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Abstract

In the standard cosmological model the formation of cosmic structures is described by the
collapse of density perturbations. These perturbations have grown by the action of gravity
from small Gaussian initial fluctuations. In a ΛCDM Universe cosmic structures formation
is driven by the collapse of dark matter, leading to the creation of virialized systems, called
dark matter halos. Baryonic matter follows the dark matter potential wells, where it cools
transforming its kinetic energy into thermic energy, eventually forming visible systems,
stars and galaxies (White and Rees 1978; Blumenthal et al. 1984). Structures then grow
hierarchically, from smaller to larger ones. Therefore, halos containing large galaxies are
formed through repeated merger of smaller halos. The collapse and subsequent formation
of dark matter halos is due only to gravity, so it is simpler to explain compared to the
formation of stars and galaxies themselves. However, the problem involves a high number
of fluid-like particles, and does not admit an analytical solution. Therefore it is bet studied
through use of N-body numerical simulations. This technique allows to evolve a large
number of particles subject only to their mutual gravitational interaction. In this way we
can simulate a region of Universe, analyse the motion of particles and the formation of
bound structures.

The present thesis has the following structure:

• Chapter 1: We present the standard cosmological model for the formation of cosmic
structures, and briefly describe the statistical properties of linear perturbation fields
and the growth of linear perturbation in the light of Jeans’ theory.

• Chapter 2: We describe the analytical approaches to the study of perturbations in
the non linear regime. First of all we present the Zel’dovich approximation in case
of a quasi-linear regime, and two main dynamical models: spherical and ellipsoidal
collapse. Later we describe two analytic approaches to determine halo statistics
starting from the initial fluctuation field: the excursion sets approach and the peaks
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formalism. We also briefly describe some attempts to merge the two approaches
together.

• Chapter 3: We describe the main approach to the study of non linear and bound
structures: N-body simulations. We also describe the main features of simulations
employed in this work. Finally we describe the main properties of dark matter halos,
focussing on the contributions of N-body simulation to the study of halo properties.

• Chapter 4: Firstly we describe different halo identification methods and relaxation
criteria and we explain the choice adopted in this work. Later we describe how we
calculate the parameters of the ellipsoidal collapse model starting from the eigen-
values of the deformation tensor smoothed on different scales. We then present a
method to describe the distribution of halo formation time separating the contribu-
tion of relaxed and non relaxed halos.

• Chapter 5: We explain our peaks identification algorithm and present a statistic
of peaks identified in our simulations. We study the correlation functions between
protohalo centres of mass, and peaks of different quantities. At a later stage we
present an alternative to the peaks model for halo formation. In fact, spherical and
ellipsoidal collapse model are missing a dipole term which is present in perturbation
theory. We study the points where initial dipole vanishes and we correlate them to
the protohalo mass centres.

• Chapter 6: In the first part we present a statistic of Lagrangian parameters, and
compare it with results obtained by other authors. Afterwards we investigate the
correlation between the Lagrangian parameters δL and qL and the halo formation
redshift z50 as a function of rescaled mass ν and identification redshift zid.

• Chapter 7: Whereas in the previous chapter we described Lagrangian parameters,
here we present profiles. Firstly we build Lagrangian profiles around the protohalo
mass centres, and show how they correlate with Lagrangian shear and halo formation
times. Later we study the relation between Lagrangian and (Eulerian) profile, and
show how Lagrangian shear and formation times affect the final halo profiles. Finally
we study the evolution of halo particle profiles with time.



Sommario

Nel quadro del modello cosmologico standard, la formazione delle strutture è descritta at-
traverso il collasso di perturbazioni di densità con una distribuzione iniziale generalmente
assunta come gaussiana. Queste fluttuazioni erano inizialmente piccole e sono cresciute
successivamente per effetto della gravità. In un universo ΛCDM la formazione delle strut-
ture cosmiche è guidata dal collasso della materia oscura che porta alla formazione di
aloni virializzati. La materia barionica cade dentro alle buche di potenziale create da
questi aloni, si raffredda e conduce alla formazione di stelle e galassie, trasformando la sua
energia cinetica in energia termica (White and Rees 1978; Blumenthal et al. 1984). Suc-
cessivamente, le strutture crescono in modo gerarchico, dalle più piccole alle più grandi.
Quindi, aloni contenenti galassie massicce si formano tramite l’accrescimento di aloni più
piccoli da parte dell’alone principale. Il collasso e la successiva formazione di aloni di
materia oscura è dovuto unicamente alla gravità; per questo motivo la sua descrizione è
semplice in linea di principio e coinvolge un alto numero di particelle. Un modo efficace di
analizzare la formazione di questi aloni passa per l’utilizzo di simulazioni a N corpi. Con
questo approccio non si ricerca una soluzione analitica, bensì viene fatto evolvere un gran
numero di particelle soggette alla sola interazione gravitazionale. È così possibile simulare
una regione di universo e analizzare il moto delle particelle e la formazione di strutture
collassate.

La struttura di questo lavoro è la seguente:

• Capitolo 1: Presentiamo il modello cosmologico standard per la formazione delle
strutture cosmiche e descriviamo brevemente le proprietÃ statistiche dei campi di
fluttuazione lineari e la crescita di perturbazioni lineari alla luce della teoria di Jeans.

• Capitolo 2: Descriviamo i principali approcci analitici allo studio delle pertur-
bazioni in regime non lineare. Prima di tutto presentiamo l’approssimazione di
Zel’dovich applicabile al caso di un regime quasi lineare. e descriviamo i due princi-
pali modelli dinamici per lo studio del collasso delle strutture: il modello di collasso
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sferico e il modello di collasso ellissoidale. Più avanti descriviamo due approcci
analitici per la determinazione la statistica degli aloni a partire dal campo di flut-
tuazioni iniziale: il modello degli excursion sets e il formalismo dei picchi. Descrivi-
amo anche brevemente alcuni tentativi di fondere assieme questi due approcci.

• Capitolo 3: Descriviamo il metodo principale utilizzato per lo studio di strutture
fortemente non lineari: le simulazioni a N corpi. Descriviamo inoltre le caratteris-
tiche principali delle simulazioni numeriche utilizzate in questo lavoro. Infine, de-
scriviamo le proprietÃ principali degli aloni di materia oscura, concentrandoci sul
contributo dato a questo campo dalle simulazioni numeriche.

• Capitolo 4: Inizialmente descriviamo i diversi metodi per l’identificazione di aloni
e i criteri di rilassamento usati in questo lavoro. Successivamente descriviamo come
sono stati calcolati i parametri del collasso ellissoidale a partire dagli autovalori del
tensore di deformazione smussati su diverse scale. Analizziamo infine un’alternativa
al formalismo dei picchi per l’identificazione della formazione degli aloni. Successi-
vamente cerchiamo un modo per descrivere la distribuzione dei tempi di formazione
dei soli aloni rilassati.

• Capitolo 5: Descriviamo il metodo usato per l’identificazione dei picchi nei campi
iniziali e presentiamo una descrizione statistica dei picchi suddetti. Successivamente
analizziamo la funzione di correlazione tra i centri di massa dei protoaloni e i picchi
e le valli nella distribuzione dei parametri di interesse. Infatti, il collasso sferico
e quello ellissoidale mancano di untermine di dipole presente invece nella teoria
delle perturbazioni. Studiamo dunque i punti dove il dipolo iniziale svanisce e li
relazioniamo ai centri di massa dei protoaloni.

• Capitolo 6: Nella prima parte presentiamo una descrizione statistica dei parametri
Lagrangiani, svolgendo un opportuno confronto coi risultati di altri autori. Succes-
sivamente indaghiamo la correlazione tra i parametri lagrangiani δL e qL e i redshift
di formazione degli aloni z50 in funzione della massa universale ν e del redshift di
identificazione.

• Capitolo 7:Mentre nel precedente capitolo abbiamo descritto parametri smussati
su una sola scala, la scala lagrangiana degli aloni, passiamo ora all’analisi dei pro-
fili. Primariamente costruiamo i profili lagrangiani attorno al centro di massa dei
protoaloni e mostriamo come correlano con il parametro di shear e il redshift di
formazione. Successivamente studiamo la relazione tra i profili lagrangiani e i profili
euleriani e mostriamo che l’effetto dello shear lagrangiano e del tempo di formazione
Ã¨ ancora presente nei profili finali. Infine studiamo l’evoluzione dei profili delle
particelle dell’alone a diversi tempi cosmici.



CHAPTER 1

The formation of cosmic structures

1.1 Cosmological background

Cosmology studies the origin and the evolution of the Universe on sufficiently large scales.
Modern cosmology is founded on two fundamental assumptions: the homogeneity and
isotropy of the matter in the universe on large scales and Einstein’s theory of general
relativity.

The former assumption is the so-called cosmological principle: although the universe
is very irregular on the scales of galaxies and clusters of galaxies, its properties seems to
be the same in every region and every direction when observed on large enough scales (say
larger than ∼ 100 Mpc). The detection of the Cosmic Microwave Background (CMB) gave
a very strong confirmation of the cosmological principle: the temperature inhomogeneities
present in the universe nearly 380.000 years after the Big Bang were very small, with an
amplitude of the order of ∆T/T ∼ 2 × 10−5. Fig. 1.1 shows a comparison between the
all-sky measurements of the CMB done by COBE, WMAP, and the most recent Planck
experiment (Planck et al. (2011), Ade et al. (2014)).

In general relativity (the second assumption) gravitation is not a force but a prop-
erty of space-time whereas the geometrical structure of space-time is given by the mass
distribution in the universe through the Einstein’s field equations:

Rµν −
1
2gµνR− gµνΛ = 8πG

c4 Tµν (1.1)

where Rµν is the Ricci tensor, which describes the local curvature of space-time, R is
the curvature scalar, gµν is the metric, Tµν is the energy-momentum tensor and Λ is the
cosmological constant. Solving the Einstein’s equations together with the assumption of
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12 CHAPTER 1. THE FORMATION OF COSMIC STRUCTURES

Figure 1.1: Comparison of the all-sky map of CMB anisotropies as detected by COBE,
WMAP and Planck mission (here updated to 2013). Planck mission has created the
sharpest all-sky map ever made of the CMB and the most accurate measurements of
several key cosmological parameters.

the cosmological principle, leads to the so-called Friedmann’s equations. The first one is
derived from the 00 component of the field equations:

ä

a
= −4π

3 G
(
ρ+ 3 p

c2

)
+ Λc2

3 (1.2)

and the second one is derived by putting together the first one and the trace of Einstein’s
field equations: (

ȧ

a

)2
= 8π

3 Gρ− Kc2

a2 + Λc2 (1.3)

where a(t) is the scale factor, which relates coordinates to distances, and K is the cur-
vature of the Universe, which specifies the geometry of the surface. These parameters
completely specify the Robertson-Walker metric that describes the geometric properties
of a homogeneous and isotropic universe.

From the second of the Friedmann’s equations, we can derive some important cosmo-
logical parameters, like the critical density:

ρc(t) = 3
8πG

(
ȧ

a

)2
= 3H2(t)

8πG (1.4)
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and the density parameter, that is the ratio between the current total density of the
Universe and the critical density:

Ω(t) = ρ

ρc(t)
. (1.5)

Ω depends on the shape of the universe by way of the curvature K which can assume three
different values:

• K = 1: Universe is closed and Ω > 1,

• K = 0: Universe is flat and Ω = 1,

• K = −1: Universe is open and Ω < 1.

Current observational constraints suggest that Ω ' 1 (de Bernardis et al. (2000);
Planck et al. (2011); Ade et al. (2014)). Ω can be written as the sum of different compo-
nents: non-relativistic matter (baryons and dark matter), Ωm; relativistic matter (such as
photons), Ωr; vacuum energy, ΩΛ. Standard values estimate the non-relativistic matter
contribution at the present time as Ωm ' 0.3 and hence matter accounts for about a
quarter of the total density energy of the Universe.

1.2 A model for the structure formation
One of the most important open problems in cosmology concerns how galaxies have formed.
This problem can be addressed considering a theory able to describe coherently the evo-
lution of the different constituents of the Universe through different cosmic ages.

The actual prevalent model for cosmic structures formation was in place in the middle
of the 1990’s (Krauss and Turner (1995),Ostriker and Steinhardt (1995)) and is known as
the Standard Cosmological Model. Together with the two fundamental assumptions that
we discussed before, this model is based on the idea that galaxies trace an underlying
structure distribution, composed by a mysterious component (dark matter). Following
this scenario, dark matter structures (halos) originated from initially small, Gaussian
fluctuations in an otherwise homogeneous and isotropic universe. The idea that galaxies
and clusters of galaxies are embedded in dark matter halos became popular in the 1970’s
after the works of Ostriker et al. (2012) and Einasto et al. (1974). White and Rees (1978)
proposed a scenario where galaxies have formed within a hierarchically merging population
of dark matter halos. Their theory was based on an analytic model proposed by Press
and Schechter (1974) that we will present in Sec. 2.3. One additional issue concerns the
nature of dark matter. In the White and Rees (1978) scenario dark matter was identified
with an early population of low-mass stars. When Lubimov et al. (1980) measured the
mass of the electron neutrino (' 30eV ), the idea came up that dark matter may be
composed of non-baryonic particles; in fact, this mass was high enough to provide the
critical density needed to close the universe. Other more massive particles were supposed
to provide a reliable candidate for dark matter. Today dark matter particles are usually
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classified into three families, depending on their typical velocities at some early time: hot,
warm and cold dark matter particles. Some hybrid scenarios have also been proposed.
The choice of the most probable dark matter constituent lays mainly on considerations
about dissipation phenomena and the hierarchical way in which halos are supposed to
have formed. Dissipation in dark matter is called free streaming: after decoupling from
radiation, dark matter particles move influenced only by the mean gravitational field along
geodesics in space-time and destroy every perturbation below the scale traveled from the
beginning of their motion. This free-streaming scale can be calculated with:

λFS(t) = a(t) ·
∫ t

0

v(t′)
a(t′) dt

′ (1.6)

where a(t) is the scale factor and v(t) is the velocity of dark matter particles. The mass
diffused from a perturbation with a certain density is called free-streaming mass:

MFS ∝ λ3
FSρDM (1.7)

where ρDM is the density of dark matter. We notice that the free-streaming mass grows
with the velocity of the dark matter particles. In a hot dark matter scenario dark matter
is relativistic after decoupling and therefore the related free-streaming mass is very high
(about 1015M�) and a fragmentation process incurs: clusters form first and they fragment
to form the smallest structures (top-down scenario). In the warm dark matter and cold
dark matter scenario the free streaming mass is much smaller: small structures form first
and then grow by merging and accretion, forming larger structures. Dark matter objects
much smaller than galaxies (about 10−6M) can form only in a cold dark Matter scenario.

ΛCDM model considers a Universe where the main material constituent is not colli-
sional and not baryonic cold dark matter (CDM), where the meaning of the different terms
is the following:

1. not collisional: the cross-section for elastic collisions is about null. The motion
of particles is only due to the mean gravitational field: mass elements move along
geodesics in space-time.

2. not baryonic: dark matter is constituted by exotic particles predicted by super-
symmetric theories. The evidences of not baryonic dark matter derive mainly from
the comparison between nucleosynthesis and the dynamics of the Universe.

3. cold: the matter is not relativistic over all the ages of interest.

4. dark: there is no scattering due to the low scattering cross section of the particles
and consequently there is not electromagnetic emission.

The favorite WIMPs (Weakly Interactive Massive Particles) candidate is Neutralino,
which has a mass of 100GeV , large enough to permit a hierarchical scenario. This particle
could be observed in principle from its couple annihilation with emission of γ − rays.
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Visible matter is instead totally constituted by baryons. An upper and a lower limit
on the baryonic density parameter is obtained from the study of the primordial nucle-
osynthesis, a process that went on about three minutes and produced elements during an
inflationary process at the beginning of the radiative era. After recombination baryons
are decoupled from the radiation and they fall into (linear) potential wells of dark mat-
ter. Gas heats up until virial temperature and then a radiation cooling occurs, leading
to condensation and the formation of molecular clouds. Stars now can form and evolve,
producing metals. After the explosion of the first Supernovae, gas was redistributed in the
interstellar medium and the energy emitted was able to heat it up, creating new molecular
clouds. The cycle is repeated until there is gas in the interstellar medium. Numerical
simulations show that this process probably began when the age of the universe was less
than a million years (Miralda-Escudé (2003), Gao et al. (2007)). The first proto-stellar
objects are supposed to have formed with masses of M ' 100− 1000M�.

1.3 Linear theory

The linear growth of perturbations in the Universe can be univocally analyzed by specifying
only one scalar field. When perturbations are adiabatic, this scalar field is the gravitational
potential φ(x or, following the Poisson equation, the density fluctuation field δ(x),

δ(x) = ρ(x)− ρb
ρb

(1.8)

where ρb is the unperturbed density of the Universe. Being δ(x) a stochastic field, the
only possible description of the Universe starting from its initial conditions is statistical.
Therefore, the study of the large scale structure of the Universe is reduced to the study
of the statistical properties of δ(x). In this section we briefly summarize some important
properties of this fluctuation field, and then we will present the main results of the per-
turbation theory in the linear regime, when density fluctuations were much smaller than
unity. The study of the perturbations growth in a non-linear regime will be addressed in
Chapter 2.

1.3.1 Statistical properties of fluctuation fields

In the standard model the density fluctuation field is a product of the inflation. This field
is generally supposed to be Gaussian with a null mean; so, it can be completely defined
by knowing its variance. In turn, variance is related to the power spectrum.

The variance of a density fluctuation field (σ2 ≡ 〈δ2(x)〉) is the expectation of the
squared deviations of the punctual density fluctuations in the field. However, cosmological
structures are not points but have a (finite) size and so we need to filter the density
fluctuation field with an appropriate window function to characterize these objects. The
root-mean square of density fluctuations filtered with a sphere that contains a mass M is
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called mass variance. We can write the mass variance integrating the power spectrum of
the initial fluctuation field, weighting the integral with an appropriate window function:

σ2
M = 〈(M − 〈M〉)

2〉
〈M〉2

= 〈δM
2〉

〈M〉2
(1.9)

where 〈M〉 is the average mass inside a volume V with radius R. Mass variance represents
the average amplitude of inhomogenities in the matter distribution on scale M . We can
rewrite this quantity in Fourier space obtaining:

σ2
M = 1

V

∑
~k

δ2
kW

2(kR) (1.10)

The aim of the window function W (kR) is to select only fluctuations with λ ' k−1 > R
because perturbations with λ < R cancel each other out by interference. The choice of an
appropriate filter is very important, since wrong choices lead to important consequences.
Some generally used window functions are:

1. Gaussian
WG(x;R) = 1

(2π)3/2R3 exp
(
− |x|

2

2R2

)
, (1.11)

W̃G(kR) = exp[−(kR)2

2 ]. (1.12)

2. Top-hat

WTH(x;R) = 3
4πR3

{
1, if |x| ≤ R
0, if |x| > R

(1.13)

W̃TH(kR) = 3(sin(kR)− kRcos(kR))
(kR)3 . (1.14)

Another possible choice is the sharp k-space filter, with the form:

W̃k(kR) =
{

1, if kR ≤ 1
0, if kR > 1

(1.15)

and a corresponding form in real space:

Wk(x;R) = 1
2π2R3 y

−3(sin y − y cos y). (1.16)

This window function is often employed in the analysis of Gaussian field (for example in
the excursion set model of Bond et al. (1991), see Section 2.3). It has the advantage that
the change in the field strength is independent of the original field δ(x, R) when the radius
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Figure 1.2: Topographical maps of a 1-dimensional stochastic Gaussian field smoothed
with a sharp k-space (top) and a Gaussian (bottom) window function. The spectra are
power law with n = 0. In the x-axis there is the position x and in the depth dimension
there is the filtering scale in form of log(Rf ) i.e. small k (Bond et al. (1991)).

R is increased. However, it is not possible to assign a volume with this window, because its
integration over all space diverges. This problem can be solved only by calibration against
N-body computations (see also Bond et al. (1991)). A comparison between a sharp k space
and a Gaussian filter can be seen in Fig. 1.2.

In this work we use a Top Hat in real space, since it is supposed to better approximate
halo shapes in simulations. We will analyze a little bit deeper the consequences of a
different filtering when discussing the excursion set formalism in Section 2.3.

1.3.2 Primordial Power Spectrum

Early models of structure formation generally assumed that the universe had two main
components: baryons and radiation. Without a theory for the origin of perturbations, two
general models were taken in account: adiabatic and isothermal initial conditions. The
former considers an equal perturbation of all matter and radiation fields, whereas in the
isothermal model is the ratio of components to be perturbed. Many efforts have been made
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to study the linear evolution of both adiabatic and isothermal perturbations. An important
result was obtained by Harrison (1970) and Zeldovich (1972); they suggested that the
initial fluctuation spectrum (known as Harrison-Zel’dovich initial power spectrum) has
the same dimensionless amplitude on every scale (P (k) ∝ kn where n ' 1).

After the spread of the inflationary scenario (Guth (1981)) it was clear that quan-
tum fluctuations of the inflaton (a scalar field) could produce a spectrum similar to the
Harrison-Zel’dovich form together with a Gaussian shape and adiabatic perturbations.
The low amplitude anisotropy in the CMB found by the Cobe experiment (Smoot et al.
(1992)) permitted to find a good agreement with the Harrison-Zel’dovich spectrum and
the hypothesis of Gaussian perturbations.

1.3.3 Perturbation growth

We now briefly summarize the growth and collapse of small Newtonian (i.e. smaller
than the horizon size) perturbations in the linear regime (δ << 1) through a first order
perturbation theory.

Jeans (1902) studied the stability of a mass of a gravitating gas as found in a spherical
nebula, showing that density perturbations grow only if they exceed a characteristic mass
(or length) scale (the so-called Jeans’ mass), making possible for gravity to win its compe-
tition with pressure. Writing the total energy equation at equilibrium (E = Eg +EK = 0,
where Eg and EK are the gravitational and kinetic energy) for a spherical perturbation in
a uniform fluid, we can obtain easily the Jeans scale:

RJ = vs

√
1
qGρ

(1.17)

where vs is the sped of sound and q depends on the possible different definitions of this
scale. The Jeans’ scale separates two regimes:

• R > RJ : the fluctuation scale is larger than the Jeans radius: the contribution of
gravity increases and fluctuations can collapse gravitationally.

• R < RJ : the fluctuation scale is smaller than the Jeans radius: diffusion wins and
fluctuations are cancelled.

Jeans (1902) then studied how density fluctuations grow under the influence of their own
gravity (the theory of Jeans gravitational instability). The starting point of this analysis
are the equations for a self-gravitating fluid related to the density, velocity, pressure, en-
tropy and gravitational field. The standard analysis, consistent with observational results,
considers adiabatic and isentropic fields, resulting in an entropy constant both in time
and space. After the introduction of small perturbations the evolution acts as a filter,
amplifying some modes and damping others.
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Static universe

This model was initially elaborated for a perfectly static, homogeneous and isotropic uni-
verse. The unperturbed solutions in this case are phisically inconsistent, because of the
joint request of ρ 6= 0 and ∇2φ. However, this simplified model is useful to understand
what happens when introducing small perturbations. For computational ease the pertur-
bations are decomposed into Fourier modes, transforming the equations from a differential
to an algebraic form in the Fourier space. At the end we obtain stationary solutions with
an exponential law

δρ(r, t) = δρkexp(±‖w‖t)exp(ikr), (1.18)

where the growing solution describes the gravitational instability.

Expanding universe

Gamow and Teller (1939), Lifshitz (1946) and others extended the Jeans approach to an
expanding background. A general dissertation of this case requires General relativity;
otherwise, when considering non-relativistic perturbations and scales within the cosmo-
logical horizon, we can reduce the examination to a Newtonian analysis. Once that small
perturbations are introduced in the fluid equations of an expanding Universe, we look for
solutions in form of plane waves. The evolution equation of density fluctuations becomes:

δ̈k + 2
(
ȧ

a

)
δ̇k + δk

[
k2v2

S

a2 − 4πGρb
]

= 0 (1.19)

The second term in the equation is the Hubble drag term, which tends to suppress per-
turbation growth because of the expansion of the Universe. The third term contains both
gravitation and pressure contributions and its sign determines which kind of solution we
have. When introducing in the equation the analytic form of ρb(t) and a(t) together with
the assumption of ω = 1 we obtain:

δ̈k + 4
3t δ̇k + 2

3t2 δk
(
k2v2

s

4πGρb
− 1

)
= 0. (1.20)

The general solution for the growing mode, including any possible value of ω, is

δ+(z) = H0
a2

0
(1 + z)(1 + ω0z)1/2

∫ ∞
z

dz(1 + z)
H3

0 (1 + z)3(1 + ω0z)3/2 , (1.21)

which holds for t > teq and λ > λJ . This result is valid for both a baryon and a dark matter
dominated Universe. By means of this equation we can descend some essential cases for
different ages of Universe: before the equivalence, between equivalence and recombination,
after the recombination. The age of interest for our work is the third one. We consider
three different cases:
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• If the scale of fluctuations is greater than the horizon scale, the fluctuations of
baryons, radiation and dark matter follow the same trend:

λ > RH : δB ∝ δR ∝ δDM ∝ a(Ω = 1), (1.22)

δB ∝ δR ∝ δDM < a(Ω < 1), (1.23)

δB ∝ δR ∝ δDM > a(Ω > 1). (1.24)

• If the scale of fluctuations is included between the Jeans scale and the horizon, the
fluctuations of dark matter maintain the same trend owned over the horizon but the
fluctuations of baryons and radiation swing:

RJ < λ < RH : δDM ∝ a(Ω = 1), (1.25)

δDM < a(Ω < 1), (1.26)

δDM > a(Ω > 1), (1.27)

δB ∝ δR. (1.28)

• If the scale of fluctuations is smaller than Jeans scale, the fluctuations are canceled
by diffusion.

The Meszaros effect

Dark matter has not always been the dominant component in the Universe. Before the so-
called equivalence, radiation dominated. Eq. 1.21 can be rewritten like an ipergeometric
equation, with a growing solution in the form:

δk;DM+ = 1 + 3
2
a

aeq
(1.29)

where aeq id the value of the scale factor at the equivalence. When matter perturbations
come into the horizon before the equivalence, their growth slows (the Meszaros effect,
Meszaros (1974)):

δeq
δH
≤ 5

2 (1.30)

The difference in the growth rate between radiation and matter dominated era imprints a
characteristic scale corresponding to the horizon at the equivalence. Given the primordial
power spectrum, the first fluctuations entering within the horizon are those on the smallest
scales. For these fluctuations the Meszaros effect lasts longer and the power spectrum is
strongly modified. If perturbations are large enough (i.e. larger than the scale of the
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horizon at the equivalence), they do not undergo to any additional effect. The final shape
of the processed Power Spectrum is:

Pfin(k) = knT 2(k)
[
D(zfin
D(zin)

]2

(1.31)

where T (k) is the transfer equation, that gives us information on how much of the primor-
dial fluctuation remains unchanged. The final shape of the power spectrum can be seen
in Fig. 1.3, where different candidates of dark matter are taken into account. The CDM
density fluctuations have progressively larger amplitudes on smaller length scales. Hence
structure formation is expected to proceed in a "bottom-up" manner, with smaller objects
forming earlier.

Figure 1.3: Power Spectrum in the nor-
malized form k3P (k) for Hot (green),
Warm (red) and Cold (black) dark
matter Universes. We see how the
Meszaros effect affects the power spec-
trum at large k so that only cold dark
matter allows a hierarchical scenario.

Figure 1.4: Simulations of structures
at high redshift (top rows) and present
time (low row) in the case of Hot (left),
Warm (middle), and Cold (Right) dark
matter Universes. We notice how the
smallest halos form only in a Dark Mat-
ter Scenario. (courtesy ITC @ Univer-
sity of Zurich)

1.4 Correlation Functions
Statistical properties of the spatial distribution of a certain sample (like particles, stars,
galaxies, clusters etc. . . ) are described completely through correlation functions of every
order. We present correlation functions of second order that we employ in our work.
The conditional probability that an object like a galaxy is into a volume δV1 and another
one is into a volume δV2 separated by a distance ~r12 in a great volume of the Universe is

δ2P = n2
V [1 + ξ(r12)]δV1δV2 (1.32)
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where nV is the average number of galaxies into a unit of volume and ξ(r) is the spatial
two-points correlation function of galaxies. The probability depends only on the modulus
of ~r12 and not on the spatial direction, because of homogeneity and isotropy of Universe.
The correlation function ξ can be expressed as follow:

ξ(r) ≡ 〈δ(~x)δ(~x+ ~r)〉. (1.33)

We can relate the conditional probability and the correlation function obtaining:

d2P = n2[1 + ξ(r)]dV1dV2 (1.34)

where ξ(r) depends only on the modulus of r.
In a random distribution, ξ = 0 and therefore:

d2P = n2dV1dV2. (1.35)

In Chapter 5 we will inspect the correlation function between Lagrangian peaks of cer-
tain quantities and protohalo centers using cross-correlations normalized by a random
distribution.



CHAPTER 2

Non linear regime: analytic methods

Jeans theory gives us an idea of what happens in linear regime. When δ → 1 we enter in
the nonlinear regime: at certain conditions there is a gravitational collapse and a dense
structure formation occurs (δ ∼ 102), with an equilibrium between potential and kinetic
energy (virial equilibrium). This leads to the formation of dark matter halos, the first
nonlinear structures in the Universe. The halos carry on their mass growth by accreting
material from their neighborhoods or by merging with other halos.

A model is needed to study nonlinear regime and inspect properties of dark matter
halos. However, a purely analytic approach is very difficult because equations become very
hard to solve. We firstly inspect the Zel’dovich approximation, initially used to describe the
fluctuation field in a quasi-nonlinear regime; nowadays, it is largely employed to create the
initial conditions of N-body simulations. Later, we will describe two dynamical approaches
to the nonlinear regime: the spherical and the ellipsoidal collapse models. Finally, we
will summarize the progress occurred in the development of two largely used analytic
approaches: the Press-Schechter and the peaks formalism. These models take into account
the predictions of both spherical and ellipsoidal collapse model at different stages and they
are very useful to study (mainly in a statistical way) properties of the halo distribution,
starting from the initial fluctuation field. We will describe the strong points of these two
approaches and their weakness and we will briefly sketch the attempts provided to merge
them together.

2.1 Zel’dovich approximation

The Zel’dovich approximation (Zel’Dovich (1970)) was firstly introduced to study a fluid
in a slightly nonlinear regime but it remains unsuitable in presence of strong non linearity

23
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(like in collapsed structures). Nowadays, it is used to create initial conditions in N-body
simulations and so it is worth to discuss it.

Let us consider again the nonlinear equations (in comoving coordinates) for a non-
collisional fluid in the case of an expanding Universe. To study the nonlinear regime, a
(numerical) solution of these equations is required. However, Zel’Dovich (1970) employ
some approximations in the case of a quasi-linear regime (δ ∼ 1) by mixing together the
non linear equations with a linear potential. This method moves an initial particle dis-
tribution along a straight trajectory, following the initial potential. The approximation
does not take into account the gravitational interaction between close particles and, for
this reason, is not reliable in a strong nonlinear regime.
Our purpose is to derive the final density starting from an initial density. We consider a
cubic volume and we express the density (which changes with mass elements position and
time) as follows:

ρ(x, t) = ρ̄
[
det
(∂xi
∂qi

)]−1
(2.1)

where det(∂xi∂qi
) is the determinant of the Jacobian matrix J that expresses the change of

coordinates. This matrix is symmetric and so the determinant is reduced to:

detJ = (1 +D+λ1)(1 +D+λ2)(1 +D+λ3) (2.2)

where λ1 ≥ λ2 ≥ λ3 are the eigenvalues. Inserting Eq. 2.2 in Eq. 2.1 we obtain:

ρ(~x) = ρ̄

(1 +D+λ1)(1 +D+λ2)(1 +D+λ3) . (2.3)

If we consider x � 1 we can use the approximation (1 + x)n ' 1 and we can rewrite
density at the first order in this form:

ρ(~x, t) ∼ ρ̄[1−D+(λ1 + λ2 + λ3)] ∼ ρ̄[1 +D+δ+], (2.4)

which is valid for little times.
The solution at later times depends on the sign of λ1, λ2 and λ3:

1. λ1 ≥ λ2 ≥ λ3 ≥ 0: 1 + D+δ+ is positive: volume increases and ρ decreases forming
a void.

2. λ1 ≥ λ2 ≥ 0λ3 ≤ 0: the element of volume enlarges along two dimensions and
shrinks along the third one (orbit crossing). If density in the third dimension tends
to infinity we have a pancake.

3. λ1 ≥ 0λ1 ≤ λ2 ≤ 0: the element of volume enlarges along one dimension and shrinks
along the other two. We obtain a filament.

4. λ1 ≤ λ2 ≤ λ3 ≤ 0: we have orbit crossing in each direction. This is the limit of the
Zel’dovich approximation: trajectories do not betray of the particle interactions and
penetrate each other without any gravitational stabilization.
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In a Gaussian field the 8% of the points have concordant eigenvalues, which form voids or
spherical structures; the 42% have an eigenvalue with a different sign forming sheets.

In the classical Zel’dovich approximation structures that form earlier (small halos)
undergo orbit crossing and are ruled out. To study small structures at later times we need
to filter the initial conditions (Truncated Zel’dovich approximation), eliminating nonlinear
structures when it’s needed.

2.2 Dynamical models

Most of the objects of interest in the present-day universe have very high density compared
with the background; therefore, they can be properly analyzed only taking into account a
model for strong nonlinear regime. In this section we summarize the efforts done to face
this problem from a (simplified) analytic point of view and we describe briefly the physics
involved in the gravitational collapse and the dynamics of collisionless systems.

2.2.1 Spherical collapse

The simplest attempt to describe the formation of strongly nonlinear (δ � 1) bound
structures is the so-called spherical collapse (SC) model. This model was firstly developed
by Gunn and Gott III (1972) in the case of a flat Universe with no cosmological constant
and it has been used to provide a qualitative picture of how isolated gravitationally bound
structures evolve up to their final collapse. Moreover, the SC model permits to estimate
when the first astrophysical objects have formed under the influence of the only gravity
(see Peebles (1980)). In the SC model the formation of bound objects in the Universe is
described by the evolution of a uniform overdense spherical region in an otherwise smooth
background.

Let’s consider a spherical region with density higher than the density of the background.
This perturbation is treated as a uniform spherical Universe with Ω > 1 embedded in a
flat Universe with Ω = 1. In General Relativity, the equations of motions of a particle on
the surface of the sphere can be written using the first equation of Friedmann with two
assumptions: the initial peculiar velocity is null and concentric shells remain concentric,
not crossing each other. The general solution for both background and perturbation is
calculated by integration of the Newtonian equation for a mass shell, obtaining:

Ṙ2 − 8πG
3 ρR2 = −kc2. (2.5)

To study the evolution of the density contrast:

δ(t) = ρ(t)
ρb(t)

− 1 (2.6)
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we need a solution for both the background and the perturbation. In the case of back-
ground the curvature is K = 0. Knowing that ρb ∝ R−3

b , we obtain:

ρb = 1
6πGt2 . (2.7)

The evolution of the perturbation density with K = 1 (Ω > 1) can be calculated consid-
ering that the absence of shell crossing leads to mass conservation within each shell. We
obtain:

R(η) = R?(1− cosη) (2.8)

t(η) = R?
c

(η − sinη) (2.9)

where Rstar = GM0/c
2, M0 is the mass of the whole perturbation and η is a variable

obtained by change of coordinates dt = dηR(t)
c . The equations for R(η) and t(η) give the

parametric equation of a cycloid: perturbation expands until the maximum of the curve
(turn around, TA: η = π; R = 2R?) when the kinetic energy is zero and all the energy is
contained in the gravitational potential term. After that, the perturbation collapses and
reaches the minimum corresponding to the collapse point (η = 2π). The evolution of the
overdensity can be obtained substituting 2.8 and 2.9 into 2.6, obtaining:

1 + δ(η) = 9
2

(η − sinη)2

(1− cosη)3 . (2.10)

If η � 1 we can approximate the equation in Taylor series, obtaining the following solution
for the growing mode:

δlin = 3
20

(6ct
R?

)2/3
= 3

5δin
(
t

tin

)2/3
(2.11)

that corresponds to the known solution from the linear theory.
We can compare the solutions obtained with linear, nonlinear and Zel’dovich approach:

• Turn Around:
δlin = 1.06 (2.12)

δSC = 4.55 (2.13)

δZA = 2.70 (2.14)

• Collapse:
δSC −→∞ (2.15)

δZA = 10.90 (2.16)

δlin = 1.68647 (2.17)
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It follows that the addition of nonlinear terms makes the perturbation grow faster. In
linear theory, collapse happens in an infinite time and in the Zel’dovich approximation the
time of collapse is very long. In the model of Gunn and Gott III (1972) the collapse of a
spherical shell leads to an infinite density. However, real perturbation obviously only reach
a physical density value. The main process occurring. that prevents the complete collapse
of the perturbations and permits the formation of a dark matter halo, is virialization.
The orbit crossing found in the Zel’dovich approximation is not possible, because particles
interact gravitationally and flatten out in dark matter halos.

The radius of a virialized halo for an Einstein-De Sitter Universe can be calculated
considering the virial theorem (2T + U = 0) and imposing the conservation of energy
(T + U = cost):

Rvir = RTA
2 (2.18)

So, after turn-around, shells cross each other and the structure virializes. The exact value
of the nonlinear overdensity at virialization is:

1 + δ(tvir) = ρ(vir)
ρb(vir)

= 178 . (2.19)

Once reached this equilibrium, the virialized region no longer feels the universal expansion
around it, and in the absence of subsequent accretion, its physical size will remain constant
with time. However, the halo never remains isolated: its central region remains unaltered
but the outer one continuously grows, accreting material from the outside. In fact, every
region with overdensity δ can always be embedded in a region with overdensity δ′ with
δ′ < δ so that the larger region with positive curvature recollapses adding new material to
the internal virialized halos.

Since virialization produces a constant density contrast relative to the background, all
halos at a given redshift are predicted to have the same mean density within their virial
radius, and this virial density decreases with time as the background density decreases.

2.2.2 Relaxation processes

The final equilibrium configuration follows some relaxation processes that operate during
the collapse. The relaxed equilibrium state of a halo depends on the initial conditions
of the process and on the physics of the collapse. We briefly show two models provided
to study the relaxation process occurring in dark matter halos: secondary infall and
violent relaxation.

Secondary infall model

The secondary infall model (SIM) was introduced by Gunn and Gott III (1972), Gott
(1975) and Gunn (1977) to describe the collapse and the virialization of spherically sym-
metric halos. In this model, particles do not collapse all at the same time: those within
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inner shells collapse earlier and later there is an extended infall of new shells towards
the central region. Fillmore and Goldreich (1984) and Bertschinger (1985) showed that
the model emerged in the Gunn and Gott III (1972) approach can be made self-similar.
In this way it is possible to calculate an analytical solution for the final density profile.
This solution (ρ ∝−2) is shallower that that emerging in numerical experiments of simple
gravitational collapse (ρ ∝−4).

Violent relaxation

When a collisionless system collapses or is perturbed, changes of the gravitational potential
φ(x, t) generally occur. In a time-varying potential, energy is no longer an integral of
motion and so particles do not conserve it:

dε

dt
= ∂φ

∂t
(2.20)

The overall effect is the broadening of the energy range and the potential provides a
relaxation mechanism, called violent relaxation. This process causes a mixing of particles
also in binding energy. The time scale for violent relaxation averaged over all particles is:

tvr = 〈 1
ε2

(φ
t

)2
〉−1/2. (2.21)

Lynden-Bell (1967) showed that this is equal to the free-fall time.
Violent relaxation does not lead to mass segregation during the relaxation process,

because the variation of energy with time is independent of particle mass. On the contrary
this process is present in collisional systems, where the exchange in momentum leads the
kinetic energy equipartition of the system. However, a potential varying in time does not
guarantee this mechanism, but a mixing must occur at the same time. Although violent
relaxation tends to erase the memory of the initial state of a system, numerical simulations
showed that the final particle energies are correlated with their initial values.

2.2.3 Ellipsoidal collapse

A first evident limit of the spherical collapse model comes up observing that large struc-
tures in the universe are not spherical but can be more realistically approximated with
ellipsoids. White and Silk (1979) introduced a more accurate model to describe the growth
and collapse of homogeneous ellipsoidal perturbations in a uniform expanding background.
In their model perturbations evolve through homogeneous ellipsoids with increasing eccen-
tricity until their shortest axis goes to zero, forming a "pancake". Following the notation
of White and Silk (1979) and Mo et al. (2010), we can write the potential perturbation
due to the matter within the ellipsoid as:

Φint(x) = −πGρe
3∑
i=1

αix
2
i , (2.22)
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where ρe is the density of the ellipsoid and

αi = X1X2X3

∫ ∞
0

dy(X2
i + y)−1

3∏
j=1

(X2
j + y)−1/2 (2.23)

with Xi(t) the comoving lengths of the principal axes at time t (Chandrasekhar (1970), Mo
et al. (2010)). We can write the total potential by summing the contribution of internal
matter with that of the smooth background density

Φb = −2
3πGρb

∑
i

x2
i (2.24)

obtaining the total potential within a homogeneous ellipsoidal overdensity in an unper-
turbed Universe:

Φtot = −πG
∑
i

[
αiρe +

(2
3 − αi

)
ρb
]
x2
i . (2.25)

To obtain the equations of motion they make an assumption: the material outside remains
uniform during its evolution and the external density can be calculated by the cosmological
equations. In fact, when the density within the ellipsoids is large enough, we can neglect
the external potential and the evolution of perturbations is governed by its self-gravity: the
ellipsoid remains ellipsoidal and homogeneous during its evolution. However, in the linear
regime (δ � 1) this approximation is valid only without considering velocity perturbations
at the initial conditions, otherwise the external and internal potential are of the same order
and an expression for Φext is needed. In their analysis the only velocity field considered
is the Hubble flow. So, they calculate an approximate solution of the equations of motion
starting from a system of four equations (the evolution equation of the ellipsoidal axis,
the evolution of the background, the conservation of the mass for both the perturbation
and the background) that are integrated using a fourth-order Runge-Kutta scheme. After
additional approximations, they obtain the equations describing the exact evolution of
homogeneous spherical perturbations:

ai(t)
ai(t0) = Rb(t)−

3
2αi(t0)[Rb(t)−Re(t)] (2.26)

In the linear regime, the analysis of White and Silk (1979) does not reduce to the
Zeld́ovich approximation. Bond and Myers (1996) argued that this occurs because the
effect of the external tide are not included self-consistently; so, they proposed a homoge-
neous ellipsoidal model that reduces to the Zelĺdovich approximation at the lowest order.
Initial conditions and external tides are chosen to recover the Zeld́ovich approximation
in the linear regime. This model does not assume the sphericity of the initial perturba-
tions but most works lays on this assumption (Sheth et al. (2001); Sheth and Tormen
(2002); Desjacques (2008); Lam and Sheth (2008)). They consider a patch that is spher-
ical at the initial conditions with radius r0. The triaxiality in the potential leads to
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tidal forces which deform the sphere, leading to a final triaxial object with principal axes
Xi(t) = r0[1−λiD(t)] in the linear regime, where λi are the eigenvalues of the deformation
tensor. In the Zeld́ovich approximation the principal axes of the ellipsoid are parallel to
the axes of the deformation tensor.

The eigenvalues of the deformation tensor can be expressed with a combination of the
parameters describing the initial shear field:

λ1 = δi
3 (1 + 3e+ p) (2.27)

λ2 = δi
3 (1− 2p) (2.28)

λ3 = δi
3 (1− 3e+ p) (2.29)

Therefore, the evolution of a spherical shape of radius r0 is studied employing three
parameters, combination of the eigenvalues of the deformation tensor of the Zeld́ovich
approximation, centered on the center of mass of proto-halos and smoothed on a scale
enclosing the proto-halo mass. These parameters are derived as following:

• Overdensity

δ = 1
(1 + λ1)(1 + λ2)(1 + λ3) − 1 (2.30)

• Ellipticity

e = λ1 − λ2
2δ (2.31)

• Prolateness

p = λ1 + λ3 − 2λ2
2δ (2.32)

where e ≥ 0 and |p| ≤ e; a sphere has e = p = 0, prolate configurations have e ≤ p ≤ 0,
and 0 ≥ p ≥ e are oblate.

Therefore, in the EC model the three axes collapse at different times depending on
the local shape of the ellipsoidal deformation tensor. In comoving coordinates protoha-
los shrink fastest along the axis corresponding to the direction of maximum compression,
forming a pancake; later the axis corresponding to the second and the minimum com-
pression collapse eventually resulting in a virialized object. Assuming an initial spherical
shape of the mass tensor, collapse times are determined by the initial compression factors:
larger compression factor means earlier collapse. Virialization happens when all three
axes collapse; at this point, the first axis to collapse will also be the shortest axis of the
virialized object, and the third will be longest i.e. the shortest axis at virialization will be
aligned with the direction of initial maximum compression, and vice versa.
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2.3 Analythic approaches
The spherical and the ellipsoidal collapse models give us the possibility to estimate linearly
extrapolated overdensity (i.e. a "collapse barrier") necessary for a certain region to break
from the cosmic expansion and to form a dark matter halo. When combined with the
statistics of the initial density field, the collapse barrier can thereby be utilized to estimate
the abundance of dark matter halos as a function of mass and redshift.

There are two main analytic approaches to determine halo statistics starting from the
initial fluctuation field: the excursion set formalism (Press and Schechter (1974); Bond
et al. (1991)) and the peaks theory (Bardeen et al. (1986), hereafter BBKS).

2.3.1 Excursion sets

Press-Schechter formalism

Press and Schechter (1974) combined the simple results of the SC model with the statistics
of the initial fluctuation field and the subsequent evolution of the Universe in order to
estimate the abundance of collapsed structures. In this way they provided a statistical
method to characterize the halo population without following the nonlinear dynamics in
detail. In the SC model, regions with a positive overdensity smaller than δc at a certain
redshift z will collapse at the present day if their linearly evolved density contrast at z = 0
exceeds δc:

δ(0) = δ(z)
D(z) > δc. (2.33)

Press and Schechter (1974) transferred the time dependence from the density δs to the
threshold δc(t) and did the following hypothesis: an infinitesimal mass element in a position
x will be part of a halo with mass equal or larger thanM at time t if the linear fluctuation
δf (x;R) centered in x and smoothed with a spherical filter of radius R ∝ M1/3 has a
value equal or larger than the threshold for collapse at time t. So, the probability to have
δs > δc(t) is equal to the fraction of mass elements at time t that are contained in halos
with mass greater than M . The mass fraction can be written as:

F (z,R) = 1√
π

∫ ∞
δc/D(z)

exp

(
−δ2

2σ2(R)

)
= 1

2erfc
(ν

2
)

(2.34)

where ν = δ(z)/σ(R). One of the most important results of the Press-Schechter model
was the derivation of the halo mass function (also see Efstathiou et al. (1979) and Epstein
(1983)). In fact, if a fraction F (R) of the matter distribution collapses when smoothed on
scale R, and a fraction F ′ < F collapses when R′ > R, the difference can be assumed to
have collapsed in the mass range [M,M + dM ]. The halo mass function is then derived
by differentiating F (z,R) with respect to the filtering scale R:

dn

dM
dM = 2 ρ̄

M

dF

dM
(z,R(M))dM (2.35)
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and finally obtaining:

dn

dM
dM = ρ̄

M

√√√√( 2
π

)
exp

(
−δ2

2σ2(R)

)
dν

dM
dM . (2.36)

Excursion sets model

In the original Press and Schechter (1974) calculation, underdense regions contained within
larger regions for which the threshold δ > δc is satisfied were not taken in considerations
(the so-called cloud-in-cloud problem; it also arises in the peaks formalism that we discuss
later). Because of this, only half of the total mass is considered in the halo mass function.
Press-Schechter tried to solve this problem introducing a factor of 2 without changing
the shape of the mass function. Bond et al. (1991) derived the halo mass function in an
alternative way, trying to give a more convincing solution to the cloud-in-cloud problem.
Their approach is known as the excursion sets model. They filtered the initial overdensity
field on different scales, taking into account the patches of low density embedded in large,
high-density regions collapsing on larger scales and justifying the "factor of 2" arising in
the PS formalism with a sharp k filter. They used random walks, assuming that each
position x corresponds to a trajectory which reflects the value of the density contrast
when smoothing the region around that position with a filter of radius R. When R is
very large, the density contrast will be 0. As R decreases, the random walk begins to
wander away from zero in a way depending on the chosen filter (see Fig. 2.1). We remark
that only a top-hat in k space allows to have a Markovian random walk. The halo mass
function is derived assuming the barrier of the SC model. So, at fixed z, the barrier height
is independent of the massM of the collapsed region (and so it does not depend on σ(M)).

The differential halo mass function is proportional to the rate at which trajectories
first match the threshold and can be written in the general form as:

n(M)dM = ρ̄0
M

1
Ω
dΩv(M)
dM

dM (2.37)

where ρ0 is the average cosmological density, Ω is the density of the Universe in units of the
closure density andM is a function ofRf . Without explaining the way in which trajectories
are counted, we simply notice that the final form of the differential halo mass function
found with the excursion sets model is identical to the one of Press-Schechter, including
the factor of 2, introduced by Press and Schechter (1974) without a valid demonstration.

The excursion set formalism has been extended in order to predict not only the evo-
lution of the mass function of dark halos, but also other properties of the hierarchical
clustering process (Lacey and Cole (1993); Kauffmann et al. (1993); Kitayama and Suto
(1996); Sheth and Van De Weygaert (2004)). A simple explanation of the way to investi-
gate the halo merger tree is given by Lacey and Cole (1993). When considering a random
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Figure 2.1: Trajectories of F = δ as s function of the smoothing radius Rf together with
2σ curves and the threshold for collapse. The trajectories are obtained smoothing the field
with a sharp k-space (a) and a Gaussian (b). In the second case the random walk is not
perfectly Markovian: the trajectories are smoothed and have long-range correlations.
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walk, we can follow its merger history starting from small values of the mass and evolving
the barrier with time. In the excursion set formalism is assumed that each fluid element
is contained in a halo whose mass corresponds to the largest M at which the trajectory
associated to the element crosses the threshold. When having a random walk going up and
down, the decrease of the threshold with time cause the trajectory to match the threshold
at different time and whenever it occurs the mass will jump horizontally to the value cor-
responding to the match with the threshold as we see in 2.2. This jump corresponds to a
jump in the halo mass, whereas the small jumps found simply following δ as a function of
S, are due to a mass accretion. In 2.3 we see an example of a merger tree (both figures
are taken from Lacey and Cole (1993).

Figure 2.2: Merger history of a trajec-
tory (solid line) of δ as a function of
the smoothing radius, here described
by S(M) ≡ σ2(M). To follow the
merger history we need to start at high
S and w and follow the track to the
left and down. The trajectory for the
halo mass during the merger history is
represented by the dotted lines (a func-
tion S(w)). When δ increases with S,
the dotted line coincides with the solid
one (Lacey and Cole (1993)).

Figure 2.3: A schematic representa-
tion of a "merger tree", describing the
merger history of halo, with time in-
creasing from top to bottom. The
branch sizes represent the mass of the
progenitors. The distribution of the
mass of parents at a certain time can
be obtained considering a slice (dashed
line). Here the formation time (tf ) is
defined as the time at which half of the
mass of the final has been assembled by
a parent halo (Lacey and Cole (1993)).

The conditional distribution probability that a halo with a mass corresponding to S2
was assembled by halos with mass corresponding to S2 can be written in the form:

p(S1, δc(t1)|S2, δc(t2)) = δc(t1)− δc(t2)√
2π(S1 − S2)3/2

exp

[
− (δc(t1)− δc(t2))2

2(S1 − S2)

]
(2.38)
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that can be written as a function of mass, obtaining the mass function of progenitors:

p(M1, t1|M2, t2) = p(S1, t1|S2, t2)
∣∣∣∣∣ dS1
dM1

∣∣∣∣∣ (2.39)

The moving barrier

However, halo mass functions and spatial clustering of halos found in simulations were
inconsistent with the prediction of Press and Schechter (1974) and in the following years
accurate halo mass functions were obtained just fitting to the results of numerical sim-
ulations (Sheth and Tormen (1999); Jenkins et al. (2001); Warren et al. (2006), Tinker
et al. (2008)). These discrepancies were due to some oversimplifications in the excursion
set approach, like the spherical approximation. In fact, as we explained in the previous
paragraph, not only perturbations in Gaussian density fields are more realistically triaxial,
but also the shear field must be taken into account to study the formation of structures
(Hoffman (1986); Peebles (1980); Dubinski (1992); Bertschinger and Jain (1993); Audit
and Alimi (1996); Audit et al. (1997)).

Some attempts to consider ellipsoidal perturbations within the excursion set formal-
ism have been done. Monaco (1995) employed the Zeld́ovich approximation as it was a
Lagrangian dynamics, computing the collapse epoch in correspondence of the first axis.
They show that shear shortens the collapse time, in accordance with the lowered den-
sity threshold found in simulations (Efstathiou and Rees (1988); Carlberg and Couchman
(1989); Klypin et al. (1994); Bond and Myers (1996)). In Bond and Myers (1996) both
initial conditions and external tides recover the Zel’dovich approximation in the linear
regime and the initial shape of an ellipsoid can be specified by its initial overdensity and
by the parameters chracterizing the asymmetry of the tidal field: e and p. Lee and Shan-
darin (1998) extended the Press-Schechter formalism to a non spherical dynamical model,
assuming that a collapse along all three direction can occur only in regions where all three
eigenvalues are positive. Sheth et al. (2001) combined the Ellipsoidal Collapse model in the
form of Bond and Myers (1996) with the assumption of a moving barrier for ellipsoidal col-
lapse, providing a revised version of the halo mass function where the effective ellipsoidal
collapse barrier is a function of mass through the peak height parameter, νc = δc/σ(M)
alone:

δEC(e, p)
δSC

= 1 + β

[
5(e2 ± p2)δ

2
EC(e, p)
δ2
SC

]γ
(2.40)

where β = 0.47 and γ = 0.615. Recent calibrations have been calculated by Desjacques
(2008) (β = 0.412 and γ = 0.618). Sheth et al. (2001) found a halo mass function that fits
well the one found in numerical simulations (Sheth and Tormen (2002)). We can notice
that the non spherical effects always lead to δEC > δSC : in correspondence of low mass
halos the ellipticity is larger, and also the barrier. The problem of finding the halo mass
function reduces to find the first crossing of the barrier in a higher dimensional space
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defined by the parameters of the ellipsoidal collapse model. However, this method has
a great computational complexity and can be simplified only considering some peculiar
values of e and p. From the distribution function of the eigenvalues in a Gaussian random
field (see also Doroshkevich (1970)) we find pmp = 0 and emp = (δ/σ)/

√
5. Inserting those

values in 2.40 we obtain:
δEC(σ, z)
δSC(z) = 1 + β

[σ2

σ2
?

]γ
(2.41)

where σ? = δsc(z). This equation predicts that for massive objects (σ/σ? � 1) the
ellipsoidal collapse barrier reduces to the spherical value, that is independent of mass.
Smaller objects are more influenced by external tides and so they need a larger overdensity
to hold themselves together.

When applying the moving barrier, the mass function becomes:

νf(ν) = 2A
(
1 + 1

ν2q

)[ ν2

2πexp
(
− ν2

2

)]
(2.42)

where q = 0.3 and A ∼ 0.32222, whereas the standard model had q = 0 and A = 1/2.

Correlated steps

Exact solutions for constant and linear barrier have been found in the case of uncorrelated
steps of the random walk, together with analytic approximations for more general barriers.
It is worth noticing that the steps of random walks in the ES model should not necessarily
be independent; on the contrary, a correlation could be introduced, depending on the
smoothing filter and the power spectrum.

Let’s consider a random walk with height δ at a certain scale s ≡ 〈δ2〉 and a barrier B
depending on that scale. When steps are uncorrelated the probability that the walk has
not crossed the barrier at S < s and the probability that δ > B(s) at s can be calculated
separately. This is not true when considering correlated steps, because the step at S is
correlated in some ways with the previous ones. Paranjape and Sheth (2012) considered
completely correlated steps, for whom δ = δ0

√
s/S0 (where δ0 is the value of δ on scale S0)

and calculated an expression that describes well the first crossing distribution also when
the steps are not completely correlated (at least for small values of s). Musso and Sheth
(2012) provided a formula usable for different kind of step correlations (i.e. for different
barrier shapes and power spectrum shapes) that extends the expression for completely
correlated steps. A simple case of this formula for a constant barrier is expected to fit well
the halo abundances:

νf(ν) = νe−ν
2/2

√
2π

[
1 + erf(Γν/

√
2)

2 + e−Γ2ν2/2
√

2πΓν

]
(2.43)
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Figure 2.4: Distribution of the scale y on which random walks first cross the barrier
B(s) = δc(1+αs/δ2

c . A comparison between Monte Carlo solutions for Gaussian smoothing
of P (k) ∝ k−1/2 (for which Γ2 = 9/10) is shown considering barriers with α = 0.5, 0 and
−1. In the last two cases also the solution for uncorrelated steps is provided (dot curves).
The general solution for f(s) found in Musso and Sheth (2012) (smooth curves) is in
good agreement with the results of the different barrier shapes. Eq. 2.43 (smooth curves).
When considering a top hat smoothing of a Λ CDM spectrum for a constant barrier (α = 0,
see points with error bars) we notice that first crossing distribution depends weakly on
P (k), differently of the case with uncorrelated steps. Eq. 2.43 (solid curve) shows a good
agreement.

where ν = δc/σ, Γ is a function of γ that in turn was introduced by citetbardeen1986statistics
to describe the spectral quantity σ2

1/σ0σ2 in the case of a Gaussian smoothing filter. The
expression for γ in presence of a top-hat was provided by Paranjape and Sheth (2012).
The comparison between this formula and Monte Carlo simulation can be seen in Musso
and Sheth (2012) for two different power spectra and filters.
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2.3.2 Peaks theory

Excursion set model provides lots of significant results about statistical properties of non-
linear structures. However, the formalism on which is based is not mathematically rig-
orous. Peaks theory would give stricter analytic foundations to the relation between
non-linear structures and the initial density fields. However, it has some limitations that
excursion sets have not: it is not able to model the formation of halos and the halo
mass function. Attempts to put together peaks theory and excursion sets will be briefly
summarized at the end.

The fundamental assumption of peaks theory lies on the idea that matter collapsing
in bound structures of given mass can be related with peaks smoothed on the appropriate
mass scale in the initial density field. In this scenario the condensation of matter occurs
around sufficiently high local maxima of density. First applications of this peaks approach
to cosmological models was performed by Doroshkevich (1970), Doroshkevich and Sandarin
(1978a,b) and Peebles (1980). A mathematical development for hierarchical models as the
Cold Dark Matter model has been realized by Peacock and Heavens (1985) and by Bardeen
et al. (1986) (BBKS). BBKS studied extensively the properties of local maxima (peaks)
in Gaussian random fields, providing a number of useful statistics, such as the number
density of peaks of given height, their clustering properties and the density profile centered
on peaks. These results can be related to the spatial clustering and to the number density
of dark matter halos.

With the purpose of finding well defined peaks at the initial conditions, the linear
density field must be smoothed with an appropriate filter. The spatial distribution of
peaks located at rpk is:

npk(r) =
∑
pk

δD(r− rpk) (2.44)

Given the smoothed density field δ(r), peaks are defined as usual, like points at which:

• the first derivative (gradient) of the smoothed field is zero: η(r) ≡ ∇δ(r)

• the second derivative tensor of the field (ζij ≡ ∇i∇jδ(r)) is negative definite at rpk.

Moreover we consider only maxima whose heights are in a certain range, for example:
δ/σ ≥ ν where ν ≡ δc/σ and σ is related to the power spectrum by σ2(R) ≡ 〈δ2(x;R)〉.
The density of peaks can be written in differential form as:

Npk(ν)dν =
〈
δD(δ/σ − ν)|Λ1,Λ2,Λ3|H(Λ3)δ(D)(η)〉dν

〉
(2.45)

where Λi (with i=1,2,3) are the three eigenvalues of the field tensor (the capital letter Λ
needs to distinguish them from the ones of the Zel’dovich approximation) and H is the
Heaviside step function (equal to zero for negative values of the lowest eigenvalues Λ3 and
1 elsewhere). We compute the average considering the distribution function in the form
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of a multivariate Gaussian, obtaining:

Npk(ν)dν = 1
(2π)2R3

∗
e−ν

2/2G(γ,γν)dν (2.46)

where the spectral quantity γ and the comoving length R∗ are in relation to moments of
power spectrum P (k) = 〈|δ(k)|2〉:

R∗ ≡
√

3σ1(R)
σ2(R) , γ ≡ 〈k2〉

〈k4〉1/2
= σ2

1
σ2σ0

(2.47)

and G(γ, γν) is a complicate function for which they found an accurate fit.
Fig. 2.5 and 2.6 show the differential and the cumulative number density

npk ≡
∫ ∞
ν
Npk(ν)dν (2.48)

that permits to count peaks above a certain threshold.

Figure 2.5: Differential number density
Npk(ν) of peaks between ν and ν + dν
for various values of γ (Bardeen et al.,
1986).

Figure 2.6: Cumulative number density
Npk(ν) of peaks with height above a
certain threshold ν for various values
of γ (Bardeen et al., 1986).

The differential and the cumulative peak densities can be written in the case of high
peaks:

Npk(ν)dν = (σ2
2/3σ2

0)3/2

(2π)2 (ν3 − 3ν)e−ν2/2dν (2.49)

npk(ν) = (σ2
2/3σ2

0)3/2

(2π)2 (ν2 − 1)e−ν2/2 (2.50)
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These equations agrees with previous results of other authors (see for example Eqs.19 and
20 in Doroshkevich (1970)).

However, a plausible physical way to select peaks which form halos is most likely less
sharp respect to the form found in 2.50, where νt is the threshold height. Therefore,
Bardeen et al. (1986) introduce a selection function t(ν/νt, q) that takes into account also
peaks below the threshold (although with a lower probability) and gives the probability
that a peak of height ν forms one of the objects. The differential number density for
νt = 3.5 and different values of q’s is shown in 3.1. Although the probability to have
a peak below the threshold is always low, their number increase as q decreases and low
peaks dominate for small values of q.

Figure 2.7: Product of the selection function and the differential peak number density
npk(ν) for νt = 3.5 and q = 8 and 16. Bardeen et al. (1986)

The difficult to associate a number density of halos to the number density of peaks
is due to the cloud-in-cloud (or peak-in-peak) problem, previously found in the Press-
Schechter formalism. In fact a mass element could be associated to peaks of different
heights. So to relate peaks and halos, a statistics of peaks as R is varied is needed.
However, this problem is pretty hard to treat mathematically. Manrique and Salvador-Sole
(1995) calculate the halo mass function taking into account this ’peak-in-peak’ problem.
They consider a differential density of peaks for a fixed density contrast Npk(R, δ)dR in
the form proposed by Bond (1989):

Npk(R, δ)dR = Npk(ν,R) ∂ν
∂R

dR (2.51)

(where Npk(ν,R) is the same in Eq. 2.49 but R is treated as a parameter) and then
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transform it to the mass function of objects at the time t:

N(M, t)dM = N(R, δc)
dR

dM
dM (2.52)

where N(R, δc) is expressed in the form of a Volterra type integral equation of the second
kind that takes into account the cloud-in-cloud problem and is solvable numerically by
iterations, M(R) is the mass of collapsing clouds associated with peaks at scales between
R and R+ dR, and δc(t) is the typical overdensity for collapse.

Attempts to test how the peaks formalism works from an "object-to-object" point
of view found initially a low confirmation. Ludlow and Porciani (2011) used two high-
resolution cosmological N-body simulations to find a pretty good correspondence between
halos at late times and peaks in the initial conditions. They identify halos at z = 0 with a
friends-of-friends algorithm (Davis et al. (1985), see next chapter to a better explanation of
different algorithms for halos identification) and identify peaks as values of the smoothed
field δs denser that all 26 neighbouring points. The evolution of peaks is followed by
tagging the closest particle. The comparison between the number density of peaks in their
simulations and the predictions of (Bardeen et al., 1986) is shown in Fig. 2.8.

They associate to each halo a single "main" halo peak, defined as the one that is still
within the halo at z = 0 and for which the filter mass is closest to the true FOF halo mass.
They find that the majority of halos are associated with peaks of the same characteristic
mass. The cumulative fraction of halos above a given mass that also contain peak particles
is showed in Fig. 2.9. Figure shows that all halos with more than 100 particles contain
at least one peak particle and the majority of them contain a peak particle on the halo
mass scale with a fraction depending on the halo mass: higher for larger halos. They also
found some (typically low mass) halos forming close to peaks smoothed on very different
scales (’peakless’ halos). These halos are on average tidally compressed along two axes of
the initial tidal tensor and evolve from more oblate initial configurations (see right panel
of Fig. 2.10).

Hahn and Paranjape (2013) found similar results using a power spectrum with a small-
scale cut-off as in warm dark matter cosmologies. In their simulation all halos form close
to initial density peaks and they also found a strong correlation between protohalo density
and ellipticity.

2.3.3 Excursion set model of peaks

The excursion set approach considers all points in space, looking for a statistical description
of mass structure in bound objects. The peak model can be combined with excursion set
theory by imposing that peaks on a given smoothing scale are counted only if they satisfy
a first crossing condition.

Bond and Myers (1996) used a numerical prescription (the ’peak-patch’ approach)
studying an excursion set formalism for peaks in order to solve the cloud-in-cloud problem.
Sheth et al. (2001) claimed that an excursion set formalism that takes into account only
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Figure 2.8: Comoving number den-
sity of peaks found in two simu-
lations (red and blue curve) as a
function of the filter mass. The
range of smoothing scales go from
Mf = Mpart (unsmoothed density
field) to Mf = 1.16 × 1016h−1M�.
The theoretical peak number den-
sity expected from the peaks the-
ory is shown for three different fil-
ters (Ludlow and Porciani, 2011).

Figure 2.9: Cumulative fraction of
halos founded in two simulations
(red and blue curve) that contains
peak particles of every smoothing
scale (dashed) and in the range
1/2 < MFOF /Mpeak < 2 (dot-
dashed) Solid curves identifies the
Poisson errors to the cumulative
fraction of halos associated with
peaks of the same characteristic
mass (Ludlow and Porciani, 2011).

special positions (like peaks) is necessary. Moreover, recent numerical simulations (Ludlow
and Porciani (2011)) showed that a large fraction of halos forms in correspondence with
peaks. So, different attempts have been provided to unify the two approaches. Sheth et al.
(2001) wrote a form for the number density of halos in a certain mass range, depending
only on ν. However, this formula underpredicts massive clusters. As a consequence, one
more parameter (q) has been taken into account in the fit f(√qν), finding a universality of
q. Paranjape and Sheth (2012) investigated the origin of q 6= 1, given the fact that q < 1
emerges only in a statistical description of the number density of halos but almost never
in an object-by-object analysis. Therefore, they search for a way of integrating the peaks
approach within the excursion set formalism creating an excursion set model for peaks.
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Figure 2.10: Overdensity field in proximity of a halo with Mpk 'MFOF (left) and Mpk ≤
MFOF /4 (right; peakless halos). Red dots are the proto-halo particles for a halo identified
at z = 0. The orange curve corresponds to a density contrast δs = 1 and the yellow one
corresponds to the linear collapse threshold (δs = 1.686) (Ludlow and Porciani, 2011).
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CHAPTER 3

A numerical approach: N-body simulations

3.1 General overview

Formation and properties of dark matter halos can be addressed with both N-body simula-
tions and analytic models. In Chapter 2 we briefly inspected the main analytic approaches;
among them, the Press-Schechter formalism is the most developed to date. However, the
study of the inner properties of halos is very complicated to approach analytically, because
of the strong non linearity of the involved equations. N-body simulations are instead more
suitable to study the clustering in the non-linear regime and provide numerical solutions
for the equation of motion of many particles that interact gravitationally.

N-body simulations of the gravitational collapse of a collisionless system of particles
pre-dates the CDM model. The first cosmological simulations of structure formation date
back to Press and Schechter (1974) and in the 1980’s simulations began to be widely used.
In the 1990’s there was a huge growth both in the size of cosmological simulations and in
the sophistication of the physics and in the last years simulations with a huge number of
particles and very different mass resolutions have been run.

The employment of N-body simulation needs to setup the initial conditions, to compute
the force field for a certain configuration of particles and to move each particle following
this force field. In order to run a cosmological N-body simulation with Np particles
populating a region with volume V, we need to take into account the following physical
requirements (Bagla and Padmanabhan, 2004):

• Periodic boundary conditions: the real universe does not have a boundary. A
method is hence needed to fill with matter the region outside the simulation box.
Periodic boundary conditions are of fundamental importance because otherwise most
of matter within the simulation volume would collapse towards the box center.

45
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• Average density: the average density of the box should be equal to the average
density of the universe.

• Mass resolution: the mass resolution should be high enough, in order to resolve
the object of interests; otherwise, the employment of N-body simulations is totally
unuseful. In this work we use N-body simulations with different mass resolutions in
order to have a large halo statistic over a wide range of masses and to study inner
properties of halos.

• Collisionless: Each particle in an N-body simulations has a mass equal to a huge
amount of real particles (whatever they are). Therefore the simulation particles must
interact in a purely collisionless manner.

One of the issues arising with N-body simulations is the huge computational cost re-
quired, expecially in the calculation of forces between particles. Even simulations evolving
few hundreds of particles requires too much time when a direct computation of force is
employed. Some schemes have been provided to avoid this problem and reduce the com-
putational time:

• Particle Mesh (PM): particles are converted in a grid/mesh of density values
choosing between different interpolation schemes. The Poisson equation for gravita-
tional potential is then solved in the Fourier space:

φ(~k, t) = 4πGa2 ρ(~k, t)
k2 (3.1)

where ρ and φ are the discrete Fourier transforms of respectively the mass density
and the potential. The gravity field is then obtained by transforming the potential
back to the spatial domain. Finally, the force is interpolated from the grid back to
particles that can now be moved. There are different ways to interpolate a system
of particles on a grid. The simplest one is the ngp (Nearest Grid Particle) method,
where each particle is assigned to the closest grid point with no contribution of mass
to any other one. This method produces large truncation errors (Efstathiou et al
1985, Hockney and Eastwood 1988) and so another method becomes to be largely
used, the cloud-in-cell (cic) scheme, where particles are interpolated to the eight
grid points defining the cubical mesh cell containing the particle. So, one particle
can contribute mass to several cells. The force fluctuations introduced by the sharp
edges can be reduced by using a higher-order interpolation scheme, the Triangular
Shaped Cloud (tsc), which uses the nearest 27 grid points.

The PM method requires O(N)+O(Np logNp) operations to evaluate the force acting
on all particles and hence it has a good speed. However, the inverse square law is
poorly approximated by the forces for pair separations less than several grid points.
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• Particle-Particle Particle Mesh (P 3M): This method improves the resolution of
PM method and was first applied in cosmology by Efstathiou and Eastwood (1981).
The force obtained in a PM algorithm is supplemented by a direct summation of
contribution from particles (Hockney and Eastwood 1988 and Efstathiou et al 1985)
with separation equal or lower than a cell.

• Tree: In high resolution cosmological simulations the P 3M scheme is not a good
chance when strong clustering occurs and the cost of the direct summation becomes
dominant. Therefore the direct summation is usually replaced by a tree code (Xu
1995) scheme in which the particle distribution is organized in a hierarchical tree
structure. In tree codes the force between particles of distant regions is calculated
using the centers of mass of these regions rather than calculating forces between every
particle, strongly reducing the number of operations to O(NlogN) (Barnes and Hut
1986, Bouchet and Hernquist 1988). The employment of a Fast Multipole Method
permits to reduce the computational effort to O(N), calculating forces between two
nodes rather than between individual particles and nodes. This method require
a force softening for gravitational interactions in order to avoid hard scatterings
between nearby particles (typically either with a Plummer or a cubic spline kernel).
The force resolution is then given by the softening length εsoft.

3.2 Cosmological simulations

Despite the importance of the excursion set theory and the peaks formalism to understand
some properties occurring in mass distribution, spatial clustering and assembly history
of dark matter halos, it is clear that the future of structure formation will be hold by
numerical simulations. Cosmological simulations are usually split in full-box and zoom-
in simulations. Zoom-in simulations focus on one halo of interest in order to study its
internal structure and its substructures with high resolution. Full-box (or cosmic scale)
simulations usually cover a significant part of universe, employing only one particle mass
and particle resolution and studying in this way the large scale structure and statistical
properties of dark matter halos. Some important cosmic scale simulations are:

• Millennium-XXL. It was run in 2010 by the Virgo Consortium at the Julich Su-
percomputer Centre in Germany with the aim of studying the impact of galaxy
formation on cosmology by making evolve 303 billion particles.

• DEUS FUR. It employs more than 10 billion particles within a box of 21h−1Gpc
(the entire observable universe). It uses a particle mass of 1.2×1012M� that prevents
the resolution of individual galaxies. This simulation was run with a modified version
of the RAMSES code with the main purpose of studying the imprint of dark energy
on the cosmic structure.



48 CHAPTER 3. A NUMERICAL APPROACH: N-BODY SIMULATIONS

Figure 3.1: Comparison of the galaxy distribution in redshift surveys and in mock cat-
alogues realized by applying semi-analytic galaxy formation to the assembly trees of the
Millennium simulation (Frenk and White, 2012).
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3.2.1 Le SBARBINE simulations

This work is based on data obtained employing four simulations, part of Le SBARBINE
simulations cosmological set.

Le SBARBINE simulations set is composed by six Dark-Matter-only cosmological sim-
ulations run in 2013-2014 by the Padova cosmology group using the publicly available code
GADGET-2. The initial conditions and the assumed background are consistent with re-
cent Planck results (Ade et al., 2014): Ωm = 0.30711, ΩL = 0.69289, Ωb = 0.04825,
h0 = 0.6777. They follow the evolution of 10243 particles and provide a good spatial and
mass resolution by varying the box and the mass resolution accordingly to each other in
order to avoid the risk of resolution effects (see also Despali et al. (2014)). The main
parameters of the six simulations are listed in 3.1.
In this work we use only four simulations (Ada, Bice, Cloe, Dora) in order to have a good
mass resolution on the mass range in which we are interested.

N M (Ms/h) Box (Mpc/h) z random soft (Kpc)
Ada 1024 1.94× 107 62.5 124 919374 1.5
Bice 1024 1.55× 108 125. 99 834512 3.
Cloe 1024 1.24× 109 250. 99 726351 6.
Dora 1024 9.92× 109 500 99 574656 12.
Emma 1024 7.94× 1010 1000. 99 129485 24.
Flora 1024 6.35× 1011 2000 99 564738 48.

Table 3.1: Main parameters of the cosmological simulation set Le SBARBINE.

3.2.2 Initial conditions

Starting from an initial uniform state (’glass’ distribution) of particles, initial conditions
are imposed by way of perturbations. The ’glass’ distribution has been realized by evolving
particles from a Poisson distribution using an inverted sign of Newton constant. The
position of particles has been perturbed according to the growing mode solution of linear
theory in order to obtain a Gaussian random field. The initial Power Spectrum was
generated using the CAMB Code (Lewis et al., 2000) (see results for different simulations
in Fig. 3.2).

Initial conditions are produced by perturbing a glass distribution with N-GenIC, which
requires as input parameters:

• the initial Power Spectrum

• a glass file

• the properties of simulations (like the mass resolution, the box size, ...)
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Figure 3.2: Initial power spectrum of the six simulations. The two black shaded lines show
the input linear power spectrum at z=99 and z=124.
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• a random number used to generate the initial particles positions from the glass file

3.3 Halo properties
In this section we briefly summarize the main properties of dark matter halos, taking
into account their internal structure, their formation histories and their abundance and
distribution. We focus mainly on the properties inspected with the employment of N-body
simulations.

3.3.1 Halo formation

As we discuss in the previous chapter, the first structures to collapse are small. Larger
structures form by merging of smaller ones and by accreting matter from the intercluster
medium. Most mergers are minor, not altering the halo structure. Major mergers (in-
volving halos of similar mass) can bring material to the inner core, but without modifying
critically the internal mass distribution (Wang and White 2009). An inside-out forma-
tion scenario is generally assumed: a bound core collapses earlier and then other material
accretes.

Halo formation time

Lacey and Cole (1993) found an expression for the halo formation times using halo counting
argument. They define the formation time as the redshift at which half of the final halo
mass has been assembled in a single progenitor. Their equation has the form:

δc(tf ) = δc(t0)w̃
√
σ2(M0/2)− σ2(M0) (3.2)

where the scaled variables
w̃ ≡ (w − w0)/

√
Sh − S0 (3.3)

and:
S̃ ≡ (S − S0)/(Sh − S0) (3.4)

permit to express the distribution of formation times independently of the spectral index
n in the range of physical interest. Knowing δC(tf ) the expression is easy to solve. The
work of Lacey and Cole (1993) lays on the assumption of a spherical collapse for halos.
However, this choice leads to underestimate the redshift of halo formation (Lin, Jing and
Lin, 2003; Giocoli et al. 2007)). Giocoli et al. (2007) searched for a better description
of halo formation using a model based on the ellipsoidal collapse model. A comparison
with GIF2 numerical simulations showed that the EC prediction describes quite well the
median formation redshift. The fact that their predicted expressions are broader than
the one found in simulation is ascribable to the assumption of uncorrelated steps in the
excursion set walks (Sheth and Tormen, 2002), whereas some correlations between halo
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formation and environment have been found (Sheth and Tormen (2004); Gao et al. (2005);
Harker et al. (2006); Wechsler et al. (2006)).

Giocoli et al. (2012a) found a fitting formula useful for different definition of formation
times in terms of f :

P (> wf ) = αf

ew
2
f + αf − 1

(3.5)

where:
αf = 0.815e−2f3/f0.707 (3.6)

.

3.3.2 Halo density profile and concentration

The first simulations studying the formation of elliptical galaxies found virialized structures
with de Vaucouleurs or Einasto type density profiles, similar to observations of elliptical
galaxies. Self-similar infall models predict scale free, nearly isothermal profiles ρ ∝ r−2,
whereas simulated profiles are steeper in the outer parts and shallower in the inner regions.
CDM halos have some similarities with spherical infall models:

• particles that collapse in early peaks are located closer to the potential minima of
the entire turn-around region and end up closer to the center of the final halo

• the typical particle apocenter distances are close to their turnaround radii.

Because of this, modified infall models can reproduce some of the features of halo
density profiles found in cosmological simulations.

Over a large mass range the spherically averaged CDM halo density profile can be
approximated with the same universal form (Navarro and White, 1996):

ρ(r) = ρcritδc
(r/rs)γ(1 + r/rs)3−γ (3.7)

where γ = 1, the scale radius r−2 is related to the peak circular velocity scale by rV max =
2.163rs, ρcrit is the critical density of the universe and δc is a dimensionless parameter
related to concentration by

δc = 200
3

c3

[ln(1 + c) + c/(1 + c)] . (3.8)

The halo concentration has been defined in different ways. One of the most common
methods involves the scale radius of the NFW profile and the halo virial radius:

cvir = rvir
rs

(3.9)
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Therefore, the NFW profile can be fully specified by the concentration and the halo mass.
These two parameters have shown a correlation in simulations: the average concentration
of a halo decreases weakly as a function of mass. Therefore, the NFW density profile can
be described by a single free parameter, the concentration, which can be related to virial
mass (Duffy et al. (2008)):

c = 6.67(M200/2× 1012h−1M�)−0.092 (3.10)

for relaxed halos. Halo concentrations are related to the halo formation time, so that halos
that form first tend to have higher cvir and ρs at z = 0. Small halos form earlier than
bigger ones and so their concentration tends to be higher.

The universal density profile in the form of Navarro-Frenk-White is believed to arise
from the inside-out process of halo formation. A possible explanation is that the relaxation
mechanism that produces equilibrium is independent of the initial conditions and merger
history (NFW 1997). However Syer andWhite (1998) proposed that the NFW profile could
arise by the halo mass history, suggesting a possible universal halo mass history profile
(Sheth and Tormen (2004);Giocoli et al. (2012a); Salvador-Solé et al. (2012)). Ludlow
et al. (2013) compared the mass accretion history, expressed in terms of the critical density
of the Universe, with the NFW density profile, expressed in units of enclosed mass and
mean density within r, in a mass-density plane, showing that the halo mass histories, if
opportunely scaled, follow the NFW profile. Correa et al. (2015) try to link the halo mass
history with the halo concentration.

High resolution numerical simulations resolving scales around 0.01r200 found system-
atic deviations from the NFW profile, with much denser inner parts (Navarro et al. (2004);
Hayashi and White (2008); Navarro et al. (2010); Navarro et al. (2010); Diemer and
Kravtsov (2014)), leading sometimes to the use of Einasto profiles where the logarithmic
slope is a power law of radius (Einasto, 1965):

dlnρ/dlnr ∝ (r/rs)α (3.11)

The Einasto profile fits better not only in the center suggesting that the addition parameter
α really characterizes dark matter halos (Merrit et al. 2006; Klypin et al. 2014). A very
interesting result of Ludlow et al. (2003) is that halos white profiles well approximated
by Einasto form, present also accretion histories that deviate from the NFW shape in a
similar way.

3.3.3 Halo bias

A fundamental problem in cosmology is the relation between the spatial distribution of
galaxies and galaxy clusters and the underlying matter. In the standard cosmological
model galaxies are assumed to form within dark matter halos. Therefore the problem of
galaxy biasing can be tackled by first understanding how dark matter halos are distributed
respect to the dark matter distribution (Mo and White 1996; Catelan et al. 1997; Sheth
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and Lemson 1999). The initial Gaussian distribution of density fluctuations is completely
described by its power spectrum. Therefore, it is possible to use the statistics of the
initial conditions in order to understand the clustering of halos once they are associated to
specific regions in the initial density field. This approach has been used by Kaiser (1984)
in order to explain the clustering of the Abell clusters in the light of the peaks statistics
in an initial Gaussian field. Bardeen et al. (1986) developed this formalism, showing that
the "galaxy biasing" arises when galaxies are associated to high peaks of the initial density
field. Some issues emerging in Bardeen et al. (1986) are discussed by Bond and Myers
(1996) and Mo and White (1996).

The halo fluctuations can be related in the linear bias model to the local matter density
fluctuations

δh = bδ (3.12)

where δ ≡ δρ/~ρ is the overdensity and b is the bias parameter. However the halo clustering
does not depend only by the initial peaks clustering (δL) but also by the motion of peaks
along large scale flows of matter. At later time and linear order the previous equation
becomes:

δh(a) = δL + δm(a). (3.13)

On large scales the second term is simply the matter overdensity and we can relate the
halo and mass field at the time in which halos are identified (Eulerian bias) as:

b(a) = δh(a)/δm(a) = 1 + δL/δm(a) = 1 + bL(a). (3.14)

While the matter overdensity depends on time, the Lagrangian clustering of peaks does
not, only reflecting the clustering of peaks in the initial conditions. It follows that the
former one will grow over time and the latter will become less important. So, a halo,
assigned in the PS formalism to a Lagrangian patch with coordinates q, will not collapse
in the same position but in the Eulerian point:

x(q, z) = q + S(q, z) (3.15)

where S(q,z) is the displacement vector at the epoch of the halo collapse z = zf (q,M).
The Lagrangian patches from which the halos originated can can be written as a Taylor
series in the dark matter density fluctuation field. If the formation of halos is assumed to
be influenced by quantities other than the local density, Lagrangian bias will be non local
and these variables should be taken into account in the Taylor series.

Assembly bias

The term Assembly Bias is used to describe the fact that the clustering of halos depends
not only on their mass but also on the details of their assembly history. Recent N-body
simulations have found a dependence at fixed mass between halo formation times and
the environment: halos in dense regions form earlier than halos in less dense environ-
ments (Sheth and Tormen (2004); Avila-Reese et al. (2005); Harker et al. (2006); Zentner
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et al. (2005)). Using the Millennium Simulation of Springel (2005), Gao et al. (2005)
demonstrate that the standard ΛCDM paradigm predicts a dependence of the spatial dis-
tribution of halos at fixed mass and their formation times. This dependence is negligible
for high-mass halos (M > M∗) but increases for lower mass objects. This result seems to
be incompatible with the Press and Schechter (1974) approach for the growth of structure
that predicts that halo clustering depends only on halo mass. Moreover it contradicts the
assumption that the galaxy content of a halo of given mass is statistically independent of
its larger scale environment (Kauffmann et al. (1997); Peacock and Smith (2000); Benson
et al. (2000) and others) that is an important assumption of the Halo Occupation Distribu-
tion (HOD) model. Some modifications to the Press-Schechter model have been explored
in order to take into account the assembly bias. A dependence on the environment can be
introduced using the ellipsoidal dynamics, where the time needed for a region to virialize
increases with the initial shear (Sheth et al., 2001) and so the tidal field generated by
the large scale environment produces an environmental effect (Wang et al., 2007). The
way in which the ellipsoidal collapse model can produce an environmental effect similar
to the one found in N-body simulations is extensively inspected with different approaches
in Desjacques (2007) and Sandvik et al (2007). However in both cases some issues remain
unsolved. Assembly bias has been inspected using the peak model by Dalal et al. (2008).
At large scales they compare predictions from the statistics of Gaussian random fields
and numerical simulations finding a very good match. At low masses they suggest that
assembly bias arises mainly due to the cessation of mass accretion onto a subpopulation
of small halos.
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CHAPTER 4

Statistics of halos and parameters

In this chapter we present the basis of the analysis developed in following chapters. In
section 4.1 we describe how the bound objects employed in our work (i.e. dark matter
halos) have been identified and selected. We go through the main algorithms provided for
the halo identification and we account for our choice. Moreover, we present halo relaxation
criteria and we describe how halo mass centers and moving centers have been defined. In
section 4.2 we explain how the deformation tensor elements have been calculated in the
simulation initial conditions. From the eigenvalues of the deformation tensor we calcu-
late the parameters of the ellipsoidal collapse and the traceless shear q, emerging from a
perturbative analysis of the ellipsoidal collapse model. We show the distribution of these
parameters calculated over all field and smoothed on different scales, and we compare our
results with theoretical predictions.

4.1 Halos

4.1.1 Halo identification criteria

Some different methods can be found in literature to identify halos in numerical simula-
tions. One of the most employed is the Friends-of-Friends (FoF) method (Davis et al.
(1985)), a percolation algorithm that links particles closer than a certain value given by
bd (where b < 1 is the linking length and d is the mean inter-particle distance). The halos
are therefore identified on the base of physical proximity: they appear to be realistic,
closely following the isodensity contours of the identified structures. The surface of bound
structures is ρ/ρ̄ ∼ 3/2πb3 and so it is defined by a free parameter, the linking length
b: all particles within a linking length from each other are linked into a single group. A
common value for the free parameter is b = 0.2. If we assume a density profile decreasing

57
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with r−2 for spherical halo, we obtain ρ/ρ̄ ∼ 60 and a mean overdensity of about 180,
very close to the density threshold of the spherical sollapse model (δ ' 178). However,
a problem of the FoF algorithm is that it may link together dynamically different halos
into a single virialized structure. Moreover, it does not employ any method to check if the
identified halos are physically bounded. This last problem is present also in the Spherical
Overdensity (SO) method. However, contrary to the FoF algorithm, the SO method forces
halos to have a well defined shape (a sphere) and avoids the risk of connecting different
halos. Indeed, it works by growing spherical shells around the halo center (or a density
peak) in order to find the radius at which the mass overdensity reaches the threshold

δvir = ρ(< R)− ρb
ρb

(4.1)

where ρb is the background density of the Universe and ρ(< R) is the mean density inside
the radius R. Despite a more realistic algorithm has been provided by Despali et al. (2013)
in order to identify triaxial halos (the ellipsoidal halo finder (EO)) and find more realistic
shapes, the SO method reproduces sufficiently well the halo shape. Moreover, the centers
of mass of halos identified with SO and EO methods are very similar. We then decide to
employ the SO identification method because it is more suitable to compare halos with
quantities smoothed with spherical filters.

4.1.2 Halo mass selection

The simulation with the highest mass resolution (Ada) has a particle mass of 1.9×106M�.
We select halos with at least 103 particles; so, the smallest halo that we can resolve has a
mass of about 1.9× 107M�, nearly equal to M∗/256, where M∗ = 4.9× 1012h−1M� is the
typical mass at which a virialized halo forms at the actual cosmic time (z = 0). We then
consider fifteen mass bins [M/

√
2,
√

2M ], where the mass M covers a range from M∗/128
to 128M∗. In Tab. 4.1 we show the number of particles with which halos of different masses
are resolved in the the simulations. We consider halos identified at zid = 0 together with
three more identification redshifts: zid = 1, zid = 2 and zid = 4. When the identification
redshift grows, the typical mass forming at that zid shifts towards smallest masses. As a
consequence, the halo statistics in the highest mass bins is highly reduced. Nevertheless,
we consider the same mass bins for computational ease and we compare results at different
redshifts using scaled units ν = δSC(zid)/σ(M), where

δSC;zid = δSC(z = 0) D(zid)
D(z = 0) (4.2)

is the threshold of the spherical collapse model rescaled with the growth factor D(zid) at
the different redshifts and σ2(M) is the variance of the initial density fluctuation field when
smoothed on the scale R = (3M/4πρ̄)1/3. By definition, the typical mass forming at each
redshift corresponds to ν = 1. So, at zid = 0 the selected mass bins selected are distributed
around this value, whereas at larger redshifts the mass range expressed in units of ν is
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Figure 4.1: Friends-of-friends group containing a cluster. Particles have been weighted
proportionally to the local dark matter density in order to highlight the substructures
(Springel et al., 2001a).

always larger. So, we can investigate a large range of ν but a comparison of halo properties
at different redshifts can be addressed only in a small range. Moreover, the statistics of
halo at the highest masses happens to be largely reduced as the identification redshift
grows. Tab. 4.1 shows the range of masses spanned by each simulation together with the
corresponding value of ν at the different identification redshifts. Given the different mass
resolution, each simulation covers a different mass range. In what follows, we consider
only mass bins with at least 30 halos in order to have a sufficiently large statistics. The
number of halos identified at different masses and identification redshifts are listed in A.1.
We remark that in this work the notationM∗ refers exclusively to the typical mass forming
at z = 0. When comparing different redshifts we will discuss preferably in terms of ν to
avoid any misunderstanding.

4.1.3 Relaxation criteria

Halos identified at different redshifts not only cover a different range in masses but also
have a different formation history. For this reason some halos could present oddities that
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Figure 4.2: Halo identified with a
Spherical Overdensity algorithm in the
Dora simulation, part of Le SBAR-
BINE cosmological set (Despali).

Figure 4.3: Halo identified with a El-
lipsoidal Overdensity algorithm in the
Dora simulation, part of Le SBAR-
BINE cosmological set (Despali).

Number of particles
M∗/128 M∗/64 M∗/32 M∗/16 M∗/8 M∗/4 M∗/2 M∗ 2M∗ 4M∗

Ada 7903 15807 31613 15807 31613 63226 126452 252904 505808
Bice 1976 3952 7903 15807 31613 63226 126452
Cloe 1976 3952 7903 15807
Dora 1976

8M∗ 16M∗ 32M∗ 64M∗ 128M∗
Bice 252904 505808
Cloe 31613 63226 126452 252904 505808
Dora 3952 7903 15807 31613 63226

Table 4.1: Number of particles with which the four simulations employed in this work
resolve the fifteen characteristic masses. We show only mass bins spanned by the different
simulations.
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make them unsuitable for our analysis and make our results more difficult to interpret.
We consider some relaxation criteria and in the next chapers we often compare results
obtained with both all and selected halos. In this way we can understand how much
non relaxed halos affect final results. The selection criteria we take into account are the
following:

1. The mass of the main progenitor must not surpass the mass of the final halo for
more than 10% at any time.

2. The total energy must be negative.

3. The center of mass of mass offset from the potential minimum must be less than 5%
or 10% the virial radius.

4. The halo mass does not decrease more than 10% between two consecutive snapshots.

5. The mass of a halo at the fourth from last snapshot must be at least 10−1.5% of the
final mass i.e. the halo must not accrete too much mass in the latest four snapshots.

The first criterion ensures that the halo does not lose too much mass before its identi-
fication. The second criterion is related to the binding energy of the halo; in fact, SO
identification criterion does not assure that a halo is physically bounded. The third crite-
rion is related to the distance between the center of mass and the most bound region and
it assures that the halo shape has not been strongly distorted during recent merger events.
Neto et al. (2007) use a similar criterion (more specifically, they impose an offset lower
than 7% with respect to the mass center of FoF halos) and they find that this criterion
removes the vast majority of unrelaxed haloes. The last two criteria are restrictions on the
merger history rate. Clearly, some halos can be affected by more than one restriction. We
investigate these criteria mixed in different combinations. In Fig. 4.4 we show the fraction
of relaxed halos respect to the total number as a function of ν for halos with zid = 0. We
notice that the first two criteria affect mainly low mass halos, whereas the importance of
the third criterion grows with mass. When considering the first three criteria together
we notice that the fraction of halos is almost mass independent; a similar trend (but a
slightly lower fraction) has been found at larger zid’s. When taking into account all five
criteria together we reduce drastically the number of halos to be considered relaxed. We
generally use the first three criteria together in order to reduce the number of non relaxed
halos equally with the mass and to maintain a good statistics. Unless otherwise specified,
the wording relaxed halos will refer to halos selected with this combination. However, in
this work we often employ different combinations of relaxation criteria in order to inspect
how contraints on halo properties and formation history affect our measures. The number
of relaxed halos at different masses and identification redshifts is listed in Tab. A.2.

In the last section we show how the different relaxation criteria affects the distribution
of formation times.
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-1 0 1

Figure 4.4: Fraction of relaxed halos identified at zid = 0. We consider separately the first
three relaxation criteria and two combinations of different criteria. The error bar is given
by
√
N rel
h /N tot

h . We notice that the third criterion selects halos equally with the mass; a
similar trend (but a slightly lower fraction) has been found at larger zid’s.
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4.1.4 Definition of the halo center

Once halos have been identified, their particles can be traced back to different redshifts
in order to study the time evolution of halo properties. Despite the spherical halo shape
imposed by the SO method at the identification redshift, the bunch of halo particles at
the different redshifts has generally a strongly irregular shape, depending on the halo
formation history at different times. So, it can be useful to define two different halo
centers:

• Center of Mass (CM). Since the particle mass is costant in a given simulation,
center of mass is simply obtained by averaging the distances of the different halo
particles.

• Moving Center (MC). This center marks the most strongly bounded region of
the halos and is obtained in this way: we draw a sphere around the halo center of
mass enclosing all the protohalo particles and we shrink it of a certain factor; at
this point we calculate the center of mass of the halo particles within the shrunk
sphere, we center upon that and we go on until the decreasing radius reaches a
certain threshold. The mass center that we calculate in the last iteration is what we
call the halo moving center.

The moving center is useful when inspecting the densest halo regions, whereas the center
of a mass characterizes better the center of the whole protohalo and so it is more respectful
of its shape.

In this work we generally use the center of mass because it is more consistent with our
analysis. However, we employ sometimes both centers to check some halo properties.

4.2 Parameters

One of the aim of this work is to study the Lagrangian properties of dark matter proto-
halos. To do so we need to compare the halo seed locations with the distribution of certain
quantities. These quantities are calculated from the eigenvalues of the deformation tensor,
obtained by smoothing the initial density field using an appropriate window function.

4.2.1 Calculation of the deformation tensor

The deformation tensor at each point is defined as the second derivatives of the gravita-
tional potential Φ and it could be seen as a tidal force. We use the code smooth_Gauss.f90
in order to calculate the elements of the deformation tensor after interpolating the particle
distribution on a grid. This code is split in two parts:

1. The general aim of the first part of the code is to read a discrete particle distribution
and to output a 3-dim grid for displacements. Each side of the grid has 1024 cells,
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so we have 10243 cells in the entire box: as much as the number of particles. At first
the code reads the input parameters and the input data (i.e. positions and velocities
of particles in the initial conditions). Since positions are in h−1Mpc, velocities are
converted to positions using h = 70. Now we calculate the unperturbed positions
and we wrap to take into account the boundary conditions. The displacements are
now expressed in units of the box, and rescaled to z = 0 using the scale factor
(a = 1/(z + 1)). Finally the code interpolates the distribution on a grid. Different
interpolation methods have been discussed in 3.1. In this work we compare the
distribution of the deformation tensor elements using the different interpolations
and we finally choose a tsc interpolation, as we discuss in 4.2.1. We then save the
displacements in order to use them in what follows.

2. The second part of the code smooths the grid on certain scales using a window
function and calculates the elements of the deformation tensors.
We smooth displacements with a Top Hat (TH) filter, working in the Fourier space
for computational ease. In this space the filter takes the form shown in 1.14.
In the Zel’dovich approximation the deformation tensor corresponds to the first
derivatives of the initial displacements,

ζij = − ∂2Φ
∂xi∂xj

= −∂ψ
∂x

. (4.3)

Hence, for each grid point, we calculate the nine elements of the deformation tensor:
Dxx, Dxy, Dxz, Dyx, Dyy, Dyz, Dzx, Dzy, Dzz.

Protohalos and radii of interest

One of the aim of this work is the study of the distribution of protohalo Lagrangian
properties. We define protohalos as follows. Let’s consider a halo identified at zid
within a bin of characteristic massM . The protohalo is obtained by tracing the halo
particles back to z = 99, when the density field can be considered to be linear. We
choose smoothing scales corresponding to the characteristic bin masses M shown in
Tab. 4.1. Since σ2(M) << 1 at z = 99, the smoothing scales can be calculated as

RL = 3

√
3M
4πρ0

(4.4)

where ρ0 is the initial density. Tab. 6.1 shows RL in units of h−1Mpc together with
the number of grid points spanned by these scales in the different simulations.

Symmetrization of the deformation tensor

The corresponding symmetrical elements of the deformation tensor are: Dxy vs Dyx; Dxz

vs Dzx; Dyz vs Dzy. The matrix should be symmetrical and so the six elements are
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Smoothing scales
M∗/128 M∗/64 M∗/32 M∗/16 M∗/8 M∗/4 M∗/2 M∗ 2M∗ 4M∗

M(1012h−1M�) 0.39 0.78 0.156 0.312 0.625 1.25 2.45 4.9 9.8 19.6
R[h−1Mpc] 0.48 0.6 0.76 0.95 1.2 1.51 1.90 2.40 3.02 3.80
RA[gp] 7.78 9.81 12.36 15.57 19.62 24.72 31.14 39.24 49.43
RB [gp] 7.78 9.81 12.36 15.57 19.62 24.72 31.14
RC [gp] 7.78 9.81 12.36 15.57
RD[gp] 7.78

8M∗ 16M∗ 32M∗ 64M∗ 128M∗
M(1012h−1M�) 39.2 78.4 156.8 313.6 627.2
R [Mpc] 4.79 6.04 7.6 9.6 12.08
RA[gp]
RB [gp] 49.43
RC [gp] 19.62 24.72 31.14 39.24 49.43
RD[gp] 9.81 12.36 15.57 19.62 24.72

Table 4.2: Lagrangian scales in units of Mpc and corresponding number of grid points
for the different simulations. Capitol letters specify the different simulations: A=Ada;
B=Bice; C=Cloe; D=Dora.

supposed to be very similar. Fig. 4.5 shows a comparison between the corresponding
elements of the deformation tensor obtained with GIF2 simulations. More specifically,
we consider a box slice and we plot symmetrical elements calculated employing all three
interpolation methods. We compare results using three smoothing radii: 1,5 and 9 grid
points (given a box side of 110h−1Mpc for GIF2 simulations, these scales correspond to
about 0.28, 1.38 and 2.48 h−1Mpc). The dispersion of the values decreases going towards
larger smoothing scales and is minimum when using the tsc interpolation. We then decide
to employ the tsc interpolation and moreover we average symmetrical values (see Tab.
4.3) in order to obtain a perfectly symmetrical deformation matrix.

Average of the symmetrical elements
symmetrical elements averaged element

Dxy, Dyx D̄XY = Dxy+Dyx
2

Dxz, Dzx D̄XZ = Dxz+Dzx
2

Dyz, Dzy D̄Y Z = Dyz+Dzy
2

Table 4.3: Symmetrization of the deformation tensor elements.

Distribution of the elements of the deformation tensor

As we explained earlier, the deformation tensor is very important for this work. Indeed
we use its eigenvalues to calculate the parameters of the ellipsoidal collapse model (δ, e
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Figure 4.5: Comparison between Dxy and Dyx, Dxz and Dzx and Dzy and Dyz obtained
with tsc interpolation in GIF2 simulations. The dispersion of the values is minimum when
considering larger smoothing radii and when using a tsc interpolation.

and p) and the traceless shear parameter q. The elements of the deformation tensor are

D11 = (−y1 − 3y2/
√

15− y3/
√

5)/3 (4.5)

D22 = (−y1 + 2y3/
√

5)/3 (4.6)

D33 = (−y1 + 3y2/
√

15− y3/
√

5)/3 (4.7)

D12 = D21 = y4/
√

15 (4.8)



4.2. PARAMETERS 67

D23 = D32 = y5/
√

15 (4.9)
D13 = D31 = y6/

√
15 (4.10)

where the yi are independent Gaussian variates with zero mean and variance σ(M)
(Bardeen et al. (1986), Sheth and Tormen (2002)). We notice that the mean is less
than 10−6 for all the elements and the variance

σ2
Di,j(rS) = 〈D2

i,j(rS)〉 − 〈Di,j(rS)〉2 (4.11)

has been listed in Tab.B.1 for all simulations and smoothing scales. Fig. 4.6 shows how
the (logarithm of) variance of the deformation tensor elements depends on the smoothing
scale.

4.2.2 Eigenvalues and parameters of interest

In the ellipsoidal collapse model the evolution of a patch in the initial conditions can be
described by the eigenvalues of the 3× 3 deformation tensor. In this work we neglect the
mass tensor and we assume that the final shape of the object is determined only by the
initial deformation tensor. This means that tidal torques, induced by the misalignment
between the deformation and the mass tensor, are subdominant (see Porciani et al. (2002)).

In the first part of this work we are interested in the study of parameters determined
in the whole field. So, we calculate the eigenvalues of the deformation tensor elements on
every grid point. We store the eigenvalues in descending order so that λ1 > λ2 > λ3 and
we study their distribution. To have an idea of how much their distribution moves away
from a Gaussian we calculate skewness and kurtosis. The skewness (γ1)is ultimately the
third standardized moment and is defined as:

γ1 = E[(X − µ
σ

)3] (4.12)

where σ is the standard deviation. Asymmetry can be estimated in some different ways.
We simply expresses skewness in terms of the non central moment E[x3]:

γ1 = E[X3]− 3µσ2 − µ3

σ3 . (4.13)

We can have a negative skewness when the left side of the curve is longer than the right
side; otherwise we have a positive skew. A symmetric distribution has a skewness equal
to 0. We estimate the kurtosis using the fourth standardized moment of the distribution:

β2 = E[(X − µ)4]
([(X − µ)2])2 (4.14)

where σ is the standard deviation. The value of mean and variance for the eigenvalues
can be seen in TabB.2. The mean has been predicted by the linear theory Doroshkevich
(1970):

λ̄1 = 3σ(M)√
10π

(4.15)
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-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 4.6: Variance of the three diagonal elements of the deformation tensor and the
averaged symmetrical elements, obtained by smoothing with a top-hat filter. Different
colors refer to different simulations: Ada (magenta), Bice (blue), Cloe (green) and Dora
(orange). As expected from Eq. 4.5-4.10 the variance of the diagonal elements is larger
than the variance of the symmetric ones.
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λ̄2 = 0 (4.16)

λ̄3 = −3σ(M)√
10π

(4.17)

and it is consistent with our results (see Fig.4.7 where we show the distribution of the
eigenvalues for three different smoothing scales).

We can also compare (Tab. B.3) the number of triplets with concordant and discordant
sign with the values found in literature. We found a perfect correspondence. As we
explained earlier, these percentages mean that in a Gaussian fluctuation field about 42% of
the initial volume forms sheets or filaments and the 8% forms void or spherical structures.

The parameters of the ellipsoidal collapse model are: δ, e and p. Although this work
doesn’t concern directly this theory of collapse, we use these quantities to inspect the
initial conditions. We remind the derivation of these parameters from the eigenvalues of
the deformation tensor.

• Density parameter:
δ = λ1(ti)λ2(ti)λ3(ti) (4.18)

• Ellipticity:

e = λ1(ti)− λ3(ti)
2δ(ti)

(4.19)

• Prolateness:
p = λ1(ti) + λ3(ti)− 2λ2(ti)

2δ(ti)
(4.20)

When δ > 0, we have e ≥ 0 and |p| ≤ 0. The probability to have the three eigenvalues in
descending order can be derived from the linear theory in the form:

p(λ1, λ2, λ3) = 153

8π
√

5σ6 exp

(
− 3I2

1
σ2 + 15I2

2σ2

)
× (λ1 − λ2)(λ2 − λ3)(λ1 − λ3) (4.21)

where σ ≡ σ(Rf ),I1 ≡ λ1 + λ2 + λ3, I2 ≡ λ1λ2 + λ2λ3 + λ1λ3 and δ ≡ I1. The integration
of p(λ1, λ2, δ − λ1 − λ2) over (δ − λ1)/2 ≤ λ2 ≤ λ1, and then over δ/3 ≤ λ1 ≤ ∞ leads to
a Gaussian distribution for δ with variance σ2 and mean 0, consistent with our results.

The equation of e and p has δ at the denominator. It follows that if δ tends to be zero,
these quantities skyrocket. Although e and p are largely employed to describe the shape
of the gravitational potential, some alternatives have the advantage of not depending on
a ratio of eigenvalues. In this work we employ the square root of the traceless shear q,
arising from a perturbative analysis of the ellipsoidal collapse model. It can be expressed
using the parameters of the ellipsoidal collapse model

q2 = I2
1 − 3I2 = δ2(3e2 + p2) (4.22)
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Figure 4.7: Distribution of λ1, λ2, λ3 smoothed with three different scales using three
different simulations: Bice, RS(M∗/8); Cloe, RS(M∗); Dora, RS(8M∗). The black curves
are Gaussian with mean and variance as predicted by the linear theory (see also Tab. B.2).

where I1 and I2 are rotationally invariant quantities equal to
I1 = λ1 + λ2 + λ3 (4.23)
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I2 = λ1λ2 + λ1λ3 + λ2λ3 (4.24)

(Sheth et al. (2013)). We remark that q, differently from e and p, is not coupled with δ
and the distribution of q2 is drawn from a χ2

5(σ) and so 〈q2〉 ∼ σ2 (Sheth and Tormen
(2002), where q is labelled as r). The distributions of δ and q calculated on all grid points,
using different smoothing scales can be seen in 4.8.
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Figure 4.8: Distribution of δ/σ(M) (top) and q/σ(M) (bottom) calculated on all grid
points with different smoothing scales. δ distribution is described by a Gaussian (red
curve), whereas q2 is drawn by a χ2 with five degrees of freedom (green curve).
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4.3 Distribution of formation times for relaxed and non re-
laxed halos

The most important halo properties like the concentration and the halo structure are
largely known to depend on the halo assembly history. The definition of a parameter
quantifying the formation time of a halo is therefore very important. A typical approach
defines the formation time of a halo as the redshift at which the halo main progenitor has
assembled a fraction f of the final halo mass, mMP (z) > fM0, where the main progenitor
is defined as the most massive progenitor of the most massive progenitor of the most
massive progenitor... and it is therefore different from the most massive progenitor at a
certain redshift (see also Giocoli et al. (2012a)). Given the importance of the formation
redshift on relating halo parameters, it is useful to properly estimate its distribution as a
function of the halo fraction f , M0 and z0. A scaled variable has been provided in order
to absorb the dependence on M and f:

wf = δc(zf )− δc(z0)√
σ(fM0)− σ(M0)

(4.25)

where δc(z) is the Spherical Collapse threshold extrapolated to the present time, σ(M)
is the mass variance smoothed on a scale R = (3M/4πρ̄)1/3 with ρ̄ equal to background
density. Different authors (Lacey and Cole (1993); Nusser and Sheth (1999)) estimate the
shape of the distribution for f ≥ 1/2 in the form

pf (wf ) =
( 1
f
− 1

)
erfc

(wf√
2

)
+
(
2− 1

f

)√ 2
π

exp
(
−
w2
f

2
)

(4.26)

and Giocoli et al. (2012b) show that this equation fits also for smaller values of f . In
this section we analyze separately the distribution of the formation time for both relaxed
and non relaxed halos. We first show how skewness and kurtosis evolve with f and with
different combinations of relaxation criteria. At a later stage we show how the distribution
of formation times can be model out using a Weibull distribution once we take into account
opportunely selected relaxed halos.

4.3.1 Importance of relaxation on the distribution of formation times

We consider the relaxation criteria and the halo masses presented in Section 4.1.3 and we
study the distribution of relaxed and non relaxed halos using fourteen different values of
the mass fraction f: 0.01, 0.02, 0.04, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8 and 0.9.

Given a relaxation criterion (or a combination of more criteria), we firstly analyze how
the distribution of formation times move away from a Gaussian distribution. To do so, we
investigate the distribution of skewness and kurtosis as a function of the mass fraction f.
We show the results in Fig.4.9 using relaxed (blue), non relaxed (red) and all halos (green).
Different panels show results for different relaxation criteria, identified with numbers as
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in Section 4.1.3. We show also the results of a Jarque-Bera test (full circles), testing the
normality of the distribution using both skewness and kurtosis. When imposing the second
relaxation criterium (i.e. the total energy must be negative; top right panel), skewness
and kurtosis are strongly reduced for relaxed halos; whereas, the effect of the first two
criteria is less important. When considering the first three criteria together (bottom left
panel) both skewness a kurtosis are very similar to zero for f ≤ 0.6. It is noticeable that
at f=0.5, a value frequently used in literature, the distribution of relaxed halos is very
similar to a Gaussian, with a small asimmetry due to the left constraint in zero. When
including the last two criteria, what obtained is not significantly different (bottom right
panel).

In the next section we study the distribution of formation times for relaxed halos
selected using together all five relaxation criteria.

Distribution of relaxed halos

We consider all five relaxation criteria and we show the distribution of relaxed halos in the
top plot of Fig. 4.10. As we discussed in Section 4.1.3, as long as f is small, the distribution
is similar to a Gaussian (blue curve) with the same mean and the same variance of the
distribution. As f grows, the average value of wf decreases (i.e. when a larger fraction of
assembled mass is assumed in the definition of the formation time, the halo forms later)
and the distribution departs from a Gaussian cause of the left constraint present at zero.
The green curve shows a fit with a Weibull distribution. By definition, a two-parameter
Weibull is null for values lower than 0, whereas for positive values the probability density
function is equal to

W (wf ; k, λ) = k

λ
(wf
λ

)k−1e−(
wf
λ

)k (4.27)

where k > 0 is the shape parameter and λ > 0 is the scale parameter. We show that the
Weibull distribution seems to fit qualitatively well for f larger than about 0.4 and, in this
range, its residuals are smaller and more symmetric respect to the Gaussian ones (bottom
plot).

Fig. 4.11 shows (in logarithmic scale) the results of a best fit procedure for the param-
eters of the Weibull distribution. It is remarkable that both the (logarithmic) scale and
shape parameter scale linearly when 0.2 ≤ f ≤ 0.6; this range includes the value f = 0.5,
frequently used in literature. Therefore, in this range the parameters of the Weibull follow
a similar power law, with exponent equal to about -0.25. At lower and higher f the scaling
is still linear in logarithmic units but the slope is different.

Distribution of non relaxed halos

Fig. 4.12 shows the distribution of non relaxed halos. This distribution diverges from a
Gaussian also for small values of f cause of a long tail towards very high wf . When consid-
ering high f, it is difficult to model out the distribution with a two-parameter distribution
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Figure 4.9: Skewness (triangles), kurtosis (squares) and a JB test (circles) as a function
of the mass fraction f. We show results for relaxed (blue), non relaxed (red) and all halos
(green). The six panels show results for different relaxation criteria, as defined in Section
4.1.3.
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0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
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Figure 4.10: Top plot: Comparison of the distribution of formation times wf of relaxed
halos, a Gaussian (blue) and a Weibull (green) distribution. We consider nine different
values of the mass fraction f and we select halos employing all five relaxation criteria.
Bottom plot: residual of a Gaussian (top panel) with the same mean and the same variance
of the distribution and residual of the best fit of a Weibull (bottom panel). We show results
for five different values of the mass fraction f.
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Figure 4.11: Logarithmic distribution of the shape parameter k (blue) and the scale pa-
rameter λ (red) as a function of the (logarithmic) mass fraction f. We take into account
fourteen different values of f.

function. In fact the shape of the distribution at low wf becomes strongly irregular and,
moreover, it strongly depends on the chosen combination of relaxation criteria. We find
similarities between the distribution of relaxed and non relaxed halos only when consid-
ering the highest f. In fact, at f = 0.9 both distribution are qualitatively well described
by a Weibull.

4.4 Summary

In this Chapter we showed how we identified halos in our simulations and the adopted
criteria in the selection of halo mass bin and relaxed halos. At a later stage we described
how the parameters of the ellipsoidal collapse model have been calculated from the eigen-
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Figure 4.12: Top plot: Comparison of the distribution of formation times wf of non
relaxed halos, a Gaussian (blue) truncated at five σ and a Weibull (green) distribution.
We consider nine different values of the mass fraction f and we select halos employing all
five relaxation criteria. Bottom plot: residual of a Gaussian (top panel) with the same
mean and the same variance of the distribution and residual of the best fit of a Weibull
(bottom panel). We show results for five different values of the mass fraction f.



4.4. SUMMARY 79

values of the deformation tensor. We then analyzed the halo formation time, opportunely
rescaled, and we showed that their distribution is easier to model out when considering
only relaxed halos. More specifically, we found that this distribution is well approximated
by a Weibull, a distribution with two free parameters.
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CHAPTER 5

The location of the halo formation

5.1 Correlation functions

The study of the halo formation can be addressed in different ways. In the peaks formalism
(Bardeen et al. (1986), Bond and Myers (1996)), gravitationally bound objects form in
correspondence of local maxima (i.e. peaks) of the linear density field smoothed on the
Lagrangian halo scale. This formalism has been also used to study the clustering properties
of halos (Desjacques (2008), Desjacques and Sheth (2010)) and their dependence on the
formation time (Dalal et al., 2008). Although a check of the peaks formalism on a object-
by-object basis have been done by some authors (Porciani et al. (2002), Ludlow and
Porciani (2011)), this approach has been tested mainly on a statistical way.

In this chapter we firstly explain how we identify peaks on the initial conditions of
simulations. We then investigate the correlation function between protohalo centers and
peaks of δ smoothed on various scales. In this way we consider not only peaks close to
the halo seeds but we can also investigate the peak distribution within a much larger
region. We also sjow how the correlation function changes when considering constraints
on the peaks height. Finally, we analyze the correlation function of protohalo centers with
peaks and valleys on the distribution of the traceless shear parameter q. Our purpose is
to understand how the constraint that the q distribution has a null gradient affects the
formation of halos.

5.1.1 Peak identification on the DM distribution at the initial conditions

Peaks (valleys) are points where the scalar field characterizing a certain parameter and
smoothed on certain scales has a local maximum (minimum). In what follows we are
interested on peaks of the distribution of two parameters: δ and the traceless shear q. The

81
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choice of the smoothing scales is related to halo mass bin (see Sec. 2 for details). Our
algorithm works as follows: we center at each grid point and we calculate the value of a
certain field smoothed on a certain scale. We then compare this value with those obtained
smoothing the same field centering on the six adjacent grid points. Given a direction,
if the value is larger (smaller) of those found on the two adjacent grid points, we have
a maximum (minimum) along that direction. Finally, for each grid point we store three
symbols, one for each direction with the following meaning:

• X: the value on a grid point is larger than the values on the two adjacent grid points
along a certain direction.

• N: the value on a grid point is smaller than the values on the adjacent grid points
along a certain direction.

• C: the value of the parameter grows along the positive direction.

• D: the value of the parameter decreases along the positive direction.

We call (local) peaks the points that are maxima along all three directions and we call
(local) valleys the minima. The number of peaks and valleys of δ and q for each smoothing
scale is visible in Tab. C.1 and Tab. C.2. In the same table we also show the number of
peaks obtained after imposing different constraints on the δ height. More details on this
point will be provided in the next section. We notice that the number of peaks decreases
as the smoothing scale increases and that peaks and valleys of δ are present in almost
equal quantity, as expected from symmetry considerations.

Fig. 5.1 shows the distribution of δ smoothed on nine different scales. Given a smooth-
ing scale, we compare the distribution of δ on all grid points (black histograms) and the
distribution of δ identified as peaks. Whereas the first distribution has zero mean, the
mean of the distribution of δpk is shifted towards larger δ’s.

5.1.2 Correlation functions

Whereas in most works (Ludlow and Porciani (2011)) peaks are selected in proximity of
protohalos, in what follows we consider peaks identified everywhere. This approach allows
us to analyze the peaks distribution within larger regions around the protohalo centers
and in principle it permits to study the clustering of peaks as a function of the smoothing
scale and the peaks height.

One way to approach this analysis is to calculate the cross correlation function between
quantities of interest (i.e. between centers and peaks/valleys). The correlation function
has been calculated as follows. Given a protohalo center and peaks on a certain scale,
we bin their distances over spherical shells built around the protohalo center. Finally, we
divide the number of counts within each shell (Ncounts) by counts obtained using a random
distribution of peaks and centers. For each mass bin and smoothing scale, the random
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number of counts within a spherical shell of volume dV is:

Nrandom = dV NpkNh

Vu
(5.1)

where Vu and dV are respectively the volume of the box and that of the spherical shell
in units of (h−1Mpc)3, Npk is the total number of peaks of a certain quantity smoothed
on that scale and Nh is the number of protohalos in the chosen mass bin. Therefore, the
correlation function can be written in the form:

1 + χ = Ncounts

Nrandom
(5.2)

We choose shells to be equally spaced with logarithmic step equal to 0.2 grid points. The
wrap necessary to respect the bound conditions allows us to have a maximum distance
along each coordinate of half the length of the box side. In order to have a better resolution
at small distances and a larger halo statistics we use different simulations when inspecting
correlation function for different halo masses. In what follows, we use halos identified at
four different redshifts: zid = 0, 1, 2 and 4. To make the comparison easier we consider the
universal mass parameter ν as defined in 4.1.2.

5.1.3 Correlation function between centers and overdensity peaks

A selection of correlation functions between protohalo centers of mass and overdensity
peaks are shown in Fig.5.2-5.5. More correlations for different scales and different halo
masses are shown in appendix D. More specifically, each plot shows the correlation func-
tion between centers of protohalos within a certain mass bin and peaks smoothed on the
characteristic Lagrangian halo scale together with other four smoothing scales: two smaller
and two larger of the Lagrangian one. In each page the left plot shows the correlation
functions without any restriction on the peak height, whereas the right plot show four
panels, corresponding to peaks larger than certain thresholds: δC(zid), 2δC(zid), 3δC(zid)
and δC(zid) + 0.4q. The first three thresholds correspond to multiples of the spherical col-
lapse threshold (i.e. they correspond to one, two and three σ of the typical scale forming
halos at the identification redshift). The fourth threshold is an approximation of the mov-
ing barrier emerging in the excursion sets formalism when considering ellipsoidal collapse
(Sheth et al. (2001), Despali et al. (2013), Sheth et al. (2013)). Although our different
approach, we use this last threshold to investigate how the shear affects the correlation
function between centers and δ peaks. Being q always positive, it always increases the
peaks height necessary to a halo for collapse. This point will be investigated deeply in
Ch. 6 where we leave the peaks approach and we switch to the analysis of Lagrangian
parameters (i.e. parameters smoothed on the Lagrangian scale of halos after centering on
the protohalo centers). We notice that:
• Correlation functions tend to zero outside the Lagrangian radius, consistently with

theoretical expectations. However, the distance at which this occurs changes with
mass.
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• When the constraint on the peak heights is low, the correlation functions are mostly
positive inside the halo Lagrangian radius (RL).

• When no constraints on the peak heights are taken into account (left figures), the
correlation function at the smallest distances is maximum for smoothing scales equal
to the Lagrangian radius (green curve) and immediately smaller (cyan). In the in-
nermost region, the correlation is lowest when δ is smoothed on the largest scale
(red curve); on the other hand, in proximity of the Lagrangian radius the lowest
correlation function corresponds to the smallest scales. As ν increases, the correla-
tion function in the innermost region grows for scales equal to and lower than the
Lagrangian scale.

• When a weak constraint is imposed on the peak heights (top left panel of the right
figures), the correlation function in the innermost regions always grows for moder-
ately large scales and the Lagrangian scale tends to stand above the other ones when
ν is large enough.

• When strong constraints on the peak height are taken into account (top right and
bottom left panels of right figures), only peaks for δ smoothed on the smallest scales
survive within the Lagrangian radius. In the framework of peak theory, most of
these peaks correspond to halo progenitors formed at higher redshift.

• When considering the effects of shear (bottom right panel of right figures) at small
distances, the correlation function for peaks corresponding to scales equal and smaller
of the Lagrangian scale (blue, cyan and green curve) is high, whereas the same
correlation for peaks on larger scales is not defined to a lack of peaks. So, this
threshold seems to better select peaks involved in the halo formation.
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Figure 5.1: Distribution of δ smoothed with nine different scales on all grid points (black)
and on grid points identified as peaks (red). These distributions have been obtained with
Bice simulation. The smoothing scales corresponds to the Lagrangian scales of halos
identified at zid = 0 with masses as in parentheses.
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We summarize the results at small and large distances in Fig. 5.6. In left figure we
choose a distance equal to about the 13% of the Lagrangian radius and we show the value
associated to the correlation function at that distance. The right figure has been built in
the same way, but taking into account larger distances (about 1.3RL). The nine panels
correspond to different values of ν and show results obtained employing different thresholds
(more details in the figure caption). In general, the correlation function at small distances
(left panel) with peaks on scales equal (R(Mh), green points) to and immediately smaller
(cyan) than the Lagrangian scale is always largest when considering no constraints on the
peaks height (case a) and when considering a threshold equal to δSC(z) (case b). On the
other hand, the correlation with peaks on largest scales is always the lowest and it quickly
disappears when increasing the threshold height. Indeed, if peaks on the largest scales for
high δ survive in the innermost regions, they would be identified as halos of larger mass.
When considering a larger threshold (case c) the correlation function with peaks on the
Lagrangian scale (green) is positive only for smallest halos. We can understand that point
considering that these halos have assembled a large fraction of the mass at high redshift,
when fluctuations were smaller. Moreover, small mass halos needs a larger overdensity to
collapse because of tidal effects The last threshold (case e) largely removes the correlation
with peaks on largest scales and, at the same time, keeps high the correlation with peaks
on scales equal to and larger than the Lagrangian one. So, when taking into account a
combination of δ and shear in the definition of the threshold for peaks, we are able to
select peaks related to the halo formation history. However, this combination should be
more accurately calibrated. This will be the purpose of a future analysis. The right figure
of 5.6 shows that the correlation function at high distances (1.3RL) is low or negative at
all scales when considering high thresholds (case c and d). Indeed, the presence of high
peaks in this region would affect the formation of the halo. Higher correlations are present
only for peaks on smallest scales. When considering a lower threshold (case b) we see
a positive correlation for peaks on largest scales. They are probably the seeds of future
formation of higher mass halos. A future step of this analysis will focus on the study of
the peak clustering, trying to extend this approach on a object-by-object analysis.
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5.1.4 Correlation function between centers and peaks and valleys of q

In order to investigate how the shear distribution affects the halo formation, we calculate
the correlation function between protohalo centers and peaks and valleys of the q distribu-
tion. As we discussed earlier, the shear tends to increase the threshold for collapse. This
effect is expected to be higher at smaller masses i.e. small halos need a higher density to
keep their mass together against the tidal forces. Whereas in the previous section we used
q to raise the threshold of collapse, here we are mainly interested on its gradient i.e. we
want to investigate how the fact that q is a peak or a valley affects the halo formation.

Fig. 5.7-5.10 show the correlation function of protohalo centers of mass with peaks
(qpk) and valleys (qvl) of q. Each plot shows four panels with a notation similar to previous
plots. However, in this case the collapse threshold does not relate to δ peaks but to peaks
and valleys of the q distribution. In practice, we consider all peaks and valleys of q together
with peaks and valleys of q corresponding to a value of δ larger than a certain threshold.
We notice that:

• When considering peaks of q (right figures) with δ > δSC(zid) (top left panels), we
find the highest correlation function at small distances when peaks of q are smoothed
on scales larger than the Lagrangian one. On the contrary, when considering valleys
of q, the highest correlation is for peaks on smallest scales.

• When considering both peaks and valleys of q with high thresholds (top right and
bottom left panels), we find that the highest correlation function at small distances
tends to move toward smaller scales.

• When considering high thresholds and distances around the Lagrangian radius,
nearly all scales show a negative correlation.

• If we take into account bottom right panels (δ > δSC(zid), the correlation function
for peaks and valleys of q tends to be similar and, at least at small ν, select scales
equal to and smaller than the Lagrangian scale.

In general, when considering smoothing scales larger than the Lagrangian scale, only peaks
of q are allowed to be close to the protohalo centers. However, when the threshold of col-
lapse increases, only the smallest scales survive in proximity of centers. When considering
this result together with correlations showed in the bottom left panels, we can say that
the value of q tends to be more important than the fact that q is a peak or a valley.
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5.2 An alternative way to locate halo seeds

In this Section we sketch an alternative to the peak model for halo formation. Sec. 5.1 of
Chapter 5 shows that there is a positive correlation function at small distances between
centers of protohalos of a certain mass and peaks for the Lagrangian overdensity field
smoothed on the Lagrangian scale. However, this statistical characterization is far to be
perfect and in a object-by-object analysis the correspondence between peaks and centers
breaks down, especially for small halos. This is partially due to the fact that shear highly
affects the formation of small halos and so, the complex formation history of some objects
can lead to a lack of peaks within the Lagrangian radius (see Ludlow and Porciani (2011)
for a object-by-object analysis). In Section 5.1 we investigated the correlation function
using peaks and valleys of the Lagrangian shear q. A possible alternative approach con-
cerns the study of peaks in some other fields (e.g., some combination of the overdensity
and shear field); this will be part of a future analysis. In what follows we present another
way to inspect the halo seeds; it needs to set the peak approach aside and look for a better
guiding principle.

5.2.1 Dipole as a characterization of the halo formation

In perturbation theory emerges a dipole term that is missing in spherical and ellipsoidal
collapse. This is due to the fact that these models explicitly describe collapse around
the center of mass of protohalos, whereas it could be more appropriate to assume that
protohalos form from regions in which the initial dipole vanishes. In practice, we can focus
on points where velocity field converges. Given a point acting as a gravitational center,
we can describe the halo formation as a collapse of concentric shells, where each shell is
by definition constituted by points falling simultaneously on the gravitational center. In
general, given a sphere, the dipole depends on the position of the mass center compared
with the position of the geometric center. When dipole is not zero, a spherical surface
falls on the mass center with a non isotropic velocity; therefore, the position of the sphere
can be shifted until the dipole is null. Ultimately, when neglecting the effect of higher
multipoles, a point with a null dipole is a point where the collapse of the sphere is isotropic.

The analysis of the halo seeds employing this approach has not been yet investigated
and will be part of a work close to be published. We provide a numerical contribution in
order to check appropriately theoretical predictions.

In our work, dipole has been calculated in the following way: we center on a certain
point at the initial conditions and we consider a sphere with a certain radius. We consider
all particles within that sphere and we calculate their center of mass. At a later stage, we
calculate the distance between the center of mass and the geometric center of the sphere
and we use this distance as a measure of the dipole.

Now we need a method to test the importance of dipole in the characterization of the
halo seeds. Therefore, we consider protohalos of a certain mass and we check if dipoles
calculated in proximity of the protohalo center of mass heads toward the center. Indeed,
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the condition on the eigenvalues of the dipole gradient assures that shifting a sphere in the
direction of dipole D, the length of D decreases. We can express the same concept saying
that points with D=0 are stable. Given a protohalo, we consider a coordinate system
centered on the protohalo mass center with axes parallel to the sides of the simulation
box. After that we move of a certain quantity along the positive and negative direction
of each of the three axes, identifying six points. We center on each point and we calculate
the center of mass within a sphere enclosing a mass equal to the protohalo mass. We can
now calculate the components of the dipole along the three axis in the form:

εri = r̄i;P − r̄i;CM
∆ri

(5.3)

where r̄i;P are the coordinates of the shifted points, r̄i;CM are the coordinates of the pro-
tohalo center of mass and ∆ri is the distance between those points along each coordinate.
The left plot of Fig. 5.11 shows results for protohalos of mass M∗/8 and a shift along the
three axes equal to RL/10, where RL is the protohalo Lagrangian radius. Given a shift
along one coordinate, the dipole heads towards the mass center along that coordinate but
remains unchanged on the other two. The right plot of Fig. 5.11 has been built on the
same way but dipole has been measured within spheres enclosing a larger mass (i.e. M∗).
Although the dipole along the direction of the displacement points again towards the pro-
tohalo mass center, its value is much smaller. This is plausible because of large scale mass
outside the protohalo region.

At a later stage we want to find the points at which the dipole is minimum and compare
those points with the protohalo mass center. First of all we select a spherical region of
given radius around the protohalo center and we consider a three dimensional grid. We
center on each grid point and we consider a sphere of radius equal to the Lagrangian radius
of the protohalo. We then calculate the value of dipole for each sphere and we select the
center of sphere at which the dipole is minimum. We decide to consider spherical regions
of radius equal to 0.4RL in order to avoid the possibility of identifying points not directly
related to the formation of the halo. Top left panels of left and right plots in Fig.5.12 show
two examples of protohalos obtained tracing back to the initial conditions the particles of
halos with mass 4M∗ identified at zid = 0. We show the protohalo particles (black dots)
projected on three planes together with the closest overdensity peak (red square), the
minimum dipole (blue circle) identified within a region of R = 0.4RL and the position of
centers of mass and moving centers at the identification redshift zid = 0 and at the initial
conditions. When the halo has a regular shape (left figure), the closest peak of δ and
the minimum dipole are both close to the protohalo center; on the other hand, when the
protohalo shape is not regular (right figure), both points tend to be far from the protohalo
center. In the other three panels we consider the particles of the main progenitors at
different redshifts. Let’s consider the most irregular protohalo (right plots). When the
shape of the main progenitor protohalo becomes more regular, both the dipole and the
peak for δ smoothed on the scale of the protohalo mass tend to be close to the protohalo
center of mass.
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Figure 5.12: Distribution of protohalo particles of two halos (left and right plots) identified
at zid = 0 (top left panels) together with particles of halo main progenitors identified
at three higher redhsifts: zid = 1 (top right); zid = 2 (bottom left); zid = 4 (bottom
right). The innermost circumference enclose the region where the minimum dipole has
been selected; whereas, the outermost circumference has a radius equal to the Lagrangian
radius. Red square: closest δ peak; blue circle: minimum dipole; red (magenta) cross:
mass (moving) center at the initial conditions; light (dark) green cross: mass (moving)
center at the identification redshift.
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Figure 5.13: Distribution of distances between the centers of protohalos with mass equal
to 4M∗ and both the closest δ peaks (green curve) and the minimum of dipole (blue curve).

So, we have good hints that dipole characterizes well the main bunch of particles
forming halos. At a later stage we would understand whether or not the dipole approach
works better than the peak one. This part is far from being completed. However we have
good hints that the dipole characterization is more suited to characterized halo formation.
As an example, we consider Fig.5.13 where we show the distribution of distances between
the protohalo centers and the closest peaks for δ smoothed on the Lagrangian halo scale
together with distances of the minimum dipole. In both cases we consider only quantities
identified within a spherical region around the protohalo mass center of radius equal to
0.4RL. We show how the minimum of dipole seems to characterize better the halo center
of mass. However, whereas δ peaks can be in principle identified everywhere, the minimum
dipole has to be compared within a specific region. So, although this positive confirmation,
in future we will investigate a more in-depth analysis.
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5.3 Summary
In this chapter we investigated the correlation function between protohalo centers and
peaks and valleys of the δ and q distribution, when smoothed on different scales. We
defined peaks (valleys) of a certain quantity the grid points larger (smaller) than the six
adjacent grid points. We firstly inspected the correlation function of protohalo centers
ans peaks of the δ distribution, after imposing different thresholds on the height of peaks.
When no constraints on the peak heights are taken into account, the correlation function
at the smallest distances is maximum for smoothing scales equal to and immediately lower
than the Lagrangian scale, whereas the correlation is lowest when δ is smoothed on the
largest scale. As ν and the threshold increase, the correlation function in the innermost
region grows for scales equal to and lower than the Lagrangian scale. In general, when
imposing a weak constraint on the peak heights, the correlation function with peaks of δ
smoothed on the Lagrangian scale tends to stand above the other ones when ν is large
enough. Moreover, we showed that peaks associated with the halo patches are well selected
when considering the contribution of shear (derived in the excursion set framework) as
a constraint on the peak height. At a later stage we found that protohalo centers and
valleys of q smoothed on scales equal or smaller than the Lagrangian one show a high
correlation function when no other constraints is taken into account; on the other hand
the correlation function with peaks of q shows an opposite behaviour. However, we showed
that considerations on the value of q are more important than the fact that q is a valley
or a peak.

In the second section we investigated an alternative way to characterize the formation
of dark matter halos. Indeed, in perturbation theory emerges a dipole term that is missing
in spherical and ellipsoidal collapse model. We investigated the module and direction of
this quantity in proximity of protohalo mass centers and we show that in average the dipole
heads towards the mass center. Moreover, we show that dipole seems to characterize the
protohalo center of mass better than delta peaks.



CHAPTER 6

The importance of shear in the halo formation

In chapter 5 we investigated the correlation function between protohalo mass centers and
peaks and valleys in the δ and q distribution. Among other things, we showed how a halo
tends to form close to δ peaks filtered on scales equal to (and immediately lower than)
the Lagrangian scale. We highlighted also how the null gradient (i.e. peaks and valleys)
of q affects the halo formation: when weak contraints on the peak height are taken into
account, the cross correlation of protohalo centers with local minima of the q distribution
is higher than the correlation with local maxima when considering scales equal to and
lower than the Lagrangian scale. However, this effect seems to depend on the value of q
and not on the fact that q is a valley (i.e. a valley of q is generally lower than a peak and
so the effect of shear is also lower).

In this chapter we leave the peak approach in order to investigate the correlation be-
tween Lagrangian parameters δL and qL (i.e. δ and q smoothed on the halo scale after
centering on the protohalo center) and the formation redshift zf . In the first section we
describe the distribution of different Lagrangian parameters and we compare our results
with theoretical expectations and previous works. At a later stage, we investigate corre-
lations. It is well known that the external shear increases the collapse threshold, making
the collapse harder to happen. Therefore, given a halo identified at a certain redshift, we
expect that δL extrapolated linearly to zid is larger when qL is larger. Some discussion of
why this correlation matters for assembly bias in Castorina and Sheth (2013). However,
our is the first study of Lagrangian shear and delta at different redshifts. Recent works
have also highlighted that δL correlates also with the formation time: halos that form
earlier (i.e. a patch that reaches the collapse threshold at earlier times) has a larger δL at
the identification time compared to halos forming in more recent times. We inspect the
above quoted correlations for different identification redshifts and we try to understand if
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there is a direct correlation between δL and the parameters qL and z50 or, on the contrary,
if the correlation is due to their mutual dependence.

6.1 Protohalos and Lagrangian parameters

One of the aim of this work is the study of the distribution of protohalo Lagrangian prop-
erties. We define protohalos as follows. Let’s consider a halo identified at zid within a bin
of characteristic mass M . The protohalo is obtained by tracing the halo particles back
to z = 99, when the density field can be considered to be linear. We then calculate the
elements of the deformation tensor in correspondence of protohalo patches. The deforma-
tion tensor at each point is defined as the second derivatives of the gravitational potential
Φ. In the Zel’dovich approximation this corresponds to the first derivatives of the initial
displacements,

ζij = − ∂2Φ
∂xi∂xj

= −∂ψ
∂x

(6.1)

where displacements have been obtained by interpolating the particles on the grid with a
tsc interpolation. We calculate the deformation tensor at each grid point by convolving
the field with a Top-Hat filter via multiplication in the Fourier space. We choose smooth-
ing scales corresponding to the characteristic bin masses M shown in Tab. 4.1. Since
σ2(M) << 1 at z = 99, the smoothing scales can be calculated as

RL = 3

√
3M
4πρ0

(6.2)

where ρ0 is the initial density. Tab. 6.1 shows RL in units of h−1Mpc together with the
number of grid points spanned by these scales in the different simulations.

We then consider the center of mass of protohalos. Whereas the deformation tensor
has been defined in correspondence of grid points, the protohalo centers can be found
everywhere. We then interpolate the deformation tensor elements at the exact position
of the centers of mass using again a tsc interpolation. In this way we avoid resolution
problems arising when considering, for example, the closest grid point.

We now calculate the eigenvalues of the deformation tensor smoothed on the La-
grangian scales (λ1;L ≥ λ2;L ≥ λ3;L) and, from these, the parameters of the ellipsoidal
collapse model. We refer to these parameters as the Lagrangian parameters. They are:
the trace of the deformation tensor,

δL = λ1;L + λ2;L + λ3;L, (6.3)

the ellipticity,

eL = λ1;L − λ3;L
2δL

, (6.4)
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Smoothing scales
M∗/128 M∗/64 M∗/32 M∗/16 M∗/8 M∗/4 M∗/2 M∗ 2M∗ 4M∗

M(1012h−1M�) 0.39 0.78 0.156 0.312 0.625 1.25 2.45 4.9 9.8 19.6
R[h−1Mpc] 0.48 0.6 0.76 0.95 1.2 1.51 1.90 2.40 3.02 3.80
RA[gp] 7.78 9.81 12.36 15.57 19.62 24.72 31.14 39.24 49.43
RB [gp] 7.78 9.81 12.36 15.57 19.62 24.72 31.14
RC [gp] 7.78 9.81 12.36 15.57
RD[gp] 7.78

8M∗ 16M∗ 32M∗ 64M∗ 128M∗
M(1012h−1M�) 39.2 78.4 156.8 313.6 627.2
R [Mpc] 4.79 6.04 7.6 9.6 12.08
RA[gp]
RB [gp] 49.43
RC [gp] 19.62 24.72 31.14 39.24 49.43
RD[gp] 9.81 12.36 15.57 19.62 24.72

Table 6.1: Lagrangian scales in units of Mpc and corresponding number of grid points
for the different simulations. Capitol letters specify the different simulations: A=Ada;
B=Bice; C=Cloe; D=Dora.

and the prolateness,
pL = λ1;L + λ3;L − 2λ2;L

2δL
. (6.5)

When δL > 0, we have eL ≥ 0 and |pL| ≤ 0.

6.2 Statistics of Lagrangian parameters

In this Section we firstly analyze the distribution of the Lagrangian eigenvalues of the
deformation tensor together with the Lagrangian parameters of the ellipsoidal collapse
model. At a later stage we define the shear parameter q and we show how it affects the
collapse threshold. Recent works (Robertson et al. (2009), Despali et al. (2013), Sheth
et al. (2013)) investigated some of these distributions but considered only halos identified
at z = 0. Here we extend this analysis by considering also larger identification redshifts.
We can therefore inspect a wider range of ν and compare results obtained from different
identification times.

6.2.1 Lagrangian eigenvalues

Firstly, we take into account the eigenvalues of the deformation tensor. Fig. 6.1 shows the
distribution of λi;L, rescaled to the halo identification redshift zid, as a function of (the
logarithm of) ν. We notice that almost all halos have at least two positive eigenvalues.
On average, 39.6% of patches have λ1,2;L > 0 and λ3;L < 0, whereas the 60.2% have
λ1,2,3;L > 0; less than 0.2% have only one positive eigenvalue. We compare these fractions
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at zid = 0 in the mass range of Despali et al. (2013) using only Bice simulations (in order to
avoid the bias due to the different ν at which each simulation comes into play) and we find
results very similar to theirs (about 30% of positive triplets and 70% of combinations with
only one negative eigenvalue). The fraction of triplets with three (blue) and two (magenta)
positive eigenvalues as a function of ν are shown in Fig. 6.2, where we plot separately the
different identification redshifts. We notice that the number of halos with three positive
eigenvalues grows as ν increases i.e. the contraction along the direction of λ3 of small
mass halos is slowed down more than for massive ones. When ν is slightly higher than 1
(logν ' 0.02− 0.04), the number of protohalos with three and two positive eigenvalues is
the same. Moreover, when the identification redshift gets higher, the fraction with three
positive eigenvalues is generally smaller, especially at low ν.

6.2.2 Lagrangian distribution of the EC parameters

We now consider the distribution of the parameters which determine the evolution in the
EC model.

In Fig. 6.3 we compare δL (rescaled to zid) with the predictions of the spherical collapse
model, as a function of ν. We notice that δL is always larger than the SC threshold,
except for the highest ν. Moreover, δL decreases as ν grows. This is consistent with the
predictions of the ellipsoidal collapse model, according to which low mass halos needs a
larger overdensity to oppose the tidal effects. An estimate of the collapse barrier in the
framework of the Bond and Myers (1996) ellipsoidal collapse model was provided in Sheth
et al. (2001). They derived the dependence of the collapse threshold on ellipticity and
prolateness of the shear field in the form:

δEC(e, p)
δSC

= 1 + β
[
5(e2 ± p2)δ

2
EC(e, p)
δ2
SC

]
(6.6)

where δ, e and p can vary from one position to another and the parameters β and γ
are estimated by fitting on the dynamical model. Recent values are β = 0.412 and γ =
0.618 (Desjacques, 2008). Top plot of Fig. 6.3 shows a comparison with the ellipsoidal
collapse barrier (cyan curve) using a rough estimates of 〈δe〉 and 〈δp〉 (respectively σ/

√
5

and 0). These estimates have been calculated by Sheth et al. (2001) by using results of
Doroshkevich (1970) and by averaging the distribution of e and p over all position of the
Gaussian field. Therefore, the barrier can be rewritten as

δ

δSC(z) = 1 + βν−2γ . (6.7)

We can move the dependence on redshift from the spherical collapse threshold to the
fluctuation field, and write:

δ(z)
δSC(z = 0) = 1 + 0.25σ(z)1.23. (6.8)
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When comparing our results with the EC threshold, our values are sistematically lower
than predictions at both small ν and high identification redshifts. The discrepancies at
low masses partly depends on the fact that δe diverges from rough theoretical predictions
in this mass range (top plot of Fig. 6.4). Fig.6.3 shows also a comparison with the "Sheth
et al." barrier (green curve)

BSMT (σ, z) =
√
aδSC(z)

[
1 + β

( σ2

aδ2
SC(z)

)γ]
, (6.9)

where β = 0.5, γ = 0.6 and the barrier converges to a value √aST δSC ' 0.84δSC . This
formula has been obtained by modifying the Ellipsoidal Collapse barrier in order to account
for the halo abundances in the GIF simulations (Sheth et al. (2001)). We find that our
distribution is always included between these two barriers at large ν. When dividing this
distribution by σ(M) we remove most of the mass dependence (bottom plot of Fig.6.3).
At zid = 0, we find δ/δSC − 1 ' 0.27σ with an rms scatter of 0.19σ. A comparison
with previous works shows a good agreement with results of Robertson et al. (2009) in
both mean (0.48/δSC = 0.28) and rms (0.3/δSC = 0.18), but values higher than those of
Despali et al. (2013) (mean of 0.2 and rms of 0.12). These discrepancies are probably due
to the different methods employed in the calculation of the Lagrangian parameters. In
fact, Despali et al. (2013) averaged over the protohalo shapes, whereas Robertson et al.
(2009) and our work assume that protohalos are spherical. Moreover, Despali et al. (2013)
used EO derived quantities, whereas we base our work on the SO identification algorithm.

Fig. 6.5 shows skewness γ1 and kurtosis γ2 of the distribution of the Lagrangian
density contrast δL, as a function of ν. We show results for both all (TOP) and relaxed
(BOTTOM) halos, with different colors meaning different halo identification redshifts. We
notice that, for both halo selections, skewness is nearly mass invariant, whereas kurtosis
shows a slightly decreasing trend, especially at small ν. Moreover, kurtosis is lower when
considering relaxed halos; the scatter for both parameters is also lower.

EC model also predicts that e and p are independent on the halo mass when scaled
as δe/σ(M) and δp/σ(M). We show these distributions in bottom plots of Fig. 6.4
as a function of (the logarithm of) ν. The mean values and the rms of 〈δLeL〉/σ(M)
(respectively, 0.509 and 0.16) are a bit higher than theoretical predictions (1/

√
5 ' 0.447

and 0.14) but in the case of 〈δLpL〉/σ(M) the accordance is very good (0 and 0.21 against
the predictions of 0 and 0.22).
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Figure 6.1: Distribution of Lagrangian λ1;L (TOP), λ2;L (MEDIUM) and λ3;L (BOTTOM)
as a function of (the logarithm of) ν. Lagrangian values are averaged over spheres of radius
equal to the halo characteristic Lagrangian scale RL = (3M/4πρ̄)1/3. We plot λi;L’s after
rescaling their value to the halo identification redshift zid. We show in red the median of
the distribution, whereas the magenta shaded region encompass values between the first
and the third quartile. Most protohalos have more than one positive eigenvalue.
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Figure 6.2: Fraction of triplets with two (blue) and three (magenta) positive eigenvalues,
as a function of (the logarithm of) ν. We show separately the results for the different
identification redshifts: zid = 0 (triangles), 1 (squares), 2 (pentagons) and 4 (circles). The
number of positive triplets grows as ν increases but decreases with zid (at least at not too
large ν).
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Figure 6.3: Top plot: distribution of δL as a function of (the logarithm of) ν for halos
identified at the four different redshifts. The Ellipsoidal Collapse barrier (cyan) works well
at zid = 0 but it always overestimates our results at larger zid. In general, the median of
the distribution is always comprised between the EC and the "Sheth et al." barrier. Bottom
plot: distribution of δL rescaled with σ(M) in order to remove the mass dependence. We
show median (red) and the first and third quartile (magenta).
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Figure 6.4: Top plots: Distribution of Lagrangian δLeL (left) and δLpL (left) as a function
of (the logarithm of) ν. Parameters have been rescaled to the identification redshift.
Bottom plots: Same distributions but rescaled by dividing by σ(M) in order to remove
much of the mass dependence. In all four plots we show the median (red) and the region
between the first and the third quartile (shaded magenta region) and mean values (blue
curves) arising in the EC framework by averaging the distribution of e and p over all
position of the Gaussian field.
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Figure 6.5: Skewness (γ1; top panel) and kurtosis (γ2; bottom panel) of the δL distribution
as a function of ν. We compare results for all (top plot) and relaxed (bottom plot) halos.
Different colors correspond to different identification redshifts: zid = 0 (magenta), 1 (blue),
2 (green) and 4 (orange). In both cases, skewness is nearly mass invariant, whereas kurtosis
shows a slightly decreasing trend, especially at small ν. Moreover, kurtosis is lower when
considering relaxed halos and the scatter of both parameters is also lower.
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6.2.3 Lagrangian distribution of qL

Although e and p are largely employed to describe the shape of the gravitational potential,
some alternatives have the advantage of not depending on a ratio of eigenvalues. In this
work we employ the square root of the traceless shear q, arising from a perturbative
analysis of the ellipsoidal collapse model. It can be expressed using the parameters of the
ellipsoidal collapse model

q2 = I2
1 − 3I2 = δ2(3e2 + p2) (6.10)

where I1 and I2 are rotationally invariant quantities equal to

I1 = λ1 + λ2 + λ3 (6.11)

I2 = λ1λ2 + λ1λ3 + λ2λ3 (6.12)

(Sheth et al. (2013)). We remark that q, differently from e and p, is not coupled with δ
and the distribution of q2 is drawn from a χ2

5(σ) and so 〈q2〉 ∼ σ2 (Sheth and Tormen
(2002), where q is labelled as r). In what follows we consider the Lagrangian traceless
shear associated with the protohalo patches (qL). Top plot of Fig. 6.6 shows that qL still
scales approximately like σ(M). Moreover, the distribution of (qL/σ(M))2 is still a χ2

5(σ)
after scaling with ( qL(zid)

βσ(M, zid)
)2
σ(M, zid)α (6.13)

where α ' 0.16 and β ' 0.95.
We can inspect the importance of shear on the collapse threshold using a barrier

B depending on the traceless shear parameter qL, rather than the ellipsoidal collapse
parameters eL and pL:

B(qL) = δc
(
1 +

√
q2
L(zid)/q2

c

)
(6.14)

where qc decreases when the shear becomes more important. This simple model provides
an easy way to see how effects associated with non spherical collapse depends on both ν
and zid and permits a comparison with previous works. Fig. 6.6 shows the distribution of[
δL − B(q)

]
/σ(M) as a function of 1/ν. At zid = 0 we notice that the scaling by σ(M)

removes most of the mass dependence and a reasonable value of q2
c/δ

2
c is ∼ 4, whereas

previous works found q2
c/δ

2
c ∼ 6 (Despali et al. (2013), Sheth et al. (2013)). The importance

of shear decreases (qc increases) as zid increases. Moreover, given a identification redshift,
we find that at the smallest ν (high 1/ν) the distribution depends weakly by mass; on
the contrary, as ν grows the effects of shear becomes less important and the distribution
quickly decreases. The presence of a trend with ν means that the actual scaling is not
perfectly proportional to qL.
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Figure 6.6: Top plot: distribution of qL/δSC as a function of 1/ν. The parameters has
been rescaled to the identification redshift. We show the median (red) and the values
between the first and the third quartile (shaded magenta). Bottom Plot: distribution of[
δL(zid)−B(qL(zid))

]
/σ(M, zid) as a function of 1/ν at the different identification redshifts.

We notice that the importance of shear decreases as zid increases.
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6.3 Lagrangian correlations
In Section 6.2.3 we showed how Lagrangian overdensity depends on the shear parameter qL.
The existence of such a correlation for halos identified at the present time is well known
and it implies that if shear is high a protohalo needs a large overdensity to keep itself
together (Sheth et al. (2001), Sheth and Tormen (2002), Despali et al. (2013)). However,
the presence of substantial scatter around the median in Fig. 6.6 suggests that other
quantities other than qL determine the value of δL (Sheth et al. (2013)). Recent works
have highlighted that the initial overdensity correlates with the formation redshift: higher
overdensity means that halos form earlier. Nevertheless, it is not clear if the correlation
between shear and overdensity is direct or if it is a consequence of the correlation between
shear-formation time and formation time-overdensity. In order to clarify this point we
study the correlation between Lagrangian δ and both formation time (at fixed shear) and
shear (at fixed formation time). In what follows, the formation time of a halo is defined as
the redshift at which half of the final halo mass has been assembled into a main progenitor
i.e. z50 (Lacey and Cole (1993)).

In order to remove the dependence of correlations on scatter, we calculate normalized
quantities by subtracting the mean and dividing by the rms:

∆ = δL − 〈δL〉
σ(δL) (6.15)

ζ = z50 − 〈z50〉
σ(z50) (6.16)

θ = qL − 〈qL〉
σ(qL) (6.17)

Therefore the relation between between ∆ and both normalized shear and formation
time can be written in the form:

∆ = aζζ + bθθ (6.18)

where aζ and bθ can be estimated with a least square fit. Our aim is therefore to find the
values of aζ and bθ as a function of the halo mass and identification redshift.

We firstly investigate the correlation between ∆ and ζ at fixed shear. We subtract
from Eq. 6.18 the same equation at fixed shear, obtaining:

∆− 〈∆|θ〉 = aζ(ζ − 〈ζ|θ〉) + bθ(θ − 〈θ|θ〉) (6.19)
= aζ(ζ − 〈ζ|θ〉) (6.20)

We therefore obtain two new variables:

∆− 〈∆
∣∣∣θ〉 (6.21)

ζ − 〈∆
∣∣∣θ〉 (6.22)
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by subtracting from ∆ and ζ the correlation of both variables with the third variable θ.
We plot results for zid = 0 in left plot of Fig.6.7. We notice the presence of a tail of points
at high z50 and low masses. At the lowest mass (nu = 0.52) these points are about 7%
of the total and their origin can be related to the non gaussianity of the z50 distribution
(Lacey and Cole (1993)) as well as misleading identifications of the halo finder. When
considering only relaxed halos (left plot of Fig.6.7), this tail disappears and the slopes of
the least square fit are slightly lower (right plot of Fig.6.7). We show how the different
relaxation criteria affects the coefficient aζ in left plot of Fig. 6.8. The first two criteria
slightly affects the correlation only at the lowest masses, raising (the first criterion) or
lowering (the second criterion) the slope az. The third criterion tends to lower the slope
at all masses. However, az shows a similar trend with mass whether or not a relaxation
criterion is imposed. Right plot of Fig. 6.8 shows the same distribution for all halos
considering together all identification redshifts. We notice that the coefficient az reaches
a maximum around ν ∼ 2 (corresponding to a mass of about 32M∗ ' 16× 1015M�) and
then decreases down to aζ ∼ 1.5. At larger ν the error on the slopes becomes very large
because of the small halo statistics.

We now investigate in the same way the correlation between ∆ and θ at fixed formation
time. We subtract from Eq. 6.18 the same equation at fixed formation time, obtaining:

∆− 〈∆|ζ〉 = bθ(θ − 〈θ|ζ〉)

that relates the two variables
∆− 〈∆

∣∣∣ζ〉 (6.23)

θ − 〈∆
∣∣∣ζ〉 (6.24)

. Fig. 6.9 shows that the correlations at zid = 0. When considering all halos (left) the
slope of the least square fit is a bit lower than for relaxed halos (right). However, the
trend with mass is again very similar. Fig. 6.10 shows the coefficient bθ for all halos and
all identification redshifts. At low ν the correlation between the two variables is high but
strongly decreases going towards large ν.

We can compare the importance of the two correlations by calculating:

∆− 〈∆|θ〉 = cθζ(∆− 〈∆|ζ〉) (6.25)

where
cθζ = aζ

bθ

ζ − 〈ζ|θ〉
θ − 〈θ|ζ〉

. (6.26)

Left plot of Fig. 6.11 shows this correlation at zid = 0, whereas the right plot shows
the distribution of the coefficient cθζ . In order to have a more reliable estimate of the
correlation between the two variables, we average the slope of the least square fit with the
slope of the same fit obtained by inverting the axes. The error on the slope is now given
by half the difference between the two slopes.
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Figure 6.7: Correlation between between θ and ∆ at fixed ζ for halos identified at zid = 0.
We consider both all (top) and relaxed (bottom) halos. σaζ measures the slope uncertainty.
When imposing relaxation the tail of points at high z50 disappears.
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Figure 6.8: Top plot: Distribution of the slope aζ of the least square fit between ∆ and ζ at
fixed θ, as a function of ν. We consider only halos identified at zid and we show results for
both all and relaxed halos. We consider separately three relaxation criteria (the meaning
of numbers is defined in Sec. 4.1.3). Whereas the first two relaxation criteria affects only
low mass halos, the third one lower the slope at all masses. Bottom plot: Distribution of
aζ as a function of ν for all halos and all identification redshifts.
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Figure 6.9: Correlation between ∆ and θ at fixed ζ for halos identified at zid = 0. We
show a comparison between all (left) and relaxed (right) halos. σbθ measures the slope
uncertainty.
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Figure 6.10: Slopes of the least square fit between ∆ and θ at fixed ζ as a function of the
halo mass for all halos and all identification redshifts. We find bθ ∼ 0.4 at low masses and
then the slope of the least square fit decreases going towards larger ν.

So, we find that shear is more important than z50 on determining δL at low masses.
When ν grows, the correlation with shear decreases faster than the correlation with the
formation time and at the highest ν both correlations are low.

6.4 Summary

In this chapter we would understand the importance of shear in the formation of halos
by inspecting Lagrangian parameters of the ellipsoidal collapse model together with the
traceless shear parameter q. Moreover we investigated the correlation of shear, overdensity
and formation time.

Lagrangian parameters are obtained by centering on the protohalo mass center and by
averaging over spheres with radius equal to the Lagrangian halo scale. In this analysis we
considered four halo identification redshifts, spanning a large range of ν. We found that,
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Figure 6.11: Mean values of the two slopes of the least square fit of ∆ at fixed ζ and ∆ at
fixed θ for all halos and identification redshift. The error bar is half the difference of the
two slopes.
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although only two eigenvalues are generally positive at small masses, most protohalos
have three positive eigenvalues. The distribution of δL/δC is approximately equal to
(1 + 0.28σ(M)) with a rms of nearly 0.18. These values are larger than those found by
Despali et al. (2013) but are in good agreement with Robertson et al. (2009), who used
a method similar to ours in order to calculate Lagrangian parameters (i.e. they assume
a spherical shape for protohalos). We find a nearly mass independent distribution for
δe/σ(M) and δp/σ(M). Moreover, we find that the distribution of δL is Gaussian and q2

L,
when opportunely rescaled, is a χ2 with five degrees of freedom.

We then investigated the correlation between Lagrangian δ and q and formation time.
We would understand if the well known shear-overdensity correlation is the result of the
formation-time correlation i.e. if shear and δL correlate cause of a correlation between
shear-formation time and formation time-overdensity. This is the first time that the anal-
ysis of these correlations has been investigated at redshift larger than zero. We found
a direct correlation between overdensity and both Lagrangian shear and formation time.
This means that the correlation of shear-overdensity is not due to the correlation of for-
mation time-overdensity. We found also that the first correlation depends strongly on
mass (with a decreasing trend), whereas for the second one the mass dependence is much
weaker, at least at logν < 0.5.



CHAPTER 7

Properties of Lagrangian and Eulerian profiles

In Chapter 6 we considered the Lagrangian parameters δL and qL i.e. we centered on the
protohalo mass centers and we took into account parameters smoothed on the Lagrangian
scale of the halos. Here we consider profiles. The main question we wish to address is one
which arises naturally in the excursion set and peaks models of halo formation: namely,
how does the slope of the initial profile within the Lagrangian radius correlate with its
height on larger scales. This sort of correlation is often called Assembly bias, although in
the context of halo formation it is also sometimes called non-local or stochastic bias. We
look to see how the initial shear (the stochastic variable) impacts halo concentrations and
large scale bias.

In Section 7.1 we build Lagrangian profiles of both linear q and δ around the protohalo
centers and we investigate how the inner and the outer linear density profile correlate
with Lagrangian shear and halo formation time, as a function of the universal mass ν. In
Section 7.2 we consider Eulerian profiles built around both the center of mass of final halos
and the center of mass of the halo particles traced back to larger redshifts. We show how
the correlation with Lagrangian shear and formation time affects these profiles. Finally,
we study the evolution of profiles with time: we compare the Eulerian profiles with the
predictions of Bernardeau (1993) and we study the evolution of the inner region when
considering profiles built around both the particle mass center and the center of mass of
the main progenitor.

7.1 Lagrangian profiles

Given halos at different masses and identification redshifts, we trace the halo particles
back to the initial conditions and we consider protohalos. To build profiles we interpolate
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the values of δ and q smoothed on different scales to the location of protohalo centers. The
smoothing scales are the Lagrangian protohalo scale (RL) together with twelve additional
scales: six larger and six smaller than the Lagrangian one. In this way we can investigate
a region from 0.25RL to about 7.6RL. (More details on protohalos and the choice of
smoothing scales can be found in Sec. 2). Profiles are then rescaled to z = 0 using the
scale factor. Fig. 7.1 shows (logarithmic) linear δ profiles of protohalos related to four
different halo identification redshifts. Each profile has been normalized by dividing by the
mass variance related to that halo mass (σ(ML)). In this way we can delete much of the
dependence on power spectrum. We notice that at fixed zid, for example zid = 0, δ at
Lagrangian radius (log(R/RL) = 0) grows as ν grows (top left plot of Fig.7.1). This is
consistent with what showed in the Chapter 6 when analyzing δ/δSC − 1 as a function of
ν (top left panel of the right plot in Fig.6.3) (see also Despali et al. (2013) and Robertson
et al. (2009)). Given two δL (say δL,1 and δL,2) corresponding to different ν (ν1 and ν2)
and two different mass variance σ1 and σ2, right plot of Fig. 6.3 shows that, at given zid,
we have: (

δL,1/δSC − 1
)

σ1
'

(
δL,2/δSC − 1

)
σ2

(7.1)

and so:
δL,1
σ1

= δL,2
σ2

+ ( 1
σ1
− 1
σ2

)δSC (7.2)

. If ν1 < ν2, we have σ1 > σ2 and the first member of this equation is larger than the
second member, as we showed in profiles. We can measure the average steep of the inner
profiles by measuring the different height of profiles between the innermost point and the
Lagrangian radius. When considering zid = 0, we find

log
[
1 + δ(0.25RL)/δSC

]
− log

[
1 + δ(RL)/δSC

]
' 0.2 (7.3)

that means 1+δ(0.25RL)
1+δ(RL) ' 1.6, nearly invariant with ν but slightly decreasing as the identi-

fication redshift grows. On the contrary, the outer profiles becomes steeper as ν increases.
We now investigate how the Lagrangian δ profiles correlate with formation time and

Lagrangian shear.
Given a halo mass and a identification redshift, we consider four bins in the halo

formation time z50 so that each bin contains nearly the same number of halos. We then
average profiles within each bin and plot the four profiles together in Fig. 7.2). We see that
the binning in formation time strongly affects the inner protohalo region so that higher
formation times correspond to higher δ. This correlation becomes less strong at scales
larger than the Lagrangian radius and it nearly disappears at very large scales (except for
low ν, where the profile goes up again at the largest scales). Moreover, as the identification
redshift grows, the correlation between δ and z50 seems to become less strong. The top
plots of Fig. 7.2 show a comparison at zid = 0 between all (left) and relaxed (right) halos
(more details on relaxation criteria can be found in Sec. 4.1.3). Although the correlation
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Figure 7.1: Lagrangian δ profiles of protohalos at different ν and different halo identifica-
tion redshifts. δ has been normalized by the mass variance in order to avoid much of the
dependence on the power spectrum. Profiles are rescaled at z = 0.
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does depend very slightly on relaxation, the difference between innermost profiles at high
and low z50 is a bit smaller when considering relaxed halos. This is mainly due to the first
criterion, that removes halos that during their formation history acquire more mass than
the final halo mass and then lose it in recent times. These halos happen to have a larger
formation time and affect the correlation. Unless otherwise specified, from here on out we
consider only relaxed halos.

We now consider profiles binned in qL. Similarly to the previous case, we consider four
bins and we average profiles within each bin. We notice that the correlation of δ profiles is
similar at both high and small smoothing scales i.e. when qL is higher, the profile is also
higher at all scales. However, this correlation decreases going towards larger ν. Moreover,
the correlation in the innermost region is always less strong than that obtained binning
in formation time. At very high zid the correlation is less clear, because of a low halo
statistics.
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Figure 7.2: Lagrangian δ profiles of protohalos at different ν and different halo identifica-
tion redshifts. We bin in z50 so that each bin contains nearly the same number of halos.
Going from low to high z50, the colors are the following: magenta, blue, green and orange.
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Figure 7.3: Lagrangian δ profiles of protohalos at different ν and different halo identifica-
tion redshifts. We bin in qL so that each bin contains nearly the same number of halos.
Going from low to high qL, the colors are the following: magenta, blue, green and orange.
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7.2 Eulerian profiles
Whereas in the previous section we took into account linear profiles, we now consider
Eulerian ones. We consider the same halos at the snapshot corresponding to their identi-
fication redshift and we build profiles around the center of mass, as follows. We calculate
the cumulative density within spheres of equally-spaced logarithmic comoving radii up to
10 times the virial radius. For each simulation we decide to cut the inner region of pro-
files at two times the softening for computational motivations (softening for the different
simulations is listed in 3.1). Fig. 7.4 shows Eulerian profiles in comoving coordinates for
different zid.

7.2.1 Comparison between Eulerian profiles and Lagrangian quantities

Non linear prediction of the outer halo profile

Lagrangian profiles can be used to predict qualitatively the outer region of the final halo
profiles. In principle we could rescale Lagrangian profiles at the time of the halo identifi-
cation redshift using the growth factor and see if Lagrangian and Eulerian profiles match
well. However, when the perturbations become nonlinear (δ ' 1) the evolved linear pro-
files are clearly not a good approximation of the final shape. In the spherical collapse
model a relation between δL and δNL was provided by Bernardeau (1993). Given a linear
profile, its non linear evolution at a certain redshift assumes the form:

1 + δNL =
(

1− D(z)δicL (< RL)
δC

)δC
(7.4)

where δicL is δL at the initial conditions, D(z) is the growth factor and the exact value
of δC (the critical value for collapse) depends on the background cosmology. We assume
δC = 1.675. The nonlinear scale is obtained from the Lagrangian one using:

rNL = RL

(
1− D(z)δicL (< RL)

δC

)− δC3
(7.5)

Given these equations we compare the halo density profile at a certain z with the evolved
linear one, bearing in mind that the equation 7.4 works only for δ = D(z)δicL smaller than
the critical value δC predicted by the linear collapse model i.e. it describes profiles only in
the outer halo regions. We plot three different profiles: the outer cumulative density halo
profile at a certain zid; the linear profile rescaled at the same z; the non linear parametric
profile built from the linear one. We can see our results in Fig. 7.5, 7.6 and 7.7. The top
left figures show these comparison for halos of three different masses identified at zid = 0:
M∗/8 (ν = 0.74), M∗ (ν = 1) and 16M∗ (ν = 1.68). We show that the outermost region
of final halo profiles (magenta curve) at high ν is consistent with non linear predictions
(dashed red curve). The other three panels show a comparison with the outermost profile
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Figure 7.4: Cumulative density profiles in comoving coordinates of halos identified at four
different redshifts. The scales go from two times the softening scale up to ten virial radii.



7.2. EULERIAN PROFILES 131

obtained by tracing the halo particles back to three earlier redshifts: zsn = 1 (top right),
zsn = 2 (bottom left) and zsn = 4 (bottom right). As zsn increases, the non linear
prediction match better the particle profiles, especially at high ν. At high zsn and high
radii the three profiles coincide i.e. the halo particle profile is very well reproduced by the
linear profile.

7.2.2 Correlation of Eulerian profiles with Lagrangian shear and forma-
tion time

We want now to understand how the Lagrangian shear and the formation z affect the final
Eulerian halo density profile. In order to have a clear overall view of this correlation we
proceed as follow. Given a identification redshift and a mass bin, we first investigate the
correlation with shear at given formation time: we consider two bins of z50 and then we
bin again using four bins of the Lagrangian shear qL. We then repeat exactly the same
procedure, but considering small and large qL and then binning again in formation time. In
Fig. 7.8, 7.9 and 7.10 we show results for profiles of halos with three different characteristic
masses (M∗/16, M∗ and 16M∗) identified at zid = 0 together with their particle profiles
at three more redshifts: zsn = 1 (top right plot), zsn = 2 (bottom left plot) and zsn = 4
(bottom right plot). Top panels of each plot show the correlations with q at given shear,
whereas in the bottom panels we show the correlation with shear at given formation time.
All profiles have been divided by the total averaged one. When considering profiles at the
halo identification redshift (top left plots), nearly all profiles match at a certain radius.
This corresponds to the halo virial radius at which all halos have been identified with the
same density, by definition of the Spherical Overdensity algorithm (see 4.1. In top right
plots, profiles within the virial radius are still ordered both in z50 and qL so that higher
z50 and higher qL correspond to higher profiles. However, the contribution of formation
time and shear is not the same: when fixing low or high z50 (top left and top right
panels) we show that profiles are respectively lower and higher than the total averaged
one. On the contrary, when fixing low or high qL (bottom left and bottom right panels),
profiles can be still found both below and above the total averaged profile, depending on
the formation time. So, the correlation with formation time is more important than the
correlation with Lagrangian shear. At scales larger than the virial radius the ordering of
profiles is generally reversed, as expected. Indeed, profiles of different height must have
the same overdensity at the virial radius (by definition) and so at larger scales higher
profiles become lower and vice versa. At very high scales, the ordering of binned profiles
in bottom panels reverses again. This effect is probably related with halo clustering and
will be part of a further analysis in future works. When considering particle profiles traced
back at higher redshifts (top right and bottom panels) the ordering within the virial radius
is preserved and the ratio of the profile height is enhanced. At large radii the contribution
of shear becomes more important and the relative height of profiles resemble that found in
Lagrangian profiles: at small ν, it is larger when binning in qL and smaller when binning
in z50, whereas at large ν the difference is less marked.
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Figure 7.5: Top left panel: comparison between the outermost Eulerian profile (solid
magenta curve), the non linear prediction (dashed red curve) and the linear profile (red
curve) for relaxed halos of mass M∗/8 identified at zid = 0 (ν = 0.74)). The other
three panels show the same comparison after tracing the halo particles back to different
redshift (zsn = 1, 2, 4) and rescaling the linear profile and non linear prediction to the
same redshifts.
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Figure 7.6: Top left panel: comparison between the outermost Eulerian profile (solid
magenta curve), the non linear prediction (dashed red curve) and the linear profile (red
curve) for relaxed halos of mass M∗ identified at zid = 0 (ν = 1.)). The other three panels
show the same comparison after tracing the halo particles back to different redshift (zsn =
1, 2, 4) and rescaling the linear profile and non linear prediction to the same redshifts.
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Figure 7.7: Top left panel: comparison between the outermost Eulerian profile (solid
magenta curve), the non linear prediction (dashed red curve) and the linear profile (red
curve) for relaxed halos of mass 16M∗ identified at zid = 0 (ν = 1.68)). The other
three panels show the same comparison after tracing the halo particles back to different
redshift (zsn = 1, 2, 4) and rescaling the linear profile and non linear prediction to the
same redshifts.
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Figure 7.8: Correlations of Eulerian profiles with shear at given formation time (top panels)
and with formation time at given shear (bottom panels). We consider halos with mass
M∗/16 identified at zid = 0. Top left plot show profiles at the identification redshifts,
whereas the other plots consider particle profiles at larger z: zsn = 1 (top right plot),
zsn = 1 (bottom left plot) and zsn = 1 (bottom right plot).
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Figure 7.9: Correlations of Eulerian profiles with shear at given formation time (top panels)
and with formation time at given shear (bottom panels). We consider halos with massM∗
identified at zid = 0. Top left plot show profiles at the identification redshifts, whereas the
other plots consider particle profiles at larger z: zsn = 1 (top right plot), zsn = 1 (bottom
left plot) and zsn = 1 (bottom right plot).
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Figure 7.10: Correlations of Eulerian profiles with shear at given formation time (top
panels) and with formation time at given shear (bottom panels). We consider halos with
mass 16M∗ identified at zid = 0. Top left plot show profiles at the identification redshifts,
whereas the other plots consider particle profiles at larger z: zsn = 1 (top right plot),
zsn = 1 (bottom left plot) and zsn = 1 (bottom right plot).
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7.2.3 Evolution of the halo particle profile

In Sec. 7.2.1 we compared the outermost halo profile with non linear predictions of
Bernardeau (1993). In this last section we inspect the height of the innermost halo profile
at different redshift. To do so, we consider again halos identified at a certain redshift
(say zid = 0) and the halo particles traced back to higher redshifts zsn = 1, zsn = 2 and
zsn = 4. When plotting together profiles at different redshifts in comoving coordinates
(left panel of Fig. 7.11, the central region of different profiles happens to be lower as z
increases. In the standard scenario for the halo formation we know that, after a first phase
of rapid growth, the density inside the central region of the halo should stay more or less
unaltered. So, we plot the same profiles converting from comoving to proper coordinates:

rP (zsn) = R

D(zsn) (7.6)

δP (zsn) = δ ∗D(zsn)3 (7.7)

where rP (R) and δP (δ) are the radius and the overdensity expressed in proper (comoving)
coordinates. We show the new profiles in the right panel of Fig. 7.11. We notice that the
central region is very similar. However, the match is not perfect. A possible explanation
is related to the locations around which halos have been built. Indeed, although the
outermost profile does not depend very much on the choice of the profile center, the
central region does. Fig. 7.12 shows particles of two halos identified at zid = 0 with mass
M∗. Different panels show the particles when traced back to three higher redshifts. Black
dots are the halo particles, whereas red dots are the particles of the main progenitor at
that redshift. We notice that, especially at high z, the location of particle center can be
found in less dense region and so the central profiles can be lower than expected. We
build the same profiles centering around the mass centers of main progenitors and we plot
together profiles built at different redshifts. Fig. 7.13) shows that the central region of
those profiles in proper coordinates superposes very well.

7.3 Summary

In this chapter we investigated both Lagrangian and Eulerian profiles and we related their
properties at different redshifts. Firstly we studied the correlation of linear δ profiles
with both shear and formation time and we found that, when these quantities are higher,
the linear profile is higher as well. However, binning in formation time leads to a strong
correlation only at scales larger than Lagrangian radius, whereas binning in q affects both
small and large scales. Afterwards, we took into account halo profiles. We showed that non
linear predictions of Bernardeau (1993) are consistent with the outermost halo profiles, at
least when tracing the halo particle profile at high enough redshifts. We then inspected the
correlation of halo profiles with Lagrangian shear and formation time. We showed that this
correlation is higher when binning in z50. When considering particle profiles built at higher
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Figure 7.12: Particles of two halos identified at zid = 0 and traced back to zsn=1,2 and 5.
Black dots: all particles of the halo. Red dots: all particles of the main progenitor. Green
circle: mass center of the halo particles. Blue circle: mass center of the main progenitor.
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Figure 7.13: Comparison of the averaged profile for halos identified at zid = 0 within
nine mass bins and the profiles obtained tracing the halo particles back to zsn = 1 (blue),
zsn = 2 (green) and zsn = 4 (orange), and centering on the main progenitor center of
mass.
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redshift, the correlation is higher and in the outermost regions the dependence on q grows.
Finally, we inspected the central region of halo profiles at different z. We showed that the
innermost region is very similar when considering profiles in proper coordinates. However,
the match is not perfect cause the center of mass of halo particles at high redshifts can
be found in less dense regions. When considering halo particle profiles built around the
center of mass of main progenitors, we found a better agreement.



Summary and Conclusions

The main aim of this work is the study of the formation of dark matter halos starting
from initially small density fluctuations. More specifically, we would like to understand the
importance of a few parameters (e.g. shear and formation time) in determining the collapse
in the light of both the excursion set theory and the peaks formalism. We performed this
analysis by employing Le SBARBINE cosmological set, run by the numerical cosmology
group at the Physics and Astronomy Department of Padua University.

In Chapter 4 we presented the methods employed to identify halos at different redshifts,
and selected appropriate mass bins and relaxation criteria. Moreover, we calculated the
parameters of the ellipsoidal collapse (EC) model at the grid points of the simulation boxes,
and tested that their distribution was consistent with theoretical predictions (Doroshkevich
(1970), Bardeen et al. (1986), Sheth and Tormen (2002)). In the last Section of the
Chapter we focused on the halo formation times. Whereas a fit for the distribution of halo
formation times was provided by previous authors (Lacey and Cole (1993), Giocoli et al.
(2012b)), the presence of an simpler and predictable approximation specifically tailored to
dynamically relaxed halos had never been investigated. We showed that relaxed halos can
be well approximated with a Weibull distribution, depending on only two free parameters.
Moreover, this approximation is very good when considering, in the definition of the
formation time, the mass fraction f = 0.5, employed in this work and often adopted in
the literature. We plan to check if the same distribution can also be extended to larger
identification redshifts. In following chapters we will employ these quantities in order to
investigate the properties of the halo seeds.

In Chapter 5 we focussed on the characterization of the halo seeds in the framework
of the peaks formalism. Moreover, we presented an alternative to the peaks approach
by considering a dipole term emerging from perturbation theory. The fact that collapse
generally occurs at the position of density peaks has been largely investigated (Bardeen
et al. (1986), Appel and Jones (1990), Ludlow and Porciani (2011), Paranjape and Sheth
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(2012), Paranjape et al. (2013)). However, attempts to merge the peaks formalism with
other approaches that consider the effect of shear have a much shorter history (Castorina
et al. (2016)). A good statistical understanding of the location of the halo seeds is an
issue of great importance in cosmology, so it is worth investigating in this direction. We
decided to analyze the correlation function between protohalo centers and peaks (valleys)
identified everywhere in the simulation box, where peaks (valleys) are defined as points
larger (smaller) than the six adjacent grid points. This approach not only gives us informa-
tion on the well investigated correspondence between peaks and centers, but allows us to
study other properties, like the clustering at large scales. We first studied the correlation
function between protohalo centers and peaks and valleys of the δ distribution smoothed
on the Lagrangian scale and four different scales, two smaller and two larger than the
Lagrangian one: we wished to understand how this correlation changes when consider-
ing different constraints on the peak height. We found that, when no constraints on the
peak height are taken into account, the correlation function at the smallest distances is
maximum for smoothing scales equal to and immediately lower than the Lagrangian one,
whereas the correlation function is lowest when δ is smoothed on the largest scale. As
ν and the threshold increase, the correlation function in the innermost region grows for
scales equal to and lower than the Lagrangian scale. In general, when imposing a weak
constraint on the peak heights, the correlation function with peaks of δ smoothed on the
Lagrangian scale tends to stand above the other ones when ν is large enough. Moreover,
when considering a constraint that directly accounts for the value of the traceless shear
when smoothed on the same scale of peaks, we selected peaks involved in the halo for-
mation. We then calculated the same correlation function, but considering peaks and
valleys on the distribution of q. Here we wanted to understand if the fact that the dis-
tribution of q has a null gradient is correlated with protohalo centers. When considering
no other constraints, we found that valleys of q smoothed on scales equal or smaller than
the Lagrangian one show a high correlation with protohalo centers; on the other hand the
correlation with peaks of q shows the opposite behaviour. However, we showed that the
value of q is more important than the fact that q is a valley or a peak. In a future work,
we will study the correlation function at high distances as a function of ν and identifi-
cation redshifts i.e. we will investigate more deeply the clustering of peaks at distances
larger than the Lagrangian radius. Moreover, we will try to characterize more precisely
the combination of δ and shear in the definition of a realistic threshold.

In the last Section of Chapter 5 we numerically investigated an alternative to the
peaks approach. This alternative is justified by the fact that, whereas the SC and EC
model describe collapse around the center of mass of protohalos, it is more appropriate to
assume that protohalos form from regions in which the initial dipole vanishes. Whereas
theoretical attempts have been made in this direction (Musso et al., to appear), this is the
first time that this issue has been numerically investigated. We first considered protohalos
of a certain mass and calculated the dipole of spheres in proximity of protohalo centers.
When these spheres have a radius equal to the Lagrangian one, the dipole heads toward
the protohalo center. If the radius is larger, the dipole has the same direction but it is
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smaller. So, protohalo centers are related with points where the dipole is null. We also
compared the distance of points with a minimum value of dipole and peaks of δ within a
spherical region of 0.4RL and we found that the dipole approach seems to better describe
the location of the halo seeds. In next future, we will realize these comparisons considering
a wider range of masses and following the evolution of the distance between null dipole
and centers by considering halo main progenitors at different redshifts.

Whereas in Ch. 5 we searched for a characterization of the halo seeds through peaks
and null dipoles, in Ch. 6 we studied the distribution of Lagrangian parameters and
the correlation between some of these parameters and the formation time of halos. It is
largely known the importance of shear on determining the threshold at which the collapse
occurs. Predictions on an ellipsoidal collapse barrier that incorporates the effect of tidal
forces have been made both by theoretical considerations (Sheth et al. (2001)) and by
fitting results of numerical simulations (Sheth and Tormen (1999), Sheth et al. (2001),
Sheth and Tormen (2002)). One important point is to estimate the importance of shear in
the halo formation. Here we first investigated the distribution of Lagrangian parameters
for halos identified at four identification redshifts and we compared the distribution for
zid = 0 with previous works. We found a good agreement with results of Robertson et al.
(2009) and slightly different results respect to those of Despali et al. (2013). However, this
last comparison is probably affected by the fact that they average the density over the
protohalo patches, whereas Robertson et al. (2009) and us assume a spherical shape for
protohalos. A more accurate measure of shear is given by the traceless shear parameter
q, emerging from a perturbative analysis of the ellipsoidal collapse model. Among other
things, this parameter has the advantage of not depending on a ratio of the eigenvalues.
Sheth et al. (2001) found that this variate is drawn by a χ2 with five degrees of freedom.
We found that the Lagrangian traceless shear qL is still a χ2

(5), opportunely scaled. We used
qL to investigate the importance of traceless shear on determining the barrier of collapse
by using a simple model with only a free parameter, qc, growing as the importance of shear
decreases. At zid = 0 we found a trend with mass similar to that of Sheth et al. (2013), but
with a slightly smaller value of qc. When considering larger identification redshifts, the
effect of shear is lower (qc grows) and the trend with mass shows nonlinearities. Moreover,
the presence of substantial scatter around the median suggests that other quantities other
than qL determine the value of δL (Sheth et al. (2013)). We therefore tried to understand
if the correlation of δL with the traceless shear is direct or is due to the shear-formation
time and formation time-overdensity correlations. We found that both shear (at given
formation time) and formation time (at given shear) are important. More specifically,
when ν is low the importance of shear is dominant, whereas at larger ν both correlation
decreases and show similar values. Future improvements of these analysis should take into
account the nonlinearities on the correlation of qL.

Whereas in Ch. 5 we took into account Lagrangian quantities, in Ch. 7 we considered
profiles. We wished first to understand how does the slope of the initial profile within the
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Lagrangian radius correlate with its height on larger scales. This sort of correlation is often
called "assembly bias", although in the context of halo formation it is also sometimes called
non-local or stochastic bias. We measured the average steepness of the inner profile by
measuring the different height of profiles between the innermost point and the Lagrangian
radius. We found that it is nearly invariant with mass but depends slightly on the halo
identification redshift (larger zid means a lower steepness of the inner profile). On the
contrary, the outer profile becomes steeper as ν increases. We studied how the initial shear
(the stochastic variable) impacts halo concentrations and large scale bias: we considered
four bins in shear and we find that both the height of profile at all scales and the steepness
of the outermost profile are larger. We also find similar results when binning in the
formation time, but in this case the correlation of delta profiles with z50 is larger for the
innermost profile and lower for the outermost one. However, when considering Eulerian
profiles we found that the correlation with formation time is always more important than
the correlation with shear.

Given the importance of dark matter haloes for the understanding of the evolution
of galaxies, understanding their internal structure is a fundamental issue in cosmology.
Hence, at a later stage, we qualitatively analyzed the evolution with time of the the steep
of the outer profile and the height of the innermost profile. We then considered halo
profiles at the identification redshifts and the profiles of the halo particles once they have
been traced back to three larger redshifts: z = 1, 2 and 4. We first compare the outermost
region of Eulerian profiles with Lagrangian profiles once the have been evolved by using
the nonlinear predictions o f Bernardeau (1993). We found that the outermost region
of final halo profiles at high ν is consistent with non linear predictions. Moreover, we
show how the accordance gets better as the redshift of the halo particle profiles grows.
Finally, we considered the evolution with time of the innermost profile. Whereas the
profile in comoving coordinates gets higher as the redshift decreases, when considering
proper coordinates the innermost region of profile superpose very well. This rescaling
is particularly accurate when we built profiles of the halo particles around the center of
mass of the main progenitor. The fact that the physical size of the central region of
(cumulative) density halo profiles remains the same as the halo evolves can be linked to
recent theoretical insights about the formation of halos. Moreover, the profile evolution
could be related to the evolution of concentration in different phases e.g. the first phase
of rapid growth in the matter-dominated epoch and the second phase of slow growth in
the dark energy epoch (Lu et al. (2006), Ludlow et al. (2013) and Correa et al. (2015)).
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relative frequence of different triplets combinations

λ1, λ2, λ3 < 0 λ1, λ2 < 0;λ3 > 0 λ1 < 0;λ2, λ3 > 0 λ1, λ2, λ3 > 0

R(M∗/128)
Ada 0.07754 0.4203 0.4174 0.08200
R(M∗/64)
Ada 0.07784 0.4217 0.4176 0.8321
R(M∗/32)
Ada 0.7811 0.4224 0.4179 0.8013
R(M∗/16)
Ada 0.07830 0.4182 0.4203 0.08200
Bice 0.08000 0.4203 0.4200 0.07961
R(M∗/8)
Ada 0.07848 0.4173 0.4184 0.08012
Bice 0.0800 0.4201 0.4193 0.0800
R(M∗/4)
Ada 0.07868 0.4184 0.4201 0.08002
Bice 0.08013 0.4200 0.4202 0.07958
R(M∗/2)
Ada 0.07875 0.4183 0.4201 0.08135
Bice 0.08035 0.4198 0.4202 0.07966
Cloe 0.07994 0.4200 0.4202 0.07994
R(M∗)
Ada 0.08002 0.4201 0.4181 0.07895
Bice 0.08010 0.4191 0.4211 0.07902
Cloe 0.07996 0.4198 0.4201 0.08021
R(2M∗)
Ada 0.08201 0.4197 0.4203 0.0798
Bice 0.08103 0.4173 0.4201 0.07982
Cloe 0.08002 0.4196 0.4198 0.08049
R(4M∗)
Bice 0.07903 0.4213 0.4202 0.07972
Cloe 0.08017 0.4196 0.4195 0.08072
Dora 0.07966 0.4205 0.4202 0.07964
R(8M∗)
Bice 0.07963 0.4213 0.4214 0.07962
Cloe 0.08037 0.4196 0.4190 0.08100
Dora 0.07953 0.4206 0.4202 0.07965
R(16M∗)
Bice 0.08023 0.4173 0.4205 0.08052
Cloe 0.08088 0.4192 0.4186 0.08127
Dora 0.07946 0.4205 0.4206 0.07949
R(32M∗)
Cloe 0.08150 0.4199 0.4169 0.08175
Dora 0.07913 0.4208 0.4210 0.07919
R(64M∗)
Cloe 0.08171 0.4239 0.4202 0.08011
Dora 0.07910 0.4218 0.4220 0.07921
R(128M∗)
Cloe 0.08073 0.4203 0.4209 0.07911
Dora 0.07910 0.4218 0.4220 0.07921
expected values 0.08 0.42 0.42 0.08

Table B.3: Comparison between relative frequence of different combination of eigenvalues
and the values presented in literature. There is clearly a good correspondance.
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Figures: correlation functions

D.1 Protohalo centers and peaks of δ
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D.2 Protohalo centers and peaks/valleys of q
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