models and examples of neigh-
boring schemes refer to Besag (1974) from Section 3. For a simpler exposition of condition-
ally autoregressive models see Chapter 3 in Banerjee et al. (2004).

2.6 Dynamic Linear Model
To motivate this section consider a dynamic system, anything that evolves over time, gov-
erned by a process 𝑧𝑡 ∼ 𝑁(𝜁𝑡, 𝜈𝑡), 𝑡 = 1, … , 𝑡. Together, the equations

𝑧𝑡 = 𝜁𝑡 + 𝜈𝑡, 𝜈𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝑉𝑡) (2.13)

𝜁𝑡 = 𝜁𝑡−1 + 𝜔𝑡, 𝜔𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝑊𝑡) (2.14)

provide understanding about the system, where Equation (2.14) inform its state, and Equation
(2.13) inform what the next state of the system will be in the next instant of time given the
current state. If the Equations 2.13 and 2.14 satisfy the following assumptions,

1. 𝜁𝑡 is a Markov chain



2.6 Dynamic Linear Model 19

2. Conditionally on 𝜁𝑡, the 𝑧𝑡’s are independent and 𝑧𝑡 depends on 𝜁𝑡 only,

and in addition if at time 𝑡 = 0 the system is started with a gaussian prior, 𝜁0 ∼ 𝑁(𝑚0, 𝐶0),
2.13 and 2.14 are said to be a dynamic linear model (Durbin and Koopman, 2001; Petris
et al., 2009).

For our purposes we conveniently set 𝑉𝑡 = 1 and to the unknown variance 𝑊𝑡 of the state
of the system, focusing in a Bayesian approach, set a prior for its precision of the form

𝑊 −1
𝑡 = 𝜚 ∼ gamma(𝑎𝑤, 𝑏𝑤), (2.15)

where gamma(𝑎, 𝑏) stands for the gamma distribution with shape 𝑎 > 0 and rate 𝛽 > 0.
Considering the joint probability distribution 𝑝(𝜁0∶𝑇 , 𝜚|𝑧1∶𝑇 ), where 𝜁0∶𝑇 and 𝑧1∶𝑇 are

finite sequence of consecutive values of 𝜁 and 𝑧, the Bayesian statistical problem of draw-
ing the states 𝜁𝑡 and state precision 𝜚 given the observations 𝑧𝑡 is solved within Gibbs sampler
steps by drawing them from their full conditional distributions 𝑝(𝜁0∶𝑇 |𝜚, 𝑧1∶𝑇 ) and 𝑝(𝜚|𝜁0∶𝑇 , 𝑧1∶𝑇 ),
respectively.

While the full conditional of 𝜚𝑡 has the closed form

𝑝(𝜚|𝜁0∶𝑇 , 𝑧1∶𝑇 ) = 𝑝(𝜚, 𝜁0∶𝑇 , 𝑧1∶𝑇 )
= 𝑝(𝑧1∶𝑇 | 𝜁0∶𝑇 , 𝜚)𝜋(𝜁0∶𝑇 |𝜚)𝑝(𝜚)

=
𝑇

∏
𝑡=1

𝜋(𝜁𝑡|𝜁𝑡−1, 𝜚)𝑝(𝜚)

∝ 𝜚𝑎−1 exp(−𝜚𝑏) × 𝜚𝑇 /2 exp (−𝜚
2(𝜃𝑡 − 𝜃𝑡−1)2

)

= 𝜚𝑎+ 𝑇
2 −1 exp

(
−𝜚

[
𝑏 + 1

2

𝑇

∑
𝑡=1

(𝜃𝑡 − 𝜃𝑡−1)2
])

,

therefore

(𝜚|𝜁0∶𝑇 , 𝑧1∶𝑇 ) ∼ gamma
(

𝑎 + 𝑇
2 , 𝑏 + 1

2

𝑇

∑
𝑡=1

(𝜁𝑡 − 𝜁𝑡−1)2
)

, (2.16)

sampling from 𝑝(𝜁0∶𝑇 , |𝜚, 𝑧1∶𝑇 ) is not straightforward. To do so, write

𝑝(𝜁0∶𝑇 | 𝜚, 𝑧1∶𝑇 ) = 𝑝(𝜁0, … , 𝜁𝑇 | 𝜚, 𝑧1∶𝑇 )
= 𝑝(𝜁𝑇 | 𝜚, 𝑧1∶𝑇 )𝑝(𝜁𝑇 −1 | 𝜃𝑇 , 𝜚, 𝑧1∶𝑇 ) … 𝜋(𝜃0 | 𝜃1, … , 𝜃𝑇 , 𝜚, 𝑧1∶𝑇 )

=
𝑇

∏
𝑡=0

𝑝(𝜃𝑡 | 𝜃𝑡+1∶𝑇 , 𝜚, 𝑧1∶𝑇 ), (2.17)
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to call attention to the factor 𝑝(𝜁𝑇 | 𝜚, 𝑧1∶𝑇 ), the filtering distribution of 𝜁𝑇 ∼ 𝑁(𝑚𝑇 , 𝐶𝑇 ),
where𝑚𝑇 and𝐶𝑇 , the mean and variance of a gaussian distribution, is updated by the Kalman
filter (Kalman, 1960). To obtain a draw from 𝑝(𝜁0∶𝑇 | 𝜚, 𝑧1∶𝑇 ) start by drawing 𝜁𝑇 and then, for
𝑡 = 𝑇 − 1, … , 0, recursively draw 𝜁𝑡 from 𝑝(𝜃𝑡 | 𝜃𝑡+1∶𝑇 , 𝜚, 𝑧1∶𝑇 ). Next, note that 𝜁𝑡 and 𝑧𝑡+1∶𝑇
are conditionally indepdent given 𝜁𝑡+1, therefore 𝑝(𝜃𝑡 | 𝜃𝑡+1∶𝑇 , 𝜚, 𝑧1∶𝑇 ) = 𝑝(𝜃𝑡 | 𝜃𝑡+1, 𝜚, 𝑧1∶𝑡)
has distribution 𝑁(ℎ𝑡, 𝐻𝑡), with

ℎ𝑡 = 𝑚𝑡 + 𝐶𝑡𝐺
′

𝑡+1𝑅−1
𝑡+1(𝜁𝑡+1 − 𝑎𝑡+1),

𝐻𝑡 = 𝐶𝑡 − 𝐶𝑡𝐺
′

𝑡+1𝑅−1
𝑡+1𝐺𝑡+1𝐶𝑡,

obtained via Kalman smoother, where 𝑎𝑡 = 𝐸(𝜁𝑡|𝑧1∶𝑡−1) = 𝐺𝑡𝑚𝑡−1, 𝑅𝑡 = 𝑉 𝑎𝑟(𝜁𝑡|𝑧1∶𝑡−1) =
𝐺𝑡𝐶𝑡−1𝐺

′

𝑡 +𝑊𝑡, 𝑚𝑡 = 𝐸(𝜁𝑡|𝑧1∶𝑡) = 𝑎𝑡 +𝑅𝑡𝐹
′

𝑡 𝑄−1
𝑡 𝑒𝑡, 𝐶𝑡 = 𝑉 𝑎𝑟(𝜁𝑡|𝑧1∶𝑡) = 𝑅𝑡 −𝑅𝑡𝐹

′

𝑡 𝑄−1
𝑡 𝐹𝑡𝑅𝑡,

𝑓𝑡 = 𝐸(𝑧𝑡|𝑧1∶𝑡−1) = 𝐹𝑡𝑎𝑡, 𝑄𝑡 = 𝑉 𝑎𝑟(𝑧𝑡|𝑧1∶𝑡−1) = 𝐹𝑡𝑅𝑡𝐹
′

𝑡 + 𝑉𝑡, and 𝑒𝑡 = 𝑧𝑡 − 𝑓𝑡 is the forecast
error. The process just described is the so called forward filtering backward sampling (FFBS)
Algorithm, see Algorithm 1.

Algorithm 1 Forward Filtering Backward Sampling
1. Run Kalman filter.
2. Draw 𝜁𝑇 ∼ 𝑁(𝑚𝑇 , 𝐶𝑇 ).
3. For 𝑡 = 𝑇 − 1, … , 0, draw 𝜁𝑡 ∼ 𝑁(ℎ𝑡, 𝐻𝑡).

Within a Gibbs sampler, draws from 𝑝(𝜁0∶𝑇 , |𝜚, 𝑧1∶𝑇 ) and 𝑝(𝜚|𝜁0∶𝑇 , 𝑧1∶𝑇 ) are summarized
in Algorithm 2.

Algorithm 2 Forward Filtering Backward Sampling within a Gibbs Sampler
0. Initialize: set 𝜚 = 𝜚(0).
1. For 𝑖 = 1, … , 𝑁 :

a) Draw 𝜁 (𝑖)
0∶𝑇 from 𝑝(𝜁0∶𝑇 |𝑧1∶𝑇 , 𝜚 = 𝜚(𝑖−1)) using FFBS.

b) Draw 𝜚(𝑖) from 𝑝(𝜚 | 𝑧1∶𝑇 , 𝜁0∶𝑇 = 𝜁 (𝑖)
0∶𝑇 ).

2.7 Feature Classes and the Enriched Stick-Breaking Prior
To introduce feature classes as proposed by Scarpa and Dunson (2013), let Ω be the function
space where a generic curve 𝑓 takes its value be expressed as Ω = ∪♯𝒜

𝑎=1Ω𝑎, where each
Ω𝑎 = {𝑓 ∶ ℐ (𝑓) = 𝒜𝑎, 𝑓 ∈ Ω} congregates functions within feature class 𝑎, ℐ ∶ Ω ↦
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{0, 1}𝑀 denote a feature class indicator function and ♯𝒜 = 2𝑀 are the number of partitions
of Ω. Though the number of partitions grows exponentially with the number of features 𝑀 ,
with few classes it is possible to accommodate a number of features since for 𝑚 = 1, … , 𝑀 ,
ℐ𝑚(𝑓 ) = 1 denotes that function 𝑓 possesses feature 𝑚 and ℐ𝑚(𝑓 ) = 0 otherwise, i.e.,
each class is the disjoint union of two characteristic-specific subclasses. Information about
the features are given a priori and the proportions of functions falling into different feature
classes 𝑎 is given by

Π = (Π𝑎, 𝑎 = 1, … , ♯𝒜)𝑇 ∼ 𝐷𝑖𝑟𝑖(𝑎Π,1, … , 𝑎Π,♯𝒜 ). (2.18)

Set up the feature classes, Equation 2.2 can be written as

𝑃 =
♯𝒜

∑
𝑎=1

Π𝑎

𝑁𝑎

∑
𝑘=1

𝑝𝑎,𝑘𝛿𝜃𝑎,𝑘
(2.19)

where Π𝑎 is the proportion of curves falling into feature class 𝑎, 𝑝𝑎,1 = Π𝑎𝑉𝑎,1, 𝑝𝑗 = Π𝑎𝑉𝑎,𝑗

∏𝑘<𝑗(1 − 𝑉𝑎,𝑘), 𝑉𝑎,𝑘
𝑖.𝑖.𝑑.∼ 𝐵𝑒𝑡𝑎(1, 𝛼), for 𝑘 = 1 … , 𝑁𝑎 − 1 with 𝑁 = {𝑁𝑎}♯𝒜

𝑎=1 the truncation
level of each class. To truncate the stick-breaking prior to 𝐾 terms set 𝑉𝑎,𝑁𝑎

= 1, for each
𝑎, to guaranty, by Lemma 1 in Scarpa and Dunson (2013), ∑𝐾

𝑘=1 𝑝𝑘 = 1 almost surely,
where 𝐾 = (1, … , 𝑁1, 𝑁1 + 1, … , 𝑁1 + 𝑁2, … , ∑ 𝑁𝑎

♯𝒜−1
𝑎=1 ,… , 𝑁♯𝒜 ). Note that, now the

base measure is class specific and allow borrow of information through the clusters of the
process.

2.8 A note on B-spline and base measure specification

To generate 𝜃𝑎,𝑘 of Equation 2.19, for each 𝑘, from the base measure 𝑃0,𝑎, for each 𝑎, write

𝜃𝑎,𝑘(⋅) =
𝐿

∑
𝑙=1

𝛽𝑎,𝑘𝑙𝑏𝑙(⋅), (2.20)

where 𝛽𝑎,𝑘𝑙 = (𝛽𝑎,𝑘1, … , 𝛽𝑎,𝑘𝑙)𝑇 are basis coefficients specific to the 𝑘th function atom within
class 𝑎 and {𝑏𝑙, 𝑙 = 1, … , 𝐿} B-spline basis functions having 𝐿 equally-spaced knots in
[0,1], 𝑏1(0) = 1 and 𝑏𝐿(1) = 1 with the basis coefficients drew from

𝛽𝑎,𝑘𝑙 ∼ 𝜈0𝛿0(⋅) + (1 − 𝜈0)𝜙𝑘𝑙(⋅; 0, 𝑐), 𝑙 = 1, … , 𝐿, (2.21)

where 𝜙𝑘𝑙(⋅, 𝜇, 𝜎2) denotes a gaussian density and 𝜈0 ∼ beta(𝑎𝜈0
, 𝑏𝜈0

).



22 A brief theoretical background

A key aspect is obtain draws of 𝜃𝑎,𝑘 from 𝑃0,𝑎, i.e, draw the functional atoms such that
𝑓 ∈ Ω𝑎 and therefore 𝑓 falls within feature class 𝑎. As an illustration, consider our ap-
plication in neuroimaging, see Section 2.1, where the interest is to take into account prior
information of symmetries in the brain response to stimuli. To see this, in the Figure 2.7
two ERP responses recorded by electrodes 3 and 57 located in the frontal and occipital brain
lobes, respectively. The red dashed lines mark the interval between 50 to 100 ms where
the curves 𝑓(3, ⋅) and 𝑓(57, ⋅) change their behavior presenting its maximum and minimum
value within this interval, respectively. Therefore all curves belongs to the same feature
class, 𝑀 = 1, the class in which a maximum or a minimum values of the f’s are observed
within the considered interval. In this feature class the curves are expected to fall within one
of two subclasses, ♯𝒜=2, as follows: using the same notation for feature classes as above,
ℐ1(𝑓 ) = 1 if 𝑓 , within the interval 50 to 100 ms, has a maximum value and ℐ1(𝑓 ) = 0
otherwise. The definition of this feature class split the function space Ω into 2𝑀 = 2, where
Ω1 contains functions with maximum values within the considered interval and Ω2 functions
with minimum values within the same interval.
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(b) Electrode 57

Fig. 2.7 Real data: ERP waveforms recorded by electrodes.
.

To obtain functions belonging to each subclass we restrict draws of B-splines coeffi-
cients, specifically we restrict 𝜙𝑘𝑙(⋅) in Equation 2.21 to a region 𝐴𝑎, for selected 𝑎’s in
𝑎 = 1, … , ♯𝒜 , resulting in 𝜃𝑎,𝑘 belonging to the feature class 𝑎. Specifically, since the
curve’s feature we are interested in is within the time interval 50–100 ms we want to control
the shape of the curve in this time interval by localizing the knots controlling this shape.
Below we introduce some B-splines definitions and properties, see Chapter IX and XI in
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De Boor (2001), leading to the definition of control point sequence and control polygon
used to tackle this task.

Let 𝑟 ∶= {𝑟𝑗}𝐿+𝜅
1 be real values, called knots, of a 𝜅-order B-spline 𝐵𝜅,𝑡, 𝐵𝜅,𝑡 ∶=

{∑𝑗 𝛽𝑗𝑏𝑗 ∶ 𝛽𝑗 ∈ ℝ, for all 𝑗}, with 𝐿 ≥ 𝜅 > 1 such that 𝑟𝑗 < 𝑟𝑗+𝜅 for all 𝑗 and
𝑟1 = … = 𝑟𝜅 = 𝑎𝐵, 𝑟𝐿+1 = … = 𝑟𝐿+𝜅 = 𝑏𝐵; call [𝑎𝐵, 𝑏𝐵] = [𝑟𝜅 , 𝑟𝐿+1] the basic in-
terval. The convex hull property states that for 𝑟𝑗 < 𝑥 < 𝑟𝑗+1, 𝑥 ∈ [𝑎𝐵, 𝑏𝐵], the spline
𝐵∗

𝜅,𝑟 = ∑𝑗 𝛽𝑗𝑏𝑗 is a strictly convex combination of the 𝛽𝑗+1−𝜅 , … , 𝛽𝑗 , i.e., spline values are
bounded by the 𝜅 nearby numbers and 𝐵𝑗(𝑥) = 0 for 𝑥 ∉ [𝑟𝑗 , 𝑟𝑗+𝜅] leading to the definition
of control polygon; indeed, 𝑥 = ∑𝑗 𝑟∗

𝑗𝜅𝑏𝑗(𝑥), 𝑥 ∈ [𝑎𝐵, 𝑏𝐵], where

𝑟∗
𝑗𝜅 =

𝑟𝑗+1 + ⋯ + 𝑟𝑗+𝜅−1

𝜅 − 1 , for all 𝑗. (2.22)

Essentially, the Equation 2.22 is a method to localize knots controlling the shape of the
curve in the interval [𝑗 + 1 − 𝜅, 𝑗], 𝑃𝑗 ∶= (𝑟∗

𝑗𝜅 , 𝛽𝑗) ∈ ℝ ∶ 𝑗 = 1, … 𝐿 is the control point
sequence of the spline ∑𝑗 𝛽𝑗𝑏𝑗 ∈ 𝐵𝜅,𝑡 and 𝐶𝜅,𝑟 is the control polygon of a spline 𝐵∗

𝜅,𝑟 ∈ 𝐵𝜅,𝑟
with 𝑃𝑗 as vertex sequence.

Back to the illustration in Figure 2.7, given a sequence of knots 𝑟 one localize the knots
𝑟∗ controlling the shape of the curve between the time interval 50–100 ms and draw the
coefficients with 0 lower bound values for curves falling into subclass 𝑎 = 1 and ℐ1(𝑓 ) = 1,
e.g., the case of Figure 2.7a, and draw coefficients with opposite constraints for curves falling
into sublcass 𝑎 = 2 and ℐ1(𝑓 ) = 0, e.g., the case of Figure Figure 2.7b. For a combination of
curve’s shape constraints, e.g., whether the curves in subclass 1 were also monotonic within
the time interval 50-75 ms Abraham and Khadraoui (2015) is a good reference.

2.9 Binder’s Loss
The Bayesian clustering problem in this thesis, for each of the two proposed models, is
classify each curve in classes, subclasses and groups, in this order. To give an example,
considering the neuroimaging application, the ERP responses, see Figure 2.7 above, are
allocated in one of two subclasses and groups within each subclass. To tackle this prob-
lem consider, as before, Ω = ∪♯𝒜

𝑎=1Ω𝑎 the partitioned function space, 𝐾 = ∑♯𝒜
𝑎=1 𝑁𝑎 the

upper bound of number of cluster of the Dirichlet process, with 𝑁𝑎 the truncation level
of each class for all 𝑎, and for this Section ♯𝑛 the total number of subjects. Introduce
the allocation variables 𝒦 = (𝒦1, … , 𝒦♯𝑛)𝑇 and 𝒞 = (𝒞1, … , 𝒞𝐾)𝑇 such that 𝒦𝑖 = 𝑘,
𝑘 ∈ (1, … , 𝑁1, 𝑁1 + 1, … , 𝑁1 + 𝑁2, … , ∑ 𝑁𝑎

𝑁♯𝒜−1
𝑎=1 , … , 𝑁♯𝒜 ), and 𝒞𝑘 = 𝑎 indicates that

𝑓(𝑖, ⋅) is allocated to cluster 𝑘 within feature class 𝑎, implying 𝑓(𝑖, ⋅) = 𝜃𝑎,𝑘. In this setting
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cluster estimates are based on the posterior distributions (see Ishwaran and James, 2001)
(𝒦|data) and (𝒞|data). The last is induced from the former by relabelling the indexes ac-
cordingly.

The loss of estimating the true clustering 𝒦 and 𝒞 by the MCMC samples �̂� and �̂�
is measured by the loss functions 𝐿𝑘(𝒦,�̂�) and 𝐿𝑐(𝒞, �̂�); here the 𝐿(⋅)’s are the Binder’s
Loss (see Binder, 1978; Fritsch and Ickstadt, 2009; Lau and Green, 2007), a quadratic func-
tion of the counts, without loss of generality, given by

𝐿𝑘(𝒦,�̂�) = ∑
𝑖<𝑗

𝑙1𝐼{𝒦𝑖 = 𝒦𝑗}𝐼{�̂�𝑖 = �̂�𝑗} + 𝑙2𝐼{𝒦𝑖 = 𝒦𝑗}𝐼{�̂�𝑖 = �̂�𝑗},

(2.23)

with 𝑙1 = 𝑙2 = 1 to penalize the two allocation errors equally, i.e., the error of allocating
two observations to different clusters when they should be in the same cluster or allocating
them to the same cluster when they should be in different clusters, for all possible pair of
observations 𝑖, 𝑗 ∈ {1, … , ♯𝑛}. The optimal clustering configuration 𝒦∗ is the partition
which minimizes

∑
𝑖<𝑗

(𝐼{�̂�𝑖 = �̂�𝑗} − 𝜋𝑖,𝑗)
2

, (2.24)

where 𝜋𝑖,𝑗 = Pr(�̂�𝑖 = �̂�𝑗}|data) is the posterior probability that 𝑖 and 𝑗 belongs to the
same cluster.



Chapter 3

A Bayesian Nonparametric approach for
the analysis of functional ERP data in
neuroimaging

In this Chapter we propose a Bayesian nonparametric approach that allows to group elec-
trodes together based on the observed multichannel ERP waveforms. Our approach allows
to flexibly model the ERP temporal dynamics, takes into account spatial dependencies in the
brain and feature classes allows us to locate symmetries in the brain response to stimuli.

3.1 Proposed Model

Let 𝑦(𝑠, 𝑡) denote the functional ERP response observed at time 𝑡 = 1, … , 𝑇 in each electrode
𝑠, 𝑠 = 1, … , 𝑆. We assume that

𝑦(𝑠, 𝑡) = 𝑓(𝑠, 𝑡) + 𝜖(𝑠, 𝑡)

where the collection {𝑓(𝑠, 𝑡)}𝑇
𝑡=1 is considered to be the realization of a random function

𝑓(𝑠, ⋅) ∶ ℛ+ → ℛ and 𝜖(𝑠, 𝑡) ∼ 𝑡𝜈(𝜎2) is a spatio-temporal error process with 𝜈 the degrees
of freedom and 𝜎 the scalar parameter of a Student-t distribution. To take into account prior
information of symmetries in the brain response to stimuli the function space where the
functions 𝑓 ’s take its values is expressed as Ω = ∪♯𝒜

𝑎=1Ω𝑎, where each Ω𝑎 = {𝑓 ∶ ℐ (𝑓) =
𝒜𝑎, 𝑓 ∈ Ω} congregates functions within feature class 𝑎, ℐ ∶ Ω ↦ 𝒜 = {0, 1}𝑀 denote a
feature class indicator function and ♯𝒜 = 2𝑀 are the number of partitions of Ω (Scarpa and
Dunson, 2013). Moreover, the functions are assumed to be spatially correlated and clustered
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together by an underlying Functional Dependent Dirichlet Process (FDDP), viz

𝑓 = {𝑓𝑠}𝑆
𝑠=1|𝑃𝑆 ∼ 𝑃𝑆 (3.1)

with

𝑃𝑆 =
♯𝒜

∑
𝑎=1

Π𝑎 ∑
𝑢1,…,𝑢𝑆

𝜋𝑢1,…,𝑢𝑆
𝛿𝜃𝑎,𝑢1

⋯ 𝛿𝜃𝑎,𝑢𝑆
(3.2)

a FDDP defined over a lattice space. The stochastic weights

𝜋𝑢1,…,𝑢𝑆
= 𝑃 𝑟

(

𝑢1−1

∑
𝑘=1

𝑝𝑎,𝑘 < 𝐹 (1)(𝜂1) <
𝑢1

∑
𝑘=1

𝑝𝑎,𝑘, … ,
𝑢𝑆 −1

∑
𝑘=1

𝑝𝑎,𝑘 < 𝐹 (𝑆)(𝜂𝑆) <
𝑢𝑆

∑
𝑘=1

𝑝𝑎,𝑘)
,

(3.3)

where 𝐹 (1)(𝜂1), … , 𝐹 (𝑆)(𝜂𝑆) are the cumulative distributions of the marginal distribution of
𝜂, Π𝑎 the proportion of curves falling into feature class 𝑎, 𝑝𝑎,1 = Π𝑎𝑉𝑎,1, 𝑝𝑗 = Π𝑎𝑉𝑎,𝑗 ∏𝑘<𝑗(1−
𝑉𝑎,𝑘), 𝑉𝑎,𝑘

𝑖.𝑖.𝑑.∼ 𝐵𝑒𝑡𝑎(1, 𝛼), for 𝑘 = 1 … , 𝑁𝑎 −1 with 𝑁𝑎 the truncation level within each class.
To truncate the stick-breaking prior to 𝐾 terms set 𝑉𝑎,𝑁𝑎

= 1, for each 𝑎 to guaranty, by
Lemma 1 in Scarpa and Dunson (2013), ∑𝐾

𝑘=1 𝑝𝑘 = 1 almost surely, where 𝐾 = (1, … , 𝑁1,
𝑁1 + 1, … , 𝑁1 + 𝑁2, … , ∑ 𝑁𝑎

♯𝒜−1
𝑎=1 ,… , 𝑁♯𝒜 ).

The Equation 3.3 is a copula type model with CAR prior placed on 𝜂 to accommodate
the spatial dependence,

𝜂 = {𝜂𝑠}𝑆
𝑠=1 ∼ 𝑁𝑠(0,Σ), (3.4)

where Σ = 𝜎2
𝜂 (𝐷 − 𝜌𝑊 )−1 with 𝑊𝑆×𝑆 an adjacency matrix with entries 𝑤𝑖𝑗 = 1 if 𝑖 ∼ 𝑗

and 0 otherwise and 𝐷 is diagonal with elements 𝑤𝑠+. Note that, the dependence structure
assigned to 𝜂 are induced in the marginals 𝐹 (1)(𝜂1), … , 𝐹 (𝑆)(𝜂𝑆).

Use a copula type model to define the weights of a DDP is not new; Petrone et al. (2009)
proposed a Hybrid Dirichlet mixture model where the aim was to propose a Bayesian mix-
ture model to reduce dimensionality of curves by representing the sample of curves through
a recombination of smaller set of canonical curves. Dependencies on the weights are accom-
modated through a continuous spatial process; Li et al. (2014) proposed Bayesian models for
detecting difference boundaries in areal data by adapting the Hybrid Dirichlet mixture model
by modeling the weights using Markov random fields. They apply their model to counting
data using Poisson likelihood that could be replaced by other discrete distribution in the ex-
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ponential family. Both approaches ensure that the marginal distribution of their model is a
Dirichlet process.

The differential of our approach is to model curves over an areal space and include prior
information of curve’s features. Moreover our model accommodate curves constraints and
spatial correlation through a conditional autoregressive model. In particular, it is a novel
method to guide the decision of which electrodes should be clustered together with bayesian
variable selection techniques used to select significant set of bases coefficients in each cluster.

The marginal distribution of our model (Equation 3.2) follows the enriched functional
dirichlet process proposed by Scarpa and Dunson (2013); to see that, for each 𝑠,

𝑃 (𝑠) =
♯𝒜

∑
𝑎=1

Π𝑎

𝑁𝑎

∑
𝑘=1

∑
𝑢1,…,𝑢𝑠=𝑘,…,𝑢𝑆

𝜋𝑢1,…,𝑢𝑠=𝑘,…,𝑢𝑆
𝛿𝜃𝑢1

… 𝛿𝜃𝑢𝑠=𝑘
… 𝛿𝜃𝑢𝑆

=
♯𝒜

∑
𝑎=1

Π𝑎

𝑁𝑎

∑
𝑘=1

𝑝𝑎,𝑘𝛿𝜃𝑎,𝑘
, (3.5)

where 𝑝𝑎,𝑘 = ∑𝑁𝑎
𝑘=1 𝑃 𝑟 (∑𝑘−1

𝑙=1 𝑝𝑙 < 𝐹 (𝑠)(𝜂𝑠) < ∑𝑘
𝑙=1 𝑝𝑙) and 𝜃𝑎,𝑘 is a functional atom draw from

𝑃0,𝑎, a base measure for our functional dirichlet process, for all 𝑎 specified as in Section 2.8.
In 3.5 is used that 𝜋𝑢1,…,𝑢𝑠−1,…,𝑢𝑆

= 𝜋𝑢1,…,𝑢𝑠−1,⋅,𝑢𝑠+1,…,𝑢𝑆
= ∑𝑢1,…,𝑢𝑠=𝑘,…,𝑢𝑆

𝜋𝑢1,…,𝑢𝑠=𝑘,…,𝑢𝑆
.

Moreover, if Π𝑎 = 1 and 𝑀 = 1 Equation 3.2 is a functional dirichlet process over a
lattice and it is an extension of the discrete process by Li et al. (2014).

The first and second moments of the process is given by

E(𝜃𝑠|𝑃𝑆) =
♯𝒜

∑
𝑎=1

Π𝑎

𝑁𝑎

∑
𝑘=1

𝑝𝑎,𝑘(𝑠)𝛿𝜃𝑎,𝑘
(𝑠) (3.6)

var(𝜃𝑠|𝑃𝑆) =
♯𝒜

∑
𝑎=1

Π𝑎

𝑁𝑎

∑
𝑘=1

𝑝𝑎,𝑘(𝑠)𝛿2
𝜃𝑎,𝑘

(𝑠) −
⎧⎪
⎨
⎪⎩

♯𝒜

∑
𝑎=1

Π𝑎

𝑁𝑎

∑
𝑘=1

𝑝𝑎,𝑘(𝑠)𝛿𝜃𝑎,𝑘
(𝑠)

⎫⎪
⎬
⎪⎭

2

,

(3.7)
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with covariance

Cov(𝜃𝑟, 𝜃𝑠|𝑃𝑆) = 𝜎2
𝑟 𝜎2

𝑠

♯𝒜

∑
𝑎=1

Π𝑎

𝑁𝑎

∑
𝑙=1

𝑃 𝑟(𝑢𝑟 = 𝑢𝑠 = 𝑙)

= 𝜎2
𝑟 𝜎2

𝑠

♯𝒜

∑
𝑎=1

Π𝑎

𝑁𝑎

∑
𝑙=1

𝑃 𝑟
(

𝑙−1

∑
𝑘=1

𝑝𝑘 < 𝐹 (𝑟)(𝜂𝑟) <
𝑙

∑
𝑘=1

𝑝𝑘,
𝑙−1

∑
𝑘=1

𝑝𝑘 < 𝐹 (𝑠)(𝜂𝑠) <
𝑙

∑
𝑘=1

𝑝𝑘)

= 𝜎2
𝑟 𝜎2

𝑠

♯𝒜

∑
𝑎=1

Π𝑎

𝑁𝑎

∑
𝑙=1

𝑝𝑙𝑃 𝑟
(

𝐹 (𝑟)−1
𝑙−1

∑
𝑘=1

𝑝𝑘 < 𝜂𝑟 < 𝐹 (𝑟)−1
𝑙

∑
𝑘=1

𝑝𝑘 | 𝐹 (𝑠)−1
𝑙−1

∑
𝑘=1

𝑝𝑘 < 𝜂𝑠 <

𝐹 (𝑠)−1
𝑙

∑
𝑘=1

𝑝𝑘)
,

(3.8)

where (𝜂𝑟, 𝜂𝑠) is distributed as a bivariate normal distribution with covariance matrix given
by the CAR model.

3.2 Posterior Computation
Given the cluster allocation variables𝒦 and𝒞 introduced in Section 2.9, the MCMC algo-
rithm, after initial values are set, iterate with the following steps (see Appendix A for some
calculations):

1. update Π by sampling from the full conditional posterior

(Π|𝒦,𝒞, 𝑦) ∼ Diri
(

𝑎Π,1 +
𝑆

∑
𝑠=1

1(𝒞𝒦𝑠
= 1), … , 𝑎Π,♯𝒜 +

𝑆

∑
𝑠=1

1(𝒞𝒦𝑠
= ♯𝒜)

)
,

(3.9)

2. update parameters for 𝜖(𝑠, 𝑡). For computational reasons, write the Student-t distribu-
tion as 𝜖(𝑠, 𝑡) ∼ 𝑁(0, 𝜓−1

𝑠𝑡 𝜎2
𝜖 ), see, e.g., Congdon (2001) for a proof of this result. Set

𝜓𝑠𝑡 ∼ gamma( 𝜈
2 , 𝜈

2), assume 𝜎−2
𝜖 = 𝜏𝜖 ∼ gamma(𝑎𝜏 , 𝑏𝜏) and 𝜈 ∼ gamma(𝑎𝜈 , 𝑏𝜈). (a)

Update 𝜓𝑠𝑡

(𝜓𝑠𝑡|𝑉 , 𝜏𝜂, 𝜂, 𝜏𝜖, Θ, 𝑦) ∼ gamma(
𝜈
2 + 1

2, 𝜈
2 + 1

2𝜎−2
𝜖 {𝑦(𝑠, 𝑡) − 𝑓(𝑠, 𝑡)}2

) (3.10)



3.2 Posterior Computation 29

(b) Update 𝜈 using Metropolis random walk, by generating a candidate

𝜈∗ ∼ 𝑁(𝜈𝑡−1, 0.25), (3.11)

accept with probability

min
{

1,
gamma(𝜈∗;𝑎𝜈 , 𝑏𝜈)∏𝑆

𝑠=1 ∏𝑇
𝑡=1 gamma(𝜓𝑠𝑡; 𝜈∗

2 , 𝜈∗

2 )
gamma(𝜈(𝑡−1);𝑎𝜈 , 𝑏𝜈)∏𝑆

𝑠=1 ∏𝑇
𝑡=1 gamma(𝜓𝑠𝑡; 𝜈(𝑡−1)

2 , 𝜈(𝑡−1)
2 )}

, (3.12)

(c) Update 𝜏𝜖 = 𝜎−2
𝜖 by sampling from the full conditional posterior

(𝜏𝜖|𝑉 , 𝜏𝜂, Θ,𝑆, 𝑦, 𝜂) ∼ gamma
(

𝑎𝜏 + 1
2

𝑆

∑
𝑠=1

𝑇 , 𝑏𝜏 + 1
2

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡{𝑦(𝑠, 𝑡) − 𝑓(𝑠, 𝑡)}2
)

.

(3.13)

3. update (𝜂|Θ,𝑉 , 𝜏𝜂, 𝜏𝜖, 𝑦) by sampling candidate 𝜂∗
𝑠 from 𝑁(𝜂𝑠, 𝐾𝜂), compute the cor-

responding 𝑢∗ through

𝑢∗
𝑠 =

𝐾

∑
𝑗=1

𝑗𝐼
(

𝑗−1

∑
𝑘=1

𝑝𝑘 < 𝐹 (𝑠)(𝜂∗
𝑠 ) <

𝑗

∑
𝑘=1

𝑝𝑘)
, (3.14)

where 𝐼(⋅) = 1 if 𝜂∗
𝑠 belongs to cluster 𝑘, 𝑝𝑘 = Π𝑎𝑉𝑎,𝑘 ∏𝑘<ℎ(1 − 𝑉𝑎,ℎ), for 𝑎, 𝑘 ∶

𝐼𝑘(𝑎, 𝑘) = 1. Accept the candidate 𝜂∗ with probability

min
{

1,
exp(− 1

2𝜂∗′Σ−1𝜂∗) ∏𝑇
𝑡=1 𝜙 (𝑦(𝑠, 𝑡); Θ𝑢∗

𝑠
, 𝜓−1

𝑠𝑡 𝜏−1
𝜖 )

exp(− 1
2𝜂

′Σ−1
2 𝜂) ∏𝑇

𝑡=1 𝜙 (𝑦(𝑠, 𝑡); Θ𝑢𝑠
, 𝜓−1

𝑠𝑡 𝜏−1
𝜖 ) }

, (3.15)

with 𝜂∗ = {𝜂1, … , 𝜂∗
𝑠 , … , 𝜂𝑆}.

4. update the (𝑉 |𝜏𝜂, Θ, 𝜂, 𝜏𝜖, 𝑦) the stick-breaking weights. Sample candiate 𝑉 ∗ from
beta(𝑎𝑉 , 𝑏𝑉 ), where 𝑎𝑉 = 𝑚𝑎𝑥(𝛿 + 𝜀𝑉 , 1) and 𝑏𝑉 = 𝑚𝑎𝑥(𝛿 + 𝜀(1 − 𝑉 ), 1). This is the
random beta walk. Compute the corresponding 𝑝∗ and 𝑢∗ where

𝑢∗
𝑠 =

𝐾

∑
𝑗=1

𝑗𝐼
(

𝑗−1

∑
𝑘=1

𝑝𝑎,𝑘 < 𝐹 (𝑠)(𝜂∗
𝑠 ) <

𝑗

∑
𝑘=1

𝑝𝑎,𝑘)
, (3.16)
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and 𝑝𝑎,1 = Π𝑎𝑉𝑎,1; 𝑝𝑗 = Π𝑎𝑉𝑎,𝑘 ∏𝑘<𝑗(1 − 𝑉𝑎,𝑗). Then accept the candidate 𝑉 ∗ with
probability

min
{

1,
∏𝐾

𝑘=1(1 − 𝑉 ∗
𝑘 )𝛼−1 ∏𝑆

𝑠=1 ∏𝑇
𝑡=1 𝜙 (𝑦(𝑠, 𝑡); Θ𝑢∗

𝑠
, 𝜓−1

𝑠𝑡 𝜏−1
𝜖 )

∏𝐾
𝑘=1(1 − 𝑉𝑘)𝛼−1 ∏𝑆

𝑠=1 ∏𝑇
𝑡=1 𝜙 (𝑦(𝑠, 𝑡); Θ𝑢𝑠

, 𝜓−1
𝑠𝑡 𝜏−1

𝜖 ) }
. (3.17)

5. update (𝜏𝜂|Θ,𝑉 , 𝜂, 𝜏𝜖, 𝑦) the spatial dispersion parameter. Sample from

gamma(
𝑛
2 + 𝑐𝜏 , 1

2𝜂
′
(𝐷 − 𝜌𝑊 )𝜂 + 𝑑𝜏) (3.18)

which is the conjugate gamma full conditional distribution for 𝜏𝜂.

6. update 𝜃𝑎,𝑘(⋅), for 𝑘 = 1, … , 𝑁𝑎, by updating the basis coefficients, 𝛽𝑎,𝑘 by sampling
from the full conditional posterior distribution

(𝛽𝑘𝑙|𝑉 , 𝛽𝑎,𝑘(−𝑙), 𝜏𝜂, 𝜂, 𝜏𝜖, 𝑦) ∼ ̂𝜈𝑘𝑙𝛿0(⋅) + (1 − ̂𝜈𝑘𝑙)𝜙𝐴𝑘𝑙
(⋅; ̂𝛽𝑘𝑙, 𝜎2

𝛽𝑘𝑙
) (3.19)

where 𝜙𝐴𝑘𝑙(⋅, 𝜇, 𝜎2) denotes the truncated gaussian density to the region 𝐴 resulting in
𝜃𝑎,𝑘 belonging to the feature class 𝑎 and

𝜎2
𝛽𝑘𝑙

=
(

𝑐−1
𝜈 + ∑

𝑠∶𝑆𝑠=𝑘

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖𝑏𝑙(𝑡𝑠)2
)

−1

,

̂𝛽𝑘𝑙 = 𝜎2
𝛽𝑘𝑙 ( ∑

𝑠∶𝑆𝑠=𝑘

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖𝑦(𝑠, 𝑡)(𝑘,−𝑙)𝑏𝑙(𝑡𝑠))
,

where 𝑦(𝑠, 𝑡)(𝑘,−𝑙) = 𝑦(𝑠, 𝑡) − ∑
𝑚≠𝑙

𝛽𝑘𝑚𝑏𝑚(𝑡𝑠),

̂𝜈𝑘𝑙 =
(

1 + 𝜈0
1 − 𝜈0

𝜙𝐴𝑘𝑙
(⋅; 0, 𝑐𝜈)

𝜙𝐴𝑘𝑙
(⋅; ̂𝛽𝑘𝑙, 𝜎2

𝛽𝑘𝑙
))

−1

.

7. update the probability of including a basis function by sampling as follows:

(𝜈0|−) ∼ beta
(

𝑎𝜈 + ∑
𝑘

∑
𝑙

1(𝛽𝑘𝑙 = 0), 𝑏𝜈 + ∑
𝑘

∑
𝑙

1(𝛽𝑘𝑙 ≠ 0)
)

. (3.20)

8. update 𝛼 as in Escobar and West (1995) - Assuming gamma(𝑎𝛼, 𝑏𝛼) hyperprior for 𝛼,
with the gamma paremeterized to have mean 𝑎𝛼𝑏𝛼 and variance 𝑎𝛼𝑏2

𝛼 the conditional
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posterior is

(𝛼|𝜂, 𝑘) ∼ 𝜋𝜂gamma (𝑎𝛼 + 𝑘, 𝑏𝛼 − log(𝜂))
+ (1 − 𝜋𝜂)gamma (𝑎𝛼 + 𝑘 − 1, 𝑏𝛼 − log(𝜂)) ,

(3.21)

with 𝜋𝜂/(1 − 𝜋𝜂) = (𝑎𝛼 + 𝑘 − 1)/(𝐾{𝑏𝛼 − log(𝜂)}) and (𝜂|𝛼, 𝑘) ∼ beta(𝛼 + 1, 𝐾).

3.3 Simulation study

We simulated data for 71 electrodes, 𝑠 = 1, … , 71, using the 10-10 international system.
In Figure 3.1a is illustrated the position and approximate correspondence between the inter-
national 10-10 system, dark gray color, with those of the 128-channel, illustrated in Figure
3.1b, as in Luu and Ferree (2005). We use a smaller set of data, 71 electrodes, in the simula-
tion study instead 128 electrodes, as in the real data, to assess the performance of the model
in detect activated regions when a smaller set of data is available. The 71 electrodes were di-

(a) Layout 10-10 system, 71 electrodes, equivalent
on the 128-channel HydrcoCel

(b) Layout 128 channels

Fig. 3.1 Geodesic sensor nets.

vided in 3 regions arbitrary chosen to be the frontal (𝑟𝑏 = 1, 32 electrodes), parietal (𝑟𝑏 = 2,
18 electrodes) and occipital (𝑟𝑏 = 3, 21 electrodes) brain lobes though in the real data the
activated regions might not be coincident with this configuration. Specifically, following
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Jansen and Rit (1995) we simulate data from

𝑦(𝑠, 𝑡) = ℎ(𝑡)(𝑟𝑏) ⊗ Sigm(𝜈)(𝑟𝑏) + 𝜖(𝑠, 𝑡),

where 𝑦(⋅) is a functional ERP like response, ⊗ denotes convolution,

ℎ(𝑡) =
{

𝐴𝑎𝑡 𝑒−𝑎𝑡 𝑡 >= 0
−0 𝑡 < 0

is the impulse response, with 𝐴 the maximum amplitude of the excitatory or inhibitory neu-
ron, 𝑎 the lumped time constant of passive membrane currents and other spatially distributed
delays in the dendritic network,

Sigm(𝜈) = 2𝑒0
1 + 𝑒𝜀(𝜈0−𝜈) (3.22)

a sigmoid function, used for the voltage-to-pulse conversion process with 𝑒0 the maximum
firing rate of the neural population, 𝜈0 the postsynaptic membrane potential for which a 50%
firing rate is achieved, and 𝜀 the steepness of the sigmoidal transformation and 𝜖(𝑠, 𝑡) is a
random noise specific to electrode 𝑠 and time 𝑡 = 1, … , 175. In Figure 3.2 are illustrated
each component of the model.

Outcome 𝑦(1, ⋅) Impulse response ℎ(⋅) Sigmoid function

Fig. 3.2 Simulated data: ERP like functional data, ℎ(⋅) and Sigm(⋅) functions.

The adjacency matrix 𝑊 in the covariance matrix of the CAR prior in Equation 3.4 is of
clique 2, i.e, 𝑖 ∼ 𝑗 if and only if 𝑗 ∼ 𝑖 (see Section 2.5 for details). In Figure 3.3a is illustrated
the adjacency matrix with neighborhood structure specified, as illustrated in Figure 3.3b, by
choosing a threshold distance of 0.77 mm between electrodes where the range distance is
0.215–1.997 mm; this threshold was chosen by visual inspection since with this distance
the electrodes seems to be reasonably connected. Additionally, the orange and pink colors
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identify the frontal and parietal brain lobes within subclass 1 and the green color identify
the occipital lobe within subclass 2.

(a) Adjacency matrix (b) Neighborhood structure

Fig. 3.3 Simulated data: adjacency matrix and neighborhood structure for spatial configura-
tion of simulated data.

The remaining parameters of the model was chosen such that 𝑐𝜏 = 1 favor a model with
small set of basis functions, 𝑎𝜏 = 𝑏𝜏 = 𝑎𝜈 = 𝑏𝜈 = 𝑎𝛼 = 𝑏𝛼 = 1 are non informative priors
and 𝑎Π = (0.7, 0.3)𝑇 informative prior to the proportion of curves falling into each subclass.
The meaning of this prior is the following: 70% of the ERP waveforms in the simulated data
present maximum value between the time interval 50–100 ms, see illustration in Figures
3.4a and 3.4b, in opposition to the remaining 30% of the curves that present minimum value
within this interval, as illustrade in Figure 3.4c. This configuration divide the simulated data
in symmetrical subclasses, see Section 2.1.

In the following we show the results after run the Gibbs sampling algorithm for 25,000
iterations after a burn-in period of 5,000. Gelman-Rubin diagnostics (Gelman and Rubin,
1992) and trace plots of the parameters showed no evidence against convergence. Binder’s
loss was used to classify the waveforms within regions and subclasses.

The posterior mean waveforms for electrodes belonging to each brain region is illustrated
in Figure 3.5. Note that waveforms belonging to regions 1 and 2 are within subclass 1 while
waveforms from region 3 are within subclass 2. The gray curves represent the simulated
data and the black ones the posterior mean for each curve. The posterior mean of Π was
Π̂1 = 0.722 (ci: 0.721–0.723) and Π̂2 = 0.278 (ci: 0.277–0.279).
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(a) Region 1 (b) Region 2 (c) Region 3

Fig. 3.4 Simulated data: Example of ERP like functional data for each region.

Figure 3.6 shows the posterior mean and highest posterior density interval for selected
electrodes within each of the 3 regions where regions 1 and 2 fall into subclass 1 and region
3 into subclass 2.

With our approach we were able to detect the boundaries between the regions and con-
sequently correctly group the electrodes within the frontal, parietal and occipital brain lobes
as in the simulated data. Additionally, the use of feature classes enrich the interpretation of
the results as the classification of regions into subclasses allows us to locate symmetries in
the brain response to stimuli.

(a) Subclass 1 (b) Subclass 2

Fig. 3.5 Simulated data: posterior mean waveforms for electrodes within each subclass along
with the simulated data in gray color.
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(a) Subclass 1
electrode 21, region 1

(b) Subclass 1
electrode 61, region 2

(c) Subclass 2
electrode 43, region 3

Fig. 3.6 Simulated data: posterior mean and highest posterior density.

3.4 Application: ERP data in neuroimagin
Weapplied ourmodel to the ERP data in neuroimaging presented in Section 2.1. Goals in this
analysis is to model the waveforms, group the electrodes and classify groups as belonging to
subclass 1 or 2 depending on the curves have their maximum value within the time interval
50–100 ms or minimum value within this interval, respectively.
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The adjacency matrix 𝑊 in the covariance matrix of the CAR prior in Equation 3.4
is illustrated in Figure 3.7a with neighborhood structure specified, as illustrated in Figure
3.7b, by choosing a threshold distance of 0.5 mm between electrodes considering the range
of distance is 0.157–2 mm; this threshold was chosen by visual inspection since with this
distance the electrodes seems to be reasonably connected. The remaining parameters of the

(a) Adjacency matrix (b) Neighborhood structure

Fig. 3.7 Real data: adjacency matrix and neighborhood structure for spatial configuration of
real data.

model was set in which 𝑐𝜏 = 1 favor a model with smaller set of basis functions, 𝑎𝜏 = 𝑏𝜏 =
𝑎𝜈 = 𝑏𝜈 = 𝑎𝛼 = 𝑏𝛼 = 1 are non informative priors and 𝑎Π = (0.7, 0.3)𝑇 informative prior to
the proportion of curves falling into each subclass.

In the following we show the results after run the Gibbs sampling algorithm for 22,000
iterations after a burn-in period of 8,000. Gelman-Rubin diagnostics (Gelman and Rubin,
1992) and trace plots of the parameters showed no evidence against convergence. Binder’s
loss (Binder, 1978; Lau and Green, 2007) was used to classify the waveforms within regions
and subclasses.

The posterior mean waveforms for electrodes belonging to each brain region is illustrated
In Figure 3.8. Note that waveforms belonging to regions 1 and 2 are within subclass 1 while
waveforms from region 3 are within subclass 2. The gray curves represent the simulated data
and the black ones the posterior mean for each curve. The posterior mean of Π was Π̂1 =
0.5152 (ci: 0.5147–0.5158) and Π̂2 = 0.4848 (ci: 0.4842–0.4853). Figure 3.9 shows the
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posterior mean and highest posterior density interval for selected electrodes within subclass
1 and subclass 2.

(a) Subclass 1 (b) Subclass 2

Fig. 3.8 Real data: posterior mean waveforms for electrodes within each subclass along with
the real data in gray color.

With our approach we were able to detect the boundaries between the regions and conse-
quently group the electrodes, as illustrated in Figure 3.10, within 6 regions (squares in cyan,
yellow, red, green, pink and blue) into subclass 1 and 5 regions (circles in yellow, green,
cyan, red and blue) into subclass 2. Additionally, the use of feature classes enrich the in-
terpretation of the results as the classification of regions into subclasses allows us to locate
symmetries in the brain response to stimuli.

Versace et al. (2011) analyzed the same dataset by computing ERP differences among
stimuli using randomization tests on time regions identified by temporal principal compo-
nents analysis. Though the author’s interest is not group electrodes and do not able us to
compare the results obtained with our model it is worth to mention that the activated regions
are in concordance with their findings as we detect boundaries between the frontal, parietal
and occipital brain lobes, and additionally detect subregions within each lobe. Group elec-
trodes is a novel approach and potentially interesting though difficult to interpret biologically
each detected region.
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(a) Subclass 1
electrode 1

(b) Subclass 1
electrode 19

(c) Subclass 2
electrode 58

(d) Subclass 2
electrode 86

Fig. 3.9 Real data: posterior mean and highest posterior density.

3.5 Discussion

In this Chapter we proposed a Bayesian nonparametric approach that allows to group spatial
correlated curves observed over areal units of a lattice. Many phenomenons occur over a
lattice space with well know neighborhood structure. Include neighborhood information
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Fig. 3.10 Real data: resulting configuration of electrodes within regions and subclasses.
Different colors within classes stand for regions.

into the Dirichlet Processes improve in interpretation of the underlying phenomenon since
clusters can be interpreted as regions over the considered space.

In our motivating application in neuroimaging we see the configuration of the electrodes
in the ERP as areal units of a lattice. Others examples of applications include phenomenons
observed over discrete points in a geographical map; one could see the daily temperature
collected by different weather stations as curves and there euclidean distance as an adjacency
matrix to be incorporated into our proposed model.

A desirable extension of our model is allow clustering of the curves taking in consid-
eration time-windows since in different times the ERP waveforms have different activated
regions.





Chapter 4

A Bayesian Nonparametric approach for
the analysis of the balancing marketing

Motivated by the the Italian natural gas balancing platform presented in Section 2.2, in this
Chapter we propose a Bayesian nonparametric approach that allows to group time dependent
curves within feature classes. A probit dynamic model defined over a partitioned functional
sample space guide the time dependence. Feature classes allow to use different base mea-
sures for each partition of the sample space improving in interpretation of the results.

4.1 Proposed Model

For simplicity consider 𝑓 a generic monotonic bounded function since both supply and de-
mand curves boast similar features. Let 𝑦(𝑡, 𝑞) denote the supply or demand curves in the
Italian Natural Gas Balancing Platform dataset observed at days 𝑡 = 1, … , 𝑇 for quantities
𝑞 = 1, … , 𝑄. We assume that

𝑦(𝑡, 𝑞) = 𝑓(𝑡, 𝑞) + 𝜖(𝑡, 𝑞), (4.1)

where the collection {𝑓(𝑡, 𝑞)}𝑄
𝑞=1 is considered to be the realization of a random function

𝑓(𝑡, ⋅) ∶ ℛ+ → ℛ and 𝜖(𝑡, 𝑞) ∼ 𝑡𝜈(𝜎2) is a temporal error process with 𝜈 the degrees
of freedom and 𝜎 the scalar parameter of a Student-t distribution. The functions 𝑓 ’s are
assumed to be time dependent and clustered together by an underlying Functional Dependent
Dirichlet Process (FDDP), viz

𝑓 = {𝑓𝑡}𝑇
𝑡=1|𝑃𝑡 ∼ 𝑃𝑡 (4.2)
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with

𝑃𝑡 =
𝐾

∑
𝑘=1

𝑝𝑘(𝑡)𝛿𝜃𝑘
(4.3)

a FDDP embedded with stochastic weights 𝑝𝑘(𝑡) appropriately chosen to guide the time de-
pendence.

To guide the dependence of the FDDP in Equation 4.3 we make use of a DLM as defined
in Section 2.6. Let 𝑧𝑡 ∼ 𝑁(𝜁𝑡, 𝜈𝑡), 𝑡 = 1, … , 𝑡, a latent variable to the FDDP, govern the
time dependence over the sample space Ω. Define,

𝑧𝑡 = 𝜁𝑡 + 𝜈𝑡, 𝜈𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝑉𝑡) (4.4)

𝜁𝑡 = 𝜁𝑡−1 + 𝜔𝑡, 𝜔𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝑊𝑡) (4.5)

where Equations 4.4 and 4.5 are the observation and state equation, respectively. Heckman
(1981) proposed the use ofDynamic probit model to study state dependence in heterogeneous
system using conditional probability to past events and dummy variables to indicate the state
of the subject. Dunson and Rodríguez (2011) used Dynamic probit model to propose a new
class of DDP as follows.

Define,

𝑃 𝑟(𝒦𝑡 = 𝑘) = 𝑃 𝑟(𝑧𝑘𝑡 < 0, 𝑧𝑟𝑡 > 0 for 𝑟 < 𝑘) (4.6)
= Φ(𝜁𝑘𝑡) ∏

𝑟<𝑘
{1 − Φ(𝜁𝑟𝑡)} = 𝑝𝑘𝑡 (4.7)

where Φ(⋅) denotes the cumulative distribution function for the standard normal distribution
and Φ(𝜁𝐾𝑡) = 1 guarantee ∑𝐾

𝑘 𝑝𝑘𝑡 = 1 almost surely and 𝒦 s the allocation variables defined
in Section 2.9. With this carachterization the FDDP can be written as

𝑃𝑡 =
𝐾

∑
𝑘=1

Φ(𝜁𝑘𝑡) ∏
𝑟<𝑘

{1 − Φ(𝜁𝑟𝑡)} 𝛿𝜃𝑘
, (4.8)

where 𝜃𝑘 is drawn from a base measure 𝑃0.
It is well know that the clustering allocation of the FDDP just defined above would be

influenced by two sources: the time dependence and the shape of the curves. As illustration
in Figure 4.1 note that the function observed at day 1 is quite different of that observed in
day 2. As consequence, though they are time dependent, their difference in shape is decisive
in the clustering allocation difficulting the inference; to improve the cluster configuration
interpretation we enrich our model with feature classes as explained in the next section.
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Fig. 4.1 Time dependent functional time series

4.1.1 Time Dependence Specification Over Partitioned Function Space

Recalling the feature classes introduced in Section 2.7 and allocation variables introduced
in Section 2.9, define the DLM above over the partitioned function space Ω = ∪♯𝒜

𝑎=1Ω𝑎 as
previously defined. Let 𝑧𝑎,𝑡 ∼ 𝑁(𝜁𝑎,𝑡, 𝜈𝑎,𝑡), 𝑡 = 1, … , 𝑡, a latent variable to the process,
govern the time dependence over Ω𝑎 for each 𝑎. Define,

𝑧𝑎,𝑡 = 𝜁𝑎,𝑡 + 𝜈𝑎,𝑡, 𝜈𝑎,𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝑉𝑎,𝑡) (4.9)

𝜁𝑎,𝑡 = 𝜁𝑎,𝑡−1 + 𝜔𝑎,𝑡, 𝜔𝑎,𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝑊𝑎,𝑡) (4.10)

where Equations 4.9 and 4.10 are the observation and state equation, respectively.
Define,

𝑃 𝑟(𝒦𝑡 = 𝑘) = 𝑃 𝑟(𝑧𝑎,𝑘𝑡 < 0, 𝑧𝑎,𝑟𝑡 > 0 for 𝑟 < 𝑘 | Π𝑎) (4.11)
= Π𝑎Φ(𝜁𝑎,𝑘𝑡) ∏

𝑟<𝑘
{1 − Φ(𝜁𝑎,𝑟𝑡)} = 𝑝𝑎,𝑘𝑡 (4.12)

where Φ(⋅) denotes the cumulative distribution function for the standard normal distribution,
Π𝑎 is the proportion of curves falling within feature class 𝑎, Φ(𝜁𝑎,𝑘𝑡) = 1 for 𝑘 = 𝑁𝑎 for each
𝑎 guarantee ∑𝐾

𝑘 𝑝𝑎,𝑘𝑡 = 1 almost surely.

4.1.2 Proposed Prior

Consider the model 4.1 and as before assign 𝑓 = {𝑓𝑡}𝑇
𝑡=1|𝑃𝑡 ∼ 𝑃𝑡 such that

𝑃𝑡 =
♯𝒜

∑
𝑎=1

Π𝑎

𝑁𝑎

∑
𝑘=1

𝑝𝑎,𝑘𝑡𝛿𝜃𝑎,𝑘
, 𝜃𝑎,𝑘 ∼ 𝑃0,𝑎 (4.13)

𝑝𝑎,𝑘𝑡 = Φ(𝜁𝑎,𝑘𝑡) ∏
𝑟<𝑘

{1 − Φ(𝜁𝑎,𝑟𝑡)} (4.14)
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where 𝜁𝑎,𝑘𝑡 is the state in the DLM defined in 4.9 and 4.10, Φ(⋅) denotes the cumulative
distribution function for the standard normal distribution and Π𝑎 is the proportion of curves
falling within feature class 𝑎. To truncate the stick-breaking prior to 𝐾 terms set Φ(𝜁𝑎,𝑘𝑡) = 1
for 𝑘 = 𝑁𝑎, for each 𝑎, to guaranty, by Lemma 1 in Scarpa and Dunson (2013), ∑𝐾

𝑘=1 𝑝𝑘 = 1
almost surely, where 𝐾 = (1, … , 𝑁1, 𝑁1 + 1, … , 𝑁1 + 𝑁2, … , ∑ 𝑁𝑎

♯𝒜−1
𝑎=1 ,… , 𝑁♯𝒜 ), with

𝑁 = {𝑁𝑎}♯𝒜
𝑎=1 the truncation level of each class. The base measure 𝑃0,𝑎 is specified as in

Section 2.8.
Moreover, ifΠ𝑎 = 1 and𝑀 = 1Equation 4.13 is a functional dependent dirichlet process

and it is a functional extension of the probit stick breaking process by Dunson and Rodríguez
(2011).

4.2 Posterior Computation

Given the cluster allocation variables𝒦 and𝒞 introduced in Section 2.9, the MCMC algo-
rithm, after initial values are set, iterate with the following steps (see Appendix A for some
calculations):

1. update Π by sampling from the full conditional posterior

(Π|𝒦,𝒞, 𝑦) ∼ Diri
(

𝑎Π,1 +
𝑇

∑
𝑡=1

1(𝒞𝒦𝑡
= 1), … , 𝑎Π,♯𝒜 +

𝑇

∑
𝑡=1

1(𝒞𝒦𝑡
= ♯𝒜)

)
,

(4.15)

2. update the dynamic probit weights by updating 𝜁𝑎,𝑘𝑡, and 𝑊𝑡 for 𝑎 = 1, … , ♯𝒜 and
ℎ = 1, … , 𝑁𝑎,

(a) update 𝜁𝑎,𝑘𝑡 and𝑊𝑡 by FFBS algorithm;

(b) update 𝑝𝑎,𝑘𝑡, using the updated values of 𝜁𝑎,𝑘𝑡,

𝑝𝑎,𝑘𝑡 = Π𝑎Φ(𝜁𝑎,ℎ𝑡) ∏
𝑟<ℎ

(1 − Φ(𝜁𝑎,𝑟𝑡)) (4.16)
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3. update 𝜎2 parameter for 𝜖(𝑡, 𝑞). Assuming 𝜎−2 = 𝜏 ∼ gamma(𝑎𝜏 , 𝑏𝜏), update 𝜏 by
sampling from the full conditional posterior

(𝜏|𝒦,𝒞,Π,𝑉 ,Θ, 𝑡, 𝑦) ∼ gamma
(

𝑎𝜏 + 𝑇 𝑄
2 , 𝑏𝜏 + 1

2

𝑇

∑
𝑡=1

𝑄

∑
𝑞=1

{𝑦(𝑡, 𝑞) − 𝑓(𝑡, 𝑞)}2
)

,

(4.17)

4. allocating each individual to one of the components by sampling the index 𝒦𝑡 from a
closed form multinomial conditional posterior, with probabilities

𝑃 𝑟(𝒦𝑡 = ℎ|𝑉 ,Π,𝜃, 𝜏, 𝑡, 𝑦) =
𝑝ℎ ∏𝑄

𝑞=1 𝜙 (𝑦(𝑡, 𝑞); 𝜃𝑘(𝑞𝑡), 𝜏−1)
∑𝑁+

𝑙=1 𝑝𝑙 ∏𝑄
𝑞=1 𝜙 (𝑦(𝑡, 𝑞); 𝜃𝑟(𝑞𝑡), 𝜏−1)

, (4.18)

where 𝑁+ = ∑𝑎 𝑁𝑎, 𝜙(𝑧; 𝜇, 𝜎2) is a Gaussian density and 𝑝𝑘 = Π𝑎Φ(𝜁𝑎,ℎ𝑡) ∏𝑟<ℎ(1 −
Φ(𝜁𝑎,𝑟𝑡)) for 𝑎, 𝑙 ∶ 𝐼ℎ(𝑎, 𝑙) = 1 with 𝑎𝜏 = 𝑏𝜏 = 1.

5. updating Θ𝑘(⋅), for 𝑘 = 1, … , 𝑁+, by updating the basis coefficients, 𝛽𝑘 by sampling
from the full conditional posterior distribution

(𝛽𝑘𝑙|𝒦𝑡 = 𝑘, 𝒞𝑘,𝑉 ,Π, 𝛽𝑘(−𝑙), 𝜏, 𝑡, 𝑦) ∼ ̂𝜈𝑘𝑙𝛿0(⋅) + (1 − ̂𝜈𝑘𝑙)𝜙𝐴𝑘𝑙
(⋅; ̂𝛽𝑘𝑙, 𝜎2

𝛽𝑘𝑙
) (4.19)

where 𝐴𝑘𝑙 denotes the subset of ℛ such that the resulting function, 𝜃𝑘, belongs to the
feature class 𝒞𝑘, 𝜙𝐴(⋅, 𝜇, 𝜎2) denotes the 𝑁(𝜇, 𝜎2) density truncated to the region 𝐴,

̂𝜈𝑘𝑙 = 1
1 + (1−𝜈0)

𝜈0
𝜙𝑘𝑙(0;0,𝑐)

𝜙𝑘𝑙(0; ̂𝛽𝑘𝑙 ,𝜎2
𝛽𝑘𝑙

)

,

𝜎2
𝛽𝑘𝑙

=
(

𝑐−1 + ∑
𝑡∶𝒦𝑡=𝑘

𝑄

∑
𝑞=1

𝜏𝑏𝑙(𝑞𝑡)2
)

−1

,

̂𝛽𝑘𝑙 = 𝜎2
𝛽𝑘𝑙 ( ∑

𝑡∶𝒦𝑡=𝑘

𝑄

∑
𝑞=1

𝜏𝑦(𝑘𝑙)
𝑡𝑞 𝑏𝑙(𝑞𝑡))

,

(4.20)

where 𝑦(𝑡, 𝑞)(𝑘𝑙) = 𝑦(𝑡, 𝑞) − ∑𝑚≠𝑙 𝛽𝑘𝑚𝑏𝑚(𝑞𝑡).

6. update the probability of including a basis function by sampling as follows:

(𝜈0|−) ∼ beta
(

𝑎𝜈 + ∑
𝑘

∑
𝑙

1(𝛽𝑘𝑙 = 0), 𝑏𝜈 + ∑
𝑘

∑
𝑙

1(𝛽𝑘𝑙 ≠ 0)
)

. (4.21)
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7. update 𝛼 as in Escobar and West (1995) - Assuming gamma(𝑎𝛼, 𝑏𝛼) hyperprior for 𝛼,
with the gamma paremeterized to have mean 𝑎𝛼𝑏𝛼 and variance 𝑎𝛼𝑏2

𝛼 the conditional
posterior is

(𝛼|𝜂, 𝑘) ∼ 𝜋𝜂gamma (𝑎𝛼 + 𝑘, 𝑏𝛼 − log(𝜂))
+ (1 − 𝜋𝜂)gamma (𝑎𝛼 + 𝑘 − 1, 𝑏𝛼 − log(𝜂)) ,

(4.22)

with 𝜋𝜂/(1 − 𝜋𝜂) = (𝑎𝛼 + 𝑘 − 1)/(𝐾{𝑏𝛼 − log(𝜂)}) and (𝜂|𝛼, 𝑘) ∼ beta(𝛼 + 1, 𝐾).

4.3 Simulation study
We simulated data for 145 supply curves, 𝑡 = 1, … , 145, mimicking the real data curve’s
shapes and feature types. There are two feature types; the first one characterize curves in
which the gas price has quick to moderate price increase occurring around the quantities
3.576×106 GJ and 5.976×106 GJ, the second one curves with slow price increase occurring
around the quantity 8.376 × 106 GJ, i.e., there exist 𝑎 ∈ ℝ such that 𝑓(⋅, 𝑞) < 𝑓(⋅, 𝑞𝑎) ≤ 23
Euro/GJ for all 𝑞 < 𝑞𝑎 . Here 𝑎 ∈ [0, 23] and 𝑞𝑎 ∈ [0, 1.2 × 107GJ] is the quantity in which
𝑓(⋅, 𝑞) = 𝑎.

This configuration partition the function space Ω in 4 subsets, M=2 and ♯𝒜 = 4, where
Ω1 congregates supply curves in which the price has a quick increase around the quantity
3.576 × 106 GJ, Ω2 curves with moderate price increase around 5.976 × 106 GJ, Ω3 curves
with fast price increase around 8.376 × 106 GJ and Ω4 contains no subjects as there is no
curves with different behavior regards to the price increase.

We use a smaller set of data in the simulation study, instead 397 as in the real data, to
assess the performance of the model in cluster and classify the curves within classes when
a smaller set of data is available.

Specifically, we simulate data from

𝑦(𝑡, 𝑞) = Sigm(𝑡, 𝑞)(𝑟𝑔) + 𝜖(𝑡, 𝑞),

with eight functional clusters configured as in Table 4.1, where 𝑦(⋅) is a functional supply
curve like response, 𝑟𝑔 = 1, … ♯𝒜 − 1 index the subclasses,

Sigm(𝑡, 𝑞) = 2𝑒0
1 + 𝑒𝜀(𝑞0−𝑞) (4.23)

a sigmoid function with 𝑒0, 𝑞0 and 𝜀 parameters that determines its shape according to the
subclass the functions belong too, and 𝜖(𝑠, 𝑡) is a temporal error process specific to curve 𝑡
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and quantity 𝑞 = 1, … , 501 with correlation between curves 𝑖 and 𝑗 induced by Cholesky
decomposition leading to a functional time series. In Figure 4.2 is shown simulated supply
curves within each class and subclass.

Table 4.1 Simulate data: configuration of functional cluster within each class and subclass
and its respective probabilities

Cluster Feature Class Subclass Pr
1 1 1 0.103
2 1 1 0.103
3 1 1 0.138
4 1 2 0.117
5 1 2 0.124
6 2 3 0.138
7 2 3 0.138
8 2 3 0.138

(a) Subclass 1 (b) Subclass 2 (c) Subclass 3

Fig. 4.2 Simulated data: Supply like functional data, characteristic curves within each class
and subclass. Dashed red line highlight the quantity where the curves have its quick price
increase.

The remaining parameters of the model was set in which 𝑐𝜏 = 1 favor a model with
smaller set of basis functions, 𝑎𝜏 = 𝑏𝜏 = 𝑎𝜈 = 𝑏𝜈 = 𝑎𝛼 = 𝑏𝛼 = 1 are non informative priors
and 𝑎Π = (0.4, 0.3, 0.3, 0)𝑇 informative prior to the proportion of curves falling into each
subclass.

In the following we show the results after run the Gibbs sampling algorithm for 26,000
iterations after a burn-in period of 4,000. Gelman-Rubin diagnostics (Gelman and Rubin,
1992) and trace plots of the parameters showed no evidence against convergence. Binder’s
loss was used to classify the curves within classes, subclasses and groups.
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In Figure 4.3 is illustrated representative trajectories for each class for some models. As
showed in Table 4.2, the FDPmisclassify all functions that belongs to class 2while the FDDP
misclassify all functions of cluster 2 and additionally misclassify some functions of the class
1. The E-FDP appropriately classify all functions as do our approach; though both models
classify correctly the functions in the Table 4.3 is showed that our approach more accurately
estimate the measurement variance getting close to the truth of 0.01 used to simulate the
data. The posterior mean of Π, the proportion of functions allocated to each subclass, was
Π̂1 = 0.219 (ci: 0.217–0.220), Π̂2 = 0.368 (ci:0.367–0.369), Π̂3 = 0.413 (ci: 0.412–0.414)
and Π̂4 = 0. In addition, the estimated mean integrated squared error in the Table 4.4 shows
that our approach is closer to the truth compared to the others three models.

Fig. 4.3 Simulated data: variety of curves represented in each feature class for some models.

Figure 4.4 shows the posterior mean and highest posterior density interval for selected
supply curves within each of the classes.
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With our approach we were able to correctly group the supply curves within classes,
subclasses and groups as in the simulated data. Additionally, the use of feature classes enrich
the interpretation of the results as the classification of groups into classes and subclasses
allows us to interpret the behavior of the market according to how fast the gas price increases.

(a) Class 1
subclass1

(b) Class 1
subclass 2

(c) Class 2
subclass 3

Fig. 4.4 Simulated data: posterior mean and highest posterior density.

4.4 Application: Italian Natural Gas Balancing Platform
We applied the proposed model to supply and demand curves from the Italian Natural Gas
Balancing Platform described in Section 2.2. Some characteristics of the curves present in
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Table 4.2 Simulated data: percentages of misclassified units for each model

Models
Actual class Predicted class FDP FDDP E-FDP Proposed model

1 2 0 6.21% 0 0
2 1 60.00% 60.00% 0 0

Table 4.3 Simulated data: summary of the estimate of the measurement error variance for
some models

Models
FDP FDDP E-FDP Proposed model

First quartile 0.001827 0.001725 0.001923 0.0011320
Median 0.001877 0.001774 0.001974 0.0012920
Mean 0.001929 0.001843 0.002058 0.0013070
Third quartile 0.001975 0.001894 0.002063 0.0014820
SD 0.000059 0.000070 0.000093 0.000190

Table 4.4 Simulated data: summary of the mean integrated squared error for some models

Models
FDP FDDP E-FDP Proposed model

First quartile 7.204 6.750 7.744 3.684
Median 7.260 6.801 7.799 3.893
Mean 7.245 6.790 7.786 3.929
Third quartile 7.329 6.878 7.872 4.081
SD 0.141 0.140 0.138 0.257
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this data motivated us to develop the model presented in this Chapter. With this analysis
we expect to obtain as result group of curves classified by feature classes with their time
dependence influencing the cluster allocation. The prediction of exchanged price and quan-
tity might be quite accurate as soon as the past curves are well estimated leading to good
forecasted curves.

After set weakly informative priors to the parameters 𝑎𝜏 = 𝑏𝜏 = 𝑎𝜈 = 𝑏𝜈 = 1 and 𝑐 = 1
and informative prior to the proportion of curves falling into each class,Π = (0.55, 0.35, 0.10, 0),
i.e., the within-day price grows quickly, moderately or slowly in 55%, 35% and 10% of the
days, respectively, we run he Gibbs sampling, algorithm of Section 4.2, for 24,000 iterations
after a burn-in period of 6,000. Gelman-Rubin diagnostics and trace plots of the parameters
showed no evidence against convergence.

In the Figures 4.5, 4.6 and 4.7 is illustrated the 2 resulting feature classes and its sub-
classes; the subclass 1 with supply curves with quick price increase, the subclass 2 with mod-
erate increase and the subclass 3 with slow price increase. Note that within each class the
dependence structure embedded in our model subdivided each class in distinct subclasses.
In Figure 4.8 is shown the variety of feature classes representing the real data. The posterior
mean of Π, the proportion of supply curves within each class, was Π̂1 = 0.609, Π̂2 = 0.270,
Π̂3 = 0.121 and Π̂4 = 0.
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Fig. 4.5 Class 1: quick increase of supply price
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Fig. 4.6 Class 1: moderate increase of supply price
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Fig. 4.8 Variety of feature classes representing the real data

Figure 4.9 shows the posterior mean and highest posterior density interval for selected
supply curves within each of the classes.

In addition, we compare our results using a simple FDP model where feature classes
and time dependence are not accommodated in the model. As you may note in Figure 4.10
the FDP process cluster the subjects mainly by the shape of the curves. The are more clus-
ters cluster compared with our model, though we loose in interpretability, i.e., the cluster
behavior does not reflect the behavior of the balancing marketing.

4.5 Discussion
In this Chapter we proposed a Bayesian nonparametric model that allows to group functional
time series within feature classes with a probit dynamic model, defined over a partitioned
functional sample space, guiding the time dependence.

In ourmotivating application in balancingmarketing feature classes were used to improve
in interpretability the results by including as prior the proportion of supply curveswith within
day similar behavior. The use of the model is not restricted to this kind of application, e.g.,
the study of basal body temperature curves within menstrual cycles from different women
in Scarpa and Dunson (2013) could be complemented with a study of repeated measures for
each woman allowing to understand the menstrual cycle for a period of time.

Though the B-splines basis allows the implementation of a number of constraints by
restricting the draws of its coefficients to the region of interest we advert that too many re-
strictions can be computationally cumbersome. An alternative is use different basis functions
to favor some characteristics presenting in the data avoiding extra constraints, e.g., I-spline
(see Ramsay, 1988) is an alternative to B-splines to model monotonic curves. Extend our
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(a) Class1
subclass 1.1

(b) Class 1
subclass 1.2

(c) Calss 1
subclass 1.4

(d) Class 2
subclass 2.1

Fig. 4.9 Real data: posterior mean and highest posterior density.

model to the use of different basis functions is straightforward as it does not rely on the type
of basis that is being used.
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Fig. 4.10 Cluster allocation using the simple FDP; feature classes and time dependence are
not embedded in the model.
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Appendix A

Consider the model

𝑦(𝑠, 𝑡) ∼ 𝑁
(

𝐿

∑
𝑙=1

𝛽𝑘𝑙𝑏𝑙(𝑡), 𝜓−1
𝑠𝑡 𝜏−1

𝜖 )

and the priors

𝛽𝑘𝑙 ∼ 𝜈0𝛿0(⋅) + (1 − 𝜈0)𝑁(0, 𝑐)
𝜈0 ∼ 𝛽(𝑎, 𝑏)
𝛾𝑘𝑙 ∼ Bernoulli(1 − 𝜈0)

where the model index 𝛾 = (𝛾𝑘1, … , 𝛾𝑘𝐿) ∈ Γ with 𝛾𝑘𝑙 = 1 denoting that basis function 𝑏𝑙
should be included and 𝛾𝑘𝑙 = 0 otherwise.

The full joint posterior distribution is conjugate with the posterior model probabilities
available analytically as

𝑃 𝑟(𝛾|𝑦) =
𝜈𝑐−𝑝𝛾

0 (1 − 𝜈0)𝑝𝛾 𝑓(𝑦|𝛾)
∑𝛾∗∈Γ 𝜈𝑐−𝑝𝛾∗

0 (1 − 𝜈0)𝑝𝛾∗ 𝑓(𝑦|𝛾∗)
, for all 𝛾 ∈ Γ

where 𝑝𝛾 = ∑𝑘 𝛾𝑘 the number of basis functions in model 𝛾 and 𝑝(𝑦|𝛾) is the marginal
likelihood of the data under model 𝛾 , viz

𝑓(𝑦|𝛾) = ∫

𝑆

∏
𝑠=1

𝑁(𝑦(𝑠, 𝑡)|𝑏𝑙,𝛾(𝑡), 𝛽𝛾)𝑁(𝛽𝛾|𝑐)𝑑𝛽𝛾 with 𝑏𝑙,𝛾(𝑡) = (𝑏𝑙(𝑡) ∶ 𝛾𝑘𝑙 = 1).

Due to the possible enormous number (2𝑘) of different models to sum in the denominator
another possibility is to use Gibbs sampling to update 𝛾𝑘 from it s Bernoulli full conditional



62

posterior distribution given 𝛾−𝑘 = (𝛾𝑙, 𝑙 ≠ 𝑘), with

𝑃 𝑟(𝛾𝑘 = 1|𝛾(−𝑘), 𝜈0) = (1 + 𝜈0
1 − 𝜈0

𝑓(𝑦|𝛾𝑘 = 0, 𝛾(−𝑘))
𝑝(𝑦|𝛾𝑘 = 1, 𝛾(−𝑘)) ) .

To understand (A.1) consider that for 𝛾 two cases are possible:

1. 𝑃 𝑟(𝛾𝑘𝑙 = 0|𝑦) = 𝜈0 × 𝑓(𝑦|𝛾𝑘𝑙 = 0, 𝛾𝑘(−𝑙))

2. 𝑃 𝑟(𝛾𝑘𝑙 = 1|𝑦) = (1 − 𝜈0) × 𝑓(𝑦|𝛾𝑘𝑙 = 1, 𝛾𝑘(−𝑙))

Since 𝑃 𝑟(𝛾𝑘𝑙 = 0|𝑦) + 𝑃 𝑟(𝛾𝑘𝑙 = 1|𝑦) = 1 and given 𝛾𝑘(−𝑙) = 𝛾𝑘𝑚, 𝑚 ≠ 𝑙,

𝑃 𝑟(𝛾𝑘𝑙 = 1|𝑦) = 1 − 𝑃 𝑟(𝛾𝑘𝑙 = 0|𝑦)
= 1 − 𝜈0 × 𝑓(𝑦|𝛾𝑘𝑙 = 0, 𝛾𝑘(−𝑙))

= 1 −
𝜈0 × 𝑓(𝑦|𝛾𝑘𝑙 = 0, 𝛾𝑘(−𝑙))

𝜈0 × 𝑓(𝑦|𝛾𝑘𝑙 = 0, 𝛾𝑘(−𝑙)) + (1 − 𝜈0) × 𝑓(𝑦|𝛾𝑘𝑙 = 1, 𝛾𝑘(−𝑙))

= (1 +
𝜈0 × 𝑓(𝑦|𝛾𝑘𝑙 = 0, 𝛾𝑘(−𝑙))

(1 − 𝜈0) × 𝑓(𝑦|𝛾𝑘𝑙 = 1, 𝛾𝑘(−𝑙)))
−1

in the calculus above use the hint: 𝐴+𝐵
𝐴+𝐵 − 𝐵

𝐴+𝐵 = 𝐴
𝐴+𝐵 = (𝐴+𝐵

𝐴 )−1 = (1 + 𝐵
𝐴 )−1.

Regards to 𝜈0, we have

𝑃 𝑟(𝜈0|𝛾) ∝ Bernoulli(1 − 𝜈0) × 𝛽(𝑎, 𝑏)
= (1 − 𝜈0)∑𝑘 𝛾𝑘𝜈∑𝑘(1−𝛾𝑘)

0 × 𝜈𝑎−1
0 (1 − 𝜈0)𝑏−1

= 𝜈(𝑎+∑𝑘(1−𝛾𝑘))−1
0 (1 − 𝜈0)(𝑏+∑𝑘 𝛾𝑘)−1

Therefore

𝜈0 ∼ Beta
(

𝑎 + ∑
𝑘

(1 − 𝛾𝑘), 𝑏 + ∑
𝑘

𝛾𝑘)
(A.1)
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To calculate the full conditional for the coefficients,

𝑃 𝑟(𝛽𝑘𝑙|𝛽𝑘(−𝑙), 𝑦) =
𝑓(𝑦|𝛽𝑘𝑙, 𝛽𝑘(−𝑙))𝑃 𝑟(𝛽𝑘𝑙)

𝑓 (𝑦(𝑠, 𝑡))
∝ 𝑓(𝑦|𝛽𝑘𝑙, 𝛽𝑘(−𝑙))𝑃 𝑟(𝛽𝑘𝑙)

= exp
⎧⎪
⎨
⎪⎩

−1
2

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖
⎛
⎜
⎜
⎝
𝑦(𝑠, 𝑡) −

𝐿

∑
𝑙=1

𝛽𝑘𝑙𝑏𝑙(𝑡)
⎞
⎟
⎟
⎠

2⎫⎪
⎬
⎪⎭

exp {− 1
2𝑐 𝛽2

𝑘𝑙}

= exp
⎧⎪
⎨
⎪⎩

−1
2

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖 (
𝑦(𝑠, 𝑡) −

[∑
𝑚≠𝑙

𝛽𝑘𝑚𝑏𝑚(𝑡) + 𝛽𝑘𝑙𝑏𝑙(𝑡)])

2⎫⎪
⎬
⎪⎭

exp {− 1
2𝑐 𝛽2

𝑘𝑙}

= exp
⎧⎪
⎨
⎪⎩

−1
2

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖 (
𝑦(𝑠, 𝑡)2 − 2𝑦(𝑠, 𝑡)

[∑
𝑚≠𝑙

𝛽𝑘𝑚𝑏𝑚(𝑡) + 𝛽𝑘𝑙𝑏𝑙(𝑡)]
+

[∑
𝑚≠𝑙

𝛽𝑘𝑚𝑏𝑚(𝑡) + 𝛽𝑘𝑙𝑏𝑙(𝑡)]

2

)

− 1
2𝑐 𝛽2

𝑘𝑙}

= exp
⎧⎪
⎨
⎪⎩

−1
2

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖𝑦(𝑠, 𝑡)2 +
𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖𝑦(𝑠, 𝑡) ∑
𝑚≠𝑙

𝛽𝑘𝑚𝑏𝑚(𝑡) +
𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖𝑦(𝑠, 𝑡)𝛽𝑘𝑙𝑏𝑙(𝑡)

− 1
2

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖 [∑
𝑚≠𝑙

𝛽𝑘𝑚𝑏𝑚(𝑡)
]

2

−
𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖 ∑
𝑚≠𝑙

𝛽𝑘𝑚𝑏𝑚(𝑡)𝛽𝑘𝑙𝑏𝑙(𝑡) − 1
2

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖 [𝛽𝑘𝑙𝑏𝑙(𝑡)]2

− 1
2𝑐 𝛽2

𝑘𝑙}

= exp
⎧⎪
⎨
⎪⎩

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖𝑦(𝑠, 𝑡)𝛽𝑘𝑙𝑏𝑙(𝑡) −
𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖 ∑
𝑚≠𝑙

𝛽𝑘𝑚𝑏𝑚(𝑡)𝛽𝑘𝑙𝑏𝑙(𝑡) − 1
2

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖 [𝛽𝑘𝑙𝑏𝑙(𝑡)]2

− 1
2𝑐 𝛽2

𝑘𝑙}

= exp
⎧⎪
⎨
⎪⎩

𝛽2
𝑘𝑙

⎛
⎜
⎜
⎝
−1

2

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖𝑏𝑙(𝑡)2 + 𝑐−1
⎞
⎟
⎟
⎠

+ 𝛽𝑘𝑙
⎛
⎜
⎜
⎝

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖𝑦(𝑠, 𝑡)𝑏𝑙(𝑡) −
𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖 ∑
𝑚≠𝑙

𝛽𝑘𝑚𝑏𝑚(𝑡)
⎞
⎟
⎟
⎠

⎫⎪
⎬
⎪⎭

= exp
⎧⎪
⎨
⎪⎩

𝛽2
𝑘𝑙

⎛
⎜
⎜
⎝
−1

2

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖𝑏𝑙(𝑡)2 + 𝑐−1
⎞
⎟
⎟
⎠

+ 𝛽𝑘𝑙
⎛
⎜
⎜
⎝

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖 (
𝑦(𝑠, 𝑡) − ∑

𝑚≠𝑙
𝛽𝑘𝑚𝑏𝑚(𝑡)

)
𝑏𝑙(𝑡)

⎞
⎟
⎟
⎠

⎫⎪
⎬
⎪⎭

= exp
{

𝛽2
𝑘𝑙 + 𝛽𝑘𝑙

∑𝑆
𝑠=1 ∑𝑇

𝑡=1 𝜓𝑠𝑡𝜏𝜖 (𝑦(𝑠, 𝑡) − ∑𝑚≠𝑙 𝛽𝑘𝑚𝑏𝑚(𝑡)) 𝑏𝑙(𝑡)
− 1

2 ∑𝑆
𝑠=1 ∑𝑇

𝑡=1 𝜓𝑠𝑡𝜏𝜖𝑏𝑙(𝑡)2 + 𝑐−1 }

= exp
{

𝛽2
𝑘𝑙 − 2𝛽𝑘𝑙

∑𝑆
𝑠=1 ∑𝑇

𝑡=1 𝜓𝑠𝑡𝜏𝜖 (𝑦(𝑠, 𝑡) − ∑𝑚≠𝑙 𝛽𝑘𝑚𝑏𝑚(𝑡)) 𝑏𝑙(𝑡)
∑𝑆

𝑠=1 ∑𝑇
𝑡=1 𝜓𝑠𝑡𝜏𝜖𝑏𝑙(𝑡)2 + 𝑐−1

+
(

∑𝑆
𝑠=1 ∑𝑇

𝑡=1 𝜓𝑠𝑡𝜏𝜖 (𝑦(𝑠, 𝑡) − ∑𝑚≠𝑙 𝛽𝑘𝑚𝑏𝑚(𝑡)) 𝑏𝑙(𝑡)
∑𝑆

𝑠=1 ∑𝑇
𝑡=1 𝜓𝑠𝑡𝜏𝜖𝑏𝑙(𝑡)2 + 𝑐−1 )

2

}

= exp
⎧⎪
⎨
⎪⎩

1
∑𝑆

𝑠=1 ∑𝑇
𝑡=1 𝜓𝑠𝑡𝜏𝜖𝑏𝑙(𝑡)2 + 𝑐−1

⎡⎢⎢⎣
𝛽2

𝑘𝑙
⎛
⎜
⎜
⎝

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖𝑏𝑙(𝑡)2 + 𝑐−1
⎞
⎟
⎟
⎠

− 2𝛽𝑘𝑙
⎛
⎜
⎜
⎝

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖 (
𝑦(𝑠, 𝑡) − ∑

𝑚≠𝑙
𝛽𝑘𝑚𝑏𝑚(𝑡)

)
𝑏𝑙(𝑡)

⎞
⎟
⎟
⎠

+ 1
∑𝑆

𝑠=1 ∑𝑇
𝑡=1 𝜓𝑠𝑡𝜏𝜖𝑏𝑙(𝑡)2 + 𝑐−1

⎛
⎜
⎜
⎝

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖 (
𝑦(𝑠, 𝑡) − ∑

𝑚≠𝑙
𝛽𝑘𝑚𝑏𝑚(𝑡)

)
𝑏𝑙(𝑡)

⎞
⎟
⎟
⎠

⎤⎥⎥⎦

⎫⎪
⎬
⎪⎭
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Therefore

(𝛽𝑘𝑙|−) ∼ 𝑁
⎛
⎜
⎜
⎝

⎛
⎜
⎜
⎝

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖𝑏𝑙(𝑡)2 + 𝑐−1
⎞
⎟
⎟
⎠

−1 𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖 (
𝑦(𝑠, 𝑡) − ∑

𝑚≠𝑙
𝛽𝑘𝑚𝑏𝑚(𝑡)

)
𝑏𝑙(𝑡),

⎛
⎜
⎜
⎝

𝑆

∑
𝑠=1

𝑇

∑
𝑡=1

𝜓𝑠𝑡𝜏𝜖𝑏𝑙(𝑡)2 + 𝑐−1
⎞
⎟
⎟
⎠

−1⎞
⎟
⎟
⎠

updating the 𝜏𝜂|Θ,𝑉 , 𝑦, 𝜂 the spatial dispersion parameter
Considering

𝑃 𝑟(𝜏𝜂|Θ,𝑉 , 𝑦, 𝜂) = 𝑃 𝑟(𝜂|𝜏𝜂, Θ,𝑉 , 𝑦) × 𝑃 (𝜏𝜂)
= 𝑁𝑛(0,Σ) × gamma(𝑐, 𝑑)
∝ |Σ|− 1

2 exp {−1
2𝜂

′
Σ−1𝜂} × 𝜏𝑐−1

𝜂 exp(−𝑑𝜏𝜂)

= |𝜏−1
𝜂 (𝐷 − 𝜌𝑊 )−1|− 1

2 exp {−1
2𝜂

′
[𝜏−1

𝜂 (𝐷 − 𝜌𝑊 )−1]−1𝜂} × 𝜏𝑐−1
𝜂 exp(−𝑑𝜏𝜂)

= (𝜏−𝑛
𝜂 |(𝐷 − 𝜌𝑊 )−1|)− 1

2 exp {−1
2𝜂

′
𝜏𝜂(𝐷 − 𝜌𝑊 )𝜂} × 𝜏𝑐−1

𝜂 exp(−𝑑𝜏𝜂)

∝ 𝜏
𝑛
2

𝜂 exp {−1
2𝜂

′
𝜏𝜂(𝐷 − 𝜌𝑊 )𝜂 − 𝑑𝜏𝜂} × 𝜏𝑐−1

𝜂

= 𝜏
𝑛
2 +𝑐−1

𝜂 exp {− (
1
2𝜂

′
(𝐷 − 𝜌𝑊 )𝜂 + 𝑑) 𝜏𝜂}

sampling from gamma ( 𝑛
2 + 𝑐, 1

2𝜂
′(𝐷 − 𝜌𝑊 )𝜂 + 𝑑).
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