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Abstract

This thesis investigates the structural properties of graph models of wireless

networks, where autonomous agents communicate using radios in order

to accomplish a predefined task. Ad hoc, sensor, and vehicle networks

are perhaps the most familiar examples. The goal of this thesis is the

analytical characterization of information spreading in graph models of

wireless networks, since this fundamental process is a primitive needed to

accomplish more complex tasks.

The well-established graph-based approaches adopted when analyzing

the behavior of “classical” distributed systems (e.g., P2P networks, com-

puting clusters, etc.) fail to generalize to wireless networks, due to several

causes, including the stricter physical constraints governing the operation

of these systems (e.g., interference on the physical channel or scarce en-

ergy/computational resources) and the fact that the topology of the network

might be unknown at design time or it might evolve over time.

This thesis shows how to tackle these problems by suitably defining

and rigorously analyzing graph models and graph processes capturing

the structure, evolution and operation of these networks. We present two

reference scenarios.

In the first one we study a family of random graphs known as Blue-

tooth Topology, which closely model the connectivity of a network built by

the device discovery phase of Bluetooth-like protocols, largely employed

in wireless networks. Formally, the Bluetooth Topology generalizes the

well-known Random Geometric Graph model, introducing a distributed

pruning of the edge set. We investigate the expansion and the diameter of
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these graphs, as they quantify the bandwidth and the latency of a wireless

network. We give tight bounds on the expansion and, leveraging on these,

we prove nearly-tight bounds on the diameter. Our results show that the

Bluetooth Topology features the same global level of connectivity of the Ran-

dom Geometric Graph but requires maintaining much fewer communication

links.

Motivated by the recent and rapidly growing interest in mobile systems,

in the second part of the thesis we turn our attention to the dynamics of

information dissemination between agents performing random walks on

a planar grid and communicating over short distances. This setting can

also be employed to study phenomena like the spreading of a disease,

where infections are the result of local interactions between agents. We

prove that, for a sufficiently sparse system, the broadcast time of a message

is independent from the transmission radius; indeed, we show that the

broadcast time is dominated by the time needed for many agents to meet.

Our findings nicely complements previous results that dealt with dense

systems, where there is dependency from the transmission radius. Moreover,

our analysis techniques extend to similar mobility-communication models,

suggesting some interesting further research directions.



Sommario

Questa tesi studia le proprietà strutturali di alcuni modelli a grafo di reti

di agenti autonomi che comunicano via radio per completare un prefissa-

to compito. Reti ad hoc, di sensori e veicolari sono forse gli esempi più

immediati. Lo scopo di questa tesi è caratterizzare la diffusione dell’infor-

mazione in questi modelli a grafo di reti wireless, considerata l’importanza

di questo processo come primitiva fondamentale per realizzare protocolli

più complessi.

Gli approcci basati su tecniche combinatorie adottati per l’analisi di

sistemi distribuiti “classici”, come le reti P2P o i cluster di calcolo, non

possono essere estesi alle reti wireless, per varie ragioni: ad esempio a

causa dei vincoli fisici che governano il funzionamento di questi sistemi

(interferenza sul canale radio, scarse risorse energetiche/computazionali,

ecc.) e per il fatto che la topologia della rete può essere ignota in fase di

progettazione o può evolvere nel tempo.

Questa tesi suggerisce come sia possibile affrontare tali problemi tramite

l’opportuna definizione e l’analisi rigorosa di modelli a grafo (o processi

su grafi) che catturino l’evoluzione e il funzionamento delle reti wireless.

Mostriamo come sia possibile applicare quest’approccio a due scenari di

riferimento.

Innanzitutto studiamo una famiglia di grafi random nota come Bluetooth

Topology, che ben rappresenta la connettività della rete creata dalla fase di

device discovery in protocolli simili al Bluetooth, largamente utilizzati nelle

reti wireless. Dal punto di vista formale, la Bluetooth Topology generalizza il

ben noto modello Random Geometric Graph, introducendovi una selezione
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distribuita degli archi. Studiamo l’espansione e il diametro di questi grafi,

poiché quantificano la banda e la latenza della rete. Dimostriamo limiti

stretti all’espansione e, sfruttando questa caratterizzazione, diamo dei limiti

quasi stretti al diametro. I nostri risultati provano che la Bluetooth Topology

presenta lo stesso livello globale di connettività del Random Geometric

Graph, pur richiedendo molti meno link di comunicazione.

Motivati dal recente crescente interesse verso i sistemi mobili, nella

seconda parte della tesi concentriamo la nostra attenzione sulle dinamiche

di disseminazione dell’informazione tra agenti che effettuano random walk

su una griglia planare e che comunicano su brevi distanze. Questo scenario

può essere utilizzato per studiare fenomeni come la diffusione di malattie,

dove le infezioni sono il risultato di interazioni locali tra gli agenti. Proviamo

che, per un sistema sufficientemente sparso, il tempo di broadcast di un

messaggio è indipendente dal raggio di trasmissione, dimostrando che

esso è dominato dal tempo necessario affinché molti agenti si incontrino. I

nostri risultati completano l’analisi, apparsa in lavori precedenti, di sistemi

densi, dove viceversa vi è dipendenza del tempo di broadcast dal raggio

di trasmissione. Inoltre le nostre tecniche di analisi possono essere estese a

modelli di mobilità-comunicazione simili, suggerendo alcune interessanti

linee di ulteriore ricerca.
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Chapter 1

Introduction

Recent years witnessed an extraordinary evolution of technology, leading

to the development of incredibly small electronic devices that have become

familiar to everybody: laptops, portable music players, PDAs and smart-

phones, just to name a few. All these devices had a great impact on our

lives, and we tend to consider them as “extensions” of our body and our

cognitive functionality. Hence it is not surprising that a growing number

of these devices have been equipped with radio technologies in order to

let them have the capability of communicating with external services (e.g.,

mobile phones and WiFi-enabled laptops) or with other devices (e.g., a

Bluetooth-enabled headset “connected” to a gaming console).

These aforementioned applications are just the tip of an iceberg: not-

so-distant scenarios feature smart electronic appliances coordinating them-

selves to take care of our houses, intelligent cars that can predict and avoid

safety hazards or traffic jams without relying on a fixed infrastructure, net-

works of sensors able to monitor sensitive areas or buildings, tracking of

goods or raw materials in a manufacturing facility, and so on.

Many such applications heavily rely on the exchange of information

among the nodes, which usually are small devices equipped with a cheap

processor, few sensing probes, a radio antenna and a battery. A key charac-

teristic of these networks is that their operation is decentralized and there is

no single node coordinating the communication and hence managing the

11



12 Chapter 1. Introduction

information flow inside the system. This approach offers several advantages,

among the others, better fault tolerance, scalability, and deployability in a

short time span.

Although many such systems have been deployed in the last few years,

their development process has almost always been guided by an experi-

mental and/or simulation approach. However, this approach is very time-

and resource-consuming, and it is not very robust to changes in either the

technology or the system specifications. Not surprisingly, many scientists

have recently proposed abstract models for these networks, with the goal

of establishing fundamental relationships between the model parameters

and the resulting behavior of the system, independently from the particular

technology adopted to build them.

The aim of this thesis is to investigate the structural properties of graph

models of wireless networks at a foundational level. Specifically, the goal

of this thesis is the analytical characterization of information spreading

in wireless networks, since this basic process is a fundamental primitive

needed to accomplish more complex tasks, like electing a leader, reaching

consensus and computing a generic function of the nodes’ internal states.

Unfortunately, the well-established graph-based approaches used to an-

alyze the behavior of “classical” distributed systems (e.g., P2P networks,

computing clusters, etc.) fail to generalize to wireless networks. This failure

has several causes. From the operational point of view, these networks

present stricter physical constraints than those encountered in wired net-

works, ranging from the interference originated by simultaneous accesses

to the radio channel to the scarcity of energy resources. Hence, the need

arises for interference- and energy-aware protocols, and more sophisticated

techniques for their analysis. On a second level, the nodes in a wireless

network are not usually endowed with large computing resources, and

therefore the protocols they are supposed to run must be extremely simple

and efficient. Finally, from a logical point of view, the topology of the

network can be unknown at design time (e.g., sensor networks deployed by
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scattering its nodes in the environment) or it can even change over time (e.g.,

in mobile networks), and hence the precise pattern of interactions between

nodes might be extremely hard to predict and exploit.

This thesis shows how to tackle these problems by suitably defining

and rigorously analyzing graph models capturing the structure, evolution

and operation of these networks. We present two reference scenarios. The

first considers a family of random graphs representing the connectivity

between devices which adopt a Bluetooth-like discovery protocol. The

second scenario shows how messages spread in a system of mobile agents,

under the constraint of short-range communications.

In the first part of the thesis, we study expansion and diameter of a family

of subgraphs of the random geometric graph, known as Bluetooth Topology,

which closely model the network built by the device discovery phase of

Bluetooth-like protocols. By giving a characterization of the graph-theoretic

concepts of expansion and diameter, we in fact quantify the bandwidth

and latency characteristics of such networks. The main feature modeled

by the Bluetooth Topology, denoted as BT (r(n), c(n)), is the small number

c(n) of links that each of the n devices (vertices) establishes with those

located within its communication range r(n). First, tight bounds are proved

on the expansion of BT (r(n), c(n)) for the whole set of functions r(n)

and c(n) for which connectivity has been established in previous works.

Then, by leveraging on the expansion result, nearly-tight upper and lower

bounds on the diameter of BT (r(n), c(n)) are derived. In particular, we

show asymptotically tight bounds on the diameter when the communication

range is near the minimum needed for connectivity, the typical scenario

considered in practical applications.

Motivated by the recent and rapidly growing interest in mobile systems,

in the second part of the thesis we turn our attention to the dynamics

of information dissemination between agents moving independently on a

planar domain. We formally model the problem by considering k mobile

agents performing independent random walks on an n-node grid, which
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represents a discretization of the plane. At time 0, each agent is located

at a random node of the grid and one agent has a rumor. The spread

of the rumor is governed by a dynamic communication graph process

{Gt(r) | t ≥ 0 }, where two agents are connected by an edge in Gt(r) if

and only if their distance at time t is within their transmission radius r.

We study the broadcast time TB of the system, which is the time it takes

for all agents to know the rumor. We focus on the sparse case (below the

percolation point rc ≈
√

n/k) where, with high probability, no connected

component in Gt has more than a logarithmic number of agents and the

broadcast time is dominated by the time it takes for many independent

random walks to meet one other. For a system below the percolation point,

we give a tight characterization (up to logarithmic factors) of the broadcast

time which quite surprisingly does not depend on the transmission radius,

even when the latter is significantly larger than the mobility range in one

step.

It is worth pointing out that our analysis techniques can also be applied

to some related scenarios. For example, we can study the spreading of

multiple messages or different interaction rules between agents, yielding to

predator-prey models. Moreover, we can think of including communication

barriers and mobility obstacles, further constraining the dynamics of the

system to resemble an urban setting.

1.1 Thesis Overview

The remainder of this thesis is organized as follows.

Chapter 2 summarizes the peculiar characteristics of wireless networks

and the challenges that they pose to the modeling and rigorous analysis of

their behavior.

In Chapter 3 we consider the family of random graphs known as Blue-

tooth Topology. After illustrating the model definition and the results

previously appeared in the literature, we proceed in characterizing its ex-
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pansion and diameter, for those parameter ranges for which the graph is

known to be connected. As a by-product of our analytic techniques, we

derive a similar characterization of the properties of the Random Geometric

Graph model, that is much simpler than the previous results. We also

consider a dynamic version of the Bluetooth Topology, where the nodes can

move over time but still rely on the neighbor selection protocol to establish

communication links with other nodes.

Chapter 4 presents a model for mobile wireless networks, where moving

agents perform random walks in the plane. We study the broadcast time of

a message, that is, the time it takes for a rumor, originating at an agent in

the system, to spread through the network. We give nearly-tight bounds

(up to polylogarithmic factors) to the broadcast time in a sparse system,

where the system density is below the percolation threshold. Unlike the

previous results dealing with the dense case, we show that the broadcast

time is asymptotically independent from the transmission radius. This result

generalizes to multiple messages and to some other types of interaction

between agents.

Finally, Chapter 5 contains some concluding observations and a summary

of the contributions of this thesis, and it discusses some possible future

research directions.

The main results of this thesis appeared in the open literature in [PPP09,

PPP10, PPPU10, PPPU11]. Portion of this thesis is based on joint work with

Andrea Pietracaprina, Geppino Pucci, and Eli Upfal.
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Chapter 2

Wireless Networks

In this chapter we briefly survey the main characteristics, application fields

and design challenges of wireless networks.

2.1 Historical Development

The first military projects about wireless networking date back to the 1970s

and 1980s. The original intent was dealing with the lack of communication

infrastructures on battlefields [LNT87, XHW03].

However, it was just since late 1990s that wireless (ad hoc) networks be-

came a very active field of research. In fact, many circumstances contributed

to the flourishing of new paradigms, models, protocols and eventually

commercial products.

We can identify three main causes. At first, VLSI production processes

favored the introduction of low-cost, portable devices capable of generating

and processing data, such as laptops, PDAs, mobile phones, etc. Then,

new emerging wireless technologies, such as Bluetooth, IEEE 802.11 and

HyperLAN 2 allowed the interconnection of such different units to exchange

data and fostered the research in ultra-low power communications. Finally,

MEMS-based devices and more efficient and manageable energy supplies

made possible to develop more durable systems, with months or even years

of operating autonomy.
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18 Chapter 2. Wireless Networks

2.2 Main Features

In this thesis we consider graph models for information spreading in wire-

less networks, defined as those distributed systems wherein autonomous

devices can communicate via radio equipment [Per01].

The most evident property of these networks (sometimes also referred to

as Ad Hoc Networks) consists in their ability to cope with the lack of regular,

known infrastructures. For example, during rescue or emergency operations

in a devastated area, nodes cannot be placed according to a scheme known

a priori, since the orography of the area or the presence of obstacles might

not permit it. In other contexts random placement occurs, for example in a

smart dust, in intelligent fabrics or when sensor are literally thrown onto a

geographic area. Additionally, the topology of the network can even vary

during time, for example when devices are mobile (in this case, we speak

about Mobile Ad Hoc Networks or MANETs).

These two features — unpredictable placements of nodes and vary-

ing topology — force algorithms and management policies to be “self-

organizing”, i.e. they should be able to modify duty-cycles, data routes, and

energy management without a centralized supervisor. Hence, it is highly

desirable that such a network could function even without possessing any

information about the network topology and, more generally, absolute de-

vice location. In fact, especially in ad hoc and sensor networks, putting a

GPS receiver or other localization units on a device could be neither practical

nor affordable.

Each element of the network is supposed to operate autonomously, i.e. it

performs its tasks quite “independently” from the presence of other devices

in his neighborhood. Devices are usually equipped with some on-board

processor that can perform local computation on the raw data, thus reducing

the amount of network traffic by transmitting partially processed informa-

tion. The latter is a crucial ability since, with state-of-the-art integrated

circuits and over the entire system life, the energy required to receive and
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transmit data can be three or four orders of magnitude higher than the

energy spent to perform local computation [PK00].

Sometimes data created at each network node has to be transmitted to

gathering points, usually one or more base stations (also called data sinks)

where it will be further processed or used. These endpoints can be inside

the area where nodes are placed or in proximity of its borders and usually

are directly connected to a wired backbone. This is the typical scenario

for a sensor network that surveillance a certain environment, building or

scientific experiment. Inter-node communication is performed through

wireless links, but wired shortcuts can be issued to increase the overall

system performances, giving birth to a Hybrid Sensor Network (see [SM05]).

More often, though, a wireless network is completely autonomous: data

generated inside the network is used to coordinate the operation of the

nodes of the network, in order to accomplish the task for which the system

was designed. Such systems include vehicle or mobile ad hoc networks,

where a device is attached to each vehicle and can communicate with

other devices without relying upon a fixed infrastructure. The messages

exchanged usually contain data about the vehicle (speed, distance covered

since previous communication, etc.), and the environment (lighting condi-

tions, presence of fog banks, etc.). These pieces of information can then be

used to alert the driver about possible traffic jams or hazards on the route.

In a not-so-distant future, we can imagine smart vehicles able to “drive

themselves” by sensing the street conditions with cameras and low-range

scanners for local decisions (e.g., avoiding a crossing pedestrian, maintain-

ing the safety distance, etc.) and gathering traffic data from other vehicles

for global decisions, like choosing the least crowded lane on a large avenue,

taking into account temporary detours, or selecting the shortest route to

reach the intended destination.

Radio technologies adopted in wireless networks include low-energy

protocols such as Bluetooth, IEEE 802.11, HyperLAN 2, and more re-

cently IEEE 802.15 (including UWB and ZigBee) and IEEE 802.16 (WiMax)
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protocols1.

Typically, communication takes place with broadcast algorithms, such

as flooding or gossiping, rather than adopting address-based routing poli-

cies [Per01, ASSC02].

Additionally, multi-hop strategies are preferred upon classical single-hop

communication since they are expected to reduce the interference among

nodes and with the environment (which is desirable in covert scenarios)

and to consume less power. In fact, the transmitting power required by

state-of-the-art antennas is proportional to the covered distance elevated

to an exponent between two and four, depending on the directionality of

the antenna, reflectivity of the terrain and the fading model for carrying

medium [BC05].

Keeping the amount of network traffic low and adopting multi-hop

transmission are not always sufficient to preserve battery life. Moreover,

especially in ad hoc and sensor networks, the power source is irreplaceable

and, once it becomes depleted, the single device becomes permanently

unavailable. In order to prolong system life, management policies are power-

aware and it is not uncommon that, unlike classical networks, Quality of

Service (QoS) policies are not issued for the sake of energy efficiency.

Power consumption issues are not the unique concern in designing

such systems. A careful identification of the task to be performed, usually

the same for all the components, has to be pursued to produce a tailor-

made project of final devices. Many constraints have to be satisfied, just

to cite a few: minimize the form factor, reduce the manufacturing budget,

reduce environmental interferences, enforce system robustness or security,

guarantee the reconfigurability of the system.

Typical applications include:

• Home/Business: home automation, smart control of rooms and build-

1Specifications are available at: http://www.bluetooth.com/Bluetooth/Technology/

Building/Specifications/Default.htm, http://standards.ieee.org/getieee802/,

and http://pda.etsi.org/.

http://www.bluetooth.com/Bluetooth/Technology/Building/Specifications/Default.htm
http://www.bluetooth.com/Bluetooth/Technology/Building/Specifications/Default.htm
http://standards.ieee.org/getieee802/
http://pda.etsi.org/
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ings, industrial production processes [Int07], object/vehicle track-

ing [OS05];

• Environmental: fire, flood, and pollution detection [SM08], environ-

mental protection [CAW06, APM07], precision agriculture [SCV+06];

• Health: telemonitoring, patients and personnel tracking inside a hospi-

tal [PLC05], drug administration;

• Entertainment: governance of visitors in a site [KW08], interactive

museums, 3D reconstruction [WAK08];

• Engineering: infrastructure health monitoring [MZ04], pipe inspec-

tion [SNMT07], plant safety control;

• Military: accounting equipment and ammunition, battlefield surveil-

lance, NBC attacks detection, damage assessment, intelligent clothing;

• Surveillance and Control: continuous sensing, event detection or identi-

fication and local control of actuators [ASSC02, CES04].

2.3 Analytic Models of Wireless Networks

Although many wireless networks have been deployed in the last few years,

their development process has almost always been led by an experimental

and/or simulation approach. In fact, nowadays, once the high-level func-

tionalities of the system have been decided, network designers either build

a small-scale prototype of the final system and test it or they build computer

simulations with ad hoc tools and check that the behavior of the simulated

system is aligned with the required one.

Unfortunately, both approaches are very time- and resource-consuming,

and they also suffer from the serious drawback of being tightly coupled

with the actual parameters of the technology adopted for the devices and

radio protocols. Indeed, if the system specification is changed or updated,
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thus requiring re-engineering the network nodes and operation protocols,

all the previous simulations and tests must be performed again. Clearly, this

development cycle is not scalable in the long run. Moreover, little insight on

the dynamics governing wireless networks is gained in this type of process.

Not surprisingly, several computer scientists have recently proposed

mathematical models for wireless networks, with the goal of establishing

fundamental relationships between the model parameters and the result-

ing behavior of the system, independently from the particular technology

adopted to build them. The underlying assumption is that, despite the

different technical details characterizing different electronic and radio tech-

nologies, some (relatively easily) recognizable interaction patterns dominate

the behavior of such networks.

These efforts usually adopt a common approach. After recognizing

these “abstract” interaction patterns, one usually want to define a suitable

mathematical model capturing them, and then study its structure and

behavior in order to understand the dynamics of the real-world system of

interest.

Our thesis exploits this analytic approach to investigate the structural

properties of graph models of wireless networks at a foundational level.

Specifically, the goal of this thesis is the analytical characterization of in-

formation spreading in wireless networks. We chose to study information

spreading processes because they are fundamental primitives needed to

accomplish more complex tasks, like electing a leader, reaching consensus

and computing a generic function of the nodes’ internal states.

Unfortunately, modeling wireless networks is significantly harder than

studying ‘classical” distributed systems like P2P networks, computing clus-

ters, desktop grids, etc. In fact, the well-established graph-based approaches

used to analyze the behavior of these “classical” systems fail to generalize

to wireless networks for several reasons.

From the operational point of view, wireless networks present stricter

physical constraints than those encountered in wired networks, ranging from
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the interference originated by simultaneous accesses to the radio channel to

the scarcity of energy resources. Hence, the need of interference- and energy-

aware models and protocols, requiring more sophisticated techniques for

their analysis.

On a second level, the nodes in a wireless network are not usually

endowed with large computing resources, and therefore the protocols they

are supposed to run must be extremely simple and efficient. Finally, from a

logical point of view, the topology of the network can be unknown at design

time: a typical example is a sensor network where nodes are deployed by

scattering them in the environment. Moreover, the network topology can

even change over time, as is the case for mobile networks, and hence the

precise pattern of interactions between nodes might be extremely hard to

predict and exploit.

This thesis shows how to tackle these problems by suitably defining and

rigorously analyzing graph models capturing the structure, evolution and

operation of wireless networks.

In the next chapters, we present two reference scenarios. The first one

considers a family of random graphs representing the connectivity between

devices adopting a Bluetooth-like discovery protocol, which is a common

choice for ad hoc and sensor networks. The second scenario studies a sparse

system of mobile agents that communicate over short distances; within this

setting, we study how fast messages spread in the system.
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Chapter 3

Bluetooth Topology

In this chapter we study the Bluetooth Topology, a family of graphs that

captures the structure of wireless networks based on Bluetooth-like proto-

cols. We present a characterization of its expansion and diameter for those

parameter values for which connectivity has been established in previous

works. The main technical results of this chapter show that the Bluetooth

Topology guarantees roughly the same global level of connectivity of the

Random Geometric Graph, despite being a possibly much sparser sub-graph

of the latter.

The results presented in this chapter appeared in the literature in [PPP09,

PPP10].

3.1 Introduction

Random graph models have been employed in the literature for the analyti-

cal characterization of topological properties of ad hoc wireless networks

governed by a variety of network-formation protocols. One such case

concerns networks based on the Bluetooth technology [WHC05, SZ06].

A Bluetooth network connects n devices, each endowed with a wireless

transmitter/receiver able to communicate within a certain visibility range.

The network is obtained by means of the following process: each device

attempts to discover other devices contained within its visibility range

25
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and to establish reliable communication channels with them, in order to

form a connected topology, called the Bluetooth Topology. Subsequently, a

hierarchical organization is superimposed on this initial topology; Figure 3.1

illustrates the process. Since requiring each device to discover all of its

neighbors is too time-consuming [BBMP04], the device discovery phase is

terminated by a suitable time-out, hence only a limited number of neighbors

are actually discovered.

The following random graph model for the Bluetooth Topology has been

proposed in [FMPP04] and subsequently generalized in [CNPP09]. The

devices are represented by n nodes, whose coordinates are randomly chosen

within the unit square [0, 1]2; each node selects c(n) neighbors among all

visible nodes, that is, among all nodes within the Euclidean distance r(n),

where r(n) models the visibility range, which is assumed to be the same

for all devices. The resulting graph, called BT (r(n), c(n)), is the one where

there is an undirected edge for each pair of neighbors. Note that such a

graph is a subgraph of the well-known Random Geometric Graph [Pen03]

in two dimensions. Experimental evidence shows that BT (r(n), c(n)) is a

good model for the Bluetooth Topology [FMPP04].

We remark that the BT (r(n), c(n)) graph may be employed as a model

for other real ad hoc network scenarios where nodes are constrained to

maintain a small number of simultaneous connections, because of limited

resources, both energetic and computational, or where establishing links to

every visible node is too costly either in time or energy.

3.2 Previous Work

The topological properties of BT (r(n), c(n)) have been investigated in a

number of recent works.

In [PR04] the authors show that for any fixed constant r > 0 there exists

a (large) constant c such that BT (r, c) is an expander with high probability.

In [DJH+05] it is proved that with high probability BT (r, c) is connected
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(a) A device, depicted as a square in the figure, attempts to discover its neighbors.

The device discovery timeout limits the discovery range (circle in red).

(b) The initiator (master node) establishes links with a subset of the discovered

neighbors (slave nodes), forming a so-called Piconet.

Figure 3.1: Scatternet formation in a Bluetooth network.
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(c) Slave nodes can belong to multiple Piconets.

(d) Slave nodes shared by multiple Piconets (green in the figure) behave like

gateways between Piconets, giving birth to the global Scatternet.

Figure 3.1: Scatternet formation in a Bluetooth network.
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for any fixed constant r > 0 and c ≥ 2 whenever n becomes sufficiently

large. Unfortunately, these results require a constant visibility range (where

the domain is normalized to be the unit square) and this fact implies that

every node can choose its neighbors among a constant fraction of all of the

nodes in the system. Such an assumption becomes rapidly unfeasible as the

number of devices grows large, and hence it might hinder the applicability

of the above results to real-world networks.

To overcome the latter problem, a more general setting has been an-

alyzed in [CNPP09], where it has been proved that BT (r(n), c(n)) stays

connected, with high probability, also for vanishing values of r(n) as n→ ∞,

as long as each node selects a suitable number of neighbors. Precisely, if

r(n) = Ω
(√

log n/n
)
, just allowing c(n) = O (log (1/r(n))) neighbor selec-

tions per node ensures the connectivity of the resulting graph with high

probability.

The above lower bound on r(n) cannot be asymptotically improved: in

fact, when r(n) ≤ δ
√

log n/n, for some constant 0 < δ < 1, the visibility

graph obtained connecting every node to all visible ones is disconnected

with high probability [EJY05]. The latter graph is precisely the Random

Geometric GraphRGG (r(n)) of [Pen03]. Since the edge-set of the Bluetooth

Topology is a subset of the edge-set of the Random Geometric Graph (being

the transmission radius the same for both models), r(n) ≥
√

log n/n is a

necessary condition for the connectivity of BT (r(n), c(n)) as well.

A different approach to approximate the device discovery phase of

Bluetooth networks has been proposed in [DHM+07] under the name Blue

Pleiades. This model is similar to the Bluetooth Topology, except for the

neighbor selection protocol. In the Blue Pleiades model, agents choose

to establish links with other devices in asynchronous rounds, where each

attempt might fail if the polled node has already reached the maximum

allowed degree c?. We note that also in this framework the transmission

radius is a constant 0 < r <
√

2, while the maximum degree of the agents

is c? = Θ (1/r).
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Very recently Broutin et al. [BDFL11] have studied the minimum number

of neighbor choices needed to achieve a connected Bluetooth Topology when

the transmission radius is r(n) = δ
√

log n/n, for some constant δ > 1, and

hence just a constant time greater than the minimum one needed to achieve

connectivity. They show that c(n) = Θ
(√

log n/ log log n
)

choices yields

a connected graph with high probability. Moreover, they prove that this

threshold is sharp, that is, for a constant ε ∈ (0, 2), the Bluetooth Topology

with c(n) =
√
(2 + ε) log n/ log log n is connected with high probability,

while for c(n) =
√
(2− ε) log n/ log log n the resulting graph is not con-

nected with high probability. We note that the authors of [BDFL11] do

not characterize the optimal trade-off between r(n) and c(n) for which

BT (r(n), c(n)) is connected with high probability besides for the extremal

case r(n) = Θ
(√

log n/n
)
. To the best of our knowledge, the latter problem

is still open, and the best known result for non-constant and non-minimum

transmission radii is the one by Crescenzi et al. [CNPP09]. Hence, we will

adopt their characterization of c(n) in function of r(n) in our analysis of the

expansion and diameter of the Bluetooth Topology.

3.3 Mathematical Model

In this section we formally define the Bluetooth Topology (see also Figure 3.2

for a pictorial description), illustrate the notation and recall some facts for

later use.

Definition 3.3.1 (Bluetooth Topology). Given a positive integer n, a real-valued

function r(n)→ (0,
√

2] and a positive integer function c(n), the Bluetooth Topol-

ogy, denoted by BT (r(n), c(n)), is the undirected random graph G = (Vn, En),

defined as follows.

• The node set Vn is a set of n points chosen uniformly and independently at

random in [0, 1]2.

• The edge set En is obtained through the following process: independently,
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each node selects a random subset of c(n) neighbors among all nodes within

distance r(n) (all of them, if they are less than c(n)). An edge {u, v} ∈ En

exists if and only if u has selected v, or vice versa.

We say that two nodes see each other if they are within distance r(n). In

the next sections, we assume the following setting. Consider the standard

tessellation of [0, 1]2 into k2 square cells of side 1/k where k =
⌈√

5/r(n)
⌉

.

Consequently, any two nodes residing in the same or in two adjacent cells

are at distance at most r(n), hence they see each other. When the context

is clear, with a slight abuse of notation, we identify a cell with the set of

nodes residing therein. Figure 3.3 shows a graphical representation of the

tessellation.

Recall that an event occurs with high probability if its probability is at

least 1− 1/ poly(n). Let m = n/k2 = Θ
(
nr2(n)

)
be the expected number

of nodes residing in a cell. The following proposition will be used several

times in the proofs of this chapter.

Proposition 3.3.2 ([CNPP09]). Let α = 9/10, β = 11/10. There exists a

constant γ1 > 0 such that for every r(n) ≥ γ1
√

log n/n the following two events

occur with high probability:

1. every cell contains at least αm and at most βm nodes;

2. every node has at least (α/4)πnr2(n) and at most βπnr2(n) nodes in its

visibility range.

Let G = (V, E) be an undirected, connected graph. Below, we define the

quantities at the core of our analysis.

Definition 3.3.3 (Neighborhood). Given a set of vertices X ⊆ V, its neighbor-

hood is the set Γ(X) = { u ∈ V(G) : ∃e = {u, v} ∈ E(G), v ∈ X }.

Definition 3.3.4 (Expansion). The expansion of G is a function λ(s), for 1 ≤
s ≤ |V| /2, such that

λ(s) = min
S⊆V : |S|=s

|Γ(S)− S|
|S| .
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(a) In the unit square n nodes are spread independently

and uniformly at random.

r(n)

(b) Each node has a transmission range r(n).

Figure 3.2: Bluetooth Topology model.
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(c) Among all the nodes lying inside the disk of

radius r(n). . .

c(n)

(d) . . . each node selects uniformly at random c(n)

neighbors, establishing links with them.

Figure 3.2: Bluetooth Topology model.
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1

(e) An instance of the Bluetooth Topology on n = 1500 nodes with transmission

range r(n) = 0.075 and c(n) = 5 neighbor choices.

Figure 3.2: Bluetooth Topology model.
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1
k

k cells

Figure 3.3: The tessellation of the unit square adopted in our analysis.

We remark that, in some works, the term “expansion” is used to refer to

a “global” property of the graph, that is, the minimum value of the function

λ(s) taken over all subset sizes 1 ≤ s ≤ |V| /2 (see [LR99]). In contrast, we

offer a finer characterization of the expansion properties of BT (r(n), c(n))

by proving explicit bounds on λ(s) for all values of s.

Definition 3.3.5 (Diameter). The diameter of a graph G = (V, E), denoted as

diam(G), is the maximum distance between any two nodes u, v ∈ V, where the

distance between two nodes is the number of edges of a shortest path connecting

them.

Observe that, under any reasonable cost model for communication, the

maximum latency to be expected of a point-to-point communication in a
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network is proportional to the diameter of its underlying topology.

In the next two sections we study the expansion and the diameter of

BT (r(n), c(n)) for those ranges of the parameters for which the connectivity

is guaranteed by the results of [CNPP09], that is, r(n) ≥ γ1
√

log n/n and

c(n) = γ2 log (1/r(n)) for two suitable positive real constants γ1 and γ2.

3.4 Expansion

This section is devoted to the characterization of the expansion properties

of BT (r(n), c(n)).

First, we establish a lower bound on the expansion of this family of

random graphs in Section 3.4.1. As an application of the latter result, in

Section 3.4.2 we prove an upper bound on the flooding time of a message

in a dynamic system closely related to the Bluetooth Topology. Then,

Section 3.4.3 provides an upper bound on the expansion of BT (r(n), c(n)),

matching the above lower bound. Finally, Section 3.4.4 applies the analysis

techniques developed for BT (r(n), c(n)) to RGG (r(n)), obtaining a finer

characterization of its expansion than the ones previously known in the

literature.

3.4.1 Lower Bound

The main result of this section is the following theorem.

Theorem 3.4.1. Consider an instance of BT (r(n), c(n)) with r(n) ≥
γ1
√

log n/n and c(n) = γ2 log (1/r(n)), for two suitable positive constants

γ1 and γ2. With high probability, for every integer s, 1 ≤ s ≤ n/2, we have

λ(s) =

Ω (min {c(n), m/s}) if s = O (m) ;

Ω
(√

m/s
)

if s = Ω (m) .

The proof of Theorem 3.4.1 relies on three technical lemmas, which

characterize the expansion of certain types of node subsets confined within
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a single cell. Consider a given subset of vertices S of size s. For any cell Q,

we call the set P = S ∩Q the pocket of S in Q.

Lemma 3.4.2 shows that a pocket is highly expanding either when the

visibility range is r(n) = O
(
n−δ

)
for some constant δ > 0, or when we

consider a sufficiently large pocket. Lemma 3.4.3 covers the case in which the

visibility range is large but the pocket is of at most logarithmic size. Finally,

for all radii, Lemma 3.4.4 assures that a pocket P containing a sufficiently

large constant fraction of the nodes of its cell Q, expands roughly linearly

into any adjacent cell Q′ or in Q itself.

Lemma 3.4.2. Let α′ and ε′ be two suitable positive constants, with α′ ≤
min {ε′, 1/2}. Then, with high probability, for any cell Q and for every pocket

P ⊆ Q such that c(n) |P| = Ω (log n) and |P| ≤ α′m, we have |Γ(P)− P| ≥
ε′min {c(n) |P| , m} .

Proof. Fix a cell Q and a pocket P whose size p = |P| satisfies the hypotheses

of the lemma. We bound the probability that the entire neighborhood of

P is contained in P ∪ T, where T is a set of nodes not belonging to P

with a certain (small) size t. For notational convenience, we abbreviate

c = c(n) = γ2 log (1/r(n)) and introduce the following quantities:

• q is the number of nodes in Q;

• v is the total number of nodes visible by at least one node in Q;

• w is the minimum number of nodes visible by any node;

• w′ is the maximum number of nodes visible by any node;

• z is the minimum number of nodes visible by all nodes in P.

Conditioning on the events of Proposition 3.3.2, we have that q, v, w, w′, z =

Θ (m).

Let E be the event that |Γ(P)− P| ≤ t. We can bound the probability of
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the event E :

Pr [E ] ≤
(

q
p

)(
v
t

)(
(t+p

c )

(w
c )

)p(
(w′−p

c )

(w′
c )

)z−(t+p)

≤
(

eq
p

)p ( ev
t

)t
(

t + p
w

)cp (w′ − p
w′

)c(z−(t+p))

≤
(

eq
p

)p ( ev
t

)t
(

t + p
w

)cp
e−

cp
w′ (z−(t+p)).

We distinguish between two cases, depending on the value of p.

Case 1: 1 ≤ p ≤ m/c. Let t = ε′cp. We rewrite the bound on Pr [E ] as

Pr [E ] ≤
((

eqc
cp

)1/c ( ev
ε′cp

)ε′ ( ε′cp
aw

))cp

,

where a is a positive constant, since p = O(t) and (z− (t + p))/w′ = Θ (1).

By regrouping the factors, we obtain:

Pr [E ] ≤
(

c1/c

aε′ε′
(eq)1/c (ev)ε′

w
(cp)1−ε′−1/c ε′

)cp

<
1
n3 ,

where the last inequality holds for a sufficiently large γ2 in c = γ2 log(1/r(n)),

and for a sufficiently small ε′, since cp = Ω (log n). The claim follows by

invoking the union bound over the O (n) cells and the O (n) choices of

p = |P|.
Case 2: m/c < p ≤ α′m. Note that in this case cp > m, whence we set

t = ε′m. We rewrite the upper bound on Pr [E ] as

Pr [E ] ≤
(

eq
p

)p ( ev
ε′m

)ε′m
(

ε′m + p
aw

)cp

≤
((

eq
p

)1/c ( ev
ε′m

)ε′m/(cp)
(

ε′m + p
aw

))cp

.

The first and the second factor of the latter bound are bounded by a constant,

for a suitable choice of c and ε′. By our choice of α′, letting ε′ be a sufficiently

small value, we can make the product of the three factors at most a constant

less than 1, so that Pr [E ] < 1/n3 since cp = Ω (log n). The claim then

follows by applying the union bound as done for Case 1.
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Lemma 3.4.3. Let r(n) = Ω
(
n−1/8), and c(n) ≥ 3. With high probability, for

any cell Q and for every pocket P ⊆ Q, with |P| < log n, we have |Γ(P)| >
1
3 c(n) |P|.

Proof. Let c = c(n) = γ2 log (1/r(n)) ≥ 3 and let p = |P|. Since |Γ(P)| ≥
c(n) for all pockets P, then the lemma is trivial when p < 3. Suppose

now that p ≥ 3, and fix a subset T of t possible neighbors of P such that

t = 1
3 cp ≥ c . There are at most (βm

p ) ways of choosing P and at most (24βm
1
3 cp )

ways of choosing T. Since a node in Q can choose its neighbors from at

least 3 cells, the probability that all cp neighbor choices from P are within

nodes of T is at most(
(t

c)

(3αm
c )

)p

=

(
t! (3αm− c)!
(3αm)! (t− c)!

)p
≤
(

1
3 cp
3αm

)cp

.

Define E to be the event that all of the sets P ⊆ Q, with |P| < log n,

choose a number of neighbors in T less than 1
3 c |P|. Then,

Pr [E ] ≤
log n−1

∑
p=1

(
βm
p

)(
24βm

1
3 cp

)( 1
3 cp
3αm

)cp

≤
log n−1

∑
p=1

(
eβm

p

)p
(

e24βm
1
3 cp

) 1
3 cp( 1

3 cp
3αm

)cp

≤
log n−1

∑
p=1

(
24e2β2m2

1
3 cp2

) 1
3 cp( 1

3 cp
3αm

)cp

≤
log n−1

∑
p=1

(
τ

c2/3p1/3

m1/3

)cp

= O
((

log n
m1/3

)c)

where τ =
(
72e2β2)1/3 / (9α) is a positive constant. Since r(n) = Ω

(
n−1/8),

Pr [E ] < 1/n3 for a convenient choice of γ2 in the definition of c. The result

follows from the union bound over k2 = O
(
n2) cells.

Lemma 3.4.4. Let α′ be the constant defined in Lemma 3.4.2. With high probability,

for any pair of cells Q and Q′, with either Q′ = Q or Q′ adjacent to Q, and for

every pocket P ⊆ Q, with |P| = α′m, we have |Γ(P) ∩Q′| ≥ (1/2 + ε′′)m, for a

suitable constant ε′′ > 0.
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Proof. Let c = c(n) = γ2 log (1/r(n)). To ease the argument, we suppose

that nodes choose their neighbors by picking uniformly at random a node

within distance r(n) for c(n) times. Clearly, this process is stochastically

dominated by the actual one since in the latter a node cannot be chosen

multiple times.

Consider a particular pair of adjacent cells Q and Q′ (or Q′ = Q) and

a subset P ⊆ Q of size p = |P| = α′m. First we show that with high

probability a constant fraction of the cp neighbor choices from nodes of P

goes toward nodes of Q′. Then, conditioning on this event, we prove the

lemma allowing a suitably large constant γ2 in the definition of c(n).

The probability q that a node u ∈ P chooses a neighbor inside Q′ is at

least q ≥ αm/(βπnr(n)2), since there are at least αm nodes inside Q′ and

at most βπnr(n)2 nodes within distance r(n) from u. By our definition of

m = n/k2, we have that q ≥ α/(5πβ) = Θ (1). Let L denote the number of

neighbor choices from nodes of P which select a node inside Q′. Note that

L does not count the number of distinct nodes of Q′ reached from P but

it is instead the number of edges from P to Q′ (counted with repetitions).

By the linearity of expectation, we have E [L] = qpc = Ω (log n) since

p = α′m = Ω (log n). Applying the standard Chernoff bound A.1.3, we get

Pr
[

L <
1
2

E [L]
]
≤ e−

1
8 qpc.

Since there are no more than 5n pairs of cells (Q, Q′) to be accounted for,

and at most (βm
p ) ≤

(
eβm
α′m

)p
ways of choosing a pocket P of size p = α′m

inside Q, we can conclude that, for any such pair and any such pocket P,

Pr
[

L <
1
2

qpc
]
≤ 5n

(
eβ

α′

)p
e−

1
8 qpc ≤ 1

n
,

where the last inequality holds by allowing a sufficiently large constant

γ2 in the definition of c(n). The above inequality implies that, with high

probability, L ≥ σm for any constant σ > 0. In the following, we will make

use of such a fact for a specific value σ to be determined by the analysis.

Since the neighbor choices are independent and uniform, we can model

the neighbor selection process as an instance of the classical balls-and-bins
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problem, where L balls are thrown inside b = |Q′| bins. Let Zv be the

indicator variable of the event “node v ∈ Q′ was not chosen by any node of

P” (i.e., it is an empty bin) and let Z = ∑v∈Q′ Zv denote the total number of

nodes of Q′ which were not chosen by any node of P (i.e., the total number

of empty bins). Conditioning on the event L ≥ σm, by the linearity of

expectation we have

E [Z] ≤ b
(

1− 1
b

)σm
≤ be−

σm
b ≤ βe−

σ
β m,

since b ≤ βm. The Zv variables are not independent but they satisfy the

Lipschitz condition with bound 1. Therefore, we can apply the Azuma-

Hoeffding concentration bound A.1.6, obtaining

Pr
[

Z > 2βe−
σ
β m
]
≤ Pr

[
Z > E [Z] + βe−

σ
β m
]
≤ e−

2

(
βe
− σ

β m

)2

σm ≤ 1
n2 ,

where the last inequality holds for any value of σ, provided that we choose

a sufficiently large constant γ1 > 0 in the definition of r(n), since m =

Θ
(
nr2(n)

)
.

Therefore, the number of distinct nodes of Q′ reached by nodes of P is

∣∣Γ(P) ∩Q′
∣∣ ≥ (αm− 2βe−

σ
β m) = (1/2 + ε′′)m

by letting σ = β log 2β
α−1/2−ε′′ , and this can be achieved by selecting a suitably

large constant γ2 in the definition of c(n). Invoking the union bound over

O (n) pairs of adjacent cells concludes the proof.

We are now ready to prove the main result of this section.

Theorem 3.4.1. Throughout the proof, we condition on the events stated

in Proposition 3.3.2 and in the three previous lemmas. We define ε̄ =

min {ε′, ε′′/2, 1/3} where ε′, ε′′ are the constants appearing in the statements

of Lemma 3.4.2 and Lemma 3.4.4, respectively, and let α′ ≤ min{ε′, 1/2}
be a suitable small constant (thus, consistent with the constraint posed by

the aforementioned lemmas). Consider an arbitrary set S of s vertices of

BT (r(n), c(n)), with 1 ≤ s ≤ n/2. We classify the cells according to the size
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of the pockets of S that they contain: namely, a cell Q such that Q ∩ S 6= ∅

is said to be red if it contains at least α′m nodes of S, and blue otherwise;

please see Figure 3.4.

Two cases are possible: either a majority of nodes of S resides in red

cells or a majority of nodes of S resides in blue cells.

In the first case, NR > s/2 nodes of S belong to red cells. We further

subdivide the red cells into two groups, depending on the number of nodes

of S they contain. We say that a red cell is “dark red” if it contains at least

(1/2 + ε′′/2)m nodes of S; otherwise we call it “light red”.

Suppose that a majority of the NR nodes resides inside dark red cells.

There are at most n/((1 + ε′′)m) dark red cells since s ≤ n/2, and thus

at least ε′′n/((1 + ε′′)m) cells are not dark red. Hence, by well-known

topological properties of two-dimensional meshes [BP86, DP09], there are

Ω
(√

s/m
)

disjoint pairs of adjacent cells (Q, Q′), where Q is dark red and

Q′ is not. Consider one such pair: applying Lemma 3.4.4 by taking a pocket

P ⊆ Q ∩ S of size |P| = α′m, we have that∣∣Γ(Q) ∩Q′ − S
∣∣ ≥ ∣∣Γ(P) ∩Q′ − S

∣∣ ≥ ε′′m/2 ≥ ε̄m,

since, by definition, Q′ contains less than (1/2 + ε′′/2)m nodes of S. Sum-

ming over the Ω
(√

s/m
)

disjoint pairs of cells (Q, Q′), we get λ(s) =

Ω
(√

m/s
)
.

The other subcase where a majority of the NR nodes resides inside light

red cells is easier to deal with since we can just consider the expansion of

light red cells into themselves. Mimicking the application of Lemma 3.4.4

as in the previous subcase, we have that, for any light red cell Q,

|Γ(Q) ∩Q− S| ≥ ε′′m/2 ≥ ε̄m.

Since there are at least s/((1 + ε′′)m) light red cells, we immediately obtain

λ(s) = Ω (1) = Ω
(√

m/s
)
, which is the correct bound since s = Ω (m) in

this case.

To analyze the second case, where at least s/2 nodes of S belong to blue

cells, we resort to a proof strategy inspired by the one employed in [PR04].
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S

(a) Consider an arbitrary subset of ver-

tices S, red in figure.

S

(b) We consider only those cells con-

taining at least one node of S.

Figure 3.4: Lower bound on the expansion.

S

(c) Red cells (dark gray in figure) con-

tain at least α′m nodes of S.

S

(d) Blue cells (light gray in figure) con-

tain less than α′m nodes of S.

Figure 3.4: Lower bound on the expansion.
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Referring to the tessellation of [0, 1]2 into k2 cells, let us index the cells as

Qij, with 1 ≤ i, j ≤ k. Define the sector Sij of a cell Qij as

Sij =
⋃

max{i−6,1}≤x≤min{i+6,k}
max{j−6,1}≤y≤min{j+6,k}

Qxy.

The active area Aij of sector Sij is defined as

Aij =
⋃

max{i−3,1}≤x≤min{i+3,k}
max{j−3,1}≤y≤min{j+3,k}

Qxy.

Cell Qij is called the center of both sector Sij and its active area Aij. Note

that the neighborhood of the pocket Pij = Qij ∩ S is entirely contained in

Aij and that the definition of a sector ensures that given two sectors Sij and

Si′ j′ , with Qi′ j′ ∩ Sij = ∅, their active areas are non-overlapping. Figure 3.5

illustrates these concepts.

Let B be the set of at least s/2 nodes of S belonging to blue cells. To

estimate the expansion of S, we first execute a greedy procedure, which

selects a number of blue cells which are centers of non-overlapping active

areas, and then obtain a lower bound on the expansion by adding up the

contributions related to these selected cells. The selection of the centers is

obtained via the following marking strategy. Initially all of the blue cells

are unmarked. Then, iteratively, the center of the next active area is selected

as the unmarked blue cell Q containing the largest pocket of S, and all of

the unmarked cells of the sector centered at Q are marked. The procedure

terminates as soon as every blue cell becomes marked. The procedure is

described by the pseudo code in Algorithm CenterSelection, where sets

I and U maintain, respectively, the indices of the selected centers and the

indices of unmarked cells, and subroutine LargestPocket(U) returns the

pair (i, j) corresponding to the unmarked cell with the largest pocket (ties

broken arbitrarily). Figure 3.6 depicts an execution of the algorithm.

Let 〈 c1, c2, . . . , cw 〉 be the list of w centers picked by CenterSelection,

where ct = (it, jt) was chosen at the t-th iteration of the while loop. Let

pt = |Pct |, and let bt be the number of nodes residing in unmarked blue
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SQ
13 cells

AQ

7 cells

Q

(a) Sector SQ centered at cell Q, and its active

area AQ.

Q

AQ

Q′

AQ′

(b) The non-overlapping property of active areas

belonging to different sectors.

Figure 3.5: Illustration of the concepts of sector and active area.
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(a) Consider only the blue cells (light gray in

figure) and select the cell Q (red in figure)

containing the largest number of nodes of

S to be the first center picked by Algorithm

CenterSelection.

c1

(b) All the unmarked blue cells in the sector

of center c1 are now marked.

Figure 3.6: The execution of Algorithm CenterSelection.
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c1

c2

(c) The next center c2 contains the largest num-

ber of nodes of S among all the unmarked

blue cells. By the non-overlapping property,

Ac2 does not overlap with Ac1 .

c1

c2

c3

c4
c5

c6

(d) The greedy center selection procedure con-

tinues until not blue cell is left unmarked.

Note that all the active areas do not overlap.

Figure 3.6: The execution of Algorithm CenterSelection.
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Algorithm 1 CenterSelection

1: I ← ∅

2: U ←
{
(i, j) : Qij is a blue cell

}
3: while U 6= ∅ do

4: (i, j)← LargestPocket(U)

5: I ← I ∪ (i, j)

6: for all Qxy ∈ Sij do

7: U ← U − {(x, y)}
8: end for

9: end while

cells of Sct at the beginning of iteration t. Clearly, we have that ∑w
t=1 bt = |B|

and, by the greedy choice of the centers, bt ≤ 169pt.

In order to lower bound the expansion of S, we proceed as follows. For

each t, with 1 ≤ t ≤ w, we determine a suitable set of nodes Nt ⊆ Γ(S),

which belong to blue cells of the active area Act . We distinguish between two

different cases. First, consider the case s < α′m, which implies that no red

cell exists. Let Nt = Γ(Pct)− Pct and observe that by Lemmas 3.4.2 and 3.4.3,

|Nt| ≥ ε̄ min {c(n)pt, m} . Note that the Nt’s are all disjoint, but the sum of

their sizes does not immediately yield a lower bound on |Γ(S)− S|, since

each set Nt may itself contain nodes of S, which have to be subtracted from

the overall count. Specifically, the number of external neighbors of S (i.e.,

nodes of Γ(S)− S) accounted for by the Nt’s is(
w

∑
t=1
|Nt|

)
− |B| =

w

∑
t=1

(|Nt| − bt) ≥
w

∑
t=1

(|Nt| − 169pt) .

Since pt < α′m and |Nt| ≥ ε̄ min {c(n)pt, m}, then for a sufficiently large

choice of γ2 in c(n) = γ2 log (1/r(n)) and a sufficiently small value of α′,

we have that |Nt| − 169pt ≥ µ |Nt| for a certain constant µ > 0. Hence,

w

∑
t=1

(|Nt| − 169pt) = Ω

(
w

∑
t=1

ε̄ min {c(n)pt, m}
)

= Ω (min {c(n)s, m}) ,

and the theorem follows.
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Consider now the case s ≥ α′m. Observe that ∑w
t=1 |Nt| = Ω (|B|) =

Ω (s), and note that it is sufficient to show that the number of external

neighbors of S is Ω (∑w
t=1 |Nt|). Partition the index set I = {1, 2, . . . , t} into

two disjoint subsets B1 and B2, such that t ∈ B1 if Act contains no red cells,

and t ∈ B2 otherwise. Suppose that ∑t∈B2
|Nt| ≥ τ ∑t∈B1

|Nt|, for a suitable

positive constant τ which will be specified later. For each t ∈ B2 the set Nt

contains (1/2 + ε′′)m nodes, and at least (1/2 + ε′′ − α′)m of these nodes

are external neighbors of S. Hence, the total number of external neighbors

of S is at least

∑
t∈B2

(1/2+ ε′′− α′)m =
1/2 + ε′′ − α′

1/2 + ε′′ ∑
t∈B2

|Nt| ≥
1/2 + ε′′ − α′

1/2 + ε′′
τ

1 + τ

w

∑
t=1
|Nt| ,

and the theorem follows. Finally, if ∑t∈B2
|Nt| < τ ∑t∈B1

|Nt|, the number of

external neighbors of S accounted for by the nodes in the Nt’s is(
w

∑
t=1
|Nt|

)
− |B| = ∑

t∈B1

(|Nt| − 169pt) + ∑
t∈B2

(|Nt| − 169pt)

≥ ∑
t∈B1

µ |Nt|+ ∑
t∈B2

((1/2 + ε′′)m− 169α′m)

> ∑
t∈B1

µ |Nt| − ∑
t∈B1

(
169α′

1/2 + ε′′
− 1
)

τ |Nt| .

By fixing τ such that ((169α′/(1/2 + ε′′))− 1)τ = µ/2, we get

∑
t∈B1

µ |Nt| − ∑
t∈B1

(
169α′

1/2 + ε′′
− 1
)

τ |Nt| =
µ

2 ∑
t∈B1

|Nt| = Ω

(
w

∑
t=1
|Nt|

)
,

and the theorem follows.

3.4.2 Flooding Time of the Stationary Dynamic Bluetooth

Topology

We now turn our attention to a dynamic version of the BT (r(n), c(n)),

where we allow both the positions of the nodes and the set of links to

evolve over time. This framework has been adopted by Clementi et al. as

a model for mobile agents in [CMPS09], where the primitive of interest
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is flooding, that is, the spreading of information from one agent to all the

others. Building on the relation between graph expansion and flooding

established in [CMPS09], in this section we study the flooding time of a

system of mobile agents where the communication links are established

through the neighbor selection protocol of the Bluetooth topology.

Suppose that we have n agents moving along the nodes of a square

grid of side 1 and edge-length1 ε > 0. Time is discrete and, in a time step,

each agent moves to a grid node chosen uniformly at random among the

grid nodes within the Euclidean distance 0 < ρ ≤
√

2 from its current

position. The parameter ρ can be interpreted as the maximum velocity that

any agent can achieve. We suppose that all the moves are synchronous

and independent. After reaching its new position, each agent establishes

communication links with c(n) other agents, chosen uniformly at random

among those within the Euclidean distance r(n), or with all of them if they

are less than c(n). For t ∈N, let Gt be the graph induced by the positions

of the agents and the links established at time t. We can formally describe

the evolution of the system resulting from this stochastic process as the

sequence of graphs G(n, ρ, r(n), c(n), ε) = {Gt : t ∈ N}, which we call

Dynamic Bluetooth Topology.

In the above dynamic scenario, we aim at upper bounding the flooding

time of a message, that is, the minimum number of time steps required to

inform all the agents in the system of a message originating from a source

agent. When a link connecting an informed agent to an uninformed one is

established, the latter becomes informed of the message. It is easily seen

that G(n, ρ, r(n), c(n), ε) constitutes a Markov chain, hence it is a Markovian

evolving graph according to the Definition 2.1 of [CMPS09]. Moreover, when

the positions of the nodes in G0 are chosen according to the stationary

1The edge-length ε can be made arbitrarily small, and it is introduced only to guarantee

the technical condition that the state space of the Markov chain describing the system is

finite. In fact, ε only affects the constants, hence it does not appear in the results expressed

in asymptotic notation.
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distribution (in this case, G is referred to as stationary Markovian evolving

graph), the flooding time can be bounded from above based on graph

expansion, as established by the following proposition.

Proposition 3.4.5 ([CMPS09, Corollary 2.5]). Let M = {Gt : t ∈ N} be a

stationary Markovian evolving graph. Assume a decreasing sequence k1 ≥ k2 ≥
. . . ≥ kn/2 of positive real numbers exists such that, with probability at least

1− 1/n4, Gt has expansion λ(s) ≥ ks, for every s = 1, 2, . . . , n/2. Then the

flooding time inM is with high probability

O

(
n/2

∑
s=1

1
s log(1 + ks)

)
.

In order to apply the above result to the Dynamic Bluetooth Topology

G(n, ρ, r(n), c(n), ε), we need to lower bound the expansion of each con-

stituent graph Gt. Unfortunately, we cannot directly apply the result of the

previous section, since the agents in Gt are not distributed uniformly in

[0, 1]2, as it is the case for BT (r(n), c(n)). However, the stationary distri-

bution of the positions of the agents is quasi-uniform, meaning that, with

respect to a suitably defined tessellation of the domain into non-overlapping

cells of equal size, the number of agents in any two cells differs by at most a

constant factor, which is sufficient to obtain a lower bound on the expansion.

In what follows we consider a stationary Dynamic Bluetooth Topology

GSTAT(n, ρ, r(n), c(n), ε), where the positions of the agents in G0 are chosen

randomly according to the stationary distribution, and tessellate the do-

main into k2 cells where k = d
√

5/r(n)e, and m = n/k2. The following

proposition is analogous to Proposition 3.3.2.

Proposition 3.4.6 (Quasi-Uniformity). Consider a stationary Dynamic Blue-

tooth Topology GSTAT(n, ρ, r(n), c(n), ε) with r(n) ≥ γ1
√

log n/n and c(n) =

γ2 log (1/r(n)), for two suitable positive constants γ1 and γ2 and arbitrary posi-

tive constants ρ and ε. Then, with probability 1− 1/n5, in the stationary Dynamic

Bluetooth Topology GSTAT(n, ρ, r(n), c(n), ε), the number of agents NQ(t) residing

in cell Q at time t satisfies

m/µ ≤ NQ(t) ≤ µm,
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for each cell Q, 0 ≤ t < n, and for some constant µ > 0.

Proof. Let π(x) be the probability that an agent is located at grid node x in

the stationary distribution. As noted in [CMPS09], for any two positions

x and y, there exists a constant σ > 0, depending on ε and ρ, such that

1/σ ≤ π(x)/π(y) ≤ σ. Let NQ(t) denote the number of agents residing

inside cell Q at time t. Since the size of each cell is 1/k2 and the distribution

of the agents’ position is stationary, we have that E
[
NQ(t)

]
≥ m/σ and

E
[
NQ(t)

]
≤ σm. Also, the agents move independently, so we can apply

the Chernoff bound on NQ(t), obtaining that Pr
[
NQ(t) ≤ m/(2σ)

]
≤ 1/n7,

and Pr
[
NQ(t) ≥ 3σm/2

]
≤ 1/n7, for a sufficiently large constant γ1. The

proof follows by applying the union bound over O (n) cells and the n time

instants and setting µ = 2σ.

The quasi-uniform distribution of the agents described in Proposi-

tion 3.4.6 allows us to characterize the expansion of each snapshot Gt

of the process, as stated in the next theorem.

Theorem 3.4.7. Consider a stationary Dynamic Bluetooth Topology

GSTAT(n, ρ, r(n), c(n), ε), with r(n) ≥ γ1
√

log n/n and c(n) =

γ2 log (1/r(n)), for two suitable positive constants γ1 and γ2 and arbi-

trary positive constants ρ and ε. Then there exist positive constants δ1, δ2, δ3, α

such that, with probability 1− 1/n4, each graph Gt ∈ GSTAT(n, ρ, r(n), c(n), ε)

has expansion

λ(s) ≥ δ1c(n) if 1 ≤ s ≤ m/c(n),

λ(s) ≥ δ2m/s if m/c(n) < s ≤ αm,

λ(s) ≥ δ3
√

m/s if s > αm,

for all 0 ≤ t < n.

Proof. The proof follows exactly the same steps of the proof of Theorem 3.4.1

for BT (r(n), c(n)). In fact, it suffices to observe that the result of Proposi-

tion 3.4.6 enables us to prove lemmas analogous to Lemmas 3.4.2, 3.4.3 and
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3.4.4, where the constants involved in the pocket expansion become suitable

functions of µ.

Theorem 3.4.8. Consider a stationary Dynamic Bluetooth Topology

GSTAT(n, ρ, r(n), c(n), ε), with r(n) ≥ γ1
√

log n/n and c(n) =

γ2 log (1/r(n)), for two suitable positive constants γ1 and γ2 and arbi-

trary positive constants ρ and ε. Then, with high probability, the flooding time in

GSTAT(n, ρ, r(n), c(n), ε) is

TF = O
(

1
r(n)

+ log n
)

.

Proof. By plugging in the lower bounds on the expansion stated in Theo-

rem 3.4.7 in the formula given in Proposition 3.4.5, we have that

TF = O

(
m/c(n)

∑
s=1

1
s log(1 + δ1c(n))

+
αm

∑
s=m/c(n)+1

1
s log(1 + δ2m/s)

+
n/2

∑
s=αm+1

1
s log(1 + δ3

√
m/s)

)
.

We evaluate the three summations separately. The first summation easily

yields

m/c(n)

∑
s=1

1
s log(1 + δ1c(n))

=
1

log(1 + δ1c(n))
H
(

m
c(n)

)
= O (log n) .

For the second summation, since we can always presume that δ2 ≤ α, we

obtain

αm

∑
s=m/c(n)+1

1
s log(1 + δ2m/s)

≤ 2
α

δ2

αm

∑
s=m/c(n)+1

1
s log(1 + δ2m/s)

δ2m
αm + s

≤ 2
α

δ2

∫ αm

m/c(n)

1
x log(1 + δ2m/x)

δ2m
δ2m + x

dx

= O (log log c(n)) .

Since c(n) = O (log n), we have that the second summation is bounded by
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O (log log log n). Finally, for the third summation we obtain

n/2

∑
s=αm+1

1
s log(1 + δ3

√
m/s)

≤
n/2

∑
s=αm+1

1 + δ3/
√

α

δ3
√

m
1√

s

≤ 2
1 + δ3/

√
α

δ3

1√
m

∫ n/2

αm

1√
x

dx

= O
(

1
r(n)

)
.

Summing the three contributions concludes the proof of the theorem.

3.4.3 Upper Bound

In this section we prove that the lower bound on the expansion of

BT (r(n), c(n)) established by Theorem 3.4.1 is asymptotically tight.

Theorem 3.4.9. Consider an instance of BT (r(n), c(n)) with r(n) ≥
γ1
√

log n/n and c(n) = γ2 log (1/r(n)), for two suitable positive constants

γ1 and γ2. With high probability, for every integer s, 1 ≤ s ≤ n/2, there exists a

set of vertices S of size s whose expansion is

λ(s) =

O (min {c(n), m/s}) if s = O (m) ;

O
(√

m/s
)

if s = Ω (m) .

Proof. We fix the constant γ1 so that Proposition 3.3.2 holds. If s ≤ αm, we

can choose any subset S of the nodes in a single corner cell, so that a total

of at most 13βm nodes are visible from S. Hence, λ(s) = O (m/s). Consider

a list 〈 v1, v2, . . . , vn 〉 of the vertices of V, sorted by non-decreasing degree.

If we take S = {v1, v2, . . . , vs}, then we are guaranteed that the sum of the

degrees of all nodes in S is no greater than 2c(n)s, or otherwise the sum

of the degrees of the n nodes would exceed 2c(n)n, which is impossible.

Combining the two cases above proves the theorem for the case s ≤ αm.

Consider now the case s > αm and choose a set S which occupies an

approximately square area of Θ (s/m) cells in a corner of [0, 1]2. Since

only the nodes in O
(√

s/m
)

cells are visible from S, we have that λ(s) =

O
(√

ms/s
)
= O

(√
m/s

)
, and the theorem follows.
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We remark that the tight bounds on the expansion of BT (r(n), c(n))

provided by Theorems 3.4.1 and 3.4.9 extend the results in [PR04] from the

case r(n) = Θ (1) to arbitrary values of r(n) that guarantee the connectivity

of the graph. Note also that if we consider the minimum expansion λ =

min1≤s≤n/2 λ(s), we obtain that λ = Θ (r(n)) for the Bluetooth Topology.

3.4.4 Expansion of the Random Geometric Graph

The analysis performed in the previous section for BT (r(n), c(n)) can

also be applied to RGG (r(n)) with simpler technical arguments, due to

the absence of the neighbor selection procedure. Indeed, the following

theorem establishes the asymptotic order of the expansion λ(s) of a Random

Geometric Graph, for all values of s.

Theorem 3.4.10. Consider an instance ofRGG (r(n)) with r(n) ≥ γ1
√

log n/n,

for a suitable constant γ1. With high probability, for every integer s, 1 ≤ s ≤ n/2,

we have

λ(s) =

Θ (m/s) if s = O (m) ;

Θ
(√

m/s
)

if s = Ω (m) .

Proof. We fix the constant γ1 so that Proposition 3.3.2 holds. For the lower

bound, consider a subset S ⊆ V, |S| = s, with 1 ≤ s ≤ n/2. If s ≤ αm, recall

that Proposition 3.3.2 implies that any node u ∈ S has at least (α/4)πnr2(n)

neighbors in RGG(r(n)). Since (α/4)πnr2(n)− s = Ω (m), we have that

λ(s) = Ω (m/s). If s > αm, similarly to the proof of Theorem 3.4.1 we say

that a cell Q such that Q ∩ S 6= ∅ is red if it contains at least (3/4)αm nodes

of S, and blue otherwise. Two subcases are possible: either a majority of

nodes of S resides in red cells or a majority of nodes of S resides in blue

cells. In the first case, since s ≤ n/2, the number NR of red cells satisfies

NR ≤ (2/(3α))n/m and therefore the number of non-red cells is at least

n/m − NR = Ω (n/m). Therefore, at least Ω
(√

n/m
)
= Ω

(√
s/m

)
red

cells are adjacent to a non-red cell [BP86], and each of these (disjoint) pairs

contributes Ω (m) nodes to the expansion of S, yielding λ(s) = Ω
(√

m/s
)
.
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On the other hand, if a majority of nodes of S resides in blue cells, there

are at least s/((3/4)αm) blue cells, and each contributes at least (α/4)m

nodes to the expansion of S, since any node residing in that cell connects

to every other node residing in the same cell. In this second case, we get

λ(s) ≥ 1/3 = Ω
(√

m/s
)

since s > αm.

In order to complete the proof, we derive a matching upper bound. If

s ≤ αm, we can pick the set S entirely contained in a single corner cell.

Since the number of nodes visible from S is bounded by 13βm, we have

that λ(s) = O (m/s). On the other hand, if s > αm, consider the “densest”

set S as in the proof of Theorem 3.4.9. We immediately conclude that

the neighborhood of S has at most O
(
m
√

s/m
)

nodes, and thus λ(s) =

O
(√

m/s
)
.

Quite surprisingly, Theorems 3.4.1, 3.4.9, and 3.4.10 imply that the ex-

pansion λ(s) of BT (r(n), c(n)) is, within a constant factor, equal to the

expansion of RGG (r(n)), as soon as we consider a set of s = Ω (m/c(n))

vertices, although BT (r(n), c(n)) is a (possibly very sparse) subgraph of

RGG (r(n)).

3.5 Diameter

In this section we provide upper and lower bounds on the diameter of

BT (r(n), c(n)) by leveraging on the expansion result of Section 3.4. Specifi-

cally, the upper bound relies on the following lemma, which relates diameter

and expansion.

Lemma 3.5.1. Given a connected undirected graph G = (V, E) with n nodes and

expansion λ(s), for 1 ≤ s ≤ n/2, consider the following recurrence:

N0 = 1

Ni = (1 + λ(Ni−1)) Ni−1.
(3.1)

Define i? as the smallest index such that Ni? > n/2. Then, diam(G) ≤ 2i?.
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Proof. Let d = diam(G) and let u and v be two nodes at distance d in G.

Consider a breadth-first tree rooted at u. For 0 ≤ i ≤ d, let Wi denote the set

of nodes at level i in the tree, and Yi =
⋃i
`=0 W`. Note that the expansion

properties of G imply that |Yi| ≥ Ni. Define now j? as the smallest index

such that |Yj? | > n/2, which implies that j? ≤ i?. Also, w.l.o.g., we can

assume that j? ≥ dd/2e, or otherwise we repeat the argument considering

the breadth-first tree rooted at v. Indeed, since u and v are at distance d,

one of the two breadth-first trees must reach at most n/2 nodes up to level

dd/2e − 1, or there would be a path shorter than d connecting u and v. The

lemma follows.

Theorem 3.5.2. Consider an instance of BT (r(n), c(n)) with r(n) ≥
γ1
√

log n/n and c(n) = γ2 log (1/r(n)), for two suitable positive constants

γ1 and γ2. With high probability,

diam(BT (r(n), c(n))) = O
(

1
r(n)

+ log n
)

.

Proof. We apply Lemma 3.5.1 by estimating the value i? for the

graph BT (r(n), c(n)), conditioning on the fact that the expansion of

BT (r(n), c(n)) is λ(s) = Ω (min {c(n), m/s}) for s = O (m), and λ(s) =

Ω
(√

m/s
)

for s = Ω (m), which happens with high probability (see Theo-

rem 3.4.1).

In order to account for these two different expansion regimes, we proceed

as follows. Let K(j) = min
{

i : Ni ≥ 2j}, so that i? = K(log n− 1) and let j1

be such that 2j1 = Θ (m). Since λ(Ni) = Ω (1) for 0 ≤ i < K(j1), it follows

that K(j1) = O (log n). Observe that for i > K(j1), there exists a constant

σ such that λ(Ni) ≥ σ
√

m/Ni. As a consequence, for j > j1 and for every
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` ≥ K(j− 1) we have:

N` ≥ NK(j−1)

`−1

∏
s=K(j−1)

(
1 +

σ
√

m√
Ns

)

≥ NK(j−1)

(
1 +

σ
√

m√
N`−1

)`−K(j−1)

≥ 2j−1
(

1 +
σ
√

m
2j/2

)`−K(j−1)

.

Since K(j) is defined as the smallest index for which NK(j) ≥ 2j, from the

above inequalities it follows that K(j) ≤ min{` : (1+ σ
√

m/2j/2)`−K(j−1) ≥
2}, hence K(j)− K(j− 1) = O

(
2j/2/(r(n)

√
n)
)
. Therefore,

i? = K(log n− 1) =
log n−1

∑
j=1

(K(j)− K(j− 1))

=
j1

∑
j=1

(K(j)− K(j− 1)) +
log n−1

∑
j=j1+1

(K(j)− K(j− 1))

= O (log n) + O
(

1
r(n)

)
,

and the theorem follows from Lemma 3.5.1.

We now show that Theorem 3.5.2 gives a tight estimate for the diameter

of BT (r(n), c(n)) when r(n) = O (1/ log n).

Theorem 3.5.3. Consider an instance of BT (r(n), c(n)) with r(n) ≥
γ1
√

log n/n and c(n) ≥ γ2 log (1/r(n)), for two suitable positive constants

γ1 and γ2. With high probability,

diam(BT (r(n), c(n))) = Ω
(

1
r(n)

)
.

Proof. Consider the natural tessellation introduced in Section 3.3. By Propo-

sition 3.3.2, with high probability the top leftmost cell and the bottom

rightmost cell contain at least one node each, hence the Euclidean distance

between these two nodes is Θ (1). Therefore, any path in BT (r(n), c(n))

connecting them must contain at least Ω (1/r(n)) nodes.
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The above lower bound can be improved for large visibility radii r(n) =

Ω (log log n/ log n), yielding a lower bound almost matching the O (log n)

upper bound given by Theorem 3.5.2.

Theorem 3.5.4. Consider an instance of BT (r(n), c(n)) with

γ1 log log n/ log n ≤ r(n) ≤
√

2 and c(n) ≥ γ2 log (1/r(n)), for two

suitable positive constants γ1 and γ2. With high probability,

diam(BT (r(n), c(n))) = Ω
(

log n
log log n

)
.

Proof. We show that, with high probability, each node of the graph has

degree bounded by ∆ = c(n) + 2 log2 n and therefore the diameter of

BT (r(n), c(n)) cannot be smaller than the diameter of a tree with arity ∆.

Consider an arbitrary node u ∈ BT (r(n), c(n)) and denote by deg(u)

its degree. By the definition of Bluetooth Topology, the number degOUT(u)

of neighbors chosen by u satisfies (deterministically) degOUT(u) ≤ c(n).

For each node v 6= u within distance r(n) from u, let Xv be a 0–1 random

variable, taking value 1 iff node v selects u as its neighbor. Observe that

the number degIN(u) of nodes which selected u as their neighbor can be

written as

degIN(u) = ∑
v

Xv,

where the summation ranges over all nodes within distance r(n) from u.

It is straightforward to see that Pr [Xv = 1] = c(n)/(Nv − 1), where Nv

denotes the number of nodes in the visibility disk of v. By Proposition 3.3.2,

we have that

E
[
degIN(u)

]
≤ 4β

α
c(n) = O (log log n) .

Let t = 2 log2 n. For a sufficiently large n, t ≥ 6E
[
degIN(u)

]
. Since the

neighbor choices performed by different nodes are independent, we can

apply the Chernoff bound A.1.3 to degIN to obtain that Pr
[
degIN ≥ t

]
≤

2−t = 1/n2. Applying the union bound over the n nodes yields that with

probability at least 1− 1/n all the nodes have in-degree at most t and hence

their degree is at most ∆ = c(n) + t = O (log n). The theorem follows by

observing that diam(BT (r(n), c(n))) ≥ log∆ n = Ω
(

log n
log log n

)
.
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We conclude this section by noticing that the BT (r(n), c(n)) exhibits,

for not too large visibility radii, the same asymptotic diameter of the denser

Random Geometric Graph with the same parameter r(n). Indeed, [EJY05]

proves that diam(RGG (r(n))) = O (1/r(n)), while Theorem 3.5.2 yields

diam(BT (r(n), c(n))) = O (1/r(n)) for r(n) = O (1/ log n).



Chapter 4

Spreading Information among

Random Walkers

Recently mobile networks have attracted a lot of interest, both in the network

and in the theory communities. Many theoretical models have been pro-

posed, with the explicit goal of characterizing the spreading of information

in such mobile networks. In this chapter we study the broadcast time of a

message among agents performing random walks in the plane. We consider

a sparse system below the percolation threshold, thus complementing the

analysis carried out by previous works that dealt with dense scenarios. We

show that in the sparse case the time needed to broadcast a message is

asymptotically independent from the transmission radius of the moving

agents, and we show how our analysis extends to other similar models of

communication/interaction between agents.

The results presented in this chapter appeared in [PPPU10, PPPU11].

4.1 Introduction

The emergence of mobile computing devices has added a new intriguing

component, mobility, to the study of distributed systems. In fully mobile

systems, such as wireless mobile ad-hoc networks (MANETs), information

is generated, transmitted and consumed within the mobile nodes, and

61
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communication is carried out without the support of static structures such

as cell towers. These systems have been implemented in vehicular networks

and sensor networks attached to soldiers on a battlefield or animals in a

nature reserve [OW09, Ger05, JOW+02, Sto02]. Characterizing the power

and limitations of mobile networks requires new models and analytical

tools that address the unique properties of these systems [GT02, CPS09],

which include:

• Small transmission radius: the transmission range of individual agents

is restricted by limitations on energy consumption and interference

from other agents;

• Planarity: agents reside, move and transmit on (subsets of) a plane.

Low diameter graphs that are often used to model static communica-

tion networks are not useful here;

• Dynamic communication graphs: communication channels between

agents are changing dynamically as mobile agents move in and out of

the transmission radius of other agents;

• Relative speeds: transmission speed is significantly faster than the

physical movement of the agents. A message can execute several hops

before the network is altered by motion.

In this chapter we study the dynamics of information dissemination

between agents moving independently on a plane. We consider a system

of k mobile agents performing independent random walks on an n-node

grid, starting at time 0 in a uniform distribution over the grid nodes. We

focus on the fundamental communication primitive of broadcasting a rumor

originating at one arbitrary agent to all other agents in the system. We

characterize the broadcast time TB of the system, which is the time it takes

for all agents to receive the rumor.

We model the spreading of information in a mobile system by a dynamic

communication graph process {Gt(r) | t ≥ 0}, where the nodes of Gt(r)
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are the mobile agents, and two agents are connected by an edge iff their

distance at time t is within their transmission radius r. We are interested

in sparse systems in which the transmission radius is below the percolation

point rc ≈
√

n/k (i.e., the minimum radius which guarantees that Gt(rc)

features a giant connected component), and where, with high probability,

no connected component of Gt(rc) has more than a logarithmic number of

agents [Pen03, PSSS11]. The broadcast time in sparse systems is dominated

by the time it takes for many independent random walks to meet one

another. Incorporating the fact that radio transmission is much faster than

the motion of the agents, we assume that the rumor can travel throughout a

connected component of Gt within one step, before the graph is altered by

the motion.

Our main result is quite surprising: we show that below the percola-

tion point the broadcast time does not depend on the transmission radius.

We prove that TB = Θ̃
(

n/
√

k
)

for any r below rc, giving a tight char-

acterization up to logarithmic factors1. Our bound holds both when the

transmission radius is significantly larger than the mobility range (i.e., the

distance an agent can travel in one step), and when, in contrast to previous

work [CMPS09, CPS09], the transmission radius as well as the the mobil-

ity range are very small. Our work complements a recent result by Peres

et al. [PSSS11] who proved an upper bound polylogarithmic in k for the

broadcast time in a system of k mobile agents which follow independent

Brownian motions in Rd, with transmission radius above the percolation

point.

Our analysis techniques are applicable to a number of interesting related

problems such as covering the grid with many random walks and bounding

the extinction time in random predator-prey systems.

1The tilde notation hides polylogarithmic factors, e.g. Õ ( f (n)) = O ( f (n) logc n) for

some constant c.
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4.2 Previous Work

Information dissemination has been extensively studied in the literature

under a variety of scenarios and objectives. Here we restrict our attention to

the results more directly related to our contribution.

A prolific line of research has addressed broadcasting and gossiping in

static graphs, where the nodes of the graph represent active entities which

exchange messages along incident edges according to specific protocols

(e.g., push, pull, push-pull). The most recent results in this area relate the

performance of the protocols to expansion properties of the underlying

topology, with particular attention to the case of social networks, where

broadcasting is often referred to as rumor spreading [CLP10]. (For a relatively

recent, comprehensive survey on this subject, see [HKP+05].) Unfortunately,

mobile networks do not feature properties similar to those of social networks,

mostly because of the physical limitations of both the movement and the

radio transmission processes. Indeed, as noted in [Kle07], the short range

of communication attainable by low-power antennas enforces the same

local dynamics typical of disease epidemics [Dur99], which require physical

proximity to propagate. Indeed, the analysis of opportunistic networks,

where nodes relay messages as they come close to one another, employs

models from the study of human mobility [CHC+07, CFL08].

In the theory community there has been growing interest in modeling

and analyzing information dissemination in dynamic scenarios, where a

number of agents move either in a continuous space or along the nodes

of some underlying graph and exchange information when their positions

satisfy a specified proximity constraint. In [CMPS09, CPS09] the authors

study the time it takes to broadcast information from one of k mobile agents

to all others. The agents move on a square grid of n nodes and in each

time step an agent can (a) exchange information with all agents at distance

at most r from it, and (b) move to any random node at distance at most

ρ from its current position. The results in these papers only apply to a
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very dense scenario where the number of agents is linear in the number

of grid nodes (i.e., k = Θ (n)). They show that the broadcast time is

Θ
(√

n/r
)

w.h.p., when ρ = O (r) and r = Ω
(√

log n
)

[CMPS09], and it is

O
(
(
√

n/ρ) + log n
)

w.h.p., when ρ = Ω
(
max{r,

√
log n}

)
[CPS09]. These

results crucially rely on r + ρ = Ω
(√

log n
)
, which implies that the range

of agents’ communications or movements at each step defines a connected

graph.

In more realistic scenarios, like the one considered in the next section,

the number of agents is decoupled from the number of locations (i.e., the

graph nodes) and a smoother dynamics is enforced by limiting agents to

move only between neighboring nodes. A reasonable model consists of

a set of multiple, simple random walks on a graph, one for each agent,

with communication between two agents occurring when they are nodes

whose distance is at most r ≥ 0. One variant of this setting is the so-called

Frog Model, where initially one of k agents is active (i.e., is performing a

random walk), while the remaining agents do not move. Whenever an

active agent hits an inactive one, the latter is activated and starts its own

random walk. This model was mostly studied in the infinite grid focusing

on the asymptotic (in time) shape of the set of vertices containing all active

agents [AMP02, KS03].

A model similar to our scenario is often employed to represent the

spreading of computer viruses in networks, and the spreading time is also

referred to as infection time. Kesten and Sidoravicius [KS05] characterized the

rate at which an infection spreads among particles performing continuous-

time random walks with the same jump rate. In [DNS06], the authors

provide a general bound on the average infection time when k agents (one

of them initially affected by the virus) move in an n-node graph. For general

graphs, this bound is O (t∗ log k), where t∗ denotes the maximum average

meeting time of two random walks on the graph, and the maximum is

taken over all pairs of starting locations of the random walks. Also, in

the paper tighter bounds are provided for the complete graph and for ex-
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panders. Observe that the O (t∗ log k) bound specializes to O (n log n log k)

for the n-node grid by applying the known bound on t∗ of [AF03]. A tight

bound of Θ ((n log n log k)/k) on the infection time on the grid is claimed in

[WKK08], based on a rather informal argument where some unwarranted

independence assumptions are made. Our results show that this latter

bound is incorrect.

Recent work by Peres et al. [PSSS11] studies a process in which agents

follow independent Brownian motions in Rd. They investigate several

properties of the system, such as detection, coverage and percolation times,

and characterize them as functions of the spatial density of the agents, which

is assumed to be greater than the percolation point. Leveraging on these

results, they show that the broadcast time of a message is polylogarithmic in

the number of agents, under the assumption that a message spreads within

a connected component of the communication graph instantaneously, before

the graph is altered by agents’ motion.

4.3 Mathematical Model

We study the dynamics of information exchange among a set A of k agents

performing independent random walks on an n-node 2-dimensional square

grid Gn, which is commonly adopted as a discrete model for the domain

where agents wander. We assume that n ≥ 2k, since sparse scenarios are

the most interesting from the point of view of applications; however, our

analysis can be easily extended to denser scenarios. We suppose that the

agents are initially placed uniformly and independently at random on the

grid nodes. The distance between two grid nodes u and v, denoted by

||u− v||, is defined to be the Manhattan distance. Time is discrete and agent

moves are synchronized. At each step, an agent residing on a node v with

nv neighbors (nv = 2, 3, 4), moves to any such neighbor with probability 1/5

and stays on v with probability 1− nv/5, as depicted in Figure 4.1. With

these probabilities it is easy to see that at any time step the agents are placed
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uniformly and independently at random on the grid nodes. The following

two lemmas contain important properties of random walks on Gn, which

will be employed for deriving our results. In what follows, all logarithms

are taken to the base two.

Lemma 4.3.1. Consider a random walk on Gn, starting at time t = 0 at node v0.

There exists a positive constant c1 such that for any node v 6= v0, the probability

p(v, v0) that v is visited within (||v− v0||)2 steps is

p(v, v0) ≥
c1

max{1, log(||v− v0||)}
.

Proof. The Lemma is proved in [AMP02, Theorem 2.2] for the infinite grid

Z2. By the “Reflection Principle” [Fel68, Page 72], for each walk in Z2

that started in Gn, crossed a boundary and then crossed the boundary back

to Gn, there is a walk with the same probability that does not cross the

boundary and visits all the nodes in Gn that were visited by the first walk.

Thus, restricting the walks to Gn can only change the bound by a constant

factor.

Lemma 4.3.2. Consider the first ` steps of a random walk in Gn which was at node

v0 at time 0.

1. The probability that at any given step 1 ≤ i ≤ ` the random walk is at

distance at least ≥ λ
√
` from v0 is at most 2e−λ2/2.

2. There is a constant c2 such that, with probability greater than 1/2, by time `

the walk has visited at least c2`/ log ` distinct nodes in Gn.

Proof. We observe that the distance from v0 in each coordinate defines a

martingale with bounded difference 1. Then, the first property follows

from the Azuma-Hoeffding Inequality A.1.6. As for the second property,

let R` be the set of nodes reached by the walk in ` steps. By Lemma 4.3.1,

E [R`] = Ω (`/log `) (even when v0 is near a boundary), while Var [R`] =

Θ
(
`2/log4 `

)
(see [Tor86]). The result follows by applying Chebyshev’s

inequality.
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t = 0√
n

(a) At time t = 0, n agents are spread inde-

pendently and uniformly at random over the
√

n×√n planar grid.

a

t = 0

(b) Agents perform independent random walks

on the grid. In each of the following subfigures,

the position of each agent at the previous time

step is marked by a shadow.

Figure 4.1: The random walkers mobility model.
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t = 1

(c)

t = 2

(d)

t = 3

(e)

t = 4

(f)

Figure 4.1: The random walkers mobility model.
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Let M be a set of messages, which will be referred to as rumors henceforth,

such that for each m ∈ M there is (at least) one agent informed of m at time

t = 0. W.l.o.g., we can assume that the number of distinct rumors is at most

equal to the number of agent. We denote by Ma(t) the set of rumors that

agent a ∈ A is informed of at time t, for any t ≥ 0; possibly, Ma(0) = ∅.

We assume that each agent is equipped with a transmission radius r ∈ N,

representing the maximum distance at which the agent can send information

in a single time step.

The spread of rumors can be represented by a dynamic communication

graph process {Gt(r) | t ≥ 0}, where Gt(r), the visibility graph at time t, is a

graph with vertex set A and such that there is an edge between two vertices

iff the corresponding agents are within distance r at time t. For a graphical

representation, see Figure 4.2.

Following a common assumption justified by the physical reality that

the speed of radio transmission is much faster than the motion of the

agents [PSSS11], we suppose that rumors can travel throughout a connected

component of Gt(r) before the graph is altered by the motion. We assume

that within the same connected component agents exchange all rumors they

are informed of. Formally, let C be a connected component of Gt(r): for all

a ∈ C, Ma(t) =
⋃

a′∈C Ma′(t− 1). Note that the sets Ma(t) can only grow

over time, that is, agents do not “forget” rumors.

We are interested in studying the following quantities:

Definition 4.3.3 (Broadcast Time, Gossip Time). The broadcast time Tm
B of a

rumor m ∈ M is the first time at which every agent is informed of m, that is, for

all t ≥ Tm
B and a ∈ A, m ∈ Ma(t). The gossip time TG of the system is the first

time at which every agent is informed of every rumor, that is, for any t ≥ TG and

a ∈ A, Ma(t) = M.

Note that both Tm
B and TG depend on the transmission radius r, but we

will omit this dependence to simplify the notation. We will also write TB

instead of Tm
B when the message m is clearly identified by the context.
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a
r

(a) Each agent is endowed with a transmis-

sion radius r. The visible grid locations are

those contained in the shaded square.

a

b

c

(b) Agent a cannot communicate with agent

b, since their distance is greater than r. On

the other hand, a and c can exchange infor-

mation, since they are within distance r.

Figure 4.2: The random walkers communication model.
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Gt(r)

(c) A snapshot of the visibility graph Gt(r). Each connected com-

ponent is called “island”, and nodes in two different islands are at

distance at least r.

Figure 4.2: The random walkers communication model.
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4.4 Broadcast Time in a Sparse System

In this section we give bounds to the broadcast time TB of a rumor when

the transmission radius is below the percolation point rc ≈
√

n/k, that is,

when all the connected components of Gt(r) comprise at most a logarithmic

number of agents. In this regime, we show that quite surprisingly TB does

not depend on the transmission radius, the reason being that the broadcast

time is dominated by the time it takes for many independent random walks

to intersect one another. In Subsection 4.4.1 we prove an upper bound on

the broadcast time TB in the extreme case r = 0, that is, when agents can

exchange information only when they meet on a grid node. The same upper

bound clearly holds for any other r > 0. Then, in Subsection 4.4.2 we show

that the upper bound is tight, within logarithmic factors, for all values of

the transmission radius below the percolation point. We also argue that the

bounds on TB easily extend to gossip time TG.

4.4.1 Upper Bound on the Broadcast Time

The main technical ingredient of the analysis carried out in this section is

the following lower bound on the probability that two random walks ā, b̄

on the grid meet within a given time interval and not too far from their

starting positions, which is a result of independent interest.

Lemma 4.4.1. Consider two independent simple random walks on the grid ā =

〈a0, a1, . . .〉, and b̄ = 〈b0, b1, . . .〉, where at and bt denote the locations of the walks

at time t ≥ 0. Let d = ||a0 − b0|| ≥ 1 and define D to be the set of nodes at

distance at most d from both a0 and b0. For T = d2, there exists a constant c3 > 0

such that

Pā,b̄(T) , Pr [∃t ≤ T such that at = bt ∈ D]

≥ c3/ max{1, log d}.

Proof. The case d = 1 is immediate. Consider now the case d > 1. Let

Pt(w, x) denote the probability that a walk that started at node w at time 0
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is at node x at time t, and let R(w, u, D, s) be the expected number of times

that two walks which started at nodes w and u at time 0 meet at nodes of D

during the time interval [0, s], then

R(w, u, D, s) =
s

∑
t=0

∑
x∈D

Pt(w, x)Pt(u, x).

Let τ(a, b) be the first meeting time of the walks ā and b̄ at a node of D.

Then

R(a0, b0, D, T) =
T

∑
t=0

Pr [τ(a, b) = t] R(at, at, D, T − t)

≤ Pā,b̄(T)max
x

R(x, x, D, T).

Thus,

Pā,b̄(T) ≥
R(a0, b0, D, T)

maxx R(x, x, D, T)
.

It is easy to verify that |D| ≥ d2/4. Applying Theorem 1.2.1 in [Law91] we

have:

R(a0, b0, D, T) ≥
T

∑
t=0

∑
x∈D

Pt(a0, x)Pt(b0, x)

≥
T

∑
t= T

2 +1
∑

x∈D
4
(

1
πt

)2

e−
||x−a0||2+||x−b0||2

t .

By bounding ||x− a0||2 and ||x− b0||2 from above with T in the formula,

easy calculations show that R(a0, b0, D, T) = Ω (1). Similarly, using the fact

that there are no more than 4i nodes at distance exactly i from x, we have:

max
x

R(x, x, D, T) ≤ 1 +
T

∑
t=1

t

∑
i=1

4i 4
(

1
πt

)2

2e−
i2
t

≤ 1 +
(

4
π

)2 T

∑
t=1

1
t2

(√t

∑
i=1

i

)
+

 t

∑
i=1+

√
t

ie−i2/t


≤ 1 +

(
4
π

)2 T

∑
t=1

1
t2

 t
2
+

 t

∑
i=1+

√
t

i2e−i2/t


≤ 1 +

(
4
π

)2 T

∑
t=1

1
t2

(
t
2
+

e
(e− 1)2 t

)
= O (log T) .
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We conclude that there is a constant c3 > 0 such that

Pā,b̄(T) ≥ c3/ log d.

Observe that considering the difference random walk ā − b̄ =

〈a0 − b0, a1 − b1, . . .〉 and computing the probability that it hits the origin

in the prescribed number of steps does not provide any information about

the place where the meeting occurs, hence it is not immediate to derive the

above result through that approach.

The remainder of this section is devoted to proving the following upper

bound on the broadcast time of a single rumor m in the case r = 0. We

assume that Ma(0) = {m} for some a ∈ A, and Ma′(0) = ∅ for any other

a′ 6= a.

Theorem 4.4.2. Let r = 0. For any k ≥ 2, with probability at least 1− 1/n2,

TB = Õ
(

n√
k

)
.

We observe that since the diameter of Gn is 2
√

n − 2, we can use

Lemma 4.4.1 to show that with probability at least 1− 1/n2, at time 8n log2 n

an agent has met all other agents walking in Gn. Thus, the theorem trivially

holds for k = O (polylog(n)).

From now on we concentrate on the case k = Ω
(

log3 n
)

. We tessel-

late Gn into cells of side ` ,
√

14n log3 n/(c3k), where c3 is defined in

Lemma 4.4.1. (See Figure 4.3.)

We say that a cell Q is reached at time tQ if tQ is the first time when a

node of the cell hosts an agent informed of the rumor, and we call this first

visitor the explorer of Q. We first show that, after a suitably chosen number

T1 = O
(
`2 log4 n

)
of steps past tQ, there is a large number of informed

agents within distance O
(
` log5/2 n

)
from Q. Furthermore, we show that

while the rumor spreads to cells adjacent to Q, at any time t ≥ tQ + T1 a

large number of informed agents are at locations close to Q. Figure 4.4
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√
n

`

Figure 4.3: The tessellation of the planar grid adopted in our analysis.

offers some intuition about this process. These facts will imply that the

exploration process proceeds smoothly and that all agents are informed of

the rumor shortly after all cells are reached.

The above argument is made rigorous in the following sequence of

lemmas.

Lemma 4.4.3. Consider an arbitrary `× ` cell Q of the tessellation. Let T1 =

16βγ`2 log4 n and c4 = 8
√

5βγ, where β = 7/(2c1) and γ = 18/c3. By time

τ1 = tQ + T1, at least 4β log2 n agents are informed and are at distance at most

2(1 + c4 log5/2 n)` from Q, with probability 1− 1/n8, for sufficiently large n.

Proof. Since at any given time the agents are at random and independent

locations, by the Chernoff bound we have that the following density condition

holds with probability at least 1− 1/n9, for sufficiently large n: for any cell
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Q

` t = tQ

(a) Consider cell Q at time tQ, that is,

when it contains an informed agent for

the first time.

`1

t = τ1

(b) After T1 time steps, many newly in-

formed agents will be at distance at most

`1 from Q.

`2

t = τ2

(c) After additional T2 steps, each cell adjacent to

Q has been reached by the message, and many

informed agents will stay at distance at most `2

from Q.

Figure 4.4: Intuition for the analysis of the upper bound on the Broadcast

Time.
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Q′ and any time instant t ∈ [0, n log4 n], the number of agents residing in

cell Q′ at time t is at least (7 log3 n)/c3. In the rest of the proof, we assume

that the density condition holds.

First, we prove that, by time τ1, there are at least 4β log2 n informed

agents in the system. We assume that at every time step t ∈ [tQ, τ1] there

is always an uninformed agent in the same cell where the explorer resides

(otherwise the sought property follows immediately by the density condi-

tion). For 1 ≤ i ≤ 4β log2 n, let ti ≥ tQ be the time at which the explorer

of Q informs the i-th agent. For notational convenience, we let t0 = tQ. To

upper bound ti, for i > 0, we consider a sequence of γ log2 n consecutive,

non-overlapping time intervals of length 4`2 beginning from time ti−1. By

the previous assumption, at the beginning of each interval the cell where the

explorer resides contains an uninformed agent a. Hence, by Lemma 4.4.1,

the probability that the explorer fails to meet an uninformed agent during

all of these intervals is

Pr
[
ti > ti−1 + 4γ`2 log2 n

]
≤ (1− c3/ log(2`))γ log2 n

≤ 1/n9,

where the last inequality holds for sufficiently large n by our choice of γ. By

iterating the argument for every i, we conclude that with probability at least

1− 4β log2 n/n9, there are at least 4β log2 n informed agents at time τ1. Let

I denote the set of informed agents identified through the above argument,

and observe that each agent of I was in the cell containing the explorer at

some time step t ∈ [tQ, τ1].

To conclude the proof of the lemma, we note that, by Lemma 4.3.2, the

probability that the explorer, during the interval [tQ, τ1], reaches a grid node

at distance greater than (c4 log5/2 n)` from its position at time tQ is bounded

by 2T1/n10. Consider an arbitrary agent a ∈ I. As observed above, there

must have been a time instant t̄ ∈ [tQ, τ1] when a and the explorer were

in the same cell, hence at distance at most (2 + c4 log5/2 n)` from Q. From

time t̄ until time τ1 the random walk of agent a proceeds independently
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of the random walk of the explorer. By applying again Lemma 4.3.2, we

can conclude that the probability that one of the agents of I is at distance

greater than 2(1+ c4 log5/2 n)` from Q at time τ1 is at most 8β log2 n/n9. By

adding up the upper bounds to the probabilities that the event stated in the

lemma does not hold, we get 1/n9 + 4β log2 n/n9 + 2T1/n10 + 8β log2 n/n9,

which is less than 1/n8 for sufficiently large n.

Lemma 4.4.4. Consider an arbitrary `× ` cell Q of the tessellation. Let T1, τ1, c4

and β be defined as in Lemma 4.4.3, and let T2 = (2(2 + c4 log5/2 n)`)2, τ2 =

τ1 + T2, and c5 = (4
√

log 16)c4. Then, the following two properties hold with

probability at least 1− 1/n6 for n sufficiently large:

1. For Q and for each of its adjacent cells, there exists a time t, with τ1 ≤ t ≤ τ2,

at which there is an informed agent in the cell;

2. At any time t, with τ1 ≤ t ≤ τ2 + T1, there are at least β log2 n informed

agents at distance at most (2 + (2c4 + c5) log5/2 n)` from Q.

Proof. We condition on the event stated in Lemma 4.4.3, which occurs with

probability 1 − 1/n8. Hence, assume that by time τ1 there are at least

4β log2 n informed agents at distance at most d4 , 2(1 + c4 log5/2 n)` from

Q. Consider the center node v of Q (resp., Q′ adjacent to Q), so that at τ1

there are at least 4β log2 n informed agents at distance at most d4 + 2` from

v. By Lemma 4.3.1 the probability that v is not touched by an informed

agent between τ1 and τ2 is at most (1− (c1/ log(d4 + 2`)))4β log2 n, which is

less than 1/n7, for sufficiently large n, by our choice of β. Thus, Point 1

follows.

As for Point 2, consider an informed agent a which, at time τ1, is at

a node x at distance at most d4 from Q. Fix a time t ∈ [τ1, τ2 + T1]. By

Lemma 4.3.2 the probability that at time t agent a is at distance greater than

(c5 log5/2 n)` from x is at most 1/2. Hence, at time t the average number

of informed agents at distance at most d4 + (c5 log5/2 n)` from Q is at least

2β log2 n. Since agents move independently, Point 2 follows by applying

the Chernoff bound to bound the probability that at time t there are less
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than β log2 n informed agents at distance at most d4 + (c5 log5/2 n)` from

Q, and by applying the union bound over all time steps of the interval

[τ1, τ2 + T1].

We are now ready to prove the main theorem of this section:

of Theorem 4.4.2. As observed at the beginning of the section, we can limit

ourselves to the case k = Ω
(

log3 n
)

. Consider the tessellation of Gn into

`× ` cells defined before, and focus on a cell Q reached for the first time

at tQ. By Lemma 4.4.4, we know that with probability at least 1− 1/n6, in

each time step t ∈ [τ1, τ2 + T1] there are at least β log2 n informed agents

at distance at most d5 , (2 + (2c4 + c5) log5/2 n)` from Q and there exists

a time t′ ∈ [τ1, τ2] such that an informed agent is again inside Q. By

applying again the lemma, we can conclude that, with probability at least

(1− 1/n6)2, at any time step t′′ ∈ [t′ + T1, t′ + 2T1 + T2] there are at least

β log2 n informed agents at distance at most d5 from Q. Note that the

two time intervals [τ1, τ2 + T1] and [t′ + T1, t′ + 2T1 + T2] overlap and the

latter one ends at least T1 time steps later. Thus, by applying the lemma

n log4 n times, we ensure that, with probability at least (1− 1/n6)n log4 n ≥
1− log4 n/n5, from time τ1 until the end of the broadcast, there are always

at least β log2 n informed agents at distance at most d5 from Q.

Lemma 4.4.4 shows that each of the neighboring cells of Q is reached

within time τ2 = tQ + T1 + T2 with probability 1− 1/n6. Therefore, all cells

are reached within time T∗ = (2
√

n/`)(T1 + T2) with probability at least

1− 1/n5. Hence, by applying a union bound over all cells, we can conclude

that with probability at least (1− 1/n5)(1− log4 n/n4) ≥ 1− 1/n3 there

are at least β log2 n informed agents at distance at most d5 from each cell of

the tessellation, from time T∗ + T1 until the end of the broadcast.

Consider now an agent a which at time T∗ + T1 is uninformed and

resides in a certain cell Q. By an argument similar to the one used to prove

Lemma 4.4.3, we can prove that a meets at least one of the informed agents

around Q within O
(
`2 log5 n

)
time steps with probability at least 1− 1/n6.
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A union bound over all uninformed agents completes the proof.

Observe that the broadcast time is a non-increasing function of the

transmission radius. Therefore, the upper bound developed for the case

r = 0 holds for any r > 0, as stated in the following corollary.

Corollary 4.4.5. For any k ≥ 2 and r > 0, TB = Õ
(

n/
√

k
)

with probability at

least 1− 1/n2.

As another immediate corollary of the above theorem, we can prove that

the gossiping of multiple distinct rumors completes within the same time

bound, with high probability.

Corollary 4.4.6. For any k ≥ 2 and r > 0, TG = Õ
(

n/
√

k
)

with probability at

least 1− 1/n.

4.4.2 Lower Bound on the Broadcast Time

In this section we prove that the result of Corollary 4.4.5 is indeed tight, up

to logarithmic factors, for any value r of the transmission radius below the

percolation point. Note that this result is also a lower bound on TG if there

are multiple rumors in the system. First observe that with probability at

least 1− 2−(k−1), there exists an agent placed at distance at least
√

n/2 from

the source of m. Without loss of generality, we assume that the x-coordinates

of the positions occupied by such an agent and the source agent differ by at

least
√

n/4 and that the latter is at the left of the former. (The other cases

can be dealt with through an identical argument.) In the proof, we cannot

solely rely on a distance-based argument since we need to take into account

the presence of “many” agents which may act as relay to deliver the rumor.

Figure 4.5 presents graphically the intuition behind the proof of this lower

bound.

We define the informed area I(t) at time t as the set of grid nodes visited

by any informed agent up to time t, and let x(t) to be the rightmost grid
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>
√
n/4

s

a

t = 0

(a) Initially, with high probability there

exists an agent a whose distance from the

message source s is at least
√

n/4.

γ log n

t = ∆t

(b) In ∆t time steps the message cannot

reach a point further than γ log n from

the initial position of the source.

t = 2∆t

(c) We look at the area reached by the

message every ∆t time steps. Meanwhile,

the blue agent performs its own random

walk.

<
√
n/8

t = T

(d) The blue agent cannot be informed

at time T, since it could not reach the

informed area by time T.

Figure 4.5: Intuition for the analysis of the lower bound on the Broadcast

Time.
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node in I(t). We will show that there is a sufficiently large value T such

that, at time T, there is at least one uniformed agent right of x(T).

We need the following definition:

Definition 4.4.7 (Island). Let A be the set of agents. For any γ > 0, let Gt(γ)

be the graph with vertex set A and such that there is an edge between two vertices

iff the corresponding agents are within distance γ at time t. Then any connected

component of Gt(γ) is called an island of parameter γ at time t.

Next, we prove an upper bound on the size of the islands.

Lemma 4.4.8. Let γ =
√

n/(4e6k). Then, the probability that there exists an

island of parameter γ with more than log n agents at any time t, with 0 ≤ t ≤
8n log2 n, is at most 1/n2.

Proof. Since at any given time the agents are uniformly distributed in Gn,

the probability that a given agent is within distance γ of another given

agent at time t0 is bounded by 4γ2/n. Fix a time t0 and let Bw(t0) denote

the event that there exists an island with at least w > log n elements at time

t0. Then, recalling that ww−2 is the number of unrooted trees over w labeled

nodes, we have that

Pr [Bw(t0)] ≤
(

k
w

)
ww−2

(
4γ2

n

)w−1

≤
(

ek
w

)w
ww−2

(
4γ2

n

)w−1

.

Using definition of γ and the bound w ≥ 1 + log n and k ≤ n, we have

Pr [Bw(t0)] ≤
ek
w2 e−5(w−1) ≤ en

w2
1
n5 ≤

1
n4 ,

for a sufficiently large n. Applying the union bound over O
(

n log2 n
)

time

steps concludes the proof.

Next we show that, with high probability, for values of r below percola-

tion, the informed area cannot expand to the right too fast.
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Lemma 4.4.9. Suppose r ≤
√

n/(64e6k). Let γ =
√

n/(4e6k) and let t0 and

t1 = t0 + γ2/(144 log n) be two time steps. Then, with probability 1− 2/n2,

||x(t1)− x(t0)|| ≤ γ log n.

Proof. By Lemma 4.3.2, with probability 1− 2/n3 an agent cannot cover a

distance of more than (γ− r)/2 in γ2/(144 log n) time steps. Thus with

probability 1− 1/n2, any two agents belonging to distinct islands of Gt0(γ)

cannot come within distance r of each other in the interval [t0, t1]. Therefore,

in that time interval, the rumor can propagate exclusively among agents

belonging to those islands of Gt0(γ) containing at least one informed agent.

By Lemma 4.4.8 we conclude that with probability 1− 2/n2, in the interval

[t0, t1], x(t) can move to the right of at most γ(log n − 1) + (γ − r)/2 <

γ log n positions.

Finally, we can prove the main theorem of the section:

Theorem 4.4.10. Let k ≥ 2 and suppose that r ≤
√

n/(64e6k). Then, with

probability 1− (2−(k−1) + 1/n + 2/n2),

TB = Ω

(
n√

k log2 n

)
.

Proof. As mentioned before, with probability at least 1− 2−(k−1) there ex-

ists an agent a placed at distance at least
√

n/2 from the source of the

rumor; we may assume that their x-coordinates differ by at least
√

n/4

and that the uninformed agent is to the right of the source agent. Let

T = n/(2304e3
√

k log2 n) and γ =
√

n/(4e6k). By Lemma 4.4.9, with

probability 1− 1/n the frontier cannot move right in T steps more than

(γ log n/2)T/(γ2/(144 log n)) <
√

n/8. By Lemma 4.3.2, with probabil-

ity 1 − 2/n2, agent a cannot move left more than 2
√

T log n <
√

n/8,

so that agent a cannot be informed by time T. Hence, the broadcast

time is at least TB > T = Ω
(

n/(
√

k log2 n)
)

with probability at least

1− (2−(k−1) + 1/n + 2/n2).
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4.5 Related Models

In this work we took a step toward a better understanding of the dynamics of

information spreading in mobile networks. We proved a tight bound (up to

logarithmic factors) on the broadcast of a rumor in a mobile network where

agents perform independent random walks on a grid and the transmission

radius defines a system below the percolation point. Our results complement

the work of Peres et al. [PSSS11], who studied the behavior of a similar

system above the percolation point. A similar bound holds for the gossip

problem in this model, where at time 0 each agent has a distinct rumor and

all agents need to receive all rumors.

Observe that by modeling the mobility process of each agent as a random

walk on the grid, we are implicitly normalizing both the domain side and

the transmission radius with respect to the mobility range, that is, the

maximum distance that each agent can travel in unit time. This approach

is reasonable, since in real-world mobile systems the mobility range is

clearly much smaller than both the transmission radius and the physical

diameter of the area spanned by the system. Clearly, our results are readily

ported to the more general scenario featuring an arbitrary mobility range

(like the one considered in [CMPS09, CPS09]) where we still consider the

n-node grid populated by k agents with transmission range r but where, at

each step, an agent can jump uniformly at random to a grid node within

distance R from its current position. In this scenario, we can prove an upper

bound of Θ
(

n/(R
√

k)
)

to the broadcast time, still independent from the

transmission radius r, under the assumption that both R and r are below

the new percolation threshold Θ
(
(
√

n/k)/R
)
. To show this result, the main

idea is to consider a “coarsening” of the n-node grid into a new grid where

each node represents a cell of side Θ (R). Then, we can apply the proof

strategy we developed in Section 4.4.1, by noticing that each agent performs

a random walk on this “coarse” grid, once we perform a suitable time

scaling.
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Our analysis techniques are applicable to some interesting related prob-

lems. For example, similar bounds on the broadcast time TB can be obtained

for the Frog Model [AMP02], where only informed agents move and un-

informed agents remain at their initial positions. In particular, we can

show that the broadcast time in the Frog Model is upper bounded by

TB = Õ
(

n/
√

k
)

. The argument is similar to the proof of Theorem 4.4.2,

where Lemma 4.4.1 is replaced with Lemma 4.3.1 and the analysis of the

initial phase of the information dissemination process is carried out by using

Point 2 of Lemma 4.3.2. Also, a closer look at Theorem 4.4.10 reveals that the

same argument employed in our dynamic model to bound TB from below

applies to the Frog Model. Thus, we have tight bounds, up to logarithmic

factors, in this latter model as well.

Another measure of interest in systems of mobile agents is the coverage

time TC, that is, the first time at which every grid node has been visited

at least once by an informed agent [PSSS11]. While in the Frog Model

the broadcast time is obviously upper bounded by the coverage time, this

relation is not so obvious in our dynamic model, since the coverage of the

grid nodes does not imply that all agents have been informed of the rumor.

Nevertheless, one can verify that, in our model, TC ≈ TB = Õ
(

n/
√

k
)

.

Indeed, by Point 2 of Lemma 4.4.4 and by Lemma 4.3.1, after O
(
`2) steps

from the first time at which an informed agent reached a given cell, all the

nodes of that cell have been visited by some informed agent. Hence, by

the cell-by-cell spreading process devised in the proof of Theorem 4.4.2, we

can conclude that the coverage time is bounded by Õ
(

n/
√

k
)

. (In fact, the

same tight relation between TC and TB can be proved in the Frog Model.)

Another by-product of our techniques is a high-probability upper bound

O
(
(n log2 n)/k + n log n

)
on the cover time of k independent random walks

on the n-grid (i.e., the time until each grid node has been touched by at

least one such walk), improving on the previous results of [AAK+08, ES09]

which provide the same bound only for the expected value. Finally, in

a closely related scenario, namely a random predator-prey system where
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k = Ω (log n) predators are to catch moving preys on an n-node grid by

performing independent random walks [CFR09], our techniques yield a

high-probability upper bound O
(
(n log2 n)/k

)
on the extinction time of

the preys.
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Chapter 5

Conclusions

This final chapter is devoted to a summary of the main contributions of this

thesis and a discussion of some future research directions.

5.1 Summary

In this thesis we highlighted the need for a rigorous analytic approach to the

study of information dissemination in wireless networks. We contributed

several results on different network models, both static and dynamic. These

results are interesting per se from the mathematical point of view, but they

also have some important implications for real-world applications.

In Chapter 2 we described the main characteristics of wireless networks,

with special attention to ad hoc, sensor and mobile networks. Then, we

highlighted the essential problem with their state-of-the-art development

process, which is nowadays substantially left to prototypes and numerical

simulations. Hence, the necessity of a deeper, analytic understanding of

their behavior, since it enables a better design approach, by identifying the

key issues of those networks and quantifying their impact on the perfor-

mances of the whole system. In particular, we suggested that information

dissemination plays a crucial role in these distributed networks, where

89
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usually nodes are anonymous (not directly addressable because they do

not hold a “global” identifier), there is no supporting infrastructure to rely

upon and the system topology might change over time.

In Chapter 3 we studied a static random graph model, the Bluetooth

Topology, known to capture the device discovery phase of Bluetooth-like

networks. Our main result is a tight characterization of the expansion

properties of the Bluetooth Topology. Since expansion is essentially a

measure of bandwidth, being able to provide a quantitative estimate of this

property is useful for the design and analysis of routing strategies [LR99].

Our result is valid for the entire set of visibility ranges r(n) and number of

neighbor choices c(n) which are known to produce a connected graph, as

opposed to the results of [PR04] and of [BDFL11] which hold only for the

extreme cases r(n) = Θ (1) and r(n) = Θ
(√

log n/n
)
, respectively.

By leveraging on the expansion properties, we also derived nearly tight

bounds on the diameter of the same topology, which is again an important

measure for routing, related to the latency of the network. Our bounds

are tight for a large spectrum of visibility ranges (i.e., r(n) = O (1/ log n)),

which includes “small ranges”, that is, those which are most interesting

for the large scale deployment of the technology. For the larger ranges

r(n) = Ω (1/ log n) we provided a more sophisticated lower bound which

matches the upper bound up to a log log n factor.

A somewhat surprising consequence of our results is that BT (r(n), c(n))

exhibits roughly the same expansion as the Random Geometric Graph

RGG (r(n)), which is a much denser supergraph of BT (r(n), c(n)). Also,

the diameters of the two graphs differ by at most a logarithmic additive term.

These are important considerations for real ad hoc networks, especially for

what concerns routing capabilities, since they imply that BT (r(n), c(n))

features similar bandwidth and latency characteristics ofRGG (r(n)) at only

a fraction of the costs.
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In Chapter 4 we considered a system of mobile agents, performing

random walks on a planar grid, focusing on the dynamics of information

spreading.

We proved a tight bound (up to logarithmic factors) on the broadcast

time of a rumor in a sparse network, that is, when the transmission radius

of the agents defines a system below the percolation point. Our results

complement the work of Peres et al. [PSSS11], which studied the behavior

of a similar system above the percolation point.

Our proofs show that in a sparse system the broadcast time of a message

is asymptotically independent from the transmission radius of the agents.

Indeed, we showed that the time needed to spread the message is dominated

by the time needed for many agents to meet. This result is quite surprising

and it marks a sharp difference between a sparse and a dense system, since

we know from previous works that in a dense system the broadcast time

depends on the transmission radius.

Our analysis techniques also apply to the gossip problem in the Random

Walk Model, where at time 0 each agent has a distinct rumor and all agents

need to receive all rumors. Moreover, our framework allows us to study

several related scenarios with different mobility patterns or different rules

of interaction between agents.

5.2 Further Research

Given the broad scope of the subject of this thesis, many problems in

the field necessarily remain unsolved and many future research directions

remain open. Here we discuss the most interesting ones and those that are

most relevant to our contribution.

With reference to the Bluetooth Topology, we recall that it is still an open

problem to establish, for every given visibility range r(n) = ω
(√

log n/n
)
,

the minimum number c(n) of neighbor choices which yield connectivity and

to assess the corresponding expansion and diameter properties.
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Moreover, there is a small asymptotic gap in our characterization

of the diameter of BT (r(n), c(n)), for r(n) = ω (1/ log n) and r(n) =

o (log log n/ log n), which stems from the proof of Lemma 3.5.1. We think

that this gap might be removed by a tighter analysis, taking explicitly into

account the process generating BT (r(n), c(n)).

Furthermore, given the rather regular structure of BT (r(n), c(n)), one

can hope to derive sharp bounds on its expansion and diameter. In par-

ticular, one might want to improve the results presented in this thesis

by obtaining sharper bounds that hold, with high probability, within a

(1 + o (1))-factor from the respective “true” values.

Finally, from a more practical point of view, one might want to devise

specific algorithms for communication tasks performed on a Bluetooth-like

network. In particular, the expansion characterization given in Chapter 3

might help in designing algorithms which are efficient with respect to

their completion time and the number of exchanged messages, and hence

energy-efficient.

Nowadays mobile networks are attracting much interest, from both the

network research community and the theory community. Recently our

results have been generalized to higher dimensions by Lam et al. [LLM+12].

They prove that the behavior of the system in d ≥ 3 dimensions is qualita-

tively different than on the plane. In particular, they show a phase transition,

as the ratio between the volume of the space and the number of agents

varies, that does not occur in two dimensions.

Starting from the Random Walk Model described in Chapter 4, a first

natural extension might be considering more complex mobility patterns. We

might want to replace the grid with a generic graph, for example modeling

the streets in a city. In this case, we might look for a characterization

of the broadcast time in terms of the graph properties, for example the

expansion of the underlying graph. Progress in this direction has been

recently achieved by Clementi et al. [CST11].

We might also consider a different evolution process for the position of
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an agent, including more realistic features like group mobility, attraction

toward popular places, and so on. The final goal is the formulation of sound

analytical mobility models representing the dynamics of people traveling on

road or subway networks, whereas, up to now, these types of systems have

been studied by physicists, transportation scientists and engineers only by

means of empirical or simulation techniques.

Another enhancement of the model, which is very interesting for practi-

cal purposes, consists in adopting a more realistic communication model.

For example, instead of using a distance-based visibility graph, we can

adopt a SINR-like communication model. Such a model takes explicitly into

account the local effect of interference and hence might be more appealing

when studying real-world networks. From the theoretical point of view,

adopting such a communication model it might lead to slightly different

dynamics at a system scale due to the effect of many unsuccessful communi-

cation attempts inside a very crowded area, leading to interesting tradeoffs

between agent density and speed of information spreading.

As a first step toward this goal, we are studying a dynamic version of

the “Line-of-Sight” model of Frieze et al. [FKRD09]. In this scenario agents

are disseminated uniformly at random on a square grid. An agent can

communicate only with those agents lying in the same row or column, up

to a certain distance `. This model aims at capturing the significant signal

decay due to concrete buildings in a Manhattan-like environment, which

forces communication to take place only when a direct line-of-sight between

two agents exists. In a work in progress [PU12], we consider the dynamic

model obtained by allowing agents to perform random walks on the grid,

and we characterize the broadcast time of a message, in function of the

agent density and the transmission range `.

Another dimension of mobile networks that is certainly worth explor-

ing is the communication complexity of generic distributed computations

among moving agents. We might want to characterize the tradeoff between

the speed of information spreading and the number of messages exchanged



94 Chapter 5. Conclusions

by the agents. One possible approach is the “parsimonious” one outlined

in [BCF11, CS11], where agents might decide to stop communicating a

certain message, for example because they have reached a pre-defined re-

transmission threshold. The intriguing aspect of these protocols lies in the

analysis leading to the equilibrium threshold that keeps the number of

transmission low while maintaining the message “alive” and “spreading”

in the system.

Finally, we might investigate caching policies in mobile networks for

space-consuming items, like songs or videos, being transferred directly from

a user to another. In our results we assumed that each agent could store a

number of messages linear in the number of nodes in the system, so that it

can act as a relay for any message. A natural question to ask is about the

existence of optimal caching policies when the local buffer of each agent

is bounded. This scenario is particularly interesting since provides better

understanding of social phenomena like the spreading of viral contents on

social networks.



Appendix A

Analytic Tools

A.1 Probability Concentration Inequalities

For the sake of completeness, we report here some standard results, often

referred through the text of this thesis, concerning the concentration of

certain probability distributions.

We adopt the terminology and notation of Motwani and Ragha-

van [MR95], Mitzenmacher and Upfal [MU03], and Dubhashi and Pan-

conesi [DP09]. The interested reader might consult one of the above books

to find the full proofs and lots of applications of the following theorems.

Theorem A.1.1 (Markov’s Inequality). Let X be a random variable that assumes

only nonnegative values. Then, for all a > 0,

Pr [X ≥ a] ≤ E [X]

a
.

Theorem A.1.2 (Chebyshev’s Inequality). For any a > 0,

Pr [|X− E [X]| ≥ a] ≤ Var [X]

a2 .

Theorem A.1.3 (Chernoff Bound for Poisson Trials). Let X1, . . . , Xn be inde-

pendent 0-1 random variables such that Pr [Xi = 1] = pi. Let X = ∑n
i=1 Xi and

µ = E [X]. Then the following Chernoff bounds hold:

1. for 0 < δ ≤ 1,

Pr [X ≥ (1 + δ)µ] ≤ e−µδ2/3;
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2. for 0 < δ < 1,

Pr [X ≤ (1− δ)µ] ≤ e−µδ2/2;

3. for R ≥ 6µ,

Pr [X ≥ R] ≤ 2−R.

Corollary A.1.4. With the notation of Theorem A.1.3, for 0 < δ < 1,

Pr [|X− µ| ≥ δµ] ≤ 2e−µδ2/3.

Generally, when analyzing complex systems, the random variables in-

volved are not mutually independent. However, if their dependencies can

be “bound”, we might apply the following generalization of the Chernoff

Bound (Theorem A.1.3), usually known as Azuma-Hoeffding Inequality

(Theorem A.1.6).

We introduce the definition of martingale first.

Definition A.1.5 (Martingale). A sequence of random variables Z0, Z1, . . . is a

martingale when:

• E [|Zn|] < +∞, and

• E [Zn+1 | Z0, . . . , Zn] = Zn.

Now we can state the aforementioned concentration result.

Theorem A.1.6 (Azuma-Hoeffding Inequality). Let X0, . . . , Xn be a martingale

such that

|Xk − Xk−1| ≤ ck.

For t ≥ 0, define Ct = ∑t
k=1 c2

k. Then, for all t ≥ 0 and any λ > 0,

Pr [|Xt − X0| ≥ λ] ≤ 2e−λ2/2Ct .
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A.2 Markov Chains

In this section we collect several definitions and facts concerning Markov

chains that are necessary to precisely state several results in this thesis.

Two classical references on the subject are the online notes by Aldous and

Fill [AF03] and the recent book by Levin, Peres and Wilmer [LPW08]. A

useful introduction to finite Markov chains and some related results is

presented in Mitzenmacher and Upfal’s textbook [MU03], from which we

borrow the notation for this section.

In what follows we consider discrete-time, finite-state, and time-

homogeneous Markov chains, that is, Markov chains that evolve in discrete

steps, have a finite state space, and where the probability of any state transi-

tion does not change over time. Given a Markov chain P, we denote by P`
i,j

the probability that the chain moves from state i to state j in ` steps.

The structure of a Markov chain might be characterized by inspecting its

states. We recall a couple of definitions.

Definition A.2.1 (Irreducibility). A Markov chain is irreducible if all the states

belong to one communicating class, that is, for any two states i, j there a positive

integer ` such that P`
i,j > 0.

Consider the graph representation of a Markov chain P, that is, the

directed graph having a node for each chain state and an edge from state i

to state j iff Pi,j > 0. The above definition says that the chain is irreducible

iff its graph representation is strongly connected.

Note that even a irreducible chain might present an unstable behavior,

due to its particular periodic structure.

Definition A.2.2 (Periodicity). A state j in a discrete time Markov chain is

periodic if there exists an integer ∆ > 1 such that

Pr [Xt+s = j |Xt = j] = 0

unless s is divisible by ∆. A discrete time Markov chain is periodic if any state in

the chain is periodic. A state or a chain that is not periodic is called aperiodic.
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However, note that a sufficient condition for the aperiodicity of an

irreducible Markov chain is the existence of a state i such that Pi,i > 0. With

respect to the graph representation of the chain, this means that state i

presents a self-loop.

For the graph models described in this thesis we often provide analytic

results that hold when the system has reached a steady state. This concept

is formalized by the following definition.

Definition A.2.3 (Stationary distribution). A stationary distribution of a

Markov chain P is a probability distribution π̄ such that

π̄ = π̄P.

Interestingly, a Markov chain with a “well behaved” structure has a

unique stationary distribution, independent from the starting state of the

chain. The classical result is the following.

Theorem A.2.4. Any finite, irreducible, and aperiodic Markov chain has the

following properties:

• the chain has a unique stationary distribution

π̄ = (π1, π1, . . . , πn) ;

• for all states 1 ≤ i, j ≤ n, the limit

lim
t→+∞

Pt
j,i

exists and it is independent of j;

• the limit probability for the chain to be in state i satisfy

πi = lim
t→+∞

Pt
j,i =

1
hi,i

,

where hi,i is the expected number of steps for the chain, starting at state i, to

return to the same state i.

Note that once the hypotheses of Theorem A.2.4 are met, one can com-

pute the stationary distribution of a Markov chain P by solving the system

of equations π̄ = π̄P, together with the normalization constraint ∑i πi = 1.
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