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Riassunto 

Una parte delle acque reflue industriali e agricole del Veneto, nord Italia, vengono trasportate 

nella Laguna Veneta attraverso il suo bacino di drenaggio; principalmente azoto (N) e fosforo 

(P) oltre ad altri inquinanti come metalli pesanti. Nel 2000, il carico totale di azoto era di un 

terzo superiore al valore di riferimento ammissibile massimo di 3000 t/ anno per gli ingressi 

della laguna come indicato dal decreto ministeriale (Ministero dell'Ambiente, 1999), mentre il 

fosforo totale era di 229 t/anno. Sulla base di questo, gli input di azoto nel sistema lagunare 

Veneziano devono essere ridotti drasticamente nel prossimo futuro. I sistemi di 

fitodepurazione costruiti hanno offerto soluzioni promettenti per il controllo dell'inquinamento 

da nutrienti, in particolare dal deflusso agricolo, a costi e input energetici relativamente bassi. 

Alcuni sistemi semi-naturali e ricostruiti sono presenti in Italia e sono progettati per il 

trattamento di sorgenti diffuse di inquinamento da raccolti agricoli e civili con maggiore 

concentrazione nell'Italia centrale e nel nord. 

Questa ricerca di dottorato ha inteso determinare alcuni degli effetti positivi che il sistema di 

fitodepurazione può dare all'ambiente. In particolare, essa mirava a quantificare la riduzione 

dell'inquinamento da deflusso agricolo in un sistema convenzionale di fitodepurazione 

all'interno del sistema lagunare Veneziano. Inoltre, essa mirava a verificare e quantificare la 

capacità di assorbimento e la crescita delle diverse specie vegetali impiegabili in 

fitodepurazione. 

Nel 2014 è stato realizzato un sistema di fitodepurazione ibrido, composto dall’adattamento di un 

sistema semi-naturale in due sistemi di flusso superficiale (FWS) e da sistemi di trattamento 

flottanti (FTW). Il sistema è stato monitorato in termini di parametri della qualità dell'acqua e 

delle prestazioni vegetative per 3 anni consecutivi. La concentrazione di azoto totale (TN) e 

azoto nitrato (N-NO3
-
) ha mostrato picchi all'entrata del FWS in primavera, a causa della 

fertilizzazione dei terreni circostanti e del deflusso causato da precipitazioni abbondanti. Un 

effetto generale di riduzione di entrambi i parametri era chiaro all'uscita del sistema e le 

prestazioni depurative somo migliorate nel corso degli anni. Nel 2016, l'efficienza di 

rimozione ha raggiunto valori del 64% e 91% rispetto ai carichi in ingresso, corrispondenti 

rimozioni di massa di 2327 per TN e 1873 kg per N-NO3
-
. 
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Per quanto riguarda le specie vegetali utilizzate nel FTW, Carex spp. ha mostrato il tasso di 

sopravvivenza, la produzione di biomassa, l'assorbimento di N e P più elevati in tre stagioni 

consecutive seguite da Lythrum salicaria, mentre I. pseudacorus non ha fornito buoni risultati.  

Nel 2016 è stato realizzato un esperimento pilota nell'ambito del suddetto sistema integrato 

applicando un carico eccessivo di N-NO3
-
 a un sottosistema, di 3 bacini con volume e capacità 

d'acqua noti per testare l'efficienza di fitodepurazione e alcune dinamiche dell'acqua 

all'interno di questo sistema. La soluzione elevata di N-NO3
-
 è stata omogeneizzata nel primo 

sottobacino mentre il secondo e il terzo sono stati intesi a monitorare l'effetto di depurazione. 

Il picco di 66 mg l
-1

 è stato notato all’ingresso del sottobacino controllato (secondo) dopo il 

trasferimento, indicando l'omogeneità della soluzione nel primo sottobacino. Dopo 12 ore 

(tempo di detenzione), la concentrazione mediana all'ingresso è stata di 45,34 mg l
-1

 mentre ha 

raggiunto i 41,5 mg l
-1

 all'uscita. L'efficienza di rimozione del sotto-bacino calcolata nelle 12 

ore successive alla detenzione era dell'8,4% con la rimozione di massa di ~ 800 g di N-NO3
-
 

(1g m
-2

 d
-1

). Sulla base delle concentrazioni di N-NO3
-
 nel sottobacino monitorato in tempi di 

monitoraggio diversi, si evince che sono presenti alcuni flussi preferenziali, ma che tutto il 

bacino e’ comunque interessato da passaggio dell’acqua. 

Infine, una valutazione delle prestazioni delle specie di piante macrofite che trattano diversi tipi 

di acque reflue in FTW è stata fatta recuperando e analizzando dati relativi alla crescita di 20 

specie utilizzate nel sistema flottante Tech-IA
®
 in 9 esperimenti diversi nel nord-Italia per un 

decennio (2006-2016). L'analisi statistica è stata effettuata per le piante frequentemente 

utilizzate in molti esperimenti, ovvero Phragmites australis, I. pseudacorus, Typha latifolia, 

Carex spp. e L. salicaria mentre le specie a doppio scopo (valore ornamentale e trattamento 

delle acque reflue) sono state valutate separatamente. I. pseudacorus, P. australis e T. latifolia 

hanno mostrato le migliori prestazioni di crescita, specialmente nel trattamento delle acque 

reflue comunali, mentre specie ornamentali quali Canna indica, Mentha aquatica e 

Pontederia cordata si sono rivelate potenzialmente efficienti per il trattamento delle acque 

reflue in FTWs. Inoltre, le prestazioni delle piante sono state influenzate da fattori quali l'età e 

le caratteristiche fisico-chimiche delle acque reflue. 

In generale, i sistemi di fitodepurazione costruiti con flusso superficiale si sono rivelati una 

soluzione promettente nel trattamento di molti tipi di acque reflue con particolare attenzione al 

deflusso agricolo. 
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Summary 

Most of the industrial and agricultural wastewaters in Veneto, north Italy are conveyed to the 

Venetian lagoon through its drainage basin; mainly as nitrogen (N) and phosphorus (P) in 

addition to other pollutants such as heavy metals. In 2000, the total N load was one-third 

higher than the maximum allowable reference value of 3000 t/year for lagoon inputs as 

indicated by the Ministerial decree (Ministero dell’Ambiente, 1999), while the total P was 229 

t/year. Based on this, inputs of nitrogen into the Venetian Lagoon system must be reduced 

dramatically in the near future, or at least the maximum allowable value should be attained. 

Constructed wetlands (CW) offered promising solutions for the control of nutrient pollution, 

specifically from agricultural run-off, at relatively low cost and energy inputs. Few semi-

natural  (NW)  and  re-constructed  systems  (RCW)  are  present  in  Italy  and  designed  for  

the  treatment  of  diffuse  pollution  sources  from agricultural  and  civil  catchments with 

major concentration in central and north Italy. 

This PhD research aimed at determining some of the positive effects that a wetland can give to 

environment. In particular, it aimed at quantifying the reduction of pollution from agricultural 

run-off in a conventional cropping system within the Venetian lagoon system. Understanding 

some water dynamics and improving water quality in a farm channel network was an 

additional objective. Furthermore it aimed at verifying and quantifying the efficiency of 

different surface flow constructed wetland systems and the uptake capability and growth 

performance of different plant species, mainly macrophytes. 

A full-scale integrated wetland system was constructed in 2014 restoring a semi-natural wetland 

into two surface flow systems, free water surface (FWS), and floating treatment systems 

(FTW). The system was monitored in terms of water quality parameters and vegetative 

performance for 3 consecutive years. In assumption, total nitrogen (TN) and nitrate nitrogen 

(N-NO3
-
) concentrations showed peaks at inlet of the FWS during high agricultural seasons in 

spring as a result of fertilization of surrounding croplands and runoff due to excessive rainfall. 

A general reduction effect in both parameters was clear at the system outlet over the years 

with the increased establishment of the wetland system. High removal efficiency was attained 

by FWS after the establishment of the wetland system in 2016 with removal percentages of 64 

and 91 accounting for mass removals of 2327 and 1873 kg for TN and N-NO3
-
, respectively. 

Regarding plant species used in the FTW, Carex spp. showed the highest survival rate, 
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biomass production, N and P uptake over 3 consecutive seasons followed by Lythrum 

salicaria while, I. pseudacorus did not perform well in the FTW in terms of survival, biomass 

production and nutrient uptake. 

In 2016, an event-driven pilot experiment was designated within the aforementioned integrated 

wetland by applying excessive N-NO3
-
 load to a specific isolated sub-basin system comprising 

3 sub-basins with known volume and water capacity to test the phytodepuration efficiency and 

some water dynamics within this system. The elevated NO3
-
 solution was homogenized in the 

first sub-basin while, the second and the third were meant to monitor the depuration effect. A 

peak of 66 mg l
-1

 was noticed at the monitored (second) sub-basin inlet following the transfer, 

indicating homogeneity of solution in the first sub-basin. After 12 hours (detention time), 

median concentration at inlet was 45.34 mg l
-1

 while it reached 41.5 mg l
-1

 at the outlet. 

Removal efficiency of the sub-basin calculated in the 12 hours following the detention was 

8.4% with mass removal of ~800 g of N-NO3
-
 (1g m

-2
 d

-1
). Based on the N-NO3

-
 

concentrations within the monitored sub-basin at different monitoring times, it could be 

concluded that, despite some preferential flows caused by some vegetative obstructions, the 

system eventually distributes the input nutrient volumes across the sub-basin. 

Finally, an evaluation of performance of macrophyte plant species treating different types of 

wastewaters in FTW was done by compiling data related to the growth performances of 20 

plant species used in Tech-IA
®
 floating system in 9 different experiments in north Italy over a 

decade (2006-2016). Statistical analysis was performed for the plants frequently used in many 

experiments namely; Phragmites australis, I. pseudacorus, Typha latifolia, Carex spp. and L. 

salicaria while dual-purpose species (ornamental value and wastewater treatment) were 

evaluated separately. I. pseudacorus, P. australis and T. latifolia showed the best growth 

performances, especially in the treatment of municipal wastewater, whereas ornamental 

species such as Canna indica, Mentha aquatica, and Pontederia cordata proved to be efficient 

potentials for the treatment of wastewaters in FTWs. In addition, plant performances were 

affected by factors such as plant age and physicochemical characteristics of wastewaters.  

In general, surface flow constructed wetland systems proved to be promising solution in the 

treatment of many types of wastewaters with special focus on agricultural runoff. 
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1. Agricultural runoff 

Agricultural runoff is a major non-point source (NPS) pollution of the environment, specifically 

water resources, worldwide. Agricultural runoff is the water runoff, normally by the effect of 

rain, melted snow and irrigation, leaving croplands and depositing in different water bodies 

such as lakes, rivers, ponds, coastal waters and even underground water resources (Ongley, 

1996; EPA, 2017).  Described as non point or diffused pollution source, Agricultural run-off 

can carry pollutants of different natures, composition and impacts on water bodies (chemical 

fertilizers, pesticides, animal manure, plant organic residues, pathogens, heavy metals and soil 

sediments) (Wiens, 1980; Higgins et al., 1993; Ongley, 1996; EPA, 2005; O’Geen et al., 

2010; Blankenberg et al., 2015). The threats of agricultural runoff to the environments have 

been doubled in the last few decades as a result of agricultural intensification to cope with the 

needs of the growing population where, inefficient use of resources and poor agricultural 

practices are major contributors to NPS agricultural pollution (Wiens, 1980; Ongley, 1996; 

O’Geen et al., 2010; Ockenden et al., 2014; Blankenberg et al., 2015). Agricultural runoff 

leading to the loss of nutrients and sediments from crop lands to water bodies is the major 

cause of a two-sided problem; the first side is the economical loss of resources (soil 

degradation and fertilizer loss) for farmers from their agricultural lands while the second and 

the most important is the environmental loss through the diffusion of pollutants to water 

bodies contributing to further environmental and human health hazards (Griffin and Bromley, 

1982; Ongley, 1996; O’Geen et al., 2010). Fewer countries including USA and some 

European countries were able to determine and quantify the implications of agricultural runoff 

on water bodies while it was hard to evaluate such situation in developing countries, however, 

all countries worldwide recently share the concern about this growing hazard (Ongley, 1996; 

Blankenberg et al., 2015). 

The major pollutants transferred to water bodies through agricultural runoff are nutrients, 

pesticides, and sediments. A pollutant in itself, sediment is a carrier of other hazardous 

pollutants; nutrients, especially phosphorus, pathogens and heavy metals (Weins, 1980; 

Ongley, 1996; O’Geen et al., 2010). The major nutrients of concern in agricultural runoff are 

nitrogen (N) and phosphorus (P) as they are key reasons of water eutrophication which has 

negative implications on water bodies including the development of algae, depletion of 

oxygen, shifting of aquatic habitats and extensive human health hazards (Ongley, 1996; 



7 
 

Kadlec and Wallace, 2009; Sorrell, 2010). N (in organic and inorganic forms) is usually more 

abundant as a primary source of fertilization in croplands (Blankenberg et al., 2015). 

Dissolved inorganic nitrogen groups (nitrate (N-NO3
-
), nitrite (N-NO2

-
) and ammonium (N-

NH4
+
)) are generally in a readily available form for uptake, hence, affecting water quality, 

human and aquatic life more than organic nitrogen forms (Davis, 1995b; Vymazal, 2007; Lee 

et al., 2009; O’Geen et al., 2010). N-NO3
-
, the most abundant nitrogen form in agricultural 

runoff, would cause majorly eutrophication problems rather than toxicity and is the easiest to 

treat in water bodies by denitrification or plant uptake (Davis, 1995b; Baker; 1998; Peterson, 

1998; Ongley, 1996; O’Geen et al., 2010). P is found in many forms such as mineral, organic, 

inorganic P and soluble orthopohosphates (P-PO4
-
) which are usually associated with 

sediment particles by adsorption (Davis, 1995b). Although, P is readily taken up by rooted 

plants, under anoxic conditions, the remaining P associated with sediment particles can be a 

major source of uncontrollable oligotrophication in water bodies (Davis, 1995b; Ongley, 

1996; Sorrell and Gerbeaux, 2004). On the other side, pesticide leaching to water bodies is a 

major risk to aquatic as well as human life due to its toxic and accumulative nature over time 

which makes the removal process rather complex and expensive (Ongley, 1996; Blankenberg 

et al., 2015). 

As described previously, due to its diffused nature, Agricultural runoff is somehow hard to 

determine, measure and control (Weins, 1980; Higgins et al., 1993; Ongley, 1996; Raisin et 

al., 1997). In addition, it’s more periodic and event-driven, affected by factors like weather 

conditions (mainly rainfall events) and agricultural practices (mainly fertilization events) 

which in turn lead to intermittent hydrological loading (Weins, 1980; Higgins et al., 1993; 

Ongley, 1996). Control measures for NPS agricultural pollution are focused on two sides, the 

first is reducing agricultural runoff from croplands and the second is the treatment of polluted 

water.  

Strict control measures on agricultural lands were proposed to reducing agricultural runoff 

losses. Improving agricultural practices and land management was the major solution 

proposed in many studies; these include improvement of irrigation systems, tillage and 

cropping patterns (Weins, 1980; Ongley, 1996; Mitsch et al., 2001 and 2005; Sorrell, 2010; 

Ockenden et al., 2014; Blankenberg et al., 2015). Optimization of the use chemical 

fertilization and pesticides is a key factor in controlling and reducing the amount of pollutants 
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in water bodies; nitrogen-fixing crops and integrated pest management could offer good 

substitutes (Weins, 1980; Ongley, 1996; Mitsch et al., 2001 and 2005; Sorrell, 2010). Agro-

forestry is a growing trend in the recent decades to control runoff; it involves the 

establishment of trees, riparian zones and buffer strips acting as nitrogen sinks in addition to 

improving chemical and physical properties of soil and decreasing sediment loss and soil 

erosion (Weins, 1980; Dillaha et al., 1989; Mitsch et al., 2001 and 2005; Udawatta et al., 

2002; Jose, 2009; Dosskey et al., 2010). Effective legislation, strict regulatory measures and 

public awareness of increasing hazardous effect of NPS agricultural pollution are very 

important tools for the control of agricultural runoff, especially in developing countries 

(Weins, 1980; Shortle and Dunn, 1986; Ongley, 1996).  

Conventional wastewater treatment involves a set of chemical, physical and biological processes 

designated to remove contaminants like solids, organic matter and nutrients from water 

(Pescod, 1992; Kadlec and Wallace, 2009).  Usually, the conventional wastewater treatment 

process is divided into many stages namely; preliminary, primary, secondary and tertiary 

treatments. The preliminary stage involves the removal of solids and large materials after 

which it goes to the primary is stage in which organic and inorganic solids are removed by 

sedimentation. The secondary  treatment is applied for the treatment of dissolved and colloidal 

organic residuals and suspended solids where as the tertiary (advanced) treatment is used for 

the removal of individual materials which are not removed by the secondary treatment such as 

N, P, heavy metals, biological oxygen demand (BOD) and other dissolved solids. The final 

stage is disinfection of water by application of chlorine (Cl) ((Pescod, 1992; Kadlec and 

Wallace, 2009). However, although applicable, conventional methods of wastewater treatment 

are rather expensive and not a practical solution in treatment of agricultural runoff water 

where contaminated runoff water is directed immediately to water bodies (Pescod, 1992, EPA, 

2006). Direct treatment of agricultural runoff water in water bodies became possible by the 

introduction of wetlands. A wetland is an area of land which is temporarily or permanently 

saturated with water with characteristic aquatic plants (macrophytes) and hydric soils 

providing a specific ecosystem with various ecological functions (EPA, 2004; Sorrell and 

Gerbreaux, 2004; Kadlec and Wallace, 2009). Typical functions of a wetland include majorly 

water quality improvement and protection, floodwater storage, and providing habitat to a 

variety of biota (EPA, 2002). As natural wetlands have proved great efficiency in pollutant 
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removal, especially nutrients, replicates were created to simulate the functions of wetlands and 

became widely known as constructed wetlands (CW) (EPA, 2006, O’Geen et al., 2010; 

Vymazal, 2005; Vymazal, 2010; Vymazal, 2011). Despite history of natural wetland use for 

water treatment goes back to as old as 100 years, CW are only few decades old (Kadlec and 

Wallace, 2009; Vymazal; 2010; Vymazal, 2011). The use of CW in wastewater treatment 

from agricultural runoff was targeted mainly at the removal of nutrients, chemicals and 

suspended solids (Kadlec and Wallace, 2009; O’Geen et al., 2010). 

2. CW for the treatment of agricultural runoff 

Removal mechanisms of pollutants 

As mentioned earlier, the major pollutants of water bodies by agricultural runoff include 

nutrients, pesticides, BOD, suspended solids (SS) and pathogens. CWs exhibit many 

interrelated mechanisms for the removal of such pollutants (Davis, 1995b; Vymazal, 2007; 

Kadlec and Wallace, 2009; Lee et al., 2009; O’Geen et al., 2010). Physical sedimentation and 

settling is the most common mechanism for the removal of most pollutants such as SS, P, 

pesticides, pathogens and BOD. Another important mechanism for the removal of N, the 

major target nutrient in agricultural runoff, is the biogeochemical transformations (Figure 1, 

O’Geen et al., 2010) which involve interchanging processes such as ammonification 

(mineralization), nitrification and denitrification. Leaching is an additional mechanism for 

removal of N-NO3
- 
and P. Soil sorption, which is the removal of pollutant from the soluble 

phase and adherence to the sediment particles, is a major pathway through which P is 

removed. Volatilization is the removal mechanism of gases like ammonia (NH3), Nitrogen 

(N2) and methane (CH4). Microbial degradation (under aerobic and anaerobic conditions) is 

important in the removal of pesticides, organic matter and BOD. Additional mechanism for 

the removal of pesticides, organic matter and pathogens is the direct photodegradation 

(photolysis) by sunlight UV rays, while some other pesticides are removed by indirect 

photolysis. One of the most important removal mechanisms in CW is the biotic assimilation 

(uptake) by plants and algae where it provides a direct removal of nutrients in water body in 

addition to its indirect effect in the promotion of SS sedimentation and prevention of re-

suspension (Brakserud, 2001), as well, they supply organic carbon (OC) through decayed 

plants which are important for microbial transformation processes i.e nitrification and 
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denitirification, (Brix, 1997) as they provide more surface area for the substrate (Davis, 

1995b; Kadlec and Wallace, 2009; Vymazal, 2007; O’Geen et al., 2010). 

 

Figure 1: Diagrammatic scheme of the N cycle in CW (O’Geen et al., 2010) 

Types of CW 

Based on the use of floating and emergent rooted macrophytes, CW are generally classified into 

surface flow (SF) and subsurface flow (SSF) (Figure 2) (Vymazal 2001; Vymazal 2005; 

Vymazal 2007; Kadlec and Wallace, 2009; O’Geen et al., 2010; Vymazal 2010; Vymazal, 

2011a). SF CW are also known as free water surface (FWS) CW whereas SSF CW are sub-

classified into horizontal and vertical (HSSF and VSSF). In general, FWS CWs are 

characterized by open waters, floating and emergent vegetation where they are closely related 

to natural wetlands (Kadlec and Wallace, 2009; Vymazal 2010; Vymazal, 2011a). All possible 

removal mechanisms of nutrients, organic matter and SS are performed by FWS CW with 

specific suitability for the removal of all nitrogen forms as they provide good medium for 

nitrogen transformation processes, hence, they are suitable for the treatment of all types of 

wastewaters in addition to their ability to deal with pulse flow and different water levels 

(Kadlec and Wallace, 2009; Vymazal 2010; Vymazal, 2011a). FWS CWs are very cost 

effective in terms of maintenance and operation compared to other types of CWs (Kadlec and 

Wallace, 2009; Vymazal 2010). FWS CWs are rarely used for primary or secondary treatment  
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Figure 2: Diagrammatic scheme of the various types of CW (Vymazal, 2007). A. FWS CW with 

floating macrophytes, B. FWS CW with emergent rooted macrophytes, C. HSSF CW, D. VSSF 
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of wastewaters but generally for tertiary treatment or even post-tertiary (Mitsch et al., 2001; 

Kadlec and Wallace, 2009; Vymazal, 2011). On the other hand, HSSF CW consists of gravel 

or soil beds with macrophyte vegetation; normally, water enters at a horizontal position and 

flows around the plant roots from inlet to outlet where it is always kept below the surface 

(Kadlec and Wallace, 2009; Vymazal 2010). HSSF CWs are suitable for removal of organic 

materials and SS but are very low in nitrogen retention; this is attributed majorly to the poor 

nitrification ability of this system where constant oxygen availability is minimal (Vymazal 

2005; Vymazal, 2007; Kadlec and Wallace, 2009; Vymazal 2010; Vymazal, 2011a). 

However, the major N removal mechanism performed by HSSF CWs is denitrification 

(Vymazal, 2005; Vymazal, 2007; Vymazal 2010). In addition, adsorption of N is possible but 

not common in this type of CWs while volatilization is limited due to limited free water 

surface (Vymazal 2005; Vymazal, 2010). HSSF CWs are common for secondary wastewater 

treatment in smaller communities (Kadlec and Wallace, 2009; Vymazal, 2011a). Despite 

being less susceptible to pathogens, HSSF CWs are more expensive and harder to maintain in 

comparison with FWS CWs in addition to the major problem of media clogging (Vymazal, 

2005; Kadlec and Wallace, 2009; O’Geen, 2010). In VSSF, water is supplied continuously in 

a vertical position as pulse loading to the surface of sand or gravel and percolates to the roots 

of macrophytes (Kadlec and Wallace, 2009; Vymazal, 2010; Vymazal, 2011a). Nitrification 

process is very good in VSSF CWs due to the continuous supply of oxygen allowing the 

oxidation of ammonia; however, denitirification is very poor in such system (Vymazal 2005; 

Vymazal, 2007; Vymazal 2010; Vymazal, 2011a). VSSF CWs are very common in primary 

treatments of wastewater but are characterized by high operational and maintenance costs in 

addition to the media clogging problems (Vymazal, 2010; Vymazal, 2011a). Although P 

retention is generally low in all types of CW, good removal is obtained in FWS CW as they 

provide good conditions suitable for the most important removal mechanisms of P; sorption, 

sedimentation and uptake, on the other side P removal is poor in HSSF CWs due to its low 

sorption capacity (Vymazal 2005; Vymazal, 2007; Vymazal 2010; Vymazal, 2011a). In 

general, hybrid systems of all types of CWs can be a good approach to combine the 

advantages of each system and achieve best performance (Vymazal 2005; Vymazal 2010; 

Vymazal, 2011a). However, the most suitable CW for the treatment of agricultural runoff is 

the FWS CW as it provide high N, especially N-NO3
-
, retention in addition to cost 
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effectiveness and low energy inputs ((Davis, 1995a; Peterson, 1998; Mitsch et al., 2001; 

Kadlec and Wallace, 2009; Lee et al., 2009; O’Geen et al., 2010) 

FWS CW and removal of N 

FWS CWs are the most commonly used among CWs for the treatment of agricultural runoff as it 

provides open surface and intermittent dynamics suitable for all pollutant removal 

mechanisms (Kadlec and Wallace, 2009; O’Geen et al., 2010; Vymazal 2010; Vymazal, 

2011a). In addition, FWS CW are cost effective and devoid of problems of other types of 

CWs such as media clogging (Kadlec and Wallace, 2009; O’Geen et al., 2010; Vymazal 2010; 

Vymazal, 2011a). As mentioned earlier, N-NO3
- 
is the most abundant form of N which is to be 

treated in constructed wetlands (Baker, 1998; O’Geen et al., 2010), hence, anaerobic 

denitrification is the dominant mechanism of removal in FWS CW where temperature 

represent a limiting factor controlling the microbial activity necessary for such process 

(Bachand and Horne, 2002; Poe et al., 2003; O’Geen et al., 2010). Other N removal 

mechanisms include assimilation, sedimentation and volatilization (Poe et al., 2003; O’Geen 

et al., 2010) 

Comparison of different N (N-NO3
-
) removal efficiencies in different experiments using FWS 

CW would rather be difficult and unfair as a result of general differences in the agricultural 

settings, wetland characteristics (hydrology and vegetation), hydraulic and pollutant load for 

each experiment (O’Geen et al., 2010). However, hydraulic loading, hydraulic retention time 

(HRT) and surface area of wetland could be defined as key factors affecting the N-NO3
-
 

removal efficiency (Kadlec and Wallace, 2009; O’Geen et al., 2010). The N-NO3
- 

removal 

efficiencies of selected experiments for treatment of agricultural runoff in FWS CW varied 

between -8 to 99% (Table 1). In colder regions, FWS CW with smaller surface area and 

shorter HRT generally exhibited lower removal efficiencies (Brakserud, 2002; Koskiaho et 

al., 2003; Bastviken et al., 2009). On the other hand, increased wetland surface area and HRT 

increased the removal efficiencies (Hey et al., 1994, Phipps and Crumpton, 1994; Comin et 

al., 1997; Kovacic et al., 2000; Borin et al., 2001; Jordan et al., 2003; Mitsch et al., 2005; 

Tanner et al., 2005; Kovacic et al., 2006; Beutel et al., 2009; Mustafa et al., 2009; Moreno et 

al., 2010; Diaz et al., 2012). However, considering the individual conditions for each 

experiment is of great  interest  to   assess   the   specific   removal    efficiency. For instance,  
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Table 1. N-NO3
-
 Removal efficiencies in FWS CW for some previous literature arranged in 

chronological order 

Reference Location HRT 

(d) 

Area (ha) Depth 

(m) 

Input (mg 

l
-1

) 

Removal 

eff. (%) 

Hey et al. (1994) Illinois, USA - 2–3.5 1–1.5 1.22 85.5-98 

Mustafa et al. (1996) Florida, USA - 49 - 1.69 26 

Phipps and Crumpton 

(1994) 

Illinois, USA - 1.9-2.4 0.6-0.7 - 78-95 

Comin et al. (1997) NE Spain - - 0.1-0.5 - 50-98 

Raisin et al. (1997) Victoria, 

Australia 

- 0.045 - 1.3-1.7 11 

Hunt et al. (1999) North 

Carolina, USA 

1-111 3.3 0.3-2 6.6 51 

Kovacic et al. (2000) Illinois, USA 11-21 0.3-0.8 0.4-0.9 - 34-44 

Larson et al. (2000) Illinois, USA - 0.60-0.78 - 0.1-52 37-65 

Woltemade (2000) Midwest, 

USA 

- 0.03-3.7 - - 20-80 

Borin et al. (2001) NE Italy - 0.32 - 1.65 90 

Braskerud (2002) Norway - 0.035-0.09 0.2-0.8 0.75-2.77 3-15 

Jordan et al. (2003) Maryland, 

USA 

12-19 1.3 > 1 0-2 52 

Koskiaho et al. (2003) Finland 0.25-

1.6 

0.48–0.6 0.9-2 2.9-7.4 -8-38 

Mitsch et al. (2005) Ohio, USA 3-4 1 - 4-6 17-97 

Tanner et al. (2005) New Zealand 1.5–51 0.026 0.3 11 11-49 

Kovacic et al. (2006) Illinois, USA 7–12 0.16-0.4 0.4-0.5 1.5-8.9 16-43 

Moreno et al. (2007) NE Spain 1-4 0.005-0.5 0.1 5.8–20.7 24–43 

Bastviken et al. (2009) Sweden 1-3 0.002 0.4  3–15 

Beutel et al. (2009) Washington. 

USA 

8 0.7–0.8 0.6 1.3–1.4 93 

Mustafa et al. (2009) Ireland - 0.12–0.24 1–1.5 3.81 74 

Van de Moortel et 

al.(2009) 

Belgium - - 0.5-0.6 8 99-100 

Moreno et al. (2010) 

 

NE Spain 2-15 0.005–0.5 0.1 - 34–87 

Diaz et al. (2012) California, 

USA 

0.9-20 2.3-173 0.5-1 0.28-12.87 22-99 

Groh et al. (2015) Illinois, USA - 0.3,0.6 0.4,0.9 - 56-62 

 

increasing the hydrological loading rates increased removal efficiency by enhanced 

denitrification up to 95% as described by Phipps and Crumpton, 1994 while, different 

hydrological loadings and N-NO3
-  

concentrations did not affect the removal efficiency in an 

experiment conducted by Hey et al., 1994, where the removal efficiency was high in all cases 

(85.5-98%). On the other hand, higher hydrological loading decrease the removal performance 

in some other experiments (Jordan et al., 2003). In addition, Continuous flow can also 
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enhance better removal performances than pulse flow (Diaz et al., 2012). Changing climatic 

conditions and maturation of wetland can be important factors affecting the removal 

efficiency (Tanner et al., 2005). Some enhancing factors such as the establishment of buffer 

strips associated with wetlands can also improve the removal performance of FWS CWs 

(Kovacic et al., 2006). In general, the removal performance of FWS CW is more confined to 

the individual characteristics of each wetland. 

3. Floating treatment wetlands (FTW) 

Concept and evolution 

Floating treatment wetlands (FTW) is a new eco-trend that outspread extensively in the last 

decades for the treatment of wastewaters, especially in tertiary stage, in natural and artificial 

water bodies. The introduction of FTW systems was inspired by the concept of natural 

floating islands. Floating islands or ‘sud’ generally refers to a mass of floating, usually 

hydrophyte, plant species growing on a buoyant support which may be organic (roots or 

remains of other plants) or inorganic (clay, silt, etc.) varying between centimeters and several 

meters to hectares. One of the earliest studies using floating islands was the establishment of a 

floating fen using Phragmites communis, Trin. and β. flavescens, Gren. and Godr. (Pallis, 

1916). Following this, increasing interest was given to the study of floating islands and their 

biology, distribution and ecological potentials (Kashyap, 1920; Sahni, 1927; Russel, 1942; 

Reid, 1952; Lind, 1956; Kaul and Zutshi, 1966; Little, 1969; Junk, 1970, 1973; Scutcliffe, 

1974; Varfolomeyeva, 1977; Sasser et al., 1995, 1996; Mitsch and Gosselink, 2000; Mallison 

et al., 2001; Adams et al., 2002; Gopal et al., 2003; Azza et al., 2006, John, et al., 2009). 

 Floating islands, mainly free floating hyrdophytes, were proposed for the natural wastewater 

treatment from contaminants (nutrients and heavy metals) using plant species such as 

Eichhornia crassipes, Ipomoea aquatica, Lemna spp., Nymphaea alba and Pistia stratiotes 

(Kranchanawong and Sanijtt, 1995; Kerr- Upal et al., 2000; Zimmels et al., 2006, Li et al., 

2007, Mkandawire and Dudel 2007, Tewari et al., 2008; Dhote and Dixit, 2009; Villamagna 

and Murphy, 2010; Olukanni and Kokumo, 2013; Khan et al., 2016). However, the use of free 

floating species has some drawbacks; mainly the invasive nature of such species which can 

oppose and distract many anthropogenic activities (Villamagna and Murphy, 2010). In 

addition, they may not be adaptive to certain climatic conditions (Villamagna and Murphy, 
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2010). Another drawback is their free floating nature and fast degradability which can lead 

them to transferring pollutants from contaminated places to uncontaminated ones 

(Mkandawire and Dudel 2007). Under such conditions, rooted emergent macrophyte species 

were preferred in FTWs; where plant species are fixed in floating supporting mats with their 

aerial parts floating above the water level while their roots submerged in the water column 

and performing the typical functions (Headley and Tanner, 2006, 2012; Kadlec and Wallace, 

2009; Vymazal, 2013; Chen 2016). 

Artificial floating mats to support plant species were introduced recently and are prepared from a 

wide variety of materials, mostly inorganic, varying from simple hand-made to high 

technology supporting mats. Important criteria regarding the choice of materials for floating 

mats include buoyancy, flexibility, durability, affordability and suitability to environment 

(Headley and Tanner, 2006). Polyethylene (PE) and polystyrene foam are among the widely 

spread used materials that fulfill the previous criteria (Table 2) (Van Acker et al., 2005; 

Boonsong and Chansiri, 2008; Yang et al., 2008; Xian et al., 2010; Tanner and Headley, 

2011; White and Cousins, 2013; Winston et al., 2013; Ebrahimi, 2015, Hartshorn et al., 2016; 

Zhang et al., 2016). PVC plastic pipes was another commonly used solution in FTW studies 

(Hubbard et al., 2004; Billore et al., 2008; Zhao et al., 2012a, b; Winston et al., 2013; Ge et 

al., 2016; Saeed et al., 2016). In the last decade, technology introduced new eco-friendly non-

toxic durable floating mats such as Bio Haven
® 

and Tech IA
®
 (Stewart et al., 2008; Tanner 

and Headley, 2011; Chang et al., 2013; De Stefani et al., 2011, Mietto et al., 2013; Pavan et 

al., 2015; Pappalardo et al., 2017).  In some experiments, organic materials such as timber, 

bamboo, coconut fiber, rice and barley straw have been supplementary to supporting mats to 

enhance the FTW establishment and functioning (Smith and Kalin, 2000; Boutwell, 2003; 

Garbutt, 2005; Billore, 2008; Zhao et al., 2012a, Cao et al., 2016) (Table 2). 

Wastewater treatment 

Since the 1990s, Focused research was directed to FTWs and their potentiality in the 

phytodepuration of a wide range of wastewaters with high efficiency, low costs and sustainable 

environmental value (Table 2). In light of that, the treatment of stormwater was amongst the 

earliest treatment trials; the use of 1 ha floating reed-beds in Heathrow Airport, England, UK for 

the removal of glycol and biological oxygen demand (BOD) from stormwater run-off was one of  
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Table 2. Collection of experiments about the FTWs around the world. 

Reference Location Floating element Plant species Wastewater 

Karnchanawong 

and Sanijtt (1995) 
Thailand Concrete ponds Ipomoea aquatica 

University campus 

wastewater 

Van Oostrom 

(1995) 
- Floating mats Glyceria maxima 

nitrified meat 

processing effluent 

Lakatos et al. 

(1997, 2014) 

Hungary, 

Europe 

Floating meadow 

system 

Phragmites 

australis 

Pertrochemcial 

waste water 

Revitt et al. 

(1997) 

U.K., 

England 
Plastic geotextile lattice 

Phragmites 

australis 
Stormwater 

Kerr- Upal et al. 

(2000) 

Canada, 

Toronto 
- Lemna spp. Stormwater 

Smith and Kalin 

(2000) 
Canada 

Timber, plastic snow 

fences, fishing net, 

Styrofoam, plywood 

panels and Sphagnum 

spp. Moss on a burlap 

liner 

Typha spp. Acid mine drainage 

Revitt et al. 

(2001), Richter 

(2003) 

UK, 

England 
Reed beds 

Phragmites 

australis 
Stormwater 

Boutwell (2002) 
USA, Las 

Vegas 

HDPE-shipping pallets, 

stainless steel and 

coconut fibres 

Shoenoplectus spp., 

Typha spp 
Lake water 

Ash and Trong 

(2003) 

Australia, 

Queensland 
Floating pontoons 

Chrysopogon 

(Vetiveria)  

zizanioides 

Sewerage effluent 

Hart et al. (2003) 

NewSouth 

Wales, 

Australia 

- 
Chrysopogon 

zizanioides 
Septic tank effluents 

Todd et al. (2003) 

USA, 

Vermont, 

Massachus

et 

Advanced ecologically 

engineered system  and 

floating ponds restorer 

200 species: 

Zantedeschia 

aethiopica, 

Carassius auratus, 

Azolla spp., lemna 

spp. 

Sewage 

Hubbard et al. 

(2004) 

USA, 

Georgia 

PVC pipes and fibrous 

material 

Panicum 

hemitomon, Typha 

latifolia, Juncus 

effuses 

Swine lagoon 

Kyambadde et al. 

(2005) 
Uganda - 

Cyperus papyrus, 

Miscanthidium 

violaceum 

Stabilization pond 

Garbutt (2005) 
United 

Kingdom 

Floating reed beds, 

Barley straw 

Phragmites 

australis 
Eutrophic water 
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Table 2. contin. Collection of experiments about the FTWs around the world  

Van Acker et al. 

(2005) 

Belgium, 

Europe 

PE-net+PE-foam with 

coconut fibres 

Carex spp., 

Phragmites 

australis, 

Shoenoplectus 

latifolia, Typha 

spp., Iris 

pseudacorus 

Combined sewer 

overflow 

Billore et al. 

(2008) 
India 

Bamboo, PVC fibres, 

galvanized iron wire 

and nylon coconut 

fibres 

Phragmites Karka Lake water 

Boonsong and 

Chansiri (2008) 
Thailand 

Foamed board with 

holes 

Vetiveria  

zizanioides 
Domestic waste water 

     

Stewart et al. 

(2008) 
USA 

BioHaven® floating 

islands 
Microbes only 

Agricultural and 

municipal wastewater 

Yang et al. 

(2008) 
China Foam sheets Oenanthe javanica 

River water with 

chemicals (Simulated 

agric. Run-off) 

Sun et al. (2009) China Floating beds Canna spp. River water 

Hu et al. (2010) China 

Dredged sludge, 

industrial slag and 

expanded perlite 

Acorus calamus Lake water 

Li et al. (2010) China 

Polypropylene 

perforated plate  (PPR) 

frame,   buoyancy  by 

sealed empty drinking 

bottle 

Ipomoea aquatica, 

Corbicula 

fluminea 

Eutrophic lake water 

Van de Moortel 

(2010) 

Belgium, 

Europe 

Plastic pipes filled with 

foam and wire netting 

Carex spp., Iris 

pseudacorus, 

Juncus effusus, 

Lythrum salicaria 

Domestic waste water 

Xian et al. (2010) China 

High density 

polyethelene foam 

plates with holes 

Lolium 

multiflorum 
Swine wastewater 

Zhou and wang 

(2010) 
China Floating beds Oenanthe javanica River water 

Tanner  and 

Headley (2011) 

New 

Zealand 

Polyester fibre injected 

with patches of 

polystyrene foam 

(BioHavenTM, 

Floating Islands) 

Carex dispacia, 

Carex virgata, 

Cyperus ustilatus, 

Eleocharis acutis, 

Juncus edgarae, 

Schoenoplectus 

tabernaemontani 

Stormwater 
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Table 2. contin. Collection of experiments about the FTWs around the world. 

Hubbard et al. 

(2011) 
USA Floating platforms 

Cynodon dactylon, 

Stenotaphrum 

secundatum, 

Panicum 

dichotomiflorum, 

Arundo donax 

Swine wastewater 

Li et al. (2011) China - Lolium perenne Eutrophic lake water 

     

Van de Moortel 

(2011) 

Belgium, 

Europe 

Plastic pipes filled with 

foam and wire netting 

Carex acutiformis, 

Iris pseudacorus, 

Juncus effuses 

Combined sewer 

overflow 

Chang et al. 

(2012) 

USA, 

Florida 

Buoyant, interlocked 

puzzle-cut foam mats  

joined  by nylon 

connectors 

Canna Flaccida, 

Juncus effuses 
Stormwater 

Dunqiu et al. 

(2012) 
China - 

Phragmites 

australis, Typha 

latifolia 

River water 

Li et al. (2012) China Floating beds 

Geophila 

herbacea, Lolium 

perenne 

Refinery waste water 

     

Zhao et al. 

(2012a) 
China 

Bamboos covered with 

plastic net, PVC pipes 

with adsorptive 

biofilms 

Eichornia 

crassipes, Pistia 

stratiotes, 

Jussiaea reppens, 

Hydrocotyle 

verticillata, 

Hydrocharis dubi, 

Myriophyllum 

aquaticum, 

pontederia 

cordata, Canna 

indica, Caltha 

palustris 

Eutrophic river water 

Zhao et al. 

(2012b) 
China 

PVC pipes and bamboo 

tablets 

Miscanthus 

sinensis Anderss 

(sp.), Vetiveria 

zizanioides 

Hypereutophic pond 

water 

Zhou et al. (2012) China - Rumex acetosa Eutrophic river water 

Chang et al. 

(2013) 

USA, 

Florida 

BioHaven® floating 

islands 

Pontederia 

cordata, Juncus 

effuses 

Stormwater 

Ladislas et al. 

(2013) 

France, 

Europe 

Polyethylene plot with 

Puzzolana rocks, 

polystyrene float. 

Juncus effusus, 

Carex riparia 
Stormwater 
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Table 2. contin. Collection of experiments about the FTWs around the world. 

White and 

Cousins (2013) 

USA, 

South 

Carolina 

Beemats of  foam  mat  

squares  joined  using   

nylon connectors 

Canna Flaccida, 

Juncus effuses 

Lake water witth 

fertilizers (simulated 

stormwater run-off) 

Winston et al. 

(2013) 

USA, 

South 

Carolina 

Closed- cell foam and 

PVC pipes 

Carex stricta, 

Juncus effusus, 

Spartina 

pectinata, 

Pontederia 

cordata, Acorus 

gramineus, 

Peltandra 

virginica, 

Andropogon 

gerardii, Hibiscus 

moscheutos 

Stormwater 

Borne et al. 

(2014) 

New 

Zealand, 

Auckland 

Floating treatment pond Carex virgata Storm water 

Keizer-Vlek et al. 

(2014) 

Netherland

s 
Styrofoam mats 

Iris pseudacorus, 

Typha angustifolia 

Eutrophic urban 

surface water 

Wang and 

Sample (2014), 

Wang et al.  

(2014, 2015) 

USA, 

Virginia 

Floating treatment 

microcosms 

Pontederia 

cordata, 

Schoenoplectus 

tabernaemontani 

Storm water 

Ebrahimi (2015) Iran Floating foam Juncus effuses Eutrophic water 

Hartshorn et al. 

(2016) 

Florida, 

USA 

Foam mats with nylon 

connectors for floating 

system stability 

Canna, Juncus, 

Iris, Agrostis 

Forest, residential 

area and stormwater 

runoff wastewaters 

Hartshorn et al. 

(2016) 

Florida, 

USA 

Foam mats with nylon 

connectors for floating 

system stability 

Canna, Juncus, 

Iris, Agrostis 

Agricultural, 

commercial areas and 

residential zones 

wastewaters 

Hartshorn et al. 

(2016) 

Florida, 

USA 

Foam mats with nylon 

connectors for floating 

system stability 

Canna, Juncus, 

Agrostis 

Stormwater runoff 

wastewaters derived 

from cars park. 

Cao et al. (2016) China 

Perforated 

polypropylene random 

copolymer, rice straw 

and light ceramsite as 

filling substrates. 

Canna Eutrophic river 

Zhang et al. 

(2016) 
China 

Polyetilene foam 

boards 
Canna indica 

Domestic wastewater 

and tap water 

Ge et al. (2016) China 

Polyvinyl chloride 

pipes, plastic mesh, and 

pot holders 

Canna indica, 

Thalia dealbata, 

Lythrum salicaria 

Storm water 
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Table 2. contin. Collection of experiments about the FTWs around the world. 

Saeed et al. 

(2016) 
Bangladesh 

UPVC pipes, nylon 

fiber mesh as medium 

and macrophytes 

support 

Phramites 

australis, Canna 

indica 

River water 

Olguin et al. 

(2017) 
Mexico 

FTW: Low-cost rigid 

plastic containers with 

empty plastic bottles. 

Plastic bottles 

perforated at the bottom 

and filled with volcanic 

gravel as plants support 

Cyperus papyrus, 

Pontederia 

sagittata 

Eutrophic urban 

water 

 

the first large scale processes reported for this type of treatment (Revitt et al. 1997 and 2001; 

Richter, 2003). FTWs also proved high efficiency in the removal of  metals  like Cu, Cd, Ni  

and Zn from urban and artificial stormwater (Tanner and Headley, 2011; Ladilas et al., 2013; 

Bourne et al., 2014). The use of FTWs for the removal of COD and nutrients (TN, TP, NO3
-
, 

NH4
+
, PO4

-
) in stormwater was reported by many authors with removal rates ranging between 

16-70%, 9-76%, 8-79%, and 51-100% for TN, NO3
-
, TP and NH4

+
,  respectively    (Chang et 

al. 2012  and  2013;  Winston et al. 2013;  Wang and Sample, 2014; Wang et al., 2014 and 

2015 Ge et al. 2016, Hartshorn et al., 2016; Olguin et al. 2017). Another example of 

wastewater treated by FTWs was combined sewer flow; two experiments were conducted in 

Belgium for pollutant removal (Van Acker, 2005; Van de Moortel, 2011). Smith and Kalin 

(2000) used FTWs for the removal of Cu, Zn and sulphates from acid mine drainage water in 

Toronto, Canada. Removal of COD and nutrients from swine wastewater was reported by 

Hubbard (2004) and Xian et al. (2010). The treatment of sewage water with FTWs varied 

between using the simple floating pontoons (Ash and Troung, 2003) and the complicated, 

Advanced Ecologically Engineered System (AEES) introduced by Todd et al. (2003). In 

China, many researches in the last decade focused on the use of FTWs in the treatment of 

eutrophic lake and river water bodies for the removal of nutrients and COD with removal rates 

ranging 31-78%, 26-97% and 8-86% for TN, NO3
-
 and TP , respectively (Table 3) (Yang et 

al., 2008; Sun et al., 2009; Hu et al.; 2010; Li et al., 2010; Zhou and Wang, 2010; Li et al., 

2011; Dunqiu et al., 2012; Zhao et al., 2012a, 2012b; Zhou et al., 2012; Zhang et al., 2016; 

Cao et al., 2016). 
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Table 3. Removal rates of pollutants (%) using FTWs in China in the last decade. 

Reference TN NO3
- 

NO2
- 

NH4
+ 

TP PO4
- 

COD Chl-a 

Yang et al. (2008) 31-64 71-97 - - 8-15 - - - 

Sun et al. (2009) 72 76 96 - - - 95 - 

Hu et al. (2010) 36 - - 44 36 - - 48 

Li et al. (2010) 53 - - 34 54.5 - - 80 

Xian et al., (2010) 84 - - - 90 - 83 - 

Li et al. (2011) 32 - - 81 73 - - - 

Chang et al. (2012) 61 73 - 100 53 79 - - 

Dunqiu et al. (2012) - - - 88 83.5 - - - 

Zhao et al. (2012a) - 59 82 50 86 - - - 

Zhao et al. (2012b) 37 26 53 45 43 - - 64.5 

Chang et al. (2013) 16 21 - 51.5 48 79 - - 

Zhang et al. (2015) - - - 85 83 82.5 - - 

Cao et al. (2016) 65-78 42-62 - 71-81 - - - - 

Ge et al. (2016) 70 - - - 82 - 71 - 

Plant species and growth performance 

Being favorable in FTWs, rooted emergent macrophytes belonging to different botanical families 

were used extensively for the treatment of wastewaters (Table 2, 4). However, despite the 

great variety, choices are limited to a specific group of macrophytes which are frequently used 

for the treatment of wide range of wastewaters namely, Carex spp., Canna spp., Cyperus spp., 

Iris pseudacorus, Juncus effusus, Phalaris arundinacea, Phragmites australis, Typha spp., 

Scirpus spp. (Schoenoplectus spp.) and Vetiveria zizanioides (Kadlec and Wallace, 2009; 

Vymazal, 2013; Chen et al., 2016).  

Many studies have reported the growth performances of vegetation installed in FTWs. Tanner 

and Headley (2011) assessed the performance of 4 macrophytes in a 365-day experiment for 

the treatment of heavy metals and phosphorus in a stormwater retention pond. In this 

experiment, Carex varigata exhibited the highest above biomass production (2350 g m
-2

) 

followed by Cyperus ustulatus (1528 g m
-2

) while Schoenoplectus tabernaemontani had the 

lowest above mat biomass production (834 g m
-2

). C. ustulatus showed higher overall uptake 

rates for Cu, Zn and P than   C. Varigata and   S. tabernaemontani. White and Cousins (2013) 
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Table 4. List of macrophyte plant species with their correspondent botanical aspects.  

Species 
Common 

name (s) 
Family Origin Botanic description Habitat 

Acorus 

calamus L. 

Sweet flag, 

beewort, 

bitter pepper 

root, 

calamus root 

Acoraceae Asia 

Perennial, rhizomatous; 

linear leaves; triploid 

forms more common, 

infertile. 

Lakes or ponds, 

marshes,  rivers 

or streams and 

wetland 

margins  

Alnus 

glutinosa L. 

Common 

alder, black 

alder, 

European 

alder 

Betulaceae Europe, 

southwest Asia 

and northern 

Africa 

Tree, 20-30 m, 

adventitious roots, main 

axial stem branched, 

monoecious, wind 

pollinated 

Moist soils, 

near rivers, 

ponds and lakes 

Artemisia 

caerulescens 

L. 

Mugwort, 

wormwood, 

sagebrush 

Asteraceae Euro-

mediterranean 

region 

Perennial, woody stems, 

erect branches with 

inflorescences, linear 

leaves, fruit; achene 

Saline soils, 

lagoons 

Arundo 

donax L. 

Giant cane, 

spanish 

cane, wild 

cane, giant 

reed 

Poaceae Mediterranean 

Basin, middle 

east Asia, parts 

of Africa and 

southern Arabian 

Peninsula. 

Perennial, 6 m, 

rhizomatous, hollow 

stems, linear alternate 

leaves, seedless or 

infertile 

Fresh or 

moderately 

saline soils, 

wetlands and 

riparian habitats 

 Aster 

tripolium L. 

Sea aster Asteraceae Eurasia and 

northern Africa 

Perennial,  50 cm tall,  

fleshy lanceolate leaves, 

purple ray florets 

Salt marshes, 

estuaries 

Calamagros

tis epigejos 

(L.) Roth  

Wood small-

reed, 

bushgrass 

Poaceae Eurasia and 

Africa 

Perennial grass, lengthy 

rhizomes, erect, 60–200 

cm,  large inflorescence, 

flowers form dense, 

narrow spikes  

Salt marsh and 

wet habitats 

Caltha 

palustris L. 

Marsh-

marigold, 

kingcup 

Ranunculaceae 

Temperate 

regions of the 

Northern 

Hemisphere 

Perennial herbaceous, 10–

80 cm height; thick 

branching roots; 

flowering erect stems. 

Marshes, fens, 

ditches and wet 

woodland 

Canna 

indica L. 

Indian shot, 

African 

arrowroot, 

edible 

canna, 

purple 

arrowroot 

Cannaceae 

South America, 

Central America, 

southeastern 

United States 

Perennial, rhizomatous, 

0.5 -2.5 m height; 

hermaphrodite flowers; 

small, globular, black 

pellets seeds. 

Swamp and 

wetland edges, 

streambanks 

and other moist 

areas 

Carex elata 

Gooden. 

(Carex 

stricta 

Lam.) 

Upright 

sedge 
Cyperaceae Universal 

Perennial, rhizomes, 

stolons or short 

rootstocks; flower-bearing 

stalk; unbranched, erect, 

leaf blade long and flat; 

spikes combined into a 

large inflorescence. 

Marshes, 

calcareous fens, 

bogs, peatlands, 

pond and 

stream banks, 

riparian zones, 

ditches 

Chrysopogo

n zizanioides 

(L.) Robert. 

Vetiver Poaceae India 

Perennial bunchgrass, 1 m 

height; long leaves; long, 

rigid roots grown 

downward; flowers in 

spiklets. 

Floodplains, 

banks of 

streams and 

rivers, rich 

moist soils 
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Table 4. contin. List of macrophyte plant species with their correspondent botanical aspects. 

Cladium 

mariscus 

(L.) Pohl. 

Swamp 

sawgrass, 

great fen-

sedge, saw-

sedge 

Cyperaceae Temperate 

Europe and Asia 

Perennial, 2.5 m, leaves 

with hard serrated edges, 

flowers; hermaphrodite 

collected in 

inflorescences, fruit; 

achene 

Boggy areas 

and lakesides 

Cynodon 

dactylon 

(L.) Pers. 

Dūrvā grass, 

Bermuda 

grass, dog's 

tooth grass, 

Bahama 

grass, devil's 

grass 

Poaceae Middle East Perennial grass, deep root 

system; 2 m, erect stems; 

1–30 cm, leaves, short 

blades with rough edges 

Roadsides, 

overgrazed and 

uncultivated 

areas, lands 

high nitrogen 

levels, moist 

sites along 

rivers 

Cyperus 

papyrus L. 

Papyrus 

sedge, paper 

reed, Indian 

matting 

plant, Nile 

grass 

Cyperaceae Africa 

Perennial, herbaceous, 

rhizomatous, 4-5 m, 

triangular green stems; 

Each topped by a dense 

cluster of thread-like 

stems, greenish-brown 

flower clusters, nut like 

fruit 

Flooded 

swamps, 

shallow water. 

Dactylis 

glomerata 

L. 

Cock's-foot, 

orchard 

grass, or cat 

grass 

Poaceae 

Europe, 

temperate Asia, 

and northern 

Africa 

Perennial grass, 20–140 

cm height; long, grey-

green leaves; distinctive 

triangular flower head, 

spikelets  2 to 5 flowers. 

Meadows, 

pasture, 

roadsides, 

rough grassland 

Elytrigia 

atherica 

(Link) 

Kerguélen 

Sea couch 

grass 

Poaceae Old World in 

Europe, Asia, 

and northwest 

Africa 

Perennial grasses Sandy, and 

saline 

environments 

Glyceria 

maxima 

(Hartm.) 

Holmb. 

Great 

Manna 

Grass, Reed 

Mannagrass, 

and Reed 

Sweet-grass 

Poaceae Europe and 

Western Siberia 

Perennial, rhizomatous wet areas 

riverbanks and 

ponds 

Halimione 

portulacoide

s (L.) Aellen 

Sea purslane Amaranthaceae Temperate 

Eurasia and parts 

of Africa 

Evergreen, halophyte, 75 

cm, flowers; monoecious, 

pollinated by wind. 

Salt marshes 

and coastal 

dunes 

Inula 

crithmoides 

L.  

Golden 

samphire 

Asteraceae Western and 

southern Europe 

and the 

Mediterranean 

Perennial, tufted habit, 1 

m, fleshy leaves, large 

flower heads, six yellow 

ray florets, flowers;  self-

fertile or pollinated by 

insects 

Salt marshes or 

sea cliffs 

Iris 

laevigata 

Fisch. 

Japanese 

iris, rabbit-

ear iris, 

kakitsubata 

Iridaceae Japan 

Perennial, rhizomatous; 

blue, purple or violet 

flowers. 

Shallow waters, 

marshy and still 

ponds, damp 

soils 
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Table 4. contin. List of macrophyte plant species with their correspondent botanical aspects. 

Iris 

pseudacorus 

L. 

Yellow flag, 

yellow iris, 

water flag, 

lever 

Iridaceae 

Europe, western 

Asia and 

northwest Africa 

Perennial, herbaceous, 1-

1.5 m height, 

rhizomatous, erect, long 

leaves, flower; bright 

yellow, fruit; dry capsule. 

very wet 

conditions, 

common in 

wetlands 

Juncus 

effusus L. 

Common 

rush, soft 

rush 

Juncaceae 

Europe, Asia, 

Africa, North 

America, and 

South America 

Perennial herbaceous, 1.5 

m, stems; smooth 

cylinders with light pith 

filling; yellowish 

inflorescence emerge 

from one side of the stem. 

Wet areas; 

wetlands, 

riparian areas, 

marshes, 

ditches, fens 

Juncus 

maritimus 

Lam. 

Sea rush Juncaceae Europe, Asia, 

Africa 

Perennial, herbaceous,  

40-100 cm stems; green, 

cylindrical, leaves; 

pointed, inflorescence; 

green or yellow flowers 

Sandy , moist 

and saline soils, 

coastlines 

Limonium 

narbonense 

Mill. 

Sea lavender Plumbaginacea

e 

Southern Europe, 

North Africa and 

in Southwest 

Asia 

Perennial, herbaceous, 

30–70 mm, leaves; 

lanceolate-spatulate, in a 

basal rosette,  

inflorescence; large, few 

or absent sterile branches,  

flowers; white to pale 

violet 

Coastal habitat; 

beaches, salt 

marshes, coastal 

prairie, sandy 

saline habitats 

Lythrum 

salicaria L. 

Purple 

loosestrife, 

spiked 

loosestrife, 

purple 

lythrum 

Lythraceae 

Europe, Asia, 

northwest Africa, 

and southeastern 

Australia 

Perennial, herbaceous, 

rhizomatous, 1–2 m 

height; numerous erect 

stems, 1.5 m width from a 

single woody root mass; 

lanceolate leaves; reddish 

or purple flowers; fruit: 

capsule. 

Ditches, wet 

meadows and 

marshes, along 

sides of lakes 

Mentha 

aquatica L. 
Water mint Lamiaceae 

Europe, 

northwest Africa 

and southwest 

Asia 

Perennial, herbaceous; 

fleshy with fibrous roots 

(90 cm); ovate to 

lanceolate leaves; tiny 

flowers, densely crowded, 

purple, form a terminal 

hemispherical 

inflorescence. 

Shallow 

margins, 

channels of 

streams, rivers, 

pools, dikes, 

ditches, canals, 

wet meadows, 

marshes and 

fens 

Phalaris 

arundinacea 

L. 

Reed canary 

grass 
Poaceae 

Europe, Asia, 

northern Africa 

and North 

America 

Perennial bunchgrass; 

thick underground 

rhizomes; stems 2 m 

height; green variegated 

leaf; spikelets: light green, 

streaked with darker 

green or purple. 

Floodplains, 

riverside 

meadows, 

wetland habitat 

types 
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Table 4. contin. List of macrophyte plant species with their correspondent botanical aspects. 

Phragmites 

australis 

(Cav.) Trin. ex 

Steud. 

Common 

reed 
Poaceae Cosmopolitan 

Perennial grass; horizontal 

runners roots; erect stems, 

average 2 m height; linear 

leaves; flowers: dense, sharp 

pointed grey  hairy spikelets. 

Helophyte, 

alkaline 

habitats, 

brackish water, 

upper edges of 

estuaries and on 

other wetlands 

Pontederia 

cordata L. 

Pickerel 

weed 
Pontederiaceae 

American 

continent 

Aquatic, rhizomatous, 

aerenchyma tissues to carry 

oxygen into the roots; leaves 

vary across population; 

tristylous flowers. 

Wetlands, pond 

and lake 

margins 

 Puccinellia 

palustris 

(Seen.) Hayek  

Alkali 

grass, salt 

grass 

Poaceae Temperate to 

Arctic 

regions of 

Northern and 

Southern 

Hemispheres 

Perennial bunchgrass, 

inflorescence; spreading 

array of a few branches 

containing spikelets. 

Wet 

environments, 

saline or 

alkaline 

conditions 

Salix eleagnos 

Scop. 

Bitter 

willow, 

olive 

willow, 

hoary 

willow 

Salicaceae Central and 

southern 

Europe, south 

west Asia, 

north Africa 

Erect bushy deciduous shrub, 

3 m, leaves; narrow grey-

green ,20 cm long,  turn 

yellow in autumn, green 

catkins, appear with the 

leaves in spring, male catkins 

having yellow anthers,   

species is dioecious 

River banks, 

streams and 

mountain 

streams, gravel 

and floodplains 

of watercourses 

Sarcocornia 

fruticosa (L.) 

A. J. Scott 

Samphires

, 

glassworts

, saltworts 

Amaranthaceae Cosmopolitan Perennial herbs, sub-shrubs 

or shrubs, erect or prostrate, 

creeping form, leaves; 

opposite, blades form small, 

triangular tips with narrow 

scarious margin, 

inflorescences; terminal or 

lateral, spike-like, paired 

cymes, cyme; 3-5 flowers  

Wet saline 

habitats; 

estuaries, salt 

marshes, tidal 

flats, seacliffs, 

salt pans, saline 

sediment in 

seasonal desert 

waterways 

Schoenoplectu

s lacustris (L.) 

Palla 

Lakeshore 

bulrush, 

common 

club-rush 

Cyperaceae 
Europe, 

North Africa 

Perennial, rhizomatous, 3.5 

m height; stems: erect, 5 cm 

thick; leaves: bladless 

sheaths, blades underwater 

100 cm; inflorescence: top of 

stem, branches. 

Fresh water 

Sparganium 

erectum L. 

Simpleste

m bur-

reed,  

branched 

bur-reed 

Typhaceae 

Temperate 

regions of 

both the 

Northern and 

Southern 

Hemispheres. 

Perennial, aquatic, 

rhizomatous, emergent stems 

with aerenchym; strap-like 

leaves; flowers:  borne in 

spherical heads, 

hermaphrodite. 

Shallow 

marshes, ponds 

and streams 

Spartina 

maritima 

(Curtis) 

Fernald 

Small 

cordgrass 

Poaceae Western and 

southern 

Europe and 

western 

Africa 

Perennial, herbaceous, 20-70 

cm, leaves; slender, broad at 

the base, tapering to a point, 

flowers and seeds on all sides 

of the stalk,  flowers; 

greenish 

Coastal habitat 
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Table 4. contin. List of macrophyte plant species with their correspondent botanical aspects. 

Symphytum 

officinale L. 

Common 

comfrey, 

true 

comfrey 

Boraginaceae Europe 

Perennial, herbaceous, 30-

120 cm, rhizomatous, stems; 

errect, leaves; large  rough, 

strong and hairy, 

inflorescence; panicle  

pseudo dense clusters of 

flowers, fruit; achene 

Marshy places, 

ditches, canals 

and bogs,  damp 

meadows and 

edges of woods. 

Thalia 

dealbata 

Fraser ex 

Roscoe 

Powdery 

alligator-

flag, 

hardy 

canna, 

powdery 

thalia 

Marantaceae 

Southern and 

central 

United States 

Aquatic plant, 1.8 m height; 

leaves: blue-green, ovate to 

lanceolate; flowers: small, 

violet. 

Swamps, ponds 

and other 

wetlands 

Typha latifolia 

L. 

Broadleaf 

cattail, 

bulrush, 

common 

bulrush, 

common 

cattail 

Typhaceae 

North and 

South 

America, 

Europe, 

Eurasia, and 

Africa 

Perennial, herbaceous, 

rhizomatous, 1.5-3 m height; 

leaves: linear, broad, erect, 

monoecious; stems: bear 

flowering spikes; seeds: 

minute, hairy. 

Obligatory 

wetland species, 

fresh water, 

slightly 

brackish 

marshes 

Zantedeschia 

aethiopica (L.) 

Srengel 

Calla lily Araceae 
Southern 

Africa 

Perennial, herbaceous, 

evergreen, rhizomatous, 0.6–

1 m height; leaves: arrow 

shaped, dark green; 

inflorescences:  large with a 

pure white spathe and a 

yellow spadix.  

Moist, shady 

areas with 

plenty of water 

 

used 2 species for the treatment of stormwater runoff; J. effusus retained up to 28.5 g N m
-2

 

and 1.69 g P m
-2

 versus 16.8 g N m
-2

 and 1.05 g P m
-2

 for Canna flaccida. Additionally, In a 

storm water retention pond, Thalia dealbata showed the highest performance (maximum 

above mat biomass 1989 g/plant, maximum N uptake 5.4 g/plant) while Lythrum salicaria L. 

exhibited the lowest (566 g biomass/plant, 2.7 g N/plant) (Ge et al., 2016). Another example 

for the use of machrophyte species in the treatment of stormwater involves the use of P. 

cordata and Scirpus californicus with   average uptake rates of N and P of 36.39 and 1.48 mg 

m
-2

 d
-1

,
 
respectively (Chang et al., 2012). Moreover, Plant species in FTWs proved great 

efficiency in the treatment of swine wastewater. In a swine wastewater lagoon, T. latifolia 

yielded 16511 g m
-2

 total biomass and removed 534, 79 and 563 g m
-2

 of N, P, K, respectively 

while total biomass for Panicum hemitomon was 9751 g m
-2

 and nutrient removal was 323, 48 

and 223 g m
-2

 of N, P, K, respectively (Hubbard, 2004). Cynodon dactylon Tifton 85, C. 

dactylon and Panicum dicotomiflorum were used also in the treatment of swine wastewater 
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and yielded 3600, 3200 and 3100 g m
-2

 of above mat biomass, respectively after 6 cuttings. C. 

dactylon Tifton 85 exhibited the highest annual uptake of N and P; 69 and 25 g m
-2

, 

respectively while P. dicotomiflorum exhibited the highest K annual uptake; 78 g m
-2

 

(Hubbard, 2011). Smith and Calin (2000) investigated the use of Typha angustifolia in the 

removal of suspended solids (SS) from ponds where it removed 290 g m
-2

 of SS and yielded 

180 g m
-2

 root biomass in Kitimat lagoon, British Colombia, Canada after the 2
nd

 season. T. 

angustifolia and I. pseudacorus were introduced for the removal of TN and TP by Keizer-

Vlek et al. (2014); the best performance was exhibited by I. pseudacorus (277 and 9.32 mg m
-

2
 d

-1
 of N and P, respectively). P. cordata produced 10.44 g dry weight and absorbed 7.58 mg 

P per plant in the treatment of urban run-off wet pond (Wang et al., 2015). In general, 

increasing research is directed recently to the study of the plant growth performance as an 

important tool for the assessment of wetland treatment systems. 
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Research objectives 

The main objective of this research is to evaluate the overall performance of two types of surface 

flow constructed wetlands used in north Italy; FWS CW and FTW, in terms of water quality 

improvement and vegetative performance of different machrophyte plant species on 3 

different levels; full and pilot scale experiments, and a review study. 

The specific objectives of the research include: 

Chapter II 

1.  Assessment of the water-purification capacity of integrated surface wetland system to control 

diffused nutrient pollution from a conventional cropping system within the Venetian Lagoon 

drainage system. 

2.  Testing the wetland performance in reducing N-NO3
–
 and TN in the water flow. 

3.  Quantifying the survival rate of plant species, and screening the biometrics, biomass 

production and nutrient uptake of seven macrophytes adapted to FTWs.  

Chapter III 

1. Evaluation of N-NO3
–
 retention in a pilot scale event- driven experiment simulating excessive 

N-NO3
–
 load to draw some conclusions on the overall specific performance of the FWS CW 

within the Venetian Lagoon system.  

2.  Prediction of some water dynamics of the FWS CW in a designed event- driven experiment 

simulating excessive agricultural N-NO3
–
 load. 

Chapter IV 

1. Reporting the biometric characteristics, biomass production and nutrient uptake of 20 

different wetland species installed in 9 different FTWs during 10 years of research in North 

Italy. 

2. Introduction of some correlations between different plant growth parameters and between 

these and other physico-chemical parameters of treated wastewater. 
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Chapter II 

Surface flow constructed wetlands for the treatment of 

agricultural surface run-off within the Venetian lagoon 

system (Full scale) 
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Introduction 

In 2000, Italy recorded one of the highest values among the EU Member States for utilised 

agricultural area (UAA); 13.1 million hectares (ha), accounting for 43 % of the whole territory 

(Eurostat, 2015). This area decreased by 1.6% in 2010 (12.9 million ha). Veneto region 

(northeast Italy) contributes to this area with 6.3% (811.4 thousand ha). Most of the 

agricultural lands in Veneto region lie in the lower plain (rich in water resources and arable 

land) with 57% in the Po Valley. Water resources in Veneto include; rivers flowing through 

the region: the Po, Adige, Brenta, Bacchiglione, Livenza, Piave, and Tagliamento, lakes: the 

eastern shore of Lake Garda, the largest in Italy, belongs to Veneto. As well, The Venetian 

Lagoon is an enclosed bay in the northern part of the Adriatic Sea forming a flat terrain with 

ponds, marshes and islands. 

Anthropogenic activities, agricultural and industrial, generate wastes and pollutants with high 

negative impact on the physicochemical and biological parameters of water resources, thus, 

declining the quality of water (Zonta et al., 2005). In Veneto, most of the industrial and 

agricultural wastewaters are conveyed to the Venetian lagoon through its drainage basin; 

loads of nitrogen (N) and phosphorus (P) are discharged through 12 tributaries divided into 

sub-basins (Collavini et al., 2005; Zonta et al., 2005; Zuliani et al., 2005). N and P in addition 

to other pollutants, mainly heavy metals, were evaluated within the framework of the DRAIN 

project (1998-2000) to determine the pollutant input from the drainage basin to the lagoon. 

The total nitrogen load was one-third higher than the maximum allowable load of 3000 t/year 

stated by the Ministerial decree (Ministero dell’Ambiente, 1999) as a reference value for 

lagoon inputs, while the total phosphorus was 229 t/year, which is lower than the maximum 

allowable load of 300 t/year (Collavini et al., 2005). In light of this, inputs of nitrogen into the 

Venetian Lagoon system must be reduced dramatically in the near future, or at least the 

maximum allowable value should be attained. 

Constructed wetland technology was not officially considered as a water treatment technology by 

the Italian legal framework until 1999 (Masi et al., 2000). The use of constructed wetlands 

(CW) was officially enforced by the new law about municipal wastewater treatment D.Lgs 

152/99 “for urban centers with populations in the range of 10-2000 PE discharging into 

freshwater, in the range of 10-10.000 PE discharging in sea water, and for tourist facilities and 

other point sources with high rates of fluctuation of organic and/or hydraulic loads”.  Most 
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CW systems were concentrated in central and northern Italy (Masi, 2000); out of 145 systems, 

106 (74%) are located in Veneto, Emilia-Romagna and Toscana where local conditions are 

favorably better. CW varied between sub-surface flow (horizontal (HF) and vertical (VF) 

flow), with HF systems prevailing over VF, and surface flow (mainly free water surface 

(FWS), floating treatment wetlands (FTW) were introduced later in 2006). Few semi-natural  

(NW)  and  re-constructed  systems  (RCW)  are  present  in  Italy  and  designed  for  the  

treatment  of  diffuse  pollution  sources  from agricultural  and  civil  catchments (Masi, 

2000). In northeast Italy, CW targeted the treatment of many types of wastewater; municipal 

domestic water in tertiary treatment had the greatest focus (De Stefani, 2012; Mietto et al., 

2013). Other treated types of wastewater include aquaculture and stream water (De Stefani et 

al., 2011), sewage water (De Stefani et al., 2012) and digestate liquid fraction (Pavan et al., 

2015). Fewer experiments dealt with agricultural runoff (Borin and Tocchetto, 2007; Maucieri 

et al., 2014). 

The general aim of the present study is to assess the water-purification capacity of a 3.2-ha 

integrated wetland system within the Venetian Lagoon drainage system designed to control 

diffused nutrient pollution from a conventional cropping system. The specific aims focus on 

two different phytoremediation systems, namely a FWS CW system and an FTW system, so 

as to estimate their performance in reducing N-NO3
–
 and TN in the water flow, to quantify the 

survival rate of FTW species, and to screen the survival, biometrics and biomass production 

of seven macrophytes adapted to FTWs. 
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Materials and Methods 

Geographical framework and the integrated agricultural wetland 

The study area is located within the Venetian Lagoon drainage system (north-eastern Italy), a 

dense minor hydrographic network directly managed by the Adige Euganeo Land 

Reclamation Authority. This hydrographic network plays two crucial roles: draining water 

from vast ‘lowlands’ lying below the mean sea level into the Venetian Lagoon system and 

providing water to the farms there (Pappalardo et al. 2015). The experiment was conducted on 

‘Tenuta Civrana’ farm (365 ha), 45.166°N and 12.066°E, in the Province of Venice (Cona, 

VE). The land was reclaimed by draining the ‘Cavarzerano’ marshes in the 1930s and 

contains natural environments, such as lowland forests and wet environments (Figure 1). 

The climate is subhumid (Köppen climate classification), with a mean annual rainfall of 850 mm, 

which is fairly uniformly distributed throughout the year. Temperatures range from an average 

minimum of –1.5°C in January to an average maximum of 27.2°C in July. 

The integrated agricultural wetland covers 3.3 ha and was created in 2014 by restoring a semi-

natural wetland and incorporating five sub-basins into a FWS CW. At the outlet, the water 

flows through a subsurface pipe into a vegetated 470-m-long channel, which has been used to 

create a second phytoremediation system, the FTW (Figure 1). The farm and integrated 

agricultural wetland are fed by diverting water from the ‘Canale dei Cuori’, one of the main 

canals draining water from the surrounding territory. 

GIS analyses and weather data 

A preliminary dGPS survey was conducted in 2013 to investigate the micro-topography and 

drainage system of the area. The experimental site was set up for agro-environmental 

monitoring by analysing aerial (satellite and UAV) images and processing digital terrain 

models (DTM) in the GIS environment. Sixteen geo-referenced spots were identified for 

sampling and for measuring the physical parameters of water. Sampling points follow the 

water flow from the inlet to the outlet in both CWs. In addition, qualitative and quantitative 

data from fieldwork, such as pictures of the basins and riparian zones, the floating barriers and 

the agglomeration of plants, were geo-referenced to analyse the spatial evolution of the 

system and its components. So as to obtain the most reliable climate dataset, the nearest 

official weather station 4.2 km from the experimental site was referred (Cesia, ARPAV 

station, Veneto Region). Validated weather data, such as daily cumulative precipitation and 
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temperature, were collected between 2014-2016 for the analysis of rainfall events and thermic 

trends. 

 

Figure 1. A. Map of free water-surface constructed wetland (FWS CW): white dots are sampling 

points and narrow white lines represent the flow direction (high-resolution imagery, Digital 

Globe, winter 2015). B. Unmanned aerial vehicle image during spring. C. The floating-

treatment wetland system, flow direction and sampling points. D. Lythrum Salicaria flowering 

in the floating system (F2).   
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The free water-surface constructed wetland 

The FWS CW system covers 2.4 ha and the hydraulic system is managed such that it feeds five 

sub-basins by gravity during the crop season (March–November). Water flows through a set 

of sequential basins connected by subsurface pipes. The mean detention time is ~8–10 days. 

Because of the climate regime and geomorphology of the area, in winter, the water flow from 

the channel is intentionally interrupted at the inlet, resulting in the partial drying out of the 

basins. In spring (mid-March), the main channel is re-opened to feed the downstream basins 

and fill the FWS CW system. The system is structured in two main sub-trapezoidal basins (B1 

and B2) obtained by restoring a semi-natural wetland; their surface areas are 0.5 and 1 ha 

respectively, with a water depth of ~0.6 m in B1 and 0.4 m in B2. Further three sequential 

downstream basins (B3, B4, and B5) with shallower depths (0.3–0.4 m) have been created to 

complete the water-purification treatment. Wetland vegetation has been restored and 

integrated with several local macrophytes that have become established along riparian zones 

and within the basins, including Phragmites australis, Typha latifolia, Iris pseudacorus, 

Phalaris arundinacea, Menta aquatica L., Carex spp. and Juncus spp. The creation of four 

islands vegetated with P. australis, Juncus spp. and Carex spp. in B1 and B2 has basically 

provided these basins with the task of slowing down the water flow, thereby allowing initial 

stabilisation of suspended solids. Basin B2 is the most densely vegetated, with P. australis 

having fully colonised the banks (Figure 1A, B). The last three basins (B3, B4 and B5) were 

planted with M. aquatica, Carex spp., P. arundinacea and P. australis in 2014, and the 

vegetation is still in the process of establishment. However, 3 years after implementation, the 

vegetation in B1 and B2 is becoming gradually naturalised, especially P. australis. 

The floating-treatment wetland 

Water flows from the FWS CW basins and enters into the FTW system, established along the 

channel (Figure 1C). The FTW is an open system and probably receives drainage water from 

croplands on its northern border. It consists of a set of rectangular (50 × 90 cm) self-buoyant 

mats with eight windows, with grids to support plants. The combined morpho-functional 

floating system is a ‘TECH-IA’, a technology of PAN Ltd, (PD), Italy a Padua University 

spin-off. The rectangular structure, which provides support for aquatic macrophytes, is made 

from a recyclable material, ethylene vinyl acetate (EVA), and weighs ~2 kg (De Stefani et al. 

2011; Mietto et al. 2013; Pavan et al. 2015). Single units were assembled to create three 
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vegetated floating barriers of 120 units each (F1, F2 and F3), which are divided into six 

modules (20 units per module). The floating units were tied together with plastic strips and 

maintained in situ by means of ropes securely anchored to the shore with stakes. Flexibility of 

the barrier movement was ensured to allow the barriers to follow the water level in the main 

downstream channel, without incurring damage to the root systems. Two plants were 

transplanted into each unit, for a total of 40 plants per module and 240 per floating barrier. 

The uppermost floating barrier (F1), the first to meet water from the FWS CW, was vegetated in 

May 2014 with 240 plants of Carex spp. The F2 barrier was vegetated in May 2014 with 240 

plants of the following six different macrophytes: Sparganium erectum L., Schoenoplectus 

lacustris (L.) Palla, M. aquatica L., Caltha palustris L., P. arundinacea L. and Juncus effusus 

L. This barrier was re-vegetated in April 2015 with 240 plants of L. salicaria L. (Figure 1D). 

The F3 barrier was vegetated with 240 plants of I. pseudacorus L. in 2014 and was re-

vegetated with plants of same species in 2015 (Figure 2). The three barriers are ~30 m apart 

and are kept at a certain distance. In 2016, the three barriers (F1, F2 and F3) were translocated 

together towards the end of the channel. 

Fieldwork: water sampling, physicochemical parameters and plant survey 

Representative water samples were collected periodically during the 2014, 2015 and 2016 crop 

seasons, generally twice a month and after significant rainfall events, in the spring, summer 

and autumn of the 3 years at 10 different points at the inlets and outlets of the FWS CW and 

the FTW (Figure 1A, D). Each representative sample consisted of three replicates obtained at 

the same point 30 min apart. 

Selected physicochemical parameters of water were measured to determine water quality and the 

efficiency of the depurative systems. Electric conductivity (µS cm
–1

), dissolved oxygen (mg 

L
–1

), pH and temperature (°C) were measured at the inlets and outlets of the wetland sub-

basins and in the main channel containing the floating systems by using HQD (HACH Lange 

HQ 40d, Hach, CO, USA), a portable multitasking device used to assess some of the physical 

and chemical properties of water. Water turbidity was measured using a portable turbidimeter 

(HACH 2100P Turbidimeter) and expressed in mean values of nephelometric turbidity units 

(NTU). Normality of data was checked by the Kolmogrov-Smirnov test. Since the data were 

not distributed normally, Kruskal-Wallis non parametric test was used to check significance of 
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values between inlet and outlet of the system (p<0.05). Results of the analyses are presented 

as box and plots and line trends for inlets and outlets of FWS CW and FTW. 

 

 

 

Figure 2. F3 barrier re-vegetated manually with 240 plants of I. Pseudacorus in April 2015, 2 

plants per unit with total of 120 units  

The survival rate of plants in the FTW system (F1, F2 and F3) was assessed periodically during 

the three vegetative seasons, by counting the number of living plants in each of the three 

barriers once a month from May to August 2014, April to October 2015 and from May to 

October 2016. The total survival percentage of each species was calculated at the end of each 

season. 
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Plant height and root-system length and width were used as parameters to monitor the 

performance of plants in the floating systems and test their capacity for adaptation and 

establishment. No plant measurements were taken in 2014 because the plant species had not 

had enough time to become established and exhibit sufficient growth in the newly 

implemented floating systems. In 2015, plant height (above the mat) and root length (below 

the mat) were measured twice, namely in June and October, whereas the root system width 

was measured once in October. In 2016, plant height, root length and width were measured 

only once in October (Figure 3). Results were analysed and are presented as means of 

medians, and 1
st
 and 3

rd
 quartiles. 

Laboratory work: biomass production and chemical analyses for N and P 

determination 

A biomass-production survey was conducted on plants established in the FTW system. In 

October 2015 and 2016, 12 random plant samples, for each year, were taken from each of 

Carex spp. and L. salicaria, and divided into aerial and root systems. Samples for I. 

Pseudacorus were taken in October 2015 only due to the insufficient number of surviving 

plants.  Total fresh weight was measured on site (Figure 4). Fresh-matter samples were dried 

in a force-draught oven at 65°C for 35 h and milled at 2 mm (Cutting Mill SM 100 Comfort, 

Retsch, Germany). Ground subsamples of 10 g each were dried at 130°C, so as to measure the 

residual moisture content. Biomass-production data are expressed in grams per square metre 

(g m
–2

). 

Above- and below-ground dry matter of each plant sample was analysed using the standard 

Kjeldahl method to determine total Kjeldahl N (TKN), and spectroscopic methods 

(inductively coupled plasma–optical emission spectroscopy (ICP–OES), SPECTRO ARCOS) 

to determine TP concentrations (AOAC International 2005; Arduino and Barberis 2000). 

Uptakes of N and P by plants were calculated and expressed as dry matter per square metre of 

floating mat (above and below mats separately). 

For the water samples, TKN was determined using the standard Kjeldahl method (AOAC 

International 2005; Benedetti et al., 2000) and nitric N (N-NO3
–
) was determined according to 

Cataldo et al. (1975) while ammonium N-NH4
+
 was detected by colourimetric flow-rate 

injection analyser FIAstar 5000  Analyzer (FOSS Analytical, Denmark) (detection   limits   of  
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Figure 3. Root length and width measurement on site for randomly selected samples of species 

in each system of the FTW, October 2016 

  

 

Figure 4. Fresh weight measurements on site for random samples taken from each species of the 

FTW and preparation for drying, October 2015 
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0.05 mg l
-1

). The TN content of each sample was calculated by summing TKN and N-NO3
–
. 

TP was negligible because it did not reach the instrument detection threshold. Orthophosphate 

(P-PO4
–3

) was determined in each of the samples by using the standard colourimetric ascorbic 

acid method (Murphy and Riley 1962; Edwards et al. 1965) and was expressed in milligrams 

per liter (mg l
-1

) (detection limits of 0.01 mg l
-1

). Like in physico-chemical parameters, 

normality of data was checked using the Kolmogrov-Smirnov test. Data were not distributed 

normally, so, Kruskal-Wallis non parametric test was used to check significance of 

concentration values between inlet and outlet of the system (p< 0.05). Results of the analyses 

are presented as box and plots and line charts for inlets and outlets of FWS CW and FTW. 

Mass balance and abatement calculations 

The mass balance is the balance between the mass of different nutrients (TN, N-NO3
–
  N-NH4

+
 

and P-PO4
–3

) entering into the FWS CW inlet and the mass of same nutrients exiting at its 

outlet and the abated nutrients per monitoring season were calculated in kilograms (kg) as the 

difference between the two masses. The mass of nutrients at the inlet was calculated as the 

product of nutrient concentration (kg m
-3

) at the inlet and the water inflow (m
3
) while the 

mass of nutrients at the outlet was calculated as the product of nutrient concentration (kg m
-3

) 

at the outlet and the water outflow (m
3
). The daily water inflow was estimated approximately 

based on the time required to fill the known volume of the sub-basins in the FWS CW with 

water (lateral losses were almost negligible) while the outflow was calculated as the 

difference between the inflow and the estimated total evapotranspiration for the wetland (ETt). 

Wetland evapotranspiration (ETt) was the sum of total crop evapotranspiration under standard 

conditions (ETc) and open water surface (ETw) evaporation The crop evapotranspiration (ETC) 

for common reed, the prevailing macrophyte in the FWS CW was calculated as the product of 

reference evapotranspiration (ET0) and the tabulated crop coefficient (KC) for common reed 

(Allen et al., 1998). Due to the lack of sufficient meteorological data, the ET0 was calculated 

using the Hargreaves equation. Based on the previous calculations, the abatement percentage 

based on mass removal for different nutrients was calculated using the following equation: 

              
                  

       
     

Where, M inlet is mass of nutrient at inlet and M outlet is the mass of nutrient at the outlet. 
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Results and discussion 

A. Water quality 

1. Physicochemical parameters 

Temperature 

Median air temperatures obtained from the nearest official weather station on the selecting 

sampling dates followed the seasonal weather trend and varied between a minimum 

temperature of 3.3 °C in December 2015 and a maximum temperature of 26.2 °C in June 2014 

(Figure 5). 

Water temperatures for the sub-basins in the FSW CW and in FTW on the selected sampling 

dates and points varied between minimum temperatures as 4.5 °C in December 2015 and 

maximum temperatures as 31 °C in May 2015. The water temperature trend over time 

followed the seasonal weather trend and was generally consistent between different basins and 

with that of the air temperature with slight differences between both resulting from the 

difference in specific heat capacity between air and water (Figure 6). Seasonal changes in air 

and water temperatures or any temperature-driven process are an important factor affecting 

chemical and biological activities of water, and in turn water quality (Michaud and Noel, 

1991, Reichwaldt et al., 2015) 

  

Figure 5. Box and whisker plots showing median, minimum and maximum temperatures in sub-

basins of FWS (B1-B5) and FTW (F1-F3)  
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Figure 6. Line charts showing the dynamics of air and water temperature at inlets and outlets of 

FWS and FTW over the whole monitoring period (2014-2016) 

pH 

pH of water in the FSW CW did not show uniformity between sub-basins and was fluctuating 

between different sampling dates (Figure 7). Results showed that the pH in sub-basins is 

slightly alkaline with a minimum value of 6.9 in B5 IN in September 2015 and a maximum of 

10.1 in B4 IN in June 2014. Median values varied between 7.9 in B1 IN and 8.3 in B5 IN with 

no significant differences (Kruskal-Wallis, p< 0.05) between values at system inlet and outlet 

over the monitoring period (Figure 8). In the FTW, pH of water exhibited more uniformity but 

still slightly alkaline with a minimum value of 6.9 in F2 IN in September 2015 and a 

maximum of 8.7 in F1 IN in November 2014 while the median value was 8.1 (Figure 8). 

Alkalinity of water maybe an indicator of accumulation and sedimentation of mineral salts 

like calcium carbonate or others in the wetland system, higher de-nitrification processes in 

water favoured by increased photosynthesis of plants and in all cases refers to a good 
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buffering system (Michaud and Noel; 1991; Murphy, 2007; Kadlec and Wallace, 2009; EPA, 

2012a). 

 

 

Figure 7. Line charts showing dynamics of pH values at inlets and outlets of FWS and FTW 

(2014-2016) 

 

Figure 8. Box and whisker plots showing median, minimum and maximum values of pH in FWS 

sub-basins and FTW (2014-2016). No significant differences between system inlet and outlet 

(p<0.05) 
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Dissolved oxygen (DO) 

DO in water exhibited irregular dynamics between different sub-basins of the FWS CW as well 

as the FTW (Figure 9), fluctuating between values as high as 19.1 mg l
-1

 in June 2014 and as 

low as 4.6 mg l
-1 

during the same month in FWS CW, while the highest value in FTW was 

16.9 mg l
-1

 in F2 IN in March 2015 and the lowest was 4.2 mg l
-1

 in F2 IN in November 2014 

(Figure 10). Median values for the FWS CW ranged between 8.8 mg l
-1

 in B5 OUT and 

11.12 mg l
-1

 in B2 IN while those of the FTW ranged between 8.2 mg l
-1

 in F1 IN and 9.4 mg 

l
-1

 in F3 IN with no significance difference between concentrations at inlet and outlet of the 

system over the monitoring period (Kruskal-Wallis, p< 0.05). High DO at the beginning of 

the experiment may be attributed to water supply flowing to the system. Newly established 

and restored macrophyte species can contribute to this increase by photosynthesis process. 

Despite fluctuating dramatically, DO values were generally higher during summer 2015 than 

those during summer 2014 indicating higher water and plant activities resulting from new 

water supply to the system, rainfall and the revival of the macrophyte species (Watt, 2000; 

EPA, 2012b). Ranges of DO values were in general accordance with those obtained by Díaz 

et al. (2012), always higher than the levels of anaerobic conditions (< 1 mg l
-1

). 

 

 

Figure 9. Line charts showing dynamics of DO concentrations at inlets and outlets of FWS CW 

and FTW (2014-2016) 
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Figure 10. Box and whisker plots showing median, minimum and maximum DO concentrations 

in FWS sub-basins and FTW (2014-2016). No significant differences between inlet and outlet 

concentrations (p<0.05) 

Electric conductivity (EC) 

The line trend of electric conductivity (EC) dynamics showed consistency and regularity 

between different sub-basins in the FSW CW as well as the FTW (Figure 11). The maximum 

values were 2106 and 2310 µS/cm in B5 OUT and F2 IN, respectively in June 2014 while the 

minimum values were 458 and 484 µS/cm in B4 IN and F1 IN, respectively in September 

2015 (Figure 12). Median values for the the FWS CW ranged between 727 µS/cm in B4 IN 

and 845 µS/cm in B1 IN while those for the FTW ranged between 1056 µS/cm in F1 IN and 

1150 µS/cm in F3 OUT with no significant difference between EC values at system inlet and 

outlet over the entire monitoring period (Kruskal-Wallis, p< 0.05). Higher conductivity at the 

beginning of the experiment can result from the instability of soil particles in the newly 

established system where it decreased gradually during summer 2014 (Figure 11). EC values 

showed a peak during March 2015 which can be attributed to agricultural run-off and leaching 

resulting from the fertilization of the cropland surrounding the wetland as well as excessive 

rainfall events contributing to the increase in ionic and total dissolved solids (TDS) 

concentration in water (Welcomme, 1985; EPA, 2012c; Perlman; 2014). The values exhibited 

the same trend in 2015 and 2016; decreasing gradually from spring to summer (Figure 11). 

Ranges of EC at inlets and outlets of wetland were in general accordance with those obtained 

by Díaz et al. (2012) during irrigation times treating river waters receiving agricultural runoff. 

In addition, significantly indifferent EC between inlets and outlets can be an indicator of a 

shorter hydraulic retention time (HRT) (Díaz et al., 2012). 
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Figure 11. Line charts showing dynamics of EC at inlets and outlets FWS CW and FTW (2014-

2016) 

 

Figure 12. Box and whisker plots showing medians, maximum and minimum values for EC in 

FWS sub-basins and FTW (2014-2016). No significant differences between inlet and outlet 

(p< 0.05) 

Turbidity 

In FWS CW, Turbidity dynamics did not show uniformity during 2014 and 2016 but was 

rather stable in 2015 (Figure 13). The maximum value for turbidity was 209 NTU in B4 IN in 

June 2014 while the minimum  value  was  14 NTU in B5 IN in December 2014 (Figure 14).   
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Figure 13. Line charts showing dynamics of turbidity values at inlets and outlets of FWS CW 

basins and FTW (2014-2016) 

 

Figure 14. Box and whisker plots showing medians, minimum and maximum values for 

turbidity in FWS sub-basins and FTW (2014-2016). No significant differences between 

system inlet and outlet (p< 0.05) 
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Median values ranged between 54.2 NTU in B1 IN and 66.6 NTU in B5 OUT with no 

significant differences between the values at the inlet and the outlet of the system over the 

monitoring period (Kruskal-Wallis, p< 0.05). Fluctuations in turbidity values during 2014 

may indicate instability of soil particles in the newly established wetland system, when water 

was newly introduced to the system, while the decrease and stability of values in 2015 may 

be indicative of better establishment and consolidation of the wetland system leading to 

precipitation of sediments, low re-suspension of particles (Petticrew and Kalff 1992, 

Horppila and Nurminen 2001, 2003, 2005) and an improvement in water quality (O’Geen et 

al. 2010). In addition, low water velocity in the FWS sub-basin system encouraged 

sedimentation of TSS (Kadlec and Wallace 2009). In 2016, Basins were emptied in early 

winter and refilled during summer leading to the re-suspension of particles and fluctuation of 

turbidity values. 

In the FTW system, values varied between a maximum of 162 NTU in F1 IN in May 2015 and a 

minimum of 8.2 NTU in F3 OUT in December 2014. Median values ranged between 34.7 

NTU in F3 OUT and 55.9 in F1 IN. Lower turbidity values downstream in the channel are 

evidences of better soil stability and better establishment of the root systems of floating 

plants in the FTW system (Figure 14). 

2. Nutrient concentration 

Total Nitrogen (TN) 

In FSW CW, dynamics of concentrations of TN did not exhibit a regular trend throughout the 

three years of experimentation (Figure 15). However, fluctuations of values between dates and 

years are explainable and give good indications about the efficiency of the wetland system. In 

2014, TN concentrations were rather stable with no notable differences between basins on 

different dates. Maximum concentration value was 7.41 mg l
-1

 in B4 IN in June while the 

minimum value was 0.70 mg l
-1

 in B5 IN during the same month. Median values ranged 

between 1.57 mg l
-1

 in B4 IN and 2.66 mg l
-1

 in B1 IN. Fluctuation in concentration values 

was notable in 2015; the highest value was 16.37 mg l
-1

 in B5 IN in May while the lowest was 

0 mg l
-1

 in B4 IN on the same date. Median values ranged between 1.46 mg l
-1

 in B4 IN and 

2.30 mg l
-1

 in B1 IN. In 2016, the highest value was in B1 IN (9.47 mg l
-1

) while the lowest 

was in B5 IN (0.06 mg l
-1

). Median values ranged between 1.33 mg l
-1

 in B5 IN and 6.61 mg l
-

1
 in B1 IN. No significant difference in TN concentration was notable between inlet and outlet 
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over the total monitoring period (Kruskal-Wallis, p< 0.05) (Figure 16) while concentration 

values were significant between inlet and outlet only in 2016, when years were assessed 

separately. TN concentrations in FSW CW during the three years were generally low and 

within the acceptable level for water (WHO, 2004a and b) due to initial low concentrations at 

inlet, except for few occasions, disaccording with results obtained by Diaz et al. (2012) for 

agricultural runoff reporting input concentrations always > 5 mg l
-1

. Lower concentrations 

during 2014 are generally attributed to low rainfall events leading inturn to low agricultural 

runoff and leaching. In addition the wetland was established in late summer when almost no 

fertilization processes for the surrounding cropland took place. Higher concentrations at inlet 

during spring 2015 and 2016 can be attributed to run-off and leaching resulting from 

persistent rainfall during these dates associated with intensive fertilization in the surrounding 

cropland (Borah et al., 2003; Kato et al., 2009; Lang et al., 2013). Lower concentrations 

through the wetland sub-basins can be attributed to nitrification and de-nitrification processes, 

reduction to ammonia as well as assimilation by plants (Kadlec and Knight 1996; Vymazal 

2007 and 2010; Kadlec and Wallace 2009; Maltais-Landry et al. 2009; Mthembu et al. 2013). 

In a similar manner, the FTW exhibited higher TN concentrations in spring 2015 and 2016 

resulting from fertilization of cropland and intensive rainfall (Figure 15). The maximum value 

in March 2015 was 6.66 mg l
-1

 in F3 OUT compared to 3.16 mg l
-1

 in F3 OUT in May 2016, 

while the lowest values were 0.49 and 1.02 mg l
-1

 in F3 OUT and F3 IN in September 2015 

and March 2016, respectively. Median values ranged between 1.15 and 1.64 mg l
-1

 in F2 IN 

and F1 in 2015 and between 1.40 and 1.80 mg l
-1

 in F3 IN and F2 IN in 2016 with no 

significant difference between inlet and outlet over the entire monitoring period (Kruskal-

Wallis, p< 0.05) (Figure 16). The decrease in TN concentrations suggests an interesting 

depurative effect of the integrated wetland system. 

Nitrate Nitrogen (N-NO3
-) 

The detection of N-NO3
-
 in water is one of the most important determinants of water quality as it 

is the most abundant and soluble form of nitrogen in water. In FWS CW, similar to TN, N-

NO3
-
 concentrations were more stable and low during 2014 with median values ranging 

between 0.31 mg l
-1

 in B5 IN and 1.51 mg l
-1

 in B1 IN. There was more fluctuation in 

concentrations within basins in 2015 (Figure 17); the maximum values were 15.31 and 13.28 

mg l
-1

 in May in B5 IN and B3 IN, respectively. The minimum  value was 0 mg l
-1

 in most of  
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Figure 15. Line charts showing dynamics of TN concentration at inlets and outlets of FWS CW 

basins and FTW (2014-2016) 

 

Figure 16. Box and whisker plots showing medians, minimum and maximum concentrations of 

TN in FWS sub-basins and FTW (2014-2016). No significant difference between system inlet 

and outlet ( p<0.05) 
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basins in September and October. Median values ranged between 0 mg l
-1

 in B4 IN and 0.98 

mg l
-1

 in B1IN. Maximum concentrations in 2016 were 7.79 and 6.42 mg l
-1

 in May in B1 IN 

and B4 IN, respectively while the minimum was 0 mg l
-1

 in rest of basins also in May. Median 

values ranged between 0.26 mg l
-1

 in B5 IN and 2.04 in B1 IN. As in TN, no significant 

difference in N-NO3
-
 concentration was notable between inlet and outlet considering the total 

monitoring period (Kruskal-Wallis, p< 0.05) (Figure 18) while values were significant 

between inlet and outlet only in 2016, when years were assessed separately. Higher 

concentrations of N-NO3
- 

at inlet during spring 2015 and 2016 can be related to persistent 

rainfall with intensive fertilization in the surrounding cropland resulting in run-off and 

leaching to the system (Borah et al., 2003; Kato et al., 2009; Lang et al., 2013), while lower 

concentrations at outlet may be attributed to depurative effect resulting from nitrification- 

denitrification processes, reduction to ammonia as well as assimilation by plants (Kadlec and 

Knight 1996; Vymazal 2007 and 2010; Kadlec and Wallace 2009; Maltais-Landry et al. 2009; 

Mthembu et al. 2013). 

In FTW, less fluctuation in N-NO3
-
 concentrations was notable during 2014 and 2016 in 

comparison to those of 2015 (Figure 17). The maximum value was 4.69 mg l
-1

 in F3 OUT in 

May 2015 while the minimum value was 0 mg l
-1

 over the whole FTW on different sampling 

dates. Median values ranged between 0.40 mg l
-1

 in F1 IN and 0 mg l
-1

 in F3 OUT with no 

significant difference between inlet and outlet concentrations during the monitoring period 

(Kruskal-Wallis, p< 0.05) (Figure 18). Generally, N-NO3
-
 concentrations were low in FTW 

except on one occasion in May 2015 due to excessive rainfall associated with fertilization of 

cropland. Although N-NO3
-
 concentrations are initially low in the integrated wetland system, 

decrease in concentrations at outlets after rain fall and fertilization events could give a hint 

about the performance of the system (Figure 17). Input and output concentration ranges for N-

NO3
-
 are closely related to values obtained by Kovacic et al. (2002) (7.5-14.5 mg l−

1
 for input, 

4.6-14.5 mg l−
1
 for output), Borin and Tocchetto (2007) (5-15 mg l−

1
 for input) and Diaz et al. 

(2012) (0.28-12.87 mg l−
1
 for input, <0.01-7.87 mg l−

1
 for output) treating agricultural 

drainage and runoff waters. 
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Figure 17. Line charts showing dynamics of N-NO3
- concentration at inlets and outlets of FWS 

CW basins and FTW (2014-2016) 

 

Figure 18. Box and whisker plots showing median, minimum and maximum concentrations of 

N-NO3
- in FWS sub-basins and FTW (2014-2016). No significant difference between system 

inlet and outlet (p< 0.05) 
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Ammonium nitrogen (N-NH4
+) 

N-NH4
+
 concentration was generally low throughout the wetland system in comparison with 

NO3
-
, except for 2016 (Figure 19). In FWS CW, the maximum concentration was 1.02 mg l

-1
 

in B4 IN in May 2016 while the lowest value was 0 mg l
-1

 in B2 IN and B5 OUT in April and 

June 2015, respectively, whereas the maximum value in the FTW was 4.11 mg l
-1

 in F1 IN 

and the minimum was 0 mg l
-1

 throughout the FTW in June 2016. Median values for the FWS 

CW ranged between 0.16 mg l
-1

 in B4 IN and 0.26 mg l
-1

 in B1 IN while those for the FTW 

ranged between 0.17 mg l
-1

 in F2 IN and 0.22 mg l
-1

 in F1 IN with no significant difference 

between concentrations at inlets and outlets during the monitoring period (Kruscal-Wallis, p< 

0.05).  

The low input of N-NH4
+ 

can be explained by the fact that most of the wetland input from the 

surrounding cropland is in the form of N-NO3
-
 in addition to the continuous nitrification and 

plant adsorption of N-NH4
+ 

under favorable conditions in spring and summer while occasional 

higher values indicates increased ammonification process induced by various biological 

processes (Vymazal et al. 1998, Vymazal 2007). Lower N-NH4
+
 input is in general 

accordance with that reported by Kovacic et al., (2002), Borin and Tocchetto (2007), and Diaz 

et al., (2012) (0.4 mg l
-1

, < 0.3, and <1, respectively) treating agricultural drainage and runoff 

waters. 

  

Figure 19. Box and whisker plots showing median, minimum and maximum N-NH4
+
 

concentrations in FWS sub-basins and FTW (2014-2016). No significant difference between 

system inlets and outlets (p<0.05) 
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Orthophosphates (P-PO4
-3) 

TP was not detectable in any of the samples obtained during the early stages of the study. 

Available traces of P forms were identified by determining concentrations of orthophosphates 

(P-PO4
–3

). In FSW CW and FTW, the maximum values for P-PO4
-3

 concentration were 0.24 

and 0.07 mg l
-1

 in B5 OUT and F3 IN in May and June 2015, respectively while the minimum 

value was 0 mg l
-1

 within the two systems on different sampling dates (Figure 20). The 

median values ranged between 0.01 mg l
-1

 in B5 OUT and 0.02 mg l
-1

 in B1 IN for the FWS 

CW and between 0 mg l
-1

 in F1 IN and 0.01 mg l
-1

 in F3 OUT for the FTW with no significant 

differences in concentrations between system inlets and outlets (2014-2016) (Kruskal-Wallis, 

p<0.05). P-PO4
-3

 concentration levels over the wetland system were in general accordance 

with Kovacic et al., (2002) and Diaz et al., (2012) reporting overall P-PO4
-3

 concentration 

always < 0.4 mg l
-1

. 

 Despite fluctuation in concentrations throughout the integrated wetland system, P-PO4
–3

 is only 

present as insignificant traces, mostly because it was readily taken up by plants (Ongley, 

1996). In addition, treatment of P is rarely the primary target of CWs (Vymazal, 2010). 

 

Figure 20. Box and whisker plots showing median, minimum and maximum for P-PO4
-3

 

concentrations in FWS sub-basins and FTW (2014-2016). No significant difference between 

system inlets and outlets (p<0.05) 
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2016 (504,160 m
3
). Evapotranspiration of the FWS CW (ETt) was average 3.9 mm day

-1 
in 

spring and summer season and 1.3 mm day
-1

 during fall and winter, contributing by 1.18% to 

water outflow throughout the monitoring period. 

The cumulative mass balance was calculated for different months during the monitoring seasons 

over three consecutive years (Figure 21). In 2014, the FWS CW removed approximately 912 

kg of TN, 366 kg of N-NO3
-
 and 6 kg of N-NH4

+ 
between June and November while the mass 

abatement in 2015 was 827, 795, 80 and 20 kg for TN, N-NO3
-
, N-NH4

+ 
and P-PO4

-3
, 

respectively between March and October. In 2016, the mass abatement increased over a 

shorter period of time  (March – June) to reach 2327 and 1873 kg for TN and N-NO3
-
 

respectively while it remained indifferent for N-NH4
+ 

(65 kg) (Figure 22). 

The highest abatement percentage for TN was attained in 2016 (64%) followed by that in 2014 

(33%) which was indifferent from that achieved in 2015 (26%) with a 3 year average removal 

of 41.7% (46% by Kovacic et al., 2000). Similarly, the abatement percentage for N-NO3
-
 was 

the highest in 2016 (91%) followed by that in 2015 (57%) and finally the lowest was in 2014 

(27%) averaging 58% which is in general agreement with similar studies (51 % by Jordan et 

al., 2003) and higher than other studies (19% by Kroeger et al., 2007). Abatement percentage 

for N-NH4
+
 was rather low for the three consecutive years; 2, 27 and 20% for 2014, 2015 and 

2016, respectively with an average of 16%, which is generally low in comparison with other 

studies (Koskiaho et al., 2003). On the other side, average overall P removal was  very low 

(3%) in comparison with similar studies (Braskerud, 2002; Johannesson et al., 2011; Jordan et 

al., 2003; Kroeger et al., 2007; Lu et al., 2009; Yates and Prasher, 2009) while it matched 

with other studies (Koskiaho et al., 2003). (Figure 22). 

N-NO3
-
,
 
resulting from fertilization of crop lands and nitrification of N-NH4

+
 under favorable 

conditions, is the most abundant form of N available in the wetland with the greatest 

contribution to the available TN. Results showed that the total mass abatement of N-NO3
-
 is 

consistent with that of TN over the three years of monitoring with the highest abatement for 

both in 2016 over a shorter period of time despite the high mass input which gives a good 

indication on the depurative capacity of the FWS CW. Abatement percentage for N-NO3
-
 was 

always higher than that for TN with gradual increase over time to reach a maximum in 2016. 

The monthly removals of TN and N-NO3
-
 were rather higher during the monitoring season in 

spring and summer where the conditions are favorable for nitrification- denitrification 
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processes in addition to plant uptake while they decrease in winter as a result of plant ageing 

and senescence which results in the release of N back to the FWS CW in addition to providing 

conditions favorable for nitrification process (Kadlec and Knight 1996, Vymazal et al. 1998, 

Vymazal 2007). 

Generally, the mass removal of N-NH4
+
 over the three seasons was very low in comparison with 

N-NO3
-
. This can be attributed majorly to the initial low concentration and mass input of N-

NH4
+
, where most of the N entering into the system by fertilization runoff is in the form of N-

NO3
-
 in addition to continuous nitrification of N-NH4

+
 under favourable conditions in spring 

and summer (Vymazal 2007). In winter, lower temperature can limit the nitrification process 

leading to accumulation of N-NH4
+
 in the system and even negative removal in some cases 

(November 2014) (Vymazal et al. 1998, Vymazal 2007). 

Similarly, low phosphorus retention is attributed to utilisation by biota or soil adsorption 

(Kadlec and Wallace. 2009, Koskiaho et al., 2003, Vymazal 2007, Vymazal 2010) in addition 

to low intial inputs in this study while negative removal in 2016 can be attributed to decay and 

translocation of vegetation in addition to algeal and microbial activities leading to the release 

of P back to the system (Reddy et al., 1999). 

 

Figure 21. Cumulative mass balance for different nutrients (TN, N-NO3
-
, N-NH4

+
 and P-PO4

-3
) 

at inlet and outlet of FWS CW during the monitoring seasons for the consecutive years 2014, 

2015 and 2016. Dots represents periods of inactivity o the FWS CW 
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Figure 22. Comparison of mass abatement (upper) and removal percentage (lower) for different 

nutrients (TN, N-NO3
-
, N-NH4

+
 and P-PO4

-3
) in the FWS CW over three consecutive years 

(2014, 2015 and 2016). 
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B. Vegetative performance 

1. Plant survival in the FTW 

Plant species in the FTW system exhibited different survival rates in the three vegetative 

seasons, 2014, 2015 and 2016 (Table 1). In the first season, the survival rate varied between 

3% and 100%, with P. arundinacea and M. aquatica exhibiting the highest survival rate 

during August 2014 (100%), followed by Carex spp. (98%), J. effusus (88%), C. palustris 

(73%) and I. pseudacorus (48%). S. lacustris and S. erectum had the lowest rates at 8% and 

3% respectively. In the second season (2015), only Carex spp. survived the winter and 

completely re-grew during spring, whereas other species had to be replaced with new plants. 

L. salicaria had the highest survival rate (95%), followed by Carex spp. (82%) and I. 

pseudacorus (40%). In autumn–winter, all three species went into senescence and revived 

again in spring 2016. Survival rate for Carex spp. and L. Salicaria was 55% in 2016 while it 

was 12% only for I. Pseudacorus. Carex spp. proved to be adaptable and tended to establish 

well in the FTW (Figure 23), with a high survival rate (55%) over three successive seasons 

and a large number of living plants (22 of 40 plants per 10 m
2
). L. salicaria exhibited great 

stability and steady growth throughout two seasons; similar to Carex spp., it had a high 

survival rate (55%) and large number of living plants (22 of 40 plants per 10 m
2
). Iris 

pseudacorus tended not to establish nor grow well in the third season respectively compared 

with other species (Figure 23), and had the lowest survival rate (12%) and fewest living plants 

per 10 m
2
 (5 of 40 plants). The low survival rate of I. pseudacorus may also be related to alien 

animal species, such as Myocastor coypus, feeding on the plants. 

Table 1: Survival rate of plant species in the FTW during 3 successive seasons 2014, 2015 and 

2016 

Plant species 
% Survival 

2014 2015 2016 

Carex spp. 98 82.5 55 

Phalaris arundinacea 100  -  - 

Sparangium erectum 3  -   -  

Schoenoplectus lacustris 8  -    - 

Juncus effusus 88  -    - 

Caltha palustris 73  -   -  

Mentha aquatica 100  -   -  

Iris pseudacorus 48 40 12 

Lythrum salicaria  -  95 55 
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Figure 23. N° living plants per 10 m
2
 for 3 species in the FTW in 2015 and 2016 

2. Plant growth in the FTW 

In 2015, plant height (above the mat) and root length (below the mat) were measured twice, 

namely in June and in October, whereas root-system width was measured once in October 

while in 2016, the same parameters were measured only once in October (Table 2). L. 

salicaria exhibited the greatest increase in plant height in 2015, with a median value of 33.5 

cm in June rising to 59.5 cm in October. This value dropped to 26.5 cm in 2016. The median 

values for I. pseudacorus were 24 cm in June, and 37.5 cm in October2015, decreasing to 23 
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increase in root depth in 2015, with median values of 16 cm in June and 76 cm in October. 
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decreasing slightly in October 2016 to a median value of 42.5 cm. There was no increase in 

root length in L. salicaria in 2015, the median values being 48.5 cm in June and 42.5 cm in 

October while decreased to 22 cm in October 2016. Increases in the root lengths of the three 

species may be related to their growth habits as well as nutrient translocation. Carex spp. and 

L. salicaria increased in bulkiness and width, whereas I. pseudacorus increased more in root 

length, exceeding the maximum (30 cm) described by Jacobs et al. (2011). This increase may 

be attributed to nutrients contributing to root length rather than to the height of aerial parts. 

Another interpretation would attribute excessive increase in root length to scarcity of nutrients 

in surrounding medium (Borin, 2003). Root-system width was measured in October 2015 and 

2016, where representative samples of each species attained maximum width. Median values 

for a maximum root-system width for Carex spp. and L. salicaria were similar in 2015 at 16.5 

and 15.5 cm respectively, whereas the median value for I. pseudacorus was 7.5 cm.  Values 

were indifferent for Carex spp.  and I. pseudacorus in 2016 (15.5 and 7 cm respectively) 

while it increased for L. salicaria  (20 cm). Observations showed Carex spp. and L. salicaria 

to have bulkier and stouter root systems than that of I. pseudacorus, which tended to increase 

in length rather than width. According to Mthembu et al. (2013), the potential rate of nutrient 

uptake by plants is determined by plant growth rate and the concentration of nutrients in the 

plant tissues, so that nutrient storage in the plant is dependent on plant-tissue nutrient 

concentrations and plant biomass accumulation. In light of this, the ideal characteristics for 

plants to be used as macrophytes in wetland systems are fast growth rate, high tissue nutrient 

content and the ability to attain a high standing crop (plant sustainability). 

Table 2: Plant-growth dimensions for the three species in the FTW system in June and October 

2015, and October 2016 

Plant 

character 

Date Carex L. spp. Lythrum salicaria L. Iris pseudocorus L. 

  Median 25% 75% Median 25% 75% Median 25% 75% 

Plant height 

(cm) 

June 2015 59.5 40 69 33.5 22 38.25 24 15.15 32.75 

Oct. 2015 

Oct. 2016 

60 

69 

60 

55 

77.25 

76.25 

59.5 

26.5 

37.5 

13.75 

83.75 

37 

37.5 

23 

34.25 

20 

42.75 

30 

 

Root depth 

(cm) 

 

June 2015 

 

36 

 

28 

 

42.25 

 

48.5 

 

38.75 

 

53.25 

 

16 

 

11.25 

 

21.75 

Oct. 2015 

Oct. 2016 

49 

42.5 

45 

39.5 

61.5 

56.25 

42.5 

22 

40 

15.75 

47 

41.25 

76 

20 

63.5 

14 

89 

30 

 

Root-system 

width (cm) 

 

Oct. 2015 

Oct. 2016 

 

16.5 

15.5 

 

14.25 

13.25 

 

20 

20.75 

 

15.5 

20 

 

13.25 

19.25 

 

20.75 

30 

 

7.5 

7 

 

6.25 

5 

 

9 

10 
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3. Plant biomass production and nutrient uptake  

Regarding fresh-biomass, Carex spp. exhibited the highest production with average total of 

2224.43 ± 409.07 g m
–2 

in 2015 increasing by double in 2016 to a total average of 5402.67 ± 

783.22 g m
–2

. L. salicaria came second in terms of fresh biomass with a total average of 

1092.84 ± 48.33 g m
–2 

in 2015 increasing to 1913.76 ± 287.12 g m
–2 

in 2016. I. pseudacorus 

had the least fresh biomass with a total average of 534.77± 79.18 g m
–2 

measured in 2015 

only. Fresh biomass production was always higher below mat (root system) than above mat 

(aerial parts) in all three species; Carex spp. had averages of 1782.79 ± 344.60 and 3982.67 ± 

604.10 g m
–2

 (80 and 73 %) below mat in 2015 and 2016 respectively while above mat 

averaged 441.64 ± 74.43 g m
–2

 (20%) in 2015 increasing significantly to 1420 ± 227.35 g m
–2

 

in 2016 (27 %). The average below mat for L. Salicaria was 1010.86 ± 139.35 and 1673.67 ± 

270.56 g m
–2 

in 2015 and 2016 respectively (92 and 87%) while the average above mat scored 

81.98 ± 14.77 and 240 ± 20.90 g m
–2

 in 2015 and 2016, respectively (8 and 13%). 
 
I. 

pseudacorus averaged 463.31 ± 68.25 g m
–2

 (87%) below mat and 71.45 ± 11.53 g m
–2

 (13%) 

above mat in 2015 (Table 3). 

Carex spp. ranked first in terms of dry-biomass production, with a total average of 433.13 ± 

84.72 g m
–2 

in 2015 doubled to 1008.32 ± 154.5 g m
–2 

in 2016, followed by L. salicaria with a 

total average of 210.32 ± 27.97 g m
–2

 in 2015 increasing insignificantly to 296.55 ± 38.09 g 

m
–2

 in 2016. I. pseudacorus scored lowest in biomass production, with a total average of 

106.95 ± 15.42 g m
–2 

in 2015. Dry biomass production, like fresh biomass, was higher below 

mat than above mat in the three species. The biomass production of Carex spp. was the 

highest; averaged 266.94 ± 57.36 and 556.73 ± 91.19 g m
–2

 (62 and 55%) below mat in 2015 

and 2016, respectively and, 166.19 ± 29.40 and 442.59 ± 74.11 g m
–2

 (38 and 45%) above mat 

in 2015 and 2016, respectively. 349 g m
–2

 above-mat biomass production was reported by 

Salvato and Borin (2010) for C. elata. L. salicaria came second, with an average below-mat 

biomass of 174.61 ± 24.25 g m
–2

 (83%) in 2015 with insignificant increase to 236.79 ± 35.66 

g m
–2

 in 2016 (80%) and an average above-mat biomass of 35.71 ± 6.06 g m
–2

 (17%) in 2015 

and 59.76 ± 8.75 g m
–2 

(20%) in 2016, whereas I. pseudacorus ranked last (average below-mat 

biomass 86.73 ± 12.56 g m
–2

 (81%), above-mat biomass 20.22 ± 3.11 g m
–2

 or 19% of total 

biomass in 2015 (Table 4). Carex spp. performed best in terms of fresh and dry, above- and 

below-mat and total biomass production, demonstrating good stability and establishment in 
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the second season. L. salicaria performed well and was highly stable, ranking second for fresh 

and dry, above- and below-mat, and total biomass production, although it was introduced only 

during the second season and was already in senescence during sampling. Iris pseudacorus 

did not seem to adapt well in both seasons and had the lowest fresh and dry, above- and 

below-mat and total biomass production. Results for biomass production of I. pseudacorus 

diverged from those reported by De Stefani (2012) and Pavan et al. (2015), which supported 

the suitability and increased productivity of this species in similar FTWs. De Stefani (2012) 

reported median values of 3693 and 1516 g m
–2

 for above-mat dry biomass in two different 

experiments, whereas below-mat dry biomass reached 3346 and 801 g m
–2

 in the same 

experiments. Pavan et al. (2015) recorded median values for above-mat dry biomass of 180 

and 500 g m
–2

 in two successive seasons, although it is worth noting that this experiment was 

set up on an open wetland in an agricultural landscape; during agro-environmental monitoring 

activities, M. coypus was observed feeding on I. pseudacorus. 
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Table 3: Average fresh biomass production (g m
–2

) with standard deviation for the three species in FTW system in 2015 and 2016 

 

Species 

Above-mat Below Mat Total 

2015 2016 2015 2016 2015 2016 

Carex L. 441.64 ± 74.43 1420 ± 227.35 1782.79 ± 344.60 3982.67 ± 604.10 2224.43 ± 409.07 5402.67 ± 783.22 

Lythrum salicaria 

L. 

81.98 ± 14.77 240 ± 20.90 1010.86 ± 139.35 1673.67 ± 270.56 1092.84 ± 148.33 1913.76 ± 287.12 

Iris pseudacorus L. 71.45 ± 11.53 - 463.31 ± 68.25 - 534.77 ± 79.18 - 

 
Table 4: Average dry biomass production (g m

–2
) with standard deviation for the three species in FTW system in 2015 and 2016 

 

Species 

Above-mat Below Mat 
Total 

2015 2016 2015 2016 2015 
2016 

Carex L. 166.1 ± 29.40 442.59 ± 74.11 266.94 ± 57.36 556.73 ± 91.19 433.13 ± 84.72 1008.32 ± 154.5 

Lythrum salicaria 

L. 

35.71 ± 6.06 59.76 ± 8.75 174.61 ± 24.25 236.79 ± 35.66 210.32 ± 27.97 296.55 ± 38.09 

Iris pseudacorus L. 20.22 ± 3.11 - 86.73 ± 12.56 - 106.95 ± 15.42 - 
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Total N concentrations in total dry biomass were very similar in the three species (1.12 and 

0.94% in Carex spp., 1.12 and 0.83% in L. salicaria in 2015 and 2016 respectively, and 

1.02% in I. Pseudacorus in 2015), but varied between above-mat and below-mat plant parts, 

the latter having higher N concentrations, averaging 1.21 and 1.03 in Carex spp., 1.19 and 

0.85 in L. salicaria in 2015 and 2016 respectively and 1.04% in I. Pseudacorus in 2015. 

Average above-mat N concentration in Carex was 1.02 and 0.87% (Salvato and Borin (2010) 

reported 1%), followed by I. pseudacorus (0.91% in 2015) and L. salicaria (0.64 and 0.82%) 

in 2015 and 2016 respectively (Table 5). Carex spp. had the highest N concentrations in 

above- and below-mat dry biomass, indicating efficient performance. Although L. salicaria 

had a high N concentration in below-mat biomass, it had the lowest concentration of the three 

species in above-mat biomass, which could be related to senescence of aerial parts and 

relocation of N to the root system (Vymazal 2007). Nitrogen concentrations in I. pseudacorus 

were lower than those reported by De Stefani (2012) and Pavan et al. (2015), which were, 

respectively, 4.62% in below-mat biomass and 2.77% in above-mat dry biomass. Regarding N 

uptake, Carex spp. exhibited a total uptake of 4.84 ± 0.93 g m
–2 

in 2015 doubled to 9.43 ± 

1.42 g m
–2 

in 2016, with a higher uptake through the roots (3.19 ± 0.66 and 5.62 ± 0.86 g m
–2

, 

66 and 60% of total uptake in 2015 and 2016, respectively), followed by L. salicaria with a 

total uptake of 2.35 ± 0.34 g m
–2

 in 2015 with no significant increase in 2016 (2.46 ± 0.39 g 

m
–2

). Uptake by roots was 2.11 ± 0.31 and 2 ± 0.36 g m
–2

 (90 and 81%) in 2015 and 2016, 

respectively. Iris pseudacorus had the lowest uptake (total 1.09 ± 0.17 g m
–2

, below-mat 0.92 

± 0.14 g m
–2

 or 84% of total uptake in 2015) (Table 6). Nitrogen uptake by I. Pseudacorus 

was also very low compared to results reported by De Stefani (2012) and Pavan et al. (2015), 

with values up to 115 g m
–2

 for below-mat and 70 g m
–2

 for above-mat uptake. 

 

Total P concentrations were not very high compared with N concentrations. The highest 

concentrations were measured in 2015 in L. salicaria (0.09%), followed by Carex spp. and I. 

pseudacorus (both 0.07%). In 2016, Concentrations were 0.06 and 0.05 % in L. Salicaria and 

Carex spp., respectively. As with N concentrations, P concentrations were higher in the 

below-mat than the above-mat biomass. L. salicaria had the highest P concentration in the 

roots (0.1%) in 2015, although those of Carex spp. and I. pseudacorus were nearly the same 

(0.08 and 0.07%). Concentrations were similar for Carex spp. and L. salicaria in 2016 (0.064  
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Table 5: Average N concentration (% per plant DM) with standard deviation for the three species in FTW system in 2015 and 2016 

Species 

Above-mat Below Mat 
Total 

2015 2016 2015 2016 2015 
2016 

Carex L. 1.02 ± 0.09 0.87 ± 0.06 1.21 ± 0.07 1.03 ± 0.11 1.12 ± 0.011 0.94 ± 0.009 

Lythrum salicaria 

L. 

0.64 ± 0.12 0.82 ± 0.15 1.19 ± 0.11 0.85± 0.020 1.12 ± 0.012 0.83 ± 0.010 

Iris pseudacorus L. 0.91 ± 0.19 - 1.04 ± 0.11 - 1.02 ± 0.010 - 

 
 

Table 6: Average N uptake (g m
–2

) with standard deviation for the three species in FTW system in 2015 and 2016 

 

Species 

Above-mat Below Mat 
Total 

2015 2016 2015 2016 2015 
2016 

Carex L. 1.65 ± 0.28 3.81 ± 0.63 3.19 ± 0.66 5.62 ± 0.86 4.84 ± 0.93 9.43 ± 1.42 

Lythrum salicaria 

L. 

0.24 ± 0.043 0.46 ± 0.055 2.11 ± 0.31 2 ± 0.36 2.35 ± 0.34 2.46 ± 0.39 

Iris pseudacorus L. 0.18 ± 0.02 - 0.92 ± 0.14 - 1.09 ± 0.17 - 
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and 0.063%, respectively) (Table 7).  Phosphorus concentration in I. pseudacorus was low 

compared with that reported by Pavan et al. (2015), which was 0.33%. Total P uptake was 

highest in Carex spp. (0.31 ± 0.07 g m
–2 

in 2015, increasing to 0.52 ± 0.13 g m
–2

 in 2016), with 

maximum uptake through the root system (0.24 ± 0.057 and 0.36± 0.05 g m
–2

, ~78 and 70% of 

total uptake in 2015 and 2016, respectively). Lythrum salicaria ranked second, with a total 

uptake of 0.2 ± 0.03 g m
–2

 (0.185 ± 0.029 and 0.16 ± 0.027 g m
–2

 (93 and 89%) in the roots in 

2015 and 2016, respectively). I. pseudacorus was the lowest (total 0.074 ± 0.01 g m
–2

, 0.066 ± 

0.013 g m
–2

 (89%) in the roots) in 2015. Only traces of P were taken up through aerial parts by 

the three species (Table 8). According to Hernández-Crespo et al. (2016), nutrient concentrations 

are inversely correlated with the amount of above-ground biomass, i.e. as above-ground biomass 

increases, nutrient concentration decreases because most of the nutrients have already been used 

by the plant for growth and performance at the peak of the season (Mthembu et al. 2013). In the 

present study, the root systems had higher concentrations of nutrients because of translocation of 

most nutrients as the senescence period approached (Bonaiti and Borin 2000; Vymazal 2007).
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Table 7: Average P concentration (% per plant DM) with standard deviation for the three species in FTW system in 2015 and 2016 

Species 

Above-mat Below Mat 
Total 

2015 2016 2015 2016 2015 
2016 

Carex L. 0.04 ± 0.008 0.038 ± 0.005 0.08 ± 0.018 0.064 ± 0.005 0.07 ± 0.0008 0.05 ± 0.0005 

Lythrum salicaria 

L. 

0.03 ± 0.008 0.043 ± 0.009 0.10 ± 0.015 0.063± 0.010 0.09 ± 0.0011 0.06 ± 0.0007 

Iris pseudacorus L. 0.04 ± 0.018 - 0.07 ± 0.015 - 0.07 ± 0.0009 - 

 
Table 8: Average P uptake (g m

–2
) with standard deviation for the three species in FTW system in 2015 and 2016 

 

Species 

Above-mat Below Mat 
Total 

2015 2016 2015 2016 2015 
2016 

Carex L. 0.068 ± 0.013 0.16 ± 0.02 0.240 ± 0.057 0.36 ± 0.055 0.308 ± 0.07 0.52 ± 0.13 

Lythrum salicaria 

L. 

0.013 ± 0.002 0.02 ± 0.002 0.185 ± 0.029 0.16 ± 0.027 0.198 ± 0.03 0.18 ± 0.03 

Iris pseudacorus L. 0.008 ± 0.001 - 0.066 ± 0.013 - 0.074 ± 0.01 - 
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Figure 24. Digital photographs for the FWS CW in 2015 (upper) and 2016 (middle, lower) 
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Conclusion 

A generally promising depurative effect was noticeable from the concentration trends throughout 

the system over three consecutive years of monitoring. This effect was notable during spring 

2015 and 2016, as evidenced by the great decrease in TN and NO3
–
 concentrations throughout 

the wetland sub-basins (FWS CW) and the downstream channel (FTW) after the combination 

of intensive rainfall events and crop fertilisation run-off. Phosphorus concentrations in water 

were almost negligible. Mass balance and removal percentages for different nutrients, 

especially TN and N-NO3
–
, were increasing consistently over the years with the continuous 

establishment of the wetland system to reach 64 and 91 % in 2016 for TN and N-NO3
–
, 

respectively.  

Monitoring of the vegetation in the floating-treatment wetland system showed Carex spp. to be 

the most adaptable, with a high survival rate, hardiness and continuity over three successive 

seasons, the highest plant parameters, especially biomass production, and the highest N and P 

uptakes. L. salicaria was very stable, exhibited excellent growth performance during the first 

season and average performance in the second one with a good potential for establishment in 

the floating system, whereas I. pseudacorus lagged behind for the third season, with the 

lowest survival rate, plant growth parameters and nutrient uptake. A general conclusion is that 

a crucial role could be played by FWS CWs and FTWs in integrated agro-environmental 

management to control nutrient runoff from intensive cropping systems. 
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Chapter III 

Performance of free surface constructed wetland in the 

mitigation of non-point agricultural pollution within the 

Venetian Lagoon drainage system under intermittent water 

dynamics (Pilot scale) 
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Introduction 

As mentioned earlier in the last chapter, Nitrogen loads resulting from agricultural wastewaters 

are discharged through 12 tributaries forming a drainage basin into the Venetian Lagoon; the 

principal wastewater reservoir for north east Italy (Collavini et al., 2005; Zonta et al.; 2005; 

Zuliani et al., 2005). Assessment of nitrogen loads within the Venetian lagoon drainage 

system showed that the input loads exceeded the maximum allowed load input (3000 t/year) 

in the lagoon as given by the ministerial decree (Ministero dell’Ambiente, 1999; Collavini et 

al., 2005). Based on the previous, real control measures were essential to reduce the nitrogen 

loads within the lagoon, at least within the accepted levels. 

Treatment of non-point agricultural run-off differs from other types of wastewaters as the 

hydrological loading is intermittent and the organic load is almost absent (Higgins et al., 

1993). Constructed wetlands (CW) offered promising solutions for the control of nitrogen 

pollution resulting from agricultural run-off at relatively low cost and energy inputs (Davis, 

1995a; Peterson, 1998; Mitsch et al., 2001; Kadlec and Wallace, 2009; Lee et al., 2009). In 

general, Dissolved inorganic nitrogen groups including nitrate (N-NO3
-
), nitrite (N-NO2

-
) and 

ammonium (N-NH4
+
) are more likely to affect water quality and aquatic life rather than 

organic nitrogen forms as they are readily available for uptake (Lee et al., 2009). Basically, 

NO3
-
 resulting from fertilizer use in the croplands is the most abundant form of inorganic 

nitrogen and is the major target of the control process using CW ((Baker, 1998; Mitsch et al., 

2001; Mitsch et al., 2005; O’Geen et al.,  2010).  In surface waters, NO3
-
 would cause majorly 

eutrophication problems rather than toxicity due to the effective removal processes mainly by 

denitrification and plant uptake (Davis, 1995b; Peterson, 1998). Generally, free water surface 

constructed wetlands (FWS) are more effective in the removal of biological oxygen demand 

(BOD), total soluble solids (TSS), total nitrogen (TN) and phosphorus (TP) while subsurface 

flow constructed wetlands, mainly horizontal type (HSSF) is more effective in the removal of 

tertiary BOD and  N-NO3
-
 as it favors denitrification process (Vymazal 2007; Kadlec, 2009). 

However, FWS are more cost effective in treatment of agricultural run-off with lower 

maintenance requirements than HSSF which has problems with clogging of porous media 

(Kadlec, 2009; Lee et al., 2009; O’Geen et al., 2010). 

Performance of CWs in the removal of nitrogen load is dependent on many factors including 

climatic conditions like temperature, solar radiation, wind patterns, and precipitation which 
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affect biogeochemical reactions, evapotranspiration, and rate of water inflow to the systems, 

hence, affecting the removal efficiency (Kadlec, 1999; O’Geen et al., 2010). Hydrological 

loading is another factor affecting the removal efficiency and is greatly dependent on the 

design of the wetland and the source of water. In the case of agricultural run-off, water inflow 

and hydrological loading shows great seasonable variability depending on the different 

cropping patterns where the contamination fluxes are influenced by fertilization events and 

pesticide application (Kadlec, 2010; O’Geen et al., 2010). Based on the previous, treatment of 

nitrogen loads from agricultural run-off in CW tends to be more periodic and event-driven 

(Kadlec and Wallace, 2009). According to Kadlec (2010), in cases of event driven agricultural 

run-off, correlation between wetland treatment performance and simple design variables 

(hydrological loading, detention time and pollutant loading) could not provide comprehensive 

results to explain such performance. This urged the need to more understanding of the internal 

water dynamics and their interaction with other factors like vegetation and other biota to be 

able to understand the internal processes affecting the performance of the wetland. 

The aim of this study was to evaluate the N-NO3
-
 retention and give insight to some water 

dynamics of a FWS CW in a designed event- driven pilot experiment simulating excessive 

agricultural nitrate load performed in June 2016. 
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Materials and Methods 

Experimental site 

The experiment was conducted on the same farm, ‘Tenuta Civrana’ (365 ha), located in Cona, 

Venice within the Venetian Lagoon drainage system (north-eastern Italy) with coordinates 

45.1668N and 12.0668E. An integrated wetland system of 3.3 ha was created in 2014 by 

restoring a semi-natural wetland (Pappalardo et al., 2017). The integrated wetland system is 

composed of a free water surface constructed wetland (FWS CW), divided into 5 sequential 

sub-basins (B1 to B5) and a floating treatment wetland (FTW), constructed in a vegetated 

canal perpendicular to the FWS CW and connected to it through a sub-surface pipe system 

(Chapter II). The wetland system is fed by agricultural run-off water diverted from ‘Canale 

dei Cuori’, an important drainage canal within the Venetian drainage system whereas water 

flows by the force of gravity from inlet of the first sub-basin (B1) to the outlet of the last basin 

(B5), then to the FTW and finally to agricultural ditches. The detailed description of the FWS 

CW, in which these experiments were conducted, was given earlier in chapter II and by 

Pappalardo et al. (2017). The fourth sub-basin (B4), which was chosen for monitoring the 

experiment, has the dimensions 60 x 30 x 0.4 m with a total area of 1800 m
2
 (total water area 

1720 m
2
) holding water volumes ~ 700-1000 m

3
. The sub-basin is characterized by the 

presence of a floating/emergent machrophyte island (80 m
2
) at its center, mainly Phramites 

australis; which diverts the main water flow into two different paths before they mix again at 

the outlet of the sub-basin (Figures 1,2). 

Experiment 

The experiment started with the isolation of sub-basins B3, B4, and B5 by blocking the sub-

surface pipes connecting them with rest of the sub-basins. An elevated nitrate (NO3
-
) solution 

was prepared by dissolution and addition of 600 kg of calcium nitrate Ca(NO3)2, N = 15.5% to 

sub-basin B3  (V=1500-1900 m
3
) to obtain a solution of an average N content of 40-60 mg l

-1
. 

The homogeneity of solution in B3 was guaranteed by using a motor pump unit connected to a 

power take-off tractor and an irrigator (used in aspiration systems) (Figure 3). Next, the water 

with the dissolved solution was transferred from B3 to B4 by the means of the motor pump 

connected to the power take-off tractor at a flow rate of 1.5 m
3 

min
-1

 to allow the total 

replacement of water in B4 (Figure 4). The hydraulic retention time (HRT) was ~ 11-12 
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hours. The water flow rate was reduced to 0.3 m
3
 min

-1
 on the fourth day depending on the 

field conditions. 

 

Figure 1: A digital map of the FWS CW with focus on sub-basin 4 (B4) used for the monitoring 

process with arrows showing the direction of water flow from inlet to outlet 

 

 

Figure 2: Sub-basin 4 (B4) used for the monitoring process with characteristic phragmites 

island in its center diverting incoming water flow into two paths 
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Figure 3: Preparation of calcium nitrate solution before adding to B3 (left), homogenization of 

water in B3 using an irrigator connected to a power take-off tractor (right) 

 

Figure 4: Transfer of dissolved calcium nitrate solution from B3 to B4 using a motor pump 

connected to a power take-off tractor 

Monitoring, sampling, chemical and data analysis 

A grid scheme with 30 different sampling points was prepared to monitor the depurative 

performance in B4 during the experiment (Figure 5). An over-hanging free-moving wire 

system was set up above B4 at adjusted distances to allow the sampling of the intermediate 

points in the center of the sub-basin with sampling bottles attached to the free-moving wire at 
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adjusted distances during the sampling procedure. The water sampling process started one 

hour after the beginning of transfer of the dissolved solution to B4 and continued for 24 hours 

with a 3-hour time interval between samplings during the first phase of monitoring (7
th

 and 8
th

 

June 2016). During the second monitoring phase (10
th

 June 2016), sampling was done only 

during the day with a 2-hour time interval between different samplings (Table 1). On-site 

monitoring of some physico-chemical parameters of water (temperature, pH and electric 

conductivity (EC)) was carried out during using a portable multitasking device; HQD (HACH 

Lange HQ 40d, Hach, Loveland, CO, USA) at some selected points in B4; majorly inlet and 

outlet, two points at the sub-basin corners and two points in the middle of the sub-basin. Some 

samples were taken and some physico-chemical measurements were done for some points at 

the lateral canal to check that the monitored system is completely isolated. The previous 

monitoring protocol was designed to be able to evaluate the total volumes entering to the sub-

basin, the movement of water and any preferential flows, and the depurative capacity of the 

sub-basin over space and time both in terms of concentration and quantity. Water samples 

were analyzed off-site in the Centralized Chemical Laboratory of DAFNAE department (La 

Chi.), University of Padua, Legnaro (PD), Italy and N-NO3
-
 concentration was determined and 

quantified using standard spectrophotometric methods (Cataldo et al., 1975).  

Results of the analyses for NO3
-
 concentrations, EC and pH at B4 IN and OUT were presented as 

box and whisker plots using medians and quartiles. Line charts explained the changes in N-

NO3
-
 concentrations, EC and pH in B4 IN and OUT during the whole experimentation period. 

Removal percentage was calculated based on N-NO3
-
 concentrations using the formula:  

            
                  

       
     Where, C inlet is N-NO3

-
 concentration at inlet and C 

outlet is the N-NO3
-
 concentration at the outlet, while total mass removal in 12 hours was 

calculated as follows:                                        , Where, M inlet is 

mass of N-NO3
-
 at inlet (water inflow * median concentration at inlet). Daily mass removal in 

unit area (m
2
) was estimated as daily total mass removal/ total sub-basin area.  

Approximate prediction of water movement and fluxes throughout the loading experiment was 

possible by the preparation of some geo-statistical model maps at different sampling times in 

ArcGIS 10.2 (ESRI, 2013). Based on N-NO3
-
 concentrations at different sampling points in 

the grid scheme, spatial interpolation was performed using kernel interpolation with barriers 
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which takes into account the presence of a vegetative island barrier in the center of the 

monitored sub-basin. 

 

Figure 5: Grid scheme showing 30 different sampling points in the selected sub-basin B4 

Table 1: Sampling hours and dates for the loading experiment 

 Experiment 1 

Reference  Sampling hour Sampling date 

A  

B  

C  

D  

E  

F  

G  

H  

I 

J 

K 

L  

M  

N  

O  

P  

18.00 

19.00 

22.00 

01.00 

04.00 

07.00 

10.00 

13.00 

16.00 

- 

- 

09.30 

11.10 

12.10 

14.40 

17.10 

7/6/2016 

 

 

8/6/2016 

 

 

 

 

 

 

 

10/6/2016 
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Results and discussion 

1. N-NO3
- concentration 

Before the start of the loading experiment, N-NO3
-
 concentration at the sub-basin inlet B4 IN 

was very low (0.65 mg l
-1

) owing to the general low concentration in the inflow, together with 

the prominent depurative effect of the wetland. During the first phase of the loading 

experiment (7
th

 and 8
th

 June 2016), N-NO3
-
 concentration showed a median concentration of 

45.34 mg l
-1

 at B4 IN with a maximum of 66.94 mg l
-1

 reached at the first sampling (7/6/2016, 

18.00) indicating that homogenization of dissolved solution in B3 was successful and 

effective, while the minimum concentration was 25.03 mg l
-1

 achieved on 8/6/2016, 4.00 a.m 

(point of equilibrium). After the total substitution of water in B4 (poor N-NO3
-
 content) with 

water from B3 (rich N-NO3
- 
content) at 4.00 a.m (8/6/2016), median N-NO3

-
 concentration at 

sub-basin outlet B4 OUT reached 41.5 mg l
-1 

with a maximum value of 45.08 mg l
-1

 and a 

minimum of 20 mg l
-1

 (Figure 6). During the second phase of loading experiment (10
th

 June), 

after a heavy rainfall event of 76 mm (9
th

 June), median N-NO3
- 
concentration reached 10.20 

mg l
-1

 at B4 IN and 22.58 mg l
-1

 at B4 OUT while the minimum and maximum values ranged 

between 6.04 and 28.71, 17.04 and 30.11 mg l
-1

 for B4 IN and B4 OUT, respectively. N-NO3
-
 

concentrations were very low in the lateral canals (median 0.5 mg l
-1

) throughout the whole 

loading experiment indicating that there were no lateral loses from the isolated sub-basin 

system. 

Figure 7 shows the evolution of N-NO3
-
 concentration in B4 IN and B4 OUT during the two 

phases of loading experiment. During the first phase, concentration started very high in B4 IN 

after the beginning of transfer of the dissolved solution from B3 (7/6/2016, 18.00) and 

decreased gradually to reach its minimum at the equilibrium point (detention time, 8/6/2016, 

4.00 a.m) while it increased gradually in B4 OUT to reach almost the same concentration as in 

B4 IN at the same point of equilibrium (Kadlec, 2010). After equilibrium, concentrations 

increased simultaneously in B4 IN and OUT and then they were almost constant till the end of 

this phase. During the second phase, concentrations were lower in B4 IN than B4 OUT owing 

to the dilution effect in B3 caused by the heavy rainfall during the preceding day. 

The sudden rapid increase in N-NO3
-
 concentration after introduction to B4 simulates the “first 

flush” effect in event-driven wetlands receiving diffused pollution run-off, in which the first 

inflow is highly loaded with pollutants and then decreases gradually over time (Kadlec and 
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Wallace, 2009; Kato et al., 2009, Kadlec, 2010; Lang et al., 2013). The use of a pump unit to 

transfer water from B3 to B4 helped to decrease the detention time to a period shorter than a 

day (Kadlec, 2010). In general, the dilution effect after excessive rainfall is almost negligible 

due to the subsequent surface run-off (Kato et al., 2009; Lang et al., 2013; Reichwaldt et al., 

2015), however, in this case, the system was closed and isolated which allowed the dilution of 

NO3
-
 in B3 and subsequently in B4 with the second water transfer process during the second 

phase. Increases and decreases in NO3
-
 concentration in the simulated experiment followed by 

rainfall supported the theory that treatment of non- point agricultural run-off in CW is more 

episodic and event-driven (Kadlec and Wallace, 2009; Kadlec, 2010). 

 

 

Figure 6: Box and whisker plots showing N-NO3
-
 concentration in B4 IN and B4 OUT during 

the first and second phases of monitoring of the loading experiment 
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Figure 7: Line chart showing N-NO3
-
 concentration in B4 IN and B4 OUT during the first and 

second phases of monitoring of the loading experiment 

2. Mass balance and removal efficiency 

Based on inlet and outlet N-NO3
-
 concentrations, a total reduction of 8.4 % was exhibited in B4 

after reaching the point of equilibrium i.e. the total substitution of water with the dissolved 

solution from B3 at 4.00 a.m on 8
th

 June, 2016 till the end of the first phase. The total mass  

removal of NO3
-
 for B4 was 0.82 kg calculated for the period between the detention time 

(equilibrium) and the end of phase 1 (12 hours). Removal per unit area was estimated to be 1 

g NO3
-
 m

-2
 d

-1
. N percent removal was in general lower than other studies (Jordan et al., 1999; 

Kovacic et al., 2000; Tanner et al., 2003 and 2005; Mitsch et al., 2005; Borin and Tocchetto 

(2007); Kadlec, 2010; Wetland Research, Inc., 2012) due to high nutrient loading within 

limited experimentation time and sub-basin area, which did not allow enough time and space 

for the normal biogeochemical cycle and microbial processes to take place (Ballaron, 1988; 

Braskerud, 2002; Kadlec and Wallace, 2009, O’Geen et al., 2010). In addition, increasing the 

detention time can also be a key factor improving the efficiency of performance of the 

wetland (Davis, 1995b; Su et al., 2009; Wetland Research, Inc., 2012). The presence of 

vegetative island (obstruction) in the center of B4 could somehow limit the removal efficiency 

as it creates lower velocity zones preventing the uniform distribution of the flow (Su et al., 

2009). However, B4 represents only small percentage (~10%) of the total FWS CW area, so it 
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is expected the removal efficiency of the whole wetland would be much higher under similar 

intermittent conditions. 

3. Physico-chemical parameters 

Electric conductivity (EC) 

Earlier monitoring of EC in B4 (7/6/2016, 10.00 a.m) showed relatively lower values (826 and 

823 µS/cm at B4 IN and B4 OUT, respectively) than those achieved after the beginning of the 

loading experiment. During the first phase, the median conductivity at B4 IN was 1241 µS/cm 

with a peak of 1358 µS/cm reached at the beginning of the loading of NO3
- 
solution from B3 

(7/6/2016, 18.00) and a minimum value of 1164 µS/cm (7/6/2016, 22.00). Median 

conductivity at B4 OUT was 1150 µS/cm with values ranging between a minimum of 806 

µS/cm (7/6/2016, 18.00) and a maximum of 1251 µS/cm reached after the detention time 

(8/6/2016, 7.00 a.m) (Figure 8). Following the second phase of loading, conductivity 

decreased at B4 IN and B4 OUT after the prominent rainfall (9
th

 June). Median conductivity 

at B4 IN was 852 µS/cm with values ranging between 819 and 1015 µS/cm. On the other 

hand, values were higher at B4 OUT ranging between 900 and 1014 µS/cm with a median 

conductivity of 1004 µS/cm (Figure 8). 

Changes in EC between B4 IN and B4 OUT during the two phases were consistent with those of 

N-NO3
-
 concentration (Figure 9). During the first phase of loading, a sudden increase in EC 

associated with transfer of elevated N-NO3
-
 solution from B3 to B4 was noticeable  and 

decreased gradually with passage of time towards the detention time to reach a minimum 

(7/6/2016, 22.00) then increased again steadily towards the detention time. After equilibrium, 

EC at B4 IN remained almost constant till the end of the phase. On the other side, EC started 

low in B4 OUT and increased gradually with the transfer of N-NO3
-
 solution through the sub-

basin to reach its maximum after the detention time (8/6/2016, 7.00 a.m) after which EC was 

almost the same throughout the whole sub-basin (B4 IN and OUT).  As a result of the dilution 

effect caused by the heavy rainfall during the preceding day, EC was lower at both B4 IN and 

OUT during the second phase with lower values at B4 IN than OUT owing to the fast transfer 

of diluted solution from B3 to B4. Values at both B4 IN and OUT continue to decrease 

gradually till they reach their minimum towards the end of the second phase. 
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Figure 8: Box and whisker plots showing EC in B4 IN and B4 OUT during the first and second 

phases of monitoring of the loading experiment 

 

Figure 9: Line chart showing EC in B4 IN and B4 OUT during the first and second phases of 

monitoring of the loading experiment 
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The introduction of high N-NO3
-
 concentration to B4 during the first phase greatly increased the 

ionic and total dissolved solids (TDS) concentrations   which  in turn   massively increased the  

EC of water (Welcomme, 1985; Kadlec and Wallace, 2009; EPA, 2012c; Perlman; 2014). 

Diluted waters introduced in the second phase had lower nutrient content, lower TDS and thus 

lower conductivity (Badve et al., 1993; Gibson et al., 1995; Reichwaldt et al., 2015). EC is a 

determinant indicator for concentration and dilution of ionic compounds in treatment wetlands 

(Kadlec and Wallace, 2009). 

pH  

Despite that the changes in pH in B4 during the loading experiment were small; they could 

match to some extent with those exhibited by N-NO3
-
 concentrations and EC. During the first 

phase, the median pH at B4 IN was 7.99 with a range varying between a minimum of 7.50 

(8/6/2016, 7.00 a.m) and a maximum of 8.22 (7/6/2016, 19.00). At B4 OUT, the median pH 

was 7.90 with a minimum of 7.49 (8/6/2016, 7.00 a.m) and a maximum of 8.48 (7/6/2016, 

18.00). In the second loading phase, pH increased again to reach a median of 8.06 at B4 IN 

and 8.11 at B4 OUT with minimum and maximum values of 7.69 and 8.12, 7.68 and 8.52 at 

B4 IN and OUT, respectively (Figure 10). 

In B4 IN, during the first phase, pH decreased gradually with the introduction of elevated N-

NO3
- 
solution from B3 to reach a minimum after the point of equilibrium (8/6/2016, 7.00 a.m), 

then it increased again gradually towards the end of the phase. On the other hand, pH at B4 

OUT remained unchanged before it began decreasing gradually, also to reach its minimum 

value after the detention time (8/6/2016, 7.00 a.m) where pH became homogenous throughout 

the whole sub-basin after which it increased again towards the end of the phase, at a rate 

higher than that of B4 IN (Figure 11). During the second phase, after the rainfall (dilution 

effect), pH continued increasing again both B4 IN and OUT to almost reach the original 

values exhibited before the beginning of the loading experiment with a slightly faster rate of 

increase in B4 OUT than B4 IN. 

Normally, the wetland was slightly alkaline (pH ≥ 8) due to accumulation of calcium carbonate 

in soil, photosynthesis and de-nitrification processes, especially during high season (Michaud 

and Noel; 1991; Murphy, 2007; Kadlec and Wallace, 2009; EPA, 2012a). The introduction of 

excessive N-NO3
- 
solution to the monitored sub-basin led to a gradual slight decrease in pH 

(alkalinity) as a result of water nitrification, which increased  again   after  the   rainfall  which  
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Figure 10: Box and whisker plots showing pH in B4 IN and B4 OUT during the first and second 

phases of monitoring of the loading experiment 

 

Figure 11: Line chart showing pH in B4 IN and B4 OUT during the first and second phases of 

monitoring of the loading experiment 
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caused a dilution in N-NO3
- 

solution in both B3 and B4 (Kadlec and Wallace, 2009; 

Reichwaldt et al., 2015). Although no clear changes were notable due to the short period of 

the experiment, decreases and increases in pH could be a good indicator for the changes in N-

NO3
-
 concentrations within the wetland. 

4. Water movement and fluxes 

Spatial interpolation using Kernel with barriers represented a good tool for the prediction of 

water movement and fluxes during the loading experiment. Before the start of the loading 

experiment (T Zero), water in B4 was homogenous and nearly static with very low N-NO3
- 

concentrations (0-4 mg l
-1

) (Figure 12a). On the 7
th

 of June, two hours after the beginning of 

solution transfer from B3 (T=19.00), concentration gradient was clearly distinct eastwards in 

B4 indicating major water flow in that direction (Figure 12b). At T=1.00 (8
th

 June), N-NO3
-
 

concentrations were increasing gradually at the western side of B4 at a lower rate than the 

eastern side indicating slower flow in that direction (Figure 12c).  After the detention time 

(T=7.00), the concentration gradient became more homogenous throughout B4 with higher 

concentrations at the southern and southeastern sides, which can be explained by the presence 

of vegetative island at the center of the sub-basin acting as a slow-down barrier and creating 

low velocity zones (Figure 12d). At the last sampling date in this phase (T=16.00), 

concentration gradient was more prominent at northern and western side of B4 where highly 

loaded water flow is now directed towards the outlet of the sub-basin (Figure 12e). During the 

second phase (10
th

 June), following the rainfall event, concentration gradient was more 

homogenous throughout B4 (T=9.30) with generally lower N-NO3
- 
concentration (20-32 mg l

-

1
) (Figure 12f). After the re-transfer of solution from B3 to B4 (T=11.10), the change in 

concentration gradient again showed the flow of water towards the eastern side of the sub-

basin but this time, N-NO3
- 

concentrations were decreasing as a result of the distinctive 

dilution effect (Figure 12g). In the same manner of the first phase but with inverted effect, at 

T=12.10, N-NO3
- 
concentrations declined at a higher rate in the southern and eastern sides of 

B4 than that at western and northern sides where the vegetative barrier again decreased the 

water velocity and flow rate (Figure 12h). At T=14.40, water flow was increasing in the 

western and northern sides of B4 as witnessed by the decrease in the concentration gradient in 

these sides (Figure 12i). By T=17.10, concentration gradient was completely   inverted  when  
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Figure 12: Geo-statistical model maps predicting water flow based on concentration gradients of 

N-NO3
- 
at different sampling times a. T Zero b. 7/6/2016, T=19.00 c. 8//6/2016, T= 1.00 d. 

8/6/2016, T=7.00  
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Figure 12 continued: Geo-statistical model maps predicting water flow based on concentration 

gradients of N-NO3
- 
at different sampling times e. 8/6/2016, T= 16.00 f. 10/6/2016, T= 9.30 g. 

10/6/2016, T= 11.10 h. 10//6/2016, T=12.10  

 

e f 

g h 



89 
 

 

Figure 12 continued: Geo-statistical model maps predicting water flow based on concentration 

gradients of N-NO3
- 
at different sampling times i. 10/6/2016, T= 14.40 j. 10/6/2016, T= 17.10  

compared with the first phase, exhibiting very low N-NO3
- 
concentrations in the southern and 

eastern  sides of the sub-basin (0-12 mg l
-1

) while concentrations were still higher at the 

northern and western sides indicating lower velocity flow towards the sub-basin outlet (Figure 

12j). 

Wetland hydrology, water hydraulics and pollutant loadings are very important factors affecting 

the depurative performance of event-driven wetlands which exhibit dynamic behavior (Somes 

et al., 1999; Somes et al., 2000; Kadlec and Wallace, 2009; Su et al., 2009, Kadlec, 2010). 

Inflow and outflow structures are very important considerations to improve the detention and 

treatment of the wetland (Somes and Wong, 1997; Koskiaho, 2003). In this FWS CW, the 

water flow from inlet to outlet (corner to corner) is mainly driven by gravitational forces 

through sub-surface pipes. Based on this, it could be assumed that eventually, all the water 

entering the system will flow towards the outlet which could be clearly expressed by the N-

NO3
- 

concentration changes between B4 IN and OUT during the two phases. An initial 

preferential flow is evident eastwards and northwards in both phases despite the great 

difference in concentrations where, in the first phase concentrations introduced were very high 

while they were low in the second phase, the position of the inlet on the south eastern side 

i j 
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could contribute to this direction of flow. Vegetation is another major factor affecting the 

water flow in event-driven wetlands where lower velocity zones are created in wetlands with 

emergent vegetation which exerts hydraulic resistance to the water flow (Wong and Somes, 

1995; Somes et al., 1999; Su et al., 2009). In B4, the presence of an emergent vegetative 

island in the center affected and slowed down the water flow as evident by indicator N-NO3
- 

concentrations where the flow was diverted into two paths with a higher flow rate 

(preferential flow) on the eastern side than that of the western (Su et al., 2009). Vegetation 

itself can also be interrelated to wetland hydrology and hydro-periods which can enhance or 

limit the growth of plant species, affect their productivity and diversity (Tabacchi et al., 1998; 

Mitsch and Gosselink, 2000; Wetland land, Inc., 2012) and in turn, vegetation can affect the 

water flow (lower velocity zones) and eventually wetland removal efficiency (Su et al., 2009)    

In conclusion, flow characteristics, affected by hydraulic and pollutant loads, and vegetation 

distribution are determinant criteria for the design of an efficient, high removal performance 

treatment wetland, especially in agricultural run-off. 
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Conclusion 

The introduction of excessive N-NO3
- 
concentration to a pilot isolated sub-basin system within 

the bigger FWS CW was used as a tool to evaluate the N-NO3
- 
retention in addition to some 

water dynamics and internal processes. A first flush effect was distinctively clear with the first 

introduction of the excessive load to the monitored sub-basin increasing the N-NO3
- 

concentrations to the desired limit. In the first monitoring phase, N-NO3
- 
concentrations were 

higher in B4 IN than OUT until the detention time where concentrations reached a state of 

equilibrium and uniformity within B4. Similarly, in the second phase of monitoring, decreases 

in NO3
- 
concentrations were faster in B4 IN than OUT as a result of the introduction of diluted 

water solution from B3 following excessive rainfall. EC and pH changes were consistent with 

those of N-NO3
- 
concentrations during the two phases where EC increased with the increase in 

N-NO3
- 
concentrations due to the increase in ionic and TDS concentration while pH decreased 

with N-NO3
- 
concentrations increase due to nitrification. The removal efficiency was 8.4 % in 

12 hours equivalent to mass removal of 0.82 kg of N-NO3
- 
(1 g m

-2 
d

-1
). 

Using N-NO3
- 

concentrations at different sampling points and times was a good indicator to 

predict water movement during the loading experiment. The dissolved solution moved from 

B4 IN to OUT (corner to corner) by gravitational forces with some preferential flows towards 

the eastern side of the sub-basin, mainly derived by the presence of vegetative obstruction 

creating lower velocity zones in the center of B4. The sub-basin exhibited similar water flow 

behavior during the two phases despite the great difference in N-NO3
- 
concentrations between 

both. In both phases, the water flow was eventually uniformly distributed in B4 over time. 

Based on this, it could be concluded that wetland hydrology, water hydraulics, pollutant 

loadings and vegetation morphology and distribution are determinant criteria for the design of 

effective wetlands. Additionally, the performance of CW in the removal of pollutant loads 

from agricultural run-off can be described as episodic and event-driven. 
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Chapter IV 

Evaluation of plant species used in floating treatments 

wetlands: a decade of experiments in North Italy 

(Review study) 
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Introduction 

Floating treatment wetlands (FTWs) represent a novel eco-approach for the treatment of various 

types of wastewater directly in natural and/or artificial water bodies. FTWs were defined as 

innovative variants of traditional constructed wetlands, which involve rooted, emergent 

macrophyte plant species growing in hydroponic conditions on floating mats as supports 

(Headley and Tanner, 2006). According to Headley and Tanner (2012), FTWs are 

hybridization of all the conventional wetland treatments (Surface and subsurface flow 

systems). Moreover, FTWs gain advantage over conventional systems because plants are 

trapped in self-buoyant mats thus, saving huge spaces of water body surface while extending 

their root system in the water column and performing their typical functions. (De Stefani et al. 

2011). Important processes for contaminant removal by FTWs include the release of 

extracellular enzymes, development of biofilms and aggregation of suspended matter at the 

surface of submerged plant organs (Oliveira and Fernandes, 1998). In addition, other 

processes include nutrients and metals uptake by plants, enhancement of anaerobic conditions 

in the water column, settling and sedimentation of contaminants in the water body (Headley 

and Tanner, 2006). 

Over the last decades, FTWs were used extensively for the restoration of water bodies and the 

treatment of different types of wastewater around the world using different plant species, 

mainly macrophytes (discussed in details in chapter I). Most of the available literature focused 

the attention mainly on wastewater quality improvement rather than the plant growth 

performances in FTWs.  

In light of the limited literature dealing with plant growth performance in FTWs (Chapter I), the 

main aim of this study was to evaluate the growth performance and nutrient uptake of 20 

different plant species installed in different FTWs constructed with the Tech-IA® Italian 

floating support mat in North Italy over 10 years of research. Investigating factors affecting 

the growth performance in addition to correlations between different growth parameters was 

an additional interest. 

 

 

 

. 
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Materials and Methods 

Experiments 

Nine experiments were installed in different locations of North-Italy using FTWs during a 

decade of research (2006-2016) (Table 1). Six different types of wastewaters, whose physico-

chemical features are reported in Table 2, were treated in two pilot and six full-scale 

experiments. The most frequently treated were municipal wastewater in tertiary stage (Mietto 

et al., 2013; Barco and Borin, 2017) and river wastewater (De Stefani et al., 2011; Pappalardo 

et al., 2017). The former consisted of a mixture of domestic, urban run-off and industrial 

waters that were tertiary treated through a two-stage hybrid constructed wetland (horizontal 

subsurface flow and floating systems, respectively). The latter is mainly composed of 

agricultural run-off wastewater (experiment 9), and aquaculture plant-derived wastewater 

(experiment 1). A detailed study was performed for the treatment of diluted digestate liquid 

fraction (DLF) (Pavan et al., 2015), the sub-product of anaerobic digestion of cattle slurries 

and manures mixed with energetic crops such as maize silage and flavor. A one-year 

experiment was conducted under green-house environmental controlled conditions, testing ten 

different ornamental species using Ferty 3
®
 synthetic nutrient solution (De Stefani, 2012). 

Plant support system: Tech-IA® 

All the experiments were performed using Tech-IA
®
, an Italian patented plant supporting 

floating mat (Figure 1). Tech-IA
®
 is made from ethylene vinyl acetate (EVA), a recyclable 

and non-toxic formula, with high mechanical, chemical, and biological resistance (De Stefani 

et al., 2011). Each Tech-IA
®
 floating element is rectangular in shape (45 cm x 93 cm), with 

eight (15 cm x 15 cm) quadrangular grids for plant anchoring. It weighs 1.7 kg and supports 

more than 20 kg weight. The single elements can be easily connected together and anchored 

to the basin side by the means of cords and wooden poles. 

Plant species 

Thirty five different machrophyte species were used in the 9 different experiments; however, 

focus  in  this study  was  given to 20  species  belonging   to  the  botanical  families Poaceae, 

Asteraceae, Cyperaceae, Iridaceae and Typhaceae (Table 3). All the species are perennial, 

herbaceous and rhizomatous macrophytes, typically found in natural aquatic habitats such as 

natural marshes or free water surface constructed wetlands (Vymazal, 2013). 
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Table 1. List of the experiments carried out during the research years (2006-2016) 

Experiment 

code 
Year  Coordinates Location Wastewater 

Treatment 

stage 
Scale plants 

Plants 

m
-2

 
Reference 

1 
2005 

2008 

45°38’N 

12°10’E 

Sile River, 

Veneto 

Region 

Aquaculture 

and river 

wastewater 

Single 

treatment 

Full: rivers 

received 

wastewater 

from 

cultivated 

fields, urban 

environment 

and 

aquaculture 

plants 

16 
De Stefani 

et al. (2011) 

2 
2009 

2010 

45°35’N, 

10°2’E 

Cazzago 

San 

Martino, 

Lombardia 

Region 

Municipal 

wastewater 

Tertiary 

treatment 

Full: run-off 

sedimentation 

pond 

8 
Unpublished 

data 

3 2010 
45°11’N, 

11°21’E 

Legnaro, 

Veneto 

Region 

Synthetic 

nutrient 

solution 

Single 

treatment 

Pilot: 3 

waterproofed 

PVC  tanks 

4 
De Stefani, 

2012) 

4 
2010 

2011 

45°22’N, 

11°25’E 

Alonte, 

Veneto 

Region 

Municipal 

wastewater 

Tertiary 

treatment 

Full: 

sedimentation 

pond 

8 

Barco and 

Borin 

(2017) 

5 
2011 

2012 

45°36’N, 

11°37’E 

Bolzano 

Vicentino, 

Veneto 

Region 

Municipal 

wastewater 

Tertiary 

treatment 

Full: 

sedimentation 

pond 

8 
Mietto et al. 

(2013) 

6 
2011 

2012 

45°25’N, 

11°33’E 

Montruglio, 

Veneto 

Region 

Municipal 

wastewater 

Tertiary 

treatment 

Full: 

sedimentation 

pond 

8 
Mietto et al. 

(2013) 

7 
2011 

2012 

45°44’N, 

11°37’E 

Pianezze, 

Veneto 

Region 

Municipal 

wastewater 

Tertiary 

treatment 

Full: 

sedimentation 

pond 

8 
Mietto et al. 

(2013) 

8 

2010 

2011 

2012 

45°14’N, 

11°54’E 

Terrassa 

Padovana, 

Veneto 

Region 

Digestate 

liquid 

fraction 

Single 

treatment 

Pilot: 3 

excavated 

basins 

waterproofed 

by PVC 

plastic mesh  

8 
Pavan et al. 

(2015) 

9 

2014 

2015 

2016 

45°11’N, 

12°2’E 

Cona, 

Veneto 

Region 

Agricultural 

wastewater 

Single 

treatment 

Full: channel 

receiving 

wastewater 

from 

cultivated 

fields 

4 
Pappalardo 

et al. (2017) 
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Table 2. Physico-chemical characteristics of wastewaters used in the experiments (TN: total 

nitrogen, PO4-P: orthophosphate, COD: chemical oxygen demand, EC: electrical 

conductivity)  

Wastewater 
Experiment 

code 

Quart 

(%) 

TN  

(mg L
-1

) 

PO4-P  

(mg L
-1

)  

COD  

(mg L
-1

) 

EC  

(μS cm
-1

) 

Municipal 

wastewater 

2, 4, 5,  

6, 7 

25 7.2 2.73 36.15 770.0 

Median 22.8 4.31 56.0 900.0 

75 41.7 6.01 96.0 1130.0 

Agricultural 

wastewater 
9 

25 1.3 u.m.t. - 709.3 

Median 1.7 0.004 - 1056.0 

75 1.9 0.009 - 1350.5 

Aquaculture 

wastewater 
1 

25 6.0 0.03 8.3 - 

Median 6.9 0.06 13.7 - 

75 7.7 0.09 16.1 - 

Digestate 

liquid 

fraction 

8 

25 71.3 10.85 963.8 3200.0 

Median 116.5 17.20 1580.0 3770.0 

75 163.3 23.40 2237.3 4260.0 

Synthetic 

nutrient 

solution 

3 

25 - - - 1007.5 

Median - - - 1210.0 

75 - - - 1432.5 

u.m.t.: under measurable threshold. -: not available. 

 

 

Figure 1. Tech-IA
®
 floating element used for plant anchoring and support 
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Table 3. List of used species in each experiment.  

Experiment code Plant Species used 

1 

Carex elata Gooden. (Carex stricta Lam.), Chrysopogon zizanioides (L.) Robert., 

Dactylis glomerata  L., Juncus effusus L., Phragmites australis (Cav.) Trin. ex Steud., 

Sparganium erectum L., Typha latifolia L. 

2 I. pseudacorus L., Phragmites australis (Cav.) Trin. ex Steud., Typha latifolia L. 

3 

Acorus calamus L., Caltha palustris L., Canna indica L., Iris laevigata Fisch., Juncus 

effusus L., Mentha aquatica L.,  Oenanthe javanica (Blume) DC., Pontederia cordata 

L., Sparganium erectum L., Thalia dealbata Fraser ex Roscoe, Zantedeschia 

aethiopica (L.) Srengel 

4 I. pseudacorus L., Phragmites australis (Cav.) Trin. ex Steud. 

5 I. pseudacorus L., Phragmites australis (Cav.) Trin. ex Steud. 

6 I. pseudacorus L. 

7 I. pseudacorus L. 

8 I. pseudacorus L., Phragmites australis (Cav.) Trin. ex Steud., Typha latifolia L. 

9 

Caltha palustris L, Carex elata Gooden. (Carex stricta Lam.), I. pseudacorus L ., 

Juncus effusus L., Lythrum salicaria L., Mentha aquatica L., Phalaris arundinacea 

L., Schoenoplectus lacustris (L.) Palla, Sparganium erectum L.,  

 

Major focus was given to evaluate P. australis, T. latifolia, I. pseudacorus, Carex spp., and L. 

salicaria.  

A group of ten species was chosen for assessing both depurative performances and aesthetic-

ornamental value included; A. calamus, C. indica, C. palustris, I. laevigata, J. effesus, M. 

aquatica, O. javanica, P. cordata, S. erectum, T. dealbata. All ornamental species were 

transplanted using pieces of rhizome or stolon (20-25 cm length, 3 living sprouts each), except 

for A. calamus, C. palustris, and O. javanica which were transplanted as 35 cm height plants. 

Vegetative performance parameters 

Plant growth and development were monitored at the end of each growing season using a 

specific parameter scheme for each experiment (Table 4) (De Stefani et al., 2011; De Stefani, 

2012; Mietto et al., 2013; Pavan et al., 2015; Pappalardo et al., 2017; Barco and Borin, 2017). 

Shoot height and root length were manually measured using an extensible meter. Aerial and 

root fresh biomass productions were determined by harvesting plants in randomly selected 

areas of each FTW. Dry biomass  production  was  obtained  by  drying  fresh  tissues samples 

in a  forced  air  oven at 65°C   for   about 48 hours,  until  constant  weight  was  reached. Dry 
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Table 4. Vegetative parameters measured in each experiment  

Experiment 
Vegetation 

monitoring 

Above mat 

biomass 

Below mat 

biomass 

Shoot 

height 

Root 

length 
N% P% 

1 
March 2006, 

June 2008 
- - - * - - 

 

2 

November 2009 * * * * * - 

November  

2010 
* * 

* * 
* 

- 

3 July 2010 * - * * * - 

4 
November  

2011 
* 

* * * * * 

5 October 2012 * * * * * - 

6 October  2012 * * * * * - 

7 October  2012 * * * * * - 

 

8 

November  

2011 
* 

- - - 
* * 

October 2012 * - - * * * 

9 
October 2015 * * * * * * 

September 2016 * * * * * * 

*: measured, -: not available. 

biomass was then milled to 2 mm and analyzed to quantify Total Kjeldhal Nitrogen (TKN) 

and phosphorus concentrations through spectrophotometric analysis (FAO, 2011). The total 

nitrogen and phosphorus contents in above- and below-mat tissues were obtained as the 

product between aerial and root dry biomass productions and nutrient concentrations 

percentage. Plant survival rate was computed at the end of growing season and winter as the 

ratio between the number of living plants at the moment of measurement and the 

correspondent number in the previous period.  

Statistical analysis 

The normality of data was checked with Kolmogorov-Smirnov test. For all studied species, plant 

biometric characteristics (shoot height and root length), biomass productions (above- and 

below-mat) and root/shoot ratio were statistically analyzed by one-way analysis of variance 

test (ANOVA) at p<0.05 and the differences between average values were detected by Least 

Significant Difference, LSD test (p<0.05). The relations existing between i) above and below-

mat biomass production, ii) shoot height and above-mat biomass production, iii) root length 

and below-mat biomass production and iv) shoot height and below-mat biomass production 

were checked by a simple linear regression analysis (p<0.05).  



100 
 

The variation of plant biometric parameters and biomass production over the different growing 

seasons was assessed by one-way analysis of variance (ANOVA) at p<0.05. The influence of 

wastewater chemical parameters (nutrients, organic matter concentrations and electrical 

conductivity) on plant growth parameters was checked by a multiple regression analysis 

(p<0.05) after a random association between plant growth parameters (monitored at the end of 

growing season) and wastewater chemical features (monitored during the entire growing 

season) by a boots-trap statistical method as proposed by Efron and Tibshirani (1986).  
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Results and discussion 

1. Major species: growth performance 

Biometrics and biomass production 

As mentioned earlier, the most frequently used species in these studies were Carex spp., I. 

pseudacorus, L. salicaria, P. australis, and T. latifolia. I. pseudacorus was used to treat 

municipal, agricultural drainage wastewaters and diluted DLF. T. latifolia and P. australis 

were used to treat municipal wastewater and diluted DLF, whereas the use of Carex spp. and 

L. salicaria was limited to treat agricultural run-off wastewater derived from cultivated fields.   

Regarding dry above- and below-mat biomass productions, T. latifolia, P. australis and I. 

pseudacorus produced statistically comparable above-mat biomasses, which were 

significantly higher (ANOVA, p<0.001) than those obtained for Carex spp. and L. salicaria 

(Table 5). In addition, P. australis and T. latifolia produced significantly higher (ANOVA, 

p<0.05) below-mat biomass than those harvested for the other considered species without any 

significant differences among them. These results suggested that well-watered conditions of 

hydroponic culture provide good growth environment for P. australis and T. latifolia 

opposing to behavior exhibited by species in FWS-CW characterized by un-constant hydro-

period (Borin et al., 2012).  

T. latifolia and P. australis exhibited significantly highest (ANOVA, p<0.01) shoot height while 

the significantly lowest was for L. salicaria. There was no significant difference between 

species in root length except for L. salicaria which showed the significantly lowest (ANOVA, 

p<0.001) expansion of root system in the water column (Table 5). The growth of P. australis 

is advantaged over T. latifolia during severe drought conditions as it survives water scarcity 

through the expansion of an articulated network of roots absorbing water between 50 cm and 

100 cm depth. (Borin, 2003). 

A lot of studies reported the use of P. australis and T. latifolia (Revitt et al., 1997, 2001; Lakatos 

et al., 1997, 2014; Hubbard et al., 2004; Garbett,  2005; Van de Moortel, 2010; Dunqiu et al.., 

2012; Saeed et al., 2014, 2016; Zhang et al., 2016), Carex spp. (Van Acker et al., 2005; Van 

de Moortel, 2010, 2011; Tanner and Headley, 2011; Ladislas et al., 2013; Winston et al., 

2013; Borne et al., 2014) and I. pseudacorus (Van Acker et al.., 2005; Van de Moortel, 2011, 

Keizer-Velk et al., 2014; Hartshorn et al., 2016) in FTWs, however, the discussion of their 

growth parameters has remained limited until now.  
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Table 5. Comparison of the growth parameters (average value±standard error) of the frequently 

used species. Different letter for each parameter indicated significant differences according to 

one-way ANOVA test, p<0.05 

Species 
Above-mat biomass Below-mat biomass Shoot height Root length 

g m
-2

 n g m
-2

 n cm n Cm n 

I. pseudacorus 1059.7±179.38 a 50 725.0±201.6 b 39 78.6±6.0 c 60 53.1±3.4 a 60 

P. australis 1379.9±362.7 a 24 3611.1±702.4 a 24 131.7±11.5 b 42 47.4±3.9 a 42 

T. latifolia 1466.0±271.5 a 23 4331.1±571.6 a 11 189.0±11.8 a 21 59.3±5.8 a 17 

Carex spp. 304.4±53.5 b 26 416.3±68.3 b 12 65.4±2.0 c 31 48.4±2.0 a 19 

L. salicaria 47.7±6.5 b 24 205.7±25.2 b 24 42.3±4.3 d 42 35.1±2.1 b 42 

ANOVA results p<0.001 p<0.01 p<0.01 p<0.001 

 

For all considered species, the above-mat biomass productions were lower than those obtained in 

other types of CWs. P. australis above ground production ranged from less than 2000 g m
-2

 

(Tanner, 1996)-2022 g m
-2

 (Borin and Salvato, 2012) in plastic tanks filled with gravel 

medium to 1652-5070 g m
-2

 in HSSF-CWs (Vymazal and Kropfelova, 2005), and reached the 

highest biomass production in FWS semi-natural wetland (5450 g m
-2

) (Maucieri et al., 2014). 

T. latifolia and C. elata averagely produced 323 g m
-2

 and 349 g m
-2

 respectively, when 

transplanted in pilot tanks filled with gravel (Salvato and Borin, 2010). The use of L. salicaria 

was limited (Van de Moortel, 2010 ; Ge et al., 2016) in FTWs, although the species was 

adapted to colonize natural aquatic habitat (Vymazal, 2011b; Florio et al., 2017) such as 

marshes or riverbanks characterized by eutrophic wastewaters. In this study, both Carex spp. 

and L. salicaria did not perform efficiently in comparison with the results reported in 

scientific literature for floating systems, since their growth and development were probably 

penalized by low concentration of available macro-nutrients in wastewater (Pappalardo et al., 

2017). In comparison, a single specimen of L. salicaria produced 566.7 g of above-mat dry 

biomass (Ge et al., 2016), about 47.6 times the average production (11.9 g plant
-1

) obtained in 

the current study. L. salicaria maintained a constant production over the growing seasons 

(more than 1100 g m
-2

) when managed with high nitrogen and water supplies (Florio et al., 

2017). Similarly, C. virgata reached 2350 g m
-2

 of above-mat and 533 g m
-2

 of below-mat 

biomass (Tanner and Headley, 2011) which were respectively 7.7 and 1.3 times the average 

productions in this study. Moreover, C. stricta averagely produced 131.4 g plant
-1

 of above-
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mat biomass and 207.6 g plant
-1

 of below-mat biomass (Winston et al., 2013), which were 

about 1.7 and 2.1 times the average values for this study, respectively. On the opposite side, 

the biometric parameters obtained in this study are in line with values reported in other FTWs 

for C. virgata (shoot height 81 cm, root length 57 cm) (Tanner and Headley, 2011) and C. 

stricta (shoot height 80 cm, root length 40 cm) (Borne et al., 2014).  

Shoot/root ratio 

Root/shoot ratio was calculated for both biometric parameters (root length and shoot height) and 

biomass production (above- and below-mat biomass productions) (Figure 2). L. salicaria 

showed significantly higher root/shoot ratio (ANOVA, p<0.001) calculated for biometric 

parameters than all other species which did not show any significant differences among them.  

The behavior of L. salicaria transplanted under low nutrient availability was interesting, since 

the species seemed to allocate the energetic compounds produced by photosynthesis in the 

elongation of the root apexes rather than in aerial tissues. Moreover, late sampling of L. 

salicaria after senescence of aerial parts could contribute to increasing ratio. Under the same 

experimental conditions, the behavior of Carex spp. contrasted with that of L. salicaria, but 

was similar to those observed for P. australis and T. latifolia cultivated under high nutrient 

concentration in wastewater.  

As for the root/shoot ratio based upon biomass production, L. salicaria and I. pseudacorus 

exhibited the significantly highest values (ANOVA, p<0.001), whereas T. latifolia and P. 

australis had the significantly lowest ones (ANOVA, p<0.001). These results contrast with 

those reported for the same plant species grown in soil or substrate (Gries and Garbe, 1989; 

Peverley et al., 1995; Tanner, 1996; Borin, 2003; Borin and Salvato, 2012;  Maucieri et al., 

2014; Barco et al., 2018; Florio et al., 2018). A good explanation is that, soil and substrate are 

characterized by a cationic-anionic exchangeable capacity attracting oppositely charged ions 

such as nutrients or salts, providing them for plants absorption. In these conditions, perennial 

macrophyte species usually form a dense network of propagation organs, the rhizomes (Nassi 

o Di Nasso et al., 2013; Barco and Borin, 2017; Barco et al., 2018) which increase the 

root/shoot ratio. Oppositely, in hydroponic culture, the production of rhizomes was limited 

because nutritive resources are mainly in the available form and not sequestered by soil or 

substrates. In these conditions, plants root systems are mainly composed of roots, slighter than 

rhizomes, thus reducing the root/shoot ratio.  
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Figure 2. Root/shoot ratio (average value±standard error) calculated on i) biometric 

characteristics (left) and ii) biomass production (right). White columns represent average 

root/shoot ratio values derived from scientific literature. Different letters between the species 

indicated significant differences according to one-way ANOVA test, p<0.05. 

Correlation between biometrics and biomass production 

For all considered species except for L. salicaria, the above-mat biomass production was 

positively correlated with below-mat biomass production (Table 6), matching with results 

obtained for other wetland species in the same zone with high nitrogen (400 kg ha
-1

 year
-1

) 

and water supplies (about 40 mm of water twice per week) (Barco et al., 2018; Florio et al., 

2018) and with those obtained by Zhu et al. (2011) using plant species in artificial floating 

beds in China. 

Regarding above-mat biomass production and shoot length, they were negatively correlated for I. 

pseudacorus, L. salicaria and T. latifolia whereas a positive correlation was found between 

them for P. australis and Carex spp. Similarly, all studied species showed a negative 

correlation between root system biomass production and root length except for P. australis 

which showed no significance (Table 6). For I. pseudacorus and P. australis a significant 

regression was found between below-mat biomass production and shoot height. For the other 

species, there was an insignificant correlation between the two parameters.  

Since the study of plants root system is difficult to perform both in pilot and in full scale FTWs, 

depending on the plant species, the correct estimation of plant below-mat biomass production 

by the characterization of above mat biomass can help reducing the labor and the economic 

investment and avoids serious damages to plant root system (Zhu et al., 2011). 
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Table 6. Linear regression analysis between i) below-mat (dependent variable, y) and above-mat 

biomass production (independent variable, x); ii) above-mat biomass production (dependent 

variable, y) and shoot height (independent variable, x); iii) below-mat biomass production 

(dependent variable, y) and root length (independent variable, x); iv) below-mat biomass 

production (dependent variable, y) and shoot height (independent variable, x).  

Above-mat biomass-Below-mat biomass 

Species Equation Sig 

I. pseudacorus y=1.376+0.299x  R=+0.440 ** 

T. latifolia y=2.470+0.324x  R=+0.270 *** 

P. australis y=1.791+0.505x  R=+0.590 ** 

Carex spp. y=1.956+0.186x  R=+0.180 *** 

L. salicaria y=2.178+0.003x  R=+0.003 ns 

   

Above-mat biomass-Shoot height 

I. pseudacorus y=-3.360+3.059x  R=+0.897 ** 

T. latifolia y=-0.883+1.737x  R=+0.671 ** 

P. australis y=0.743+1.594x  R=+0.602 ** 

Carex spp. y=2.777-0.308x  R=+0.063 ** 

L. salicaria y=1.840-0.196x  R=-0.193 ** 

   

Below-mat biomass-Root length 

I. pseudacorus y=2.822-0.373x  R=-0.132 ** 

T. latifolia y=4.537-0.526x  R=-0.293 *** 

P. australis y=3.494-0.041x  R=-0.019 ns 

Carex spp. y=2.903-0.317x  R=-0.079 *** 

L. salicaria y=2.326-0.091x  R=-0.043 * 

   

Below-mat biomass-Shoot height 

I. pseudacorus y=0.678+0.755x  R=+0.302 ** 

T. latifolia y=3.616-0.023x  R=-0.008 ns 

P. australis y=-0.805+1.869x  R=+0.584 ** 

Carex spp. y=2.609-0.133x  R=-0.025 ns 

L. salicaria y=2.265-0.051x  R=-0.048 ns 

*: significant at p<0.05, **: significant at p<0.01, ***: significant at p<0.001, ns: not significant.  

Factors affecting biometrics and biomass production 

Different factors such as plant age and physicochemical characteristics of wastewaters can be 

determinant for plant biometric parameters and biomass production (Figure 3, Table 7). All 

considered species increased, although not always significantly, both above- and below-mat 

biomass productions, between the first year and the second years after transplant (Figure 3). 

The same behavior has been reported for P. australis and Phalaris arundinacea grown in sub-

surface flow CWs (Vymazal and Kropfelova, 2005) and for other wetland perennial 

herbaceous species cultivated in soil conditions (Florio et al. 2017; Angelini et al., 2009). 
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Shoot height and root length showed a species-specific behavior over the consecutive seasons, 

with a significant (ANOVA, p<0.05) reduction of both parameters between the first and the 

second growing season for I. pseudacorus (-37.0% and -67.5% for shoot height and root 

length, respectively) and L. salicaria (-52.2% and -29.8% for shoot height and root length, 

respectively) and a significant (ANOVA, p<0.05) decrease of root length (-38.2%) for T. 

latifolia (Figure 3). The opposite temporal trend observed between plant biomass production 

and biometric parameters, suggested a horizontal colonization of the floating platforms by the 

species, mainly due to the increasing of the number of shoots and roots produced.    

For all studied species, the above-mat biomass production, shoot height and root length were 

statistically modelized by the knowledge of nutrients (TN and P-PO4
-
) and organic matter 

(COD) concentrations as well as electrical conductivity (Table 7). Based on this, the growth 

of all species except for Carex spp. and L. salicaria was significantly influenced by 

wastewater physico-chemical parameters, showing a species-specific behavior, as already 

proved by White and Cousins (2013). The aerial biomass and root length of considered 

species were significantly influenced by all monitored parameters (Table 7). On the other 

hand, the model of root biomass produced by I. pseudacorus and T. latifolia included all 

wastewater parameters except for TN, with a   significant   influence of COD and EC and an 

insignificant effect of P-PO4
-
 concentration (Table 7). The root biomass of P. australis was 

significantly influenced by TN concentration and EC whereas the other parameters were not 

included in the model. The shoot height values of I. pseudacorus and T. latifolia were 

significantly influenced by all wastewater parameters, while the shoot elongation of P. 

australis could be modelized considering only the P-PO4
- 
and TN concentrations, without any 

effect, nor significance, of COD concentration and EC. 

 In general, T. latifolia and P. australis were similarly affected by wastewater properties, 

showing a significant reduction of all growth parameters In this concern, the best 

performances of the plants were obtained under municipal wastewater characterized with high 

N, COD and EC (De Stefani, 2012) 
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Figure 3. Comparison of biometric characteristics and biomass production between the first and 

the second growing season for the selected species (average value±standard error). Different 

letter within the same species indicated significant differences according to one-way ANOVA 

test, p<0.05. 

Table 7. Multiple regression analysis between plant growth parameters (biomass production, 

shoot height, root length) and physico-chemical parameters of wastewater. 

Species Parameter Multiple regression R
2
 p 

I. 

pseudacorus 

Aerial 

biomass 

y=4.421+0.371EC***-0.237COD***+0.162TN***+0.121P-PO4
-

*** 

0.684 *** 

Root biomass y=2.339-0.240EC***-0.063COD*** 0.690 *** 

Shoot height y=2.583+0.309 P-PO4-***+0.283EC***-

0.156COD***+0.104TN*** 

0.628 *** 

Root length y=2.503-0.301EC***+0.054TN***-0.028P-

PO4***+0.014COD*** 

0.831 *** 

T. latifolia 

Aerial 

biomass 

y=4.421-0.371EC***-0.237COD***-0.162TN***-0.121P-

PO4*** 

0.683 *** 

Root biomass y=2.338-0.243EC***-0.063COD*** 0.650 *** 

Shoot height y=2.580-0.308 P-PO4-***-0.280EC***-0.156COD***-

0.104TN*** 

0.627 *** 

Root length y=2.503-0.301EC***+0.054TN***-0.028P-

PO4***+0.014COD*** 

0.830 *** 

P. australis 

Aerial 

biomass 

y=3.801-0.324 P-PO4***-0.231 TN***-0.114 COD***-

0.091EC*** 

0.470 *** 

Root biomass y=0.251-1.373EC***-0.145TN*** 0.329 *** 

Shoot height y=2.27-0.191P-PO4 ***-0.052TN*** 0.354 *** 

Root length y=1.974-0.084EC***-0.044 P-PO4 ***-0.022TN***-

0.015COD*** 

0.399 *** 

*: significant at p<0.05, **: significant at p<0.01, ***: significant at p<0.001 
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Similar to the other species, I. pseudacorus showed the best growth performances when 

cultivated under municipal wastewater (Barco and Borin, 2017; De Stefani, 2012), whereas 

the performances of the species progressively decreased under DLF and agricultural run-off 

wastewater (Pavan et al., 2015; Pappalardo et al., 2017). The positive relationship obtained 

between plant height and above-mat biomass with wastewater nutrients concentrations was 

previously confirmed by White and Cousins (2013).    

The below-mat biomass and the root length of all studied species were significantly reduced with 

the increasing of nutrients, COD and salinity of the wastewater reducing the expansion of root 

system and the increasing of nutrients absorbing surface (Lopez-Bucio et al., 2003).   

The biomass production (above and below-mat) and biometric characteristics of Carex spp. and 

L. salicaria were affected only by the age of plants, while wastewater physico-chemical 

composition did not influence plants growth parameters since the species were cultivated 

under a relatively constant wastewater composition during the entire experimental period 

(Pappalardo et al., 2017). 

2. Major species: Nutrient uptake 

N and P concentration in biomass 

N and P concentration percentage in both above- and below-mat dry biomass productions highly 

differed not only between the species but also within the same species (Table 8). In general, 

all species showed higher N concentrations than P ones reflecting the same trend observed for 

TN and PO4-P concentrations of used wastewaters. P. australis showed the significantly 

highest (ANOVA, P<0.05) above-mat N and P concentrations, followed by I. pseudacorus 

and T. latifolia which did not show any significant difference among them. L. salicaria and 

Carex spp. showed the significantly lowest (ANOVA, p<0.05) N and P concentrations, 

without any significant differences among them. Comparable N concentrations were detected 

in the below-mat biomass of I. pseudacorus, T. latifolia and P. australis, which were 

significantly higher (ANOVA, p<0.05) than those of L. salicaria and Carex spp. For all 

studied species N and P concentrations were significantly (ANOVA, p<0.05) higher in below-

mat biomass than above-mat biomass, matching the results of Keizer-Velck et al. (2014) for I. 

pseudacorus. This trend is mainly dependent on the sampling period. In this study, N and P 

concentrations were determined at the end of the growing  season  when  the translocation of  
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Table 8. Nitrogen and phosphorus percentage concentrations (N and P%) in above-mat and 

below-mat biomass of considered species. Different letters within the same parameter indicate 

significant difference between the species according to one-way ANOVA test at p<0.05.  

Species 
N% 

Aerial tissues Sig. Root system Sig. Root-Shoot 

I. pseudacorus 1.81±0.09 (50) b 2.67±0.23 (39) a *** 

T. latifolia 1.67±0.06 (23) b 2.84±0.14 (11) a *** 

P. australis 2.10±0.09 (26) a 2.82±0.13 (12) a *** 

Carex spp. 0.93±0.02 (24) c 1.09±0.03 (24) b *** 

L. salicaria 0.68±0.04 (24) c 1.72±0.51 (24) b * 

      

Species 
P% 

Aerial tissues Sig. Root system Sig. Root-Shoot 

I. pseudacorus 0.16±0.03 (23) b 0.07±0.004 (12) a * 

T. latifolia 0.14±0.02 (14) b - - - 

P. australis 0.38±0.04 (12) a - - - 

Carex spp. 0.04±0.001 (24) c 0.07±0.004 (24) a *** 

L. salicaria 0.03±0.002 (24) c 0.12±0.029 (24) a * 

*: significant at p<0.05, **: significant at p<0.01, ***: significant at p<0.001, ns: not significant. 

nutrients from the aerial tissues to the root system has already occurred (Bonaiti and Borin, 

2000; Vymazal, 2007). An opposite trend, with a higher nutrient concentration in aerial 

tissues than root system, was observed anticipating the sampling period at the beginning of the 

summer, as proved in a FTW vegetated with C. virgata (Tanner and Headley, 2011).  

The different chemical composition of wastewaters where plants were transplanted most 

probably induced variability of N and P concentrations in above and below-mat dry biomass 

of studied species (Table 9). For I. pseudacorus, P. australis and T. latifolia, the N 

concentration of both above- and below-mat biomass productions was positively correlated 

with TN concentration in wastewater, whereas for Carex spp. and L. salicaria no significant 

regression between the two parameters was possible. P concentration was positively 

correlated with PO4-P concentration in wastewater only for I. pseudacorus (above- and below-

mat biomass) and T. latifolia (above-mat biomass), whereas no significant regressions were 

calculated for the other species.  
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Table 9. Linear regression analysis between N and P biomass percentage concentrations 

(dependent variable, y) and wastewater TN and PO4-P concentrations (independent variables, 

x). 

Species 
Aerial tissues 

Biomass N vs Wastewater TN Sig. Biomass P vs Wastewater P-PO4
- 

Sig. 

I. pseudacorus y=0.050+0.179x  R=0.387 ** y=0.132+0.250x  R=0.378 ** 

T. latifolia y=0.109+0.075x  R=0.194 ** y=-0.953+0.075x  R=0.046 * 

P. australis y=0.211+0.082x  R=0.112 *** y=-0.565+0.033x  R=0.014 ns 

Carex spp. y=-0.009-0.103x  R=-0.037 ns y=-1.452-0.015x  R=-0.008 ns 

L. salicaria y=-0.193-0.043x  R=-0.023 ns y=-1.549-0.026x  R=-0.014 ns 

     

Species 
Root system 

Biomass N vs Wastewater TN Sig. Biomass P vs Wastewater P-PO4
- 

Sig. 

I. pseudacorus y=0.765+0.320x  R=0.699 ** y=0.252+0.881x  R=0.807 ** 

T. latifolia y=0.361+0.150x  R=0.136 *** - - 

P. australis y=0.372+0.113x  R=0.110 ** - - 

Carex spp. y=0.048-0.010x  R=-0.003 ns y=-1.033+0.060x  R=0.028 ns 

L. salicaria y=0.086-0.047x  R=-0.027 ns y=-0.712+0.146x  R=-0.091 ns 

*: significant at p<0.05, **: significant at p<0.01, ***: significant at p<0.001, ns: not significant. 

N and P content in biomass 

I. pseudacorus, P. australis and T. latifolia showed the significantly (ANOVA, p<0.05) highest 

N standing stocks in above-mat biomass, whereas Carex spp. and L. salicaria exhibited the 

significantly lowest (ANOVA, p<0.05) ones (Table 10). Except for I. pseudacorus, the root 

systems of all species gave significantly higher (ANOVA, p<0.05) N content than that 

obtained for the aerial tissues. 

The above-mat P content ranged between 0.975±0.210 g m
-2

 for P. australis to 0.016±0.002 g m
-

2
 for L. salicaria with significant differences among the species (ANOVA, p<0.05) (Table 

10). Considering the root system, Carex spp. exhibited the significantly highest (ANOVA, 

p<0.05) P content whereas I. pseudacorus showed the significantly lowest (ANOVA, p<0.05) 

one (Table 11). As already reported for N, for the majority of considered species the above-

mat P content was significantly higher (ANOVA, p<0.05) than below-mat one. Only I. 

pseudacorus did not show any significant differences between above- and below-mat P 

contents. 
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Table 10. Nitrogen and phosphorus content (g m
-2

) in above- and below-mat biomass of 

considered species. Different letters within the same parameter indicate significant differences 

between the species according to one-way ANOVA test at p<0.05.  

Species 
N (g m

-2
) 

Aerial tissues Sig. Root system Sig. Sig. 

I. pseudacorus  20.21±3.36 (50) a  25.28± 7.46 (39) b ns 

T. latifolia  22.73± 4.00 (23) a  121.16± 16.27 (11) a *** 

P. australis  22.39± 5.11 (26) a  95.26±15.45 (12) a *** 

Carex spp. 2.64± 0.43 (24) b  4.26± 0.64 (24) c * 

L. salicaria  0.32± 0.04 (24) b  2.30± 0.33 (24) c *** 

      

Species 
P (g m

-2
) 

Aerial tissues Sig. Root system Sig. Sig. 

I. pseudacorus  0.390±0.125 (23) b  0.070± 0.016 (12) c ns 

T. latifolia  0.572± 0.115 (14) b - - - 

P. australis  0.975± 0.210 (12) a - - - 

Carex spp.  0.111± 0.019 (24) c  0.290± 0.045 (24) a ** 

L. salicaria  0.016± 0.002 (24) c  0.180± 0.024(24) b *** 

*: significant at p<0.05, **: significant at p<0.01, ***: significant at p<0.001, ns: not significant. 

3. Ornamental species 

Biometrics and biomass production 

Significant differences (ANOVA, p<0.01) on all maximum biometric parameters at the end of 

the season were detected among the species due to their different morphology and adaptability 

to grow in hydroponic conditions (Figure 4). Regarding this, C. indica showed the 

significantly highest (ANOVA, p<0.01) shoot height without any significant difference if 

compared with those detected for P. cordata, T. dealbata and M. aquatica. On the contrary, C. 

palustris and J. effusus reached the significantly lowest (ANOVA, p<0.01) shoot heights. The 

shoot height of J. effusus was in line with average values of 43.4 cm and 48.7 cm reported by 

Lynch et al. (2015), cultivating the species in Beemat
®
 and BioHaven

®
 FTW plants, 

respectively while P. cordata shoot height was greater than that reported by Wang et al. 

(2015), treating urban wastewater, with an average value of 43 cm. Shoot height of A. 

calamus matched with value reported by Chang et al. (2010) (45.2 cm). 

P. cordata and J. effusus exhibited the significantly highest (ANOVA, p<0.01) root length 

whereas, A. calamus and O. javanica had the significantly lowest (ANOVA, p<0.01) ones. 

Lower root length than these were reported for J. effusus by Lynch et al. (2015), ranging from 

37.4 to 39.1 cm.  A. calamus root length was in line with values reported by Chang et al. 2010 

(15.4 cm) and Lai et al. (2011) (23.0 cm), whereas C. indica and O. javanica root length 
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values were respectively 3.4 and 1.7 times those reported by Lai et al. (2011) in a pilot-scale 

plant.  

For the majority of species, shoot height was positively correlated with root length during the 

entire monitoring period (Table 11), suggesting a simultaneous elongation of all plant organs. 

Only S. erectum and O. javanica did not show any significant correlation between the 

considered parameters. In addition, the relation existing between the two parameters followed 

a species- specific trend during the first part of the vegetative season (sprouting), with a 

positive linear regression for C. indica, P. cordata and T. dealbata and an insignificant 

relation for the other species. In the next phase, from the beginning of shoot elongation to the 

bloom, all studied species similarly behaved, increasing the shoot height and the root 

expansion in the water column. For the majority of the species, it was not possible to find a 

significant regression between shoot height and root length at the harvesting time. In fact, 

during this phonologic phase (June-August), plant root systems continued their expansion 

through the water column, whereas shoot height remained almost constant since the maximum 

values were reached at the end of June corresponding with bloom. 

 

Figure 4. Maximum biometric parameters (shoot height and root length) (average 

value±standard error) for the ornamental species. Different letters between the species indicate 

significant differences according to one-way ANOVA test at p<0.05. 
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Table 11. Linear regression between root length (dependent variable, y) and shoot height 

(independent variable, x) for the different phonologic phases of ornamental species vegetative 

cycle. 

Species 

Sprouting 

(February 3
rd

-March 

16
th

 ) 

Shoot elongation 

(March 24
th

-May 27
th

) 

Harvesting 

(June 3
rd

-July 22
th

) 
Entire cycle 

Equation Sig. Equation R Equation R Equation R 

I. 

laevigata 

y=8.986+0.203x 

R=+0.37 
* 

y=14.407+0.254x 

R=+0.13 

**

* 

y=108.64-0.697x 

R=-0.13 
ns 

y=12.774+0.590x 

R=+0.71 
*** 

C. indica 

 

y=5.424+0.665x 

R=+0.71 

*** 

 

y=27.356+0.171 

R=+0.35 

* 

 

y=22.985+0.118x 

R=+0.55 

ns 

 

y=20.608+0.225x 

R=+0.53 

*** 

P. 

cordata 

y=15.460+0.511

x 

R=+0.51 

** 
y=22.248+0.398x 

R=+0.76 

**

* 

y=53.498+0.455x 

R=+0.13 
ns 

y=21.331+0.384x 

R=+0.83 
*** 

T. 

dealbata 

y=22.680+0.151

x 

R=+0.03 

ns 
y=22.876+0.247x 

R=+0.43 
** 

y=43.844-0.280x 

R=-0.11 
ns 

y=25.032+0.157x 

R=+0.492 
*** 

S. 

erectum 

y=23.935-

0.002x 

R=+0.71 

ns 
y=87.571-0.956x 

R=-0.66 
ns - - 

y=12.104+0.309x 

R=+0.27 
ns 

M. 

aquatica 

y=22.686-

0.052x 

R=+0.05 

ns 
y=30.034+0.147x 

R=+0.20 
* 

y=22.206+0.130x 

R=+0.14 
ns 

y=22.817+0.105x 

R=+0.21 
* 

J. 

effusus 

y=24.610+0.009

x 

R=+0.01 

ns 
y=12.151+0.700x 

R=+0.69 

**

* 

y=34.599+0.337x 

R=+0.19 
ns 

y=10.878+0.790x 

R=+0.80 
** 

C. 

palustris 
- - 

y=-0.9749+0.918x 

R=+0.48 

**

* 

y=21.937+0.215x 

R=+0.19 
ns 

y=0.608+0.662x 

R=+0.50 
*** 

O. 

javanica 
- - 

y=23.033-0.05x 

R=+0.07 
ns 

y=18.492-0.017x 

R=-0.070 
ns 

y=23.684-0.093x 

R=-0.238 
ns 

A. 

calamus 
- - 

y=-3.293+0.411x 

R=+0.36 
** 

y=5.049+0.276x 

R=+0.537 
*** 

y=4.751+0.269x 

R=+0.469 
*** 

*: significant at p<0.05, **: significant at p<0.01, ***: significant at p<0.001, ns: not significant 

Different root length/shoot height ratio values were found among the species (Figure 5). On the 

average of the vegetative cycle, T. dealbata, J. effusus and I. laevigata showed the highest 

values (1.23±0.11, 1.21±0.06, 1.19±0.09, respectively) whereas S. erectum, O. javanica and 

A. calamus exhibited the lowest ones (0.54±0.03, 0.56±0.01, 0.41±0.02, respectively). During 

the different phases of the vegetative season, C. indica, P. cordata, T. dealbata, M. aquatica 

and J. effusus progressively reduced the root length/shoot height ratio from the beginning of 

the growing season (sprouting) to the harvesting period. The behavior of all other species was 

different, since their root length/shoot height ratio values were maintained almost constant 

during the entire monitoring period. 
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Figure 5. Root/shoot ratio calculated on plants biometric parameters during the vegetative cycle 

(average value±standard error). 

Significantly different biomass production values were detected among the species, reflecting 

the same statistical trend already observed for shoot height, as testified by the strictly positive 

correlation existing between plant above-mat biomass production and shoot height (Figure 6). 

M. aquatica and C. indica showed significantly higher (ANOVA, p<0.001) above-mat dry 

biomass productions than those obtained for O. javanica, J. effusus and C. palustris, which 

did not show any significant difference among them (Figure 6). C. indica above-mat 

production obtained in this study was higher than that reported by Zhang et al. (2007) (0.5-1.0 

kg m
-2

) in a pilot scale vertical flow system fed with a simulated nutrient solution, whereas it 

was in line with results obtained by Zhang et al. (2008) with high N and P inputs (1682 g m
-2

). 

Higher above-mat biomass productions than the currents were obtained in a pilot FTW 

treating eutrophic wastewater (2.37-2.43 kg m
-2

), with an equal partitioning between stems 

and leaves (Zhang et al., 2016). 

T. dealbata and P. cordata biomass productions were in discordance with the results found in 

scientific literature, since productions of 1989.0 g plant
-1

 (T. dealbata) and 10.4-71.8 g plant
-1

 

(P. cordata) were reported by Ge et al. (2016), Wang et al. (2014b) and Winston et al. (2013), 

respectively. In the present study, J. effusus above-mat production was lower than those 

harvested by Borin and Salvato (2012) in mesocosm gravel tanks (3210.0 and 5271.0 g m
-2

) 

and by Winston et al. (2013) in FTW (66.2-106.3 g plant
-1

) whereas it was higher  than   those  
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Figure 6. Linear regression analysis between shoot height and above-mat biomass production for 

the ornamental species (left). Above-mat biomass production for the ornamental species 

(average value±standard error) (right). Different letters between the species indicate 

significant differences according to one-way ANOVA test, p<0.05. 

obtained in hydroponic culture of stromwater run-off (on average 142.9-188.4 g m
-2

) (Lynch et 

al., 2015) and DLF (median value 172.0 g m
-2

) (Pavan et al., 2015). 

S. erectum and A. calamus maximum shoot heights and root lengths were measured in the late 

spring (June), whereas their biomass production was not harvested since they did not survive 

until the harvesting phase (July). The negative adaptability of S. erectum contrasted with 

expectation, where Ennabili et al. (1998) assessed a good growth of the species (1293 g m
-2

 

and 718 g m
-2

 of above- and below-ground biomass, respectively) in sandy-clay soil typical of 

coastal wetlands.  

N concentration and uptake 

Despite similar above-mat nitrogen concentrations percentage between the species (Figure 7), 

significant differences (ANOVA, p<0.01) on their above-mat nitrogen uptakes were detected, 

mainly depending on above-mat biomass production (Zhu et al., 2011). The N concentration 

percentage values observed in this study were lower than those determined in similar 

experimental conditions for C. indica (1.65-2.75%) (Zhang et al., 2016) but were in line with 

that of J. effusus (0.83%) (Lynch et al., 2015)    

M. aquatica, and C. indica showed significantly higher (ANOVA, p<0.01) above-mat nitrogen 

uptakes than those of all the other species, which did not show significant differences (Figure 

7). The nitrogen concentrations of the studied species were in line with the values reported for 

four macrophytes installed in a FTW involved in storm-water run-off treatment (Tanner and 

Headley, 2011). Double N concentrations than the currents were reported for C. indica and P.  
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Figure 7. Nitrogen concentration in above-mat dry biomass of ornamental species (average 

value±standard error) (left). Above-mat nitrogen standing stock for the ornamental species 

(average value±standard error) (right). Different letters between the species indicate 

significant differences according to one-way ANOVA test at p<0.05. 

cordata in a floating island for eutrophic water treatment (Zhao et al., 2012a). C. indica above-

mat N uptake was in line with results reported for C. flaccida (16.1 g N m
-2

) by White and 

Cousins (2013). Despite White and Cousins (2013) reported good N uptake for J. effusus 

(28.5 g m
-2

), a contrasting behavior was observed in this study since the average N uptake was 

almost 1 g m
-2

.    

4. Survival rate 

All selected species exhibited different survival rates over the growing season (April-November), 

and winter (November-March), probably due to their different adaptabilities to hydroponic 

conditions. In this scope, the selection of native species and plants well-adapted to live under 

local climatic conditions have to be privileged (Tanner, 1996) with respect to alien species. 

Carex spp., T. latifolia and L. salicaria, among the most frequently used species, exhibited the 

greatest adaption to FTWs as shown by the high survival rates over the growing seasons as 

well as during winter, even at un-favorable growth conditions (e.g. low nutrient availability) 

(Figures 8). The well-adaption of L. salicaria was also confirmed by Wu et al. (2011) and by 

Ge et al. (2016) with a survivability of more than 80% and 91.6% of the initial plant 

investment, respectively. Although P. australis and I. pseudacorus represent the most adapted 

macrophytes species employed in CWs (Vymazal, 2011b, 2013), unexpectedly, their 

performances in FTWs were often contrasting between the different trials. Both species 

showed good average survival rate during the growing season (72.3% and 53.0%, 

respectively) and winter (72.2% and 27.5%, respectively), matching the results reported by  
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Figure 8. Plants survival rate (%) during the growing season (upper) and during winter (lower). 

Wu et al. (2011) for I. pseudacorus (survival rate of 83.3%). However, in some experiments 

plants, completely died before the end of summer or did not re-grow after the winter (Figure 

8). The low survival rate of both species during the growing season was mainly related to: i) 

alien animal species, particularly Myocastor coypus (commonly called nutria or river rat), 

living nearby the FTWs and feeding on the aerial parts of plants; ii) extreme meteorological 

conditions (i.e. excessive rain and wind) which reversed the vegetated floating platforms, thus 

damaging the plants. The high mortality affecting I. pseudacorus during the winter was 

mainly due to the combined effects of both low temperature and ice formed in the upper part 
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of the FTWs section. In these conditions, plants perennial organs (rhizomes or solons) did not 

receive a sufficient protection against ice and cold temperatures, hence collapsing. 

Among the ornamental species, excellent survivability values were obtained for C. indica, I. 

laevigata, O. javanica, P. cordata and T. dealbata, with all plants surviving both winter and 

growing season as the experiment was set up in a greenhouse, however, the results need to be 

confirmed as it was a one season study (Figures 8). However, these results can be justified 

since Wu et al. (2011), Zhu et al. (2011) and Ge et al. (2016) have observed high survival 

rates   for  T. dealbata,  O. javanica   and  C. indica   respectively. Similarly,   M. aquatica, C. 

palustris, J. effusus, Schoenoplectus lacustris and P. arundinacea exhibited great survival rate 

during the growing season (average values of 86.5-100%), but they did not overpass the 

winter except for J. effusus which did not completely survive anyway.  

S. erectum and S. lacustris exhibited the least adaptability in hydroponic conditions; their 

survival rates reached 1.5 and 8% at the end of the growing season, where clear signs of 

wilting were observed just at the beginning of the summer (June and July). These species did 

not survive during the winter, therefore remaining completely senescent at the next vegetative 

regrowth. Negative performance was similarly detected for Z. aethiopica and V. zizanoides; 

although repetitively transplanted over the growing season, the young plants rapidly wilted 

and died.     

Promising results were obtained for D. glomerata, which showed a complete colonization and 

coverage of floating mats all over the year without showing any signs of senescence during 

the winter. This favorable adaptability, even during the winter, was probably due to the 

excellent experimental conditions in which the species was installed. At this purpose, the 

transplant of D. glomerata occurred in a resurgence river, characterized by a relatively calm 

water, with an almost constant water temperature all over the year (average 10-14°C) (De 

Stefani et al., 2011). The correct selection and installation of vegetation in FTWs represent a 

key factor for better plant establishment (De Stefani et al., 2011) and water treatment 

performances. 
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Conclusion 

This review study provided an analysis of the growth performances (biometric characteristics 

and biomass production) and nutrient uptake of 20 different plant species installed in the 

Tech-IA
®
 floating system over 10 years to treat different types of wastewaters. In addition, it 

established possible inter-correlations between different plant growth parameters, and 

correlations between plant growth parameters and other factors affecting them (plant age and 

physic-chemical parameters of wastewater). The results clearly indicated that I. pseudacorus, 

P. australis and T. latifolia showed the best growth performances when installed in municipal 

wastewater. The growth of P. australis and T. latifolia was significantly reduced with the 

increasing of nutrient and organic matter concentration, with the worst performances at the 

extreme conditions of DLF. An opposite behavior was recorded for I. pseudacorus which 

increased above-mat biomass production as well as shoot height with the enhancement of 

nutrients concentration in wastewater. All these species were characterized by relatively high 

average survival rate, although extreme meteorological events and the presence of nutria 

population drastically reduced their survivability, especially for I. pseudacorus and P. 

australis. L. salicaria and Carex spp. showed a discrete growth under agricultural run-off 

wastewater, even though their growth performances were hardly penalized if compared with 

those reported in scientific literature, probably due to the low availability of nutrient measured 

in wastewater. For these species, N percentage concentration in both above-mat and below-

mat biomass was higher than P one, with greater accumulation in roots than shoots. Most 

species except for I. pseudacorus and L. salicaria exhibited an increase in biometrics in the 

second season. In addition, all species showed an increase in above- and below- biomass 

production. All species except Carex spp. and L. salicaria were correlated with the physico-

chemical parameters of treated wastewater. 

M. aquatica, C. indica and P. cordata seemed to be the most promising species among the 

ornamental species to improve the aesthetic-ornamental value of urban water bodies with 

wastewater treatment simultaneously. On the other side, the use of S. erectum, Z. aetiophica 

and V. zizanoides is not recommended since these species exhibited the lowest survival rate 

during the growing season. 
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Chapter V 

General conclusions 
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General conclusions 

Monitoring a full scale integrated surface flow constructed wetland (FWS CW and FTW) for 3 

consecutive years (Chapter II), the following could be concluded: 

1. Among selected physico-chemical parameters for evaluating the performance of the integrated 

system, electric conductivity (EC) and turbidity were the most indicative parameters on the 

activity and changes within the system. 

2. Notable changes could be observed in concentrations of TN and N-NO3
-
 between 2014 and 

2016, which were mostly dependent on fertilization of croplands and excessive rainfall events 

leading to surface runoff. 

3. Removal efficiency could be enhanced with increased establishment and maturity of wetland 

system; basically vegetation, as noticed by the increased mass removal in 2016. 

4. Assessing the plant growth performance in FTW, a part of the integrated system, Carex spp. 

showed the best performance in terms of survivability, biometrics, biomass production and 

nutrient uptake while I. pseudaocorus lagged behind in all the aforementioned parameters for 

3 consecutive years. 

5. L. salicaria is a good potential for water treatment in FTW with high survivability over 

seasons, average biomass production and nutrient uptake. 

Simulating N-NO3
-
 load from agricultural runoff in event-driven pilot experiment (Chapter III), 

the following conclusions could be drawn: 

1.  The depurative efficiency of a single sub-basin within the aforementioned FWS CW (Chapter 

II) reached 8.4% in 12 hours following the detention time representing a mass removal of 0.82 

kg (1 g m
-2

 d
-1

). 

2.  The previous sub-basin represents only 10% of the total area of the FWS CW, so the 

depurative effect of the sum of all basins is expected to be much higher and contribute more in 

the reduction of excessive nutrient load. 

3.  Despite some preferential flows, mainly driven by vegetative obstructions, the input loads 

were eventually distributed fully across the sub-basin by normal gravitational forces. 

4.  The performance of wetlands treating agricultural runoff (NPS pollution) is mainly episodic 

and event driven. 
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5.  Understanding water dynamics and internal processes can help in designing efficient wetland 

systems. 

Evaluating the performance of plant species used for the treatment of different types of 

wastewaters in FTWs could draw to light some useful assumptions: 

1. FTWs in general represent   efficient and cost effective solutions for the treatment of several 

types of wastewaters in natural and artificial water bodies. 

2. Carex spp., I. pseudacorus, P. australis and T. latifolia are widely used for the treatment of 

different types of wastewater with notable performance in the treatment of municipal 

wastewater. 

3. Some ornamental species such as Canna indica, Mentha aquatica, and Pontederia cordata 

proved to be good dual purpose potentials in FTWs. 

4. Factors like plant age and physico-chemical parameters of wastewaters are important 

determinants of the performance of different plant species in FTWs. 

5. Survival rate of plant species, especially over winter, is considered a crucial index of their 

adaptability and performance in FTWs. 

In general, this study fulfilled its aim regarding the evaluation of performance of surface flow 

wetlands in the treatment of wastewaters, specifically agricultural runoff. In addition, it could 

give adequate insight to the performance of plant species in an innovative type of surface flow 

wetlands, the FTWs. 
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