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A B S T R A C T

The research presented in this thesis involves different aspects related to advanced
control methodologies and self-commissioning identification algorithms in modern elec-
trical drives. The theoretical study and the validation of the results obtained were per-
formed in the three years of Ph.D. at the Electric Drives Laboratory in the Department of
Management and Engineering of the University of Padova, (VI) Italy. The research top-
ics were mainly three, all related to the implementation and development of advanced
controls for electric drives, aimed at a more efficient use of the electric machines in the
modern mechatronic applications. The demand of electric drives capable of guarantee
high-performance and flexible enough to update in real time the parameters involved
in the control algorithm are the motivation of the present research, as well as the mesh-
ing or replacement of standard or obsolete control techniques with modern ones, able
to fully exploit the new hardware resources. In order to contextualizes and motivate
the choice of the present research in the world scenario, a comprehensive bibliographic
framework can be found in the introduction of each chapter of the thesis.
The part one of the thesis presents two new control architectures for Permanent Magnet
Synchronous Motors, that is a type of electric machine notoriously appreciated by both
academia and industry for its flexibility of use and controllability. To this aim, in Chap.2
is proposed a non-linear control algorithm for the automatic search of the Maximum
Torque Per Ampere (MTPA) operating condition for Permanent Magnet Synchronous
Motors with anisotropic structure, to be integrated in a conventional Field Oriented
Control scheme. The exhaustive convergence and stability analysis performed in order
to derive a new and original tuning method of the controller (proven by numerous
experimental evidences) is definitely one of the distinguishing features in this research
topic.
In parallel to the first topic, for the same type of motor has been investigated and
developed (first analytically and then by simulation) a speed and current Direct Pre-
dictive Control with Hierarchical decisional structure. Unlike the traditional control
techniques, the proposed Direct Predictive Control with modified hierarchical control
structure has a faster dynamic and the capability to impose different operating condi-
tions aimed at the energy efficiency optimisation. The on-line execution of the algorithm
required for the experimental validation, has become possible thanks to the adoption
of a control platform based on FPGA logic (Chap.3). In fact, the processing speed pro-
vided by these devices, released from the execution of sequential instructions (typical
of the architecture of the microprocessors), ensures an execution time of the algorithm
contained in a few µs.
The part two of the thesis (i. e. Chap.5) presents an innovative technique of param-
eter identification for induction motors, capable of estimating the parameters of the
equivalent inverse-Γ electric circuit completely at standstill. As known, the saturations
in the parameters of the magnetic circuit of the induction motor and the relative non-
linearities, deteriorate the performance of the standard sensored or sensorless vectorial
controls. The studied self-commissioning procedure addresses and solves many prob-
lems related to the estimate of the non-linearity of the parameters, and then it can be
considered as an evolution of the classical identification techniques in the literature.
The practical feasibility, doubly validated by numerous experimental tests and by many
finite element simulations on three different induction motors, concludes the chapter
and proves definitely the method.
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S O M M A R I O

La ricerca presentata in questa tesi coinvolge molteplici aspetti che si legano alle
più recenti metodologie di controllo studiate per azionamenti elettrici di ultima gene-
razione. Lo studio teorico e la validazione in ambito sperimentale sono il frutto del
lavoro svolto nel triennio di dottorato presso il laboratorio di azionamenti elettrici del
Dipartimento di Tecnica e Gestione dei Sistemi Industriali dell’Università degli Studi di
Padova. I temi di ricerca trattati sono principalmente tre, tutti legati alla realizzazione e
allo sviluppo di algoritmi di controllo innovativi, capaci di incrementare l’efficienza e le
prestazioni delle macchine elettriche di ultima generazione per applicazioni meccatroni-
che. Azionamenti elettrici in grado di garantire elevate prestazioni ma sufficientemente
flessibili da aggiornare in tempo reale i diversi parametri coinvolti nel algoritmo di
controllo sono il filo conduttore e la motivazione della presente ricerca, così come la
sostituzione di logiche di controllo standard o obsolete con nuove architetture di con-
trollo capaci di sfruttare le più recenti innovazioni hardware. Al fine di contestualizzare
e motivare la ricerca condotta nel panorama mondiale, nell’introduzione di ciascun ca-
pitolo è inserito un esaustivo inquadramento bibliograficoinerente inerente il problema
affrontato.
La prima parte della tesi presenta due nuove architetture di controllo per motori sin-
croni a magnete permanente, tipologia di macchina elettrica notoriamente apprezzata
dal mondo accademico e industriale sia per la sua flessibilità d’uso che per la sua facile
controllabilità. In tal senso, nel Capitolo2 è descritto e formalizzato un controllo non
lineare per motori sincroni a magnete permanente anisotropi, inseribile in schemi di
controllo convenzionali ad orientamento di campo per ottenere la condizione di funzio-
namento a massima coppia su corrente (MTPA). L’esaustiva analisi di convergenza e
stabilità condotta al fine di ottenere un nuovo ed originale metodo per la sintonizzazio-
ne del regolatore (comprovato da numerose evidenze sperimentali) è sicuramente una
delle caratteristiche distintive per questo ramo della ricerca.
Per la stessa tipologia di motore è stato poi sviluppato un controllo predittivo a sta-
ti finiti con struttura decisionale gerarchica. A differenza delle tecniche di controllo
tradizionali, la soluzione studiata garantisce una dinamica veloce e la possibilità di
imporre condizioni operative diverse, volte all’ottimizzazione e all’incremento dell’ef-
ficienza energetica. L’esecuzione on-line di tale algoritmo per le verifiche sperimentali
si è resa fattibile grazie all’adozione di una piattaforma di controllo basata su logica
FPGA (Capitolo3), in quanto la velocità di calcolo offerta da tali dispositivi, svincolata
dall’esecuzione sequenziale delle istruzioni tipica dei microprocessori, garantisce tempi
di esecuzione dell’algoritmo contenuti a pochi µs.
Nella seconda parte della tesi (Capitolo5) è presentata un innovativa tecnica di identi-
ficazione parametrica per motori asincroni, capace di stimare i parametri del circuito
equivalente a Γ-inverso del motore asincrono, a rotore fermo. Come noto, le saturazioni
del circuito magnetico della macchina e le non linearità ad esso associate deteriorano
le performances nei normali controlli vettoriali sensored e soprattutto sensorless. Il me-
todo di identificazione parametrica studiato affronta e risolve molti problemi connessi
alla stima delle non linearità dei parametri, configurandosi a tutti gli effetti come un
evoluzione delle classiche tecniche di identificazione presenti in letteratura. La fattibili-
tà pratica del metodo, validata con innumerevoli prove sperimentali e simulazioni agli
elementi finiti su tre diversi motori ad induzione, conclude il capitolo e prova in modo
definitivo la realizzabilità del metodo.
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P R E FA C E A N D C O N T E X T U A L I Z AT I O N

The fundamental purpose of the research in the field of electrical drives for isotropic
or anisotropic permanent magnet synchronous motor is to thoroughly study new con-
trol techniques capable to improve the overall efficiency and the performances of the
modern electrical drives. Electric drives with an high dynamic are required but an opti-
mum use of the overall system is an essential aspect in the new AC drives generations,
always more widespread in many fields, e. g. in robotics applications, wind or hydro
energy generation and automotive industry [1].
The recent environmental and energy efficiency laws have pushed a renewed interest
into a more efficient utilisation of electrical motors, that can be reached only by means
of modern control techniques. This first part of the dissertation collects different control
strategy to obtain more feasible and energy-efficient drives for PMSM.
The aim of the research is to the create of a more efficient control architectures capable
to overcome the canonical industrial control algorithm and able to take advantage of
the high efficiency of the modern PMSM. All the topics presented and discussed are
framed within those issues, and in detail:

• Chap.1 presents the basic equations and the equivalent model of the anisotropic
synchronous machine used for the development of the control algorithms dis-
cussed in this part of the thesis. From the classical voltage balance equations, a
non-linear model that takes into account the saturation effects which involves cur-
rents and flux linkages and the non-linear magnetic relationship is obtained by
performing a FEA of the machine for the whole current range of the motor, and
the comparison between the canonical linear representations of the machine and
the non-linear modelization is discussed and presented.

• Chap.2 deals with the theoretical study, the simulation and the experimental im-
plementation of an on-line perturbation-based method that retrieves automatically
the MTPA operating point. As known, the MTPA operation guarantees a specific
torque with the minimum current magnitude, and this leads to a copper losses
minimization and an increased overall system efficiency. The proposed method is
based on the non-linear ESC techniques, where a small perturbation is forced in the
control chain and the informations on the operating working point are retrieved
by considering the induced disturbance on the measurements. By evaluating the
changes in current reference magnitude produced by the speed regulator, a vari-
ation in the phase reference vector of the modified FOC scheme is performed and
the MTPA trajectory is guarantee. The main feature and the innovative contribu-
tion of this research is related to the convergence analysis of the control algorithm
and the possibility to tune the integral gain of the PI controller by using the con-
vergence time estimation retrieved by the complete Lyapunov stability analysis.
Moreover, a series of simulations and experimental validations are presented and
discussed considering two different PMSM-IPM motors, in order to validate the
proposed solution also from an industrial point of view. It is worth noting that
this topic of research and the related improvements in terms of energy efficiency
and energy consumption is strictly correlated with the architecture described in
Chap.3. Moreover, some features and innovative aspects of this control technique
could be applied without too many modifications to other motor types and, with
some adjustments in different fields of the research (e. g. in the photovoltaic MPP
tracking controller based on the ripple correlation techniques [2]).

3



4 preface - advanced control algorithms for pmsms

• Chap.3 deals with the theoretical study, the simulation and the experimental im-
plementation of a finite state predictive control for PMSM machines. This control
algorithm overcomes the standard FOC or Direct Torque Control (DTC) cascade
control schemes by adopting an on-line solution that tests and selects the opti-
mal voltage configuration by successive refinements of the applicable set, based
on a hierarchical decision structure. The algorithm guarantees an extremely fast
dynamic, while the use of a finite set of voltages greatly enhances the robustness
against parameter variations. Moreover, in the decisional structure can be easily
integrated many control objects in order to achieve interesting performance in
terms of efficiency (as the MTPA condition of Chap.2, achievable without taking
into account complicated adaptive controllers) or by minimizing the number of
commutations of the VSI. The studied control operates either with anisotropic or
isotropic motors (although in this latter case the MTPA condition is reduced to the
standard FOC), although one of the main contributes of the research resides into
the capability to operate with industrial AC drive configurations. An alternative
implementation on a Field Programmable Gate Array (FPGA) platform, instead of
the canonical microprocessor platform, has been used for the experimental vali-
dation of the algorithm, since the large number of computations requires an hard-
ware capable to manages in real time all the operations. It is worth noting that the
use of this new technology is always more merged with standard microprocessors
in the modern drive control boards, since frequently the computational resources
of complex control algorithms, as the proposed predictive control, have an high
computational requirement for an on-line implementation. Part of this research
has been developed during my brief permanence at the ABB Corporate Research
Center in Sweden.



1 T H E P E R M A N E N T M A G N E T S Y N C H R O N O U S M O T O R

1.1 introduction

The inverter-fed synchronous motors are widely used in many Mechatronic drive
systems (e. g. in robotic arms, where an high torque and a small moment of inertia is a
prerequisite in a small motor size).
If the PMSM synchronous machine is supplied by a current controlled voltage-source
Pulse Width Modulation (PWM) inverter, the stator reference currents are generated by
the reference speed (or reference electromagnetic torque) PI controllers, while the inner
PI currents regulators provides the couple of voltage references to the VSI.
In general, the PMSM is formed by a rotor containing the permanent magnets and a
stator with a distributed winding, and there are two main advantages in using the
permanent magnets to create the magnetic flux of the machine, rather than use the
field coil operating principle, where the current flows into the rotor composed by an
armature of wired coils to generates the flux linkage (e. g. the DC motors).
Firstly, the occupation area of the PMs for the magnetization is small, leading to several
degrees of freedom in the geometry design of the rotor. Secondly, the absence of an
excited rotor circuit avoids magnetization losses, leading to an increased high energy
and power density.
The stator winding of the PMSM exhibit the same geometry of that used in the well
known and robust induction motors, and it is obtained by using a compacted stack of
ferromagnetic laminations. An air gap g separates the rotor and the stator windings,
and it is necessary for the correct operating of the motor.
There are basically three types of PMSM machines (depending on the rotor typologies,
according to the positioning of the magnets into the rotor), but the motors with radial
magnetized PMs can be distinguished in two main classes:

• PMSM-SPM: the polar magnets are located on the surface of the rotor with alter-
nating polarity and the motor behaves as a smooth-air-gap machine, since in this
motor the direct and quadrature axis synchronous inductances are equal with
only magnet torque produced. A cross section is represented in Fig.1.1a.

• PMSM-IPM: in these machines, the permanent magnets are generally buried (ra-
dially or axially) into the rotor. Shape and dimensions of the magnets depends
by the specific design of the motor, but several flux barriers can be inserted in
the rotor structure, since the deviation of the magnetic flux linkage operated by
these barriers reduce the effects of the cogging torque. More in general, an in-
creased number of barriers leads to an increment of the the anisotropy of the
motor [3]. The conventional materials used for the construction of the permanent
magnets, as NdFeB or SmCo alloys, have a magnetic permeability comparable to
that of air (i. e. almost unitary), which is much lesser of the iron. Therefore, when
the magnets are placed within the rotor, the spatial distribution of the magnetic
permeability is no longer uniform, although it varies within the rotor: in brief
the rotor exhibits a magnetic "anisotropy". For the purposes of this thesis, the
meaning of "anisotropic" motors will be equivalent of that of "Interior Permanent
Magnet" motors, due of the same magnetic properties. With respect to the posi-
tion of the PMs in the rotor, several machine geometries and topologies can be
obtained (also by modifying the dimensions and the shapes of both the PMS and
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6 the permanent magnet synchronous motor
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(a) Sketch of a 2 poles PMSM-SPM motor with
surface mounted PMs.

d

q

(b) Sketch of a 6 poles PMSM-IPM motor with
tangential arrangement of the magnets
(IPMTAN).

d

q

(c) Sketch of a 4 poles PMASRM motor.

Fig. 1.1: Examples of rotor configurations for PMSM machines.

the flux barriers), as shown in Fig. 1.1. The sketch in Fig. 1.1b is relative to a
motor with tangential arrangement, while Fig. 1.1c refers to a motor PMASRM (a
reluctance motor assisted by permanent magnets). In both the figures, are also
reported the magnetic axis, that depends by the pole pairs of the machines.

Since the mathematical model of a PMSM-SPM can be derived by the more general model
of a PMSM-IPM, for all the rest of the discussion, only the PMSM-IPM will be considered.

1.2 structure and operating principle

The electromechanical conversion implemented by the PMSM-IPM follows the double
principle of electrodynamic systems and systems reluctance, and the torque generated
by them appears to be the sum of these two components.
Using the general equations of the three-phase voltage balance as starting point [4]:



uu(t) = Rsiu(t) +
dλu(t)

dt

uv(t) = Rsiv(t) +
dλv(t)

dt

uw(t) = Rsiw(t) +
dλw(t)

dt

(1.1)
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the distribution of the stator windings and the shaping of the magnets lead to sinusoidal
concatenated fluxe linkages (as in the case of the isotropic machine) λu,mg(t), λv,mg(t),
λw,mg(t). Assuming that no saturation affects the magnetic circuits, then the flux linkage
of each phase is the sum of the flux linkage given by the permanent magnet and the
flux linkage due to the phase currents.


λu(t) = λu,mg(t) + λu,i(t)

λv(t) = λv,mg(t) + λv,i(t)

λw(t) = λw,mg(t) + λw,i(t)

(1.2)

By arbitrarily choosing the electrical angle ϑme
1 (which is considered the angle between

phase u and the flux linkage produced by the permanent magnet) as a reference coordi-
nate, as shown in Fig.1.2, the distribution of the stator windings allows us to consider
λu,mg(t), λv,mg(t) and λw,mg(t) as sinusoidal flux linkages.
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Fig. 1.2: Section of a PMASRM with p = 2 pole pairs and Qs = 12 stator slots. In figure are
indicated the stator axes and the equivalent dq reference frame.

In particular:



λu,mg(t) = Λmg cos (ϑme)

λv,mg(t) = Λmg cos
(

ϑme −
2π

3

)
λw,mg(t) = Λmg cos

(
ϑme −

4π

3

) (1.3)

1 The electric angle ϑme is related to the mechanical positon ϑm by the relationship ϑme = pϑm, where p =
number of polar pairs.
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For the sake of simplicity, the time dependency will be omitted from now on. Λmg
represents the maximum flux concatenated with each phase as a result of the permanent
magnet. The three equations of (1.3) are devoid of the omopolar component, and so
they can be associated to the spatial vector:

Λs
mg = Λmgejϑme (1.4)

The suffix “s′′ indicates the stationary reference frame with the αβ represented in Fig.1.2.
The λuvw,i(t) terms of the (1.2) are the fluxes due to the interaction between the currents
ad stator inductances. They are expressed as:


λu,i = Luiu + Muviv + Mwuiw

λv,i = Lviv + Muviu + Mvwiw

λw,i = Lwiw + Mwuiu + Mvwiv

(1.5)

where Lu, Lv ans Lw are the mutual-inductances between the windings of the stator
phases and the others. Since the permanent magnets have magnetic permeability simi-
lar to that of air (this constitutes a virtual increase of the air gap g), the reluctance along
the axis of the magnetic field (defined as the d-axis) is greater than the reluctance along
the q-axis.
In particular, the auto and mutual inductances can be regarded as their dependence
on the position of the rotor and thus also indirectly by time. The anisotropic auto
inductances Lu, Lv ans Lw are further expressed as:



Lu = Lσ + L0 − L2 cos (2ϑme)

Lv = Lσ + L0 − L2 cos
(

2ϑme −
4π

3

)
Lw = Lσ + L0 − L2 cos

(
2ϑme −

2π

3

) (1.6)

L0 is related to the anisotropy of the structure, while Lσ represents the leakage induc-
tance, due to the stator flux which closes in the air without affecting the rotor.
By defining the inductances along the d and q axes as R∫ d and R∫ q, and assuming that
N represents the real number of coils per phase, the analytic expression of L0 and L2 is:

L0 = N2
1/R∫ d + 1/R∫ q

2

L2 = N2
1/R∫ d − 1/R∫ q

2

(1.7)

The mutual inductances Muv, Mvw ans Mwu in (1.5) can be expressed as:



Muv = −1
2

L0 − L2 cos
(

2ϑme −
2π

3

)
Mvw = −1

2
L0 − L2 cos (2ϑme)

Muw = −1
2

L0 − L2 cos
(

2ϑme −
4π

3

) (1.8)
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where L0 and L2 as the same ddefined in (1.7). Substituting the equations (1.3) -(1.8) in
the (1.1), the extended formulation of the voltage balances is obtained2.
In compact spatial vector form:

uuvw = Rsiuvw +
d (Luvwiuvw)

dt
+ euvw (1.10)

where voltages, currents and Back Electromotive Force (BEMF) of (1.9) are represented
as:

uuvw =

 uu

uv

uw

 ; iuvw =

 iu
iv
iw

 ; euvw =

 eu

ev

ew

 (1.11)

where the three BEMF eu, ev, ew, generated by the movement of the permanent magnet
with respect to the stator can be written as:



eu =
dλu,mg

dt
= −Λmgωme sin (ϑme) = −Λmgωme cos

(
ϑme −

π

2

)
ev =

dλv,mg

dt
= −Λmgωme cos

(
ϑme −

π

2
− 2π

3

)
ew =

dλw,mg

dt
= −Λmgωme cos

(
ϑme −

π

2
− 4π

3

) (1.12)

with ωme expressed in [rad.el./s]. The resistance and the matrix of the inductances (Rs
and Luvw) are defined as follows:

Rs =

Rs 0 0

0 Rs 0

0 0 Rs

 ; Luvw =

 Lu Muv Mwu

Muv Lv Mvw

Mwu Mvw Lw

 (1.13)

With the previous compact notation it is easy to express (1.10) in the rotary reference
frame dq (as represented in Fig.1.2, synchronous to the magnetic field generated by the
PMs of the rotor).
Using the canonical coordinate transformation matrix Tuvw/dq0 (Park’s Transformation)
the coordinates changes from the stationary three phase system (uvw) to the (dq0) ref-
erence frame3.

2

uu = Rsiu + La
diu

dt
+ Muv

div

dt
+ Muw

diw

dt
+

dLa

dt
iu +

dMuv

dt
iv +

dMuw

dt
iw + eu

uv = Rsiv + Muv
diu

dt
+ Lb

div

dt
+ Mvw

diw

dt
+

dMuv

dt
iu +

dLb
dt

iv +
dMvw

dt
iw + ev

uw = Rsiw + Muw
diu

dt
+ Mvw

div

dt
+ Lc

diw

dt
+

dMuw

dt
iu +

dMvw

dt
iv +

dLc

dt
iw + ew

(1.9)

3 The transformation is not conservative for the power. It follows that a correction factor of 2/3 has to be
considered in (1.14).
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Tuvw/dq0 =
2
3


cos (ϑme) cos

(
ϑme −

2π

3

)
cos

(
ϑme +

2π

3

)
sin (ϑme) sin

(
ϑme −

2π

3

)
sin
(

ϑme +
2π

3

)
1/2 1/2 1/2


(1.14)

Applying the (1.14) to the (1.10) return:

udq0 = Rsidq0 + Ldq0
didq0

dt
+ Tuvw/dq0

dT−1
uvw/dq0

dt
Ldq0idq0 + edq0

(1.15)

where

udq0 =

 ud

uq

u0

 ; idq0 =

 id

iq

i0

 ; edq0 =

 ed

eq

e0

 (1.16)

the matrix of the resistances is independent of the reference system, while the matrix
Ldq0 is defined as:

Ldq0 =

Ld 0 0

0 Lq 0

0 0 L0

 (1.17)

The result is obtained using the trigonometric Werner identity, which transforms the
products of two angles of the trigonometric functions of trigonometric sums and differ-
ences4.
Due to the particular choice of the reference system, not even the matrix of Ldq0 induc-
tances changes; it remains constant as the new system is synchronous to the rotor and
the parameters lose their dependence on its position, and then by time.
The terms of mutual coupling among the axes dq0 are mutually orthogonal, and the
Ld, Lq and L0 auto inductances are called direct synchronous inductance, quadrature
axis synchronous inductance and zero sequence inductance. The relationship with the
terms L0, L2 and Lσ is:

Ld = Lσ +
3
2
(L0 − L2)

Lq = Lσ +
3
2
(L0 + L2)

L0 = Lσ

(1.18)

4

sin(j) sin(k) = 1/2 [cos(j− k)− cos(j + k)]

sin(j) cos(k) = 1/2 [sin(j + k) + sin(j− k)]

cos(j) cos(k) = 1/2 [cos(j + k) + cos(j− k)]
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As already mentioned, the reluctance of the magnetic circuit relative to the d is greater
than that for the q axis. From (1.7) it follows that L0 and L2 are both positive, with
L0 > L2; and this is verified by (1.18) (Lq > Ld).
The Lq/Ld is then called the "saliency ratio ξ" and in a PMSM-IPM it can be higher (up
to 5). Note that, in the case of an isotropic rotor, the term L2 is missing, leading to
Ld = Lq = L = Lσ + (3/2)L0 = Lss + |Mss|; and then the isotropic behaviour of the
motor would be seen as a special case of an anisotropic machine, with a unitary salience
ratio. By expanding the matricial equations (1.15) in each of the dq0 component it
follows that:



ud = Rsid + Ld
did
dt
−ωmeLqiq

uq = Rsiq + Lq
diq

dt
+ ωmeLdid + ωmeΛmg

u0 = Rsi0 + L0
di0
dt

(1.19)

To derive the right torque expression, a general power balance can be applied to (1.19).
Multiplying both members of (1.19) for iddt, iqdt, i0dt and summing each of the three
equations term by term, the result is:

(
udid + uqiq + u0i0

)
dt = Rs

(
i2d + i2q + i20

)
dt + Ldiddid + Lqiqdiq · · ·

· · ·+ L0i0di0 + ωme
(
Λmgiq +

(
Ld − Lq

)
idiq
)

dt
(1.20)

The left-hand side of (1.20) represents the electric power supplied to the motor in dt.
On the right-hand side Rs

(
i2d + i2q + i20

)
dt represents the energy converted to heat by

the resistances on the windings.
Ldiddid + Lqiqdiq + L0i0di0 is the energy stored in the magnetic field, related to the
synchronous inductances. ωme

(
Λmgiq +

(
Ld − Lq

)
idiq
)

dt, under the hypothesis of a
conservative system, represents the mechanical energy developed by the machine.
This term represents the electromechanical power and is equal to the product between
the torque developed by the machine τ and the electromechanical speed ωme = pωm.
Since the transformation (1.14) is not invariant for the synchronous power, it must be
decreased by a factor 2/3. The final expression of the electromagnetic torque results:

τ =
3
2

pΛmgiq +
3
2

p
(

Ld − Lq
)

idiq (1.21)

The (1.21) combines the electromagnetic torque (related to the flux-linkage by the per-
manent magnets) and the torque produced by the reluctance terms (linked anisotropy
of the rotor).
The mechanical torque balance finally completes the model:

τ = τL + Bωm + J
dωm

dt
(1.22)

Combining (1.19), (1.21) and (1.22) it is possible to draw up the block diagram reported
in Fig. 1.3.
It represents the linear dynamics of a PMSM-IPM, and has been widely used in many
chapters of this thesis in relation to the controls of PMSM-IPM and PMSM-SPM machines.
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Unfortunately, although this scheme is easy to derive and implement, it has some limi-
tations. These are related to the linear approximation of the inductances, which cannot,
in many cases, be considered linear.
To overcome the former, a more detailed model has been derived, but in general, if few
parameters relative to the machine are known, as is usual, the scheme in Fig. 1.3 can
be considered as the starting point to simulate the electromechanical dynamic of the
machine.

Fig. 1.3: Linear block diagram for a PMSM-IPM machines.

1.3 model of the pmsm-ipm with magnetic saturation

In the previous paragraph some simplifications are taken into account to obtain the
final linear model of the PMSM-IPM machine. The real dynamic of a PMSM motor is
complex and involves non-linear effects related to the iron magnetic saturation and the
mutual interaction between the currents that have not been considered in the previous
paragraph.
Depending on the particular type of applications and by the specific requirement of
the control action, in the following chapters will not only be considered the linear
equations of the motor, but also their non-linear expression. Although the linear model
of the motor has general validity, in particular to mathematically derive the equations
of the control algorithms, the non-linear modelization of the machine is necessary to
obtain an accurate simulation model.
Efficient PMSM control schemes in fact, typically rely on a precise knowledge of the
machine mechanical and electrical characteristics. This is especially true for all mod-
ern sensorless drives, where a mathematical model of the machine is used to estimate
the rotor position/velocity required for the motor control: obviously, any parameter
mismatch between the model and the real device yields an estimation error that may
worsen the control performances.
As mentioned above, a real machine is affected by iron saturation (the effect increases
with high currents) and the flux linkage-current relations for the d and q axis cannot be
expressed through linear equations and constant inductances. Moreover the saturation
effects produces an interaction between the d- and q-axis, and the relationship depends
on the "cross saturation effect".
To derive a complete block diagram for a PMSM-IPM machine useful in a simulation
environment and that takes into account the non-linearity related to saturation of the
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magnetic circuits (not included in Fig.1.3), the general voltage balance is reconsidered
as:

uuvw = Rsiuvw +
dλuvw,i

dt
+

dλuvw,mg

dt
(1.23)

To transform the (1.23) in the dq0 reference frame, is sufficient to multiply the (1.23) by
the (1.14), obtaining:

Tuvw/dq0uuvw = Rs Tuvw/dq0iuvw + Tuvw/dq0
dλuvw,i

dt
+ Tuvw/dq0

dλuvw,mg

dt
(1.24)

Defining also

 λd

λq

λ0


︸ ︷︷ ︸

λdq0

= Tuvw/dq0

 λu,i

λv,i

λw,i


︸ ︷︷ ︸

λuvw,i

+Tuvw/dq0

 λu,mg

λv,mg

λw,mg


︸ ︷︷ ︸

λuvw,mg

(1.25)

and decomposing the vectorial equation into the three dq0 components, the general
voltage balance for the PMSM-IPM machine in the dq reference frame can be written as:



ud = Rsid +
dλd(id, iq)

dt
−ωmeλq(id, iq)

uq = Rsiq +
dλq(id, iq)

dt
+ ωmeλd(id, iq)

u0 = Rsi0 +
dλ0(id, iq)

dt

(1.26)

and the electromagnetic torque equation:

τ =
3
2

p
(
λd(id, iq)iq − λq(id, iq)id

)
(1.27)

The main problem in this description is related to the knowledge of two relationship

λd = f1(id, iq)

λq = f2(id, iq)
(1.28)

To find the couple of functions (1.28) without direct measurement in the real machine,
a possible alternative is to develop a finite element analysis, if the geometry and the
materials used for the construction of the electric machine are known with sufficient
precision. For the purposes of this research, an open-source simulation software called
Femm33 [5] has been adopted to perform the analysis of the machine and to calculate
the flux linkages relationships as a function of the stator currents.
Although this software limits the magnetic analysis of the machine of only two dimen-
sions5, the results achieved can be considered reasonably correctly [6] and the machine
stack length can be considered as the total length of the simulated system.

5 If necessary the three-dimensional secondary effects as the skewing or the rotor resistance variation can be
computed separately and added after the computation of the field solution.
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A first batch of simulations is always performed at "no–load", with the d and q-axis
currents at zero in order to tune the simulations parameters (e. g. the PM flux linkage
which is directly compared with that measured) and correct the geometrical parameters
or the materials characteristics.
Since the flux linkage is linked by each stator winding and it varies with the rotor posi-
tion, the FEA simulations are carried out by assuming a planar symmetry and the mag-
netic field distribution in each polar section of the machine can be considered equally
distributed with a stator windings distribution defined with accuracy by means of the
star of slots [7]. The star of slots can be represented as a matrix of m×Qs elements (m
indicates the number of phases and Qs the number of stator slots), and the numerical
value of each element in the matrix indicates the amount of phase conductors which fill
each of the Qs stator slots.
Disregarding any other theoretical and practical details for implementation and devel-
opment of the FEA analysis, by keeping the rotor locked in position ϑme = 0 rad.el and
by varying the amplitude of the currents id and iq from a predetermined minimum
value to a maximum one, the results are collected in Fig. 1.4.
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Fig. 1.4: Instantaneous flux distribution of the two PMSM-IPM machines (Tab. 1.1 and Tab. 2.2) at
no-load, and the curve beam λd = f1(id, iq) and λq = f2(id, iq) obtained with the FEA

simulations.

The figure represents the pair of non-linear functions (1.28) relating to the motor of Fig.
1.1b and Fig.1.1c The couple of functions f1 ed f2 calculated with the FEA analysis can
be used to return to the (1.19) using (1.26) and (1.27) by simply imposing the linear
flux-current relationship.



1.3 model of the pmsm-ipm with magnetic saturation 15

Using (1.26) and (1.27) the dynamic model of the IPM motor is complete. In fact, us-
ing these relations, all the phenomena related to magnetic saturation and the mutual
interactions between the two axes are considered.
The flux linkages of Fig. 1.4 cannot be used directly in the form of a look-up table in
any simulation environment (such as the Simulink platform) to implements the model
described by (1.26) and (1.27). The structure of the FEA simulation, in fact, allows us
to impose a specific current distribution in the windings and to read the related flux
linkages (calculated on a basis of the potential vector), but not vice versa.
However, there are several methods to reverse the non linear curves of Fig. 1.4. Since
the relationships λd = f1(id, iq) and λq = f2(id, iq) are monotone increasing, they can
be reversed and defined as two auxiliary functions id = f3(λd, λq) and iq = f4(λd, λq).
The analytic calculation of f3 and f4 can be done only numerically and the information
contained in the functions id = f3(λd, iq) and iq = f4(id, λq) can be used in a feedback
scheme that is simulated off-line, based on the model in Fig. 1.6 [4].
In detail, a simple integral controller 1/s and a gain regulate the steady-state speed
convergence of the error. The result is that the output sizes of the blocks storing f1 and
f2 as Look Up Table (LUT) are the references set void of any steady state error. The
outputs of the regulators represent the currents id = f3(λd, λq) and iq = f4(λd, λq) that
are necessary to obtain the reference fluxes.
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Fig. 1.5: Current id = f3(λd, λq) and iq = f4(λd,λq) of the machine in Tab. 1.1 and Tab. 2.2.

Varying the reference fluxes λ∗d and λ∗q from their minimum value λd,min−max to the
maximum value λq,min−max (that can be found in Fig. 1.4), and saving the couple of
currents id and iq for every set of references fluxes, the functions f3 and f4 are obtained.
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Waiting for a minimum time for the end of the transient, the results are shown in Fig.
1.6. For the complete mapping of the new pair of functions, a double nested “ f or” loop
between all the fluxes in the range λd,min - λd,max and λq,min - λq,max is created. Fig. 1.5
shows the functions f3 and f4, used in the IPM model with magnetic saturation shown
in Fig. 1.7.
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Fig. 1.6: Scheme for the off-line inversionof the functions λd = f1(id, iq) and λq = f2(id, iq)

From the curves of Fig. 1.4, it is possible to deduce the exact value of the apparent
inductance Ld and Lq, by measuring the slope of the curves in their linear section,
expressed as the ratio between the increase of the flux compared to the increase of
current. Both the procedures illustrated in Sec. 1.2 and in Sec. 1.3 requires the perfect
knowledge of the main parameters (linear or non-linear) of the machine, in order to
obtain a robust model to be used in simulation environment.
In particular, the method illustrated in Sec. 1.3 has some limitations, as the necessity
for an accurate FEA to obtain the flux curves λd = f1(id, iq) and λq = f2(id, iq), and in
general the dimensional and project data of the machine are not available. This means
that, to obtain a detailed model of the machine, also considering cross-saturation, a
self-commissioning procedure must be performed in the absence of information.
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Fig. 1.7: Block diagram of the PMSM-IPM motor based on the equations 1.26 and 1.27

In the electrical model of the machine, both for the model derived in Sec. 1.2 and
Sec. 1.3, parameters such as the resistance Rs and the permanent magnet flux Λmg
can be measured with low cost equipment, and they change quite slowly during motor
operation, since they are mostly affected by temperature increase.
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Nowadays, the commissioning procedures are necessary for the estimation of the flux
linkages λd = f1(id, iq) and λq = f2(id, iq) (or in the simplest case of linear relationship
to estimate Ld and Lq), and in general for the identification of the mechanical parameters
Bm and Jm [8].

Tab. 1.1: PMSM syncronous motor PMSM1 parameters

Parameter Value

Nominal ph-ph voltage UN 345 Veff

Rated current IN 10 Aeff

Pole pairs p 3

PM flux linkage Λmg 0.234 Vs

Rotor inertia Jm 0.0038 kgm2

Viscous friction Bm 0.05 Nms

Unfortunately, most of the conventional parameter estimation methods available in lit-
erature are unable to provide a reasonable description of the non-linear behaviour of
these quantities, and typically they only focus on the estimation of the linearised char-
acteristics around a certain working point.
Even though such flux linkage is in general a non-linear function of the motor currents,
also the knowledge of the linear inductance of (1.19) plays an important role in many
electric drive control schemes, such as in axes cross-decoupling or sensorless control
schemes [9].
Since these self-commissioning techniques come at the price of more complex drives
required to operate the motor properly, usually the inductances have been roughly
estimated by means of simple experiments, such as the DC current decay measurement
method [10], [11], which require low cost equipment, but this simple approach does
not satisfy the increasing demand for drive performances, which, in turn, require full
knowledge of the machine parameters [12]. Unfortunately, this estimation method does
not provide information about important phenomena as saturations or cross-coupling
effects, which strongly affect this type of motors.





2 T H E M T PA S T R AT E G Y F O R P M S M - I P M D R I V E S

2.1 introduction and literature review

An increasingly important line of research in modern electric drives for PMSM-IPM

concerns the improvement of torque generation efficiency, which substantially implies
the minimization of the overall motor losses through either the implementation of spe-
cific design and construction expedients [13], or the adoption of sophisticated control
techniques [14] [15] [16]. Regarding the latter option [17], only the iron and copper
losses can be actually minimized, being the mechanical loss dependent on the motor
speed and not controllable [18]. Especially at lower speeds, when iron losses become
negligible compared to copper losses [18], the optimal operating conditions can be
identified with those yielding minimum copper losses, which indeed coincide with the
so-called MTPA condition [19]. It is important to underline that an on-line procedure
for the minimization of the overall motor losses would be desirable, but the studied
control technique can be adopted only for the minimization of the copper losses, since
only the armature currents are monitored by the on-line optimizing procedure. The
method discussed and presented in this research not implement an on-line procedure
for the minimization of the overall (controllable) motor losses and the main feature and
the main contribute is represented by the better formalization of the tuning procedure
for a standard MTPA controller based on sinusoidal signal injection.
Considering a FOC scheme for PMSM-SPM [20], in this case the MTPA condition is easily
achieved by imposing a null d-axis current. On the contrary, for PM synchronous
motors with magnetic anisotropy, the situation becomes more complicated, since the
MTPA condition has to be achieved by finding the correct balance between the two
mechanisms underlying the generation of the motor torque, namely those exploiting the
electrodynamics and the variable reluctance principles [21]. In literature there are many
solutions that compute the conditions for MTPA operations in an off-line fashion, by
relying on a sufficiently accurate mathematical model of the motor, and then use such
information on-line to attain maximum efficiency (in the MTPA sense). A drawback to
this approach is obviously its lack of robustness, being impossible to track off-line any
parameter variation or other discrepancy between the mathematical model used for the
off-line computations and the actual motor dynamics.
To overcome the robustness issue, a possible solution consists of updating the pre-
computed MTPA condition on-line, by using an estimate of the motor parameters re-
trieved with an on-line parameter estimation procedure, as done in [22]. Unfortunately,
this method has several drawbacks, such as the increased computational burden [23, 24]
or the need to make restrictive assumptions, such as allowing the replacement of the
actual voltage measures with their reference [25], or having an available map of the
motor inductance non-linearities [26].
An alternative approach to the aforementioned off-line procedure consists of finding
the condition for MTPA operations on-line, without relying on any pre-computed in-
formation or mathematical model of the system dynamics. For this purpose, the most
appropriate control techniques have proved to be based on the working principle of the
ESC [27]. A marked improvement is represented by the solution first proposed in [28],
and then taken up by several other authors [29], [30] or [31] (where the MTPA has been
successfully implemented also in direct torque control (DTC) of synchronous motor
drives).

19
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The innovative approach still foresees the perturbation of the system around the steady
state working point, but the MTPA condition is detected without any reference to the
system model, as in [32], where it is accomplished by monitoring the speed controller
demand (i. e. the amplitude of the current reference).
The method illustrated in [28] was refined in [33] and [34], where the injection of a high
frequency sinusoidal perturbation of the phase angle and a novel demodulation algo-
rithm, followed by a PI regulator, takes the place of the straightforward action on the
current phase. In some ways, all these works are based on the extremum-seeking the-
ory [27], which has proven to be both robust and effective in many different application
domains [35], [34]. Equally being model free, they suffer anyway of clear limitations
to what can be achieved, since they can be considered as gradient based optimization
techniques. They rely on an appropriate exploration of the process to be optimized
to provide the user with an approximate gradient, and hence the means to locate a
so-called extremum. This method is surely a good solution, due to the inherent simplic-
ity and low computational requirements, but the implementation issues are manifold,
and the analysis of stability and convergence properties, not discussed in the previous
cited papers, is a challenging task, that requires averaging and time-scale separation
techniques [36, 37]. Nevertheless, they are surely the best candidates in industrial ap-
plications, due to their inherent simplicity and low computational requirements.
Even if the principle of operation is well outlined in literature, there is still a lack of
implementation details, as well as a comprehensive analysis of convergence and stabil-
ity. These aspects turn out to be of key importance in emancipating from empirical
tuning, and their study represents, as mentioned before, the main scope and the main
contribute of the present research, where a complete mathematical analysis of the con-
trol architecture is presented and a complete experimental and simulative validation by
considering two different motors.
In detail, Sec. 2.2 presents an overview of the MTPA control architecture, in order to
explain in Sec. 2.4 the study of the convergence and stability analysis of the overall
control algorithm togheter with a complete sensitivity and parametric analysis. Sec.
2.6.2 collects some design hints to be considered for the effective implementation of the
control algorithm, as the simple and effective MTPA search enable mechanism. This last
issue avoids the typical malfunctioning of the real implementation [32] caused by the
impact of external factors.
The concepts and the main insights, along with their simulation, are presented in Sec.
2.6, while Sec. 2.7 reports a complete and commented set of experimental results ob-
tained by using two different PMSM-IPM motors. Finally, Sec. 2.8 draws some conclusive
considerations.

2.2 mtpa basics

The permanent magnet synchronous motors with anisotropic structure, as mentioned
in the previous chapter, have the fundamental characteristic of generating torque through
the principle of electrodynamic generation (due to the permanent magnet) and through
the principle of reluctance, due to the difference between the inductances on the axes d
and q. This second feature represents a further degree of freedom than the torque gen-
erated by an isotropic machine, where the term of the reluctance torque is lacking for
constructive reasons. A careful choice of the contribution of reluctance torque allows,
in principle, a better exploitation of the IPM motor from the point of view of energy
efficiency, by ensuring a compact design and small size but having at the same time a
large torque to inertia ratio (i. e. an high acceleration).
Unfortunately, the optimal performances ensured by the high power to weight ratio
described above cannot be reached by considering the canonical condition used into the
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FOC (id = 0), since it not ensures the lower module of current for a given torque demand.
For this reason, the general equations (1.19) of the PMSM-IPM expressed in the dq rotating
frame synchronous to the rotor combined with the electromagnetic and the load torque
equations (1.21) must be reconsidered, in order to get some interesting results about the
MTPA operating condition. The loci at minimum current vector amplitude (that ensures

the optimal torque) can be obtained by replacing the current iq = ±
√
|i|2 − i2d into the

(1.21), obtaining:

τ =
3
2

p sgn
(
iq
) [

Λmg

√
|i|2 − i2d +

(
Ld − Lq

)
id

√
|i|2 − i2d

]
(2.1)

From (2.1) it is evident that there are several combinations of the direct/quadrature
currents idq capable of satisfying the torque demand τ0. However, the MTPA operating
condition is achieved only for the combination that yields the minimum current mag-

nitude
∣∣i(id, iq)

∣∣ , √
i2d + i2q , i. e. the combination that solves the following constrained

optimization problem:

min
id , iq

∣∣i(id, iq)
∣∣ subject to τ

(
id, iq

)
= τ0 (2.2)

To find the maximum of torque as a function of the current id, it is sufficient to derive
the (2.1) and placing it equal to zero1, obtaining:

∂τ

∂id
=

3p
2

sgn(iq)

Λmg
−id√
|i|2 − i2d

+
(

Ld − Lq
) |i|2 − 2i2d√
|i|2 − i2d


= −

(
Ld − Lq

)
i2d −Λmgid +

(
Ld − Lq

) (
|i|2 − i2d

)
= −2

(
Ld − Lq

)
i2d −Λmgid +

(
Ld − Lq

)
|i|2

= 2
(

Lq − Ld
)

i2d −Λmgid −
(

Lq − Ld
)
|i|2 = 0

(2.4)

If follows that, the current id that maximize the torque is:

id =
Λmg ±

√
Λ2

mg + 8
(

Lq − Ld
)2 |i|2

4
(

Lq − Ld
) (2.5)

The positive solution of the (2.5) is usually discarded because it would generate an
opposite contribution to that of iq (usually Ld < Lq). Therefore, the pair of currents id,
iq able to maximize the torque for a given current (or, equivalently, to minimize the the
current amplitude for a specific torque) are equal to:

id =
Λmg −

√
Λ2

mg + 8
(

Lq − Ld
)2 |i|2

4
(

Lq − Ld
)

iq =
√
|i|2 − i2d

(2.6)

1 As it comes from the Implicit Function theorem, this is equivalent to differentiate the torque (1.21) with respect
to the id component only:

∂τ

∂|i| =
∂τ

∂id

(
∂|i|
∂id

)−1

(2.3)
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The theoretic MTPA curve for a generic machine is shown in Fig.2.1, but although useful
for the understanding of the problem, the (2.6) is practically unfeasible. The use of
these curves in determining the MTPA point, in fact, is limited by the knowledge of the
inductances Ld and Lq.
As described in Sec. 1.3 the inductances are affected by the saturation of the magnetic
circuit due to the effects of cross-coupling for the partial share of the magnetic circuits of
the two orthogonal axes. The use of (2.6), therefore, would require a complete mapping
of the inductors for the entire range of current id and iq, including the phenomenon
of cross-coupling. As a valid alternative, a signal-injection based scheme has been pro-
posed by [34], reconsidered here with some adjustments, to perform the mathematical
analysis of the next paragraphs.
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Fig. 2.1: Theoretical MTPA curve in the dq plane (cartesian coordinates) and in polar coordinates.

2.3 the proposed mtpa control

The proposed solution for the automatic seeking of the MTPA working point is repre-
sented by the control scheme of Fig.2.2. The general FOC scheme [20] of a PMSM is very
simple, and it is composed by only two equal tuned current control loops that receive
the current reference from an external speed control loop and generate the voltage ref-
erences for the PWM block. The PI current controllers operate in the dq rotating rotor
reference frame, aligned with the PM rotor flux linkage, shifted of the angular position
ϑme with respect of the u-phase of the motor.
The external speed control loop generates the correct current reference amplitude by
zeroing the speed error. In the FOC, any non-linear effect related to magnetic saturations
in the motor is neglected during the normal operations, and then, model of the motor
adopted for the tuning of the PI controllers is that of Sec. 1.2.
The studied solution differers to a standard FOC control scheme only for the block that
generates the current references (“MTPA detector” in Fig.2.2), that is the base of the
MTPA algorithm. Basically, the idea is to consider a sinusoidal perturbation signal

∆ϑ(t) = A sin(ωACt) , A > 0 (small) (2.7)
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superimposed to the phase of the reference current vector. The effect of this perturba-
tion is propagated on the current amplitude reference i∗ issued by the speed regulator,
which presents a high frequency component ∆i(t).
The couple of variables ∆ϑ(t), ∆i(t) serves as input to a demodulator composed by the
chain of two High Pass Filter (HPF), a multiplier block and a low pass filter. It can be
easily demonstrated [28] that the low-frequency component ε f of the demodulated sig-
nal changes its sign around the MTPA point, where also the amplitude of ε f approaches
zero.
The zeroing of ε f is equivalent to reach the MTPA condition, and this accomplished by
the PIMTPA regulator in Fig.2.2. It is worth noting that the choice of its parameters
heavily influences the convergence time and, possibly, even the stability of the whole
system.
For this reason, a manual/empirical tuning is thus not advisable, as it could lead to
unpredictable results. Moreover, due to the system’s non-linearity, it is not certain that
the system will work properly in every load condition.
Although the behaviour of the controller can be explained in different ways, the easiest
way to understand the control actions is to simulate the control (refers to Sec. 2.6 for the
simulation implementation details) by opening the tracking control loop and forcing a
phase sweep of β from π/2 rad to π rad, as reported in Fig.2.3a. The two signals, before
and after the point of MTPA, are respectively in phase and in anti-phase, and they cover
the entire torque region. In detail:

• in the MTPA working point, the current phase reference ∠i∗ generated by the “MTPA

detector” increases and decreases very little indeed, since any disturbance forces
the PI current controller to increase and decrease slightly the reference of the
current i∗;

• in working points with a phase ∠i∗ higher than the MTPA point, an increase of
phase leads to a upper torque curve, and the control speed reacts with a reduc-
tion of amplitude of the the vector i∗. Therefore, the phase noise d(t) and the
amplitude i∗ are in anti-phase;

• in working points with a phase lower than the MTPA working point, an increase
of phase leads to a lower torque curve, and the control speed reacts increasing in
the amplitude of the vector i∗. This situation leads to a phase noise d(t) and an
amplitude i∗ in phase.

The amplitude component of the current vector at the disturbance frequency is obtained
via a HPF; the same used to filter the disturbance d(t) (as shown in Fig.2.2) with a time

constant equal of τHPF =
1

2π fAC
. The multiplication of the two filtered signals in

Fig.2.3a returns the following expression:

ε = d(t)i∗(t) = AIh f sin(ωACt) sin(ωACt +
k + 1

2
π)

=
kAIh f

2
[1− cos(2ωACt)]

(2.8)

where the constant k = 1 if the two signals are in phase, while k = −1 if the two
signals are in anti-phase. The low frequency component of ε at the frequency kAIh f /2
is extracted by using a 1th order low pass filter, characterized by a cut-off frequency
positioned a decade before the injection disturbance’s frequency (τLPF = 10/(2π fAC)).
Fig.2.3b shows graphically the product of the two signals, and the filtered low-frequency
content.
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tailed of the proposed solution.
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From the same figure is also evident that for a correct operation in feedback, the sign of
ε f in (2.8) must be reversed, as shown in Fig.2.2, in order to ensures a correct operating
of PIMTPA.
The angular compensation β is added to the disturbance d(t) and to the initial phase
angle π/2 rad in order to create the entire phase compensation to pass from the polar
coordinate system to the equivalent system in the rotating dq reference frame.
Since the system operates with a phase equal to βMTPA + π/2 in the MTPA working
point and a phase perturbation induced by the signal d(t) = A sin(ωACt) leads to
amplitude variation in the currents references id and iq is approximately equal to zero,
before and after the correct βMTPA compensation the disturbance d(t) = A sin(ωACt)
causes a marked variation in the currents.
Furthermore, the continuous presence of d(t) in the composition of the overall phase of
the current reference is required, since it serves to maintain the drive in MTPA operation
even after a new transient (i. e. induced by a sudden load torque).
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Fig. 2.3: Signal modulation and demodulation sequence for the automatic regulator MTPA, forced
by a ramp variation of the phase.

The description of the control architecture performed up to now does not takes into
account some formal aspects and of interesting properties of the algorithm, that can be
studied by reconsidering the optimization problem of (2.2) in polar coordinates.
By defining as |i| and ϑ , ∠i the magnitude and phase of the current vector in the dq
plane, and by replacing the couple of variables id and iq in (2.2) with their equivalent
polar notation

id = |i| cos ϑ, iq = |i| sin ϑ (2.9)

the following optimization problem represents the MTPA definition in polar coordinates.

min
ϑ
|i(ϑ)| subject to τ (|i(ϑ)|, ϑ) = τ0 (2.10)

where:

τ(|i(ϑ)|, ϑ) =
3
2

pΛmg|i(ϑ)| sin ϑ− 3
4

p χLd|i(ϑ)|2 sin 2ϑ (2.11)
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and χ , Lq/Ld − 12. Moreover, Fig.2.1 shows that the objective function |i(ϑ)| to be
minimized in (2.11) is a convex function with a (global and unique) minimum.
Therefore, a simple automatic minimum search procedure would consist of increasing
the phase ϑ whenever the slope d|i(ϑ)|/dϑ of the objective function, evaluated locally
around the current value of ϑ, is negative, and vice versa in case of a positive slope3.
The slope can be estimated by observing the variation ∆|i(ϑ)| ≈ (d|i(ϑ)|/dϑ)∆ϑ, which
is the objective function to minimize when a small perturbation ∆ϑ is applied to the
current value of ϑ.
Fig.2.4 shows a sketch of the operating principle described above. In particular, by
considering the sinusoidal perturbation of (2.7), the slope information can be easily
recovered from the perturbed current magnitude, that rewritten in polar coordinates
returns:

|i(ϑ + ∆ϑ)| ≈ |i(ϑ)|+ A
d|i(ϑ)|

dϑ
sin(ωACt) (2.13)

By exploiting the simple analogue processing operations described above adopting the
high-pass filtering to remove the DC-component of |i(ϑ)|, and an AM-demodulation to
determine the amplitude of the remaining sinusoidal variation ∆|i(ϑ)|, the proportional
output ε f of the AM-demodulator is used to adjust the value of the phase reference ∠i∗

according to the proportional-integral (PI) control law: when ε f approaches zero, the
MTPA operating point is attained.
It is worth noticing that although a pure integral law would suffice to steer the system
toward the MTPA operating condition, a proportional component usually speeds up the
system response.
The choice of the PI regulator parameters heavily influences the stability and conver-
gence time of the whole system. Either manual or empirical tuning is not advisable, as
it could lead to unpredictable results.
Moreover, due to the system non-linearity, there is no confidence that the system will
properly work in all loading conditions. For these reasons, a more formal analysis of
the proposed MTPA tracking controller is required.

2.4 stability and convergence analysis

The working principle of the proposed MTPA detector can be studied by considering
a control strategy that has been already studied in the automatic control literature,
namely the ESC strategy.
Detailed analyses of the local and (semi)global (practical) stability of the method have
been recently proposed, and the interested reader is invited to refer to [36] for formal
stability proofs of the control scheme.
This section reports a simplified convergence analysis of the overall control architecture
described in Sec. 2.3, aimed more to provide some hints about the choice of the design

2 The MTPA expression can be alternatively reformulated by solving the (2.11) substituting ϑ = atan2
(
− id

iq

)
and |i| =

√
i2
d + i2

q . After some easy simplifications, the MTPA condition can be rewritten as [34]:

id +
(

Ld − Lq
) (i2

d − i2
q

)
Λmg

= 0 (2.12)

The function (2.12) presents two different solutions, but the positive ones (id > 0) must be avoided. At the

end, the condition 2

(
Ld − Lq

)
Λmg

id + 1 < 0 must be considered together the (2.12).

3 This is a sufficient condition, being the objective function convex and so, the condition d|i|/dϑ = 0 is reached
for the existence of a local minimum.
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Fig. 2.4: Effects of the ESC perturbation technique expressed in dq plane, applied of the MTPA loci.
Effect of the perturbation and equivalent local gradient movement.

parameters of the MTPA detector, rather than formally proving the capability of the
proposed scheme to attain the MTPA operating point.

2.4.1 Model linearization

Stability and convergence (to the MTPA working point) properties of the proposed
MTPA detector can be analysed using the same methods applied to standard perturbation-
based extremum seeking controllers, such as those proposed in [36] (for local stability
around the extremum point) and [38] (for semi-global practical stability).

ω∗m eω
P I ω τ(i, ϑ)

1
Jms + Bm

MTPA

detector

τL

i∗ ωm

C(s) P(s)

ϑ
−

−

Fig. 2.5: Simplified model of the overall control system, used for the convergence analysis of the
proposed MTPA-tracking control scheme.

The simplified analysis reported in this section is aimed to give some highlights on the
operating principle of the MTPA detector and the effect of different choices of the design
parameters, rather than providing a formal stability proof.
In order to ease the analysis, three simplifying assumptions are considered in the fol-
lowing:

1. the dynamics of the current loops in the overall control system of Fig.2.2 is suf-
ficiently faster than the dynamics of the speed and MTPA-tracking control loops,
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Fig. 2.6: Small-signal linearized dynamics of the speed control loop of the proposed ESC scheme
about the operating point P0.

and therefore it can be neglected. With reference to Fig.2.2, this assumption im-
plies that the currents id and iq are equal to their references i∗d and i∗q .

2. at steady state, the overall control system of Fig.2.2 operates in the 2
nd quadrant of

the (id; iq) plane. With reference to Fig.2.2, this assumption implies that i∗ = |i∗|
and ϑ∗i ∈ [π/2; π]. Moreover, because of the previous assumption, it holds that

i = i∗ = |i∗| , ϑi = ϑ∗i = β + π/2 + d(t) (2.14)

In the following, the symbol ϑ = β + π/2 will be used to denote the unperturbed
component of the phase ϑi.

3. only the integral action is considered in the PIMTPA regulator of Fig.2.2, so that
the updating law for β is

dβ

dt
= −γ ε f , γ > 0 (2.15)

The first assumption allows to approximate the overall system of Fig.2.2 with the sim-
plified model of Fig.2.5, in which the block τ(i, ϑ) denotes the mechanism of torque
generation described by (2.11), expressed in rectangular coordinates.
Because of (2.11), the dynamics of the speed control loop in the simplified model is
non-linear, but it can be linearised about an equilibrium state which is a steady state
operating point of the control loop.
Among the infinite equilibrium states, related to the pairs (i, ϑi) that yield the same
motor torque, the MTPA detector adaptively adjusts the phase ϑi to select the MTPA

condition.
Let the set of equilibrium values associated to a generic equilibrium state be denoted
by

P0 ,
{

ωm = ωm0 , xI = xI0 , i = i0, ϑ = ϑ0, τ0 = τ(i0, ϑ0)
}

(2.16)

where xI is the integrator state of the speed PI controller. Then, the linearisation of the
simplified model about P0 is

∆τ = Jm
∆ωm

dt
+ Bm∆ωm

∆eω =
∆xI
dt

(2.17)

with
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∆eω = −∆ωm

∆i = KP,ω ∆eω + KI,ω ∆xI

∆τ =
∂τ

∂i

∣∣∣
P0

∆i +
∂τ

∂ϑ

∣∣∣
P0

∆ϑ

(2.18)

and where ∆ωm, ∆xI , ∆i, ∆ϑ, ∆eω, ∆τ denote small variations with respect to the equi-
librium values (2.16), while KP,ω and KI,ω are the proportional and integral gains of the
speed PI controller. The linearised model can be used to determine the (small) current
perturbation ∆i induced by a (small) phase perturbation ∆ϑ around the equilibrium
value. To this aim, the Transfer Function (TF) relating the two quantities is considered

W(s) ,
∆i(s)
∆ϑ(s)

= −

(
∂τ

∂ϑ

∣∣∣
P0

)
(

∂τ

∂i

∣∣∣
P0

)
︸ ︷︷ ︸

= k

(
∂τ

∂i

∣∣∣
P0

)
P(s)C(s)

1 +
(

∂τ

∂i

∣∣∣
P0

)
P(s)C(s)︸ ︷︷ ︸

= G(s)

(2.19)

It can be shown (similarly to (2.3) that the gain k is equal to the derivative of the current
i with respect to the phase ϑ at the operating point P0; it can be explicitly computed by
resorting to (2.3) and (2.11)

k ,
di
dϑ

∣∣∣
P0

= −
i
[
Λmg cos ϑ− iχLd cos 2ϑ

]
sin ϑ

[
Λmg − 2iχLd cos ϑ

] ∣∣∣∣∣
P0

(2.20)

which it can be proved (by using the implicit function theorem) to be equal to the
derivative of the current i with respect to the phase ϑ at the operating point P0, namely
k = di/dϑ|P0 . In fact, by defining the following equivalent function:

f (i, θ) = 0 where f (i, θ) := τ(i, θ)− τ (2.21)

for a given τ, the previous equation implicitly defines a function of the type i = g(θ),
withθ as the independent variable. For the implicit function theorem, it holds that

dg
dθ

∣∣∣
P0

= −

∂ f
∂θ

∣∣∣
P0

∂ f
∂i

∣∣∣
P0

(2.22)

Note that
∂ f
∂θ

∣∣∣
P0

=
∂τ

∂θ

∣∣∣
P0

and
∂ f
∂i

∣∣∣
P0

=
∂τ

∂i

∣∣∣
P0

; therefore

dg
dθ

∣∣∣
P0

= −

∂τ

∂θ

∣∣∣
P0

∂τ

∂i

∣∣∣
P0

≡ k(P0) (2.23)

Neglecting the initial transient response, the small amplitude sinusoidal perturbation
of (2.7) (with ∆θ = ε sin(ωt), with ε > 0 a small constant), injected by the MTPA detector
shown in Fig.2.2 at steady state produces the current perturbation

∆i(t) = k kG A sin (ωACt + ϕG) (2.24)

where kG = |G(jωAC)| and ϕG = ∠G(jωAC).
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2.4.2 The MTPA operating point

The current perturbation is actually the output of the HPF in the MTPA detector, apart
of a possible attenuation kHF = |HHF(jωAC)| and a phase lag ϕHF = ∠HHF(jωAC)
introduced by the filter itself. Including both the attenuation and the phase lag of the
HPF, the multiplier (i. e. mixer) output becomes

ε(t) = ∆i(t) · ∆ϑ(t)

= −1
2

k2
HF k kG A2 × [cos (2 ωACt + ϕG + 2 ϕHF)− cos ϕG]

(2.25)

Ideally, the harmonic component at twice the perturbation frequency is completely
rejected by the LPF, so it holds that

ε f (t) =
1
2

k2
HF A2 k kG cos ϕG (2.26)

Because of (2.20), the LPF output is proportional, to the derivative di/dϑ|P0 .
The term (1/2) k2

HF A2 kG cos ϕG being the proportionality constant. If such constant is
different from zero for any admissible phase ϑ, which happens only if

< [G(jωAC)] = kG cos ϕG 6= 0 (2.27)

where <(·) denotes the real part, then the convergence of ε f to zero implies that the
system converges at an operating point P∗ where di/dϑ|P∗ = 0, i. e. a stationary point
of the function i(ϑ).
This point is actually a minimum, because the function i(ϑ) is convex: in fact, by differ-
entiation of (2.20), it follows that:

d2i
dϑ2 =

i csec2 ϑ

(Λmg − 2κ cos ϑ)3

[
−κ3(5 + cos 4ϑ) cos ϑ + · · ·

· · ·+ 1
2

κ2Λmg (13 + 8 cos ϑ + 3 cos 4ϑ)− · · ·

· · · − κΛ2
mg(5 + 3 cos 2ϑ) cos ϑ + Λ3

mg

(
1 + cos2 ϑ

)] (2.28)

where κ = iχLd.
According to assumption 2, which states that the system operates in the 2

nd quadrant
of the (id; iq) plane (i. e. θ∗ ∈ [π/2; π]) and Ld < Lq, it is immediate to verify that
d2i/dϑ2 > 0 for any admissible current phase ϑ ∈ [π/2; π] (in the range of interest), i. e.
the function i(ϑ) is convex.

2.4.3 Convergence to the MTPA operating condition

To verify that ε f (t) actually converges to zero, the following quadratic Lyapunov
function candidate is considered

V(t) =
1
2

(
ε f (t)

)2
(2.29)

By applying the composition rule and equations (2.15) and (2.26), the time derivative of
(2.29) is equal to
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dV
dt

=
dV
dε f

dε f

dβ

dβ

dt
= −γ ε2

f
1
2

k2
HF A2 d

dβ
(k kG cos ϕG) (2.30)

If the condition

d
dβ
< [W(jωAC)] =

d
dβ

(k kG cos ϕG) > 0 (2.31)

holds for any admissible value of the phase ϑ, then dV/dt < 0, then ε f converges
asymptotically to zero, for the Lyapunov’s stability theorem [39].
In general, the conditions (2.27) and (2.31) are difficult to prove, because of their in-
volved expressions. Nevertheless, they can be verified numerically, by using the nomi-
nal motor parameters and different values of the steady state motor torque; results are
shown in Fig.2.7.
It can be noticed that both (2.27) and (2.31) hold, which implies the convergence of the
system to the MTPA condition. Since (2.31) is always positive, then it is verified that ε f
converges asymptotically to zero; moreover, since (2.27) is always different from zero,
then the the convergence of ε f to zero implies the convergence of the system to the
MTPA condition.
The previous analysis can be further extended to infer about the convergence rate of the
control system to the MTPA operating point. In fact, by using (2.30) and by observing
that (2.31) is always lower bounded by a positive constant (as prove by Fig.2.7 for two
different machines), and then:

dV
dt

< −m γ A2 1
2

ε2
f = −m γ A2 V (2.32)

where

m = k2
HF min

ϑ

[
d

dβ
< [W(jωAC])

]
> 0 (2.33)

By the comparison lemma [39], from (2.32) it follows that

V(t) < V(t0) e−mγA2(t−t0) (2.34)

and then, by (2.29),

|ε f (t)| < |ε f (t0)| e−(1/2)mγA2(t−t0) (2.35)

Therefore, the required time T = t− t0 for |ε f | to be less than a specified value ε̄ f > 0
has the following upper bound

T̄ = − 2
mγA2 log

ε̄ f

|ε f (0)|
(2.36)

Note that such time is inversely proportional to the value of the product γA2, which is
related to the design parameters A and γ of the MTPA detector. The remaining parameter
m in (2.36) depends only on the motor and speed controller characteristics, and can be
computed independently of the design of the MTPA-tracking controller. To appreciate
the effective validity of the method above mentioned, in the experimental section Sec.
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2.7 of this chapter will be presented a series of experimental results and validation tests
to demonstrate the practical feasibility of the proposed solution.
In Tab.2.4 are summarized the results of the comparison between the experimental
convergence times (as the time required for the MTPA integrator output β to reach the
90% of its final value) and its theoretical upper bound, evaluated with (2.36) directly on
the experimental test bench.
The experimental validation have been repeated for several values of the integral gain
γ in the MTPA detector, while the amplitude A of the phase perturbation was kept
constant, in order to prove the practical feasibility of (2.36).
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Fig. 2.7: Plots of
d

dβ
<G(jωAC) and <W(jωAC) as ϑ varies within the range ]π/2; π[. Plots refer

to the nominal values of the motor parameters for the motor in Tab.2.1 and Tab.2.2.

2.5 parametric and sensitivity analysis

From an industrial perspective, it is relevant to investigate the robustness of the MTPA-
tracking algorithm against variations of the magnetic parameters, namely the PM rotor
flux linkage Λmg and the inductance ratio Lq/Ld. In particular, it is important to un-
derstand what are the ranges of variation that the control system can tolerate, while
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still guaranteeing the attainment of the MTPA condition with a satisfactory convergence
time.
For such purpose, it is sufficient to analyse how the two quantities (2.27) and (2.31)
are affected by such parametric variations, since both the convergence property and
the convergence rate depend on them. With respect to the nominal values reported in
Tab.2.1, the following parametric variations have been considered

Λmg/ΛmgN ∈ [0.5; 1.5] , Lq/LdN ∈ [2; 10] (2.37)

where ΛmgN and LdN denotes the nominal values of the parameters. Within these
parametric uncertainty intervals, it has been verified that (2.27) is always strictly positive
(i. e. different from zero), as reported in Fig.2.7.
The influence of the parametric variations of (2.37) (occurring not simultaneously) on
the quantity

min
ϑ∈Iϑ

{
d

dβ
< [W(jωAC)]

}
(2.38)

when Iϑ =]π/2; π[ (i. e. for all the admissible operating points within the 2
nd quadrant

of the dq plane) is shown in Fig.2.8.
Fig.2.8 demonstrates that (2.38) is always positive, then, according to the results of
Sec. 2.4, it is guaranteed that the convergence property to the MTPA condition is robust
against the parametric variations (2.37). This is verified except for small values of the
saliency ratio ξ, for which a small value of the steady state torque τ0 may yield a
negative value of (2.38). Therefore, at least for a saliency ratio approximately ξ =
Lq/Ld > 4.5÷ 5 it is guaranteed that the convergence property to the MTPA condition
(Fig.2.8b and Fig.2.8d) is robust against the parametric variations of (2.37). Moreover,
since the upper bound (2.36) of the convergence time is inversely proportional to (2.38),
it is expected that the convergence rate slows down for either large values of the PM
flux linkage Λmg, or small values of the saliency ratio ξ.
Alternatively, the robustness of the proposed control structure can be analysed in terms
of sensitivity function, by defining as W(s; α) the TF depending on the model parameter
α ∈ R4.
Regarding the automatic MTPA tracking controller structure, the problem of evaluating
the sensitivity of the amplitude of the current perturbation to variations of the motor

parameters Λmg and χ =
Lq − Ld

Ld
is now reconsidered. By denoting with W(s; Λmg, χ)

the transfer function from the input phase perturbation ∆θ to the current magnitude
output perturbation ∆i; such transfer function depends on the particular working point
of the outer speed control loop, and on the motor parameters Λmg and χ.

4 The sensitivity function of W(s; α) to variations of α with respect of its nominal value αn is defined as the ratio
of the percentage change of W(s; α) to a percentage change in α

SW
α (s) = lim

∆α→0

∆W(s; α)

W(s; αn)
∆α

αn

=
αn

W(s; αn)

∂W(s; α)

∂α

∣∣∣∣∣
α=αn

(2.39)

where, for a sufficient small amplitude of ∆α it follows that:

∆W(s; α) ≈W(s; αn) SW
α (s)

∆α

αn
(2.40)
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Fig. 2.8: Plots of minϑ
d

dβ
< [W(jωAC)] vs. variations of the motor parameters Λmg (left plot, with

nominal Lq and Ld) and Lq/Ld (right plot, with nominal Λmg) for the motor in Tab.2.1
(a) - (b) and Tab.2.2 (c) - (d).

From the definition, the couple of sensitivity functions SW
Λmg

(s) and SW
χ (s) are defined,

with respect of (2.19), as:

SW
Λmg

(s) =
ΛmgN

W(s; ΛmgN)

∂W(s; Λmg)

∂Λmg

∣∣∣∣∣
Λmg=ΛmgN

SW
χ (s) =

χN
W(s; χN)

∂W(s; χ)

∂χ

∣∣∣∣∣
χ=χN

(2.41)

and calculated analytically although their expression is complicated and unnecessary
for the purposes of this paragraph.
Their knowledge allows to evaluate numerically the (percentage) variations of the am-
plitude of the current perturbation ∆i due to small (percentage) variations of the pa-
rameters Λmg and χ, under the assumption of a sinusoidal input perturbation ∆i(t) =
A sin(ωACt) in the control loop. From (2.40) and (2.19) it follows that
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∆Λmg (A∆i) ≈
∣∣∣W(jωAC; ΛmgN , χN) SW

Λmg
(jωAC)

∣∣∣ A
∆Λmg

ΛmgN

∆χ (A∆i) ≈
∣∣∣W(jωAC; ΛmgN , χN) SW

χ (jωAC)
∣∣∣ A

∆χ

χN

(2.42)

where ∆Λmg (A∆i) and ∆χ (A∆i) denote the variations of the amplitude A∆i of the (sinu-
soidal) current perturbation ∆i to, respectively, the variations of Λmg and χ.
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Fig. 2.9: Magnitude of the sensitivity functions SW
Λmg

(jωAC) and SW
χ (jωAC) vs. steady state cur-

rent phase angle θ for the machine of Tab.2.1 and a motor torque of τ0 = τN/2 [Nm]
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Fig. 2.10: Magnitude of the sensitivity functions SW
Λmg

(jωAC) and SW
χ (jωAC) vs. steady state cur-

rent phase angle θ for the machine of Tab.2.2 and a motor torque of τ0 = τN/2 [Nm]

Fig.2.9 and Fig.2.10 report the numerical plots of the normalized amplitude of the two
sensitivity functions SW

Λmg
(jωAC) and SW

χ (jωAC) considering the motor data ofTab.2.1
and Tab.2.2 and a constant torque τ0 = τN/2.
In particular, it is evident that the maximum sensitivity is always in correspondence of
the MTPA angle (βMTPA), meaning that the effects of the parameter variations of Λmg
and χ have their maximum effect exactly in the tracking of the MTPA operating point
with respect of a small variation of A∆i on the control loop.
Equivalent results and considerations can be achieved by considering the previous
problem in terms of additive and multiplicative uncertainties of the transfer function
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W(s; Λmg, χ) caused by variations of the parameters Λmg and χ around their nominal
values ΛmgN and χN .
With reference to the linearised model of the speed control loop in fact, W(s; Λmg, χ)
denotes the TF from the input phase perturbation ∆θ to the current magnitude output
perturbation ∆i; and such transfer function depends on the particular working point of
the outer speed control loop, and on the motor parameters Λmg and χ. By considering
and additive uncertainty defined as:

∆W(s; Λmg, χ) , W(s; Λmg, χ)−W(s; ΛmgN , χN) (2.43)

and multiplicative uncertainty:

∆W(s; Λmg, χ)

W(s; ΛmgN , χN)
=

W(s; Λmg, χ)

W(s; ΛmgN , χN)
− 1 (2.44)

with ΛmgN ∈
[
Λmgmin ; Λmgmax

]
and χ ∈ [χmin; χmax], the plots in Fig.2.11 and Fig.2.12

show the magnitude of the additive and multiplicative uncertainties evaluated at the
frequency ωAC of the input phase perturbation (for the sake of compactness only the
motor in Tab.2.1 is considered). The numerical values vary with the working point of
the control system, i. e. the current phase θ, and with the particular choice of the motor
parameters Λmg and χ. As expected, the maximum variation is always in correspon-
dence of the MTPA operating point, and this means that the parameter sensitivity of the
proposed control action is more relevant in the optimum point.
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Fig. 2.11: Magnitude of the multiplicative (left) and additive (right) uncertainties of W(s; Λmg, χ)
due to variations of Λmg, when χ is equal to its nominal value χN . for the machine of
Tab.2.1

2.6 simulation results

The aim of this section is to prove the feasibility of the proposed MTPA-tracking
algorithm in the Matlab/Simulink simulation environment, by simulating the whole
modified FOC drive system refined and completed with the devices illustrated in Sec.
2.6.2. The control algorithm has been written in equivalent C code for the sake of
portability (the same code was used for the experimental tests in the dSPACE platform),
and a non-linear model of the motor has been adopted insted of the canonical linear
approximation. In particular, to emulate the real dynamic of the PMSM-IPM, the non-
linear model of Fig.1.7 has been used. The main parameters of the motor and load used
for simulations are reported in Tab. 2.1 and Tab.2.2.
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Fig. 2.12: Magnitude of the multiplicative (left) and additive (right) uncertainties of W(s; Λmg, χ)
due to variations of χ, when Λmg is equal to its nominal value ΛmgN for the machine of
Tab.2.1

Tab. 2.1: Anisotropic PM synchronous motor PMSM2 parameters

Parameter Value

Nominal ph-ph voltage UN 400 Veff

Rated current IN 4 Aeff

Pole pairs p 2

Saliency ratio ξ = Lq/Ld 5.8

PM flux linkage Λmg 0.175 Vs

Rotor Inertia Jm 0.00156 kgm2

Viscous friction Bm 0.0012 Nms

Tab. 2.2: Anisotropic PM synchronous motor PMSM3 parameters

Parameter Value

Nominal ph-ph voltage UN 400 Veff

Rated current IN 5 Aeff

Pole pairs p 2

Saliency ratio ξ = Lq/Ld 7.5

PM flux linkage Λmg 0.28 Vs

Rotor inertia Jm 0.002 kgm2

Viscous friction Bm 0.0024 Nms

A decoupling and bemf feedforward action were included in the current control loops,
and the PI regulators were tuned for a bandwidth of about ≈ 600 Hz (the alternative
calibration method used in the control scheme is briefly summarized in Sec. 2.6.1). The
control parameters used in simulation are the same used in the following experimental
tests (Sec. 2.7), and their numerical values are collected in Tab. 2.3. Different operating
conditions were simulated, while the system is started up without any knowledge of
the actual angular compensation β, that is equal of zero at the beginning of the control
action.
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Fig.2.13 reports the current phase ϑ∗i and the direct and quadrature currents id and iq
when the system is working at constant speed but and variable load torque. Specifically,
the load torque was subjected to successive equal step variations from 0 to τN at equal
steps of τN/5 (Fig.2.13a), while the speed was maintenance constant at his reference
value of ω∗m = 500 rpm, as reported in Fig.2.13b.
After the first tracking transient, the actual steady-state MTPA operating condition
(βMTPA) is always reached in correspondence of each successive torque variation while
a low and smooth speed variation appears.
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(b) Fixed speed ωm during the transients.

eplacements

Time [s]

∠
i∗

[r
ad

]

0 5 10 15 20
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

(c) Phase variation ϑ∗i in MTPA condition.
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Fig. 2.13: Torque, speed and current during load torque transients for the machine in Tab. 2.1.

The enable mechanism described in Sec. 2.6.2 makes the tracking algorithm work prop-
erly in a broad range of load conditions. The algorithm takes also advantage from the
maintenance of the previous phase β during the successive transients, which are very
short for reduced torque changes.
This means that only during the first torque variation the angle β has to move of several
degrees from the FOC condition to the MTPA operating condition, while the maintenance
of the previous optimal angle leads to a quick and smooth variation (equivalently a re-
duction in the torque oscillation) after the successive steps. Other batches of simulations
have confirmed perfect tracking also in case of sinusoidal load torque variations within
the bandwidth of the speed loop, as reported in Fig.2.14. The load torque sinusoidal
perturbation is equal of 20%Bω.
The possibility given by the convergence analysis of 2.4.1 to skip manual settings will be
proved with a series of experimental validations, while the simulations here described
are only the starting point for an extensive analysis of the overall control architecture.
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(b) Fixed speed ωm during the transients.
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(c) Phase variation ϑ∗i in MTPA condition.
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Fig. 2.14: Torque, speed and current during the sinusoidal load torque perturbation (20%Bω) for
the machine in Tab. 2.1.

2.6.1 Tuning of the current loops

In order to maintain a direct correspondence between simulations and experimental
implementation, the decoupling action is considered into the control scheme.
It leads to a simplification into design strategy of the current PI controls, and so, to
calibrate the current control loops a different approach has been adopted instead of
the canonical tuning techniques, based on the synthesis in frequency according to the
method of the phase margin.
The coupling terms ωmeLqiq and ωmeLdid + ωmeΛmg disappear if a decoupling action in
inserted in the control scheme, and the voltage balance equations (1.26) becomes:


ud = Rsid + Ld

did
dt

uq = Rsiq + Lq
diq

dt

(2.45)

By applying the Laplace transformation of both sides of (2.45) (the upper-case letters
indicate the Laplace transform variable), the s-domain voltage balance is:
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
Id(s) = L (id) =

Ud(s)
Rs + sLd

Iq(s) = L
(
iq
)
=

Uq(s)
Rs + sLq

(2.46)

Solving the (2.46) as a function of Id(s) and Iq(s) gives the TF between currents and
voltages among the d-axis and q-axis. Since the dynamics of the d-axis has the same
behaviour of the q-axis as direct consequence of the decoupling terms, the TF which
links the current error Ed(s) and the corresponding value of Id(s) (assuming that the

regulator has a simple PI controller, expressed as
skpd + kid

s
) is:

Ld(s) =
Id(s)
Ed(s)

=
skpd + kid

s
1

Rs + sLd
(2.47)

By imposing the condition of unitary amplitude of the function Ld(s) at ωi (|Ld(jωi)| =
1, where ωi = 2πBHZi and BHZi indicates the bandwidth desired for the current loop),
follows that:

|Ld(jωi)| = 1⇔ k2
id + ω2

i k2
pd = ω2

i Rs + ω4
i L2

d

⇔ L2
dω4

i + (R2
s − k2

pd)ω
2
i − k2

id = 0
(2.48)

In order to obtain (2.48) equal of zero, kpd = Ldωi e kid = Rωi and the phase of (2.47)
is ∠Ld(jωi) = ∠1/j = π/2 rad. The phase margin of the system in this condition is
mΦ = 90 deg, and therefore the dynamic of the system can be considered as that of a
first order system. The same procedure can be applied to tune the q-axis PI regulator.
Reiterating the procedure at the second of (2.46), the gain for the q branch are: kpq =
Lqωi and kiq = Rωi.

2.6.2 MTPA enable mechanism

The proposed on-line adaptive MTPA techniques is based on a cause-and-effect mech-
anism, and if external factors, as load or speed reference variations interfere with the
minimizing variable, the algorithm convergences could be corrupted. Moreover, in a
PMSM-IPM motor the high value of the inductance Lq with respect to the Ld one, may
easily lead to a saturation of the voltage demand by the current regulators, causing a
significant slowdown in the current response due to a reduction of the stability margin
and the current perturbation injected with the purpose of tracking the MTPA point defi-
nitely produce an extra Joule losses in the motor stator windings. For these reasons, it
is possible to devise an enabling mechanism to be added to overall control scheme of
Fig.2.2 that turns ON the MTPA tracking controller once an almost steady state condition
is reached (both on the speed and on the load torque), and that turns it off again when
the MTPA operating point is reached.
In this way, the extra Joule losses due to the current perturbation eventually occurs only
for the time required by the extremum seeking controller to seek for the MTPA operating
condition.
It is obvious that the steady-state identification must be automatic, and a rough-and-
ready solution is to monitor the speed error errω = ω∗m−ωm, as a variable to switch the
control operation to "MTPA OFF" to "MTPA ON". It has been found that the mechanism
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Fig. 2.15: Speed response, phase correction and enable signal behaviour following repeated step-
changes of the speed reference (constant load torque τL = τN/3; injected signal
∆ϑ(t) = Asin(ωACt) with A = 0.1 rad.el., ωAC = 2π110 rad.el/s). Test conduced with
the machine in Tab. 2.1.

quality is quite improved when errω is filtered by using a band-limited high pass filter,
so that the output includes a rough approximation of the load torque. The suggested
TF is:

Whf (s) = khf
Jm(1 + sτ̂m)(

1 + sτhf

)2 (2.49)

The zero is designed to compensate as much as possible the mechanical pole s = −1/τm,
using the best available guess τ̂m of the mechanical time constant, while the double pole
is placed at a frequency 1/(2πτhf ) as high as possible, consistent with the sensitivity to
the disturbances superposed to the speed measurement. The constant khf is selected to
have a unity gain at low frequency.
When the output of (2.49) remains within the predefined limits (here, fixed to ±3% of
the nominal speed) for a suitable time (in the present case, about 50/Bω, where Bω

denotes the speed loop bandwidth), the enable to MTPA algorithm is activated. Just
after a MTPA disable, due for example to a change in the speed reference, the input of
the integrator PIMTPA is reset and hooked to zero until next enable. Meanwhile, the
last value of the phase correction β is frozen and used during the whole transient. It
has been found that this simple solution shortens the convergence to the new working
point and it also plays a stabilising rule after MTPA reactivations.
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Fig.2.15 shows the behaviour of the enable signal in the presence of repeated step-
changes of the speed reference. The same figure shows the phase correction β issued
by the tracking algorithm, by using the machine in Tab. 2.1.

2.7 experimental results

The experimental test bench used for test the studied algorithm was equipped with
a Fast Control Prototyping (FCP) dSpace DS1104 R&D controller board, with two DSPs
in a master and slave configuration.
The master processor (PowerPC 603e at 250 MHz) calculates the main operations of the
control algorithm, while a slave processor (Texas Instruments TMS320F240 fixed point
unit at 20 MHz) manages only the PWM routine and the I/O interfacing with the actual
speed and current measurements.

interface-C

 gprogrammin and

board dS1104

VSI-ph. 3

leProgrammab
VSI-ph. 3 controlled

 standard speedor  Torque

−

+

DCU

under test

 PMSM
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 controlled  torqueIM

jointsFlex 

308-TM Magtrol

meter Torque

Fig. 2.16: Sketch of the experimental test bench.

Although Simulink models can be compiled and downloaded directly on the dSPACE
DS1104 R&D controller board, this rapid solution has the disadvantage to lose the
control of the generated code that could lead to unexpected errors. By writing the
entire control routine in C code this problem can be overcome.
The MTPA routine has been merged into a conventional dSPACE FOC scheme, that is not
described and reported in detail, but a brief general description of the control program-
ming architecture is reported.
The code is structured so that all the calculation are performed during a PWM interrupt
routine that calls the macro-C instructions, where are stored the different sub-routines
of the algorithm. The main program initialization that calls the PWM interrupt routine
is necessary for the DSP card, in order to define the communication between master
and slave, digital I/O assignments and converter initialization.
At the beginning, all the A/D converters are started at the same time, and according
to the scale factors associated to the current measuring, the current value is acquired
at the start of the PWM period. This current measurement is then compared with the
current limits of the inverter. If the bounds are respected, the inverter is started and the
algorithm is executed at every Tc.
The experimental results have been recorded (and saved on a standard PC for graphic
post-processing) using a trace options panel of the control board (namely ControlDesk)
and a Tektronix DPO4034 oscilloscope (equipped with an accurate voltage and current
probe) for other types of measurements.
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An asynchronous induction motor, serving as a programmable load, was coupled on
the same shaft of the PMSM-IPM motor under test, through a sensible Magtrol TM308

torque meter (Fig.2.16) to store the torque data in memory.

PMSM-IPM TM 308
IM motor

(a)

PMSM-IPM TM 308 IM motor

(b)

Fig. 2.17: Experimental test bench configurations. The two PMSM tested are keyed on the same
shaft of an IM (controlled in torque, as virtual load).

The torque measure was filtered by using a notch filter tuned around at 178 Hz and
finally averaged over a sufficient number of Tc so that the torque reading was satisfac-
tory. The algorithm execution time (worst case) was of 36 µs, while the sampling time
and inverter switching period were both Tc = 100 µs. With reference to the symbols of
Fig.2.2, the MTPA detector parameters are reported in Tab. 2.3.
The experiment layout has been of utmost relevance, in order to ensure repeatabil-
ity and accuracy in the measurements. For both the PMSM machines available for the
experimental tests, rotor position and speed are measured using a resolver-to-digital
converter. This solution is well known and usually applied in the industrial application
(otherwise an incremental encoder can be replace the resolver interface), and it requires
that a sinusoidal reference signal is injected to a rotor mounted coil.

Tab. 2.3: MTPA parameters used in the experimental tests

Parameter Value

Frequency fAC of the disturbance ∆ϑ(t) 110 Hz

Amplitude A of the disturbance ∆ϑ(t) 0.5 rad

HPF time constant τHPF
1

2π 80
s

LPF filter time constant τLPF
1

2π 10
s

PI proportional gain kp 0

PI integral gain γ 500÷ 10000

Current loop bandwidth BWi 500 Hz

To obtain the real MTPA curve of the PMSM-IPM machine, a first characterization of the
motor must be performed, in order to validates the results produced by the algorithm.
In particular, using the dSpace experimental system described above, the PMSM-IPM

motor is dragged at a fixed speed (ωm = 300 rpm) by the IM machine.
In steady state condition, the phase of the current reference is then varied (from π to
π/2) and the two components of the current in the dq reference frame are stored in a
LUT with the value of the measured torque (measured with the torque-meter).
The procedure is then repeated by varying the amplitude of the current reference, from
zero to the nominal current of the motor, in order to map the entire range of interest.
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The results are then post processed to analytically derive the MTPA locus, obtained as a
standard search of the minimum in the dq plane. Fig.2.18 collects the torque loci and the
MTPA curve obtained following these experiment with respect of the PMSM-IPM in Tab.2.2
and in Tab.2.1. In the same figure are also reported the theoretical curves obtained
applying the (2.6) at the nominal parameters reported in Tab.2.2 and Tab.2.1, overlapped
with the MTPA curves calculated with the proposed algorithm. The experimental MTPA
locus are obtained by monitoring the steady state operating points reached by the MTPA
tracking controller under different loading conditions (using the PMSM-IPM machines
in Tab.2.2 and Tab.2.1). In particular, the drive has been first brought to a constant
speed reference, in conventional FOC with a specific load torque condition (imposed by
the induction motor); then, the MTPA tracking controller has been enabled, and the
evolution of the current vector on the dq plane has been monitored (while the induction
motor has been made to generate a variable torque from 0% to the 100% of the rated
torque). Plotting on the dq plane the currents obtained, the MTPA experimental locus is
shown in Fig.2.20.
The results shows the perfect matching between the curve produced by the algorithm
and that obtained with the measurements. Fig.2.19 shows the MTPA experimental locus
in polar and cartesian coordinates, where each point of the MTPA curve has been calcu-
lated by averaging the current and phase measurements (at steady state), in order to get
rid of the ripple caused by the perturbation injected by the MTPA tracking controller. In
both cases, the accuracy of the analytic method suffers the influence of the saturations
of the two inductances (Sec. 1.3) and the phenomena of the cross coupling, that occurs
during the normal operating.
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Fig. 2.18: Experimentally MTPA curves obtained using the PMSM-IPM machines in Tab.2.2 and
Tab.2.1.

The suggested experimental procedure reflects what is considered the conventional
mode of operation of the proposed solution in a typical industrial situation, namely
tracking the MTPA point against slow variations of the load torque. This situation
is typically found in industrial applications involving, among others, pumps, convey-
ors, extruders, air conditioning and packaging systems, bunchers and stranders, etc.
Although a current ripple is in general undesired, in this circumstance it is indeed nec-
essary for the correct operation of the control system. Nevertheless, it is worth noticing
that once the MTPA operating point is attained, the MTPA control action could be dis-
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Fig. 2.19: Experimentally MTPA curves obtained using the PMSM-IPM machines in Tab.2.2 in polar
and cartesian coordinates (by averaging the currents in single points).

abled, thus avoiding the injection of a persistent disturbance into the system. For such
purpose, the enabling mechanism of the Sec. 2.6.2 could be devised in the experimental
tests, whose aim is to turn on the MTPA tracking controller once a steady state operat-
ing condition is reached (both on the speed and load torque), and to turn it off again
when the MTPA point is reached.
In the first batch of measurements, the motor was driven at 500 rpm, while the IM-based
virtual load generates a slowly varying ramp torque from 0% to 100% of the rated
torque τN , to get the MTPA curve. To test the tracking capability and its dependence
on the MTPA parameters, the slope of the load torque curves was made progressively
steeper, and the results were reported in Fig.2.20. It can be noticed that ramps of
decreasing durations lead to a narrow bundle of curves, meaning that the MTPA detector
is not affected by the slowly varying load. The curves start to deviate for smaller ramp
times, as the rate of change of the load interferes with the dynamic of the MTPA detector,
as shown in Fig.2.20 for the 1.25 s ramp time.
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Fig. 2.20: Experimentally MTPA curves (for different time of the load torque slope) using the
PMSM-IPM machines in Tab.2.2 and Tab.2.1.
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A second batch of measurements has been performed by imposing a 0.1τN step load
torque pattern (instead of a ramp), from 0% to full load. The results are shown in
Fig.2.21a, where the direct and quadrature currents exhibit a heavy ripple, obviously
due to the disturbance superimposed to the phase of the current vector.
The effect could be greatly mitigated by adopting the enable algorithm of Sec. 2.6.2
(deactivated during these experiments), which switch on the MTPA once a steady state
condition is reached (both in speed and in load torque) and that switch it off again
after the MTPA convergence. As a consequence, it follows that the ideal application for
a MTPA-based drive works mainly at steady state and has not to be much influenced
by a small and short-lived torque ripple.
On the contrary, the experiment shown in Fig.2.21a was aimed to get the point by point
MTPA current trajectory (shown in the upper graphic), and the detector was never
disabled. Fig.2.21a reports the measured shaft torque, averaged to eliminate the high
frequency component coming from the disturbance injection.
The MTPA curve is almost a straight line for low torque levels, and the sensitivity (that
is, the response of the speed loop to the disturbance of (2.7)) remains low. These aspects
are reflected on the the current ripple, which increases with the torque level. Moreover,
these effects could be reduced by adopting a programmed smooth reduction of the
amplitude A as a function of the estimated load torque or, more easily, as a function of
the output of the speed PI regulator (if necessary).
Sec. 2.4 shows that the phase ϑ of the current vector i asymptotically converges to the
actual MTPA angle, which is identified by the condition ε f = 0. Therefore, the achiev-
able accuracy in the “angle estimation” is theoretically infinite (at least asymptotically);
however, in practice such accuracy will be limited mainly by the precision of the cur-
rent measurement, which is related to the resolution of the A/D converter and the noise
rejection capability of the measurement system.
Moreover, it is worth to note that the phase ϑ of the current vector converges on average
to the actual MTPA angle: in fact, while the extremum seeking controller is enabled, the
phase ϑ is always perturbed by an additional perturbation term, which is deliberately
introduced by the controller.
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Fig. 2.21: Comparison of the MTPA curves for different conditions for the motor in Tab.2.1.
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The convergence accuracy must be referred to the average value of the phase ϑ. The
instantaneous value of the phase ϑ is reached at steady state, as neighbourhood of the
MTPA angle, whose amplitude is equal to the amplitude A of the phase perturbation.
To establish that a steady state working point was actually on the MTPA curve, a sim-
ple experiment has been designed. At steady state, and after that the MTPA detector
output was stable, the PIMTPA regulator was disabled and the phase ∠i∗ was slightly
forced upward (+0.2 rad) and downward (−0.4 rad), respectively. Fig.2.21b reports the
results, showing a case in which the point selected by the MTPA detector was actually
a minimum for the current amplitude.
The test has been carried out at the constant speed of 500 rad, with τ = τN and repeated
under different loading conditions, using the motor in Tab.2.1 and repeated for the
machine in Tab.2.2, as documented.
The experiment returned a sensitivity of about 1 A/rad, with a tendency to decrease
with the torque level, as mentioned above.
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Fig. 2.22: Effects of parameter variations and MTPA curves for different operating speed for the
motor in Tab.2.1.

As last design hint, the effect of some parameters on the MTPA detector accuracy was
investigated. To this aim, each parameter in Tab. 2.3 was modified in sequence, and a
load torque ramp was imposed to explore the whole operating range of the drive.
The monitored quantity was the normalised error εϑ between iq/id = tan(∠i), relative
to the modified parameter, and the same ratio obtained from Fig.2.20, whose correct-
ness was formerly proved by the test reported in Fig.2.21b. The results are shown in
Fig.2.22a.
It is worth noting that an exceedingly high value of the integral gain γ, while improv-
ing the convergence speed, reduces the precision in the tracking during the first stretch
(Fig.2.22a). Opposite to expectations, a too high value of A may worsen the accuracy,
not to mention the unacceptable current ripple, while it has been found that a higher fre-
quency of injection signal fAC, in combination with a decrease of both PIMTPA gains kp
and γ, maintains a quite good accuracy, while improving the MTPA detector dynamic.
For the sake of completeness, some other tests were performed to evaluate the possible
influence of the speed in the MTPA detector operations. The tests were conducted
by changing the speed of the PMSM-IPM drive, which is always applied a load torque
variation in ramp of 100 s. The MTPA loci obtained in three different working conditions
(ωm = 200 rad, ωm = 500 rad and ωm = 700 rad) are nearly identical, and it is therefore



48 the mtpa strategy for pmsm-ipm drives

possible to conclude that the proposed control action is not influenced by the speed of
the motor, as shown in Fig.2.22b.
The experimental tests have been also conceived to prove and analyse the convergence
of the proposed control scheme to the MTPA operating condition, in terms of both accu-
racy and speed of convergence with the aim to demonstrate the practical feasibility of
the (2.36).
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Fig. 2.23: Time evolution of the angle β during the approaching phase to the MTPA point. For
each plot, the measured convergence time (time required to cover 90% of the angular
distance between the initial condition and the steady state condition) is highlighted
with dashed lines (Results obtained with the motor in Tab.2.2).

In particular, while the steady state operation of the MTPA tracking controller is de-
scribed by the results shown in the previous series of experiments, its transient response
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Tab. 2.4: Measured/estimated convergence times [s] (motor in Tab.2.2)

τL = 30%τN

A \ γ 500 1000 2000

0.075 >30 / 35.75 15.22 / 17.83 8.98 / 8.90

0.150 7.64 / 8.96 3.33 / 4.50 1.44 / 2.24

0.300 1.73 / 2.25 0.69 / 1.13 0.49 / 0.56

τL = 50%τN

A \ γ 500 1000 2000

0.075 15.05 / 17.81 7.05 / 8.93 3.31 / 4.47

0.150 3.71 / 4.55 1.90 / 2.28 0.76 / 1.14

0.300 0.87 / 1.15 0.48 / 0.57 0.18 / 0.28

τL = 70%τN

A \ γ 500 1000 2000

0.075 8.65 / 10.90 4.15 / 5.45 2.03 / 2.73

0.150 2.01 / 2.73 1.09 / 1.37 0.44 / 0.68

0.300 0.48 / 0.69 0.22 / 0.34 0.08 / 0.17

can be analysed with the aid of the plots reported in Fig.2.23. The plots show that the
phase correction β, during the approaching phase to the MTPA point is affected by
different choices of the three control parameters: the perturbation amplitude A, the
controller gain γ and the load torque τL.
In each plot, the convergence time is measured as the time required to cover 90% of the
angular distance separating the initial condition from the steady state (MTPA) condition.
As correctly predicted by (2.36), from Fig.2.23a it can be noticed that the convergence
time is inversely proportional to A2: in fact, by halving the value of the amplitude A,
the convergence time quadruples. In Fig.2.23a, the convergence time has been directly
investigated by recording the MTPA trajectory with a constant load torque of 50% of the
rated torque, at the constant speed of 500 rad, repeating the test for different ampli-
tudes of the injected phase disturbance. In the same manner, Fig.2.23b shows that the
convergence time is inversely proportional to γ, because its value doubles by halving
the value of the gain γ. Indeed, it can be verified (Tab.2.4 described below) that the
convergence time is inversely proportional to the product γA2, i. e. the convergence
time remains unchanged if, for example, the amplitude A is halved and the gain γ is
quadrupled. Moreover, since the load torque affects the value of the parameter m in
(2.36) and the convergence time T̄ (as evident by the left plot of Fig.2.7), the steady
state values are different because the angle of the MTPA point depends on the loading
condition.
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2.8 conclusions

The research on the MTPA automatic attainment has focused on the mathematical as-
pects of an injection-based MTPA control technique. The strategy includes the zeroing
of an error function, which is usually performed by a PI controller, since the inher-
ent system non-linearity makes difficult the a-priori choice of the PI parameters. This
research proposes a link between the convergence error time function and the PI param-
eters, smoothing the way for an automatic - instead of empirical - tuning of the MTPA
controller. If compared with other techniques (relying on an off-line computation of the
MTPA curve), the proposed solution has the following advantages:

• it does not require any preliminary measurement campaign aimed to find the
MTPA operating point for any given load torque. This feature obviously im-
plies savings in terms of time and costs required to carry out the experimental
tests, since the experimental characterization of the MTPA curve is usually time-
consuming and needs a specific and expensive test bench (equipped with a torque
meter and an additional motor operating as a virtual load / brake).

• it can cope with motor parameters variations. A solution based on a pre-computed
MTPA curve actually implements an open-loop control scheme, and hence it is
unable to compensate any motor parameter variation that may occur during its
prolonged operation.

• it can be used almost immediately with any motor: in fact, the proposed controller,
being adaptive, requires only a small parameter tuning during its commissioning
phase, and then it adjusts its operation according to the motor characteristics. On
the contrary, a solution based on a precomputed MTPA curve obviously depends
on the specific motor on which the curve has been determined, and cannot be
used on a different motor.

The only disadvantages of this method can be found considering the current pertur-
bation injected with the purpose of tracking the MTPA point. In fact, it produces an
extra Joule losses in the motor stator winding. Also in this case, using the enable mech-
anism described in Sec. 2.6.2, it is possible to deactivate the MTPA tracking controller
once an almost steady state condition is reached (both on the speed and on the load
torque), and that turns it off again when the MTPA operating point is reached. In this
way, the extra Joule losses due to the current perturbation eventually occurs only for
the time required by the extremum seeking controller to seek the MTPA operating con-
dition. It is important to remarks that in literature exist many other types of control
algorithms that can be valuable alternatives in order to minimize the copper losses, as
that proposed in [40] or [41].
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3.1 introduction and literature review

In view of the increasing demand of energy-efficient drives, predictive control tech-
niques are arousing keen interest in wide sectors of the research in advanced electric
drives. Even if the general concept of Model Predictive Control (MPC) exists in many
engineering fields (as chemical engineering) since many years ([42] [43]), it is emerged
in the electrical drive systems as a promising alternative to the popular and widely
used vector control schemes [44] and direct torque control DTC [45], [46]. Recently, this
control technique has been successfully applied in different fields, as an example in
applications for the automotive industry [47] [48].
First examples of applications of the MPC technique can be found in [49], and they
mainly deal with techniques that modern classification [50] indicates as Pulse-width
Predictive Control (PPC), or dead-beat control. This class of predictive schemes calcu-
lates the voltages required to reach the desired currents after a sampling period and a
PWM is used to translate these voltages into switching patterns. The advantage of using
the PWM lies in the reduction of current ripple, especially if careful delay compensation
is considered, since an appropriate voltage amplitude can be selected even at low speed.
The main drawback is that usually the PPC is adopted in case of relatively slow digital
implementation, so that an error in the model affects the voltage reference and this, in
turn, may cause sensible current errors, precisely because of the large sampling periods.
The MPC version for power electronic and drive systems can be divided in two main
areas. The modulator Based (PWM or Space Vector Modulation (SVM)) schemes [43] and
the direct predictive control schemes DPC, where there is no PWM modulation [51], [52].
The classical approach of MPC identifies a controller law that solves a Constrained Finite
Time Optimal Control (CFTOC) problem, where a cost function defines the control goals
with respect to the future states and inputs, and the optimization is performed over
a prediction horizon of Npd time steps (i. e. over kTc, (k + 1)Tc, ..... (k + j)Tc steps). A
numerical solver is considered to compute the optimal feasible solution [53], by consid-
ering the receding horizon concept and evaluated with respect to the initial state plant
[54]. At the end of the computation, the first control input of the resulting optimal
sequence (saved into a LUT) is applied to the plant and iterated over the next sampling
instant. If the entire control region of the power converter is considered, a significant
computational effort is required and only simple and linear problems can be solved by
considering the explicit MPC toolbox ([53]). This approach cannot takes into account the
real time changing of the parameters involved into the control equations, leading to a
lack of robustness with respect of the parameters variations.
Recently, an evolution of PPC has led to a modern class of predictive controllers, within
the MPC theory [55]. Among the advantages, they let combine speed and current con-
troller in a single MPC, instead of keeping the typical cascade structure of a speed and
a current controller. It is possible to enforce in the controller the constraints due to cur-
rent and voltage limits [56]. Moreover, the system non-linearity can be included in the
model, without linearising the equations around any given operating point. This causes
the best control input to be found iteratively, and the computational requirements ex-
ceed by far those offered by the available processors.

51



52 hierarchical predictive control

As a compromise, under certain simplifying assumptions, a huge part of the mathe-
matical effort can be shifted off-line, as suggested first in [57]. In this case, the main
drawback is the complexity of the computation to be performed off-line, which severely
limits the inclusion of non-linearity and constraints, and the sensibility of the control to
parameter variations, as in the MPC classic approach. The MPC has the main advantage
that can be also used to design any non-linear control objective, i. e. the DC-link volt-
age control, speed, power or hybrid control, but in this case a linear current controller
is used to design the nominal and robust MPC controller for simplicity, and further
control goals are assumed to be implemented as external control loops [58].
As previously mentioned, the alternative to the MPC or PPC is the DPC (that also has its
roots in the past), named also as finite control set model predictive control ([57]). As the
name suggests, this class consists in predicting the future value of the currents for all of
the eight voltage vectors that the inverter can generate. Then, the one that minimizes a
specific target cost function or a specified object is selected. In this case the problem is a
trade-off between the current ripple and the computational requirements (related to the
capability to extend the prediction Npd steps ahead, during the interrupt routine). Only
analogue or very fast digital systems as FPGA ([59]) can bear an algorithm running at
a sampling rate sufficiently high to maintain the current ripple within acceptable limits,
while low-cost microprocessor or DSPs suffer of a hardware limitation and could not
match the requirements for this type of control.
This thesis work is an attempt to merge the simple, on-line, finite control set approach
of DPC with the interesting "global" view of MPC, through a hierarchical structure that
entails energy savings, and the name of this new control structure is HDPC. Here the
minimisation of a quadratic cost function [51] is replaced by a multi-level decisional
structure, where the next control input within a finite set of voltage vector is selected
by successive refinements. Moreover, the proposed control architecture avoids the use
of an external speed control loop by considering a prediction model that swallows and
mixes the electrical and mechanical equations of the motor, as described in Sec. 3.3.
In combination with a new hierarchical decisional structure and an increased number
of voltage vectors (Sec. 3.4 and Sec. 3.5), the proposed algorithm has been tested by
considering a standard industrial AC drive, without limitations related to the DC link
bus voltage, which plays a key role in the performances and quality of the control.
In order to examine the different distinctive features of the HDPC, many simulation
results performed either with isotropic motor and anisotropic motor are reported and
commented in Sec. 3.6, while a complete and detailed description of the proposed
control structure in a FPGA-based experimental bench is at the end of the chapter as
well as the experimental evidences (Sec. 3.7).

3.2 basic control structure

The predictive control has many advantages if an electric drive with an high dy-
namic control is required and the knowledge of the electric machine’s parameters is
available. The main difference between predictive control and traditional strategies is
the pre-calculation of the system behaviour, considered in the control algorithm control
structure. The difference between the reference and the measured value is used as input
in the control decisional structure, that returns the optimal control input.
Basically, many non linear constraints and separated control actions can be included
in the control law, without too many modifications on the algorithm structure, but an
extremely high number of calculations are required to compute and test all the possible
configurations. From the computation point of view and compared to the traditional
cascade control strategies, the practical feasibility of the control could be compromised,
but in the last years the power of the new DSP and the recent development of new
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FPGA platform allows the implementation of this new real time control technique. This
research focuses on the application of the direct predictive control implemented as
speed and current control for a PMSM drive. Basically, the scheme of Fig.3.1 is considered
for the modelization of the system. The PMSM-IPM motor with sinusoidal stator flux
distribution is directly fed by the three-phase VSI, in which each of the three phase legs
is characterized by two switches that connect the voltage source UDC of the DC link
with the neutral point (N), and so the voltage produced in each phase is ±UDC/2.
The two Insulated Gate Bipolar Transistor (IGBT) are complementary, and so, if the
upper switch is off, the lower switch has to be turned on.
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Fig. 3.1: Generic configuration of a DPC control scheme with PMSM machine direct fed by a VSI.

With respect of this basic configuration, the minimum number of switching possibilities
generated without modulation is Ns = 23 = 8. Each switching state of the IGBT is
representative of a set of phase voltages that can be produced using this finite set of
possibilities (indicated with su, sv and sw), and so, the output voltage space vector is
defined as:

usi =
2
3

UDC

(
usu + usvej 2π

3 + uswej 4π
3

)
i = 1...7 (3.1)

Basically, the DPC evaluates each of the (3.1) by considering the finite number of voltage
vectors (us0, us1....us7) represented in Fig.3.1 (on the right side).
The switching states us0 = us7 are called "zero states", since they produce zero voltage
vectors, and so the minimum number of possible switching states is reduced to Ns = 7,
considering only us0. The control algorithm structure has two main targets. The first
is to ensure a quickly and smooth transient speed profile, by guaranteeing at the same
time the stability under transient operation; the second, in steady state conditions is to
reach different control objectives. The prediction procedure firstly computes the speed
and current trajectories for each of the VSI vectors and then selects the optimal switching
state vector by considering a novel hierarchical decisional structure.
The optimal voltage vector is then applied during the next whole sampling period but
calculated in the previous one, i. e. these calculations must be completed and executed
on each sampling time interval Tc.



54 hierarchical predictive control

3.3 mathematical background

With the aim to synthesize correctly the prediction model to be used in the HDPC algo-
rithm, the time continuous model of the PMSM-IPM motor of Sec. 1.2 is here reconsidered.
The discrete-time domain model can be derived assuming that currents and position are
sampled at every instant k Tc (Tc defines the sampling interval), and by defining with
〈·〉k the average operator over the time interval [kTc, (k + 1)Tc]. Assuming that:

〈x〉k ,
1
Tc

∫ (k+1)Tc

kTc
x(t) dt (3.2)

the time integration of (1.19) over the sampling interval [(k− 1)Tc, kTc] yields:

1
Tc

∫ k

k−1
uddt =

1
Tc

∫ k

k−1

(
Rsid + Ld

did
dt
− Lqωmeiq

)
dt

1
Tc

∫ k

k−1
uqdt =

1
Tc

∫ k

k−1

(
Rsiq + Lq

diq

dt
+ ωmeLdid + Λmgωme

)
dt

(3.3)

and after some easy algebraic manipulations, the (3.3) returns the couple of discretized
currents in the dq reference frame, rewritten as:

id,k = id,k−1 +
Tc

Ld

(
Lq〈ωmeiq〉k−1 − Rs〈id〉k−1 + 〈ud〉k−1

)

iq,k = iq,k−1 +
Tc

Lq

(
〈uq〉k−1 − Rs〈iq〉k−1 − Ld〈ωmeid〉k−1 −Λmg〈ωme〉k−1

) (3.4)

The (3.4) can be reorganized and simplified, assuming that the mechanical (or electrome-
chanical) speed be constant between two sampling periods (i. e. 〈ωme〉k−1 ≈ ωme,k−1)
and considering that the applied voltage vector changes only at the beginning of the
next algorithm calculation (i. e. 〈ud〉k−1 = ud,k−1 and

〈
uq
〉

k−1 = uq,k−1)1. In compact
form:

〈id〉k−1 ≈
id,k−1 + id,k

2

〈iq〉k−1 ≈
iq,k−1 + iq,k

2
〈ωmeid〉k−1 ≈ ωme,k−1〈id〉k−1

〈ωmeiq〉k−1 ≈ ωme,k−1〈iq〉k−1

(3.5)

By replacing the (3.5) in the (3.4), after some algebraic manipulations the current dis-
cretized equations can be rewritten as:

1 These assumptions have general validity but they are particularly truthful at low switching frequencies (i. e.
fs < 5 kHz), although for high frequency switching (considering that the sampling period is in general
smaller of the electrical time constants of the machine) the currents can be considered constant between two
successive sampling periods. It follows that 〈id〉k−1 ≈ id,k−1, 〈iq〉k−1 ≈ iq,k−1, 〈ωmeid〉k−1 ≈ ωme,k−1id,k−1 and
〈ωmeiq〉k−1 ≈ ωme,k−1iq,k−1. This, of course, leads to a strong simplification of the model.



3.3 mathematical background 55



id,k = −
id,kRsTc

2Ld
+

ud,k−1Tc

Ld
+

iq,kωme,k−1LqTc

2Ld

+
iq,k−1ωme,k−1LqTc

2Ld
+ id,k−1

(
1− RsTc

2Ld

)

iq,k = −
iq,kRsTc

2Lq
+

uq,k−1Tc

Lq
−

Λmgωme,k−1Tc

Lq
−

id,kωme,k−1LdTc

2Lq

−
id,k−1ωme,k−1LdTc

2Lq
+ iq,k−1

(
1− RsTc

2Lq

)
(3.6)

Defining as idq,k ,
[
id,k, iq,k

]T
and udq,k ,

[
ud,k, uq,k

]T
the current and voltage vectors,

the two equations in (3.6) can be considered as a linear system in the unknown variables
id,k and iq,k.
In state space form the solution returns:

idq,k = Ak−1idq,k−1 + gk−1 (3.7)

where

Ak−1 ,


2Ldκq

Ψk−1
− 1

4L2
qTc

Ψk−1
ωme,k−1

−4L2
dTc

Ψk−1
ωme,k−1

2Lqκd

Ψk−1
− 1

 (3.8)

gk−1 ,


(

κq + LqT2
c ωme,k−1

)
ud,k−1

Ψk−1(
κd − LdT2

c ωme,k−1

)
uq,k−1

Ψk−1

−


2ΛmgLqT2
c ωme,k−1

Ψk−1

κdΛmgLqTc

Ψk−1

 (3.9)

and

Ψk−1 , 4LdLq + 2Rs
(

Ld + Lq
)

Tc +
(

R2
s + LdLq ω2

me,k−1

)
T2

c

κq , 2Tc
(

RsTc + 2Lq
)

κd , 2Tc (RsTc + 2Ld)

(3.10)

Since the right hand side of (3.7) depends only on measured quantities at the instant
(k− 1)Tc (i. e. the currents idq,k−1, the voltages udq,k−1 and the velocity ωme,k−1), then it
can be used to predict the currents at the instant kTc, i. e. in state space form:

îdq,k|k−1 = Ak−1idq,k−1 + gk−1 (3.11)

where îdq,k|k−1 (in general the suffix "·̂") denotes the vector of predicted currents at
the instant kTc, given the measurements up to the instant (k − 1)Tc. In particular, by
expanding the previous terms gives:
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îd,k|k−1 =
4iq,k−1ωme,k−1L2

qTc

Ψk−1
+

2uq,k−1ωme,k−1LqT2
c

Ψk−1

−
2Λmgω2

me,k−1LqT2
c

Ψk−1
−

ud,k−1

(
−4LqTc − 2RsT2

c

)
Ψk−1

−
id,k−1

(
−4LdLq − 2RsLdTc + 2RsLqTc + R2

s T2
c + ω2

me,k−1LdLqT2
c

)
Ψk−1

îq,k|k−1 =
4id,k−1ωme,k−1L2

dTc

Ψk−1
−

2ud,k−1ωme,k−1LdT2
c

Ψk−1

−
uq,k−1

(
−4LdTc − 2RsT2

c

)
Ψk−1

−
4Λmgωme,k−1LdTc + 2RsΛmgωme,k−1T2

c

Ψk−1

−
iq,k−1

(
−4LdLq + 2RsLdTc − 2RsLqTc + R2

s T2
c + ω2

me,k−1LdLqT2
c

)
Ψk−1

(3.12)

To complete the modelization, the mechanical part of the equations must be considered.
The torque expression (1.21) is averaged applying the same methodology exposed for
the voltage equations by considering the operator of (3.2). It follows that:

1
Tc

∫ k

k−1
τdt =

Jm

Tc

∫ k

k−1

dωm

dt
dt +

Bm

Tc

∫ k

k−1
ωmdt +

1
Tc

∫ k

k−1
τLdt (3.13)

and then:

〈τ〉k−1 = Jm

(
ωm,k −ωm,k−1

Tc

)
+ Bm 〈ωm〉k−1 + 〈τL〉k−1 (3.14)

It is worth nothing that, for the previous hypothesis, the speed is considered constant
between two sampling instants (i. e. 〈ωm〉k−1 ≈ ωm,k−1), and so the discretized speed
equation at the instant kTc derived:

ωm,k = ωm,k−1

(
1− TcBm

Jm

)
+

Tc

Jm

(
〈τ〉k−1 − 〈τL〉k−1

)
(3.15)

The prediction of the speed derived assuming that the estimated load torque is consid-
ered constant 〈τL〉k−1 = τ̂L (estimated with the method in 3.3.1), and the hypothesis

that 〈τ〉k−1 =
τk−1 + τk

2
≈ τk−1. Since the torque measure τk−1 is not available, the

torque produced by the motor is estimated and not predicted at the instant (k − 1)Tc.
Defining the estimated torque as τ̂k−1, the speed prediction returns:

ω̂m,k|k−1 =

(
1− TcBm

Jm

)
ωm,k−1 +

Tc

Jm
(τ̂k−1 − τ̂L) (3.16)

By averaging the expression of the electromagnetic torque between the instants (k− 1)Tc
and kTc (〈τ〉k−1 ≈ τk−1), it follows that:
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τk−1 =
1
Tc

∫ k

k−1
τdt =

3p
2Tc

(
Λmg

∫ k

k−1
iqdt +

(
Ld − Lq

) ∫ k

k−1
idiqdt

)
(3.17)

and so:

τk−1 =
3
2

pΛmg
〈
iq
〉

k−1 +
3
2

p
(

Ld − Lq
) 〈

idiq
〉

k−1

=
3
2

p

Λmg

(
iq,k−1 + iq,k

)
2

+
(

Ld − Lq
) (id,k−1iq,k−1 + id,kiq,k

)
2


=

3
4

pΛmg

(
iq,k−1 + iq,k

)
+

3
4

p
(

Ld − Lq
) (

id,k−1iq,k−1 + id,kiq,k

)
(3.18)

Using the previous expression, the torque estimation at step (k− 1)Tc is:

τ̂k−1 =
3
4

pΛmg

(
iq,k−1 + îq,k|k−1

)
+

3
4

p
(

Ld − Lq
) (

iq,k−1id,k−1 + îd,k|k−1 îq,k|k−1

) (3.19)

By replacing the torque expression (3.19) into the (3.16), the prediction of the speed in
(k + 1)Tc becomes:

ω̂m,k+1|k−1 = fω

(
ωm,k−1, id,k−1, iq,k−1, îd,k|k−1, îq,k|k−1, τ̂L

)
=

2Jm

2Jm + TcBm

{
ωm,k−1

(
1− TcBm

Jm

)
− Tc

Jm

[
3
4

p
(

iq,k−1+

îq,k|k−1

)(
Λmg +

(
Ld − Lq

)
2

p
(

id,k−1 + îd,k|k−1

))
− τ̂L

]} (3.20)

The (3.20) shows that the speed prediction at step kTc does not depends by the voltages
applied at step (k− 1)Tc, and for this reason it is important to remark that in the stator
currents dynamics (3.31), the voltage actuation has an immediate effect at step kTc but
in the electromechanical equation (3.20) this not happen in kTc.
For the motor speed in fact, the effect of the voltage actuation in the currents depends
by the mechanical dynamics of (3.19), and then only at the (k + 1)Tc step of prediction
the effects of a voltage application on the mechanical variables become visible.
The same behaviour is by considering in the position, where only at the step (k + 2)Tc
the effects of a voltage application on the electromechanical position ϑme = pϑm are
visible. For the sake of completeness the equation of the update electromechanical
position is reported.

1
Tc

∫ k

k−1

dϑme

dt
dt =

1
Tc

∫ k

k−1
Ωmedt

⇒ ϑ̂me,k+1|k−1 = ϑme,k−1 + p
(

ωme,k−1 + ω̂me,k+1|k−1

2

)
Tc

(3.21)

The prediction model introduced in this paragraph shows that, as every model-based
technique, the predictive control requires the knowledge of the main parameters of the
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motor for an effective operating. Any mismatch leads to inaccuracy that can nullify the
advantages of the prediction. This was surely one of the main drawbacks in the past,
and it still represents a heavy prejudice of the off-line techniques.
Appropriate and modern estimation techniques, as those described in [60], [61], [9] or
[62] assure a rather good tracking of both the parameters. As a valid alternative, integral
compensation, as that proposed in [49] and the corresponding improved version [63],
can (indirectly) fixed the problem of the parameters inaccuracy, by adding a term to the
references produced as the integral of the error between the predicted and measured
output.
Although these parameters are very important, their influence have no impact on the
implementation (the only small impact is the size of the fixed point data types that need
to be used in the real FPGA implementation).

3.3.1 Load torque estimation

Another issue that has to be addressed is the load torque estimation, that takes a
crucial role in the dynamic performance of the drive, influencing the correctness of the
prediction as well. In a typical cascade control scheme (e. g. the FOC for PMSM drives)
the external speed loop has the primary object in minimize the difference between the
speed reference and the measured (or estimated) speed, but the integral action of the
PI controller also compensates disturbances or sudden load torque variations.
In the proposed control architecture, the load torque term appears in (3.16) and can be
considered as a general disturbance. If not correctly compensated, this term could leads
to a steady state speed error. To overcome this problem, a possible solution consist into
adopt a disturbance observer, which uses the difference between the actual output and
the output of the nominal model as an equivalent disturbance applied to the nominal
model torque equation.
It estimates the load torque, which is utilized as a compensation value in the prediction
equation (3.16). By considering the mechanical balance:

τ − τL =
3
2

p
(
Λmgiq

(
Ld − Lq

)
iqid
)

︸ ︷︷ ︸
τ(id ,iq)

−τL = Jm
dωm

dt
+ Bmωm

(3.22)

and the basic Disturbance Observer (DOB) concepts described in [64], the estimated
torque τ̂k−1 (calculated with the (3.14)) can be used into the block diagram represented
in Fig.3.2 and subtracted to the estimate value of the reverse mechanical model. This
control action returns the correct estimation of the load torque disturbance.
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Fig. 3.2: Proposed disturbance observer (DOB) for the estimation of the load torque τL.

Assuming that the load torque remains constant or slowly variable (i. e. dτL(t)/dt ≈ 0),
τ̂L can be computed retrieving the inverse speed model. Since the direct feedback of
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d̂0 cannot be realized (the inverse model plant is non-proper), the control action can

be realized by introducing a transfer function Q(s) =
1

1 + sτQ
, which should have a

relative degree ρQ greater or equal to the relative degree of the model plant (i. e. in the
present case ρQ ≥ 1). It follows that Q(s) can be considered as a first order LPF, and the
dynamic of the DOB can be describes with the following set of equations:



τ̂0 = Jm
ωm,k−1 −ωm,k−2

Tc
+ Bmωm

d̂0 = τ̂k−1 − τ̂0

τ̂L =
τQ

τQ + Tc
τ̂L,k−1 +

Tc

τQ + Tc
d̂0

(3.23)

The hypothesis that
dτL(t)

dt
≈ 0 leads to consider only the speed measured at step

(k − 1)Tc and (k − 2)Tc, and not the prediction of the speed ω̂m,k|k−1 (that requires
the estimation of τL). As mentioned before, the design of the disturbance observer is
reduced to the design of Q(s), or in other terms in the choice of the constant time τQ
[64]. The choice of the cutting frequency fQ depends by the measurement noise, by
the disturbances of the system and by the amount of uncertainty in the model plant.
Moreover, the bandwidth of Q(s) has to be lower than the regulated bandwidth of the
input signal τ̂k−1|k−1. For the purposes of the present case, a simple first order low pass
filter with a cutting frequency of fQ = 1/(2πτQ) = 10 Hz is considered [64].

3.4 theory of operations and design hints

The generalized version of the discrete-time model of the PMSM described in the pre-
vious section is used to predict currents and speed at every sample time kTc. The
proposed control scheme, in fact, does not uses an external speed control loop and
the speed is directly computed by the algorithm, where many control targets and re-
strictions have to be included to force the desired speed dynamic by considering the
decisional control objects. The future plant states are computed for k + 1, ..., k + 1+ Npd
steps (Npd denotes the prediction control horizon), and for each of the Ns possible states
that the power converter can generates at every step. The main target is to find the best
voltage vector to apply at each sampling instant, considering the optimality criteria,
here named HDPC. The main characteristic of the HDPC decisional controller is the way
it selects the control law based on a prediction of the system behaviour.
In literature exists many solutions based on the use of a cost function that is generally
considered in order to test and select every admissible voltage vector. This function
is usually a quadratic cost term, composed by a series of weighting factors that give
different priority at every contribution (e. g. speed error, MTPA condition or switching
vector) [52], although one of the main disadvantages in this solution is the choice of the
weights of the different terms that compose the cost function (as described in [65]).
The proposed decisional algorithm does not rely on a cost function definition, since an
hierarchical decisional structure is considered to find and selects the best voltage vector
that met the imposed control constraints. During the normal operating, the control
routine check the speed reference tracking (transient or steady state condition) and the
MTPA condition (only in steady state operations), by reducing step by step the number
of admissible states in a hierarchical way.
By focusing on the execution routine in a sampling instant (k− 1)Tc (at the same instant
are measured the currents and the mechanical position), the goals of the DPC control
is to find the best voltage vector to apply at the instant kTc, selected considering the
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HDPC structure. The highest priority in fact, is given to minimize the speed error under
mandatory current constraints. If two or more voltage vectors fit the reduction of the
speed error and respect a specified speed boundary, the second level of hierarchy is
entered, selecting the bunch of vectors that minimises an extra constraints (e. g. the
MTPA condition). It is important to considered that, in the more general case (with a
horizon of prediction grater than one), the algorithm has to find the first input of the
optimal trajectory, calculated using the hierarchy criteria in a recursive way, by testing
every node of the possible paths with the decisional structure. This means that at every
step on of prediction, the algorithm recursively evaluates the equations of Sec. 3.3 for
each of the Ns state vectors of the voltage inverter, so that the total number of iterations

grows exponentially with Npd (N
Npd
s , where Npd indicates the prediction horizon and

Ns the number of the voltage states).
In particular, to calculate the optimal path, the result of the hierarchical decisional is
added to the previous one, easily tested with a recursive software routine (as detailed in
Sec. 3.5.2). Extra constraints can be added to the hierarchical decision process in order
to achieve interesting energy savings objects, even if one has to bear in mind that the
complexity grows exponentially. A concept scheme of the algorithm timing diagram is
summarized in Fig.3.3.

ckT ( ) cTk 1+( ) cTk 1− ( ) cpd TNk +

 timeexecution  e =T

Initialisation

Prediction and
hierarchical selection

application*u

Measurements

Fig. 3.3: Timing diagram of the HDPC control actions (the length of a single rectangle is magnified
and not corresponds to the real execution time of the algorithm).

With respect to Fig.3.3 the control algorithm works as follows. Firstly, since the measure-
ments from the sampling instant are available, as detailed in Sec. 3.4.1 the controlled
states change as direct effect of the application of the previous optimal voltage state.
At the same instant, the load torque, is compensated (i. e. at step (k + 1)Tc, two steps
of prediction is the minimum time that ensures that the applied voltage vector has an
effects at step (k+ 1)Tc) and the routine calculates all the possible evolutions of currents
and speed predictions. The main steps of the execution routine are summarized in the
following two sub sections.

3.4.1 Initialization

The future control plant depends by his previous value and by the values of the
applied voltage. Since the control algorithm has a finite execution time (i. e. it can be
assumed comparable with the sampling frequency Tc) a delay time between the instant
at which the currents are measured and the instant of application of the new switching
vector appears.
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Assuming to be in the time instant (k− 1)Tc, the first part of the control action (called
Initialisation in Fig.3.3) estimates the values of the currents at time instant kTc (through
the (3.12)) and of the speed at time instant (k + 1)Tc (through the (3.20)). During the
step kTc, in fact, the applied voltages remain constant and equal to us∗

d,k−1 and us∗
q,k−1 (i. e.

those computed in (k − 2)Tc) and then, the change of the currents and on the speed
up to the instant kTc is only related on the measurements and the previous predicted
voltages.

3.4.2 Prediction

From the update instant kTc, the algorithm performs the prediction of current and
speed by testing each term of the (3.11) and (3.16) for all the Ns possible voltage config-
urations.
In the case of Npd > 1, the set of equations (3.25) are exploded in a recursive way to
explore all the possible configurations, considering each possible state evolution with a
prediction horizon Npd greater of one single step. In this latter case, the iterative test is
performed for all the possible paths over the entire prediction horizon Npd (that in the
more general case could be greater than a single step of prediction), and the complexity
increases exponentially, as detailed in Sec. 3.5.2. Regardless of the number of steps of
prediction, at the beginning of the prediction step the equations (3.11) and (3.25) are
re-considered by using as inputs the estimated values of speed and current calculated
in Sec. 3.4.1.
In detail, the prediction of speed refers to the time step (k + 2)Tc while the current
refers to the step (k + 1)Tc. These predictions are derived considering the (3.11) and
(3.25) by changing the voltage terms with the equivalent ones associated to each of the
us1, us2....usNs finite state configurations of the power converter. This means that each
voltage combination of us∗

d,k and us∗
q,k is calculated as:

us
d,k + jus

q,k =
2
3

Udc e
j
(π

3
s
)

Tuvw/dq

(
ϑ̂me,k+1|k−1

)
(3.24)

where the apex s = 0....Ns denotes the voltage state associated at each prediction. The
complete set of equations is represented by:



îs
d,k+1|k = fd

(
îdq,k|k−1, us

dq,k|k−1, ω̂me,k|k−1

)
îs
q,k+1|k = fq

(
îdq,k|k−1, us

dq,k|k−1, ω̂me,k|k−1

)
τ̂s

k|k−1 =
3
4

p
{

Λmg

(
îq,k|k−1 + îs

q,k+1|k

)
+
(

Ld − Lq
) (

iq,k|k−1id,k|k−1 + îs
d,k+1|k îs

q,k+1|k

)}
ω̂s

me,k+2|k+1 = fω

(
ω̂me,k+1|k−1, îs

q,k+1|k, îs
q,k+1|k, τ̂L

)
(3.25)

The torque equation (3.18) at step (k + 1)Tc becomes a "prediction value", since the
inputs of (3.11) are the initialized currents in kTc (now predicted and not measured).
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3.5 the hierarchical decisional structure

To determine the couple of voltage vectors us∗
dq,k, us∗

dq,k+1 best suited to minimize the
generic speed error at step (k + Npd)Tc (equivalently the best control input s∗) and to
limit the oscillations of the current |i|s∗k+Npd

, the algorithm performs a hierarchical series
of tests using the prediction model of Sec. 3.3. Firstly, the predicted current for each
of the Ns voltage states is checked for compliance with the motor thermal limit. This
means that the voltage vectors that not ensure a specific bound (i. e. of kI IN , with
KI = 1÷ 2) on the current amplitude are not considered suitable for the hierarchical
test. Analytically:

∣∣∣îs
k+Npd

∣∣∣ = √(îs
d,k+Npd

)2
+
(

îs
q,k+Npd

)2
≤ kI IN (3.26)

It follows that, any of the s = 0...Ns possible configurations that exceeds the current
limit is excluded from a possible application at kTc.
The remaining one constitute the subset Sk,IN on which the speed error is evaluated.
Fig. 3.4 summarizes the different steps described up to here.
Considering the discrete nature of the algorithm, the predicted speed error is calculated
at step kTc for the step (k + Npd)Tc, assuming that the speed reference ω∗m remains
constant within the prediction horizon Npd. For this reason, to create a hierarchical
structure, a maximum allowable boundary on the speed error (namely eL) is fixed a
priori, in order to guarantee a degree of freedom in the choice of vectors that give this
minimum error for the second hierarchical level.
In particular, if more than one of the Ns ∈ Sk,IN voltage vectors ensure the eL bound,
the control adopts the decisional condition of the second hierarchical level. Otherwise, if
|eω | > eL the electric drive is in a transient condition (i. e. a speed transient condition
or a sudden load torque variation), and only the vector that guarantees the minimum
speed error defined by (3.27) is chosen.
Up to this point the algorithm operates in the first hierarchical level, and in transient the
optimal voltage vector s∗ ∈ Sk,IN is simply calculated as:


s∗ = min

{
es

ωm,k+1+Npd

}
es

ωm,k+1+Npd
=
∣∣∣ω̂s

m,k+1+Npd
−ω∗m

∣∣∣ s ∈ Sk,IN

(3.27)

At the end of the transient the speed error is in the eL boundary. All the voltage
configurations that produce an error within eL will form a subset Sk,ω ⊂ Sk,IN that
satisfies both thermal and speed constraints.
Additional demands on the control algorithm are in the choosing a specific combination
of voltage vectors, although in this research the current has been considered as a basic
requirement, since this leads to a small torque ripple.
One possible solution is to force the PMSM-IPM to work close to the MTPA trajectory.
This feature represents the target of the second hierarchical level. The MTPA condition is
derived by considering the same polar notation for the currents id and iq described in
Sec. 2.3 (i. e. (2.12)), readopted for the purpose of this control as:

Ms
k+Npd

:=


îs
d,k+Npd

+

(
Ld − Lq

)
Λmg

[(
îs
d,k+Npd

)2
−
(

îs
q,k+Npd

)2
]

2

(
Ld − Lq

)
Λmg

îd,k+Npd
< −1

(3.28)
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Fig. 3.4: Block diagram of the hierarchical control structure.

The (3.28) is evaluated for each of the remaining voltage configurations (Sk,ω ⊂ Sk,IN ),
and the second hierarchical subset Sk,M is then:

Sk,M =
{

Ms
k+Npd

|s ∈ Sk,ω

}
(3.29)

The hierarchical subset Sk,M is constituted by all the configurations (i. e. the possible
state voltage vectors) that fall within a prefixed range of speed error and that produce
an approximated MTPA condition. From these alternatives, the control simply selects
the optimal voltage vector s∗ ∈ Sk,M that represents the minimum into the subset Sk,M:

s∗ = min
{

Ms
k+Npd

}
(3.30)

In theory, if a sufficient high number of alternatives (at least two) remain in the second
hierarchical level, a second bound can be used in the "MTPA" subset of vectors and the
control action could predict an extra selection, for example by evaluating the number
of commutations ns

k,cc that each voltage projection would require, finally choosing the
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most advantageous one. Both zero vectors 000 and 111 should be evaluated, and a
boundary on the MTPA condition should be inserted as in the second hierarchical level.

3.5.1 The HDPC with augmented state vectors set

The conventional DPC schemes avoid the use of modulation techniques [44], restrict-
ing the control input to the only seven state voltage vectors. The reduced set causes
high ripple at steady state states, which can be mitigated only by a higher switching
frequency. This approach is quite similar to the original DTC scheme, and as direct
consequence of the variable switching frequency [66] an high current spread with a
relatively high torque ripple are always present in this type of control. Moreover, when
the number of states is only Ns = 7 and the voltage vector is already near to the re-
quested value for steady-state condition, each voltage change induces a large deviation
from the reference point. It is worth to note that many papers on finite-state DPC do
not present results obtained at a full industrial DC-link bus voltage of 560 V, due the
unacceptable high current ripple.
The correspondence between voltage configurations and equivalent switching states
that the VSI can generate in absence of external modulation strategy is given in Fig.3.5
(for the case of Ns = 7). With the aim of reducing the current ripple without undermin-
ing the simplicity of the finite-state solution, the proposed speed and current predictive
control algorithm overcomes the problems related to the limited use of the control re-
gion of the converter by introducing the possibility to use an extended number of states
of the VSI within one sample period [67].

Voltage s usα usβ S2 S4 S6

us0 0 0 0 0 0

us1
2UDC

3 0 1 0 0

us2
UDC

3

√
3UDC

3 1 1 0

us3 −UDC
3

√
3UDC

3 0 1 0

us4 − 2UDC
3 0 0 1 1

us5 −UDC
3 −

√
3UDC

3 0 0 1

us6
UDC

3 −
√

3UDC
3 1 0 1

us7 0 0 1 1 1

(a) Switching states configuration with Ns = 7 voltage vectors.

us6us5

us4

us3 us2

us1

us0 = 000
us7 = 111

(b) Equivalent graphic representation.

Fig. 3.5: Voltage vectors configurations with Ns = 7 and equivalent graphical representation.
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The use of a single switching vector during the whole period makes unfeasible the use
of a standard DC-link bus voltage of the industrial inverters (≈ 600 V) unless the DC-
link bus voltage has not been reduced. In other terms, the absence of an intermediate
vector into a discrete sampling period leads to an acceptable current ripple and the
torque quality deteriorates immediately by increasing the UDC. One possible solution
consists in reducing the sampling period Tc (equivalently increasing the sampling fre-
quency fsw, if supported by the VSI), but this requires a sufficiently powerful hardware
in order to execute the algorithm in an execution time Te compatible with the sampling
period Tc. This is one of the reasons for FPGA implementation of control.
As an alternative, the current ripple may be reduced by increasing the number of volt-
age states applied into a sampling period Tc [68]. This work explores and exploits
the use of six extra voltage vectors allocated in the middle of each conventional π/3
sector of voltage αβ plane, as shown in Fig.3.6. These extra vectors are introduced as
voltage configurations to be tested during the control decisional structure as equivalent
projections in the dq plane.
In Fig.3.6 is also reported the relationship between the switching configuration and
the equivalent voltage projection in the αβ reference frame. The equivalent control
scheme with Ns = 14 states is represented in Fig.3.7, where basically two adjacent
voltage configurations corresponding to zero (or non-zero) voltages are applied during
a modulation period. It follows that, the application time of an intermediate vector is
fixed a priori and it is equal to 0.5Tc (equivalently in the middle of every sector of the
hexagon), as graphically reported in Fig.3.6. Moreover, it is worth noting that the linear
combination of the two nearest physical switching states is equivalent to commutation
frequency of 2 fsw. This control strategy leads to avoid an PWM modulator, since in
theory, the use of a modulator could produce infinite configurations of voltage states,
negating the concept on which is founded this control algorithm. Furthermore, the
number of states that can be tested is limited by the available computational resources,
which limits the number of possible iterations Ns in according with the execution time
Te. Moreover the use of only few vectors leads to have a more robust control with
respect to the parameter variations, as verified during the experimental tests.
Sec. 3.6 reports a collection of tests that prove the practical unfeasibility of the canonical
solution with Ns = 7 voltage vectors and other simulations that show the improvement
by using Ns = 14.
The application of the entire DC-link bus voltage is required only to balance the BEMF

at the nominal speed or during the transient conditions, in the remaining intermediate
cases (as steady-state conditions without load, slow speed or torque variations, etc.) the
amplitude of the voltage vector can be reduced percentually. In order to obtain this
result, the control region of the converter is reduced by multiplying the amplitude of
each voltage state by a coefficient 0 < kM ≤ 1 fixed at priori. In this way the number of
voltage states to be tested by the prediction algorithm remains equal to Ns = 14, while
the actual converter region is extended (i. e. not limited to peripheral vertices). The
adaptive coefficient kM is calculated by considering the prediction of the speed (i. e. the
slope of the speed by considering the difference between the previous steps) and the
DOB load torque estimation, assuming that the maximum value of kM (i. e. kM = 1) is
associated to every torque or speed variation while at every intermediate or steady-state
operation condition (identified by the estimation and prediction equations) is associated
a kM ∈ 0.3÷ 0.5.
In other terms, kM is changed during the normal operation and depends by the re-
quirements of the algorithm (e. g. during the second hierarchical level the voltage balance
depends only by the Electromotive Force (EMF), and the amplitude can be reduced),
although it is normally equal of kM = 1. Fig.3.6 shows the graphical representation
of the extra added vectors with the equivalent voltage states indicated with the circles.
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Voltage s usα usβ S2 S4 S6

us0 0 0 0 0 0

us1
2UDC

3 0 1 0 0

u′s1
UDC

2 0.2886UDC 1 0.5 0

us2
UDC

3

√
3UDC

3 1 1 0

u′s2 0
√

3UDC
3 0.5 1 0

us3 −UDC
3

√
3UDC

3 0 1 0

u′s3 −UDC
2 0.2886UDC 0 1 0.5

us4 − 2UDC
3 0 0 1 1

u′s4 −UDC
2 −0.2886UDC 0 0.5 1

us5 −UDC
3 −

√
3UDC

3 0 0 1

u′s5 0 −
√

3UDC
3 0.5 0 1

us6
UDC

3 −
√

3UDC
3 1 0 1

u′s6
UDC

2 −0.2886UDC 1 0 0.5

us7 0 0 1 1 1

(a) Switching states configuration with Ns = 14 voltage vectors, associated
by a VHDL specific routine.
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us1

u′s6

u′s5

u′s4

u′s3

u′s2

u′s1

us0 = 000
us7 = 111

(b) Equivalent graphic representation.

Fig. 3.6: Voltage vectors configurations with Ns = 14 and equivalent graphical representation.

In conclusion, this modulation strategy avoids the use of a conventional PWM modula-
tor, while giving the finite-state DPC the possibility of reducing the current and speed
ripples by resizing the optimal voltage vectors depending on the drive operating point.

3.5.2 The length of the prediction horizon

This paragraph details the behaviour of the control prediction algorithm when the
prediction horizon is greater of a single step of prediction. If Npd ≥ 1 the (3.4) must be
further exploited to get the prediction of current and speed at step k + Npd. A possible
solution is to explore all the combinations and ramifications in a recursive way, whose
number and arrangement depends by the prediction horizon Npd and by the number of
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Fig. 3.7: Block diagram of the structure of the HDPC with Ns = 14 voltage vectors.

considered voltage states Ns. In other terms, the prediction and the control decisional
structure are repeated and evaluated Npd − 1 times for each of the s = 0...Ns state
voltage vectors of the VSI.
This situation can be represented by the following set of equations:



îs
d,k+Npd |k+Npd−1 = fd

(
îdq,k+1|k, us

dq,k+1|k, ω̂me,k+1|k

)
îs
q,k+Npd |k+Npd−1 = fq

(
îdq,k+1|k, us

dq,k+1|k, ω̂me,k+1|k

)
ω̂s

me,k+1+Npd |k+Npd
= fω

(
ω̂me,k+1|k, îs

dq,k+Npd |k+Npd−1, τ̂L

) (3.31)

The hierarchical decisional structure of Sec. 3.5 is repeated Ns times, and this means

that the branch and bound exploration grows exponentially, since N
Npd
s possible config-

uration must be evaluated, and this critical feature of the algorithm (for Npd ≥ 1) is an
aspect that must be taken into account for a real-time implementation. The prediction
horizon Npd is usually limited to only few steps, but for the purposes of this research a
more detailed simulative analysis has been performed to understand the influence and
the advantages in the use of a Npd ≥ 1.
In order to weigh the contribution of the choice of a vector in every node of the tra-
jectory, the exploration starts from the last level of the entire tree of possibilities. The
situation can be explained supposing to be in the second-last exploration tree position,
where the algorithm is testing one of the Ns voltage vectors and it has in memory the
"weight term" associated to the forward node (i. e. that of Npd).
The "weight term" wN is calculated as product between the speed error and the equiv-
alent MTPA condition wNpd = |es

ωm,k+1+Npd
Ms

k+Npd
|, and takes into account the averaged

distance between the tracking reference and the optimal trajectory that can be achieved
using the Ns voltage vectors available.
It follows that, every intermediate result of the hierarchical decision of the node is
added to the result of the HDPC routine of Sec. 3.5 to the actual state decision. To give
the highest priority at the choice of the first vector of the optimal trajectory, a percentage
reduced weight is considered in the recursive creation of the trajectory. At the end of

the N
Npd
s calculations, the "weight term" wN takes into account the contribution of the

trajectory associated to every of the (s = 0...Ns) voltage vectors, and the first optimal
vector on Ns possible trajectories is selected choosing the one that returns the lowest
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Fig. 3.8: Possible evolution of the states of the HDPC algorithm considering only Ns = 7.

wN . Better results in term of torque quality and reduced computational demands can
be achieved by choosing carefully the optimal length of the prediction horizon.
In theory, the consideration of a prediction horizon Npd > 1 should avoid nervous
effects on the control behaviour, since the choice of a optimal voltage vector for Npd = 1
could lead to a breach of the thermal limits of the machine and a sudden variation in
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the control action if the same horizon had been analysed by considering two or more
step of predictions, adopting the structure described above.
The main concept is that the optimal vector could not be the optimal vector compared
with the single step of prediction, but in general it is representative of a trajectory that
is the optimal over the prediction horizon.
A sketch of the simple case with Ns = 7 voltage vectors is represented in Fig.3.8, where
the path that matches all the requirements of the control is highlighted in red. Fig.3.8
it is also useful to understand that the recursive iteration of the algorithm produces an
optimal voltage vector associated at every step of prediction, and that is used for the
calculation of the previous step of prediction, in order to obtain the optimal trajectory.
The simulation was performed by considering a series of functions that contains the
prediction of the equations of Sec. 3.3 together with the function that implements the
HDPC to selects the optimal vector s∗. A flexible structure has been created in order
to easily change different types of parameters (as the number of vectors Ns or the
prediction horizon Npd), although a simulation time of many hours is required only to
test the predictive algorithm with Npd = 4.
Anyway, there are no significant differences in the control current and speed quality if
a prediction horizon of Npd = 1 or Npd = 4÷ 5 is considered. From the mechanical
point of view, this control behaviour can be understood by observing that the mechan-
ical time constant of the motor is sufficiently greater of few sampling periods, and so
the action of the control has not a sufficient long observation period to change the pre-
dicted trajectory in an efficient way. Furthermore, the dynamic of the currents with
the increased number of prediction steps has been verified in Sec. 3.6, by simulating
the behaviour of the control considering the number of commutations in a fixed time
interval.
Anyway, although this choice not influences significantly the dynamic and the currents
or torque control quality, the computational requirement grows exponentially. This
means that complexity and hardware requirements grows rapidly with the increased
number of Npd without having a direct advantage in terms of torque ripple reduction
that could justify the use of Npd ≥ 1.

3.5.3 Current ripple estimation

In order to know with precision and in advance the minimum current ripple, during
the normal operating of the control routine can be estimated analytically with accuracy.
If we assume to be in steady state conditions, the time continuous equations (1.19) and
(1.21) can be rewritten as:


Ud = Rs Id −ΩmeLq Iq

Uq = Rs Iq + ΩmeLd Id + ΩmeΛmg

τ0 = BmΩm + τL =
3
2

p(Λmg Iq +
(

Ld − Lq
)

Iq Id)

(3.32)

where the symbols Ud, Uq, Id, Iq, Ωme and τ0 denote the variables in steady state op-
erating condition. By defining as ∆ud,k , ud,k −Ud and ∆uq,k , uq,k −Uq the voltage
variations, the reverse triangle inequality2 returns:

2 The reverse triangle inequality states that, ∀ x, y ∈ R:|x− y| ≥ ||x| − |y||
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
∣∣∣∣∣∣uq,k

∣∣∣− ∣∣Uq
∣∣∣∣∣ ≤ ∣∣∣∆uq,k

∣∣∣ = ∣∣∣uq,k −Uq

∣∣∣∣∣∣∣ud,k
∣∣− |Ud|

∣∣ ≤ ∣∣∆ud,k
∣∣ = ∣∣ud,k −Ud

∣∣ (3.33)

The steady-state voltage Ud and Uq depends by the mechanical steady-state balance of
(3.32), derived by substituting the Id and Iq expressions from the mechanical equation
in the first and second of (3.32).


Ud =

Rs

(
BmΩm + τL −

3
2

pΛmg Id

)
(

Ld − Lq
)

Iq
−ΩmeLq Iq

Uq =
Rs (BmΩm + τL)

3
2

p
(
Λmg +

(
Ld − Lq

)
Id
) + ΩmeLd Id + ΩmeΛmg

(3.34)

From (3.4), the couple of discretized currents id,k+1 and iq,k+1 at the instance (k + 1)Tc
are3:


id,k+1 =

(
1− RsTc

Ld

)
id,k +

Tc

Ld

(
ud,k + ωme,kLqiq,k

)
iq,k+1 =

(
1− RsTc

Lq

)
iq,k +

Tc

Lq

(
uq,k −ωme,kLdid −ωme,kΛmg

) (3.35)

that, after some algebraic manipulations can be rewritten by substituting the steady-
state values of (3.32) into the (3.35):

id,k+1 = Id +
Tc

Ld

ud,k −

Rs Id + ΩmeLq Iq︸ ︷︷ ︸
Ud


 = Id +

Tc

Ld
∆ud,k

iq,k+1 = Iq +
Tc

Lq

uq,k −

Rs Iq + ΩmeLd Id + ΩmeΛmg︸ ︷︷ ︸
Uq


 = Iq +

Tc

Lq
∆uq,k

(3.36)

From (3.36), the current ripple variation can be written as:


∆id,k+1 , id,k+1 − Id =

Tc

Ld
∆ud,k ≤

Tc

Ld
(ud,k + Ud)

∆iq,k+1 , iq,k+1 − Iq =
Tc

Lq
∆uq,k ≤

Tc

Lq

(
uq,k + Uq

) (3.37)

and then, the current ripple dependencies from the voltage ripple variation ∆u,k and the
sampling period Tc is shown. Since the applied voltage vectors uq,k and ud,k are chosen
from a finite alphabet of voltage configuration (i. e. s = 0...Ns, as defined by (3.24)),

3 〈id〉k−1 = id,k−1, 〈iq〉k−1 = iq,k−1, 〈ωmeid〉k−1 = ωme,k−1id,k−1 and 〈ωmeiq〉k−1 = ωme,k−1iq,k−1.
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by applying the reverse triangular inequality and the triangle inequality4 to (3.33), it
follows that:


∣∣∣us

d,k+1

∣∣∣+ |Ud| ≥
∣∣∆id,k+1

∣∣ ≥ Tc

Ld

∣∣∣∣∣∣us
d,k+1

∣∣∣− |Ud|
∣∣∣∣∣∣us

q,k+1

∣∣∣+ ∣∣Uq
∣∣ ≥ ∣∣∣∆iq,k+1

∣∣∣ ≥ Tc

Lq

∣∣∣∣∣∣us
q,k+1

∣∣∣− ∣∣Uq
∣∣∣∣∣ (3.38)

and then, since the maximum voltage value is on the bound of the modulation hexagon,
(i. e. that shown in Fig.3.5 or Fig.3.6), the previous inequality can be rewritten as:


bdm =

Tc

Ld

∣∣∣∣23Udc − |Ud|
∣∣∣∣ ≤ ∣∣∆id,k+1

∣∣ ≤ 2
3

Udc + Ud = bdM

bqm =
Tc

Lq

∣∣∣∣23Udc −
∣∣Uq
∣∣∣∣∣∣ ≤ ∣∣∣∆iq,k+1

∣∣∣ ≤ 2
3

Udc + Uq = bqM

(3.39)

The (3.39) estimates a minimum current ripple and shows that the ripple is related to the
sampling time Tc and the DC-bus voltage UDC. This means that the improvements of
the control action in terms of current quality are strictly related to these two parameters
which bind the overall control behaviour. It is worth noting that the (3.39) gives an
important information on the minimum and maximum current ripple (bm and bM),
which cannot have a current limit less of bm and higher of the right hand side of (3.39)
(i. e. bM, in the dq components). Moreover, the relationship (3.39) is verified without
considering the boundary on the voltage vectors, although the reduction of the current
undulation, which depends by the control action during the different hierarchical levels
remains the main control goal.

3.6 simulation results

A complete fixed point model of the control has been created in Matlab/Simulink
environment together with the Xilinx System Generator toolbox to emulate the real
behaviour of the algorithm described in Sec. 3.3, when programmed into the FPGA
platform (including I/O interfacing and quantisation effects).
The Xilinx tool provides an environment to graphically build up the desired functional-
ity in Simulink and to generate the FPGA compiled project, allowing the inclusion of low
level VHDL code or the use of pre-compiled Xilinx/Simulink blocks. For the purposes
of this research, is useful to adopt different strategies of implementation, by including
both pre-compiled Xilinx blocks, m-code equivalent blocks and VHDL code.
The entire prediction and initialization blocks are written in equivalent m-code from
Xilinx, where all the variables are programmed and scaled to be in the Q-N notation.
The Q-N notation is a particular fixed point number format, which has a number of frac-
tional bits (and integer bits also) specified at priori, and it is particularly useful for this
case, since the floating point representation is not admissible in the m-code equivalent
structure (instead of the typical Matlab m-functions). In the algorithm implementation
the number of bits used for the fractional part is equal of Q=8 and N=10, although in
some routines the number of bits is increased to Q=14 and N=14. The number of bits is
motivated by the numerical value of the products and constants in the equations of Sec.
3.3, by considering that the function is structured in order to resize the result of every
mathematical operation, in order to avoid arithmetic overflows.

4 The triangle inequality states that, ∀ x, y ∈ R:|x + y| ≤ |x|+ |y|
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The control simulation parameters have to be realistic, and the maximum commutation
frequency ( fsw) of a commercial inverter of a few kW is generally limited to only 10 kHz.
The value of fsw is then selected in agreement with the experimental setup, and for the
purposes of the control a sampling period of Tc = 100 µs (i. e. fsw = 8− 10 kHz) has
been considered (although the performance of the control, in terms of current ripple
can only be better if the switching frequency is increased) with a prediction horizon
Npd = 1, as specified in Sec. 3.5.2.
As remarked in the previous paragraphs, although the finite set current predictive con-
trol schemes avoid the use of modulation techniques and only one of the seven discrete
switching configurations of the power converter is applied during the whole switching
period, most of the literature papers does not use the full industrial standard DC-link
bus voltage of 560 V, due to the unacceptably high current ripple. Unfortunately, the
choice of working at lower DC-link bus voltage does not fit for industrial applications,
although to overcome this problem the feature of Sec. 3.5.1 must be considered.
The PMSM-IPM motor parameters are reported in Tab.2.2, while the design control pa-
rameters are reported in Tab.3.1. The boundary on the speed error eL has to be chosen
carefully, since it has an an essential role into splitting the transient and steady state
operating condition, and then in the choice of the first or second hierarchical level. It
has been selected proportionally to the nominal speed of the motor, in order to ensure
sufficient resolution and to emulate the real speed variation around the steady state
value.
In order to generalize as more as possible the present study, the special situations with
a high switching frequency will not be considered, since, as remarked before, if the con-
trol has good performance with a sampling period of Tc = 100µs, the results achievable
with a lower sampling period will be obviously better. For a first evaluation and tuning
of the proposed algorithm, the overall control system has been simulated considering
a prediction horizon Npd = 1 with the minimum finite number of voltage vectors (i. e.
Ns = 7).
The aim of these simulations is to show the effects of the basic control implementation
with only Ns = 7 possible voltage states, using the real parameters of a industrial
converter without the possibility to change the DC-link bus voltage. The first simulation
deals with the speed response to a step reference of 600 rpm and two consecutive steps
of load torque (from 0 to the nominal torque at steps of τN/2).

Tab. 3.1: Simulation and experimental reference HDPC control parameters

Parameter Value

Switching frequency fs 10 kHz

State voltages Ns 14

Prediction horizon Npd 1

Speed boundary eL (0.001÷ 0.01)ωmN rpm

Current limit IL (0.8÷ 1.5) IN A

DC-link voltage UDC 560 V

Modulation index kM 0.1÷ 1

The results are summarized in Fig. 3.9, which reports the machine mechanical speed,
the electromechanical generated torque, the currents behaviour in the dq reference
frame and the load torque compensated with the DOB.
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During the speed transient the machine is controlled exclusively by the first hierarchical
level, since the speed error did not reach the eL boundary (the speed error condition is
dominant with respect to the other goals of the control, which become negligible).
The currents have a nervous behaviour with a high harmonic contents, and this effect
is partially reflected on the generated torque that remains close to the rated limits (and
the control does not follows the MTPA trajectory, since it is focuses on maximum torque
generation to reaches the minimum speed error). The two positives load torque step

of
τN
2

applied in sequence to the system are necessary to show the influence and the
reaction of the DOB on the speed behaviour.
During these sudden load torque variations, the control operates in the first hierarchical
level since the speed error for the transient time does not respect the boundary on eL.
In particular, as mentioned in Sec. 3.3.1, the load torque disturbance leads to a steady
state speed error (if not correctly compensated), but from Fig. 3.9e it is evident that
DOB first-order response is sufficient to compensate the sudden load torque variation.
Fig. 3.10 shows the effects of a reduction in the UDC voltage in terms of current quality
and ripple reduction.
In detail, in Fig.3.10a is shown the same transient of Fig. 3.9, but considering a very low
DC-link voltage of only UDC = 130 V. The simulation is then repeated in Fig.3.10b by
considering a DC-link voltage of only UDC = 200 V, and in both cases the results show
a sensible current ripple with respect of Fig. 3.9b. These simulations are considered
only to prove that in absence of a major number of possible switching vectors, the
current ripple is not acceptable if the standard industrial parameters are considered.
The set of simulations with Ns = 7 voltage vectors have been performed to appreciate
the improvement achievable by introducing six extra voltage vectors, as described in
Sec. 3.4. As previously mentioned the intermediate configurations are obtained in the
simulation/experimental control architecture by applying two configurations of non-
zero voltages or adjacent voltage vectors of Fig.3.6 during a modulation period. In
the simulation plant the coefficient kM ∈ 0÷ 1 is varied by considering the prediction
of the speed and the on the load torque estimation, and it is reduced proportionally
with the torque demand in the different operating conditions. The simulations have
been repeated by considering the modulation strategy of Sec. 3.5.1, a standard DC-link
bus voltage of 560 V and a sampling period of Tc = 100 µs. Fig.3.11 collects the results
obtained by testing the PMSM-IPM motor in Tab. 2.2, with a speed step variation followed
by two consecutive torque transients of τN/2 each, from zero to the nominal torque of
the motor by considering Ns = 14 voltage vectors.
As expected, the current ripple of Fig.3.11b and Fig.3.11c is significantly reduced in
comparison with that of 3.9b and 3.9c, and it is now acceptable from an industrial
perspective, with a peak to peak current ripple of 0.6÷ 0.7 A and a perfect match of the
MTPA trajectory.
Fig.3.11c shows the successive working points of the drive in the id − iq plane (i. e. the
accumulations of the consecutive currents variation steps): at the start up (maximum
torque of Fig.3.11f, during the speed transient the motor is controlled exclusively by the
first hierarchical level), then at steady state with no load and finally at increasing load
torque (i. e. in the second hierarchical level). All points lie close to the theoretical MTPA
curve (dotted line), confirming the correctness and the effectiveness of the proposed
algorithm.
The same improvements are evident in the torque response of Fig.3.11f, while the usual
high dynamic in the speed response (Fig.3.11a) is preserved as well as the DOB action
of Fig.3.11e. In particular, the speed behaviour is quite smooth but the high bandwidth
of this control is appreciable and fast as expected by a bang-bang controller. It is worth
to note that the algorithm is capable of operating either with isotropic or anisotropic
machines with no difference, for its inherent capability of reaching the minimum cur-
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Fig. 3.9: Speed, currents and torque during different transients using a HDPC configured with
Ns = 7 voltage vectors. Machine in Tab.2.2, Tc = 100 µs, Npd = 1 and UDC = 560 V
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rent vector at steady state in any case To testify and appreciate the feasibility of the
algorithm, a series of simulations performed by using the PMSM-SPM motor in Tab.3.2
(the same available in the laboratory bench) has been also reported.

Tab. 3.2: Isotropic PM synchronous motor PMSM2 parameters

Parameter Value

Nominal ph-ph voltage UN 400 Veff

Rated current IN 3.7 Aeff

Pole pairs p 4

Saliency ratio ξ = Lq/Ld ≈ 1

Rotor inertia Jm 0.00795 kgm2

Viscous friction Bm 0.0024 Nms

Although in the case of PMSM-SPM the MTPA condition is reduced to the standard FOC

control, the results obtained by applying the algorithm are shown in Fig.3.12, where the
same transients of torque and speed proposed in the previous cases are repeated again.
Due to the low inductance value of this machine (Ld ≈ Lq in Tab.3.2), the control
algorithm exhibits a deteriorated current quality, direct consequence of the particular
type of machine adopted for the experiments.
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Fig. 3.10: Currents dynamic of the machine in Tab.2.2 during the same transient of Fig. 3.9. Tc =
100 µs, Npd = 1 and a DC-bus voltage UDC = 130 V and UDC = 200 V

Due to intrinsic non-linearity of the proposed control algorithm, a direct comparison
of its dynamic performances with respect to a conventional PI-cascade control is quite
difficult (e. g. during a speed transient). A possibility is to set a small reference speed
variation at no-load condition, in order to perform a small-signal evaluation similar to
the one applicable to the case of field-oriented control. In this condition, the bandwidth
of the control is calculated in a condition of quasi-linear relationship, and considering
the raise time tr, the equivalent bandwidth of the speed fBw can be calculated as fBw =
0.3/tr. Since the average raise time (in presence of little step variations) is about tr =
2 ms, the corresponding bandwidth is fBw ≈ 175 Hz.
To testify the conjectures on the wantonness of using a high number of prediction steps
of Sec. 3.5.2, in Fig.3.13 is shown the same current transient of Fig.3.11 in response of
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(f) Electromagnetic torque of the PMSM drive

Fig. 3.11: Speed, currents and torque during different transients using a HDPC configured with
Ns = 14 voltage vectors. Simulation performed with the machine parameters of Tab.2.2
and control parameters in Tab.3.1.
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Fig. 3.12: Speed, currents and torque during different transients using a HDPC configured with
Ns = 14 voltage vectors. Simulation performed with the machine parameters of Tab.3.2
and control parameters in Tab.3.1.
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the same speed step variation, but with the HDPC control algorithm configured as in Sec.
3.5.2, with Ns = 14 voltage vectors. It is quite evident that there are no benefits in term
of current ripple reduction or torque quality (e. g. by direct comparison of Fig.3.11f and
Fig.3.13b) if a greater prediction horizon (Npd = 3) is considered but the computational
requirement increase a lot.
The conjectures on the length of the prediction horizon of Sec. 3.5.2 are further sup-
ported by considering the total number of commutations in a fixed temporal window
on the simulation time. As mentioned in Sec. 3.5.2, the absence of improvements in the
speed behaviour can be easily justified by considering the mechanical time constant of
the system, while the worsening of the currents must be properly analysed.
To this purpose, the total number of commutations of the VSI switches have been
recorded among a fixed time interval, i. e. by considering the control with Npd = 1
and Npd = 3 prediction steps. The results in Fig.3.13 prove that despite the optimal
voltage vector is the first on the trajectory trajectory on Npd steps, the choice of a pre-
diction horizon of Npd = 3 steps leads to a deterioration in the quality of the currents
and to a significant increasing in the number of switching commutations. Numerically,
the number of commutations NT is of NT = 597.42 · 1e6 with Npd = 1, NT = 850.38 · 1e6

with Npd = 2 and NT = 1084 · 1e6 with Npd = 3, and then the increment is ≈ 35% at
each increasing of the prediction step.
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Fig. 3.13: Currents and torque dynamic of the machine in Tab.2.2 during the same transient of
Fig. 3.11. Tc = 100 µs, Npd = 3 and DC-bus link of UDC = 560 V

Since the proposed control architecture has been studied to be implemented in a FPGA

platform, the main advantage brought by this hardware platform is the achievable lim-
ited execution time Te (as proved in 3.7).
This means that, if the hardware configuration of the VSI could guarantee a sufficient
high sampling frequency (i. e. the average commutation of the switches must be in com-
pliance with the sampling frequency fsw), then it could be possible to take advantage of
the limited execution time and improve the performances of the HDPC by reducing the
sampling interval Tc (as analytically demonstrated in Sec. 3.5.3). To this purpose, a fi-
nal batch of comparison simulations were carried out changing the sampling frequency
fsw. Fig.3.14 shows the same transient conditions of Fig.3.12 but repeated considering
a reduced sampling period, in order to testify and appreciate the improved control
behaviour.
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(a) Currents transients of id and iq - fsw = 20 kHz
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(b) Torque τ - fsw = 20 kHz
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(c) Currents transients of id and iq - fsw = 40 kHz
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(d) Torque τ - fsw = 40 kHz

Fig. 3.14: Currents and torque during different transients by considering the HDPC configured
with Ns = 14 voltage vectors with respect of different sampling frequencies fsw. Motor
of Tab.2.2, prediction horizon Npd = 1 and DC-bus link of UDC = 560 V

The current quality and the electromagnetic torque show a linear improvement that
is directly correlated to the increased sampling frequency. The speed and the DOB

response are not influenced by the variation of the sampling period, and for the sake of
compactness the related simulation results are not reported.

3.6.1 Switching frequency analysis

An aspect to be considered and investigate is related to the influence of the proposed
choice of the vectors on the switching frequency of the converter. In the canonical modu-
lation techniques (e. g. the SVM) the frequency is maintained constant, but the structure
of the HDPC leads to a randomized choice of the voltage vector (i. e. at each sampling
time the commutation frequency changes as direct effect of the choice of the voltage
vector between the Ns alternatives), although the maximum switching frequency of the
control is indirectly limited by the sampling frequency. In theory a constant switching
frequency is always desirable for a better design and selection of the switching devices
(i. e. the stress of the IGBTs is known a priori), and for this reason it is important to
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understand the limitations of the proposed control strategy in terms of spectral distri-
bution and switching frequency analysis.
To measure the effect of the control strategy on the switching frequency and reference
tracking performance, it is important to define the average switching frequency of the
converter f sw as the average value of the switching commutations of all the six con-
trolled power semiconductors in the converter into an observation period. Analytically:

f sw =
1

6NTCTc

NTC

∑
i=1

(Ncu,i + Ncv,i + Ncw,i) (3.40)

where NTC defines the number of periods considered to calculate the commutations,
while Ncu,i, Ncv,i and Ncw,i define the number of commutations of a single leg of
the power converter. In the simulation results of the previous paragraphs (Fig.3.9d,
Fig.3.11d and Fig.3.12d) is reported the averaged switching frequency calculated with
the (3.40). An other advantage in the use of Ns = 14 vectors (instead of only Ns = 7)
is the reduction of the f sw, as visible in Fig.3.9d and Fig.3.11d. Moreover, it can be ob-
served that the amplitude of the currents display a spread spectrum as the one shown
in Fig.3.15, where different sampling frequencies have been considered, presenting dif-
ferent ranges and magnitudes of the spectral content in each case.
In particular, the harmonics are spread over the entire spectrum (instead of the SVM),
where they are concentrated around the fixed frequency. In some applications, a current
spectrum as that of Fig.3.15 is not desirable because it can produce oscillations and com-
plicate the design of components. Furthermore, if required by the specific application,
it is important to control or limit the number of commutations of the power switches
of the VSI and a possible solution consists into shape the spectrum by introducing an
extra hierarchical level that takes into account the number of commutations. In this way,
different frequencies have different weights in the control decisional structure allowing
the control of the harmonic content of the variables.
To better understand the harmonic content caused by the random structure in the de-
cisional architecture, a simple spectral analysis can be performed by considering the
three-phase currents in the uvw reference in a steady state condition with the speed at a
constant value (considering the amplitude of the dq currents in Fig.3.11b and Fig.3.12b),
Fig.3.15 shows the current spectra obtained after a Fast Fourier Transform (FFT) post-
elaboration. The normalized spectra at the fundamental frequency exhibit many low
frequency harmonics, with an amplitude of few percent with respect to the fundamen-
tal one and a distributed noise (consequence of the choice of the optimal voltage vectors
in a finite alphabet) with a low magnitude in the entire spectra range. The absence of
high order harmonics (with respect to the standard SVM control technique at the same
Tc), represents an aspect of improvement of the proposed control, since these harmon-
ics are directly related to the losses in the electrical machines. Unfortunately, the low
frequencies in the harmonic content could lead to mechanical resonances, which are
often at a low frequency. This latter aspect could penalize the evaluation of the overall
drive system from a mechanical point of view.

3.7 experimental results

The FPGA implementation of the proposed HDPC control architecture promises to guar-
antee very good performances (in terms of current and speed quality) and to have a
flexible and reconfigurable structure, but in order to appreciate this features, the first
part of this section is devoted to understand the main difference with a standard micro-
processor implementation.
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Fig. 3.15: Current spectrum of the HDPC configured with Ns = 14 voltage vectors, normalized to
the foundamental tone. Simulation performed with the machine parameters of Tab.2.2
and control parameters in Tab.3.1.

3.7.1 Limits of microprocessor implementation

In this paragraph are commented the experimental results obtained with a rough
version of the proposed HDPC control algorithm previously implemented in a micropro-
cessor platform. A detailed description of that algorithm can be found in [69], although
the relevant aspect is related to the experimental results, that were performed on a labo-
ratory test bench equipped whit the PMSM of Tab.1.1 supplied by a three-phase inverter
and controlled by a Fast Control Prototyping (FCP) board. The FCP was the dSPACE
DS1104 R&D Controller Board of Sec. 2.7, based on a 603 PowerPC floating-point pro-
cessor running at 250 MHz and an I/O interfacing managed by a slave-DSP subsystem
based on the TMS320F240 DSP microcontroller.
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A vector-controlled induction motor drive was used as a programmable mechanical
load, while the whole digital control of the PMSM drive was implemented by adopting
a prediction horizon of Npd = 1. Although the computing power of this board is
sufficient to test the major part of the studied control algorithms, in practice it suffers
from some limitations, that have moved the implementation of the proposed HDPC

control on a FPGA prototyping platform. As in Sec. 3.5, the algorithm in [69] performs
a series of tests on the speed and current predicted vectors by evaluating the number
of commutations in a hierarchical way. The optimal voltage vector was calculated by
testing only the Ns = 7 discrete states of the VSI, although the preliminary results
obtained with that approach were not satisfactory in terms of current quality (the DC-
bus linkage was of only UDC = 100 V).
One batch of experimental results from [69] is reported in Fig. 3.16c, obtained by con-
sidering the motor driven with a speed reversal from −300 rpm to 300 rpm. As docu-
mented in Fig. 3.16d the steady-state speed error is close to zero, but the current quality
is unacceptable from an industrial prospective, as expected by Sec. 3.6, since the use of
only Ns = 7 voltage vectors leads to a high current ripple.
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Fig. 3.16: Currents and speed behaviour during a transient using a HDPC implementation into the
dSPACE 1104 FCP board, configured with Ns = 7 voltage vectors. Machine in Tab.1.1,
Tc = 100 µs, Npd = 1 and UDC = 100 V
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In other terms, the low switching frequency and the high execution time Te lead to have
remarkable ripple in the currents, except during the transient, when the drive is pushed
to its maximum performances.
Nevertheless, the experiments were performed to show the principle and the validity of
that rough version of the algorithm, but they also proved that the hardware resources
of the DSP-based board limits the possibility to obtain better performances (e. g. the
use of Ns = 14 voltage vectors described in Sec. 3.5.1).
Furthermore, the main complication was related to the board programming architec-
ture, that requires the complete execution of the code in the first half of the PWM period
Tc.
Actually, it means that the whole algorithm has to be computed in half of the selected
sampling period Tc, and the implementation of the easiest version of the algorithm with
only Ns = 7 voltage vectors requires a computational time of about Te = 40µs, which
leads to a minimum sampling period of Tc = 100 µs (equivalently fsw = 10 kHz).
In practical terms, a refinement of that control architecture (i. e. by considering the
control technique with Ns = 14 vectors of Sec. 3.5.1) was unfeasible.
The large number of calculations that requires this algorithm to perform all the steps
described above are prohibitive for an implementation with reasonable update period
on microcontroller and then, the proposed algorithm has been tested and implemented
in a FPGA platform as detailed in the next paragraph.

3.7.2 FPGA implementation

For the experimental validation, a customized test bench composed by two PMSM

connected in back-to-back configuration with a torque meter mounted on the shaft was
used to test the HDPC algorithm. Unlike the simulations, the experimental measure-
ments were carried out on a PMSM with reduced anisotropy, since a PMSM-IPM was not
available for the laboratory tests.
However, the HDPC algorithm can be used without limitations and a changing in the
PMSM motor type (i. e. isotropic or anisotropic type) requires only a least amount of
effort, since the use of a PMSM instead of the PMSM-IPM in the experimental setup
does not reduces neither compromises the quality of the achievable results.
The PMSM used as a load machine was fed by a 4 kW commercial VSI, while the PMSM
under test (whose parameters are in Tab.3.2) was driven by a customised inverter that
received the control signals from the FPGA.
The FPGA-based control system is represented by a Virtex-6 FPGA ML605 Evaluation
Kit with FMC (FPGA Mezzanine Card I/O) connector, on which the compiled bit
stream file project was directly downloaded by using a USB/JTAG interface module
and by means of a customized Matlab Graphical User Interface (GUI).
It is worth noting that the programming code described introduced in Sec. 3.6 (com-
posed by Xilinx blocks, m-code equivalent blocks and VHDL code) has been refined and
completed with the necessary sub-routines (e. g. the A/D conversion, the rotary ref-
erence frame transformations, the Dead Time (DT) compensation and the resolver to
digital driver), in order to ensure the necessary communications with the VSI and the
alarm interfaces.
The programming of the Matlab Graphical User Interface (GUI) has been necessary for
the experimental development and implementation of the proposed control algorithm,
since in the customized FPGA-based control system is needful to have a friendly inter-
face to control all the parameters and variables involved in the control routine or to be
able to load/save and then post-process the data.
To this aim, the internal variables that have to be controlled were stored into the Virtex-
6 FPGA by using the available First In First Out data buffer (FIFO), directly linked to the
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Matlab GUI interface which manages the real–time communication and the data logging
of the main HDPC control signals.
The GUI interface has been configured to communicate with these elements in real time,
and the control signals have been managed in the Matlab instructions by means of
specific blocks inserted in the Xilinx System Generator overall scheme.
It is worth noting that the use of these FIFO should be limited as more as possible, since
the HDPC control routines already uses many hardware resources, and an excessive
utilization of these elements could lead to an overflow of the area occupation.
In the experimental tests have been considered the same simulation parameters re-
ported in Tab.3.1, with a switching frequency fsw limited to 10 kHz (equivalent of a
sampling time to Tc = 100 µs) as direct consequence of the physical hardware limita-
tions of the VSI.
Due of the overall complexity of the Matlab/Simulink scheme, the block diagram in
Fig.3.17 will be considered as logic synthesis of the operations performed by the algo-
rithm in a sampling period.
The Finite State Machine (FSM) in Fig.3.17 manages the activation of the different VHDL

subroutines in the Xilinx System Generator control scheme by considering that all the
I/O interfacing are completely programmed into the Virtex-6 device (with a clock pe-
riod of Ts = 5 ns), completed by the A/D routine interface and the resolver to digital
data conversion.
More in detail, the FSM is synchronized with a main counter that counts from zero to
Tc/Ts , where Ts defines the sampling time of the FPGA clock (i. e. Ts = 5 ns), and at
every predefined time interval generates a short pulse to activate separately each of the
VHDL routines in Fig.3.17.
It follows that, the FSM manages the necessary latency times and provides the correct
timing of the operations in order to ensure the deterministic execution time of the
algorithm.
The input signals have to be properly scaled in order to obtain a fixed-point internal rep-
resentation of the variables, and the current scaling factor f sgi,uvw, which only depends
by the number of bits of the A/D converter can be easily calculated as:

f sgi,uvw =
2Nb,i

2 MAXi
(3.41)

where MAXi defines the maximum allowable current.
The prediction and optimization blocks have the largest computational burden, and
then, in order to improve the algorithm execution time, the calculation of many routines
is performed in parallel. the current and DC-link bus are performed in parallel
The first task is the A/D conversion, where the currents iuvw and the DC-link bus
voltage UDC are acquired with Nb = 12 bit resolution and the absolute position is
recorded with the on-board programmable resolver-to-digital converter with Nb = 14
bit of resolution.
In the proposed implementation, the A/D conversion processes, the speed calculation
and the sin / cos are then activated at the same time, while the remaining part of the
algorithm is executed in different times and it is synchronized with the FSM, as summa-
rized in Fig.3.17.
The routines with the highest priority can stops the acquisition until the next activation
signal of the FSM, but during the execution of these routines, all the information are
stored into the FPGA I/O registers, to be used in the subsequent control blocks or directly
stored for the data logging.
In the diagram of Fig.3.17 the resolver interface computes the electrical position by
multiplying the mechanical position (provided via the Nb = 14 bits word) with the
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number of pole pairs. An electrical offset position is then added, in order to align
correctly the electrical position with the d-axis of the PMSM.
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Fig. 3.17: Algorithm control diagram of the FPGA implementation.

The acquired currents (in the uvw reference frame) are then converted in the dq refer-
ence frame by means of the Tuvw/αβ and Tαβ/dq VHDL routine. The voltage distortion
caused by the DT effects and the IGBT non-linearities is compensated into the dq refer-
ence frame on the basis of the sign of the currents and a pre-compiled LUT [70].
The compensation action is included as VHDL routine inside the Xilinx control scheme,
calculated as difference between the selected optimal voltage component and reference
value. This voltage reference correction is necessary since the predictions of Sec. 3.3 is
strictly dependant by the voltages applied to the motor.
The initialization and prediction blocks (with decisional structure) receive the measured
UDC DC-link value, the idq currents and the measured speed ωme, in order to calculate
the optimal vector s∗.
At the end, a specific VHDL routine adds the DT from the reference IGBT signals and
the IGBT gate signals (su, sv and sw calculated as summarized in Sec. 3.5.1), which are
finally used to drive the VSI interface board.
The electromechanical speed ωme is derived by the measured position scaled in the
fixed-point notation. In particular, since the digital word that represents the mechanical
position is acquired with an opto-isolated board, by defining as Nb,ϑ the number of
bits used for the binary resolver data, the scaling global position factor f sgϑm can be
calculated as:

f sgϑm =
2Nb,ϑ − 1

2π
(3.42)
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The numerical speed derivation is approximated by a numerical filtered interpolated
derivative, with the assumption that Tcw defines the sampling period of the speed. Tcw
must be equal to the sampling period Tc (i. e. Tcw = Tc) since a delay in the speed
measurement could compromises the control action. It follows that:

ωm =
ϑm,k + 3ϑm,k−1 − 3ϑm,k−2 − ϑm,k−3

6Tcw
rad/s

=
ϑm,k + 3ϑm,k−1 − 3ϑm,k−2 − ϑm,k−3

6Tcw f sgϑm

µP
(3.43)

with an equivalent scaling speed factor (derived by (3.43)) of:

f sgωm =
6
(

2Nb,ϑ − 1
)

2π
Tcw (3.44)

It is important to remark that, instead of the canonical FOC or DTC control schemes, the
speed measurement cannot be filtered because the delay introduced by the LPF action
could leads to a control instability, as shown in Fig.3.18.
In detail, Fig.3.18a and Fig.3.18b show a speed transient of ωm = 200 rpm with the
mechanical speed filtered by considering the LPF settled with a first cutting frequency
of fLPF,1 = 100 Hz and a second of fLPF,2 = 10 Hz.eplacements
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Fig. 3.18: Speed transients using a HDPC configured with Ns = 14 voltage vectors and two differ-
ent LPF actions. Motor in Tab.3.2, Tc = 100 µs, Npd = 1 and UDC = 560 V

The simulation results (i. e. in the same conditions of Fig.3.12) prove that the delay
introduced by the LPF leads to an oscillatory and non-stable response of the speed
that depends by the control action. The predicted speed is compared with a delay
measurements, and the result is a wrong choice of the optimal voltage vector.
The practical feasibility of the speed derivation by using the resolver-to-digital binary
word is a trade off between several factors, as the quality of the resolver measurement,
the number of bits used to represent the angle ϑme and the admissible delay in the speed
measurement.
At the end, the use of (3.43) seem to be a good compromise, although the boundary
eL on the speed error has been enlarged to ensure the use of the second hierarchical
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level. Inside the VHDL control routines there are also the trigonometric transformation
sin(ϑme) and cos(ϑme) of the electromechanical position ϑme.
This pair of functions are easily derived from the measurement of ϑme by saving on
memory a LUT the numerical values of these trigonometric identities, but the memory
area in which they are stored is divides into 2Nb,sc sectors. A scaling factor f sgsin,cos is
then also introduced, and it is equal of:

f sgsin,cos = 2Nb,sc−1 (3.45)

From (3.45) it is immediately to obtain the scaling factor ( f sgdq) of the currents id and
iq in the rotary reference frame dq, equal of:

f sgdq = f sgi,uvw2Nb,sc−1 (3.46)

In Fig.3.19a and Fig.3.19b are reported a speed and current transient obtained with
the PMSM of Tab.3.2. Fig.3.19c is shown a reversal speed transient and the equivalent
optimal switching activity selection (Fig.3.19d).
The speed profile of In Fig.3.19a shows that the drive quickly reacts to the reference
change, exhibiting a non-linear transient typical of bang-bang control. The steady-state
error is closed to zero, as expected by the DOB compensation action (i. e. as consequence
in the wrong parameter estimation).
The direct and quadrature currents of Fig.3.19b show a reasonable ripple, in particular
during the speed transient, in good agreement with that calculated in the simulation
case of Fig.3.12b. As expected, the control algorithm operates in MTPA condition after
the initial speed transient (i. e. the FOC condition since the motor tested is a PMSM), as
evident from Fig.3.19b, with a current id ≈ 0 in absence of load torque.
The good matching between simulations and experimental tests confirmed the accuracy
and the practical feasibility of the HDPC control architecture. Fig.3.19c shows a reversal
speed transient of ±100 rpm by considering a filtered speed signal with LPF tuned with
a cut frequency of fLPF = 200 Hz. The deterioration in the speed commented in Fig.3.18

is verified twice also in the experimental case, if compared with the speed quality visible
in Fig.3.19a.
For the sake of completeness, in Fig.3.19d is shown the equivalent switching activity
in a zoomed area of Fig.3.19c, in order to prove the randomized nature in the deci-
sional structure. These preliminary results prove the practical feasibility of the control
algorithm and its successfully implementation in to the FPGA platform.
It is worth noting that from the log summary file generated by the compiler, the project
occupies about the 10% of the available slices and the 61% of the DSP48E1 slices (used
for wide math functions, DSP filters, and complex arithmetic without the use of gen-
eral FPGA logic). Many connections were produced mainly due to the programming
approach, which optimised the fast execution of the prediction algorithm (with a paral-
lelisation of the prediction for the Ns = 14 voltage vectors obtained at once) penalising
the FPGA resources, the other term of the design trade-off.
In case of less area occupation, if desired, the project could be reprogrammed exploiting
the prediction model recursively. However, that solution would impose a limitation
on the maximum number of predictions, which is approximately given by the ratio
between the switching period and the time execution of one prediction step.
The final implementation of the proposed control architecture ensures an execution time
of Te = 11.7 µs, with a bottleneck in the AD conversion, that requires approximately
10 µs. Obviously, if the hardware configuration of the VSI could guarantee a sufficient
high sampling frequency, then it could be possible to take advantage of the limited
execution time Te and improve the performances of the HDPC by reducing the sampling
interval Tc.
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Fig. 3.19: Experimental speed and currents behaviour during a speed reversal transients with the
machine of Tab.3.2. The HDPC is configured with Ns = 14 voltage vectors, sampling
period Tc = 100 µs, Npd = 1 and UDC = 560 V.

3.8 conclusions and future developments

A combined speed-and-current direct predictive control for PMSM with isotropic or
anisotropic structure was presented. Instead of the typical predictive control scheme,
the proposed control architecture eliminates the external speed loop and predicts both
currents and speed dynamic in each sampling period, employing a particular decisional
structure. Speed current and current vector amplitude minimisation are considered in
a hierarchical way, instead of using cost functions.
The proposed scheme is capable of operating in industrial conditions (i. e. standard
DC-link voltages) by resizing the amplitude of the optimal vectors. The number of
possible vectors has also been increased from Ns = 7 to Ns = 14 for further minimising
the current spread. Simulation and experiments proved the feasibility of the proposed
algorithm and this latter feature distinguishes the proposed control architecture by the
conventional predictive control schemes.
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The reasonable length of the prediction horizon has been studied and clarified as well
as the complete modelization of the drive, supported and validated by many simulation
and experimental results.
An improvement of currents and torque quality has been achieved with the extra mod-
ulation strategy here presented, that also guarantees a good improvement in terms of
harmonic content reduction of the stator currents.
Although many laboratory tests were performed, the real implementation exhibits
many complications which have been solved, and it was then possible to prove the
concept and its feasibility into a faster device as a modern FPGA. For the FPGA imple-
mentation of the algorithm, much attention was paid to achieve high efficiency in the
execution time and resource utilization, with the aim to have a control architecture ca-
pable to operate at high sampling frequency without too many adjustments in the code
structure.
Simulation and experimental results suggest that the proposed HDPC architecture is
deeply related to the specific application as well as to the available hardware resources,
and to this purpose a small AC motor drive with high dynamic demands could be the
optimal application field for this control architecture.
Future works will include an experimental test of the algorithm by considering a
PMSM-IPM as well as the possibility of automatic identification of the two boundaries
into the different two (or three) hierarchical levels. At the same time the proposed algo-
rithm should be tested by reducing the sampling period of the currents, by adopting a
power converter with higher switching frequency capability.
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P R E FA C E A N D L I T E R AT U R E R E V I E W

This part of the research describes an automated self-commissioning procedure for
voltage-fed vector-controlled IM drives directly connected to the mechanical load, which
represents a step over for the development of intelligent drives capable of operating
without external modification in different working operations.
Induction motors parameter estimation, in fact, can be considered one of the most
widely studied topics in electric drive literature, mainly due to the widespread use of
IMs in many industrial applications, although the wide diffusion of the PMSM in the
modern industrial and mechatronic applications.
As an example, the motors used in the hybrid or electric vehicles must have high power
density in compact geometrical dimensions, and the typical PMSM motors are preferred,
although the increased price of the rare earths has lead to reconsider the IM as valid
alternative [71]. In this sense, the knowledge of the motor parameters must be accu-
rate enough in order to ensure its accurate exploitation when controlled by a standard
indirect vector control scheme
Usually, the IM electric and mechanical parameters are calculated from the data sheet or
using the typical no-load and locked-rotor experimental tests, although in both cases,
the accuracy of the results is inadequate for modern servo drives.
The problem is not new at all, and first papers devoted to parameter and commissioning
analysis, as [72] or [73], were focused on the need for correct identification to ensure
the best performances, but in very few of them a comprehensive estimation of motor
parameters has been reached, also considering the inherent parameter non-linearities.
Moreover, in [73] the identification was not performed at standstill and the motor was
in rotation during the tuning process, while in general the standstill operations are
preferred in order to obtain an intelligent and flexible AC drive.
Alternatively, in [74] is presented an algorithm to estimate the parameters at standstill
using a PWM inverter and injecting DC and sinusoidal currents, although in this example
the major drawbacks are the simplifications introduced in the model and estimation
equations and the global linearisation of the whole system.
In general, approach of the literature is to consider the induction motor by adopting
the constant parameter models without taking into account core losses and magnetic
saturation, which depend on the current magnitude, frequency and by the operating
conditions.
The results achievable cannot be considered acceptable or satisfactory in the presence
of sudden flux level variations (e. g. in transient conditions, flux weakening operating
or during the on-line starting of the drive), where the parameters and magnetic path
linearity is lost.
A linear model of the motor could be considered accurate enough since, for IM drive ap-
plications with a low dynamic, the flux level is maintained constant at its nominal value
and only in limited cases (e. g. during the flux weakening phase) some parameters, such
as the inductance values, increase or decrease.
In fact, the industrial applications at constant speed with slowly variable torque are
the typical application field of drives with IM machines, and in these cases, the induc-
tances can be considered constant and the rotor currents frequency is small enough
to not consider the skin effect on rotor bars resistance [75]. Unfortunately, if an IM

is considered for high-dynamic applications (e. g. robotic or mechatronic applications)
this last assumption is no more valid, and new commissioning strategies have to be
reconsidered.
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Moreover, the commissioning procedure has to be studied considering the motor al-
ready connected to the mechanical load, with few or no possibilities of disconnect-
ing it to perform some off-line no-load or varying-load measurements. Standstill self-
commissioning techniques are aimed at solving this problem, while at present, in many
applications, a vector control method that considered only a simple linear models of the
IM is widely used, and only constant parameters are used to modelling the machine.
As focused on before, motor parameters are intimately related to the most advanced
control techniques and not only into the FOC, but also in the direct torque control DTC

or model predictive control MPC, and they influence the overall system performance
[72], [76]. In the torque or flux control strategies in fact, the standard dq reference frame
concept and rotor flux orientation requires a precise knowledge of parameters as the
rotor time constant. To this aim, in the estimation procedure this parameter should
also be identified online to obtain better performances, although this feature represent
a step-over and not influences the real efficiency advantages of the self-commissioning
techniques.
Wrongly estimated values, in fact, cause inefficiency which is nothing than the loss of
energy related to an inaccurate voltage compensation (e. g. due of a non-compensated
saturation of same parameters of the control scheme).
Other papers have debated on the need of supporting the standard FOC or DTC schemes
with an algorithm of self calibration [73], while in [77] the standard no-load and locked-
rotor are exceeded by considering three frequency-domain tests, performed at standstill.
[78] combines an adaptive observer with a flux estimation in the rotor speed reference
frame, although the non-linear magnetic saturation of other motor parameters is not
accounted.
Anyway, the literature splits and consider the self-commissioning techniques into two
main categories: the “on–line” and the “off–line” approach. The first solution is devoted
to an on-line tracking of the most critical parameters of the IM, as the stator and rotor
resistances, in order to update and tuning the parameters of the control algorithm. In
[79] and [80], can be found interesting solutions for the on-line estimation of the stator
and rotor resistances, together with a comparison with the benefits of a real vectorial
scheme application are included Other examples of the “on-line” estimation technique
are proposed in [81] and [82], where the estimation is formulated as a non-linear least
squares identification problem, and applied during regular operation of the machine.
The parameter values can be continuously updated assuming a constant excitation of
the machine, and the optimum parameter vector is the solution that minimizes a resid-
ual error.
The off-line approach uses test signals to compute a detailed map of IM parameters
non-linearities, prior to or during the final commissioning phase, as in [83], where is
described a full deterministic identification method to derived the mechanical and main
electrical parameters of a high power induction motor. In [84] there is an interesting
standstill solution, which takes into account the magnetising inductance saturation only.
The debated solution considers the flux linkage-current relationship and estimated it by
means of a third-order polynomial retrieved by a sinusoidal current injection combined
with a recursive least square algorithm. However, the procedure needs a prior knowl-
edge of other IM parameters.
In [85] is proposed a fully comprehensive series of laboratory tests performed on an
IM, with the aim of obtain a complete description of the motor parameters, but unfor-
tunately, the procedure is not suitable for the self-commissioning operation, since it is
not performed with the motor at standstill and the mechanical load must necessarily
be varied during the estimation procedure. Moreover, the solution of [85] requires an
high computational demand, beyond the standard AC drive resources or specifically
developed for a known machine geometry, as explained in [86] and [87]. However,
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the results clearly show a non-negligible non-linear dependence of every IM parameter
with respect to the IM working point. Since the literature exhibits a lack in estimation
procedures capable to derive correctly the non-linear parameters of the IM motor at
standstill, the research in this thesis propose an off-line estimation technique, with the
aim to be a complete, cheap and highly accurate self-commissioning procedure for IM

parameters estimation. Unlike most of the cited works, it does not rely on either special
test rigs, or high computational resources, since the procedure is performed completely
at standstill and without any change in motor connections, so that it fits for motors
already placed on site, too.
As a distinctive feature, the identification routines make use of a non-ideality compen-
sation map and of a software routine that reconstructs the voltage drops by avoiding
any direct voltage measurement. In particular, to get a commissioning of the inverse-Γ
magnetic model of the motor and overcome some operative limitations contained, for
example in [88], in this research the attention is focused on some details that make the
procedure a step beyond in terms of accuracy with respect to the results described in
[89] and [90]. As an example, in some routines is used an extremely focused digital
version of the DFT ([91] and [92]), to enhance the industrial feasibility and reduce the
computational time.
In detail, Chap.4 recalls the basics of the IM, focusing on the magnetically saturated
machine model and its equivalent circuit representation at standstill, while Chap.5 de-
scribes the theory of operations, the core of the proposed algorithm and the step-by-step
sequence of operations executed during the self commissioning procedure.
The theoretical conjectures and their general validity have been explored by applying
the identification algorithm to three different IM machines, and the experimental results
obtained by a fast-control prototyping (FCP) test bench are reported and compared
with alternative tests that prove the practical feasibility and correctness of the method.





4 T H E I N D U C T I O N M O T O R

4.1 induction motor structure

Squirrel-cage induction motors are simple, rugged and robust type of electric ma-
chine [93], well known and used already a century ago but still widely used in the
modern motor industry for their manifold advantages [20] [94]. At present, although
the basic control structure of an induction motor is complicated (if compared with the
PMSM motor), these motors are preferred to other categories of electric machines in
classical heavy-duty industry productivity sectors for their robustness.
They can be also used in high performance electric drives, but the typical vectorial con-
trol schemes (sensored or sensorless) require with high accuracy the motor parameters
knowledge. In particular, in the traditional direct vector FOC schemes the parameters ac-
curacy is not high and the flux linkage identification is performed with specific sensors
(e. g. tapped stator windings or Hall- effect sensors) [20]. The indirect FOC partially over-
comes the hardware complications, but as main drawback, this solution requires many
motor parameters, which have to be estimated with good accuracy. The model and the
equivalent circuit of IM derived in this chapter is the starting point for the automatic
procedures of parameters estimation described in Chap.5. Here is simply collected
the necessary background to understand the proposed identification algorithm, but a
complete and accurate description to derive the main equations of an IM motor can
be found in many books and papers in literature (e. g. [20] or [95]). A sketch of an
IM section is shown Fig.4.1, where are also highlighted the stator and the squirrel cage
rotor. Both these elements are composed by compacted stack of ferromagnetic lamina-
tions separated by an air gap g. As in the PMSM machines, the stator winding is excited
from a balanced three phase source of voltages. The three rotating currents induced by
the voltages, generate a magnetic field in the air gap rotating at synchronous speed as
determined by the number of stator poles and the applied stator frequency f .
The basic operating principle of the induction motor is based on the well-known physi-
cal phenomena of the Faraday’s Law and the Lorentz Force on a conductor. Briefly, the
magnetic field generated by the three-phase voltage source sweeps across the cage rotor
conductors, and a voltage drop is induced in each conductor while it is being invested
by the flux (i. e. the Faraday’s principle) while the currents generated by the induced
voltage produces produce a mechanical force for the Lorentz’s law. As final result, an
alternating current is supplied to the stator directly and to the rotor by induction from
the stator.
The previous general considerations on the flux-linkage transmission can be expressed
and translated into an equivalent circuit that describes the three-phase induction ma-
chine. This description only refers to machines with symmetric stator windings excited
by a symmetric of voltages. The main equations of the induction motor are associated
to the sketch of Fig. 4.1, which represents a one pole pair induction motor.
Since the rotor in an IM is usually of squirrel cage type, which is equivalent to a short-
circuited three-phase wounded rotor with the same number of pole pairs as the stator,
the three stator phases can be indicated with us, vs and ws, while the equivalent rotor
phases are ur, vr and wr. The electromechanical angle ϑme (between the phase us and
ur) is defined as ϑme = pϑm, where p are the polar pairs of the machine and ϑm is the
mechanical position of the rotor. In the section of of Fig. 4.1 is also reported the rotary
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Fig. 4.1: Sketch of an Induction motor with one pole pair (p = 1) and Qs = 12 stator slots. In the
figure the stator and rotor reference frame are also indicated.

reference frame dq fixed to axes ur and shifted to the same electromechanical position
ϑme by the phase us. The time derivative of ϑm and ϑme is the electromechanical rotor
speed ωme and the mechanical rotor speed ωm. The generic voltage balance equations
for the stator phases are:



usu = Rsisu +
dλsu

dt

usv = Rsisv +
dλsv

dt

usw = Rsisw +
dλsw

dt

(4.1)

while the equivalent rotor voltage balancing returns:



0 = Rriru +
dλru

dt

0 = Rrirv +
dλrv

dt

0 = Rrirw +
dλrw

dt

(4.2)

where λsu, λsv and λsw are the stator flux linkages, Rs and Rr are the stator and rotor
resistances and λru, λrv and λrw are the rotor flux linkages.
The model can be completely associated to Fig. 4.1 by exploiting the spatial vector
notation and by considering a fixed stator reference frame, as described in [4] or [20].
In particular, the vector notation is useful to defines a space vector as a complex number
by applying the following transformation:

u =
2
3

(
uu(t) + uvej 2π

3 + uwej 4π
3

)
(4.3)
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The (4.3) applied to the (4.1) and (4.2) returns the equivalent compact vector description
of the induction motor in the αβ stationary reference frame depicted by Fig. 4.1.



us = Rsis +
dλs

dt

λs = Lsis + Lmir

0 = Rrir +
dλr

dt
− jωmeλr

λr = Lrir + Lmis

(4.4)

In (4.4) us represents the stator voltage, is is the stator current, ir is the rotor current, λs
is the stator flux linkage, λr is the rotor flux linkage. According to the space vector
notation, the two components in the αβ reference frame of the stator voltages and
current space vectors can be explicated as us = usα + jusβ and is = isα + jisβ. The
second and the fourth equations in (4.4) are demonstrated in [4], while the symbol
Ls defines the synchronous stator inductance, Lm the synchronous mutual inductance
between stator and rotor and Lr the synchronous rotor inductance.

4.2 equivalent circuits

For the purposes of this research it is interesting to consider the equivalent circuit
representation of the induction motor. Since the operation principle of the induction
machine is quite similar as that of a three-phase transformer, apart that in a transformer
there is no mechanical motion between primary and secondary windings, the (4.4) can
be represented with the equivalent circuit of Fig.4.2.
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−
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si sR rR

sL rL
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rmej λω

+

Fig. 4.2: Conventional equivalent circuit of the IM.

The circuit is representative of the stator voltage balance equation and the rotor voltage
balance equation, related to each other by a mutual inductor. Since the circuit has
been obtained from a state space vector representation (4.4), it is valid also in a non-
sinusoidal steady state condition. The mutual inductor of Fig.4.2 can be substituted by
the circuit of Fig.4.3. This circuit is composed by L0, L1, L2 and n, that replace the three
parameters (Ls, Lr, Lm) of the circuit in Fig.4.2. Since the number of parameters is high,
the new degree of freedom is fixed by the transformer ratio n. The relationship between
the mutual inductor parameters of Fig.4.3 and Fig.4.2 can easily be derived as:

L0 = nLm

L1 = Ls − nLm

L2 = Lr −
Lm

n

(4.5)
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The aim is to derive the general inverse-Γ equivalent circuit at stand-still (ωme = 0). The
equivalent circuital representation of Fig.4.2 was adopted as the reference model for the
estimation procedure of the IM machine.
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Fig. 4.3: Four-parameter circuit of a mutual inductor.

By setting n = Lm/Lr, L2 = 0 and the set of equations (4.5) is reduced to:

L0 =
L2

m
Lr

= Lϕ

L1 = Ls −
L2

m
Lr

= Lt

(4.6)

L0 is generally renamed as Lϕ (magnetising inductance), while L1 becomes Lt (transient
inductance). The rotor resistance Rsr, referred to the stator side can be rewritten as:

Rsr = n2Rr =
L2

m
L2

r
Rr (4.7)

while the mutual inductor of Fig.4.2 is now omitted. The reference inverse-Γ equivalent
circuit at standstill for the IM is that shown in Fig.4.4.
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Fig. 4.4: Inverse-Γ equivalent circuit of an IM at standstill.

The inverse-Γ equivalent circuit has a null inductance on the rotor side, and as a final
result the rotor time constant can be defined from the ratio between the magnetising
inductance and the rotor resistance referred to the stator:

Lϕ

Rsr
=

Lr

Rr
= τR (4.8)

Moreover, the current and flux linkage vector in Fig.4.4 can be redefined as follows:

isr = −
Lr

Lm
ir

λsr =
Lm

Lr
λs

(4.9)
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Both the inductive elements of Fig.4.4 can be replaced with non-linear functions of
the current vectors which flow through each of them. The previous relationship can
be related either to the magnetic anisotropy of the stator lamination (for some kind
of motors) or to the presence of significant space harmonics in the mmf distribution.
This happens because the iron path saturation is related to both the magnitude and
the spatial distribution of the phase currents at each instant. The couple of inductive
elements of Fig.4.4 are then replaced with the components represented in Fig.4.5. These
two elements are representative of the transient flux linkage space vector λt and the
magnetising flux linkage space vector λϕ, respectively.
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Fig. 4.5: Inverse-Γ equivalent saturated circuit of an IM.

As in the linear version, at standstill, the electromechanical speed ωme = pωm is null,
ωm being the rotor speed and p the number of pole pairs.
In the circuit of Fig.4.5 also the R0 resistor has been included to represent the stator iron
losses. The presence of this element does not significantly affect the voltage drop across
Rs, since the current magnitude which flows through R0 is very small (i0 ≈ 0 since R0
is very high).
With reference to Fig.4.5, the voltage balance at standstill can be rewritten as:

us = Rsis +
dλt(is)

dt
+

dλϕ(iϕ)

dt
= Rsis +

dλs(is)

dt
(4.10)

while the voltage balance for the right-hand mesh gives:

usr =
dλϕ

dt
= Rsrisr (4.11)

According to [88] the constitutive equation of a non-linear inductance (as that represent-
ing λt in Fig.4.5) can be expressed in the form

ut(t) =
λt(is(t))

dt
= Lt(is)

dis(t)
dt

(4.12)

where Lt(is) indicates the differential transient inductance as the function of current
through it. The same expression can be written for the differential magnetising induc-
tance Lϕ(iϕ), associated to the magnetising flux linkage λϕ.

uϕ(t) =
λϕ(iϕ(t))

dt
= Lϕ(iϕ)

dis(t)
dt

(4.13)

The substitution of the differential inductances in (4.10) and (4.11) yields the general set
of voltage balance equations of the inverse-Γ model:



102 the induction motor


us = Rsis + Lt(is)

dis

dt
+ Lϕ(iϕ)

diϕ

dt
Lϕ(iϕ)

diϕ

dt
= Rsrisr

is = iϕ + isr

(4.14)

The system (4.14) will be used widely in the next chapter, since all the parameters
estimated with the commissioning procedure are contained in these equations.
For the sake of completeness, buy considering the space vector notation the electromag-
netic torque of the motor can be represented as:

τ =
3
2

p
Lm

Lr
|λr| |is| sin φ (4.15)

where the symbol φ defines the difference (in the fixed reference frame αβ between
the phase of is and that of λr [4]. The well-known expression of the mechanical load
completes the mechanical set of equations:

τ = Jm
dωm

dt
+ Bmωm + τL (4.16)

where Jm and Bm are are the mechanical inertia and viscous friction respectively, and
τL is the load torque.
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5.1 introduction

The control identification algorithm is based on a dynamic model of the IM that refers
to the Γ-inverse model of Fig.4.5, and consists in a series of consecutive steps, each
exploiting the results of the preceding one. The parameters are estimated by imposing
a known voltage vector us shifted from the angle ϑme with respect to the stator phase u,
and considering the current amplitude or frequency measurements.
The main contribution of this research is represented by the absence of restrictions
related to the angular position of the voltage vector us and by the complete tracking
of all the non-linear parameters without limitations. Moreover, the proposed control
technique allows the calculation of the magnetizing flux linkage λs without measuring
the real voltage applied to the motor.
Finally, by meshing the measurements of the stator resistance Rs, the flux linkage λs
and other equivalent parameters suitably projected along the αβ reference frame, the
complete mapping of all the parameters of 4.4 is obtained.
This chapter summarizes step by step each routine of the proposed estimation algo-
rithm, and the following sections are organized as follows:

• Sec. 5.2: a classic estimation procedure used to obtain the main parameters of the
equivalent circuit for a standard FOC. This algorithm is not executed at standstill
and returns only the linear parameters.

• Sec. 5.3: detailed mathematical aspects for the derivation of the model used for
the estimation procedure.

• Sec. 5.4: a characterization of the inverter non-linear behaviour.

• Sec. 5.5, 5.6, 5.7, 5.8 describes the method adopted to calculate the non-linear pa-
rameters of the inverse-Γ circuit of Fig.4.5. Experimental results and the validation
tests are included in the realtive sub-sections.

• Sec. 5.7: the influence of the squirrel cage rotor during the calculation of the flux
linkage reported in Sec. 5.7 is analysed. A specific prototype of an IM machine is
used to validate the conjectures.

• Sec. 5.10: final remarks and future works.

Many experimental results were performed by using three different induction motors
(IM1, IM2 an IM3 as report in Tab.5.1, Tab.5.2 and Tab.5.3) to verify the correctness and
accuracy of the method and to prove the practical feasibility of the algorithm consider-
ing real and industrial induction motors.
The experiments were carried out by considering a three-phase VSI (characterized in
5.4), directly controlled by the same equipment of Sec. 2.7.
The entire automatic drive control algorithm has been written in C code on the same
FCP dSpace DS1104 R&D controller board of Sec. 2.7, and the worst execution time
length is of 29 µs, considering an inverter switching period of Tc = 100 µs.
The code is structured as in Sec. 2.7, so that during every PWM interrupt the main
code calls the macro-C instructions, where are stored the different sub-routines of the
algorithm.
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All the A/D converters are started at the same time, and the accuracy of the current
sensor within the inverter have been evaluated to be sure that the parameter estimation
is not influenced by the inaccuracy of the measurement. The measurements of the
built-in hall current sensors were compared, before the activation of the estimation
procedure, to the current measurements obtained with a high-accuracy power analyser
KinetiQ PPA2530 (bandwidth of 2 MHz with an accuracy of the 0.03%). The percentage
error, that increases at higher current levels, could affect the correct estimation of the
magnetizing inductance and the other parameters, and to this aim, a constant bias of
0.035IN was added to the current measurement.
Other standard parameters used during the tests, a part of the SVM switching frequency
of 10 kHz, was the IGBT dead times of td = 4 µs and the DC-link Bus voltage of UDC =
100 V. In particular, it has been proved that the results are not affected by greater values
of the DC-bus voltage.
The only main difference with respect of the experimental layout of Sec. 2.7 (apart of
the programming C-interface) is that a second machine (e. g. controlled in torque) is
not necessary as load, since all tests are completely performed at standstill. A sketch of
the experimental setup and equipment is in Fig.5.1.

interface-C

 gprogrammin and

board dS1104

VSI-ph. 3

leProgrammab

−

+

DCU

under test IM

Fig. 5.1: Sketch of the experimental test bench used for the IM self commissioning procedure.

As mentioned before, one distinguishing feature of the control is the absence of lim-
itation in the choice of the voltage vector us, shifted from the angle ϑme with respect
to the stator phase u. At each subsequent change of the position of the vector the con-
trol routine recalculate the main compensation curves and re-initialize the identification
routines, while the results obtained at every different angular positioning are saved in
order to complete the mapping of the motor.
In terms of time, to complete the mapping with a high precision and a variation of ϑme =
1 deg.el in the positioning of the voltage vector us, the entire estimation procedure
completes the ϑme = 0÷ 360 deg.el and return all the non-linear relationship in a few
minutes. Anyway, the code can be setted to return only the basic non-linear relationship,
and in this latter case in less of a minute the entire standstill identification algorithm
gives the results
To have a wide and general term of comparison with other algorithms or estimation
procedures, the results and the experimental curves are normalized to the nominal
parameters of the induction machines, which were chosen very differently from each
other as topologies and application field. The first and the third machines are servo
motors (Tab.5.1 and Tab.5.3) designed to have a high dynamic range and a low stator
resistance; while the second motor (Tab.5.2) is a typical motor for electric pumps.
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Tab. 5.1: Induction motor IM1 parameters

Parameter Value

Nominal current IN 11.8 Aeff

Nominal frequency fN 52.5 Hz

Nominal speed ωmN 1500 rpm

Nominal ph-ph voltage UN 280 Veff

Pole pairs p 2

Stator resistance Rs 0.74 Ω

Iron losses equivalent resistance R0 1115 Ω

Tab. 5.2: Induction motor IM2 parameters

Parameter Value

Nominal current IN 6.6 Aeff

Nominal frequency fN 50 Hz

Nominal speed ωmN 2900 rpm

Nominal ph-ph voltage UN 380 Veff

Pole pairs p 1

Stator resistance Rs 1.5 Ω

Iron losses equivalent resistance R0 832 Ω

Tab. 5.3: Induction motor IM3 parameters

Parameter Value

Nominal current IN 8 Aeff

Nominal frequency fN 50 Hz

Nominal speed ωmN 1500 rpm

Nominal ph-ph voltage UN 400 Veff

Pole pairs p 1.98

Stator resistance Rs 1.9 Ω

Iron losses equivalent resistance R0 1814 Ω

5.2 a typical im parameter estimation procedure

In this paragraph a series of canonical tests, usually adopted to derive the equivalent
circuit parameters are presented. These tests cannot be considered when validating
the experimental results obtained with the proposed commissioning algorithm, since
they simply return the linear parameters of the machine without taking into account
the saturation of the magnetic circuits. Moreover the IM are usually designed to be
magnetically saturated in the nominal operating conditions, the non-linear effects are
difficult to estimate with great accuracy by using a step by step standard procedure.
Nonetheless, these standard tests are useful to have a quick characterization of the ma-
chines and to appreciate the accuracy of the results obtainable with the commissioning
procedure presented in this chapter.
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The traditional way of identifying the parameters is to use the "no-load" and "increasing-
load" tests [96] [97], that anyway represents an improvement over the use the manufac-
turer data to determine the electrical parameters of the machine.
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Fig. 5.2: Equivalent circuit of an IM machine used for the “no-load” and “load” tests.

As described in [96], the characterization must be preceded by a DC measurement of
the phase to phase resistance, in order to obtain the stator resistance value1. At this
measurement follows the estimation procedure, capable to extract the set of parameters
of the per-phase equivalent circuit shown in Fig.5.2.
In the following the use of capital letters indicated a generic sinusoidal operation mode,
and it is important to underline that, instead of the circuit of Fig.4.4 (where there are
no limitations in the type of signal applicable, since all the variables are in vectorial
representation), this standard procedure is limited at the phasorial notation.
The parameters of Fig.5.2 can be related to the parameters of the canonical inverse-Γ
circuit of Fig.4.4 by simply calculating the equivalent impedances of the two circuits as:

Zr1 = jΩsLt + jΩsLϕ||
Rsr

s
=

(jΩs)
2 Lt + jΩs

Rsr

s
Lϕ + Lt

Lϕ

jΩs +
Rsr

sLϕ

(5.1)

Zr2 = jΩsLs||
(

jΩsLd +
Rk
s

)
=

(jΩs)
2 LsLd

Ls + Ld
+ jΩs

Rk
s

Ls

Ld + Ls

jΩs +
Rk

s (Ld + Ls)

(5.2)

By comparing (5.1) and (5.2) and after some algebraic manipulation, the equivalence
between the parameters of Fig.4.4 and Fig.5.2 is:

Lt =
LsLd

Ls + Ld

Lϕ =
L2

s
Ls + Ld

Rsr =
L2

s Rk

(Ls + Ld)
2

(5.3)

The canonical procedure of identification entails the characterization of the magnetizing
curve by means of a series of no-load measurements.

1 The better way to avoid errors caused by wire resistance is the Kelvin, or 4-wire measurement method.
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Moreover, due to saturation effects, the magnetizing inductance is affected by the rotor
current, and the effect is particularly marked with the rotor slots geometry closed or
in the presence of skewing in the design [12][98]. For this reason, the results obtained
using the no-load test hold only at low loads level, i. e. only when the rotor current is
around zero.
As the load increases, when a current different from zero flows into the rotor circuits,
the magnetizing inductance and the rotor leakage inductance will change, and the
locked rotor test is the canonical way to obtain the parameters of the machine in this
latter case. In the following two sections will be described in detail the "no-load " test
and then the "increasing-load" procedure.

5.2.1 No-load test

The no-load test returns the active input power P, the phase-to-phase voltage Uph−ph
and the RMS phase current Is. Voltage and current measurements are used to derive
the impedance of the equivalent circuit of Fig.4.4, since the slip frequency is s = 0 for
the standstill condition of the test (the difference between synchronous speed and shaft
speed is zero).
The no-load identification procedure is performed by considering the IM motor of
Tab.5.1. The test execution requires only basic laboratory instrumentation as a sim-
ple variable three-phase transformer. In particular, the variable transformer is directly
connected to the motor, and a power analyser KinetiQ PPA2530 is used to measure the
three-phase input power, voltages and currents. Tab.5.4 summarizes the basic steps and
the post-processing data conditioning required by the test.
Since the test is performed at "no-load", the active power at section (1), P(1), is the sum
of the iron and mechanical losses (P(1) = Pir + Pm), and since the motor speed during
the test is manteined constant (and very close to the rated speed) the mechanical losses
Pm is constant, while the iron losses Pir vary with the square of the voltage U(1) (it is
related to the steady state stator flux linkage of the motor).

Tab. 5.4: No-Load test steps

Parameter Formula

Apparent Power S =
√

3Uph−ph Is

Reactive Power Q =
√

S2 − P2

Active Power at section (1) P(1) = P− 3Rs I2
s

Reactive Power at section (1) Q(1) = P

Apparent Power at section (1) S(1) =
√(

Q(1)
)2

+
(

P(1)
)2

Current at section (1) I(1) = Is

Voltage at section (1) U(1) =
S(1)

3I(1)

Magnetizing current at section (1) Iµ = f (U(1)) =
Q(1)

3U(1)

Tab.5.5 collects the post-elaboration numerical results obtained with the machine IM1
in Tab.5.1. Moreover, in Fig.5.3a is plotted the magnetisation curve U(1) = f (Iµ), that,
after reversing (Iµ = f (U(1))), will be useful for the next increasing load test. In Fig.5.3b
is also plotted the equivalent resistance R0, which is very high and quite independent
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by the applied voltage U(1). It is calculates as R0 = 3U(1)2
/Pir, and its average value

for the IM1 motor is of R0 ≈ 1115 Ω. The current I0 that flows through R0 (Fig.4.5) can
be considered approximately zero.
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Fig. 5.3: Curves for the IM1 machine in Tab.5.1, obtained with the “no-load” test.

5.2.2 The increasing load test

The remaining parameters of Fig.5.2 are calculated by considering and by processing
a second batch of measurements on the motor, named as "increasing-load" test. The
experimental configuration is slightly modified with respect to the previous test, since
the IM machine must be braked, while a constant load torque is applied using a second
motor. To this purpose, an PMSM controlled motor is used as an active load to brake the
IM machine under test, since in the "locked-rotor" version of this test the squirrel cage ro-
tor concatenates back electromotive forces of a frequency higher than the slip frequency.
The quality of the results for the presence of secondary effects on the conductors as the
skin effect is then deteriorates.
The post-processing procedure first implements the steps summarized in Tab.5.6, and
after this preliminary series of calculations, applying the equivalence (5.3) the complete
set of parameters of the inverse-Γ circuit in Fig.4.4 is returned. In Tab.5.7 are reported
the numerical data of the IM1 machine in Tab.5.1, obtained by processing the experi-
mental data recorded by the power analyser KinetiQ PPA2530 during the application
of the steps in Tab.5.6.
The final numerical values of the inductances and resitance of Lt, Lϕ and Rsr are derived
by averaging the numerical data in Tab.5.7 and considered in a standard FOC control
scheme.
The previous two tests returns averaged parameters, although with some additional
calculation they could be mapped. As an example, the inductance Ls could be mapped
as a function of the magnetizing current, but unfortunately the accuracy of these tests
is low, by considering that many parameters vary according to the working conditions
of the motor.

5.3 derivation of the model transfer function

Most of the traditional studies on the IM drives assume motor linearity, but a modern
self commissioning algorithm (as that proposed in this research) requires a different
formalization of the problem.
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Tab. 5.6: Increasing Load test steps

Parameter Formula

Phase voltage Us =
Uph−ph√

3

Apparent Power S = 3Us Is

Reactive Power Q =
√

S2 − P2

Active Power at section (1) P(1) = P− 3Rs I2
s

Reactive Power at section (1) Q(1) = P

Apparent Power at section (1) S(1) =
√(

Q(1)
)2

+
(

P(1)
)2

Current at section (1) I(1) = Is

Voltage at section (1) U(1) =
S(1)

3I(1)

Magnetizing current at section (1) Iµ = f (U(1)), from Fig.5.3a

Reactive power on Ls Q0 = 3IµU(1)

Stator inductance Ls Ls =
U(1)

Ωs Iµ

Loss power in the iron Pir = 3

(
U(1)

)2

R0

Active Power at section (2) P(2) = P(1) − Pir

Reactive Power at section (2) Q(2) = Q(1) −Q0

Apparent Power at section (2) S(2) =
√(

Q(2)
)2

+
(

P(2)
)2

Voltage at section (2) U(2) = U(1)

Current at section (2) I(2) =
S(2)

3U(2)

Leakage inductance Ld =
Q(2)

3Ωs
(

I(2)
)2

Equivalent rotor resistance Rk =
sP(2)

3Ωs
(

I(2)
)2
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Tab. 5.7: Numerical results of the "Load test"with the IM1 in Tab.5.1

I f [A] 1.00 2.00 3.00 4.00 5.00 6.00

Vf u [V] 160.00 160.00 160.00 160.00 160.00 160.00

Iu [A] 5.83 5.85 6.03 6.25 6.44 6.67

Vf v [V] 160.00 160.00 160.00 160.00 160.00 160.00

Iv [A] 5.81 5.84 6.00 6.21 6.40 6.63

Vf w [V] 160.00 160.00 160.00 160.00 160.00 160.00

Iw [W] 5.83 5.87 6.04 6.23 6.42 6.65

ωm [rpm] 1495.00 1492.00 1490.00 1488.00 1487.00 1486.00

Ωs [rpm] 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00

s 0.00 0.01 0.01 0.01 0.01 0.01

Us [V] 160.00 160.00 160.00 160.00 160.00 160.00

Is [A] 5.83 5.85 6.03 6.25 6.44 6.67

P [W] 94.24 126.73 231.10 324.00 400.00 469.17

Q [VAR] 928.03 927.38 936.71 946.06 949.59 958.54

P(1) [W] 69.33 101.64 204.45 295.37 369.60 436.56

Q(1) [VAR] 928.03 927.38 936.71 946.06 949.59 958.54

I(1) [A] 5.83 5.85 6.03 6.25 6.44 6.67

U(1) [V] 159.62 159.48 159.00 158.57 158.23 157.91

Iµ [A] 5.855 5.843 5.805 5.772 5.45 5.21

Q0 [VAR] 25480.11 25432.60 25280.74 25146.00 25035.88 24936.10

Pir [W] 22.84 22.80 22.66 22.54 22.44 22.35

P(2) [W] 46.49 78.85 181.79 272.83 347.16 414.21

Q(2) [VAR] -6.501 -4.390 13.704 30.755 40.543 55.119

U(2) [V] 159.62 159.48 159.00 158.57 158.23 157.91

I(2) [A] 153.81 153.66 153.11 152.62 152.24 151.86

Ld [mH] \ \ 33.183 32.658 26.448 25.057

Rk [Ω] 1.792 1.715 0.922 0.728 0.617 0.552

Ls [mH] 86.788 86.882 87.183 87.449 87.665 87.860

f [Hz] 0.17 0.27 0.33 0.40 0.43 0.47

Lt [mH] \ \ 24.035 23.778 20.318 19.36

Lϕ [mH] \ \ 63.148 63.671 67.347 68.4

Rsr [Ω] \ \ 0.484 0.386 0.364 0.33
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Typical approximation to a single phase of the non-linear inverse-Γ circuit of the IM

machine (usually named per-phase) represented in Fig.4.5 is not appropriate and could
lead to a wrong consideration of the problem in term of vectorial notation. Moreover,
the introduction of non-linear quantities in the circuit of Fig.4.4 leads to the impossi-
bility to find an explicit analytical solution of the problem (currents associated at each
element of the circuit as is(t) and iϕ(t)), and for this reason it is important to formalize
correctly the problem.
To this purpose, a different approach based on the use of the spatial vector notation
is considered, in order to obtain a general TF of the circuit in different working points
without approximations. To this aim, the “Perturbation method” (Chapter 10 of [39])
can be used to find an approximate solution (is(t), iϕ(t)) of the non-linear inverse Γ
circuit.
In particular, the linearisation of the parameters is performed by adding a "small" term
(named ε) to the mathematical equations of (4.14), in order to derive the equivalent
"formal power series" of the desired solution, that can be truncated and solved explicit
with the common linear mathematical instruments and obtain an approximated solu-
tion around the operating condition.
It is important to underline that a first-order “Perturbation method” not differs from the
canonical linearisation approach, since the two methodologies deliver the same output.
If you consider a general voltage vector us = us0(t) + εus1(t) applied to the circuit in
Fig.4.5, where us0(t) = const. defines a DC component, ε a small parameter and us1(t)
a general high frequency component.
The solution

(
is, iϕ

)
of the non-linear Γ-inverse circuit depends on ε, and this mathe-

matical approach aims to find an approximated solution when ε→ 0. If you consider:

is(t) =
N−1

∑
k=0

isk(t)εk +O(εN)

iϕ(t) =
N−1

∑
k=0

iϕk(t)εk +O(εN)

(5.4)

and a first order approximation is applied to the equations (5.4), by defining as isk(t)
and iϕk(t) the current expansion terms. The (5.4) truncated at the second order term
(N = 2) returns:

is(t) = is0(t) + is1(t)ε +O(ε2)

iϕ(t) = iϕ0(t) + iϕ1(t)ε +O(ε2)
(5.5)

Also considering the ε-expansion of the non-linear inductances Lt(is) and Lϕ(iϕ)

Lt(is(t)) = Lt0(t) + Lt1(t)ε +O(ε2)

Lϕ(iϕ(t)) = Lϕ0(t) + Lϕ1(t)ε +O(ε2)
(5.6)

where:

Lt0(t) = Lt(is(t))
∣∣∣
ε=0

= Lt (is0(t))

Lt1(t) =
∂Lt (is(t))

∂ε

∣∣∣
ε=0

=
∂Lt(is)

∂is

∂is

∂ε

∣∣∣
ε=0

=
∂Lt(is)

∂is
is0(t)is1(t)

(5.7)
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and similarly for Lϕ(iϕ):

Lϕ0(t) = Lt(is)
∣∣∣
ε=0

= Lϕ (is0(t))

Lϕ1(t) =
∂Lϕ (is0(t))

∂ε

∣∣∣
ε=0

=
∂Lϕ(iϕ)

∂iϕ

∂iϕ

∂ε

∣∣∣
ε=0

=
∂Lϕ(iϕ)

∂iϕ

(
iϕ0(t)iϕ1(t)

) (5.8)

By substituting the previous ε terms expressions in the general voltage balance equation
of the Γ-inverse circuit (4.14), it holds that:

us0(t) + εus1(t) +O(ε2) = Rs

[
is0(t) + is1(t)ε +O(ε2)

]
· · ·

· · ·+
[

Lt0(t) + Lt1(t)ε +O(ε2)
]
·
[

dis0(t)
dt

+ ε
dis1(t)

dt
+O(ε2)

]
· · ·

· · ·+
[

Lϕ0(t) + Lϕ1(t)ε +O(ε2)
]
·
[

diϕ0(t)
dt

+ ε
diϕ1(t)

dt
+O(ε2)

] (5.9)

Assuming
dis0

dt
= 0 and

diϕ0

dt
= 0, the previous expanded expression returns:

us0(t) + εus1(t) +O(ε2) = Rs

[
is0(t) + is1(t)ε +O(ε2)

]
· · ·

· · ·+
[

Lt0(t) + Lt1(t)ε +O(ε2)
] dis0

dt︸ ︷︷ ︸
=0

+ε
dis1(t)

dt
Lt0(t) + ε2 dis1(t)

dt
Lt1(t)︸ ︷︷ ︸

O(ε2)

+O(ε2)

· · ·+
[

Lϕ0(t) + Lϕ1(t)ε +O(ε2)
] diϕ0

dt︸ ︷︷ ︸
=0

+ε
diϕ1(t)

dt
Lt0(t) + ε2 diϕ1(t)

dt
Lt1(t)︸ ︷︷ ︸

O(ε2)

+O(ε2)

(5.10)

Equating the coefficients of same order at both sides, yields:

[
ε0
]

=⇒ us0(t) = Rsis0(t) = DC component

[
ε1
]

=⇒


us1(t) = Rsis1(t) + Lt0

dis1(t)
dt

+ Lϕ0
diϕ1(t)

dt

0 = Lϕ0
diϕ1(t)

dt
− Rsr(is1(t)− iϕ1(t))

(5.11)

and finally, applying the "Laplace transform" to the
[
ε1] of (5.11), the equivalent s-

domain expression of the
[
ε1] balance is obtained:

L
{[

ε1
]}

=⇒


Us1(s) = (Rs + sLt0 Is1(s)) + sLϕ0 Iϕ1(s)

0 = Rsr Is1(s)−
(

Rsr + sLϕ0
)

Iϕ1(s)

(5.12)

This linear s-domain system (5.12) can easily be solved in the variables Is1(s) and Iϕ1(s),
e. g. by applying the "Cramer’s Rule". The solution of Is1(s) returns:



114 parameter identification algorithm

Is1(s) =

∣∣∣∣∣Us1 sLϕ0

0 −
(

Rsr + sLϕ0
)
∣∣∣∣∣∣∣∣∣∣Rs + sLt0 sLϕ0

Rsr −
(

Rsr + sLϕ0
)
∣∣∣∣∣

=
Us1(s)

(
Rsr + sLϕ0

)(
Rsr + sLϕ0

)
(Rs + sLt0) + sLϕ0Rsr

(5.13)

The general impedance of the inverse Γ circuit of Fig.4.5, calculated as ratio between
the equivalent voltage Us1(s) and the current Is1(s) is:

Z(s) =
Us1(s)
Is1(s)

=
L(us1)

L(is1)
=

sLϕ0Rsr(
Rsr + sLϕ0

) + Rs + sLt0 (5.14)

5.4 inverter voltage drop estimation

For the purposes of the proposed self-commissioning algorithm and for the require-
ments of the routine in Sec. 5.7 (used to identify the flux linkage λs), a simple pre-
characterization of the voltage-current relationship of the components in Fig.5.4 is the
only requirement before starting the identification procedure.
Actually, the precise correspondence of the voltage drop ut caused by the IGBT and
the threshold voltage ud of the free-wheeling diode is obtained by considering the non-
linear effects and the voltage drop across the active switching components, i. e. IGBT
and diodes.
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Fig. 5.4: Inverter standard configuration, the IM machine is represented as a three-phase load.

To correctly estimate this drop, a rough-and-ready solution to derive the characteristic
curves of the VSI components consists into use of the data-sheets to get the diodes
threshold voltage and the IGBTs conduction drop as a function of the current, but
unfortunately these informations are usually too rough.
Basically, by supposing that the induction motor is fed by a standard three-phase volt-
age inverter, and that it lacks of the hardware circuitry for direct phase voltage mea-
surement, as an alternative, an extremely accurate result has been obtained with the
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proposed experimental test. By connecting the u, v inverter poles to the corresponding
u, v phases of a PMSM, spun by a standard IM at a low and constant speed (≈ 250 rpm)2.
The inverter was suitably commanded in the null state configuration (indicated as 000),
i. e. with all the bottom switches ON and the top switches OFF. The phase to phase
voltage uuN between the motor phase terminal u and the neutral point N of the VSI was
measured by a differential voltage probe, and stored along with the phase current iu
caused by the PMSM electromotive force of the motor in Tab.1.1 (Fig.5.5).

N

+−uS2

N

+−uS4

N

+−uS6

u

iu

dλu

dt

Rs

v

iv

dλv

dt

Rs

w
T

iw

dλw
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Rs

O

Fig. 5.5: Inverter configuration for a null voltage vector (000 or 111). During the test for the
voltage drop determination, phase w is open.

In this particular configuration of the VSI, the current iu = −iv flows identically in
the IGBT S2 or in the diode D2, meaning that the measured voltage represents either
the diode or the IGBT voltage drop. Positive values of iu are associated to the diode
threshold voltage.
The results of the measure in the time domain are plotted in Fig.5.6a, while the same
curve is replotted in function of the current that flows into the components in Fig.5.6b.
By processing the collected data separately, a polynomial approximations of the voltage
drops ut = f (|i|) and ud = f (|i|) were calculated in Fig.5.6b and separately in Fig.5.6c
and Fig.5.6d can be easily derived.
The degree of the polynomials is a trade-off between accuracy and computational effort,
but for the purposes of this research, a sixth grade polynomial function has been found
to be appropriate:

ft(|i|) = αt0|i|6 + αt1|i|5 + ..... + αt5|i|+ αt6

fd(|i|) = αd0|i|6 + αd1|i|5 + ..... + αd5|i|+ αd6

(5.15)

The coefficients αti and αdi are obtained using a polynomial fitting algorithm, which
elaborates the plot of Fig.5.6a as a function of the current. It is worth noting that
the approximation of the very first portion of the curve (steep slope, few tens of mA)
is quite rough, but it will not be used by the identification procedure, since the flux-
linkage estimation algorithm is stopped at very low currents, and therefore that part of
the voltage reconstruction is not used at all.
Some inverter non-idealities calculated with the proposed method are non-linear while
others are linear with the current that flows into the power components. By focusing

2 From an experimental point of view, the inverter under characterization must be isolated by the VSI used to
drag the IM motor.
To this aim, during the experimental identification of the curves in Fig.5.6, the IM was dragged by adopting
an external three phase commercial VSI, controlled by a scalar V/Hz control.
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Fig. 5.6: Identification of the voltage drop of IGBTs and diodes.

only on the behaviour at sufficiently high currents (i. e. for currents greater of 2 A),
the upper curve of Fig.5.6a is obtained without switching activity. This means that the
behaviour of each power component (either an IGBT, or a diode) can be approximated
by a straight line, that is, by the series of a constant voltage drop and a resistive voltage
drop.
The feasibility of the method is testified twice, since the results do not change if the
speed of the motor is changed (Fig.5.7) and if the compensation curve is compared
with that obtained by measuring directly the phase to phase voltage.
In particular, Fig.5.7 shows a time-voltage recording with the voltage probe connected
between the phase to phase voltage uuv and the current iu = −iv with the VSI, config-
ured as in Fig.5.5 (i. e. with the inverter at −π/6 and configured in 000 while the PMSM

was dragged by the IM).
By processing the collected data separately (i. e. plotting the data of Fig.5.7a in the
current-voltage plane), the direct overlapping with the sum of ut + ud obtained in
Fig.5.6b is shown in Fig.5.7b. The perfect matching of the polynomial approximation
in Fig.5.6b with the experimental data (also at different speeds) proves the practical
feasibility and the accuracy of the method.

5.5 stator resistance and dead time compensation

The first estimated parameter is the stator resistance Rs. When a DC current is flow-
ing in the circuit of Fig. 4.5, the inductances are short-circuits and no current flows in
the Rsr branch.
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Fig. 5.7: Alternative validation and identification of the voltage drop of IGBT and diode at ωm =
100 rpm.

Consequently, the ratio between the phase voltage us and the current is gives an estima-
tion of the Rs value. The major issue resides in the meaning of the estimated resistance
value, which depends upon the section in which the voltage is measured.
If the voltage is directly measured on motor terminals, the estimated resistance value is
equal to the stator resistance value.
However, very often the phase voltage is approximated by its reference, providing ad-
equate compensation of inverter non-linearities, as in [80]. In such cases, the us/is
ratio encompasses other resistive contributions which refer to cables and IGBTs linear
characteristics.
In particular, the dead-time effects negatively affect the phase voltage generation of the
PWM (as documented in [70]), introducing in principle a constant voltage drop, the sign
of which depends on the sign of the phase current. However, it is well known [89]
that the voltage distortion behaviour at low current levels diverges from the theoretical
profile, becoming constant only for high current levels.
The parasitic effects in fact, are usually referred to non-linear phenomena that occur in
the components and are quite difficult to describe adopting analytical or mathematical
models (e. g. considering an equivalent scheme with equivalent capacitances, induc-
tances and resistance in parallel with the component).
Moreover, these effects are evident only at low currents, but a method to obtain a
comprehensive compensation of the inverter non-ideality was proposed in [88], al-
though a modified version has been adopted here as first routine executed by the self-
commissioning algorithm.
Basically, a reference voltage vector u∗s = Us0ejϑme of step-decreasing amplitude and
fixed phase ϑme (with respect to the αβ stationary reference frame, aligned to the u
phase) is applied to the induction motor, while the phase currents are measured and
processed to get the corresponding step-increasing current vector is = Is0ejϑme .
The non-linear ratio between the DC voltage and the steady state current amplitudes
(Us0/Is0) encompasses the whole chain of resistive elements, including cables and IGBTs
resistances. At the higher current levels, the non-linearity of the switching devices
almost vanishes, so that the ratio becomes a constant, as depicted in Fig.5.8 that was
obtained for a fixed positioning of ϑme = −π/6.
It is important to highlight that the described non-linearity compensation of this para-
graph does not isolate the contribution of each diode or IGBT to the voltage drop, but
actually gives only a mean value associated to the position of the applied voltage vector
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ϑme, which in turn determines what components are actually conducting the current,
as can be recognized from the schematic of the inverter reported in Fig.5.5. Specifically,
the main steps to identify Rs can be summarized as follows.
Subsequently, a series of non-compensated voltages are applied (i. e. the amplitude of
u∗s = Us0ejϑme is varied from a specified range), leading to a different steady-state DC
voltage references, stored as voltage-references in a LUT together with the measured
currents Is0, as reported in The plot in Fig.5.8a.
The non-linear curve of Fig.5.8a takes accounts for both the voltage distortion effects at
low current levels and the constant voltage drop at higher current levels, but it can be
used to estimate the resistance Rs, by simply considering the higher current samples.
For higher current values in fact, the distortion is quite constant [88], while the curve
slope represents the all-comprehensive stator phase resistance Rs. Therefore, the lin-
ear components can be considered the stator phase resistance and part of the power
switches drop, while the inverter dead time effect and the constant part of the switches
drop constitute the difference between Us0 and Rs Is0.
The stator resistance Rs can be considered as the general solution of a Ordinary Least
Squares (OLS) estimation, by considering the relationship U∗s0 = R̂s,est Is0 as a linear
regression model and the parameter R̂s,est the unknown coefficient (Chap. 1.9 of [99]).
The correlation between the voltage references U∗s0 and the current measurements Is0 is
then:

R̂s,est =

1
Nm

Nm

∑
k=1

(
Is0,k − µIs0

) (
U∗s0,k − µU∗s0

)
1

Nm

Nm

∑
k=1

(
Is0,k − µIs0

)2
(5.16)

where µIs0 =
1

Nm

Nm

∑
k=1

Is0,k and µU∗s0
=

1
Nm

Nm

∑
k=1

U∗s0,k are the averaged current and voltage

references value on the Nm samples.
The measured currents (Is0,k = id,k) are stored together with the voltage references
U∗s0,k and used to derive the correct Rs,est value. From an experimental point of view,
only the last ten samples (Nm = 10 in the right side of the curve in Fig. 5.8a) have
been considered to calculate the stator resistance, although an increased number of
measurements leads to increase the precision in the estimation.
It can be proved that R̂s,est asymptotically converges to Rs,est for Nm → ∞ (i. e. with Nm
sufficiently high), and it represents the best linear unbiased estimator, i. e. the one with
the lowest variance among the class of linear estimates [100]. In the following will be
considered R̂s,est = Rs,est.
In the identification routine, while the higher part of the curve becomes the linear
relationship Rs between the reference voltage and the current, the difference |U∗s0| −
Rs,est Is0 can be considered the non-linear offsetting of the initial voltage reference, as
reported in Fig.5.8b.
To compensate the non-ideality inverter (due to the dead time effects), the curve of the
reference voltage |U∗s0| (that is the output of the PI current regulators, saved in the LUT)
is subtracted from the respective voltage measurements Us0, calculated as:

Us0 = Rs,est Is0 (5.17)

The current-dependent compensation term is then added to the voltage reference to get
an actual voltage equal to the primitive reference signal in the following routines of the
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Fig. 5.8: Reference voltage-to-current characteristic of the three-phase inverter calculated. The
curves are calculated with a DC-link bus voltage of UDC = 100 V.

estimation algorithm. It is worth noting that the compensation usually fails for very
low current values, due to the effect of the parasitics of the switching components that
make the dead time effect non-linear, and the related voltage drop falls. Distortion due
to the dead time is lost in parasitic effects when the IGBTs are crossed by low currents,
while it is parallel to the high current values.
The higher part of the curve in Fig.5.8b is only related to the dead time effects (i.e.

uDT =
4tdUDC

3Tc
sgn(Is0)) and by the constant bias of the components [4].

Numerically, the value used in the experimental tests for deriving Fig.5.8a were a DC-
link bus voltage Udc = 100 V, a switching period of Tc = 100 µs and the dead times of
td = 4 µs.
As expected, at high current level the voltage drop in Fig.5.8a is approximately |U∗s0| −
Us0 ≈ 5.5 V, in good agreement with only the dead time contribution of uDT = 5.33 V.
At lower currents, the parasitics of the switching components make the dead time ef-
fect non-linear, and the related voltage drop falls. This is automatically included in
the inverter model, by taking a difference which is lower and decreased as a quantity
proportional of how much the phase current is closed to zero.
As an example, the final result obtained by considering a phase voltage shift of ϑme = 0◦

with the IM2 motor was of Rs = Rs,est = 1.507 Ω, very close to the one reported in Tab.
5.2.
Since the conduction of the components depends on the electromechanical position ϑme
of the voltage reference vector, a complete mapping of the resistance as a function of
the angular position is reported in Fig.5.9. To this purpose, the reference voltage vector
is varied by changing the d-axis current reference (Is0 = id), in successive steps, in order
to cover the entire electromechanical period and map the resistance and compensation
curves (e. g. little variations can be attributed to the temperature variation). The value of
Rs has small variations when calculated at different phase angles, as shown for example
in Fig.5.9 for motor IM1 (Tab. 5.1) and IM2 (Tab. 5.2).
These variations take account of the different DC current paths caused by the different
positioning of the voltage vector. The difference between the ideal curve and the mea-
sured curve can be used to compensate the voltage references of the control algorithm
(via a look-up table or a polynomial approximation), to obtain a perfect match between
the reference phase voltage and the measured phase voltage.
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Fig. 5.9: Comprehensive equivalent resistance Rs as a function of ϑme for the machine IM1 and
IM2 (Tab. 5.1 and Tab. 5.2).

From Fig.5.9 it is visible that the initial and final value of the resistance during the
estimation is different. This difference depends, in addition to the non-linear effects of
the components, by the temperature changing, since it exceeds by far the variations due
to the different current distribution in the components.
Therefore, in industrial implementations of this algorithm, an on-line tracking algo-
rithm for the stator resistance should been added to avoid this little discrepancy (the
estimated value of Rs remains a good starting point for such an algorithm).
To validate the resistance estimation procedure, the resistances of the three motor have
been accurately measured with a 4-wire measurement performed with an ohmmeter
Agilent 34401A. The estimated resistance Rs includes neither the cable connection to the
inverter, nor the voltage drop due to the inverter switches, and therefore it is slightly
less than the mean value of the Rs displayed in Fig.5.9.

5.6 the identification of the transient flux linkage

The second parameter estimated by the control algorithm is the transient inductance
Lt. Lt is obtained by injecting a sinusoidal high-frequency signal of small amplitude
Us1 superimposed to a step-varying DC bias Us0, and by measuring the resulting stator
current. The (pulsating) reference space voltage vector is applied along the d-axis, with
an angular displacement of ϑme with respect to the stationary reference frame (Fig.5.10).

Fig. 5.10: Reference voltage for the identification of the inductance Lt



5.6 the identification of the transient flux linkage 121

It produces a corresponding pulsating current vector (along the same direction ϑme),
delayed by an angle γ(ω), that is


u∗s (t) = us0 + us1(t) = (Us0 + Us1 cos(ωt)) ejϑme

is(t) = is0 + is1(t) = (Is0 + Is1 cos(ωt− γ)) ejϑme

(5.18)

The basic idea is to linearise the circuit of Fig.4.5 around consecutive steady-state work-
ing points, through the step-varying bias DC voltage Us0, and calculate the differential
inductance Lt from the expression of the TF between the Laplace transforms of the
imposed stator voltage vector and the measured stator current Z(s) = U∗s (s)/Is(s).
The application of the perturbation method described in 5.3, provided that Us1 is suf-
ficiently small, leads to the voltage balance equations for the first-order components
us1 and is1. They are obtained by (5.11), where Lt0 and Lϕ0 are the differential induc-
tances at the working point (us0, is0). Forcing a sinusoidal perturbation (5.18) as voltage
reference, the frequency response can be obtained by placing s = jω in (5.14):

Z(jω) = Rs + jωLt0 +
jωLϕ0Rsr

Rsr + jωLϕ0
(5.19)

Now considering the Laplace transform of (5.18) (where us1(t) defines the first order
voltage component and is1(t) the equivalent delayed current), it follows that:

Us1(s) = L (us1 cos (ωt)) = Us1
s

s2 + ω2

Is1(s) = L (is1 cos (ωt− γ)) = Is1

s sin
(π

2
− γ

)
+ ω cos

(π

2
− γ

)
s2 + ω2

= Is1
s cos (γ) + ω sin (γ)

s2 + ω2

(5.20)

Replacing the (5.20) into (5.14), the equivalent impedance can be rewritten as:

Z(jω) =
U∗s (s)
I∗s (s)

∣∣∣
s=jω

≈ Us1(s)
Is1(s)

∣∣∣
s=jω

=
sUs1

Is1 (s cos (γ) + ω sin (γ))

∣∣∣
s=jω

=
jωUs1

Is1 (jω cos (γ) + ω sin (γ))

=
Us1

Is1

1
cos (γ)− j sin (γ)

=
Us1

Is1
ejγ

(5.21)

Considering a suitably high frequency ω = Ωh, the right-hand term of (5.19) reduces
to Rsr with good approximation, so that the imaginary part of Z(jΩh) returns the value
of Lt(is0) (by considering the same nomenclature used in (5.18):

Lt(is0) = Lt0 ≈
= [Z (jΩh)]

Ωh
=

1
Ωh

Us1

Is1
sin γ (5.22)

In the practical implementation, the accurate determination of the current space vector
is1 with respect to us1, has some critical aspects related to the inherently bad signal-to-
noise ratio of the measurement system. To estimate correctly the transient inductance,
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the solution adopted is represented by the Goertzel algorithm, which is a fast and
efficient implementation of the discrete-time Fourier transform ([92]).
The implementative procedure for the calculation of Lt(is0) can be summarized by the
diagram in Fig.5.11, that is a block diagram representation of the (5.22).
At steady state and in a given working point (us0, is0), during every Tc = 100 µs the
phase currents are sampled and transformed into a space vector in the (d, q) reference
frame. For the particular choice of the d-axis, the q-components of both reference volt-
age and current are null, and the single-tone component of the is current at the angular
frequency ωh is detected by applying, in succession, an IIR and an FIR filter to the
d−component of the current vector id = Is0 + Is1 cos(ωht− γ) (Fig.5.11). In details, for
each of the first (N − 1) samples, the algorithm computes the intermediate IIR filter
sequence of vectors

s(n) = id(n) + 2 cos (2πk/N) s(n− 1)− s(n− 2) (5.23)

where k = f NTc, 0≤ n≤ (N − 1) and N is the total number of samples per period of
the input signal, as detailed in Sec. 5.6.1.1. The choice of N is a trade-off between the
accuracy of the results and the execution time of the DFT; in the present work, a value
N = 100 was found to be appropriate.
After N samples, a FIR filter is applied to s(N) and s(N − 1), conveniently stored apart:


Is1 cos(γ) = s(N)− cos (2πk/N) s(N − 1)

Is1 sin(γ) = sin (2πk/N) s(N − 1)

(5.24)

To better understand the operating principle of the single tone DFT, the next section
describes in detail the Goertzel algorithm structure, while in Sec. 5.6.2 are collected the
main experimental results obtained in the estimation of Lt.

5.6.1 The Goertzel DFT algorithm

The algorithms of the DFT are normally used for the calculation of amplitude and
phase of the entire spectrum of a signal. The knowledge of the spectrum might be
of interest for some real-time applications, such as certain electrical drives based on
advanced control techniques, where it is generally sufficient the knowledge of a single
harmonic or a small number of harmonics.
When a single harmonic detection is required, DFT and FFT algorithms are not computa-
tionally efficient, and a single-tone of the DFT, known as the Goertzel algorithm, ensures
better performances.
The normalised definition of DFT is the following:

X(k) =
N−1

∑
r=0

x(r)Wkr
N , 0 ≤ k, r ≤ N − 1 (5.25)

where N is the number of samples, WN = e−j2π/N , x(r) and X(k) are the sampled
signal (sample time T = 1) and its frequency-domain transformation (sample frequency
F = 1/N), respectively.
The Goertzel algorithm is obtained by manipulating the 5.25 by considering the follow-
ing identity:
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Fig. 5.11: Diagram for the Lt estimation procedure by the Goertzel DFT algorithm.
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W−kN
N = e(j2π/N)Nk = ej2πk = 1 (5.26)

By replacing the (5.26) into the (5.25), it follows that:

X(k) = W−kN
N

N−1

∑
r=0

x(r)Wkr
N =

N−1

∑
r=0

x(r)W−k(N−r)
N (5.27)

and then, from (5.27), the following sequence can be introduced:

y(n) =
N−1

∑
r=0

x(r)W−k(n−r)
N (5.28)

The sequence (5.28) is equal to X(k) when n = N and represents a convolution between
x(n) and W−kn

N , or equivalently the output of a linear system whose impulse response
is equal to W−kn

N . The Z-transform of W−kn
N is:

H(z) =
1(

1− 2 cos (2πk/N) z−1 + z−2
)

︸ ︷︷ ︸
IIR filter

(
1−Wk

Nz−1
)

︸ ︷︷ ︸
FIR filter

(5.29)

(5.29) represents the transfer function between the sequence y(n) and the input x(n)
(that is equal of x(n) = id(n) for the studied application), split into an IIR filter and a
FIR filter, as shown in Fig.5.12.

Fig. 5.12: Harmonic relevator as series of an IIR and an FIR filter.

It follows that:

X(z) =
(

1− 2 cos (2πk/N) z−1 + z−2
)

S(z) (5.30)

Back into the time domain, let s(n) be the output of the IIR filter and S(z) its Z-domain
value, then s(n) (in the time domain, from Fig.5.12) can be rewritten as:

s(n)
[
1− 2 cos

(
2πk
N

)
z−1 + z−2

]
= x(n) = id(n) (5.31)

and then, after some algebraic manipulations:

s(n) = x(n) + 2 cos (2πk/N) s(n− 1)− s(n− 2) (5.32)

With the input x(n) = id(n) being sampled during real-time control, the sequence s(n)
is computed on-line.
As regards the FIR filter, its output y(n) is computed only for n = N, provided that
s(N) and s(N − 1) were previously saved:
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X(k) = y(n)
∣∣
n=N = s(N)−Wk

Ns(N − 1) (5.33)

Since Wk
N is a complex number, expression (5.33) is complex, too. The real and imagi-

nary parts are:

<[X(k)] = s(N)− cos (2πk/N) s(N − 1)

=[X(k)] = sin (2πk/N) s(N − 1)
(5.34)

Since x(n) is a real signal, (5.32) shows that the computation of s(n) requires one mul-
tiplication (as 2 cos(2πk/N) is stored as a coefficient) and two additions. The block
scheme of the describe algorithm is represented by Fig.5.13.

Fig. 5.13: Block diagram of the Goertzel algorithm.

Thus, s(N) is obtained by N multiplications and 2N additions. The calculation of
<[X(k)] and =[X(k)] requires two multiplications and one addition.
Altogether, the Goertzel algorithm requires N + 2 multiplications and 2N + 1 additions
to be spread over the whole NTc time window, while s(n) is updated with only one
multiplication and two additions for each sample period.
Moreover, the value of N can be increased as needed with no effects on the computa-
tional time requirements, obtaining a very high DFT selectivity [92].
This is a net saving, if compared to the DFT in (5.25), which needs 2N multiplications
and 2N additions to compute a real and imaginary parts of X(k) from a real x(k) signal
[92].
However, the real advantage of the Goertzel algorithm for single harmonic analysis
resides in its recursive definition (5.32), since in this way, the algorithm can be effectively
used in real time without affecting the execution time of control routines.

5.6.1.1 The phase detection

With respect of the estimation of the transient inductance, it is relevant to understand
the phase results of the computation with the Goertzel algorithm when the signal:

x[n] = Is1 cos(2π f0nTc − γ)

n = 0, . . . , N − 1 ; γ > 0
(5.35)

is injected in the control chain. In particular, the frequency f0 is a multiply integer
of Fc/N (frequency resolution of the DFT, i. e. f0 = k0Fc/N with k0 ∈ {0, 1, . . . , N −
1}), and the Goertzel algorithm filters the input sequence x[n] = id(n) that returns an
impulsive response

h[n] = W−kn
N δ−1[n] n ∈ Z (5.36)

where δ−1[n] denotes the unitary sequence:
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δ−1[n] =

{
1 n ≥ 0

0 n < 0
(5.37)

As detailed in Sec. 5.6.1, after N steps, the output y of the IIR filter is equal of the k tone
of the more general DFT transformation X of the input sequence x (i.e. y[N] = X[k]).
By using the expansion of (5.35) (considering the cosine angle addition identity3), for a
generic k ∈ {0, 1, . . . , N − 1} it follows that:

x[n] = Is1 (cos γ cos(2π f0nTc)− sin γ sin(2π f0nTc)) (5.39)

By considering the Fourier transforms:

cos
(

2π

N
k0n
)

DFT−−−−−−−−−→ N
2

δ[k + k0] +
N
2

δ[k− k0]

sin
(

2π

N
k0n
)

DFT−−−−−−−−−→ j
N
2

δ[k + k0]− j
N
2

δ[k− k0]

(5.40)

with k ∈ {0, 1, . . . , N − 1}, the DFT transformation X becomes:

y[N] = X[k] = Is1
N
2
(cos γ− j sin γ) δ[k− k0] + · · ·

= Is1
N
2
(cos γ + j sin γ) δ[k + k0]

(5.41)

In this case δ[n] is the "Kronecker’s delta" function (i. e. δ[0] = 1 e δ[n] = 0 for n 6= 0).
By choosing k = k0, the (5.41) can be rewritten as:

y[N] = X[k0] = Is1
N
2
(cos γ− j sin γ) (5.42)

and so:

|y[N]| = |X[k0]| = Is1
N
2

∠y[N] = ∠X[k0] = atan2 (− sin γ, cos γ) = −γ
(5.43)

This means that the Goertzel algorithm return exactly the phase shift γ between current
and voltage of (5.21).

5.6.2 Experimental results

The algorithm was tested on different induction motors, whose nameplate data are
reported in Tab.5.1, Tab.5.2 and Tab.5.3. Actually, the choice of the frequency Ωh is
a trade-off between the accuracy of the approximation (5.22), which requires high fre-
quency, and the need of a phase γ not too close to π/2 rad.el, to avoid computational
inaccuracy in the rectangular-to-polar (R/P) conversion (Fig.5.11). Taking a value of

3

cos(α− β) = cos(α) cos(β) + sin(α) sin(β) (5.38)
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γ = 1.4 rad as a good compromise, the frequency fl = Ωh/2π = 100 Hz was finally
selected for the experimental tests.
Voltage and current fundamental harmonics were acquired and processed using the
proposed fast DFT, but the choice of frequency and amplitude of the injection signal
is a compromise between several factors. The chosen frequency fl ensures that the
phase ∠ İs is not too close to π/2 rad.el, while the reference AC voltage |UAC| provides
sufficient resolution in the current reading without moving the working point from the
linear region.
Anyway, higher values of the injection frequencies fl require a greater resolution (F) in
the Goertzel algorithm, since the current noise reduces the bandwidth centred on the
injection frequency. The final value of the current perturbation was in the range of ∈
[IAC,min ÷ IAC,max] = 0.25÷ 0.3 A, and to ensure an equal amplitude in the modulation
current at each working point, the algorithm changes the amplitude of the reference
AC voltage |UAC| and verifies that before proceeding with the calculation of the DFT the
measured perturbation is in the boundary set.
In the final version of the algorithm, in the calculation of Lt the currents |is| < 3 A were
excluded, since the saturation effects are more appreciable for higher currents and it is
therefore expected that Lt will remain constant in that range.
The amplitude of the voltage input Us1 has to be tuned to get a correspondent sinusoidal
current high enough to let the analog-to-digital conversion be accurate, but limited to a
value that prevents saturations around the working point. For an A/D resolution of 12

bit, the here was to impose a minimum current around 0.3 A (15− 20 LSB). Being just
few percent of the IM rated current, any saturation is avoided.
As a first experimental test, the value of Lt was plotted as a function of the DC bias
current Is0, at a fixed position θme = 0 rad.el, i. e. along the α axis. The result is shown
in Fig.5.14a, that reports the automatic estimation of Lt for all the available motors.
The Lt trend as a function of the bias DC vector angular position θme is reported in
Fig.5.14b, for the case of IM1 (Tab.5.1), and it can be concluded that the position of the
bias current vector does not substantially affect the inductance calculation. On the other
hand, and contrary to the common belief, some motors may suffer a marked saturation
effect of Lt, despite the fact that it mainly represents a leakage flux linkage (Fig.5.14a,
IM1).
It can be somewhat physically explained by considering the saturation of the stator slot
corners in the motor at higher currents, that affects the value of the total leakage flux
linkage in the air gap. The squirrel cage rotor in fact, has the narrow area that, in short
circuit closes all the bars that can be saturated with a moderate rotor current.
The complete profile of (Lt = f (|is|, ϑme)) is shown in Fig.5.14b and Fig.5.14c, and the
marked degree saturation can be explained considering the saturation of the stator slot
corners in the motor for higher currents, affecting the value of the total leakage flux
linkage in the air gap. In fact, with respect of the details of the IMs geometry, it is
expected that those with open slots on the stator and rotor (IM2 and IM3) have a rather
constant Lt (and greater for IM3, where the slots are relatively more closed and deeper,
[98], [101]). On the opposite hand, IM1 has closed slots and it will feature high Lt for
small currents, which drop with increasing current because of the saturation of the iron
bridges.
These measurements confirm that Lt is a delicate parameter in an IM model, since its
value is very small and difficult to calculate with an automatic identification routine. To
ensure maximum accuracy in the Lt calculation, at every recalculation of the inductance
the machine’s resistance Rs was also recalculated together with the dead times compen-
sation curves in the αβ reference frame. At a different angular position ϑme of the
reference vector, in fact, the dead time compensation curve along α or β is proportional
to the angular projection and then varies, albeit slightly.
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(b) IM1 (Tab.5.1): Lt as a function of current vector
position.
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(c) IM2 (Tab.5.2): Lt as a function of current vector
position.
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(d) IM3 (Tab.5.3): Lt as a function of current vector
position.

Fig. 5.14: Experimental transient inductance Lt identification, various IMs.

For the sake of comparison, the conventional test reported in Sec. 5.2, executed on IM1,
returned a value of Lt = 20.75 mH at only a few hertz, in good accordance with that
reported in Fig.5.14 for the IM1 machine.

5.7 the identification of the magnetizing flux linkage

The third parameter that must be identified is Lϕ(iϕ). The same considerations of Sec.
5.7, related to the estimation of Lt(is) are valid also for the calculation of this parameter.
In particular, this means that the two inductances in Fig. 4.5, when a DC current flows
in the circuit, are short-circuited, and so the whole magnetic energy is kept within the
two elements without being transformed into mechanical energy.
Lϕ(iϕ) can be derived from the knowledge of the stator flux λs and the DC magnetizing
current value used to calculate the flux linkage relationship, that leads to an estimation
of the total apparent inductance4 [88], which is the sum of Lt(is) and Lϕ(iϕ).

4 The instantaneous link between the flux linkage and the current that flows into the inductance can be ex-
pressed by the relation λ(i(t)) = Lapp

s (i(t))i(t), in which the apparent inductance Lapp
s is function of the

current only. By utilizing the chain differentiation rule, it can be expanded as:

u(t) =
dλ(i(t))

dt
=

[
Lapp

s (i(t)) + i(t)
dLapp

s (i(t))
di(t)

]
di(t)

dt
= L(i)

di(t)
dt

. (5.44)
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The equivalent parameter Ls(is) can be easily derived as:

Lϕ(iϕ(0)) + Lt(is(0)) =
lim

t→+∞
λs(is(t))

lim
t→+∞

is(t)
(5.46)

where the two limits to infinity refers to a steady-state condition. Lϕ(iϕ) is then esti-
mated by subtracting the value of Lt(is) from the expression (5.46), previously calcu-
lated in 5.6.
There are two main advantages in considering the expression (5.46) for the Lϕ(iϕ) esti-
mation.
The first is that the intrinsic non-linearity of Lϕ, due to the iron path saturation within
the IM magnetic circuit, not modify the expression (5.46), that returns the correct value
of Lϕ(iϕ) by imposing growing DC current values in order to map the entire non-linear
characteristic.
The second advantage resides in the possibility of using any current profile to reach
the final DC value (or magnetizing current, as will be defined in this chapter), since the
system is conservative. Ramps or smoother signals turn out to be useful to reduce the
natural tendency of real motors to self-align themselves to stator slots, maintaining the
standstill feature during the whole procedure.
Unfortunately, the main problem is the exact deduction of λs(is(0)), and some issues
have been addressed in papers as [102] and [103], but unfortunately these solutions do
not work in a standstill condition. To overcome this problem, a novel approach for the
calculation of the flux linkage, without limitation in the choice of the voltage vector us
is here described.
Starting from the basic definition of the flux linkage, it can be derived as implicit func-
tion of time by the direct integration of (5.48):

λs(is(t1)) = λs(is(0)) +
∫ t1

0
(us(t)− Rsis(t)) dt (5.47)

Similarly to the previous step, the IM under test is driven to an initial DC steady state
condition (Us0, Is0), at a fixed angular position ϑme of the DC bias vector, so that at time
t = 0 the flux λs(Is0ejϑme) is established in the motor.
A null voltage vector reference is then issued to the inverter and, at the same time,
the integration (5.47) is triggered and continued until the stator current falls below the
ADC sensibility (at time t1). Then, the flux linkage is null (λs(t1) = 0), so that:

λs(Is0ejϑme) = λsα + jλsβ = −
∫ t1

0

(
us − Rsis

)
dt (5.48)

It is worth noting that iϕ(0) = is(0) = Is0ejϑme , since the voltage across the resistance
Rsr is null in the DC steady state condition (see Fig.4.5).
Therefore, at the end of the identification step, the magnetising flux λϕ will be derived
by the difference from the stator and the transient flux linkage:

The final expression is formally similar to the linear case, with the obvious distinction of an explicit depen-
dence on the current of the instantaneous inductance Ls

Ls(i) = Lapp(i) + i(t)
dLapp

s (i)
di

. (5.45)

The instantaneous inductance Ls represents the actual inductance around the operating point P = (Is0, λs0)
and it expresses the derivative dλs/di of the flux linkage with respect to the current in P.
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λϕ(is(0)) = λs(is(0))− λt(is(0)) (5.49)

The correct calculation of this parameter requires the exact numerical knowledge of the
flux linkage λs(Is0ejϑme), that will be detailed in Sec. 5.7.2.
With respect of the calculation of λs(Is0ejϑme), the integration routine starts with the ap-
plication, at t = 0, of the null voltage vector. It corresponds to an inverter configuration
with the three low switches in the ON state (S2 = S4 = S6 = 1) and the dual high
switches in the OFF state (Fig.5.5).
Depending on the sign of the current in each inverter leg, it is possible to determine
which components are carrying the current. Regarding as positive the currents that
flow inward a motor phase, and denoting by Ti and Di an IGBT or diode of the i-th
pole, the results have been collected in Tab.5.8.

Tab. 5.8: Conducting components in the inverter as a function of ϑme.

Angle [deg] Conducting components Current sign

ϑme = 0◦ D2, T4, T6 i+u , i−v i−w
ϑme = 30◦ D2, 0, T6 i+u , i0vi−w
ϑme = 60◦ D2, D4, T6 i+u , i+v i−w
ϑme = 90◦ 0, D4, T6 i0u, i+v i−w
ϑme = 120◦ T2, D4, T6 i−u , i+v i−w
ϑme = 150◦ T2, D4, 0 i−u , i+v i0w
ϑme = 180◦ T2, D4, D6 i−u , i+v i+w
ϑme = 210◦ T2, 0, D6 i−u , i0vi+w
ϑme = 240◦ T2, T4, D6 i−u , i−v i+w
ϑme = 270◦ 0, T4, D6 i0u, i−v i+w
ϑme = 300◦ D2, T4, D6 i+u , i−v i+w
ϑme = 330◦ D2, T4, 0 i+u , i−v i0w

Tab.5.8 covers the whole possible angular positions ϑme of the DC bias vector, by steps
of π/6 rad.el. Any intermediate angular position maintains the sign of the currents, i. e.
the conducting components remain the same.
With this information, the actual voltage drops uS2(|iu|) , uS4(|iv|) , uS6(|iw|) in the con-
ducting component (either the diode or the IGBT of each inverter leg) can be retrieved
either from the curves of Fig.5.6 or from their polynomial approximation.
The next step is the set-up of the algorithm that implements the expression (5.48). Dur-
ing the step transient, voltage and currents space vectors can be derived as5:


us =

2
3

(
uS2(|iu|) + uS4(|iv|)ej 2π

3 + uS6(|iw|)ej 4π
3

)
is = isα + jisβ =

2
3

(
iu + ivej 2π

3 + iwej 4π
3

) (5.50)

The stator flux linkage vector is readily obtained by substituting (5.50) into the right
term of (5.48).

5 The (5.50) is derived by applying the Spatial Vector notation to the three legs of the equivalent circuit of
Fig.5.5.
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If the inverse Clarke transformation Tαβ0/uvw is applied at the real and imaginary part
of the (5.48), the three fluxes λsu, λsv and λsw in the uvw reference frame can be also
derived.

 λsu

λsv

λsw

 =
2
3


1 −1

2
−1

2

0

√
3

2
−
√

3
2

1
2

1
2

1
2


︸ ︷︷ ︸

=Tαβ0/uvw

 λsα

λsβ

λs0

 (5.51)

The identification algorithm calculates the flux linkage λs(Is0ejϑme) at standstill with
respect of the equivalent circuit of Fig.4.5 but the entire estimation procedure miss of
the BEMF, that appears when ωme 6= 0.
Since the parameters estimated by the algorithm are used in a typical FOC control
scheme, it is relevant to understand if the estimation of the BEMF jωmeLmλr/Lr in Fig.4.5
can be derived by the knowledge of the magnetizing flux linkage.
In fact, the flux linkage λϕ(iϕ) (from Fig.4.5) can be rewritten as:

λϕ(iϕ) = Lϕiϕ =
L2

m
Lr

(is − isr) (5.52)

Moreover, since the rotor current can be expressed in the stator reference frame as [4]:

isr = −
Lr

Lm
ir (5.53)

it follows that λϕ can be expressed as:

λϕ(iϕ) =
L2

m
Lr

(is + Lmir) (5.54)

The rotor flux linkage λr(ir) can be expressed as:

λr(ir) = Lmis + Lrir (5.55)

The equating of (5.55) and (5.54) returns:

Lm

Lr
(Lmis + Lrir) = λϕ =

L2
m

Lr
(is + Lmir) (5.56)

that correlates the knowledge of the BEMF (jωme
Lm

Lr
λr) with the non-linear parameter

λϕ, calculated with the proposed algorithm. It follows that the knowledge of the Γ-
inverse circuit parameters at standstill is sufficient for the practical application use of
them into a conventional control scheme (i. e. sensored or sensorless FOC), although
other implementation aspects should be carefully considered.
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In particular, it is worth noting that during the normal operating of the motor, instead
of the standstill condition, part of the current is is split in iϕ. Luckily, the estimation
procedure is not corrupted by this aspect, since the flux linkage λϕ is calculated after
the calculation of λs.
The tricky aspect is related to the exact knowledge of iϕ during the normal operating
of the motor, when λϕ is modified by the operating conditions as well as its current iϕ.
This aspect is beyond the scope of this work but it will be covered by future research
works.
One aspect neglected so far which should be considered to prove the effective validity
of the λs(Is0ejϑme) calculation, is the influence of the homo polar voltage component in
the flux linkage estimation.
In the proposed identification algorithm, the real and imaginary part of the flux linkage
(5.48), are calculated in the αβ reference frame and the zero-component are lost.
As known, the homo polar voltage term appears in every non-balanced three-phases
systems, and during the step voltage transient, due of the asymmetry in the VSI configu-
ration (i. e. the component in conduction depends by the voltage vector positioning, as
reported in Tab.5.8), the induction motor connected to the VSI represents a non-balanced
three-phase system, and the influence of the homo polar component must be analysed.
For the Kirchhoff’s circuit laws the sum of the currents is zero (i. e. iu + iv + iw = 0)
but the homo polar term is lost during the estimation of the flux linkage λs of (5.50),
since the flux linkage is calculated in the αβ reference frame. This obvious consequence
is easy to prove, and with respect of Fig.5.5 (with all the phases connected) the voltage
balance can be written as:

uuO = uS2(|iu|) + uNO = Rsiu +
dλsu(t)

dt

uvO = uS4(|iv|) + uNO = Rsiv +
dλsv(t)

dt

uwO = uS6(|iw|) + uNO = Rsiw +
dλsw(t)

dt

(5.57)

The IM is saturated during the identification tests and then the flux linkage concatenated
by each phase has an homo polar component due of the saturation in the magnetic
circuit.
The sum of the flux linkages is then expressed as λsu(t) + λsv(t) + λsw(t) + 3λsO(t) = 0,
where 3λsO(t) defines the equivalent flux linkage homo polar term due of the saturation

effects in the motor (i. e.
dλsu(t)

dt
+

dλsv(t)
dt

+
dλsw(t)

dt
= −3

dλsO(t)
dt

). From (5.57), the
voltage uNO can be written as:

uNO(t) = −
uS2(t)(|iu|) + uS4(t)(|iv|) + uS6(t)(|iw|)

3
− dλsO(t)

dt
(5.58)

and with respect of (5.57), the flux linkage in each phase uvw is:

λsu(iu(t1)) = λsu(iu(0)) +
∫ t1

0
(us2(t) + uNO(t)− Rsiu(t)) dt

λsv(iv(t1)) = λsv(iv(0)) +
∫ t1

0
(us4(t) + uNO(t)− Rsiv(t)) dt

λsw(iw(t1)) = λsw(iw(0)) +
∫ t1

0
(us6(t) + uNO(t)− Rsiw(t)) dt

(5.59)
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Since at the end of the integration process λs(t1) = 0, the replacement of (5.58) into the
(5.59) yields:

λsu = −
∫ t1

0

(
2
3

us2(t)−
1
3

us4(t)−
1
3

us6(t)−
dλsO(t)

dt
− Rsiu(t)

)
dt

λsv = −
∫ t1

0

(
−1

3
us2(t) +

2
3

us4(t)−
1
3

us6(t)−
dλsO(t)

dt
− Rsiv(t)

)
dt

λsw = −
∫ t1

0

(
−1

3
us2(t)−

1
3

us4(t) +
2
3

us6(t)−
dλsO(t)

dt
− Rsiw(t)

)
dt

(5.60)

The previous expression shows that the homo polar flux linkage component is actually
present in the uvw reference frame, but it is not considered in the identification routine6.
This term, in fact, is lost in the flux linkage calculation of λsα in (5.62), but some ex-
perimental validations have proved that the contribute of the zero-voltage component
is irrelevant, therefore the flux linkage calculation is not significantly affected by this
term.
To this purpose, the homo polar component effects have been considered and evaluated
from an experimental point of view, as demonstrated by Fig.5.15, where are shown the
voltages at the terminal of the motor usα and the equivalent voltage drop us2 of the VSI

by considering a voltage vector us at −π/6 rad.el.
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Fig. 5.15: Experimental measurement of the homo polar component uNO = usα − us2.

6 It is obvious that by considering the expression of the magnetic fluxes in the αβ reference frame:

λsα = −
∫ t1

0
(usα(t)− Rsisα(t)) dt =

∫ t1

0
(Rs<(is)−<(us)) dt

λsβ = −
∫ t1

0
(usβ(t)− Rsisβ(t)) dt =

∫ t1

0
(Rs=(is)−=(us)) dt

(5.61)

and replacing the real and imaginary part of the (5.50) into the (5.61), since iu + iv + iw = 0 it follows that:

λsα = − 2
3

∫ t1

0

(
uS2(t)−

1
2

uS4(t) +
1
2

uS6(t)
)

dt +
2
3

∫ t1

0
Rs

(
iu −

1
2

iv −
1
2

iw

)
dt

= λsu −
λsv

2
− λsw

2

λsβ = − 2
3

∫ t1

0

(√
3

2
uS4(t)−

√
3

2
uS6(t)

)
dt +

2
3

∫ t1

0
Rs

(√
3

2
iv −

√
3

2
iw

)
dt

=

√
3

2
λsv −

√
3

2
λsw

(5.62)
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The results in Fig.5.15 prove that the difference of the two terms is very low, and con-
sidering that the homo polar flux linkage component not affects the torque in an IM

(without neutral point linked), it can be neglected.

5.7.1 Experimental results

The experimental measurement related to the on-line calculation of the magnetising
inductance has been one the most challenging parts of the entire estimation procedure.
The experimental setup is the same of Sec. 5.6.2, and after the calculation of the stator
resistance and the dead time compensation (carried out using the three-phase voltage
inverter characterized in Sec. 5.4), the automatic procedure starts. A first transient from
zero to a DC current level is(0) = Is0 (aligned with d-axis, shifted of the angle ϑme from
the u-axes) is performed.
When the DC steady-state current Is0 is reached, the on-line calculation of the real or
imaginary part of flux linkage with (5.60) can be performed. To this aim the current is
forced to zero, with the inverter configured with the three low switches in the ON state
(S2 = S4 = S6 = 1) and the dual high switches in the OFF state, as shown in Fig.5.5.
During this transient, all the three currents are measured and the three voltage drops
in each conducting leg of the inverter (uS2(|iu|) , uS4(|iv|) , uS6(|iw|)) are reconstructed
(as specified in the previous paragraph, Tab.5.8). When the transient is finished (all the
currents are zero), a little delay time is imposed and the same step transient is repeated
again, and in order to map the entire flux linkage curve in the whole IM current range,
a new step transient is applied by changing the Is0 value.
After the complete mapping of a curve λsα = f (isα) and λsβ = f (isβ) (approximately
from 0 to 1.2÷ 1.3 IN of the machine), the procedure restarts by reconsidering a different
angular position ϑme. The final beam of curves λsα = f (isα, ϑme) and λsβ = f (isα, ϑme)
is parametrized at the angular position ϑme, while the stator resistance Rs and the dead
time compensation are recalculated at each ϑme variation.
The on-line implementation of the algorithm for the estimation of the flux linkage
presents some drawbacks, and for this reason some details cannot be ignored. In par-
ticular, when the voltage reference is set to zero (us = 0), the integration of the current
and voltage drop start, but the time when integration stops is a very delicate question.
In fact, the compensation of the three branches must cease as soon as the current of one
of them is below a predetermined value, and so the total integration of the flux linkage
ends only when in all three branches there is no more significant current, because the
current absence in one branch does not ensure that the transient is exhausted.
Another problem is related to the noise of the current measurements, and so the detec-
tion of the current below the significant threshold is carried out by adopting a hysteresis
bandwidth limited to iH ∈ [iH,min ÷ iH,max] = 0.02÷ 0.04 A, to be sure that the currents
are not considered different to zero due to the overlapped noise.
A first batch of measures was performed to understand the difference between the real
voltages applied to the motor and that calculated with the automatic algorithm. During
the transient, the application of (5.60) requires the knowledge of the real voltages on the
phases of the motor, that are reconstructed by considering the (5.50) in combination with
the interpolated curves of Fig.5.6. Fig.5.16 shows a comparison between the voltages
obtained with the approach described in Sec. 5.4 and the voltages measured by a
voltage probe while the estimation procedure was running. During the execution of the
test, the voltage vector us generated with the control algorithm was at the fixed position
of ϑme = −π/6 rad.el, so that the sum of the three reconstructed voltages |us2|, |us4| and
|us6| was equal of the phase to phase real measure performed with the oscilloscope. The
perfect match between real and estimated voltages for the IM1 motor in Fig.5.16a and
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for the IM2 motor in Fig.5.16b proves the practical feasibility and the high accuracy of
the method.

Time [s]

iu [A]

Measured uuv [V]

flag

|us2|+ |us4|+ |us6| [V]

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7

(a) IM1 voltage drop.
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(b) IM2 voltage drop.

Fig. 5.16: Overlap during a transient between the reconstructed voltages (dSPACE algorithm, us-
ing the curves of Sec. 5.4) and the real ones (motor IM1 and IM2) at the fixed position
ϑme = −π/6 rad.el. A voltage probe has been used to recorded the voltage transient
while the algorithm running.

A second batch of experimental results are in Fig.5.17. These figures shows a generic
voltage drop of uS2 and the current trend of iu, during the application of (5.48). As
mentioned above, the integration is stopped at time t1 (as visible in Fig.5.17), in cor-
respondence to the current zeroing. It is worth noting that in Fig.5.16 as well as in
Fig.5.17 the resultant flux linkage is missing of a part of the voltage contribution, since
it is evident that at time t1 the voltage drop us2 has not yet come to zero.
There are several combined reasons that produce this effect. The main contribution is
related to the action performed by the squirrel-cage rotor, that is a short-circuited coil
and contrasts every modification of the flux linkage. The result of this action is repre-
sented by an induced BEMF at the primary winding. The second one is represented by
the particular VSI configuration during the step voltage transient. In the 000 configura-
tion of the inverter, in fact, the non linear effects of the diodes lead to a quick change in
the stator current behaviour, that in absence of a hardware measurement system cannot
be considered.
In Sec. 5.9 this phenomenon will be clarified. The solution is to measure off-line the
voltage lost term, store it in a look-up table, and add this compensation during the
integration process of (5.48).
Some measurements on IM1 (Tab.5.1), at different angular positions of the bias DC
voltage vector, and relative to increasing current amplitude, were carried out to map
the stator flux linkage vector in all possible operating conditions of the motor.
The identification results are reported in Fig.5.18, plotted as a function of both the
amplitude Is0 (normalised to the rated motor current) and the position ϑme, respectively.
Besides the expected saturation (that appears to be around the 70% of the rated current),
the measurements highlight a certain dependence of the flux linkage amplitude on its
space position. Neglecting or ignoring this dependency may lead to imprecise models,
with direct repercussions on the control side.

5.7.2 Validation of the method

Several tests were performed with the aim of validating the results of the identifica-
tion. Similarly to the transient inductance, the identification of the stator flux linkage
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(a) Voltage drop and current during the λs identifica-
tion procedure, (IM1, Tab.5.1)
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(b) Voltage drop and current during the λs identifica-
tion procedure, (IM2, Tab.5.2)

Fig. 5.17: Voltage drop and current during the switch off transient. Tail effect visible after t1

was performed on different motors; the relevant data are reported in Tab.5.1, Tab.5.2
and Tab.5.3. As an objective method of comparison to determine whether the estimation
procedure returns the correct result, the curves were compared in two different ways,
namely, with those obtained using the Finite Element Analysis and those deriving from
a comparative DC-test, [11], [88]. In particular, the procedure for the calculation of
the flux linkage using a DC test consist in impose different DC currents Is0 to the mo-
tor by a programmable DC-power supply, directly connected to the phases u and v,
to emulate the voltage supply condition of an inverter-fed IM with a constant phase
ϑme = −π/6 rad.el. By using the VSI in fact, the same DC step voltage transient is
obtained by setting the voltage reference at ϑme = −π/6 rad.el with the states configu-
ration in 00o, since the phases u and v are short-circuited through diode D2 and IGBT
T4, as shown in Fig.5.19.
The analytic expression of the flux linkage can be derived by considering the phase u
and the current iu, while the stator resistance is supposed as a known or easily derivable
quantity.
It follows that iu = −iv, while iw = 0. The phase voltages and phase currents were
measured by a differential and a current probe, while an off-line post-elaboration re-
turns the correct flux linkage estimation by considering the (5.48) in the specific case of
ϑ = −π/6 rad.el. From the balance equation of a single phase voltage relative to the
neutral point O (Fig.5.5), it follows that:

uuO = Rsiu +
dλsu(iu, iv, iw)

dt
(5.63)

The stator flux linkage λsu(t) is then:

λsu(t)− λsu(0) =
∫ t

0
(uuO − Rsiu) dt (5.64)

Since in general, the neutral point of the motor is not accessible, the Step voltage tran-
sient of both current iu and the phase-to-phase voltage uuv were recorded. The sym-
metry of phase feeding (iu = −iv) makes λsu = −λsv true and then the phase-to-phase
voltage drop uuv is:

uuv = uuO − uvO = 2Rsiu + 2
dλsu

dt
(5.65)
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(e) IM3 - Flux linkage identification versus current
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(f) IM3 - Flux linkage identification versus ϑme

Fig. 5.18: Experimental stator flux linkage identification of IM1 (Tab.5.1), IM2 (Tab.5.2) and IM3
(Tab.5.3), with compensation of the flux linkage added, as reported in Sec. 5.9.

and (5.64) becomes

λsu(t)− λsu(0) =
∫ t

0

(
uuv − 2Rsiu

2

)
dt (5.66)

The integration (5.66) stops at time t1, when both its integrands are zero, and then the
(constant) output represents the initial flux linkage λsu(0), relative to the initial DC
current Is0:

λsu(Is0) = −
∫ t1

0

(
uuv − 2Rsiu

2

)
dt (5.67)
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Fig. 5.19: DC Step voltage representation with the inverter setted in 000 configuration. The phases
u and v are short-circuited through diode D2 and IGBT T4, or equivalently by consider-
ing the switch T of Fig.5.5 open.

Several Step voltage tests at different Is0 levels have been performed to get the reference
flux linkage-current characteristic reported in Fig.5.20a, Fig.5.20c and Fig.5.20e. The plot
also include the results of finite element analysis FEA simulations, described hereafter.
Due to the non-linear characteristic and the magnetic saturation effects, the stator and
rotor flux linkages are functions of the voltage vector position ϑme and by the magnetiz-
ing current Is0. The FEA of the three machines under test (IM1, IM2 and IM3) have been
carried out by means of the same open-source simulation software Femm33 [5] used in
Sec. 1.3, on the base on the geometry data and of the windings distribution by means
of the star of slots [7]. The results of the "no–load" FEA simulations allow the calculation
of the non–linear stator flux linkage as a function of the stator current, as detailed in
[104] and [105].
The "no–load" analyses were performed to different angles of the current vector and by
varying its amplitudes, at zero frequency in the dq rotor reference frame. This rotor
reference frame is shifted from the angular position ϑme with respect to the phase u,
and growing levels of stator current density aligned with the d-axis are imposed during
the analysis, while the current vector is shifted at constant steps of ϑme = 1 deg.el to
cover the entire electrical period of the machine. The stator flux linkage (function of
the ideal stator winding distribution) is then computed by integrating the magnetic
vector potential A concatenated on each stator slot, by taking into account the winding
distribution as depicted in [7]. The amplitude of the currents is then made to vary from
a minimum value to a maximum value (i. e. rated current) for each angular position.
This simulation allows the mapping of the machine for the entire range of the electri-
cal period, and a flux linkage beam of curves in the αβ reference frame (i. e. λs,α =
f (iα, ϑme), λs,β = f (iβ, ϑme) and |λs| = f (|is|, ϑme)) is completely derived. Then, the
data are extracted and post-elaborated for a direct comparison with the result of the
DC-test described above.
Fig.5.20 summarizes the main results of the comparison. For all of the three motors
under test, the DC test and the simulated flux linkages were superposed to the flux
linkage obtained by the (5.48), at ϑme = −π/6 rad.el. The overlapping is almost perfect,
with an error (relative to the nominal flux linkage) that remains within the 0.5% range
for IM1, the 1.5− 2.5% for IM2 and 2− 2.5% for IM3 (Fig.5.20b, Fig.5.20d and Fig.5.20f).
The DC test remains the more accurate term of comparison, while in the case of the
comparisons with FEA, eventual mismatches can be attributed to slight discrepancies
between theoretical geometries and real dimensions of the machine under test, affected
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(c) IM2 λs,α = f (Is0/IN = 0.8, ϑme = −π/6 rad.el)
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(e) IM3 λs,α = f (Is0/IN = 0.8, ϑme = −π/6 rad.el)
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Fig. 5.20: (a), (c), (e): DC test and FEA-related α-axis stator flux linkages superposed to the mea-
sured one, at ϑme = −π/6 rad.el with compensation of the flux linkage due of the “Tail”
included (as detailed in Sec. 5.9). Percentage errors in (b), (d), (f).
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by the manufacturing tolerances. The last step of the identification procedures is the
off-line calculation of the inductance Lϕ(iϕ, ϑme).
While not conceptually difficult, the data post-processing of figurename 5.14 with the
data of Fig.5.18 requires an accurate numerical post elaboration of the numerical data.
Regarding that in (5.49), at t = 0 the currents in the two inductances of the equivalent
circuit Fig. 4.5 are the same (is(0) = iϕ(0) = Is0) and they are linked to the flux linkages
by the apparent inductances, as outlined in Sec. 5.7.
This means that the calculation of Lϕ can be performed easily after the estimation of
the flux linkages λs(is(0)), allowing different DC current values Is0 = is(0) to be set in
order to map λs(is(0)), and Lapp

s (is(0)). It follows that:

Lapp
s (is(0)) = Lapp

ϕ (is(0)) + Lapp
t (is(0))

=
lim
t→∞

∫ t1

0
(us(t)− Rsis(t)) dt

is(0)
=

λs(is(0))
is(0)

(5.68)

and replacing the total flux linkage λs(is(0)) as a third-order polynomial function of
the current Is0 = is(0), a numerical approximation can be achieved:

Lapp
s (is(0)) =

λs(is(0))
is(0)

=
k3i3

s (0) + k2i2
s (0) + k1is(0) + k0

is(0)

= k3i2
s (0) + k2is(0) + k1 + k0i−1

s (0)

(5.69)

The coefficients (k3, k2, k1, k0) can be obtained by a polynomial fitting algorithm, which
elaborates the measurements of λs obtained from the previous identification procedure,
as confirmed by Fig.5.21a, that shows the accurate numerical interpolation achieved.
The precise numerical derivative of the stator flux as a function of its current that re-
turns the plot of stator inductance Ls reported in Fig.5.21b (refers to IM1, but the same
procedures has been applied to IM2 and IM3) represent the starting point for the nu-
merical derivation of Lϕ(iϕ, ϑme).
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(a) Interpolation of Fig.5.20a with the third-order
polynomial function of (5.69)
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Fig. 5.21: Interpolation of the flux linkage at ϑme = 0) and equivalent inductance Ls for motor
IM1.

By directly applying the relationship (5.46), the final value of the differential inductance
Lϕ(is(0), ϑme) is obtained.
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Ls(is(0)) = Lapp
s (is(0)) + is(0)

dLapp
s (is(0))

di

= 3k3i2
s (0) + 2k2is(0) + k1 = Lϕ(is(0)) + Lt(is(0))

(5.70)

The results of the calculations of the magnetizing inductance are reported in Fig.5.22.
They have been obtained by combining the experimental Lt data of Fig.5.14b, Fig.5.14c
and Fig.5.14d with the estimated one of Fig.5.18a, Fig.5.18c and Fig.5.18e.
The polynomial fitting approximation of (5.70) has been used for each of the three motor
tested, and Fig.5.20b, Fig.5.20d and Fig.5.20f collects the inductances Lϕ = f (Is0, ϑme)

obtained by considering three different angular positions: ϑme = 0 rad.el,
2π

3
rad.el and

4π

3
rad.el.

The coherence among the data collected in these tests and the real parameters of the
machine is rather precise, as one can easily verify. A final remark and comparison with
the standard tests described in Sec. 5.2 is here reported. In particular, by considering
the motor IM1 in the linear region (up to about 4 A, equivalent of Is0/IN = 0.34), the
numerical stator inductance value of Fig.5.21b can be compared, at low currents, with
the experimental data of Tab.5.7.
The measured inductance of Fig.5.21b in fact, is around 0.91 mH (considering a ratio
Is0/IN = 0.34), which is very close to that reported in Tab.5.7. The small discrepancy
(a few percent) with respect to the no-load test may be ascribed to several reasons
(stator resistive drop and quality of the measurements in the no-load test, a moderate
imprecision in the tail voltage compensation in the proposed method.
In nominal conditions, i. e. at nominal speed, current, load and voltage, the saturation of
the iron leads to have no more sinusoidal variables and therefore the stator flux linkage
shall not be computed by considering a standard approach (i. e. as ratio of a voltage
to a frequency). In other terms, when saturation intervenes, every non-linear quantity
can be computed by only considering instantaneous relationships, such as those used
in (4.10).
The correctness of the stator flux linkage λs measurements have been verified twice, by
both FEA and DC measurements, as explained before, but in order to obtain accurate
results by the DC measurements, some important aspects have been considered:

• For the off-line processing of the measures the number of the oscilloscope’s saved
points must be sufficiently high to have enough resolution in the off-line post-
processing of the measures (e. g. 100000 points are sufficient to ensure a great
accuracy).

• the repeatability of a single measurement must be ensured and verified with high
accuracy. After every measured recording in fact, the current and voltage probes
must be re-calibrated and zeroed. This guarantees a percentage error variability
to only 0.1 % with respect to a reference flux linkage (related to the maximum
value of the current of the motor).

The DC tests described could be expanded to any position by using three synchro-
nized DC voltage generators, although this latter option required the possibility to
record at the same time three transients of voltages and currents to performs off-line
the integration of the variables. The experimental validation of the method in fact, if
carried out at any specific angular position with evidence in DC would be complete,
but it remains anyway satisfactory. In fact, the results obtained with the FEA provide
sufficient reliability for the purpose of research.
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Fig. 5.22: Lϕ = f (Is0, ϑme) of the three machines obtained with (5.49).

The flux linkage identification at three different angular positions of the bias DC voltage
vector, and relative to an increasing current amplitude was carried out on IM1 (Tab. 5.1).
The results are reported in Fig.5.23a (blue balls), where the flux linkage in two different
working points has been calculated by the direct hardware measurements of the phase
voltages, obtained by means of three differential voltage probes (one for each phase and
the neutral point) and two current probes, while the algorithm was running.
The superposition of the data is quite fair, while some unavoidable differences can be
ascribed to both the non-perfect "tail" voltage compensation, and the inverter voltage
drop reconstruction.
Alternatively, Fig.5.23b shows the complete parametrized flux linkage λsu for the entire
electrical period of the machine at a fixed magnetizing current, and the overlapping
with the FEA results confirms the general validity of the proposed algorithm.
The FEA results can be used also to check the validity of the proposed estimation al-
gorithm by plotting the flux linkage of a single phase in the entire electric period, for
different values of current. The results are reported in Fig.5.24 and Fig.5.23.
As final remark it is important to underline that if a direct hardware phase voltage
measurement were available in the standard industrial VSI drives [106], the little dis-
crepancy related to the reconstruction of the phase voltages disappear, although this
solution remains a trade-off between cost and benefits.
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Fig. 5.24: λsu and λsv calculated with the FEA for the machine IM1 in Tab. 5.1 for different current
levels.

5.8 rotor resistance referred to the stator

Similarly to the transient inductance, the rotor resistance referred to the stator Rsr
can be obtained by exciting the system with a pulsating sinusoidal signal of the form
(5.18). Inverting the expression (5.12):


Iϕ1(s) =

Us1(s)− (Rs + sLt0) Is1(s)
sLϕ0

Rsr(s) =
sLϕ0 Iϕ1(s)

Is1(s)− Iϕ1(s)
=

sLϕ0

Is1(s)
Iϕ1(s)

− 1

(5.71)

results:

Is1(s)
Iϕ1

=
sLϕ0 Is1(s)

Us1(s)− (Rs + sLt0) Is1(s)
=

sLϕ0

Z(s)− (Rs + sLt0)
(5.72)
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and replacing (5.72) into (5.71), the expression of Rsr(s) is obtained. As in 5.6, a sinu-
soidal perturbation (in the form of (5.18)) is forced as voltage reference.
The reference space voltage vector is applied along the d− axis, with an angular dis-
placement of ϑme with respect to stationary reference frame, and the corresponding
pulsating current vector (along the same direction ϑme) is delayed by an angle γ(ω).
The frequency frequency response is obtained by placing s = jω in the Rsr(s) expres-
sion.

Rsr(s)
∣∣∣
s=jω

=
jωLϕ0 (Z(jω)− (Rs + jωLt0))

jωLϕ0 − Z(jω) + Rs + jωLt0
(5.73)

Since the resistance (5.73) is a rotor parameter, a low-frequency sinusoidal reference
voltage ω = ΩL is chosen (around the nominal slip frequency of the motors under test),
for the sake of a closer match to normal operating conditions.
Furthermore, since Rsr is a real quantity, the imaginary part of (5.73) is necessarily
null, and this condition leads to eliminating Lϕ0 from (5.73). Expanding (5.73), the
previous hypothesis returns the final expression used in the automatic algorithm for
the calculation of Rsr

7:

= (Rsr(jω)) = 0

< (Rsr(jω)) =
U2

s1 + I2
s1

(
R2

s + Ω2
LL2

t0

)
− 2Us1 (Rs Is1 cos γ + ΩLLt0 Is1 sin γ)

Us1 Is1 cos γ− Rs I2
s1

(5.76)

which can be directly computed from the parameters Rs, Lt(Is0) obtained in the pre-
vious steps of the identification, and the currents Is1 sin γ, Is1 cos γ, as output of the
Goertzel algorithm described in Sec. 5.6.1. The experimental tests were performed at
different frequencies and the DC bias was extended up to the nominal current. The
amplitude Us1 of the sinusoidal perturbation was as large as possible, under the con-
straint of maintaining the linearity of the system. A lower bound in Is1 was imposed
by the 12-bit resolution of the A/D converters used in the current measurement. The
experimental tests have highlighted that the Goertzel algorithm (5.32) requires a current
amplitude Is1 of at least 20 LSB. The voltage Us1 was chosen accordingly, resulting in a
rather small signal, due to the low frequency of the pulsating signal.
As a consequence, the algorithm exhibit a quite high sensibility to errors in the inverter
voltage compensation (Sec. 5.4, as for Lt, but in that case the injection frequency is
higher, and the non-linearity effects of the inverter are less significant). The final values
chosen for the frequency Ωl/(2π) = 5 Hz while the amplitude Us1 vary in automatic
way and the procedure of estimation starts only when the the linear region is reached.
It is obvious that a direct measurement of the phase voltages, while more expensive,

7 Alternatively, Rsr can be calculated as:

< (Rsr(jω)) = Rsr =
u2

srd + u2
srq

usrdisd + usrqisq
(5.74)

with 

usrd = Us1 − Is1Rs cos γ− Is1Lt0ΩL sin γ

usrq = Is1Rs sin γ + Is1Lt0ΩL cos γ

isd = Is1 cos γ

isq = −Is1 sin γ

(5.75)
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would represent the best solution. The behaviour of Rsr as a function of the injected
frequency, at Is0 = 0.6IsN , ϑme = 0 rad.el, for all the machines tested, is reported in
Fig.5.25a. From the substantial set of experiments carried out on the prototypes, some
conclusions can be drawn:

• In principle, different working points could lead to different Rsr values, due to
either possible iron saturation or structure asymmetry. These aspects, often dis-
regarded, usually lead to rough mistakes in measurement interpretation. In the
present case, the problem was tackled by calculating all the parameters of (5.76)
at any given working point and spatial position, thus including the saturation
effect on Lt0. In this way, the trend of Rsr remained strictly related to the proper
physical causes only.

• The plots in Fig.5.25b exhibit a certain dependence on the pulsating frequency
ΩL. Different frequencies are used to map the Rsr in the range of interest, which
is usually from zero to the IM nominal slip frequency (from 5% to 10% of the
nominal IM speed).

Frequencies higher than the nominal slip speed are not meaningful since the IM
rotor will never work in those conditions. It is evident that the Rsr parameter suf-
fers from the skin effect even in the range of ΩL injection, but it is worth noting
that skin effect represents only a part of the Rsr increment during normal opera-
tion, the other effect being the resistance increase as a function of the temperature,
due to persisting loading conditions at standstill. Fig.5.25b shows that the Rsr
curve always drops down for low frequencies. This not only depends on the skin
effect, but is mainly due to the rather low voltage values at low frequency, that
must be used during this step to avoid over current. Low voltage magnitudes are
very difficult to measure, leading to incorrect estimations. Thus, it is suggested to
neglect the first measurements, considering only those obtained from a quarter of
the slip frequency on.

• Fig.5.25c shows that the skin effect is evident for every angular position of the volt-
age vector Us1, but it is independent of the angular position. The same behaviour
can be appreciated observing Fig.5.25d, where the Rsr as a function of the current
is plotted in three different angular positions. In the considered frequency range
(10− 40 Hz) the increase spans from the 22% of IM3 to 100% of IM1, mirroring the
“deep bar” geometry of the latter motor.

• As far as the iron losses are concerned, it is worth recalling that the measurements
were obtained at standstill and at low frequency, so that the iron losses do not af-
fect the identification of Rsr. Actually, a standard no-load test returned (conducted
for the motor IM1) a value of R0 = 1115 Ω (derived from eddy current losses and
hysteresis losses, as reported in Tab.5.1), which should placed in parallel to Rsr as
shown in the scheme in Fig.4.5. It is evident that its influence is negligible, in the
specified conditions

• The execution of the Goertzel algorithm took about 4 s, a time far beyond the usual
rotor thermal constants. Hence, the effects of temperature increase during the test
can be neglected as well. Anyway, in view of an on-line tracking algorithm, both
the cited items, i. e. the iron losses and the dependence on the temperature, should
be properly taken into account, by implementing one of the several alternatives
present in literature.

Unfortunately, in literature there are no ways of measuring the rotor resistance directly,
and so it is impossible to have a direct and real measure of Rsr. To validate the results
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Fig. 5.25: Experimental results of the Rsr calculation.

obtained in Fig.5.25 the test described in Sec. 5.2 has been applied to IM1, and the
identified rotor resistance was of Rsr = 0.37 Ω (see Tab.5.1) at a rotor frequency of few
Hz, in good agreement with the extrapolation of the IM1 curve reported in Fig.5.25.
While the magnetic parameters can be completely determined off-line, the stator and ro-
tor resistances, in theory, do need an on-line tracking algorithm, not only for frequency
but even more for temperature variations.
Anyway, if the temperature variation is slow, the rotor resistance Rsr does not change
so fast and it is possible to solve the problem by adopting a simple on-line closed-loop
adaptation, as described in [107]. The values of Rsr and Rs obtained in this research
should therefore be considered as good starting values for one among the many differ-
ent tracking algorithms present in the literature.

5.9 the squirrel cage rotor influence

The automatic detection of the magnetising inductance described in 5.7 has the prob-
lem related to the estimation of the "tail effect", mentioned in the same paragraph.
On the basis of the estimation procedures described in 5.7 (at the fixed phase ϑme =
−π/6 rad.el for a direct comparison with the DC tests), different transients were re-
peated for different current levels, in order to get the profile of the integration result
in the whole IM current range. While the automatic integration (5.67) was running,
to get an insight of the integration mechanism, phase voltage and current curves, as a
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function of time, were recorded by connecting a differential probe to the terminals u
and the neutral point of the two IMs used in this experiment.
The accuracy of the current sensors available in the inverter has been verified by compar-
ison with a high precision instrument (as mentioned at the beginning of this chapter), to
avoid inaccuracy in the flux estimation. An initial offset measurement and reset proce-
dure was also included, while two specific machines were manufactured to investigate
to which extent the presence of the rotor influences the accuracy in the aforementioned
step response-based procedures.
Both the motors have the same stator configuration and the main electric parameters
are reported in Tab. 5.2. The relevant difference is that the first motor has a classic
squirrel cage rotor with aluminium bars, while the second one has a squirrel cage
rotor without die-cast aluminium bars in the rotor stack. This rotor configuration leads
to obtaining rotor currents identically zero, and therefore the effects of energy balance
due to the rotor flux linkage will be missing. Fig.5.26a and Fig.5.26b show the particular
configuration of the squirrel cage rotor without bars, while the stator is manteined the
same for both the machines.

(a) Modified squirrel cage rotor

Empty slots

(b) Particular of the rotor slots

Fig. 5.26: Modified machine used for the experimental tests. The stator is the same in Tab. 5.2,
but the cage rotor is without aluminium bars.

The results obtained applying different step voltage transients are collected in Fig.5.27.
These four time-plots refer to two different Is0 currents for both the machines tested, and
the “flag integration” signal added is necessary to monitor the end of the integration
time (“t0” defines the initial integration time, while “t1” indicates the moment in which
the current falls below the sensibility of the inverter current probes an the hysteretic
bandwidth).
Fig.5.27b and Fig.5.27d (no rotor bars) shows that at time “t1” the voltage is zero, but
in the case of machine with the standard squirrel cage rotor the phase-to-phase voltage
is still non-zero (Fig.5.27a and Fig.5.27c), as for the transients of Fig.5.16 and Fig.5.17.
In principle, stopping time t1 should be induced by a zero current, so that each inte-
grand term in (5.67) is equally zero, but this does not seem to be entirely correct. This
means that in a standard IM, the residual magnetization of the rotor flux linkage has
not been completely expired when the stator current zeroing blocks the integration of
(5.67). As a result, the estimated flux linkage is lower than the real one.
As expected, by comparing the results of the automatic flux integration with the ref-
erence one obtained using the DC test (representation of Fig.5.19 or Fig.5.5 with the
switch T open) reported in Fig.5.28a, the actual flux linkage λsu of the IM with rotor
bars is greater than the flux linkage obtained with the estimation algorithm on the same
motor (ball marks, in Fig.5.28a). On the other hand, the DC-test flux linkage and the
estimated one coincide almost perfectly if the estimation procedures of 5.7 is applied to
the IM with the modified rotor structure (without die-casting rotor bars), as reported in
Fig.5.28b. This evidence triggered further investigations, described hereafter.
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Fig. 5.27: Time trend of voltage and current of the motor in Tab. 5.2 with the classic squirrel
cage rotor (Fig.5.27a) and without bars (Fig.5.27b) for an initial current of 7 A and 5 A
(Fig.5.27c and Fig.5.27d with no bars). The “tail” effect is visible only in the case of
machine with rotor bars.
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Fig. 5.28: Stator magnetising flux linkage λsu at fixed position of ϑme = −π/6 rad.el.

It is quite obvious that the energy stored in the rotor during the initial iu0 setting, Joule
losses apart, is returned to the stator during the Step voltage, but the effects are not yet
clarified in literature.
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To this purpose, the squirrel cage induction motor can be considered as a three-phase
winding in short circuit, aligned with the magnetic field produced by the stator of the
machine. In absence of the "rotor element", the electric machine accumulates magnetic
energy on the windings of the stator in the form of flux-linkage and this energy is not
transferred to the secondary circuit (the squirrel cage rotor in the case of an induction
motor).
To better understand this phenomenon, the impact of the rotor element in the integra-
tion procedure of Sec. 5.7, a three-phase transformer with the secondary winding not
short circuited is considered as substitute of the three-phase IM without the squirrel
cage rotor.
In this simply experiment, by short-circuiting only one phase of the secondary winding,
it is possible to measure the current that flows into the windings and, as expected,
by applying the algorithm routine of Sec. 5.7 with the voltage vector us aligned at
ϑme = −π/6 rad.el, the rotor current exhibit a stretched decay time with respect of that
of the stator, avoiding the effect of diode conduction at the primary side.
During the estimation procedure of Sec. 5.7, at the instant t0 the PWM modulation is
stopped, but as known, the surge voltage generates sudden stator current variation, and
it is important to understand if these surge voltages are different in the two identical
motors with different rotors.
Experimental tests have proven that these phenomenon is strictly dependent on the
presence of the rotor, since the phase voltage in the windings is tied only to the variation
of flux linkages. In fact, at instant t0, the inverter is in configuration (000) or (111)
(there’s no PWM modulation), and the passive component (diode or IGBT) is manteined
in conduction by the energy of the magnetic field at the time t0, as reported in Fig.5.27.
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Fig. 5.29: Equivalent representation of the motor related to the primary during the voltage tran-
sient.

The results of Fig.5.27 demonstrate that, with the same stator winding configuration
but with different rotor topologies (with and without rotor bars), the magnetization
flux linkage at time t0 is the same in both the motors as well as the initial magnetizing
current Is0. The application of the same voltage vector generates the same magnetic
field, that is only linked to the reluctance of the magnetic circuit.
It can be observed, that at the instant t0, a EMF is induced on the rotor, and in the bars
short-circuited bars of the squirrel cage rotor flow a current (linked to the electric time
constant of the rotor τR and the coupling factor between stator winding and rotor), that
modifies the current transient in the stator windings.
If it were possible to measure them, it might be observed that from t0 and t1 (t0 and
t1 the instants in which the integration of (5.47) is applied), the currents of the rotor
would assume a dynamic dependent on the time constant of the rotor correlated to a
decreasing exponential decay linked to this constant, different to that of the induced
currents of the stator.
This means that the exponential decay of the stator current depends on the stator resis-
tance and by the mutual inductance, but the conduction of the diode in each phase (e. g.
the diode D2 in Fig.5.19 at ϑme = −π/6 rad.el) is ensured by a negative voltage drop,
to which the effect of the induced current of the rotor is added.
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In other terms, the effects of the rotor current is manifested in a negative voltage contri-
bution to the stator side. This reaction generates a progressive lengthening of the time
of discharge t1 − t0, and justifies the difference between the decay of the machine with
rotor bars and without rotor bars visible in Fig.5.27a and Fig.5.27b.
To better understand this aspect, an equivalent linear representation of the motor from
t0 and t1 is reported in Fig.5.29. The comments on the circuit of Fig.5.29 can be con-
sidered valid although the secondary non-linear effects related to the saturation of the
magnetic circuits have been neglected (for the sake of simplicity).
With respect of Fig.5.29, the voltage and current balancing during the Step voltage
transient can be written as:


us = Ls

dis

dt
+ Lm

dir
dt

ur = Lr
dir
dt

+ Lm
dis
dt

ud + Rsis + us = Rrir + ur

(5.77)

It follows that, during the conduction of the diode (i. e. when the VSI is configure in 000
or 111, after t0):

ud = −Rsis − us = −Ls
dis

dt
− Lm

dir
dt
− Rsis (5.78)

and by considering the non-linear diode characteristic of Fig.5.6c together with the
equation set of (5.77), the behaviour of the motor can be simulated. In particular, the
diode is maintained in conduction until its voltage drop ud(is) is greater of the lower
limit of the diode characteristic in Fig.5.6c, but this clearly depends by the effects of the
secondary winding on the primary circuit.
Fig.5.30a shows the current at the primary and secondary windings during a step volt-
age response that emulates the situation illustrated in Sec. 5.6.
At the same time, the voltage at the primary and secondary winding are shown in
Fig.5.30b. As expected, in Fig.5.30a the rotor current ir changes only during the current
variation of is, when the diode conduction is not influenced by the secondary winding
effects.
After the first current transient (before the ending of the step voltage), an equilibrium
condition is established at both the primary and secondary windings (i. e. they have
the same magnetic field), while the absence of rotor current avoids any flux linkage
variation at the primary winding.
At the end of the application of V, an electromotive force is induced on the short-
circuited rotor that leads to a non-zero rotor current, while the diode is maintained in
conduction by the negative voltage balance of (5.78).
The decay of the stator current is depends only by the negative voltage drop of us,
which contributes to maintain in conduction the diode. The ud voltage (that is function
of the current passing through it) in fact, is balanced by the resistive voltage drop and
by the negative voltage arose on the primary inductance, as visible in Fig.5.30b.
The negative voltage drop ur at the secondary side is the direct effect of the mutual

coupling term Lm
dis

dt
, that is strictly dependant by the rotor current ir induced at the

secondary winding.
This latter particular explains the shortening of the decay time in Fig.5.27b with respect
of Fig.5.27a.
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The integrated absolute value of the "tail" at the end of the conduction of diode not re-
mains constant with respect of the initial current Is0, since it is related to the exponential
decay of the stator voltage, that depends by the rotor time constant and by the mutual
coupling term Lm. When the stator current is approximately zero, in fact, the voltage

value remains equal of ud = VD = Lm
dir
dt

with a stator current is ≈ 0 (VD represents the
voltage drop of the diode, approximately VD ≈ 0.45 V).
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Fig. 5.30: Transient behaviour obtained by simulating the equivalent scheme of Fig.5.29 and rotor
integrated flux linkage λs,R.

To prove this last feature, an other batch of simulations have been performed. The "tail
effect" depends by the initial current which, in a three-phase distributed winding as the
stator and squirrel cage rotor is the projection on each phase of the absolute current
generated by the stator voltage us.
In Fig.5.30c is shown the residual flux linkage λs,R of the "tail", calculated by integrating
the residual voltage us when the stator current is is zero (i. e. by applying the (5.47)
when the diode flag of Fig.5.27a becomes zero).
As expected, by applying a consecutive series of voltage steps V = A sin ϑme the residual
flux linkage λs,R exhibit a sinusoidal trend, due of the proportionality of the rotor
current with the magnetizing stator current.
Many experimental tests have been performed to correlate the "tail effect" with the
angular position of the voltage vector us used in the tests of the calculation of the
stator flux linkage λs of 5.7 (i. e. by the initial current in each phase, as demonstrate in
Fig.5.30c).
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The measurements of voltage and current curves have been performed with a differen-
tial voltage and current probe while the estimation algorithm was running, by recording
the data at a different angular position of us. The post-elaboration of these data (i. e.
after the instant t1) return the residual flux linkage λs,R of each phase (after the instant
t1, by applying the (5.48) at the stored measurements).
As expected, the compensation term λs,R is independent of the initial magnetizing cur-
rent Is0, that represents the absolute value of the current associated to the voltage vector
us, although the projection in each phase of the current changes the final integrated
value of the "tail" (as expected by the simulation in Fig.5.30c).
The experimental validation is reported in Fig.5.31a, where the off-line integration of
the "tail" is repeated for the entire electrical period by considering two different initial
magnetizing current Is0.
The sinusoidal compensation value can be used to correct the flux linkage integration
in the uvw reference frame, as described in or by directly considering the αβ reference
frame used in Sec. 5.7, by applying the inverse Clarke transformation at the three
sinusoidal curves Fig.5.31b, and by adding the equivalent compensation value of λs,R
to λs,α or λs,β.
The curves of Fig.5.31b have been derived by interpolating the experimental compensa-
tions of Fig.5.31a with three sinusoids shifted of 2π/3 rad.el.
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Fig. 5.31: Experimental integration of the residual rotor flux linkage of IM2, (Tab.5.2) to prove the
independences of the compensation with respect of the initial magnetizing current.

The same procedure was then repeated for the other two motors (IM1 and IM3), and for
the sake of completeness in Fig.5.32 is shown the off-line integration λs,R in an entire
electric period of the motors IM1.
Anyway, due of the nature of three-phase system of the compensation curves, it is
sufficient to calculate only the maximum value of the compensation and uses it to
calculate the equivalent compensation in the entire electrical period.
To be sure that this last approximation were right, while the routine of Sec. 5.7 was
running, the voltage drops and the current transients on each of the three phases of
the motor (from phase u, v, w and neutral point O ) were recorded, by considering two
different angular positions (ϑme = π/4 rad.el and ϑme = −π/6 rad.el). The resulting
flux linkage obtained with an off-line integration of voltage and current drop is identical
in the two different angular positions, since the equivalent absolute value of voltage and
currents is the same (as visible in Fig.5.32b).
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Fig. 5.32: Residual rotor flux linkage λsu for the motor IM1 and IM2. Validation of the method at
specific voltage and current.

This last experiment confirms the nature of the tail as a general three-phase system, and
leads to consider the compensation of the "Tail" as the projection of the residual flux
linkage on each of the three axes.
Is it also clear that, if it were possible to measure the real phase-to-phase voltage (as
suggested in [106]), the integration might end at the right moment, without any error,
avoiding the problems related to the "tail", that only depends by the specific motor
that must be identified. It is also worth noting that the "tail" has no effect in the case
of the DC test, since the integration was performed on measured voltage and current,
but the added compensation of the wrong flux linkage marked with circles in Fig.5.28

compensates this mismatch. The result testifies the effectiveness of the procedure, since
an almost perfect overlap is obtained.

5.10 conclusions and future works

The automatic procedure for the self-commissioning of the IM parameters presented
is totally performed at standstill and it represents an automatic way for the estimation
of the main parameters of the IM machine. It is particularly appreciated when the motor
is already connected to the load or in a procedure of pre-identification for a sensorless
evolute algorithm for IM drives.
The estimation algorithm return the main parameters of the inverse-Γ model, and in-
cludes non-linearities of both the motor and the VSI converter for every possible angular
position ϑme of the voltage vector. The obtained parameters are ready-to-use for most
common speed and position sensorless algorithms, thus representing a step towards
complete drive self-commissioning.
The mutual interaction between rotor and stator during step-based tests, generally an
underestimated or ignored argument, is here revisited and revamped, as it gives the
means for a justification of the discrepancy between real flux and the curve obtained
with direct integration of the bemf. Many experimental results have been validated with
a direct FEA comparison and a series of DC tests.
Further research activity will be devoted to a refinement of the proposed technique re-
gards the on-line tracking of those parameters which are temperature-dependent, as Rs
and Rsr and of iron losses influence as well. The study has also highlighted that many
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problem resides in voltage measurement, which is normally replaced by a compensated
version of the references.
Through a batch of accurate experimental results performed by adopting two custom
IMs, this research has proved that to get the flux linkage estimation with the precision
required by advanced sensorless AC drives, and as a temporary alternative, a further
compensation of the rotor-related bemf has been successfully implemented and tested.
Anyway, the straight solution remain the measurement of the actual voltage applied to
the motor, as a standard which should be included in every advanced AC drive.
In conclusion, the solution proposed in this research is really suitable for the existing
industrial applications, although a non-negligible error in flux-linkage estimation must
be considered as trade off between costs and benefits.



Part III

F I N A L C O N C L U S I O N S A N D R E M A R K S





C O N C L U S I O N S

In this dissertation, new and alternative control techniques for modern mechatronic
electrical drives have been presented and experimentally validated.
According to the solutions present in literature, the basic notions of the electric ma-
chines used in the control algorithms have been given in Chap.1 and Chap.4, while
Chap.2 and Chap.3 were focused on advanced control methodologies for PMSM drives.
The proposed control architectures have been deeply studied from a theoretical point of
view, and an high number of experimental and simulation results have been presented
in order to validate the theoretical model plant.
The MTPA control algorithm of Chap.2 brings the system to work in an operating point
with the most efficient torque-to-current ratio, yet without giving any explicit informa-
tion about the torque itself.
As future development, the MTPA algorithm could be combined with an identification
procedure that uses the informations in the MTPA operating condition to retrieve the
unknown motor parameters and, through them, a precise torque estimation. It follows
that, with a proper rearrangement of the MTPA control algorithm it could be possible
perform an on-line estimation of the electromagnetic torque, obtained by describing the
q-axis flux linkage by a polynomial approximation, merged with a simple least-square
algorithm (as suggested in [9]).
The HDPC control technique presented in Chap.3 has also proven to be a viable control
alternative for PMSM drives in certain fields of use, in particular when is required an
extremely high dynamic combined with a reduced cost of the system.
In this sense, the main contribution of the research was the introduction of a novel
hierarchical decisional structure, which yields a choice of the control input voltage and
combines dynamic performances considering also the efficiency aspects.
Moreover, the FPGA-based implementation and the modified control structure has been
proven to be feasible from an industrial perspective by the experimental validation.
This topic of research is probably one of more debated and that raises more interest in
academia for the extremum number of features and non-linear control objects that can
be inserted in the decisional structure. The integration of modern FPGA-based platform
in the new drive generations will be frequently considered a valid alternative, and
this surely will lead to merging new control architecture, as the HDPC, in the future
generations of AC electric drives.
The second part of the thesis (i. e. the work presented in Chap.5) was related to a novel
self-commissioning algorithm for induction motors at standstill.
Recent developments in the field of controls for asynchronous induction motors require
a precise knowledge of the non linear parameters of the machine, and one of the main
contributions made by this research is in the complete mathematical description of
each step of the identification procedure, as well as the possibility to estimate without
limitations, and in real-time, the flux linkage components in different reference frames.
The identification algorithm has the ability to return all the non-linear parameters of
the inverse-Γ circuit of the motor with high accuracy, as demonstrated by the numerous
experimental tests and finite element simulations. The effects related to the presence of
the squirrel cage rotor on the flux linkage estimation technique have been clarified, and
an off-line compensation routine was proposed.
Several experimental evidences proved the effectiveness and the practical feasibility of
each control architecture in combination with a detailed theoretical insight. It has been
highlighted that many problems reside in the voltage measurement, which is normally
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replaced by a compensated version of the voltage references. As previously mentioned,
the definitive solution is surely the measurement of the actual voltage applied to the
motor, which should be included in every advanced AC drive as conventional standard.
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