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Abstract: The use of flexible multibody simulation has increased significantly over recent years
due to the increasingly lightweight nature of mechanical systems. The prominence of lightweight
engineering design in mechanical systems is driven by the desire to require less energy in operation
and to reach higher speeds. However, flexible lightweight systems are prone to vibration, which can
affect reliability and overall system performance. Whether such issues are critical depends largely
on the system eigenfrequencies, which should be correctly assigned by the proper choice of the
inertial and elastic properties of the system. In this paper, an eigenfrequency assignment method for
flexible multibody systems is proposed. This relies on a parametric modal model which is a Taylor
expansion approximation of the eigenfrequencies in the neighborhood of a configuration of choice.
Eigenfrequency assignment is recast as a quadratic programming problem which can be solved with
low computational effort. The method is validated by assigning the lowest eigenfrequency of a
two-bar linkage by properly adding point masses. The obtained results indicate that the proposed
method can effectively assign the desired eigenfrequency.

Keywords: eigenfrequency assignment; flexible multibody systems; parametric modal analysis;
inverse eigenvalue problem

1. Introduction

Multibody systems with lightweight and slender links exhibit excellent performance
in terms of high attainable speed and low energy consumption. However, flexibility of the
links makes such systems prone to vibration, and consequently, prone to fatigue and poor in-
position accuracy. Such issues can be greatly mitigated if the system is designed or modified
with appropriate eigenfrequencies through modification of physical parameters [1].

From the mathematical point of view, a problem in which a system is designed for
specific eigenfrequencies can be regarded as an inverse eigenvalue problem [2], in contrast
to the direct eigenvalue problem, in which the eigenfrequencies of a vibrating system are
computed. For linear time-invariant systems, the latter has been extensively studied, and
the state-of-the-art can be considered very well developed [3]. The task of computing
or measuring the eigenfrequencies of a system is often referred to as modal analysis.
The inverse problem, which aims at finding a feasible system model from prescribed
eigenfrequencies, is ill-posed and therefore intrinsically more challenging. The significance
of the inverse problem in engineering (not limited to vibrations) has stimulated fertile
research over the past few decades, e.g., [4–7].

For a flexible-link multibody system (FLMS), linear models are satisfactory only in the
proximity of an equilibrium configuration. If large displacements and/or rotations of the
links are considered, a nonlinear model is essential in order to account for the dependence
on the multibody system configuration. Some of the FLMS modeling techniques available
in the literature represent the system dynamics by means of a minimum set of second-order
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ordinary differential equations, which allow for a straightforward application of modal
analysis [8]. One such flexible multibody formulation is the equivalent rigid-link system
(ERLS) [9,10].

The iterative nature of design optimization is inherently afflicted with high computa-
tional effort. Approximation-based design optimization, also known as surrogate-based de-
sign optimization, replaces a computationally expensive physical model (e.g., finite-element
analysis or multibody system simulation) with a computationally cheap mathematical
approximation. Methods of mathematical approximation include polynomial regression
(response surface methodology, e.g., [11]), radial basis functions, Gaussian process infer-
ence (Kriging, ref. [12]), amongst others, cf. [13]. The former method will be addressed in
this work. The use of approximation-based design optimization has been proposed for
aerospace structures [14,15] and nonlinear structural mechanics [16], including crash [17]
and multibody dynamics [8].

The typical approach to the modal analysis of FLMSs consists of the interpolation of
several static modal analyses, which span large displacements of the multibody system [18].
A parametric representation as an approximation of the eigenvalues (and eigenvectors) of
second-order mechanical systems is proposed by Wittmuess et al. [19], which is adapted to
ERLS and validated by Palomba et al. in [20,21]. This parameteric approximation is used
in the optimization here.

The present paper addresses eigenfrequency assignment to flexible-link multibody
systems, which is still an open problem. The novel method introduced in Section 2 relies
on the aforementioned parametric approximation of the eigenfrequencies, which is briefly
summarized in Sections 2.1 and 2.2. The formulation of the assignment problem as a
quadratic program is described in Sections 2.3 and 2.4. For validation, a test-case is
presented in Section 3 and the obtained results are discussed in Section 4.

2. Method Description
2.1. Modal Approximation Model

The motion of an undamped FLMS can be decomposed into the sum of the large
rigid-body motion of an equivalent system having rigid links, called ERLS, and the small
elastic deformation of the flexible links with respect to the ERLS. The ERLS generalized
coordinates are denoted by q ∈ Rnq , while the elastic deformation, modeled through finite
element methods, is denoted by u ∈ Rnu . Since the rigid and elastic motion are intertwined,
the dynamics of the FLMS is represented by the coupled ordinary differential equations[

Me MeS
STMe STMeS

]
︸ ︷︷ ︸

M

{
ü
q̈

}
+

[
2MeG MeṠ

2STMeG STMeṠ

]
︸ ︷︷ ︸

C

{
u̇
q̇

}
+

[
Ke 0
0 0

]
︸ ︷︷ ︸

K

{
u
q

}
=

[
Me I

STMe ST

]{
g
f

}
. (1)

Let y ∈ Rny be the vector of design parameters of the system to assign the desired
eigenfrequencies, which can include, e.g., geometrical and material properties that have
consequence on inertial and stiffness terms. Therefore, the matrices and vectors in (1)
depend nonlinearly not only on the ERLS coordinates, but also on the design variables.
The system matrices here are defined as follows:

• Me = Me(q, y) and Ke = Ke(q, y) are the mass and stiffness matrices of the assembled
finite element matrices of all the flexible links, respectively;

• MeG = MeG (q, q̇, y) is the matrix of centrifugal and Coriolis terms;
• S = S(q, y) is the matrix which represents the relation between velocities at the nodes

of the ERLS and the generalized velocities q̇, and Ṡ = Ṡ(q, q̇, y) is its time derivative;
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• g = g(q, y) is the gravity vector and f = f(q, q̇, y) is the generalized external force
vector.

The square matrices M = M(q, y), C = C(q, q̇, y, ) and K = K(q, y) defined in (1)
have order ndof = nu + nq. Such matrices can be used for numerical modal analysis for any
given configuration of the system. Assuming that the motion of the ERLS is sufficiently
slow, i.e., q̇ ≈ 0, then all the velocity-dependent terms in Equation (1) can be neglected,
hence matrix C. As a consequence, the eigenvalues and eigenvectors are solutions of the
linear eigenvalue problem

K(q, y)φi(q, y) = λi(q, y)M(q, y)φi(q, y), i = 1, . . . , ndof, (2)

where λi is the i-th eigenvalue and φi is the associated eigenvector.
The functions in the latter equation can be approximated in a neighborhood of (q, y) =

(q0, y0) by means of the Taylor polynomial of order p, as

Mp(q, y) =
p

∑
|α|+|β|=0

∂α
q∂

β
yM(q0, y0)

α!β!
δqαδyβ,

Kp(q, y) =
p

∑
|α|+|β|=0

∂α
q∂

β
yK(q0, y0)

α!β!
δqαδyβ,

(3)

λ
p
i (q, y) =

p

∑
|α|+|β|=0

∂α
q∂

β
yλi(q0, y0)

α!β!
δqαδyβ,

φ
p
i (q, y) =

p

∑
|α|+|β|=0

∂α
q∂

β
yφi(q0, y0)

α!β!
δqαδyβ.

(4)

where δq = q− q0 and δy = y− y0.
In the previous equations, the symbols α and β are multi-indices. Such a notation

has been used to cast Taylor’s formula in a compact manner. The operators that are
used in Equations (3) and (4) for multi-indices are hereafter defined. Given a multi-
index, i.e., a n-tuple of non-negative integers α = (α1, α2, . . . , αn), its absolute value is
|α| = α1 + α2 + . . . αn, and its factorial is α! = α1!α2! . . . αn!. Moreover, given a n-tuple of
unknowns x = (x1, x2, . . . xn), the α-th power of x is xα = xα1

1 xα2
2 . . . xαn

n , while the α-th

order partial derivative operator with respect to x is ∂α
x = ∂|α|

∂α1 x1∂α2 x2 ...∂αn xn
.

It is important to note that the coefficients of the Taylor polynomials in (3) can be
computed analytically, thanks to the parametric representation of matrices M and K given
by the ERLS theory. In contrast, the coefficients in (4) are yet to be determined, but they
can be inferred iteratively from (2), as described in [8].

2.2. Iterative Computation of the Taylor Polynomial

The constant term of the Taylor approximation of λi(q, y) and φi(q, y) is simply
λ0

i = λi(q0, y0) and φ0
i = φi(q0, y0), respectively, which can be computed by solving the

direct eigenvalue problem (2) for (q, y) = (q0, y0).
The coefficients of the first-order Taylor polynomial of the i-th eigenvalue λi and

eigenvector φi are obtained by substituting the formulas (3) and (4) for p = 1 in (2) and
retaining only the constant and linear terms. Therefore, the following equation is obtained

K0φ0
i + ∑

|α|+|β|=1

[
∂α

q∂
β
yK(q0, y0)φ

0
i + K0∂α

q∂
β
yφi(q0, y0)

]
δqαδyβ = λ0

i M0φ0
i +

∑
|α|+|β|=1

[
∂α

q∂
β
yλi(q0, y0)M0φ0

i + λ0
i ∂α

q∂
β
yM(q0, y0)φ

0
i + λ0

i M0∂α
q∂

β
yφi(q0, y0)

]
δqαδyβ.

(5)
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Since the constant terms K0φ0
i = λ0

i M0φ0
i cancel due to Equation (2), the coefficients

of the right-hand and left-hand sides can be equated and solved. There are in total nq + ny
multi-indices α,β such that |α|+ |β| = 1. For any α,β the following system of equations is
obtained[

λ0
i M0 −K0 M0φ0

i
]{ ∂α

q∂
β
yφi(q0, y0)

∂α
q∂

β
yλi(q0, y0)

}
=
[
∂α

q∂
β
yK(q0, y0)− λ0

i ∂α
q∂

β
yM(q0, y0)

]
φ0

i . (6)

Since there are ndof equations and ndof + 1 unknowns, the system is under-determined
and can be solved. An efficient way consists of computing the pseudo-inverse of[

λ0
i M0 −K0 M0φ0

i
]
, which does not depend on α,β and has to be computed just once

for all the systems.
If the coefficients of λ1

i (q, y) and φ1
i (q, y) are known, it is possible to compute the

coefficients of λ2
i (q, y) and φ2

i (q, y) by simply substituting (3) and (4) for p = 2 into (2)
and neglecting the terms of order higher than 2. The obtained equations can be used to
compute the coefficients of the second-order terms, which are the only unknowns.

In fact, the procedure can be iterated as many times as desired to obtain the Taylor
approximation of λi and φi up to the desired degree p. If λ

p−1
i (q, y) and φ

p−1
i (q, y) are

known, then λ
p
i (q, y) and φ

p
i (q, y) can be computed solving a linear system similar to (6),

in which the unknowns are the p-th order partial derivatives of λi and φi computed at the
expansion point.

2.3. Partial Linearization

In order to improve the numerical reliability of the method, it is convenient to approx-
imate the i-th eigenfrequency λi(q, y) in a neighborhood of (q0, y0) with a polynomial,
which is linear in the variable y, rather than with the usual Taylor polynomial. The
definition of the polynomial employed in this work is

λ̂
p
i (q, y) = ∑

|β|≤1

p

∑
|α|+|β|=0

∂α
q∂

β
yλi(q0, y0)

α!β!
δqαδyβ (7)

=
p

∑
|α|=0

∂α
qλi(q0, y0)

α!
δqα + ∑

|β|=1

p−1

∑
|α|=0

∂α
q∂

β
yλi(q0, y0)

α!
δqαδyβ (8)

=
p

∑
|α|=0

∂α
qλi(q0, y0)

α!
δqα

︸ ︷︷ ︸
lp
i,0(q)

+
ny

∑
j=1

p−1

∑
|α|=0

∂α
q

∂λi
∂yj

(q0, y0)

α!
δqα

︸ ︷︷ ︸
lp
i,j(q)

δyj (9)

where δyj is the j-th entry of δy. It can be seen from (9), in which the multi-index notation
associated to variables y is unpacked, that λ̂

p
i (q, y) is linear in the variables y.

Evidently, λ̂
p
i (q, y) can be obtained from λ

p
i (q, y) by simply discarding the terms

related to |β| ≥ 2. The function λ̂
p
i approximates the i-th eigenfrequency with a larger error

than that of the Taylor polynomial of order p, but the numerical simulations carried out
show that the approximation is acceptable in a neighborhood sufficiently large for the pur-
pose of eigenfrequency assignment. The assessment of the accuracy of the approximation
in a significant example is shown in Section 3.2.

2.4. Optimization Problem

A trajectory of the FLMS under consideration can be represented as a parametric curve
t 7→ q(t), defined from the time interval [0, T] into the joint space. Let us assume that the
desired i-th eigenfrequency along the specified trajectory is λi,d(t). The objective is to find
values of the design parameters y such that the i-th eigenfrequency is as close as possible
to λi,d(t), for all t ∈ [0, T].
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The above-mentioned task can be recast as the minimization of the cost function

f (δy) =
1
2

∫ T

0

[
λ̂

p
i (q(t), y0 + δy)− λi,d(t)

]2
dt. (10)

The design parameters δy must be constrained to assure the physical feasibility of
the solution (e.g., avoiding negative values of mass or stiffness). Moreover, it may be
desirable to impose specifications on the weight or bulk of the multibody system in order
to not compromise its mechanical integrity or limit expenses, either of materials or energy
requirements. Such constraints can be represented by a set Γ in which the optimal δy is
sought. Hence, the optimization problem is

min
δy∈Γ

f (δy). (11)

It is important to note that this optimization problem is a quadratic program. In fact,
it can be proved, with tedious but straightforward calculation, that (11) is equivalent to

min
δy∈Γ

(
1
2

δyTRδy + hTδy
)

, (12)

where

R =



∫ T
0 lp

i,1(q(t))
2dt

∫ T
0 lp

i,1(q(t))l
p
i,2(q(t))dt · · ·

∫ T
0 lp

i,1(q(t))l
p
i,ny

(q(t))dt∫ T
0 lp

i,2(q(t))
2dt

...
. . .

∫ T
0 lp

i,ny−1(q(t))l
p
i,ny

(q(t))dt

symmetric
∫ T

0 lp
i,ny

(q(t))2dt

 (13)

and

h =



∫ T
0 lp

i,1(q(t))
[
lp
i,0(q(t))− λi,d(t)

]
dt∫ T

0 lp
i,2(q(t))

[
lp
i,0(q(t))− λi,d(t)

]
dt

...∫ T
0 lp

i,ny
(q(t))

[
lp
i,0(q(t))− λi,d(t)

]
dt


. (14)

The polynomials lp
i,j, for j = 0, 1, . . . , ny are defined in Equation (9). It is important to

recall that quadratic programming mandates linear equality and/or inequality constraints.
Hence, it is recommended to cast the constraint set Γ accordingly in order to benefit from
the numerical reliability of quadratic programming algorithms [22].

3. Results
3.1. Description of a Benchmark Problem

The flexible-link multibody system considered for validation of the method is a planar
two-link mechanism with two revolute joints, as shown in Figure 1. The geometric and
physical properties of the system are listed in Table 1. Link 1 and link 2 are divided
into four and three Euler–Bernoulli beam elements with circular and solid cross-sections,
respectively. The resulting model has 23 degrees of freedom (dof), including the two rigid
dofs of the ERLS, denoted by q1 and q2, and 21 elastic dofs.
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𝑞2

𝑞1

y

x

Link 2

ERLS coordinates

Elastic dofs

Added mass m1

Added mass m2

B

O

A

Figure 1. Finite element model of the flexible-link manipulator.

Table 1. System parameters of the two-link mechanism.

Parameter Value

Link 1 length 0.6 m
Link 2 length 0.45 m

Linear mass density 1.9 kg/m
Young’s modulus 69 · 109 Pa

Bending moment of inertia 3.97 · 10−4 m4

It is supposed that the end effector, denoted by symbol B in Figure 1, moves along the
path shown in Figure 2a, which can be employed in a pick-and-place task. The trajectory
is sampled at constant time intervals, where each dot in the figure represents a sample
(152 samples in total). The inverse kinematics are solved, resulting in the joint-space
trajectory shown in Figure 2b.

0.05 0 0.05 0.1 0.15 0.2 0.25

x [m]

0.17

0.19

0.21

y
 [

m
]

−

(a)

1 20 40 60 80 100 120 140

/2

5/8 

3/4 

q
1
 [
ra

d
]

Shoulder joint

1 20 40 60 80 100 120 140

Time sample

13/8 

7/4 

15/8 

q
2
 [
ra

d
]

Elbow joint

(b)
Figure 2. Trajectory of the flexible linkage: (a) end-effector trajectory in the work space; (b) joint
space trajectory.
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In this example, it is assumed that two point masses m1 and m2 can be placed on the
elbow joint and end effector, respectively, if necessary to assign the desired eigenfrequency.
Hence, y =

[
m1 m2

]T . The choice of the design variable y is arbitrary, as long as it is
consistent with the ERLS model previously described, but it must be determined prior to
optimization. In order to preserve the integrity of the FLMS, the design parameters are
subjected to the following constraint set:

{(m1, m2) : 0 ≤ m1 ≤ 0.250 kg, 0 ≤ m2 ≤ 0.250 kg}. (15)

3.2. Parameter Study Results

Before attempting eigenfrequency assignment, the accuracy of the approximation
of the eigenfrequencies provided by the Taylor expansion must be assessed. The ex-
pansion point (q0, y0) has been chosen as q0 =

[
1.817 rad 5.312 rad

]T , which corre-
sponds to the dashed lines, approximately in the middle of the trajectory in Figure 3, and
y0 =

[
0.125 kg 0.125 kg

]T , which is halfway between the upper and lower bounds of
Equation (15).

The 4th order Taylor polynomial (p = 4) of the lowest eigenfrequency (i = 1), i.e.,
λ4

1(q, y), and the partially linearized polynomial, i.e., λ̂4
1(q, y), are compared with the actual

eigenfrequency of the multibody system. For clarity of representation, the approximations
are compared in two ways. In Figure 3, variable q varies in the domain [3π/8, 7π/8] ×
[3π/2, 2π], while y is fixed at the value

[
0 0

]T (no point masses are added at the joints).
If the comparison is restricted to the points of the trajectory, represented in the figure by
the green line, the maximum relative error is 0.09% for λ4

1 and 1.64% for λ̂4
1.

In Figure 3, variable q is fixed at the value q0 (same position as the expansion point),
while y varies in the domain [0, 0.250]× [0, 0.250]. The maximum relative error of λ4

1 is
0.05%, while λ̂4

1 has a maximum relative error of 1.34% in the considered domain. The
assessment of the relative error demonstrates that the partially-linearized polynomial
λ̂4

1 can approximate the considered eigenfrequency with sufficient accuracy. In fact, the
presence of small model uncertainties affects, but does not compromise, the attainment of
the desired eigenfrequencies.

(a)
Figure 3. Cont.
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(b)
Figure 3. Comparison of approximated and exact eigenfrequency versus (a) generalized coordinates
q and (b) design variables y.

3.3. Optimum Design Results

The method is challenged with the following objective: modify the considered FLMS
in such a way that the lowest eigenfrequency becomes λ1,d(t) ≡ 190 Hz, ∀t ∈ [0, T]. The
integrals in (13) and (14) are computed numerically by using the trapezoidal rule on the
same grid as for the discretization of the trajectory q(t) (in Section 3.1 and Figure 3). The
constraint set Γ is chosen consistently with (15) as

Γ = {(δm1, δm2) : − 0.125 kg ≤ δm1 ≤ 0.125 kg,

−0.125 kg≤ δm2 ≤ 0.125 kg}.
(16)

If δy belongs to the set Γ, it is said to be feasible. The optimization problem (11) is
solved using the quadprog function from MATLAB’s Optimization Toolbox. The
interior-point-convex algorithm converges rapidly in 6 iterations with optimality tol-
erance set to 10−8. The optimal value is obtained as δy =

[
0.1004 −0.1250

]T , which
translates to m1 = 0.2254 kg and m2 = 0.

The eigenfrequencies are compared in Figure 4. The eigenfrequencies of the modified
FLMS are closer to the desired frequency λ1,d than the ones of the original system. In fact,
the maximum relative error for the original mechanism is 8.31%, which is reduced to 1.48%
in the modified system. Such a result demonstrates that eigenfrequencies can be effectively
assigned by means of the proposed method.
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Figure 4. Comparison of original and optimal design.

It must be noted that the modification of the system also affects the eigenfrequencies
higher than the first. The change in such frequencies can be assessed from Figure 5, in
which the frequency of the second, third and fourth mode are shown.
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(c)
Figure 5. Comparison of the original and modified system eigenfrequencies in the (a) second mode;
(b) third mode; (c) fourth mode.

4. Conclusions

In this work, a method is proposed for designing flexible-link multibody systems to
feature a desired eigenfrequency. The method exploits the ERLS formulation of dynamic
equations, which is parametric in the mechanism configuration q. therefore, it is possible
to calculate the derivatives of the system matrices M and K analytically. Hence, the Taylor
polynomial of the eigenfrequency and eigenvector are computed by means of an iterative
process. The obtained approximation of the eigenfrequency is linearized with respect to the
design variables in order to recast the eigenfrequency assignment problem as a quadratic
optimization program, which is tractable from the numerical point of view.
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The application to a two-dof serial manipulator with flexible links, supposed to per-
form a pick-and-place motion, proves that it is possible to shift the lowest eigenfrequency
closer to a target value. This numerical validation shows the numerical reliability and fast
convergence of the method, making the proposed approach appealing for eigenfrequency
assignment of large-scale FLMS. Such systems will be addressed in future work, as well as
the validity of the partial linearization with respect to large displacements of multibody
systems and large changes in the design variables.
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