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Dipartimento di Ingegneria dell’Informazione

SCUOLA DI DOTTORATO DI RICERCA IN INGEGNERIA DELL’INFORMAZIONE

INDIRIZZO DI SCIENZA E TECNOLOGIA DELL’INFORMAZIONE

CICLO XXVIII

Islanding and Stability
of Low Voltage Distribution Grids
with Renewable Energy Sources

Direttore della Scuola: Ch.mo Prof. Matteo Bertocco
Coordinatore d’Indirizzo: Ch.mo Prof. Carlo Ferrari
Supervisori: Ch.mo Prof. Paolo Mattavelli e Ch.mo Prof. Paolo Tenti

Dottorando: Stefano Lissandron





Abstract

The employment of renewable energy sources is driving an increase of the
amount of embedded generation that is connected to the medium and low volt-
age distribution networks. This penetration brings new challenges to improve
the grid operation, but also concerns because these parts of the grid were not
designed to host generation. These energy sources are usually interfaced by
power electronic converters, e.g. inverters, which are flexible in terms of con-
trol capability. For instance, they can control output currents or voltages, both
in phase and amplitude. So, a proper design of the regulators of inverters can
improve distribution efficiency and reliability of the grid.

Distributed generation can also increase power quality and provide voltage
regulation in the distribution grid. For instance, parts of the electric network
can be operated intentionally as autonomous networks, when the connection to
the mains is lost. In this way, the reliability of the grid can increase and unin-
terruptible power supply capabilities can be achieved. However, in autonomous
or islanded operation the voltage must be managed by the inverters to correctly
feed all the loads, since the main control is missing, and the load power has also
to be shared among the distributed energy resources.

On the other side, the penetration of distributed generation can also be dan-
gerous in some particular cases, if it is not properly managed. For instance,
islanded operation can appear also unintentionally and without being expected,
because of the local generation. In this case, islanded operation is a problem for
the electric grid because it may damage the electric equipment or create safety
hazard for the line workers. The probability of unintentional islanded operation
has increased due to the newly introduced standards for generators, which in
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particular impose wider frequency and voltage ranges and active and reactive
power support capabilities using of P/f and Q/V droop characteristics. Anti-
islanding protections that each inverter is equipped with, may fail to detect the
grid transition and so uncontrolled islanded operation may appear.

In this scenario, some contributions of this Thesis are related to the islanded
operation of parts of the electric grid. First, the unintentional islanding risk
is studied considering the newly introduced standards for distributed energy
resources and in particular for photovoltaic sources. A potential increase of
such phenomenon will be shown and suggestions will be provided in order to
reduce this risk.

Then, another part of the Thesis addresses the intentional islanded opera-
tion. A local controller for inverter of distributed energy resources is presented
to manage a part of the grid during grid-connected and autonomous operating
modes and also during the transition: during grid-connected operation, the con-
troller tracks active and reactive power references and, during islanded mode,
it exploits the droop control properties to share the load among the distributed
energy resources. The peculiarity of this regulator is that it does not need to
identify the particular operation mode and so a smooth transition from grid-
connected to islanded mode can be achieved with no communication within the
power grid or among the disconnecting switch and distributed energy resources.

Another important issue in these complex scenarios is the system stabil-
ity: the interactions of more and more power electronics-interfaced power sys-
tems can indeed worsen the power quality and the stability of distribution net-
works. These phenomena can be addressed by analyzing the source and load
impedances at the section of interaction between two subsystems. Well-estab-
lished approaches exist for DC and three-phase AC networks to analyze the
source-load system. Some papers focused also on single-phase AC systems,
whose study is generally more difficult due to their time-varying characteris-
tics. Another contribution of this Thesis is an extension of a method to study
the stability of single-phase AC power systems, together with its experimental
validation. This approach bases on the dynamic phasor method to determine the
2-dimensional source and load impedances and it addresses the stability with
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the Generalized Nyquist stability Criterion, previously used to study balanced
three-phase AC system stability.

Distribution grid stability can be studied also focusing on the high level in-
teractions of its multitude of devices, such as generators and loads, and this can
be done considering approximated and general models that can account differ-
ent types of device. The last contribution of this work is the system stability
and dynamic studies of large distribution grids, with large penetration of dis-
tributed generation. Simplified models for the single units are linked together
in large small-signal models, with a scalable and automatable approach for the
dynamic analysis, that can address the study of a grid with a generic number
of node, with no more effort by the user. In particular, this activity was done
during a visiting research period done by the Author at the Institute Automation
of Complex Power Systems of RWTH Aachen University (Germany).

The results of this Thesis are given in terms of analytic and simulation stud-
ies, together with experimental validations. Also hardware-in-the-loop and real-
time simulation approaches have been used for implementation and validation
purposes.



iv Abstract



Sommario

L’impiego di fonti di energia rinnovabile sta portando ad un aumento del-
la quantità di generazione integrata connessa alle reti di distribuzione di media
e bassa tensione. Questa penetrazione sta aprendo nuove sfide per migliorare
il funzionamento della rete elettrica, ma anche alcuni rischi e problemi perché
queste parti di rete non erano inizialmente state progettate per ospitare genera-
zione. Tali sorgenti energetiche sono solitamente interfacciate da convertitori
elettronici di potenza, ad esempio inverter, che risultano essere unità estrema-
mente flessibili in termini di funzionalità e controllo. Ad esempio, gli inverter
hanno grande autonomia sul controllo delle correnti e tensioni d’uscita, sia in
fase che in ampiezza. Quindi, una corretta ed appropriata progettazione dei lo-
ro regolatori può migliorare l’efficienza della distribuzione e l’affidabilità della
rete.

La generazione distribuita può inoltre migliorare la qualità della tensione
fornita ai carichi all’interno della rete elettrica. Ad esempio, parti di rete pos-
sono essere mantenute in funzionamento intenzionalmente come reti autonome
anche quando la connessione alla rete principale viene a mancare. In questo
modo, l’affidabilità della rete può aumentare, ottenendo sempre continuità di
servizio di fornitura dell’energia elettrica. Tuttavia, in funzionamento autono-
mo o ad isola la tensione deve essere controllata dagli inverter al fine di ali-
mentare correttamente tutti i carichi, dal momento che il controllo solitamente
effettuato dal gestore di rete viene a mancare, e la potenza richiesta dai carichi
deve anche essere suddivisa adeguatamente tra le risorse energetiche distribuite.

Dall’altro lato, l’aumento della generazione distribuita può portare anche ad
avere dei rischi aggiuntivi in alcuni casi, se non viene gestito correttamente. Ad
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esempio, il funzionamento ad isola può manifestarsi anche involontariamen-
te e senza essere previsto a causa della generazione locale che può mantenere
in funzione parti di rete elettrica. In questo caso, il funzionamento ad isola
è un problema per la rete elettrica perché può danneggiare le apparecchiatu-
re elettriche o creare pericoli per la sicurezza dei lavoratori. La probabilità di
funzionamento involontario ad isola è aumentata di recente a causa di nuove
normative introdotte per i generatori le quali, in particolare, impongono gamme
di funzionamento più ampie per frequenza e tensione e impongono il supporto
alla regolazione della frequenza e della tensione con caratteristiche droop di ti-
po P/f e Q/V ai singoli generatori. Ogni inverter può essere dotato di protezioni
contro il modo di funzionamento involontario ad isola, tuttavia tali protezioni
potrebbero in alcuni casi non riuscire a riconoscere la transizione dal modo di
funzionamento in parallelo alla rete principale a quello ad isola. Questo potreb-
be impedire la disconnessione degli inverter e portare al modo di funzionamento
ad isola non controllata.

In questo scenario complesso, alcuni contributi di questa Tesi sono legati al
funzionamento ad isola di parti di rete elettrica. In primo luogo, il rischio di
formazione dell’isola involontaria è studiato considerando l’effetto delle nuove
normative introdotte per la connessione delle risorse energetiche distribuite ed
in particolare delle fonti fotovoltaiche. Si mostrerà che tale rischio è potenzial-
mente in aumento e alcuni suggerimenti potranno essere ricavati per cercare di
contenere il fenomeno di isola non intenzionale.

Un’altra parte della Tesi affronta il modo di funzionamento in isola inten-
zionale. Un controllore locale per inverter per risorse energetiche distribuite è
presentato per gestire una parte di rete durante il funzionamento in parallelo al
gestore principale, durante il funzionamento autonomo (o ad isola) e anche du-
rante la transizione: durante il funzionamento in parallelo alla rete, il regolatore
insegue riferimenti di potenza attiva e reattiva e, nella modalità ad isola sfrutta
le proprietà del controllo droop al fine di suddividere il carico tra le risorse ener-
getiche distribuite e per regolare la tensione. La peculiarità di questo regolatore
è che non necessita di identificare la particolare modalità di funzionamento e
quindi la transizione dal modo di funzionamento in parallelo alla rete principa-
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le a quello autonomo può avvenire senza comunicazione all’interno della rete
elettrica, né tra gli inverter né con il sezionatore che connette la rete al gestore
principale.

Nello scenario fin qui descritto, un altro aspetto importante è quello lega-
to alla stabilità del sistema, più o meno esteso: le interazioni tra sistemi di
conversione dell’energia sempre più basati su convertitori elettronici di poten-
za possono infatti peggiorare la qualità dell’alimentazione e la stabilità della
rete. Questi fenomeni possono essere affrontati analizzando le impedenze di
sorgente e carico in corrispondenza della sezione di interazione tra due sotto-
sistemi. Per questo, esistono approcci efficaci per quanto riguarda le reti in
corrente continua ed alternata di tipo trifase per analizzare il sistema sorgente-
carico. Alcuni lavori si sono concentrati anche sui sistemi a corrente alternata
monofase, il cui studio è generalmente più complesso a causa delle loro carat-
teristiche di tempo-varianza. Un altro contributo di questa Tesi è la descrizione
di un’estensione per lo studio di stabilità di sistemi di alimentazione in corrente
alternata monofase, assieme alla sua validazione sperimentale. Questo metodo
si basa sull’applicazione dei fasori dinamici per determinare le impedenze di
sorgente e di carico di tipo bidimensionale e affronta la stabilità con il criterio
generalizzato di Nyquist, precedentemente impiegato per lo studio di sistemi
trifase in corrente alternata bilanciati.

La stabilità della rete di distribuzione può essere studiata anche concentran-
dosi sulle interazioni di alto livello dovute alla sua moltitudine di dispositivi,
come generatori e carichi, e questo può essere fatto considerando modelli ap-
prossimati e generali che possono descrivere diverse tipologie di dispositivo.
L’ultimo contributo di questo lavoro è lo studio di stabilità di sistema e lo studio
dinamico di grandi reti di distribuzione, con grande penetrazione di generazione
distribuita. Modelli semplificati per i singoli dispositivi sono collegati insieme
in grandi modelli di piccolo segnale, con un approccio scalabile e automatiz-
zabile per l’analisi dinamica, che può affrontare lo studio di una rete con un
numero generico di nodi, senza richiedere sforzi aggiuntivi da parte dell’utente.
In particolare, tale attività è stata svolta nel corso di un periodo di ricerca presso
l’Istituto Automation of Complex Power Systems di RWTH Aachen University
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(Germania).
I risultati di questa Tesi sono supportati da studi analitici, tramite simula-

zione al calcolatore e con validazioni di tipo sperimentale. Inoltre, sono stati
utilizzati strumenti quali l’hardware-in-the-loop e la simulazione in tempo reale
al fine di implementare alcuni concetti e poterli validare.
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Chapter 1

Issues and challenges for future
grids

During the last years, Distributed Generation (DG) from Renewable Energy
Sources (RES) has significantly increased because of growing power demand
and increasing concerns about fossil fuels. Among the different energy sources,
the diffusion of PhotoVoltaic (PV) systems is the fastest-growing within the
electric distribution systems worldwide and its employment is driving an in-
crease of the amount of embedded generation connected to the Medium Volt-
age (MV) and Low Voltage (LV) distribution networks [1–3]. Figs. 1.1 and 1.2
show the fast spread of Distributed Energy Resources (DERs) within the power
system, respectively for the Italian and German cases.

As this penetration increases, there are some issues that can appear in the

a)

Pree
2007

2007 2008 2009 2010 2011 2012 2013

2.4 3.1
4.7 6.4

9.1

19

23.8 25DG
Total installed power
(GW, cumulative)

b)

1.0

2.1
2.4

15.9

3.6

Non-RES

Hydro
Bio&Waste

Solar

Wind

25

Connections at
September 2013
[GW]
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September 2013 (Italian case) [4]
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Figure 1.2: a) Historic development of the installed capacity of RES compared with conven-
tional power sources (March 2012), and b) distribution of RES over the typical nominal voltage
levels (German case) [5]

electric grid at MV and especially LV levels, because the largest part of DERs
is connected here and because this part of the grid was not originally designed
to host generating units [1, 5, 6]. One example of these risks is the increase
of feeder voltages, especially when the power generation is high and the load
demand is low. Also voltage flicker can be caused by DG because of the in-
termittent nature of RES. Considering PV units, their output powers strongly
rely on the solar irradiance that can vary rapidly, for example when the clouds
move fast. These two issues are particularly evident when large PV-DG plants
are connected close to the end of long feeders. Furthermore, DG can increase
the line unbalances, since the largest part of PV units has single-phase connec-
tion [1, 6].

Voltage fluctuations, caused by the intermittence, impact on the voltage reg-
ulation devices, usually load tap chargers, which may experience a larger num-
ber of operations per year. The lifetime of these devices, and in general of all
automatic line equipment, such as capacitors and voltage regulators, can be re-
duced by the increasing DG penetration, requiring more maintenance [1, 6].
Intermittence causes also frequent switching of voltage-controlled capacitor
banks and frequent operation of voltage regulators, leading to reactive power
flow fluctuations. If these variations are large enough, this may also affect
subtransmission and transmission systems, with possible important economic
impacts, because the transmission of reactive power is more expensive than its
local supply [1].
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In high penetrated DG scenarios, another possible issue is the reverse power
flow on the feeder, when the local DG exceeds the local load demand. For in-
stance, in Italy almost 20% of High-Voltage (HV) to MV transformers expe-
rienced reversed power flow for more than 450 hours in 2013 [4]. This phe-
nomenon can negatively affect protection systems, since they are usually de-
signed for unidirectional power flows [1, 5]. Finally, also power losses of the
grid are affected by DG: while low and moderate DG penetration levels can
help reduce the losses, too high penetration levels could increase them [1].

DG can increase frequency variations of the electrical system, for example
causing over-frequencies when there is a surplus of generation. In this situation,
a sudden disconnection of a large share of the PV generation capacity can cause
severe under-frequencies and even rolling blackouts [5]. New interconnection
requirements are trying to provide smoother responses to frequency variations
of PV systems, when system over-frequencies appear [5, 7, 8].

DERs are usually interfaced by power electronics converters, i.e. inverters,
to the grid and their control capabilities can be beneficial for the distribution
grid operation [2, 3, 9]. For example, they can support the voltage, regulate
the Power Factor (PF), and balance the currents on each phase, providing a
general improvement of distribution efficiency, reliability, and power quality
[6]. Small-scale DERs are now forced by some standards to provide all the
available active power at unitary PF and no reactive power control is allowed
[6, 10, 11]. However, allowing the inverters to inject reactive power can help
reduce voltage fluctuations caused by intermittence of RES, reduce the steady-
state voltage rise, and reduce the distribution losses [1,5,6]. The reduction of the
fluctuations can minimize the impact of PV on voltage regulators and switched
capacitors extending their life cycle, while steady-state voltage support can help
accommodate more DERs in the grid [6]. With other words, exploiting active
and reactive power control capabilities of inverters, it is possible to decrease
their penetration impact, alleviating the problems described so far [5].

In this scenario, this Chapter first describes how to reorganize the grid struc-
ture, defining and illustrating the concept of microgrid, and how this entity can
help improve grid performances in Sec. 1.1. Particular attention is given on how
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to improve the reliability of the grid, in case of mains disconnection, through the
control of autonomous microgrids in Sec. 1.1.2. Sec. 1.1.3 describes possible
supporting functions of inverters to frequency and voltage regulation of distri-
bution grids, focusing on the new standard requirements. In Sec. 1.2 and 1.3
some specific risks associated to DG are described: respectively the potential
instabilities and the risk of uncontrolled islanded operation both for distribu-
tion networks. These two issues together with the autonomous operation of
microgrids are the core of this Thesis in the following Chapters.

1.1 Hierarchical organization of future grids

The most admitted and used approach to handle the large penetration of RES
in distribution grids nowadays is to cluster DERs and loads forming microgrids,
and hierarchically manage them [9, 12, 13]. So a microgrid can be defined as a
cluster of DERs and loads, which includes suitable control structures and layers
to improve cooperation and integration of the different units. Geographical
extension, power level, and voltage level of microgrids can be different, but a
microgrid can be operated mainly in two operating modes: the grid-connected
or the islanded operating mode [3, 12]. Microgrids can be AC or DC grids and
they can be single-phase or three-phase. An example of microgrid is in Fig. 1.3:
the microgrid is connected to the main grid at the Point of Common Coupling
(PCC) via a breaker and by opening and closing this switch is possible to change
the operating mode of the microgrid.

Different types of energy source and several kinds of load make the dis-
tribution grid scenario very complex and this aspect is even accentuated by
microgrid management algorithms. The reason is that all these devices can po-
tentially act at the same time and with different time scale behaviors. There
could be low level controllers for the DG units, high level energy market mech-
anisms or algorithms that improve the quality of service at intermediate level
and many others.

This complexity and the time scale separation suggest a layered architec-
ture, as shown in Fig. 1.4. Starting from the fastest and closest to DER con-
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Figure 1.3: Example of microgrid

trollers, it is possible to identify the zero control layer. The regulators that
belong to this layer are inverter-resident and they are used to control output
voltage or current of power converters. Typical requirements for these con-
trollers are high bandwidth and performance in order to guarantee a fast time
response under generic operating conditions [10].

Above the zero control there is the primary control that takes care of the sta-
bility of the microgrid, controlling local variables, such as voltage, frequency,
and current injection, and managing the power sharing among the DERs. Pri-
mary controllers usually do not require any communication among the power
converters of the microgrid [9, 10, 14, 15]. Moreover, these local regulators can
implement droop control and virtual impedance [10].

Secondary control acts as a centralized controller optimizing other aspects
of the microgrid, for example reducing voltage and frequency steady-state er-
rors from the nominal values, improving the power quality and stability, reduc-
ing the losses of the grid, and so on. This control layer exploits communications
and wide-area monitoring architectures to coordinate the action of all the DERs
within a given area. This leads to response times for secondary controllers in
the range of minutes, and so slower dynamics compared to the primary control.

Finally, tertiary control usually regulates power flows exchanged by the
microgrid with the power distribution network. This optimization is usually
based on economic reasons and so it has the slowest dynamics.
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Figure 1.4: A possible layered architecture for the simultaneous execution of different algo-
rithms in a smart microgrid

1.1.1 Zero control

DERs are usually controlled as grid-feeding devices for grid-connected op-
eration, i.e. they work as current sources that track particular active and reactive
power references [10]. This zero controller allows for example the injection of
all the available power that can be provided by the energy source, e.g. PV,
wind, etc. This control is implemented with different types of closed-loop cur-
rent regulators, but ideally these devices can be represented as an ideal current
source with an high parallel impedance. A simplified scheme of a grid-feeding
power converter is in Fig. 1.5.a, where pref and qref are respectively the active
and the reactive powers to be generated. Usually, this kind of generator is syn-
chronized to the AC voltage at the connection point, with Phase-Locked Loop
(PLL) schemes [10].

On the other hand, grid-forming DERs control the output voltage and fre-
quency, tracking the corrisponding references Vref and ωref with proper con-
trol loops: usually an inner current closed-loop regulator and an outer voltage
one [10]. They can be represented as an ideal AC voltage generator with a low
output impedance, as in Fig. 1.5.b.

Usually grid-forming DERs are employed in autonomous or islanded oper-
ating mode, with other primary controllers which set their frequency and volt-
age references. In particular, they are required to take part to the voltage and
frequency control since the usual control imposed by the utility grid is miss-
ing in this operating mode [10]. This primary control is described in the next
section, i.e. droop control for intentional islanded operation.
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Figure 1.5: a) Grid-feeding and b) grid-forming inverters as in [10]

1.1.2 Primary control for intentional islanded operation

A microgrid can intentionally be operated in autonomous or islanded mode,
meaning that it can operate disconnected from the main grid. Focusing on AC
microgrids, to allow this operating mode the frequency and the amplitude of
the voltage in the microgrid must be managed by DERs to correctly feed all the
loads. Furthermore, the required power from the loads has to be shared among
all the DERs [3, 12].

A widely investigated technique to manage the parallel operation of DERs
in islanded mode and to pursue the goals of frequency and voltage regulation
and power sharing is the P/f and Q/V droop control. Droop techniques are at-
tractive in microgrids, because they do not rely on time-critical communication
among DERs. For this reason they can be classified as primary controllers.
To exploit droop control for intentional islanded mode, DERs are usually con-
trolled as grid-forming devices [3, 9, 10, 16–22].

Power flow equations

The power flow dependencies of an electric line of a distribution system are
described in this section in order to understand the basic idea of droop control.
Active and reactive powers are described as function of the voltages at the be-
ginning and at the end of the line. In AC microgrids operating in sinusoidal
regime with the angular frequency ωo, the electric lines can be described as a
series of a resistance and an inductance, neglecting the parallel conductance and
capacitance, as in Fig. 1.6: this approximation can be done for short electric
cables [23].

In sinusoidal operation, the phasor representation can be used to describe
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Figure 1.6: Resistive-inductive electric line

the voltages v1(t) and v2(t), respectively at the beginning and at the end of the
line, and the current i(t) of the cable in Fig. 1.6 [24]. The phasor of the line
current results

i =
v1 − v2

Z
=

v1 − v2

R + jωoL
(1.1)

where the letter in bold indicates the phasor of the respective voltage or current,
Z ≜ R + jωoL is the complex impedance of the electric line and j is the
imaginary unit.

Writing the complex quantities with their absolute value and argument,
v1 = V1e

jφ1 and v2 = V2e
jφ2 and Z = Zejθ with V1, V2, Z ∈ R, the com-

plex power s that flows at the beginning of the line results

s = p+ jq =
1

2
v1 i

∗ =
V1

2

2Z
ejθ − V1V2

2Z
ej(φ+θ) (1.2)

where φ ≜ φ1 − φ2 and the ∗ operator is the complex conjugation. The 1/2

factor is due to the peak value representation for phasors and because single-
phase connection is considered. Evaluating the real and imaginary parts of s in
(1.2), active p and reactive q powers result:

p = Re [s] =
V1

2

2Z
cos θ − V1V2

2Z
cos (φ+ θ) (1.3a)

q = Im [s] =
V1

2

2Z
sin θ − V1V2

2Z
sin (φ+ θ) (1.3b)

Some approximations can be introduced in (1.3) depending on the type of
the electric line: Tab. 1.1 shows that HV electric lines have an inductive domi-
nant component, while LV cables have a dominant resistive component.

If the inductive component is dominant in the previous analysis (for example
for HV lines), it is possible to introduce the approximation R ≃ 0, leading to
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Line type
R′ X ′ IN R′/X ′

[Ω/km] [Ω/km] [A] −
LV 0.642 0.083 142 7.7

MV 0.161 0.190 396 0.85

HV 0.06 0.191 580 0.31

Table 1.1: Typical values of resistance per unit length R′, reactance per unit length X ′, nominal
current IN and R′/X ′ ratio for different kinds of electric line; data from [25]

Z = jωoL = Xejπ/2. Equations (1.3) simplify as:

p =
V1V2

2X
sinφ (1.4a)

q =
V1

2

2X
− V1V2

2X
cosφ (1.4b)

In many practical cases, it is possible to consider φ ≃ 0 since the impedance of
the line is usually small and so sinφ ≃ φ and cosφ ≃ 1. With these approxi-
mations, equations (1.4) become:

p ≃ V1V2

2X
φ (1.5a)

q ≃ V1
2

2X
− V1V2

2X
=

V1

2X
∆V (1.5b)

where ∆V is the difference V1 − V2.

From (1.5a), it follows that the active power depends mostly on the phase
shift φ between the voltage waveforms at the beginning and at the end of the
line, while from (1.5b) the reactive power depends mostly on the voltage am-
plitude drop ∆V across the line. From these observations, it results that, for a
fixed v2, the active power flow of the line can be controlled by acting on φ via
φ1 and the reactive power flow can be controlled by acting on ∆V via V1.

Considering vice versa the case of an electric cable with dominant resistive
component, for example an LV line, where L ≃ 0 leading to Z = Rej0 ∈ R. In
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this case, equations (1.3) simplify as:

p =
V1

2

2R
− V1V2

2R
cosφ (1.6a)

q = −V1V2

2R
sinφ (1.6b)

As done before, considering φ ≃ 0 and so sinφ ≃ φ and cosφ ≃ 1, equations
(1.6) become:

p ≃ V1
2

2R
− V1V2

2R
=

V1

2R
∆V (1.7a)

q ≃ −V1V2

2R
φ (1.7b)

Now from (1.7a) the active power depends mostly on the voltage amplitude
difference ∆V between the voltage waveforms at the beginning and at the end
of the line, and from (1.7b) the reactive power flow depends mostly on their
phase shift φ. For a resistive line, for a fixed v2, thus the line active power
can be controlled by acting on ∆V through V1 and the reactive power can be
controlled by acting on φ via φ1. Comparing these dependencies with those
of the inductive line, it is possible to notice that they are inverted, while for a
generic resistive-inductive line the active and reactive powers are influenced by
φ and ∆V at the same time and so there are coupled dependencies.

Basic droop control

In order to describe the basic droop control, consider a microgrid with in-
ductive electric lines where the active power flow can be controlled by acting
on the phase of the voltage and the reactive power flow can be controlled by
acting on the voltage amplitude. Based on this idea, P/f and Q/V droop con-
trol consists of regulating the output frequency of the inverter as a function of
supplied active power (by acting on the frequency, the voltage phase can be
regulated) and regulating the output voltage amplitude according to delivered
reactive power [18, 19]. Since the steady-state frequency of the network must
be unique and constant, droop techniques exploit the frequency as a communi-
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Figure 1.7: Basic droop characteristics: a) P/f droop and b) Q/V droop

cation channel in order to properly share the power among different inverters.

This control has to be applied to a grid-forming inverter, whose references
are set as:

ωref = ωo − kp (pm − ps) (1.8a)

Vref = Vo − kq (qm − qs) (1.8b)

where pm and qm are the measured active and reactive powers at inverter out-
put, ωo and Vo the nominal angular frequency and amplitude of the microgrid
voltage, kp and kq the droop coefficients, and ps and qs constant values in con-
ventional droop control. The droop characteristics (1.8) are shown in Fig. 1.7.
The droop coefficients, i.e. kp and kq, affect the active and reactive power shar-
ing and the system dynamic response in islanded mode [18]. The paper [10]
refers to this control scheme as voltage-source-based grid-supporting function.

This kind of regulation can stabilize the voltage profile and keep the voltage
amplitude and frequency in well-defined ranges [17, 19, 26–28]. Consider for
simplicity the P/f loop: equation (1.8a) is shown in Fig. 1.8 for two inverters
with different droop characteristics, i.e. with different slopes. In a steady-state
operation, the frequency ωss of the grid must be constant and unique, otherwise
the power flows are not constant. So ωss determines, through the intersections,
the two powers p1 and p2 generated by the two DERs. By a proper design of the
droop coefficients it is possible to regulate the dynamic response of the system
and the share of the load demand among the DERs [18]. Since the frequency
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Figure 1.8: Droop characteristics in autonomous operation for two different DERs

ωss is unique in a steady-state condition, but not the voltage amplitude, this
regulation scheme can precisely share the load active power among different
inverters, but this precision is not high for reactive power sharing.

The relations (1.8) can be used only for a microgrid with cables dominated
by the inductive component. If the cables have strong resistive component, this
kind of controller can destabilize the microgrid operation. Different types of
droop controllers have been proposed to overcome specific problems of the ba-
sic solution described before: for networks with resistive-inductive lines, solu-
tions such as linear transformation in the plane of the powers [29,30] or virtual
output impedance technique [18, 31–33] can be employed. Additional studied
improvements are related to the precision of reactive power sharing [31,34] and
the power sharing performances for nonlinear loads [19, 32]. There are other
solutions that use more complex regulators in order to separate the character-
istics of the steady-state solution to those related to transients [34, 35]. Other
papers provide additional services beyond the basic grid operation, helping the
voltage support and reactive power compensation [22, 36].

1.1.3 Primary control for grid support

Inverters for DG systems may produce active and reactive power at any
level, according to the active power supplied by the primary energy source and
according to the rated power of the electronic devices: this allows the DERs
to produce any power at any PF [10, 37]. However, some standards for grid-
connected operation, as [11], impose the injection of all the available active
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power at unity PF and this can create concerns. This injection often is done
with a grid-following device.

In such situations, the PF at the PCC can go down on a lagging power sys-
tem and the injection of reactive power locally from DG inverters would be
beneficial for the grid operation, instead requiring it from the PCC [37]. As
anticipated at the beginning of this Chapter, there are other advantages from
allowing the inverters to regulate their active and reactive powers: they can
support the voltage and frequency regulations of the grid, improve the power
quality and increse the hosting capacity of the grid [1, 5, 6, 37]. In this section,
some voltage and frequency support techniques are described to understand
their potentiality and possible issues.

Voltage regulation support

PV generators do not have any rotating parts, unlike conventional genera-
tors, and thus they do not have inertia. This can cause some problems when
the solar irradiance at the PV panel changes rapidly, for instance due to cloud
movements, because also the output power of the inverter changes rapidly. Fast
power changes can cause voltage sags or dips and, in these situations, injecting
reactive power can help mitigate the voltage variations [38, 39]. Inverters can
regulate the voltage together with the conventional devices of a radial distribu-
tion system, that are load-tap-changing transformers at substations, line-voltage
regulators or switched capacitors on feeders [37].

The local reactive power injection can pursue two different goals: the re-
duction of the voltage drop along the electric line and the minimization of the
distribution losses. However, these two objectives are in competition and a
trade-off has to be done [39]. For inductive connection it is possible to regu-
late the voltage amplitude of the DER node by injecting reactive power, as seen
with the power dependencies in Sec. 1.1.2. Secondary level controls provide
minimization of the distribution losses, as described in Sec. 1.1.4, however the
minimum for the line power losses and the minimum for the voltage amplitude
drop are achieved for different values of reactive power injection by the inverter.

One of the simplest voltage support techniques consists of injecting negative
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Figure 1.9: Q/V droop characteristic for inverters with rated power larger than 6 kW according
to Italian standard (k ≃ 0.5) [7]

reactive power as the local voltage amplitude increases and generating a positive
reactive power when it decreases [37, 39]. This technique has already been
regulated and imposed by some country level standards, such as for instance
the Italian [7] and the German ones, [40] and references therein. Reffering to
the Italian standard [7], each PV inverter with rated power larger than 6 kW has
to generate reactive power according to the Q/V droop characteristic shown in
Fig. 1.9. Many existing standards require this type of regulation, however many
connection rules do not specify any particular requirements on their dynamic
response [40]. For example, the standard [7] only provides an upper bound on
the transient time for this regulation: it states that the reactive power has to reach
the steady-state value within 10 s. Q/V droop control for voltage support has
been studied by different works, in order to limit the voltage rise on the feeder
and to reduce the voltage fluctuations due to cloud movements [38, 40–45].

Frequency regulation support

The national standards for PV DERs connected to the grid have different
fixed cutoff frequencies: if the grid frequency rises above these thresholds, the
DERs have to be disconnected. For example, these frequencies for LV grids are
50.3Hz in Italy and Denmark and 50.2Hz in Germany [5, 7]. In an area with
a large penetration of PV DERs, an over-frequency event can cause a sudden
loss of a large part of generation capacity. In turn, this can cause severe under-
frequencies and even rolling blackouts [5]. This has driven the standards to let
the PV units to provide frequency support and smoother responses to frequency



1.1 Hierarchical organization of future grids 15

47.5 50.3 51.5

f [Hz]

P

Pn

Figure 1.10: P/f droop characteristic for inverter according to Italian standard [7]

transients. Different country level standards now state that the PV DERs have
not to disconnect suddenly when the grid frequency increases above the thresh-
old, but they have to reduce the power generation gradually, providing smoother
responses. For example, the Italian standard provides the P/f droop curve that
is shown in Fig. 1.10 and the German one is similar [5].

Also some papers propose P/f droop characteristics for the PV inverters to
support the frequency regulation of the grid: a survey is in [46]. Usually PV
systems are operated at the Maximum Power Point (MPP) to generate all the
available power and so only a reduction of the injected power is possible, by
moving away from the MPP. To obtain a PV inverter fully dispatchable, i.e.
with the possibility to increase and decrease the generated power, it has to be
operated below the MPP. For example, realizations of such controllers together
with the implementation of P/f droop regulation are described in [47, 48] with
analyses on how the stability of the grid can be improved after severe transients.

It should be stressed that the P/f and Q/V regulation described in Sec. 1.1.2
and Sec. 1.1.3 have completely different purposes, even if they are both called
P/f and Q/V droop. The one of Sec. 1.1.2 applies to a grid-forming device,
which measures its output active and reactive powers and, based on the P/f and
Q/V droop characteristics, it sets the frequency and the amplitude references
for output voltage. This kind of regulation is used in islanded mode, since the
DERs have to impose and regulate the voltage and to share the load power
among DERs. On the other hand, the P/f and Q/V regulation described in this
section applies to grid-following devices, and it is already regulated by some
standards for PV connection. So it is used in grid-connected operation, where
the frequency and the voltage are strictly imposed by the mains. For this reason,
this droop control consists of measuring the output voltage and frequency of the
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DER which injects an active and a reactive power determined by these measure-
ments and P/f and Q/V characteristics. The objectives are to exploit the DERs
as supporting devices to the frequency and voltage regulations done in the grid.
The paper [10] refers to this second control scheme as current-source-based

grid-supporting function.

1.1.4 Secondary and tertiary control

Local control techniques, which can be classified as primary controllers, can
measure and act only on local quantities, without requiring additional commu-
nication or coordination infrastructures. This usually makes them more robust,
but, on the other hand, local schemes act based on few information and so opti-
mal operation in general could not be achieved.

The secondary control, usually working as centralized or distributed con-
troller, restores the voltage and frequency in the microgrid and compensate for
the deviations caused by the primary control. The secondary control can also
improve the power quality of the grid, for instance blancing the voltages on the
phases and keeping satisfied the voltage constraints at the grid nodes [49]. Other
improvements that can be pursued with the secondary controller are the reduc-
tion of distribution losses, which is achieved with a communication infrastruc-
ture and centralized computation capabilities in [50, 51]. A similar objective is
pursued in [52] with a distributed controller, which requires local communica-
tion and local knowledge of the network topology and state. The optimization
of the network losses and voltage profile are usually achieved regulating the
powers injected by DERs [53].

Tertiary control is the higher control level and also the slowest. It considers
economical concerns in the optimal operation of the microgrid, and manages
the power flow between microgrid and main grid. Tertiary control optimization
is usually based on economic criteria, considering the relationship between the
demand and the energy supply balance, together with the marginal generation
cost of each DER. This optimization relies on short-term load prediction, gener-
ation forecast, and energy storage capability estimation, as well as the specific
demands set by the transmission and distribution system operators and the prize
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signals provided by the electrical market [10].

1.2 Potential instabilities with DG

Power electronics interfaces can help improve the performance, efficiency,
and reliability of the interfaced devices, but on the other hand their active con-
trol introduces complex and fast dynamics, such as nonlinear and time-varying
behaviors, which can worsen the system stability when several devices interact.
This has driven the study and the analysis of such systems as a whole, consider-
ing the important interactions among different interconnected units, rather than
limiting the analysis to the single device stability [54, 55].

Nowadays, powerful computation capabilities allow to simulate very com-
plex and extended scenarios. These capabilities have pushed different works
to address instability concerns in the distribution grid through detailed simula-
tions. Several papers propose simulation analyzes of distribution grids, both for
islanded operation and grid-connected operation [56].

Grid-connected operation has been considered in [57], which studies the
impacts of DERs that are interfaced to the distribution grid via rotating gener-
ators and inverters. Oscillations appear depending on the interface device and
the DG penetration level. Inverter-interfaced DG can lead to a reduction of
stability, which is mainly due to the reduction of the total inertia, caused by
the substitution of rotating generators with inverter interfaced generators [58].
Simulation details can be very precise and sophisticated, considering a trans-
mission grid with PV DERs interfaced by inverters, also the effects of Maxi-
mum Power Point Tracking (MPPT) algorithms can be accounted [59]. Some
example results for a transmission grid with traditional synchronous generators
and inverter interfaced PV generators are in Fig. 1.11, where the frequency and
the voltage deviations at one node of the grid increase as the DG penetration
increases [56].

These results show that instabilities could arise in the interconnected grid
if each DER is only designed as a stable standalone device: component-wise
stability does not ensure stability of the system as a whole [60]. This marks the
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Figure 1.11: Simulation results: a) the frequency and b) the voltage transients when a PV plant
is disconnected; different results for different DG penetration levels [59]

importance of studying the dynamic characteristics of a grid instead of focusing
on a single device, in particular when DER units are more and more numerous.

To study the stability of complex systems there are two main approaches:
one that is simulation-based and another based on analytic models. While sim-
ulation is quite direct and straightforward to address very complex scenarios,
even with Real-Time (RT) simulators [61, 62], analytic approaches can pro-
vide more details and insights on the instability causes of the system. Ana-
lytic approaches that account for large system usually introduce approxima-
tions [15, 56], while others keep a detailed description, for instance addressing
the stability of the interactions of two interconnected subsystems.

Considering the stability analysis approaches that address the interaction
of two equivalent subsystems, that are source and load, a standard technique
is the impedance-based approach. This method is interesting also because it
enables an experimental based procedure to obtain the mathematical model.
The first example of these analyses is provided by Middlebrook in [63], who
addresses the interactions of DC systems, in particular between DC-DC con-
verters and their input filters. This kind of system is usually time-varying, due
to the switching behavior of power electronics, and nonlinear, for example be-
cause of cross-product terms (e.g. with the duty-cycle). The approach in [63]
bases on averaging methods at switching period to eliminate the time-varying
behavior and on linearization approaches to obtain small-signal models. The



1.2 Potential instabilities with DG 19

Ysivsi

+

−

vso YL Laod

ZS

v

+

−
vlo

Zlo

Source converter Load converter

Figure 1.12: Schematic representation of the DC-DC source-load system

resulting models, one for the source and one for the load, can be described by
their input and output impedances and the system stability can be addressed
by the Nyquist stability criterion applied to the ratio of the impedances (Fig.
1.12) [54, 63, 64].

Impedance-based analysis is not directly applicable to AC systems, as tradi-
tionally microgrids and in particular distribution grids are, because of their sinu-
soidal behavior. Time-varying and nonlinear characteristics due to the switches
can be addressed again via averaged-modeling at the switching frequency of
the power converters. However, the resulting averaged model can be still time-
varying and nonlinear: time-varying can be due to the sinusoidal inputs of AC
grids and nonlinearity can be due to the controllers (e.g. cross-product terms).
These nonlinearities can not be removed immediately with standard lineariza-
tion processes because a well-defined operating point can not be easily iden-
tified (almost all quantities have periodically time-varying trajectories). The
paper [54] provides a survey of small-signal methods for AC power systems.

Small-signal stability in three-phase AC systems has been studied in terms
of source and load impedances (Fig. 1.13) exploiting the dq or Park trans-

formation [55, 65]. First, consider the transformation rule from the abc phase
components to the stationary reference frame αβ:

xαβ (t) =
2

3

[
xa (t) + xb (t) e

j 2
3
π + xc (t) e

j 4
3
π
]

(1.9)

for a set of three-phase quantities xa (t), xb (t) and xc (t) and the following
relation to obtain the space vector in the dq rotating reference frame, i.e. Park
transformation:

xdq (t) = xd (t) + jxq (t) = xαβ (t) e
−jωot (1.10)
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where the transformation is performed at the nominal line frequency ωo of the
grid. The transformation is shown in Fig. 1.14. If the three-phase system
(3-wire or 4-wire) has no negative-sequence and it has constant zero-sequence
with low harmonic distortion, each voltage and current of the system in the dq

reference frame, that is with (1.10), is constant [55, 65]. Thus, this approach
allows to identify a steady-state operation and a small-signal analysis can be
performed in terms of dq space vectors: each voltage and current is described
by two variables, namely d and q components, and so at a two-terminal electric
interface four impedances in the dq frame can be identified (combining two
currents and two voltages) [55].

A similar approach to [63] can be still applied to the resulting small-signal
model of the balanced three-phase system considering the Generalized Nyquist
stability Criterion (GNC) for Multiple-Input Multiple-Output (MIMO) systems
[66]. As example, the dq impedances of a three-phase voltage source converter
synchronized with a PLL are analytically derived and the stability is studied
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with eigenvalue analyzes in [67]. An alternative to the dq transformation comes
from [68], that addresses the sinusoidal time-varying behavior of three-phase
AC systems via the harmonic linearization approach, introducing some approx-
imations.

Balanced and symmetric three-phase AC power systems have been studied
and analyzed and well-established techniques for their stability analysis exist.
On the other side, single-phase AC system studies are more difficult because
the identification of a precise operating point where to perform a linearization is
not straightforward: for instance the dq transformation is not easily defined for
them. For this reason, different points on the single-phase AC stability analysis
are still open and they are beckoning the interests of the research community.
These studies are interesting because they allow to address stability issues in
LV microgrids, that usually include single-phase connected DERs, and other
applications as in the railway system [69].

1.3 Unintentional islanded operation

New European standards state the reference technical rules for the connec-
tion of active users to the grid and for their behavior during temporary voltage
and frequency variations [70–72]. These standards together with some country-
level ones are imposing the participation of DERs to the voltage and frequency
regulation, through the P/f and Q/V droop characteristics (Sec. 1.1.3). One of
the most relevant modifications is the extension of the frequency range that is al-
lowed during normal operation of DERs from the traditional thresholds 49.7Hz
and 50.3Hz to the less stringent values 47.5Hz and 51.5Hz, and the extension
of the voltage levels to the range ±15% of the rated voltage [7, 73]. Transient
and steady-state voltage and frequency allowed ranges are depicted in Fig. 1.15
for the Italian standard [7].

The power electronic interfaces introduce fast dynamics into the grid and
could continue to energize a portion of the electric network also when the main
grid disconnects, even if the islanded mode is not explicitly pursued and im-
plemented. Thus, undesired islanded portions of the grid can be still oper-
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Figure 1.15: Voltage and frequency thresholds imposed by the Italian standard [7, 74]

ating [75, 76], even if currently the distribution grid is not designed for such
operation: this operation is called unintentional or uncontrolled islanded opera-
tion [73]. Unintentional islands can make damages on the electric equipment of
the grid when these parts of the grid have to be reconnected to the mains, since
auto-reclosing switches and rotating generators/loads may not be designed to
sustain such transient conditions [75, 77].

Different anti-islanding techniques have been proposed so far and imple-
mented in the interface inverters for DG applications. Anti-islanding schemes
are usually divided in passive, active, hybrid, and communication-based ap-
proaches [78–84]. Passive techniques consist of measuring a certain system pa-
rameter, such as frequency or voltage, and comparing it with a predetermined
threshold. The islanding detection happens if this parameter is out of this prede-
termined range. In active methods, the control of the inverter tries to drift some
parameters, such as frequency or voltage, or to inject disturbances, as nega-
tive sequence components, in order to move the system parameters far from the
nominal ones or to destabilize the system itself when the islanding happens.
Communication-based methods send and receive signals between different de-
vices in order to detect the transition. Active methods are quite attractive be-
cause they are less expensive compared to communication-based approaches
and they are more effective compared to passive methods. Recently, hybrid
passive-active methods can combine advantages of both approaches [85].

Performance evaluation of anti-islanding schemes are usually based on two
characteristics [76, 86]:
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• speed of detection, which is the time interval between the actual islanding
instant and the islanding detection instant

• Non-Detection Zone (NDZ), which is a region specified by the system
parameters, in which islanding detection fails

Standard [87] suggests the use of a parallel RLC load with a resonance fre-
quency equal to the line frequency to test the anti-islanding technique effective-
ness, because it can provide higher stabilization of the islanded system. Some
interesting studies on the determination of NDZ can be found in [82,85,88,89].

However, when there is a large number of DERs, the behavior of all these
provisions, being different from each manufacturer and not specified by stan-
dards, is unpredictable and in some cases these techniques can lack to detect the
operating mode and so the disconnection of the inverter may not happen [90].
Moreover, in some countries such anti-islanding provisions are not mandatory
on MV connections.

In order to address the unintentional islanding issue, the problem can be
separated in two sub-problems: the permanent and temporary unintentional
islanded operations. The risk of permanent islanding operation is the risk of a
steady-state Unintentional Islanded Operation (UIO). With other words, perma-
nent islanding means that the steady-state frequency and voltage of the islanded
system remain within the allowed thresholds, for instance those in Fig. 1.15.
In particular to maintain this operation, the stability of the islanded system is
required [8, 73].

The UIO may be dangerous especially in presence of automatic reclosing

procedure. This automatic procedure is adopted in some distribution networks
of European countries and has the purpose of a fast localization and separation
of the faulted line segment of an MV distribution network [7,91]. It consists of
opening and reclosing the breaker of an MV line for established time intervals
in order to extinguish faults, for instance single phase to earth faults. This pro-
cedure can introduce additional risks for the equipment when UIO happens, be-
cause of possible out of phase reconnections. In Fig. 1.16 there is an illustration
of the automatic reclosing procedure for the Italian distribution network [91]:
observe that the first opening of the breaker lasts for 600ms.
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To address the automatic reclosing procedure issue, the temporary islanding
problem has to be considered, as the operation in islanded condition for a short
time interval after the disconnection [73]. The study of this problem consists of
to understand if the disconnecting transient, i.e. the voltage and the frequency
transients, fulfills the thresholds defined by the standards, e.g. those of Fig.
1.15. The considered time interval should be those of the automatic procedure,
e.g. 600ms.

The risk of unintentional islanding should be studied in detail and properly
reduced in a distribution grid scenario with more and more DERs. Furthermore,
the impact of new standards for DER connection should be evaluated in rela-
tion to the unintentional islanding risk, in particular considering the effect of
the introduction of P/f and Q/V droop characteristics, which may stabilize the
islanded operation leading to an increase of this risk [7, 70–72].

1.4 Summary

This Chapter shows that distribution grid scenario is very complex and var-
ied, because of the presence of different devices that work simultaneously and
with different aims and time scale characteristics. The fast dynamics introduced
by power electronics converters can be from one point of view beneficial, im-
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proving the performances of the grid or providing new functionalities and oper-
ations, as for instance intentional islanded operation. On the other side, power
electronics converters may introduce concerns and issues if they are not prop-
erly controlled. In this Chapter, attentions are payed to UIO and instability risks
due to the interconnections of several devices in the distribution grids.

These main topics are tackled in the remainder of this Thesis: in particular
Chapter 2 focuses on unintentional islanding risk considering the effect of P/f
and Q/V droop control stated by new standards for PV connection, Chapter 3
proposes and analyzes a local controller for DERs to operate a microgrid in both
grid-connected and islanded operating modes and during the transition, avoid-
ing the use of time-critical communication, Chapter 4 describes and validates an
experimental method to address the stability of the interactions between devices
in single-phase AC distribution grids or microgrids, and Chapter 5 proposes an
automatable and scalable approach to study the dynamics and the stability of
distribution grids of generic size. Finally, Chapter 6 outlines the conclusions of
this Thesis.
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Chapter 2

Risk of unintentional islanded
operation

The risk of UIO in distribution grids is of increasing interest because of
the large penetration of RES and the new requirements for PV connections, as
anticipated in Sec. 1.3. DER anti-islanding protections, if present, may fail to
detect the grid transition and so UIO may appear, increasing the hazards for the
electric network operation and for the grid equipment. For these reasons, in
this Chapter the increasing risk of UIO is analyzed, in particular in presence of
DER support functions with P/f and Q/V droop (Sec. 1.1.3).

To analyze the UIO, this Chapter defines the unintentional islanding prob-
lems, permanent and temporary, in Sec. 2.1. Then, in Sec. 2.2 the permanent
islanding issue is first considered from a static point of view in terms of inter-
section of the generation and load characteristics, to understand the possible
steady-state operation of the islanded system. A small-signal dynamic model
for stability analysis is hence presented in order to understand if a permanent
islanding is really likely to happen in Sec. 2.3. The quantification of uninten-
tional islanding risk is given in terms of NDZ.

The temporary islanded operation (e.g. below 600ms) due to the automatic
reclosing procedure is then considered in Sec. 2.4. A small-signal model of the
islanded system is first proposed to check if the frequency and voltage transients
fulfill the standard thresholds. The effects of P/f and Q/V droop characteristics
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of generators and their response times are accounted, showing that the risk of
unintentional islanding increases introducing droop regulation, in Sec. 2.5. Fur-
thermore, non-simultaneous P/f and Q/V droop regulation is investigated and a
control method for inverters based on it is described and validated in order to
reduce this unintentional islanding risk: this algorithm and its validation are in
Sec. 2.5.

2.1 System description and area of uncontrolled
islanding

The scenario considered in this Chapter consists of an LV inverter connected
to the main grid at the PCC and having in parallel some local loads, as proposed
in [8,73]. In Fig. 2.1, there is a representation of such scenario for a three-phase
connection, but similar conclusions can also be done for the single-phase case.
The grid-feeding inverter is equipped with internal current/voltage feedbacks
and PLL to ensure the desired generation of active and reactive powers. As
anticipated in Sec. 1.1.1, grid-feeding inverters are the mostly used for grid-
connected operation, and this test-case represents the normal configuration used
in PV systems.

Regarding the generated power references pG,ref and qG,ref , four Cases are
considered [74]:

• Case I of a DER with constant active and reactive power references;

• Case II of a DER with only Q/V droop characteristic as in Fig. 2.2;

• Case III of a DER with only P/f droop characteristic as in Fig. 2.2;

• Case IV of a DER with both Q/V and P/f droop characteristics as in Fig.
2.2.

Later, the Chapter shows that the risk of islanding increases for the last three
Cases (II-IV) compared to Case I: while in Case I the UIO can be formed due to
the regulation characteristics of the load, i.e. the dependencies of the active and
reactive load powers to the frequency and the amplitude of the voltage; in the
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other cases the risk is increased due to the droop characteristics of the inverter-
interfaced generator, as described for several papers dealing with P/f and Q/V
droop (Sec. 1.1.2).

After the transition from grid-connected to islanded operation, the active
and reactive powers pG and qG generated by the inverter have to balance those
absorbed by the load pL and qL, i.e.

⎧
⎪⎪⎨
⎪⎪⎩

pL(f, V ) = pG(f)

qL(f, V ) = qG(V )

(2.1)

where it is assumed that the load is described with its active pL and reactive qL

powers as function of the frequency f and the voltage amplitude V , as some
papers on load modeling have done so far [92]. In (2.1) the generator active
power pG is a function of the frequency f and the generator reactive power qG
is a function of the voltage amplitude V , in order to consider the droop charac-
teristics (Fig. 2.2). Notice that this choice is general and it can be done also for
the case of an inverter with constant power references. After the disconnection
and the power balancing, a new steady-state solution (fss, Vss) for the system
(2.1) can potentially be reached: this is denoted as static analysis [8, 73]. If fss
and Vss do not trigger the DER protections, for instance those in Fig. 1.15, then
an unintentional islanding is possible. Here the permissive allowed rages of [7]
are considered, as shown in Fig. 1.15, and they are

V ∈ [Vmin, Vmax ] = [ 0.85, 1.15 ] p.u.

f ∈ [ fmin, fmax ] = [ 47.5, 51.5 ] Hz
(2.2)

Taking into account the variability of the power source and the load compo-
nents in terms of grid-connected active and reactive powers, a set of solutions
is found that defines the NDZ, i.e. an area representing the power mismatch
∆P ≜ pG (fo) − pL (fo, Vo) versus ∆Q ≜ qG (Vo) − qL (fo, Vo) at the PCC
where the islanding condition is possible, where fo and Vo are respectively the
nominal frequency and nominal voltage amplitude. If for a certain (∆P, ∆Q)
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the corresponding steady-state solution (fss, Vss) is within the voltage and fre-
quency thresholds and if such operating point is stable, then a permanent is-
landed operation can be maintained, i.e. (∆P, ∆Q) belongs to the NDZ.

The frequency and voltage thresholds of (2.2) identify a rectangular area
on the plane of allowed deviation of voltage amplitude ∆V ≜ V − Vo versus
deviation of frequency ∆f ≜ f − fo. The borders of this region

∆Vmin ≜ Vmin − Vo (2.3a)

∆Vmax ≜ Vmax − Vo (2.3b)

∆fmin ≜ fmin − fo (2.3c)

∆fmax ≜ fmax − fo (2.3d)

are mapped from the ∆f − ∆V plane to the ∆P − ∆Q plane. In this refer-
ence frame, other four borders are identified and thus the NDZ of unintentional
islanding, as shown schematically in Fig. 2.3. In this figure, it is anticipated
that the area widens passing from Case I to Case IV: this is described in detail
hereafter.

The temporary islanding problem is introduced as the problem of stating if
the voltage V and frequency f of the islanded system fulfill the standard thresh-
olds for a precise time interval or transient after the grid transition [93]. The
regulation of the active and reactive powers of the generator according to P/f and
Q/V droop curves (Case IV) increases the NDZ in the plane ∆P − ∆Q with
respect to Case I for the permanent islanded operation, as shown later. Thus,
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in Fig. 2.3 the border of the NDZ of Case IV is wider than the NDZ of Case I.
However, for temporary islanding the voltage and frequency need to be within
the thresholds within an established time, and so the response times of the P/f
and Q/V droop regulation (respectively τp and τq) play a relevant role on the
∆P −∆Q region shaping: potentially the larger the time constants, the smaller
the NDZ, as in Fig. 2.4. Observe that considering the temporary islanded oper-
ation during the automatic reclosing time, only the voltage protection may trip
within the intervention time, set to 600ms (see Fig. 1.15).

2.2 Permanent unintentional islanded operation

This section describes an analytic approach to derive the static ∆P − ∆Q

region, as presented in [74]. Considering a fixed load, that is fixed power de-
pendencies pL(f, u) and qL(f, u), to draw the NDZ regions (for each different
Case) the following procedure can be used:

1. the load powers pL,ss and qL,ss is evaluated for a precise point (fss, Vss)

on the ∆f −∆V border (for the potential islanded solution);

2. in islanded operation pL,ss and qL,ss must be equal to the inverter active
and reactive powers, pG,ss and qG,ss, for (fss, Vss), thus knowing the par-
ticular Case and the droop characteristics of the inverter, the active and
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Table 2.1: Load parameters: base power is the active load power at (fo, Vo)

R1 = 17Ω = 0.873 p.u.

R2 = 82.5Ω = 0.180 p.u.

L1 = 87.5mH = 0.551 p.u.

C1 = 14.4µF = 0.067 p.u.

C2 = 60µF = 0.280 p.u.

reactive powers pG (fo) and qG (Vo) in grid-connected mode can be cal-
culated;

3. the (∆P, ∆Q) point on the NDZ border (Fig. 2.3) is derived from the
grid-connected powers of the inverter and of the load, pL (fo, Vo) and
qL (fo, Vo), which are known;

4. the previous points 1-3 are the repeated for all the border in the ∆f−∆V

plane of Fig. 2.3.

In this analysis, the grid-connected operating point is (fo, Vo) regardless the
power absorbed or generated by the main grid, meaning that the small voltage
drop due to the output impedance of the grid is neglected. This approximation
is verified in Sec. 2.5.2.

This analysis is general and it can be applied for a generic local load whose
active and reactive power dependencies are known, pL(f, V ) and qL(f, V ). For
instance, it can be used with standard modeling choices of load, such as resi-
dential, agricultural, and industrial of [92]. However, in the first part of analysis
and validation, a local load consisting of a set of passive components is con-
sidered: it is a parallel connection of a resistor R1, an inductor L1, a capacitor
C1, and a resistive-capacitive series (R2 and C2), whose values are in Tab. 2.1
and whose power dependencies pL (f, V ) and qL (f, V ) are shown in Fig. 2.5.
This choice is done for sake of experimental validation and of simplicity: the
power dependency pL(f, V ) has in particular a positive slope with respect to
the frequency that prevents multiple intersections with the P/f droop curve, and
so it prevents multiple steady-state operations within the allowed thresholds.

For such load the NDZs, evaluated with the method described at the begin-
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Table 2.2: Areas of NDZ: values are normalized to the area of Case I [74]

Case I 1

Case II 1.16

Case III 8.41

Case IV 45.9

ning of this section, are reported in Fig. 2.6: Fig. 2.6.a refers to the Case I.
Fig. 2.6.b shows that including the Q/V droop control (Case II) causes a slight
widening of the unintentional islanding region, while the introduction of only
the P/f droop control (Case III) leads to a larger area widening (Fig. 2.6.c). Fi-
nally, in Fig. 2.6.d for Case IV, the islanding risk is maximum since the region is
the largest. Notice that introducing the P/f droop causes a potential unbounded
area; however in a real application this area is limited by the rated power of the
inverter. To quantify the area enlargement, the areas of the regions of Fig. 2.6
limited to the axis ranges ∆P ∈ [−0.5, 1] p.u. and ∆Q ∈ [−0.8, 0.8] p.u., are
evaluated and reported in Tab. 2.2.

The regions of this section refer only to the static analysis of the system
(2.1), i.e. a possible steady-state solution, while to obtain a real permanent is-
landed operation also the stability of the islanded system is necessary [8]. So in
order to complete the analysis of this section, in Sec. 2.3 a small-signal stability
analysis is described. Later, in Sec. 2.5.2 the NDZs are drawn experimentally
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to validate the results of this section and the stability of the islanded system is
also investigated with experiments.

2.3 Small-signal stability analysis for permanent
islanding

In order to analyze if the operating point in the NDZ is stable, a simple
small-signal model of the islanded system in Fig. 2.1 is derived in this sec-
tion, extending [8]. This system is divided into two main parts: one for the
PV inverter and its PLL and another for the load, both represented in the dq

synchronous reference frame at the nominal line angular frequency ωo = 2πfo

(Sec. 1.2). In this representation, v = vd + jvq = V ejφv ∈ C refers to
the space vector of the inverter output voltage, equal to the load voltage. Term
vp = Vpe

jφp ∈ C indicates the voltage generated by the PLL, and i = id+jiq =

Iejφi ∈ C is the output current of the inverter, which is equal to the absorbed
load current.

Fig. 2.7 shows a block diagram representation of the mathematical model,
where the contribution of the PLL is highlighted. The PLL synchronizes the
current controlled inverter to the voltage waveform, generating the amplitude
Vp, the frequency fp, and the phase φp of the inverter voltage, where the p

subscript indicates that these quantities are generated by the PLL and used to
evaluate the current reference for the inverter. In the following two subsections,
the two models are analytically derived.



2.3 Small-signal stability analysis for permanent islanding 37

2.3.1 Small-signal model of the inverter

The system is usually dominated by different time-scale dynamics: the
faster dynamics that are related to the current regulator of the inverter and the
slower ones that are related to the PLL (that usually has a much lower closed-
loop bandwidth [94]) and to the load. In this scenario, the following stability
analysis focuses on the interactions between the slower dynamics, considering
the current regulator in steady-state conditions (i.e. the inverter output current
equal to the corresponding reference value iref ≃ i). Moreover, the dynamics
of the active and reactive power loops, if present, are here neglected.

A power controlled inverter with a reference signal sG,ref is considered:

sG,ref = pG,ref + jqG,ref =
3

2
vp i

∗
ref =

3

2
vp i

∗ (2.4)

where the 3/2 factor derives from the scaling used in the dq transformation.
Notice that in (2.4), the voltage vp is generated by the PLL. Dividing (2.4) in
its real and imaginary parts, it follows:

pG,ref =
3

2
Vp I cos (φp − φi) (2.5a)

qG,ref =
3

2
Vp I sin (φp − φi) (2.5b)

In order to include also the more general case of Fig. 2.2, the following
expressions for the power references are considered:

pG,ref = PG0 − kpfp (2.6a)

qG,ref = QG0 − kqVp (2.6b)

This is a linear approximation of the P/f and Q/V droop functions of Fig. 2.2
that can address all the four Cases described in Sec. 2.1 in a small-signal de-
scription: for instance Case I is achieved by setting kp and kq equal to zero.

Substituting (2.6) in (2.5), evaluating I and φi, and then linearizing the
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resulting expressions, it results:

∆φi = ∆φp +
∂φi

∂fp

⏐⏐⏐⏐
Q

∆fp +
∂φi

∂Vp

⏐⏐⏐⏐
Q

∆Vp (2.7a)

∆I =
∂I

∂fp

⏐⏐⏐⏐
Q

∆fp +
∂I

∂Vp

⏐⏐⏐⏐
Q

∆Vp (2.7b)

where the symbol ∆ indicates a small-signal perturbation around the operating
point Q. The details of the partial derivatives in (2.7) are not reported here
explicitly.

As far as the PLL is concerned, a Synchronous-Reference-Frame PLL (SRF-
PLL) is considered [20, 94, 95] and, just for the sake of explanation, here ap-
proximated as a first-order model, i.e.:

Φp(s)

Φv(s)
≃ 1

1 + s
ωc

(2.8)

where Φp(s) and Φv(s) are respectively the Laplace transform L of ∆φp and
∆φv, ωc is the closed-loop bandwidth of the SRF-PLL, and s is the complex
variable of the Laplace transform. Equation (2.8) is also derived in the time-
domain, considering that the time derivative of ∆φp is equal to 2π∆fp, i.e.:

d

dt
∆φp = −ωc∆φp + ωc∆φv ⇒ ∆fp = −ωc

2π
∆φp +

ωc

2π
∆φv (2.9)

A more precise PLL model can be easily included in this analysis, if needed.

Respect to the voltage amplitude, in the small-signal model for the PLL, it
is assumed:

∆Vp = ∆V (2.10)

although different implementations on the PLL amplitude control exist. From
(2.7), (2.9) and (2.10), the state-space model of the inverter and its PLL can be
written as: ⎧

⎪⎪⎨
⎪⎪⎩

d

dt
∆φp = Ai∆φp +Bi∆g

∆y = Ci∆φp +Di∆g

(2.11)
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where ∆φp is the state of the model, ∆g ≜ [ ∆φv ∆V ]T ∈ R2×1 is its input
and ∆y ≜ [ ∆φi ∆I ]T ∈ R2×1 is its output. The four matrices of (2.11) result:

Ai = −ωc ∈ R1×1 Bi =
[
ωc 0

]
∈ R1×2 (2.12a)

Ci =

⎡
⎣
1− ωc

2π
∂φi

∂fp

⏐⏐⏐
Q

− ωc

2π
∂I
∂fp

⏐⏐⏐
Q

⎤
⎦ ∈ R2×1 Di =

⎡
⎣

ωc

2π
∂φi

∂fp

⏐⏐⏐
Q

∂φi

∂Vp

⏐⏐⏐
Q

ωc

2π
∂I
∂fp

⏐⏐⏐
Q

∂I
∂Vp

⏐⏐⏐
Q

⎤
⎦ ∈ R2×2 (2.12b)

2.3.2 Small-signal model of the load

The analysis of this section consider a generic local load whose active and
reactive power dependencies are known, pL(f, V ) and qL(f, V ). This is a gen-
eral apprach to model aggregated loads, such as residential, agricultural, and
industrial feeders [92]. While combination of different types of load can lead
to different model complexities, here one type of load is considered just for the
purpose of explanation. The approach can be then easily extended to other types
of load (static, dynamic, etc.). The work in [92] describes static and dynamic
load characteristics, where the active pL and the reactive qL load powers depend
both on the frequency and the amplitude of the voltage waveform. Furthermore,
a dynamic description of the loads can be added [96–98]:

pL (f, V ) = P0 (1 + kpfa)

(
b+ Vo

Vo

)kpu

(2.13a)

qL (f, V ) = Q0 (1 + kqfa)

(
b+ Vo

Vo

)kqu

(2.13b)

where:

a ≜ L−1

[
1

1 + sT1

L [∆f ]

]
(2.14a)

b ≜ L−1

[
1

1 + sT1

L [∆V ]

]
(2.14b)

and where Po and Qo are the active and reactive powers that are absorbed at
nominal frequency fo and nominal voltage amplitude Vo, and L−1 is the Laplace



40 Risk of unintentional islanded operation

1

1 + sT1
kpf

kqf

1

1 + sT1

1

1

V0

(
Vt

Vo

)kpu

(
Vt

Vo

)kqu

∆f

∆V

a

b Vt

pL

Po

qL

Qo

Figure 2.8: Dynamic load model [97]

anti-transform. Moreover, kpf , kpu, kqf , and kqu are constant parameters which
depend on the nature of the aggregated load [92]. Finally, the voltage and fre-
quency deviations from their nominal parameters are denoted as ∆V = V − Vo

and ∆f = (f − fo) /fo, respectively. A schematic representation of the load
model is in Fig. 2.8.

The load powers pL and qL can be expressed in terms of the space vectors of
voltage v and current i of the load itself and two real relations similar to those
in (2.5) can be obtained. Substituting these two equations in (2.13), evaluating
φi and I , the system can be linearized similarly as done in Sec. 2.3.1, leading
to: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
∆a = − 1

T1

∆a+
1

T1

∆f

d

dt
∆b = − 1

T1

∆b+
1

T1

∆V

∆φi = ∆φv +
∂φi

∂a

⏐⏐⏐⏐
Q

∆a+
∂φi

∂b

⏐⏐⏐⏐
Q

∆b

∆I =
∂I

∂V

⏐⏐⏐⏐
Q

∆V +
∂I

∂a

⏐⏐⏐⏐
Q

∆a+
∂I

∂b

⏐⏐⏐⏐
Q

∆b

(2.15)

Considering that ∆f is equal to the time derivative of ∆φv divided by 2π

and substituting this relation in the first equation of (2.15), the system (2.15)
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can be written with a new state:

∆c ≜ ∆a− 1

2πT1

∆φv (2.16)

With this transformation, the final state-space model for the load results:

⎧
⎪⎪⎨
⎪⎪⎩

d

dt
∆z = Al∆z +Bl∆g

∆y = Cl∆z +Dl∆g

(2.17)

where ∆z ≜ [ ∆c ∆b ]T ∈ R2×1 is the state of the model, and the input vector
∆g and the output vector ∆y are defined as in Sec. 2.3.1. The four matrices
result:

Al = − 1

T1

[
1 0

0 1

]
Bl =

1

T1

[
− 1

2πT1
0

0 1

]
(2.18a)

Cl =

[
∂φi

∂a
∂φi

∂b
∂I
∂a

∂I
∂b

]
Dl =

[
1 + 1

2πT1

∂φi

∂a
0

1
2πT1

∂I
∂a

∂I
∂V

]
(2.18b)

where Al, Bl, Cl, Dl ∈ R2×2.

2.3.3 Overall small-signal model

The models of load and inverter, which have the same input vector ∆g and
the same output vector ∆y, have to be linked in order to study the stability of
the overall system. For the purpose of explanation, consider that

H ≜ (Di −Dl) is invertible. (2.19)

In this case, the model of the whole system can by found by putting together
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the two models (2.11) and (2.17):

d

dt

[
∆φp

∆z

]
=

[
Ai −BiH

−1Ci BiH
−1Cl

−BlH
−1Ci Al +BlH

−1Cl

]

  
≜F

[
∆φp

∆z

]
(2.20)

To study the dynamic behavior of the system close to a particular operating
point Q, the eigenvalues of the matrix F can be evaluated. Some results of this
model can be found in [8].

2.4 Temporary unintentional islanded operation

In this section, the test-case of Fig. 2.1 in islanded operation is modeled
to analytically describe the area modifications introduced with Fig. 2.4, as in
[93]. With other words, this section extends the work done in Sec. 2.3 and in
particular it applies the derived models in order to analytically draw the NDZs.

The power inverter of Fig. 2.1 is controlled with a multiple loop structure, as
shown in Fig. 2.9 (θp is the PLL phase in the abc domain). It includes an inner
current regulation loop that ensures the tracking of two current references (in
phase and orthogonal with respect to the voltage) which come from outer power
loops that track power references from the P/f and Q/V droop regulators of [7].
An SRF-PLL, as in [94, 99], is used to synchronize the current regulation loop
to the voltage waveform. Furthermore, the PLL gives the voltage amplitude and
frequency measurements to the droop regulation scheme. In this Chapter, the
active power loop of the inverter is an abstraction to simplify the analysis and
to describe the behavior of a real PV inverter (more details are in Sec. 2.5.1).

2.4.1 Modeling for a generator with constant active and re-
active powers

First, a dynamic model for Case I is described to predict the temporary NDZ
and then a possible extension to account the droop regulations of Cases II-IV
is proposed. This analysis is based on the observation that the predominant
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Figure 2.9: Inverter control architecture with active and reactive power loops and P/f and Q/V
droop regulation [93]

dynamic during the islanded operation for Case I is due to the PLL, while the
current loop and power loop dynamics are faster and not essential for the predic-
tion of the voltage within the reclosing time of 600ms. This drives to provide
only a static description of the current and power regulation loops, while all the
dynamic contribution of the model is related to the PLL. These assumptions are
later evaluated with simulations.

Considering an SRF-PLL synchronized to the q axis as in [99], the d volt-
age component is used as measured voltage amplitude and the phase detection
process considers the q component of the voltage:

vd = V cos ξ ≜ Vp (2.21a)

vq = V sin ξ (2.21b)

where ξ is the phase shift between the actual voltage space vector (phase φv in
dq frame) and the reference frame of the PLL (phase φp) and V is the actual
voltage amplitude at the inverter output (as in Sec. 2.3).

Neglecting the current and power loop dynamics, the feedback powers are
always equal to their power references:

sG,ref = pG,ref + jqG,ref =
3

2
Vp

[
V ejξ

ZL(f)

]∗
=

3

2

V 2 cos ξe−jξ

ZL(f)
∗ (2.22)

where the argument of the complex conjugation ∗ is the inverter current space
vector in the reference frame of the PLL. Evaluating the absolute value and the
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Figure 2.10: Small-signal model for constant power inverter (Case I) [93]

argument of (2.22), it results:

V =

√
2 |ZL(f)| |sG,ref |

3 |cos ξ| (2.23a)

ξ = argZL(f)− arg sG,ref (2.23b)

V and ξ of (2.23) can be substituted into (2.21) for vd and vq components.
The resulting equations (not explicitly written here) can be linearized in the
grid-connected operating point, which is the steady-state solution just before
the grid disconnection: ξ = 0 because the PLL is synchronized (vq = 0) and
f = fo because the frequency of the mains is supposed to be equal to the
nominal frequency fo.

This small-signal analysis leads to the model that is represented in Fig. 2.10
that relates the deviations of the corresponding quantities, indicated with ∆,
from the steady-state values. In such diagram, m2 and p2 are respectively the
derivatives of the absolute value and of the phase of load impedance with re-
spect to the frequency f . The relation ∆ξ = p2∆f comes from the (2.23b).

The input ∆ϕ of such model is a phase perturbation that triggers the PLL
transient and it is due to the new regime that is established just after the discon-
nection: it is caused by the sudden cancellation of the grid current. This is a
fast transient due to load, current regulator, and power regulator dynamics that
is evaluated imposing the inverter power sG,ref equal to the load power in the
reference plane of the PLL just before the disconnection.

The overall Laplace transfer functions Hϕf (s) from the input ∆ϕ to the
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output ∆f and HϕV (s) from the input ∆ϕ to the output ∆V are:

Hϕf (s) = − 1

p2
·

1 + skp
ki

1 + shp2kp−1

hp2ki

(2.24a)

HϕV (s) =
m2

2

√
2

3

|sG,ref |
|Z(fo)|

·Hϕf (s) (2.24b)

where h ≜
√

2 |Z(fo)| |sG,ref | /3. With (2.24), the PLL frequency and the
voltage amplitude of the inverter can be evaluated in terms of step response
(Laplace anti-transform) for a certain time t̄ after the grid disconnection or to
predict the whole transient after the disconnection.

2.4.2 Extension for P/f and Q/V droop

Now a possible extension of the model described in Sec. 2.4.1 is introduced
to address the Cases II-IV. Starting from Case IV, the P/f and Q/V droop con-
trollers change the active and reactive power references sG,ref = pG,ref+jqG,ref

in (2.22) and so (2.23) has now to be differentiated also with respect to pG,ref

and qG,ref , leading to:

∆V =
∂V

∂f
∆f +

∂V

∂pG,ref

∆pG,ref +
∂V

∂qG,ref

∆qG,ref (2.25a)

∆ξ =
∂ξ

∂f
∆f +

∂ξ

∂pG,ref

∆pG,ref +
∂ξ

∂qG,ref

∆qG,ref (2.25b)

Starting from Fig. 2.10 and including (2.25), a new small-signal diagram
can represent the model of the Case IV: it is shown in Fig. 2.11. In this diagram,
there are two linear approximations of the droop curves (the slopes kpf and kqu)
and their response times (τp and τq). For a first approximation, the response
times of the P/f and Q/V curves together with the dynamic of the power loops
can for instance be modeled with two low-pass filters. From the small-signal
model of Fig. 2.11, it is also possible to obtain a description for the Case II and
III: this can be done by setting kpf or kqv equal to zero respectively, in order to
disable the P/f or Q/V curve.
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Figure 2.11: Small-signal model for Cases II-IV [93]

The model described in this section is used in Sec. 2.5.3 to analytically
draw the NDZ for the Case I: these results are also validated with simulations.
Moreover, in Sec. 2.5.3 the NDZ shaping due to P/f and Q/V droop control
and in particular due to their speed is addressed via simulation-based analyses
considering all the four Cases. In the same section, these results are also shown
with experimental tests.

2.5 Results

In this section, the results for permanent and temporary unintentional island-
ing risks are reported and validated. First in Sec. 2.5.1 the test-case used for
all the following results is described. Then in Sec. 2.5.2 the analytic results for
permanent islanding described in Sec. 2.2 are validated experimentally showing
an increase of the NDZ, and so of UIO risk, introducing droop control. Finally
Sec. 2.5.3 extends these results also for the temporary islanding issue, using
the dynamic model of Sec. 2.4 and exploiting simulations and the experimental
validations.
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Figure 2.12: Test-bed configuration [74]

2.5.1 Test-case for simulation and experiments

A lab-scale prototype has been implemented in order to perform preliminary
experimental validations and its configuration is shown in Fig. 2.12: a switch
allows the islanded operation by isolating the PV inverter and the passive load
ZL from the main grid [74, 93]. Here, the same load structure described in Sec.
2.2 is adopted: its parameters are in Tab. 2.1. This test-case is used for all the
following results, i.e. analytic, simulation, and experimental ones. The analyses
on this test-case, and in particular the experimental results, were carried out in
collaboration and with the coordination of the activities done by Mr. Riccardo
Sgarbossa during his Ph.D. program.

The PV inverter is equipped with closed-loop controllers to ensure that the
active and reactive power references are properly tracked (Fig. 2.13). An SRF-
PLL is used to synchronize the current controller of the inverter to the grid volt-
age and to get the frequency and amplitude measurements for the P/f and Q/V
droop control. If one of the droop characteristics is disabled, the correspond-
ing power reference will be constant regardless the frequency or the voltage
amplitude. The outputs of the PLL together with the output current measure-
ment of the inverter are used to evaluate the output active and reactive powers
of the inverter: these are feedback variables for the power regulator. The power
regulator changes the PPT reference of the DC-DC converter to meet the active
power request pG,ref , while the reactive power request is met changing the reac-
tive current reference of the current controller. Moreover, the current controller
sets the inverter active current reference to keep the regulation of the DC link
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Figure 2.13: Inverter control architecture with active and reactive power loops and P/f and Q/V
droop regulation [74]

voltage, that is it injects all the available active power that is provided by the
first DC-DC stage [74].

2.5.2 Permanent islanding

In Sec. 2.2, the analysis of permanent islanding shows that the static NDZ
increases introducing droop control and here these results are validated exper-
imentally. The test-case of Sec. 2.5.1 is used with a nominal phase voltage of
182Vrms and the nominal line frequency is fo = 50Hz. Experimental results
confirm the static analysis done previously: in particular Fig. 2.14.a refers to
Case II, Fig. 2.14.b to Case III, and 2.14.c to Case IV. In these figures, there is a
good agreement between static analysis of Sec. 2.2 reported again in Fig. 2.14
with dashed lines and experimental results, i.e. circles and asterisks. All the
results indicate that the risk of UIO increases introducing inverter droop control
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with respect to the case of a constant power inverter and that such risk is higher
introducing both P/f and Q/V droop control. It is also possible to notice that the
effect of the P/f droop is stronger in terms of area change than the Q/V droop
one.

All the islanded points inside the NDZs of Fig. 2.14 result to be permanent
islanded operations; this means that the islanded operating points in terms of
frequency and voltage amplitude do not trigger the protections of Fig. 1.15:
some examples are in Fig. 2.15. In such figures, the Test 20 of Fig. 2.14
is considered: it exhibits a frequency value out of the thresholds for the Case
II (64.8Hz) in Fig. 2.15.a, a voltage close to the minimum voltage threshold
182 · 0.85 = 154.7Vrms for Case III (158.7Vrms) in Fig. 2.15.b, and frequency
and voltage values within the thresholds for Case IV (50.59Hz and 173.5Vrms)
in Fig. 2.15.c.

In the experimental results for permanent islanding considerations, the pro-
tections defined with Fig. 1.15 are never triggered in steady-state operation.
However the stability of the operating point can sometimes be poor presenting
oscillating behaviors: an example of this aspect is the Test 31 for Case IV in
Fig. 2.16. Anyway, such instability does not trigger the DER protections and so
a permanent islanded operation is still achieved. This phenomenon can be fur-
ther investigated, for example applying the stability analysis described in Sec.
2.3.

Another cause that can trigger the DER protections is the initial transient
due to the grid disconnection, when the frequency and the voltage can exhibit
some oscillations bringing those quantities outside the thresholds of Fig. 1.15.
However, all the Tests within the NDZ considered in this section do not trip the
protections during the transient, even if this phenomenon should be analyzed
and understood in detail, because different results can be achieved with different
points in the ∆P −∆Q plane. To these aims, the analysis presented for tempo-
rary islanding issue in Sec. 2.4 can help analytically describe the disconnecting
transient: some results are given in Sec. 2.5.3 together with simulation-based
and experimental results.
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Figure 2.14: Experimental results of ∆P −∆Q area of permanent unintentional islanding: a)
Case II, b) Case III, and c) Case IV; circles refer to an islanded operation out of the protection
thresholds of Fig. 1.15, asterisks refer to an islanded operation within the protection thresholds;
dashed lines are evaluated analytically as in Sec. 2.2 [74]
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(30A/div) for Test 20 of Fig. 2.14: a) Case II where the frequency is 64.8Hz and the voltage
203.6Vrms, b) Case III where the frequency is 50.62Hz and the voltage 158.7Vrms, and c)
Case IV where the frequency is 50.59Hz and the voltage 173.5Vrms; time with 10ms/div
scale [74]
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Figure 2.16: Experimental results of inverter output voltage vinv (100V/div) and current iinv
(30A/div) for Case IV for Test 31 of Fig. 2.14; time with 50ms/div scale [74]

Table 2.3: Load parameters: base impedance is at fo (14.36Ω)

R1 = 18Ω = 0.798 p.u.

R2 = 82.5Ω = 0.174 p.u.

L1 = 87.5mH = 0.534 p.u.

C1 = 14.4µF = 0.065 p.u.

C2 = 60µF = 0.271 p.u.

2.5.3 Temporary islanding

Now a comparison between the results of the small-signal model of Sec.
2.4.1 and a detailed time-domain simulation (in Matlab/Simulink), that consid-
ers the full architecture of Figs. 2.1 and 2.9, is shown [93]. The nominal voltage
amplitude is now Vo = 90VRMS (phase to neutral). The PLL that is used is an
SRF-PLL with a closed-loop bandwidth of 5Hz, while the external power loops
have a closed-loop bandwidth of 7Hz for the active power and of 5Hz for the
reactive power. The parameters of the load are now those reported in Tab. 2.3.

Fig. 2.17 shows the frequency f measured by the PLL and the voltage
amplitude V of the inverter after a grid disconnection when ∆P = 0.2 p.u.

and ∆Q = 0.4 p.u. (base power is the apparent load power, here 570VA per
phase). The voltage transient consists of a fast variation (less than 50ms) due
to the load, the current and power loop dynamics and a slower one due to the
PLL. The mathematical model described in Sec. 2.4 predicts the frequency and
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the voltage transients, except for the fast initial voltage variation, and it can
estimate their values during the first 600ms: observe that the transient in the
first 200ms is not important since there is no voltage limit (Fig. 1.15).

With the Laplace anti-transform of HϕV (s) · ∆ϕ (Sec. 2.4), the voltage,
for instance, at t̄ = 600ms can be set equal to the higher or lower threshold
of Fig. 1.15. Doing this, the resulting system can be solved backward to find
the amplitude of the step ∆ϕ and then back to the active ∆P and reactive ∆Q

power unbalances in grid-connected operation: this ∆P − ∆Q point belongs
to the NDZ border. This enables to find the borders in the ∆P − ∆Q plane
that contain the temporary unintentional islanding region. An example of such
results is shown in Fig. 2.18, for the constant power inverter (Case I) where the
solid lines delimit the uncontrolled ∆P−∆Q islanding region. In these results,
the described approach is applied three times: at t̄ = 200ms to set the voltage
within 0.4 ÷ 1.15 p.u., at t̄ = 400ms and t̄ = 600ms to set the voltage within
0.85 ÷ 1.15 p.u.. This is an approximation because such method can only be
applied for a finite number of t̄, instead the protections defined in Fig. 1.15
are valid for the whole interval 0÷ 600ms. Moreover, the standard [7] defines
the intervention times of the protections, i.e. the time interval while the voltage
has to remain outside the thresholds of Fig. 1.15 to trigger the inverter discon-
nection. On the other hand, here the worst-case scenario is considered because
such intervention times are all zero, for analytic, simulation, and experimental
results.

In Fig. 2.18 the small-signal based results are compared with simulation-
based results for region drawing. Dots indicate an UIO that is verified with
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Figure 2.18: Analytic and simulation NDZ below 600ms for Case I (powers normalized to the
nominal load power) [93]

a detailed simulation of the system of Figs. 2.1 and 2.9 checking the voltage
level of Fig. 1.15 for all the interval 0 ÷ 600ms. In the simulation results also
frequency limits are considered to maintain the islanded operation; such limits
are 45 ÷ 55Hz. The comparison shows that the analytic approach allows to
draw the NDZ with a good approximation, considering that it is a worst case
scenario. Furthermore, the region that is missing within the analytic borders
is due to the frequency limits, that are tested analytically, while the voltage
thresholds are well approximated.

Now, some simulation results show how the uncontrolled islanding areas
change with the speed of P/f and Q/V droop characteristics for the system of
Figs. 2.1 and 2.9. The architecture and the control of the system are the same
described previously in this section, with the same parameters. Also the NDZs
are obtained with the same method described previously.

In Fig. 2.19, there are three NDZs for an inverter with P/f and Q/V droop
characteristics for different rise times of the active τp and reactive τq power
loops (Case IV). These response times may be due to the frequency and volt-
age measurements of droop controllers, some particular filtering structures, the
power loop response times themselves or some time requirements of droop con-
trol imposed by the standard [7]: here they are all accounted in τp and τq.

From the results of Fig. 2.19, it follows that the risk of unintentional is-
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Figure 2.19: Simulation results for ∆P − ∆Q area of unintentional islanding (for a 600ms
time) when the inverter operates with droop characteristics according to [7] for different power
response times (Case IV): a) with τp = 5 s and τq = 5.8 s; b) with τp = 1 s and τq = 1.5 s
and c) with τp = 0.24 s and τq = 0.35 s (∆P and ∆Q are normalized to the nominal load
power) [93]

landing with droop controlled inverter is potentially higher than with constant
power inverter, because these regions are larger (the results for Case I are in
Fig. 2.18). The qualitative consideration described with Fig. 2.4 can also be
seen here, since the ∆P −∆Q area widens for faster P/f and Q/V droop regu-
lations (i.e. for smaller τp and τq). This means that the unintentional islanding
risk increases with faster systems. However, it has to be remarked that this is
not generally true because in some cases fast droop regulation may destabilize
the islanded system, leading to a reduction of the risk of temporary islanding,
as shown afterwards.

In Fig. 2.20 there are some examples of time-domain simulations for the
disconnecting transient in terms of the grid voltage and PLL frequency. They
are done for the same ∆P = 0.29 p.u. and ∆Q = −0.14 p.u., for different
rise times τp and τq. Such results start showing that faster droop control does
not always guarantee islanding condition: in Fig. 2.20.a the voltage does not
trigger the DER protections, while they trip in 2.20.b for faster droop regulation.
However, if the droop speed is increased more the ∆P−∆Q point returns inside
the NDZ: in 2.20.c the voltage fulfills the thresholds of Fig. 1.15.

Results from the experimental setup, described in Sec. 2.5.1, are reported
in the plane ∆P −∆Q in Fig. 2.21 (now the PLL has a closed-loop bandwidth



56 Risk of unintentional islanded operation

a)

Time [s]
0 0.2 0.4 0.6

F
re
q
.
[H

z]

50

52

54

56
Frequency

V
ol
t
[p
.u
.]

0.9

1

1.1

1.2

Voltage amplitude

Time [s]

0.8
0 0.2 0.4 0.6

b)

Time [s]
0 0.2 0.4 0.6

F
re
q
.
[H

z]

50

52

54

56
Frequency

V
ol
t
[p
.u
.]

0.9

1

1.1

1.2

Voltage amplitude

Time [s]
0 0.2 0.4 0.6

0.8

c)

Time [s]
0 0.2 0.4 0.6

F
re
q
.
[H

z]

50

52

54

56
Frequency

V
ol
t
[p
.u
.]

0.9

1

1.1

1.2

Voltage amplitude

Time [s]

0.8
0 0.2 0.4 0.6

Figure 2.20: Test of Fig. 2.19 for ∆P = 0.29 p.u. and ∆Q = −0.14 p.u.: example of
temporary islanded operation (simulation results) a) with τp = 5 s and τq = 5.8 s; b) with
τp = 1 s and τq = 1.5 s and c) with τp = 0.24 s and τq = 0.35 s (∆P and ∆Q are normalized
to the nominal load power) [93]
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Figure 2.21: Experimental test results are reported in the plane ∆P − ∆Q with different
response times of the droop characteristics: a) for constant power references, b) for droop
regulation with τp = 5 s and τq = 7.5 s and c) for droop regulation with τp = 2 s and τq = 3.5 s;
dot tests allow temporary islanded operations [93]

of 4Hz). Tests indicated with a dot represent UIO within 600ms. Each test is
performed with different response times of the P/f and Q/V droop characteris-
tics. Also some experimental result examples in the time domain are provided
in Fig. 2.22 for ∆P = 0.9 p.u. and ∆Q = −0.2 p.u. for the three conditions of
Fig. 2.21. All these results show again that the risk of UIO increases introduc-
ing droop control with respect to the case of a constant power inverter and that
faster time responses on the active and reactive droop controllers, i.e. smaller
τp and τq, lead to wider NDZs.

It is important to remark that so far a potential increase of the unintentional
islanding risk due to fast droop regulation has been shown in a particular situa-
tion. This phenomenon can sometimes not appear indeed, for example because
faster droop controllers may destabilize the islanded system, leading to a reduc-
tion of the NDZ. This can be due to several aspects from different PV installa-
tions in the distribution grid, for example for different control implementation
details, bandwidths of the inner inverter regulators, local load structure, etc.
The experimental region in Fig. 2.23 highlights this phenomenon because a
reduction of the NDZ appears compared to the NDZs of Fig. 2.21: the same
experimental setup used for Fig. 2.21 now includes faster droop regulators with
τp = 0.6 s and τq = 1.4 s. Fig. 2.24, for ∆P = 0.9 p.u. and ∆Q = −0.2 p.u.,
shows that this happens because such response times make the system less sta-



58 Risk of unintentional islanded operation

a)
Islanded condition vinv

iinv Automatic
reclosure time

Voltage limits

b)
Islanded condition

vinv

iinv Automatic
reclosure
time

Voltage limits

c)
Islanded condition vinv

iinv

Automatic
reclosure
time

Voltage limits

Figure 2.22: Test with ∆P = 0.9 p.u. and ∆Q = −0.2 p.u. of Fig. 2.21: example of tem-
porary islanded operation (experimental results) a) for constant power inverter, b) for droop
control with τp = 5 s and τq = 7.5 s and c) for τp = 2 s and τq = 3.5 s; v(t) → 50V/div,
i(t) → 10 A/div, time → 100ms/div [93]
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Figure 2.23: Experimental test results are reported in the plane ∆P −∆Q for droop regulation
with τp = 0.6 s and τq = 1.4 s response times: dot tests allow temporary islanded operations
[93]
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Figure 2.24: Test with ∆P = 0.9 p.u. and ∆Q = −0.2 p.u. for Fig. 2.23: example of
temporary islanded operation (experimental results) for τp = 0.6 s and τq = 1.4 s; v(t) →
50V/div, i(t) → 10 A/div, time → 100ms/div [93]

ble.
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2.6 Possible standard modifications

In this section, an algorithm to reduce the ∆P−∆Q region and so the risk of
UIO of Case IV is described and then tested with simulations and experiments.
The main idea of this technique comes from observing that the NDZs of simul-
taneous droop functions (Fig. 2.19) are larger than those of non-simultaneous
cases (Case II and III), reported in Fig. 2.25.

So considering the case of an inverter that is controlled with both P/f and
Q/V droop functions to support the voltage and the frequency regulations in
grid-connected mode as the standard [7] imposes, it is possible to shrink the
NDZ by disabling the P/f or Q/V droop during particular transients. For exam-
ple, here this technique is tested:

• during standard operation, usually at frequency and voltage close to the
nominal values, both P/f and Q/V remain enabled;

• when the frequency of the grid grows above 50.3Hz for more than a spec-
ified time interval (here 100ms), the Q/V droop curve is disabled and
the inverter continues to inject the reactive power of the nominal voltage
point.

Notice that using this technique does not reduce the capabilities of voltage and
frequency regulation support of the PV inverter during grid-connected opera-
tion.

In Fig. 2.26 there are some simulation results that test this algorithm: com-
paring these NDZs with those of the Case IV in Fig. 2.19, it follows that the
unintentional islanding risk is reduced. In particular the reduction is larger for
faster droop controllers.

Other figures obtained through experiments are reported to test the behavior
of non-simultaneous droop controllers and of the proposed algorithm to reduce
the NDZ. Fig. 2.27 shows the NDZs for Cases II and III for two different speeds
of the power loops, i.e. τp and τq, while in Fig. 2.28 there are the results for
the proposed on-line method for NDZ reduction. It is possible to notice also
experimentally a reduction of the ∆P − ∆Q region with the controller of this
section: this reduction is more visible for faster droop controllers, i.e. 2.28.b.
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Figure 2.25: Simulation results for ∆P − ∆Q area of unintentional islanding (for a 600ms
time) when the inverter operates with non-simultaneous droop characteristics: a), b), and c)
for Case II and d), e), and f) for Case III; for different power response times: a) and d) with
τp = 5 s and τq = 5.8 s; b) and e) with τp = 1 s and τq = 1.5 s and c) and f) with τp = 0.24 s
and τq = 0.35 s (∆P and ∆Q are normalized to the nominal load power)
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Figure 2.26: Simulation results for ∆P − ∆Q area of unintentional islanding (for a 600ms
time) when the inverter operates with droop characteristics according to [7] (Case IV) and it is
used the algorithm proposed in Sec. 2.6; for different power response times: a) with τp = 5 s
and τq = 5.8 s; b) with τp = 1 s and τq = 1.5 s and c) with τp = 0.24 s and τq = 0.35 s (∆P
and ∆Q are normalized to the nominal load power)
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Figure 2.27: Experimental test results for non-simultaneous droop controllers are reported in
the plane ∆P −∆Q with different response times: a) and b) for Case II and c) and d) for Case
III; a) and c) with τp = 5 s and τq = 7.5 s, and b) and d) with τp = 2 s and τq = 3.5 s; dot tests
allow temporary islanded operations
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Figure 2.28: Experimental test results for the proposed control technique in order to reduce the
NDZ in the plane ∆P −∆Q with different response times: a) with τp = 5 s and τq = 7.5 s and
b) with τp = 2 s and τq = 3.5 s; dot tests allow temporary islanded operations

2.7 Summary

This Chapter reports an assessment of the ∆P −∆Q area where permanent
and temporary unintentional islanding can occur. In particular, temporary un-
intentional islanding is investigated for automatic reclosing procedures (under
600ms). The load and source dependencies of active and reactive powers to the
voltage and frequency of the grid play an important role for sustaining islanded
conditions, while the P/f and Q/V droop curves of the inverter can increase such
risk.

For the permanent islanding, the proposed investigation shows that the risk
of UIO increases introducing P/f or Q/V droop regulation to the control of DERs
and that the ∆P −∆Q area widens more including both the P/f and Q/V droop
regulations, rather than only one of them.

Also for the temporary islanding issue, the simultaneous case of droop con-
trol increases more the NDZ compared to the non-simultaneous cases. Further-
more, the speed of response of the P/f and Q/V droop functions enlarges the
∆P −∆Q area: the faster the time responses, potentially the larger the risk of
temporary islanding.

Thus, the non-simultaneous operation of P/f and Q/V seems to be an effec-
tive approach to reduce the NDZ. An online method based on disabling the Q/V
function under over-frequency operation is proposed and validated to reduce the
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NDZ enlargement and to maintain the regulation support with droop functions
during steady-state operation, as imposed by the standards.

All the results of this Chapter are given in terms of small-signal modeling,
simulations and experimental verifications. In future generation of distribution
grids with large penetration of RES, these kinds of analysis together with the
understanding of the stabilizing effects of droop control in islanded operation
are of paramount importance in order to provide insights on design criteria for
DER connections and on settings of P/f and Q/V droop functions on future
standards.



Chapter 3

Intentional islanded operation with
grid transition

This Chapter describes a local controller for DERs to manage a microgrid
during grid-connected and autonomous opearting modes as presented in [100].
It is based on the P/f and Q/V droop control described in Sec. 1.1.2: during grid-
connected operation, the controller tracks active and reactive power references
and, during islanded mode, it exploits the droop control properties to share the
load among the DERs. The key point is to use the saturation of the active and
reactive power controllers to enable a smooth transition from grid-connected
to islanded mode without communication among the microgrid supervisor, the
disconnecting switch, and DERs. The proposed analysis describes the con-
troller in Sec. 3.2, including a design procedure in Sec. 3.3 with small-signal
analyses. A Field Programmable Gate Array-based (FPGA) implementation of
the controller is also realized and used to validate the results of this Chapter
through a detailed Hardware-In-the-Loop (HIL) and RT simulation approach.

3.1 State of the art

Basic droop control as described in Sec. 1.1.2 can be used effectively only
in the islanded operating mode and droop control in the form of (1.8) can not be
used directly in grid-connected operation. The reason is that in grid-connected
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mode the voltage amplitude and the frequency at the PCC are strictly imposed
by the main grid and equations (1.8) with constant ps and qs do not ensure the
desired DER active and reactive power generation.

To overcome this issue, different control techniques are proposed to man-
age separately DERs in the islanded and grid-connected modes and to handle
the commutation between them [20]. One possible solution is to have two dif-
ferent controllers for the two operating modes and, basing on communication or
islanding detection techniques, identify the operating mode in order to switch
on the correct controller [101–104]. Other approaches exploit communication
with the PCC for the grid-connected operation [21, 105] or use completly local
controller but losing in terms of precision of the injected power regulation for
grid-connected mode [106, 107].

So far only few approaches that operate in the same manner in both oper-
ating modes have been proposed. Examples are local regulators without the
capability of managing the parallel connection of different inverters in islanded
mode [108, 109] or central controllers based on time-critical communication
which could reduce the reliability of the grid [110–113]. Another cause of
reduced robustness is the lack of redundancy: for example, only one DER is
critical for the operation of the whole microgrid in the master-slave approach
of [114, 115].

The paper [116] proposes a universal regulator to manage the microgrid in
both the operating modes, basing on P/f and Q/V droop control and without
requiring communication in the microgrid. It exploits saturation of the external
active and reactive power controllers to enable a smooth transition from grid-
connected to islanded mode, where only inner droop controllers are enabled. In
Fig. 3.1 there is a schematic representation of such local controller for DERs:
Kp(s) and Kq(s) control ωp and Vq respectively to track an active pref and a
reactive qref power reference in grid-connected mode. The regulators Kp(s)

and Kq(s) saturate in islanded operation enabling inner droop controllers in
order to set ωref and Vref .

In the continuation of this Chapter, an analysis that extends the work re-
ported in [116] in terms of controller design procedure, detailed RT simulation
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Figure 3.1: Controller proposed in [116]

and small-signal analysis is presented.

3.2 Control structure

The considered controller enables a seamless transition from grid-connected
to islanded mode without requiring communication capabilities within the mi-
crogrid. However, a non-critical communication channel is needed for the
resynchronization of the microgrid, i.e. the transition from autonomous to grid-
connected mode. The application scenario could be a microgrid having few
grid-forming DERs equipped with this controller and several loads and other
DERs, for example PVs, acting as grid-following devices, e.g. as in Fig. 1.3.

The proposed regulator acts on a grid-forming device (Sec. 1.1.1) both in
islanded and grid-connected operating modes. In describing this extension for
droop controller, the electric cables of the microgrid are supposed to have a
dominant inductive behavior, even if in LV microgrids this is usually not true.
This assumption is done in order to exploit the basic P/f and Q/V droop control
(1.8) as a starting point to manage the islanded operation. In Sec. 3.6 this
aspect is investigated considering what happens if the grid has cables with low
reactance to resistance ratio.

The extension of the basic droop control consists of two outer regulation
loops that set ps and qs values in (1.8) to track the DER active and reactive
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power references in grid-connected mode [116]. The solution is depicted in Fig.
3.2: Hω(s) indicates generically the transfer function between the frequency
reference ωref of the inverter and its output active power p, and HV (s) between
the voltage amplitude reference Vref and the output reactive power q. In grid-
connected mode, as the frequency is imposed by the main grid, Gp(s) varies ps
to move the P/f droop characteristic (1.8a) to ensure pm = pref under steady-
state conditions. Similarly, Gq(s) varies qs to move the Q/V droop characteristic
defined in (1.8b) to ensure qm = qref .

In islanded mode, the DER active and reactive powers do not match the
reference terms, i.e. pm ̸= pref and qm ̸= qref , since a power balance has
to exist. Then, the outputs of the external power regulators Gp(s) and Gq(s)

reach their limits ps,max or ps,min and qs,max or qs,min. Being ps and qs constant,
the controller exploits all the properties of the basic droop control to share the
active and reactive load power in islanded mode, as seen in Sec. 1.1.2.

3.3 Controller design

The main controller parameters are:
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1. kp and kq of the basic droop regulation scheme

2. saturation levels ps,max, ps,min, qs,max, and qs,min

3. power controllers Gp(s) and Gq(s)

3.3.1 Basic droop regulation scheme

When the grid works in islanded operation, the external controllers have sat-
urated outputs. Thus, the controller scheme is reduced to a basic droop regulator
and the droop coefficients, kp and kq, can be designed using different procedures
proposed in literature [18,19]. However, several works that study droop control
for intentional islanded operation lack of a rigorous approach to the system sta-
bility problem, in particular for grid with several DERs. Mathematical models
of the system are sometimes too detailed to design controllers [117,118], or too
difficult to be created [27] or too simplified to analyze the interaction of several
DERs within the same microgrid [35, 105]. So one open-issue in droop control
with a large number of DERs is the microgrid stability [27, 119].

For these reasons, Appendix A describes a generalized method to model
a grid with a generic number of inverters without increasing the complexity
of the analysis. This method enables a powerful tool for the design of droop
controllers in networks of arbitrary complexity and size. In this Chapter, this
method is exploited in order to design the coefficients kp and kq of the inner
droop controller, even though the microgrid herein considered is limited in size
for sake of validation.

3.3.2 Saturation levels

Define Snom > 0 as the maximum active power that the inverter can gen-
erate or absorb (i.e. pmax = Snom, pmin = −Snom). In the case there is not
any energy storage elements in the DER, the following analysis can be rear-
ranged using pmin = 0. From (1.8a) and for constant ps, the angular frequency
variation ωd along the droop characteristic (1.8a) can be written as:

ωd ≜ ωref

⏐⏐⏐
pm=−Snom

− ωref

⏐⏐⏐
pm=Snom

= 2kpSnom (3.1)
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For simplicity, assume that the angular frequency of the mains can vary in the
symmetric range

ωgrid ∈
[
ωo −

ωg

2
, ωo +

ωg

2

]
(3.2)

with respect to the nominal line frequency ωo and define xp as:

xp ≜
ωd

ωg

(3.3)

Notice that this analysis can be extended also for an asymmetric frequency
range, instead of (3.2). Thus, from (3.1) and (3.3), xp is given by:

xp =
2kpSnom

ωg

(3.4)

In grid-connected operation, the steady-state frequency is imposed by the
main grid, i.e. ωref = ωgrid supposing null tracking error in the regulator.
Evaluating ps from (1.8a) and considering that ps is maximum at maximum
generated active power, i.e. pm = Snom, and for maximum grid-connected
angular frequency ωref = ωo + ωg/2, it follows:

ps,max = Snom +
ωg

2kp
(3.5)

Similarly, the minimum for ps is:

ps,min = −Snom − ωg

2kp
(3.6)

From (3.1), (3.5) and (3.6), it follows that:

ps,max = −ps,min = Snom

(
1 +

1

xp

)
(3.7)

Equation (3.7) shows how to tune the saturation levels for the proposed power
regulator for the P/f loop. This range of ps is required to track an active power
reference that is included between −Snom and Snom in the whole interval of
allowed frequencies (3.2) of the main grid.
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Observing (1.8a), the minimum frequency reference is obtained for pm =

Snom and ps = ps,min and the maximum frequency reference for pm = −Snom

and ps = ps,max. Subtracting these two frequency values, the total frequency
reference variation ωt is:

ωt = ωg + 2xpωg = ωg (1 + 2xp) > ωg (3.8)

The design of qs,max, and qs,min is obtained with a similar reasoning on the
Q/V loop and with analogous definitions:

Vd ≜ 2kqSnom (3.9a)

xq ≜
2kqSnom

Vg

(3.9b)

With this range of voltage amplitude for grid connected operation

Vgrid ∈
[
Vo −

Vg

2
, Vo +

Vg

2

]
(3.10)

it results:
qs,max = −qs,min = Snom

(
1 +

1

xq

)
(3.11)

and the total amplitude reference variation Vt is:

Vt = Vg + 2xqVg = Vg (1 + 2xq) > Vg (3.12)

However, the analysis for the Q/V loop is not as precise as that of the P/f loop,
because the voltage amplitude is not constant in all the nodes of the microgrid
[20]. For this reason, it could be necessary to increase the saturation levels in
(3.11).

3.3.3 Power controllers

In order to design Gp(s) and Gq(s) which determine the dynamic response
of the system in grid-connected mode, a simplified small-signal stability anal-
ysis is used. In general terms, the dynamic model of a microgrid with several
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DERs is complex due to the potential interactions among DERs. In order to
simplify the approach, assume that the PCC short circuit power of the utility
grid is high (for example, greater than 15÷ 20 times the DER rated power), so
that the grid frequency and the amplitude is dominantly imposed by the utility
grid. Under this assumption, the dynamic behavior of different DERs is decou-
pled by the PCC and the design of the external power loops can be performed
assuming one DER connected at the PCC. A detailed simulation of the micro-
grid with several DERs is then needed to verify the system dynamic behavior.

The active p and reactive q power flow equations for a generic line are de-
scribed in (1.3). Supposing that the DER is connected at the node with voltage
v1 and the PCC is at the node with voltage v2, equations (1.3) can be linearized
in function of φ and V1 (the voltage v2 imposed by the mains is supposed to be
fixed). The linearization gives:

[
∆p

∆q

]
=

[
V1V2

2Z
sin (φ+ θ) V1

Z
cos θ − V2

2Z
cos (φ+ θ)

−V1V2

2Z
cos (φ+ θ) V1

Z
sin θ − V2

2Z
sin (φ+ θ)

]

  
≜L

[
∆φ

∆V

]
(3.13)

where in the matrix L ∈ R2×2 there are the operating point quantities.

In Fig. 3.2, a low-pass filtering action is required to evaluate the inverter
output powers pm and qm. Following [13,19,117], a first-order filter is adopted
to model both active and reactive power measurements:

d

dt

[
∆pm

∆qm

]
= −ωc

[
∆pm

∆qm

]
+ ωc

[
∆p

∆q

]
(3.14)

where ωc is the bandwidth of the first-order filters.

Neglecting the dynamics of the inner voltage and current loops, the inverter
is approximated as an ideal generator that precisely tracks its references, i.e.:

d

dt
∆φ = ∆ωref (3.15a)

∆V = ∆Vref (3.15b)
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Merging (3.13)-(3.15), the following state-space model is obtained:

d

dt

⎡
⎢⎣
∆pm

∆qm

∆φ

⎤
⎥⎦ = ωc

⎡
⎢⎣

−1 0
L1

0 −1

0 0 0

⎤
⎥⎦

⎡
⎢⎣
∆pm

∆qm

∆φ

⎤
⎥⎦+

⎡
⎢⎣

0
ωcL2

0

1 0

⎤
⎥⎦
[
∆ωref

∆Vref

]
(3.16)

where L1 , L2 ∈ R2×1 are respectively the first and the second column of the
matrix L in (3.13). In (3.16), ∆pm and ∆qm are the outputs of the state-space
model and ∆ωref and ∆Vref are the two inputs.

Once the dynamic model of the process to be controlled is available, several
textbook methods can be used to design Gp(s) and Gq(s) parameters and struc-
tures. For the purpose of explanation, pure integrators are here considered, i.e.:

Gp(s) =
hp

s
(3.17a)

Gq(s) =
hq

s
(3.17b)

This analysis can be extended to other types of more well-performing con-
trollers such those reported in [116, 120].

Including (1.8) and (3.17), the following state-space model, which has two
states ∆ps and ∆qs, two inputs ∆pm and ∆qm, and two outputs ∆ωref and
∆Vref , is obtained:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
∆ps = −hp∆pm

d

dt
∆qs = −hq∆qm

∆ωref = −kp∆pm + kp∆ps

∆Vref = −kq∆qm + kq∆qs

(3.18)

Merging the model (3.16) and the regulator model (3.18), the state-space model
of the entire controlled system can be obtained and its stability can be analyzed,
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for example, using the eigenvalue analysis.

It is worth highlighting this analysis is carried out in grid-connected opera-
tion, enabling the determination of the speed of response and system damping
in this operating mode. However, the power loop controllers operate also dur-
ing the transients in islanded operation and in these conditions their dynamic
behavior changes. Thus, time domain simulations are needed to verify the per-
formances during the transition to the islanded mode.

3.3.4 Power sharing in islanded condition

The power sharing in islanded condition can be achieved only if the exter-
nal controllers of the inverters saturate at the same level or, with other words,
the droop characteristics do not have a relative offset. In order to analyze this
phenomenon, consider two DERs that have the same saturation levels of the
external controllers and the same power rating Snom and focus this analysis on
the P/f loop. This analysis considers the steady-state solution in islanded mode,
where the generated powers of inverter 1 p1 and inverter 2 p2 balance the load
power pL, i.e. p1 + p2 = pL. Inverter 1 is also identified as the one with the
smaller active power reference pref1 and inverter 2 as that with the larger one
pref2 (pref1 < pref2), with no loss of generality. From Fig. 3.2, define the input
error of the external regulator as εp ≜ pref − pm.

In islanded operation only one of these four conditions is verified:

1. the external controllers of the two inverters are saturated at different lev-
els, for instance ps,1 = ps,min and ps,2 = ps,max

2. the two external controllers are not saturated, that is ps,min < ps,1 <

ps,max and ps,min < ps,2 < ps,max

3. the two external controllers are saturated at the same level, that is ps,1 =

ps,2 = ps,min or ps,1 = ps,2 = ps,max

4. one external regulator is saturated while the other is not

Condition 1 can never occur, since in this situation the intersection of the droop
characteristics is not compatible with the power ratings of the two inverters.



3.4 Application example 75

Condition 2 is highly unlikely to occur, because in this situation the two input
errors εp,1 and εp,2 for the external controllers have to be zero, that means that
pref1 = p1 and pref2 = p2. Thus, this condition can be maintained only if
pref1 + pref2 = pL.

When condition 3 is true, the droop characteristics (1.8a) of the two inverters
are equal, and so in this situation the active power sharing is achieved, i.e.
p1 = p2. Since input error εp is positive when the controller saturates at ps,max

and negative when it saturates at ps,min, it is possible to show that:

pL
2

≤ pref1 < pref2 ∨ pref1 < pref2 ≤
pL
2

(3.19)

In condition 4, one of the two errors εp,1 and εp,2 is zero. If, for instance,
εp,1 = 0, then inverter 2 is saturated at either ps,max or ps,min. If saturated at
ps,max, it is possible to show that:

pref1 <
pL
2

< pref2 (3.20)

The saturation at ps,min is instead impossible as it would imply pref1 > pref2,
which is a contradiction with the initial hypothesis.

Summarizing this analysis, condition 3 implies (3.19) and condition 4 im-
plies (3.20). With (3.19) the power sharing is achieved, while with (3.20) one
external controller works in the linear operating mode tracking its power refer-
ence, while the other has a saturated output ps and then its inverter supplies the
remaining part of the load power.

The analysis of this section is for the P/f loop, but similar considerations can
be done for the Q/V loop. In this case, however, the analysis is less accurate
since the voltage amplitude is not the same for the two DERs.

3.4 Application example

The test-case of Fig. 3.3 is considered to show the design procedure and
to validate the analysis via an HIL-RT simulation approach. This test-case
is single-phase with nominal voltage Vo = 230

√
2V and nominal frequency
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Table 3.1: Test-case parameters

Lo = 1.2mH Co = 10µF

RL1 = 152mΩ LC1 + LL1 = 2.8mH

RL2 = 106mΩ LC2 + LL2 = 1.9mH

RG = 24.9mΩ LG = 556µH

LL = 4mH CL = 10µF

RL = 22Ω ωc = 2π5 rad/s

kp = 1.6 · 10−4 kq = 2.2 · 10−3

hp = 3 hq = 15

ps,max = 23 · 103 qs,max = 18 · 103

fo = ωo/ (2π) = 50Hz, where there are two DERs with a rated power of
Snom = 3kVA that can provide or absorb an active power up to Snom. Table
3.1 summarizes the main parameters of the test-case.

The droop coefficients of the two inverters are set to be equal, i.e.:

kp1 = kp2 ≜ kp (3.21a)

kq1 = kq2 ≜ kq (3.21b)

thus allowing 1:1 load power sharing in islanded mode of operation (Sec. 1.1.2).
Parameters (3.21) can be designed taking into account the maximum frequency
ωg and voltage amplitude Vg variations, as in [18, 117], and the desired sys-
tem damping. In the case here considered, the second condition is the more
restrictive one and, using the small-signal stability analysis of Appendix A, co-
efficients (3.21) are chosen to impose a damping factor for the complex eigen-
values of ξ = 0.84, obtaining kp = 1.6 · 10−4 and kq = 2.2 · 10−3. Moreover,
the slowest poles are a complex-conjugate eigenvalue couple with a resonance
frequency of ωn = 18.5 rad/s and a damping factor of ξ = 0.84. The resulting
eigenvalues in islanded mode are shown in Fig. 3.4.

Assuming that the frequency and the amplitude of grid voltage vary in the
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Figure 3.4: Eigenvalues of the system in islanded operation (crosses) and in grid-connected
operation (circles)

following ranges:

fgrid : (1± 1%) fo ⇒ 49.5Hz ÷ 50.5Hz (3.22a)

Vgrid : (1± 10%)Vo ⇒ 292.7V ÷ 357.8V (3.22b)

the saturation levels can be determined using the approach of Sec. 3.3.2, ob-
taining ps,max = −ps,min = 23 kW and qs,max = −qs,min = 18 kVAR.

Finally, the external regulators (3.17) of the two DERs are set equal for both
active and reactive power control loops, i.e.:

hp1 = hp2 ≜ hp (3.23a)

hq1 = hq2 ≜ hq (3.23b)

since the two inverters are equal. Using the small-signal stability analysis de-
scribed in Sec. 3.3.3, parameters hp and hq can be chosen as a trade-off be-
tween stability margin and speed of response in grid-connected mode, obtain-
ing hp = 3 and hq = 15. The eigenvalues of the system in grid-connected mode
are shown in Fig. 3.4: the slowest real pole has a frequency of 4.36 rad/s and
then there is a couple of complex-conjugate poles with resonance frequency of
ωn = 7.4 rad/s and damping factor of ξ = 0.94.
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3.5 Real-time simulation results

The first phase of design and validation of the controller was done using
Matlab/Simulink, while HIL-RT approach was used to develop the final regula-
tor and to validate its operation in a more realistic situation. An accurate model
of the inverters and of the grid is simulated in the FPGA target of a National
Instruments (NI) cRIO 9014 platform [121]. This model is a discrete time de-
scription of the output LC filters of the inverters, the RL power lines, the load,
and the grid-connection, as Fig. 3.5 shows. The discretization time is 100 ns.
The Pulse-Width Modulation (PWM), the inverter current and voltage regula-
tors, and the proposed droop controllers are implemented in the FPGA targets
of two NI GPICs [121]. NI cRIO and NI GPICs can interact because NI cRIO
has some analog output ports that generate the signals that correspond to the
inductor currents, the output voltages, and the output currents of the inverters.
These analog quantities are sampled by the input analog ports of the NI GPIC
which calculates the gate commands to modulate the inverters. Gate commands
are given by the NI GPIC thanks to its output digital ports and they are read
by the input digital ports of the NI cRIO platform. The basic scheme of the
RT simulation setup is shown in Fig. 3.5. More details on this modeling and
validation approach are in [62].

Figs. 3.6-3.9 report the RT simulation results for grid-connected operation
and Fig. 3.10 the corresponding operating points of these simulations on the
static droop characteristics. The operating point is indicated by the same letter
in the Figs. 3.6-3.9 and Fig. 3.10. These figures show that the regulator can
track its active and reactive power references in the range of frequency that is
selected in the design phase, i.e. (3.22a). Figs. 3.6 and 3.7 show two DERs
tracking null active and reactive power references at the minimum and max-
imum frequencies of the grid voltage respectively, i.e. 49.5Hz and 50.5Hz.
These two cases validate the choice of the saturation levels of the regulator
Gp(s). It is possible to observe that the output current of inverter 1 is almost
zero in both cases.

The simulations of step variations of the active and reactive power refer-
ences of the inverter 1 are reported in Figs. 3.8 (active power reference variation
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Figure 3.5: RT-HIL platform organization [100]

Grid-connected at fgrid,min = 49.5Hz

vo1

io1

pm1 pm2

Null power
references

Pload = 2.4 kWa

Figure 3.6: RT simulation results of steady-state grid-connected operating mode at fgrid,min:
output voltage of inverter 1, vo1, in CH1 (256V/div); output current of inverter 1, io1, in CH2
(12A/div); measured active power of inverter 1, pm1, in CH3 (1024W/div) and measured
active power of inverter 2, pm2, in CH4 (1024W/div); time with 20ms/div [100]
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Grid-connected at fgrid,max = 50.5Hz

vo1

io1

pm1 pm2

Null power
references

Pload = 2.4 kWb

Figure 3.7: RT simulation results of steady-state grid-connected operating mode at fgrid,max:
output voltage of inverter 1, vo1, in CH1 (256V/div); output current of inverter 1, io1, in CH2
(12A/div); measured active power of inverter 1, pm1, in CH3 (1024W/div) and measured
active power of inverter 2, pm2, in CH4 (1024W/div); time with 20ms/div [100]

from 0W to 2 kW) and 3.9 (reactive power reference variation from 0VAR to
1 kVAR). The rise time is about 210ms for both transients of Figs. 3.8 and 3.9.
In all these cases, the resistive load RL has a nominal power of 2.4 kW.
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Grid-connected at fgrid = 50Hz

io1

pm1

pm2

Pload = 2.4 kW

Null power
references

vo1

dc

pref1 step
change

2 kW

0W

Figure 3.8: RT simulation results of pref1 step variation in grid-connected operating mode:
output voltage of inverter 1, vo1, in CH1 (256V/div); output current of inverter 1, io1, in CH2
(12A/div); measured active power of inverter 1, pm1, in CH3 (1024W/div) and measured
active power of inverter 2, pm2, in CH4 (1024W/div); time with 100ms/div [100]

Grid-connected at fgrid = 50Hz

io1

qm1

qm2

Pload = 2.4 kW

Null power
references

vo1

qref1 step
change

1 kVAR

Figure 3.9: RT simulation results of qref1 step variation in grid-connected operating mode:
output voltage of inverter 1, vo1, in CH1 (256V/div); output current of inverter 1, io1, in CH2
(12A/div); measured reactive power of inverter 1, qm1, in CH3 (512VAR/div) and measured
reactive power of inverter 2, qm2, in CH4 (512W/div); time with 100ms/div [100]
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Figure 3.10: Static characteristics of grid-connected mode simulations [100]
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Figs. 3.11-3.14 show the results for islanded operation and for the discon-
nection of the main grid and Fig. 3.15 the operating points of the corresponding
conditions on the static droop characteristics. The same operating point is indi-
cated by the same letter in Figs. 3.11-3.14 and in Fig. 3.15. The transition from
grid-connected to islanded operation is shown in Fig. 3.11. Zero active and re-
active powers are generated by the two inverters before the disconnection and,
after the transient, the load power is shared between the two energy sources, be-
cause (3.19) is satisfied. It is possible to observe that the controller can achieve
a smooth transition and that the frequency of the microgrid varies during this
transient because the integral controllers saturate at ps,min. A step variation of
the load resistance in islanded mode is reported in Fig. 3.12, showing the tran-
sient time of about 70ms. In Fig. 3.13 there is a similar simulation that shows
the power sharing failure. In this case, the relation (3.20) is satisfied after the
transient and the two inverters do not share the load properly, but one inverter is
still tracking its power reference. In Fig. 3.14, the failure of the power sharing
is shown in a different way: the two inverters are working in grid-connected
mode with opposite power references (±3 kW) and then a main grid discon-
nection occurs. In this case, one inverter is absorbing an active power up to
its rated power in order to show the worst case where the power sharing is not
achieved. Indeed, in islanded operation the two inverters continue to provide
active powers that are close to their references: inverter 1 is still tracking its
reference, while inverter 2 is balancing the power that is required by the load.
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Main grid disconnection

io1

pm1pm2

Null power references
Pload = 2.4 kW
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1.2 kW

50Hz
49.39Hz

c e

Figure 3.11: RT simulation results of grid transition: frequency of the output voltage of inverter
1 vo1, f1, in CH1 (0.6Hz/div); output current of inverter 1, io1, in CH2 (3.2A/div); measured
active power of inverter 1, pm1, in CH3 (1024W/div); measured active power of inverter 2,
pm2, in CH4 (1024W/div); time with 500ms/div [100]

Islanded operation - Pload variation from 2.4 to 5.3 kW

pm1

pm2

Null power references
1.2 kW

Frequency from 49.39Hz to 49.36Hz

fe

2.7 kW

io1

vo1

Figure 3.12: RT simulation results of load step variation in islanded operating mode: out-
put voltage of inverter 1, vo1, in CH1 (192V/div); output current of inverter 1, io1, in CH2
(12A/div); measured active power of inverter 1, pm1, in CH3 (1024W/div); measured active
power of inverter 2, pm2, in CH4 (1024W/div); time with 50ms/div [100]
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Islanded operation - Pload variation from 5.3 to 2.4 kW

pm1

2.7 kW Frequency from
49.36Hz to 49.42Hz

f
g
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vo1

h

2 kW

Pref1 = 2kW Pref2 = −1 kW Null reactive power references

pm2 400W

Figure 3.13: RT simulation results of load step variation in islanded operating mode: out-
put voltage of inverter 1, vo1, in CH1 (192V/div); output current of inverter 1, io1, in CH2
(12A/div); measured active power of inverter 1, pm1, in CH3 (1024W/div); measured active
power of inverter 2, pm2, in CH4 (1024W/div); time with 200ms/div [100]

Main grid disconnection
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Figure 3.14: RT simulation results of grid transition: frequency of the output voltage of inverter
1 vo1, f1, in CH1 (0.6Hz/div); output current of inverter 1, io1, in CH2 (20A/div); measured
active power of inverter 1, pm1, in CH3 (1024W/div); measured active power of inverter 2,
pm2, in CH4 (1024W/div); time with 2 s/div [100]
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3.6 Further investigations

This section describes the operation of the regulator in some critical condi-
tions, as sudden disconnections of load or sources or the operation in a micro-
grid with network impedances having low reactance to resistance ratio X/R. The
following results are obtained with Matlab/Simulink simulations of the system
of Fig. 3.3.

Figs. 3.16-3.19 show the performances of the controller when sudden dis-
connections of the load or of one inverter occur. In all these four figures, the
inverters have null reactive power references and inverter 1 receives an active
power reference of 3 kW, while inverter 2 of −3 kW. This is the worst case
for the power sharing, as also tested in Fig. 3.14. The parameters of the RLC
load and cables are reported in Tab. 3.1. Fig. 3.16 shows a simulation of a
disconnection of the entire RLC load in grid-connected mode, while Fig. 3.17
shows the same simulation in islanded operation. Fig. 3.18 shows a simulation
of the disconnection of inverter 2 in grid-connected mode and Fig. 3.19 shows
the same simulation in islanded operating mode. These results show that the
controller can manage also sudden disconnections of load and of one of the two
inverters without significant worsening of system performances.

So far, a microgrid with network impedances that are mainly inductive is
considered even if in LV microgrids the ratio X/R is usually small, as seen in
Sec. 1.1.2. In this situation, active and reactive powers depend on both voltage
amplitude drop and phase shift along the electric lines and the droop control
(1.8) may suffer poor performances and potential instabilities [20,30,31]. Some
previous works on droop control propose some solutions for this problem (Sec.
1.1.2) and in this section the behavior of the proposed controller is tested in
a microgrid with X/R = 0.5, using the virtual output impedance technique
of [32] (the aim of this Chapter is not proposing a new technique to address this
issue). According to [32], the voltage reference of the voltage loop is subtracted
by a quantity that is proportional to the time derivative of the output current
of the inverter, emulating a virtual output inductance. The sum of the virtual
inductance and the actual inductance of the cable has to dominate its resistive
component to decouple the power flow dependencies, i.e. the active power flow
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Figure 3.16: Simulation of sudden disconnection of the RLC load in grid-connected mode: a)
measurements of output active powers, b) output voltage amplitude of inverter 1, c) frequency
reference of the inverter 1, and d) output current of inverter 1
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Figure 3.18: Simulation of sudden disconnection of the inverter 2 in grid-connected mode: a)
measurements of output active powers, b) output voltage amplitude of inverter 1, c) frequency
reference of the inverter 1, and d) output current of inverter 1
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Table 3.2: New parameters for the validations in a microgrid with low X/R

LC1 + LL1 = 242µH LC2 + LL2 = 169 µH

LV 1 = 2.6mH LV 2 = 1.7mH

still depends on the phase shift and the reactive power flow still depends on the
voltage amplitude droop, as for the inductive case of Sec. 1.1.2.

In the following results, two reduced values of LC1+LL1 and LC2+LL2 are
considered to get a X/R ratio of 0.5 for the cables and two virtual inductors for
the two inverters (LV 1 and LV 2) are emulated. The new values for the test-case
of Fig. 3.3 are reported in Tab. 3.2: all the other parameters of Tab. 3.1 are not
changed.

Figs. 3.20-3.23 show the simulation results for the microgrid with the re-
duced X/R. The simulation starts with zero reactive power references for the
two inverters and with an active power reference of 2 kW for inverter 1 and
of −3 kW for inverter 2. The parameters of the load are reported in Tab.
3.1, except for the initial value of the load resistance that is RL = 100Ω

(PL = 530W). An active power reference variation is shown in Fig. 3.20:
the active power reference of inverter 1 is changed from 2 kW to 3 kW. After
this, a simulation of the transition from grid-connected to islanded operation is
presented in Fig. 3.21. Fig. 3.22 shows the step variation of the load resistance
from RL = 100Ω (PL = 530W) to RL = 22Ω (PL = 2.4 kW) in islanded
operation. Finally, the sudden disconnection of the entire RLC load is shown
in Fig. 3.23. These results show that the proposed controller can also manage
a microgrid with low X/R ratio, thanks to the use of the virtual output induc-
tance described in [32], and no particular degradation of the performances of
the controller occurs.
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3.7 Summary

A local regulator for electronically interfaced DERs is analyzed to manage a
microgrid in both islanded and grid-connected modes in this Chapter in order to
improve the reliability of the grid when the mains disconnect. The most relevant
feature is the seamless microgrid transition from grid-connected to autonomous
mode without any time-critical communication, even if multiple DERs are con-
nected to the microgrid. The controller exploits P/f and Q/V droop control to
share the load power in islanded operation and feedback control to track power
references in grid-connected operation. The proposed analysis includes the de-
sign of saturation levels and a small-signal model to design the power loop
controllers. Finally, the solution is implemented in an FPGA device and exten-
sively tested via Hardware-In-the-Loop and Real-Time simulation approaches,
verifying the main properties and performances.



Chapter 4

Stability analysis for single-phase
AC grids

The interactions of more and more power electronics-interfaced power sys-
tems can worsen the power quality and the system stability in distribution net-
works, as anticipated in Sec. 1.2. System stability can be addressed by an-
alyzing the source and load impedances at the interacting section and well-
established approaches exist for DC and three-phase AC networks. Some pa-
pers focused also on single-phase AC systems, whose study is generally more
difficult due to their time-varying characteristics.

The aims of this Chapter are to describe a method to address the stability of
single-phase AC systems and to experimentally verify it, as done in [122]. Sec.
4.1 reviews the state of the art for single-phase system stability analysis. Then,
the presented approach is in Sec. 4.2: it bases on dynamic phasors in order to
identify a steady-state operation for a single-phase system; then a linearization
allows to obtain a small-signal model that is written in terms of 2-dimensional
source and load impedances. The system stability is then evaluated using the
GNC. Secs. 4.3 and 4.4 describe how to apply this method to a real setup, in
terms of system perturbation and measurement. Experimental validations are
provided in Sec. 4.6 to verify the feasibility of this approach. In particular, the
considered test-case includes a current-controlled inverter synchronized to the
grid via a PLL. Sec. 4.5 describes the equivalence of the proposed approach
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with the dq impedanced-based method of [55, 65] for balanced three-phase AC
systems.

4.1 State of the art

Single-phase AC system studies are more difficult compared to DC and bal-
anced three-phase AC system analyzes because the identification of a precise
operating point where to perform a linearization is not straightforward (Sec.
1.2). To study these systems some approximations can be introduced, such
as reduced order models (e.g. neglect of DC link dynamics) and harmonic
linearization [123–125]. In particular, harmonic linearization provides small-
signal description in terms of one-dimensional impedances as for DC systems,
rather than MIMO analysis for three-phase AC systems [125, 126].

A completely different approach considers the single-phase AC system as a
part of an artificial three-phase system [127,128]. This enables the use of the dq
transformation theory and other analytic frameworks used for three-phase AC
systems, for example those in [55,65], also for single-phase systems. Also [129]
exploits the dq transformation for single-phase analysis.

Single-phase system stability has been studied so far also for railway sys-
tem applications [69, 130–133]. The propulsion system in a train consists of
a single-phase grid, a single-phase line-connected converter, and a three-phase
inverter, so the model includes time-varying and nonlinear terms [131, 132].
In particular, the input admittance criterion (one-dimensional approach), which
considers systems that are linear and time-invariant, is studied in [130, 131].
Some methods to address the time-varying behavior of single-phase systems
are described in [69], such as linearization along a sinusoidal trajectory (Linear
Time Periodic control system theory), Lifting Techniques, etc. Low-frequency
instability of railway system is addressed by [132] with some approximations
and with a simulation approach in [133].

Linearization along a periodic trajectory is perform in [69, 134, 135] for
AC electric systems, exploiting the Linear Time Periodic modeling [136]. This
consists of describing the single-phase or three-phase system with a linear state-
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space model, whose matrices are periodic, considering that the steady-state op-
eration is AC. This observation enables the use of mathematical tools first de-
veloped in [136]: a dynamic model that relates all the Fourier coefficients of a
periodic signal to all the coefficients of another one is provided. An example
can be the relation between the coefficients of a current signal to the coeffi-
cients of a voltage signal at an electric port. This mathematical description is
given with a matrix (potentially double infinite-dimensional) called Harmonic
Transfer Function [69, 134–136].

Among the different devices in microgrids and distribution grids, the pres-
ence of PLL in grid-feeding inverters, for instance for PV applications, can have
negative impact on the system stability [129, 137–139]. In particular, the study
of this phenomenon for three-phase AC systems with the dq transformation the-
ory shows that the stability is affected because the PLL introduces a negative
incremental behavior on the dq impedances, in particular for Zqq [137, 138].
The study of PLL in single-phase connections is generally more difficult for
the reasons seen so far. dq space vector representation for single-phase systems
can be one approach [127–129]. One-dimensional analysis is used to study
PLL effects in three-phase [140] and single-phase systems: in particular [141]
compares the stabilizing effects of PLL, such as basic T/4 delayed PLL and
Second-Order Generalized Integrator (SOGI) PLL.

This Chapter describes an approach to obtain a small-signal impedance-
based model for single-phase AC systems that is equivalent to dq method for
three-phase systems. However, rather than using the dq transformation, the
frequency-selective averaging technique of [142] is used to identify an operat-
ing point for the single-phase system, that is done with approximations in other
papers, as [126]. This identification enables a small-signal stability analysis
on a well-defined operating point [122]. The obtained small-signal model is
MIMO as for three-phase AC systems and it is studied with the GNC [55, 66].
The new contribution of this work, in particular compared to [127,128], is vali-
dating this modeling on a single-phase laboratory-scale setup, that in particular
includes PLL for the synchronization of grid-feeding inverters.
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4.2 System description and modeling

The dq method for three-phase systems can be extended to single-phase
connections, for instance considering the single-phase system as a part of an
artificial three-phase system where two phases are shifted respectively of 120◦

and 240◦ with respect to the single-phase system or exploiting an Hilbert filter to
generate an orthogonal component to the single-phase one as done in [127,128]:
with these methods, the stability analysis can be addressed with the three-phase
dq approach, i.e. dq impedances and GNC.

The approach used here, on the other hand, is described in a slightly dif-
ferent way compared to [128], that is the averaging method of [142]. Such
approach is equivalent to that used in three-phase systems with the dq transfor-
mation and for this reason it bases on the same hypotheses: three-phase system
is balanced and symmetric with negligible harmonic distortions and so for the
single-phase system all quantities are dominated by their fundamental compo-
nents (at the line frequency). Thus, it is important to highlight that the modeling
is not new respect to the dq impedance-based stability analysis, but applications
and experimental validations will be done on single-phase system and this is not
included in [128].

This Chapter considers the stability analysis of a single-phase AC system at
a particular point of connection between a source and a load system, as in Fig.
1.13. This can be done theoretically with no loss of generalization, because if
the considered scenario is more complex, it can be split in two subsystems: one
clustered in a source subsystem and another in a load one.

4.2.1 Multifrequency averaging technique

The averaging method proposed in [142] is now recalled, because later it is
used in the modeling. The Fourier series describes a signal x (τ) in the interval
τ ∈ [t− T, t] as

x (τ) =
+∞∑

l=−∞
⟨x⟩l(t) ejlωoτ (4.1)
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Figure 4.1: Example of application of dynamic phasor

where ωo = 2π/T and the⟨x⟩l(t) are the complex Fourier coefficients that are
given by

⟨x⟩k(t) =
1

T

∫ t

t−T

x (τ) e−jkωoτdτ (4.2)

Observe that such Fourier coefficients are functions of time t. As in [142],
the k-th coefficient of the Fourier series is here called k-phasor. For sake of
simplicity, the same notation of [142] is used herein.

The transformation (4.2) has an important property related to the differenti-
ation with respect to time [142]:

d⟨x⟩k(t)
dt

=

⟨
dx

dt

⟩

k

(t)− jkωo⟨x⟩k(t) (4.3)

Consider also that if x (τ) ∈ R, ∀ τ ∈ [t− T, t] then

⟨x⟩k(t) =
[
⟨x⟩−k(t)

]∗ (4.4)

Dynamic phasors have been introduced because they allow to identify a
steady-state operation for the model of a single-phase AC system (more details
later). In Fig. 4.1 there is an example: considering an AC signal at ωo and
applying the (4.2), the real and imaginary components of the corresponding
1-phasor result to be constant in an single-phase AC steady-state operation.
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4.2.2 Single-phase AC system modeling

A single-phase AC system, for instance that in Fig. 1.13, can be modeled
with a nonlinear time-varying set of differential equations

dx

dt
= f (x, t) (4.5)

where x is a n-dimensional real vector of states, t is the time variable and f

is a function from Rn+1 to Rn. Such model is non-autonomous because of the
sinusoidal behavior of the electric grid, i.e. there is at least one sinusoidal term
inside f , as for example Vo cosωot. Notice that the function f in (4.5) can
contain some input variables, for example some inverter or load references, but
they are not explicitly written in that equation for sake of simplicity.

Looking at Fig. 1.13, it is reasonable to assume that the states of the source
system do not directly depend on the states of the load system and conversely
that the states of the load do not directly depend on the states of the source.
Thus, the interactions between the two systems are only due to the quantities
at their interfaces, that are the current i and the voltage v. So suppose that i is
an input for the model of the source and v an input for the model of the load:
also the opposite choice is possible [143]. So, with these observations equation
(4.5) can be divided in

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= f1 (x1, i, t)

v = g1 (x1, i, t)

⎫
⎬
⎭ source

dx2

dt
= f2 (x2, v, t)

i = g2 (x2, v, t)

⎫
⎬
⎭ load

(4.6)

where x1 and x2 are two sub-vectors of x and f1, f2, g1, and g2 are general
nonlinear functions of suitable dimensions.

The analysis of source and load systems separately can bring to an imped-
ance-based representation for both of them and, since their analysis is similar,
here only the source model is investigated. As stated before, the AC single-
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phase system has quantities (currents and voltages) mainly dominated by their
fundamental components at the nominal line frequency ωo (as done in [65] and
in the following papers for dq impedance-based models). This hypothesis en-
ables the modeling of the grid with a Fourier series analysis truncated at the
1-phasor. This truncation is an approximation and later it will be validated with
experimental results. In general, the model can include also the 0-phasor com-
ponents because some variables can have significant average value, for instance
DC currents and voltages in hybrid AC-DC systems (rectifiers, inverters, etc.),
Fig. 4.2, or quantities of the regulators. However, 0-phasor components will be
neglected to keep the mathematical formulation closer to the dq transformation
approach of three-phase systems, where only descriptions of dq space vectors
at the nominal frequency are considered.

Standard modeling approaches for DC-DC converters and for converter-
based three-phase AC systems (modeled in the abc domain or dq reference
frame) usually have ranges of validity from DC up to fractions of the switching
frequency fs, e.g. fs/3− fs/2: this is due to the averaging technique at fs that
is used to address the time-varying behavior of switches. Also dq impedance-
based analysis for three-phase systems has the same frequency range of validity
because it uses the same hypotheses: the results for dq impedance plots are often
given up to fractions of the switching frequency. Examples are for DC systems
in [63] and for three-phase AC systems in [55, 126]. Notice that if the system
includes diode/thyristor rectifiers, then the validity of the averaged model can
be limited to a lower fraction of the averaging frequency (e.g. 6 or 12 times the
line frequency, for six or twelve pulse rectifies).

In this Chapter, the use of the dynamic phasors could potentially introduce
some limits on the frequency range of validity, in particular because of the pres-
ence of multiple frequency components. Anyway, when the fundamental com-
ponent phasor is dominant, the frequency range of validity can be extended as
done for the application of the dq method for three-phase systems. One reason
is that dynamic phasors do not introduce further approximations compared to
the base averaged modeling, since there are not hypotheses on the frequency
range of validity of dynamic phasors [142]. This means that the k-phasor has
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+

AC to AC Converter

+

AC to DC Rectifier

Figure 4.2: Examples of hybrid AC/DC systems

a valid definition even for frequencies higher than kωo. So, as long as the av-
eraged model of the single-phase system, valid up to a fraction of the switch-
ing frequency, is correctly represented by the fundamental dynamic phasor (the
1-phasor), then the analysis is still valid up to a fraction of the switching fre-
quency. Similarly to the three-phase systems, the presence of diode rectifiers
or single-phase systems requiring averaging at lower frequency, further limits
the model bandwidth. However, further direct investigations on the frequency
range of validity of this modeling should be performed as future tasks.

Writing the source model of (4.6) for 1-phasors using (4.3), it becomes

⎧
⎪⎪⎨
⎪⎪⎩

d⟨x1⟩1
dt

= ⟨f1 (x1, i, t)⟩1− jωo⟨x1⟩1

⟨v⟩1 = ⟨g1 (x1, i, t)⟩1
(4.7)

The (-1)-phasor model is not included in (4.7) because it is fully described by
the⟨x⟩1components, since⟨x⟩−1=⟨x⟩1∗ from (4.4).

According to the initial hypotheses, in a steady-state operation of the AC
grid where all variables are dominated by their 1-phasors, the complex states
in (4.7) are constant and so their derivatives are null. This means that an equi-
librium for such model exists and a small-signal stability analysis is possible.
Suppose that two complex functions that describe the phasors of the right-hand
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sides of (4.7) according to the phasors of the state x1 and the input i exist, be-
cause all quantities are assumed to be well described by their 1-phasors. With
these functions the system (4.7) can be written as

⎧
⎪⎪⎨
⎪⎪⎩

d⟨x1⟩1
dt

= f1

(
⟨x1⟩1, ⟨i⟩1

)
− jωo⟨x1⟩1

⟨v⟩1 = g1

(
⟨x1⟩1, ⟨i⟩1

) (4.8)

where f1 and g1 are suitable complex functions.

In order to apply the standard state-space representation, the system (4.8) is
described with real and imaginary components:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d⟨x1⟩R1
dt

= fR1

(
⟨x1⟩R1 , ⟨x1⟩I1, ⟨i⟩

R
1 , ⟨i⟩

I
1

)
+ ωo⟨x1⟩I1

d⟨x1⟩I1
dt

= f I1

(
⟨x1⟩R1 , ⟨x1⟩I1, ⟨i⟩

R
1 , ⟨i⟩

I
1

)
− ωo⟨x1⟩R1

⟨v⟩R1 = gR
1

(
⟨x1⟩R1 , ⟨x1⟩I1, ⟨i⟩

R
1 , ⟨i⟩

I
1

)

⟨v⟩I1 = gI
1

(
⟨x1⟩R1 , ⟨x1⟩I1, ⟨i⟩

R
1 , ⟨i⟩

I
1

)

(4.9)

where the R and I superscripts refer to real and imaginary components. In par-
ticular, such real and imaginary components of dynamic phasors are the same
of [142].

The application of the average method [142] with a fundamental period
equal to the nominal line period leads to a state-space model (4.9) with a well-
defined operating point. This steady-state operation is referred as

(
⟨X1⟩R1 , ⟨X1⟩I1, ⟨I⟩

R
1 , ⟨I⟩

I
1

)
(4.10)

The state-space model (4.9) can be linearized in the operating point (4.10) and
its linearization leads to a description for the variations of the real and imaginary
components of the dynamic phasors

∆⟨x1⟩R1 , ∆⟨x1⟩I1, ∆⟨i⟩R1 , ∆⟨i⟩I1 (4.11)
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The Laplace transform L can provide a compact description of the lineariza-
tion of (4.9) between the real and imaginary components of⟨v⟩1and⟨i⟩1

V (s) ≜

[
VR (s)

VI (s)

]
=

[
ZRR (s) ZRI (s)

ZIR (s) ZII (s)

]

  
≜Z(s)

[
IR (s)

II (s)

]

  
≜I(s)

(4.12)

where

VR (s) ≜ L
[
∆⟨v⟩R1

]
(s) (4.13a)

VI (s) ≜ L
[
∆⟨v⟩I1

]
(s) (4.13b)

IR (s) ≜ L
[
∆⟨i⟩R1

]
(s) (4.13c)

II (s) ≜ L
[
∆⟨i⟩I1

]
(s) (4.13d)

and where ZRR (s), ZRI (s), ZIR (s), and ZII (s) are four Laplace transfer func-
tions, that are here called RI small-signal impedances.

The same analysis can be performed for the load system of Fig. 1.13, whose
equations are in (4.6). Considering for example the voltage v as input and the
current −i as output, it results:

− I (s) =

[
−IR (s)

−II (s)

]
=

[
YRR (s) YRI (s)

YIR (s) YII (s)

]

  
≜Y (s)

[
VR (s)

VI (s)

]

  
V (s)

(4.14)

4.2.3 Generalized Nyquist stability criterion

Each quantity in the derived models, currents and voltages in (4.12) and
(4.14), are represented by a couple of two real variables: the real R and the
imaginary I components of the phasor. For the small-signal model, an imped-
ance-based representation similar to that for DC systems in [63] can be used.
The only difference is that the resulting model is MIMO where each quantity
is a 2-dimensional vector and each impedance is a 2 × 2 matrix of transfer
functions, as for the study of balanced AC three-phase systems [55, 65].
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Y (s)
−V (s)

Z(s)
−I(s)V (s)

Figure 4.3: Block diagram representation

Vs(s)
+

Z(s)

Y (s)V (s)

+

−

Source LoadI(s)

Figure 4.4: Thévenin representation of the system

Since the output voltage and current used in the source and load models are
the same, their small-signal variations of (4.12) and (4.14) can depict a feedback
loop system as in Fig. 4.3. This can be seen as the block diagram generated by
the Thévenin representation of Fig. 4.4.

The GNC can be applied to the loop gain

T (s) ≜ Z (s) Y (s) (4.15)

of the system in Fig. 4.3 to infer the stability of the closed-loop system and
thus of the interaction of the source and load subsystems. The complete for-
mulation of the GNC is in [66]. The eigenvalues of T (s), λ1 (s) and λ2 (s),
are frequency-dependent and they trace in the complex plane the characteristic
loci of matrix T (s) as the variable s moves on the standard Nyquist contour
in clockwise direction. The closed-loop system is stable if and only if the net
sum of anticlockwise encirclements of the critical point −1 + j0 by the set of
characteristic loci of T (s) is equal to the total number of right-half plane poles
of Z (s) and Y (s). So if the source and load systems are stable on their own
(no right-half plane poles for Z (s) and Y (s)), then the closed-loop system is
stable if and only if the Nyquist diagrams of the two eigenvalues do not encir-
cle the critical point. A stable transfer function Z (s) means that the source can
work in an open-circuit configuration (zero output current) and a Y (s) stable
transfer function means that the load can work in a short circuit configuration



108 Stability analysis for single-phase AC grids

(zero output voltage) [143].

4.3 Signal injection

The approach to the stability analysis presented in Sec. 4.2 is now described
with some implementation details related to signal injection [122]. The focus
is again on the source system, whose model has the current as input and the
voltage as output, see (4.12). In order to determine the four RI impedances
of (4.12), a single frequency disturbance at ωp can be injected in the system to
perturb the steady-state in (4.10), first on the real component of the phasor⟨i⟩1
and then on the imaginary one. So a sinusoidal disturbance Ip cosωpt of the
real component of⟨i⟩1 is

⟨i⟩1(t) =⟨I⟩R1 + j⟨I⟩I1  
steady−state

+ Ip cosωpt  
perturbation

(4.16a)

and similarly an imaginary perturbation of the 1-phasor is

⟨i⟩1(t) =⟨I⟩R1 + j⟨I⟩I1  
steady−state

+ jIp cosωpt  
perturbation

(4.16b)

To inject such perturbations in the single-phase system, the time-domain ex-
pression for i(t) has to be evaluated using (4.1) and (4.4). Setting ⟨I⟩1 =

⟨I⟩R1 + j⟨I⟩I1, the real perturbation (4.16a) becomes

i (t) = 2 |⟨I⟩1| cos
(
ωot+ arg⟨I⟩1

)
+ 2Ip cos (ωpt) cos (ωot) (4.17a)

and the imaginary perturbation (4.16b)

i (t) = 2 |⟨I⟩1| cos
(
ωot+ arg⟨I⟩1

)
− 2Ip cos (ωpt) sin (ωot) (4.17b)

This disturbance injection consists of a modulation of the fundamental pha-
sors, i.e. an amplitude modulation (4.16a) and a phase modulation (4.16b) as
in [142]. For sake of simplicity, consider a steady-state operation with⟨I⟩I1= 0
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and⟨I⟩R1 > 0. From (4.17a), it follows:

i (t) = 2
[
⟨I⟩R1 + Ip cos (ωpt)

]
cos (ωot) (4.18a)

that is an amplitude modulation of the line frequency component. From (4.17b),
considering again⟨I⟩I1= 0 and⟨I⟩R1 > 0, it results:

i (t) = 2⟨I⟩R1 cos (ωot)− 2Ip cos (ωpt) sin (ωot) ≃

≃ 2⟨I⟩R1 cos (ωot) cos

[
Ip

⟨I⟩R1
cos (ωpt)

]
+

− 2⟨I⟩R1 sin (ωot) sin

[
Ip

⟨I⟩R1
cos (ωpt)

]

= 2⟨I⟩R1 cos
[
ωot +

Ip

⟨I⟩R1
cos (ωpt)

]

(4.18b)

where the following approximations are done for Ip small enough:

cos

[
Ip

⟨I⟩R1
cos (ωpt)

]
≃ 1 (4.19a)

sin

[
Ip

⟨I⟩R1
cos (ωpt)

]
≃ Ip

⟨I⟩R1
cos (ωpt) (4.19b)

Equation (4.18b) represents a phase modulation of the fundamental component.

Performing a current injection means adding to the output current a term
equal to the last one of (4.17a) or (4.17b), and so a parallel current generator
as shown in Fig. 4.5.a can be used [127, 144, 145]. Observe that in general
to inject such terms, a PLL may be required to synchronize the signal to the
fundamental system component cosωot. On the other hand, for voltage signals,
series voltage injection as in Fig. 4.5.b is often used in literature [127,144,145].
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Figure 4.5: a) Parallel current injection and b) series voltage injection to perturb the system for
impedance identification

4.4 Measurements and impedance evaluation

When a current perturbation is performed, the corresponding output voltage
v of Fig. 4.5.a has to be measured, while for a voltage perturbation, a current
has to be measured i in Fig. 4.5.b. In both cases, the input and output signals
are all post-processed to evaluate the corresponding 1-phasors that will be used
in (4.12) or (4.14) for the impedance identification. According to (4.2), the real
and imaginary components of 1-phasor, for instance on the voltage v (t), can be
calculated as

⟨v⟩R1 (t) =
1

T

∫ t

t−T

v (τ) cos (ωoτ) dτ (4.20a)

and

⟨v⟩I1(t) = − 1

T

∫ t

t−T

v (τ) sin (ωoτ) dτ (4.20b)

The Laplace transforms of these components are

L
[
⟨v⟩R1

]
(s) = H (s) L [ v (t) cos (ωot) ] (s) (4.21a)

L
[
⟨v⟩I1

]
(s) = H (s) L [−v (t) sin (ωot) ] (s) (4.21b)

where H (s) ≜
(
1− e−Ts

)
/ (Ts).

The RI identification is performed by the injection of a disturbance, as in
(4.16a) or (4.16b), at one frequency ωp to evaluate the four impedances at ωp

and then repeating the injection for different ωp frequencies. From equations
(4.12) and (4.21), it follows that

L [ v (t) cos (ωot) ] (jωp) = ZRR (jωp)L [ i (t) cos (ωot) ] (jωp)+

+ ZRI (jωp)L [−i (t) sin (ωot) ] (jωp)
(4.22a)
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L [−v (t) sin (ωot) ] (jωp) = ZIR (jωp)L [ i (t) cos (ωot) ] (jωp)+

+ ZII (jωp)L [−i (t) sin (ωot) ] (jωp)
(4.22b)

where all the H(jωp) transfer functions vanish. From an operative point of
view, the Discrete Fourier Transform (DFT) of the input current signal can eval-
uate the Laplace transforms of i (t) cos (ωot) and i (t) sin (ωot) for jωp and the
same for the output voltage to evaluate the Laplace transforms of v (t) cos (ωot)

and v (t) sin (ωot) in jωp. Defining

L [ i (t) cos (ωot) ] (jωp) ≜ ĨR (jωp) (4.23a)

L [−i (t) sin (ωot) ] (jωp) ≜ ĨI (jωp) (4.23b)

L [ v (t) cos (ωot) ] (jωp) ≜ ṼR (jωp) (4.23c)

L [−v (t) sin (ωot) ] (jωp) ≜ ṼI (jωp) (4.23d)

the four RI impedances in (4.22) are evaluated by injecting two linearly in-
dependent perturbations: for instance

(
ĨR1, ĨI1

)
generating

(
ṼR1, ṼI1

)
and

(
ĨR2, ĨI2

)
generating

(
ṼR2, ṼI2

)
. Thus, the four RI impedances are the solu-

tions of ⎡
⎢⎢⎢⎢⎣

ṼR1

ṼI1

ṼR2

ṼI2

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

ĨR1 ĨI1 0 0

0 0 ĨR1 ĨI1

ĨR2 ĨI2 0 0

0 0 ĨR2 ĨI2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ZRR

ZRI

ZIR

ZII

⎤
⎥⎥⎥⎥⎦

(4.24)

Two linear perturbations mean that the rank of the matrix in (4.24) is equal to
4. A similar approach is also used in [127, 128].

4.5 Equivalence with dq transformation theory

In this section, it is shown that the method described so far leads to a final
model that is similar to the one obtained with the dq impedance-based method
proposed first for balanced three-phase systems in [55,65] and then extended to
the single-phase systems in [127, 128].

Recalling what said at the beginning of Sec. 4.2, the single-phase system
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can be seen as one phase of an artificial three-phase system. For example, it
can be created considering the phase a as the phase of the single-phase system
and the phases b and c as two artificial phases that are shifted respectively of
120◦ and 240◦ with respect to the phase a. This enables the application of
the dq small-signal analysis for three-phase systems [55, 65] to this artificial
abc model. As hypotheses, such system is balanced and symmetric, as in the
standard three-phase theory [55, 65]: these are the same hypotheses of Secs.
4.2-4.4.

Using the Bounded-Input Bounded-Output (BIBO) stability definition of
[65], the single-phase system is BIBO stable if and only if its artificial three-
phase system is BIBO stable because in a balanced and symmetric three-phase
system the quantities are simply shifted of 120◦ and of 240◦ from one phase to
the other. This observation is needed in order to use the dq impedanced-based
approach proposed in [55, 65] to infer the stability of the single-phase system.

The dq impedanced-based analysis of [55, 65] is based on a different de-
scription for the currents and the voltages of the grid compared to the approach
of this Chapter. However, at the end such analysis arrives at small-signal de-
scriptions of source and load systems that are equivalent to those in (4.12) and
(4.14) and so the GNC can be applied. In this approach, the perturbations con-
sist of modulating (for different frequency ωp) the d and q components of space
vector of current or voltage at the interface between source and load subsys-
tems in order to obtain the impedances in (4.12) and (4.14), now called dq

impedances. A sinusoidal perturbation of the d component or of the q compo-
nent, after its transformation into the single-phase domain with (1.9) and (1.10),
results equal to the amplitude or phase modulation in (4.17a) or (4.17b).

After injecting the perturbation of the system with (4.17a) or (4.17b), the
voltage at the source-load interface is measured and post-processed by applying
the abc to dq transformation for three-phase systems, namely (1.9) and (1.10).
The DFT of the d and q components can be evaluated numerically to obtain
the voltage coefficients at the frequency of the disturbance jωp and then with
these complex coefficients the dq impedances can be calculated solving a linear
system equivalent to (4.24). Setting the quantities of phases b and c to zero in
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(1.9) and (1.10) to evaluate the d and q components and calculating the DFT,
the evaluation process of the impedances results equal to that in (4.22). This
means that both the signal injections and the post-processing of the measured
values are equivalent to those of Secs. 4.3 and 4.4.

At the beginning of this section, it is stated that an artificial three-phase sys-
tem is built from the single-phase system to be balanced and symmetric, how-
ever since the components of phases b and c can not be directly measured, it is
possible to set them to zero rather than calculating them during post-processing.
This will lead to an unbalanced and asymmetric system, but the dq impedances
can still be evaluated. The measured variable v contains only components at the
fundamental line frequency ωo plus the harmonics injected with the dq pertur-
bation (remember that the harmonic distortions are negligible) and so v has an
expression similar to that in (4.17a) or (4.17b). Such behavior can be expected
even if the system is nonlinear considering that the disturbance injection is small
enough to avoid nonlinearity distortions. So if the fundamental component for
the voltage is Vo cos (ωot), the voltage v(t) results

v (t) = Vo cos (ωot+ φo) + Vp cos (ωpt+ φp) cos (ωot) =

= Vo cos (ωot+ φo) +
Vp

2
cos [(ωo − ωp) t− φp] +

+
Vp

2
cos [(ωo + ωp) t+ φp]

(4.25)

for the signal in (4.17a). In the single-phase domain (4.25) there are three com-
ponents: one at the nominal frequency ωo and two at ωo−ωp and ωo+ωp as for
standard amplitude modulated signals. This situation is depicted in Fig. 4.6.a.

Considering the artificial three-phase system by setting the b and c compo-
nents to zero and transforming (4.25) with (1.9) and (1.10), the d component
results

vd (t) =
Vo

3
cosφo +

Vp

3
cos (ωpt+ φp)+

+
Vp

6
cos [(2ωo − ωp) t− φp] +

Vo

3
cos (2ωot+ φo)+

+
Vp

6
cos [(2ωo + ωp) t+ φp]

(4.26)
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Figure 4.6: Amplitude spectral components: a) for the single-phase initial system and b) for
the artificial three-phase system for d component [122]

The spectral components of this signal are shown in Fig. 4.6.b: to calculate the
dq impedances, the component at ωp of this figure has to be evaluated. On the
other hand, in an artificial balanced and symmetric three-phase system the d and
q quantities contain only DC components (null frequency) plus the frequency
of the injected component ωp: in this situation the three highest frequency com-
ponents of Fig. 4.6.b are missing. Anyway, both these two techniques can
theoretically calculate the same impedances thanks to the frequency selectiv-
ity of the DFT: frequency overlaps should however be avoided and, from Fig.
4.6.b, this happens for ωp ̸= ωo. So setting the b and c components to zero
enables the evaluation of the same dq impedances, except for ωp = ωo.

In the next section, the approach of Secs. 4.2-4.4 based on RI impedances is
applied experimentally to study the stability of a single-phase system to analyze
the behavior of a grid-feeding inverter synchronized via PLL.

4.6 Experimental validation

The validation of the stability analysis is done on a single-phase experimen-
tal setup that consists of a voltage-controlled inverter and a current-controlled
inverter, see Fig. 4.7 [122]. This test-case is seen as the case of current injec-
tion made by a PV system into a slight AC grid (the mains) that has a certain
output impedance. Both inverters have 5 kVA rated power, but the experiments
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Figure 4.7: Test-case whose parameters are in Tab. 4.1 [122]

are performed at reduced voltage, that is Vo = 50VRMS, and reduced power.

The voltage-controlled inverter generates a sinusoidal voltage at its output
vo tracking a reference vo,ref equal to Vo

√
2 cosωot, where ωo = 2π50 rad/s is

the nominal frequency. It includes an inner current regulation loop and an outer
voltage controller as shown in Fig. 4.8.a: the current loop has a closed-loop
bandwidth of 1.5 kHz and the voltage loop of 320Hz. The parameters of the
experimental setup are in Tab. 4.1.

PV applications usually include current-controlled inverters synchronized
to the grid via PLL [20, 146]. Different solutions for PLL have been stud-
ied in literature, both in three-phase and single-phase connections [20, 147].
Here, an SRF-PLL is used to synchronize the current-controlled inverter to the
grid (Fig. 4.8.b): its outputs, i.e. the angle θ of the voltage waveform and
its amplitude Vpll, are used to generate the current reference for the inverter.
For instance in PV applications, the current reference is in phase with the in-
verter voltage (and so with θ), while the current amplitude reference (Il2,ref in
Fig. 4.8.b) is set by the DC link voltage controller to inject all the available
active power [146]. On the other hand, in constant power sources (or loads)
the current amplitude reference Il2,ref results from the PLL voltage amplitude
measurement as Il2,ref = P/Vpll after suitable filtering. For single-phase ap-
plications, the PLL needs to estimate the in-quadrature component of the input
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Table 4.1: Experimental setup parameters [122]

Grid
Vo = 50VRMS

ωo = 2π50 rad/s

Filters
L = 1.6mH

C1 = 50µF

C2 = 10µF

Grid inverter

kP,i = 3

kI,i = 0.1

kP,u = 1

kI,u = 0.15

fPWM = 12.5 kHz

PV inverter + PLL

kP,i = 2

kI,i = 0.25

kP,pll = 1.4

kI,pll = 7 · 10−4

kI,pll,un = 0.1

fPWM = 12.5 kHz
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Figure 4.8: Controller scheme of a) the voltage generator and b) the current generator with
PLL: parameter values are in Tab. 4.1

voltage and different solutions exist in literature, such as fixed To/4 delay, lin-
ear filtering, SOGI, etc. [20, 147]. In this section, a linear filter that introduces
a To/4 time delay at ωo is used (Fig. 4.8.b):

D(s) =
ω2
s

s2 + sωs + ω2
s

(4.27)

with ωs = ωo (ωs can also be adaptively changed according to the PLL fre-
quency).

In this validation, since the feasibility of the stability analysis described be-
fore has to be proved, the current amplitude reference Il2,ref is set to be propor-
tional to the voltage amplitude of the PLL Vpll (after filtering) in the controller
of Fig. 4.8.b: this will exhibit two behaviors of the system, one stable and one
unstable. The current reference il2,ref is then tracked by a current loop, similar
to that of Fig. 4.8.a, that has a closed-loop bandwidth of 1 kHz. The parameters
of the controllers are in Tab. 4.1. Such system can be potentially dangerous
for the stability since it exhibits a negative Zqq or ZII output impedance at low
frequencies due to the PLL [137]. Generally, power sources have negative Zqq

impedances, while constant power loads have negative Zdd impedances [137].

To validate the stability analysis of this Chapter and to describe the stability
characteristics of the PLL, two different conditions for the test-case of Fig. 4.7
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are considered, presenting two different designs of the PLL. In the first test, the
PLL has been designed to obtain a stable system with a 20Hz closed-loop band-
width for the PLL (parameters are in Tab. 4.1). In a second test-case the integral
parameter kI,pll of the PLL (Fig. 4.8.b) has been increased to kI,pll,un = 0.1:
this system is unstable and it presents a divergent behavior. Observe the exper-
imental results in Fig. 4.9.a for a steady-state operation of the stable condition.
In Fig. 4.9.b, at the beginning the system is in stable conditions and then sud-
denly the kI,pll is increased to bring the system in unstable condition: an initial
divergent transient on the voltage and the current can be observed. However,
after few line periods some controller parameters saturate (as the output of the
load PLL that is limited) and limit cycles appear, see Fig. 4.9.b. So this system
is unstable in a small-signal sense and then it goes to stable harmonic amplifi-
cation due to saturation of controller parameters. In the results for the unstable
case, oscillations at 96Hz and 196Hz appear on the voltage and current.

In this Chapter, the injection of current or voltage does not need additional
hardware, because the current generator can inject a current disturbance into
the voltage generator and vice versa the voltage generator can inject a voltage
signal into the current generator. In order to do this, the voltage reference of the
controller in 4.8.a is modified with terms similar to those in (4.17a) or (4.17b).
For the current perturbation, instead of using the controller of 4.8.b, the current
reference il2,ref is directly set as in (4.17a) or (4.17b). Concerning the set-
tings of the controllers during the impedance evaluation, the parameters of the
current and voltage generators of Tab. 4.1 for the stable case are used to eval-
uate the impedances of source and load systems for the stable case. The same
impedances of the source system are used also for the unstable case, since they
are the same. On the other hand, to evaluate the impedances of the load sys-
tem (current generator) for the unstable case, the system has to be stabilized to
perform the perturbations, without changing the load subsystem itself. This is
done increasing the bandwidth of the voltage controller loop of the voltage gen-
erator (source system) to 400Hz, with kP,u = 1.4 and kI,u = 0.2. Furthermore,
a load resistance of 12.5Ω is added at the source-load interface to increase the
damping and attention is given to avoid that the operating point (i.e. the load
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Figure 4.9: a) Voltage vo (20V/div) and current il2 (7A/div) of Fig. 4.7 in steady-state
stable condition (time with 10ms/div) and b) Voltage vo (30V/div), current il2 (9A/div) and
frequency of the load PLL fpll (30Hz/div) of Fig. 4.7 for the transition from stable to unstable
condition (time with 50ms/div) [122]
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current) changes. The load impedances are then measured downstream of the
load resistance.

The perturbation injections are small in order to avoid changes in the steady-
state operations of the two subsystems. In particular, current perturbations made
by the current generator to evaluate the source impedances are about 2 − 3%

of the inverter current (at higher frequencies they decrease to 1%). To evalu-
ate the load impedances (of current generator), the voltage generator injects a
perturbation that is about 2.2% of the steady-state voltage of the system.

Even if the PLL of the load system can make a coupling between phase
and amplitude modulations of the phasors, the only requirement for the sig-
nal injection is that the two injections are independent to solve the system in
(4.24) as done in [55], even if they are both phase and amplitude modulations
simultaneously. To inject the two independent perturbations with the voltage
generator, the voltage reference signal within its controller has been exploited,
vo,ref = Vo

√
2 cos(ωot) in Fig. 4.8: the two independent perturbations can

be generated as Vp cos(ωpt) cos(ωot) and Vp sin(ωpt) cos(ωot), within the con-
troller of the source system. On the other hand, for the perturbations injected
by the load, the inner PLL can be exploited to obtain a reference of the voltage
as cos(ωot): the independent disturbances can be evaluated from this and gen-
erated in a similar manner to those of the voltage generator. This has already
been implemented in many papers related to the impedance measurement units
as those cited in [127, 144, 145].

During current or voltage disturbance injection, both current and voltage at
the interface are measured with an oscilloscope that samples at 100 kS/s for
1 s interval. The post-processing of these data sets is done with Matlab and so
on-line synchronization is not required (no PLL is used for the measurements).
Fast Fourier Transform (FFT) is performed both for voltage and current and the
50Hz component is used for the synchronization, i.e. the component at 50Hz
is the d-axis voltage and the component rotated by 90 deg is the q-axis. Then
the RI impedances are calculated from the complex coefficients of voltage and
current at the frequency ωp. Impedances are shown in Figs. 4.10 and 4.11,
respectively for the stable and unstable conditions, both for source and load



4.6 Experimental validation 121

a)

Freq. [Hz]
101

M
ag
.
[d
B
]

−20

0

20

40
Impedance ZRR

Freq. [Hz]

P
h
as
e
[d
eg
]

−300

−200

−100

0

100

102 103

101 102 103

b)

Freq. [Hz]
101

M
ag
.
[d
B
]

−60

−40

−20

0

20
Impedance ZRI

Freq. [Hz]

P
h
as
e
[d
eg
]

−400

−200

0

200

102 103

101 102 103

c)

Freq. [Hz]
101

M
ag

.
[d
B
]

−50

0

50
Impedance ZIR

Freq. [Hz]

P
h
as
e
[d
eg
]

−400

−200

0

200

102 103

101 102 103

d)

Freq. [Hz]
101 102 103

M
ag
.
[d
B
]

−20

0

20

40

Impedance ZII

Freq. [Hz]

P
h
as
e
[d
eg
]

−200

−100

0

100

101 102 103

Figure 4.10: Bode diagrams of a) ZRR, b) ZRI , c) ZIR, and d) ZII impedances for stable
condition: asterisks refer to experimental data for the source, circles refer to experimental data
for the load and solid lines refer to analytic model of the source [122]

systems. Notice that the ZII of the load (inverter with PLL) is negative for
low frequencies (the phase is −180 deg), similar to the negative Zqq of [137]
because of the presence of PLL. Fig. 4.12 compares the ZII for the load systems
for the two conditions of this section: the unstable case exhibits a negative ZII

in a larger frequency range, for low frequencies, compared to the stable case.

The experimental data are compared to theoretical data where the impedance
of the phase domain Za (s) for the source system is evaluated first, considering
an ideal system with no parasitic components and with continuous-time regu-
lators. After this, the RI impedances are evaluated from (4.22) exploiting the
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Figure 4.11: Bode diagrams of a) ZRR, b) ZRI , c) ZIR, and d) ZII impedances for unstable
condition: asterisks refer to experimental data for the source, circles refer to experimental data
for the load and solid lines refer to analytic model of the source [122]
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Figure 4.12: Bode diagram of ZII impedance of the load for stable and unstable conditions:
circles refer to experimental data for stable condition, asterisks refer to experimental data for
unstable condition, and solid lines to interpolations [122]

properties of the Laplace transform:

ZRR (s) = ZII (s) =
Za(s+ jωo) + Za(s− jωo)

2
(4.28a)

ZIR (s) = −ZRI (s) =
Za(s+ jωo)− Za(s− jωo)

2j
(4.28b)

More details about the transformation (4.28) are given in [148, 149], which
describes how to transform a Laplace transfer function defined in the abc or
phase domain to the dq domain for balanced and symmetric three-phase sys-
tems. So the model (4.12) is derived in terms of RI impedances exploiting
(4.28) and the equivalence with the dq domain. Notice that these analytic results
are valid only for linear systems and that the source system is linear considering
its time-averaging model and regulators with continuous-time implementations.
A good agreement appears comparing the experimental and analytic results for
the source system in Figs. 4.10 and 4.11 (notice that the impedances of the
source are the same in the two cases).

After the evaluation of the impedances, the loop gain T (jω) can be built and
its two eigenvalues λ1(jω) and λ2(jω) plotted on the Nyquist charts (Figs. 4.13
and 4.14). In such graphs, there are only the Nyquist diagrams for the positive
part of the Nyquist contour, that means only for positive ω frequencies (the other
part of the contour is symmetric with respect to the real axis). The GNC applied
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Figure 4.13: λ1 and λ2 Nyquist plots for stable conditions: dots refer to experimental data and
solid lines to interpolations [122]

to a single-phase system can describe its stability characteristics: the eigenvalue
traces for the stable system of Fig. 4.9.a do not encircle the −1 + j0 critical
point and they are always far from that point, see Fig. 4.13. On the other hand,
the unstable system of Fig. 4.9.b is described by Nyquist diagrams that are very
close to the critical point, see Fig. 4.14. In particular, eigenvalue λ2 encircles
the critical point −1 + j0 and so the system is divergent in a small-signal sense
as after the parameter change in Fig. 4.9.b. Moreover, the λ2 Nyquist plot for
unstable condition is close to the critical point at about 146Hz meaning that
in the model for 1-phasors there are undamped oscillations at such frequency.
These oscillations correspond to oscillations at frequencies 146 − 50 = 96Hz

and 146 + 50 = 196Hz in the time-domain, due to the exponential terms in the
definition (4.1). This observation given by the Nyquist diagrams matches with
the oscillations found before in the time-domain results. These results prove
that the stability approach used herein is applicable to the single-phase systems
to obtain precise small-signal models for the stability characterization even with
PLL for grid-synchronization.
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Figure 4.14: λ1 and λ2 Nyquist plots for unstable conditions: dots refer to experimental data
and solid lines to interpolations [122]

4.7 Summary

So far different papers on small-signal stability analysis at a source-load in-
terface have been proposed for DC and AC systems, for both three-phase and
single-phase connections. This Chapter shows a method to identify a steady-
state operation for single-phase AC systems that can be time-varying and non-
linear, enabling a small-signal impedance-based analysis. This analysis can be
used to address the stability of the interactions of more and more DERs in mi-
crogrids and distribution grids. The approach used here exploits the dynamic
averaging technique (dynamic phasors) leading to MIMO models that are ana-
lyzed with the Generalized Nyquist stability Criterion. The mathematical for-
mulation and hypotheses on the final model result to be equivalent to the dq

transformation approach, proposed to address the stability in three-phase AC
systems. In this Chapter, this theory is validated experimentally, showing that
it can be used for the stability analysis by injecting and measuring quantities at
an electric port of the grid.
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Chapter 5

Analysis of the dynamics of the
distribution network

Distribution grid scenarios are very complex and varied, because of the
presence of different types of device that work simultaneously and with dif-
ferent time scale characteristics, as introduced in Chapter 1. Pure steady-state
or static analyses can not observe the phenomena generated by the interactions
of these devices and so dynamic studies of the distribution grid are needed, both
analytic and with simulation. Dynamic studies often use very detailed models
for devices, loads and DERs, generating very complicated and less scalable
approaches, poor load modeling, and so on [56].

This Chapter does not aim to focus on single-device stability and on its com-
plete set of dynamics, but it wants to focus on the interactions of several units in
the grid, approximating the dynamic contributions, and considering only those
relevant during the interactions of these units. This drives to avoid the use
of very detailed approaches for dynamic studies, while approximated analy-
ses are preferred because they can address the stability of the grid as a whole.
Moreover, this allows to obtain scalable models that are more handleable and
meaningful for large grid studies [56].

For these reasons, the activity described herein aims to develop simplified
models for the devices of the grid and then a scalable small-signal approach
that links all the device models. Another important point to be considered is
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the higher level algorithms, i.e. primary, secondary, and tertiary, of the grid that
can influence the voltage stability [56]. Among different DER algorithms, an
application of the Q/V local droop controller will be shown, because it is one
of the most investigated in literature and because it has already been regulated
by some country level standards, see Sec. 1.1.3 and [56].

This Chapter describes the research activity done during a visiting research
period of the Author at the Institute Automation of Complex Power Systems of
RWTH Aachen University (Germany), from January 2014 till October 2014.
This work was done within a part of the European research project IDE4L

Project [150]: it regards the study of the dynamics in distribution energy grids,
considering a high penetrated scenario of DERs, completed with the writing of
the report [56].

Some results from [56] are here described focusing on the development of
a small-signal approach to address the stability of a high DG penetrated grid in
Sec. 5.1. This approach is general and scalable and so it enables the study of
a grid of generic size. In Sec. 5.2, an extension of this small-signal model is
presented in order to account the effects of a primary level control, i.e. the Q/V
droop control for voltage regulation support. Some simulation results of these
models are described in Sec. 5.3, with an application to a real LV distribution
grid test-bench.

5.1 Open-loop small-signal stability analysis

In this section, a small-signal model is described to study the dynamics of a
distribution grid with a large penetration of DG, in an open-loop configuration.
A linear model for the electric grid is first obtained and then a nonlinear model
for the users (loads and generators) is proposed. From this model, through
a linearization process, the small-signal model of all the users of the grid is
written and then linked to the model of the electric grid. This result enables the
dynamic study of the network and also the design of primary level controllers
for DERs (Sec. 1.1).

The following analysis exploits the space vectors defined in the rotating
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Figure 5.1: Edge of the network as RL line

reference frame, i.e. dq frame to describe currents and voltages of the grid
(Sec. 1.2): all sinusoidal quantities can correctly be described even in presence
of variations of amplitude and frequency, as also described in Chapter 2 and in
Appendix A. For three-phase systems, the dq transformation is well defined, but
this description can be applied also to single-phase systems considering them
as a part of a fictitious three-phase system. That is, the single-phase system is
considered as one of the three phases of a balanced and symmetric three-phase
system and the other two phases derive from the first one after a phase shift of
120◦ and 240◦, respectively. More details are in Chapter 4 and in Appendix A.

5.1.1 Dynamic network model

Consider a single-phase resistive-inductive electric line, as in Fig. 5.1. If
ik(t) is the instantaneous inductor current, the differential equation that relates
instantaneous voltages and current is:

Lk
dik(t)

dt
= vi(t)− vj(t)−Rkik(t) (5.1)

From now, the time dependencies are dropped for sake of simplicity.

If the RL line belongs to a three-phase system or to a single-phase one, it
is possible to write the (5.1) with the space vectors defined in the dq reference
frame, i.e. with (1.9) and (1.10):

Lk
dik,dq
dt

= vi,dq − vj,dq − (Rk + jωoLk) ik,dq (5.2)

where the dq transformation is performed on a reference frame that rotates with
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the nominal angular frequency of the system, ωo.

Now all the Kirchhoff’s voltage laws (LKV) and Kirchhoff’s current laws
(LKI) of the grid are written in a compact form exploiting the matrix notation:
a graph theory approach is used as in [52], assuming that the grid has Nn nodes
and Ne edges or branches. All the LKV for the grid are:

Lk
dik
dt

= vi − vj − (Rk + jωoLk) ik k = 1, . . . , Ne (5.3)

where all the space vectors are defined in the dq rotating reference frame (the
dq subscripts are dropped) and k index identifies the edge of the graph with
resistance Rk and inductance Lk. Also the subscripts i and j of v identify the
nodes where the branch k is connected.

The incidence matrix A is defined as in [52] to write all the LKV (5.3):

A ∈ {0, ±1}Ne×Nn (5.4a)

where:

aeu ≜

⎧
⎪⎨
⎪⎩

−1 if the edge e starts form the node u

1 if the edge e arrives at the node u

0 otherwise

(5.4b)

Define the two diagonal matrices L and R as:

L ≜ diag (L1, L2, . . . , LNe) ∈ RNe×Ne (5.5a)

R ≜ diag (R1, R2, . . . , RNe) ∈ RNe×Ne (5.5b)

where diag (·) denotes a diagonal matrix having the entries of the vector as
diagonal elements, and the two vectors i and v as:

i ≜
[
i1 i2 · · · iNe

]T
∈ CNe×1 (5.6a)

v ≜
[
v1 v2 · · · vNn

]T
∈ CNn×1 (5.6b)
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Notice that i and v are complex vectors which contain the space vectors of all
the edge currents and node voltages respectively.

Considering all the previous definitions, (5.4)-(5.6), the LKV (5.3) can be
written in this compact form:

di

dt
= −L−1Av −

(
L−1R + jωoINe

)
i (5.7)

considering that L is diagonal, and so invertible, and where INe is the identity
matrix of dimension Ne ×Ne.

Indicate with ξi the space vector (in the dq reference frame) of the current
that is injected at the node i, for example by a load or a DER, as in Fig. 5.1. All
the LKI can be written by summing all the currents that flow toward each node.
Defining:

ξ ≜
[
ξ1 ξ2 · · · ξNn

]T
∈ CNn×1 (5.8)

as the vector of all the space vectors that represent the node currents, a compact
way to write all the LKI is [52]:

AT i+ ξ = 0 (5.9)

Merging the LKV and LKI equations, respectively (5.7) and (5.9), the model
of the grid results:

⎧
⎪⎪⎨
⎪⎪⎩

di

dt
= − (L−1R + jωoINe) i− L−1Av

ξ = −AT i

(5.10)

The model (5.10) results to be linear and described as state-space model: i is
the state vector, v the input vector, and ξ the output vector.

All the matrices and vectors in (5.10) are complex and, to exploit the well-
known results of the state-space theory, such model has to be expressed with
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real-value matrices and vectors:
⎧
⎪⎪⎨
⎪⎪⎩

dir
dt

= Agir +Bgvr

ξr = Cgir

(5.11)

where:

ir ≜

[
Re [i]

Im [i]

]
Ag ≜

[
−L−1R ωoINe

−ωoINe −L−1R

]
(5.12a)

Bg ≜ −
[
L−1A 0

0 L−1A

]
vr ≜

[
Re [v]

Im [v]

]
(5.12b)

ξr ≜

[
Re [ξ]

Im [ξ]

]
Cg ≜

[
−AT 0

0 −AT

]
(5.12c)

5.1.2 Static network model

The singular perturbation theory describes how to approximate a differen-
tial equation system that has a set of fast dynamics and a set of slow dynam-

ics [151] (Appendix A). With appropriate hypotheses, the set of faster equa-
tions in the system, i.e. the equations that describe the fast state variables, can
be replaced by a set of algebraic equations. With this approximation, the model
loses the information about fast modes, assuming their state variables always
in a steady-state condition. In this way, the order of the differential equation
system can be reduced, as well as the complexity of the system itself.

In a distribution grid, there are different time-scale dynamics and usually the
dynamics of the electric cables can be considered as fast [56, 152]. This means
that the differential equation system for the network dynamics, i.e. (5.10),
describes fast dynamics within the differential equation system of the whole
model of the system. So it is possible to approximate the dynamics of the grid
with a static model for the dq space vectors at the nominal angular frequency
ωo. With other words, the dynamic model (5.10) can be approximated with a
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full algebraic model by setting the time derivative of i equal to zero:

Av + Zi = 0 ⇒ i = −Z−1Av (5.13)

where Z ≜ R + jωoL ∈ CNe×Ne is diagonal and so invertible. Substituting
(5.13) in the second equation of (5.10), it follows:

ξ =
(
ATZ−1A

)
v (5.14)

The model (5.14) is written with real-value matrices and vectors, as done
with (5.11):

ξr = Hgvr (5.15)

where Hr is defined as:

Hg ≜

[
Re

[
ATZ−1A

]
−Im

[
ATZ−1A

]

Im
[
ATZ−1A

]
Re

[
ATZ−1A

]
]

(5.16)

and with the same definitions for ξr and vr of (5.12).

5.1.3 PCC model

Among all the nodes of the grid, the PCC node connects the distribution
grid to the higher voltage level, for example at the MV-LV transformer location
for an LV distribution grid. Since the rated power of the main grid behind the
PCC is very large compared to the considered part of the distribution grid, the
PCC node is here described with an ideal voltage generator with a certain output
impedance. This is usually done by several works on grid-connected operation
for DERs, reported in Chapter 1 and in [56]. This modeling choice neglects the
dynamics of the frequency, which is assumed to be constant. The impedance of
the PCC is accounted by the edge that departs from this node.

Assuming the PCC is at the node 1, its model can be written as:

vPCC = v1 = Vo ∈ R ∀ ξ1 ∈ C (5.17)
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where the space vectors are used to represent the PCC node voltage v1 and
its injected current ξ1. Since the dq space vector is constant, the PCC voltage
results to be a sinusoidal waveform with angular frequency equal to the nominal
one ωo and with voltage amplitude equal to the nominal line to neutral voltage
Vo.

Splitting (5.17) in its d and q components (v1 = v1d + jv1q), a small-signal
model for the PCC results:

∆v1d = 0 (5.18a)

∆v1q = 0 (5.18b)

These components are null, because the space vector v1 is constant and so its
real and imaginary components. The d and q subscripts indicate respectively
the d and q components of a space vector or of a complex quantity.

5.1.4 Node model

The same model for each node of the grid is considered to make scalable and
automatable the building of the final model. Each node consists of the parallel
connection of (see Fig. 5.2):

• a series of a resistance and an inductance, that can roughly model a motor
or other loads [56];

• a capacitor, that can be a real capacitor connected to the grid or the shunt
capacitance of the cables;

• a constant power generator with a first-order dynamic of the current, that
approximates a DER;

• a constant power load with a first-order dynamic of the current, that can
model dynamic loads (for example inverter-interfaced loads).

By setting different parameters for these elements, different types of node can
be described. More details on this choices and generality are in [56].
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Figure 5.2: Schematic of the i-th node model [56]

From Fig. 5.2, the instantaneous voltages and currents of node i are de-
scribed as:

Ci
dvi(t)

dt
= ξgi(t)− ξsi(t)− ξli(t)− ξi(t) (5.19a)

Li
dξsi(t)

dt
= vi(t)−Riξsi(t) (5.19b)

Transforming (5.19) in the dq rotating reference frame, it results:

Ci
dvi

dt
= ξgi − ξsi − ξli − ξi − jωoCivi (5.20a)

Li
dξsi
dt

= vi − (Ri + jωoLi) ξsi (5.20b)

where the time dependencies (t) and the dq symbols are dropped. Observe
that all the quantities have the subscript i because they are related to the node
number i = 2, . . . , Nn (i = 1 is for the PCC).

Focusing on grid-connected inverters for PV applications, DER are usu-
ally controlled as grid-following devices which operate as current sources (Sec.
1.1.3). So DERs are dynamically modeled as current source with a first-order
approximation on the active and reactive power tracking capabilities [56]. While
the active power dynamic can be due to the speed of the MPPT algorithm [153],
the reactive power dynamic can be due to the presence of a closed-loop regu-
lation that adjusts the generated current [40]. The first-order model for the
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constant power source and load is also used in [15]:

τgi
dξgi
dt

= −ξgi + 2

(
sgi
vi

)∗
(5.21a)

τli
dξli
dt

= −ξli + 2

(
sli
vi

)∗
(5.21b)

for the i-th node of Fig. 5.2, where sgi = pgi+ jqgi ∈ C and sli = pli+ jqli ∈ C
are the complex power references respectively for the PV generator and the
load. Consider that by setting a fast time-constant, the load behaves like a
constant power load and, by setting a slow time constant, it can behave like a
constant current load. This modeling choice can include and describe all the
major load models [56].

Putting together (5.20) and (5.21), it is possible to obtain the complete
model for the node i. The use of the dq space vectors allows to identify a
steady-state operation for the model that can be linearized in order to study the
small-signal stability (Chapter 4 and Appendix A). In this way, the small-signal
model for the i-th node of the grid results:

d

dt
∆zi = Dni∆zi + Eni∆ξi +Gni∆si i = 2, . . . , Nn (5.22)

where the following definitions are used:

∆zi ≜
[
∆vdi ∆vqi ∆ξsdi ∆ξsqi ∆ξgdi ∆ξgqi ∆ξldi ∆ξlqi

]T
(5.23a)

∆ξi ≜
[
∆ξdi ∆ξqi

]T
∈ R2×1 (5.23b)

∆si ≜
[
∆pgi ∆qgi ∆pli ∆qli

]T
∈ R4×1 (5.23c)

with ∆zi ∈ R8×1. The matrices Dni, Eni, and Gni are suitable matrices that
contain the partial derivatives obtained during the differentiation of (5.20) and
(5.21): these matrices are not reported here explicitly for sake of explanation,
but all the mathematical details can be found in [56].

Since, the grid models, (5.11) and (5.15), receive as input the voltages of all
the nodes, the outputs of the node model is chosen as the node voltages ∆vdi
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and ∆vqi:
∆vi = Fni∆zi (5.24a)

where

Fni =

[
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

]
∈ R2×8 (5.24b)

and

∆vi =

[
∆vdi

∆vqi

]
∈ R2×1 (5.24c)

Merging (5.22) and (5.24) for all the nodes of the grid, the model results:

⎧
⎪⎪⎨
⎪⎪⎩

d

dt
∆z = Dn∆z + En∆ξr +Gn∆s

∆vr = Fn∆z

(5.25)

where these definitions are used, extending (5.23):

∆z ≜
[
zT2 zT3 · · · zTNn

]T
∈ R8(Nn−1)×1 (5.26a)

∆ξr ≜
[
ξT1 ξT2 · · · ξTNn

]T
∈ R2Nn×1 (5.26b)

∆s ≜
[
sT2 sT3 · · · sTNn

]T
∈ R4(Nn−1)×1 (5.26c)

∆vr ≜
[
vT1 vT2 · · · vTNn

]
∈ R2Nn×1 (5.26d)

and these definitions extending the matrices of (5.22):

Dn ≜ diag (Dn2, Dn3, . . . , DnNn) ∈ R8(Nn−1)×8(Nn−1) (5.27a)

En ≜

⎡
⎢⎢⎢⎢⎣

0 0 En2

0 0 En3

...
... . . .

0 0 EnNn

⎤
⎥⎥⎥⎥⎦
∈ R8(Nn−1)×2Nn (5.27b)
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Fn ≜

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0

0 0 . . . 0

Fn2

Fn3

. . .

FnNn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R2Nn×4(Nn−1) (5.27c)

Gn ≜ diag (Gn2, Gn3, . . . , GnNn) ∈ R8(Nn−1)×4(Nn−1) (5.27d)

Observe that two null columns are added to the matrix En, because the vector
∆ξr has as first elements the PCC currents, as defined in (5.26b). Similarly, two
null rows are added to the matrix Fn to account the PCC voltage components
that are in the vector ∆vr, as defined in (5.26d).

5.1.5 Overall small-signal model

Once the model of all nodes (5.25) and model of the grid, (5.11) or (5.15),
are obtained the model of the complete system can be evaluated linking them
together. Observe that the models (5.11) and (5.15) are linear and so they can
describe the whole quantities ir, ξr, and vr as well as their small-signal varia-
tions, i.e. ∆ir, ∆ξr, and ∆vr, in the same manner.

Notice that the arrangements of vectors ∆ξr and ∆vr in (5.25) and in (5.11)
or (5.15) are different, and for this reason some row and column permutations
are needed in the En and Fn matrices before joining the two models. These
trivial details are skipped for briefness reasons [56]. The model (5.25) and
(5.11) can be linked to obtain the overall small-signal model:

d

dt

[
∆z

∆ir

]
=

[
Dn EnCg

BgFn Ag

]

  
Atot

[
∆z

∆ir

]
+

[
Gn

0

]

  
Btot

∆s (5.28)
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On the other hand, merging (5.25) and (5.15), it results:

d∆z

dt
= (Dn + EnHgFn)  

Atot

∆z + Gn
Btot

∆s (5.29)

Now the evaluation of the eigenvalues of the matrix Atot in (5.28) or (5.29)
allows to study the dynamics of distribution grid, under the hypotheses of ap-
proximation done in this section. This can be done for an open-loop configu-
ration, that is with constant power references for the loads and DERs, i.e. con-
stant. However, the standard tools of state-space feedback control theory can be
used to design controllers, either local or centralized, for the DERs that set their
power references with respect to some feedback variables [56]. One example is
described in the next section for the Q/V droop control for grid support.

5.2 Local Q/V droop control application

The small-signal model presented in Sec. 5.1 is now extended to study
the Q/V droop control described in Sec. 1.1.3. Since Q/V droop control sets
the reactive power references in ∆s based on the measurements of the voltage
amplitude, the voltage amplitude for each node is evaluated starting from the
state ∆z which contains the voltage variations of the d and q components, in
(5.28) or (5.29). Consider an inverter that is connected at the node i with the
voltage vi = vdi + jvqi. The voltage amplitude Vi is related to the real and
imaginary components as:

|vi| = Vi =
√
v 2
di + v 2

qi (5.30)

and linearizing this equation:

∆Vi =
Vdi√

V 2
di + V 2

qi

∆vdi +
Vqi√

V 2
di + V 2

qi

∆vqi (5.31)
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where Vdi and Vqi refer to the steady-state d and q components of the node volt-
age where the linearization is performed, and ∆vdi and ∆vqi refer to their small-
signal variations. Vi and ∆Vi are respectively the voltage amplitude steady-state
solution and its small-signal variation.

Writing the (5.31) for all the nodes of the grid, the variations of the voltage
amplitudes can be written according to the variations of the d and q components
of all the nodes. Remembering that these last quantities are included in the state
vector of the grid model (in particular in ∆z), for example in (5.28), it results:

∆V =
[
Tctr 0

] [∆z

∆ir

]
(5.32)

where
∆V ≜

[
∆V1 ∆V2 · · · ∆VNn

]T
∈ RNn×1 (5.33)

and Tctr ∈ RNn×8(Nn−1) is a suitable matrix containing the linearizations (5.31)
for all the nodes, and where the subdivision of the two matrices is done accord-
ingly. A similar relation can be obtained also from the model in (5.29) [56].

The Q/V droop control model for all the DERs of the grid is again repre-
sented with a small-signal state-space model, that is:

⎧
⎪⎪⎨
⎪⎪⎩

d∆Vm

dt
= −Ω∆Vm + Ω∆V

∆s = Kctr∆Vm

(5.34)

All the modeling details can be found in [56], while here only brief description
and discussion are reported.

To apply the Q/V droop characteristic, the inverter controller has to measure
the amplitude voltage at its terminals. In order to describe this measurement in
the mathematical model, first-order filters are used to get the measured voltage
amplitude ∆Vm from the actual voltage amplitude ∆V (for their variations):
this leads to the first equation of (5.34), where Ω is a suitable matrix of time
constants of the first-order filters. These filters can also account and set the
speed of droop regulations, as some standards impose [7].
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d

dt

[
∆z
∆ir

]
=

[
Dn EnCg

BgFn Ag

] [
∆z
∆ir

]
+

[
Gn

0

]
∆s

∆V =
[
Tctr 0

] [∆z
∆ir

]
∆s

∆s

∆V

Q/V droop model

Electric grid model

d∆Vm

dt
= −Ω∆Vm + Ω∆V

∆s = Kctr∆Vm

∆V

Figure 5.3: Representation of the closed-loop model from the complete grid model (5.28) and
the Q/V droop controller model (5.34) [56]

Once the voltage amplitude measurement is described, the reactive power
reference of the inverter is changed according to the Q/V droop characteristic
(Sec. 1.1.3). Since a small-signal model is needed, the Q/V droop characteristic
is linearized as (for node i):

∆qgi = −kvi∆Vmi (5.35)

where kvi is the slope of the curve in the particular operating point where the
linearization is performed (it can be a positive or null number). Including (5.35)
for all the inverters of the grid, the second equation of (5.34) is obtained, with
a suitable Kctr matrix [56].

Merging the complete grid model (5.28) with (5.34), it is possible to evalu-
ate the closed-loop state-space model. Similarly, a reduced order model results
from (5.29) and (5.34) [56]. The feedback model is represented in Fig. 5.3 for
the complete grid model (5.28). Once the state-space model of the closed-loop
system is calculated, an eigenvalue analysis of the state matrix can be done to
study the dynamics of the closed-loop system and to design properly the regu-
lator (5.34).

Summarizing, an approach to address the small-signal stability analysis is
proposed: it allows both the study of the dynamics of the distribution grid as
a whole and also the design of a primary level control for DERs. Indeed, first
an open-loop configuration of the grid was analyzed, that is when the DERs re-
ceive constant power references, and then a closed-loop configuration with the
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Q/V droop control for DERs was introduced as in [56]. This approach to study
distribution grid stability and dynamics, compared to others in literature, is de-
tailed since it considers the load dynamics and the coupled power dependencies
due to cables with low X/R ratio and also it is scalable and easily applicable
to grids of generic number of nodes, thanks to the matrix notation herein ex-
ploited. In the next section, this model is applied to a real LV distribution grid
test-bench to study its dynamic behavior and also to address the impacts of Q/V
droop control on the grid stability, through simulations.

5.3 Simulation results for a real distrbution grid
test-bench

In this section, some results obtained from the small-signal analysis de-
scribed in this Chapter are shown together with some time-domain simulations.
In particular, both the open-loop configuration, that is the distribution grid with
constant power references for the inverters, as in Sec. 5.1, and the closed-loop
system, referring to the local Q/V droop control, as in Sec. 5.2 are investigated.

5.3.1 Test-bench description

All the results of this Chapter are based on the A2A grid test-bench that
is described in detail in [56]. This grid is an LV three-phase network with a
nominal frequency of ωo = 2π50 rad/s and nominal line to neutral peak voltage
of Vo = 230

√
2V. The grid has Ne = 41 edges and Nn = 42 nodes where

all the users and generators are single-phase connected (with neutral wire): the
grid results unbalanced and asymmetric. For this reason, the study is performed
phase-per-phase and here only one phase is considered, since similar results can
be found for the others [56].

The description of the cables is in Tab. 5.1, while the details of the topology
and the lengths of the electric cables are reported in Tab. 5.2. Information about
the users, in terms of rated power and DG capabilities, is provided in Tabs. 5.3
and 5.4.
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Table 5.1: Cable description of the A2A LV grid test-bench [56]

Cable code G5OCR RG7OCR RG7CR
Material Copper Copper Copper

Cross Section
[
mm2

]
3x95+1x50C 3x50+1x25C 1x6+6C

Max current [ A ] 249 166 62
R [ Ω/km ] 0.25 0.391 3.11

X@50Hz [Ω/km ] 0.07 0.0779 0.092

For the dynamic study, these choices are done [56]:

• the PV units inject all the nominal power at unity PF, during the open-
loop operation (qgi = 0);

• 40% of the load rated power is given by the linear RLC load, while the
remaining 60% is from the dynamic power load (Sec. 5.1.4);

• all the constant power loads have a PF of 0.85 (inductive), while the RLC
loads have a 0.9 inductive PF;

• the time constants of the PV generator models, i.e. τgi in (5.21a), are set
randomly between 5ms and 30ms (they are different from one node to
the other);

• the time constants of the load models, i.e. τli in (5.21b), are set randomly
between 1ms and 5 s (they are different from one node to the other).
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Table 5.2: Electric line description of the A2A LV grid test-bench [56]

MV/LV LV Line ID Start End Length Code Phasesubstation node node [ m ]
1056 6 SS1056 Condo 49 RG7OCR 3
1056 8 SC1 C01 18 RG7CR 1
1056 8 SC1 C02 18 RG7CR 1
1056 8 SC1 C03 18 RG7CR 1
1056 8 SC1 C04 18 RG7CR 1
1056 8 SC2 C05 33 RG7CR 1
1056 8 SC2 C06 39 RG7CR 1
1056 8 SC2 C07 36 RG7CR 1
1056 8 SC2 C08 34 RG7CR 1
1056 8 SC2 C09 22 RG7CR 1
1056 8 SC2 C10 26 RG7CR 1
1056 8 SC2 C11 15 RG7CR 1
1056 8 SC2 C12 19 RG7CR 1
1056 8 SC2 C13 9 RG7CR 1
1056 8 SC2 C14 15 RG7CR 1
1056 8 SC2 C15 14 RG7CR 1
1056 8 SC2 C16 13 RG7CR 1
1056 8 SC2 C17 9 RG7CR 1
1056 8 SC2 C18 16 RG7CR 1
1056 8 SC2 C19 21 RG7CR 1
1056 8 SC2 C20 22 RG7CR 1
1056 8 SC2 C21 28 RG7CR 1
1056 8 SC2 C22 30 RG7CR 1
1056 8 SC2 SC1 69 G5OCR 3
1056 8 SC3 C23 31 RG7CR 1
1056 8 SC3 C24 35 RG7CR 1
1056 8 SC3 C25 22 RG7CR 1
1056 8 SC3 C26 28 RG7CR 1
1056 8 SC3 C27 16 RG7CR 1
1056 8 SC3 C28 22 RG7CR 1
1056 8 SC3 C29 9 RG7CR 1
1056 8 SC3 C30 17 RG7CR 1
1056 8 SC3 C31 8 RG7CR 1
1056 8 SC3 C32 17 RG7CR 1
1056 8 SC3 C33 13 RG7CR 1
1056 8 SC3 C34 21 RG7CR 1
1056 8 SC3 C35 20 RG7CR 1
1056 8 SC3 C36 26 RG7CR 1
1056 8 SC3 C37 28 RG7CR 1
1056 8 SC3 C38 32 RG7CR 1
1056 8 SC3 SC2 94 RG7OCR 3
1056 8 SS1056 SC1 204 RG7OCR 3
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Table 5.3: Node description of the A2A LV grid test-bench (part 1) [56]

Line Customer ID Phase Contractual
Power [ kW ]

PV Peak Power
[ kW ]

Comment

8 C01 4.5 Not active
8 C02 4.5 Not active
8 C03 A 4.5 1.296
8 C04 B 4.5 1.296
8 C05 C 4.5 /
8 C06 A 4.5 /
8 C07 C 4.5 1.296
8 C08 B 4.5 1.296
8 C09 B 4.5 1.296
8 C10 A 4.5 1.296
8 C11 B 4.5 1.296
8 C12 C 4.5 1.296
8 C13 C 4.5 1.296
8 C14 A 4.5 1.296
8 C15 B 4.5 1.296
8 C16 C 4.5 1.296
8 C17 B 4.5 1.296
8 C18 A 4.5 1.296
8 C19 A 4.5 1.296
8 C20 C 4.5 1.296
8 C21 B 4.5 1.296
8 C22 A 4.5 1.296
8 C23 A 4.5 1.296
8 C24 B 4.5 1.296
8 C25 C 4.5 1.296
8 C26 A 4.5 1.296
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Table 5.4: Node description of the A2A LV grid test-bench (part 2) [56]

Line Customer ID Phase Contractual
Power [ kW ]

PV Peak Power
[ kW ]

Comment

8 C27 B 4.5 1.296
8 C28 C 4.5 1.296
8 C29 A 4.5 1.296
8 C30 B 4.5 1.296
8 C31 C 4.5 1.296
8 C32 A 4.5 1.296
8 C33 B 4.5 1.296
8 C34 C 4.5 1.296
8 C35 A 4.5 1.296
8 C36 B 4.5 1.296
8 C37 C 4.5 1.296
8 C38 A 4.5 1.296
6 C39 A 4.5 /
6 C40 C 4.5 /
6 C41 B 4.5 /
6 C42 A 4.5 /
6 C43 C 4.5 /
6 C44 B 4.5 /
6 C45 A 4.5 /
6 C46 A 4.5 /
6 C47 C 4.5 /
6 C48 B 4.5 /
6 C49 C 4.5 /
6 C50 Not active
6 C51 ABC Not active
6 C52 ABC 15 /
6 C53 ABC 30 3 Condominium
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Figure 5.4: Steady-state voltage amplitudes for the open-loop grid model [56]

5.3.2 Open-loop dynamic results

The eigenvalue analysis presented in Sec. 5.1 is now used to study the
dynamic characteristics of the grid in an open-loop configuration. In Fig. 5.4,
there are the steady-state voltage amplitudes of all nodes where the linearization
is performed.

The dynamic study of the grid is done in terms of eigenvalue analysis of the
matrix Atot of the full order model (5.28), while more results and comparisons
for the reduced order model (5.29) can be found in [56]. The sets of eigenvalues
that will be shown have absolute values that range from factions of 1 up to 106,
and for this reason they are represented in complex planes after applying this
compressing function:

gi ∈ C : f(gi) =

{
gi if |gi| ≤ 1

gi
1+log|gi|

|gi| otherwise
(5.36)

This means that the complex planes that are shown do not contain the eigenval-
ues gi as they are, but they show f(gi). This operation makes more readable the
graphs.

Fig. 5.5 shows the eigenvalues of the Atot matrix of the model (5.28) to eval-
uate the dynamic characteristics of the grid, in terms of modes of the system:
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Figure 5.5: Eigenvalues of the matrix Atot of (5.28) for the test-bench of Sec. 5.3.1: a) on the
complex plane applying the function f( · ) of (5.36) and b) with damping factor as function of
frequency [56]

remember that among the states of the model there are all the voltages of the
grid. The eigenvalues are shown in the complex plane, by applying the function
f( · ) of (5.36), and also with the damping factor as function of the frequency of
the eigenvalue, that is its absolute value divided by 2π [56].

The presence of modes in a very extended range of frequencies can be ob-
served: they have all negative real parts, leading to a stable small-signal dy-
namic system. The slowest modes of the system are real eigenvalues, while
some complex conjugate eigenvalues appear at frequencies near 100Hz.

The reduced order model (5.29) can also be used to perform this analysis:
it only introduces some approximations in the description of the fastest modes
of the system, as anticipated in Sec. 5.1.2, and so its results may have a limited
validity in terms of frequency [56]. However, the important dynamic behaviors
of the grid that are the slowest dynamics are well described also by the model
(5.29) [56].
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5.3.3 Closed-loop dynamic results

The effects of the Q/V droop control is discussed with the small-signal anal-
ysis, considering the complete model of the grid given by (5.28) and (5.34), as
in Sec. 5.2. The eigenvalues of the state matrix of system given by the feedback
of Fig. 5.3 are compared with those of the open-loop model (5.28), to see how
the dynamic characteristics of the grid are affected by the primary level voltage
control given by the Q/V droop.

It is assumed that all the PV DERs work within the droop area and not within
the dead-bands of the curve in Fig. 1.9, irrespective of the output voltage. This
means that all the kv parameters for all the nodes are set to be different from
zero, leading to the worst-case scenario of the impact of such regulation [56].

The results of Fig. 5.6 are for the closed-loop system with a slow time
response for the droop controllers: the first-order filters described in Sec. 5.2
have a bandwidth equal to one tenth of the line frequency, i.e. ωo/10, for all
the DERs. The droop control affects slightly some poles with intermediate
frequencies, near 10Hz: these differences can be seen comparing Figs. 5.5 and
5.6: a slow voltage measurement causes the reduction of the damping factors
of such eigenvalues. If faster droop regulations are considered the reduction of
the damping factor is less visible [56].

5.3.4 Time-domain results

This section shows some time-domain simulations of the small-signal model
and some comparisons with the initial nonlinear model. The small-signal model
used for simulation is (5.28) as in Secs. 5.3.2 and 5.3.3, while the nonlinear
models used here, one for the open-loop system and another for the closed-loop
system, consider the nonlinearity due to the node model of Sec. 5.1.4. More-
over, the nonlinear closed-loop model includes also the nonlinearity of the real
Q/V droop curve as in Fig. 1.9. Once again, the bandwidth of the voltage
measurement considered is equal to ωo/10 for all the DERs.

Comparisons between the small-signal model (5.28) and the nonlinear open-
loop systems for the response to a step change of the active power reference of
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Figure 5.6: Eigenvalues of the closed-loop system given by (5.28) and (5.34) for a bandwidth
for the voltage amplitude measurement of ωo/10 for all the DERs, for the test-bench of Sec.
5.3.1: a) on the complex plane applying the function f( · ) of (5.36) and b) with damping factor
as function of frequency [56]

the inverter at node C35 (Tab. 5.4) are shown in: Fig. 5.7 for voltage amplitude
variation, and Fig. 5.8 for voltage phase variation. The results are reported in
terms of variations with respect to the steady-state solution for the node C29
(Tab. 5.4). The transient is triggered by a step reduction of the active power
reference of the inverter connected at node C35 of 1 kW at t = 3 s [56].

Comparisons between the nonlinear open-loop and closed-loop systems for
the response to a step change of the active power reference of the inverter at
node C35 are shown in: Fig. 5.9 for voltage amplitude variation, Fig. 5.10 for
voltage phase variation, and Fig. 5.11 for active and reactive powers injected
by the PCC. The results are again reported in terms of variations with respect to
the steady-state solution for the node C29. The transient is triggered by a step
reduction of the active power reference of the inverter connected at node C35
of 1 kW at t = 3 s [56].

From these results, it is possible to observe that the dynamic models pre-
sented in this Chapter describe both very slow dynamics (orders of tens of sec-
onds) and fast dynamics (orders of milliseconds). In Figs. 5.7 and 5.8, the
results of the small-signal open-loop model and the results for the nonlinear
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Figure 5.7: Voltage amplitude variation from the steady-state solution for the node C29 after
a step reduction of 1 kW of the active power reference of the DER at node C35: comparison
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Figure 5.8: Voltage phase variation from the steady-state solution for the node C29 after a step
reduction of 1 kW of the active power reference of the DER at node C35: comparison between
the small-signal open-loop model (5.28) in solid line, and the nonlinear open-loop model in
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Figure 5.9: Voltage amplitude variation from the steady-state solution for the node C29 after
a step reduction of 1 kW of the active power reference of the DER at node C35: comparison
between the nonlinear open-loop (dashed line) and closed-loop (solid line) models [56]
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Figure 5.10: Voltage phase variation from the steady-state solution for the node C29 after a
step reduction of 1 kW of the active power reference of the DER at node C35: comparison
between the nonlinear open-loop (dashed line) and closed-loop (solid line) models [56]
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Figure 5.11: Active and reactive powers injected at the PCC after a step reduction of 1 kW
of the active power reference of the DER at node C35: comparison between the nonlinear
open-loop (dashed line) and closed-loop (solid line) models [56]

open-loop model are almost overlapped, meaning that the small-signal model
describes quite well the nonlinear initial system. It is interesting to observe
from Fig. 5.9, that the droop control can limit the steady-state voltage varia-
tion at the node C29 for the considered transient, but its effect is limited. On
the other hand, the reactive power injection has more influence on the voltage
phase variation rather than on the voltage amplitude one (compare Figs. 5.9 and
5.10), because the X/R ratio of the cables is quite small (Sec. 1.1.2). From Fig.
5.11, injecting reactive power with the DERs seems to be an effective way to
keep the PF of the PCC closer to 1, as anticipated in Sec. 1.1.3.

5.4 Summary

This Chapter addresses the dynamic and the stability studies of distribution
grids with large penetration of DG. Since some instability issues can be due
to the interactions of a multitude of grid devices as shown in Sec. 1.2 and
in [56], the analysis proposed here focuses on the characterization of the grid as
a whole, rather than focusing on the the single device stability. This is done with
simplified dynamic models for loads and DERs, that then are linked in a small-
signal state-space model. The result is a scalable approach for the dynamic
analysis, that can address the study of a grid with a generic number of node,
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with no more effort by the user. Also some control architectures can potentially
worsen the stability of the grid operation and so the modeling discussed in this
Chapter includes the possibility to account and design high level controllers for
the devices of the grid, in particular Q/V droop control for voltage regulation
support is considered.

The results coming from a real LV distribution grid test-bench, are given in
terms of both eigenvalue analyses and of time-domain simulations. From all
these results and from those in [56], it appears that there are different types of
dynamics within the distribution grid systems and they are quite separated in
terms of frequency: there are fast dynamics of the cables with sub-millisecond
time responses, dynamics of the inverters an their primary controllers with time
scale of tens of milliseconds or hundreds of milliseconds and, finally, load dy-
namics that can last for hundreds of milliseconds up to tens of seconds [56].
Of course, if secondary and/or tertiary controllers (Sec. 1.1) are included other
dynamic behaviors can appear.



Chapter 6

Conclusions

This Thesis depicts the distribution grid scenario as a very complex and
varied environment, where several kinds of device and control algorithm can
interact and work simultaneously. The penetration of renewable energy sources
is driving a great spread of power electronics converters as interfaces for the
energy sources. A proper control and management of these devices, exploiting
the capabilities of the inveter control, can help improve the overall distribution
grid performances and provide new functionalities. On the other hand, inverters
can introduce fast dynamics and nonlinear behaviors that can worsen the distri-
bution grid normal operation or introduce additional risks for the operation.

In this scenario, this Thesis described a local controller for the distributed
energy resources in order to improve the reliability of a microgrid, even when
the mains disconnect. This regulator can manage a microgrid in both islanded
and grid-connected operating modes, and it can achieve the seamless microgrid
transition from grid-connected to autonomous mode without any time-critical
communication. The controller exploits P/f and Q/V droop control to share the
load power in islanded operation and feedback control to track power references
in grid-connected operation.

The other contributions of the Thesis are related to possible risks associated
to the distributed energy resources: the instability concerns and the uninten-
tional islanded operation. Regarding the first, this Thesis proposes an experi-
mental method to address the single-phase AC system stability, that in general
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is not a trivial problem because of the time-varying behavior and the nonlinear-
ities of these systems. The method described in this Thesis allows to identify
a steady-state operation for single-phase AC systems, enabling a small-signal
impedance-based analysis. This analysis can be used to address the stability of
the interactions of more and more distributed energy resources in microgrids
and distribution grids, which are usually single-phase connected. Again in this
scenario, another contribution of this Thesis is an approach to study the stabil-
ity and the dynamics of distribution grids with large penetration of distributed
generation. Such method focuses on the characterization of the grid as a whole,
rather than focusing on the single device stability. The result is a scalable ap-
proach for the dynamic analysis, that can address the study of a grid with a
generic number of node, and also it allows the analysis and the design of some
high level control architectures.

The last contribution of this Thesis is an assessment of the risk of permanent
and temporary unintentional islanding. The results show that unintentional is-
landing operation can appear in distribution grids because of the load and source
dependencies of active and reactive powers to the voltage and frequency of the
grid. In particular, P/f and Q/V droop curves that are imposed by new standards
for PV connections can increase such risk. Furthermore, it was observed that
the speed of response of the P/f and Q/V droop functions increases the unin-
tentional islanding risk. As solution, the non-simultaneous operation of P/f and
Q/V resulted an effective approach to reduce this risk and an online method
based on this was proposed and validated.



Appendix A

Generalized stability analysis for
droop controlled microgrids

In this Appendix the approach of [154] is described to study the stability of
a droop controlled microgrid with a generic number of DERs. This is a simpli-
fied method which neglects fast dynamics of the system but keeps a sufficient
accuracy to describe the interactions of several droop controlled inverters. This
stability analysis bases on a small-signal model of the system. Whereas other
papers as [19, 155] have already proposed models at a similar level of detail,
here a generalized method is described to generate a mathematical model for a
grid with a generic number of inverters without increasing the complexity of the
analysis. This enables a powerful method for the design of droop controllers in
networks of arbitrary complexity.

This Appendix is organized as follows: Sec. A.1 describes the key features
of the analysis introduced afterwards, while the mathematical model of the pro-
cess is described in Sec. A.2 and that of the regulator in Sec. A.3. Finally
Sec. A.4 describes how to merge the two models and how to design the droop
regulators for a microgrid of arbitrary size.
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A.1 General considerations on the approach

Droop control techniques consist of setting the voltage amplitude Vi and the
angular frequency ωi of the i-th inverter (with i = 1 . . . n where n is the number
of inverters of the microgrid) from the output active and reactive power mea-
surements of the inverter itself, as described in Sec. 1.1.2. The measurements
of active and reactive power are intrinsically slow, especially in single-phase
systems or three-phase systems in unbalanced conditions due to the ripple on
the instantaneous power quantities at twice the line frequency. While several
filters can be used for the extraction of the average power terms, for the purpose
of explanation, a simple first-order one is used here as in (3.14) and in [18,19]:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

pmi =
ωc

s+ ωc

pi

qmi =
ωc

s+ ωc

qi

for i = 1 . . . n (A.1)

where pmi and qmi are measured active and reactive powers at the output of
the i-th inverter and pi and qi are actual active and reactive powers at output
of the i-th inverter. The filter bandwidth is smaller than the line angular fre-
quency and thus droop controllers can achieve slow dynamics well-below the
line frequency. The same filter for every inverter of the grid is here consid-
ered in order to simplify the analysis, however it is possible to easily extend
the results for filters with different time constants. On the other hand, the filter
structure can be potentially more complex: for example with a higher order fil-
ter or a moving average filter (commonly used for single-phase systems). Here
the particular filtering structure is approximated with a first order filter to make
the mathematical description simpler.

Fig. A.1 shows an example of a simplified microgrid with droop control.
The Inverter blocks receive the references of instantaneous phase and ampli-
tude to be tracked and impose the voltages to the electric grid and load block;
Sm blocks evaluate the active and the reactive powers from output currents and
voltages of each inverter; they also contain the first-order filters (A.1). These
powers are used as input for the droop regulators to set angular frequency and
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Figure A.1: Block diagram of a simple microgrid with droop control (θi are angles in the abc
domain)

voltage amplitude for the inverters. The basic droop scheme described in (1.8)
with constant ps and qs is here considered. Notice that the choice of the spe-
cific droop controller is arbitrary and the model that will be presented in the
following sections can be extended to any other droop scheme.

The following points qualitatively describe the peculiarities of the proposed
model, which is described in details afterward:

• the model neglects fast dynamics of the system by exploiting results of
singular perturbation theory [151]: a theorem provides a tool to sim-
plify nonlinear mathematical model by approximating “faster” differen-
tial equations in a mathematical model with algebraic equations. The ne-
glected fast dynamics are related to the inner control loops (current and
voltage loops) and to the output filters of inverters and to the electric grid.
This approximation is possible under certain hypotheses, but especially
when there are other variables in the system with slower dynamics. In the
case under study, these variables are the measurements of powers at the
outputs of the inverters. With these approximations, the model loses the
information about fast modes, assuming the state variables associated to
these modes to be in steady-state.

• The model of the grid is linearized around the steady-state solution.

• A simplified model can speed up and make easier the design of droop
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regulators.

The generality of the proposed method is due to the use of matrices that
describe synthetically and easily systems of any size. In fact, it is possible to
consider a system composed by a generic number n of inverters, and model it
by linearization. The proposed tool is based on the use of space vectors defined
in the rotating reference frame (Sec. 1.2): this makes possible to describe ex-
actly currents and voltages of the grid. In particular, its application correctly
describes all the sinusoidal quantities, even in the presence of small and slow
variations of amplitude and frequency. For three-phase systems the dq transfor-
mation is well defined, but this description can be applied also to single-phase
systems, considering them as a part of a fictitious balanced three-phase system
(see Chapter 4). That is, the single-phase system is one of the three phases of
a balanced three-phase system and the other two phases derive from the first
one after a phase shift of 120◦ and 240◦, respectively. The adoption of the
space vectors allows also to apply the results of the singular perturbation the-
ory, neglecting the fast dynamics of the microgrid and reducing the order of the
mathematical model of the network.

As a result, a small-signal model of the physical system can be obtained.
This model is split into two state-space models: one describes the process, in-
cluding the combination of inverters, electric grid, and loads, and the other
describes the droop regulators that calculate all the angular frequencies and
voltage amplitudes to create the voltage references for the inverters. The over-
all small-signal model is represented by the feedback of these two models, as
shown in Fig. A.2.

A.2 Process model

Referring to the state-space models of the Fig. A.2, the state vector ∆x of
the process contains the variations of all measured active and reactive powers
of all inverters from the steady-state solution and it also contains the variations
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d ∆x

dt
= Fp ∆x + Gp ∆w

∆y = Hp ∆x + Dp ∆w

d∆z

dt
= Fr ∆z + Gr ∆y

∆w = Hr ∆z + Dr ∆y

∆w

∆w

∆y

∆y

Regulator

Process

Figure A.2: Small-signal model of process and regulator

of all instantaneous phases φi.

∆x ≜
[
∆pm1 ∆pm2 · · · ∆qm1 ∆qm2 · · · ∆φ1 ∆φ2 · · ·

]T
(A.2)

where ∆x ∈ R3n×1. The input vector ∆w of the process contains the variations
of all amplitude voltage references Vi and all the variations of angular frequency
references for the inverters:

∆w ≜
[
∆V1 ∆V2 · · · ∆ω1 ∆ω2 · · ·

]T
∈ R2n×1 (A.3)

The output vector ∆y of the process model contains the variations of all mea-
sured active and reactive powers and therefore corresponds to the state ∆x ex-
cluding the phases ∆φi. The regulator receives as input the output ∆y of the
process and computes all the references ∆w for the inverters. Define the vector
∆sm which contains the variations of measured powers from the steady-state
solution:

∆sm ≜
[
∆pm1 ∆pm2 · · · ∆qm1 ∆qm2 · · ·

]T
= ∆y ∈ R2n×1 (A.4)

Observe that ∆sm is equal to the output ∆y, but conceptually it has a different
meaning: ∆sm is a sub-vector of the state ∆x and ∆y is the output of the
process model. Define also the vector ∆s of variations of actual powers:

∆s ≜
[
∆p1 ∆p2 · · · ∆q1 ∆q2 · · ·

]T
∈ R2n×1 (A.5)
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Writing the differential equations of the filters (A.1) of all the inverters and
re-arranging them in real-value vectors it follows:

d

dt
∆sm = ωc (∆s−∆sm) (A.6)

Observe that it is possible to describe filters with different time constants by
replacing ωc with a suitable diagonal matrix.

Now, the vector ∆s of the actual powers has to be written as a function of
the space vectors of voltages and currents. For the i-th inverter and defining the
space vectors in the rotating reference frame dq:

si =
1

2
vi i

∗
i =

1

2
(vid + jviq) (iid − jiiq) (A.7)

where si is the complex power generated from the i-th inverter, vi = vid + jviq

is its output voltage and ii = iid+ jiiq is its delivered current. Equation (A.7) is
nonlinear, but through linearization, the variations of powers can be expressed
in terms of variations of real and imaginary parts of space vectors of currents
and voltages. By using the matrix notation all these linearized relations for si
can be expressed in the following compact form:

∆s = H1∆v +H2∆i (A.8)

where the vectors ∆v, ∆i ∈ R2n×1 are defined in this way:

∆v ≜
[
∆v1d ∆v2d · · · ∆v1q ∆v2q · · ·

]T
(A.9a)

∆i ≜
[
∆i1d ∆i2d · · · ∆i1q ∆i2q · · ·

]T
(A.9b)
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and the matrices result:

H1 =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1d 0 · · · I1q 0 · · ·
0 I2d · · · 0 I2q · · ·
...

... . . . ...
... . . .

−I1q 0 · · · I1d 0 · · ·
0 −I2q · · · 0 I2d · · ·
...

... . . . ...
... . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.10a)

H2 =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1d 0 · · · V1q 0 · · ·
0 V2d · · · 0 V2q · · ·
...

... . . . ...
... . . .

V1q 0 · · · −V1d 0 · · ·
0 V2q · · · 0 −V2d · · ·
...

... . . . ...
... . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.10b)

where H1, H2 ∈ R2n×2n. Upper-case letters indicate the operating point values
where the linearization is carried out. Notice that the matrices H1 and H2 result
easily extensible in the case of a grid with n inverters because they always
contain four diagonal sub-matrices.

With the admittance matrix it is possible to write a relation between the
space vectors of currents and voltages. These relations can be split in real-value
equations. By defining:

Yr ≜

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y11d Y12d · · · −Y11q −Y12q · · ·
Y21d Y22d · · · −Y21q −Y22q · · ·

...
... . . . ...

... . . .

Y11q Y12q · · · Y11d Y12d · · ·
Y21q Y22q · · · Y21d Y22d · · ·

...
... . . . ...

... . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R2n×2n (A.11)

it follows:
∆i = Yr∆v (A.12)



164 Generalized stability analysis for droop controlled microgrids

Here it is possible to introduce the description of some inputs for the model.
For instance, a load with fixed absorbed current (as input of the model) can be
added by writing ∆i = Yr∆v +N∆r in place of (A.12), where ∆r is a vector
of the d and q components of a current load and N is a suitable matrix. These
inputs are not accounted in the following analysis for sake of simplicity, but it
can be extended if they are present.

Substituting (A.12) in (A.8) and then all in (A.6) it follows:

d

dt
∆sm = ωc [(H1 +H2Yr)∆v −∆sm] (A.13)

The next step is to describe ∆v as a function of variables that are contained in
the state vector ∆x and in the input vector ∆w, i.e. as a function of variations
∆φi (in ∆x) and ∆Vi (in ∆w). To do this, the following equation which relates
the real and the imaginary parts of the space vectors vi to their magnitudes and
phases is linearized:

vi = vid + jviq = Vie
jφi ⇒

⇒ ∆vi = ejφi∆Vi + jVie
jφi∆φi =

vi

Vi

∆Vi + jvi∆φi

(A.14)

and evaluating the real and the imaginary parts the final linearized equations are
obtained:

∆vid = Re [∆vi] =
Vid

Vi

∆Vi − Viq∆φi (A.15a)

∆viq = Im [∆vi] =
Viq

Vi

∆Vi + Vid∆φi (A.15b)

With the previous relations, the matrix equation that links the vector ∆v to
the variations of magnitudes and phases of the space vectors can be easily built.
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To this aim, define:

U ≜

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1d

V1
0 · · · −V1q 0 · · ·

0 V2d

V2
· · · 0 −V2q · · ·

...
... . . . ...

... . . .
V1q

V1
0 · · · V1d 0 · · ·

0 V2q

V2
· · · 0 V2d · · ·

...
... . . . ...

... . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R2n×2n (A.16)

Now it is possible to write:

∆v =
[
∆v1d ∆v2d · · · ∆v1q ∆v2q · · ·

]T
=

= U
[
∆V1 ∆V2 · · · ∆φ1 ∆φ2 · · ·

]T (A.17)

and expressing the last vector in terms of the state ∆x and the input ∆w:

[
∆V1 ∆V2 · · · ∆φ1 ∆φ2 · · ·

]T
= C1∆x+ C2∆w (A.18)

with:

C1 ≜

[
0 0

0 In

]
∈ R2n×3n (A.19a)

C2 ≜

[
In 0

0 0

]
∈ R2n×2n (A.19b)

where In is the identity matrix of dimensions n× n.

Replacing (A.19) into (A.13) and observing that ∆sm = C3∆x with C3 ≜[
I2n 0

]
∈ R2n×3n, it follows:

d

dt
∆sm = ωc [(H1 +H2Yr)UC1 − C3] ∆x+ ωc (H1 +H2Yr)UC2∆w

(A.20)
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Writing the process model as in Fig. A.2:

⎧
⎪⎪⎨
⎪⎪⎩

d∆x

dt
= Fp∆x+Gp∆w

∆y = Hp∆x+Dp∆w

(A.21a)

and recalling that between the variations of the instantaneous phases ∆φi and
of the instantaneous angular frequencies ∆ωi there is a derivative operation, it
is possible to get Fp and Gp matrices of the process:

Fp = ωc

[
(H1 +H2Yr)UC1 − C3

0

]
∈ R3n×3n (A.21b)

Gp =

[
ωc (H1 +H2Yr)UC2

0 In

]
∈ R3n×2n (A.21c)

and the matrices Hp and Gp:

Hp =
[
I2n 0

]
∈ R2n×3n (A.21d)

Dp = 0 ∈ R2n×2n (A.21e)

because the regulator acts only on the basis of the measurements of active and
reactive powers. In this particular case the output of the process model results
∆y = ∆sm.

With this method the matrices of the linearized model of the process are
obtained. For a given network topology, the model of the process can be built
following (A.2)-(A.21d), independently on the specific droop control law that
will be applied.

A.3 Regulator model

A droop regulator receives as inputs the measured powers of each inverter
and gives as outputs the amplitude and the angular frequency of the voltage ref-
erence for the same electronic interface. So the state-space model of a generic
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droop regulation scheme can be written in this form:

⎧
⎪⎪⎨
⎪⎪⎩

d∆z

dt
= Fr ∆z +Gr ∆y

∆w = Hr ∆z +Dr ∆y

(A.22)

where ∆z ∈ Rm×1. Notice that the dimension m of the state ∆z of the con-
troller depends on the particular type of droop controller.

A.4 Overall model

Combining the model of the process (A.21a) (observe that Dp = 0) with
that of the regulator (A.22), it results:

d∆x

dt
= (Fp +GpDr Hp)∆x+GpHr ∆z (A.23a)

d∆z

dt
= Gr Hp∆x+ Fr∆z (A.23b)

Now, let ∆g ≜
[
∆xT ∆zT

]T ∈ R(3n+m)×1 be an expanded state for the
whole model which is the union of ∆x (of dimension 3n) and ∆z (of dimension
m). In this way, the whole model (A.23) can be written in this compact form:

d∆g

dt
= F ∆g (A.24)

where:

F ≜

[
Fp +Gp Dr Hp Gp Hr

Gr Hp Fr

]
∈ R(3n+m)×(3n+m) (A.25)

The overall mathematical model describes an autonomous system without ref-
erences for the regulators. In fact, droop control manages an islanded microgrid
where the load power has to be properly shared among different energy sources.

The stability can now be studied with the eigenvalue analysis of the lin-
earized model, which is an approximation of the complete system behavior
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close to a particular operating point. Observe that all the matrices depend on
the operating point.

Taking as example the droop controller in (1.8) with constant ps and qs, a
state for the regulator is not necessary, since the control action is instantaneous.
A small-signal model of the regulator leads to

⎧
⎪⎪⎨
⎪⎪⎩

∆ωi = −kpi ∆pmi

∆Vi = −kqi∆qmi

for i = 1 . . . n (A.26)

Writing these equations for all the n inverters of the grid and remembering the
definition of ∆w in (A.3) and ∆y in (A.4), it follows:

∆w = Dr ∆y (A.27)

where:

Dr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · −kq1 0 · · ·
0 0 · · · 0 −kq2 · · ·
...

... . . . ...
... . . .

−kp1 0 · · · 0 0 · · ·
0 −kp2 · · · 0 0 · · ·
...

... . . . ...
... . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.28)

In this case, combining the model of the process with that of the regulator
(A.27), the state-space model (A.24) has:

F = Fp +Gp Dr Hp ∈ R3n×3n (A.29)

A method to obtain a small-signal model for the entire microgrid where the
inverters are controlled by the droop regulation (1.8) has been obtained for sake
of explanation. However, notice that this method is more general and it allows
to study the stability of a more complex droop controlled grid, for example with
different kinds of regulator [34, 35], with virtual impedance technique [31, 32],
etc. In fact, the only part that has to be changed to account different kinds of
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regulator is the state-space model of the controller (A.22) or the output vector
of the process model ∆y.

The mathematical model described in this Appendix is tested and validated
with Matlab/Simulink simulations in [154]. In particular, simulations of an
extended islanded microgrid, which includes 16 nodes with 8 DERs and 7 linear
loads, are performed therein.
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