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"It is surprising that people do not believe that there is imagination in science. It is a very

interesting kind of imagination, unlike that of the artist. The great difficulty is in trying to

imagine something that you have never seen, that is consistent in every detail with what has

already been seen, and that is different from what has been thought of; furthermore, it must

be definite and not a vague proposition. That is indeed difficult."

— Richard P. Feynman, The Meaning of It All: Thoughts of a Citizen-Scientist

"Before the advent of multiscale modeling, the primary approach to addressing questions in

chemistry was through experiment and the application of theory. The development of

computational models created a new paradigm for solving problems in chemistry, a "third

way" that stands between theory and experiment. The fundamental principles of physics and

chemistry are used to create "in silico" representations of systems that can be interrogated at

a level of detail that cannot be approached by experiment or captured by a single theory.

Complex problems in chemical, biological, materials, and energy science are now routinely

approached using a synergistic combination of theory, computational modeling, and

experiment."

— John E. Straub, JCP Associate Editor, comment on 2013 Chemistry Nobel Prize
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Abstract

Hierarchical self-assembly is a process in which molecular building blocks form intermediate

structures that self organise at macroscopic level. Remarkable examples can be found in

nature, like, for instance, DNAs or viruses. Self-assembly offers interesting strategies to

build new complex materials: Therefore, it is very important to understand its mechanism to

design and control molecular architectures and to build structures with desired properties

and morphologies. A major question is how the shape of the building blocks influences self-

assembly. In this context, chirality plays a crucial role: It is extremely sensitive to subtleties on

the molecular scale and can guide self-assembly; furthermore, chirality can act as an amplifier

of changes that occur at the molecular level.

From the theoretical point of view, the difficulty derives from the need of multiscale

methods and models, able to connect the different length scales. To take into account the

relationship among the building blocks, their supramolecular organization, and the properties

of the aggregates, a detailed representation of intermolecular interactions is needed: This

description has to be integrated into a suitable modeling of the system behaviour on a much

longer length scale.

This thesis deals with the development and implementation of models for chirality

propagation from the molecular to the meso- and macroscopic levels in self-assembling

systems. In particular, the research has been carried out along three lines. The first deals

with self-assembly of hard helices, leading to the formation of anisotropic phases of vari-

ous symmetry. The second topic is the linear aggregation and formation of liquid crystal

phases by double-stranded nucleic acid oligomers (dsNA): The relationship between the

sequence of oligonucleotides, their self-assembly and the properties of their cholesteric phase

is investigated. The last topic is the aggregation of porphyrin-polypeptide conjugates in

water.

Depending on the problem and the length scale, we used different theoretical and com-

putational methods, in particular: Statistical theories of liquids and molecular dynamics

simulations (both atomistic and coarse-grained). The first and third topics have been carried

out in collaboration with experimentalists, while for the second other groups of theoreticians

have been involved.

This thesis is organized in three parts. In Chapter 1, the concepts of self-assembling, chi-

rality propagation and multiscale modeling are introduced. Moreover this Chapter presents

an outline of the main properties of liquid crystals.
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xxii ABSTRACT

The first Part, from Chapter 2 to Chapter 4, presents the study on the anisotropic phases

formed by hard helices. Chapter 2 presents a study of the nematic phase, using an Onsager-

like theory. The theoretical results are compared with Monte Carlo simulations. In Chapter

3, a theoretical model for the cholesteric phase is presented and used to investigate the

relationship between the helical shape and the properties of the cholesteric phase. In Chapter

4, the complete phase diagram of hard helices is presented, together with the characterization

of a novel chiral nematic phase.

The second Part deals with liquid crystal phases formed by dsNA. Chapter 5 focuses on

the relation between the sequence of oligonucleotides and their organization in the cholesteric

phase, using a molecular theory and coarse-grained modelling based on sequence dependent

structural data. Chapter 6 describes the theoretical model for the cholesteric phase formed

by self-assembling oligomers, which integrates the theory for cholesteric order presented in

Chapter 3 with that for linear aggregation in the nematic phase.

The last Part, from Chapter 7 to Chapter 9, deals with the aggregation of porphyrin-

peptide conjugates in water. In Chapter 7 the main concepts of circular dichroism are

introduced and the state-of-the-art of self-assembly of porphyrins is reviewed. Chapter

8 describes atomistic molecular dynamics simulation of aggregates of porphyrin-peptide

conjugates. Chapter 9 presents a study of the same systems by coarse-grained molecular

dynamics simulations, using the MARTINI model. Finally, Chapter 10 presents a summary,

which highlights the relevant results obtained in this Thesis, and three Appendices follow.



Sommario

L’autoassemblaggio gerarchico è un processo nel quale "building block" molecolari formano

strutture intermedie che si auto-organizzano a livello macroscopico. Molti esempi possono

essere trovati in natura, come il DNA o i virus. L’autoassemblaggio offre interessanti strategie

per costruire nuovi materiali complessi: di conseguenza, risulta molto importante capirne i

meccanismi per disegnare e controllare le architetture molecolari e per costruire strutture con

proprietà e morfologie desiderate. Uno dei principali quesiti cui dare risposta è come la forma

del building block influenzi l’autoassemblaggio. In questo contesto, la chiarità svolge un ruolo

cruciale: è estremamente sensibile ai dettagli molecolari e può guidare l’autoassemblaggio;

inoltre, essa può amplificare le differenze che avvengono su scala molecolare.

Dal punto di vista teorico, la difficoltà deriva dalla necessità di metodi e modelli mul-

tiscala, capaci di connettere le differenti scale di lunghezza. Per tenere in considerazione

la relazione tra i building blocks, la loro organizzazione supramolecolare e le proprietà

degli aggregati, si rende necessaria una rappresentazione dettagliata delle interazioni inter-

molecolari: questa descrizione deve poi essere integrata in una modellizazione opportuna

del comportamento del sistema su scale di lunghezza più grandi.

Il tema di questa tesi è lo sviluppo e l’implementazione di modelli per la propagazione

di chiralità dalla scala molecolare alla scala meso e macroscopica in sistemi autoassem-

blati. Tre diverse linee di ricerca sono state portate avanti. La prima si è concentrata

sull’autoassemblaggio di eliche dure, ed in particolare sulla formazione di fasi anisotrope di

diversa simmetria. Il secondo argomento riguarda l’aggregazione lineare e la formazione di

fasi liquido-cristalline a partire da oligomeri di acidi nucleici a doppio filamento prendendo

in considerazione le relazioni tra la sequenza di oligonucleotidi, l’autoassemblaggio e le

proprietà della loro fase colesterica. L’ultimo argomento è dedicato all’autoassemblaggio di

coniugati porfirina-peptide in acqua.

In base al problema e alla scala di lunghezza, sono stati utilizzati diversi metodi teorici

e computazionali, in particolare: teorie statistiche dei liquidi e simulazioni di dinamica

molecolare (sia atomistica che a grana grossa). La prima e la terza linea di ricerca sono stati

condotte in collaborazione con sperimentali, mentre la seconda ha coinvolto altri gruppi

teorici.

La tesi è organizzata in tre parti. Nel Capitolo 1, il processo di autoassemblaggio, la

propagazione di chiralità e il concetto di modellizzazione multiscala vengono descritti.

Inoltre in questo Capitolo si presentano le principali proprietà dei cristalli liquidi.
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xxiv SOMMARIO

Nella prima Parte, dal Capitolo 2 al Capitolo 4, viene presentato il lavoro svolto sulle

fasi anisotrope di eliche dure. Il Capitolo 2 presenta lo studio della fase nematica usando

una teoria Onsager-like. I risultati teorici sono confrontati con simulazioni Monte Carlo.

Nel Capitolo 3, viene presentato un modello teorico per la fase colesterica utilizzato poi per

studiare l’effetto della forma elicoidale sulle proprietà della fase colesterica. Nel Capitolo 4

viene presentato l’intero diagramma di fase delle eliche dure, assieme alla caratterizzazione

di una nuova fase nematica chirale.

La seconda Parte concerne le fasi liquido-cristalline formate da dsNA. Il Capitolo 5 si

focalizza sulla relazione tra la sequenza di oligonucleotidi e la loro organizzazione nella fase

colesterica utilizzando una teoria molecolare e la modellizzazione a grana grossa, basata su

dati strutturali dipendenti dalla sequenza. Nel Capitolo 6, viene descritto il modello teorico

per la fase colesterica formata da oligomeri autoassemblati, che mette assieme la teoria per

l’ordine colesterico presentata nel Capitolo 3 con quella dell’aggregazione lineare in fase

nematica.

L’ultima Parte, dal Capitolo 7 al Capitolo 9, si concentra sull’aggregazione di coniugati

porfirina-peptide in acqua. Nel Capitolo 7, vengono introdotti i principali concetti relativi al

dicroismo circolare e viene commentato lo stato dell’arte dell’autoassemblaggio di porfirine.

Il Capitolo 8 descrive le simulazioni atomistiche di dinamica molecolare di aggregati porfirina-

peptide . Capitolo 9 presente uno studio degli stessi sistemi condotto attraverso simulazioni

di dinamica molecolare a grana grossa, che utilizzano il modello MARTINI. Infine, il Capitolo

10 presenta un sommario delle tre linee di ricerca, mettendo in evidenza i risultati notevoli

ottenuti in questa tesi. Seguono poi tre Appendici.
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Introduction
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Chapter 1

Introduction

1.1 Self-assembly and propagation of chirality

The term self-assembly has been defined by Whitesides [1] as:

"the autonomous organization of components into patterns or structures
without human intervention. They involve components from the molecular (crystals)

to the planetary (weather systems) scale and many different kinds of interactions."

The size of the building blocks, e.g. small molecules, macromolecules or colloidal particles,

can vary from few angstroms to microns, thus making self-assembly ubiquitous in nature

and of interest in several fields, including materials science, soft matter and biophysics [1–3].

Understanding the relation between building blocks and their assemblies is essential for

materials design because chemical and physical properties depend intimately on structure.

Through self-assembly it is possible to design new materials whose physical properties are

controlled by tuning the interactions of the building blocks [4–8].Recent investigations have

revealed the unexpected complexity of the ordered structures obtained by changing the shape

of hard particles [9, 10]. Figure 1.1 shows an example of how the shape of the particles can

influence the self-assembled structures, leading to a variety of liquid crystals, plastic crystals,

or crystals [9].

A relevant self-assembly process is the formation of filamentous aggregates induced by

the anisotropy of interactions, by micellar systems [11–13], formation of fibers and fibrils [14–

17], B-DNA composed of 102 to 106 base pairs [18–22], filamentous viruses [23–26], chromonic

liquid crystals [27] as well as colloidal suspensions of inorganic nanoparticles [28] or rods

[29]. If self-assembled linear aggregates possess sufficient rigidity, the system may exhibit

liquid crystal (LC) phases.

In this context, chirality plays a crucial role: Chirality is extremely sensitive to subtleties on

the molecular scale and can guide the self-assembly; moreover, chirality can propagate from

the molecular level to supramolecular level, by formation of chiral aggregates. The common

motif of chiral aggregates is a helical superstructure [30–32]. These architectures can have

different complexity, length scale and can be obtained via hierarchical self-assembly processes.
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Figure 1.1: Example of systems of polyhedra assembled starting from the disordered fluid. The
snapshots depict crystals (A to D), plastic crystals (E to I), and liquid crystals (J to L) . From
[9]. Reprinted with permission from AAAS.

Figure 1.2 shows three examples of chiral aggregates. Figure 1.2(a) shows an example of a

helical aggregate constituted by porphyrins, whose typical dimensions are in the range some

tens of nm to some µm [33–35]. Figure 1.2(c) shows a cartoon of the cholesteric phase, which

is a liquid crystal phase exhibited by chiral polymers at high density and is characterized by

the pitch of supramolecular helix with the dimensions of some micrometers. Figure 1.2(b) is

a typical example of hierarchical self-assembly: At lower level, crown-ether phthalocyanines

self-assemble in helical aggregates which organize themselves into a superhelix structure.

At higher level, these superhelices self-assemble into chiral fibers with dimension of tens

of micrometers [36, 37]. Therefore, in this field different length scales are involved and the

transmission of chirality from the molecular level of the building block to the macro- or

supra-molecular level in the form of helical assembly is a general issue. A small chiral

imbalance at the molecular level can be amplified in the helical structure. Understanding

the mechanism of transmission of chirality at different length scales is of great significance

in artificial systems and biopolymers and understanding how to control and tune it offers

ample opportunities towards smart materials [31, 32].

1.1.1 Multiscale modelling

Self-assembly and chirality propagation are typical examples where a multiscale approach
is needed [38, 39]. By definition, this entails the application of modelling techniques at

two or more different lengths and/or times scales, which are different in their theoretical

character. In fact a challenging task is often to bring together different scales. We can make a

distinction between the hierarchical approach [40, 41], which involves running separate models

with some sort of parametric coupling, and the hybrid approach [42, 43], in which models are
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Figure 1.2: (a) Helical aggregate of porphyrins. Reproduced with permission from ref. [33]. Copyright
2008 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim. (b) Schematic representation of the
hierarchical self-assembly of crown-ether phthalocyanine. Reproduced with permission
from ref. [37]. Copyright 2003 Royal Society of Chemistry. (c) Schematic representation of
the cholesteric phase.

run concurrently over different spatial regions of a simulation. The relationships between

different categories of methods commonly used in the multiscale modelling hierarchy are

shown in Figure 1.3. At lower level, quantum mechanical modelling methods, e.g. electronic

DFT or ab initio methods, are used to study electronic structure of single molecules or

condensed phases. At next level, molecular modelling is needed. The common methods are

Molecular Dynamics (MD) and Monte Carlo (MC). At mesoscopic level, the system is still too

small to be regarded as a continuum, yet too large to be simulated effectively using atomistic

methods. Hence coarse-grained models and statistical mechanics methods are commonly

used. Finally, when the length scale is of the order of some micrometers, continuum theory

can be used. A common way of modelling such systems is the finite element method. In

this Thesis, we connected the atomistic scale with mesoscale: An example is given by the

cholesteric phase of DNA, where the chirality of the molecule is propagated to the chirality

of the phase and the length scales involved are from Angstrom to µm (see below).

1.2 Liquid crystals

Matter exists in one of several states such as, for example, solid, liquid, or gas having different

degree and type of positional and orientational order. These states can be transformed one
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Figure 1.3: Scheme of the hierarchy of multiscale modelling techniques. Different ranges of temporal
and spatial scales covered by different categories of methods are shown. Areas of overlap
permit "mapping" from one scale to the next.

to another under appropriate conditions. The term Liquid Crystal (LC) indicates phases

where the molecules present orientational order at long range, while there is only partial or

missing transitional order. There are two classes of liquid crystals: Thermotropics, that exhibit

phase transition as function of the temperature, and lyotropics, where the phase transition is

controlled by the concentration of the molecules in a solvent (for example water).

The molecules that form liquid crystal phases are characterized by anisotropic shape,

hence they have also anisotropic intermolecular interactions. Thermotropic liquid crystals

are characterised by molecules with a rigid core, usually aromatic rings, and one or more

flexible chains. Examples of lyotropic liquid crystals are micelles, membranes, and dense

solutions of rigid or semi flexible polymers, i.e. DNA and virus.

There are different types of liquid crystalline phases, classified according to the dimen-

sionality of the translational correlations of building units. The basic types are: Nematic (no

translational correlations), smectic (1D correlation), columnar (2D) and various 3D-correlated

structures, such as cubic phases.

1.2.1 Nematic and cholesteric phase

Uniaxial nematics (N) are optically uniaxial phases (see Figure 1.4). The unit vector n̂ along

the optical axis is called director and the directions n̂ and −n̂ are equivalent. The symmetry

point group of the N phase is D∞h.

A measure of the alignment of the molecules is given by the order parameter P2, defined
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Figure 1.4: Schematic representation of nematic liquid crystal with director n̂.

Figure 1.5: Schematic representation of cholesteric phase with the pitch p (left). Left- (center) and
Right-handed (right) cholesteric phase.

as:

P2 =
1
2
〈3 cos2 θ − 1〉 (1.1)

where θ is the angle between the long molecular axis and the director. The order parameter,

P2, can assume all the values between−1/2 and 1. If the orientational distribution is isotropic,

P2 = 0, whereas unit values are assumed for a perfect alignment with long molecular axis

perpendicular (−1/2) or parallel (1) to the director.

If the molecules are chiral, a chiral nematic phase can be formed, which is generally called

cholesteric (N∗). A cholesteric phase can also be obtained by doping an achiral nematic phase

with chiral solutes [44–46]. N∗ phase is a spontaneously distorted N phase, where the director

n̂ rotates in a helical way around a perpendicular axis. Sign (handedness) and magnitude

of the helical pitch p depend on the molecular structure of the system. Typical values of the

pitch are orders of magnitude larger than the molecular size. They can range from hundreds

of nanometers to microns. The pitch, or correspondingly the wavenumber q = 2π/p, is

defined as positive or negative, according to the right- or left-handedness of the cholesteric

helix, respectively (see Figure 1.5).

1.2.2 Smectic phases

Smectic phases are layered liquid crystal phases characterized by one-dimensional transla-

tional order along the normal to the layers. Within the layers, the molecules possess only

orientational order. There are several kinds of smectic phases; the most common are:
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Figure 1.6: Schematic representation of smectic phases. The vector n̂ represents the director. (a)
Smectic A, (b) smectic C.

• Smectic A (SmA): This is optically uniaxial and in each layer, the molecules are direc-

tionally ordered with their long axis normal to the plane of the layer. In other words,

the director n̂ is along the normal to the layers [Figure 1.6(a)].

• Smectic C (SmC): This is a biaxial phase where the long molecular axes are tilted with

respect to the layers’ normal [Figure 1.6(b)]. In this case, the director is tilted with

respect to the layer normal.

• Smectic C∗ (SmC∗): This is a chiral version of the SmC, which is formed when molecules

are chiral. The director, which is tilted with respect to the layer normal, rotates in a

helical way around the normal to the layers.

1.2.3 Columnar phase

The columnar phase is formed by molecules, that can be approximated as disks or rods,

stacked one on the top of the other. The structure is often the highly packed hexagonal, but a

number of variants have been identified: Orthorhombic, rectangular, tilted, etc.

In the hexagonal phase, the columns are arranged in lateral hexagonal order, but the

structure is not that of a true crystal because there is only correlation in the plane. The

molecules show a certain degree of disorder around their average position and they can

rotate around their axis; the columns can slide one with respect to the other (Figure 1.7).

1.2.4 Onsager-like theory for isotropic-to-nematic transition

The first attempt to describe the isotropic-nematic transition (IN) was made by Lars Onsager

[48], who studied the behaviour of a model system of N identical rigid rods of length L
and diameter D, considering only hard core repulsions: The interaction potential between

particles is zero and becomes infinite when the rods are at a distance equal or lesser than that

of contact. In this kind of system the only thermodynamic variable is density.

The starting point of the Onsager theory is the virial expansion of the Helmholtz free

energy [49]:
A

NkBT
= ln(Λ3

trρ)− 1 + B2ρ +
1
2
B3ρ2 + ... (1.2)
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Figure 1.7: Schematic representation of hexagonal columnar phase formed by (a) discotic molecules
and (b) cylindric micelles (in section). Reproduced with permission from ref. [47]. Copy-
right 2013 Springer Publishing Company.

where ln(Λ3
trρ) − 1 represents the ideal contribution. Here, Λtr is the thermal de Broglie

wavelength,

Λtr = h/
√

2πmkBT (1.3)

where T is the temperature, m is the mass of the rods, kB is the Boltzmann constant and h
is the Planck constant. The other terms represent the virial contribution of different order

and ρ = N/V is the density with V the total volume and N the number of molecules 1.

The coefficients Bi, called virial coefficients, depend on interparticle interactions. If the

interparticle potential can be expressed as a sum of pair contributions, the second virial

contribution, B2, depends only on the interactions between two particles:

B2 = −b1

2
= − 1

2V

∫
dR1dR2eh

12(R12) (1.4)

where R1 and R2 are the position of particle 1 and 2 and R12 = R1 − R2 is a vector defining

the relative position, eh
12(R12) is the Mayer function. For the case of hard particles it is equal

to −1 when the particles overlap and 0 when they do not, hence, the opposite of b1 has the

geometric meaning of excluded volume of particle 2 with respect to particle 1 (vexcl).

The third virial coefficient, B3, is related to the simultaneous interaction of three particles:

B3 = −2b3

3
= − 1

3V

∫
dR1dR2dR3eh

12(R12)eh
13(R13)eh

23(R23) (1.5)

Since the nematic phase is uniform, an orientational distribution function, f (β), is intro-

duced, where β is the angle between the molecular axis and the director n̂ and obeys the

normalization condition 1
2

∫
f βd cos β = 1.The Helmholtz free energy could be expressed as

1Another quantity to express the concentration is generally the volume fraction φ defined as φ = v0/v where
v0 is the volume of a molecule, v is volume per molecule v = V/N = 1/ρ; for the cylinders of length L and

diameter D, the volume fraction becomes φ =
1

4v
πLD2.
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[50]:

A
NkBT

= ln(Λ3ρ)− 1 +
1
2

∫
d cos β f (β) ln f (β)

− 1
128π4 ρ

∫
dΩdΩ′b1(Ω, Ω′) f (β) f (β′) + ...

(1.6)

where Ω = (α, β, γ) and Ω′ = (α′, β′, γ′) are the Euler angles that define the rotation from

1 to LAB frame and from 2 to LAB frame, respectively. The first integral accounts for the

decrease of orientational entropy due to orientational ordering, and the second integral is the

second virial contribution. By increasing the aspect ratio L/D the other virial terms decrease;

in the limit of L/D → ∞, the expansion can be truncated at the second term.

The free energy, eq. (1.6), is a functional of the orientational distribution function. By

truncating the free energy at the second virial term, we can write:

A[ f ]
NkBT

≈ constant + ln ρ + A1[ f ] + ρA2[ f ] (1.7)

Imposing the condition for minimum with this constraint, we can obtain the following

self-consistent equation for the distribution function f :

ln[ f (β)] = λ− 1− 1
64π2 ρ

∫
dα dγ dΩ′ b1(Ω, Ω′) f (β′) (1.8)

where λ is a Lagrange multiplier which is determined by normalization condition. The

solution of eq. (1.8) gives the the equilibrium distribution function of the system.

It is difficult to solve the non-linear integral eq. (1.8) exactly. Onsager assumed a trial

function of the form:

f = const cosh
(

αN cos β
)

(1.9)

where αN is a variational parameter.In the nematic phase, αN becomes very large (≈ 20) and

the function f is strongly peaked around β = 0 and β = π. A first-order phase transition

from isotropic (αN = 0) to nematic (αN ≈ 20) is obtained. At the coexistence in the nematic

phase the volume fraction of rods is φN = 4.486DL, in the isotropic phase φI = 3.34DL.

Hence the concentration at which the transition occurs decreases by increasing the aspect

ratio L/D. This is an entropy-driven phase transition, whose driving force is the gain of

transitional entropy when the orientational order appears.
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THE helix is a typical structural motif in nature: For example, polynucleotides, proteins

and collagen fibers are all right-handed helices [1]. Rigid and semiflexible helical

polymers can exhibit ordered structures but the relationship between these structure

and the helical features remains unknown. One of the questions is whether there may

be any kind of organization that is specific of the helical shape. To address this problem,

we have investigated the phase diagram of hard rigid homochiral helices. Since the early

Onsager work [2], there have been several demonstrations that purely hard-core repulsions

are sufficient for the formation of ordered phases. Recent investigations have revealed the

unexpected complexity of the ordered structures obtained by changing the shape of hard

particles [3, 4]. The influence of chirality is still mostly unexplored.

We have focused on the LC phases formed by hard helices. We have performed a

theoretical study using an Onsager-like theory, in parallel with Monte Carlo (MC) simulations

carried out by other groups (Prof. Achille Giacometti, Università Ca’ Foscari di Venezia; Dr.

Giorgio Cinacchi, Universidad Autónoma de Madrid). The combined investigation is meant

to compensate for the limits of each single approach. MC simulations of dense systems of

several hundreds of particles have a high computational cost. On the other hand, calculations

based on Onsager theory are much less demanding, but have some underlying assumption

and approximations.

Homochiral helices are expected to form a cholesteric phase, which differs from the

uniform nematic only because the local preferred orientational axis (the director) rotates in

space around a perpendicular axis. MC simulation with usual periodic boundary conditions

do not allow the emergence of an equilibrium cholesteric order, with a pitch much longer than

the size of the simulation box. On the other hand, due to the length scale of the cholesteric

pitch, which is orders of magnitude longer than that of inter-particle interactions, the phase

chirality can be neglected if we are interested in the local phase properties and the location of

the isotropic-to-cholesteric phase transition.

Therefore, at a first stage we have focussed on the effects of the particle shape on the

isotropic to the uniform nematic (IN) phase transition. This study was aimed at investigating

whether helical particles can be assimilated to rods, as generally done in interpreting experi-

mental data [5]. From a theoretical stand point, we wanted to investigate whether Onsager

theory can be extended to systems of helical non-convex particles (see Chapter 2).

Subsequently, using only an Onsager-like theory we have investigated in detail the

relationship between the helical parameters of the particles and the chiral structure of the

cholesteric phase. A first issues is the handedness of the cholesteric phase: Based on a toy

model it has been proposed that the phase chirality is the same as that of the constituent

helices when the helical inclination angle is small (α < π/4), and opposite for large inclination

angles (α > π/4) [6]. We have performed a systematic investigation to verify this hypothesis.

Then, we have studied how the tortuosity of particles affects the cholesteric pitch (see Chapter

3).

Finally, we have studied the full phase diagram of hard helices which reveals a zoo of
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phases with peculiarities that depend on the helical parameters. Especially interesting is the

presence of a novel chiral phase, the screw-like nematic phase (N∗s ), originating from the specific

helical shape of the particles ( see Chapter 4).



Chapter 2

Hard helices: The isotropic-to-nematic
phase transition

In this Chapter, we present a study of the isotropic-to-nematic (IN) phase transition in

systems of hard helical particles, using Onsager theory and Monte Carlo computer simula-

tions. This theory was previously applied with success to IN phase transition in systems of

hard convex bodies, like spherocylinders. Here its performance for hard helices has been

tested by comparison with MC simulations.

2.1 State of the art

While the first example of phase transition driven by purely steric interactions is undoubtly

the fluid-to-crystal phase transition in hard spheres [7], the isotropic-to-nematic liquid crystal

(IN) phase transition in hard slender rods predicted by Onsager [2] paved the way for an

entirely new field. Although Onsager theory was originally motivated by the observation of

a nematic liquid crystal phase in suspensions of inorganic and biological rod-like colloidal

particles [8, 9], its influence over the years have proven to be much more profound.

The original Onsager theory accounted only for the second-virial coefficient contribution,

thus (strictly) limiting its applicability to rod–like particle systems with large aspect ratios,

but several improvements have been more recently proposed to overcome this drawback

and include also higher order contributions. This prompted a number of approaches with

different degrees of sophistication, as well as a series of computer simulations, [10–12], that

can be applied and extended to many systems, either mono- or poly-disperse, both homo-

and hetero-geneous.

So far, most theoretical and computational studies have focussed on convex hard particles

(e.g. Ref. [10]), whilst concave particles have been given less attention. Besides simple

dumbbells, these include bent-core [13–15], lens-like [16] and bowl-shaped [17] particles.

Somewhat surprisingly, hard helices are not part of the above list, in spite of the several

examples of this shape that can be found in natural and synthetic polymers. Rigid and

semiflexible helical polymers (polynucleotides, polypeptides, viruses) have a well known

17



18 CHAPTER 2. THE ISOTROPIC-TO-NEMATIC PHASE TRANSITION

propensity to form liquid crystal phases at high concentration [1, 18–20]. When examining and

interpreting the experimental phase behaviour, helicoidal particles were generally assimilated

to rods, thus neglecting peculiarities related to the actual shape (e.g. [5]).

2.2 Theory

2.2.1 Free energy of the isotropic and nematic phases

Let us consider a system of N identical helices in a volume V at temperature T. We denote by

v = V/N the volume per particle and φ = v0/v the packing density, where v0 is the volume

of a particle.

The mutual interaction between a pair of hard helices (1 and 2) takes the form:

U(R12, Ω12) =

∞ if 1,2 overlap

0 if 1,2 do not overlap
(2.1)

where R1 and R2 are the positions of the center-of-mass for helices 1 and 2 respectively,

R12 = R2 − R1 is a vector defining the relative position of helix 2 with respect to helix 1 and

Ω12 = (α12, β12, γ12) are the Euler angles that define the rotation from 1 to 2.

In the Onsager approach the free energy of the system is expressed as a functional of the

single particle density function ρ(R, Ω), where R is the particle position and Ω = (α, β, γ)

are the Euler angles specifying the particle orientation, with the normalization condition∫
dRdΩρ(R, Ω) = N. In an uniform and isotropic phase this function is independent of the

molecular position and orientation and is simply given by ρiso = 1/8π2v , with v = V/N
being the available volume per molecule; in an uniform and an isotropic phase the density

function only depends on the molecular orientation
∫

dΩρ(Ω) = N/V.

The free energy can then be expressed as:

A[ρ(Ω)] = NkBT
[

ln
Λ3

tr
V

Θor

T
+ ln N − 1

]
+ Aor[ρ(Ω)] + Aex[ρ(Ω)] (2.2)

The first term is the Helmholtz free energy of the ideal gas: Λtr is the de Broglie wavelength,

eq. (1.3), and Θor = h2/8π2kB I is the rotational temperature, with kB and h being the

Boltzmann and the Planck constant, respectively, while m is the mass and I is the inertia

moment of the particle. The second term in eq. (2.2) accounts for the decrease of orientational

entropy due to orientational ordering:

Aor

NkBT
= kBTV

∫
dΩρ(Ω) ln

ρ(Ω)

ρiso
(2.3)

and the last term, Aex, represents the excess free energy. Assuming that hardcore repulsions

are treated according to the second virial approximation, the excess Helmholtz free energy

can be expressed as:

Aex

kBT
=

V
2

∫
dR12 dΩ1 dΩ2 ρ(Ω1)ρ(Ω2)u(R12, Ω12) (2.4)
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where the function u(R12, Ω12) is defined as:

u(R12, Ω12) = −kBTeh
12(R12, Ω12) (2.5)

where eh
12 is the Mayer function, defined as [21] :

eh
12(R12, Ω12) = exp{−Uh(R12, Ω12)/kBT} − 1 (2.6)

This function is related to the volume excluded to the 2 by the 1 helix:

vexcl(Ω12) = −
∫

dR12 eh
12(R12, Ω12) (2.7)

Since the nematic phase is uniform and the density function depends only on the particle

orientation and assuming helices as uniaxial particles, the single particle density in the

uniaxial nematic phase can be reduced to 1: ρ = ρ(β) = f (β)/(4π2v), where β is the angle

between the helix axis and the nematic director and f (β) the orientational distribution

function. The expression of the excess free energy Aex, eq. (2.4), coupled with the Parsons-Lee

(PL) correction [22–24], becomes:

Aex

NkBT
=

G(φ)

2(4π2)2v

∫
dΩ1 f (β1)

∫
dΩ2 f (β2)vexcl(Ω12) (2.8)

Introducing the second virial coefficient:

B2 =
1
2

1
(4π2)2

∫
dΩ1 f (β1)

∫
dΩ2 f (β2)vexcl(Ω12). (2.9)

the excess free energy eq. (2.8) becomes

Aex[ f ]/NkBT = G(φ)B2[ f ]/v. (2.10)

2.2.2 Parsons-Lee (PL) and Modified Parsons-Lee (MPL) approximations

The approximation proposed by Parsons [22] and subsequently used by Lee [23, 24] and

others [25, 26] for hard sperocylinders (and ellipsoids) relies on the assumption that the

excess free energy is proportional to that of a system of hard spheres (HS) at the same packing

fraction (φ):
Aex(φ)

NkBTB2(φ)
=

Aex
HS(φ)

NkBTBHS
2 (φ)

. (2.11)

Use of the Carnahan-Starling expression for the free energy of hard spheres [27], along with

the relationships BHS
2 = 4vHS and φ = vHS/v, where vHS is the volume of a hard sphere,

yields

G(φ) =
Aex

HS(φ)

NkBTBHS
2 (φ)

=
1
4

4− 3φ

(1− φ)2 (2.12)

In the original and subsequent works [23–26] the volume of the reference hard spheres was

taken equal to that of the spherocylinders (or ellipsoids), vHS = v0. Good agreement between

1Note that a finite helix has C2 point symmetry, yet we have verified that the helices examined here have nearly uniaxial
order (with the helix axis as the ordering axis) in the uniaxial nematic phase.
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theory and simulations was obtained in that case, but significant discrepancies were found

for linear particles made of tangentially bonded hard spheres [28]. It has then been suggested

that the assumption vHS = v0 may be inappropriate for hard non-convex bodies, since in this

case the free volume available at a given number density is smaller than for convex particles

having the same geometrical volume [29]. It was proposed that in this case the volume of

the reference hard spheres should be replaced by an effective volume, vef, defined as the

volume of the non-convex particle that is inaccessible to other particles. This effective volume

is larger than the geometrical volume, and for linear hard spheres it has been evaluated in ref.

[30]. This variant of the PL theory has been given the name of modified Parsons-Lee (MPL)

theory [29].

2.2.3 Expansion in terms of orientational order parameters

In the nematic phase the orientational distribution function f (β) is conveniently expanded

on a basis of Legendre polynomials

f (β) =
1
2

∞

∑
j=0

(4j + 1) 〈P2j〉 P2j(cos β) (2.13)

where 〈P2j〉 are the nematic order parameters

〈P2j〉 =
∫ 1

−1
d(cos β) f (β)P2j(cos β) (2.14)

These range between −0.5 (helix perpendicular to the director) and 1 (helix parallel to the

director) and vanish in the isotropic phase.

Upon substituting Eq. (2.13) in Eqs. (2.3)-(2.8) and exploiting the properties of Wigner

rotation matrices [31], we can express the orientational and excess contributions to the

Helmholtz free energy as a function of the order parameters:

Aid

NkBT
= ln

(
Λ3

trΩ1/2
or,xΩ1/2

or,yΩ1/2
or,z

π1/2VT3/2

)
+ ln N − 1

+
∞

∑
j=0

(4j + 1) 〈P2j〉
∫ 1

−1
d(cos β)P2j(cos β) ln

[
∞

∑
j′=0

(4j′ + 1)〈P2j′〉P2j′(cos β)

] (2.15)

Aex

NkBT
=

G(φ)

16π2v

∞

∑
j=0

(4j + 1) 〈P2j〉2
∫

dΩ12 P2j(cos β12)vexcl(Ω12) (2.16)

This leads to the following expressions for the pressure and the chemical potential:

P
kBT

= − 1
kBT

(
∂A
∂V

)
NT

=
1
v
+

1
16π2v2

(
G(φ) +

φ(5− 3φ)

4(1− φ)3

)
×

∞

∑
j=0

(4j + 1)〈P2j〉2
∫

dΩ12 P2j(cos β12)vexcl(Ω12)
(2.17)
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µ

kBT
=

(
∂A
∂N

)
VT

= ln
Λ3

trΩor

VT2 + ln N +
1
2 ∑

j=0,1,2,...
(4j + 1)〈P2j〉

×
∫

d(cos β)P2j(cos β)ln

[
∑

j′=0,1,2,...
(4j′ + 1)〈P2j′〉 P2j′(cos β)

]

+
1

8π2v

(
G(φ) +

φ(5− 3φ)

8(1− φ)3

)
× ∑

j=0,1,2,..
(4j + 1)〈P2j〉2

∫
dΩ12 P2j(cos β12)vexcl(Ω12).

(2.18)

2.2.4 Computational details

For each system, the Helmholtz free energy given in eqs. (2.2), (2.15) and (2.16), is minimised

at increasing values of the density 1/v, and the order parameters of the stable phase at each

density value obtained are then used to calculate the pressure according to eq. (2.17).

Evaluation of pair integrals

Integrals over all the relative positions and orientations of pairs of particles, appearing in eqs.

(2.16), (2.17), and (2.18) are preliminarly evaluated and stored, to be used for the calculations

at the various density values. These integrals have the general form:∫ 2π

0
dα12

∫ 1

−1
d(cos β12)P2j(β12)

∫ 2π

0
dγ12

∫ 2π

0
dφ12

∫ 1

−1
d(cos ϑ12)(R0

12)
3 (2.19)

where R12, the vector position of helix 2 with respect to helix 1, is expressed in spherical

coordinates, R12 ≡ {R12, φ12, ϑ12} and R0
12 is the closest approach distance, which is a function

of the relative position and orientation of the two helices. Gauss-Legendre and Gauss-

Chebyshev quadrature algorithms are used to evaluate these integrals [32]. Each integral

in the form of eq. (6.38) requires the evaluation of the function within the integrals for a

number of pair configurations of the order of 109. If a helix is represented as an assembly of

Ms spheres, a number of operations proportional to M2
s is required for each configuration.

It follows that the feasibility of calculations depends on the level of detail employed in

modelling the molecular features.

Free energy minimisation

It is expedient to choose as variational parameters the coefficients uj of the expansion

− ln f (β) =
∞

∑
j=2,4,...

ujP2j cos(β), (2.20)

rather than the order parameters. Eq. (2.20) is used in eq. (2.3) for the orientational contri-

bution to the free energy, Aor, and is introduced into eq. (2.4) for the excess contribution,

Aex, through the order parameters, eq. (2.14). Thus, the Helmholtz free energy is expressed

as a function of the uj coefficients. This has a twofold advantage: The expansion eq. (2.20)

converges faster than that of the density function eq. (2.13) and the parameters uj are uncon-

strained, unlike order parameters.
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Figure 2.1: Determination of the isotropic-to-nematic coexistence for helices with p = 8 and r = 0.2.
Red squares, nematic branch; blue triangles, isotropic branch.

Determination of isotropic-to-nematic phase coexistence

The volume fraction of coexisting isotropic and nematic phase, φI and φN respectively, is

calculated by minimizing the free energy with respect to the variational parameters uj, with

the constraint of equal pressure and chemical potential:

PI = PN∗

µI = µN∗
(2.21)

The following procedure is used: Two calculations are started, one at low density

(isotropic) and the other at high density (nematic). Then, the density is increased from

the lowest value and decreased from the highest value. At each step, after free energy mini-

mization, the pressure and the chemical potential are calculated. The coexistence is identified

by crossing of the curves for isotropic and the nematic branches in the plot of (P∗, µ∗) (see

Figure 2.1).

2.3 Monte Carlo simulations

MC simulations [33, 34] on a system of N hard helices were carried out in the ensemble

Isothermal-Isobaric (NPT). Cubic or orthorhombic computational boxes was used, with the

usual periodic boundary conditions. Simulations were organised in cycles, each consisting of

2N attempted particle moves (a random translation and rotation) and a volume move [35].

Rotation trial moves were implemented either using the Barker-Watts [36] or the quaternions

methods [37, 38], finding a good consistency between them. Volume moves were either per-

formed scaling up or down the box in those cases where cubic boxes were used or attempting

to change a randomly selected edge of the box in the other cases. Being concerned with the

IN phase transition only, other possible conditions on boundary or/and on computational

boxes, that could be necessary to properly account for other phases, are neglected.
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Figure 2.2: Cartoon of the overlap between the spherocylinders containing a pair of helices.

The overlap condition was computed by first inserting each helix into the smallest sphe-

rocylinder containing it and testing for overlap between two such spherocylinders (see

Figure2.2). This is a relatively fast test as it amounts to finding the minimal distance between

two segments. To this purpose, the algorithm proposed by Vega and Lago are used [39]. This

method is approximatively four times faster than others previously used, essentially because

it reduces to only four the number of regions to be checked for closest approach. Only in the

event of overlap between two spherocylinders, the spheres forming the embedded helices

were tested for overlapping. This procedure significantly reduced the computational cost of

the overlap test, that is one of the bottlenecks of this type of simulations, and considerably

increased their efficiency.

The IN phase transition was monitored using the main orientational order parameter,

〈P2〉, already discussed in the theoretical section. To this aim, the following tensor [40]

Qαβ =
1
N

N

∑
i=1

3
2

ûα
i ûβ

i −
1
2

δαβ (2.22)

was evaluated, and the corresponding eigenvalues and eigenvectors computed. Here α, β =

x, y, z and ûα
i is the α component of the unit vector ûi describing the orientation of the

i−th helix axis. The orientational order parameter 〈P2〉 was then identified with the largest

eigenvalue of Q. The difference between the other eigenvalues of Q was found to be smaller

than 5%, in agreement with our assumption of uniaxial nematic order.

2.3.1 Computational details

NPT MC simulations were carried out using N = 675 or 867 hard helices with periodic

boundary conditions. As a general rule, a series of simulations has been started from a diluted

configuration and equilibrium has been reached upon compression. Typical equilibration

runs consisted of 3× 106 MC cycles and were followed by a production run of additional

3× 106 MC cycles, during which averages of density and order parameter were calculated.

In most of the equilibration runs the maximum values for the displacement, rotation and

volume moves were varied in the course of the run to reach a 30%− 40% of acceptance. This

procedure is known to lead to a possible violation of the detailed balance condition [41],
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but they explicitly verified that this does not lead to any bias in the present case. During

production runs, the overall acceptance ratio was adjusted to be 30%− 40% by a suitable

choice of the maximum displacement, rotation and volume parameters, and these values

were never altered during the run.

It is worth emphasizing that simulations for hard helices are considerably more de-

manding from the computational point of view than simulations of hard spherocylinders.

Depending on the state point considered and the values used for the radius and pitch, the

computational cost might be as high as 8 times that of the corresponding spherocylinders.

2.4 Helical particles

We have studied systems of identical helices, shown in Figure 2.3, obtained by deformation of

a linear chain of 15 fused hard spheres of diameter D and contour length equal to L=10 D. A

helix is made of N spheres, whose centers are located at the points defined by the parametric

equations: 
xi = r cos(2πti)

yi = r sin(2πti) 1 ≤ i ≤ N

zi = pti

(2.23)

where r is the radius and p is the pitch of the helix (see Fig. 2.3). Given the values of r, p and

of the contour length L, the increment ∆t = ti+1 − ti is determined by the equation:

L
N − 1

= 2π∆t

√
r2 +

( p
2π

)2
. (2.24)

The Euclidean length of the helix is defined as Λ = zN − z1, depends on the pitch and radius,

and coincides with the contour length L only for r = 0. We can also define the inclination

angle, α, as:

α = arcsin tz = arcsin

(
p√

p2 + 4π2r2

)
(2.25)

where tz is the component z of the tangent to the helix:

tx = ẋ =
−2πr sin(2πti)√

p2 + 4π2r2

ty = ẏ =
2πr cos(2πti)√

p2 + 4π2r2

tz = ż =
p√

p2 + 4π2r2

(2.26)

2.4.1 Molecular volume and effective volume

We have considered helical particles with different structural parameters and for comparison

a linear chain formed by ms fused hard spheres (LHSC) of diameter D and center-to-center

distance dcc (see Figure 2.4). An important feature in MPL and PL approximation is the
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Figure 2.3: Left: Definition of helical parameters. Right: Helices of radius r and pitch p investigated
here. Helices have the same contour length L but different Eucliedean lengths Λ (lengths
are scaled with the the sphere diameter D). For comparison also the fully extended linear
hard sphere chain (LHSC) is shown.

proper definition of the volume of the system under investigation. The volume v0 of LHSC is

given by

v0 =
π

6
D3

[
1 +

ms − 1
2

(
3

dcc

D
−
(

dcc

D

)3
)]

(2.27)

The same expression holds for a helix of fused hard spheres, provided that there are only

two-sphere overlaps and the correct value of the distance dcc is used.2 For a given length of

the curve connecting the centers of a pair of subsequent spheres, this distance depends on

the helix radius and pitch. Table 2.1 reports the (geometric) volume calculated for the all the

helices shown in Figure 2.3.

A definition of the effective volume has been proposed for LHSCs, as the volume enclosed

by the surface drawn by a sphere identical to those of the chain, rolling over the particle [30].

An example of this surface is shown in Figure 2.4. The effective volume of the LHSC is then

given by the expression:

vLHSC
ef =

π

6
D3

1 + (ms − 1)

3
dcc

D
− 1

2

(
dcc

D

)3

− 3

√√√√(1−
(

dcc

2D

)2
)

arcsin
(

dcc

2D

)
(2.28)

We have adopted the same definition of the effective volume for fused hard sphere helices.

However in this case, depending on the helix curvature, the effect of the rolling sphere can

2dcc =
√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 is the distance between centres of two subsequent spheres.
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helix dcc v0

p= 2, r= 0.2 0.687 6.89

p= 2, r= 0.4 0.680 6.85

p= 4, r= 0.2 0.711 7.02

p= 4, r= 0.4 0.707 7.00

p= 8, r= 0.2 0.714 7.04

p= 8, r= 0.4 0.714 7.04

LHSC 0.714 7.04

Table 2.1: Volume v0 of fused hard sphere helices of radius r and pitch p, calculated using Eq. (2.27).
For comparison, also the value for LHSCs is reported.

Figure 2.4: Surface defining the effective volume of a pair of fused hard spheres.

go beyond that of simply filling the voids between subsequent beads. We have calculated

the effective volume (vef) of helices using the program MSMS [42]. The rolling sphere radius

was taken equal to the radius of the fused hard spheres that form the helix. Table 2.2 reports

the vef values obtained for the helices shown in Figure 2.3; for comparison we report in the

table also the volume calculated according to eq. 2.28, using for each sphere the appropriate

dcc value (vLHSC
ef ). We can observe that vef = vLHSC

ef for all helices with longer pitch; only for

p = 2 there is some difference, more pronounced in the case with r = 0.4. This discrepancy

can be understood considering that these helices have grooves narrower than the sphere

diameter D (see Figure2.4).

helix vef vLHSC
ef

p= 2, r= 0.2 7.24 7.20

p= 2, r= 0.4 7.78 7.15

p= 4, r= 0.2 7.37 7.37

p= 4, r= 0.4 7.34 7.34

p= 8, r= 0.2 7.39 7.39

p= 8, r= 0.4 7.39 7.39

LHSC 7.39 7.39

Table 2.2: Effective volume of fused hard sphere helices of radius r and pitch p, calculated either by
the program MSMS [42] or using Eq. (2.28) with the dcc distances reported in Table 2.1. For
comparison, also the value for the LHSC is reported.
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Figure 2.5: 〈P2〉 order parameter (Left) and reduced pressure P∗ (Right) as a function of the volume
fraction φ = v0/v for the LHSC, from MC simulations (closed circles) and from Onsager
theory with PL (dashed line) or MPL (solid line) approximation. Insets on the left panel,
here and in following figures, depict representative snapshots obtained using QMGA
software [44].

2.5 Results and Discussion

In presenting and discussing our results we will use reduced units, with the diameter D taken

as the unit of length, and with reduced pressure P∗ = PD3/kBT. For each system, the results

from MC simulations were compared with those from Onsager theory with the PL and the

MPL approximation, which differ in the definition of the packing fraction entering the scaling

factor G(φ), eq. (2.12): φ = v0/v, with v0 being the geometric volume of the helix (PL), and

φ = ve f /v, where ve f is the effective volume defined in 2.4.1 (MPL). Values of geometric and

effective volume are reported in Tables 2.1 and 2.2, respectively. MC data will be reported

with error bars, evaluated according to the reblocking algorithm described in ref. [43].

As a preliminary test, we have performed calculations for the the linear hard sphere

chain (LHSC), for which Λ=L. Figure 2.5 shows order parameter 〈P2〉 and reduced pressure

P∗ calculated for the LHSC as a function of the packing fraction φ = v/v0. At φ ∼ 0.24 an

IN phase transition occurs, characterized by a jump in the order parameter. On moving

deeper in to the N phase 〈P2〉 takes higher values, larger than 0.8. The nonvanishing 〈P2〉
obtained in the isotropic phase from simulations can be attributed to finite-size effects, and

this feature is also present in the isotropic phase for helices. Figure 2.5 shows good agreement

between theory and simulations for LHSCs. The results obtained using the PL and the

MPL approximation are also very close one to the other, as expected in view of the high

superimpositions of the spheres, so that the cavities between them have tiny volumes. This

agrees with ref. [29] where it was shown that for LHSCs the discrepancies between MC

simulations and PL theory, and correspondingly also the improvements of the MPL scaling,

decrease as the superposition between adjacent spheres increases.

Figures 2.6-2.8 show order parameters and pressures calculated for the helices with r = 0.2

and decreasing pitches p = 8, 4 and 2. In all these cases a IN transition is clearly visible, with
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Figure 2.6: 〈P2〉 order parameter (Left) and reduced pressure P∗ (Right) as a function of the volume
fraction φ = v0/v for the helix with p= 8 and r= 0.2, from MC simulations (closed circles)
and from Onsager theory with PL (dashed line) or MPL (solid line) approximation.

Figure 2.7: 〈P2〉 order parameter (Left) and reduced pressure P∗ (Right) as a function of the volume
fraction φ = v0/v for the helix with p= 4 and r= 0.2, from MC simulations (closed circles)
and from Onsager theory with PL (dashed line) or MPL (solid line) approximation.

its location in densities shifting from φ ∼ 0.24 to φ ∼ 0.29 with decreasing pitches from LHSC

(infinite pitch) to the helix with shorter pitch (p = 2). This can be qualitatively understood in

terms of the decrease of the Euclidean length (and hence the aspect ratio) with decreasing

pitch. In all these cases, we find a good agreement between Onsager theory and numerical

simulations in the location of the IN transition and in the density dependence of the 〈P2〉
order parameter. However pressure tends to be underestimated by theory, especially in the

N phase, and this differences increase with increasing density and with decreasing pitch. The

PL approximation does not appear to be adequate for these helical particles and use of the

MPL variant leads only to a very slight improvement. The reason is that the non-convexity

of the helices is not simply due to the voids between adjacent spheres (see Figure 2.4), so

removal of these voids is not sufficient to account for the the real excluded volume.

The discrepancy with respect to LSHCs becomes even more pronounced for larger radii,

as depicted in Figures 2.9-2.11 reporting the 〈P2〉 order parameter and the reduced pressure
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Figure 2.8: 〈P2〉 order parameter (Left) and reduced pressure P∗ (Right) as a function of the packing
fraction φ = v0/v for the helix with p = 2 and r = 0.2, from MC simulations (closed
circles) and from Onsager theory with PL (dashed line) or MPL (solid line) approximation.

calculated for helices with r = 0.4 and p = 8, 4 and 2. These helices are curlier than those

with smaller r value (see Figure 2.3), so it is not surprising that the differences from the

behaviour of LSHCs are even more pronounced. No clear N phase is observed in simulations

for the helices with p = 4 and p = 2, although at sufficiently high packing fraction (φ ≈ 0.35)

an anisotropic organization, with some signature of layered ordering, is visible. A complete

characterization of these phases is delicate, mainly due to equilibration problems, and is

presently under scrutiny. In the case of p = 8 (see Figure2.9), a nematic phase was detected

between φ ∼ 0.27 and φ ∼ 0.38; interestingly, the IN transition occurs at higher density than

for the helices with smaller radius and similar Euclidean length (r = 0.2 and p = 4). In all

helices with r = 0.4 we have also found a marked deviation between theoretical and MC

results. In contrast to simulations, a nematic phase is predicted by Onsager theory for all

pitch values, with the IN transition occurring at increasing density as the pitch decreases.

Of course, being the theory implemented only for isotropic and uniaxial nematic phases,

other possible phases could not be investigated. In short, only for the most elongated system

(r = 0.4 and p = 8), we find a reasonable agreement between theory and simulations in this

case. For shorter pitches, a jump in the 〈P2〉 order parameter is obtained from simulations

and theory at similar φ values, but the ordered phases appear to be different. As for pressure,

differences between theory and simulations even appear in the isotropic phase for the helices

with p = 4 and p = 2, with theoretical predictions lower than the MC results. For p = 2 the

improvement deriving from the MPL approximation is more significant than in the other

cases, due to the larger value of the effective volume determined for this system using the

rolling sphere criterion (see Table 2.2 and 2.4.1).

An interesting last point, related to the above findings, is whether the IN phase transition

for helices can be mapped on to that of rods in terms of simple parameters like the aspect

ratio, as generally done in experimental work on helical systems [5]. Figure 2.12 collects the

theoretical predictions of the IN phase transition as a function the Euclidean length Λ. For
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Figure 2.9: 〈P2〉 order parameter (Left) and reduced pressure P∗ (Right) as a function of the volume
fraction φ = v0/v for the helix with p = 8 and r = 0.4, from MC simulations (closed
circles) and from Onsager theory with PL (dashed line) or MPL (solid line) approximation.

Figure 2.10: 〈P2〉 order parameter (Left) and reduced pressure P∗ (Right) as a function of the volume
fraction φ = v0/v for the helix with p = 4 and r = 0.4, from MC simulations (circles) and
from Onsager theory with PL (dashed line) or MPL (solid line) approximation. Open
circles are used for metastable states not yet fully characterized.
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Figure 2.11: 〈P2〉 order parameter (Left) and reduced pressure P∗ (Right) as a function of the volume
fraction φ = v0/v for the helix with p = 2 and r = 0.4, from MC simulations (circles) and
from Onsager theory with PL (dashed line) or MPL (solid line) approximation. Open
circles are used for metastable states not yet fully characterized.

comparison, the results obtained for LHSCs and those for spherocylinders are also reported.

In the latter case the Onsager expression for the excluded volume was used [2]. Of course the

contour length L, which is identical for all the helices, is not a significant parameter in relation

to the IN phase transition. On the other hand, Figure 2.12 also suggests that the Euclidean

length, although more meaningful, is not fully satisfactory either, since for the same aspect

ratio Λ/D, the density at which the IN transition occurs has a non trivial dependence on the

combination of the helical parameters r and p. As a general rule, we find the transition to

move towards higher volume fraction with increasing degree of non-convexity. The fact that

the location of the IN phase transition is not uniquely related to the aspect ratio may have

implications for the analysis of experimental data for helical particles, as anticipated.

2.6 Conclusions

The main goal of this study was to rationalize the changes in the isotropic-to-nematic phase

transition on going from straight rod-like to quite tortuous helical particles. We have found

that the aspect ratio, which is usually taken as the key quantity for the IN transition, is

not a suitable descriptor for helices, since there are specific effects of helical parameters. In

particular, the IN transition is shifted to higher densities with decreasing Eucledian length Λ

and for the same Λ values, is shifted to higher densities with increasing helical distortions.

The comparison with MC simulations has allowed us to evaluate the accuracy of Onsager

theory in the case of non-convex particles. We have found that for high helicity Onsager

theory departs from numerical simulations, even when a modified form of the Parsons-Lee

rescaling is included to account for the non-convexity of particles. When compared to the MC

simulations, Onsager theory generally underestimates pressure, with deviations that increase

with increasing density and upon going from the isotropic to the nematic phase. This points
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Figure 2.12: Volume fraction φ = v0/v at the isotropic-nematic transition as a function of the Euclidean
length (Λ), obtained from the Onsager theory with MPL approximation. Symbols refer to
helices of different radius r (open for r = 0.2 and closed for r = 0.4) and pitch p (squares
for p = 2, triangles for p = 4 and circles for p = 8 ), lines are for LHSCs (dashed) and
spherocylinders (solid).

to the need of a more effective theory for hard non-convex particles, a field that remains

largely unexplored. Besides the Onsager theory employed here, other theoretical approaches

have been proposed, which include scaled-particle theory [45–47], the Vega and Lago theory

that aims at incorporating a better description of the isotropic state [48], as well as Wertheim

statistical mechanical treatment of associating fluids [49], which was successfully applied to

bent-shaped particles in the isotropic phase [26]. Another approach envisages the extension

of the Onsager theory beyond the second virial contribution.



Chapter 3

Hard helices: The cholesteric phase

This Chapter deals with the relationship between the helical shape of particles and the

chiral properties of the cholesteric (N∗) phase. Calculations based on Onsager-like theory

are presented and a suitable descriptor is proposed to correlate the helix structure with the

inverse cholesteric pitch and handedness.

3.1 Theoretical background

The existence of the cholesteric phase can be explained as the result of the trade-off between

the intrinsic propensity to twist of the director, due to the chirality of intermolecular interac-

tions, and a restoring torque which opposes this deformation. According to the continuum

elastic theory, the Helmholtz free energy density, a, of the N∗ phase in the presence of long

range twist deformations with pitch pN∗ , or wavenumber q = 2π/pN∗ , can be approximated

by the truncated Taylor series expansion [50]:

a = au + k2 q +
1
2

K22 q2 (3.1)

where au is the free energy density of the un-deformed N phase, k2 = (∂a/∂q)q=0 is the chiral
strength, and K22 = (∂2a/∂q2)q=0 is the twist elastic constant. The equilibrium wavenumber in

the N∗ phase is then obtained by minimization of the free energy:

q = − k2

K22
. (3.2)

Chiral strength and twist elastic constant are material parameters whose value is determined

by the chemical constitution of the system; in particular, k2 vanishes in the absence of

enantiomeric excess and has opposite sign for enantiomers. The twist elastic constants must

be positive for the existence of a stable twisted nematic phase. On the contrary, there are no

restrictiion for the sign of k2: it is positive for a right-handed (R) N* phase, and negative for

a left-handed (L) N∗ phase. Correspondingly, the wavenumber q is negative and positive,

respectively. The prediction of k2 and K22 for solutions of polyelectrolytes is a challenge:

Suitable methods are needed, able to handle intermolecular interactions with different length-

scales and to account for the response of the system to long range deformations, while

33
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Figure 3.1: Definition of the angle χ between the director in a given position and that in the origin
of the laboratory (LAB) frame. Black arrows indicate the director at different positions.
{X, Y, Z} are the axes of the LAB frame, with Z parallel to the director in the origin and Y
parallel to the axis of the cholesteric helix.

including a molecular level representation. This is required since chiral properties depend on

tiny effects, which are sensitive to structural details of the constituents. Here, the main points

of the molecular theory, leading to expressions for the equilibrium properties of the N∗ phase

in terms of intermolecular interactions, are outlined [51].

3.1.1 Free energy of the cholesteric phase

In the cholesteric (N∗) phase, the density function can be expressed as ρ[Ω, χ(R)], where χ

is the angle between the director at the position R and that in the origin of the LAB frame

(see Figure 3.1) and Ω are the Euler angles which define the molecular orientation in the LAB

frame. Since the length scale of the twist deformation is orders of magnitude bigger than

that of intermolecular interactions, the local phase properties are hardly distinguishable from

those of the corresponding Nematic phase.

Thus, the free energy of the cholesteric phase can be expressed as the sum of an ideal con-

tribution with the form of the first two terms of eq. (2.2),with the Euler angles Ω expressing

the molecular orientation with respect to the local director, along with an excess term which

has the form

Aex =
G(φ)

V

∫
dR2dΩ1Ω2ρ(Ω1)ρ[Ω2, χ(R2)]u(R12, Ω12) (3.3)

having chosen a laboratory frame with the Z axis parallel to the local director at the position

of the helix 1. Here, the factor G(φ) = (4− 3φ)/(4(1− φ)2) is a correction introduced to

account for higher virial contributions [22–24].

If a laboratory frame with the Y axis along the cholesteric axis is chosen, as in Figure 3.1

and 3.2, we can write

χ(R) = qY. (3.4)

Therefore we can write ρ = ρ(Ω, qY), the chiral stength and the twist elastic constant can be

obtained as derivatives of excess free energy density with respect to the wavenumber q.
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Figure 3.2: Scheme of the reference frames and of the transformations between them.

3.1.2 Orientational order parameters

The density distribution function, ρ(Ω, χ(R)), can be expressed by an expansion on a basis

of Wigner rotation matrices, Dj
lm(Ω) [31]. In the Nematic (N) phase, the expansion has the

same form as reported in eq. (2.13) which using Wigner rotation matrix formalism takes the

following form:

ρ(Ω) =
1

8π2v ∑
j=0,2,4,...

(2j + 1) 〈Dj
00〉Dj

00 (3.5)

where the summation is restricted to the components of even rank j. The coefficients of the

expansion, defined as:

〈Dj
00〉 = v

∫
dΩ ρ(Ω)Dj

00(Ω) (3.6)

are the (orientational) order parameters of the N phase.

In the (N∗), the expansion of the density function on a basis of Wigner rotation matrices

takes the form:

ρ[Ω, χ(R)] =
1

8π2v ∑
j=0,2,4,...

(2j + 1)
j

∑
l=−j
〈Dj

l0[χ(R)]〉Dj
l0(Ω) (3.7)

where 〈Dj
l0[χ(R)]〉 , defined by an expression analogous to eq. (3.6), are local order pa-

rameters. Using the addition theorem [31], their position dependence can be expressed

as:

〈Dj
l0[χ(R)]〉 = v

j

∑
n=−j

Dj
ln(0, χ, 0)

∫
dΩ′′ ρ(Ω′′)Dj

l0(Ω
′′) (3.8)

where Ω′′ are the Euler angles which define the molecular orientation in a local frame,

{X′, Y′, Z′}, which is obtained from the LAB frame by a χ rotation around its Y axis (the LAB

and the local frame have a common origin and Y = Y′, parallel to the cholesteric helix, but Z
is parallel to the director in the origin, whereas Z′ is parallel to the director at the position R).

Since the length scale of the twist deformation is orders of magnitude bigger than that

of intermolecular interactions, the density function, expressed with reference to the local
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director, is assumed to have the same form of that in the undeformed N phase; thus, using

the relation Dj(0, χ, 0) = dj
ln(χ) , where dj

ln(χ) are reduced Wigner rotation matrices [31], eq.

(3.8) can be rewritten as:

〈Dj
l0[χ(R)]〉 = dj

l0(χ) 〈D
j
00〉 (3.9)

where 〈Dj
00〉 coincides with the order parameter in N phase. The density function eq. (3.7)

then becomes

ρ[Ω, χ(R)] =
1

8π2v ∑
j=0,2,4,..

(2j + 1) 〈Dj
00〉

j

∑
l=−j

dj
l0[χ(R)]Dj

l0(Ω) (3.10)

3.1.3 Molecular expressions for the chiral strength k2 and the twist elastic con-
stant K22

Under the assumption that the cholesteric pitch is much longer than the molecular size (see

above), eqs. (2.15) and (2.16) are also appropriate for the Helmholtz free energy of N∗ phase,

provided that the order parameters appearing in them bear a dependence on the position,

as in eq. (3.9). Using the transformations shown in Figures 3.1 and 3.2, the Helmholtz free

energy can be expressed in terms of the cholesteric wavenumber q, as shown in eq. (3.3).

Thus, molecular expressions for the chiral strength, k2, and for the elastic constant, K22, are

obtained as derivatives of the Helmholtz free energy density, a = A/V, i.e. k2 = (∂a/∂q)q=0

and K22 = (∂2a/∂q2)q=0 :

k2 =
1

3
√

2
1

8π2v2 G(φ) ∑
jA=0,2,4

(2jA + 1) 〈DjA
00〉 ∑

jB=0,2,4
(2jB + 1)

√
(jB + 1)!
(jB − 1)!

× C2(jA, jB, 1; 0, 1, 1) 〈DjB
00〉
∫

dΩ12

∫
dR12 Im

{
DjB

10T11
}

u(R12, Ω12)

(3.11)

and

K22 = [K22]T00 + [K22]T20 + ∑
p=1,2

[K22]T2p (3.12)

with

[K22]T00 =
G(φ)

8

(
1

8π2v

)2

∑
jA=2,4,..

(2jA + 1) 〈DjA
00〉 ∑

jB=2,4,..
(2jB + 1) 〈Djb

00〉 δjA,jB

(
−16π2
√

3

)
× jB(jB + 1)C2(jA, jB, 0; 0, 0, 0)

∫
dR12

∫
dΩ12DjB

00(Ω12)T00u(R12, Ω12)

(3.13)

[K22]T2p =
1
8

G(φ)

(
1

8π2v

)2

∑
jA=2,4,..

(2jA + 1) 〈DjA
00〉 ∑

jB=2,4,..
(2jB + 1) 〈Djb

00〉
8π2

5

×
{

2√
6

jB(jB + 1)C(jA, jB, 2; 0, 0, 0)−

√
(jB + 1)!)
(jB − 1)!

C(jA, jB, 2; 0, 2, 2)

}
× 2C(jA, jB, 2; 0, p, p)

∫
dR12

∫
dΩ12 Re{DjB

10(Ω12)T
2p
12 }u(R12, Ω12)

(3.14)
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[K22]T20 =
1
8

G(φ)

(
1

8π2v

)2

∑
jA=2,4,..

(2jA + 1) 〈DjA
00〉 ∑

jB=2,4,..
(2jB + 1) 〈Djb

00〉
8π2

5

×
{

2√
6

jB(jB + 1)C(jA, jB, 2; 0, 0, 0)−

√
(jB + 2)!)
(jB − 2)!

C(jA, jB, 2; 0, 2, 2)

}
× 2C(jA, jB, 2; 0, 0, 0)

∫
dR12

∫
dΩ12DjB

00(Ω12)T20u(R12, Ω12)

(3.15)

In the above expressions, C(jA, jB, j; 0, m, m) are Clebsch–Gordan coefficients [31], while Im{}
and Re{} denote the imaginary and real part of the functions within brackets, respectively.

The symbol T1p is used for irreducible spherical components of the first rank tensor R12 ,

while T00 and T2p are used for zeroth and second rank irreducible spherical components

of the tensor R12 ⊗ R12 [31]. Their explicit expressions in terms of spherical coordinates

R12 = (R12, φ12, θ12) are:

T0,0 =− 1√
3

R2
12 (3.16a)

T1,±1 =∓
(

1
2

)1/2

R12 sin θ12(cos φ12 ± ı sin φ12) (3.16b)

T2,0 =
1√
6

R2
12(1 + 3 cos2 θ12) (3.16c)

T2,±1 =∓ R2
12 sin θ12 cos θ12(cos φ12 ± ı sin φ12) (3.16d)

T2,±2 =R2
12 sin2 θ12

[
1
2
(cos φ2

12 − sin2 φ12)± ı cos φ12 sin φ12)

]
(3.16e)

If we introduce the quantities

hii = −
∫

dΩ12

∫
dR12 Im

{
Di

10 (Ω12) T11
}

u (R12, Ω12) (3.17)

eq. (3.11) can be rewritten as:

k2 =− 1
3
√

2
1

8π2v2 G(φ) ∑
jA=0,2,4

(2jA + 1) 〈DjA
00〉

× ∑
jB=0,2,4,...

(2jB + 1)

√
(jB + 1)!
(jB − 1)!

C2(jA, jB, 1; 0, 1, 1) 〈DjB
00〉 hjB jB

(3.18)

The orientational order parameters of the helices in the N phase are obtained by mini-

mization of the free energy, eqs. (2.15) and (2.16); under the assumptions specified above,

these are also the order parameters of the helices with respect to the local director in the N∗

phase. The cholesteric pitch is calculated as

pN∗ = −
2πK22

k2
. (3.19)

Since both chiral strength and twist elastic constant are proportional to the Parsons-Lee factor,

the pitch is independent of it.

3.2 Computational details

For free energy minimization the same procedure described in 2.2.4 was used.
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3.2.1 Evaluation of pair integrals

Calculations require the evaluation of six-fold integrals with the general form:∫
dR12

∫
dΩ12u(R12, Ω12)Ξ(R12, Ω12) (3.20)

where Ω12 = (α12, β12, γ12) are Euler angles for the rotation from the molecular frame of helix

1 to that of helix 2 and Ξ(R12, Ω12) denotes a generic function, whose specific form depends

upon the property we are dealing with:

Ξ(R12, Ω12) =


Im{DjB

10(Ω12)T11} → k2

Re{DjB
10(Ω12)T2p} → K22

Dj1
00 → order parameters, P, µ

(3.21)

Using spherical coordinates R0
12 = {R12, φ12, θ12} the explicit form of integral eq. (3.20) is:∫ 2π

0
dφ12

∫ π

0
dθ12 sin θ12

∫ 2π

0
dα12

∫ π

0
dβ12 sin β12

∫ 2π

0
dγ12

× u(R12, φ12, θ12, α12, β12, γ12)Ξ(R12, φ12, θ12, α12, β12, γ12)
∫ ∞

0
dR12R2

12

(3.22)

Gauss-Legendre and Gauss-Chebyshev quadrature algorithms are used to evaluate these

integrals, exclusive of the integral on γ12 which is evaluated using Romberg quadrature [32].

The cost of the calculation can be very high since a large number of pair configurations has to

be sampled. In particular, high accuracy is required for k2, because this is a small quantity,

resulting from the sum of integrals which are large in value and opposite in sign.

3.3 Results and discussion

In presenting and discussing our results we will use reduced units, with the diameter D taken

as the unit of length: h∗ii = hii/D4, k∗2 = k2D2/kBT, K∗22 = K22D3//kBT, and p∗N∗ = pN∗/D.

3.3.1 Helices with constant contour length

Calculations were performed for the cholesteric phase formed by the right-handed helices

shown in Figure 2.3. Table 3.1 reports for all of them the inclination angle ψ, defined by eq.

(2.25) and the hii contributions to the chiral strength, defined by eq. (3.17). The second rank

contribution, h22, which in general is the largest, has a simple meaning that clearly appears if

the expression under the integral in eq. (3.17) is rewritten as:

(û1 · û2)(û1 ∧ û2) ·R12 =
1
2
(ŵ12 ·R12) sin(2β12) (3.23)

where R12 is the inter helix vector, û1 and û2 are unit vectors parallel to the helix axes,

β12 is the angle between them and ŵ12 = û1 ∧ û2/ |û1 ∧ û2|. Thus, the expression under

the integral is equal to zero when the two helices are perpendicular to each other (β12 is a

multiple of π/2), and is positive/negative for a right-handed (R)/left-handed (L) relative
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h∗22 h∗44 h∗66 ψ (◦)

r = 0.2 p = 2 -15.1573 9.041 1.432 57.858

p = 4 -78.457 0.722 5.577 72.559

p = 8 -66.101 - 12.598 -2.765 81.073

r = 0.4 p = 2 -2.425 8.419 -0.751 38.512

p = 4 -147.348 28.968 9.549 57.858

p = 8 -212.318 -23.4329 1.700 72.559

Table 3.1: Reduced h∗ii values, eq.(3.17), and inclination angle, ψ, calculated for the helices reported
in Figure 2.3, having different pitch p and radius r. Lengths are scaled with the sphere
diameter D.

configuration. The maxima in absolute value correspond to β12 equal to odd multiples of π/4.

The integral is evaluated for all pair configurations. For achiral particles, e.g. for cylinders,

the number of (R) and (L) configurations is identical, and the integral vanishes; however,

in the case of helices there is an unbalance and a net value is obtained. If the two chiral

molecules are replaced by their mirror images (enantiomers) the integral changes its sign.

We can see in Table 3.1 that negative h22 values have been obtained for all helices with

ψ > π/4; higher rank contributions may be positive or negative, but are generally smaller.

For one case (p = 2, r = 0.4) the inclination ψ is sligthly lower than π/4; h22 is negative,

but small, and h44 is larger and positive. We can also see that, for the same inclination,

significantly higher h22 values are obtained for helices with larger pitch and radius. This can

be easily understood considering that larger picth and radius imply deeper groves and more

marked deviations for a cylindrical shape.

Table 3.2 shows the predictions for the cholesteric phase formed by the helices under

investigations: Chiral strength k∗2, twist elastic constant K∗22, 〈P2〉NI order parameter and

cholesteric pitch. All quantities are calculated at the N∗I transition. We can see a clear

correlation between the chiral strength and the h∗22 values just commented: Positive k∗2 is

predicted for all helices but the one with p = 2, r = 0.4, for which a small negative k∗2 is

obtained. Higher chiral strengths are predicted for the helices with r = 0.4, which are more

curled, with the exception of those having case p = 2. In this case strong interlocking of pair

of adjacent helices is not possible, due to the small size of the helix pitch compared to the

sphere diameter. The twist elastic constants are much lesss sensitive than chiral strengths to

changes in the helix structure and follow the trend of the 〈P2〉 order parameters (see Chapter

2 for the discussion of the transition properties). Thus, the calculated p∗N∗ values reflect the

chiral strenghts, with a left-handed twist in all but one case. The cholesteric pitch predicted

for the helices with r = 0.4 and p sufficiently larger than the sphere diameter, which is

only 100 times the molecular dimensions, is particularly small. Indeed, typical experimental

values for lyotropic liquid crystals are at least one order of magnitude higher [18, 20, 52, 53].
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k∗2 ×1016 K∗22 (108) 〈P2〉IN p
∗
N∗ Λ

r = 0.2 p = 2 1.368 4.862 0.64 -2224.8 8.47

p = 4 11.180 5.035 0.66 -268.00 9.54

p = 8 8.278 5.052 0.68 -398.48 9.88

r = 0.4 p = 2 -0.967 3.863 0.60 2507.8 6.23

p = 4 28.049 4.326 0.61 -96.89 8.47

p = 8 31.414 4.522 0.61 -90.42 9.55

Table 3.2: Reduced chiral strength k∗2 and twist elastic constant K∗22, 〈P2〉IN order parameter and
reduced cholesteric pitch p∗N∗ calculated at the IN phase transition for the helices reported
in Figure 2.3, having different pitch p and radius r. Λ is the Eucledian length. p, r and Λ
are scaled with the sphere diameter D.

3.3.2 Helices with constant Euclidean length

To analyse in a systematic way the relationship between inclination angle and cholesteric

handedness we have considered a set of helices with the same aspect ratio (Λ = 16), radius

equal to r = 0.6 and pitch pequal to 2, 4, 6, 8, 10 and 12. Again, the sphere diameter D is

taken as the unit lenght. So, along this series the inclination angle changes only as a function

of the pitch. The helices are shown in Figure 3.3 and Table 3.3 reports their inclination angles,

which gradually increase from ∼ 28◦ to ∼ 75◦. Figure 3.4 shows the calculated h∗22 values

as a function of the inclination angle. Since, as just discussed, the twist elastic constant is

expected to be similar for all the helices in Figure 3.3, the changes in h∗22 can be related to

those in the cholesteric organization. A non monotonic dependence on the inclination angle

(i.e. the helix pitch, here) clearly appears: h22 is negative for ψ >∼ 40◦ and takes the highest

absolute values around ψ ∼ 65◦. This means that helices having p > 2 are predicted to form

left-handed cholesteric phases and the tightest pitches are expected for p = 8. For ψ <∼ 40◦,

h22 becomes positive, but is low, which can be understood for the reason discussed in the

previous section. So, the helix with p = 2 is expected to form a long-pitch, right-handed

cholesteric phase.

For the sake of comparison we show in Figure 3.4 also the h∗22 values obtained for the

some of the helices examined in the previous section (Λ = 10). They are smaller than those

for the helices in Figure 3.3 but, for helices with the same ψ value, it is mainly a matter of

size. If we compare, for instance, the cases r = 0.4, p = 8 and r = 0.6, p = 12, the scale factor

is ≈ 1.54, as expected simply for scaling reasons from eq. (3.17).

3.4 Conclusions

Our calculations for hard helices with different r, p values show that the helix parameters,

while crucial for the chiral strength k2, have a comparatively weaker effect on the molecular

order parameter and on the twist elastic constant K22, which are mainly determined by the
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Figure 3.3: Helices of radius, r = 0.6, and pitch p equal to 2, 4, 6, 8, 10 and 12.

helices ψ (◦)

p = 2 27.9467

p = 4 46.6962

p = 6 57.8581

p = 8 64.7684

p = 10 69.344

p = 12 72.5594

Table 3.3: Inclination angle for helices of same Λ = 16 and radius, r = 0.6.

ic

Figure 3.4: Cholesteric parameter, h∗22, as a function of the inclination angle. Blue circles: Helices with
Eucledian length Λ = 16D and radius equal to 0.6. Closed triangles: Helices with Λ = 10,
r = 0.4, and p = 2, 4 and 8. Empty triangles: Helices with Λ = 10, r = 0.2, and p = 2, 4
and 8.
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anisotropy of particles. So, we can propose a chiral descriptor, h22 defined by eq. (3.17),

which correlates with the inverse cholesteric pitch.

Our systematic investigation confirms the expectation, based on geometry considerations

[54], that the cholesteric organization has a non-monotonic dependence upon the helix param-

eters. In particular calculations confirm the change of cholesteric handedness for inclination

angles ψ ∼ 40◦: Right-handed helices with ψ > 40◦ are found to form L cholesterics, those

with ψ < 40◦ lead to R cholesterics. For left-handed helices the opposite would occur. Helices

having ψ ∼ 65◦ are the most effective in twisting the nematic director. This is a general trend

for helices with purely hard core interactions, provided that the helix pitch is longer than the

characteristic size of particles (in our case, for p ∼ D). When the two lenght scales become

comparable more specific effects may appear, which require an ad hoc analysis.

Interestingly, for strongly curled helices we predict very tight cholesteric pitches, of the

order of one hundred times the characteristic size of particles. There are no evidences of

such strong distortions in real systems: Typical values of the cholesteric pitch for lyotropic

liquid crystals are at least one order of magnitude higher [55]. One reason is that in real

systems there are also other interactions, which can compete with steric repulsions [56–58].

Moreover helical particles, whether they be polymers or colloids, are generally endowed by

some flexibility, and this has the effect of reducing the net chirality [55]. One last point has

to be remarked: The results reported here were obtained for the hypotentical N∗ phase that

beyond a certain packing fraction becomes more stable than the isotropic phase. However,

under the same conditions there might be other competing phases, which have not been

considered here. Actually, as will be shown in the next chapter, for strongly curled helices

Monte Carlo simulations show a direct transition from the isotropic to another chiral nematic

phase with screw-like order.



Chapter 4

Hard helices: The screw-like nematic
phase

This Chapter deals with the phase diagram of hard helices. We present convincing theoretical

evidence of the existence of a new chiral nematic phase, which we have called screw-like

nematic (N∗s ), originating from the specific helical shape. The main features of the entropy-

driven nematic-to-screw-like-nematic phase transition are analyzed as a function of the

helical parameters.

4.1 Phase Diagram

The same model of helices in Chapter 2 were studied and MC isobaric-isothermal (NPT)

simulations [37] were performed using the same methodology described in section 2.4.

Figure 4.1 shows the MC results for r = 0.2 and r = 0.4 and the same values of p = 4

and 8. In the P∗–volume fraction plane, points labeled I, N, Sm correspond to the isotropic,

ordinary nematic and smectic phases, respectively, as identified by the usual nematic 〈P2〉 and

smectic τ1 = |〈exp (i2πZ/d)〉| (d being the layer spacing, and Z being the position along the

n̂ axis) order parameters [59], as well as appropriate correlation functions. Note that, unlike

the case of spherocylinders [60], the high-density phase diagram of helices is not known,

and constitutes an interesting property on its own right. Points identified by C in Figure

4.1 correspond to compact phases and are associated with highly ordered configuration

compatible with solid-like ordering. Finally, points identified by N∗s in Figure 4.1 correspond

to the new nematic phase with screw-like order. These are the central results of this Chapter.

4.2 Screw-like nematic phase

Similarly to the cholesteric, the screw-like nematic phase is still nematic in that helices are

homogeneously distributed and mobile with their principal axis û preferentially oriented

along n̂. Differently from the cholesteric, in this new organization it is their C2 (ŵ) axes

that become long-range correlated and preferentially oriented along a second director ĉ, that

43
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Figure 4.1: P∗ as a function of φ for systems with r = 0.2, 0.4 and p = 4, 8. Representative snapshots
of each phase (I=isotropic, N=nematic, N∗s =screw-like, Sm=smectic, C=compact) are also
given in each panel. Here different colors represent different orientations of the helix axis
û with respect to the direction n̂.

in turn spirals around n̂ with a pitch that coincides with that of the particle (Figure 4.2(a)).

This phase appears at the high density end of the nematic phase, when helices are well

aligned, and is characterized by the helices C2 axes spiraling around the nematic director

with periodicity equal to the particle pitch. This coupling between translational and rotational

degrees of freedom allows a more efficient packing and hence an increase of the translational

entropy counterbalancing the loss of orientational entropy. and denote it by N∗s .

There have been some previous clues of the existence of this phase. Barry et al [61]

observed a screw-like nematic organization in suspensions of helical shaped flagella with a

pitch of the order of the nanometer, using polarising and differential interference contrast

microscopy, combined with experiments on single-particle dynamics. This unknown orga-

nization was identified as the conical phase [62–64]. Manna et al [65] presented a study of

the transition from the conventional nematic phase to a nematic phase with screw-like order

based on symmetry considerations, and suggested that in principle this could also be exhib-

ited by DNA. We have fully characterizes the microscopic order exhibited by the screw-like

nematic phase and analyzes its stability relative to the isotropic and to the conventional

nematic phase, as a function of the helix parameters, the radius r and the pitch p. Formation

of the screw-like nematic phase will be explained in terms of a coupling between translational

and rotational degrees of freedom occouring whenever there is a sufficiently high interlock

of the grooves belonging to neighboring helices. The screw-like nematic organization is

then adopted in order to maximize the translational entropy and hence balance the loss in
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Figure 4.2: (a) Model helix made of 15 partially fused hard spheres of diameter D, our unit of length,
and contour length L=10D. Shown are the molecular axes (ŵ, û), the phase directors (ĉ, n̂)
and the laboratory axes (X,Z). (b) Pairs of helices instantaneously in phase and anti-phase;
arrows show the twofold symmetry axes (C2).

orientational entropy associated with the periodic alignment of the C2 axes.

As an intuitive physical picture, consider a pair of helices that are locally in phase

contrasted with the case where they are in antiphase, as schematically illustrated in Figure

4.2 (b). Clearly, in the latter case both helices can freerly rotate about their principal axis,

effectively behaving as cylinders, whereas this is no longer true for the in phase configuration,

where one of the two helices has to perform a specific additional translation along its principal

axis, in order to also rotate about it. This new phase require a special set of correlation

functions and order parameters to be fully characterized. One key orientational correlation

function is

gŵ
1,‖(R‖) = 〈ŵi · ŵj〉(R‖), (4.1)

where ŵi is a unit vector along the C2 axis of helix i while R‖ = Rij · n̂ is the projection along

n̂ of the interparticle separation between a pairs of helices i and j. Thus gŵ
1,‖(R‖) probes the

polar correlation between the C2 axes of two helices as a function of their distance projected

along the main director. Figure 4.3 shows this correlation function calculated for helices with

r = 0.2 (a) and 0.4 (b) and pitches p = 3 and 6, at different values of volume fraction φ = ρv0,

with ρ the density of the sample and v0 the volume of a helical particle (see Chapter 2). For

both radii, a sinusoidal structure with a periodicity equal to p is clearly visible. It persists

with a constant amplitude at long interparticle distances. This behaviour reflects the helical

correlation of particle C2 axes along n̂ and is the signature of the screw-like order. The results

reported for p = 3 in Figure 4.3(a) illustrate the onset of this order with increasing density:

for φ ' 0.27 gŵ
1,‖(R‖) is equal to zero everywhere, showing the lack of transversal correlation

between helices, but at φ ' 0.36 a small amplitude oscillation can be distinguished, which

continuously grows up with increasing density, toward the condition of perfect ordering,

where gŵ
1,‖(R‖) would oscillate between ±1.
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Figure 4.3: The correlation function gŵ
1,‖(R‖). (a) r = 0.2 and p = 3 (red) at φ ' 0.38, and p = 6 (blue)

at φ ' 0.40 (solid), φ ' 0.36 (dashed dotted) and φ ' 0.27 (dashed). (b) r = 0.4 and p = 3
at φ ' 0.41 and p = 6 at φ ' 0.40.

Figure 4.4: The order parameters 〈P2〉 and 〈P1,c〉 as a function of the volume fraction φ, in the case
r = 0.2 (a,b) and r = 0.4 (c,d) and different values of the pitches p = 3; 6; 8. Solid symbols
are used for N∗s phase.
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Based on the symmetry of the particles and of the phase [66], we have found that the

lowest rank order parameter characterizing the N∗s phase is given by

〈P1,c〉 = 〈ŵ · ĉ〉 , (4.2)

that distinguishes the N∗s from the standard N phase, as both are characterized by a non-zero

value of 〈P2〉.
In Figure 4.4 (a,b) both 〈P2〉 and 〈P1,c〉 are depicted as a function of φ at increasing value

of pitches (p = 3; 6; 8) in the case of r = 0.2. Note that values with p ≤ 2 are particular cases

as very limited interlocking of spheres belonging to neighboring helices can occur under

these conditions. As pitch increases, the location of the isotropic-to-nematic transition moves

to lower φ, as indicated by the 〈P2〉 behaviour, in agreement with results reported earlier (see

Chapter 2); this can be understood in terms of an increase of the aspect ratio that tends to

stabilize the N phase. The location of the N to N∗s phase transition instead moves to larger φ

for increasing pitch, with a significant pitch dependence. The onset of a N∗s phase always

occurs at high values of 〈P2〉, with the behaviour of the 〈P1,c〉 in the neighborhood of the N

to N∗s phase transition suggestive of a second-order character. This is at variance with the

first-order character of the isotropic-to-nematic transition. and can be ascribed to the fact

that the nematic order has first to set in and reach a very high degree before the C2 axes

start twisting around n̂ and become long-range correlated to enhance translational entropy.

The situation is markedly different for the cases with r = 0.4, depicted in Figure 4.4(c,d).

While there is a similar trend, albeit much less pronounced, of the isotropic-to-nematic

transition approximatively shifting toward larger volume fraction for decreasing pitch, a

direct transition from the isotropic to the N∗s phase is here observed, with no signature of the

ordinary N phase, as indicated by the simultaneous raise of both 〈P2〉 and 〈P1,c〉.

4.3 Onsager-like theory

The onset of the N∗s phase has been further rationalized by an Onsager theory [2]. Since

numerical simulations show that the N∗s phase forms at very high values of 〈P2〉, we have

assumed perfectly parallel helices (〈P2〉 = 1). The single-particle density can be expressed

as a function of α′ = ŵ · ĉ, the azimuthal angle between the C2 helix axis ŵ and the local

ĉ director; thus f (α′) is the local orientational distribution function. In the N phase the

latter is a constant, f = 1/2π, being the normalization condition
∫ 2π

0 dα′ f (α′) = 1. The

Helmholtz free energy is expressed as a functional of the single-particle density A[ f (α, Z)],
with Z the position of a particle along n̂ and α = α′ + 2πZ/p (Figure 4.2(a)). Its orientational

contribution

βAor

N
=

∫ 2π

0
dα′ f (α′) ln

[
2π f (α′)

]
(4.3)

represents the entropic cost for the loss of freedom in the azimuthal angle rotation. Here

β = 1/(kBT) with kB the Boltzmann constant. In the Onsager’s spirit, the second–virial
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Figure 4.5: Order parameter 〈P1,c〉 as a function of the volume fraction φ, calculated for helices with
r = 0.4 and pitch p = 3 and 6 using Onsager theory.

approximation is used for the excess free energy:

βAex

N
=

ρ

2
4− 3φ

4(1− φ)2

∫ 2π

0
dα1 f (α1|0)∫

dZ12

∫ 2π

0
dα2 f (α2|Z12)aexcl(Z12, α1, α2)

(4.4)

where particle positions and orientations are expressed with respect to the same (laboratory)

reference frame, having its origin at the position of the center of the particle 1 and the X axis

parallel to the ĉ director at this position. The vector R12 = (X12, Y12, Z12) defines the position

of particle 2 in this frame, and αi is the angle between the C2 axis of particle i and the X
axis. The factor (4− 3φ)/(4(1− φ)2) is a correction introduced to account for higher virial

contributions [22–24]. The function aexcl , defined as:

aexcl(Z12, α1, α2) = −
∫

dX12

∫
dY12e12(R12, α1, α2), (4.5)

with e12 the Mayer function[67], is the section of the volume excluded to particle 2 by particle

1 cut by a plane normal to n̂ at Z = Z12[68].

The local equilibrium orientational distribution f (α|0) ≡ f (α′), obtained by minimization

of the free energy functional, is found to be uniform up to a certain density, at which there is

a second-order transition to a N∗s phase: a peak at α′ = 0, which corresponds to a preferential

alignment of the helix C2 axes along the local ĉ director, is incipient, whose height then

grows with increasing density. Figure 4.5 shows the dependence on φ of the order parameter

〈P1,c〉 =
∫ 2π

0 dα′ f (α′) cos(α′) for helices with r =0.4 and p=3 and 6. We can see that screw-like

order gradually increases with φ and the phase transition is shifted to higher density on

moving from p=6 to p=3. This is in qualitative agreement with the trend shown in Figure

4.1 The Onsager approach provides insights into the nature of the N-N∗s phase transition

but the assumption of perfect nematic ordering prevents a direct comparison with present

simulation results.
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4.4 Conclusions

We have found that systems of hard helical particles exhibit a rich phase diagram with

some phases that are specific of their shape. In particular, we have focused on the second-

order transition from the ordinary nematic to a screw-like-nematic phase, which occurs at

high density. This chiral nematic organization is different from the cholesteric in several

respects. First, screw-like order is specific of helical molecules, whereas the cholesteric

order only requires molecular chirality. Both cholesteric and screw-like nematic phase are

characterized by a helical distortion, but in the former it is the main director that rotates

around a perpendicular axis with a periodicity longer than 0.1 µm, whereas in the latter a

secondary director rotates around the main director with a typical periodicity equal to the

pitch of the molecular helix. In addition, screw-like order, unlike cholesteric order, is locally

polar. It would be interesting to address the compatibility of these two types of order that,

in principle, could coexist. Addressing this issue in simulations, however, would require a

specialized approach to identify the cholesteric phase whose pitch is typically much longer

than accessible box sizes (see Chapter 2).

The features of the screw-like-nematic phase proposed in this study provide an explana-

tion for the experimental findings on helical flagella [61], where the phase modulation is in

the µm range, and hence observable by polarized optical microscopy. A similar observation

in DNA and other helical polymers, as proposed in Ref. [65], would be more experimentally

challenging.
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THE chirality of nucleic acids (NAs) has been the object of recent interest, for different

reasons. It has been proposed that the chirality of local interactions, which determine

the geometry and stability of DNA-DNA crossovers, affects the physical properties,

and then the global topological state, of supercoiled DNA [1]. The local chirality has been

claimed to play a key role also for the organisation of DNA inside bacteriophages [2]. The

molecular chirality is responsible for the helical twist of the director, the local axis of molecular

alignment, on a micrometer length-scale in the cholesteric phase N*: It is well known that,

above a given concentration, a left-handed N* phase is formed by solutions of double

stranded B-DNA, with a number of base pairs (bp) ≈130 (hereafter denoted as l-DNA) [3–5].

Recently, it was found that even concentrated solutions of oligomers of double stranded

(ds) NAs, with 6 to 20 base pairs, exhibit the N* phase [6, 7]. This behaviour, observed

even in the absence of multivalent ions, was ascribed to end-to-end stacking interactions

between short duplexes; these would promote the formation of long linear aggregates having

a length-to-width ratio sufficiently high to induce nematic ordering. Surprisingly, both left-

and right-handed cholesteric phases were found, depending on the sequence, the length and

the nature of oligomer ends [8]. This result is quite remarkable, since the same handedness

would be expected for perfect, right-handed helices with the same periodicity and the same

charge distribution. Several reasons might underlie the observed behaviour: structural

differences between the linear aggregates, like those deriving from the intrinsic curvature of

duplexes or from defects in the molecular helix at the junction between oligomers; influence

of the sequence on the flexibility of oligomers and of their aggregates, or on the interactions

of duplexes with counterions and salts. However, the effects of these various factors on

helix-helix interactions are unknown.

The molecular origin of the cholesteric organisation of solutions of dsNA duplexes

is controversial. Simple packing effects between hard, perfect helices, would lead to a

right-handed cholesteric phase for l-DNA, in contrast to the experimental findings [9]. Yet,

electrostatics is expected to play a role in the interactions between NA duplexes, which are

highly charged polyelectrolytes. Sophisticated models were developed, which have provided

new insights into the subtle effects of interactions between helical charge distributions [10];

in contrast to experiment, right-handed N* organization was predicted for l-DNA, but the

effects of various factors on the phase chirality were highlighted [11]. The sensitivity of the

cholesteric pitch to the charge periodicity was also demonstrated by further studies, where a

model system of hard cylinders decorated with a helical distribution of charges, experiencing

screened Coulomb interactions, was considered, and a statistical theory was used to connect

pair interactions and orientational distribution function in the liquid crystal phase [12]. In

particular, the handedness of the cholesteric phase was found to oscillate from left to right

as a function of the charge periodicity [13]. Another approach was developed, taking into

account both the shape and the charge helicity of duplexes; handedness, magnitude and

temperature dependence of the cholesteric pitch in agreement with experimental data were

obtained for l-DNA, modeled as a perfect helix [14].
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To shed light on the relation between cholesteric organization and sequence of dsNA

oligomers, at first we have undertaken a computational investigation using the same ap-

proach as in ref. [14]. The structural differences induced by the sequence were taken into

account by ad hoc modelling (Chapter 5). At this stage, aggregates of fixed length were

considered and the coupling of order and aggregation was fully neglected. Subsequently

we have developed a theoretical model for the cholesteric phase formed by DNA oligomers,

which integrates the theory for cholesteric order [14, 15] with that for linear aggregation in

the nematic phase [16, 17] (Chapter 6).



Chapter 5

LC phases of oligonucleotides:
Molecular structure and cholesteric
handedness

In this Chapter, we have investigated the relation between the sequence of oligonucleotides

and their organisation in the cholesteric phase, N∗, using a molecular theory and coarse-

grained modelling, based on sequence dependent structural data.

5.1 Theoretical background

We considered a system of N identical duplexes in a volume V at temperature T. We started

from the molecular theory described in Chapter 3 and we introduced electrostatic interactions.

It is assumed that the mutual interaction between pairs of duplexes (1 and 2) can be described

as the superposition of steric repulsions and ion mediated electrostatic interactions. The

expression for the Helmholtz free energy of the system is derived on the basis of the following

assumptions: (i) hardcore repulsions are treated according to the second virial approximation;

(ii) electrostatic interaction are introduced in a mean field way, with a pair distribution

function determined by hard-core repulsions. We started from the excess Helmholtz free

energy of the N phase of a solution of N rigid rod-like polyelectrolytes reported eq. (2.4), but

in this case the function u(RAB, ΩAB) is defined as:

u(RAB, ΩAB) = −kBTeh
AB(RAB, ΩAB) + gh(RAB, ΩAB)Uel(RAB, ΩAB) (5.1)

Here Uel(RAB, ΩAB) is the electrostatic interactions and gh is the hard particle pair distribu-

tion function, which is approximated as:

gh(RAB, ΩAB) =

 0 if A,B overlap

1 if A,B do not overlap
(5.2)

Electrostatic interactions are expressed as the sum of interactions between point charges
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in 1 (a) and in 2 (b):

Uel(R12) =
M1

∑
a=1

M2

∑
b=1

Uel
ab(rab) (5.3)

where M1 (M2) is the number of point charges in 1 (2) and rab is the distance between a pair

of charges. A hybrid form is assumed for the interaction potential, Uel
ab , between the charges

ζa and ζb (in electron units); it which coincides with the screened Coulomb potential beyond

a certain reference distance (r0
ab ) and is equal to the Coulomb potential at the contact distance

(σab) between the spheres (see below) bearing the two charges:

Uel(rab) =



e2ζaζb

4πε0ε′rab
rab = σab

e2ζaζb

4πε0ε′rab
exp(−κDrab) rab ≥ r0

ab

U(σab) +
Uel

ab(r
0
ab)−Uel

ab(σab)

r0
ab − σab

(rab − σab) σab > rab > r0
ab

(5.4)

where e is the electron charge (in absolute value), ε is the dielectric constant of the solvent,

ε′ is an effective dielectric constant within duplexes, ε0 is the permittivity of vacuum and

κ−1
D is the Debye screening length. This is defined as: κD = (2Ie2NA/εε0kBT)1/2, with the

Boltzmann constant kB, the temperature T, the Avogadro number NA and the ionic strength

I = (10−3/2NA)∑
α

z2
αρ0

α; here zα is the valence of α ions and ρ0
α is their concentration in bulk

solution. In our calculations the reference distance r0
ab was taken equal to the contact distance,

σab, increased by 0.2 nm and the effective dielectric constant was given the value ε′=2 [14].

5.1.1 Molecular expressions for Helmholtz free energy, pressure and chemical
potential

In this study, we neglected Parsons-Lee rescaling because we are only interested on general

trend and the main point is the introduction of electrostatics interactions. The expressions

for the equilibrium properties of the N∗ phase in terms of intermolecular interactions are

the same as reported in subsection 3.1.3, eqq. (3.11)-(3.15), but in this case the pre factor

G(φ) is not included. The following expressions are obtained for the ideal and the excess

contribution to the Helmholtz free energy of the N∗ phase:

Aid

NkBT
= ln

(
Λ3

trΩ1/2
or,xΩ1/2

or,yΩ1/2
or,z

π1/2VT3/2

)
+ ln N − 1 +

1
8π2 ∑

j=0,2,4
(2j + 1) 〈Dj

00〉
2

×
∫

dΩ Dj
00(Ω) ln

{
∑

j′=0,2,4
(2j′ + 1) 〈Dj′

00〉Dj′
00(Ω)

} (5.5)

Aex

NkBT
=

N
16π2V ∑

jA=0,2,4
(2jA + 1) 〈DjA

00〉
2
∫

dR12dΩ DjA
00(Ω12)

u(R12, Ω12)

kBT
(5.6)

These lead to the following expressions for the pressure and the chemical potential:

P =
NkBT

V
+

N2

16π2V2 ∑
jA=0,2,4,..

(2jA + 1) 〈DjA
00〉

2
∫

dRABdΩABDjA
00(ΩAB)u(RAB, ΩAB) (5.7)
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µ = ln

(
Λ3

trΩ1/2
or,xΩ1/2

or,yΩ1/2
or,z

π1/2VT3/2

)
+ ln N +

1
8π2 ∑

j=0,2,4
(2j + 1) 〈Dj

00〉
∫

dΩDj
00

NkBT
V

+
N2

16π2V2 ∑
jA=0,2,4,..

(2jA + 1) 〈DjA
00〉

2
∫

dRABdΩABDjA
00(ΩAB)u(RAB, ΩAB)

(5.8)

5.2 Modelling of oligomers and their linear aggregation

We have studied the NA dodecamers with self-complementary sequences listed in Table 5.1,

for which detailed structural data are available. They were found to form either left- or right-

handed N∗ phases [8]. The crystal structures of these duplexes exhibit significant differences

from each other, both in the geometry of individual oligomers and in their organization;

such differences can be ascribed to the sequence and to the end-to-end interactions. DD,

as all oligonucleotides in the B form, crystallizes as infinitely long columns, stabilized by

end-to-end interactions [18, 19]. However it exhibits significant departures from the classical

B-helix geometry: Each base has a propeller twist and the overall helix axis is slightly curved;

moreover oligomers, rather than stacked on top of one another, are staggered with each

molecule overlapping by three base pairs with its neighbours, above and below [18]. Detailed

structural data are not available for all-AT dodecamers, but only for octamers and examers [20,

21]. Unlike DD, these exhibit a geometry close to the classical B-helix: Nearly straight, without

any obvious bend and with small spread in their structural parameters. They assemble in

columns in which the terminal base pairs are stacked, but do not form a pseudocontinuous

helix [19, 22]. Unlike DNA, RNA duplexes are usually found in the A form, which has

significant consequences: The helix is thicker than that formed by B-DNA duplexes, and

bases are tilted with respect to the helix axis. Stacked DD-RNA dodecamers were found in

crystals, complexed with RNaseIII [23]. Using structural information from X-rays, we built

models of linear aggregates. For DD and DD-RNA, the crystal coordinates of dodecamers

were used and the end-to-end stacking geometry found in crystals was assumed [18, 24]. The

atomic coordinates of all-AT dodecamers were generated using the structural parameters

available in 3DNA [25–27]; the twist in the virtual base step was adjusted according to the

crystal data reported in ref. [19].

Sequence Acronym PDB entry Chol. hand. cIN (mg mL−1)

AATAAATTTATT all-AT - L 600

CGCGAATTCGCG DD 1BNA [18] R 730

CGCGAAUUCGCG DD-RNA 1YYO [23] R 900

Table 5.1: Sequence of DNA dodecamers under investigation, with the corresponding acronyms and
PDB entries. In the fourth and fifth column: Experimental handedness in the cholesteric
phase and concentration (cIN) at the IN transition.

These models of linear aggregates were used to calculate the properties of the N∗ phase,

according to the theory outlined above. Calculations require that the interaction between
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Figure 5.1: CG representation, superimposed on the stick model of a base pair. Gray: nucleobase;
cyan: sugar; pink: phosphate.

Group Sphere radius (nm)

Phosphate 0.3

Sugar 0.35

Nucleobase 0.4

Table 5.2: Geometric parameters of the CG model.

pairs of linear aggregates are evaluated at all possible relative positions and orientations. As

a compromise between the requirements of retaining the structural features, needed for the

prediction of chiral properties, and reducing the number of interaction centers, necessary

to keep calculations affordable, the coarse-grained (CG) representation shown in Figure

5.1 was adopted: Each base pair was represented by three spheres of suitable size, one for

the nucleobase, another for the sugar and the third for the phosphate group. The centre

of each sphere was located in the centre of mass of the group of atoms which it represents

and the radius is evaluated on the basis of the size of each group; the values obtained

in this way are reported in Table 5.2; so the CG model preserved the sequence-specific

structural features of each aggregate. Figure 5.2 shows the CG models of linear aggregates,

made of five dodecamers of all-AT, DD and DD-RNA. We can clearly see that they differ in

length, diameter and overall shape. The structure of the all-AT aggregate is close to that of a

perfect helix, whereas significant deviations appear in the case of DD and DD-RNA. These

structural differences could be responsible for the formation of N∗ phases with opposite

handedness; there are experimental evidences [5, 28, 29] and theoretical predictions [13,

30] of oppositely-handed cholesteric phases induced by helices which, albeit homochiral,

have different structural parameters. Especially intriguing is the presence of a supra-helical

arrangement, in the case of DD and DD-RNA, which introduces a higher level of chirality;

the existence of a supra-helical twist was proposed as the origin of the chiral organization in

the N∗ phase formed by suspensions of rod-like viruses [31].

For the electrostatic interactions, we used the model described in subsection 5.1, with

screened Coulomb repulsions between renormalized charges. The point charges appearing

in eq. (5.4) are effective charges, partially compensated by counterions. According to

the Manning condensation theory [32], the fraction of uncompensated charge is given by
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Figure 5.2: CG model of linear aggregates made of five dsNA dodecamers.

δ = 1/|z|ξ, with z equal to the counterion valence and the parameter ξ(>1) defined as ξ =

e2/(4πεε0bkBT) , where b is the average charge spacing along the helix axis (the other symbols

have been defined above). For dsNAs, the value b = (0.34/2) nm (two phosphate groups

with charge -1e at distance 0.34 nm) can be assumed; thus, in the presence of monovalent

counterions in water at 25 ◦C, ξ=4.2 and δ=0.24 are obtained. In our calculations, effective

charges equal to −δe were set at the positions of the centers of mass of phosphate groups [14]

.

5.2.1 Computational details

For free energy minimization, we used the same procedure described in 2.2.4. To evaluate the

integrals of free energy density, chiral strength and twist elastic constant, we used the same

quadrature algorithms reported in subsection 3.2.1. However, since non-chiral properties

(K22 and IN transition), which depend on the anisotropy, rather than on the chirality of

intermolecular interactions, have a weaker sensitivity to molecular details [14], we used

a simpler representation of aggregates to determine the IN phase coexistence (henceforth

denoted as reduced CG): Each base pair was represented by a single bead, with its centre on

the axis of the aggregate and the radius sufficiently large to contain the phosphate groups.

Thus, linear aggregates of dodecamers were modelled as columns of stacked beads. For the

all-AT and the DD-RNA dodecamers this simple representation was found to provide a good

approximation of non chiral phase properties, with a significant gain in computer time. For

the DD dodecamer a slightly different model was needed, which was built by setting the

centre of each bead at the position of the centre of mass of a base pair, rather than along the

common stacking axis, so that the supra-helical structure of the aggregate was retained (see

Figure 5.3).
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Figure 5.3: Reduced CG representation of a linear aggregate of DD dodecamers.

5.3 Results and discussion

5.3.1 IN phase transition

The IN phase coexistence was determined by minimizing the Helmholtz free energy of a

systems of linear aggregates, under the conditions of mechanical and chemical equilibrium

between the I and N phases. Calculations were carried out for aggregates experiencing

excluded volume interactions; the sequence dependence would not be dramatically modified

by inclusion of electrostatic repulsions, since these could be simply accounted for by a larger

effective diameter of the linear aggregates [33].

Linear aggregates of nine dodecamers (108 bp) were assumed, a value deemed reasonable

for the systems under investigation [6]. Figure 5.4 shows the NA volume fraction, φ, calculated

at the IN coexistence, as a function of the aspect ratio L/D, with L being the length of an

aggregate and D its effective diameter. For all-AT and DD-RNA dodecamers, this coincides

with the diameter of the beads in reduced CG representation; the results obtained for these

systems practically coincide with those for spherocylinders having aspect ratio equal to L/D.

In the case of DD aggregates, the effective diameter was defined as that of the spherocylinder

with the same length L and the same second virial coefficient [33] as the aggregate.

Figure 5.4 shows a strong dependence on sequence of the volume fraction at the IN

transition: This is predicted to occur at increasing concentration on going from all-AT to

DD-RNA, through DD dodecamers. This behaviour can be correlated with the decreasing

aspect ratio, L/D, of the linear aggregates, in agreement with the Onsager theory [34]. The

theoretical prediction are in line with the experimental increase of the concentration at the

IN transition (cIN) along the series of dodecamers, reported in Table 5.1; for the sake of

comparison, the corresponding value for l-DNA (150 bp) is 160 mg/mL. The influence of

sequence on the aspect ratio was generally ignored [6]; our calculations, with a realistic

account of the molecular shape, suggest that this aspect should be taken into account when

experimental and theoretical phase boundaries are compared.

5.3.2 Phase chirality

To evaluate the effect of the molecular structure on the cholesteric handedness we have

calculated the chiral strength, k2, for all-AT, DD and DD-RNA dodecamers: (i) assuming

only excluded volume interactions between aggregates; (ii) introducing also screened electro-

static interactions. Despite the structural differences, we obtained for all the systems under

examination the same result, which is identical to that previously obtained for l-DNA [14]:
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Figure 5.4: Volume fraction, φ, at the IN coexistence, calculated for linear aggregates of nine dode-
camers, of length L and effective diameter D (diamonds). For comparison, the coexistence
lines calculated for hard rods of length L and diameter D are shown (dashed lines) [35].

Figure 5.5: Configuration of a pair of all-AT aggregates with a right-handed crossover.

Excluded volume interactions yield negative k2 (R cholesteric twist), but a change to positive

k2 (L twist) is obtained when electrostatic interactions are switched on. The reason is that

the right-handed organization allows the best packing of the right-handed dsNA helices,

whereas electrostatic repulsions are minimized by the left-handed arrangement. Figure 5.5

shows a typical configuration of a pair duplexes at a close distance, with the backbone of one

helix fitting into the groove of the other. A resemblance with the right DNA-DNA crossovers,

which are often found in crystals of oligonucleotides, can be appreciated [1]. Thus, according

to our calculations, the cholesteric handedness would be dictated by the short-scale chirality,

which is the same for all dsNA aggregates, rather than by the specific features of each indi-

vidual sequence, like the intrinsic curvature of dodecamers, the end-to-end arrangement, the

A- or B-form of duplexes, or the possible presence of supra-helicity.

Our calculations, while ruling out a direct effect of the sequence on the chirality of in-

termolecular interactions, suggest that a possible reason for the differences in handedness,

experimentally observed between dodecamers, might be a different role of steric and electro-

static interactions. Interestingly, this role changes with the concentration of oligonucleotides,
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as shown in Figure 5.6, which shows the chiral strength, k2, along with the individual steric

and electrostatic contribution, calculated for a cholesteric phase formed by aggregates of nine

all-AT dodecamers, as a function of their concentration (at T = 293 K). The two contributions

to k2 have opposite sign and different dependence on concentration: The net result is that

k2, which is positive at lower NA density (electrostatic dominates), lowers with increasing

concentration and eventually changes its sign (excluded volume dominates). A dependence

of both contributions on the square of concentration derives from the excluded volume

approximation and the mean-field form of the electrostatic term. Some further increase of

both terms with concentration is due to the increase of order parameters. Another significant,

though often disregarded, consequence of the increase of concentration is the raise of ionic

strength, which implies an increase of charge screening, and then a decrease of the relative

weight of the electrostatic term. As a result, the relative magnitude of the steric and the

electrostatic contribution changes with increasing concentration, in favour of the former. In

Figure 5.6 we have reported also the ionic strength, calculated for salt-free solutions with

monovalent counterions according to the expression I = (c/Mbp)δ, where c is the oligomer

concentration, Mbp is the molar mass of a base pair and δ is the fraction of uncompensated

charge. In our calculations was taken equal to 0.24 [14], according to a simple estimate based

on the Manning condensation theory [32].

The results shown in Figure 5.6 point to a change of cholesteric handedness, from left-

handed to right-handed, on increasing concentration of all-AT oligomers. Experimentally

this change of handedness was not observed for this system, which undergoes a transition

to a columnar phase at a concentration lower that 1000 mg/mL [6]. In fact, our calculations

were performed for a hypothetical cholesteric phase of all-AT aggregates, without checking

its stability against that of more ordered phases. Interestingly, a change of handedness was

reported, from L below about 650 mg/ml, to R above this value, for one of the sequences

exhibiting the N∗ phase over a broad range [8]. We did not perform calculations for such

a sequence, for the lack of structural information. However the trend shown in Figure 5.6,

which depends mainly on the surface charge density, rather than on specific details, must be

a general behaviour for all NA sequences.

As a final remark, we want to stress that the results reported in Figure 5.6 cannot be

taken too strictly in quantitative sense, due to the several limits of the available model: The

most questionable issues are the neglect of the concentration dependence of aggregation,

the adoption of the second virial approximation, which is certainly inadequate at high

concentration, and the simple modelling of electrostatics. In our opinion a suitable description

of the interactions between polyelectrolytes at very high concentration is a crucial issue for

the systems under investigation, as discussed below.

5.3.3 Proposed origin of chirality inversion

As a result of our study, we propose that the sequence of dsNA dodecamers affects the

cholesteric handedness in an indirect way, by controlling the concentration at which the
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Figure 5.6: Chiral strength k2 calculated for the cholesteric phase formed by aggregates of nine all-AT
dodecamers (solid); also the steric and the electrostatic contributions are shown (short
dashes). The ionic strength I is determined on the basis of the concentration of free
monovalent counterions.

IN transition occurs. At lower concentration, the system would behave as expected for a

polyelectrolyte solution where, in addition to steric repulsions, electrostatic interactions play

a role. Under these conditions, dsNA dodecamers would form a left-handed N∗ phase. At

extremely high concentration, a more unusual regime would emerge, where the behaviour

of the system can be simply described in terms of excluded volume interactions. In this

case a right-handed N∗ phase would be formed. Inspection of the experimental data of

cholesteric handedness and concentration at the IN transition, shows that the change of

handedness can be located around 650 mg/ml [8]. It is worth noticing that the range 600-800

mg/mL is close to the typical concentrations in highly hydrated crystals of oligonucleotide

duplexes [22]. This regime of very high density, at which the spacing between the surface

of duplexes may reach a few water layers, remains poorly understood. Studies of osmotic

pressure as a function of the inter-axial distance, for solutions of dsDNA, revealed a change

of DNA-DNA interactions below about 3 nm (i.e. concentrations higher than about 450

mg/mL) [36]. The electric double layer theory, that holds at longer distances, cannot explain

the experimental behaviour when helices are in close proximity: In the case of multivalent

ions even a turn from repulsive to attractive interactions is observed [37], whereas in the

presence of monovalent ions steeply increasing repulsions, independent of the ionic strength,

were detected, those nature is controversial. Hydration forces, associated with the energetic

cost of removing bound water from molecular surfaces, were invoked [36]. Alternatively,

it was proposed that very short range repulsions would derive from image charge forces,

originating from the difference of dielectric constant between water and DNA core [10]. It

was also claimed that the peculiar behaviour at very short distances could be accounted for

by a proper description of ion mediated forces between polyelectrolytes, without the need
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that other kinds of interactions come into play [38]. We think that the puzzling behaviour of

the N∗ handedness found for oligonucleotides may be another evidence of the breakdown of

the double layer theory for dsNAs at very short distances. Our results reported here suggest

that the forces between helices at very high concentrations have the same dependence on

mutual orientation as steric repulsions. Further investigation is needed to ascertain the real

nature of these interactions and we believe that the study of the cholesteric organization can

provide new insights on this topic.

5.4 Conclusions

According to our calculations neither the changes in shape, nor those in the helicity of

the charge distribution, due to the different sequence, are able to induce the inversion of

cholesteric handedness observed experimentally for NA dodecamers. On the other hand,

these changes may have profound effects on the location of the IN phase transition. Unfortu-

nately at the present stage we are not able to provide an exhaustive account of the relationship

and of the behaviour of systematic investigation. However, on the basis of our results we

propose that the sequence determines the cholesteric handedness by dictating the stability

region of the N∗ phase: The switch from left- to right-handed would reflect a general change

of interactions occurring under very high concentration. The extreme sensitivity of chirality

to subtleties on the molecular scale, combined with the chirality amplification, promoted by

the liquid crystal elasticity, would bring to the micrometer scale a change otherwise difficult

to highlight. The high concentration regime appears as particularly intriguing: These are con-

ditions hard to characterise, both experimentally and theoretically, but extremely interesting,

since highly dense NAs are usually found within cells and viruses. For the latter, inter-axial

distances between 2.4 and 2.8 nm are reported [39], which are close to the values in the N∗

phases studied.



Chapter 6

LC phases of oligonucleotides:
Coupling of order and aggregation

In this Chapter, we present a theoretical model for the cholesteric phase formed by self-

assembling helical particles, which integrates the theory for cholesteric order presented in

Chapter 3 with that for linear aggregation in the nematic phase [16]. The model is applied to

the liquid crystal phases formed by DNA oligomer considering two sequences reported in

Chapter 5.

6.1 Theory

6.1.1 Free energy of the system

The system under investigation is a cholesteric phase formed by a polydisperse mixture of

linear aggregates. Each aggregate is formed by l monomers (1 ≤ l ≤ ∞); the total number of

monomers is N, v0 is the volume of a monomer and V the total volume. Therefore ρ = N/V
is the number density and φ = ρv0 is the volume fraction of monomers. The Helmholtz free

energy of the system is written as [16, 17]:

A
kBTV

=
∞

∑
l=1

ν(l){ln[v0ν(l)]− 1}+ G(φ)

2

∞

∑
l=1
l′=1

ν(l)ν(l′)vexcl(ll′)

− ∆Ab

kBT

∞

∑
l=1

(l − 1)ν(l) +
∞

∑
l=1

ν(l)σ0(l)

(6.1)

where kB denotes the Boltzmann constant and T the temperature. The first term in eq. (6.1)

The first term in eq. (6.1) represents the ideal gas contribution; ν(l) is the chain length

distribution of aggregates of scaled length l, which is normalized such that ∑∞
l=1 lν(l) = ρ.

The second term accounts for excluded volume interactions between aggregates; vexcl(ll′)
is the excluded volume of a pair of aggregates of scaled lengths l and l′, integrated over all

their relative orientations as defined below, and G (φ) is the Parsons-Lee factor (see eq. (2.12))

[40–42]. The third term accounts for the stacking free energy which is parametrized in terms

69
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of the free energy gain associated to the formation of a bond between a pair of duplexes,

−∆Ab [16]. The last term is the orientational entropy and σo(l) is the loss of entropy due

to orientational order for an aggregate of scaled length l in the cholesteric phase [43]. We

considered the second limit. Eq. (6.1) is reduced to eq. (2.2).

6.1.2 Orientational distribution function

As already discuss in Chapter 3, due to the large scale of the cholesteric pitch compared

to the molecular size, the orientational distribution of aggregates with respect to the local

director can be assumed to be the same as in the corresponding nematic phase with uniform

director. Thus, this is expressed as fl(û · n̂(R)), where û is a unit vector parallel to the axis of

the aggregates and n̂(R) is a unit vector parallel to the director at the position R.

6.1.3 Excluded volume contribution

The excluded volume term in eq. (6.1), relative to a pair of aggregates of scaled lengths l and

l′, is given by:

vexcl(ll′) = − 1
V

∫
dR1dR2dΩ1dΩ2 ell′

12(R12, Ω12) fl(û1 · n̂(R1) fl′(û2 · n̂(R2)) (6.2)

where Ri is the vector position of the i aggregate, R12 = R2 − R1 is the relative position and

Ω12 the relative orientation of 2 with respect to 1, and ell′
12 is the Mayer function defined in eq.

(2.6).The reference frames and transformations are summarized in Figure 6.1.

Figure 6.1: Definition of reference frames and transformations.

Starting from eq. (6.2) which contains the director, n̂, as a function of its position, the

elastic contributions to the free energy can de derived using a Taylor expansion of the

orientational distribution function with respect to the position. This derivation is more general

than that presented in Chapter 3, because it can be used for any form of the orientational

distribution function:

fl(û·n̂(R + δR))≈ fl(û · n̂(R)) + δRJ∇J fl(û · n̂(R)) +
1
2

δRI δRJ∇I∇J fl(û · n̂(R))

≈ fl(û·n̂(R))+δRJ ḟlK∇J(û · n̂(R))K+
1
2

δRIδRJ∇I ḟlK∇J(û · n̂(R))K

(6.3)
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where the Einstein convention is used for summations over repeated indices. Here ḟl is

the vector of the first derivatives of the function fl with respect to its argument, ḟl X =

∂ fl(. . .)/∂(. . .)X, calculated in R. Using eq. (6.3) to express the orientational distribution

function of particle 2 as a function of the director at the position of particle 1, eq. (6.2) can be

rewritten as:

vexcl(ll′) = − 1
V

∫
dR1dR12dΩ1dΩ2 ell′

12(R12, Ω12) fl (u1 · n̂(R1)) fl′ (u2 · n̂(R1))

− 1
V

∫
dR1dR12dΩ1dΩ2 ell′

12(R12, Ω12) fl (u1 · n̂(R1)) R12,J ḟl′K∇J (u2 · n̂(R1))K∫
dR12dΩ1dΩ2 ell′

12(R12, Ω12)R12,I R12,J ḟl M∇I (u1 · n̂(R))M ḟl′K∇J (u2 · n̂(R))K

(6.4)

The last term has been obtained by integrating by parts and neglecting the surface term,

which is not relevant if we are interested in bulk properties. In a local frame with the Z-axis

parallel to the local director and the Y-axis parallel to the axis of the cholesteric helix, the

director field is a function of only the Y coordinate, according to:

n̂(R) = cos(qY)Ẑ + sin(qY)X̂ (6.5)

where q is the helix wavenumber. For small displacements on the length scale of the helical

pitch, we can approximate:

n̂(R) ≈ Ẑ + qYX̂, (6.6)

and using this expression eq. (6.4) can be written in the form:

vexcl(ll′) = vexcl
0 (ll′) + qvexcl

1 (ll′) +
q2

2
vexcl

2 (ll′) (6.7)

where the first term represents the contribution of the undeformed Nematic phase:

vexcl,ll′
0 =

∫
dΩ1dΩ2 M0 (Ω1, Ω2) fl

(
u1 · Ẑ

)
fl′
(
u2 · Ẑ

)
; (6.8)

the second is a chiral contribution:

vexcl,ll′
1 =

∫
dΩ1dΩ2 M1 (Ω1, Ω2) fl

(
u1 · Ẑ

) [
ḟl′
(
u2 · Ẑ

)
· u2 · X̂

]
, (6.9)

and the latter term accounts for the elastic restoring torque:

vexcl
2 (ll′) = −

∫
dΩ1dΩ2 M2 (Ω1, Ω2)

[
ḟl
(
û1 · Ẑ

)
· û1 · X̂

] [
ḟl′
(
û2 · Ẑ

)
· û2 · X̂

]
(6.10)

These expressions contain the moments Mk:

Mll′
k (Ω1, Ω2) =

∫
vexcl(ll′)

dR12 Yk
12 (6.11)

where the integral is over vexcl , the volume excluded to 2 in the orientation Ω2 by 1 in the

orientation Ω1.
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6.1.4 Free energy of the cholesteric phase

Using the results reported in the previous sections, the free energy eq. (6.1) can be expressed

in the same form of eq. (3.1) as:

A
V

=
Au

V
+ qk2 +

q2

2
K22 (6.12)

where
Au

V
is the free energy density of the undeformed nematic phase:

Au

VkBT
=

∞

∑
l=1

ν(l){ln[v0ν(l)]− 1}+ G(φ)

2

∞

∑
l=1
l′=1

ν(l)ν(l′)vexcl
0 (ll′)

− ∆Ab

kBT

∞

∑
l=1

(l − 1)ν(l) +
∞

∑
l=1

ν(l)σ0(l);

(6.13)

k2 is the chiral strength:

k2 =
kBTG(φ)

2

∞

∑
l=1
l′=1

ν(l)ν(l′)vexcl
1 (ll′), (6.14)

and K22 is the twist elastic constant:

K22 =
kBTG(φ)

2

∞

∑
l=1
l′=1

ν(l)ν(l′)vexcl
2 (ll′) (6.15)

Then the cholesteric wavenumber is given by:

q = − k2

K22
= −

∞

∑
l=1
l′=1

ν(l)ν(l′)vexcl
1 (ll′)

∞

∑
l=1
l′=1

ν(l)ν(l′)vexcl
2 (ll′)

(6.16)

Unlike the twist elastic constant and the chiral strength, it does not explicit depend on tem-

perature and density. However these parameters affect the length distribution of aggregates

and the orientational distribution function in the expressions for vexcl
1 (ll′) and vexcl

2 (ll′).

The free energy eq. (6.1) is a functional of the orientational distribution function, fl(û ·
n̂(R) , and the chain length distribution of aggregates, ν(l). At a given monomer density,ρ,

the equilibrium state is obtained by functional minimization of the free energy.

6.2 Computational procedure

It is convenient to assume for the orientational distribution function and the chain length

distribution a given functional form, in terms of a number of parameters which are used as

variational parameters in the minimization of the free energy.
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As proposed in Ref.[16], we have assumed that the chain length distribution ν(l) is

exponential with an average chain length M:

ν(l) = ρM−(l+1)(M− 1)l−1 (6.17)

where

M =

∞

∑
l=1

lν(l)

∞

∑
l=1

ν(l)
(6.18)

For the orientational distribution function, we have assumed the simple Onsager form

[34]:

fl(cos βi) =
αN

l

8π2 sinh αN
l

cosh(αN
l cos βi) (6.19)

where αN
l is a parameter related to the degree of orientational order (αN

l > 0 for calamitics and

αN
l = 0 in the isotropic phase), which is taken as a variational parameter for the free energy

minimization. This distribution function is normalized as
∫ 1
−1 d(cos βi) fl(βi) ' 1/4π2. The

parameter αN
l is uniquely related to the order parameter 〈P2〉l , defined as:

〈P2〉l ≡ 4π2
∫ 1

−1
d(cos βi) fl(βi)P2(cos βi) ≈ 1− 3/αN (6.20)

where P2 is the second-order Legendre polynomial and the approximate holds in the limit

αN → ∞.

For simplicity, in calculations the length dependence of the parameter controlling the

orientational distribution function, eq. (6.19), was neglected: αN
l = αN [16].

6.2.1 Length dependence of excluded volume contributions

To obtain a manageable form of the free energy, the chiral strength and the twist elastic

constant, it is convenient to express the excluded volume contributions appearing in eq.

(6.13),(6.14), (6.15) in polynomial forms with respect to the scaled length l. Assuming the

same form as for cylinders [34], the contribution in eq. (6.13) in the isotropic phase is written

as:

vexcl
0 (ll′) = 2BI X2

0 l l′ + 2v0k I
l + l′

2
(6.21)

where X0 is the aspect ratio of the monomers and BI (with the dimension of a volume) and k I

are determined by the geometry of the particles (length and diameter in the case of cylinders).

In the nematic phase, using the form of the orientational distribution function, eq. (6.19), we

can write:

vexcl
0 (ll′, αN) = 2BN(α

N)X2
0 l l′ + 2v0kN(α

N)
l + l′

2
(6.22)

where BN and kN are function of the parameter αN which controls the width of the angular

distribution.
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For the excluded volume contributions appearing in eq. (6.14) and (6.15) there is no ana-

lytical expression. A polynomial form has been obtained by fitting the values of vexcl
1 (ll′, αN)

and vexcl
2 (ll′, αN) calculated for different scaled lengths. The results will be reported in the

Section 6.5.

6.2.2 Expressions for the free energy Au

Assuming the chain length distribution reported in eq. (6.17) and using eq. (6.21), the free

energy eq. (6.13) in the isotropic phase becomes:

βAI
u

V
= −ρ

∆Ab

kBT
(1−M−1) + G(φ)

[
BI X2

0 +
v0k I

M

]
ρ2 +

+
ρ

M

[
ln
(v0ρ

M

)
− 1
]
+ ρ

M− 1
M

ln(M− 1)− ρ ln M. (6.23)

If we use (6.22), we obtain the free energy in the nematic phase:

βAN
0

V
= σ̂o − ρ

∆Ab

kBT
(1−M−1) + G(φ)

[
BN(α

N)X2
0 +

v0kN(α
N)

M

]
ρ2 +

+
ρ

M

(
ln
[v0ρ

M

]
− 1
)
− ρ ln M + ρ ln(M− 1)

M− 1
M

(6.24)

where σ̂o ≡ ∑l σo(l)ν(l).

6.2.3 Determination of isotropic-to-nematic phase coexistence

The phase coexistence is determined by minimizing the free energy Au with respect to

the parameter αN , eq. (6.19) and to the average chain length M, under the conditions of

mechanical and chemical equilibrium between the two phases. The following set of equations

have to be satisfied:

∂AI
u(ρI , MI)

∂MI
= 0

∂AN
u (ρI , MN , αN)

∂MN
= 0

∂AN
u (ρI , MN , αN)

∂αN = 0

PI(ρI , MI) = PN(ρN , MN , αN)

µI(ρI , MI) = µN(ρN , MN , αN)

(6.25)

where the indices I and N refer to the isotropic and nematic phase, respectively.
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6.3 Computational details

Introducing the expression of the orientational distribution function, eq. (6.19), into eqs.

(6.8)-(6.10) we obtain:

vexcl
0 (ll′) =

αN2

64π4(sinh αN)2

∫ 1

−1
d(cos β1) cosh(αN cos β1)

×
∫ 1

−1
d(cos β2) cosh(αN cos β2)

×
∫ 2π

0
dα1

∫ 2π

0
dα2

∫ 2π

0
dγ1

∫ 2π

0
dγ2 Mll′

0 (Ω1, Ω2)

(6.26)

vexcl
1 (ll′) =

αN3

64π4(sinh αN)2

∫ 1

−1
d(cos β1) cosh(αN cos β1)

×
∫ 1

−1
d(cos β2) sinh(αN cos β2)

×
∫ 2π

0
dα1

∫ 2π

0
dα2 cos α2

∫ 2π

0
dγ1

∫ 2π

0
dγ2 Mll′

1 (Ω1, Ω2)

(6.27)

vexcl
2 (ll′) = − αN4

64π4(sinh αN)2

∫ 1

−1
d(cos β1) sinh(αN cos β1)

×
∫ 1

−1
d(cos β2) sinh(αN cos β2)

×
∫ 2π

0
dα1 cos α1

∫ 2π

0
dα2 cos α2

∫ 2π

0
dγ1

∫ 2π

0
dγ2 Mll′

2 (Ω1, Ω2)

(6.28)

The computational cost of the sixfold integrals in eqs. (6.26)-(6.28) scales with the product

of the number of interaction sites in each of the two aggregates, and can become unfeasibly

high for longer aggregates. To put then in more manageable form, it is convenient to make

the change of variables Ω2 → Ω12. Then, eq. (6.26) takes the following form:

vexcl
0 (ll′) =

1
8π2

∫ 2π

0
dα12

∫ 1

−1
d(cos β12)

∫ 2π

0
dγ12Mll′

0 (Ω12) (6.29)

in the isotropic phase, whereas in the liquid crystal phase it becomes:

vexcl
0 (ll′) =

αN2

32π3(sinh αN)2

∫ 2π

0
dα12

∫ 1

−1
d(cos β12)

∫ 2π

0
dγ12Mll′

0 (Ω12)

×
∫ 1

−1
d(cos β1) cosh(αN cos β1)

∫ 2π

0
dγ1 cosh(αN g)

(6.30)

where

g(α12, β12, γ1, β1)=−cos γ1 sin β1 sin β12 cos α12

+ sin β1 sin γ1 sin β12 sin α12 + cos β1 cos β12

. (6.31)

and

Ml,l′
0 (Ω12) =

∫
vexcl(ll′)

dR12

=(1/3)
∫ 1

−1
d(cos θ12)

∫ 2π

0
dφ12 (R0

12)
3.

(6.32)
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Here spherical coordinates are used, R12 ≡ {R12, φ12, ϑ12}, and R0
12 is the closest approach

distance of the two aggregates. Likewise, eqs. (6.27) and (6.28) become:

vexcl
1 (ll′) =

αN3

64π4(sinh αN)2

∫ 2π

0
dα12

∫ 1

−1
d(cos β12)

∫ 2π

0
dγ12Mll′

1 (Ω12)

×
∫ 2π

0
dα1

∫ 1

−1
d(cos β1) cosh(αN cos β1)

∫ 2π

0
dγ1h sinh(αN g)

(6.33)

vexcl
2 (ll′) = − αN4

64π4(sinh αN)2

∫ 2π

0
dα12

∫ 1

−1
d(cos β12)

∫ 2π

0
dγ12 Mll′

2 (Ω12)

×
∫ 2π

0
dα1 cos α1

∫ 1

−1
d(cos β1) sinh(αN cos β1)

∫ 2π

0
dγ1h sinh(αN g)

(6.34)

where

h(α12, β12, γ1, α1, β1)=sin β12 cos α12(cos α1 cos β1 cos γ1 − sin α1 sin γ1)

− sin β12 sin α12(cos α1 cos β1sin γ1 + sin α1cos γ1)

+ cos β12 cos α1 sin β1.

(6.35)

Ml,l′
1 (Ω12) =

∫
vexcl(ll′)

dR12(R12,xeY
x + R12,yeY

y + R12,zeY
z )

=(1/4)
∫ 1

−1
d(cos θ12)

∫ 2π

0
dφ12 (R0

12)
4

[sin θ12 cos φ12(sin α1 cos β1 cos γ1 +cos α1 sin γ1)

+ sin θ12 sin φ12(− sin α1 cos β1 sin γ1 + cos α1 cos γ1)

+ cos θ12 sin α1 sin β1]

(6.36)

Ml,l′
2 (Ω12) =

∫
vexcl(ll′)

dR12(R12,xeY
x + R12,yeY

y + R12,zeY
z )

2

=(1/5)
∫ 1

−1
d(cos θ12)

∫ 2π

0
dφ12 (R0

12)
5

[sin2 θ12 cos2 φ12(sin α1 cos β1 cos γ1 +cos α1 sin γ1)
2

+ sin2 θ12 sin2 φ12(− sin α1 cos β1 sin γ1 + cos α1 cos γ1)
2

+ cos2 θ12 sin2 α1 sin2 β1 + 2 sin2 θ12 cos φ12 sin φ12

× (sinα1cosβ1cosγ1+cos α1 sin γ1)(−sinα1cosβ1sinγ1+cosα1cosγ1)

+ 2 sin θ12 cosφ12 cosθ12(sinα1 cosβ1 cosγ1+cosα1sinγ1) sin α1 sin β1

+ 2 sinθ12sinφ12 cos θ12(−sinα1 cosβ1 sinγ1+cosα1 cosγ1)sinα1sinβ1]

(6.37)

The integrals in eqs. (6.30), (6.33) and (6.34) are the sum of terms, each having have the

general form: ∫ 2π

0
dα12

∫ 1

−1
d(cos β12)Ξ(α12, β12; αN

l , αN)H(α12, β12) (6.38)

where Ξ represents a threefold integral over the {α1, β1, γ1} angles and contains the whole

dependence on the αN
l , αN parameters, whereas

H(α12, β12) =
∫ 2π

0
dγ12

∫ 2π

0
dφ12

∫ 1

−1
d(cos ϑ12)F(α12, β12, γ12, φ12, ϑ12) (6.39)
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Calculation of the Ξ integrals is fast, so can be easily repeated for different values of αN
l , αN ;

the H integrals, implying the evaluation of the interactions between aggregates, are much

more demanding and their cost increases with the lengths of the aggregates. The two kinds

of contributions can be computed separately for different values of the α12, β12 angles, and

are then collected. The Gauss quadrature algorithm [44], with integration points and weights

determined by the zeros of the Legendre polynomials (for θ12, β12 and β1) and the Chebyshev

polynomials (for α12, φ12, α1) has been used. Integration over the γ12 and γ1 angles has been

performed using the Romberg method [44], which allows a non-uniform spacing of abscissas.

6.4 Linear aggregates of dsDNA

Calculations were performed for DD and all-AT dodecamers with the self-complementary

sequences listed in Table 5.1. We used the same models of linear aggregates and CG rep-

resentation described in Section 5.2. The geometric and energetic parameters needed for

calculations are reported below.

6.4.1 Geometric parameters

The geometric parameters present in the theory are the aspect ratio, X0, and the volume of

the monomers, v0. The definition of these parameters is not obvious in the case of complex

molecular structures, like those of DNA dodecamers.

We adopted the following procedure. We have calculated the volume and excluded

volume for aggregates of DD and all-AT dodecamers and we have mapped the results into

those for an equivalent cylinder. We have considered aggregates of l = 10, v10; the volume

was calculated using the procedure outlined in subsection 2.4.1 with a rolling sphere radius

equal to the size of a half base pair (rprobe = 1 nm). The excluded volume was evaluated

by integrating over all relative orientations of two aggregates. The geometric parameters of

the equivalent cylinder, aspect ratio and diameter, D, were then determined by solving the

following system of equation:
v10 =

π

4
D3lX0

vexcl
0 (ll′) =

π2

8
D3 +

(
3

π

8
+

π2

8

)
2l2X0D3 +

π

2
l3X2

0 D3
(6.40)

The volume of the monomer is equal to v0 = v10/10. Table 6.1 shows the values of v0, X0 and

D obtained for all-AT and DD.

6.4.2 Stacking free energy

As reported in ref. [17], we assumed the following expression for ∆Ab

ln[∆Ab] =
1
β

(
ln

2D3

v0
+ ln(2)− 17.6769 + 4559/T

)
(6.41)
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Sequence v0 X0 D

all-AT 12.7234 2.3043 1.91568

DD 11.5864 1.94406 1.96509

Table 6.1: Volume, v0, aspect ratio, X0 and diameter, D, evaluated for monomers of all-AT and DD
dodecamers.

6.5 Results and discussion

6.5.1 Excluded volume contributions: Dependence on the scaled length and or-
dering

We have calculated the excluded volume contributions to the free energy, , vexcl
0 , chiral

strength, vexcl
1 , and the twist elastic constant, vexcl

2 , for aggregates of different scaled lengths

and different values of αN , using eq. (6.29), (6.30) (6.33) and (6.34), respectively. For each

contribution, a simultaneous fit to data was performed using an expansion of the functions of

αN that appear in each of them (kN , BN , in eq. (6.22) and other functions introduced below) in

powers of αN−1/2
[16]. In the following we will discuss the results obtained for vexcl

1 and vexcl
2 .

Figure 6.2 shows vexcl
1 (ll) for all-AT and DD. The values of vexcl

1 (ll) are negative and

increase with increasing scaled length and increasing αN , i.e. increasing order. At given αN

and scaled length, the contribution for DD is greater than for all-AT, which can be ascribed to

the different chirality of aggregates. The following equation was used for fitting:

vexcl
1 (ll′)(αN) = κ1(α

N)v0
l + l′

2
+A1(α

N). (6.42)

where κ1 and A1 are functions of the parameter αN . The linear dependence on aggregate

length reflects the local character of chiral interactions between pairs of aggregates. Actually,

figure 6.2 shows that for DD there are larger deviations from this linear dependence.

Figure 6.3 shows the excluded volume contribution to the twist elastic constant .We can

observe that vexcl
2 increases with increasing both l and αN , and the l dependence is highly

non-linear. In this case, the following form was used for fitting:

vexcl
2 (ll′)(αN) = ll′

[
B2(α

N)X2
0 ll′ + κ2(α

N)v0
l + l′

2
+A2(α

N)

]
(6.43)

where B2, κ2 andA2 are functions of the parameter αN . For the same αN and l, the contribution

evaluated for all-AT is nearly twice as big as that for DD: This can traced back to the higher

aspect ratio of all-AT (see Table 6.1).

6.5.2 Temperature and concentration dependence of the average chain length

An important parameter in the coupling of order and self-assembly is the average aspect ratio,

MX0. Minimization of free energy with respect to M yields, after dropping terms inO(1/M2)
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Figure 6.2: Average excluded volume contribution to the chiral strength, vexcl
1 , calculated for all-AT

(left) and DD (right) aggregates for different values of αN as a function of the scaled length,
l . Solid lines represent fitting curves The following values of αN were used: 20 (green), 15
(blue), 12 (red), 10 (black), 9 (cyan), 8 (magenta), 7 (dark yellow).

0 5 10 15 20
0

5

10

15

20

 

 

v 
ex

cl
2

 [x
10

5 nm
5 ]

l
0 5 10 15 20

0

2

4

6

8

10
 

 

v 
ex

cl
2

 [x
10

5 nm
5 ]

l

Figure 6.3: Average excluded volume contribution to the twist elastic constant, vexcl
2 , calculated for

aggregates of all-AT (left) and DD dodecamers (right) with different values of αN , as a
function of the scaled length, l. Solid lines represent fitting curves. The following values
of αN were used: 30 (green), 20 (red), 10 (blue).
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Figure 6.4: Average aspect ratio MX0 obtained for all-AT in the nematic as a function of the temper-
ature, T, at φ = 0.55, (left), and as a function of the volume fraction, φ, at T = 280 K
(right).

[16]:

M =
1
2

(
1 +

√
1 + αNφ exp

(
kN(αN)φG(φ) +

∆Ab

kBT

))
(6.44)

Thus, the average chain length is expected to increase with increasing volume fraction and

decreasing temperature. Figure 6.4 shows the dependence of the average aspect ratio, MX0,

upon the temperature (at fixed volume fraction) and upon the volume fraction (at fixed

temperature), obtained for all-AT in the nematic phase. The average number of dodecamers

is found to range from about 10 to more than 60 at low temperature and high volume fraction.

Similar results were obtained for DD.

6.5.3 Isotropic-to-nematic phase coexistence

Figure 6.5 shows the isotropic-nematic coexistence region in the MX0-φ plane, obtained for

DD and all-AT. In both cases, a clear re-entrant behaviour is observed. Similar results were

found for polymerizing superquadric particles and other model of short DNA duplexes [16,

17]. We can observe that the coexistence regions are quite similar for the two systems.

Figure 6.6 and 6.7 show the chiral strength and the twist elastic constant calculated in

the nematic phase along the coexistence curve for all-AT and DD, as a function of volume

fraction and temperature, respectively. We can observe a non-monotonic dependence of

both k2 and K22 which reflects the reentrance in the phase diagram. The trend of K22 can

be explained considering that vexcl
2 is strongly increasing function of the scaled length, thus

of MX0: Starting from low volume fraction and temperature, K22 first decreases and then

increases, as as also MX0 does. The steep increase at high volume fraction (high temperature)

is also determined the dependence on ρ2 in eq. (6.15).

Understanding the behaviour of k2 is not as obvious. This is determined by the local

character of the chiral hard-core interactions between a pair of molecules, which originates a

linear dependence of vexcl
1 on the scaled length. Just to illustrate this situation, we can compare
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Figure 6.5: IN coexistence in the average aspect ratio MX0 vs volume fraction φ plane, for all-AT (red
solid line, left) and DD (blue dashed line, right) dodecamer aggregates. Short dot lines
represent tie lines at different temperatures.

the limit cases of a system of N monomers and one of 2 polymer with l = N/2. The chiral

interactions are proportional to N2 in the first case, and to N in the latter. Hence, somehow

counterintuitively, the magnitude of k2 increases/decreases with decreasing/increasing the

average aggregation length (see Figure 6.6).

Figure 6.8 shows the cholesteric pitch calculated for aggregates of all-AT and DD as a

function of the volume fraction and the temperature, respectively. Experimental values of the

pitch for the cholesteric phase formed by DNA oligomers are of the order of magnitude of a

micron or smaller [8]. The results shown in Figure 6.8 are much longer and beyond the range

detectable by standard optical techniques. In the case of DD, cholesteric pitches comparable

with the experimental values are predicted in limited intervals of φ and T. Indeed in Figure

6.8 we can see some differences between all-AT and DD. In Chapter 5 we have already shown

that the duplex structure influences the properties of the cholesteric phase. Here we have

found that differences are amplified by the coupling of cholesteric order and self-assembly.

The non-monotonic behaviour of the pitch is especially interesting and, since the pitch is

an experimentally accessible quantity, in principle could be used to confirm the predicted

re-entrance in the phase diagram. Unfortunately, the predicted re-entrance of all-AT and

DD is located in a range of temperature and concentration which cannot be explored by

experimental measurements. However, our results suggest that the re-entrance might be

detectable for other geometry and the shape of aggregates.

6.5.4 Comparison with experiments

For a better comparisons with experimental data, it is convent to analyze results at fixed

volume fraction or temperature, rather than along the coexistence.
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Figure 6.6: Chiral strength, k2, along the coexistence curve, as a function of the volume fraction φ

(left) and of the temperature (right) for aggregates of all-AT (red solid line) and DD (blue
dashed line).

Figure 6.7: Twist elastic constant, K22, along the coexistence curve, as a function of the volume fraction
φ (left) and of the temperature (right) for aggregates of all-AT (red solid line) and DD (blue
dashed line).

Figure 6.8: Cholesteric pitch , along the coexistence curve, as a function of the volume fraction φ (left)
and of the temperature (right) for aggregates of all-AT (red solid line) and DD (blue dashed
line).
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Concentration dependence

Figure 6.9 and 6.10 show the chiral strength k2 as a function of the average aspect ratio, MX0,

and volume fraction, φ, respectively, obtained for all-AT and DD dodecamers at different

temperature. In the case of allAT, k2 decreases in modulus with increasing φ. This is related

to the increase of average chain length M according to eq. (6.44). The relation between k2

and M has already been discuss in subsection 6.5.3. Analogous results are obtained for DD,

with some deviation from this general trend only for M smaller than ≈ 15, which again can

be explained by considering the interplay of length dependence of the vexcl
1 and statistical

distribution of lengths. We can see that the oligomer structure has a strong effect on the chiral

strength: k2 is much larger for DD than for all-AT duplexes, which can be ascribed to the

higher structural chirality of the DD aggregates (see Figure 5.2).

Figures 6.12 shows the twist elastic constants K22of all-AT and DD at as a function of the

volume fraction. K22 is a function that strongly increases with increasing volume fraction and

decreasing temperature. Again, this behaviour is amenable to the increase in the average

chain length with increasing density (see Figure 6.11). The larger average chain length (M) is

also the reason for the larger K22 values predicted for all-AT compared to DD dodecamers.

Experimental values of the twist elastic constant are not available for DNA duplexes,

but typical values for cholesteric solutions of polymers are around some pN [45, 46]. The

results obtained for all-AT are all much higher, whereas for DD values of some micrometers

were obtained at volume fractions lower than ≈ 0.50, especially at the highest temperatures.

The reason for this discrepancy between theory and experiment must be the neglect of the

flexibility of aggregates, which are treated here as rigid particles. The persistence length of

linear aggregates of dodecamers is not known; however, taking as reference long DNA, for

which a persistence length of about 50 nm (≈ 150 base pairs) has been reported [47], we

expect that beyond l ≈ 10, K22 can be strongly overestimated if flexibility is neglected.

Figure 6.13 shows the dependence of the pitch upon concentration for all-AT and DD

dodecamers. In both cases the pitch increases with concentration, which is mainly due to the

increase of the twist elastic constant. With increasing concentration there is also a decrease

of the chiral strength, but this is a minor effect if compared to the huge change of K22. As

already obtained for aggregates of fixed length (see Chapter 5), a positive pitch (pitch > 0),

i.e. R cholesteric organization, is predicted for both sequences. For all-AT this is the opposite

of what found experimentally; moreover, the magnitude of the pitch is orders of magnitude

longer than the measured values [8]. On the contrary, for DD the positive pitch is in agreement

with the R handedness found in experiments. Moreover, for φ < 0.6, which corresponds to

the experimental range, the predicted pitch is relatively closer to the measured values: it is

about 10 times longer, an overestimate that is probably due to the modelling of aggregates

as stiff polymers. As discussed above, the introduction of some flexibility would lead to a

reduction of the twist elastic constant, thus an increase of the cholesteric pitch. The pitch

increases with concentration, as generally found in experiments [8]. Actually, in the case of

DD the experimental trend is not so clear, probably because of the limited range explored.
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Figure 6.9: Chiral strength k2 calculated for aggregates of all-AT (left) and DD (right), as a function
of the average aspect ratio MX0. Curves refer to different temperatures and start at the
isotropic-to-nematic transition.

0.45 0.50 0.55 0.60
-15

-10

-5

0

 

 

k 2 (
N

/m
)

 T = 275 K
 T = 280 K
 T = 300 K
 T = 310 K

0.45 0.50 0.55 0.60
-15

-10

-5

0
  T= 275 K
  T= 280 K
  T= 290 K
  T= 300 K
  T= 310 K

 

 

k 2 (
N

/m
)

Figure 6.10: Chiral strength k2 calculated for aggregates of all-AT (left) and DD (right), as a function
of the volume fraction, φ. Curves refer to different temperature and start at the isotropic-
to-nematic transition.
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Figure 6.12: Twist elastic constant K22 calculated for aggregates of all-AT (left) and DD (right) dode-
camers, as a function of the volume fraction, φ. Curves refer to different temperature and
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Figure 6.13: Cholesteric pitch calculated for aggregates of all-AT (left) and DD dodecamers (right), as
a function of the volume fraction, φ.Curves refer to different temperatures and start at
the isotropic-to-nematic transition.
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275 280 285 290 295 300 305 310
0

1000

2000

3000

4000

5000
  =0.5
  =0.525
  =0.55
  =0.575
  =0.6

 

 

K
22

 (p
N

)

T (K)
275 280 285 290 295 300 305 310
0

1000

2000

3000

4000

5000
  =0.5
  =0.525
  =0.55
  =0.575
  =0.6

 

 

K
22

 (p
N

)

T(K)

Figure 6.15: Twist elastic constant, K22, calculated for aggregates of all-AT (left) and DD dodecamers
(right), as a function of the temperature, T. Curves refer to different values of volume
fraction, φ and start at the isotropic-to-nematic transition.

Temperature dependence

Figures 6.14 and 6.15 show the temperature dependence of the chirality strength and of

the twist elastic constant, calculated for all-AT and DD dodecamers. We can see that, with

increasing temperature, k2 increases in magnitude and K22 decreases, in line with the decrease

of the average chain length (see Figure 6.4). K22, exhibiting the more dramatic changes,

determines the temperature dependence of the pitch: We can see in Figure 6.16 that this is

predicted to decrease with increasing temperature, as generally found in experiment [8].

6.6 Conclusions

We have developed and implemented a theoretical framework for the study of the cholesteric

phase formed by self-assembling chiral monomers with purely steric interactions. This is
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Figure 6.16: Cholesteric pitch obtained for aggregates of all-AT (left) and DD dodecamers (right) as a
function of the temperature, T. Curves refer to different values of volume fraction, φ and
start at the isotropic-to-nematic transition.

obtained by integrating the theory for cholesteric order with that for linear aggregation in the

nematic phase. This is the first approach that, taking into account the interplay of aggregation

and orientational order, allows us to analyze the temperature and concentration dependence

of the cholesteric properties.

Here the theory has been applied to DNA dodecamers, for which experimental data are

available [8]. In particular, we have focused on two self-complementary sequences denoted

as all-AT and DD, which form duplexes with different geometry (see Chapter 5), and we have

been able to determine how the structural features affect the cholesteric properties. We have

found that the liquid crystal organization promotes aggregation: The average chain length

jumps from very few units to around ten units at the isotropic-to-nematic phase transition,

and then steadily increases with the orientational order, reaching values close to one hundred

at high ordering. The material properties that control the cholesteric structure are the chiral

strength, k2, and the twist elastic constant, K22, which are differently affected by the molecular

structure: The latter is mainly determined by the aspect ratio, whereas the former depends

on the molecular chirality. The systems under investigation differ in both: DD is thicker and

shorter than all-AT and has more pronounced chirality (see Figure 5.2). We have found that

aggregation amplifies the differences between the two systems: under analogous conditions,

higher twist elastic constant are predicted for all-AT, due to the higher aspect ratio of its

aggregates. On the other hand, DD aggregates lead to higher chiral strength, which results

from the combination of the intrinsic chirality of duplexes with a chiral superstructure. The

final result is that a much smaller cholesteric pitch is predicted for DD. Yet, it is about ten

times higher than the experimental value. The reason of this discrepancy can be ascribed

to the neglect of flexibility. K22 scales with the fourth power of the length for stiff rod-like

particles, but the introduction of a persistence length would prevent the increase beyond a

certain value. For all-AT a pitch that is orders of magnitude longer than typical experimental

values is obtained, mainly because of the huge elastic constant, amenable to the high aspect
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ratio of all-AT aggregates. Flexibility is expected to play an even higher role for this system.

The coupling of aggregation to order does not affect the cholesteric handedness: For

both all-AT and DD we predict a right-handed cholesteric phase. This is in agreement with

experiment for DD, but not for all-AT [8]. As discussed in Chapter 5, purely steric interactions

are probably insufficient to explain the behaviour of all-AT duplexes.
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Self assembly of porphyrin-peptide
conjugates
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PEPTIDES and porphyrins are excellent building blocks for the self-assembly of supramolec-

ular nanoarchitectures [1–5]. Their conjugation appears promising for the design of

new nanostructured materials for photo-electronic applications and chirality may

play a role in controlling self-assembling. Porphyrins are not chiral, but is well known that

they can be lead to chiral structures, not only by chiral substituents, but also by chiral seeds

present in the environment or by physical agents [4]. Ionic porphyrins preferentially self-

assemble in J-aggregates, characterised by a head-to-tail arrangement of the monomeric units,

which exhibit a characteristic UV-Vis spectrum, with a bathochromic shift: In the presence of

chiral seeds they exhibit also a specific Circular Dichroism (CD) signal [6]. The behaviour of

non-ionic porphyrins has been less investigated. Also in this case the chemical nature and the

size of the substituents are important, but the control of the aggregate structure is awkward

and mixtures of different aggregates are often found [7].

We have studied the behaviour of conjugates between 5-(4’-carboxyphenyl)-10,15,20-

triphenylporphyrin (TPP) and the peptide [Leu21] Magainin (GIGKFLHSAKKFGKAFVGEIL

NS) in water solutions. These systems have been synthesized and characterized in the

group of Professor Gobbo (Università degli Studi di Padova). The behaviour of this system

in aqueous solution suggested the formation of aggregates, which was then confirmed by

UV-Vis spectroscopy and Dynamic Light Scattering. Very interesting results were obtained

by Circular Dichroism (CD) measurements. To get insights into this behaviour we have

performed Molecular Dynamics simulations using two different models, all atom (see Chapter

8) and coarse-grained (see Chapter 9). In the next Chapter 7, some concepts of CD that will

be useful to introduce and the experimental results will be recalled and the the state of the

art of the aggregation of porphyrins in solution will be summarized.





Chapter 7

Porphyrin-peptide conjugates

7.1 Circular dichroism

Circular dichroism (CD) is defined as the difference

∆A = AL − AR (7.1)

where AL and AR are the absorbances of left and right circularly polarized light, respectively

[8]. For historical reasons, CD is also measured as ellipticity Θ (in angular units), 1, related to

∆A by the following relation Θ(mdeg) = ∆A3298. In analogy with Beer-Lambert law, one

can define a molar quantity, called molar circular dichroism, as:

∆ε = εL − εR =
∆A
cb

(7.2)

where c is the concentration expressed in molL−1 and b is the path length expressed in cm.

CD is different from zero only for chiral molecules or for molecules in a chiral environment,

and the signal has opposite sign for enantiomers.

The intensity of CD is related to the rotational strength, R, according to Rosenfeld

equation [8]:

Rba = Im(〈Ψa| µ̃ |Ψb〉 · 〈Ψb| m̃ |Ψa〉) = Im(µba ·mba) (7.3)

where Im means the imaginary part of the quantity in parentheses, µ̃ is the electric dipole

operator, m̃ is the magnetic dipole operator, Ψa and Ψb represent wavefunctions of the a
and b states respectively, µba and mba are the electric dipole and magnetic dipole transition

moment, respectively.

7.1.1 CD of dimers and aggregates

CD can be detected also for achiral chromophores arranged in a chiral way. Hence, when

two, or more, chromophores are close in space and have a proper mutual orientation, the

interaction between their transition dipoles is responsible for large rotational strengths and

1The ellipticity is defined as arctan(Iminor/Imajor), where Iminor and Imajor are the light intensities measured
through polarizers parallel to the minor and major axes of the optical ellipse.
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Figure 7.1: Splitting of two degenerate excited states of exciton-coupled chomophores.

the most significant contribution to CD arises when two (or more) chromophores with

strong electric-dipole allowed transition couple to each other (exciton coupling) [9–11].

As a consequence of this coupling the two otherwise degenerate excited states of equal

chromophores split into two levels separated by a quantity 2V12, called Davydov splitting

(see Figure 7.1). The potential V12 for the interaction between electric transition dipoles cab

be approximated in a Coulomb dipole-dipole form:

V12 =
µba(1)µba(2)

R3
12

[û1 · û2 − 3(û1 · û12)(û2 · û12)] (7.4)

where µba(1), µba(2), R12 are the intensities and mutual distance of the two transition dipoles ,

ûi are unit vectors parallel to the dipoles. The splitting of excited state reflects in a split or

broadened absorption band, centered around the wavelength transition λ0 of the isolated

chromophore. A bisignate CD couplet is generated around λ0 and allied with two opposite

non-vanishing rotational strengths:

R1,2 ∝ ±R12 · µba(1) ∧ µba(2) (7.5)

where the ± signs refer to symmetric and antisymmetric linear combinations of the excited

states of the two isolated chromophores. Therefore, the resulting CD couplet is determined

by the expression:

∆ε(λ) ∝ ±Γ(λ, λ0)V12 r12 · µba(1) ∧ µba(2) (7.6)

where Γ is a factor that takes into account the dispersive couplet line shape. CD depends

only on the quadruple product V12 R12 · µ1 ∧ µ2, hence the CD couplet intensity is directly

proportional to the fourth power of the transition dipole strength and inversely proportional

to the square of the interchromophoric distance. This quantity is extremely sensitive to the

relative geometry of the two chromophores. It will be zero if any two of the three vectors

(µba(1), µba(2), R12) are parallel or if all three vectors lie in the same plane. The sign of the

couplet is related to the mutual orientation of the transition dipoles through the vector

product : Upon looking through the centers of the two dipoles, a positive sign is defined

when a clockwise rotation by an acute angle brings the dipole in the front onto that in the

back. Therefore, a right-handed configuration corresponds to a positive CD couplet and

vice-versa.
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Figure 7.2: CD spectra of polylysine under conditions that cause the polypeptide to adopt α-helix
(filled circles), β-sheet (open circles), or random coil (triangles) structures. Reproduced
with permission from ref. [8]. Copyright 2009 Springer Publishing Company.

The measurement of the exciton couplet represents a sensitive method for determining

the absolute sense of twist between electric transition moments of interacting chromophores

and allows for nonempirical assignments of absolute configurations, provided there is no

conformational ambiguity. The configurational analysis based on CD exciton coupling,

known also as the exciton chirality method, has been applied to absolute configurational

assignments of a wide variety of compounds.

7.1.2 Applications

CD is widely used to study biological systems, such as proteins, polypeptides and nucleic

acids, and to investigate self-assembly and chiral molecules [8, 12]. Here. in particular, we

will recall the main feature of CD of peptide and porphyrins which have been studied in this

Thesis.

Circular dichroism of peptide

The CD of proteins between 190 and 230 nm arises primarily from coupled transitions of

multiple peptide groups. CD is very sensitive to the secondary structure of polypeptides and

proteins because the coupling depends strongly on the relative positions and orientations

of peptide groups. The utility of circular dichroism (CD) in studying the conformation of

polypeptides and proteins depends upon the possibility of correlating specific structures with

characteristic CD spectra [12–15]. Distinctive spectra (see Figure 7.2) have been described for

pure conformations such as the α-helix, β-sheets , β-turns, and also for the ‘random’ coil. A

common application of CD is the measurement of the extent or the rate of protein folding

and unfolding [16–19].

The α-helix is the dominant secondary structure in many proteins and has been extensively

studied. The CD spectra of α-helices are characterized by a positive peak at 192 nm and
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two negative peaks near 205 and 222 nm. The magnitude of the CD signals does vary with

variations in the helical geometry and has been concluded to depend on helix content.

The β-sheets are the second form of regular secondary structure and these may be parallel

or antiparallel and of different length and widths. The general characteristics of β-sheets

CD may be taken to be a negative band at about 215 nm and a positive band of comparable

magnitude near 195 nm [13].

β-turn is known as the element of protein secondary structure, consisting of at most three

residues, that approximately reverses the direction of the polypeptide chain. Approximately

a quarter of the residues in globular proteins fall into this structural group. CD spectra of

β-turn are characterized by a positive peak at 205 nm, a negative weak peak near 225 nm and

a strong negative band between 180 nm and 190 nm.

In an attempt to avoid the somewhat misleading implications of the label “random coil”,

Woody has coined the denomination “unordered conformation” [20]. However, when we

refer to random coils, we are generally grouping the parts of the folded protein that do not fit

into one of the previously discussed categories, which means that may be ordered structures

included. The net CD of these parts of the protein has a strong negative CD signal just below

200 nm, a positive band at about 218 nm in many systems, and perhaps a very weak negative

band at 235 nm.

Circular dichroism of porphyrins

CD has been used to characterize monoporphyrins and their aggregates. For example, CD

spectra are used to detect the presence of chiral guests (with achiral monoporphyrin host)

or for enantiomeric differentiation of chiral porphyrin hosts. In the case of two or more

interacting porphyrins, the exciton chirality method can be used for absolute configurational

assignments and for the determination of the geometry of chiral porphyrin assemblies.

It is known that porphyrins tend to exhibit π − π stacking leading to stable dimers ob-

served in solution and in crystal structures [21–24]. Several studies have been performed

on dimers of porphyrins and metalloporphyrins linked with flexible chains containing

a chiral substituent and their absolute configuration has been determined using the ex-

citon chirality method [25]. It has been found that the CD spectra change a function of

the length of the linker between the porphyrins [26]. Figure 7.3 (c) shows an example of

CD spectrum obtained for bisporphyrin L-lysine derivative, where the two amino groups

of X(NH2) and Y(CH2CH2CH2CH2NH2) moieties are derivatized by 5-(carboxyphenyl)-

10,15,20-triphenylporphyrin (TPP) The negative CD couplet (λ = 422 nm, ∆ε = −111) is

due to energetically favored intramolecular π− π stacked conformations with negative twist

[Figure 7.3 (b)].
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Figure 7.3: Bisporphyrin L-lysine derivative, 21, in its sterically favored (I) and unfavorable (II)
conformations. TPP= 5-(carboxyphenyl)-10,15,20-triphenylporphyrin. a: 1H NMR of 21 in
CDCl3 (lower). b: CD spectrum in hexane. Reproduced with permission from ref. [25].
Copyright 2000 Wiley-Liss, Inc.

7.2 Aggregation of porphyrins in solution

Porphyrin aggregates can be dived into two significant groups with different aggregation

behaviour: Ionic porphyrins with anionic or cationic peripheral group and non-ionic por-

phyrins that are water insoluble. The aggregates formed by ionic porphyrins depend of the

strategy used to remove the electrostatic repulsion between the peripheral groups.

In general, there are two main arrangements: Face-to-face (H-) and end-to-end (J). In

solution these exhibit distinct changes in the absorption band as compared to the monomeric

species. J-aggregates exhibit a bathochromic shift, i.e., a change of spectral band position

to a longer wavelength in the absorption, reflectance, transmittance, or emission spectrum

. H-aggregates exhibit a blue-shift in the spectrum. As explained in subsection 7.1.1, the

excitonic state of the dye aggregate splits into two levels through the interaction of transition

dipoles. A transition to the upper state in H aggregates having parallel transition moments

and to a lower state in head-to-tail arrangement (J aggregate) with perpendicular transition

moments leads to blue and red shifts, respectively [27].

Most studies deal with anionic porphyrins and metalloporphyrin assemblies. A remark-

able example of chiral aggregates is given by TPPS (tetrakis-sulfonium porphyrin) which have

been studied by different research group. TPPS is able to self-assemble into J-aggregates, de-

pending on the concentration, pH and ionic strength of its solution. Within these aggregates,
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Figure 7.4: Schematic structure of different kinds of porphyrin aggregates.

porphyrins are staked head-to-tail and are stabilized by electrostatic, hydrogen-bonding,

and dispersive interactions, and a variety of interesting structural features have been de-

scribed, going from nano- up to microsized rod [28–30], nanotubes [31–33] and fractal clusters

[34–38]. Purrello and co-workers have studied supramolecular chiral memory in porphyrin

assemblies, in particular they focused on achiral tetra-cationic (H2T4 and its planar metallo

derivatives, MeT4) and tetra-anionic porphyrins (H2TPPS) shown in Figure 7.5. Their aggre-

gates in pure water do not exhibit a CD signal in the region of absorbance of the porphyrins

[39–41]. However, addition of CuT4 and H2TTPS to an aqueous solution containing a chiral

templane (such as an amino acid or covalent/noncovalent amino acid polymers, like poly-L

or D-glutamate or phenylalanine) leads to chiral assemblies. Figure 7.5 shows an exam-

ple of CD spectra obtained in the presence of L- and D- phenylalanine [42]. These ternary

supramolecular species are remarkably stable, which allows them to “memorize” the chiral

information imprinted by the templane and to retain it even if the matrix is “disrupted” by

pH-induced conformational transitions or the amino acid is removed.

The aggregation type for non-ionic porphyrins seems to be a function of the nature

and size of their peripheral substituents, and in this case the control of the formation of a

particular aggregate is complex, since mixtures of different aggregate types are often found

[43]. Non-ionic porphyrins can arrange in J aggregates similar to those found by anionic

porphyrins in water solutions, such as TPPS [44].

In literature there are only few examples of conjugates of apolar porphyrins and the results

are difficult to understand and strongly dependent on the substituent of the porphryin. In

these studies, the substituent is usually an aminoacid or an alkyl chain or a glucosylated

steroid, and CD spectra were obtained by changing substitutuents and solvent composition.

Venanzi and co-workers have studied two glocosylated steroid-modified porphyrins with

various ring substitutions, Figure 7.6 shows an example of FBMGSP and FBDSGPFigure

7.7 shows their CD spectra for different solvent composition of water and dimethylsiloxane

(DMSO). Significant differences can be detected, which suggest a different morphologies for

the aggregates.

7.3 Porphyrin-peptide conjugates studied in this thesis

In this Thesis, we have studied the aggregation of porphyrin conjugate made of [Leu21]Magainin

(MAG) linked to TPP trough an amide group, which will be called TPP-MAG (see Figure 7.8
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Figure 7.5: Top: Schematic structure of H2T4, CuT4, H2TPPS, CuTPPS, H2TPyP. Reproduced with
permission from ref. [42]. Copyright 2007 Wiley-Liss, Inc. Bottom: CD spectra of aqueous
solutions of CuT4 (2 µM) and H2TPPS (2 µM) in the presence of (a) l-phenylalanine (8 µM)
and (b) D-phenylalanine (8 µM). Reproduced with permission from ref. [42]. Copyright
2007 Wiley-Liss, Inc.
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Figure 7.6: Chemical structure of FBDGS and FBMGSP. Reproduced with permission from ref. [45].
Copyright 2012 Royal Society of Chemistry.

Figure 7.7: CD spectra of FBDGS (top) and FBMGSP (bottom) in water-dimethylsiloxane (DMSO)
mixture. Reproduced with permission from ref. [45]. Copyright 2012 Royal Society of
Chemistry.
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Figure 7.8: Structure of the N-terminal end of the porphyrin-peptide conjugate (TPP-MAG).

and Table 7.1).MAG is an amphipatic polypeptide and Figure 7.9 shows the helical wheel 2

representation of MAG [46]: Hydrophobic aminoacids are mainly located on one side and

hydrophilic aminoacids on the other.

TPP-MAG has been synthesized and characterized in the group of Professor Marina

Gobbo (Università degli Studi di Padova). Figure 7.10 (a) shows UV-Vis spectra obtained for

different water/methanol mixtures. A severe broadening and a strong hypochromic effect

of the Soret band can be clearly observed (Figure 7.10). The red shifted UV-Vis absorption

suggests the formation of J-type aggregates. The formation of aggregates has then been

confirmed by Dynamic Light Scattering measurements. The CD spectrum of the peptide

(Figure 7.11 (a)) indicates a conformational change from random coil to helical structure

upon conjugation (see subsection 7.1.2 ). The CD spectrum in the porphyrin region of the

conjugate shows a typical and strong Cotton effect, which disappears on moving from water

to organic solvent, suggesting the formation of ordered chiral aggregates. This kind of Cotton

effect is observed when two porphyrins are close to each other in a chiral environment or

when they self-assemble in a chiral structure. The sign of the Cotton effect (see Figure 7.11

(b)) suggests a preferential right-handed twist between porphyrins [25]. The origin of this

behaviour is unknown, as unknown is the role of the peptide: The experimental findings do

not allow us to discriminate between different mechanisms, like simple pairing of porphyrins

driven by the side chains or formation of higher order aggregates; also unknown is the reason

for the mutual chiral arrangement of porphyrins. To get insight in this behaviour, we have

performed molecular dynamics simulation on TPP-MAG and in addition on TPP-GIGKF (see

Table 7.1)

2It is a type of visual representation used to illustrate alpha helices.
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Figure 7.9: Helical wheel representation of MAG [46]. The amino acid side chains are projected down
the alpha axis, orthogonal to the paper plane. As an ideal alpha helix consists of 3.6
residues per complete turn, the angle between two residues is chosen to be 100 degrees
and thus there exists a periodicity after five turns and 18 residues. Colors refer to different
types of aminoacids. Yellow: Non polar. Green: Polar or uncharged. Blue: Basic.

Figure 7.10: UV-Vis spectra of TPP-MAG obtained for water/methanol mixtures of different composi-
tion ( % volume).

Acronym Peptide sequence

TPP-MAG GIGKFLHSAKKFGKAFVGEILNS

TPP-GIGKF GIGKF

Table 7.1: Peptide sequence of the conjugates investigated in this Thesis.
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Figure 7.11: CD spectra of TPP-MAG in the peptide (a) and in the porphyrin region (b) detected in
water and organic solvents (2,2,2-trifluoroethanol, TFE, and sodium dodecyl sulfate, SDS).
The cartoon refers to the definition of the sign of the Cotton effect.

7.3.1 Methods

We performed Molecular Dynamics (MD) simulations (see Appendix B for details) using two

different models: All Atom (AA) and Coarse-Grained (CG). Simulations of single conjugates

in explicit and implicit solvent were carried out to study the interaction between porphyrin

and peptide. Then extensive studies of aggregates of the conjugates were performed. The

details of the systems and the results will be described in the Chapters 8 (AA) and 9 (CG).

To analyse the trajectories, we used standard tools available in the software packages. In

addition we developed home-made codes, to extract from trajectories information on the

chirality of the systems. In particular, suitable quantities, defined in the following, were

identified to characterize the chiral and structural properties of aggregates.

As a first chiral descriptor, we used the twist angle (τ) between a pair of adjacent por-

phyrins. We define a local frame of reference (LOC frame) with the origin in the center of

mass of porphyrin, the XY plane equal to the average porphyrin plane and the X-axis parallel

to the line connecting the center of mass with the carbonyl carbon of the amide (see Figure

7.12). The twist angle is the smaller angle between the directions of the X-axes of adjacent

porphyrins. The sign is positive for a clockwise rotation, and negative for anti-clockwise

rotation. 0◦ < τ < 90◦ and 0◦ > τ > −90◦ correspond to a right-handed (R) and to a

left-handed (L) arrangement, respectively (see Figure 7.13). This is the same convention

adopted in the chirality exciton method.

Another chiral descriptor (Υ) is defined as

Υ =
N−1

∑
i

µba(i)µba(i+1)

R3
ii+1

[ûi · ûi+1 − 3(ûi · ûii+1)(ûi+1 · ûii+1)]Rii+1 · µba(i) ∧ µba(i+1) (7.7)

where i and i + 1 are adjacent porphyrins, and the sum runs over all possible pairs of adjacent

porphyrins (N − 1). This descriptor is closely related to the observable in CD experiments,

eq. (7.6).

An important structural feature is the orientation of a peptide chain with respect to the
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Figure 7.12: Definition of the twist angle (τ).

Figure 7.13: Definition of left (L) and right (R) twist.

porphyrin to which it is linked. To define the orientation of the peptide, a vector c is used,

which connects the Cα of the first isoleucine to the Cα of the second phenylalanine. The

orientation of this vector is specified by two polar angles (θ, φ) in the LOC frame (see Figure

7.14).

Figure 7.14: Definition of the angles, θ and φ, that specify the orientation of the vector c (parallel to the
peptide chain) in the LOC frame (XYZ). The blue plate represents the porphyrin plane.



Chapter 8

Porphyrin-peptide conjugates: All
Atom simulations

In this Chapter, we present the computational details and the results obtained by all atom

(AA) simulations of aggregates of TPP-MAG and TPP-GIGKF.

8.1 Computational details

MD simulations were performed with AMBER force fields (see below) for the peptide chains

reported in Table 7.1 and complemented with force field parameters derived for the porphyrin

in [47] and the link between the porphyrin [48] and the polypeptide (a methylamide group)

and with DFT calculations to parameterize the atomic charges of the porphryin and the linker.

Both explicit and implicit solve were used.

8.1.1 Charge derivation

We use the RESP procedure, which is part of the AMBER10 package [49], to derive atomic

charges. Calculations were performed for a fragment consisting of TPP and the methylamide

group (Figure 8.1). Atomic coordinates of the the fragment were obtained by geometry

optimization using the DFT method, with B3LYP functional and 6-31G** basis set [50]. RESP

atomic charges were evaluated by fitting of the electrostatic potential, calculated by DFT at

the B3LYP 6-31G** level. Following the approach proposed in the original RESP paper by

Cornell et al. [51], we carried out RESP fits in two stages. In the first stage all atoms were

allowed to vary and then in the second one all equivalent hydrogen atoms were constrained

to have equal charge and refit.

8.1.2 Explicit solvent

Molecular dynamics simulations were performed with AMBER FF03 force field [52]. The

choice of the water model may be crucial to study the solvation and to compare the results

with experimental data. We took into account the following features: (i) the computational
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Figure 8.1: Fragment consisting of TPP linked to methylamide group.

Figure 8.2: Density of the sample ρ along the trajectory during pre-equilibration of TPP-MAG in
explicit water. The red line shows the configuration selected to start the equilibration run
in the NVT ensemble.

cost (for example, the TIP5P model [53] is very good, but is 2.5 times more expensive than

TIP3P [54] in terms of simulation time [55]); (ii) a good description of bulk properties of liquid

water at 298 K; (iii) literature data on the use of the model in combination with the adopted

force field. We focused on three site water models and we decided for TIP3P. Therefore,

the structure was soaked in a TIP3P water octahedral box with a margin of 14 Å (75.434,

75.434, 75.434 Å) and was then neutralized by adding counterions (4 Cl–) [54]. Periodic

boundary conditions (PBC) were used. The cut-off distance for non-bonded interactions

was 12 Å. Both for preparative rounds and production run, bond constraints were applied

to bonds involving H atoms using the SHAKE algorithm [56]. Electrostatic long range

interactions were evaluated with the particle-mesh Ewald method (PME) [57] with a cubic

spline approximation, a tolerance of 10−5 and a grid of size 90. Temperature of the entire

system was regulated by Langevin thermostat with the collision frequence γ = 2.0 ps−1 [58].

The time step was set to 1 fs for minimisitation and heating, instead for equilibration and

production runs the time step was set to 2 fs.
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We performed a miminization of 5000 steps: We used for the first 2500 steps the steepest

descent algorithm and for the last steps the conjugate gradient algorithm. Then we heated

the system up over 60 ps from 1 K to 310 K. We performed a pre-equilbration run of 500 ps

in the NPT ensemble. Pressure of the system was controlled by the Berendsen barostat [59]

with time constant τP = 4ps and compressibility equal to 4.6 · 10−5 bar−1. Figure 8.2 shows

the density of the system along the trajectory during pre-equilibration. We calculated the

average density of the system 〈ρNPT〉 without considering the first 100 ps. From the trajectory,

we extracted a snapshot where the density was near to the average value. This was used as

the starting configuration for the subsequent constant volume simulation (NVT) [60].

8.1.3 Implicit solvent

Implicit models tend to be orders of magnitude faster for large simulations, hence they

can be very useful to simulate aggregates. Our MD simulations were performed with

AMBER ff96 force field [61] and solvent model ig5 (OBC) [62] because it is the best overall

force field/solvatation pairs [63]. We used both analytical linearized Poisson-Boltzmann

approximation and Generalized Born solvation models for the monomers. For simulation of

aggregates, we used analytical linearized Poisson-Boltzmann approximation. The length of

the trajectories varies with system under investigation (see below). The other parameters of

the simulation are the same described in subsection 8.1.2.

8.2 Results and analysis

We performed both single-molecule simulations and simulations of aggregates of different

lengths. The first were carried out both in explicit and in implicit solvent , the latter only in

implicit solvent. In particular, we focused on dimers, trimers and tetramers of TPP-MAG and

pentamer and decamer of TPP-GIGKF. To analyse our simulations of aggregates, we used

different tools.

8.2.1 Simulations of single TPP-MAG

The length of trajectories is 10 ns in explicit solvent and 50 ns in implicit solvent. In both

cases, the starting configuration was taken with the peptide in either extended or helical

conformation. Figure 8.3 shows snapshots obtained in explicit and implicit solvent. Similar

results were obtained in both cases. Irrespective of the starting configuration, we found a

general trend: The peptide chain folds on the porphyrin platform into a helical conforma-

tion, stabilised by properly positioned phenylalanine side chains. The peptide exhibits the

analogous behaviour to that observed when it is bound to the surface of a membrane [64].
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Figure 8.3: Final snapshots from the simulations of TPP-MAG in explicit (left) and implicit solvent
(right). Colors code amino acid properties. White: Non polar. Green: Polar. Red : Acidic.
Blue: Basic.

8.2.2 Simulations of TPP-MAG aggregates (complete peptide chain)

MD simulations of dimers and trimers from different initial conformations of the chain were

carried out: Helical (H), globular (G) and extended (E). Using implicit solvent, we cannot use

periodic boundary conditions and due to the cut-off of interactions, if the distance between

the conjugates under investigation is larger than the cut-off distance, there is the possibility

that the molecules separate each other. To prevent this situation which would separation of

porphyrin, we used two different kinds of approach:

I we put the porphyrins at certain relative distance (usually equal to half length of the

peptide) and we constrained the atomic coordinates of the nitrogen atoms inside

porphyrin;

II we restraint the distance between the centres of mass of the porphyrins; this distance is

gradually reduced and the restrains are step by step released. The restraint is a well

with a square bottom with parabolic sides out to a defined distance, and then linear

sides beyond that.

III we stack the porphyrins close each other with different twist angles of the porphyrins

without using any constraints or restraints

We imposed both constrains (I) and restraints (II) during heating and equilibration, in this

way the conjugates are close each other and these can interact. In approach II, during

equilibration we slowly relaxed the constraints and then we run simulations. For dimers

we used approaches I and II. For trimers, the starting configuration was characterized by

different twist angles between the porphyrins (called a,b,c,d) and we used approach type II

where in this case the restraints are imposed between the first and the third molecule and

approach III. Table 8.1 summarizes the different simulations (A,B,C,D) we carried out for

dimers and trimers.

Figure 8.4 show the final snapshots of simulations of dimers. Depending of the starting

structure and the approach used during equilibration, the final structure changes. However,
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Aggregate A B C D

Dimer I-G I-E II-H II-E

Trimer II-Ea II-Eb III-Ec II-Ed

Table 8.1: Summary of simulations. The first letter (I, II, III) refers to the approach used. The second
letter G, E and H refers to the chain conformation (globular, extended and helical). The
letters a, b, c and d refer to different twist angles between porphyrins.

Figure 8.4: Final snapshots from simulations of TPP-MAG dimers in implicit solvent. Colors code
amino acid properties. White: Non polar. Green: Polar. Red : Acidic. Blue: Basic.
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Figure 8.5: Final snapshots from the simulations of TPP-MAG trimers in implicit solvent. Colors code
amino acid properties. White: Non polar. Green: Polar. Red : Acidic. Blue: Basic.

there is a tendency of the porphyrins to interact each other. By analysis of the trajectories

using energy criteria, two important and competitive aspects for the self-assembly of the

porphyrins arise: Porphyrin stacking and equilibration of peptide chain.

Figure 8.5 shows the final snapshot of the trajectories of trimers. The porphyrins in the

aggregate are not perfectly stacked, but they are slightly shifted one relative to other. The

peptide chains tend to interact with each other, but also the hydrophobic aminoacids strongly

interact with the porphyrins to try to excluded them from water.

Using the available tools in AMBER which analysed the different contributions to potential

energy, in particular we focused on three terms: (i) porphyrin-porphyrin interaction, (ii)

peptide-peptide interaction, (iii) porphyrin-peptide interaction. We found that they are very

close each other, hence there is a competition between them.

8.2.3 Simulations of TPP-GIGKF aggregates

The dynamics of the aggregate is very slow and the structures are trapped in local minima,

therefore the final structure was found to depend on the starting configuration. However,

there were indications of face-to-face interactions between the porphyrins and the interactions

between hydrophobic groups seemed to be important. For this reason we decided to run

simulations of aggregates with a shorter peptide (GIGKF). Simulations with different initial
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Figure 8.6: Final snapshot from simulation of a single TPP-GIGKF in implicit solvent. Colors code
amino acid properties. White: non polar. Green: Polar. Red : Acidic. Blue: Basic.

Figure 8.7: Final snapshots from trajectories of pentamers of TPP-GIGKF in implicit solvent. Sim-
ulations started from different pentamer configurations: Right-handed (left) and left-
handed(right).

configurations (i.e. different twist angles) were run; the length of trajectories is around 25 ns.

We built a aggregates of porphyrins stacked each other with different twist angles. In this

subsection, we will focused on the results obtained for pentamers and decamers.

As starting, we performed simulations of monomer, and we found the same trend ob-

tained with the complete chain: The phenylalanine interacts with the porphyrin, hence the

chain is folded on the porphyin (see Figure 8.6).

Pentamers

We performed MD simulations of two aggregates starting with right-handed and left-handed

twist between the porphyrins. Figure 8.7 shows the snapshots of the two trajectories. Figures

8.9, 8.10, 8.11, 8.12, 8.13 and 8.14 show the dihedral angle χ1, χ2, φ1, ψ1, φ2, and ψ2 (see Figure

8.8 for their definition) respectively, for the central porphyrin (Molecule 3) of both aggregates.

We found similar distributions for the other conjugates inside the aggregates. The dihedral

angles do not change significantly along both trajectories and no signficants different between

the two trajectories were observed to explain the experimental preference of right-handed

aggregates in water solution.

Figures 8.15 and 8.16 show the the twist angle for each adjacent pairs of the aggregates

along the trajectory. We can observed the global handedness of the aggregate does not change

along the trajectory, in other words the porprhyins cannot easily rotate along the trajectory.
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Figure 8.8: Labeling of dihedral angles in the porphyrin (right) and in the N-terminal end of TPP-MAG
(left).

Figure 8.9: Dihedral angle χ1 for the central conjugate of a pentamer, along trajectories starting from
a right-handed (left) and a left-handed configuration (right).

Figure 8.10: Dihedral angle χ2for the central conjugate of a pentamer, along trajectories starting from
a right-handed (left) and a left-handed configuration (right).
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Figure 8.11: Dihedral angle φ2 for the central conjugate of a pentamer, along trajectories starting from
a right-handed (left) and a left-handed configuration (right).

Figure 8.12: Dihedral angle ψ1 for the central conjugate of a pentamer, along trajectories starting from
a right-handed (left) and a left-handed configuration (right).

Figure 8.13: Dihedral angle φ2 for the central conjugate of a pentamer, along trajectories starting from
a right-handed (left) and a left-handed configuration (right).

Figure 8.14: Dihedral angle ψ2 for the central conjugate of a pentamer, along trajectories starting from
a right-handed (left) and a left-handed configuration (right).
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Figure 8.15: Twist angle, τ, between adjacent porphyrins of a pentamer, along a trajectory starting
from a right-handed configuration.

Figure 8.16: Twist angle, τ, between adjacent porphyrins of a pentamer, along a trajectory starting
from a left-handed configuration.
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Figure 8.17: Final snapshots from trajectories of a decamer of TPP-GIGKF in implicit solvent. Simula-
tions started from right-handed configuration.

Figure 8.18: Twist angle, τ, between adjacent porphyrins of a decamer, along a trajectory starting from
a right-handed configuration.

Therefore, using this strategy, we are not able to sample in a good way the conformational

space and the final results strongly depend on the starting conditions and the procedure

adopted.

Decamers

We performed MD simulations of two aggregates with opposite starting handedness. We

found the same trend obtained for pentamers. In the following we considered only the

decamer starting with right-handed twist between adjacent porphyrins. Figure 8.17 shows

the final snapshot of the trajectory: The porphyrins tend to shift and form shorter aggregates

that do not interact and are linked each other thank to the chain. Figures 8.18 show the the

twist angle as function of the time of trajectory. The twist angles do not change along the

trajectory and the global handedness of the aggregate does not change, as we found for the

pentamers.
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8.3 Conclusions

Simulations of a single TPP-MAG in water show that the peptide chain folds on porphyrin, in-

teracting with it through its hydrophobic amino acids and exposing to solvent the polar ones.

In the presence of two or more conjugates, there are also face-to-face interactions between

porphyrins. Both kinds of interactions contribute to the stabilization of aggregates. However,

the time scale of atomistic simulations was found to be insufficient to fully characterize the

behaviour of TPP-MAG and TPP-GIGKF in water. The final structure of the aggregates was

found to depend on the starting configuration and no clear preferential arrangement could

be inferred.
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Porphyrin-peptide conjugates:
Coarse-grained simulations

In this Chapter, we introduce the MARTINI force field and we describe the procedure adopted

to define the parameters for the porphyrin conjugate. Then, we present and discuss the results

of Molecular Dynamics simulations of aggregates of porphyrin-peptide conjugates based on

the MARTINI force field.

9.1 Martini Force Field

MARTINI is a coarse-grained (CG) force field for simulations of biomolecules, which has been

developed by Marrink and coworkers [65]. It was originally developed for lipids, and then

has been extended to proteins [66], fullerenes [67], carbohydrates [68] and polystyrene [69].

9.1.1 Model

The MARTINI model is based on a four-to-one mapping, [65], i.e. four heavy atoms are

represented by a single interaction site bead, with the exception of ring-like fragments. In

the model there are four main types of interaction sites: Polar (P), nonpolar (N), apolar (C)

and charged (Q). Each of them has a number of subtypes, which allow for a more accurate

representation of the chemical nature of the underlying atomic structure. Within a main type,

subtypes are distinguished either by a letter denoting the hydrogen-bonding capabilities

(d=donor, a= acceptor, da= both, 0 = none) or by a number indicating the degree of polarity

(from 1, low polarity, to 5, high polarity).

In general, four bonded interactions are considered. Bonds are described by a weak har-

monic potential, Vbond(R), acting between a pair of beads (i,j):

Vbond(Rij) =
1
2

Kbond(Rij − Rbond)
2 (9.1)

with an equilibrium distance Rbond = σ = 0.47 nm and a force constant equal to Kbond. A

weak harmonic potential on the angles (θijk) defined by triplets of adjacent beads (i, j, k) is
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Figure 9.1: Martini model for DPPC, cholesterol, water, benzene, a protein helical fragment and a
few amino acids (valine, glutamic acid, arginine, and tryptophan). Reproduced with
permission from ref. [70]. Copyright 2013 Springer Publishing Company.

introduced to account for the chain stiffness:

Vangle(θijk) =
1
2

Kangle
(
cos θijk − cos θ0

)2 (9.2)

where Kangle and θ0 are the force constant and equilibrium angle, respectively. A proper

potential is used for the dihedrals (φijkl) between the planes containing the (i, j, k) and (j, k, l)
triplets of adjacent beads

Vd(φijkl) = Kd[1 + cos(φijkl − φd)] (9.3)

where φd is the equilibrium angle and Kd is the force constant. An improper dihedral angle

potential is used for some geometries, to prevent out of plane distortions:

Vid(φ) = Kid(φijkl − φid)
2 (9.4)

where φijkl denotes the dihedral between the planes defined by the (i, j, k) and (j, k, l) beads,

φid is the equilibrium angle and Kid is the force constant .

In order to preserve the geometry of small ring compounds, 2 or 3 to 1 mapping of ring

atoms onto CG beads is used. This is a special bead type, labeled labelled as “S” [65]. For ring

particles the effective interaction size and strength are smaller than for normal beads. Bonds

and angles can be replaced by an appropriate set of constraints, to preserve the rigidity of the

rings and to avoid fast oscillations arising from very high force constants.

A Lennard-Jones (LJ) 12-6 potential energy function is used to describe the nonbonded
interaction between a pair of particles (i, j):

VLJ(rij) = 4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]

(9.5)
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where rij is the inter-particle distance, σij represents the distance at which the potential

vanishes and εij is the depth of the potential well. A constant effective size, σ = 0.47 nm,

is assumed, with only a few exceptions. For charged (Q-type) and the most apolar types

(C1 and C2), the range of repulsion is extended by setting σ = 0.62 nm. LJ interactions are

absent between bonded particles and within rings, but are present between second nearest

neighbours.

Charged groups (type Q) bear full charges (qi) interacting via a Coulombic potential

energy function:

Uel(rij) =
qiqj

4πε0εrrij
(9.6)

with relative dielectric constant εr = 15 for explicit screening. The nonbonded potential

energy functions are used in their shifted form, in which both energy and force vanish at

the cut-off distance rcut = 1.2 nm. The LJ potential is shifted from rshi f t = 0.9 nm to rcut. The

electrostatic potential is shifted from rshi f t = 0.0 nm to rcut.

In MARTINI a CG model is used also for the solvent Four water molecules are represented

as a single bead of type P4. The dynamics is determined by the masses to the CG beads. For

reasons of computational efficiency, standard masses m = 72 amu are typically used for all

beads, with the exception of those in rings, for which the m=45 amu [70].

9.1.2 Extensions of MARTINI model to protein

Monticelli and co-workers extended the MARTINI model to proteins [66]. Apolar amino acids

(Leu, Pro, Ile, Val, Cys and Met) are represented by C-type beads, polar uncharged amino

acids (Thr, Ser, Asn and Gln) by P-type beads, and amino acids with small negatively charged

side chains (Glu and Asp) by Q-type beads. The positively charged amino acids Arg and Lys

are modelled by a combination of a Q-type and an uncharged beads. The bulkier ring-based

chains are modelled by three (His, Phe and Tyr) or four (Trp) beads of S-type. The Gly and

Ala residues are only represented by backbone beads. Backbone parameters are independent

on the kind of residue, but depend on the secondary structure of he peptide (or protein),

and cannot change during a simulation. Backbone-backbone-side chain and backbone-side

chain-side chain bond angles and force constants are independent of both secondary structure

and kind of amino acid. Figure 9.2 summarizes the MARTINI representation of amino acids.

9.1.3 Coarse Graining recipe

To define the MARTINI parameters of a new system, Marrink and coworkers proposed a

three-step recipe [70].

Step 1. Mapping of AA structure onto CG representation The first step consists of divid-

ing the molecular system into small chemical building blocks, using a 4-1 or 2-1 mapping.The

mapping of CG bead types to chemical building blocks subsequently serves a guide toward

the assignment of CG particle types. Because most molecules cannot be entirely mapped onto
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Figure 9.2: MARTINI representation of amino acids. Colors represent different bead types. Reprinted
with permission from [66]. Copyright 2008 American Chemical Society.

groups of four heavy atoms, however, some groups will represent a smaller or larger number

of atoms. To model compounds containing rings, a more fine grained mapping procedure

can be used. In those case, the special class of S-particle is appropriate.

Step 2. Selecting bonded interactions For most molecules the use of a standard bond

length and force constant of Kbond = 1250 kJ mol−1 nm2. seems to work well, but for ring

structures much smaller bond lengths are required. For rigid rings, the harmonic bond and

angle potentials are better replaced by a constraint [66, 71]. For linear chainlike molecules, a

standard force constant of Kangle = 25 kJ mol−1 nm2 with an equilibrium bond angle θ0 = 180◦

is the best initial choice. For complex molecules multiple ways exist for defining the bonded

interactions. Not all of the possible ways are likely to be stable with the preferred time step

of 30-40 fs.

Step 3. Optimization A powerful way to improve the model is by comparison to AA

level simulations. Structural comparison is especially useful for optimization of the bonded

interactions. The angle distribution function for a CG triplet can be directly compared to

the distribution function obtained from the AA simulations of the centres of mass of the

corresponding atoms. The optimal value for the equilibrium angle and force constant can

be extracted. Comparison of thermodynamic behaviour is a crucial test for the assignment

of particle types. The balance of forces determining the partitioning behaviour can be very

subtle: the partitioning free energy is directly obtained from the equilibrium densities of

CG particles in the water and organic solvent). The comparison to AA simulations and

experimental data should be the deciding factor in choosing parameters.
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9.2 Parametrization of force field for the porphyrin

9.2.1 Atomistic simulations

We performed all-atom (AA) simulation of the TPP-GIGKF conjugate in water using the same

FF and explicit water described in Chapter 8. The length of the trajectory was 500 ns.

9.2.2 Coarse-Grained simulations

The optimization of bonded interactions was based on the comparison between AA and CG

simulations. The temperature (300 K) and pressure (1bar) in atomistic and CG systems were

identical. In CG simulations, a cutoff of 1.2 nm was used in the calculation of nonbonded

interactions. A time step of 30 fs was used, and the neighbor list for nonbonded interactions

was updated every 200 fs. These conditions is the standard one used in the parametrization

of MARTINI. Simulations in the NPT ensemble were carried out with Berendsen thermostat

(τT = 1) and Berendsen pressure coupling (τP = 4).

The parametrization of nonbonded interaction was based on the determination of oc-

tanol/water partition coefficient. We calculated the octanol/water partition coefficient using

thermodynamics integration. The thermodynamic integration is a way to calculate free

energy difference between two states A and B of a system from MD simulations as the work

necessary to change the system from A to B over a reversible path. The thermodynamic

integration (TI) formula [72–74] is:

∆FAB =
∫ λB

λA

〈
∂H(λ)

∂λ

〉
λ′

dλ′ (9.7)

where H, the Hamiltonian, is made a function of a coupling parameter λ: λ = 0 for coupled

system and λ = 1 for uncoupled system. One approach to solve eq. (9.7) is to evaluate the

ensemble average at a number of discrete λ-points by performing separate simulation for

each chosen λ-point. The integral can then be determined numerically.

Using this method, we can calculate the solvation free energy and from the calculated

solvation free energy, the partition coefficient log P was evaluated according the following

relation [75]:

log P = −0.434
∆Fsolv wat/oct

RT
(9.8)

where ∆Fsolv wat/oct is the change in free energy passing from a low dielectric solvent (octanol)

to water, R is the gas constant, T is the absolute temperature.

A stochastic integrator [76] was used to integrate the equations of motion in this study.

The integrator was used to prevent an accumulation of translational and rotational kinetic

energy in the compound being mutated as it became uncoupled from the rest of the system.

The simulations were carried out at a constant temperature of 300 K by means of the stochastic

velocity rescale thermostat by Bussi et al. [77] (0.1 ps relaxation time, with porphyrin and

water coupled separately) and a constant pressure of 1 bar by means of the Parrinello-Rahman

barostat [78].
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We equilibrated an octanol box and than we equilibrate the system for 200 ns. We

also equilibrate the system in water for 200 ns. The transformations during the free energy

calculations from an interacting (λ = 0) to a non interacting molecule (λ = 1) were performed

using a minimum of 16 λ points. The number of λ-points were increased near the minimum

of the derivative. We started to collect the data after 20 ps. We integrated numerically the

curves, dH/dλ as, using trapezoidal rule to obtain solvation free energy.

All atomistic and coarse-grained simulations were performed using GROMACS MD

package.

9.2.3 Mapping

Figure 9.3 shows the MARTINI model proposed for TPP covalently linked to glycine.

Figure 9.3: MARTINI model of TPP covalently linked to glycine.

9.2.4 Nonbondend interaction: Partition coefficient

We calculated the noctanol/water partition coefficient of meso tethahydroxyphenylporphyrin

(see Figure 9.4). We decided to study this porphyrin, because experimental data are reported

in literature (log P = 4.8) [79, 80]. To perform calculations, we changed 4 beads of the phenyl

from SC5 to SP1 to take in account the presence of hydroxy group.

Figure 9.5 shows the derivative dH/dλ as a function of λ. We can observe a minimum

at λ = 0.5 for both curves. Integrating numerically the curves, we can obtain the solvation

free energy in water (∆Fwat = 246.02± 0.06) and octanol (∆Foct = 278.69± 0.05). Using
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Figure 9.4: Chemical structure of meso tethahydroxyphenylporphyrin.

eq. (9.8), the calculated water/octanol partition function log P is equal to 5.69± 0.01. ∆F =

(−32.67± 0.08) J and log P = 5.69± 0.01

Figure 9.5: Derivate, dH/dλ as a function of coupled parameter λ obtained in water and octanol.

9.2.5 Bonded interactions

We have used distributions of distances, angles and dihedral from atomistic simulation to

parametrize the bonded interactions. We converted the AA trajectory into the corresponding

CG trajectory. This is the trajectory of centers of mass (COMs) of groups of atoms, according

to the mapping. From the CG trajectory, we extracted the distributions of the bond lengths,

bond angles, and dihedral angles between COMs. We chose appropriate equilibrium lengths

and angles, corresponding to the average distance and angle between COMs. The force

constants were chosen to reproduce the width of the distributions. In our model, only some

torsional angles have been introduced. In MARTINI spirit, we constrained the bonds of the
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phenyl groups and we introduced elastic network between the beads 1-5 and 3-7.

Figure 9.6 shows some representative examples of the distance, angle and dihedral

distributions obtained by AA trajectory converted into COMs one and CG trajectory. The

matching between CG distance, angle and proper and improper dihedral is good.

Figure 9.6: Distribution of bonded interactions obtained from CG and AA simulation of TPP-GIGKF
mapped to CG. Top: Bonded distance (R). Middle: Bond angles (θ). Bottom: Proper (φ)
and improper (φid) dihedrals.

9.3 Results and discussion

9.3.1 Computational details

In CG simulations, a cutoff of 1.2 nm was used in the calculation of nonbonded interactions.

A time step of 20 fs for shorter chain and of 15ns for the complete chain was used , and

the neighbor list for nonbonded interactions was updated every 200 fs. Simulations in the

NPT ensemble were carried out in NPT ensemble. The simulations were carried out at a

constant temperature of 300 K. We equilibrate the system in water for 500 ns using Berendsen

thermostat (τT = 1) and Berendsen pressure coupling (τP = 4). he simulations were carried
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out with stochastic velocity rescale thermostat [77] (τT = 1) and Parrinello-Rahman barostat

(τP = 4) [78]. A compressibility of 4.5× 10−5 bar−1 was used. Length of the trajectories is

some µs.

To build the aggregate structure, we stacked the porphyrins one on the other and each

porphyrin is rotated by ±π/2 or π with respect to the previous one. To determine the

appropriate distance, we performed a simulation of twenty bare porphyrin (see Figure 9.7) in

vacuum and we calculated the mean distance between the COMs of adjacent porphyrin.

Figure 9.7: Aggregate of bare TPP.

9.3.2 Simulations of TPP-GIGKF aggregates

We performed simulations of TPP-GIGKF aggregates of different lengths (tetramer, octamer

and dodecamer) with different starting configurations. The length of each trajectory is 2

µs. A general trend was found, irrespective the starting configuration: Stable face-to-face

aggregates were formed, characterized by some relative shift between adjacent porphyrins.

In Figure 9.8, the final structures of CG simulations are compared with those of the AA

simulation reported in Chapter 8 . We can see that the structures of aggregates are similar

in the two cases, which can be taken as a indication that CG parameterization retains the

chemical specificity. An important advantage of the CG force field is that we can run much

longer trajectories.

Figure 9.9 shows the twist angle calculated along the trajectory in a simulation of a

dodecamer. We can clearly see jumps between preferred twist angles and correlations

between nearest neighbours and next-nearest neighbours. The simulations evidence a special

role of phenylalanine-phenylalanine (F-F) and F-TPP ring interactions, which compete in

guiding the aggregate structure. Figure 9.10 shows the Υ parameter defined in eq. (7.7), along

trajectories of a tetramer, an octamer and a dodecamer. It fluctuates between negative and

positive value, but its mean value of Υ, 〈Υ〉, is positive, although small (see Table 9.1).
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Figure 9.8: Final snapshots from CG simulations of a dodecamer and an octamer (left) and AA
simulations of a decamer and a pentamer (right). Colors code amino acids properties.
White: non polar. Green: Polar. Red : Acidic. Blue : Basic.
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Figure 9.9: Twist angle, τ, between adjacent porphyrins of a dodecamer along a trajectory.

Number of units 〈Υ〉

4 1.92× 10−3

8 1.19× 10−3

12 3.0× 10−3

Table 9.1: Mean value of the Υ parameter calculated for a tetramer, an octamer and a dodecamer of
TPP-GIGKF.
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Figure 9.10: Υ parameter calculated along the trajectories of a tetramer (left), an octamer (right) and a
dodecamer (bottom) of TPP-GIGKF.

9.3.3 Simulations of TPP-MAG aggregates

We performed simulations of dodecamers of TPP-MAG conjugates with different starting

conformations. In these porphyrins were rotated one with respect to the other by +π/2

(A), −π/2 (B) and π (C). The length of trajectories is 1-2 µs. Linear aggregates were stable

along the trajectories, although there was a dynamic formation of shorter oligomers linked

by peptides. Figure 9.11 shows the final snapshots. We can observe that porphyrins are not

perfectly stacked on the top of the other, but are slightly shifted. The snapshots look different,

both for the arrangement of the porphyrins and the orientation of peptides.

To study the chirality of aggregates, we determined the distribution of τ twist angles

and the Υ parameter, as well as the angles (φ, θ) that define the orientation of peptide

chains. Figures 9.12 -9.14 show the distribution probability of the twist angles obtained from

simulations A, B, C respectively. For A and C these distributions are mainly peaked in the

positive region, from 0 to π/2, and in A there are generally narrower than in C. This means

that there is a preferential R chirality. Instead, for B the twist angle distributions are broad and

located in positive and negative regions. In this case, there is no clear preferential chirality.

Figure 9.10 shows the Υ parameter along the trajectories. It is mainly positive for A and C,

whereas for B it fluctuates between positive and negative values. Accordingly, its mean value,

〈Υ〉 is positive for A and C and negative for B (see Table 9.2). This result is in agreement with

the twist angle distributions reported above. The values of 〈Υ〉 are larger than those obtained

for shorter chains.

More insight into the structural details is provided by the analysis of angles (φ, θ) (defined

in subsequent 7.3.1). Figures 9.16 - 9.17 show the contour plots of the (θ, φ) distributions
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Figure 9.11: Final snapshots of A, B and C trajectories. Colors code amino acids properties. White:
non polar. Green: Polar. Red : Acidic. Blue : Basic.
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Figure 9.12: Probability distribution of the twist angle, τ, between adjacent porphyrins in a dodecamer
of TPP-MAG (A simulation).
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Figure 9.13: Probability distribution of the twist angle, τ, between adjacent porphyrins in a dodecamer
of TPP-MAG (B simulation).
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Figure 9.14: Probability distribution of the twist angle, τ, between adjacent porphyrins in a dodecamer
of TPP-MAG (C simulation).

angle 〈Υ〉

+π/2 3.745× 10−2

-π/2 −1.366× 10−2

π 1.847× 10−2

Table 9.2: Mean value of Υ parameter calculated for a dodecamer of TPP-MAG along A (top), B
(middle), and C (bottom) trajectories
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Figure 9.15: Υ parameter calculated for a dodecamer of TPP-MAG along A (top), B (middle), and C
(bottom) trajectories.
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calculated for the six central conjugates (4-9) in A, B, C simulations. In case B (L aggregate),

different contour plots are obtained for the units in the aggregate: Positive and negative

values of φ have approximately the same probability. Therefore, there is no evidence of

preferential orientation of the peptides; this can be related to the lack of a net handedness int

the τ twist angle distributions (see Figure 9.13). On the contrary, in both A and C simulations

(R aggregates), the peptide chains are found to have a preferential orientation, although there

are some differences between the two cases. In C the peptides lie near to the porphyrin plane

(θ ≈ 90◦) with ≈ 90◦ < φ <≈ 120◦ or ≈ −90◦ > φ >≈ −120◦, but the latter configuration

is less probable. In A, the situation is similar, but the probability of positive and negative φ

values inserted (see Figure 9.19). In fact, in A and C the relative orientation of porphyrins is

different: In the former the angle between the X-axes of the LOC frames (see subsection 7.3.1)

of adjacent porphyrins is smaller than π/2, whereas in the latter this angle is π and 3/2π.

This angle should not be confused with the twist angle τ, which is defined as the smaller

angle between the X directions of the LOC frames.

Figure 9.20 shows the comparison between the final snapshots of A, B and C simulations.

One can notice that the surface exposed to the solvent is lower in case A. In this case, the

proper orientation of the peptide chains allows hydrophobic amino acids, in particular pheny-

lalanines (F), to interact with each other and with porphyrins, so creating a shell that excludes

solvent from contact with hydrophobic groups. In Figure 9.21 we can distinguish that there

are groups of two or three chains which strongly interact with each other . In simulation C,

the peptide chains of adjacent units are nearly located at opposite sides and there are strong

interactions between the chains of next-near neighbour. In this case phenylalanines tend to

preferentially interact with the nearby phenyls of TPPs (see Figure 9.21). In B, the structure of

aggregate is more disordered and the peptides seem to be unable to simultaneously interact

with each other and with porphyrins.

9.4 Conclusions

We have derived a MARTINI model for TPP covalently linked to glycine and we have verified

that the coarse grained model of TPP-MAG retains the atomistic structure of the system.We

have then carried out MD simulations of aggregates of TPP-GIGKF (with shorter peptide)

and TPP-MAG (full length peptide) in water. Use of the CG model has allowed us to reach

the µs timescale and to overcome the sampling limits found in AA simulations (see Chapter

8). The chirality of aggregates has been quantified by suitable descriptors.

We have found that rod-like aggregates of TPP-GIGKF are stable along the trajectory,

although single porphyrins can easily rotate around the axis perpendicular to their molecular

plane. In the aggregates porphyrins stack on top of each other, with a slight relative shift of

their centers of mass and a net, yet not strong preference for a right-handed configuration.

The chiral peptide chains are responsible for this breaking of chiral symmetry. In the case of

TPP-MAG the longer tails affect the structure of aggregates, which are less regular and mobile
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Figure 9.16: Contour plots of the distribution of θ, φ angles (see subsequent 7.3.1) from the A trajectory
of central (4-9) TPP-MAG conjugates .
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Figure 9.17: Contour plots of the distribution of θ, φ angles (see subsequent 7.3.1) from the B trajectory
of central (4-9) TPP-MAG conjugates .
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Figure 9.18: Contour plots of the distribution of θ, φ angles (see subsequent 7.3.1) from the C trajectory
of central (4-9) TPP-MAG conjugates .
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Figure 9.19: Schematic representation of a single TPP-MAG conjugate inside a right-handed aggregate.

Figure 9.20: Final snapshots of A, B and C. trajectories Red spheres: Peptide. Gray spheres: Porphyrin.
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Figure 9.21: Final snapshots of A, B, C trajectories. For the sake of clarity only the first part of peptide
is shown (GIGKFLHSAKKF). Colors code amino acids properties. White: non polar.
Green: Polar. Red : Acidic. Blue : Basic.

than those formed by TPP-GIGKF. The simulations evidence strong interactions between

hydrophobic amino acids of different chains and of these aminoacids with porphyrins. A

special role is played by phenylalanine (F): F-F and F-TPP interactions compete in guiding the

structure of aggregates. Although both right- and left-handed relative configurations of pairs

of porphyrins are found, the former prevail. This is in agreement with the exciton couplet

observed in circular dichroism experiments. The right-handed configuration allows the

peptide chains to have a proper orientation to optimize the interactions of the hydrophopic

aminoacids with each other and with porphyrins, while excluding water.
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Chapter 10

Summary

This thesis deals with the propagation of chirality from the molecular to the supramolecular

and the macroscopic level in self-assembling systems. In particular, three topics are addressed:

I. the organization of helical particles in anisotropic and chiral phases;

II. the linear aggregation and formation of cholesteric phases by double-stranded nucleic

acid oligomers;

III. self-assembly of porphyrin-peptide conjugates in water. These problems have been

addressed using different theoretical and computational methods.

The research has been carried out in collaboration with experimentalists (II and III) , and with

other theoreticians (I).

Part II presents a theoretical and computational investigation of the the anisotropic and

chiral phases formed by helical particles. This study is motivated by the ubiquity of the

helical shape: from natural polynucleotides and polypeptides to synthetic polymers, there is a

variety of systems featuring the helix as the basic structural unit. We have focussed on simple

model helices made of fused hard spheres. We have performed a detailed investigation

of the phase diagram and we have analysed the relationship between helix structure and

phase behaviour. This has been done using Onsager theory, which can be viewed as a form

of the classical Density Functional Theory implemented at the level of the second virial

approximation. In parallel, Monte Carlo simulations of the same helical particles were

performed by research groups in Venice and in Madrid. The combined investigation was

meant to compensate for the limits of each single approach.

Chapter 2 focuses on the uniform nematic phase and on the isotropic-to-nematic (IN)

transition. The main goal of this study was to rationalize the changes in the phase behaviour

on going from straigh rod-like to quite tortuous helical particles. Theory allowed us to

identify for each helical system the approximate boundaries of the nematic phase; this served

as a guide for subsequent, more demanding MC simulations. Theory and simulations agree in

predicting a shift of the IN transition to higher density with increasing radius and decreasing

pitch of the helix. We have found that the aspect ratio, which is usually taken as the key
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quantity for the IN transition, is not a suitable descriptor for helices, since there are specific

effects of helical parameters. This study has also a methodological objective: we wanted

to evaluate the accuracy of Onsager theory in the case of non-convex particles. We have

found that for high helicity Onsager theory departs from numerical simulations, even when

a modified form of the Parsons-Lee rescaling is included to account for the non-convexity of

particles. This points to the need of a more effective theory for hard non-convex particles, a

field that remains largely unexplored.

Chapter 3 presents a study of the cholesteric phase formed by hard helices as a function

of the structural parameters of the particles. Our systematic investigation confirms the

expectation, based on geometry considerations, that the cholesteric organization has a non-

monotonic dependence upon the helix parameters. In particular, the handeness of the

particles does not necessarily correspond to that of the phase: so, right-handed helical

particles can form either a right- or a left-handed cholesteric phase, depending on their

specific structure. For strongly curled helices we predict very tight cholesteric pitches, of

the order of one hundred times the characteristic length of particles, which have never been

evidenced in real systems.

In Chapter 4 we report the full phase diagram of hard helices, which reveals a zoo of

phases with peculiarities that depend on the helical parameters. The most important result is

the discovery of a novel chiral nematic phase, which we have called screw-like nematic(Ns),

originating from the specific helical shape of the particles. It appears at very high density

and, similarly to the cholesteric, is still a nematic phase in that helices are homogeneously

distributed and mobile with their long axis preferentially oriented along the same direction,

the main director However, differently from the cholesteric, the Ns phase is characterized

by a long range correlation of the C2 (ŵ) symmetry axes of helices. These are preferentially

oriented along an axis that spirals around the main director with a periodicity equal to

the pitch of the helical particles. We have fully characterized the Ns phase, evidenced by

MC simulations, by suitable order parameters and correlation functions and, using Onsager

theory we have given a theoretical understanding of the entropy driven nematic-to-screw-like

nematic phase transition. Experimental evidences of a phase with the features of the screw-

like nematic have been presented for helical flagella [E. Barry et al., Phys. Rev. Lett.,2006, 96,

018305 ]; in this case the phase modulation, in the µm range, could be observed by polarized

optical microscopy. Our study suggests that the Ns organization must be a general feature

for helical particles at high density, and we hope that it can stimulate further investigation in

systems, like DNA and helical polymers, where experimental detection can be challenging.

In Part III we have studied the linear aggregation and formation of liquid crystal phases by

double-stranded nucleic acid oligomers. It is well known that, above a certain concentration,

solutions of double stranded B-DNA, with a number of base pairs higher than about one

hundred, exhibit a left-handed cholesteric phase. Recently, it has been discovered that even

short oligomers of nucleic acids form a cholesteric phase. However in this case both left- and

right-handed organization was observed, depending on the sequence [G. Zanchetta et al., P.
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Natl. Acad. Sci. USA, 2010, 107, 17497-17502], and this result remained unexplained.

Chapter 5 deals with the relationship between the sequence of oligonucleotides and the

properties of their cholesteric phase, ignoring the effect of aggregation. Since the systems

are polyelectrolytes, the theory described in Chapter 3 has beenextended to take in account

electrostatics, at the level of the linearized Poisson-Boltzmann equation. In particular we have

focused on a set of DNA dodecamers with self-complementary sequences. The structural

differences deriving from the sequence were taken into account by a coarse grained (CG)

representation of the systems, based on crystallographic data. Calculations were performed

for linear aggregates of oligomers, with fixed aggregation length. We have found that in

these systems, irrespective of sequence, steric interactions lead to a right-handed cholesteric

phase, whereas electrostatic repulsions promote a left-handed organization. Based on this

study we can propose an explanation for the experimental changes in phase chirality as a

function of the NA sequence. Such changes would reflect a switch from a regime of lower

DNA concentration, where electrostatic interactions play a role, to a very high concentration

condition, where best packing controls the mutual orientation of DNA aggregates. The

sequence would determine the phase handedness by controlling the density range in which

the cholesteric phase exists.

Then, in Chapter 6, we develop a theoretical model for the cholesteric phase formed by

DNA oligomers with hard core interactions, which integrates the theory for cholesteric order

with that for linear aggregation in the nematic phase. This is the first theory which allows

to predict the cholesteric properties of self-assembling systems and their dependence on

temperature and concentration as a result of the interplay of aggregation and orientational

order. this allows a quanitative comparison with experimental data. The theory has been

applied to two DNA dodecamers with self-complementary sequences which form duplexes

with different geometry and experimentally have been found to form cholesteric phases with

opposite handedness. The same CG representation described in Chapter 5 has been used. We

have been able to analyze the dependence of various phase properties on the aggregation

length and we have found interesting effects, which include re-entrance. We have seen that

aggregation amplifies the differences between oligomers with different sequence. For one

of the systems under investigation the theoretical results are in reasonable agreement with

the experimental behavior: the cholesteric handedness (right) is correctly predicted and the

pitch is about ten times longer than the measured value, a discrepancy ascribable to the fact

that the model neglects the flexibility of aggregates. On the contrary, for the other system

both the predicted pitch and cholesteric handedness are wrong. Our interpretation is that a

mechanism based only on steric repulsions is not sufficient in the latter case. These results

seem to support our suggestion, based on the simpler approach outlined in Chapter 5, that

the relevant interactions that control the formation of the cholesteric phase in DNA oligomers

may change with sequence.

Part IV deals with self-assembly of porphyrin-peptide conjugates. In particular, we have

studied the behaviour of conjugates between 5-(4’-carboxyphenyl)-10,15,20-triphenylporphyrin
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(TPP) and the peptide [Leu21] magainin (GIGKFLHSAKKFGKAFVGEILNS). This system was

synthesized in the group of Professor Marina Gobbo (Università di Padova) and subsequent

characterization by UV-Vis absorption spectroscopy and circular dichroism experiments gave

indication of chiral aggregation. We have used Molecular Dynamics simulations to explore

the interactions within conjugates and between them in water and to investigate the stability

and structure, in particular the chirality, of their aggregates.

Chapter 7 introduces some concepts of circular dichroism and exciton coupling theory

and gives a brief review of the state of the art of self-assembly of porphyrin based systems.

Chapter 8 presents all atom Molecular Dynamics simulations of single TPP-[Leu21] magainin

and of aggregates of different lengths of this conjugate, both in implicit and explicit water.

We have found that the peptide chain folds on porphyrin, interacting with it through its

hydrophobic amino acids and exposing to solvent the polar ones. In the presence of two

or more conjugates, there are also face-to-face interactions between porphyrins. Both kinds

of interactions contribute to the stabilization of aggregates. However, the time scale of

atomistic simulations was found to be insufficient to fully characterize the behaviour of

aggregates; their final structure was found to depend on the starting configuration and no

clear preferential arrangement could be inferred.

In Chapter 9, we present Molecular Dynamics simulations based on the coarse-grained

MARTINI force field. First, the force field parameters for TPP covalently linked to glycine

were derived. Then, simulations of aggregates of TPP-[Leu21] magainin and TPP covalently

linked to a shorter peptide were performed. We have shown that the coarse-grained model

retains the atomistic chemical structure, with the advantage that longer trajectories can be

obtained (some µs). Therefore, it has allowed us to overcome the problems of sampling and

timescale found in atomistic simulations. The chirality of aggregates has been quantified by

suitable descriptors. For the conjugates with shorter peptide, we have found that rod-like

aggregates are stable along the trajectory, although single porphyrins can easily rotate around

the axis perpendicular to their molecular plane. In the aggregates porphyrins stack on top

of each other, with a slight relative shift of their centers of mass and a net, yet not strong

preference for a right-handed configuration. The chiral peptide chains are responsible for this

breaking of chiral symmetry. In the case of TPP-[Leu21] magainin the longer tails affect the

structure of aggregates, which are less regular and mobile. The simulations evidence strong

interactions between hydrophobic amino acids of different chains and of these aminoacids

with porphyrins. A special role is played by phenylalanine (F): F-F and F-TPP interactions

compete in guiding the structure of aggregates. Although both right- and left-handed

relative configurations of pairs of porphyrins are found, the former prevail. This is in

agreement with the exciton couplet observed in circular dichroism experiments. The right-

handed configuration allows the peptide chains to have a proper orientation to optimize

the interactions of the hydrophopic aminoacids with each other and with porphyrins, while

excluding water.
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Appendix A

Wigner functions and spherical
irreducible tensors [1]

A.1 Euler angles and rotation matrix

The relative orientation of two Cartesian reference systems xyz and XYZ is defined univocally

by three angles. They can be given in several ways, Euler angles being one of them and they

define the transformation that brings the system on the other

{x, y, z} (α,β,γ)−→ {X, Y, Z} (A.1)

decomposed in the following three successive rotations:

{x, y, z} α(z)−→{x′, y′, z′}β(y′)−→{x′′, y′′, z′′}γ(z′′)−→{X, Y, Z} (A.2)

1. Rotation of an angle α around the z-axis ;

2. Rotation of an angle β around the y′-axis ;

3. Rotation of an angle γ around the z′′-axis.

The α and γ range are [0, 2π], instead the range of β is [0, π]. The corrisponding rotation

matrices have the following forms:

Rx(γ) =


cos γ sin γ 0

− sin γ cos γ 0

0 0 1



Ry(β) =


cos β 0 − sin β

0 1 0

sin β 0 cos β



Rz(α) =


cos α sin α 0

− sin α cos α 0

0 0 1

 (A.3)
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Figure A.1: Scheme of relative orientation of two Cartesian reference systems (xyz and XYZ).

A.2 Wigner rotation matrix

1. Definition:

DL
MK(α, β, γ) = e−ıMαdL

MK(β)e−ıKγ

dL
MK(β) = [(L + M)!(L−M)!(L + K!)(L− K)!]1/2

×∑
i
(−1)i

(
cos

β

2

)2L−2i−M+K (
− sin

β

2

)2i+M−K

(L−M− i)!(L− K− i)!(i + M− K)!

(A.4)

2. Symmetry properties:

dL
MK(β) = (−1)M−KdL

KM(β) = (−1)M−KdL
−M−K(β) = dL(KM)(−β)

DL∗
MK(α, β, γ) = (−1)M−KDL∗

−M−K(β) = DL∗
MK(−α, β,−γ)

(A.5)

3. Orthogonality

∫
dΩDL1

M1K1
(Ω)DL2

M2K2
(Ω) =

8π2

2L + 1
δL1,L2 δM1,M2 δK1,K2 (A.6)

4. Couple representation of the product of two Wigner matrix

DL1
M1K1

(Ω)DL2
M2K2

(Ω)=
L1+L2

∑
L=|L1−L2|

C(L1, L2, L; M1, M2, M)C(L1, L2, L; K1, K2, K)DL
MK(Ω)

=
L1+L2

∑
L=|L1−L2|

(2L + 1)

(
L1 L2 L
M1 M2 M

)(
L1 L2 L
K1 K2 K

)
DL∗

MK(Ω)

(A.7)

where C(L1, L2, L; M1, M2, M) and C(L1, L2, L; K1, K2, K) are the Clebsh-Gordan coeffi-

cients, 〈L1M1, L2M2|L−M〉 and 〈L1K1, L2K2|L− K〉 , and those ones that appear in the
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second identity are the 3j coefficients:(
L1 L2 L
M1 M2 M

)
= (−1)L1−L2−M

√
2L + 1 〈L1M1, L2M2|L−M〉(

L1 L2 L
K1 K2 K

)
= (−1)L1−L2−K

√
2L + 1 〈L1K1, L2K2|L− K〉

(A.8)

5. Integral of the product of three Wigner matrix

∫
dΩ DL

MK(Ω)DL1
M1K1

(Ω)DL2
M2K2

(Ω) = 8π2

(
L1 L2 L
M1 M2 M

)(
L1 L2 L
K1 K2 K

)
(A.9)

A.3 Spherical irreducible tensors

The transformation of a cartesian tensor Tχχ′ for rotation can be easy expressed if the tensor

is rewritten on the irreducible spherical components TLM which transform on basis of the

Wigner matrix: TL
K = ∑

M
DL

MK(Ω)TL
M.

The conversion of a tensor aα(α = x, y, z) of cartesian components to spherical compo-

nents aµ(µ = 1, 0,−1) can be express through a transformation matrix U:

aµ = ∑
α

Uµαaα (A.10)

in explicit form 
a−1

a0

a1

 =


U−1x U−1y U−1z

U0x U0y U0z

U1x U1y U1z




ax

ay

az

 (A.11)

where

U =


1√
2

−i√
2

0

0 0 1

− 1√
2
− i√

2
0

 (A.12)

In explicit form, the irreducible spherical components are

a−1 = T−1 =

(
1
2

)1/2

(X− ıY) (A.13a)

a0 = T1 =Z (A.13b)

a1 = T1 =−
(

1
2

)1/2

(X + ıY) (A.13c)

The irreducible spherical components of a tensor of second rank have the following form:

TLM = ∑
σσ′

C(11L; σσ′m)Tσσ′ (A.14)
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where

Tσσ′ = ∑
χχ′

UσχUσ′χ′Tχχ′ (A.15)

In explicit form

T0,0 =− {T
XX + TYY + TZZ}√

3
(A.16a)

T1,−1 =
{(TZX − TXZ)− i(TZY − TYZ)}

2
(A.16b)

T1,0 =− {i(T
XY − TYX)}√

2
(A.16c)

T1,1 =
{(TZX − TXZ) + i(TZY − TYZ)}

2
(A.16d)

T2,−2 =
{TXX − TYY − ı(TXY + TYX)}

2
(A.16e)

T2,−1 =
{TXZ + TZX − ı(TYZ + TZY)}

2
(A.16f)

T2,0 =
{TZZ − (TXX + TYY)}√

6
(A.16g)

T2,1 =− {T
XZ + TZX + ı(TYZ + TZY)}

2
(A.16h)

T2,2 =
{TXX − TYY + ı(TXY + TYX)}

2
(A.16i)



Appendix B

Molecular dynamics [2, 3]

Molecular dynamics simulation consists of the numerical solution of the Newton equations

of motion for a molecular system

fi = mr̈i (B.1)

or equivalently the solution of the classical Hamiltonian equation:

H (pi, ri) =
N

∑
i=1

pi

2mi
+ V(ri)

ṗi = −
∂H
∂ri

= fi

ṙi =
∂H
∂pi

=
pi

m

(B.2)

where pi, mi and ri are the linear momentum, the mass and the position of atom i respectevely,

V(ri) is the potential energy. We need able to calculate the forces fi acting on the atoms, which

are usually derived from a potential energy V(rN), with rN = (r1, r2, .., rN) represented the

complete set of 3N atomic coordinates.

Potential energy can be expressed as

V(r) = Vnonbonded + Vbonded (B.3)

where Vnonbonded represents nonbonded interactions between atoms and Vbonded represents the

bonding potentials. Figure B.1 shows an example of the potential terms. The potential energy

Vnonbonded is traditionally split into 1-body, 2-body, 3-body . . . terms:

Vnonbonded(rN) = ∑
i

v((ri)) + ∑
i

∑
j>i

v(ri, rj) + ... (B.4)

where the term v((r)) represents an externally applied potential field or the effects of the

container walls, v(ri, rj) [v(rij)] represents the pair potential interactions. It is usual to

consider only the pair potential and neglect the higher order interactions. Commonly the

pair potentials are the Lennard-Jones potential

vLJ(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

(B.5)
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and , if electrostatic charges are present, the appropriate Coulomb potentials:

vCoulomb(r) =
q1q2

4πε0r
(B.6)

where σ is the diameter and ε, the well depth, q1 and q2 are the charges and ε0 is the

permittivity in vacuum.

Figure B.1: Typical examples of potential terms used in common force-field.

For molecules we must also consider the intramolecular bonding interactions derived

from simple physical forces

Vbonded = Vintramolecular = Vbond + Vangle + Vtorsional (B.7)

where

Vbond =
1
2 ∑

bonds
kr

ij(rij − req)
2

Vangle =
1
2 ∑

bend
angle

kθ
ijk(θijk − θeq)

2

Vtorsion =
1
2 ∑

torsional
angle

∑
m

kφ,m
ijlk (1 + cos(mφijkl − γm))

(B.8)

whit rij =
∣∣ri − rj

∣∣ the separation between adjacent pairs of atoms, req the equilibrium

distance, θijk the angle between successive bonds vectors such as ri − rj and rj − rk, φijkl the

dihedral angles defined by the atoms i, j, k and l, kr
ij, kθ

ijk and kφ,m
ijlk the strength parameters of

the bonds, bend angle and torsional angle potentials.

Knowing the potential energy function V(rN), the next step is to calculate the atomic

forces, and then it is possible to determine the acceleration of each atom in the system.

Integration of the equations of motion yields a trajectory that describes the positions, velocities

and accelerations of the particles as they vary with time. From this trajectory, the average

values of properties can be determined. This method is deterministic: The state of the system

at any future time can be predicted from its current state. For any step in the integration,

the force acting on each atom is assumed to be constant during the time interval and the

forces on the atoms are computed and combined with the current positions and velocities to

generate new positions and velocities a short time ahead.
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