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Introduction

At the end of the nineteenth century, physical theory had reached a high level of maturity,
being able to explain almost all natural phenomena. This explanation was supported by
a highly developed experimental practice, a fundamental tool for the confirmation of the
theoretical models. Nevertheless, some aspects, such as light propagation without ether,
the interaction between light and matter and black-body radiation, still lacked a theoretical
explanation. The quest for such explanation is the basis of the scientific revolution that
took place in the first 30 years of twentieth century. The first paradigm shift is the new
approach to space and time led by the theories of special and general relativity. The second
one is due to quantum physics, which profoundly modifies even the concept of physical
reality. Despite its experimental verification to a level of precision unknown to all other
physical theories, a philosophical interpretation of quantum theory is still lacking.

Indeed, many aspects of the theory are in strong contrast with the logic at the basis
of our study of nature. It predicts that light behaves both like a wave and a particle, and
extends the same duality to the matter, giving rise to interference phenomena between
particles, such as electrons, atoms or even molecules. Moreover, one of its key features,
the indeterminacy principle, states that it is impossible to know both the position and
the velocity of a particle with arbitrary precision, making the mere definition of particle
a critical issue. Probably, one of the most shocking aspects of the theory is the existence
of entangled states, i.e., multi-particle states that cannot be described as a sum of the
states of the particles composing them. This effect makes it difficult to give a proper
interpretation of the concepts of reality and locality, which are at the basis of all other
physical theories.

More recently, some people have started to look at this weirdness from another point
of view, looking for some methods to exploit it for the solution of practical problems. The
beginning of the eighties, indeed, saw the first proposals for the use of quantum systems
in practical problems of information theory, a field in full expansion with the spread of
computers and communication systems. The exploitation of entangled systems was looked
as a way of enhancing some computation tasks, giving rise to the first proposals of quan-
tum computing algorithms, while the indeterminacy principle was the basis of the new
quantum communication protocols, such as quantum cryptography.

This last field, in particular, has reached the highest level of maturity among all the
other applications of quantum theory, especially for what concerns the problem of the
secure exchange of cryptographic keys (quantum key distribution). Quantum key distri-
bution (QKD) is already a commercial reality, even though still restricted to high level
costumers like banks or governments. Its force lies in the fact that it allows two parties to
exchange a secure cryptographic key by exploiting the indeterminacy principle. Since an
eavesdropper cannot gain information about the quantum state without perturbing it, it is
possible to bound the information leaked by looking at the transmission error in the chan-
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nel. If this information is low enough, it is possible to use information theory techniques
to distill a secret key between the two parties. What makes this protocols so appealing is
the fact that their security is not based on some assumptions on the computational power
of the attacker, like in the key exchange protocols used on the internet, but they can be
proved secure even if the adversary has complete control on the communication channel.
This is called unconditional security.

A major problem of quantum cryptography is the fact that it is based on the trans-
mission of quantum states, i.e., single- or few-photon states. Moreover, the indeterminacy
principle makes it impossible to copy and, consequently, “amplify” quantum states, limit-
ing the use of quantum cryptography to channels with attenuation low enough to allow a
significant fraction of the transmitted photons to reach the detector. In fiber-based chan-
nels, this distance is limited to a few hundred kilometers. This is the reason for the interest
in free-space quantum communication, especially in the ground-satellite channel. In this
channel, indeed, most the propagation happens in vacuum. This allows the transmission
of single-photon states over distances longer that one thousand kilometers.

This thesis work studies this aspect of quantum communication, i.e., the implementa-
tion in the laboratory of quantum communication protocols that could, in the future, be
applied to free-space and satellite-based optical communication. This comes side by side
with the improvement of the receiving station for quantum communications at the Matera
Laser Ranging Observatory (MLRO), managed by the Italian Space Agency (ASI). This
thesis, therefore, describes both the study, in the laboratory, of techniques and protocols for
free-space quantum communication and the experimental activity in the ground-satellite
channel.

Chapter 1 gives a short introduction to quantum information, starting from an ax-
iomatic description of quantum mechanics, followed by the exposition of some useful mod-
els for the study of quantum protocols. This is followed by a brief description of the ways
of encoding and processing information using the electromagnetic field, the most suitable
mean to transfer information over long distances.

Chapter 2 is focused on the development of a source of polarization-entangled photons.
Among the different ways of information encoding, indeed, polarization plays a crucial role
for what concerns the transmission over the free-space channel. This degree of freedom,
indeed, preserves itself over propagation through long distances, proving a suitable choice
for the ground-satellite link. The source is based on a non-linear crystal in a polarization-
based Sagnac interferometer, giving the high pair generation rate required in high loss
channels. It is built in an optical breadboard and has fiber-based inputs and outputs, in
order to be easily transportable for experiments out of the laboratory. In this Chapter,
after a brief physical introduction, this source is described, both in its design and in its
experimental characterization.

Chapter 3 describes the laboratory-based part of the thesis. It is divided in two large
Sections, the first on the study of some aspects of Quantum Key Distribution (QKD),
the second one reporting the results of a recent experiment investigating some recently
discovered aspects of non-locality. Section 3.1 starts with the theoretical study of the
performance of a new kind of single-photon source, based on a chain of non-linear crys-
tals in an asymmetric configuration, when inserted in a real QKD environment. Then, it
describes the proof-of-principle of a three-state QKD protocol, which presents an inter-
esting compromise between noise tolerance and a low-resource receiver, both important
for free-space or satellite-based applications. Section 3.2, on the other hand, describes
the experimental study of a particular aspect of quantum non-locality, allowing two inde-
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pendent observers to share non-locality with a third one at the same time. This study is
important both for its impact in basic research on quantum theory and for the study of
the relationship between acquired information and disturbance on a measured system.

Chapter 4 starts the description of the exploitation of the space channel. This Chapter
deals with the experimental work aimed at the improvement of the performance of the
quantum communication station at the MLRO, activity performed in collaboration with
the INFN within the project Moonlight-2. This improvement consists of a new design
of the experimental setup, based on higher efficiency hardware. Besides the hardware
improvement, a new software for data analysis has been developed. The software has been
structured modularly, in order to allow an easy processing of the data coming from the
new hardware and an easier development of newer analysis tasks for complex experiments.
Another aspect of this work is the improvement of orbit estimation, a necessary step in
the exploitation of the higher precision of the new hardware. A fundamental step to this
goal is the use of the instrumental corrections applied by the laser ranging system.

Finally, Chapter 5 describes a recent experiment performed using the quantum com-
munication station at the MLRO, demonstrating single-photon interference over the space
channel. This experiment is fundamental to prove that time-bin encoding is a viable choice
for quantum transmission in this channel.
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Introduzione

Alla fine del Diciannovesimo secolo, la teoria fisica era arrivata a un livello tale da es-
sere in grado di spiegare praticamente tutti i fenomeni del mondo naturale e la pratica
sperimentale si era evoluta al punto da essere diventata una parte fondamentale dello
studio della natura. Nonostante ciò, erano ancora presenti alcuni aspetti che la teoria
non era in grado di spiegare, in particolare riguardanti l’elettromagnetismo e le sue in-
terazioni con la materia. Fenomeni come la propagazione della luce in assenza di etere,
l’interazione tra atomi e campo elettromagnetico e la radiazione di corpo nero continu-
avano a sfuggire a ogni spiegazione, nonostante fossero stati verificati sperimentalmente
con una precisione tale da non poter essere confutati. Sono stati proprio questi fenomeni,
tutto sommato marginali se confrontati con la vastità della natura, che hanno portato, nei
primi trent’anni del Ventesimo secolo, a una vera rivoluzione nel modo di vedere il mondo.
La prima rivoluzione fu portata dalla teoria della relatività, che costrinse a rivedere il
significato di concetti di base come lo spazio e il tempo. La seconda, e forse più profonda,
rivoluzione fu quella portata dalla fisica quantistica, la quale mise in dubbio il concetto
stesso di realtà e che, dopo quasi cent’anni e un livello di verifica sperimentale sconosciuto
a qualsiasi altra teoria fisica, ancora sfugge a qualsiasi tentativo di interpretazione in uno
scenario logico coerente.

Questa teoria, infatti, presenta molti aspetti in aperto contrasto con la logica sulla quale
la conoscenza del mondo era (ed è tuttora) costruita. Essa prevede, infatti, non solo che
la luce si comporti sia come onda che come particella, ma che questa dualità sia presente
anche nella materia, oppure che la posizione e la velocità di una particella non siano di
principio conoscibili con assoluta precisione, ma che una maggiore conoscenza di una sia
causa di una maggiore incertezza nell’altra (principio di indeterminazione). Spingendosi
oltre, essa prevede l’esistenza di sistemi di due particelle in uno stato tale da non poter
essere descrivibile a partire dalla descrizione delle singole particelle (entanglement), un
fenomeno che porta a mettere in discussione un concetto di base come la realtà di una
teoria fisica.

Più recentemente si è intuito come queste stranezze, se sfruttate, potessero dare orig-
ine a nuove opportunità. Agli inizi degli anni ’80, infatti, si cominciarono a proporre le
prime possibili applicazioni di sistemi quantistici alla crescente teoria dell’informazione, sia
nel campo del processamento e dell’elaborazione dell’informazione, con la computazione
quantistica, sia nel campo della trasmissione dell’informazione, con i vari protocolli di
comunicazione quantistica, tra i quali un’importanza particolare detengono quelli di crit-
tografia quantistica.

Il campo della crittografia quantistica, in particolare, è quello che al momento attuale
è giunto al maggior livello di maturità, soprattutto per quel che riguarda lo scambio di
chiavi crittografiche. Le prime applicazioni commerciali, anche se ancora per una clientela
di fascia molto alta, sono già una realtà, e forte è la competizione per renderle accessibili
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anche al di fuori di università e istituzioni governative. Essa permette a due parti di scam-
biare una chiave crittografica in modo sicuro sfruttando il principio di indeterminazione,
grazie al quale, monitorando l’errore di trasmissione nel canale, è possibile dare una stima
della massima informazione che un eventuale intercettatore può aver acquisito. Nel caso
questa informazione sia sufficientemente bassa, si possono utilizzare tecniche di teoria
dell’informazione per arrivare ad avere una chiave segreta condivisa tra le due parti. La
cosa importante di questi protocolli è che la loro sicurezza non è basata sull’assunzione di
un limitato potere computazionale da parte dell’attaccante, come i protocolli attualmente
in uso per lo scambio di chiavi attraverso internet, ma dà all’avversario potere illimitato
sul canale di comunicazione. Questo tipo di sicurezza è definito sicurezza incondizionata.

Uno dei problemi della crittografia quantistica è che essa si basa sulla trasmissione di
stati quantistici, cioè principalmente stati a singolo o a numero ridotto di fotoni. Inoltre,
il principio di indeterminazione, se da una parte protegge lo stato quantistico da ogni
tentativo di carpirne l’informazione, dall’altra ne impedisce la copia e, conseguentemente,
l’amplificazione. Questo limita l’utilizzo della crittografia quantistica a distanze sulle quali
l’attenuazione dovuta al canale sia tale da permettere a una frazione significativa dei fotoni
trasmessi di arrivare a destinazione. Per quanto riguarda le fibre ottiche, questa distanza
è limitata a qualche centinaio di chilometri. Questo è il motivo dell’interesse per le comu-
nicazioni quantistiche in spazio libero e, in particolare, via satellite. Per esse, infatti, la
trasmissione avviene per la maggior parte nel vuoto, permettendo di effettuare trasmis-
sione a singolo fotone su distanze dell’ordine delle migliaia di chilometri.

Il lavoro di questa tesi si inserisce proprio in questo aspetto delle comunicazioni quantis-
tiche, cioè lo studio a terra di protocolli e aspetti dell’informazione quantistica che potreb-
bero, in un futuro prossimo, portare ad applicazioni nel canale in spazio libero e, even-
tualmente, nel canale satellitare. A questo si affianca il lavoro di miglioramento e utilizzo
della stazione per comunicazione quantistica satellitare presso il Matera Laser Ranging Ob-
servatory (MLRO), gestito dall’Agenzia Spaziale Italiana (ASI) e centro all’avanguardia
in questo nascente settore. Questa tesi, quindi, descrive sia lo studio, in laboratorio, di
tecniche e protocolli per la comunicazione quantistica in spazio libero che il lavoro speri-
mentale svolto nel canale terra-spazio.

Nel capitolo 1 viene fornita una breve introduzione alla meccanica quantistica prima
e all’informazione quantistica in seguito, con riferimento ad alcuni modelli utili per lo
studio dei protocolli quantistici, e una breve descrizione dei possibili modi per codificare e
processare l’informazione usando il campo elettromagnetico, al momento attuale il mezzo
più adatto per la trasmissione dell’informazione su lunghe distanze.

Il capitolo 2 riguarda invece lo sviluppo di una sorgente di fotoni entangled in po-
larizzazione. Tra i modi di codificare l’informazione, infatti, la polarizzazione gode di
un’importanza particolare, soprattutto per quanto riguarda le trasmissioni in spazio libero.
Essa si può propagare inalterata per lunghe distanze ed ha già dimostrato di essere adatta
in principio anche per le comunicazioni terra-satellite. Il tipo di sorgente scelto, basato
su un cristallo non lineare inserito in un interferometro di Sagnac, ha la caratteristica
importante di avere un alto tasso di generazione di coppie entangled, fondamentale per
il suo utilizzo in situazioni ad alto livello di perdite come le comunicazioni su lunga dis-
tanza. La sorgente è costruita su una breadboard ottica ed ha fibre ottiche sia in ingresso
che in uscita, in modo da poter essere facilmente trasportata. In questo capitolo, dopo
una breve introduzione sulla fisica sottostante il suo funzionamento, questa sorgente verrà
descritta, sia per quanto riguarda le scelte fatte nel suo progetto che i risultati della sua
caratterizzazione.
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Nel capitolo 3 viene data una descrizione del lavoro svolto in laboratorio. Esso è diviso
in due sezioni, dal peso di un capitolo ciascuna, riguardanti una lo studio, sia teorico
che sperimentale, di alcuni aspetti della crittografia quantistica, l’altra un esperimento
volto a provare sperimentalmente alcuni recenti risultati sulla non località, altro aspetto
fondamentale nell’implementazione di protocolli quantistici. Nel dettaglio, la sezione 3.1
affronta prima lo studio teorico delle prestazioni di un nuovo tipo di sorgente, basata
su una catena di cristalli non lineari in configurazione asimmetrica, quando inserita in
in contesto reale di crittografia quantistica, e in seguito presenta la proof of principle di
un protocollo di crittografia quantistica a tre stati, il quale presenta un compromesso in-
teressante tra risorse del ricevitore e tolleranza al rumore, entrambi aspetti importanti
per l’implementazione in applicazioni in spazio libero o su satellite. Nella sezione 3.2,
invece, viene studiato sperimentalmente un aspetto della non località quantistica legato
alla possibilità che due osservatori indipendenti possano condividere simultaneamente tale
non località con un terzo osservatore. Questo studio, oltre che essere importante dal
punto di vista della ricerca di base, è fondamentale anche per sondare nuovi aspetti della
relazione tra informazione acquisita e disturbo sul sistema misurato.

Col capitolo 4 comincia la parte rigurdante lo sfruttamento del canale spaziale. Questo
capitolo in particolare si concentra sul lavoro fatto per il miglioramento delle performance
della stazione di comunicazione quantistica presso MLRO, dovuta soprattutto alla collabo-
razione con l’INFN nell’ambito del progetto Moonlight-2. Questo miglioramento consiste
in un nuovo design dell’apparato sperimentale, con l’utilizzo di strumenti più performanti.
Oltre al nuovo schema hardware, questo processo ha portato alla riscrittura del software
per l’analisi dei dati presi nei vari esperimenti terra-satellite. Il software è stato riscritto
in maniera modulare, in modo da poter integrare facilmente i dati presi con la nuova
strumentazione e da permettere l’analisi di esperimenti sempre più complessi. Un altro
aspetto del lavoro di upgrade riguarda il miglioramento della stima delle orbite, necessario
in modo da poter sfruttare la più alta precisione della nuova strumentazione. Fondamentale
per questo aspetto è l’utilizzo nella stima non solo dei segnali provenienti dal sistema di
laser ranging, ma anche delle correzioni strumentali applicate in tale sistema.

Infine il capitolo 5 è incentrato su un recente esperimento effettuato usando la stazione
di comunicazione quantistica presso MLRO e dimostrante l’interferenza a singolo fotone
sul canale spaziale, fondamentale per l’utilizzo della codifica in time bin su tale canale.
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Chapter 1

Elements of Experimental
Quantum Information

Information theory is the science that studies the transmission, processing, utilization, and
extraction of information. Since its birth, dating back to the 1948 article “A Mathematical
Theory of Communication” by Claude E. Shannon [1], it is the theoretical framework upon
which a large part of our technology is built. Information is strongly related to the physical
system used to store it, as stated by Rolf Landauer in his famous sentence “Information
is physical” [2].

In classical information theory, the information is carried by systems obeying the laws
of classical physics. The state of a general system is described by a point in its phase
space, while its evolution is described by the Hamiltonian of the system. There are two
main ways of storing the information in a classical system: using an analog degree of
freedom, such as the amplitude or the phase of an electromagnetic wave, or a digital one,
by assigning different values to different, finite regions of the phase space. Nowadays,
digital systems are dominant in general-purpose information transmission and processing,
with analog ones playing a minor role.

The key element of a digital system is the bit (binary digit), which can assume the
values 0 or 1. Each value is represented by a different region of the phase space and the
separation between the two regions is such that a noise-induced bit switch is very unlikely.

At the beginning of the 20th century, however, classical physics has shown to be inad-
equate to describe systems at a very small scale. For such systems, there is a fundamental
limitation in the knowledge of the different measurable properties of the system, embodied
by the uncertainty principle. Therefore, it is no longer possible to assign to a system a
single point in the phase space, making classical physics inadequate to describe it. This
led to the development of a new model for the description of physical systems: quantum
mechanics. For this reason, the information stored in systems that cannot be described by
classical physics can no longer be described using classical information theory, but requires
the development of a new framework, quantum information theory.

This chapter will provide a short introduction of quantum mechanics from an axiomatic
point of view, then it will deal with quantum information and its realization using optical
systems.

1.1 The postulates of quantum mechanics

The fundamental difference between classical and quantum mechanics lies in the impos-
sibility of knowing with arbitrary precision all the measurable properties of a physical
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system. Therefore, it is no longer possible to define a state by assigning a definite value
to its measurable properties (e.g. position and momentum). This requires the construc-
tion of a new theoretical framework for the description of physical systems. Among the
different formulations of quantum mechanics, the axiomatic one introduced by Dirac and
Von Neumann is the most widely used in quantum information. It is based on a series of
postulates, listed here below [3, 4].

Postulate 1. States. A state is the complete description of a physical system. The state
of an isolated physical system can be described by a normalized vector |ψ⟩, unique up to a
phase factor, in a projective complex Hilbert space H .

Postulate 2. Composition. If the state of a system A is in HA and the state of a system
B is in HB, the state of the composite system AB is in the tensor product HA ⊗ HB.
Given a system A in state |ψ⟩A and a system B in |ϕ⟩B, then the state of the composite
system is |ψ⟩A ⊗ |ϕ⟩B.
Postulate 3. Dynamics. The dynamics describes the evolution of a system over time.
For any possible evolution of a closed physical system with state in H and for any fixed
time interval [t0, t1], there exists a unitary U(t0, t1) describing it. A system in state |ψ(t0)⟩
evolves into |ψ(t1)⟩ = U |ψ(t0)⟩. The unitary U(t0, t1) is unique up to a phase factor and
its form is determined by the Schrödinger equation

d

dt
|ψ(t)⟩ = − i

ℏ
H(t) |ψ(t)⟩ ,

where H is the Hamiltonian of the system.

Postulate 4. Observables. An observable is a property of a physical system that can
in principle be measured. All observables are represented by self-adjoint linear operators
acting on H . The possible values that an observables O can assume are the eigenvalues
x of the correspondent operator. Since O is self-adjoint, it takes the form O =

∑
x xΠx,

where Πx is the projector onto the subspace with eigenvalue x.

Postulate 5. Measurements. Measurement is the process of acquiring information
about a measurable property of a system. If the state just prior to the measurement is |ψ⟩,
then the probability of observing outcome x is

PX(x) = Tr
[
Πx |ψ⟩ ⟨ψ|

]
.

If the outcome of the measurement is x, the state |ϕx⟩ of the system just after the mea-
surement is

|ϕx⟩ =
√

1

PX(x)
Πx |ψ⟩ .

1.2 The Qubit

The basic unit of classical information theory is the bit, an object that can assume two
values, 0 or 1. Similarly, quantum information theory has adopted as basic unit its quan-
tum counterpart, called qubit (quantum bit). It is a two-level system described within the
framework of quantum mechanics. Because of Postulate 1, such a system corresponds to a
two-dimensional Hilbert space H ≈ C2, with basis vectors |0⟩ and |1⟩. The general qubit
state |ψ⟩, therefore, is written as

|ψ⟩ = α |0⟩+ β |1⟩ , (1.1)
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where α and β are complex numbers such that |α|2+ |β|2 = 1. Postulate 1 states also that
quantum states are defined up to a global phase factor (the vectors |ψ⟩ and eiγ |ψ⟩ describe
the same physical state). Therefore, it is possible to take as representative of the physical
state the vector with α ∈ R. This, together with the requirement of normalization, allows
us to write the state of a single qubit as

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ , (1.2)

with θ and ϕ real numbers. These numbers define a point on the unit three-dimensional
sphere, the Bloch sphere, shown in Figure 1.1. In this representation, the qubit |ψ⟩ is
associated with the point (sin θ cosϕ, sin θ sinϕ, cos θ). The Z axis corresponds to the com-

Y

X

Z

Figure 1.1: Bloch sphere representation of a single qubit.

putational basis
{
|0⟩ , |1⟩

}
, while the two other axes are associated with the diagonal basis

X ≡
{
|+⟩ = |0⟩+|1⟩√

2
, |−⟩ = |0⟩−|1⟩√

2

}
and the circular basis Y ≡

{
|r⟩ = |0⟩+i|1⟩√

2
, |l⟩ = |0⟩−i|1⟩√

2

}
[5]. Another useful qubit representation is the matrix one, that associates the vectors of
the computational basis with

|0⟩ =
(
1
0

)
, (1.3)

|1⟩ =
(
0
1

)
. (1.4)

1.2.1 Multiple qubit systems

The difference between classical and quantum information is more marked when dealing
with compound systems. Classically, the composition of n systems is described by an n-bit
string of 0s and 1s (e.g. the composition of 8 bits is described by an 8-bit string called
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byte). In the quantum case, on the other hand, things are slightly more complicated.
Postulate 2 says that the state of the compound of two systems lies in the tensor product
of Hilbert spaces describing the single systems. Therefore, if the i-th qubit lies in Hi ≈ C2,
the state describing the composition of n qubits is described by a vector in

H = H1 ⊗ · · · ⊗ Hn ≈ C2 ⊗ · · · ⊗ C2  
n times

≈ C2n . (1.5)

The state of a 2-qubit system is described by a vector in the space H = H1 ⊗ H2 ≈ C4,
whose computational basis is

{
|0⟩ ⊗ |0⟩ ≡ |00⟩ , |01⟩ , |10⟩ , |11⟩

}
. The nature of the space

H gives rise to the phenomenon of entanglement, since there exist states |ψ⟩ ∈ H which
cannot be described as the tensor product of a state |ϕ⟩ ∈ H1 and |χ⟩ ∈ H2. An example
is given by the so-called Bell states,

|Ψ−⟩ = |01⟩ − |10⟩√
2

, (1.6)

|Ψ+⟩ = |01⟩+ |10⟩√
2

, (1.7)

|Φ−⟩ = |00⟩ − |11⟩√
2

, (1.8)

|Φ+⟩ = |00⟩+ |11⟩√
2

, (1.9)

which form an alternative basis for the 2-qubit space H [6, 7]. Like single-qubit systems,
multiple-qubit systems can be represented using 2n-component complex vectors.

1.3 The density matrix formalism

The formalism described in Section 1.1 is useful to describe systems that are in a state that
is known exactly, called pure state. It can happen, however, that a system is in a statistical
ensemble of pure states. In this case, the system is said to be in a mixed state. The new
formalism, while mathematically equivalent to the former, can be naturally applied to
both pure and mixed states [7]

Consider a system that is in one of a number of states |ψi⟩, with respective probability
pi. The state of the system is represented by the density operator

ρ =
∑
i

pi |ψi⟩ ⟨ψi| . (1.10)

A pure state |ϕ⟩ is described by ρ = |ϕ⟩ ⟨ϕ|. Density operators are characterized by ρ ≥ 0
and Tr[ρ] = 1.

Differently than in the classical case, however, it is not possible to uniquely define the
states composing the mixture. For example, the equal mixture of |0⟩ and |1⟩, described
by the density operator

ρ =
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1| = I2

2
, (1.11)

is not distinguishable from the equal mixture of |+⟩ and |−⟩

ρ =
1

2
|+⟩ ⟨+|+ 1

2
|−⟩ ⟨−| = I2

2
. (1.12)

The postulates of Section 1.1 can be restated in terms of density operators [4, 7].
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Postulate 1. The state of an isolated physical system is described by a density operator,
i.e., a positive operator ρ with trace one, acting on a complex Hilbert space H .

Postulate 2. If a system A is in the state ρA and system B is in ρB, the state of the
composite system is ρA ⊗ ρB.

Postulate 3. The evolution of a closed physical system in the interval [t0, t1] is described
by an unitary operator U(t0, t1). A system in the initial state ρ(t0) evolves into ρ(t1) =
U(t0, t1)ρ(t0)U(t0, t1)

†. The Schrödinger equation for density operators is

d

dt
ρ(t) = − i

ℏ
[H, ρ(t)], (1.13)

with H the Hamiltonian of the system.

Postulate 5. If the state before the measurement is ρ, then the probability of observing
outcome x is

PX(x) = Tr[Πxρ]. (1.14)

If the outcome of the measurement is x, the state ρx of the system just after the measure-
ment is

ρx =
1

PX(x)
ΠxρΠx. (1.15)

1.3.1 Subsystems and purification

The density operator formalism is useful to study the behaviour of the subsystem A of
a larger system AB. If the system AB is described by the density operator ρAB, its
subsystem A can be described using the reduced density operator ρA defined as

ρA ≡ TrB[ρAB], (1.16)

where TrB is the partial trace over system B.
Generally, the reduced density operator of an entangled system AB is a mixed state.

Moreover, if the system AB is in one of the four Bell states of Equation (1.9), the reduced
density matrix of each subsystem is ρA = I2

2 , thus ruling out the possibility of using
entangled states for faster than light communication [3].

On the other hand, given a density operator ρA on a system HA, it is always possible
to find a system HE such that ρA = TrA[ρAE ] and the joint system is in a pure state
|ϕ⟩AE ∈ HA ⊗ HE . This procedure is called purification [3].

1.3.2 Generalized measurements

The projective measurement described by Postulate 5 is not the most general kind of
measurement that can be performed on a quantum system [8]. In general, it is possible
to make the system HA interact with another system HB, the ancilla, which is then
measured with a projective measurement. The overall system is described by HA ⊗ HB,
and the interaction is represented by the unitary operator U . Before the measurement
takes place, the ancilla and the system are independent, so their state can be described
by ρA⊗ρB, and the ancilla can be considered to be in a pure state ρB = |ϕB⟩ ⟨ϕB| (this is
always possible by taking a large enough ancilla system because of purification). We can
obtain information about the system by measuring the observable X on the ancilla. From
Postulate 5, the probability of obtaining x from the measurement is

PX(x) = TrAB

[
UρA ⊗ ρBU

† (I ⊗Πx)
]
. (1.17)
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By taking the partial trace over system B, it is possible to rewrite (1.17) from the
point of view of system A, obtaining

PX(x) = TrA [ρAΛx] , (1.18)

where ρA is the reduced density operator of system A and {Λx} is a set of operators on
HA such that

• Λx is self-adjoint,

• Λx is non-negative,

• ∑x Λx = I.

A generalized measurement described by such set of operators is called positive-operator
valued measurement (POVM). It can also be demonstrated that any group of operators
meeting these requirements corresponds to a generalized measurement (Neumark/Naimark
Theorem [3, 8]). It can therefore be expressed using the formalism of Postulates 4 and 5
with a large enough ancilla system.

1.4 The circuit model

The mathematical framework at the basis of digital information processing is Boolean
algebra, which can be used to describe all possible functions from n-bit intom-bit systems.
This computational framework can be represented using the circuit model [7], which is
based on gates, that implement logical functions f : {0, 1}n → {0, 1}m, and wires, that
connect different gates and provide the circuit with its inputs and outputs. A general
gate can be substituted by a network of simpler ones. It has been demonstrated, indeed,
that all logical functions can be implemented by using just a finite set of 1-to-1 and 2-to-1
logical gates [7].

A similar information processing model can be introduced also in the quantum case.
Similarly to the classical case, the basic computational quantum unit is called quantum
gate. Postulate 3 restricts quantum gates to unitary operations from n-qubit into n-qubit
systems. Quantum gates are linked together using wires, representing an ideal system that
transmits a quantum state from one side to the other.

The possibility of entanglement between different qubits, however, makes it impossible
to assign a precise value to the state in each wire, requiring a collective description of the
state at the different steps of the circuit. While the most general description of quantum
circuits should require the use of the density matrix formalism and a more comprehensive
model of quantum dynamics to take into account open system evolution (using complete
positive trace-preserving linear transformations [5]), it is still possible to apply purification
to reduce them to a system of pure-state qubits and unitary quantum gates [9]. In this
way, it is possible to study quantum circuits using the formalism introduced in Section
1.1.

1.4.1 Quantum wires

The wire is the simplest component of a quantum circuit (this does not mean that it is
simple to implement physically, though). It is a system that transfers a qubit from one
end to the other one and is used to connect gates or to provide input and output to the
circuit. Quantum wires can be used also for the transfer of qutrit states (i.e. states lying
in a three-dimensional Hilbert space). As a convention used through this thesis, qubit
wires will be single, while qutrit wires will be doubled, as shown in Figure 1.2.
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Figure 1.2: Qubit (left) and qutrit (right) wire.

1.4.2 Quantum gates

Quantum gates are unitary operations acting on quantum state-vectors [5]. In general,
they act on n-qubit systems and can be represented, in matrix form, as a 2n × 2n matrix.
Among all possible quantum gates, however, just a small set of one- and two-qubit gates
is necessary to approximate with arbitrary accuracy any possible unitary operation. This
set is said to be universal for quantum computation [7].

Single-qubit gates

Single-qubit gates are represented by 2 × 2 unitary matrices in the computational basis.
The circuit representation of single-qubit gates is shown in Figure 1.3, with the type of
gate is identified by the letter inside the square (A stands for arbitrary gate).

A

Figure 1.3: An arbitrary single-qubit gate.

An important set of single-qubit gates is represented by Pauli gates, whose matrix
representation in the computational basis is

σx =

(
0 1
1 0

)
, (1.19)

σy =

(
0 −i
i 0

)
, (1.20)

σz =

(
1 0
0 −1

)
. (1.21)

Pauli matrices are strongly related to the Bloch sphere representation by the fact that the
point in the sphere associated to a state |ψ⟩ is the one whose coordinates are the expec-
tation values of the Pauli operators (⟨ψ|σx |ψ⟩ , ⟨ψ|σy |ψ⟩ , ⟨ψ|σz |ψ⟩) [5]. In particular,
the axes {X,Y, Z} of the Bloch sphere correspond to the eigenvectors of the Pauli gates{
σx, σy, σz

}
.

Another useful gate is the Hadamard gate, described by the matrix

H =
1√
2

(
1 1
1 −1

)
, (1.22)

that transforms the computational basis
{
|0⟩ , |1⟩

}
into the diagonal one

{
|+⟩ , |−⟩

}
and

vice-versa.
The rotation gates, that rotate the qubit about one axis of the Bloch sphere by an

angle θ, are described by

Rx(θ) =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
, (1.23)
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Ry(θ) =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
, (1.24)

Rz(θ) =

(
e−i

θ
2 0

0 ei
θ
2

)
. (1.25)

The rotation about the z axis shifts the qubit phase of an angle θ and can be used to
construct the phase gate

S =

(
1 0
0 i

)
, (1.26)

and the “π8” gate

T =

(
1 0

0 ei
π
4

)
. (1.27)

Two-qubit gates

The most important class of two-qubit gates is the one of controlled operations, shown in
Figure 1.4.

U

control

target

Figure 1.4: Controlled-U operation. The unitary U is applied to the target qubit only if
the control qubit is in |1⟩.

They have two inputs, the target and the control bit, and perform the unitary operation
U on the target qubit only if the control is in state |1⟩. An important controlled gate is
the CNOT gate, with matrix

CNOT =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠ (1.28)

in the two-qubit computational basis. The set formed by single-qubit gates and the CNOT
gate is universal for quantum computation [7].

Another important controlled gate, that will be used later in this thesis, is the controlled-
phase-shift gate, that implements a rotation of the target qubit around the z axis of the
Bloch sphere conditioned on the value of the control qubit. This operation is described
by the matrix

CP (ϵ) =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 eiϵ 0
0 0 0 e−iϵ

⎞⎟⎟⎟⎠ . (1.29)
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1.4.3 Measurement

In general, the only way to get information about a physical system is through measure-
ments. While the most general description of a measurement on a system is given by
a POVM, the Neumark/Naimark Theorem allows us to see it as a projective measure-
ment on an ancilla subsystem. Moreover, projective measurements on an arbitrary basis
are equivalent to a unitary transformation followed by a projective measurement on the
computational basis.

In the circuit model, a measurement in the computational basis is represented as in
Figure 1.5.

Figure 1.5: Projective measurement in the computational basis.

1.5 Photonic implementation of Quantum Information

As stated in previous Sections, quantum information requires information carriers to follow
the rules of quantum mechanics. However, there are many different systems fulfilling this
requirement, with their peculiar characteristics and their own physical laws.

The transmission of information requires information carriers that can propagate through
long distances without being altered by the environment they propagate within. The most
suitable physical system for such task is the electromagnetic field, both in the classical
and in the quantum case. Indeed, electromagnetic waves can travel for long distances
both in vacuum and in transparent media, such as the air or the glass. Moreover, its low
interaction with matter makes it very resistant to the noise introduced by its coupling
with the environment.

Electrodynamics is the branch of physics that studies the interaction of charges and
currents. These interactions are mediated by the electromagnetic field, whose behaviour
is described by Maxwell’s equations (1865). These equations predict, in absence of both
charges and currents, that the electromagnetic field propagates as a wave at the speed of
light c ≃ 3 · 108m/s. This fact, in apparent contradiction with Galilean relativity, led to
the development, by Einstein, of special and general relativity, in the first decade of the
20th century. These theories are all built upon the classical mechanics framework.

Electrodynamics played a crucial role also in the development of quantum mechanics,
which started as an attempt to justify a discrepancy between the theory and the exper-
iment in the study of black body radiation. The first adaptation of existing physical
theories to the new framework was based on the transformation of classical observables
into operators, a procedure called first quantization. While this process was adequate for
the description of non-relativistic systems with a fixed number of particles, it proved inad-
equate to describe relativistic systems, where the particle description must be substituted
with a field description.

A new procedure for the quantization of field theories, called second quantization, was
then developed, and this is the basis for the construction of quantum electrodynamics.

The study of quantum electrodynamics, even in its description of the free electromag-
netic field, is far beyond the scope of this thesis. This Section will just give a very short
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introduction to the matter, limited to some results of interest for the photonic implemen-
tation of quantum information protocols. The quantization of the electromagnetic field is
the subject of many books [6, 10–13]. In order to keep this Section as short as possible, it
will mainly based on the book by Kok and Lovett [6]. A similar formalism, however, can
also be found in the Effective Quantum Optics book by Leonhardt [11].

1.5.1 Quantum theory of the electromagnetic field

Classical theory

The electromagnetic field is the combination of the electric field E(r, t) and the magnetic
field B(r, t), whose generation and propagation is governed by Maxwell’s equations. An
alternative description of classical electrodynamics uses, instead of the field, the scalar
potential Φ(r, t) and the vector potential A(r, t), linked to the electromagnetic field by
the equations

E(r, t) = −∇Φ(r, t) +
∂A(r, t)

∂t
, (1.30)

B(r, t) = ∇×A(r, t). (1.31)

Since the observables are the fields and not the potentials, different potentials giving
the same electric fields must be treated as equivalent. This freedom, called gauge freedom,
allows to fix some constraints for the potentials. In the theory of radiation, it is convenient
to adopt the so-called Coulomb gauge, defined by

∇ ·A = 0, and Φ = 0. (1.32)

With this choice, the equation governing the free electromagnetic field (i.e. the regime
with no free charges and currents) is

∇2A− ε0µ0
∂2A

∂t2
= 0. (1.33)

The classical solution to this equation can be written as

A(r, t) =
∑
λ

∫
dk√
ε0

Aλ(k)ϵλ(k)e
ik·r−iωkt√

(2π)32ωk

+ c.c. (1.34)

=
∑
λ

∫
dk√
ε0
Aλ(k)ϵλ(k)u(k; r, t) + c.c. (1.35)

where Aλ(k) denotes the amplitude of the mode with wave vector k and polarization λ,
ϵλ gives the direction of the polarization and c.c. denotes the complex conjugate. The
dispersion relation for the free field is given by

|k|2 − ε0µ0ω
2
k ≡ k2 − ω2

k

c2
= 0, (1.36)

where c = 1√
ε0µ0

is the speed of light in vacuum. In this form, the vector potential is

written in the plane wave basis, described by mode functions

u(k; r, t) =
Aλ(k)ϵλ(k)e

ik·r−iωkt√
(2π)32ωk

. (1.37)

The energy density of the free field is given by the Hamiltonian density

H(r, t) =
ε0
2
|E(r, t)|2 + 1

2µ0
|B(r, t)|2 =

∑
λ

∫
dkωk|Aλ(k)|2. (1.38)
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Quantization of the free electromagnetic field

Quantization is a technique used to transform a classical theory into a theory compatible
with the quantum mechanics framework. Classical field theories, like electrodynamics,
are quantized within the second quantization framework, that consists of transforming
the fields into quantum operators obeying a commutation relation compatible with the
Heisenberg uncertainty principle. By applying this procedure to the electromagnetic field
in Equation (1.35), the field is transformed into the field operator

Â(r, t) =
∑
λ

∫
dk

√
ℏ
ε0

[
âλ(k)ϵλ(k)u(k; r, t) + â†λ(k)ϵ

∗
λ(k)u

∗(k; r, t)
]
, (1.39)

where the amplitude Aλ(k) has been promoted to the field operator âλ(k), obeying the
commutation relation [

âλ(k), â
†
λ′(k

′)
]
= δλλ′δ

3(k− k′), (1.40)

and [
âλ(k), âλ′(k

′)
]
=
[
â†λ(k), â

†
λ′(k

′)
]
= 0. (1.41)

Consequently, the Hamiltonian density of Equation (1.38) is transformed into the operator

Ĥ(r, t) =
∑
λ

∫
dk

ℏωk

2

[
â†λ(k)âλ(k) + âλ(k)â

†
λ(k)

]
(1.42)

=
∑
λ

∫
dkℏωk

[
â†λ(k)âλ(k) +

1

2

]
=
∑
λ

∫
dkℏωk

[
n̂λ(k) +

1

2

]
, (1.43)

where the first equality is obtained by inserting the commutation relation (1.40), and the
second one is expressed using the number operator for the mode with wave vector k and
polarization λ defined as

n̂λ(k) = â†λ(k)âλ(k). (1.44)

The number operator is the quantum mechanical analogous of the mode intensity |Aλ(k)|2.
The main difference lies in the fact that, in quantum electrodynamics, the intensity of a
mode of the electromagnetic field is quantized. The quanta of intensity of a mode of the
field are called photons of that mode. A general state of the electromagnetic field can
be expressed by counting the photons present in each mode of the electromagnetic field,
using the so-called Fock representation.

Another crucial difference between classical and quantum electrodynamics is given by
the 1

2 term in Equation (1.43). This term, summed over all mode vectors and polarizations,
gives an infinite term to the Hamiltonian density operator, usually called the vacuum
energy. For most applications, where the crucial aspect is the energy difference between
two states, the vacuum energy cancels out and can therefore be neglected.

The field operators âλ(k) and â†λ(k) are called creation and annihilation operators,
respectively. Indeed, by applying them to an eigenstate of the number operator |nkλ⟩ of
eigenvalue nkλ, we obtain

n̂λ(k)âλ(k) |nkλ⟩ = âλ(k)
(
n̂λ(k)− 1

)
|nkλ⟩ = (nkλ − 1) âλ(k) |nkλ⟩ , and (1.45)

n̂λ(k)â
†
λ(k) |nkλ⟩ = â†λ(k)

(
n̂λ(k) + 1

)
|nkλ⟩ = (nkλ + 1) â†λ(k) |nkλ⟩ . (1.46)

These operators, therefore, can be used to create a photon in mode (k, λ) or to destroy it.
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Physical mode functions

Despite being useful for the quantization of the free electromagnetic field, plane waves are
unphysical solutions. To obtain physical states, it is necessary to construct an appropriate
superposition of plane waves

f(r, t) =

∫
dk
[
α∗(k)u(k; r, t) + β∗(k)u∗(k; r, t)

]
, (1.47)

which, if its polarization is λ, is associated with mode operator

b̂fλ =

√
ε0
ℏ

(
ϵλf, Â

)
=

∫
dk
[
α(k)âλ(k) + β(k)â†λ(k)

]
, (1.48)

where (·, ·) is the time-independent scalar product

(ϕ, ψ) ≡ i

∫
dr
[
ϕ∗ (∂tψ)−

(
∂tϕ

∗)ψ] . (1.49)

Usually, f is chosen to belong to an orthonormal set of normal modes
{
fj
}
j∈N. In this

case, mode operators can be demonstrated to obey the commutation relations[
b̂jλ, b̂

†
kλ′

]
= δλλ′δjk, and

[
b̂jλ, b̂kλ′

]
=
[
b̂†jλ, b̂

†
kλ′

]
= 0. (1.50)

These mode operators create or destroy a photon with spatial mode fj and polarization
mode ϵλ.

Evolution of field operators

Postulate 3 describes the dynamics of a closed system, so it can be applied also to the
evolution of the free electromagnetic field. The main objects encountered in the quantum
theory of the free electromagnetic fields, however, are field operators. It is therefore
more convenient to see the states as fixed and the let the operators evolve, the so-called
Heisenberg picture. The dynamics equation for quantum operators, called Heisenberg
equation of motion, is

dÂ(t)

dt
=
i

ℏ

[
Ĥ(t), Â(t)

]
+
∂Â

∂t
, (1.51)

where Ĥ is the Hamiltonian operator, defined as

Ĥ(t) =

∫
d3rH(r, t). (1.52)

For the field operators, Equation (1.51) becomes

dâjλ(t)

dt
=
i

ℏ

[
Ĥ(t), âjλ(t)

]
, (1.53)

dâ†jλ(t)

dt
=
i

ℏ

[
Ĥ(t), â†jλ(t)

]
. (1.54)

If mode functions are sharply peaked around the central wave vector kj , and the time

evolution is governed by the free-field Hamiltonian Ĥjλ = ℏωkâ
†
jλâjλ, the solutions to

these equations is given by

âjλ(t) = âjλe
−iωjt, (1.55)
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â†jλ(t) = â†jλe
iωjt. (1.56)

Since most optical setups are stationary, it is convenient to remove the explicit time
dependency on the field operators and only consider the phase ϕ introduced in a certain
part of the setup.

The evolution induced by a general optical element depends on its Hamiltonian. If the
Hamiltonian operator has the form

Ĥ =
∑
jk,λλ′

Ajk,λλ′ â
†
jλâkλ′ , (1.57)

the evolution preserves the number of photons and it is said to be linear [14]. Linear
evolution mixes input and output modes, and can be described in matrix form as

b⃗ = Sa⃗, (1.58)

where a⃗ =
(
âj1λ1 , âj2λ2 , . . .

)
and b⃗ =

(
b̂k1λ1 , b̂k2λ2 , . . .

)
are the vectors containing the

modes entering and exiting the optical element and S is a unitary matrix describing the
evolution, called the scattering matrix [15].

1.5.2 Photons as information carriers

There exist many different ways to encode the information into the degrees of freedom of
the electromagnetic field. They are grouped into two different classes, called continuous
variables and discrete variables.

Continuous variables encode the information in the quadratures of a single mode (j, λ)
of the electromagnetic field (quadratures are, roughly speaking, the real and the imaginary
part of the field operator). While continuous variables play an important role in quantum
information [16], they are out of the scope of this thesis.

The other way to encode quantum information is using discrete variables. In this case,
the information is encoded into the degrees of freedom of a single photon. The most
common encoding scheme implements a qubit using a single photon in two orthogonal
modes of the electromagnetic field, a technique called dual-rail encoding. The orthogonal
modes can be two orthogonal polarizations, two non-overlapping transverse modes or
two non-overlapping temporal modes, giving, respectively, polarization, path or time-bin
encoding. In this Section, these encoding schemes will be rapidly reviewed.

There exists another important scheme, that uses orthogonal transverse modes of the
field and is called orbital angular momentum (OAM ) encoding. Since it will not be used
in this thesis, this encoding scheme will not be treated in this Section.

Polarization encoding

Polarization is related to the vector behavior of the electric field E (and, by extension, of
the vector potential A, since the time derivative in Equation (1.30) does not change the
vector behaviour of the field). The vector character of the field is captured by vector ϵλ.
The Coulomb gauge condition ∇ ·A = 0 restricts the polarization vector to the plane

ϵλ(k) · k = 0. (1.59)

Therefore, polarization is restricted to the bi-dimensional plane perpendicular to the wave
vector k.
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Polarization encoding represents a qubit in the two-dimensional complex Hilbert space
of a single-mode field1. The computational basis is often chosen to be {ϵH , ϵV }, where
the spatial mode index has been omitted for simplicity. The correspondence between field
modes and field operators makes it possible to write the computational basis states as

|0⟩ := â†H |0, 0⟩HV = |1, 0⟩HV = |H⟩ , (1.60)

|1⟩ := â†V |0, 0⟩HV = |0, 1⟩HV = |V ⟩ , (1.61)

where |nH , nV ⟩HV is the Fock state representation of the polarization of a single-mode field.

Single-qubit gates are easy to implement in the polarization encoding by using wave-
plates. Wave-plates are optical devices made of a birefringent material, characterized by a
different refractive index for two orthogonal axes. The material used in most wave-plates
is quartz, which is a positive uniaxial crystal (ne > no) [17]. The axis characterized by the
lower refraction index is called fast axis (nslow > nfast because v = c/n), therefore quartz
wave-plates have nfast = no and nslow = ne. In the basis

{
|F ⟩ , |S⟩

}
of the fast and slow

axes, the scattering matrix is

Λ(Γ) =

(
ei

2π
λ
nfastd 0

0 ei
2π
λ
nslowd

)
= ei

2π
λ
nfast

(
1 0

0 ei
2π
λ (nslow−nfast)d

)
≡
(
1 0
0 eiΓ

)
, (1.62)

with Γ = 2π
λ δnd the relative phase introduced by the plate. The two common types of

wave-plates are the half wave-plate, characterized by δnd = λ
2 +mλ and Γ = π + 2πm,

and the quarter wave-plate, with δnd = λ
4 +mλ and Γ = π

2 + 2πm. The value of m gives
the order of the plate (zero-order plates have m = 0). The resulting scattering matrices
are

ΛHWP =

(
1 0
0 −1

)
and ΛQWP =

(
1 0
0 i

)
. (1.63)

In general, wave-plates are mounted on rotator stages, so that the slow and fast axis form
an angle ϵ with the computational basis axis, as shown in Figure 1.6.

Figure 1.6: Relationship between the
{
|F ⟩ , |S⟩

}
and the computational basis

{
|H⟩ , |V ⟩

}
.

The laser beam is coming out of the page.

Since the rotation is described by(
âF
âS

)
=

(
cos ϵ − sin ϵ
sin ϵ cos ϵ

)(
âH
âV

)
= Ry(2ϵ)

(
âH
âV

)
, (1.64)

1The most frequently spatial mode used for polarization encoding is the TEM00 mode, which can be
well approximated to a plane wave in the condition of not too strong focusing.
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the resulting rotated wave-plate scattering matrix is

Λ(Γ, ϵ) = R−1
y (2ϵ)Λ(Γ)Ry(2ϵ) =

⎛⎜⎝ cos2 ϵ+ eiΓ sin2 ϵ cos ϵ sin ϵ
(
1− eiΓ

)
cos ϵ sin ϵ

(
1− eiΓ

)
eiΓ cos2 ϵ+ sin2 ϵ

⎞⎟⎠ . (1.65)

The general form of the rotated half-wave plate and quarter-wave plate is given by

ΛHWP (ϵ) =

(
cos2 ϵ− sin2 ϵ 2 cos ϵ sin ϵ
2 cos ϵ sin ϵ sin2 ϵ− cos2 ϵ

)
=

(
cos 2ϵ sin 2ϵ
sin 2ϵ − cos 2ϵ

)
, and (1.66)

ΛQWP (ϵ) =

(
cos2 ϵ+ i sin2 ϵ cos ϵ sin ϵ (1− i)
cos ϵ sin ϵ (1− i) sin2 ϵ+ i cos2 ϵ

)
. (1.67)

Half- and quarter-wave plates can also be used to implement a generic Rz rotation.
This can be obtained by rotating the wave-plate along its vertical axis of an angle θ, as
shown in Figure 1.7. The scattering matrix of this system is

WP
beam

Figure 1.7: Wave plate used as phase shifter.

ΛHWP (θ) ≃
(
1 0

0 ei
π

cos θ

)
(1.68)

for the half-wave plate and

ΛQWP (θ) ≃
(
1 0

0 ei
π

2 cos θ

)
(1.69)

for the quarter-wave plate.

Path encoding

In path encoding, the computational basis is composed by two non-overlapping spatial
modes. The modes are usually described by the same mode function (usually TEM00),
with approximate wave-vectors k1 and k2, characterized by the same wavelength but
different direction. The field operators for such modes are âk1λ and âk2λ, where λ is
the polarization mode. In order to preserve coherence, it is important that the two field
operators have the same polarization mode, otherwise the trace over the polarization space
will produce a mixture of the two modes2. The computational basis states of path encoding
are

|0⟩ := â†k1
|0, 0⟩k1k2

= |1, 0⟩k1k2
, and |1⟩ := â†k2

|0, 0⟩k1k2
= |0, 1⟩k1k2

, (1.70)

where |nk1 , nk2⟩k1k2
is the Fock state representation of the two spatial modes, with the

polarization degree of freedom neglected for simplicity.

2Since most optical elements produce a coherent superposition of âk1λ and âk1λ′ , it is sufficient to filter
polarization before detection.
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Single-qubit operations in path encoding use beam-splitters and phase retarders. Beam-
splitters are partially reflecting devices, used to mix two spatial modes creating interference
effects. It is usually used with two incoming and two outgoing modes, as shown in Figure
1.8.

(r',t')

(r,t)

Figure 1.8: Quantum mechanical description of the beam-splitter. For simplicity, input
modes are marked with â and output modes with b̂.

The mode transformation introduced by the beam-splitter is(
b̂k1

b̂k2

)
=

(
t′ r
r′ t

)(
âk1

âk2

)
, (1.71)

where input modes are marked with field operators âj and output modes with b̂j , with j
the approximate wave vector of the two spatial modes. Since the scattering matrix must
be unitary, (r, t) and (r′, t′) must satisfy |r′| = |r|, |t′| = |t|, |r|2 + |t|2 = 1, r∗t′ + r′t∗ = 0,
and r∗t′ + r′t′∗ = 0 [18]. The 50:50 beam-splitter has r = r′ = i√

2
and t = t′ = 1√

2
,

therefore it is described by the scattering matrix

UBS =
1√
2

(
1 i
i 1

)
. (1.72)

The phase retarder simply consists of a different propagation length of one spatial
mode with respect to the other one. The path difference between the two modes, however,
must be shorter than the coherence length of the two modes, to keep the temporal overlap
between the single-photon wave-packets in the two modes. It is described by the scattering
matrix

Uphase(ϕ) =

(
1 0
0 eiϕ

)
. (1.73)

Time-bin encoding

Until now, we have neglected the temporal modes of the electromagnetic field. Single-
wavelength photons are completely unlocalized, and their coherence length in infinite.
This approximation is equivalent to the plane wave approximation for spatial modes, but
does not describe the behaviour of real photons, which are more or less localized3. It is
possible to define the continuous frequency creation and annihilation operators of mode i
by âi(ω) and â

†
i (ω), where i is an index for both the spatial and the polarization mode [15].

3The meaning of photon localization is a debated problem. Here, the term “localized photon” is used
to indicate the excitation of a temporally localized mode of the electromagnetic field, equivalent to the one
described by a laser pulse.
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The dependence on k of the pulsation ω has been omitted, because we are dealing with
modes with the same spatial pattern, differing only in their frequency. The commutation
relation between these operators is[

âi(ω), â
†
j(ω

′)
]
= δijδ(ω − ω′). (1.74)

These operators are the temporal equivalent of plane wave operators for spatial modes.
The creation operator of a photon in a pulse about time t0 is given by the photon wave-
packet creation operator

â†i,t0 =

∫
dωξ(ω; t0)â

†
i (ω), (1.75)

where the function ξ(ω; t0) is the pulse shape. In the case of two Gaussian pulses, with
shape

ξ(ω; ti) =
1

(2π∆2)1/4
exp

[
i (ω − ω0) ti −

(ω − ω0)
2

4∆2

]
(1.76)

of central frequency ω0 and bandwidth ∆, centered on t0 and t1, the commutation relation
of the respective wave-packet operators is

[
ai,t0 , a

†
j,t1

]
= δij exp

(
−∆2(t1 − t0)

2

2

)
. (1.77)

It the time separation between the two wave-packet is much larger than their temporal
width, that is

t1 − t0 ≫
1

∆
, (1.78)

the two pulses can be considered as independent and can be used as orthonormal modes
for the encoding of quantum information.

The computational basis for time-bin encoded photons is

|0⟩ := â†t0 |0, 0⟩t0,t1 = |1, 0⟩t0,t1 , and |1⟩ := â†t1 |0, 0⟩t0,t1 = |0, 1⟩t0,t1 , (1.79)

where |nt0 , nt1⟩t0,t1 is the Fock state representation of the two time-bin modes, with the
both the spatial and the polarization degree of freedom neglected.

Single-qubit gates of time-bin photons cannot be implemented using passive linear
optical devices, but require active devices or interferometric setups. Despite that, the
resistance of time-bin modes to long distance propagation over optical fiber, together with
the existence of fast optical modulating devices, has made time-bin encoding the preferred
choice for many quantum information protocols, among which Quantum Key Distribution.
The first commercial implementations of QKD use this kind of encoding.

Filters

In the previous Sections, we treated only the degree of freedom used for encoding, neglect-
ing all the other ones. Generally, this is not true, since that degree of freedom may be
entangled with the others. In that case, the coherence in the encoding degree of freedom is,
at least partially, destroyed, producing a mixed state. The usual solution to this problem
is by filtering all the other degrees of freedom.

The filtering process is analogous to a projective measurement, with two possible out-
comes, “fail” or “success”. In the “fail” case, the photon is discarded, while in the “success”
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case it goes on through the experimental setup. If the system used to encode a qubit is

prepared in state ρ, and it is filtered N times, with filtering operators
{
Π

(i)
F ,Π

(i)
NF

}
i∈1..N

,

where Π
(i)
F is the projector onto the filtered subspace and Π

(i)
NF = I −Π

(i)
F , the probability

of getting a filtered qubit is

pF = Tr
[
Π

(1)
F · · ·Π(N)

F ρ
]
, (1.80)

with the filtered state given by

ρF =
1

pF
Π

(1)
F · · ·Π(N)

F ρΠ
(1)
F · · ·Π(N)

F . (1.81)

Filtering has a serious impact on the experimental preparation of a photonic experi-
ment. Indeed, if a photonic setup produces single photons with a rate of R photons per
second, the rate of filtered qubits is just pFR. On the other hand, not filtering a photonic
state can lead to qubits in a non-pure state, preventing the execution of the desired quan-
tum information protocol. The trade-off between rate and pure qubit implementation is
therefore crucial for photonic quantum information.

Measurement

In the generalized measurement scheme described in Section 1.3.2, the system is entangled
with an ancilla system that is subsequently measured projectively. This scheme respects
what generally happens in photonic experiments. Indeed, photonic measurements are
usually performed with detectors which produce a detection event if a photon strikes its
sensitive area.

The two kinds of detectors used throughout this thesis are avalanche photo-diodes
(APD) and photo-multipliers (PMT). Their working mechanism is similar: when a photon
hits the sensitive area, it produces an electron, whose effect is to produce an electron
avalanche that is measurable by standard electronics. The technology behind these two
kinds of detector, however, is different. In photo-multipliers, the sensitive area consists
of a photocathode, which, when hit by an incoming photon, produces an electron into a
vacuum tube, where it is accelerated by an electric field onto a cascade of metallic plates,
called dynodes, where the number of electrons is multiplied, in order to produce, at the end
of the cascade, a detectable electric signal. Avalanche photo-diodes, on the other hand, are
solid state devices operated with a reverse voltage above their breakdown voltage, so that
a photon hitting the device and producing an electron by photoelectric effect produces an
electron avalanche that is detectable by the downstream electronics.

Both kinds of device are characterized by a detection efficiency η, given by the proba-
bility of the photoelectric effect, and a dark count probability D(k), measuring the prob-
ability that, in a certain time interval, k detection events are triggered by a thermally
produced electron. The resulting detector POVM is

Ê(noclick) = D(0)
∞∑
m=0

(1− η)m |m⟩ ⟨m| , (1.82)

Ê(click) = I − Ê(noclick) =

∞∑
m=0

[
1−D(0) (1− η)m

]
|m⟩ ⟨m| , (1.83)

where |m⟩ is the Fock state with m photons in the spatial mode hitting the sensitive area4.
This simplified model neglects the time resolution of the detection event and assumes a

4We are considering transverse spatial modes smaller than the sensitive area of the detector and a
uniform detection efficiency over the whole sensitive area.
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flat spectral response of the detector at the wavelengths of the incoming photons.

Incorporated into the circuit model of Section 1.4, these detectors perform projective
measurements over qubits encoded in the path degree of freedom. In order to use them for
the measurement of qubits in other degrees of freedom it is therefore necessary to entangle
them with path qubits, that are subsequently measured. Polarization encoding can be
easily entangled with path encoding by using a polarizing beam-splitter (PBS), shown in
Figure 1.9. The mode transformation induced by the PBS is

Figure 1.9: Polarizing beam-splitter.

⎛⎜⎜⎜⎝
b̂k1H

b̂k1V

b̂k2H

b̂k2V

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
âk1H

âk1V

âk2H

âk2V

⎞⎟⎟⎟⎠ . (1.84)

A polarization measurement in the computational basis is equivalent to using a PBS
followed by two detectors in the spatial modes corresponding to b̂k1 and b̂k2 .
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Chapter 2

A source of polarization-entangled
photons

One of the most important features of the new quantum mechanical framework is the
existence of multi-particle states that cannot be described from the separate description
of the state of each particle composing it, the phenomenon of entanglement. Particles
that are entangled in some of their degrees of freedom possess correlations that cannot be
explicated within the classical framework, a feature that makes entanglement one of the
main obstacles in finding a convincing interpretation of quantum theory.

Entanglement can exist between different degrees of freedom of a single particle, or
in the same degree of freedom of multiple particles. The latter is the most interesting
situation for quantum communication, since it allows non-classical correlations to travel
along very long distances. One of the crucial requirements for the generation of photonic
entangled states is a system that generates pairs of correlated photons. The other crucial
ingredient in the generation of an entangled pair is the coherent superposition of different
generation processes, so that it is impossible to determine in principle from which one the
pair has originated.

The most widely employed process in the generation of photonic entanglement is spon-
taneous parametric down-conversion (SPDC) in a non-linear crystal. While the generation
of polarization correlated pairs using spontaneous parametric down-conversion is relatively
simple, the superposition of different processes is not a trivial task. The first polarization-
entangled sources employed SPDC to create pairs of photons with orthogonal polariza-
tions, and created entanglement by sending the two photons to the two input ports of a
beam-splitter. In this way, it is possible to generate entangled pairs by post-selecting the
cases in which the two photons leave the BS via different ports. The major problem of
this source architecture is that it is probabilistic, i.e., it generates an entangled state only
half of times. A breakthrough in polarization-entanglement was the implementation of a
new scheme producing a true entangled state [19]. This scheme exploits one characteristic
feature of phase-matched type-II SPDC, in which the photons of the pair (of orthogonal
polarizations) are produced in two different cones. By taking the photon pairs produced
at the intersection of the two cones, it is not possible to distinguish even in principle which
process each photon comes from, thus generating a real entangled state1.

Recently, a wider interest has grown around sources based on quasi-phase matched
SPDC. This technique allows the creation of co-propagating photons in a linear crystal.

1Actually, it is still possible to distinguish the two processes because the birefringence of the non-linear
crystal delays one polarization with respect to the other. This information, however, can be canceled by
inserting an opposite delay just after the crystal, thus making the two processes indistinguishable again.

35



36 CHAPTER 2. A SOURCE OF POLARIZATION-ENTANGLED PHOTONS

Despite its lower efficiency with respect to phase matching, the co-propagation heavily
simplifies the collection of the down-converted photons, thus allowing the use of longer
crystals, for an overall enhancement in the pair production rate.

One possible way of superposing different quasi-phase matched SPDC processes con-
sists in using two different non-linear crystals in a crossed configuration, i.e., the second
crystal is rotated by 90◦ around the propagation axis with respect to the first one [20].
This scheme generates entanglement by superposing the pairs generated by the two crys-
tals. This requires the erasure of the which-crystal information, by finely tuning the
temperature of the crystals, canceling the dispersive de-phasing effect with another non-
linear crystal, and spectrally filtering the output photons. Moreover, the wavelength of
the output photons is limited by the need of separating them, using a wavelength division
multiplexer (WDM) or a dichroic mirror.

An alternative way of superposing different quasi-phase matched SPDC processes is by
using a single non-linear crystal in a polarization-based Sagnac interferometer [21]. In this
scheme, the superposition happens between photon pairs produced in the clockwise and
anticlockwise path. Despite the tighter optical alignment required, this scheme has some
advantages over the linear one. Indeed, the use of a single non-linear crystal simplifies the
erasure of the which crystal information, preventing the use of spectral filtering and dis-
persive de-phasing compensation. Moreover, the polarization-based way of separating the
produced photons gives higher tunability to the wavelength of the output photons, while
keeping the high pair production rate and the narrow bandwidth of the linear scheme [21,
22].

This Section will deal with the development of a polarization-entangled source based on
a Sagnac interferometer. The employed scheme is the well-tested one developed by Kim et
al. [21]. After a first introduction on spontaneous parametric down-conversion and on the
filtering procedures necessary for high quality entanglement generation using this scheme,
this Section will describe the experimental design of this source and its calibration.

2.1 Spontaneous parametric down-conversion

The formalism described in Section 1.5.1, despite its usefulness in the study of the free
electromagnetic field, is not very useful when studying its interaction with matter. This
interaction happens at the atomic level, therefore it could be theoretically possible to de-
scribe the passage of an electromagnetic wave through some medium by explicitly treating
atomic charges and currents within the theory. However, the high number of atoms in
a general system makes this approach highly impractical, making it preferable to find
a model that approximates this interaction. The model used in electromagnetism splits
currents and charges into “free” ones, that can move freely through the medium (like
the electrons in a conductor), and “bound” ones, which are forced to oscillate around
their atom [23, 24]. Bound charges and currents are described by electric and magnetic
multi-poles [25]. Within this theory, Maxwell’s equations become

∇ ·D(r, t) = ρ(r, t) (2.1)

∇×H(r, t)− ∂D(r, t)

∂t
= J(r, t) (2.2)

∇×E(r, t) +
∂B(r, t)

∂t
= 0 (2.3)

∇ ·B(r, t) = 0, (2.4)
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where D = ε0E + P is the displacement field and H = 1
µ0
B − M is the magnetizing

field. These fields capture the effects of the field on bound charges and currents, which
are described by the polarization vector P and the magnetization vector M, while the
behavior of free charges and currents is still described by the source terms ρ and J.
Most materials used in optics are uncharged non-conducting materials, therefore both free
charges and currents are zero. Moreover, they are also non-magnetic materials, therefore
the magnetization vector M ≃ 0 and the interaction of the material with the field is
completely captured by the polarization vector P.

In the general case, the polarization vector can be expressed as a power series

Pi = ε0

⎛⎝∑
j

χ
(1)
ij Ej +

∑
jk

χ
(2)
ijkEjEk +

∑
jkl

χ
(3)
ijklEjEkEl + · · ·

⎞⎠
= P

(1)
i + P

(2)
i + P

(3)
i + · · · = P

(1)
i + P

(NL)
i ,

(2.5)

where the term P
(1)
i gives the phenomenon of refraction, while the higher order terms

P
(NL)
i act like a source of the electromagnetic field at different frequencies [23, 24, 26].
Using the Poynting theorem [25], it is possible to write the field energy density (i.e.,

the Hamiltonian density) in the medium as

H(r, t) =
1

2
(E ·D+B ·H) . (2.6)

By writing H = 1
µ0
B and D = ε0E+P, Equation (2.6) becomes

H =
1

2
ε0|E|2 + 1

2µ0
|B|2 + ε0

2

∑
ij

χ
(1)
ij EiEj +

ε0
2

∑
ijk

χ
(2)
ijkEiEjEk + . . .

= H0 +HI ,

(2.7)

where H0 is the Hamiltonian density (1.38) of the free electromagnetic field and HI is the
Hamiltonian density describing the interaction of the field with matter.

Once the classical Hamiltonian density has been written as a function of the classical
fields, it is possible to write the quantum Hamiltonian density operator in the second quan-
tization framework by transforming the electric and magnetic fields into field operators2.
The Hamiltonian density operator is therefore written as Ĥ = Ĥ0 + ĤI , the sum of a free
field Hamiltonian density Ĥ0 and an interaction Hamiltonian ĤI . This allows to work
in the interaction picture, in which the field operators Ê and B̂ satisfy the Heisenberg-
like equation of motion (1.51), but involving only the free Hamiltonian Ĥ0 instead of the
complete Hamiltonian Ĥ [13]. In particular, field operators keep all the properties of free
field operators described in Section 1.5.1. They can still be described by their quantum
mechanical amplitude operator âλ(k), that satisfy the same commutation relations (1.40)
and (1.41) and are the result of the same mode expansion as the free electric and magnetic
field3.

The interaction Hamiltonian density ĤI can therefore be written as

ĤI α
∑
ij

χ(1)
(
Ê

(+)
i + Ê

(−)
i

)(
Ê

(+)
j + Ê

(−)
j

)
+
∑
ijk

χ
(2)
ijk

(
Ê

(+)
i + Ê

(−)
i

)(
Ê

(+)
j + Ê

(−)
j

)(
Ê

(+)
k + Ê

(−)
k

)
+ . . . ,

(2.8)

2This procedure is equivalent to the transformation of the electromagnetic potentials into operators.
3They are related to vector potential mode expansion of Equation (1.39) by using Equations (1.30)

and (1.31).
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where E(+) is the positive frequency mode (proportional to the annihilation operator) and
E(−) is the negative frequency one (proportional to the creation operator).

In the interaction picture, the evolution of the state is governed by operator

Û = T exp

[
− i

ℏ

∫ ∞

−∞
ĤI(t)

]
, (2.9)

where T it the time-ordered product [27], and the integration limits −∞ and +∞ are
justified by the fact that the state is observed long after the non-linear interaction in
the medium [26]. The interaction Hamiltonian is given by the spatial integration of the
Hamiltonian density as in Equation (1.52). The above integral can be evaluated using
the rotating-wave approximation, which allows to neglect rapidly oscillating terms in the
Hamiltonian ĤI [26].

The χ(1) term of the Hamiltonian density (2.8) gives rise to refractive effects (such as,
for example, birefringence). The only surviving terms are those of the form E(+)E(−)

(and its complex conjugate), leaving a photon-number preserving Hamiltonian of the
form (1.57). These effects can be treated by aligning the system of reference to the prin-

cipal axes of the material, in which the χ(1) tensor assumes a diagonal form (i.e., χ
(1)
ij ̸= 0

iff i = j) [17].
The χ(2) term gives rise to a wide range of non-linear effects [23]. Spontaneous para-

metric down-conversion is the effect described by the interaction term of the form

ĤSPDC =

∫
d3r

∑
ipjski

χ
(2)
ipjski

Ê
(+)
ip

Ê
(−)
js

Ê
(−)
ki

+ c.c., (2.10)

where the term Ê
(+)
ip

corresponds to the annihilation of a pump photon of mode ip and the

terms Ê
(−)
js

and Ê
(−)
ki

to the creation of two photons in modes js and ki, called, respectively,
signal and idler photons. By properly adjusting the pump field, it is possible to make the
SPDC term the only one giving a considerable effect. In order to have this, however, it is
necessary that the fields respect the so-called phase-matching conditions

ωip = ωjs + ωki (2.11)

kip = kjs + kki , (2.12)

where the first condition is required to avoid SPDC to be negligible due to the rotating-
wave approximation, and the second condition is the correspondent in the spatial domain.

The optimization of the SPDC process requires to study the form of the Hamilto-
nian (2.10) for different pump, signal and idler modes. The large number of variables re-
quired to describe these fields makes it preferable to perform some approximations about
their form, in order to simplify the problem. The analysis of the SPDC process has been
carried in a very lot of papers, each one considering a different approximation [28–32].
The most suitable analysis for our setup is the one by Bennink [28], that considers the
interaction of a gaussian pump field with a non-linear crystal, leading to the production
of two collinear photons in gaussian modes. In addition to this, the approximation made
in Section 1.5.1 of single-frequency spatial modes must be dropped, in order to take into
account the whole spectral properties of the SPDC phenomenon. Since in collinear prop-
agation the phase-matching condition (2.12) is not obtainable, it is necessary adopt other
strategies to give a considerable production of down-converted pairs, called quasi phase-
matching. Quasi phase-matching consists in modulating the χ(2) coefficient of the crystal,
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alternating its sign with spatial period Λ. In this way, it is possible to have a significant
improvement of the down-conversion efficiency [17].

In Bennink’s study [28], the field E(+) is expanded as a superposition of different
frequency gaussian modes

Ê(+)(r, t) =

∫ ∞

0
dω

√
ℏω
2ε0

Eω(r)e
−iωtâω(t) + non gaussian terms, (2.13)

and similarly Ê(−). Furthermore, he assumes that the second-order interaction is weak,
so that it is possible to perform a first-order expansion of the evolution operator of Equa-
tion (2.9). The state after the SPDC process is therefore

|ψSPDC⟩ = Û |initial⟩ ≃ |initial⟩ − i

ℏ

∫ ∞

−∞
ĤSPDC(t) |initial⟩ , (2.14)

where |initial⟩ is the state of the field prior to the interaction and ĤSPDC(t) is the Hamil-
toninan (2.10).

Since the crystal is pumped with a laser, he assumes the pump to be described as a clas-
sical coherent state, with spectral amplitude s(ωp) and mean number of photons Np. With
these approximations, and assuming that the pump state is filtered out, Equation (2.14)
can be written as

|ψSPDC⟩ = −i
∫ ∞

0
dωsdωiψ(ωs, ωi)â

†
ωs
â†ωi

|Ω⟩ , (2.15)

where |Ω⟩ is the vacuum state and

ψ(ωs, ωi) =

√
2π2ℏNp

ε0λpλsλi
s(ωp)O(ωs, ωi), (2.16)

where λi = 2πc/ωj is the free-space wavelength of field j, and the photons respect the
phase-matching condition (2.11). The term

O(ωs, ωi) =

∫
medium

d3rχ(2)(r) : Eωp(r)E
∗
ωs
(r)E∗

ωi
(r) (2.17)

gives the efficiency of the quasi-phase-matched down-conversion process, which depends
both on the efficiency of quasi-phase matching and on the overlap of the different spatial
modes (the : notation in the integral is used to indicate the tensor product of the non-linear
coefficient χ(2) with the polarization terms ϵωp of mode Eωp).

2.2 Experimental design of the source

The source is based on a polarization-based Sagnac interferometer. The scheme of the
source is shown in Figure 2.1, while its experimental realization on the optical bench is in
Figure 2.2.

The source is pumped with a CW laser diode (LD) at λP = 404.5 nm. The beam
emitted by the diode is collected onto a polarization-maintaining single-mode fiber (PM-
SMF), used to clean its spatial mode. The PM-SMF is sent onto the optical breadboard,
where the laser beam is collimated by an aspheric lens of focal length 11mm into a beam
of ∼ 1.5mm diameter. The polarization state of the beam is transformed into ϵ+ =
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Figure 2.1: Experimental scheme of the source of polarization-entangled photons based on
a polarization Sagnac interferometer. The pump laser (LD) is injected into a polarization-
maintaining single-mode fiber (PM-SMF) for mode filtering. The output of the fiber is
sent onto a half-wave plate (HWP), that rotates the polarization state of the pump laser
to |+⟩. The state is then focused into a periodically-poled potassium titanyl phosphate
(PPKTP) crystal placed at the center of a Sagnac interferometer. A polarizing-beam
splitter (PBS) at the entrance of the interferometer splits the pump onto a superposition
of clockwise (V ) and counterclockwise (H) path. The clockwise pump beam crosses a
dual-wavelength half-wave plate (d-HWP), that rotates its state from V to H. Both paths
produce |H⟩S |V ⟩I couples, where the superscript indicates the signal and the idler photon.
In the anticlockwise path, the d-HWP changes the couple to |V ⟩S |H⟩I . At the PBS the
photons are combined so that the resulting state is |H⟩S |V ⟩I + eiθ |V ⟩S |H⟩I , where θ is a
phase term given by the different optical length of the two paths. The pump is removed
using a long-pass filter (LPF) before injection into a single-mode fiber (SMF). This image
uses elements from the ComponentLibrary by Alexander Franzen [33], licensed under CC
BY-NC 3.0 [34].

(ϵH + ϵV )/
√
2 by a half-wave plate (HWP) and then focused by a doublet with equivalent

focal length 333mm into the center of the Sagnac interferometer.
At the entrance of the interferometer, a polarizing-beam splitter (PBS) creates a su-

perposition of clockwise kC and counterclockwise kCC path, by sending H polarization in
the first path and V polarization in the second one. The state is then transformed, by
the dual-wavelength half-wave plate (d-HWP) into (EH(kC) +EH(kCC))/

√
2. This state

travels through a periodically-poled KTiOPO4 (PPKTP) crystal4, that outputs the state

â†kC ,H
b̂†kC ,V

+ â†kCC ,H
b̂†kCC ,V

, (2.18)

where â† and b̂† are the mode functions of, respectively, the signal and the idler photon

4The crystal is a 30mm PPKTP by Raicol, with a χ(2) grating of period Λ = 10µm.
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Figure 2.2: Implementation of the scheme described in Figure 2.1 on the optical bench.
The source is mounted on a breadboard in order to be transportable for free-space ex-
periments out of the laboratory. The use of an optical breadboard, on the other hand,
poses some additional constraints on the possible distance between optical elements, thus
requiring more care in the choice of the optimal focal parameters.

(they can have different wavelength and are, in general, not temporally superposed due to
the temporal walk-off introduced by crystal birefringence). The pair in the counterclock-

wise path, then, crosses the d-HWP, being transformed into â†kCC ,V
b̂†kCC ,H

.

Just before the polarizing beam-splitter (PBS), the state is

â†kC ,H
b̂†kC ,V

+ eiθâ†kCC ,V
b̂†kCC ,H

, (2.19)

where the phase term eiθ takes into account the different path length of the two arms of
the interferometer. The PBS transforms the state into

|out⟩ = 1√
2

(
â†kA,H

b̂†kB ,V
+ eiθâ†kA,V

b̂†kB ,H

)
|Ω⟩ , (2.20)

where |Ω⟩ is the vacuum state. The output polarization state is therefore

|ψ⟩ = |H⟩A |V ⟩B + eiθ |V ⟩A |H⟩B√
2

. (2.21)

In order to produce the maximally entangled state |Ψ−⟩, therefore, it is necessary to
adjust the value of the phase θ in the state (2.21). In addition to this, it is also necessary
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to compensate the birefringence effect of optical fibers. Indeed, let UA be the effect of
Alice’s fiber and UB the effect of Bob’s one, the state at the output of the fibers is

|ψfiber⟩ = (UA ⊗ UB)
|H⟩A |V ⟩B + eiθ |V ⟩A |H⟩B√

2
. (2.22)

To produce the singlet state |Ψ−⟩, it is sufficient to implement a general unitary transfor-
mation in one of the two output photons. Indeed, the singlet state has the property that
(U ⊗U) |Ψ−⟩ = |Ψ−⟩. The transformation that must be implemented on the output state
is therefore I2 ⊗ U , with

U = UA

(
1 0
0 −eiθ

)
U−1
B . (2.23)

Indeed, the applications of this transformation gives

(I2 ⊗ U) (UA ⊗ UB) |ψ⟩ =
UA |H⟩A (−eiθ)UA |V ⟩B + eiθUA |V ⟩A UA |H⟩B√

2

= (UA ⊗ UA) |Ψ−⟩ = |Ψ−⟩ .
(2.24)

2.3 Performance and calibration

This Section describes the results of the measurements performed on the source in order
to characterize it. The first part will describe the pump laser, while the following Sections
will deal with the spectral properties of the down-converted photons and the properties
of the output state.

2.3.1 The pump laser

The source is pumped with an Ondax’s LM Series Compact Laser Module, with a nominal
wavelength of 405 nm and a linewidth ∆ω < 160MHz [35]. The nominal output mode is

Figure 2.3: The Ondax’s LM Series Compact Laser Module used as a pump laser for the
Sagnac interferometer. From [35].

an elliptic beam with size 0.8× 0.4mm, with divergence smaller than 10mrad.

During the experiments, the laser is operated at 20 ◦C, with a diode current Ipump
ranging from 30mA to 70mA.
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Spatial mode

The spatial mode output by a laser can be studied by looking at the beam shape at
different distances from the laser. A CMOS camera is used to take images of the intensity
profile at different positions along the direction of propagation z. Each image is then fitted
with the function

I(x, y; z) α e
− 2(x−x0)

2

W2
x (z)

− 2(y−y0)
2

W2
y (z) , (2.25)

where the relevant fit parameters are the transverse dimensions of the beam [17, 36].
Since the beam is elliptic, the fit is performed with two independent parameters Wx(z)
and Wy(z) for the width along the two transversal axes. The values of the beam width
are then fitted using the function

Wi(z) =W0i

√1 +

(
M2
i

(z − z0i)λ

πW 2
0i

)
, (2.26)

where λ is the wavelength of the laser beam and the fit parameters are W0i, the beam
waist, z0i, the position of the waist along the direction of propagation, and M2

i , the
“beam-quality” parameter [36]. The result of the fit is shown in Figure 2.4.
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Figure 2.4: Beam width as a function of the propagation distance z.

From the values of M2
x and M2

y , it is evident that the beam is not in TEM00 mode as
stated by the datasheet5 [35]. This can also be seen by directly looking at the intensity
profile, as shown in Figure 2.5.

This situation makes it advisable to perform some form of mode filtering before in-
jecting the laser into the Sagnac interferometer. Indeed, using the laser in free space with
such bad output mode makes it very difficult to have an optimal collection of the down-
converted photons into optical fibers. Mode filtering is performed by using a polarization
maintaining single-mode optical fiber (PM-SMF)6.

5Such a “beam-quality” parameter, however, is not unusual for a laser diode.
6The fiber used is a Thorlabs P1-405BPM-FC.
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Figure 2.5: Intensity profile of the beam in the near (left) and in the far field (right). The
fringes both in the near and in the far field are due to the presence of higher order modes.

Output power

The output power of the laser as a function of the diode current I is shown in Figure
2.6, both before and after the optical fiber. From the interpolated light-current curve, it
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Figure 2.6: Power of the laser as a function of the diode current I before (red circles)
and after (blue diamonds) the injection into the mode filtering fiber. The red line is the
interpolated light-current curve.

is possible to calculate the laser-oscillation threshold current It = (25.6 ± 0.1)mA [17].
During all the experimental work, the laser will be used in the range [30, 70] mA.

The mean efficiency of the fiber coupling system is η = 0.32 ± 0.05. While it is not
the maximum coupling efficiency obtainable with single mode fibers, it is enough for all
the applications of the source exposed in this thesis. In any case, the single-mode fiber
decouples the laser from the source, allowing to add a more sophisticated optical system
between the laser and the fiber without altering the entangled source.
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Spectral properties

The wavelength of the pump laser can be estimated indirectly from the measurement of
the wavelength of down-converted photons. Indeed, the phase-matching condition (2.11)
gives

1

λp
=

1

λs
+

1

λi
, (2.27)

where λp is the wavelength of the pump laser and λs (λi) is the wavelength of the signal
(idler).

The measurement of the wavelength of the down-converted photons is described in
Section 2.3.3. From those data, the wavelength of the pump laser can be estimated to be
λp = (404.6± 0.2) nm.

The measurement of the bandwidth of the pump laser, on the other hand, has been
directly carried by inserting it into a Michelson interferometer and looking at the inter-
ference pattern for different path differences, as shown in Figure 2.7. This system can

BS

PM

LT
LD

PM-SMF

Figure 2.7: Michelson interferometer used in the measurement of the bandwidth. The
laser (LD) is inserted into a polarization-maintaining single-mode fiber (PM-SMF), whose
output is directed against a beam-splitter (BS), which sends the beam to the two arms of
the interferometer, of length d1 and d2. The length of one arm of the interferometer can
be precisely changed by a motorized linear translator (LT). The power at the output of
the interferometer is measured using a power meter (PM). This image uses elements from
the ComponentLibrary by Alexander Franzen [33], licensed under CC BY-NC 3.0 [34].

be employed to measure the coherence time of the pump laser. Indeed, given the elec-
tric field at the output of the pump laser E(t) = E0e

−iω0teiϕ(t), with ω0 the angular
frequency of the laser, the field after the beam-splitter is given by E1(t) + E2(t), where
Ei(t) = (E0/

√
2)e−iω0teiϕ(t) is the electric field propagating in spatial mode i. When they

recombine at the beam-splitter, the two fields have traveled through two different paths
with length difference δd = 2(d2 − d1), therefore the total electric field is

Edet(t) =
1

2

[
E(t) + E(t+ τ)

]
= (E0/2)e

−iω0teiϕ(t)
[
1 + e−iω0τei(ϕ(t+τ)−ϕ(t))

]
,

(2.28)

where τ = 2δd/c, with c the speed of light in the vacuum. The intensity at the detector



46 CHAPTER 2. A SOURCE OF POLARIZATION-ENTANGLED PHOTONS

is therefore

I(τ) =
⟨
E∗
det(t)Edet(t)

⟩
T

=
1

2

[⟨⏐⏐E(t)
⏐⏐2⟩

T
+
⟨⏐⏐E(t+ τ)

⏐⏐2⟩
T
+
⟨
E∗(t)E(t+ τ) + E∗(t+ τ)E(t)

⟩
T

]
=

1

2

⟨⏐⏐E(t)
⏐⏐2⟩

T
+

1

2

⟨⏐⏐E(t+ τ)
⏐⏐2⟩

T
+
⟨
ℜ
[
E∗(t)E(t+ τ)

]⟩
T

=
1

2T

∫
T
dt
⏐⏐E(t)

⏐⏐2 + 1

2T

∫
T
dt
⏐⏐E(t+ τ)

⏐⏐2
+

1

T

∫
T
dtℜ

{
|E0|2 e−iω0τei[ϕ(t+τ)−ϕ(t)]

}
= I0 + I0

⟨⏐⏐⏐ei[ϕ(t+τ)−ϕ(t)]⏐⏐⏐⟩
T
cosω0τ

= I0
[
1 + g1(τ) cosω0τ

]
= I0

[
1 + V(τ) cosω0τ

]
,

(2.29)

where V(τ) = g1(τ) =
⟨⏐⏐⏐ei[ϕ(t+τ)−ϕ(t)]⏐⏐⏐⟩ is the visibility [37], and I0 is the input intensity.

In order to measure the coherence time τc of the laser, it is necessary to measure the
intensity of the laser for different values of the path difference δd. For this measurement,
only the envelope of the function I(τ) is required, therefore it is not necessary to sample
the complete cos(ω0τ) oscillation and it is possible to choose larger δd steps. The resulting
interference pattern is shown in Figure 2.8.
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Figure 2.8: Measurement of the function I(τ) for the pump laser. The chosen sampling
is such that the cos(ω0τ) part of the function is not observable, giving only a direct
measurement of the envelope of I(τ).

By fitting the envelope of I(τ) with the function [38]

f(τ) = 1 + e
− τ2

2τ2c , (2.30)

it is possible to measure the coherence time of the laser as τc = (55± 1) ps, corresponding
to a FWHM bandwidth ∆ω = (76± 1)GHz, which is several orders of magnitude higher
than the value reported in the datasheet [35]. This is probably due to the effect of the
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polarization-maintaining fiber. Indeed, a measurement of the value of I(τ) for the laser
without fiber injection, for τ ∼ 1 ns, has given a visibility V(τ) ∼ 1, without showing the
rapid decay of visibility seen in Figure 2.8. Since the coherence time after the fiber was
enough for its operation as a pump for the Sagnac source, this effect has not been further
investigated.

These measurements highlighted also another problem of the pump laser. Indeed,
by changing the intensity of the current driving the laser diode, it was possible to see
the appearance in the I(τ) curve of beating effects due to the presence of multiple modes
resonating into the laser cavity, as shown in Figure 2.9. For the QKD experiment is Section
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Figure 2.9: Beating effect in the interference pattern due to the presence of multiple
resonating modes in the laser cavity.

3.1.4 this is not a problem, because the presence of multiple wavelength down-converted
photons does not leak any information to an attacker measuring one of the photons in the
pair. The experiment of Section 3.2, however, is very sensible to the wavelength of the
down-converted photons, since different wavelengths give rise to different optical paths.
For this reason, in the apparatus shown in Figure 3.26, a 3 nm filter is used before Charlie’s
measurement.

2.3.2 Focusing parameters

The analysis of Bennink [28] is aimed at finding the values of the focal parameters that
maximize the efficiency of the SPDC process according to different points of view. In order
to simplify the calculations, he makes some approximations based on some assumptions
on the experimental parameters involved in the process:

1. the length of the non-linear crystal is ≳ 1mm and its refractive index is ≳ 1.5,

2. SPDC is quasi-phase-matched with a first-order grating of period Λ ≳ 5µm,

3. down-converted photons have λs ≲ 1.6µm, while the pump has λp ≲ 0.8µm.

The crystal used for the experimental setup described in Section 2.2 meets all the assump-
tions made by Bennink for his analysis, since (1) its length is 30mm and has refractive
index 1.7−1.8, (2) the SPDC is quasi-phase-matched with χ(2) grating period Λ = 10µm,
and (3) the pump has λp = 404.5 nm, with down-conversion photons of λs = λi = 809 nm.
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In his analysis, Bennink studies the optimization of the source with respect to the focal
parameter

ξj ≡
L

kjw2
j

, (2.31)

where L is the length of the crystal, kj = 2πnj/λj , with nj the refractive index [39, 40]
and λj the wavelength of photon j ∈ {p, s, i}, and wj is the beam waist for photon j.

After the PM-SMF, the pump is collimated by a CFC-11X-A into a beam of waist
Wcoll = (0.70 ± 0.03)mm, which is then focused using a doublet of lenses of focal f1 ∼
500mm and f2 ∼ 1000mm, equivalent to a single lens of focal f ∼ 333mm. The placement
of the doublet is such that the waist of the pump falls precisely at the middle of the crys-
tal. The pump beam has been directly measured with the procedure described in Section
2.3.1, giving the beam profile shown in Figure 2.10. By comparing the beam profile of the
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Figure 2.10: Beam profile after the lens used to focus the beam into the PPKTP crystal.

focused pump beam in Figure 2.10 with the one of Figure 2.4, it is evident the effect of
mode filtering. Indeed, the M2 parameter of the pump beam (1.03 ± 0.03) and the fact
that WPy ≃ WPx = (53 ± 4)µm indicate that the beam is, with good approximation, in
the TEM00 mode. The focal parameter of the pump beam is ξp ∼ 0.4.

Also signal and idler are focused in the middle of the non-linear crystal. The value
of their waist has not been directly measured, but it has been estimated from the val-
ues of the focusing optics obtained from the respective datasheets, using the formulas for
Gaussian beam propagation [17]. The fiber used for the signal and the idler is a Thorlabs
P1-780A-FC2, that is focused at the middle of the crystal using a C280-TME-B aspheric
lens of focal length fasph = 18.4mm. The theoretical beam waist at the crystal, which is
situated at a distance z ∼ 245mm from the lens, is Ws = Wi ∼ 31µm, corresponding to
focal parameters ξs = 2.3 and ξi = 2.2 (the two focal parameters are different because of
the birefringence of the crystal, which makes ns ̸= ni).

The pump parameters chosen are a compromise due to the spatial constraints of the
implementation. The mean heralding efficiency, calculated as η = C12/

√
C1C2, where C12

are the coincidences between the two channels and C1 and C2 are the singles on the two
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channels, is η ∼ 0.15. Taking into account the ηd = 0.6 detection efficiency, the estimated
collection efficiency is ηcoll = η/ηd ∼ 0.25. This value corresponds to 6.0 dB of losses,
much lower than the value reported in Section 3.1.4. This is due to the fact that the
three-state experiment has been performed before the optimization of the source, which
gives the results described in this Section.

The brightness of the source can be evaluated by measuring the number of coincidences
for mW of pump power. The detected normalized number of coincidences is C12/Ppump ∼
18.7 kHz/mW. If the detection efficiency is taken into account, the rate of coincidences
is Nc/Ppump = C12/(η

2
dPpump) = 52.0 kHz/mW, corresponding to a spectral brightness of

289 kHz/mW/nm, in line with what found in previous implementations of the source [22].

2.3.3 Down-converted photons

Wavelength

In a non-linear crystal, quasi-phase-matched collinear SPDC is realized when

kp − ks − ki =
2πnp(λp, T )

λp
− 2πns(λs, T )

λs
− 2πni(λi, T )

λi
≃ 2π

Λ(T )
, (2.32)

where kj is the modulus of the wave vector (the wave vector is, in first approximation,
parallel for all photons), nj(λj , T ) is the refractive index, dependent on the temperature,
the wavelength and the direction of polarization, and Λ(T ) is the grating period. Equa-
tion (2.32) must be valid under the condition (2.11), therefore, since λp is fixed by the
pump laser, the only way to control the wavelengths λs and λi is through the temperature
of the crystal.

The behavior of the wavelength of the down-converted photons as a function of the
temperature is shown in Figure 2.11. The wavelength of the down-converted photons has
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Figure 2.11: Wavelength dependence of the signal (red circle) and the idler (blue diamond)
photon as a function of the temperature of the PPKTP crystal.

been measured using the setup of Figure 2.12.
The measurement procedure exploits the relationship linking the first interference max-

imum with the incoming wavelength

λ = a (sin θi sin θt) = 2a sin

(
θi + θt√

2

)
cos

(
θi − θt√

2

)
, (2.33)
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SMF
GSPAD

Figure 2.12: Setup used for the measurement of down-converted photon wavelength. The
down-converted photon, coming from a single-mode fiber (SMF), is directed against a
transmission grating (G) with period a = 3.3µm, mounted on a precision rotation mount.
The photon is then collected by a single-photon avalanche photo-diode (SPAD), in a fixed
position. By measuring the rotation angle of the grating at which a maximum number
of photons is detected, it is possible to infer the wavelength of the photon. This image
uses elements from the ComponentLibrary by Alexander Franzen [33], licensed under CC
BY-NC 3.0 [34].

where θi is the incidence angle and θt is the transmission angle. Since the position of both
the source and the detector is fixed, θi + θt = ϕ is constant. Therefore, it is possible to
measure the wavelength λ of the photon by measuring the angle θi of the grating with
respect to the incoming beam (the measurement setup is calibrated by using the tunable
wavelength output of the Coherent Mira-HP laser and a power-meter instead of the SPAD).
The high losses of the whole measurement system make the signal at the detector quite
low, determining the high error in the down-converted photon wavelength shown in Figure
2.11.

The temperature of degenerate phase-matching, where both the signal and the idler
photons have the same wavelength, is around T = 20 ◦C. All the experiments described
in Chapter 3 are performed with T = 20 ◦C.

Bandwidth

The bandwidth of the down-converted photons can be measured using the same procedure
described in Section 2.3.1, using a single photon detector instead of the power-meter. The
resulting bandwidth of the down-converted photons is ∆λ = (0.20±0.02) nm, correspond-
ing to a coherence time τc = (7.4± 0.8) ps. These results are in line with what predicted
in Bennink’s study [28], according to which, in the case of not too tight focusing, the
bandwidth is

∆λ =
λ2

c
⏐⏐n′s − n′i

⏐⏐ 1L, (2.34)

where λ = λs = λi is the photon wavelength, L is the length of the non-linear crystal and
n′s and n′i are the group indices of the signal and idler photon, defined as n′j ≡ c∂kj/∂ω.
By inserting the parameters of the used non-linear crystal into (2.34), the predicted value
of the bandwidth is ∆λ ≃ 0.19 nm, compatible with the measured value.

Also in the interference pattern of down-converted photons it is possible to notice the
beats due to the presence of multiple wavelengths in the pump, as shown in Figure 2.13.

2.3.4 Entangled state properties

Multi-photon pairs

In Section 2.1, the unitary evolution giving the SPDC process has been approximated to
its first order term. This is justified in the study of the efficiency of the process, since
single-pair production is far the dominant process, but cannot be just neglected in the
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Figure 2.13: Amplitude modulation of the interference pattern due to the presence of
multiple pump wavelengths.

quantification of the information leaked to an eventual eavesdropper in a Quantum Key
Distribution application, like the one described in Section 3.1.4. The evolution of the
state due to the interaction with the crystal, generally described by the unitary opera-
tor (2.9), becomes, in the case SPDC is the only second order process giving a considerable
contribution,

Û = exp
(
ξ∗âωs âωi − ξâ†ωs

â†ωi

)
, (2.35)

where ξ is a term depending on the parameters of the SPDC interaction [18]. If the pump
is filtered out, the Fock state after the interaction has the form

|ξ⟩ = 1

cosh r

∞∑
n=0

(−1)neinθ(tanh r)n |n, n⟩ωs,ωi
, (2.36)

where r and θ are the real and imaginary part of the complex parameter ξ = reiθ. The
probability of having the production of an n-pair state is, therefore,

P(n) = (cosh r)2(tanh r)2n. (2.37)

The evaluation of the impact of multi-photon pulses can be made experimentally by
inserting Bob’s output channel into a Hanbury Brown-Twiss interferometer [41], consisting
on a beam-splitter with the two outputs connected to single-photon avalanche photo-
diodes. Alice’s output is directly connected to a single photon detector.

By assuming that the probability P(n > 2) is negligible (which happens in the case
of SPDC, since r ≪ 1), it is possible to estimate the probability of two-photon emission
by comparing the rate of coincidences between the three detectors with the rate of co-
incidences between Alice’s detector and one of the Bob’s detectors. This value has been
measured to be P(n = 2) ∼ 3 · 10−3 in the conditions of Section 3.1.4.

Output state

There are several ways to measure the output state of the source. The best one is recon-
structing the full density matrix of the output state through a series of measurements on
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the ensemble ρ⊗Nout , where ρout is the density matrix output by the source. This process,
called quantum tomography, estimates ρout as the density matrix ρ̂out whose measurement
results are closer to the ones obtained experimentally, using the method of maximum like-
lihood estimation [42]. For two-qubit states, this method requires 16 measurements [42].

The process of quantum tomography, however, requires the use of both half- and
quarter-wave plates in order to be performed. A simpler way to validate the produced
state is by measuring the visibility of the state in two non-orthogonal basis, such as the{
|H⟩ , |V ⟩

}
and the

{
|+⟩ , |−⟩

}
basis [43, 44]. The visibility of a state of density matrix ρ

in a given basis
{
|θ⟩ , |θ⊥⟩

}
is defined as

V =

⏐⏐⏐⏐P(+−) + P(−+)− P(++)− P(−−)

P(+−) + P(−+) + P(++) + P(−−)

⏐⏐⏐⏐ , (2.38)

where
P(ab) = Tr

[
ρ |θaθb⟩ ⟨θaθb|

]
, (2.39)

with |θ+⟩ = |θ⟩ and |θ−⟩ = |θ⊥⟩.
A more precise way to measure the visibility is by fixing the measurement basis on one

photon (to some axis θ⃗ of the Bloch sphere) and scan the other photon over a great circle
of the Bloch sphere passing through θ⃗. By doing that procedure for two axes belonging
to two mutually unbiased bases (such as the X and the Z axis), it is possible to validate
the entanglement of the produced state.

The quality of the output state of the Sagnac source has been validated by measuring
the visibility on the two mutually unbiased bases Z andX, by fixing the basis of one photon
and scanning the other one in the X-Z plane of the Bloch sphere, giving the results shown
in Figure 2.14. By fitting the experimental data, a visibility of VZ = 1.00 ± 0.01 and
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Figure 2.14: Visibility scan changing the value of a polariser at Bob’s side, with Alice’s
polariser at 0◦ (black diamond), 45◦ (blue circle), 90◦ (red square) and 135◦ (green trian-
gle).

VX = 0.985± 0.006 is obtained.
The quality of the state can also be inferred by the analysis of the data from Chapter

3 experiments. Both experiments, indeed, are quite stringent in the quality of the state
necessary for their success. So, they can be viewed also as an indirect test of the quality
of this entangled source.



Chapter 3

Ground experiments

The experimental implementation of quantum information protocols has undergone a great
advancement in recent years. The most successful quantum information protocol, Quan-
tum Key Distribution, is already at the commercial stage, with increasing effort into
making it more suitable for integration with the existing communication infrastructure,
through the development of integrated devices or the study of new protocols. A great
input into quantum technologies might be given also by the recent loophole-free violation
of Bell’s inequality [45–47], that rules out any residual hope to describe reality using a
local hidden variable (LHV) model.

Despite these great results, quantum technology is still in its infancy, and the de-
ployment of quantum experiments in a space environment presents a lot of difficulties to
overcome. The launch of a small quantum transmitter in the Japanese SOCRATES satel-
lite and the recent launch of the Chinese Micius satellite, completely dedicated to quantum
technologies, might demonstrate, in case of success, that the most consolidated quantum
protocols are already ready for space implementation. This, however, does not reduce the
necessity to test new protocols, or new aspects of older ones, in a ground environment.

This Chapter will show the results, both theoretical and experimental, of the study
of some of the key aspects in quantum technology and quantum information in general:
Quantum Key Distribution and the study of non-locality through Bell’s inequalities.

3.1 Quantum Key Distribution

Quantum Key Distribution is the first and probably most successful application of quan-
tum mechanics to the problem of information transmission. Its origin dates back to the
early 80s, when Bennett and Brassard proposed a protocol that exploits the indetermi-
nacy principle of quantum systems to allow the sharing of secret bits between two different
parties through a public channel. This idea gave great impulse to the field of quantum
information, since it demonstrated that the rules of quantum mechanics could give a great
advantage over classical mechanics in the treatment of some problems of information the-
ory.

In this Section, the basics of quantum key distribution will be reviewed, from the
exigence at the basis of its development to the general security model used to describe it.
Then, the novel results of this thesis to the field will be exposed.

53
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3.1.1 Cryptography and the key exchange problem

Cryptography, from the Greek kryptós, “hidden, secret” and graphein, “writing” is the
science that studies the techniques of secure communication in the presence of malicious
adversaries. This technique is almost as old as civilization.

The oldest text showing a deliberate transformation of the writing is a hieroglyphic
inscription on a Egyptian tomb dating back to about 1900 BC [48]. In this case, the aim of
the scribe was probably not to hide some information to the reader, but to impart dignity
and authority to the inscription. The second ingredient of cryptography, secrecy, comes
into play is some later inscriptions1. The first examples of using cryptography to protect
information is found in some tablets from Mesopotamia [48], showing how this technique
goes almost in parallel with writing.

Also in ancient Greece cryptography played an important role, especially in military
communication. Among the Spartans, messages were encrypted by writing them into a
strip of parchment wrapped around a rod called skytale. Once unwrapped, the message
could be read only by using a rod with the same diameter as the one used to write it.
This is an example of transposition cipher, where the encrypted message (ciphertext) is
just a permutation of the letters of the original message (plaintext). A slightly more
sophisticated technique, the so called Caesar’s cipher, was used in the Roman era. It was
a substitution cipher, where each letter of the plaintext was replaced with a letter some
fixed number of position down the alphabet.

Both the skytale and the shift in the Caesar’s cipher can be viewed as a first example of
cryptographic keys, something that is known to the parties that want to communicate and
unknown to potential adversaries. Since this “key” must be equal for both communicating
parties, these ciphers are examples of symmetric-key algorithms.

The birth of cryptanalysis, with the 9th century Manuscript on Deciphering Crypto-
graphic Messages by Al-Kindi, changed the situation, with the beginning of a cat-and-
mouse game between cryptographers, trying to invent more sophisticated codes, and
cryptanalists, trying to break them. Caesar’s cipher proved weak against the so called
“frequency analysis”, consisting in studying the frequency of each letter in the ciphertext
and comparing it with the one of the language in which the message was written. Cryptog-
raphers answered by proposing more complex substitution schemes, such as the Vigenère
cipher (XVI century), which consists of a series of Caesar’s ciphers whose shift is given
by the key2. Despite being considered unbreakable for a large amount of time, this cipher
was finally broken during the XIX century.

A modification of this cipher, proposed by Vernam at the beginning of the XX century,
became the basis of the one-time-pad. In the one-time-pad, the message, seen as a string
of bits, is encrypted by performing a XOR operation with a random key. Therefore, if
m = {mi}i=1..N is the message and k = {kj}j=1..N the key, the ciphertext is given by

ci = mi ⊕ ki. (3.1)

The ciphertext is then decrypted by XOR-ing it with the same key used for encrypting it,
since

ci ⊕ ki = (mi ⊕ ki)⊕ ki = mi ⊕ (ki ⊕ ki) = mi ⊕ 0 = mi. (3.2)

In his famous paper, considered the birth of modern information theory, Claude Shannon
demonstrated that, if the key is random, secret and at least as long as the message, the one-

1Even in this case, however, secrecy was not aimed at the exchange of information between different
persons, but rather at giving a sense of arcane and mystery to the inscription.

2Assuming CIAO is the key, the first letter of the message is shifted by 3 positions, the second one by
9 positions, and so on up to the 5th letter, where the scheme is repeated.
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time-pad is information theoretically secure3 [1]. Once used, the key must be discarded,
since reusing it would indeed give information about the messages. Indeed, given two
messages m1, m2 and a common key k, the ciphertexts are c1 = m1 ⊕ k and c2 = m2 ⊕ k.
Their XOR is therefore

c1 ⊕ c2 = (m1 ⊕ k)⊕ (m2 ⊕ k) = m1 ⊕m2 ⊕ k ⊕ k = m1 ⊕m2, (3.3)

which is equal to the XOR of the original messages. The invention of the one-time-pad has
shown that the problem of secure communication can be solved, but at the expenses of the
secret communication of a key at least as long as the message. The secure communication
problem is just shifted from the message to the key.

While in some top secret applications it could be feasible to exchange manually long
keys between the parties wishing to communicate, this practice is unfeasible for a widespread
usage. For this reason, even after the invention of one-time-pad, cryptography relied on
different, less secure, ciphers which required a smaller amount of secret information, easier
to manage. This is the reason why XX century cryptography was still based on substitu-
tion techniques, even if with ciphers more and more difficult to break.

The great breakthrough in the field has been the development of the so-called asymmetric-
key ciphers. These ciphers use two different keys, a public key is used to encrypt the
messages and a private key is used to decrypt them. A message encrypted with the public
key can be decrypted only by someone possessing the private key. These ciphers are based
on some mathematical problems, such as prime number factorization or the discrete log-
arithm, which give functions that are simple to calculate but computationally difficult to
invert. Their security is given by the fact that getting the private key from the public one
is equivalent to invert these problems.

Asymmetric-key ciphers are at the basis of modern cryptography. The infrastructure
upon which all present day secure communication is built is given by a combination of
asymmetric ciphers, using to exchange cryptographic keys, and symmetric ones, used to
encrypt the communications.

With the development of quantum information, however, this infrastructure is endan-
gered. Indeed, the study of quantum information processing has led to the development
of some algorithms, such as the Shor’s algorithm [49], which can efficiently invert the
problems upon which current asymmetric ciphers are based.

Two different, discording, countermeasures to this threat are currently under investiga-
tion. The first one is the development of new, asymmetric-key ciphers based on problems
that are hard to invert even for a quantum computer. It has the advantage of being easily
integrable with the current network infrastructure, since it would just need the update
of the software algorithms used for key exchange, but their security still relies on some
assumptions about the computational hardness of some inversion problems. The second
approach consists in a total change of the key exchange infrastructure, distributing the
key at the physical layer, as happens, for example, in Quantum Key Distribution. This
approach has the advantage of a higher security definition, holding also with adversary
with infinite computational power, but at the expenses of the requirement of a completely
new infrastructure, allowing the exchange of quantum states.

3.1.2 General model for Quantum Key Distribution

Among the many models for physical layer key exchange, the most suitable for the study of
Quantum Key Distribution is the one built upon the framework of abstract cryptography,

3It means that knowing the ciphertext does not gives any information on the message.



56 CHAPTER 3. GROUND EXPERIMENTS

proposed by Maurer and Renner in 2011 [50]. This introduction to Quantum Key Distri-
bution will not enter into the details of the model, but will limit to a short presentation
of how it can be modeled within this framework (for more details, see [51]).

Quantum Key Distribution is a system that allows two parties, generally called Alice
and Bob, to share a secure, random string of bits through an insecure quantum channel
and an authenticated classical channel. A quantum channel is a resource that receives as
input a quantum state ρ and outputs another quantum state ρ′. The quantum channel is
insecure in the sense that it is in full control of the adversary, generally called Eve, that
can do whatever she wants with the state in the channel, a situation schematized in Figure
3.1, where Alice’s interface is represented on the left, Bob’s one on the right and Eve’s
one at the bottom.

Figure 3.1: Schematic representation of a quantum channel Q. The channel is insecure
because the state ρ coming from Alice (on the left) is given to Eve (at the bottom) and
then the state ρ′ coming from Eve is routed to Bob (on the right).

The other resource necessary for Quantum Key Distribution is an authenticated channel,
represented as in Figure 3.2. The authenticated channel is a classical channel through

Figure 3.2: Schematic representation of the authenticated channel (or authentic channel).

which the information goes unaltered from Alice to Bob. An eavesdropper (Eve) can see
all the information flowing, but she cannot disguise her messages as Alice’s or Bob’s ones.
The presence of the authenticated channel is fundamental to prevent man-in-the-middle
(MitM) attacks, where Eve puts herself in the middle of the transmission line, exchanging
two different keys with Alice and Bob (pretending to be the legitimate interlocutor) and
thus completely breaking the security of future transmissions. Using these two resources,
it is possible to construct the Quantum Key Distribution protocol (πqkdA , πqkdB )4. There
exist three main families of protocols: discrete-variable (DV), continuous-variable (CV)
and distributed-phase-reference (DPR) protocols [52]. The first two families encode the
information in discrete and continuous variables respectively, as described in Section 1.5.2,
while the third family uses discrete variables to encode key bits and exploits the coherence
of subsequent pulses to monitor channel disturbance and detect the presence of Eve [53].
Since CV and DPR protocols are out of the scope of this thesis, they will not be mentioned
anymore.

4To be precise, Quantum Key Distribution requires also a third resource, a Random Number Generator
(RNG). Security proofs, however, tend to assume that such device exists and that it provides no information
to Eve.
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The general DV QKD protocol can be schematized as in Figure 3.3, where the inter-
action of Eve with the authenticated channel has been removed to preserve the clarity of
the scheme.

Figure 3.3: Scheme of a general Quantum Key Distribution protocol. X is a random
variable provided by a RNG at Alice’s side.

It consists of a series of steps:

1. Quantum transmission
During this phase, Alice and Bob exchange quantum states through the quantum
channel. In prepare-and-measurement (PaM) schemes, the state is explicitly pre-
pared at Alice’s side according to some random variable X (which is issued by a
RNG). In entanglement-based (EB) schemes, on the other hand, the quantum state
flowing through the channel is an entangled state, produced somewhere between Al-
ice and Bob and arriving to both of them. If the entangled source is at Alice’s side,
EB schemes are totally equivalent to PaM ones, since a measurement at Alice’s side
corresponds to a preparation at Bob’s side5. In this case, however, the variable X
is partially determined by the results of the measurement at Alice’s side. In both
schemes, Bob’s measurement gives a random variable Y , dependent on the quan-
tum state sent through the channel and thus partially correlated to Alice’s random
variable X.

2. Sifting
During the sifting phase, Alice and Bob discard all the events where their random
variables X and Y are not correlated. This phase is highly dependent on the actual
QKD protocol.

3. Parameter estimation
During this phase, Alice and Bob estimate the parameters of the channel, in par-
ticular the quantum bit error rate (QBER), that will be used in the estimation of
the information leaked to Eve during the quantum transmission phase. If that in-
formation is too high (which is equivalent to have the QBER higher than a certain
threshold, dependent on the protocol), it is impossible to distill a secret key, there-
fore the protocol aborts returning ⊥ to both Alice and Bob.

5If the source is not safe in Alice’s laboratory, Eve must be assumed to have full control of the source and
the two schemes are no longer equivalent. It has been proven, however, under some particular condition,
the equivalence still holds [52].
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Parameter estimation is usually performed by exchanging a random subset of all
the exchanged symbols and calculating the bit error rate on that subset, but some
protocols allow a direct estimation of the QBER from the results of the sifting phase.

4. Error correction
A fundamental requirement of each key exchange protocol is correctness, meaning
that the probability that the protocol returns two different keys to Alice and Bob is
negligible. A protocol is said to be εcorr-correct if

P [kA ̸= kB] ≤ εcorr. (3.4)

Error estimation consists of an interactive protocol that, taking as input the random
variables XPE and YPE , output by the parameter estimation phase, returns two
random variables XEC = f ′′′A (XPE , C

′′′
B ) and YEC = f ′′′(YPE , C

′′′
A ) such that

P [XPE ̸= YPE ] ≤ εcorr, (3.5)

where C ′′′
A and C ′′′

B is the classical information exchanged through the authentic
channel during the protocol.

5. Privacy amplification
At the end of the error correction phase, Alice and Bob share two random variables
that are equal with probability higher than 1 − εcorr. However, the other funda-
mental requirement of a key exchange protocol, secrecy, is still lacking. Indeed, Eve
still possesses all the information coming from her tampering with the transmitted
quantum states, together with the information acquired by sniffing the authenticated
channel during the preceding steps of the protocol. In order to meet the secrecy re-
quirement, it is necessary to remove Eve’s information from XEC and YEC , ending
up with two shorter keys kA and kB, which are secret to Eve. The security of the
resulting key is usually evaluated by using a security parameter εsec, whose meaning
will be briefly reviewed in next Section.

Composable definition of security

What makes Quantum Key Distribution appalling is the fact that it claims to offer un-
conditional security, i.e., it is secure against adversaries with unbounded computational
power. Its security is a direct consequence of the postulates of Quantum Mechanics, that
state that the information acquired from a quantum state is proportional to the distur-
bance on the observed state (information-disturbance trade-off [54]) and that quantum
states cannot be cloned [55].

These considerations, however, are not enough to prove the security of Quantum Key
Distribution as a cryptographic protocol. This requires the establishment of a security
definition and the proof that the protocol meets it. This security definition must be such
that the protocol can be composed with any other cryptographic protocol without losing
its security, a property called composability.

In the framework of Abstract Cryptography, the notion of security is given by the
indistinguishability between the real QKD protocol and an ideal system that simulates
it. Since a complete treatment of the matter if far beyond the scope of this thesis, this
Section will just give some hints on the subject, referring to the literature [50, 51] for a
more complete exposition.
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In this theoretical model, a real protocol can be viewed as a box (resource) with
some interfaces to the external world (for key exchange schemes, the interfaces correspond
to Alice, Bob and Eve). The task that the protocol is required to perform is called
functionality. The ideal system the real protocol is compared with is a box with its same
interfaces, implementing the ideal functionality. The notion of security is captured by
the distinguisher, who is given access to all interfaces of a black box with either the real
protocol or the ideal system inside. If the distinguisher cannot, except with probability ε,
distinguish the real protocol from the ideal one, the protocol is said to be ε-secure. This
security criterion respects the composability requirement, meaning that, by composing an
ε-secure with an ε′-secure protocol, the resulting one is (ε+ ε′)-secure [50].

In the key exchange problem, the functionality is the distribution of a secret key
between Alice and Bob, and an ideal system implementing it is just a box that outputs
the same random string to both Alice’s and Bob’s interfaces and some other, uncorrelated
information to Eve’s interface. Therefore, a general key exchange protocol is required to be
εcorr-correct (P(kA ̸= kB) ≤ εcorr) and εsec-secure, where this last condition is dependent
on the chosen security definition. If these two conditions hold, it can be proven that the
protocol is ε-secure, with ε = εcorr + εsec.

In the classical key exchange problem, the notion of security is captured by the mutual
information between the key and a random variable Z representing all the information
that Eve has acquired during the execution of the protocol. As shown in Figure 3.4 [53,
56], by starting from the joint probability distribution PXY Z between Alice, Bob and Eve,
it is possible, using post-processing, to extract an ε-secure key [57]. It is evident that

Figure 3.4: Information measures in the classical key exchange problem. H(·) is the
entropy and I(·, ·) is the mutual information.

the general QKD protocol described in Section 3.1.2 is a realization of the key exchange
protocol shown in Figure 3.4. However, it has the crucial difference that the secret sharing
phase ends up with a joint quantum state ρABE (which is, in general, entangled), instead of
the classical joint probability distribution PXY Z . If Eve were forced to measure the state ρx
during the quantum transmission phase, the two schemes would be completely equivalent,
since she would end up with a random variable Z given by the result of her measurements.
But, since unconditional security requires to assume that Eve has unlimited resources, it
is necessary to take into account also the hypothesis that she has a quantum memory in
which she can keep her quantum state ρx until needed. In that case, therefore, the mutual
information must be replaced with the maximum mutual information that Eve can obtain
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by applying her best measurement strategy, the accessible information

Iacc(kA;E) = max
M

I(kA;M(E)), (3.6)

where the maximum is taken over all possible Eve’s measurement strategies M(E). By
taking Iacc(kA;E) ≤ ε, a secrecy definition similar to the one used in classical key exchange
is recovered. However, this is not enough to obtain εsec secrecy of the protocol. Indeed,
differently from classical mutual information, the accessible information is lockable [58],
meaning that, given a key ka = kA1kA2 with Iacc(kA;E) ≤ ε, and a joint quantum state
ρkA1KA2E , it is possible that

Iacc(kA;EkA1) > H(kA1) + 1. (3.7)

By knowing part of the key (as happens in the known-plaintext attack), Eve can break the
security of the rest of the key.

Therefore, a new security definition is necessary for Quantum Key Distribution. Cur-
rent security definitions are based on the trace distance between the quantum state output
by the real protocol ρABE with the one that must be shared by the ideal system imple-
menting the key exchange functionality τAB ⊗ ρE , where τAB =

∑
k∈K 1/|K| |k, k⟩ ⟨k, k|

is the completely mixed state over the space of all possible keys K [58, 59]. With this
criterion, a protocol is said to be εsec-secret if

∥ρABE − τAB ⊗ ρE∥1 ≤ εsec, (3.8)

where ∥·∥1 is the trace norm [59]. Since the trace distance don’t increase when appending
an additional quantum system, or when applying an arbitrary quantum operation, it
provides a composable security definition [60].

Assumptions of the security model

As specified in Section 3.1.2, the appeal of Quantum Key Distribution lies in its providing
an unconditionally secure way of exchanging a key between two parties, Alice and Bob.
The claim of unconditional security, however, must not be confused with a claim of “ab-
solute security”, which is something that does not exist [52]. The meaning of the security
provided by Quantum Key Distribution is well explicated in a short paper by Scarani an
Kurtsiefer [61], where they compare it with a key exchange mechanism implemented by
giving a CD filled with a random key to a trusted courier Charlie, who brings it from Alice
to Bob. The security of this system requires that

(i) the key that Alice’s computer writes to the CD is truly random,

(ii) Alice’s and Bob’s computer are not leaking information in any way,

(iii) Charlie is honest at the moment of receiving the key from Alice,

(iv) during his travel from Alice to Bob, Charlie does not leak information, neither in-
tentionally nor inadvertently.

Condition (i) is a prerequisite of any key exchange protocol, both classical and quantum.
Moreover, Quantum Key Distribution does not guarantee conditions (ii) and (iii) more
than any other classical key distribution protocol, since (ii) the information used in Alice’s
and Bob’s devices is classical, and (iii) it does not guarantee the absence of side-channel
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information in the quantum system used for carrying it. What it does guarantee is that,
once the information travels as a qubit from Alice to Bob, it cannot leak to an attacker
in any possible way. Clearly, since the security of QKD is based on a precise behavioural
model of the information carriers, its security requires that this model, namely Quantum
Mechanics, is valid.

Given all these assumptions, the general Quantum Key Distribution protocol of Section
3.1.2 uses an insecure quantum channel and an authenticated classical channel to build
up an ε-secure key exchange system. In particular, the most critical assumption is the
adherence of the physical systems used in the quantum transmission part to the qubit
preparation and detection model.

The qubit preparation requires a system that creates one single photon in a desired
optical mode. However, the emission of more than one photon is a security issue, because
Eve could just non-destructively measure the number of photons in each pulse and, if
there are more than one photon, forward a single photon to Bob, keeping all the other
ones in a quantum memory. In that case, she would just have to wait for the sifting phase,
taking advantage of the sifting information to choose her measurements. This attack,
called photon number splitting (PNS) attack [62], is a major problem in practical realiza-
tions of QKD protocols, since all systems used for qubit preparation have a non-negligible
probability of emitting multi-photon pulses. Possible countermeasures to this problem
are given by taking into account this flaw in the security proof, by using the “tagging”
technique [63], or finding new protocols that are not affected by this issue, like those ex-
ploiting decoy states [64–66]. Section 3.1.3 will be devoted to the study of this problem
when an asymmetric heralded source [67] is used in a practical QKD implementation.
This problem, of crucial importance in prepare-and-measurement schemes, is less critical
for entanglement-based ones, like the one described in Section 3.1.4, since the incidence
of multi-photon events in entangled pairs is much lower than in the other kind of sources.
Other problems in qubit preparations can be given by some phase-dependence between
the systems carrying successive qubits [52, 61], or by the presence of side-channel infor-
mation, such as, for example, the eventual dependence of other degrees of freedom of the
electromagnetic field on the transmitted qubit.

The other critical problem is given by the detection system. The first issue is the
requirement that the detection system “squashes” all the complexity of the electromagnetic
field into a qubit, something that has been demonstrated for many implementations of
QKD [68–70]. The other issue, which has been already exploited for the experimental
demonstration of hacking attacks on real quantum devices, is given by some properties of
Silicon avalanche photodiodes (APDs) under high illumination conditions [71–74], or by
their vulnerability against other side-channel attacks due to back-flash [75] or to different
timings of the photo-detection event [76, 77]. While fundamental for the implementation
of a real QKD system, detection issues will not be further investigated through this thesis.

3.1.3 Heralded single-photon sources

As stated in Section 3.1.2, one of the major problems of practical Quantum Key Distri-
bution is due to the fact that security requires the transmission of a single quantum state
from Alice to Bob, since multi-photon events can leak all the information to Eve through
the PNS attack. Most practical prepare-and-measurement Quantum Key Distribution
implementations use as single photon source an attenuated, pulsed laser, which will be
also called weak coherent source (WCS). The output of a single mode laser, generally, is
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described by a coherent state of the field,

|√µeiθ⟩ ≡ |α⟩ = e−µ/2
∞∑
n=0

αn√
n!

|n⟩ , (3.9)

where |n⟩ is the n-photon Fock state, and µ = |α|2 is the mean photon number per
pulse [52]. Since in discrete variable protocols a phase reference is not accessible, the state
is described by a mixture

ρµ =

∫ 2π

0

dθ

2π
|α⟩ ⟨α| =

∞∑
n=0

P(n|µ) |n⟩ ⟨n| , (3.10)

so the output state is completely determined by the photon statistics P(n|µ), which for
the attenuated laser is

P(n|µ) = e−µ
µn

n!
. (3.11)

The probability of single-photon pulse is P(1|µ) = µe−µ ≃ µ, while the probability of
multi-photon pulses is P(n > 1|µ) = 1 − P(0|µ) − P(1|µ) = 1 − e−µ − µe−µ ≃ µ2/2.
Therefore, it is necessary to find a trade-off between the maximization of single-photon
pulses and the minimization of multi-photon pulses.

These limitations have pushed the research onto sources that better approximate a
single-photon source. One possible implementation of such sources is based on localized
quantum structures, such as color centers [78], quantum dots [79, 80], atoms [81], or
ions [82] in a cavity. These sources, however, require expensive equipment for their op-
eration and have limitations both in wavelength and bandwidth selection [83]. Another
family of single photon sources exploits the phenomenon of Spontaneous Parametric Down
Conversion (SPDC), already described in Section 2.1. Since photons are always produced
in pairs signal-idler, it is possible to use the idler photon to “herald” the presence of the
signal photon, giving the so-called heralded source (HS). However, if the duration of the
pulse is much greater than the reciprocal of the phase-matching bandwidth, the statistics
of the pairs is still poissonian [83], and this source does not present advantages over the
WCS. Despite that, these sources allow the use of some strategies to enhance their single-
photon character that are not possible with pulsed lasers. One such strategy consists of
using a single HS with a photon number resolving detector on the idler channel in order
to select the pulses where only one photon is detected [84]. An alternative strategy uses
parallel HS units and post-selection. Each HS unit is pumped with a low power laser, in
order to reduce the incidence of multi-photon pulses, while the presence of multiple HS
units is exploited to keep the rate of single-photon pulses at an acceptable level.

The first proposal making use of parallel HS units and post-selection comes from an
article by Migdall et al. [85], where the HS units are all linked to an m-to-1 optical switch
triggered by a detector on the idler photon of each HS unit. Migdall et al. analyzed this
scheme, which from now on will be referred as MHPS (multiple heralded-sources with
post-selection), by taking into account also the finite efficiency of the heralding detectors
but, as pointed out by Shapiro and Wong [83], they did not address the problem of the
low efficiency of m-to-1 optical switches, a serious limitation of such scheme.

This issue is considered by Shapiro and Wong, who propose a new scheme that sub-
stitutes the single optical switch with a series of m − 1 binary photon switches in a
symmetric tree structure [83] (SMHPS), shown in Figure 3.5. A recent reanalysis of the
performances of this source has shown that, in the case of imperfect devices, this scheme
suffers a scalability issue, with a decrease in one photon probability when increasing the
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Figure 3.5: Schematics of the SMHPS [83]. Each non-linear crystal (NLC) is fed with
pulses such that the mean number of generated pairs per pulse is µ/γk, with k = log2m
and γ the transmittance of 2-to-1 optical switches. The idler of each NLC is fed into a
detector with quantum efficiency η.

number of crystals [67]. To overcome this problem, a new, asymmetric scheme (AMHPS)
is proposed [67]. In this scheme, the HS units are linked together in the chained network
showed in Figure 3.6.
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Figure 3.6: Schematics of the AMHPS [67]. Each non-linear crystal (NLC) is pumped
with a different intensity in order to compensate the different number of traversed 2-to-1
optical switches, each characterized by its trasmittance γ. The idler of each NLC is fed
into a detector with quantum efficiency η.

In this Section, the performance of the different schemes is studied in a practical
Quantum Key Distribution protocol, taking into account channel losses and imperfect
detectors [86]. The analysis will use the Bennett-Brassard 1984 (BB84) protocol [87] in
a generic discrete variable scheme, and will cover also the case of active [66] and passive
decoy [88, 89].
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The quantum transmission model

The protocol - In the quantum transmission phase of the BB84 protocol, the information
is encoded into two mutually unbiased bases, like the computational Z =

{
|0⟩ , |1⟩

}
and

the diagonal X =
{
|+⟩ , |−⟩

}
basis. For each basis, the first symbol encode the 0 and

the second one the 1. Alice uses her Quantum Random Number Generator (QRNG) to
generate two strings of bits, one used to decide the bit of information to send, the other
one the basis in which to encode it. The two bases must not necessarily be chosen with
the same probability, but Alice and Bob could publicly decide to use one basis more often
that the other one, a scheme called efficient BB84 [90]. Bob measures the incoming qubits
choosing at random the measurement basis X or Z, and registers the corresponding out-
come of the measurement.

The source - Similarly to what happens in (3.10), also heralded sources are completely
characterized by their output statistics.
The MHPS consists of an array of m HS units, simultaneously pumped with a laser pulse
with intensity such that the mean number of generated pairs per pulse is µ [85]. In the
ideal case of perfect detector and optical switch, a post-selection mechanism that selects
one of the channels whose detector has fired gives the output statistics

PM (n|µ;m) =
µn

n!
e−µ

1− e−mµ

1− e−µ
(1− δn) + δne

−mµ, (3.12)

where δn is the Kronecker δ (δ0 = 1 and δn>0 = 0) [67].
In the SMHPS, the general m-to-1 switch is replaced by a tree of 2-to-1 optical switches
of transmittance γ. The tree scheme requires the number of HS units m to be a power
of 2. The idler detector has quantum efficiency η and negligible dark count probability.
Since the photons produced by each HS unit pass k = log2m switches before reaching the
output, the crystals are pumped with an intensity such that the mean number of generated
pairs per pulse is µ/γk The post-selection mechanism in each optical switch gives priority
to the left HS unit and, in case no HS unit triggers, always outputs the left one [67]. The
photon statistics at the output is

PS(n|µ;m, η, γ) = (1− η)µe−(1−η)µ

n!
e
−ηµ 2k

γk

+
µne−µ

n!

1− (1− η)ne
−η( 1

γk
−1)µ

1− e
−η µ

γk

(1− e
−ηµ 2k

γk ). (3.13)

In the AMHPS, the m HS units, are arranged in a chained scheme, with the route to
output crossing a different number of optical switches for each NLC. Therefore, each HS
unit must be pumped with an intensity such that the mean number of generated pairs per
pulse is µ/γki , with

ki =

{
i i ≤ m− 1
m− 1 i = m,

(3.14)

and a series of delay lines must be introduced in order to compensate the longer transmis-
sion time of the rightmost HS units. Like in the SMHPS, the post-selection mechanism
gives priority to the left HS and, if none triggers, outputs the left one. Also in this case,
the idler detector has quantum efficiency η and negligible dark counts. The statistics at
the output is
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PA(n|µ;m, η, γ) = [(1− η)µ]e−(1−η)µ

n!
e
−ηµ (2−γ)γ1−m−1

1−γ

+
µne−µ

n!

m∑
i=1

e
−ηµ γ1−i−1

1−γ [1− (1− η)neηµe
− ηµ

γki ]. (3.15)

For γ → 1, the scheme used in the switching network is no longer significant, therefore
the output statistics of the SMHPS and the AMHPS coincide. If the heralding efficiency
η → 1 as well, the two architectures become equivalent to the ideal MHPS.

Decoy states - The decoy state technique is a modification of the quantum transmission
phase introduced to counteract the PNS attack [65]. It consists of randomly varying the
source statistics, so that Eve can no longer adapt her attack to Alice’s state. Indeed, after
the transmission, Alice communicates Bob the statistics she used for every pulse, allowing
them to estimate the channel parameters conditioned on that knowledge. There exist two
different decoy state technique, active and passive decoy.

• Active decoy - In this technique, Alice chooses the output statistics by using a random
number generator and (typically) a variable attenuator after the source. In principle,
she can choose an arbitrary number of decoy states, however, it has been shown that
just using the vacuum and a weak decoy state gives tight bounds on the relevant
parameters [66].

• Passive decoy - In the passive decoy technique, the source statistics is not under
Alice’s direct control, but is conditioned on some random event at Alice’s side. A
typical example consists of an attenuated coherent state passing through a 50 : 50
beam-splitter (BS) with a single-photon detector at the reflected output: the photon
statistics at the transmitting output of the BS changes when Alice detects or not a
photon. In the heralded sources, the two statistics are P(c)(n) and P(nc)(n), which
are conditioned on at least one detector or no detector clicking, respectively. Since
the post-selection mechanism outputs the first HS in the case of no detector firing,
the statistics P(nc)(n) is not trivial.

The channel - The model used for the quantum channel is a depolarizing lossy channel
(DLC), characterized by transmittance t = 10−L/10, with L the loss level in decibel, and a
depolarization effect with visibility V , that incorporates also alignment and stability issues.

The receiver - The receiver consists of an optical apparatus, with transmittance tB,
and two single-photon threshold detectors, described within the detection model of Section
1.5.2 and characterized by detection efficiency ηB and dark count probability pd.

Classical post-processing

The sifting - In the sifting phase, Alice and Bob publicly announce the measurement basis
chosen for each qubit, discarding all those events for which the bases do not coincide.
They remain with a fraction psift of the original events, which is psift = 0.5 for the stan-
dard BB84 protocol, where both bases are chosen with the same probability, and can be
increased up to psift ∼ 1 for the efficient BB84. Since this fraction is only dependent on
the common measurement strategy and not on the kind of source, psift is not included in
the secure key fraction evaluation.
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Parameter estimation - In a real QKD protocol, parameter estimation is the phase in
which Alice and Bob exchange a randomly chosen subset of the shared symbols in order
to evaluate the quantum bit-error rate (QBER) E, defined as the error probability in
Bob’s detection events, from which the information leaked to Eve can be estimated. The
performance of a protocol, however, depends also on another parameter, the gain Q, which
is defined as the probability that a pulse gives a click in Bob’s measurement apparatus. In
QKD experiments, this parameters can be estimated by comparing the pulse rate of the
source with the rate of detected events. In the theoretical study of this Section, however,
these parameters must be estimated from the quantum transmission model.
The gain is defined as

Q =
∞∑
n=0

YnP(n), (3.16)

where P(n) is the probability of having n photons in a pulse and Yn is the yield of an
n-photon signal, i.e. the conditional probability of a detection event at Bob’s side given
that Alice sends n photons. Assuming independence between signal and background, the
yield of an n-photon pulse for a DLC can be predicted to be

Ỹn = Ỹ0 + ηn − Ỹ0ηn ≃ Ỹ0 + ηn, (3.17)

where Y0 is the probability of a dark count event, which is Ỹ0 ≃ 2pd in the case of two
independent detectors and small dark count probability, and

ηn = 1− (1− ηDtBt)
n (3.18)

is the probability that a detector clicks when an n-photon signal is sent, under the as-
sumption that the effects of the channels on each photon of a pulse are independent. The
parameters indicated with a tilde are those predicted by the quantum transmission model
used. The negative term, coming from the fact that real detection events and dark counts
are not mutually exclusive, can be neglected, since Y0 ≪ 1.
The QBER is defined as

E =
1

Q

∞∑
n=0

enYnP(n), (3.19)

where en is the n-photon error rate, i.e., the probability of an error when Alice sends an
n-photon state. For a DLC the n-photon error rate can be predicted to be

ẽn =
ẽ0Ỹ0 + ẽdηn

Ỹn
, (3.20)

where ẽ0 = 1
2 is the error probability of a dark count event, which is assumed to be ran-

dom, and ẽd =
1−V
2 is the probability that a photon hits the wrong detector.

Error correction - Error correction consists in a protocol that is run by Alice and Bob
in order to correct the errors between the respective sifted keys XPE and YPE , giving
in the end an equal key with probability larger that 1 − εcorr. This protocol, however,
requires Alice and Bob to exchange some information about their key, information that
must be removed in the subsequent privacy amplification step. The error correction phase
leaks a fraction of bits that can be estimated as fECh(E), where fEC is the efficiency of
the error correction protocol used and h(x) is the binary Shannon entropy [52, 63].
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Privacy amplification - In the privacy amplification phase, Alice and Bob remove all
the information leaked to Eve during the preceding steps of the protocol. This quantity
determines the secret key rate R, defined as the fraction of sifted pulses that produce a
secret key [52]. Since it is highly dependent on the source statistics, it is used to determine
the performance of the different configurations. It also depends on whether decoy states
are used or not.

• BB84 without decoy states - In the standard BB84 (without decoy state), the
only way to deal with multi-photon pulses in by using the “tagging” technique [63].
In the asymptotic limit of infinite key, the achievable key rate is

R = Q

⎧⎨⎩(1−∆)

[
1− h

(
E

1−∆

)]
− fECh (E)

⎫⎬⎭ , (3.21)

where ∆ is the fraction of “tagged” photons (i.e., the multi-photon rate), defined as

∆ =
1− P(0)− P(1)

Q
, (3.22)

fEC is the error correction efficiency and h(x) is the binary Shannon entropy [52,
63]. For true single photon sources ∆ = 0 and the secret key rate is written as
R = Q[1− h(E)− fECh(E)]: the correction term 1−∆ in (3.21), indeed, takes into
account the possible PNS attack on the tagged pulses.

• BB84 with active decoy - In the case of active decoy, it is possible to make the
simplifying assumption that the parameters are determined exactly [52]. In that
case, the secret key rate, in the asymptotic limit of infinite key, is

R = P(0)Y0 + P(1)Y1[1− h(e1)]−QfECh(E), (3.23)

where P(0) and P(1) are given by the source statistics in the signal state and the
parameters e1, Y0 and Y1 are the channel parameters estimated using decoy states [66,
91].

• BB84 with passive decoy - In the passive decoy state, the relative incidence of
the two statistics is not under Alice’s control. Therefore, it is not possible to choose
one statistics as predominant, and it is convenient to extract the key separately from
the two different statistics P(c)(n) and P(nc)(n). In this case, the key rate is

R = P(c)Rc + P(nc)Rnc, (3.24)

where Rc and Rnc are the key rate for, respectively, the case of at least one detector
and no detector clicking. The key rate is, in the limit of infinite key,

Rξ = P(ξ)(0)Y L
0 + P(ξ)(1)Y L

1 [1− h(eU1 )]−QξfECh(E
ξ), (3.25)

where ξ ∈ {c, nc}, Qξ and Eξ are the parameters estimated from the pulses in the
corresponding statistics and Y L

0 , Y L
1 , eU1 are the lower (L) and upper (U) bounds

for the parameters estimated from {Qc, Ec, Qnc, Enc} and the known source statis-
tics. The explicit formulas for parameter estimation, derived from [89], are given in
Appendix B in Eqs. (B.10), (B.13) and (B.19).
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Simulation results

The performance of the SMHPS and the AMHPS is evaluated for different values of the
number m of HS units by numerically optimizing the µ parameter of the source in order
to maximize the secret key rate.

The simulation assumes the source to be inserted into a fiber-based QKD system [52].
The source is assumed to have an idler detector with η = 0.7 and negligible dark counts,
and optical switches with transmittance γ = 0.5 [67]. The channel is characterized by a
visibility V = 0.99 and losses ranging from 0 to 55 dB, which corresponds to a distance
of 275 km if we consider the typical fibre attenuation of α = 0.2 dB/km. Bob’s apparatus
has optical transmittance tB = 1 and detectors with quantum efficiency ηB = 0.25 and
dark count probability pd = 2 · 10−7, corresponding to the state-of-the-art of infrared
semiconductor single photon detectors [92]. The efficiency of the error correction code is
fEC = 1.05 [93].

All the simulated key rates are compared with those obtained using a weak coherent
source (WCS), both with and without active decoy. When dealing with the passive scheme,
the comparison is extended to the WCS with one decoy [66], where also the inefficiencies
in parameter estimation are taken into account. All schemes are also compared with
an ideal single-photon source, giving an upper bound for the rate attainable in a given
configuration.

• BB84 without decoy state - The maximum key rate that this source architecture
can obtain is the one given by the ideal MHPS, shown in Figure 3.7. The rate
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Figure 3.7: Key rate for the MHPS architecture as a function of channel losses.

increases with the number of HS units and approaches the single-photon case for
m = 128, in the low loss regime. Indeed, for m → ∞, ∆ = O(µ) and Q ≃ 1,
approximating the single-photon case for µ≪ 1. When the losses increase, however,
the contribution of multi-photon pulses increases and the source shows the same
behaviour as the WCS. This had been already observed by Waks et al. [94], with
the difference that, for low m, not only is the fraction of multi-photon pulses higher,
determining the lower maximum tolerable loss level, but also the incidence of pulses
with zero photons is stronger, determining the lower key rate at L = 0dB. This
limitation is proper of the multiple-crystal architecture itself.
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The secret key rate of the SMHPS and of the AMHPS with finite efficiency de-
tectors and switches is shown in Figure 3.8. In both architectures, the low switch
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Figure 3.8: Key rate of the SMHPS (left) and the AMHPS (right), with η = 0.7 and
γ = 0.5 for BB84 without decoy state. For the AMHPS (right), the curves for m = 8,
m = 32 and m = 128 are superposed.

transmittance requires a mean number of generated pairs per pulse higher that the
MHPS, therefore increasing also the incidence of multi-photon, “tagged” pulses. In
the SMHPS, the number of crossed switches scales as k = log2m, therefore, while
for few HS units the key rate increases wit m, for a higher number of HS units the
source shows a WCS-like behaviour for low losses, with a slightly higher maximum
tolerable loss level. In the limit m → ∞, however, any advantage over the WCS is
lost.

The AMHPS, on the other hand, has a more stable behaviour, since its key never
decreases for increasing m, but reaches an optimum value (already at m = 8) and
then remains unchanged. This is due to the fact that, when a certain number of HS
units has been reached, the further addition of HS units has not effect, because the
probability that the rightmost HS units are triggered to output is negligible and the
output is given only by the leftmost HS units.

The different behaviour of the two architectures is more marked when studying the
dependence of the key rate on the source parameters, i.e., detection efficiency η and
switch transmittance γ. The SMHPS (Figure 3.9) and the AMHPS (Figure 3.10)
are studied fixing η = 0.7 and changing γ on the left and with fixed γ = 0.5 and
changing η on the right.

The behaviour of the SMHPS is highly dependent on switch transmittance. Indeed,
for low γ, the benefits deriving from multiple HS units do not compensate the higher
absorption rate, giving a WCS-like behaviour for γ < 0.5. This result had already
been observed in the study of the output statistics of this architecture [67], where,
in the asymptotic limit m→ ∞, the SMHPS was shown to perform better than the
WCS for γ ≥ 0.5, with the curve γ = 0.5 corresponding to the transition from a
WCS-like to a MHPS-like regime. The effect of the detection efficiency η, on the other
hand, is evident in the high loss regime, where the influence of the lower number of
multi-photon pulses is more important. In the low loss regime, indeed, the dominant
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Figure 3.9: Key rate (without decoy state) for the SMHPS for m = 32 and (left) η = 0.7
and different values of γ, (right) γ = 0.5 and different values of η.

effect is the photon absorption in the optical switching, with the detection efficiency
playing a secondary role. The effect of increased detection efficiency, indeed, is a
better choice of the HS unit to route to output, which allows the HS units to be
pumped with lower intensity, decreasing the incidence of multi-photon pulses.

The AMHPS, on the contrary, keeps the same key rate trend for all tested combina-
tions (η, γ). This is due to the fact that, since the photons emitted by the leftmost
HS units pass a low number of switches before being routed to output, the effect of
photon absorption never dominates over multi-photon pulses.

• BB84 with active decoy - The secret key rate for the active decoy BB84 is cal-
culated using Equation (3.23), with e1, Y0 and Y1 calculated by using the channel
parameters of Equations (3.20) and (3.17), in order to simulate the arbitrary pre-
cision parameter estimation that can be reached using active decoy. The results of
simulations are shown in Figure 3.11. The normalized mean number of generated
pairs that maximizes the key rate is almost constant for both sources in the range
∼ 0.6 − 0.9, with a steep fall in the regime where dark counts become important.
The effect of optical absorption is evident in the decreasing of SMHPS rates for in-
creased number of HS units. The AMHPS, on the other hand, reaches its maximum
performance already with four HS units.

• BB84 with passive decoy - In the proposed passive decoy scheme, parameter
estimation is no longer optimal and it has an effect on the final key rate. Therefore,
simulations must use the real bounds for the parameters e1, Y0 and Y1 calculated in
Appendix B, and have also to consider the relative incidence of the two statistics.
The results of simulations, visualized in Figure 3.12, show the expected lower key rate
with respect to the active decoy scheme. Indeed, the worse bound on the parameters
gives a super-estimation of the information leaked to Eve, thus requiring the source
to be pumped with lower intensity, with a normalized mean number of generating
pairs µ oscillating between 0.2 and 0.3. The SMHPS has a key rate comparable
with the one given by the one-decoy WCS, because of the detrimental effect on the
source caused by optical switch attenuation. On the other hand, the key rate of the
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Figure 3.10: Key rate (without decoy state) for the AMHPS for m = 32 and (left) η = 0.7
and different values of γ, (right) γ = 0.5 and different values of η.
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Figure 3.11: Key rate of active decoy state QKD for the SMHPS (left) and the AMHPS
(right), with η = 0.7 and γ = 0.5. For the SMHPS (left), the curves are very close, with
m = 32 the lowest curve. In the AMHPS case (right), the lowest curve has m = 2, while
all the others are superposed.

AMHPS is always higher that the corresponding one-decoy WCS, arriving close to
the maximum tolerable loss level of the active decoy WCS. Also in this case, this
architecture reaches its maximum performance for m = 4.

• Comparison between active and passive decoy - The advantage of the AMHPS
over the SMHPS with both active and passive decoy is evident from Figure 3.13,
where the two architectures are compared. The AMHPS performs better than the
SMHPS in both schemes, and this improvement is such that the AMHPS in the
passive scheme almost equals both the SMHPS and the WCS in the active scheme,
despite the worse parameter estimation.
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Figure 3.12: Key rate for passive decoy state QKD for the SMHPS (left) and the AMHPS
(right), with η = 0.7 and γ = 0.5.
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Figure 3.13: Key rate for the SMHPS and the AMHPS for both active and passive decoy
with m = 8, η = 0.7 and γ = 0.5.
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3.1.4 Symmetric three-state protocol

The QKD protocol described in Section 3.1.3, the BB84, employs four states belonging
to two mutually unbiased bases, like for example X and Z. However, it has been demon-
strated that, for the construction of a QKD protocol, two non-orthogonal states are suffi-
cient. This protocol, introduced by Bennett in 1992 (B92) [95], uses two non-orthogonal
states, say |ψ0⟩ and |ψ1⟩, associated with bit values 0 and 1. In the quantum transmission
phase, Alice sends Bob a series of states according to the value of the random variable
X. Bob then measures the states in the POVM MB92 = {α |ψ⊥

0 ⟩ ⟨ψ⊥
0 | , α |ψ⊥

1 ⟩ ⟨ψ⊥
1 | , I2 −

α |ψ⊥
0 ⟩ ⟨ψ⊥

0 | − α |ψ⊥
1 ⟩ ⟨ψ⊥

1 |}, where α = 1
1+|⟨ψ1|ψ2⟩| , and associates to his measurement,

respectively, the values 1, 0, or “inconclusive”. Indeed, if Bob measures |ψ⊥
0 ⟩ ⟨ψ⊥

0 |, he
knows that Alice cannot have sent the bit 0, therefore he associates that event with bit
1, and the same happens if he measures |ψ⊥

1 ⟩ ⟨ψ⊥
1 |. If he gets the “inconclusive” result,

he cannot discriminate the bit Alice send, therefore that event will be discarded in the
sifting phase. While this protocol has been demonstrated to be unconditionally secure in
the loss-free scenario [96], it presents some problems in the case of a lossy channel. Indeed,
Eve could extract information by performing an unambiguous state discrimination (USD)
attack [97]. This attack consists in performing a measurement in the same POVM MB92

as Bob and, in the case inconclusive result, discard the qubit. Thus, she can get all the
information on the states that arrive to Bob, with the only detectable effect of an increase
in the loss level of the channel. This protocol, therefore, require a low enough level of
channel losses in order to be proved unconditionally secure. It has been proved, however,
that the addition of a third state is sufficient to make the B92 protocol unconditionally
secure independently from the noise of the quantum channel [98, 99].

The optimal three-state QKD protocol, introduced in 2000 by Phoenix-Barnett-Chefles
(PBC00) [100], uses states that form an equilateral triangle over one plane of the Bloch
sphere (such as the X-Z plane). This symmetry can be exploited to obtain rates and a
noise tolerance comparable to the BB84, despite the less number of states employed. An
improvement of this protocol, proposed by Renes in 2004 (R04) [101], uses the fraction of
inconclusive events to estimate the error rate, thus allowing to use all sifted bits for key
extraction. This protocol has been demonstrated unconditionally secure in the asymptotic
case for a bit error rate (QBER) up to 9.81% [102], and its security has recently been
demonstrated also in the case of finite key [103]. Their finite key security proof, however,
assumes a direct parameter estimation, thus neglecting one of the more interesting features
of this protocol.

This thesis reports the first experimental implementation of equiangular three state
QKD, using an entanglement-based version of the protocol with passive optic devices for
the implementation of the POVM [104]. The performance of the protocol is studied by
evaluating the secret key rate both in the asymptotic limit and in the finite key scenario.
This Section will first describe all the steps of the symmetric three-state protocol in the
general finite-key scenario, giving the asymptotic key rate as the limit of the secure finite-
key for N → ∞. Then, it will describe the experimental setup used for the implementation
of the protocol, and, eventually, it will show the results of the measurements.

The protocol

Quantum transmission - In the quantum transmission phase, the R04 protocol uses three
states,

{
|ψ1⟩ , |ψ2⟩ , |ψ3⟩

}
, placed on an equilateral triangle on the X-Z plane of the Bloch

sphere, as shown in Figure 3.14. The states are grouped into three different sets, S1 =
{|ψ1⟩ , |ψ2⟩}, S2 = {|ψ2⟩ , |ψ3⟩}, and S3 = {|ψ3⟩ , |ψ1⟩}. In each set, the first state is
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X

Z

Figure 3.14: States used in the R04 protocol. The states lie in the X-Z plane of the
Bloch sphere. They are grouped into the sets S1 = {|ψ1⟩ , |ψ2⟩}, S2 = {|ψ2⟩ , |ψ3⟩}, and
S3 = {|ψ3⟩ , |ψ1⟩}, where the first element of each set corresponds to bit 0 and the second
to bit 1.

associated with bit 0 and the second with bit 1. Differently from other QKD protocols,
in the R04 the state brings no information about its associated bit before the information
about the used set is disclosed.

In the entanglement-based version of the R04 protocol, the two photons of the polarization-
entangled state

|Ψ−⟩ = |H⟩A |V ⟩B − |V ⟩A |H⟩B√
2

(3.26)

are sent to Alice’s and Bob’s measurement setup. If the source is safe at Alice’s side, all
security proofs implemented for the prepare-and-measurement scheme can be used also
for the entanglement-based version, otherwise some more assumptions are required [52].
In this case, the source is assumed to be part of Alice’s setup. Alice measures her photon

A using the POVM {Πi ≡ 2
3 |ψ⊥

i ⟩ ⟨ψ⊥
i |}, with |ψ⊥

1 ⟩ = |V ⟩, |ψ⊥
2 ⟩ =

√
3
2 |H⟩ − 1

2 |V ⟩, |ψ⊥
3 ⟩ =√

3
2 |H⟩ + 1

2 |V ⟩, and |ψ⊥
i ⟩ the orthogonal of |ψi⟩. When Alice obtains a detection in the

state |ψ⊥
i ⟩ (with probability 1

3 for each outcome i), she is sending to Bob the state |ψi⟩
where |ψ1⟩ = |H⟩, |ψ2⟩ = 1

2 |H⟩ +
√
3
2 |V ⟩, and |ψ3⟩ = 1

2 |H⟩ −
√
3
2 |V ⟩. This operation

corresponds to the random preparation, with equal probability, of one of the three states
{|ψ1⟩ , |ψ2⟩ , |ψ3⟩}. Bob performs his measurements in the same POVM as Alice {Πi}.

Differently from the BB84 or the B92, after the quantum transmission phase no bit of
key has been shared by Alice and Bob yet. Indeed, each exchanged state can still mean
both 0 or 1, according to the chosen set. Both the strings X and Y are generated in the
sifting phase, the first one as a result of a random process at Alice’s side, and the second
one from the set information sent from Alice to Bob.

Sifting - At the beginning of the sifting phase, Alice and Bob compare the instants of
their events, keeping only those where both have a detection within a fixed coincidence
window. Then, Alice generates her N -bit raw key X by using a random process (e.g., a
QRNG), associating a bit to each state sent to Bob. In such a way, she can unambiguously
determine the set Si used for each event. Indeed, if, for example, the n-th state sent by
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S1 S2 S3
Π1 ≡ B1 1 Inc 0
Π2 ≡ B2 0 1 Inc
Π3 ≡ B3 Inc 0 1

Table 3.1: Sifting procedure of the R04 protocol. The rows represents the different results
of Bob’s measurement, while the columns represent the different sets upon which the states
are grouped. Inconclusive results are marked as “Inc”.

Alice is |ψ2⟩ and the n-th random bit is 1, Alice knows that the n-th set is S1. Alice sends
the string of set indices i to Bob, who can thus, from the results of his measurements,
determine his random variable Y , using a sifting procedure analogous to the one of B92.
The sifting procedure is summarized in Table 3.1, where each row represents a different
result of Bob’s measurement and each column is a different set. The inconclusive results
are those events in which Bob is not able to discriminate the bit sent by Alice (analogously
to what happens in the B92). Bob tells Alice the position of the inconclusive events and
they both discard them, remaining with the Nconc-bit strings XS and YS .

Parameter estimation - As already pointed out, one of the interesting features of the
R04 protocol is the possibility of estimating the QBER from the fraction of inconclusive
events, something that has not been considered in previous finite-key analysis of the sym-
metric three-state protocol [103]. In order to use this result in the security evaluation of
the protocol, however, it is necessary to found an upper bound on this estimation with
probability at least 1 − εPE , where εPE is the probability of failure of the parameter
estimation, i.e., the probability that the real QBER is higher than the estimated one.

The estimation makes use of an N -dimension random vector R, with N the number
of symbols exchanged between Alice and Bob, which takes the value Ri = +1 if the i-th
event is a “good” conclusive result (i.e., a conclusive result which is not a bit error), Ri = 0
if the i-th event is a bit error, and Ri = −1 if the i-th event is inconclusive. From our
definition of Ri, it is obvious that Ri ∈ [−1, 1]. Then, the variable R̄ is defined as

R̄ =
1

N

N∑
i=1

Ri =
1

N

(
Ngood −Ninc

)
, (3.27)

where Ngood is the number of “good” conclusive events and Ninc is the number of incon-
clusive events. The expected value of this random variable is E(R̄) = 0. This can be easily
seen by rewriting the sifting procedure of Table 3.1 as a function of the detection results
of Alice and Bob (Ai,Bj) and of the i-th bit value Xi, giving the procedure described in
Table 3.2.

Events of the form (Ai,Bi) are errors independently from the value of the bit Xi. All
the other events, of the form (Ai,Bj), with i ̸= j, are either an inconclusive or a “good”
conclusive event depending on Alice’s bit Xi. Since the choice of Xi is a random event with
probability P(Xi = 0) = P(Xi = 1) = 1

2 , the probability that a “non-error” event is “good”

conclusive or inconclusive is 1
2 and the expected value is E(Ngood) = E(Ninc) =

N−Nerror
2 .

It is possible, therefore, to apply the Hoeffding inequality [105] to the random vector R

P
(⏐⏐⏐R̄− E

[
R̄
]⏐⏐⏐ ≥ ξ

)
≤ 2e−

2N2ξ2

4N = 2e−
Nξ2

2 , (3.28)

with ξ > 0.
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Xi = 0 Xi = 1

A1 A2 A3 A1 A2 A3

B1 1 Inc 0 0 1 Inc
B2 0 1 Inc Inc 0 1
B3 Inc 0 1 1 Inc 0

Table 3.2: Sifting procedure for the i-th bit, according to the random choice of the bit Xi

(on the left Xi = 0, on the right Xi = 1). The cell (Ai,Bj) stands for output Πi at Alice’s
side and Πj at Bob’s side. Inconclusive events are marked as “Inc”. The events in the
diagonal (Ai,Bi) give an error independently from the bit choice. The other combinations
(Ai,Bj), with i ̸= j, are either a “good” conclusive or an inconclusive event, according to
Alice’s bit Xi.

In order to use Equation (3.28) to bound the QBER, it is necessary to rewrite Ngood/N
as a function of the QBER Q = (Nerror)/(Ngood+Nerror) and of the fraction of inconclusive
events I = Ninc/N . This can be obtained starting from the relation

Ngood +Ninc +Nerror

N
= 1, (3.29)

from which it is easy to extract

Ngood +Nerror

N
= 1− I. (3.30)

By using it, it is possible to express the QBER as

Q =
Nerror

Ngood +Nerror
=

Nerror

(1− I)N
, (3.31)

which, inverted, gives
Nerror

N
= (1− I)Q. (3.32)

By inserting (3.32) into (3.29), it is possible to write the fraction of “good” conclusive
events as

Ngood

N
= 1− I − Nerror

N
= (1− I)−Q(1− I) = (1−Q)(1− I). (3.33)

With these equations, the Hoeffding bound (3.28) can be rewritten as

P
(⏐⏐(1− I)(1−Q)− I

⏐⏐ ≥ ξ
)
≤ 2e−

Nξ2

2 . (3.34)

This equation is equivalent to stating that the inequality

⏐⏐(1−Q)(1− I)− I
⏐⏐ ≤ ξ(εPE , N) :=

√
2

N
log

2

εPE
(3.35)

is valid with probability at least 1 − εPE , where εPE is the probability that parameter
estimation fails. Indeed, with probability 1− εPE , the QBER Q is less than

Q̃ :=
1− 2I + ξ(εPE , N)

1− I
. (3.36)
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Error correction - The error correction (EC) phase takes the two sifted keys XPE and
YPE , output by the parameter estimation function, and outputs an εEC-correct key, i.e.,
a couple of keys XEC and YEC such that P(XEC ̸= YEC) ≤ εcorr. To perform this task,
they need to communicate some classical information, summarized in the variables C ′′′

A

and C ′′′
B , through the authenticated channel. Since Eve is assumed to have full access to

the information in the authentic channel (even though she cannot tamper with it), it is
necessary to remove such information in the privacy amplification step. This information,
also called leakEC , is highly dependent on the effective error correction protocol used.
However, it is possible to estimate it as

leakEC = fECH(XPE |YPE) + log2
2

εEC
= NconcfECh(Q) + log2

2

εEC
, (3.37)

where the first term represents the quantity of bits required for error correction, which is
dependent on the bit error rate Q through the binary entropy h(Q) = −Q log2Q − (1 −
Q) log2(1−Q) and on the efficiency of the error correction algorithm fEC ≥ 1, while the
second term counts the quantity of bits that must be leaked to assure that the condition
P(XEC ̸= YEC) ≤ εEC is valid, by using two-universal hash functions6 [52, 59, 103]. The
efficiency of the error correction algorithm fEC lies in the range ≃ 1.05− 1.2 for currently
used algorithms [93].

Privacy amplification - The privacy amplification step takes as input the two εcorr-
correct strings XEC and YEC and outputs two εsec-secret keys kA = f ′′′′(XEC , C

′′′′(B))
and kB = f ′′′′(YEC , C

′′′′(A)). If a key is εcorr-correct and εsec-secret, it is said to be ε-
secure, with ε = εcorr + εsec. As already shown in Section 3.1.2, a composable security
criterion can be based on limiting the trace distance between the state output by the
protocol and the tensor product of the maximally mixed state with Eve’s subsystem, as
show in Equation (3.8). It has been demonstrated that this security criterion holds if
privacy amplification uses a class of two-universal hash functions which map the Nconc-bit
strings XEC and YEC onto an l-bit string, with the length of the final key l bounded by

l ≤ H ε̄
min(XEC |EC)− 2 log2

1

εPA
, (3.38)

where H ε̄
min is the smooth min-entropy of Alice’s key X conditioned on the information

got by Eve in the quantum transmission phase E and the classical communication C7 [52].
The information leakage in the error correction phase, leakEC , causes a decrease in the
smooth min-entropy [52, 108], according to

H ε̄
min(XEC |EC) ≥ H ε̄

min(XPE |E)− leakEC . (3.39)

In order to find the secure key rate, it is still necessary to find a bound on the smooth
min-entropy H ε̄(XPE |E). It has been shown that this bound is easy to calculate in the
case of collective attacks, where the only limitation to Eve’s power is the fact that she must
attack each qubit separately using the same strategy [108]. In this case, the state ρABE

6The class of two-universal hash functions H, each elements of which maps the input N -bit string into a
k-bit string, has the property that, for a randomly chosen h ∈ H, Ph∈H

(
h(x) = h(y)

)
≤ 2−k, ∀x ̸= y [106].

7The min-entropy of a random variable X, conditioned on Z, is the logarithmic form of the maximum
probability of guessing the value of random variable X, knowing random variable Z, i.e., 2−Hmin(X|Z) =
maxx∈Xz∈Z P(X = x|Z = z) [107]. The smooth min-entropy H ε̄

min(X|Z) is the min-entropy over all
random variables R, whose distribution is ε̄-close to X, i.e., δ(X,R) = 1

2

∑
v

⏐⏐P(X = v)− P(R = v)
⏐⏐ ≤

ε̄ [107].
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shared by Alice-Bob and Eve during the quantum transmission phase can be written as
(σĀB̄Ē)

⊗N , where the barred quantities indicate single qubit states, which are identical
because of the assumption of collective attacks. In this case, the smooth min-entropy can
be lower bounded by

H ε̄
min(XPE |E) ≥ Nconc

(
min

σĀB̄Ē∈ΓεPE

H(X̄|Ē)− δ(ε̄)

)
, (3.40)

where ΓεPE is the set of all states compatible with parameter estimation and δ(ε̄) =

7
√

1
Nconc

log2
2
ε̄ [52]. The value of minσĀB̄Ē∈ΓεPE

H(X̄|Ē) can be calculated from the

asymptotic security proof in [102], and is

min
σĀB̄Ē∈ΓεPE

H(X̄|Ē) =

(
1− h

(
5

4
Q̃

))
, (3.41)

where h(·) is the binary entropy and Q̃ is the bound on the QBER calculated in the
parameter estimation step [103, 108].

Putting all pieces together, the εcol-secure key fraction rcol is

rcol =
Nconc

N

[
1− h

(
5

4
Q̃

)]
− 7

√
Nconc

N2
log2

2

ϵ̄

− 1

N
log2

2

ϵEC
− 2

1

N
log2

1

ϵPA
− Nconc

N
fECh(Q), (3.42)

where rcol = l/N is the fraction of the total exchanged bits that are εcol-secure against
collective attacks. The security parameter is εcol = ε̄+ εPE + εEC + εPA.

The secure key rate against general attacks, i.e., attacks in which Eve has no restrictions
in her possible interactions with the transmitted quantum state, can be calculated from
rcol by using the post-selection technique [109]. It states that, under the assumption of
invariance under permutation of the inputs8, the protocol obtained by shortening the
secure key rate to

rgen = rcol −
6 log2(N + 1)

N
(3.43)

is secure against general attacks, with security parameter εgen = (N + 1)3εcol.
In the asymptotic limit of infinite key, the fraction of secure conclusive bits becomes

r = lim
N→∞

rgen = lim
N→∞

rcol =
Nconc

N

[
1− h

(
5

4
Q

)
− fECh (Q)

]
, (3.44)

where Q = limN→∞ Q̃ = 1−2I
1−I , and the security parameter εgen → 0 [102] (in the hypoth-

esis that the security parameter εcol is exponentially decreasing with key length [109]).

Experimental setup

The source - The Sagnac interferometer described in Chapter 2 is used as the source
of polarization-entangled photons in the singlet state |Ψ−⟩ = (|H⟩ |V ⟩ − |V ⟩ |H⟩)/

√
2, as

shown in Figure 3.15. The source is pumped with a power of 3.5mW, giving a mean

8This requirement can be forced by adding a symmetrization step where both Alice and Bob permute
their inputs according to a permutation π that, after the quantum transmission phase, is communicated
through the authentic channel [109].



3.1. QUANTUM KEY DISTRIBUTION 79

HWP PBSpPBS

HWP PBSpPBS

TIMETAGGER

Alice

Bob

A1 A2

A3

B1 B2

B3

A1 A2

A3

B1 B2

B3

PBS

PBS

HWP
d-HWP

PPKTP

L

DM

LD

HWPQWP QWP

SMF

SMF

PM-SMF

LPF

LPF

Figure 3.15: Experimental setup used for the experiment [104]. The source is the Sagnac-
based entangled source described in Section 2. Fiber birefringence is compensated by
using two quarter-wave plates (QWP) and a half-wave plate (HWP). This image uses
elements from the ComponentLibrary by Alexander Franzen [33], licensed under CC BY-
NC 3.0 [34].

coincidence rate of 29 kHz at the detector, corresponding to a 5% heralding ratio.

The measurement apparatus - The measurement apparatus proposed in the origi-
nal work implemented the measurement POVM using an interferometric setup [100]. The
major drawbacks of this scheme are the fact that it requires careful alignment [110, 111]
and it is not assured to have the long term stability required for Quantum Key Distribu-
tion (a stability of about half an hour is reported [111]). In order to meet the requirements
of QKD, a passive linear optics implementation of the POVM has been adopted [112].

The optical scheme used for the measurement is shown in Figure 3.16, and Figure
3.17 shows its realization on the optical bench. Since the POVM {Πi} implements a

HWP PBSpPBS

Figure 3.16: Passive linear optics implementation of the POVM {Πi} [104]. The setup
employs a partially polarizing beam-splitter (pPBS), a half-wave plate (HWP) at 22.5◦ and
a polarizing beam-splitter (PBS). This image uses elements from the ComponentLibrary
by Alexander Franzen [33], licensed under CC BY-NC 3.0 [34].

three-output measurement on the 2-dim Hilbert space of photon polarization, it is simpler
to think it as a measurement on a path qutrit, defined as

â†k1
|0, 0, 0⟩k1,k2,k3

= |1, 0, 0⟩k1,k2,k3
= |1⟩ , (3.45)
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Figure 3.17: Optical bench implementation of the measurement POVM {Πi}.

â†k2
|0, 0, 0⟩k1,k2,k3

= |0, 1, 0⟩k1,k2,k3
= |2⟩ , (3.46)

â†k3
|0, 0, 0⟩k1,k2,k3

= |0, 0, 1⟩k1,k2,k3
= |3⟩ . (3.47)

The circuit implementation of optical setup is show in Figure 3.18, where the black box
at the end of the polarization qubit means that the measurement is insensitive from the
polarization degree of freedom, as happens experimentally with single-photon avalanche
photo-diodes (SPADs).

Figure 3.18: Circuit implementation of the POVM {Πi}. The double line in the ancilla
state indicates that it is a qutrit.

The partially polarization beam-splitter is an optical system that completely transmits
the horizontal polarization and has a reflectivity of 66.7% for the vertical polarization,
therefore inducing the transformation

UpPBS |H⟩ |3⟩ = |H⟩ |3⟩ , (3.48)

UpPBS |V ⟩ |3⟩ =
√

1

3
|V ⟩ |3⟩+

√
2

3
|V ⟩ |1⟩ . (3.49)

The other optical elements are a controlled half-wave plate (HWP) at 22.5◦, of matrix

I2 ⊗
(
|1⟩ ⟨1|+ |2⟩ ⟨2|

)
+ ΛHWP (π/4)⊗ |3⟩ ⟨3|

= I2 ⊗
(
|1⟩ ⟨1|+ |2⟩ ⟨2|

)
+

1√
2

(
1 1
1 −1

)
⊗ |3⟩ ⟨3|

(3.50)
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and the PBS, inducing the transformation

UPBS |H⟩ |3⟩ = |H⟩ |3⟩ , (3.51)

UPBS |V ⟩ |3⟩ = |V ⟩ |2⟩ . (3.52)

Given an arbitrary polarization input state |ϕ⟩ = α |H⟩+ β |V ⟩, corresponding to the
composite state |ϕ⟩ ⊗ |3⟩ in the system Hpol ⊗ Hpath, the transformation induced by the
partially polarizing beam-splitter gives

UpPBS |ϕ⟩ |3⟩ = α |H⟩ |3⟩+
√

1

3
β |V ⟩ |3⟩+

√
2

3
β |V ⟩ |1⟩ . (3.53)

Then, the state crosses the controlled HWP, becoming

α
|H⟩ − |V ⟩√

2
|3⟩ − β

|H⟩+ |V ⟩√
2

|3⟩+
√

2

3
|V ⟩ |1⟩ , (3.54)

and then the PBS, at which output the state is

|ϕout⟩ =
1√
2

(
α+

1√
3
β

)
|H⟩ |3⟩+ 1√

2

(
α− 1√

3
β

)
|V ⟩ |2⟩+

√
2

3
β |V ⟩ |1⟩ . (3.55)

The measurement on the computational basis of the ancilla qutrit gives, for the different
outputs, the probabilities

P(1) = Tr
[(
I2 ⊗ |1⟩ ⟨1|

)
|ϕout⟩ ⟨ϕout|

]
=

2

3
|β|2 , (3.56)

P(2) = Tr
[(
I2 ⊗ |2⟩ ⟨2|

)
|ϕout⟩ ⟨ϕout|

]
=

1

2

⏐⏐⏐⏐α− 1√
3
β

⏐⏐⏐⏐2 , (3.57)

P(3) = Tr
[(
I2 ⊗ |3⟩ ⟨3|

)
|ϕout⟩ ⟨ϕout|

]
=

1

2

⏐⏐⏐⏐α+
1√
3
β

⏐⏐⏐⏐2 , (3.58)

which is equal to P(i) = ⟨ϕ|Πi|ϕ⟩, with Πi =
2
3 |ψ⊥

i ⟩ ⟨ψ⊥
i |. Therefore, the circuit in Figure

3.18 implements the POVM {Πi}.
The photons are detected using silicon single-photon avalanche photo-diodes (SPADs),

with dead time 21 ns and electronic jitter of ∼ 800 ps FWHM. Detection events are tagged
with a resolution of 81 ps.

Results

Data acquisition - A two hour continuous run of the apparatus has led to the exchange
of about 109 raw bits within a coincidence window ∆t = 1.5 ns. The coincidences (Ai,Bj)
between Alice’s i detector and Bob’s j detector are shown in Table 3.3 and, graphically, in
Figure 3.19. The random variable X is generated after the collection of all events using
a Quantum Random Number Generator [113].

Multi-pair events - The secure key rate evaluation described in Section 3.1.4 is based
on the assumption that all sent states are qubits. However, this assumption is invalid in
the case of multi-pair events. Indeed, if multiple pairs are emitted within the coherence
time of the down-converted photons, they are correlated in the polarization degree of free-
dom, therefore it could be possible for Eve, in principle, to perform some kind of photon
number splitting (PNS) attack in order to get some information about the polarization
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A1 A2 A3

B1 0.6 35.8 33.6
B2 35.1 0.6 32.8
B3 33.4 33.2 0.4

Table 3.3: Total number of coincidences at the different detectors (million events). The
cell (Ai,Bj) corresponds to a coincidence of Alice’s detector i and Bob’s detector j.
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Figure 3.19: Total number of coincidences at the different detectors. Full (red) bars corre-
spond to detected events and (blue) contours represent the expected number of detection
events.

state without disturbing the system. As show in Chapter 2, the fraction of multi-pair
over one-pair events is ∼ 3 · 10−3 and the coherence time of the down-converted photons
is τc ≃ 8 ps. Among all the multi-pair events within a coincidence window ∆t = 1.5 ns,
only those produced within the coherence time of the down-converted photons are par-
tially correlated [61]. Since the pair production is a spontaneous effect, it is fair to assume
that pair production is uniform during the coincidence window. Therefore, the fraction
of multi-pair events coming from two coherent processes is ζ ≃ τc/∆t = 5 · 10−3. Conse-
quently, the fraction of correlated multi-pair events over the total number of transmitted
states is ∼ 1.5 ·10−5, and the information leaked to Eve through this channel is negligible.

Post-processing block size - In a real Quantum Key Distribution implementation,
the transmission is divided into blocks of a given length and the key is processed separately
for each block. Therefore, it is important to study the dependence of the ε-secure key rate
on the dimension of the post-processing block. For the R04 protocol, this dependence is
shown in Figure 3.20, whereN is the number of exchanged symbols. The key fraction is cal-
culated for both collective and general attacks from Equations (3.42) and (3.43). For collec-
tive attacks, the security parameter is εcol = 4·10−10, with ε̄ = εEC = εPE = εPA = 10−10.
The same security parameter has been chosen for εgen, therefore in that case the term rcol
is calculated with ε̄ = εEC = εPE = εPA = 10−10

(N+1)3
. The plot shows that at least 104 - 105

signals are required to generate a secure key, while already N = 106 (slightly more than
half a minute at 29 kHz) gives a reasonable key fraction. The difference between collective
and general attacks tends to disappear for N → ∞, where both approach the asymptotic
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Figure 3.20: Finite key rate as a function of the post-processing block size. The y-axis
represent the fraction of exchanged symbols giving a secure key. Each point is calculated
using the first N exchanged symbols. The security parameter for both collective and
general attacks is fixed to 4 · 10−10.

key fraction.

Secret key rate - The stability of the system during the two hour acquisition has
been studied by calculating the QBER and evaluating the key rate both in the asymptotic
and in the finite-key scenario against general attacks, obtaining the results shown in Figure
3.21. The system shows a slight decrease in the sifted key rate due to a misalignment in
the coupling of the entangled source. The losses, estimated from the ratio of coincidences
over single counts, correspond to 13 dB, 1.5 dB due to the POVM, ∼ 2.2 dB from the
detectors [114] and the remaining 9.3 dB from the fiber coupling of down-converted photons
in the Sagnac source (this value should be compared with the one of Chapter 2).

The QBER is estimated as Q = 1−2I
1−I , where I is the fraction of inconclusive events.

It is stable at a level below 2% during the whole acquisition, thus confirming the stability
of both the source and the implementation of the POVM. The higher contribution to the
QBER is given by the source, whose visibility, measured just before the experiment, was
between 97% and 98% in two mutually unbiased bases. However, a small contribution to
the QBER is also due to the small imbalances between the channels of the POVM, which
vary between 0.95 and 1.05. These imbalances are in line with previous implementations
of the POVM [112].
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Figure 3.21: Results obtained during 2 hours of continue acquisition. The time has been
divided into 90 blocks of about 80 s each, with a mean number of 1.1 · 106 sifted bits per
block. The QBER is estimated from inconclusive events and is shown with Poissonian
error bars. The asymptotic key rate is estimated using Equation (3.44), while the finite
key rate is evaluated using Equations (3.43) and (3.42), with εgen = 10−10.

3.2 Double violation of the CHSH inequality

The measurement process on a quantum system is very different from the classical one.
The difference, as stated by Postulate 5, lies in the fact that the result of the measure-
ment is intrinsically probabilistic and the act of measurement irredeemably destroys the
measured state, making it collapse into the eigenspace corresponding to the measured
value. This feature is present also in the generalized measurement framework described in
Section 1.3.2, where the measurement on the ancilla subsystem collapses it into one of its
eigenvectors, disturbing also the system under measurement. In general, it can be demon-
strated that the quantity of information about a system that it is possible to get through
a measurement is proportional to the disturbance on that measurement, something known
as information/disturbance trade-off [54].
In this Section, this trade-off will be studied in its relationship with another peculiar as-
pect of quantum mechanics: non-locality. After a short review of Bell’s inequalities, a
fundamental tool to rule out the possibility of describing a quantum model using a lo-
cal hidden variable (LHV) model, and of the information-disturbance trade-off, we will
show how it is possible to make two independent users, measuring the same subsystem of
an entangled state, appear non-locally correlated with a third user, measuring the other
subsystem [115].

3.2.1 Bell’s inequalities

Probably one of the most strange phenomena emerging from quantum mechanics is en-
tanglement. Indeed, the fact that the state of a compound system cannot be described
by separately describing its subsystems is something completely out of classical logic. In
particular, by applying Postulate 5 to one of the Bell states of Equation (1.9), a measure-
ment of the first subsystem makes the second one immediately collapse in a precise state,
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dependent on the result of the measurement, no matter how distant the two subsystems
are.

This aspect was pointed out already in 1935 by Einstein, Podolsky and Rosen in their
famous article “Can Quantum-Mechanical Description of Physical Reality Be Considered
Complete?” [116], where they arrive to the conclusion that quantum mechanics is not
complete. Starting from a classical notion of reality, they state that

If, without in any way disturbing a system, we can predict with certainty (i.e.,
with probability equal to unity) the value of a physical quantity, then there exists
an element of physical reality corresponding to thus physical quantity.

Then, they define complete a theory where

[. . . ] every element of the physical reality must have a counterpart in the phys-
ical theory.

They analyze a single-particle system, that according to quantum mechanics is completely
described by the wave function9, and show that its position and momentum cannot have
both physical reality, since, being non-commuting observables, the precise knowledge of
one precludes such a knowledge of the other. The analysis of a single-particle system
makes them conclude that

[. . . ] either (1) the quantum mechanical description of reality given by the wave
function is not complete or (2) when the operators corresponding to two physical
quantities do not commute the two quantities cannot have simultaneous reality.

Subsequently, they study the situation of a two-particle system, whose wave function has
been entangled by interaction and placed at a distance not allowing communication among
them. According to quantum mechanics, a position measurement on the first one makes
the second one collapse in a position eigenstate (so, according to their definition, position
is an element of reality for the second particle). But, at the same time, a momentum mea-
surement on the first particle puts the second one in a momentum eigenstate, therefore
also momentum must be an element of reality. Since the wave function of the second par-
ticle cannot be modified by the measurement on the first one, they conclude that quantum
mechanics must not be complete.

According to this view, quantum mechanics is just a theory emerging from a deeper,
fundamental theory, just like thermodynamics emerges from classical mechanics. The
probabilistic aspect of the measurement would then be just due to the lack of knowledge
of the variables of this fundamental theory, which are therefore called hidden variables. A
fundamental restriction into the possible fundamental theories was given by John Bell in
his 1964 paper [117]. In his work, he found an inequality that all such theories based on
local hidden variables (LHV) must satisfy. This inequality is one of a wider class of Bell-
like inequalities that all LHV theories must satisfy. The following exposition of Bell-like
inequalities will be mainly taken from a recent review from Brunner et al. [118].

The main feature of LHV theories is that they are described by a series of variables
whose behaviour is local, meaning that they are not influenced by what happens in regions
of space-time not causally connected with them. Within such theories, the correlation
between the two systems must depend on a hidden variable λ that, being local, must

9The wave function is a representation of the state of a system.
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be established in the region of interaction between the two systems10. The two systems
are then sent into two space-like separated regions of space-time and measured there by
two observers, Alice and Bob, who choose the measurement among a set of measurements,
labeled by an index {1, · · · ,m}. By indicating x and y the indices chosen by Alice and Bob
and a, b ∈ {1, · · · ,∆} the result of their measurements, the joint distribution, conditioned
on the hidden variable λ, is

P(ab|xy, λ) = P(a|x, λ)P(b|y, λ), (3.59)

where the factorization is due to the independence of both a and x from what happens at
Bob’s side (and vice-versa). By assuming that the measurements are freely chosen, so that
x and y are independent from λ, the distribution of the hidden variable can be written
as q(λ|xy) = q(λ). The joint probability distribution is therefore given by the ensemble
average on λ,

P(ab|xy) =
∫
dλq(λ)P(a|x, λ)P(b|y, λ). (3.60)

For the experiments with entangled qubits, the most relevant Bell-like inequalities use
two measurement choices per observer x, y ∈ {0, 1}, with each measurement giving two
possible results a, b ∈ {−1, 1}. Given a choice of the measurement setup (x, y), the mean
value of the product of the measurement results is⟨

axby
⟩
=
∑
a,b

abP(ab|xy), (3.61)

which, for LHV theories, becomes

⟨
axby

⟩
=
∑
a,b

ab

∫
dλq(λ)P(a|x, λ)P(b|y, λ) (3.62)

=

∫
dλq(λ)

(∑
a

aP(a|x, λ)
)⎛⎝∑

b

bP(b|y, λ)

⎞⎠ (3.63)

=

∫
dλq(λ) ⟨ax⟩λ

⟨
by
⟩
λ
. (3.64)

The most famous of these inequalities, the Clauser-Horne-Shimony-Holt (CHSH) inequal-
ity, is based on a linear combination of these mean values and is given by

S = ⟨a0b0⟩+ ⟨a0b1⟩+ ⟨a1b0⟩ − ⟨a1b1⟩ ≤ 2, (3.65)

where the inequality comes from inserting (3.64) into (3.65) and noticing that, since a, b ∈
{−1, 1}, then ⟨ax⟩λ ,

⟨
by
⟩
λ
∈ [−1, 1]. Therefore, Bell-like inequalities pose a constraint on

the correlations that are possible for LHV theories, included such possible extensions of
quantum mechanics.

For quantum mechanics, there exist systems that violate the inequality (3.65). Indeed,
taking a two-qubit entangled system in the singlet state |Ψ−⟩ = (|0⟩A |1⟩B−|1⟩A |0⟩B)/

√
2,

it can be shown that, by measuring systems A and B in the bases described by the Bloch
sphere vectors x⃗ and y⃗, the value of the mean value (3.61) is given by

⟨
axby

⟩
= −x⃗ · y⃗

(see Appendix A). By choosing the measurement bases corresponding to the Bloch sphere

10The hidden variable λ is not restricted to a real variable, but can generally be a vector.
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axes X and Z for Alice and (−X + Z)
√
2 and −(X + Z)

√
2 for Bob, we have ⟨a0b0⟩ =

⟨a0b1⟩ = ⟨a1b0⟩ = 1/
√
2 and ⟨a1b1⟩ = −1/

√
2, from which

S = 2
√
2, (3.66)

that violates the LHV bound. Therefore, by proving that S > 2, it is possible to rule
out the possibility of a LHV theory as completion of quantum mechanics11. The first
experimental violation of a Bell-like inequality dates back to the 1972 [120], but the non-
ideality of the experimental setup still allowed an interpretation using LHV theories (such
imperfections are called loopholes). The technological advancement, however, allowed the
implementation of loophole-free experiments [45–47], that finally close all possibilities of
extension of quantum mechanics with a LHV theory.

3.2.2 Generalized measurement and information/disturbance trade-off

In the general measurement scheme, described in Section 1.3.2 and shown in Figure 3.22,
the qubit to be measured, the signal qubit ρS , interacts with a probe qubit through
a unitary operator U . By changing the unitary U , it is possible to tune the informa-

Figure 3.22: Schematic representation of a generalized measurement, that exploits a probe
qubit to gain information about a signal qubit.

tion/disturbance trade-off. The minimal information gain happens when the unitary is
factorisable into U = US ⊗ UP . In this case, since there is no interaction between the
system and the probe, the state after the unitary is still separable and the measurement
on the probe qubit reveals no information about it. The opposite case happens when
the unitary U is such that the joint state is a maximally entangled state. In this case,
a measurement on the probe state is equivalent to a strong measurement on the system
(like the one described in Postulate 5), and the state describing post-interaction system
ρ′S is a classical mixture (the density matrix ρ′S is diagonal). In all other cases, when
the joint state is neither separable nor maximally entangled, the measurement gives less
information than the strong measurement, but the post-measurement state is no longer a
classical mixture, and has still some coherence left. Therefore, by tuning the interaction
between the system and the probe, it is possible to obtain the wished trade-off between
information gain and system disturbance.

3.2.3 Multiple violation of the CHSH inequality

Other than proving the impossibility of extending quantum theory using LHV completions,
Bell-like inequalities like the CHSH can be also used to study the presence of non-local
(i.e., non classical) correlations between systems. In the simple case of two observers,
reviewed in Section 3.2.1, the violation of one of these inequalities is an index of the fact
that the two systems are sharing a non-local joint probability distribution.

11This, however, does not rule out theories based on non-local hidden variables, like the De Broglie-Bohm
theory [119].
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The situation complicates when more than two parties are involved. Anyhow, it has
been demonstrated that, in the case of three non-signaling parties Alice, Bob and Charlie,
it is impossible that more than two of them are non-locally correlated, a phenomenon
called monogamy [118, 121].

A recent work by Silva, et al. [122], however, looks at the matter from another point of
view. It drops the hypothesis of non-signaling between the parties and investigates whether
non-locality can be shared by more than two independent observers. In order to answer
the question, they study a tripartite system like the one shown in Figure 3.23, where a pair
of photons is shared between Alice and a couple of observers, Bob and Charlie (Bob2 and
Bob1, respectively, in the original work). In this scenario, Charlie is placed on the route

Figure 3.23: General scheme of the tripartite system Alice-Charlie-Bob under exam.

between the source and Bob and performs a general measurement by making the system
ρS flying to Bob interact with its own ancilla system and routing the resulting ρ′S to Bob,
which performs a strong measurement. In some sense, the role of Charlie is analogous to
the one of Eve in Quantum Key Distribution. The result of the work is the theoretical
demonstration that it is indeed possible to share the non-locality between Alice and the
two independent observers Bob and Charlie, by precisely tuning the interaction of ρs
with Charlie’s ancilla system. They also study different types of generalized measurement
settings, showing that not only it is important to tune the interaction between the system
and Charlie’s ancilla, but it is also necessary to choose the right type of interaction in
order to see both Bob and Charlie share a non-local joint probability distribution with
Alice. Except for that, both Charlie and Bob perform a standard CHSH measurement with
unbiased basis choices, therefore this result does not require previous agreement between
Charlie and Bob.

This double non-locality is not a violation of the monogamy of non-locality because,
despite being independent, Bob and Charlie are not non-signaling, since the state received
by Bob is dependent on the measurement choice by Charlie and, therefore, Charlie can be
seen as implicitly signaling this information to Bob.

The same article shows that such a result is possible only in presence of a single
Charlie between Alice and Bob. In order to have non-locality with a chain of Charlies
between Alice and Bob, it is necessary to perform a biased choice of the measurements
of both Bob and the Charlies, thus requiring a previous agreement between the parties
before conducting the experiment. This result, only conjectured in Silva’s article, has
subsequently been analytically proven [123].

3.2.4 The circuit model of the experiment

This Section will deal with the circuit model of the generalized measurement chosen to
show experimentally the double violation of the CHSH inequality, used as a mean to
demonstrate the non-locality between Alice and Bob and Alice and Charlie [115]. The
chosen setup exploits a control-phase-shift gate, where the target qubit is Charlie’s ancilla
system and the control qubit is the qubit flying from Alice to Bob, as shown in the circuit
representation of the measurement of Figure 3.24. This scheme implements a generalized
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Figure 3.24: Circuit model of the measurement used to demonstrate the double violation
of the CHSH inequality.

measurement of the qubit flying to Bob in the computational basis, therefore it is necessary
to implement a rotation Ry(θz) before the interaction (and the inverse rotation R†

y(θz) after
it).

The effect of the general measurement setup on the singlet state |Ψ−⟩ can be under-
stood by simply studying the joint effect of Charlie’s and Bob’s measurements on the state
remaining after Alice’s measurement.

Alice’s measurement

If Alice measures her photon in the basis
{
|ux⟩ , |u⊥x ⟩

}
, where x ∈ {0, 1}, she projects the

other photon onto |u⊥x ⟩ if she gets a = +1 and |ux⟩ if she gets a = −1. Therefore, the
state of the photon sent to Bob is |ψ|xa⟩ = |u−ax ⟩, defined as

|u−ax ⟩ =
{
|u⊥x ⟩ if a = 1

|ux⟩ if a = −1
. (3.67)

Charlie’s measurement

First of all, Charlie (C) chooses a measurement basis {|wz⟩ , |w⊥
z ⟩}, with z ∈ {0, 1} his

basis choice. The state |ψ|xa⟩ = |u−ax ⟩ entering his setup can be written in this basis as

|ψ|xa⟩ = |wz⟩ ⟨wz|u−ax ⟩+ |w⊥
z ⟩ ⟨w⊥

z |u−ax ⟩ = α |wz⟩+ β |w⊥
z ⟩ , (3.68)

with α and β given by

α = ⟨wz|u−ax ⟩ , and (3.69)

β = ⟨w⊥
z |u−ax ⟩ . (3.70)

At the entrance of Charlie’s measurement setup, the state is in the product state |ψ|xa⟩ ⊗
|0⟩, which becomes |ψ|xa⟩ ⊗ |+⟩ after the ancilla undergoes the Hadamard gate H. The
measurement chosen by Charlie is implemented by rotating the state with Ry(θz), with θz
such that

Ry(θz) |wz⟩ = |0⟩ , (3.71)
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Ry(θz) |w⊥
z ⟩ = |1⟩ . (3.72)

The state is thus transformed into (Ry(θz)⊗ I2) |ψ|xa⟩ ⊗ |+⟩ =
(
α |0⟩+ β |1⟩

)
⊗ |+⟩.

The two qubits are entangled by the controlled-phase-shift gate CP (ϵ), whose action
is

CP (ϵ)
[(
α |0⟩+ β |1⟩

)
⊗ |+⟩

]
= α |0⟩ |+⟩+ β |1⟩ e

iϵ |0⟩+ e−iϵ |1⟩√
2

= α |0⟩ |+⟩+ β |1⟩
(
cos ϵ |+⟩+ i sin ϵ |−⟩

)
.

(3.73)

Before exiting Charlie’s measurement setup, the state is rotated back by applying R†
y(θz),

giving

|ψ|xza⟩ =
(
R†
y(θz)⊗ I2

)
α |0⟩ |+⟩+ β |1⟩

(
cos ϵ |+⟩+ i sin ϵ |−⟩

)
= α |wz⟩ ⊗ |+⟩+ β |w⊥

z ⟩ ⊗
(
cos ϵ |+⟩+ i sin ϵ |−⟩

)
= ⟨wz|u−ax ⟩ |wz⟩ ⊗ |+⟩+ ⟨w⊥

z |u−ax ⟩ |w⊥
z ⟩ ⊗

(
cos ϵ |+⟩+ i sin ϵ |−⟩

)
,

(3.74)

whose corresponding density matrix is ρ|xza = |ψ|xza⟩ ⟨ψ|xza|.
Charlie extracts the information from the state by measuring its ancilla in the basis

{|+⟩ , |−⟩}, using the POVM {I2 ⊗ |+⟩ ⟨+| , I2 ⊗ |−⟩ ⟨−|}, that returns c ∈ {+1,−1}, with
c = +1 corresponding to |+⟩ and c = −1 to |−⟩.

From these measurements, he can calculate the probability distribution of the outcomes
of his measurements, conditioned on Alice’s results, as

P(+|xz+) = Tr
[(
I2 ⊗ |+⟩ ⟨+|

)
|ψ|xza⟩ ⟨ψ|xza|

]
(3.75)

=
⏐⏐⏐⟨wz|u⊥x ⟩⏐⏐⏐2 + cos2 ϵ

⏐⏐⏐⟨w⊥
z |u⊥x ⟩

⏐⏐⏐2 = 1

2
(1− u⃗x · w⃗z) +

1

2
cos2 ϵ (1 + u⃗x · w⃗z) ,

(3.76)

P(+|xz−) =
⏐⏐⟨wz|ux⟩⏐⏐2 + cos2 ϵ

⏐⏐⏐⟨w⊥
z |ux⟩

⏐⏐⏐2 = 1

2
(1 + u⃗x · w⃗z) +

1

2
cos2 ϵ (1− u⃗x · w⃗z) ,

(3.77)

P(−|xz+) =
⏐⏐⏐⟨w⊥

z |u⊥x ⟩
⏐⏐⏐2 sin2 ϵ = 1

2
sin2 ϵ (1 + u⃗x · w⃗z) , (3.78)

P(−|xz−) =
⏐⏐⏐⟨w⊥

z |ux⟩
⏐⏐⏐2 sin2 ϵ = 1

2
sin2 ϵ (1− u⃗x · w⃗z) , (3.79)

that can be summarized in the formula

P(c|xza) = 1

2

[
1 + c− c sin2 ϵ (1 + au⃗x · w⃗z)

]
, (3.80)

where the vector u⃗ is the Bloch sphere representation of the state |u⟩ and the calculations
are based on the results exposed in Appendix A. The joint probability distribution of Alice
and Charlie is given by

P(ac|xz) = P(c|xza)P(a|x) = 1

4

[
1 + c− c sin2 ϵ (1 + au⃗x · w⃗z)

]
=

1

4
+
c

4

(
1− sin2 ϵ

)
− ac

4
sin2 ϵ (u⃗x · w⃗z) ,

(3.81)

where we used the fact that Alice and Charlie are non-signaling, so the result of Alice’s
measurement does not depend on Charlie’s measurement (P(a|xz) = P(a|x)), and the fact
that P(a|x) = 1

2 for every Alice’s choice x.
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The net effect of Charlie’s measurement setup is to entangle his ancilla qubit with the
one flying towards Bob. The state sent to Bob, therefore, is no longer a pure qubit, but is
described by the reduced density matrix of the joint system

ρ|xza = TrC

(
|ψ|xza⟩ ⟨ψ|xza|

)
=
⏐⏐⏐⟨wz|u−ax ⟩

⏐⏐⏐2 |wz⟩ ⟨wz|+ cos ϵ
(
⟨wz|u−ax ⟩ ⟨u−ax |w⊥

z ⟩ |wz⟩ ⟨w⊥
z |

+ ⟨w⊥
z |u−ax ⟩ ⟨u−ax |wz⟩ |w⊥

z ⟩ ⟨wz|
)
+
⏐⏐⏐⟨w⊥

z |u−ax ⟩
⏐⏐⏐2 |w⊥

z ⟩ ⟨w⊥
z | .

(3.82)

Bob’s measurement

Bob performs a projective measurement in the basis {|vy⟩ , |v⊥y ⟩}, with y ∈ {0, 1}, on the
state ρ|xza arriving from Charlie’s measurement apparatus. Since this state is explicitly
dependent on Charlie’s measurement basis, and Bob is acting independently from him, it
is necessary to average over all the possible Charlie’s bases. The resulting joint probability
distribution is therefore

P(ab|xy) =
∑
z=0,1

P(abz|xy) =
∑
z=0,1

P(b|xyza)P(a|x)P(z), (3.83)

where P(a|x) = 1
2 , and P(z) = 1

2 because we are assuming that all users apply an unbiased
measurement strategy. Using the explicit values for the probabilities and calculating the
conditioned probability

P(b|xyza) = Tr
[
|vby⟩ ⟨vby| ρ|xza

]
(3.84)

= ⟨vby|wz⟩ ⟨wz|u−ax ⟩ ⟨u−ax |wz⟩ ⟨wz|vby⟩+ cos ϵ
[
⟨vby|wz⟩ ⟨wz|u−ax ⟩ ⟨u−ax |w⊥

z ⟩ ⟨w⊥
z |vby⟩

+ ⟨vby|w⊥
z ⟩ ⟨w⊥

z |u−ax ⟩ ⟨u−ax |wz⟩ ⟨wz|vby⟩
]
+ ⟨vby|w⊥

z ⟩ ⟨w⊥
z |u−ax ⟩ ⟨u−ax |w⊥

z ⟩ ⟨w⊥
z |vby⟩

= ⟨u−ax |
[
|wz⟩ ⟨wz|

⏐⏐⏐⟨wz|vby⟩⏐⏐⏐2 + |w⊥
z ⟩ ⟨w⊥

z |
⏐⏐⏐⟨w⊥

z |vby⟩
⏐⏐⏐2] |u−ax ⟩ (1− cos ϵ)

+ cos ϵ

(⏐⏐⏐⟨u−ax |vby⟩
⏐⏐⏐2)

= ⟨u−ax |
[
1

2
I +

1

2
bw⃗z · v⃗y

(
|wz⟩ ⟨wz| − |w⊥

z ⟩ ⟨w⊥
z |
)]

|u−ax ⟩ (1− cos ϵ)

+
1

2
cos ϵ

(
1− abv⃗y · u⃗x

)
=

1

2
(1− cos ϵ) +

1

2
bw⃗z · v⃗y

[⏐⏐⏐⟨u−ax |wz⟩
⏐⏐⏐2 −⏐⏐⏐⟨u−ax |w⊥

z ⟩
⏐⏐⏐2] (1− cos ϵ)

+
1

2
cos ϵ

(
1− abv⃗y · u⃗x

)
=

1

2
(1− cos ϵ) +

1

2
bw⃗z · v⃗y

[
1

2
− 1

2
au⃗x · w⃗z −

1

2
− 1

2
au⃗x · w⃗z

]
(1− cos ϵ)

+
1

2
cos ϵ

(
1− abv⃗y · u⃗x

)
=

1

2

[
1− cos ϵ− (1− cos ϵ) ab

(
w⃗z · v⃗y

)
(u⃗x · w⃗z) + cos ϵ− cos ϵ · abv⃗y · u⃗x

]
=

1

2

[
1− ab

(
w⃗z · v⃗y

)
(u⃗x · w⃗z) + cos ϵ · ab

(
v⃗y · w⃗z

)
(u⃗x · w⃗z)− cos ϵ · abv⃗y · u⃗x

]
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=
1

2

[
1− ab cos ϵ

(
u⃗x · v⃗y

)
− ab (1− cos ϵ) (u⃗x · w⃗z)

(
w⃗z · v⃗y

)]
,

it is possible to calculate the joint probability distribution as

P(ab|xy) =
∑
z

1

8

[
1− ab cos ϵ

(
u⃗x · v⃗y

)
− ab (1− cos ϵ) (u⃗x · w⃗z)

(
w⃗z · v⃗y

)]
=

1

4
− 1

8
ab
[
cos ϵ

(
u⃗x · v⃗y

)
+ (1− cos ϵ) (u⃗x · w⃗z)

(
w⃗z · v⃗y

)]
.

(3.85)

Basis choice and CHSH parameter

From the joint probabilities P(ac|xz) and P(ab|xy), the couples Alice-Charlie and Alice-
Bob can compute, independently, the respective CHSH parameters SAC = ⟨a0c0⟩+⟨a0c1⟩+
⟨a1c0⟩ − ⟨a1c1⟩ and SAB = ⟨a0b0⟩+ ⟨a1b0⟩+ ⟨a0b1⟩ − ⟨a1b1⟩, with

⟨axcz⟩ =
∑

a,c=±1

acP(ac|xz) and
⟨
axby

⟩
=

∑
a,b=±1

abP(ab|xy). (3.86)

It can be shown that, given a probability of the form P (ab|xy) = Γ0|xy + aΓ1|xy + bΓ2|xy +
abΓ3|xy, the value of the expectation value is

⟨
axby

⟩
= 4Γ3|xy. Since both joint probabilities

(3.81) and (3.85) are written in this form, the expectation values can be written as

⟨axcz⟩ = − sin2 ϵ (u⃗x · w⃗z) , and (3.87)⟨
axby

⟩
= −

∑
z

1

2

[
cos ϵ

(
u⃗x · v⃗y

)
+ (1− cos ϵ) (u⃗x · w⃗z)

(
w⃗z · v⃗y

)]
. (3.88)

The corresponding values of the CHSH parameter are

SAC = Θ0 sin
2 ϵ (3.89)

SAB = Θ1 cos ϵ+Θ2(1− cos ϵ) = Θ2 + (Θ1 −Θ2) cos ϵ, (3.90)

with

Θ0 =− (u⃗0 · w⃗0 + u⃗1 · w⃗0 + u⃗0 · w⃗1 − u⃗1 · w⃗1), (3.91)

Θ1 =− (u⃗0 · v⃗0 + u⃗1 · v⃗0 + u⃗0 · v⃗1 − u⃗1 · v⃗1), (3.92)

Θ2 =−
∑
z

1

2

[
(u⃗0 · w⃗z)(v⃗0 · w⃗z) + (u⃗1 · w⃗z)(v⃗0 · w⃗z) + (u⃗0 · w⃗z)(v⃗1 · w⃗z)

− (u⃗1 · w⃗z)(v⃗1 · w⃗z)
]
.

(3.93)

In order to find out the measurement bases that maximize the violation of both CHSH
inequalities SAC ≤ 2 and SAB ≤ 2, it is convenient to rewrite the Equations (3.89)
and (3.90) by using the parameter x = sin2 ϵ, that parametrizes the strength of Charlie’s
measurement, obtaining

SAC(x) = Θ0x, (3.94)

SAB(x) = Θ2 + (Θ1 −Θ2)
√
1− x. (3.95)

Since x ∈ [0, 1], the violation of Eq. (3.94) is possible only if Θ0 > 0, in which case
SAC(x) is strictly increasing. It is also possible to restrict to the case Θ1 > Θ2, otherwise
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Eq. (3.95) cannot be violated. Indeed, in the case Θ1 ≤ Θ2, SAB(x) is monotonically
increasing, but since for x = 1 Alice and Bob are no more nonlocal, due to the strong
measurement performed by Charlie, we have SAB(1) ≤ 2, therefore SAB(x) ≤ SAB(1) ≤ 2.
The constraints Θ0 > 0 and Θ1 > Θ2 implies that SAC(x) is increasing and SAB(x) is
decreasing, therefore there is a unique intersection SAC(x̃) = SAB(x̃), which corresponds
to the point with the most significant double violation. In order to find the bases giving
the maximum simultaneous double violation, it is sufficient to maximize SAC(x̃), for x̃ ={
x ∈ [0, 1] |SAC(x) = SAB(x)

}
, set described by the equation

x̃ = β − 1

2
(α− β)2 +

1

2

√
(2β − (α− β)2)2 − 4(β2 − (α− β)2), (3.96)

where α = Θ1/Θ0 and β = Θ2/Θ0. This is an optimization problem over the 10 free real
parameters that define Θi in the Bloch sphere: two parameter per each of the vectors
u⃗1, w⃗0, w⃗1, v⃗0, v⃗1. The vector u⃗0 can be omitted because of the spherical symmetry of the
optimization problem. Since the problem is computationally very intensive, it is necessary
to simplify it before the numerical optimization. The first simplification is choosing for
Θ0 highest possible value Θ0 = 2

√
2, equivalent to choosing

u0 = −Z +X√
2

, w0 = Z,

u1 =
−Z +X√

2
, w1 = X.

It is then possible to numerical optimize over the remaining 4 parameters v⃗0 and v⃗1,
obtaining

u0 = −Z +X√
2

, w0 = v0 = Z,

u1 =
−Z +X√

2
, w1 = v1 = X,

which correspond to the Bloch vectors

u⃗0 = (0, 0, 1) , u⃗⊥0 = (0, 0,−1) ,

u⃗1 = (1, 0, 0) , u⃗⊥1 = (−1, 0, 0) ,

w⃗0 = v⃗0 =

(
− 1√

2
, 0,− 1√

2

)
, w⃗⊥

0 = v⃗⊥0 =

(
1√
2
, 0,

1√
2

)
,

w⃗1 = v⃗1 =

(
1√
2
, 0,− 1√

2

)
, w⃗⊥

1 = v⃗⊥1 =

(
− 1√

2
, 0,

1√
2

)
.

The vectors u⃗x, w⃗z and v⃗y lie on the same two-dimensional space, therefore
∑

z
1
2(u⃗x ·

w⃗z)(v⃗y · w⃗z) = 1
2 u⃗x · v⃗z. Consequently, Θ2 =

1
2Θ1 and the inequalities become

SAC = Θ0 sin
2 ϵ, (3.97)

SAB =
1

2
Θ1(1 + cos ϵ). (3.98)

By explicitly calculating the scalar products, u⃗0 · w⃗0 = u⃗1 · w⃗0 = u⃗0 · w⃗1 = − 1√
2
and

u⃗1 · w⃗1 =
1√
2
, it is possible to find Θ0 = Θ1 = 2

√
2, giving

SAC = 2
√
2 sin2 ϵ, (3.99)

SAB =
√
2(1 + cos ϵ). (3.100)

The maximum violation is found at x̃ = sin2 ϵ = 3/4, with SAC = SAB = 3
2

√
2 ∼ 2.12.
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Comparison with optimal measurement

To compare the results of our model with the theoretical model described in the article
by Silva, et al. [122], it is necessary to study the correspondence between the two models.
The model of the measurement described by Silva uses a continuous pointer |ϕ(q)⟩, which
is interacted with a system in initial state |ψ⟩ = α |H⟩ + β |V ⟩ to give the output state
α |H⟩ |ϕ(q − 1)⟩+β |V ⟩ |ϕ(q + 1)⟩. The measurement is then performed on the orthogonal
basis |H(q)⟩ and |H(−q)⟩, where H(q) is the Heaviside step function (the measurement
associates +1 to positive pointer states and −1 to negative ones). The measurement is
then described in function of its “quality factor”

F =

∫ +∞

−∞
ϕ(q + 1)ϕ(q − 1)dq = ⟨ϕ(q + 1)|ϕ(q − 1)⟩ , (3.101)

and its “precision”

G =

∫ +1

−1
ϕ2(q)dq

= 1−
∫ 0

−∞

⏐⏐ϕ(q − 1)
⏐⏐2 dq − ∫ +∞

0

⏐⏐ϕ(q + 1)
⏐⏐2 dq

= 1−
∫ +∞

−∞

⏐⏐H∗(−q)ϕ(q − 1)
⏐⏐2 dq − ∫ +∞

−∞

⏐⏐H∗(q)ϕ(q + 1)
⏐⏐2 dq

= 1−
⏐⏐⟨H(−q)|ϕ(q − 1)⟩

⏐⏐2 −⏐⏐⟨H(q)|ϕ(q + 1)⟩
⏐⏐2 .

(3.102)

In our model, the state |ψ⟩ = α |H⟩ + β |V ⟩ interacts with the measurement system
giving the output state α |H⟩ |ϕ+⟩+ β |V ⟩ |ϕ−⟩, where |ϕ+⟩ = |+⟩ and |ϕ−⟩ = (cos ϵ |+⟩+
i sin ϵ |−⟩). The chosen measurement basis is {|+⟩ , |−⟩}, therefore the “quality factor” of
our measurement is

F = ⟨ϕ+|ϕ−⟩ = cos ϵ, (3.103)

and the “precision” is

G = 1−
⏐⏐⟨−|ϕ+⟩

⏐⏐2 −⏐⏐⟨+|ϕ−⟩
⏐⏐2

= 1−
⏐⏐⟨−|+⟩

⏐⏐2 −⏐⏐⏐⟨+|
(
cos ϵ |+⟩+ i sin ϵ |−⟩

)⏐⏐⏐2
= 1− cos2 ϵ = sin2 ϵ.

(3.104)

The values of the CHSH parameter can therefore be expressed as

SAC = 2
√
2G, (3.105)

SAB =
√
2(1 + F ). (3.106)

It is therefore possible to compare our measurement with those proposed in [122] by looking
at the two values of the CHSH parameter as a function of the measurement precision G, as
shown in Figure 3.25. The generalized measurement described in this section implements
a sub-optimal pointer type, since F 2 + G2 = 1 − G(1 − G) ≤ 1 [122] (this expression is
1 only in the case of strong measurement by either Bob or Charlie). In this scheme, it
is still possible to vary the pointer type by changing the measurement basis. Indeed, if
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Figure 3.25: Variation of the SAC (red) and SAB for different types of pointer types.
Linear (yellow), gaussian (green) and optimal (purple) pointers are taken from [122].
These pointers are compared with the generalized measurement model described in this
Section (blue). The dash-dotted and the dashed lines indicate, respectively, classical and
Tsirelson’s bounds.

Charlie’s ancilla is measured in the basis {|ϕ⟩ = (|0⟩+ eiϕ |1⟩)/2, |ϕ⊥⟩ = (|0⟩ − eiϕ |1⟩)/2},
the “quality factor” is unchanged, but the value of the “precision” becomes

G(ϵ, ϕ) = 1−
⏐⏐⏐⟨ϕ+|ϕ⊥⟩⏐⏐⏐+⏐⏐⟨ϕ−|ϕ⟩⏐⏐

= 1− sin2
ϕ

2
− cos2

(
ϵ+

ϕ

2

)
=

1

2

[
cosϕ− cos (2ϵ+ ϕ)

]
= sin ϵ sin (ϕ+ ϵ) .

(3.107)

Therefore, it is possible to change the optimality of the pointer by changing Charlie’s
ancilla measurement basis. For each epsilon, the optimal pointer is given by G(ϵ) =√
1− F (ϵ)2 = sin ϵ, that can be realized by choosing ϕ = π/2 + ϵ.
By choosing the sub-optimal pointer described in this section, we mean to demon-

strate that the optimality of the pointer is not a prerequisite for the success of the exper-
iment [115].

3.2.5 Experimental implementation of the optical circuit

The optical circuit described in Section 3.2.4 is implemented using the setup described in
Figure 3.26.

Alice’s and Bob’s measurements

Alice and Bob perform a strong polarization measurement on the X-Z plane of the Bloch
sphere. As described in Section 1.5.2, a polarization measurement in the computational



96 CHAPTER 3. GROUND EXPERIMENTS
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Figure 3.26: Scheme of the experimental setup [115]. The polarization-entangled photons
are produced by the Sagnac source described in Chapter 2 and sent to Alice and Bob
through optical fibers. Alice and Bob implement a scheme, consisting of a HWP (HWP1
and HWP6) and a PBS, to measure the polarization on two linear bases. The transmitted
and reflected photons from the PBS are detected by single-photon avalanche photo-diodes
(APDs). Charlie’s apparatus performs the general measurement. HWP2 and HWP5
are used to implement the transformations R and R†, respectively. HWP3 and HWP4
are placed in a Sagnac interferometer with clockwise and anticlockwise paths spatially
separated. In particular, HWP3 (HWP4) is placed in the clockwise (anticlockwise) path,
and is used as a phase retarder between horizontal and vertical polarization. The phase
difference between the two paths is adjusted by tilting a thin glass plate. Finally, a liquid
crystal (LQ) is used as a phase retarder between horizontal and vertical polarization.
This image uses elements from the ComponentLibrary by Alexander Franzen [33], licensed
under CC BY-NC 3.0 [34].

basis
{
|H⟩ , |V ⟩

}
is performed by using a polarizing beam-splitter (PBS), with two single-

photon avalanche photo-diodes (APDs) at its exit ports. In order to measure an arbitrary

polarization basis
{
|a⟩ = cos α2 |H⟩+ sin α

2 |V ⟩ , |a⊥⟩ = − sin α
2 |H⟩+ cos α2 |V ⟩

}
on the X-

Z plane of the Bloch sphere, it is necessary to perform a rotation around the y-axis Ry(θ),
such that

Ry(θa) |a⟩ = |H⟩ , and Ry(θa) |a⊥⟩ = |V ⟩ , (3.108)

where the angle θa = −α = 2arccos
(
⟨H|a⟩

)
. The rotation can be implemented by rotating

a HWP of an angle θa/4, since ΛHWP (θa/4) = Ry(θa)σz. The presence of the σz after the
rotation matrix has no effect because it is followed by a polarization measurement in the
computational basis, which is insensitive to the relative phase between |H⟩ and |V ⟩.

Charlie’s measurement

Charlie performs his generalized measurement by using a path-encoded ancilla. In path
encoding, described in Section 1.5.2, the computational basis corresponds to two non-
overlapping spatial modes of the electromagnetic field, such as two gaussian beams with
different approximate wave-vector k1 and k2. In our experimental scheme, the two modes
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k1 and k2 correspond, respectively, to the propagation in the clock-wise and anti-clockwise
direction of the Sagnac interferometer. The two computational basis vectors are therefore

|0⟩ := â†k1
|0, 0⟩k1k2

= |1, 0⟩k1k2
, and |1⟩ := â†k2

|0, 0⟩k1k2
= |0, 1⟩k1k2

. (3.109)

The implementation of the theoretical circuit of Figure 3.24 with optical components
requires each gate to be replaced with an equivalent circuit using a combination of the
unitary operations described in Section 1.5.2, adapt to the encoding used for each qubit.
The equivalence of two optical circuits means that, given a generic input state |ψ⟩, they
produce the same output (i.e., the two circuits must have, up to a global phase factor,
the same matrix representation). Charlie’s measurement apparatus uses three gates, one
Y -axis rotation of the polarization qubit (and its inverse), two Hadamard gates of the
path qubit and a controlled-phase-shift gate, which implements a Z-axis rotation of the
path qubit controlled by the polarization qubit.

• Y -axis rotation - The Y -axis rotation of the polarization qubit Ry(θz) can be im-

plemented by employing a HWP ΛHWP

(
θz
4 + π

4

)
followed by a σx operation which,

being equivalent to a swap between the two basis vectors |H⟩ and |V ⟩, does not
require to be implemented by using optical elements, but can be corrected in the
data analysis phase.

Figure 3.27: Optical implementation of the Y -axis rotation on a polarization qubit.

• Hadamard gate - The Hadamard gate on a path encoded qubit is implemented, as
shown in Figure 3.28, by sandwiching a beam-splitter with two Rz(−π/2) gates.
The two Rz(−π/2) gates are necessary in order to compensate the phase-shift be-

Figure 3.28: Optical implementation of the Hadamard gate on a path-encoded qubit.

tween the reflected and the transmitted beam of an optical beam-splitter. However,
they do not need to be experimentally implemented because the ones before the
first and after the second UBS are irrelevant (indeed, the ancilla is prepared and
measured on eigenstates of the computational basis) and the one between the two
beam-splitters can all be absorbed in the Uphase(ϕ) gate used in the implementation
of the controlled-phase-shift gate.

• Controlled-phase-shift gate - The controlled phase gate is implemented by using an
entangling gate U(ϵ1, ϵ2) of the form

U(ϵ1, ϵ2) =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 eiϵ1 0
0 0 0 eiϵ2 ,

⎞⎟⎟⎟⎠ (3.110)

and two Z-axis rotations Rz(ξ) and Rz(ϕ), on the first and the second qubit respec-
tively (which can be put together into the single unitary Rz(ξ) ⊗ Rz(ϕ)), as shown
in Figure 3.29.
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Figure 3.29: Optical implementation of the controlled-phase gate with polarization-
encoded control qubit and path-encoded target qubit.

The rotation Rz(ξ) on the first qubit is necessary because, if the input state |ψ⟩ |+⟩ =(
α |H⟩+ β |V ⟩

)
|+⟩ is put into U(ϵ1, ϵ2), the resulting output state is

α |H⟩ |+⟩+ ei
ϵ1+ϵ2

2 β |V ⟩
(
cos

(
ϵ1 − ϵ2

2

)
|+⟩+ i sin

(
ϵ1 − ϵ2

2

)
|−⟩
)
, (3.111)

differing from the wanted state (3.74) because of the phase factor ei
ϵ1+ϵ2

2 . The gate
Rz(ϕ) on the second qubit is the circuit representation of the total phase difference
between the clockwise and the anticlockwise paths, which must be adjusted to the
right value in order to obtain the equivalence between the two ports.

In matrix representation, the product of the entangling gate U(ϵ1, ϵ2) with the two
Z-axis rotations is

(Rz(ξ)⊗Rz(ϕ))U(ϵ1, ϵ2) =

⎛⎜⎜⎜⎝
1 0 0 0
0 eiϕ 0 0

0 0 ei(ξ+ϵ1) 0

0 0 0 ei(ϵ2+ξ+ϕ)

⎞⎟⎟⎟⎠ . (3.112)

In order to have this expression describe the controlled-phase gate CP (ϵ) defined in
Equation (1.29), it is necessary that⎧⎪⎪⎨⎪⎪⎩

ϕ = 0

ξ + ϵ1 = ϵ

ϵ2 + ξ + ϕ = −ϵ
, (3.113)

which gives the necessary conditions for equivalence⎧⎪⎪⎨⎪⎪⎩
ϕ = 0

ϵ = ϵ1−ϵ2
2

ξ = − ϵ1+ϵ2
2

. (3.114)

The experimental implementation of Charlie’s measurement, shown in Figure 3.26, is
equivalent to the circuit shown in Figure 3.30, provided that measurement results are
swapped (as underlined by −c at the output of the circuit) and that the phase effect
introduced by the two beam-splitters is corrected by the Rz(ϕ) gate.

The measurement on the computational basis of the path qubit is experimentally per-
formed by looking at a single output and changing the value of the phase ϕ from 0 to
π. If at ϕ = 0 the state |+⟩ is transformed by the Hadamard gate into |0⟩, at ϕ = π
it is the state |−⟩ which goes into |0⟩ after the Hadamard gate. Indeed, the rotation
Rz(ϕ) transform the state |0⟩ + e−iϕ |1⟩ into the state |+⟩, which is then transformed
into |0⟩ by the Hadamard gate. The POVM

{
|0⟩ ⟨0|HRz(−ϕ), |0⟩ ⟨0|HRz(−ϕ+ π)

}
on the path-encoded qubit is therefore equivalent to a projective measurement on the{
|ϕ⟩ = |0⟩+ eiϕ |1⟩ , |ϕ⊥⟩ = |0⟩ − eiϕ |1⟩

}
basis.
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Figure 3.30: Circuit representation of the experimental Charlie’s measurement setup im-
plemented in Figure 3.26.

3.2.6 Experimental results

The apparatus

The experimental scheme described in Section 3.2.5 is implemented on the optical bench
by exploiting the polarization-entangled photons generated by the source described in
Chapter 2. The source is pumped with a CW laser at 404.5 nm, and uses a 30mm PPKTP
crystal inside a Sagnac interferometer to produce pairs of photons at 809 nm. The photons
are collected to single mode optical fibers and sent one to Alice and the other one to the
couple Charlie-Bob.

The photo of Alice’s setup is shown in Figure 3.31. Alice’s measurement setup is
preceded by a three-coil, “bat ears” polarization controller and a half-wave plate (HWP),
with horizontal fast axis, which is rotated around its vertical axis. These elements are
necessary to implement the arbitrary unitary necessary to produce a singlet state |Ψ−⟩,
as described in Section 2. Alice’s basis choice is implemented by using a half-wave plate
(HWP) mounted on a mechanized rotation mount, controlled by a personal computer.
The measurement in the computational basis {|H⟩ , |V ⟩} is performed by a polarizing
beam-splitter, whose outputs are collected by multi-mode optical fibers and directed into
single-photon avalanche photo-diodes (SPADs). A linear polariser is used to filter out
residual H polarization present in the reflected beam.

Bob’s measurement apparatus, shown in Figure 3.32, is very similar to Alice’s one.
The only difference with respect to Alice’s setup is the collection, which in this case uses
single-mode fibers. This is due to the presence of Charlie’s measurement, which requires
mode filtering in order to obtain the required interference visibility between the clockwise
and the anticlockwise arm of the interferometer.

Charlie’s measurement apparatus, shown in Figure 3.33, implements the path encoding
by using a Sagnac interferometer, with the computational basis correspondent to clockwise
and anticlockwise propagation. Before entering Charlie’s setup, the photon is filtered using
a 3 nm filter, with central wave-length 808 nm, in order to remove different wave-length
photons produced by the source (see Chapter 2), whose presence is detrimental because
of the different phase transformations introduced by the different optical elements. Then,
the photon is rotated by a half-wave plate on a motorized rotation mount, which is used to
select the measurement basis, as described in Section 3.2.5, and encounters a beam-splitter
(BS), which creates a superposition of clockwise and anticlockwise arm.



100 CHAPTER 3. GROUND EXPERIMENTS

Figure 3.31: Setup used for Alice’s measurement. Before Alice’s measurement, the photon
crosses a three-coil polarization controller (commonly called “bat ears”) and a half-wave
plate (HWP), rotated about the vertical axis, in order to adjust the phase of the source and
the transformation introduced by fiber birefringence. Alice’s measurement setup consists
of a half-wave plate (HWP1), used to select the measurement basis, and a polarizing beam-
splitter (PBS), whose outputs are collected by multi-mode fibers. A polariser is placed on
the reflected arm of the PBS in order to filter the residual horizontal polarization reflected.

Figure 3.32: Setup used for Bob’s measurement. The basis is chosen by a half-wave plate
(HWP6) on a mechanized rotation mount, which can be seen in the left side of Figure
3.33. Then, a polarizing beam-splitter (PBS) performs the measurement in the {|H⟩ , |V ⟩}
basis. The reflected arm of the PBS is filtered by using a linear polariser.
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Figure 3.33: Charlie’s measurement setup. The fiber coming from the source crosses a half-
wave plate (HWP2) and a 3 nm filter before being inserted into the Sagnac interferometer,
through a beam-splitter (see Chapter 2). The clockwise and anticlockwise arms of the
interferometer are separated by ∼ 1 cm in order to allow the placement of different optical
elements on the two arms. Both arms are equipped with a half-wave plate (HWP3 and
HWP4), whose rotation around the vertical axis controls the phase between H and V
polarization, and a glass, used to control the global phase of each arm. At the output
of the interferometer, the photon crosses a couple of liquid crystals (LQ) and a half-wave
plate (HWP5), which implements the inverse of the transformation applied by HWP2,
before reaching Bob’s basis selection half-wave plate (HWP6), at the bottom-left side of
the Figure.

The two arms are separated by ∼ 1 cm in order to make it possible to place different
optical elements on them. Because of the short coherence length of the photons produced
by the source, it is necessary to place the same optical elements on both arms of the
interferometer in order to see interference at the exit beam-splitter. Each arm has a half-
wave plate, with the fast and slow axes correspondent to the H-V basis, which is rotated
around its vertical axis in order to give a phase between the H and the V polarization. The
cumulative effect of these plates, the mirrors and the beam-splitter gives a relative phase
ϵ1 (ϵ2) between the two polarizations. Both arms are also equipped with an equal-thick
glass plate, which is perpendicular to the beam in the anticlockwise arm and mounted on
a mechanized rotator stage, which tilts it around the vertical axis, in the clockwise are.
By tilting this glass plate, it is possible to control the relative phase ϕ of the two arms of
the interferometer.

At the output of the interferometer, two liquid-crystals are placed in order to implement
the Rz(ξ) transformation required for the implementation of the controlled-phase-shift
gate. Then, a half-wave plate implements the inverse of the basis selection transformation
before the photon arrives at Bob’s measurement setup.

The photons are detected by using four single-photon avalanche photo-diodes (SPADs),
characterized by ∼ 60% quantum efficiency12, 21 ns dead time and ∼ 800 ps FHWM

12The low detection efficiency of semiconductor single-photon detectors makes the experiment subject
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electronic jitter [114]. Two detectors are placed at Alice’s side and two at Bob’s side.
Detection events are tagged using a 81 ps resolution time-tagger. Both the acquisition of
the time-tags and the control of the experiment is implemented using a personal computer,
equipped with a Linux operating system and a custom software implemented in Python.

Strength of the measurement

The strength of Charlie’s measurement is given by parameter ϵ = ϵ1−ϵ2
2 , which can be

controlled by turning the two half-wave plates HWP3 and HWP4 in the clockwise and
anticlockwise arm of the interferometer. However, since both ϵ1 and ϵ2 depend also on the
phase introduced by the other optical elements, the exact value of ϵ must be measured.
This measurement can be performed by noticing that, given a state |ψ⟩ = α |H⟩ + β |V ⟩
at the input of the interferometer, the state at its |0⟩ output is

|ψout⟩ = (I2 ⊗ |0⟩ ⟨0|UBSRz(ϕ))U(ϵ1, ϵ2)(|ψ⟩ ⊗ UBS |0⟩)

= α sin

(
ϕ

2

)
|H⟩+ βei

ϵ1+ϵ0
2 sin

(
ϕ

2
− ϵ

)
|V ⟩ ,

(3.115)

where ϕ is the phase difference between the clockwise and the anticlockwise arm, which is
controlled by the glass plate. For small tilting angle θ of the thin glass plate, it is possible
to neglect the effects of refraction and consider, as a model for ϕ,

ϕ(θ) =
χ

cos(θ − θ0)
+ ϕ0, (3.116)

χ =
2π

λ
dδn, (3.117)

with θ−θ0 the incidence angle of the beam to the plate, λ the wavelength, d the thickness
of the plate, δn = nglass − nair and ϕ0 a phase offset. If Bob measures in the Z basis, he
obtains

P(H|ϕ(θ)) =
⏐⏐⟨H|ψout⟩

⏐⏐2 = |α|2 sin2
(
ϕ(θ)

2

)
, (3.118)

P(V |ϕ(θ)) =
⏐⏐⟨V |ψout⟩

⏐⏐2 = |β|2 sin2
(
ϕ(θ)

2
− ϵ

)
. (3.119)

By measuring these probabilities for several values of θ, it is possible to interpolate
these probabilities, using the model for the phase ϕ(θ), with the functions

P(H|θ) = IH cos2
(

χ

cos(θ − θ0)
+ ϕH

)
, (3.120)

P(V |θ) = IV cos2
(

χ

cos(θ − θ0)
+ ϕV

)
, (3.121)

from which ϵ = ϕH − ϕV can be estimated.
The results of this measurement, together with the interpolating curve, is shown in

Figure 3.34.
In order to prove the stability of the measurement strength ϵ, and to evaluate its

experimental error, this measurement (for a different value of ϵ) has been performed for
a period longer that thirteen hours, obtaining the results shown in Figure 3.35. The
measurement shows that ϵ is stable over a very long period of time. Moreover, it allows
to give a direct estimation of the error in the measurement of ϵ.

to the detection loophole. Since this experiment is thought as a first demonstration of the feasibility of the
double violation, however, this effect has not been considered, making the “fair sampling” assumption [118].
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Figure 3.34: Direct measurement of P(H|θ) and P(V |θ), with the method de-
scribed above. The fitting functions P(H|θ) = 8600 · sin2( 1185.5

cos(θ−0.356) + 2.45) + 98 and

P(V |θ) = 11000 · sin2( 1185.5
cos(θ−0.356) + 1.40) + 68, with θ the rotation angle of the glass plate

in radians, show the good agreement of the phase model with the experimental data. The
phase difference measured in this way is ϵ = 1.049± 0.004 [115].
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Figure 3.35: Measurement of the ϵ for a period of thirteen hours [115]. (Left) Each point
in the graph represents a different estimation of ϵ. (Right) Distribution of the measured
ϵ. The gaussian curve that fits the data has a mean value µ = −0.5975 and a standard
deviation σ = 0.0025. The standard deviation of the distribution is used as the error on
a single measurement of ϵ.

Results

The results of a series of measurements performed with this experimental setup, for various
values of ϵ in the range

[
0, π/2

]
, is shown in Figure 3.36. The results show a good

agreement with the theoretical model. For ϵ = 0, there is no interaction between the
polarization and the path degree of freedom, therefore Charlie is not performing any
measurement. In this case, as expected, SAC is compatible with 0, while SAB is close
to the Tsirelson’s bound. By increasing ϵ, the quantity of information got by Charlie
increases, as shown by the increase in his correlation SAC with Alice, while the state is
more disturbed, determining a lowering in the correlation SAB between Bob and Alice.

Most measurements have been taken in the region around ϵ = π/3, where both SAB
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Figure 3.36: Measurement of SAC (red squares) and SAB (blue diamonds) for several
values of ϵ. The red and green solid lines show the theoretical values of SAC and SAB from
Equations. (3.99) and (3.100), while the dash-dotted and dashed lines indicate classical
and Tsirelson’s bounds respectively. The green region highlights the values of ϵ in which
double violation is expected. Possonian errors are within the dimensions of the points.
From Schiavon et al. [115].

and SAC are expected to violate the classical bound. To give a larger statistical evidence
of the effect of double violation, several measurements were performed for two different ϵ
values in that region. Figure 3.37 (Left) reports the results of 8 consecutive measurements
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Figure 3.37: Measurements of SAC (red squares) and SAB (blue diamonds) in two con-
secutive series of trials. Red and blue solid lines indicate the mean value of SAC and
SAB respectively. (Left) Eight consecutive trials are performed through an hour, with
ϵ = 1.049 ± 0.002. Considering the Poissonian error, the measurements show a violation
of 10 standard deviations, fluctuating around mean values of SAC = 2.125 ± 0.003 and
SAB = 2.096± 0.003. (Right) Another series of five consecutive trials performed within
an hour, with ϵ = 1.053±0.002. All the measurements show a violation of 10 standard de-
viation, fluctuating around mean values of SAC = 2.114± 0.003 and SAB = 2.064± 0.003.
From Schiavon et al. [115].

with ϵ = 1.049 ± 0.003. In all trials, both SAC and SAB are above the classical bound,
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fluctuating around the mean values SAC = 2.125± 0.003 and SAB = 2.096± 0.003. Data
are acquired at a mean coincidence rate of 700 counts per second, with an exposure time of
30 s for each measurement, therefore each trial takes about eight minutes to be measured.
Therefore, these results show that the double violation is stable for a period longer than
an hour, proving the reproducibility of the double violation and the stability of the setup.

A second series of trials, with ϵ = 1.053 ± 0.003 is shown in Figure 3.37 (Right).
Similarly to the previous case, both SAC and SAB are above the classical bound for the
entire period of the acquisition, with SAC = 2.114± 0.003 and SAB = 2.064± 0.003.
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Chapter 4

A receiving station for space
quantum communication

The peculiar feature of quantum communication is the necessity of transferring quantum
states between large distances. As already shown in Section 1.5.2, single photons are the
ideal information carriers for quantum communication, since their low interaction with
matter allows them to preserve the coherence of their state over long distances. Besides the
information carriers, also the channel used for state transmission is of primary importance,
since the peculiar characteristics of quantum states is the fact that they cannot be copied,
thus ruling out the possibility of amplifying the state to reach longer distance, as happens
in classical communication. This means that the losses of the channel used for quantum
communication must be low enough to allow a considerable part of the transmitted photons
to reach the receiver.

There exist mainly two ways of transferring optical information through long distances:
optical fibers and free-space1. The advantage of optical fibers is given by their wide use
in existing telecommunication networks, thus offering the possibility to integrate quantum
communication with the other communication systems. Their major drawback, however,
is given by the relatively high level of losses, limiting the coverable distance to few hundred
kilometers (the current distance record in optical fibers is 404 km [125]).

This limitation is the main reason for the interest in free-space quantum communica-
tion. The immediate application of free-space quantum communication is the construction
of line-of-sight optical channels, with both the transmitter and the receiver on the ground
and all the propagation through the atmosphere. While this scheme could be of interest
because of the presence in the atmosphere of transmission windows where the mean loss
level is very low, ground-to-ground links are limited by Earth curvature, which poses a
stringent limit on the coverable distance. However, free-space quantum communication
offers also the possibility of creating a link between a ground station and a satellite on or-
bit. There are various reasons why this is particularly interesting. The ground-to-satellite
link, indeed, is characterized by quite short propagation in the atmosphere (∼ 10 km) and
a much longer propagation in vacuum, where it is not affected by turbulence. Moreover, a
single satellite can cover a large area on the ground, thus making it possible to implement
quantum communication between distances that are beyond the capabilities of ground-to-
ground links (both in free-space and with optical fibers).

1Free-space quantum communication usually refers to the transmission of quantum states through the
atmosphere, or in space. Recently, however, also underwater quantum communication has started being
investigated [124].

107
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The goal of satellite quantum communication was already present in the pioneering
free-space studies, realized in the late 90s from Richard Hughes’s group in Los Alamos [126].
Their 0.5 km free-space optical link provided the first evidence that satellite Quantum
Key Distribution was indeed feasible. This opened the way to several other experimen-
tal studies, all aimed at the demonstration of the feasibility of satellite-ground quantum
communication, over increasing distances. The first experimental demonstration of the
feasibility of entanglement transfer with a satellite dates back to 2005, using a 13 km free-
space ground-to-ground optical link [127]. A great improvement in this field was due to
the implementation of a 144 km free-space optical link between two telescopes situated in
two different islands of the Canaries. Through this link, several experiments have been
performed, exploring many aspects of free-space quantum communication [128–131]. The
same period saw also the beginning of the research for an effective implementation of
ground-satellite experiments. The lack of a satellite sending or receiving quantum states
made it necessary to think of some way of simulating a quantum source on space. One
possibility is the exploitation of the signal retro-reflected by geodesic satellites used in
Laser Ranging (LR). These satellites are provided with corner-cube retro-reflectors which,
if illuminated by a laser pulse, reflect it back to the transmitting station. By adjusting
the power of the transmitting laser, it is possible to simulate an attenuated laser source
on the satellite with the wanted mean photon number per pulse. Moreover, this technique
allows to exploit the existing LR infrastructure for synchronization and tracking, thus
greatly simplifying the experimental work needed for the setup of the station. With this
technique, the first single photon exchange with a satellite has been demonstrated [132],
followed by the first demonstration of the feasibility of polarization encoding [133] and the
first satellite-based single-photon interference [134].

The last few years have seen, if possible, a further increase in the field of satellite quan-
tum communication. Besides the experiments with moving trucks [135], airplanes [136],
and balloons [137], in the last few years the first satellites at least partially dedicated to
quantum technologies have been launched to space [138–140].

This Chapter will be dedicated to the new experimental scheme of the quantum receiver
at the Matera Laser Ranging Observatory (MLRO), with the goal of increasing the signal-
to-noise ratio of the receiving system by using high efficiency, low jitter detectors together
with a high resolution time-tagger in order to both increase the signal and decrease the
background noise through a tighter temporal filtering. It will start with a short description
of the SLR network and of the existing experimental setup at the MLRO, used for the
already cited experiments [132–134]. Than, it will describe the new experimental scheme
for the receiving station, from the new data acquisition system to the new data analysis
pipeline. The end of the chapter will give some hints on the ongoing research activity
aiming to exploit satellite orbit predictions, provided daily by the International Laser
Ranging Service (ILRS), in order to improve the accuracy of the analysis of the satellite
orbit to the level required for an optimal exploitation of the new hardware.

4.1 Satellite Laser Ranging

Satellite Laser Ranging (SLR) is a distance measurement technique that employs short
laser pulses directed towards a satellite and reflected back to the observatory by retro-
reflectors (corner-cubes) mounted on the satellite itself. This technique provides very
high precision, up to the level of few mm for a single measurement [141]. The high
precision measurement of satellite orbits is of primary importance for many goals, both
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scientific and technological. Its data are of fundamental importance for the elaboration of
the International Terrestrial Reference Frame (ITRF), the international standard for the
measurements on or near the Earth’s surface, such as the position returned by a GNSS
system like the GPS [142]. In addition to that, it allows the study of orbital perturbations,
of primary importance for the studies of Earth’s dynamics or for high accuracy test of
fundamental physical theories, like general relativity [143].

Nowadays, there exist more than 40 active SLR stations, coordinated by the Inter-
national Laser Ranging Service (ILRS), that is in charge of collecting, managing and
distributing the data of each SLR station. The stations are distributed all over the Earth,
with higher concentration in Europe and in the far East, as shown in Figure 4.1. A SLR

Figure 4.1: Map of the currently operating SLR stations. The map clearly shows the
non-uniform coverage of SLR stations, that are mostly situated in the North hemisphere,
especially in Europe and Asia. From the ILRS website [141].

station is usually provided with

• a high speed telescope, able to point and track even the fastest, low Earth orbit
(LEO) satellites,

• a high energy pulsed laser,

• a detector able to receive the signal retro-reflected by the satellite, usually a photo-
multiplier (PMT) or an avalanche photo-diode (APD),

• a data acquisition pipeline, able to tag with high precision both the outgoing and
the ingoing pulse, and

• a very stable frequency reference.

The satellites used in laser ranging are provided with retro-reflectors, usually made
with corner-cubes, having the property of reflecting back the incident beam regardless of
the angle of incidence. They are placed both in low Earth orbit (LEO) and in middle
Earth orbit (MEO), with various orbit inclinations and eccentricities, as shown in Figure
4.2. The orbit of the satellites is predicted on a daily basis from the data collected by the



110CHAPTER 4. A RECEIVING STATION FOR SPACE QUANTUMCOMMUNICATION

Figure 4.2: Orbit distribution of the satellites used for SLR. From the official ILRS web-
site [141].

different SLR stations. Predictions are then redistributed to SLR station, where they are
used as input to the satellite tracking system.



4.2. THE GROUND STATION FOR QUANTUM COMMUNICATION 111

4.2 The ground station for quantum communication

4.2.1 Existing setup

The ground station for quantum communication at the Matera Lasera Ranging Obser-
vatory (MLRO) is constructed sharing the transmission/reception optics with the laser
ranging station, using the laser ranging system for satellite tracking and synchronization.
The general scheme of the ground station at MLRO is shown in Figure 4.3.
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Figure 4.3: General setup of the ground station for quantum communication at the Matera
Laser Ranging Observatory. The laser ranging and the quantum subsystem operate in
parallel, in order to use the laser ranging system for tracking and synchronization.

Both the laser ranging and the quantum subsystem use a mode-locking laser oscillator
mastered by the atomic clock at the MLRO [133]. The laser produces linearly polarized
pulses of 100 ps duration at the wavelength of 1064 nm, with a 100MHz repetition rate
and about 400mW of average power. The laser is split between the two subsystems by a
half-wave plate (HWP1) followed by a PBS, in order to adjust the fraction of power giving
to both subsystems. The laser ranging system employs a pulse picker to select one pulse
every 107, which goes through a regenerative amplifier, a two single-pass amplifiers and a
Second Harmonic Generation (SHG) stage to obtain a 100mJ pulse with 10Hz repetition
rate at a wavelength of 532 nm. Qubit pulses are generated by sending the part of the
master oscillator entering the quantum subsystem into a SHG generator unit, whose out-
put is a 532 nm pulsed laser at a 100MHz repetition rate with a power of 110mW (each
pulse has an energy of 1.1 nJ). The encoding of the pulses in the chosen degree of freedom
is performed by the “state preparation” optical setup, which is controlled by a PC and an
FPGA. The divergence of satellite Laser Ranging (SLR) and qubit pulses is adjusted inde-
pendently before the pulses are combined by a NPBS into the Coudé path of the telescope.
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The telescope used for laser ranging at the MLRO, described in [56], is a Cassegrain
reflector with a parabolic primary mirror M1 of 1.5m diameter and focal length f1 =
2250mm, and hyperbolic secondary mirror of 148.5mm focal length and 10 cm diam-
eter [144]. The whole system has an effective area of 1.7662m2 and a focal length
feq = 225m. The other mirrors, M3 to M7, compose the Coudé path shown in Fig-
ure 4.4, a system of planar mirrors with the property that the direction of the beam after
the last mirror is independent from the pointing direction of the telescope. After M7, the

M7

M6

M5

M4

M3

M2

M1

θaz

θel

Optical table

Figure 4.4: The Coudé path of the telescope used for laser ranging at the MLRO. Mirrors
M4 to M6 rotate jointly with the telescope as the azimuth angle θaz is changed. From
Vallone et al. [133].

beam enters BS1, with the setup shown in Figure 4.3.

At the output of the telescope, the two beams are directed against the observed satel-
lite, which reflects them back with its retro-reflectors. The attenuation in the uplink
channel reduces the mean number of photons per pulse to µsat, which can be adjusted
to the value required by the experiment by changing the energy of the pulse sent from
the ground station2. Indeed, each “qubit” pulse, of energy Ep = 1.1 nJ3, can viewed as a
coherent state

|α⟩ = e−
|α|2
2

∞∑
n=0

αn(â†)n

n!
|Ω⟩ , (4.1)

where |Ω⟩ is the vacuum state, |α|2 = EP /ℏω = 3 · 109 is the mean number of photons per
pulse and â† is the operator of the mode entering the “state preparation” optical network.
The state preparation network transforms the field operator â† into SE,11b̂

†
1 + SE,12b̂

†
2,

where b̂†1 and b̂†2 are two orthogonal mode operators (they correspond to the two basis

2The quantum key distribution feasibility experiments use µsat ≤ 2 [133, 145], while the interference
experiment described in Section 5.1 has a higher µsat [134].

3This value is referred to the QKD experiment of Vallone et al. [133], that uses µsat ≃ 1.
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vectors of the encoding degree of freedom), and SE is the encoding scattering matrix (see
Section 1.5.1).

The state reflected by the satellite is again a coherent state, with mean number of
photons per pulse µsat = |αsat|2. The operator â† of equation 4.1, after reflection, has

been transformed into (SESuSsat)11b̂
†
1 + (SESuSsat)12b̂

†
2, where Su and Ssat represent the

single-photon transformations introduced by the uplink and the satellite, respectively4.
With this method, therefore, it is possible to simulate an attenuated laser source, with
mean number of photons per pulse µsat and transmitted quantum state

(SESuSsat)11b̂
†
1 |Ω⟩+ (SESuSsat)12b̂

†
2 |Ω⟩ , (4.2)

situated on the satellite.
After down-propagation through the atmosphere, the state entering the telescope is a

coherent state with mean number of photons per pulse |αrx|2 = µrx ≪ 1, which can be
written as

|αrx⟩ = e−
|αrx|2

2

∞∑
n=0

αnrx

[
(SESuSsatSd)11b̂

†
1 + (SESuSsatSd)12b̂

†
2

]n
n!

|Ω⟩

≃ e−
|αrx|2

2 |Ω⟩+ e−
|αrx|2

2 αrx

[
(SESuSsatSd)11b̂

†
1 + (SESuSsatSd)12b̂

†
2

]
|Ω⟩+O(α2

rx),

(4.3)

where Sd is the scattering matrix of downlink propagation.

The state is measured in the “Receiver” part of the setup of Figure 4.3, with the
measurement optical network implemented in the “Measure” block. In front of the re-
ceiver, a 3 nm filter (F) centered at 532 nm is placed for spectral filtering, and a shutter
(S2) protects the receiving apparatus from backscattered light during the transmission
cycle. The state is detected using two single photon photomultiplier tubes (PMT) (Hama-
matsu H7360-2), characterized by detection efficiency ηPMT = 0.1, FWHM electronic
jitter ∆tPMT = 1.22 ns and dark count rate DCPMT = 50Hz. The sensitive area of the
detector has a diameter of 22mm.

The necessity of sharing the same path for laser ranging, qubit outgoing and ingoing
pulse is the reason of the presence of the two beam-splitters BS1 and BS2 in the optical
path of the quantum subsystem. This, despite being necessary for the correct operation
of the ground station, adds 75% of losses both in transmission and in reception.

4.2.2 New experimental scheme

Last year, the quantum subsystem of the MLRO has started a process of upgrade aimed
to increase the performance of the receiving station. The long term goal of the upgrade is
to make the system adapt for quantum communication with middle Earth orbit (MEO)
or geostationary Earth orbit (GEO) satellites, and to make it suitable for high accuracy
lunar laser ranging (LLR) measurements within the Moonlight-2 project.

Differently from satellite laser ranging, lunar laser ranging applies the LR technique in
the measurement of the distance between the ground station and the surface of the Moon.
This is obtained by exploiting the corner-cube arrays disposed on the Moon by the US
Apollo 11, 14 and 15 and the Soviet Luna 17 and Luna 21 missions [141], whose location
on the Moon surface is shown in Figure 4.5. These arrays are characterized by a large area

4This is true in the hypothesis that channel losses are independent on the encoding degree of freedom.
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Figure 4.5: Location of corner-cube retro-reflector arrays on the lunar surface. From the
ILRS website [141].

(∼ 1m2) of small corner-cube retro-reflectors. The optical depth of the array, due to its
inclination with respect to the incoming pulse5, spreads the temporal mode of the incom-
ing pulse, limiting the accuracy of the measurement to the mm level even with the best
instrumentation. A further improvement of the accuracy requires the use of a new scheme
for the retro-reflectors, whose development is the scientific goal of the Moonlight-2 project.

The Padova group is in charge of improving the quantum receiver part of MLRO in
order to make it suitable for high accuracy LLR measurements. To this goal, the new
experimental scheme shown in Figure 4.6 has been implemented. The main difference
with the old scheme shown in Figure 4.3 consists of an improvement in the hardware
used for photon detection and tagging. Indeed, PMT detectors will be substituted with
semiconductor single-photon avalanche photo-diodes by Micro Photon Devices (MPD-
PDM), characterized by peak detection efficiency ηPDM = 0.48, FWHM timing accuracy
∆tPDM = 50ps and dark count rate DCPDM ≃ 350Hz [146]. They have a 200µm
diameter sensitive area, thus requiring tight focusing to collect the whole beam coming
from the telescope.

The output of these new detectors will be tagged using a quTAG time-tagger, charac-
terized by a 1 ps resolution and a tagging accuracy of less than 25 ps FWHM [147]. The
possibility of locking the internal clock to an external periodic signal allows to tag the
events with the stability of the MLRO atomic clock. Moreover, the splitting of the master
oscillator between the laser ranging and the quantum subsystem will exploit a Pockels cell,
switching the polarization according to the destination of the laser pulse (in particular,
it will select one pulse over 107 to send to the laser ranging subsystem). This allows to
operate both the quantum and the laser ranging subsystems in parallel without the need
of increasing the output power of the master oscillator to compensate the fraction of power

5The inclination changes periodically due to lunar librations.
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Figure 4.6: New experimental scheme for the MLRO.

sent to the quantum subsystem.

This new experimental setup is currently at the first stages of its development. Ex-
traordinary maintenance of the MLRO telescope, together with delays in the delivering
of the new hardware, have slowed down the implementation of the new quantum receiver
scheme. A preliminary characterization of the new MPD-PDM detectors, before the de-
livering of the new time-tagger, already shows the improved timing accuracy of the new
detectors with respect to the PMT used in the old setup. Figure 4.7 shows the results of
this characterization. By fitting the histograms with a Gaussian curve of standard devia-
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Figure 4.7: Detection time histograms obtained with the silicon SPAD (MPD-PDM) com-
pared to the one obtained by PMT [148].

tion σG on the right and an exponential decay of parameter τ on the left, it is possible to
give a first estimate of the timing accuracy of the detectors. The measurements, done at
the MLRO using the Beacon-C and the Ajisai satellites, have σG ≃ 120 ps and τ ≃ 260 ps
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for the first one and σG ≃ 227 ps and τ ≃ 510 ps for the second one. For comparison,
a measurement of the timing accuracy of the PMT detectors has been performed, giving
σG ≃ 498 ps [148]. The measurements give an insight of the improved timing performance
of the MPD-PDM detectors with respect of the old PMT one, high enough to observe also
the pulse spread due to the optical depth of the satellite.

4.3 Data collection and analysis

Since the maintenance work at MLRO prevented the testing of the new implementation of
the optical setup, the upgrade process focused on the development of the new software for
data analysis. This new software divides the analysis task into independent sub-tasks, each
involving a single step of the procedure. This Section will start by describing how data
collection works, as a prerequisite for the description of the new architecture of the data
analysis software. Then it will present some preliminary results on the orbit estimation
task, fundamental for the improving of the detection timing accuracy.

4.3.1 Data collection

Data collection requires a strict synchronization between the laser ranging and the quan-
tum subsystem, in order to avoid detector damaging due to back-scattered light in the
transmission phases. The laser ranging PMT is active during a very narrow detection gate,
which is dependent on the predictions of satellite orbits and can be manually adjusted by
the operator in order to correct the residual differences with the real orbit. The detectors
of the quantum subsystem, on the other hand, are protected by the shutter S2 before the
quantum receiver.

The synchronization is obtained by feeding some of the signals coming from MLRO
(Sync signals) into the FPGA controlling the quantum subsystem. Using these signals,
the FPGA controls the opening and closing of both the transmitting and receiving shutter
and, possibly, the quantum state preparation. The sync signals used for synchronization
are the start signal, emitted when the LR laser is shot, the gate signal, when the return
signal is expected, and the stop signal, corresponding to the effective detection of the
return pulse by the laser ranging PMT.

The timing of transmission (TX) and reception (RX) of the qubit signals is dependent
on the type of satellite that is being observed. Satellite are divided into four categories:
low Earth orbit (LEO), with round trip time (RTT) lower than 25ms, lower medium
Earth orbit (l-MEO), with RTT between 25 and 50ms, middle MEO (m-MEO), with
RTT between 50 and 100ms, and high MEO (h-MEO), with RTT > 100ms. The timing
diagram for the three categories is shown in Figure 4.8. For LEO satellites, where the
beam returning from laser ranging is intense, it is necessary to have the reception shutter
S2 closed at the arriving of the LR pulse. In this case, the quantum subsystem starts
after the later possible arrival of the LR pulse, and, of the remaining 75ms, about half
is covered by transmission and half by reception. For MEO satellites, it is no longer
necessary that the reception is closed at the arrival of the LR pulse, since its energy is
not high enough to damage the single photon detector. Therefore, the entire 100ms can
be used for quantum transmission. For low and middle MEO, the predicted arrival of the
LR pulse falls during the reception, making it possible to observe the LR pulse at the
single photon level, something that might be useful in further exploitation of the setup for
higher satellites. In the high MEO case, the transmission and the reception cover 100ms
each. This timing system, however, creates some problems with the LR system, since
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Figure 4.8: Timing diagram of the Matera quantum subsystem, for different kind of satel-
lites. The blue region correspond to the transmission (TX), when the shutter S1 is open,
while the red region to the reception (RX), when S2 is open. The instants Tj correspond
to the LR outgoing pulse (corresponding to the start signal). The intervals between TX
and RX are due to the time the shutter takes to fully open (2ms) and to fully close
(2.5ms) [56].

there is a 50% probability that the quantum system is transmitting during the gating of
the LR detector, giving a signal due to back-scattered light. Up to now, this has not been
a problem, since h-MEO satellites are almost unreachable with the existing setup. The
enhanced performances of the new experimental scheme, however, make these satellites
a viable target also for quantum transmission, requiring a slight change in the timing of
quantum transmission.

All the relevant signals of the quantum system, the start, the stop, the gate, the TX, and
the RX signal, are tagged into the time-tagger device, together with a reference 10MHz
signal coming from the atomic clock. In the old setup, also the signal coming from the
two PMT is tagged into the same time-tagger device. The new setup, on the other hand,
must put the output of the single-photon detectors into the new time-tagger, in order to
take advantage of the enhanced resolution and accuracy. Since the new time-tagger has
4 regular channels plus a start channel, it is not possible to use it to tag all the signals,
but it is still necessary to use the old time-tagging device, matching the tags of the two
time-taggers in the data analysis phase.

4.3.2 Data analysis

Data analysis is performed using a dedicated program written in MATLAB. The program
is divided into two parts, according to the two main tasks of the data analysis. One part
of the program covers the load and preprocessing of the raw time-tags collected by the
time-tagging devices, while the other one takes the data processed in the first part and
analyzes them. In order to keep the code readable and easily modifiable, it has been
written using an object-oriented approach, with the classes further grouped into modules.
This Section gives a global description of the data analysis software, divided into the two
main parts of the analysis.
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Preprocessing raw tags

The first step of data analysis is in charge with loading the data collected from the different
time-taggers, process them and put them in a form easily analyzable in the following part.
The behavior of this step is shown in the block diagram of Figure 4.9.

orbittimetaggers

config timetagger

configuration
files

data acquisition
files

tags

MLRO
files

predictions

+preprocess

tags

Figure 4.9: Block diagram of the first step of data analysis. The raw data and the
configuration, read through the classes timetagger and config respectively, are provided
as an input to the timetaggers class of the +preprocess module. The class outputs
the tags structure, containing all the tags from the different time-taggers into a single
time-scale. The tags structure is then used as input for the orbit class, that analyzes the
orbit, using the auxiliary input of MLRO files and predictions (loaded by two dedicated
classes in the +preprocess module).

The classes of the preprocessing pipeline are placed in the +preprocess module.

• The class timetaggers is in charge with taking the time-tags from the different time-
taggers and place them into the tags structure. Data loading is performed using the
abstract class timetagger of the +timetagger module, whose subclasses implement
the loading method for the different time-taggers. The hardware configuration, such
as the number of time-taggers involved and the signals connected to each channel,
is loaded into a configuration structure by the config class of the +config mod-
ule. Once data are loaded, the timetaggers class puts all time-tags into the same
timescale using an arbitrary, non-periodic reference signal shared by the different
time-taggers and corrects the residual time drifts due to clock instabilities.

• The class orbit performs the fit of the satellite orbit, in order to recover eventual
stop signals not detected by the LR setup. This task is performed through the help
of two auxiliary classes of the +preprocess package, mts and cpf pred. The first
one takes as input the file containing all the data acquired by the MLRO during
the passage of the satellite, while the second one computes the predictions of the
satellite orbit provided by the ILRS. The analysis of the satellite orbit will be treated
in Section 4.3.3.

At the end of the preprocessing step, the tags structure contains raw time-tags in a single
time scale, hardware configuration parameters and fitted orbit.

Qubit analysis

The second step of data analysis takes the data contained in the tags structure and uses
them to construct a new qubit structure, that contains the time-tags coming from the



4.3. DATA COLLECTION AND ANALYSIS 119

single photon detectors (corresponding to received qubits), and all the information about
that detection event. Indeed, detection events have a different meaning according to their
position in the period within two LR pulses. The distribution of the detection events
between two RX signals is shown in Figure 4.10.

Time from RX [ms]
0 20 40 60 80 100

C
o

u
n

ts
 p

e
r 

s
e

c
o

n
d

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Mod 100 ms histogram

Figure 4.10: Distribution of the detection events between two RX signals for a Beacon-
C passage. Red data correspond to detection events happening when the transmission
shutter S1 is, at leas partially, opened. Green and blue events correspond to detection
events when the receiving shutter S2 is open. Blue events happen later than the time
of closure of the transmission plus one round-trip time, therefore they are noise events.
Detection events corresponding to qubits reflected by the satellite must lie in the green
region.

As described in Section 4.3.1, during the operation of the quantum subsystem there
exist three different phases: the transmission (TX) phase, the reception (RX) phase and
the LR phase (when both S1 and S2 are closed). During the LR phase (which is present
only for LEO satellites, as evident form Figure 4.8), both the transmission and the recep-
tion shutters are closed. Qubit events coming from the satellite can happen only in a short
region of the RX phase, within one round-trip time from the closure of the transmission
shutter S1. All the other events in the reception phase are due to noise coming from the
sky, since the telescope is still pointing the satellite, but there is no signal coming from
the satellite.

The class main analysis of the module +analysis takes the tags coming from the
detectors and splits them into the regions shown in Figure 4.10, according to the time
difference between each detection event and the preceding RX signal. Then the class
takes the data in the region where satellite returns are expected and splits them into
“qubit slots”, which, summed together, give the histogram show in Figure 4.11.

The analysis implemented in the class main analysis performs the tasks common to
all the experiments using the setup described in this Chapter. Some experiments, however,
may require some additional analysis, as happens for the interference experiment described
in Section 5.1. In this case, the analysis is performed by a subclass of main analysis that
implements the functions specific to the experiment.
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Figure 4.11: Comparison of the measured time of detection tmeas with the expected time
of arrival tref for a Beacon-C passage. The three peaks are due to the presence of the
interferometric setup described in Section 5.1.

4.3.3 Orbit reconstruction

One of the crucial tasks for the exploitation of the improved hardware is the high accuracy
prediction of the satellite orbit. Orbit reconstruction is based on the signals coming from
the LR subsystems, i.e., the start and stop signal, corresponding to the transmission and
reception of the LR pulse. By taking the difference between stop and starts, it is possible
to measure the round-trip time trtt as a function of the time during a satellite passage,
giving a curve like the one shown in Figure 4.12, for a passage of the satellite Ajisai. The
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Figure 4.12: Round-trip time curve for a passage of Ajisai satellite (11.07.2015, h 21.11
CEST). Red points represent the measured values of the round-trip time, while the green
curve (hidden by the red points on almost all the orbit) represents the segmented fit of
the orbit.

measured points correspond to those events in which the MLRO has detected the return
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pulse (producing a valid stop signal). The main reason for the need of an orbital fit is
to recover stop signals that are not recorded by MLRO (for example, due to a too faint
return pulse), in order to have the time reference necessary for the qubit analysis also in
those intervals.

The fit is performed by dividing the orbit into segments of 10 s each, and fitting sep-
arately each segment with a 4th degree polynomial. The histogram of the residuals of
the segmented fit for the Ajisai passage already shown is represented in Figure 4.13. The
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Figure 4.13: Histogram of the residuals of the segmented fit on the stops of a passage of
the Ajisai satellite (11.07.2015, h 21.11 CEST). The standard deviation of the residuals is
0.22 ns.

standard deviation of the residuals is 0.22 ns, much lower than the jitter of the single-
photon PMT detectors used in the existing setup. However, the hardware improvement
characterizing the new experimental scheme would render the fit procedure the highest
source of temporal inaccuracy in the detected events.

In order to improve the precision of the orbital fit, some techniques are currently be-
ing tested. This section reports the first, preliminary results of this investigation, which,
however, requires the analysis of the high temporal accuracy data provided by the new
experimental scheme in order to be validated.

The first technique used for the improvement of the orbital fit is the exploitation of
all the data collected by MLRO during the satellite passage. Indeed, besides the start
and the stop signal, the LR subsystem saves a lot of other data coming from the devices
composing it. The most important data for these analysis are those related to the detec-
tion and the analysis of the reflected LR pulse, which gives the direct measurement of the
round-trip time. The most important datum is the correction to the stop signal due to
the constant-fraction discriminator (CFD) used in the tagging of the reflected pulse. The
study of the response of the CFD as a function of the energy of the reflected pulse, made
using a fixed-distance ground target, allowed the laser-ranging team at MLRO to find the
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relationship between the correction and the received energy. In addition to providing the
input to the CFD correction, the received energy is itself a measurement of the timing
accuracy of the received LR pulse. Indeed, in low energy pulses the effect of the optical
depth of the satellite retro-reflector array starts to give a significant contribute, while in
high energy pulses the rising edge of the signal coming from the PMT corresponds almost
always to the nearest retro-reflector [149]. This effect can be observed by dividing the
incoming pulses into different regions according to the received energy, as shown in Figure
4.14. The standard deviation of the red, green and yellow points is lower than the one
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Figure 4.14: Histogram of the residuals of the segmented fit for data where the received
energy (top left, red) is at least 80% of the saturation level, (top right, green) is between
20% and 80% of the saturation level, (bottom left, yellow) is below 20% of the saturation
level, and (bottom right, gray) the received energy is too low for the energy measurement.
In the first three cases, the time-of-flight datum has been corrected for the CFD delay.
The standard deviation of the distribution is (red) σ = 58ps, (green) σ = 92ps, (yellow)
σ = 103 ps, and (gray) σ = 212 ps.

observed in Figure 4.13, indicating that, obviously, the accuracy of the orbital fit is highly
improved by implementing CFD correction. Indeed, gray points, for which this correction
is not possible, have a standard deviation comparable with the one of the data in Figure
4.13. Moreover, the higher precision in the fit of the points with higher received energy
suggests that the precision of the orbital fit can be improved by selecting only the points
above a certain threshold.

Another technique that is currently being evaluated for the fit of the orbital data uses
the predictions of the satellite orbit calculated by the ILRS. Indeed, as already explained
in Section 4.1, the ILRS collects the observations coming from all the SLR stations and
emits, on a daily basis, the orbit predictions for each LR satellite. These predictions are
released in a standard format, the Consolidated Prediction Format (CPF) [150], in which
the position of the satellite as a function of time is given using the International Terrestrial
Reference Frame (ITRF)6. These positions can be converted into the azimuth-elevation-

6This reference system, also known as geocentric earth-fixed coordinate system, is centered at the center
of the Earth and rotates together with it. In this coordinate system, the coordinates of a point on the
Earth, such as a LR station, do not change with time.
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range reference system for a given position on the Earth by using a sample program
distributed in the ILRS website [141, 150].

The fit technique that is currently being evaluated is a global, polynomial fit of the
difference between the predicted and the measured round-trip time. The advantage of the
use of a global fit lies in the fact that it allows to recover the position of the stop signal
even in those cases where the LR subsystem could not detect it. However, despite the
high accuracy of LR data and the sophisticated models used to perform the predictions,
however, the predicted RTT still present significant differences with the measured one. In
order to give an accurate fit of the experimental data, it is necessary to use a very precise
time bias [151] when calculating the predictions, different from satellite to satellite. The
results of the analysis of the Ajisai passage using a 6th degree global fit of the difference
between the predicted and the measured RTT in shown in Figure 4.15. As evident from
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Figure 4.15: Histogram of the residuals for the global fit of the difference between predicted
and measured RTT. The predicted RTT has been calculated using a time bias tbias =
−29.5ms. Data are divided according to their received energy. In particular, the received
energy (top left, red) is at least 80% of the saturation level, (top right, green) is between
20% and 80% of the saturation level, (bottom left, yellow) is below 20% of the saturation
level, and (bottom right, gray) the received energy is too low for the energy measurement.
In the first three cases, the time-of-flight datum has been corrected for the CFD delay.
The standard deviation of the distribution is (red) σ = 78ps, (green) σ = 108 ps, (yellow)
σ = 143 ps, and (gray) σ = 253 ps.

the Figure, the results of this procedure are comparable with the ones obtained with the
segmented fit. On the other hand, in order to obtain a good result it is necessary to quite
finely tune the value of the time bias, otherwise the fitting procedure is not able to obtain
significant results.

Up to now, it is still uncertain which fit procedure is the best one for the new experi-
mental setup. While the ongoing study described in this section is important to compare
the different fitting techniques and to develop the software necessary for the task, the final
choice must rely on the data of the new experimental scheme, and must therefore wait for
its operativeness.
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Chapter 5

Space experiments

The experimental setup described in the previous Chapter has been exploited since 2003
for a series of pioneering experiments on the study of the satellite-ground channel for
quantum communication. These experiments have demonstrated the basis requirements
for satellite quantum communication, i.e., the possibility to build a quantum channel
between the Earth and a satellite [132, 145], its possible exploitation as a channel for
polarization-encoded qubits [133] and, finally, its behavior with respect to time-bin en-
coded qubits [134]. These results have important consequences both from a scientific and
a technical point of view. From the scientific side, they provide a validation for quantum
channel models, giving the basis for its possible exploitation for quantum experiments
between Earth and satellites. From the technical side, on the other hand, they have stim-
ulated the development of the necessary expertise for the usage of this channel, as testified
by the increasing rate of results obtained in this field.

This Chapter is devoted to the description of the last experiment involving the satellite-
ground channel, aimed to study its behavior on time-bin encoded qubits. Since the ex-
periment has been implemented using the setup described in Section 4.2.1, with the data
collection and analysis procedures described in Section 4.3, the description of the experi-
mental setup will concentrate on the state preparation and measurement prodedures.

5.1 Single-photon quantum interference

5.1.1 Experimental setup

In time-bin encoding, the information is encoded in the temporal modes of the electro-
magnetic field. The two basis vectors of the computational basis are â†i,t0 |Ω⟩ = |t0⟩ := |0⟩
and â†i,t1 |Ω⟩ = |t1⟩ := |1⟩, where the two modes must be orthogonal, i.e.,

⟨t0|t1⟩ = e
− (t1−t0)

2

2τ2c ≃ 0, (5.1)

requiring that |t1 − t0| ≫ τc. Experimentally, the generation of time-bin encoded qubits
employs an unbalanced interferometer, such as a Mach-Zehnder interferometer (MZI), with
the difference between the time of flight of the two arms much larger than the coherence
time of the laser.

The “state preparation” part of Figure 4.3 consists in an unbalanced MZI, with l ≃ 1m,
corresponding to a time-of-flight difference ∆t = |t1 − t0| ≃ 3.4 ns. The coherence time of
the qubit laser, measured with the method described in 2.3.1, is τc = 23.3 ps (the envelope
of the intensity is shown in Figure 5.1). Since the condition ∆t ≫ τc is respected, this
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Figure 5.1: Measure of the envelope of I(τ) for the laser used as a source for the quantum
subsystem.

optical network is suitable for the preparation of time-bin encoded qubits. In this config-
uration, the system is prepared in the time-bin encoded state |−⟩ = (|0⟩ − |1⟩)/

√
2.

The “measure” part of the quantum subsystem employs the same unbalanced MZI
used for state preparation. This configuration, equivalent to the one used in Plug-and-
Play Quantum Key Distribution [152, 153], allows to avoid an active stabilization of the
preparation and measurement interferometers. The plug-and-play state preparation and
measurement setup used for this experiment is shown in Figure 5.2, where the interferom-
eter is placed in the common route of the output and input beams, and the transmitter
and the receiver are placed at the two different output ports of BS2.

A fundamental requirement for both state preparation and measurement is that the
spatial mode of the electromagnetic field is the same for both entrances of the beam-
splitter, otherwise the field operators of the two time-bins are âi,t0 and âj,t1 with i ̸= j,
which can no longer be used to generate a time-bin encoded qubit1. This is obtained
by using two 4f -systems at the long arm of the MZI, realizing an optical relay that
compensates the different propagation length in the two arms of the interferometer. Each
4f -system is composed by two lenses with f = 125mm, positioned as in Figure 5.3A. A
single 4f -system generates a mirror transformation of the wavefront from one side to the
other. By placing a second 4f -system in the other arm of the interferometer it is thus
possible to compensate the mirror transformation, generating a system whose wavefront
is almost identical after propagation through different distances, as evident from Figure
5.3B.

When the time-bin state coming from the satellite enters back the MZI, detection events
show a three peak profile like the one shown in Figure 4.11. The first peak corresponds to a
photon taking the short arm of the interferometer both in preparation and in measurement,
while the third one is due to the combination of two long arm propagations. The central
peak, on the other hand, is the superposition of the short-long and long-short path, which
interfere at the output beam-splitter BS2. By post-selecting the data on the central peak,
the configuration of Figure 5.2 corresponds to a measurement in the basis

{
|+⟩ , |−⟩

}
of the

1In this case, the time-bin and the spatial modes are entangled, causing decoherence when the time-bin
mode is measured.
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Figure 5.2: Setup used for the single photon interference experiment, aimed to the study
of the quantum channel in the time-bin degree of freedom. State preparation and mea-
surement use the same unbalanced MZI.

Figure 5.3: (A) The unbalanced MZI interferometer used for state preparation and mea-
surement. (B) Images of the primary mirror with only the short or long arm opened.
From Vallone et al. [134].

time-bin qubit, realized as a projection on the state |+⟩ ⟨+| (it is the opposite with respect
to state preparation because the opposite port of the beam-splitter BS2 is employed in
the measurement).

5.1.2 Field-operator transformation in the two-way channel

In order to study the transformation introduced by the quantum channel in the time-bin
degree of freedom, it is convenient to adapt the notation used in Section 1.5.2 for the
time-bin encoding to the case of flying qubits. Since a wavepacket propagating in forward
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(backward) direction is described by a mode function of the form f(r/c− t) (f(r/c+ t)),
it is convenient to describe the field operator of a forward (backward) propagating wave

as â†τ− (â†τ+), with τ± = r/c± t.

With this notation, the field operator of the mode exiting from the qubit laser is â†i,τ− ,
which can be expressed as

â†i,τ− =

∫
dtψ(ω0; τ−)â

†
i , (5.2)

where â†i is the field operator corresponding to spatial mode i and

ψ(ω0; τ−) =
1

4
√
πτc

e
−

τ2−
2τ2c eiω0τ− . (5.3)

After the state preparation step, the field operator is transformed into

1√
2

(
âi,τ− − âi,(τ−−∆t)

)
, (5.4)

where ∆t is the time-of-flight difference between the two arms of the interferometer.
In order to study the effect of the reflection of the satellite on the field operator,

it is convenient to change the reference system to one whose origin is at the location
of the satellite. By assuming that the satellite is moving with constant velocity with
respect to the interferometer and that at time t = 0 it is located at r = rsat, the Lorentz
transformation relating the laboratory system (r, t) to the satellite system (r′, t′) is⎧⎪⎨⎪⎩

r′ = γ(r − rsat − βct)

t′ = γ

(
t− β

r − rsat
c

)
,

⎧⎪⎨⎪⎩
r = rsat + γ(r′ + βct′)

t = γ

(
t′ + β

r′

c

)
, (5.5)

where β = vr/c, with vr the radial velocity of the satellite, and γ =
(
1− β2

)− 1
2 is the

Lorentz factor. In the reference frame of the satellite, therefore, the parameters τ± are
transformed into

τ± = γ(1± β)τ ′± +
rsat
c

=

√
1± β

1∓ β
τ ′± +

rsat
c
. (5.6)

In this reference frame, the mirror reflection can be simply described as τ ′− → −τ ′+. By
using the inverse of Equation (5.6), i.e., τ ′+ = 1

γ(1+β)

(
τ+ − rsat

c

)
, it is possible to go back

to the laboratory reference. The total transformation is

τ−
boost to satellite ref. frame−−−−−−−−−−−−−−−−−−−−→ γ(1− β)τ ′− +

rsat
c

reflection−−−−−−−−−→ −γ(1− β)τ ′+ +
rsat
c

boost back to laboratory ref. frame−−−−−−−−−−−−−−−−−−−−−−−−−→ −fβ(τ+ − trtt),
(5.7)

where

trtt =
2

1− β

rsat
c

(5.8)

is the round-trip time and

fβ = γ2(1− β)2 =
1− β

1 + β
. (5.9)

The field operator entering back the telescope is

γ(1− β)√
2

[
â†i,(−fβ(τ+−trtt)) − â†i,(−fβ(τ+−trtt)−∆t)

]
, (5.10)
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where the new basis vectors of the time-bin encoding are

|0⟩sat ≡ â†i,(−fβ(τ+−trtt)) |Ω⟩ ,

|1⟩sat ≡ â†i,(−fβ(τ+−trtt−∆t)) |Ω⟩
(5.11)

By looking at the definition of the time-bin field operators in (5.3), it can be noticed that
the central frequency of the new basis vector is transformed from ω0 to fβω0, with the
new coherence time given by

τ ′c =
τc
fβ

=
1 + β

1− β
τc. (5.12)

By comparing the state entering the interferometer (5.10) with the definition of the time-
bin basis vectors (5.11), the state prepared by the satellite can be written as

|0⟩sat − eiϕ(t) |1⟩sat , (5.13)

where

ϕ(t) = eiω0∆t(1−fβ(t)) =
2β(t)

1 + β(t)

2πc

λ
∆t, (5.14)

is the kinematic phase, which is dependent on the instantaneous radial velocity of the
satellite β(t).

After passing again through the MZI, the field operator at the detection port of the
MZI is given by

iγ(1− β)

2

[
â†i,(−fβ τ̃+) + â†i,(−fβ(τ̃++∆t)) − â†i,(−∆t−fβ τ̃+) − â†i,(−∆t−fβ(τ̃++∆t))

]
, (5.15)

where τ̃+ = τ+ − trtt. This state gives at the detector the three pulses typical of time-bin
measurements. The probability of having the photon in the central pulse is

Pc(t) =
γ2(1− β(t))2

4

∫
dt′|ψ(−fβ(t′ +∆t))− ψ(−∆t− fβt

′)|2

=
1

2

⎧⎪⎨⎪⎩1−
√

1

πτ2c

∫
dt′ℜ

⎡⎣e− (t′+fβ∆t)2

2τ2c e
− (t′+∆t)2

2τ2c eiω0(1−fβ)∆t

⎤⎦
⎫⎪⎬⎪⎭

=
1

2

[
1− V(t) cosφ(t)

]
,

(5.16)

with ϕ(t) the kinematic phase of Equation (5.14) and

V(t) =
√

1

πτ2c

∫
dt′ e

−
(t′+fβ∆t))2

2τ2c e
− (t′+∆t)2

2τ2c = exp{−
[
∆t

τc

β(t)

1 + β(t)

]2
} (5.17)

is the theoretical visibility, which is due to the fact that the state is prepared by the
satellite in the basis

{
|0⟩sat , |1⟩sat

}
and measured in the basis

{
|0⟩ , |1⟩

}
. In practice,

however, the theoretical visibility is approximately 1, since the β factor is upper bounded
by 3 · 10−5 for all the observed satellites, while the ratio ∆t/τc is of the order of 102.
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5.1.3 Results

The experimental study of the space channel in the time-bin encoding is based on the
accuracy of the measurement of the time-bin encoded state coming from the satellite.
This accuracy can be validated by observing the interference pattern Pc = 1

2 [1− cosϕ]
on the central peak for different input states |ψ⟩ = |0⟩ − eiϕ |1⟩. From this point of view,
the presence of the kinematic phase can be exploited to make the measurement over the
whole range of ϕ without having to change the state preparation setup. On the other
hand, this requires a way to estimate the kinematic phase in order to know the input state
for each point of the passage of a satellite. During the orbit of a satellite, the kinematic
phase varies very rapidly, as shown in Figure 5.4, inducing a very rapid variation of the
interference pattern. This makes the task of estimation of the kinematic phase crucial for
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Figure 5.4: Kinematic phase and interference pattern. In the top panel, the measured
satellite distance and the predicted kinematic phase ϕ(t) as a function of time are shown
for a passage of the Ajisai satellite. In the bottom panel, the kinematic phase ϕ(t) and
the theoretical probability Pc(t) of the shaded area are shown. From Vallone et al. [134].

the experiment, since averaging different of its values makes interference diminish or even
disappear at all.

The kinematic phase can be estimated by using Equation (5.14), once the radial veloc-
ity of the satellite β(t) is known. This parameter, however, can be easily measured using
the data coming from MLRO. Indeed, as shown in Figure 5.5, the temporal separation
∆T ′ of two LR pulses at the receiver after satellite retro-reflection, due to the Doppler
effect, is related to the temporal separation ∆T = 100ms of two successive LR pulses by
the relation

∆T ′ = ∆T
1 + β(t)

1− β(t)
, (5.18)

which allows to estimate the radial velocity β(t) as

β(t) =
∆T ′ −∆T

∆T ′ +∆T
. (5.19)

Using this method to estimate the kinematic phase, it is possible to make the 10 ns
histograms corresponding to constructive and destructive interference shown in Figure
5.6, for a passage of the Beacon-C satellite. The constructive interference is the sum of
all detections corresponding to ϕ (mod 2π) ∈

[
4π/5, 6π/5

]
, while destructive interference

corresponds to ϕ (mod 2π) ∈
[
−π/5, π/5

]
. It is evident from Figure 5.6 the importance
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Figure 5.5: Space-time diagram of light propagation. As explained in Section 5.1.2,
pulses separated on ground by a delay ∆t are received with a delay ∆t′ = ∆t/fβ due to
the motion of the satellite. The round-trip time (rtt) is trtt.

of phase selection in order to see the interference effect, that is marked when the right
intervals are selected but is completely washed out if no selection on the kinematic phase

is performed. By using these data, it is possible to estimate the probability P(exp)
c as the

ratio of the detections in the central peak Nc to twice the sum Nℓ of the detections in the
lateral peaks, namely

P(exp)
c =

Nc

2Nℓ
. (5.20)

The measured values are P(exp)
c = 0.87 ± 0.10 for constructive interference and P(exp)

c =
0.20±0.03 for destructive interference. These values deviate with statistical evidence from
the value 0.5 expected in the case of no interference.

From the data collected, it is also possible to recover the entire interference curve,

by calculating the value of the experimental probability P(ext)
c for different values of the

kinematic phase ϕ. To this goal, the data from three different satellites have been split into
ten regions of different kinematic phase ϕ, and their interference curve has been plotted in

Figure 5.7. By fitting the data with P(exp)
c = 1

2

[
1− Vexp cosϕ

]
, it is possible to measure

the experimental visibility Vexp = (67± 11)% for Beacon-C, Vexp = (53± 13)% for Stella
and Vexp = (38 ± 4)% for Ajisai. The data are collected for rsat ∈ [1600, 2500] km for
Ajisai (12.07.2015, h 3.42 CEST), rsat ∈ [1100, 1500] km for Stella (12.07.2015, h 3.08
CEST), and for rsat ∈ [1200, 1500] km for Beacon-C (11.07.2015, h 1.33 CEST).

The observation of the interference patterns clearly demonstrates that the coherence
between the two temporal modes is preserved along propagation through the space channel.
The different values of experimental visibility is probably due to some residual vibrations
of the unbalanced MZI between the up-going and the down-going pulses. The incidence of
these vibrations is higher for the Ajisai satellite, which is the further one, thus confirming
this hypothesis. Despite that, however, this experiment shows that the quantum channel
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Figure 5.6: Constructive and destructive interference (Beacon-C satellite, 11.07.2015 h 1.33
CEST). (a): histogram of the single photon detections as a function of time ∆ = tmeas−tref
realized by selecting only the intervals characterized by ϕ (mod 2π) ∈ [4π/5, 6π/5] that
lead to constructive interference. Solid line shows the tri-Gaussian fit. The Gaussian
interpolation gives Nℓ = 112± 11 counts for the sum of lateral peaks and Nc = 196± 14
for the central one. (b): histogram of the single photon detections realized by selecting
only the intervals characterized by ϕ (mod 2π) ∈ [−π/5, π/5]. Here Nℓ = 112 ± 11 and
Nc = 46 ± 7. (c): histogram of the single photon detections without any selection on
the phase. As expected, interference is completed washed out and the measured counts
are Nc = 1245 ± 35 and Nℓ = 1306 ± 36, fully compatible with Pc = 1/2. In all panels,
dotted red lines represent the expected counts in case of no interference. From Vallone et
al. [134].

preserves the time-bin encoding, and gives some useful insight into the effects that have
to be taken into account in order to implement quantum communication protocols in the
satellite-ground channel using this encoding.
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Figure 5.7: Experimental interference pattern. Experimental probabilities P(exp)
c as a

function of the kinematic phase for three different satellites. The curves have been fitted

with the formula P(exp)
c = 1

2

[
1− Vexp cosϕ

]
, obtaining the experimental visibility Vexp =

(67±11)% for Beacon-C, Vexp = (53±13)% for Stella and Vexp = (38±4)% for Ajisai. The

dashed lines correspond to the theoretical value of P(exp)
c estimated from (5.16). The points

are obtained by splitting the phase into the ten intervals Ij ≡
[
(j − 1/10)π, (j + 1/10)π

]
and summing, for each interval, only the data with ϕ (mod 2π) ∈ Ij . The value of P(exp)

c (ϕ)
is obtained by using (5.20). From Vallone et al. [134].
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Chapter 6

Conclusions

This thesis has given an insight on the status of current research in the field of space
quantum communication. It has taken into account both the development of techniques
and protocols in a laboratory environment and their development for the satellite-ground
channel.

The laboratory development and characterization of a high brilliance source of pola-
rization-entangled photons is the starting point for a lot of experiments in the free-space
channel, with the expectation of transferring them into the space channel. The narrow
bandwidth of the produced photons, moreover, makes it a well suitable choice for those
applications where strong filtering is required, as happens when dealing with high noise
channel such as daylight free-space operation. The source has already proved to be valid for
the implementation of two important experiments in the laboratory, related to Quantum
Key Distribution and Bell non-locality, two key aspects of quantum technologies. The
Quantum Key Distribution experiment has proved experimentally for the first time a
symmetric three-state Quantum Key Distribution protocol, which is well suited for the
use in noisy environments where the resources available to the communicating parties are
limited, opening the way for its possible technological exploitation. The other laboratory
experiment, on the other hand, has proven an important aspect of non-locality in the case
of two observers measuring the same photon of a maximally entangled two-photon state.

Regarding the actual development of quantum communication in a space environ-
ment, this work describes the new experimental scheme of the ground station for quantum
communication at the Matera Laser Ranging Observatory. By combining higher detec-
tor sensitivity with stronger background rejection due to improved timing accuracy, this
scheme is suitable for the extension of quantum communication towards longer distances,
from medium Earth orbit to geostationary Earth orbit satellites, a fundamental step in the
development of a world-wide quantum network. This technological advancement has come
side-by-side with the experimental study of the satellite-ground channel for the time-bin
encoding, a result that, together with the respective study for polarization encoding, opens
the space to the implementation of a wide range of quantum communication protocols.
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Appendix A

Projective measurements in the
Bloch sphere

Given an arbitrary qubit |w⟩, the projector onto its eigenspace |w⟩ ⟨w| is given by

|w⟩ ⟨w| = 1

2
[I2 + w⃗ · σ⃗] , (A.1)

where w⃗ is the representation of |w⟩ in the Bloch sphere and the scalar product w⃗ · σ⃗ is
the two-dimensional matrix wxσx+wyσy +wzσz, with σi the corresponding Pauli matrix.
It can be demonstrated that, similarly, the density matrix of a single-qubit state ρ can be
written as

ρ =
1

2
[I2 + r⃗ · σ⃗] , (A.2)

where r⃗ is a vector with |r⃗| ≤ 1, with the states on the sphere (|r⃗| = 1) describing pure
states and those inside the sphere (|r⃗| < 1) mixed states.

When measuring in the
{
|w⟩ , |w⊥⟩

}
basis, with |w⟩ corresponding to outcome 1 and |w⊥⟩

to outcome −1, the probability of obtaining 1 is given by

P1 = Tr
[
|w⟩ ⟨w| ρ

]
(A.3)

=
1

4
Tr
[
(I2 + w⃗ · σ⃗) (I2 + r⃗ · σ⃗)

]
(A.4)

=
1

4
Tr
[
I2 + (wi + ri)σi + wirjσiσj

]
(A.5)

=
1

4

{
Tr[I2] + (wi + ri)Tr[σi] + wirjTr

[
σiσj

]}
(A.6)

=
1

4
{2 + 2wiri} (A.7)

=
1

2
(1 + w⃗ · r⃗) , (A.8)

where the Einstein convention of index summation has been adopted and the properties
of sigma matrices

Tr [σi] = 0, (A.9)

σiσj = iεijkσk + δijI2, (A.10)

have been employed [27].
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A.1 Measurement on the singlet state

The above formalism can be adapted to the single state |Ψ−⟩ = |0⟩A|1⟩B−|1⟩A|0⟩B√
2

by noticing

that if the measurement on the A photon gives a polarization state |w⟩, the B photon is

projected onto |w⊥⟩. If Alice measures in the
{
|x⟩ , |x⊥⟩

}
basis and Bob in the

{
|y⟩ , |y⊥⟩

}
basis, with the first vector corresponding to outcome +1 and the second one to outcome
−1, the joint probability distribution is

P(ab|xy) = P(b|axy)P(a|xy) (A.11)

=
1

2
(1− abx⃗ · y⃗) · P(a|xy) (A.12)

=
1

4
(1− abx⃗ · y⃗) , (A.13)

where P(a|xy) = 1
2 comes from the properties of the |Ψ−⟩ state. The explicit expression

of these probabilities is

P(−1,−1|xy) = P(1, 1|xy) = 1

4
(1− x⃗ · y⃗) , (A.14)

P(−1, 1|xy) = P(1,−1|xy) = 1

4
(1 + x⃗ · y⃗) , (A.15)

from which the expectation value⟨
axby

⟩
=
∑
a,b

abP(ab|xy) = −x⃗ · y⃗ (A.16)

is easily calculated.



Appendix B

Parameter estimation in passive
decoy state QKD

The parameters Y0, Y1 and e1, necessary in post-processing, are not directly measured
during the key exchange session, but must be estimated from the experimental data Q
and E. If Alice registers, for each pulse, whether at least one or no detector has clicked,
a different gain and QBER for each case can be measured and these can be used for
parameter estimation. The probability that no detector clicks in a pulse is

P(nc)(µ;m, η, γ) = e
−µη 2k

γk (B.1)

for the SMHPS and

P(nc)(µ;m, η, γ) = e
−µη (2−γ)γ1−m−1

1−γ (B.2)

for the AMHPS, where k = log2m. The statistics in the case of no click is the same for
both sources (in both cases the first HS unit is routed to the output) and is

P(nc)(n) =
[µ(1− η)]n

n!
e−µ(1−η), (B.3)

while the statistics for the case of at least a detector click is

P(c)(n) =
µne−µ

n!

⎡⎣1− (1− η)ne
−ηµ

(
1

γk
−1

)⎤⎦ 1

1− e
−µη

γk

(B.4)

for the SMHPS and

P(c)(n) =
µne−µ

n!

m∑
i=1

⎡⎣1− (1− η)ne
−µη

(
1

γki
−1

)⎤⎦ e
−µη γ1−i−1

1−γ

1− e
−µη (2−γ)γ1−m−1

1−γ

(B.5)

for the AMHPS [67].

After the key exchange session, Alice tells Bob for which pulses at least one detector has
clicked, so that they can estimate the gain and the QBER separately for the two cases.
From these values, referenced to as {Qc, Ec, Qnc, Enc}, and the known source statistics
P(c)(n) and P(nc)(n), they can estimate the parameters of the channel using the method
described in [89].

139



140 APPENDIX B. PARAMETER ESTIMATION IN PASSIVE DECOY STATE QKD

The first parameter to be estimated is Y0. Its upper bound Y U
0 can be calculated

starting from the relations

QcEc =

∞∑
n=0

P(c)(n)Ynen ≥ P(c)(0)Y0e0 (B.6)

QncEnc =
∞∑
n=0

P(nc)(n)Ynen ≥ P(nc)(0)Y0e0. (B.7)

Since both inequalities must hold, the parameter Y0 is upper bounded by

Y0 ≤ Y U
0 = min

⎧⎨⎩ QcEc

P
(c)
0 e0

,
QncEnc

P
(nc)
0 e0

⎫⎬⎭ . (B.8)

Its lower bound Y L
0 can be calculated from

P(c)(1)Qnc − P(nc)(1)Qc =

∞∑
n=0

(P(c)(1)P(nc)(n)− P(nc)(1)P(c)(n))Yn

≤ (P(c)(1)P(nc)(0)− P(nc)(1)P(c)(0))Y0, (B.9)

that gives

Y0 ≥ Y L
0 = max

{
P(c)(1)Qnc − P(nc)(1)Qc

P(c)(1)P(nc)(0)− P(nc)(1)P(c)(0)
, 0

}
, (B.10)

since, for both the SMHPS and the AMHPS

P(c)(1)P(nc)(n) − P(nc)(1)P(c)(n) = An,1[(1 − η)n − (1 − η)]

{
≤ 0 for n ≥ 2
≥ 0 for n = 0,

(B.11)

with An,1 a positive constant.
The lower bound on the single photon yield Y0 is calculated starting from

P(c)(2)Qnc − P(nc)(2)Qc =
∞∑
n=0

(P(c)(2)P(nc)(n)− P(nc)(2)P(c)(n))Yn

≤
1∑

n=0

(P(c)(2)P(nc)(n)− P(nc)(2)P(c)(n))Yn, (B.12)

which leads to

Y1 ≥ Y L
1 =

max

{
P(c)(2)Qnc − P(nc)(2)Qc − (P(c)(2)P(nc)(0)− P(nc)(2)P(c)(0))Y U

0

P(c)(2)P(nc)(1)− P(nc)(2)P(c)(1)
, 0

}
, (B.13)

since

P(c)(2)P(nc)(n)− P(nc)(2)P(c)(n) = An,2[(1− η)n − (1− η)2]

{
≤ 0 for n ≥ 2
≥ 0 for n ≤ 1

(B.14)

with An,2 positive.
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Similarly, the upper bound on e1 is calculated from

P(nc)(0)QcEc − P(c)(0)QncEnc =
∞∑
n=0

(P(nc)(0)P(c)(n)− P(c)(0)P(nc)(n))enYn

≥ (P(nc)(0)P(c)(1)− P(c)(0)P(nc)(1))e1Y1, (B.15)

since
P(nc)(0)P(c)(n)− P(c)(0)P(nc)(n) = An,0[1− (1− η)n] ≥ 0 (B.16)

for all n, and

QcEc =

∞∑
n=0

P(c)(n)Ynen ≥ P(c)(0)Y0e0 + P(c)(1)Y1e1, (B.17)

QncEnc =
∞∑
n=0

P(nc)(n)Ynen ≥ P(nc)(0)Y0e0 + P(nc)(1)Y1e1, (B.18)

thus obtaining

e1 ≤ eU1 = min

{
P(nc)(0)QcEc − P(c)(0)QncEnc

(P(nc)(0)P(c)(1)− P(c)(0)P(nc)(1))Y L
1

,

QcEc − P(c)(0)Y L
0 e0

P(c)(1)Y L
1

,
QncEnc − P(nc)(0)Y L

0 e0

P(nc)(1)Y L
1

}
. (B.19)
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Peev, “The security of practical quantum key distribution”, Rev. Mod. Phys. 81, 1301–
1350 (2009).

53M. Canale, “Classical processing algorithms for Quantum Information Security”, PhD
thesis (University of Padova, 2014), p. 142.

54C. Sparaciari and M. G. A. Paris, “Probing qubit by qubit: Properties of the POVM
and the information/disturbance tradeoff”, Int. J. Quantum Inf. 12, 1461012 (2014).

55W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned”, Nature 299,
802–803 (1982).

56D. Bacco, “Quantum Communications Between Earth and Space”, PhD thesis (Uni-
versity of Padova, 2015), p. 161.

http://dx.doi.org/10.1038/177027a0
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1063/1.1389835
http://dx.doi.org/10.1038/nature15759
http://dx.doi.org/10.1103/PhysRevLett.115.250401
http://dx.doi.org/10.1103/PhysRevLett.115.250402
http://dx.doi.org/10.1109/SFCS.1994.365700
http://arxiv.org/abs/1409.3525
http://dx.doi.org/10.1103/RevModPhys.81.1301
http://dx.doi.org/10.1103/RevModPhys.81.1301
http://dx.doi.org/10.1142/S0219749914610127
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1038/299802a0


146 BIBLIOGRAPHY

57U. M. Maurer, “Protocols for Secret Key Agreement by Public Discussion Based on
Common Information”, in Adv. cryptol. crypto’ 92 , Vol. 740, 3 (Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1993), pp. 461–470.

58R. König, R. Renner, A. Bariska, and U. Maurer, “Small Accessible Quantum Informa-
tion Does Not Imply Security”, Phys. Rev. Lett. 98, 140502 (2007).

59R. Renner, “Security of Quantum Key Distribution”, Int. J. Quantum Inf. 06, 1–127
(2008).

60R. Renner and R. Koenig, “Universally composable privacy amplification against quan-
tum adversaries”, in Theory cryptogr. 20 (2004), pp. 407–425.

61V. Scarani and C. Kurtsiefer, “The black paper of quantum cryptography: Real imple-
mentation problems”, Theor. Comput. Sci. 560, 27–32 (2014).

62G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical
quantum cryptography”, Phys. Rev. Lett. 85, 1330–1333 (2000).

63D. Gottesman, Hoi-Kwong Lo, N. Lutkenhaus, and J. Preskill, “Security of quantum
key distribution with imperfect devices”, in Int. symp. oninformation theory, 2004. isit
2004. proceedings. (2004), pp. 135–135.

64W.-Y. Hwang, “Quantum Key Distribution with High Loss: Toward Global Secure
Communication”, Phys. Rev. Lett. 91, 057901 (2003).

65H.-k. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution”, Phys. Rev.
Lett. 94, 230504 (2005).

66X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribu-
tion”, Phys. Rev. A 72, 012326 (2005).

67L. Mazzarella, F. Ticozzi, A. V. Sergienko, G. Vallone, and P. Villoresi, “Asymmetric
architecture for heralded single-photon sources”, Phys. Rev. A 88, 023848 (2013).

68N. J. Beaudry, T. Moroder, and N. Lütkenhaus, “Squashing Models for Optical Mea-
surements in Quantum Communication”, Phys. Rev. Lett. 101, 093601 (2008).

69C.-H. F. Fung, H. F. Chau, and H.-K. Lo, “Universal squash model for optical commu-
nications using linear optics and threshold detectors”, Phys. Rev. A 84, 020303 (2011).

70O. Gittsovich, N. J. Beaudry, V. Narasimhachar, R. R. Alvarez, T. Moroder, and N.
Lütkenhaus, “Squashing model for detectors and applications to quantum-key-distribution
protocols”, Phys. Rev. A 89, 012325 (2014).

71L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hack-
ing commercial quantum cryptography systems by tailored bright illumination”, Nat.
Photonics 4, 686–689 (2010).

72I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-
field implementation of a perfect eavesdropper on a quantum cryptography system.”,
Nat. Commun. 2, 349 (2011).

73I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurt-
siefer, “Experimentally faking the violation of Bell’s inequalities”, Phys. Rev. Lett. 107,
170404 (2011).

74A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, and V. Makarov,
“Laser damage helps the eavesdropper in quantum cryptography”, Phys. Rev. Lett.
112, 070503 (2014).

http://dx.doi.org/10.1007/3-540-48071-4_32
http://dx.doi.org/10.1103/PhysRevLett.98.140502
http://dx.doi.org/10.1142/S0219749908003256
http://dx.doi.org/10.1142/S0219749908003256
http://link.springer.com/chapter/10.1007/978-3-540-30576-7%7B_%7D22 http://arxiv.org/abs/quant-ph/0403133
http://dx.doi.org/10.1016/j.tcs.2014.09.015
http://dx.doi.org/10.1103/PhysRevLett.85.1330
http://dx.doi.org/10.1109/ISIT.2004.1365172
http://dx.doi.org/10.1109/ISIT.2004.1365172
http://dx.doi.org/10.1103/PhysRevLett.91.057901
http://dx.doi.org/10.1103/PhysRevLett.94.230504
http://dx.doi.org/10.1103/PhysRevLett.94.230504
http://dx.doi.org/10.1103/PhysRevA.72.012326
http://dx.doi.org/10.1103/PhysRevA.88.023848
http://dx.doi.org/10.1103/PhysRevLett.101.093601
http://dx.doi.org/10.1103/PhysRevA.84.020303
http://dx.doi.org/10.1103/PhysRevA.89.012325
http://dx.doi.org/10.1038/nphoton.2010.214
http://dx.doi.org/10.1038/nphoton.2010.214
http://dx.doi.org/10.1038/ncomms1348
http://dx.doi.org/10.1103/PhysRevLett.107.170404
http://dx.doi.org/10.1103/PhysRevLett.107.170404
http://dx.doi.org/10.1103/PhysRevLett.112.070503
http://dx.doi.org/10.1103/PhysRevLett.112.070503


BIBLIOGRAPHY 147

75C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, “The breakdown flash of silicon
avalanche photodiodes-back door for eavesdropper attacks?”, J. Mod. Opt. 48, 2039–
2047 (2001).

76A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system
through a timing side channel”, Opt. Express 15, 9388 (2007).

77Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experi-
mental demonstration of time-shift attack against practical quantum-key-distribution
systems”, Phys. Rev. A 78, 042333 (2008).

78I Aharonovich, S Castelletto, D. a. Simpson, C.-H. Su, a. D. Greentree, and S Prawer,
“Diamond-based single-photon emitters”, Reports Prog. Phys. 74, 076501 (2011).
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