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ABSTRACT 

 

The present doctoral dissertation is composed of six studies investigating 

various aspects of cognitive control, with a focus on selective memory retrieval: 

The brain areas that support this ability, the possibility of modulating its 

behavioural manifestations with transcranial Direct Current Stimulation (tDCS), 

its relationship with motor stopping, and its integrity in two clinical populations. 

Results provided by these experiments highlight four major achievements of this 

line of research: Firstly, we provided causal evidence for the involvement of 

right PFC in supporting the cognitive processes underlying memory control, 

because interfering with the activity of this region was sufficient to disrupt the 

RIF effect. Secondly, we demonstrated the effectiveness and viability of tDCS 

as a tool to modulate this peculiar effect. Thirdly, we provided compelling 

evidence for the advantages of analysing RPP data with a statistical approach 

that is more consistent with the nature of the data, as well as informative in 

respect of the different dimensions of the data that contribute to the results. Last, 

but not least, we contributed to the characterization of the cognitive profile of 

patients affected by substance-related and addictive disorders and EDs, paving 

the way to future research that could further investigate the extents and 

specificity of the previously unexplored memory control deficits that we unveiled 

in these patients. 
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PREFACE 

The study of cognitive control has attracted increasing attention from both 

researchers and clinicians, in particular for its trans-diagnostic value as a set of 

abilities which appears to be consistently challenged across a broad spectrum 

of psychological disorders, thus potentially constituting a common factor at their 

roots. Because of that, the many facets of cognitive control are currently 

privileged objects of scientific investigation. Importantly, over the last thirty 

years, a set of cognitive models of memory has gained prominence, in which a 

role for cognitive control in both retrieval and forgetting is postulated. As a result, 

the concept of forgetting has also been profoundly revised, from a limitation or 

failure of our memory systems to an active process that benefits from cognitive 

control to allow for an adaptive and efficient functioning in the every-day life. In 

particular, it has been hypothesized that inhibitory mechanisms, putatively 

similar to those involved in response selection in perceptual and motor tasks 

and therefore sharing common neural substrates in the prefrontal cortex (PFC), 

may be responsible for a peculiar instance of forgetting that is detected when 

retrieving an information from our memory storage impairs later recall of related 

information, compared to unrelated ones. This finding, traditionally termed 

retrieval-induced forgetting (RIF), is thought to represent the mark that is left 

behind by inhibitory control mechanisms recruited to overcome interference 

during selective memory retrieval, i.e., when we actively engage in effortful 

retrieval from memory in the face of competing, irrelevant memory traces. The 
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mnestic representation of these interfering memory traces would be weakened 

by inhibitory mechanisms that promote selection and emission of the correct, 

task-relevant response, so that on later attempts to retrieve the previously 

interfering memories their availability may be reduced. Given that this particular 

instance of forgetting has been associated to a range of abilities closely tied to 

our well-being and cognitive efficiency, ranging from working memory to 

creative problem solving and motor inhibition, it is not that surprising that it has 

been found to be impaired in a broad range of disorders traditionally 

characterized by impulsivity, anxiety, or rumination. For this reason, there is a 

great interest in investigating RIF in previously unexplored psychiatric and 

psychological disorders, identifying its neural underpinnings and strategies to 

modulate their activity, and clarifying its relationship with other expressions of 

cognitive control in different domains. 

In my doctoral dissertation, I will focus on the alteration of the neural 

substrates of RIF in the PFC by the means of non-invasive brain stimulation, 

and on the assessment of the integrity of the ability to overcome interference in 

selective memory retrieval in patients suffering from substance-related and 

addictive disorders or eating disorders (EDs). 

In the first chapter, I provide the core background for the present work, by 

presenting a comprehensive review of the theoretical debate, applied relevance, 

and the contribution of cognitive neurosciences, concerning retrieval-induced 

forgetting (RIF) as an instance of adaptive forgetting. 

In the second chapter, I present a brief outline of the main features and 

applied potential of transcranial Direct Current Stimulation (tDCS), which is 

employed in several experiments presented throughout the present work. 

In the third chapter, I present the first experiment to provide evidence for 

causal involvement of the right prefrontal cortex in control over interfering 

memories, as well as paving the way to subsequent investigation of 

neuromodulation of RIF by the means of tDCS. 

In the fourth chapter, I take a brief detour from the main topic of inhibitory 

control in episodic memory, to the neighbour domain of inhibitory control of 
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motor action. To this end, I present an experiment that tested the efficacy of 

various tDCS montages to modulate motor stopping ability in a delayed stop-

signal task (SST).  

Results from the experiment presented in the fourth chapter, together with 

the previous one, enabled the designing of the two experiments presented in 

the fifth chapter, which were aimed at evaluating the effects of tDCS over RIF 

on a different prefrontal area, i.e., the right Inferior Frontal Gyrus (rIFG), and 

subsequently attempted the concurrent modulation of memory control, as 

indexed by RIF, and motor stopping, as indexed by the SST, based on previous 

evidence of a relationship between the cognitive mechanisms underlying the 

two abilities. 

In the sixth and seventh chapters, I present two experiments that aimed at 

assessing the status of memory control abilities in clinical populations typically 

characterized by impulsivity and poor cognitive control, compared to matched 

healthy control groups. In particular, the two chapters focused on patients 

suffering from substance-related and addictive disorders, in the sixth chapter, 

and anorexia and bulimia nervosa, in the seventh chapter. 

Finally, in the last chapter, I present a general discussion of the main findings 

from the present work, their relevance to the study of memory control, and their 

implications for future research efforts. 
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1 RETRIEVAL-INDUCED FORGETTING (RIF) 

Part of this chapter has been published in Stramaccia, D. F., Braga, M., Fardo, F., 

Penolazzi, B., & Galfano, G. (2015). Retrieval-induced forgetting: gli effetti negativi della pratica 

sulla memoria episodica. Giornale Italiano di Psicologia, 195-217. 

    

Over the course of our everyday lives, we accumulate memories that share 

similar features and common retrieval cues. Under some circumstances, this 

can quickly become a nuisance. For example, we could struggle to recall the 

PIN code associated to our new credit card, because the PIN code from the 

previous one intrudes while we are typing at the ATM machine, which could 

very well act as a retrieval cue for both. However, generally a few practice 

attempts on the new PIN are sufficient to override the competing old one. 

Everyday life is filled with similar instances of interfering information and 

unwanted memories, thereby suggesting that mechanisms deputed to 

overcome such interference would be highly adaptive.  

Researchers of memory and learning have been struggling for long with the 

observation that retrieving information from episodic memory can have two 

effects. On the one hand, retrieved information may get strengthened so that 

future recall attempts will be easier. On the other hand, later recall attempts may 

also show poor recall of un-retrieved information associated to the retrieved 

information. This phenomenon has been termed Retrieval-Induced Forgetting 

(RIF) by Anderson, Björk and Björk (1994), and describes the detrimental 
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effects of retrieval practice due to (at least partly) inhibitory mechanisms. 

Previously, the term “output interference” was mainly used to indicate such 

phenomenon. The new wording was meant to indicate that forgetting can occur 

at an intermediate retrieval stage (between initial encoding and subsequent 

memory testing), and to in introduce the concept on inhibition in the domain of 

forgetting, whereas output interference refers to a mere consequence of 

limitations in human memory. In fact, RIF was first investigate with the output 

interference paradigm (Roediger, 1973), where one would observe that memory 

for previously learned items declined with increasing serial position of the items 

at test.  

In 1973, Roediger ascribed the negative effects of retrieval practice to output 

interference. In keeping with past work from Tulving and Arbuckle (1963), 

Roediger assumed that the very act of strengthening an item in episodic 

memory would have reduced accessibility of additional items, due to the 

strengthened item being given priority in the act of recall, compared to weaker 

items that would become temporarily inaccessible, as attempts to retrieve them 

would also result in additional reactivation of the strengthened ones (as if they 

were sampled with replacement).  

However, in 1994, Anderson and Colleagues introduced the retrieval practice 

paradigm (RPP) as a new method to test the loss of information occurring due 

to repeated practice on related information, and proposed a role for inhibitory 

mechanisms in the act of forgetting. These inhibitory mechanisms would be 

recruited unintentionally, to serve the intentional purpose of efficient memory 

retrieval by facilitating the emission of task-relevant information in memory by 

weakening competing and irrelevant memory traces. In this theoretical 

framework, memory selection and inhibition should be considered as a special 

or a parallel case of action selection (e.g., Levy & Anderson, 2002) and 

subsequent inhibition, in a similar fashion to the typical Go/No-Go or Stop-

Signal tasks commonly used to measure inhibitory efficiency in motor action. 

In the following paragraphs, I first describe in detail the RPP and the typical 

findings associated with this experimental procedure, followed by a discussion 
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of each of the main points around which the theoretical debate on RIF is 

articulated. Subsequently, I review the literature on the main applied venues for 

research on RIF, and I discuss the importance of RIF for efficient functioning of 

memory, within the context of a “positive forgetting” framework. A final section is 

dedicated to the contribution of studies that employed a broad range of 

neuroscientific methods to investigate RIF, along with the theoretical 

implications of their findings.  

1.1 Retrieval practice paradigm (RPP): a method to study RIF 

The typical RPP, devised by Anderson and colleagues (1994), is structured 

in three temporally distinct phases. Firstly, participants are shown categorized 

lists of word pairs, with each word pair (e.g., FRUIT-LEMON) composed of a 

semantic category (e.g., FRUIT) and an exemplar of that particular category 

(e.g., LEMON). The word pairs are presented once each for a few seconds, and 

the participants are instructed to memorize each exemplar in relationship with 

its category. 

Secondly, immediately after the initial study phase, participants perform 

repeated retrieval practice on half the exemplars from half the semantic 

categories. Participants are shown retrieval cues that probe memory for a 

specific exemplar each (e.g., FRUIT-LE___), and they are asked to retrieve the 

exemplars seen in the previous phase (by saying them aloud or typing) that 

match the retrieval cue provided. According to the Authors’ theoretical stance, 

upon presentation of a retrieval cue, the target item in memory is activated, 

alongside a number of competitors, namely the other items that have been 

learned in the study phase and belong to the same semantic category as the 

target item. Because the activation of such competing items in memory could 

interfere with the retrieval process, inhibitory mechanisms would be recruited to 

overcome this interference, weakening the representational status of the 

competing items in memory in order to promote the emission of the correct 

response. Each retrieval cue is shown several times (usually three or four times), 

in order to provide more chances for the successful recruitment of the purported 

inhibitory mechanisms underlying RIF. The retrieval-practice phase gives rise to 
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a subdivision of the experimental stimuli in RP+ items (practiced exemplars 

from practiced categories), RP- items (non-practiced exemplars from practiced 

categories), and NRP items (non-practiced exemplars from non-practiced 

categories). 

Lastly, after a 5 to 20min break or unrelated filler task, a final test is 

administered where participants are asked to recall all the experimental stimuli 

that were presented in the initial study phase. Memory for the exemplars is 

typically assessed with a category-plus-stem cued recall test that is generally 

more difficult with respect to the testing modality employed in the previous 

phase (e.g., FRUIT-L___). 

Figure 1.1 below provides a schematic representation of the RPP. 

 

Figure 1.1 Schematic representation of the three phases of the RPP. 

 

This procedure allows for measuring the two faces of selective memory 

retrieval. Typically, on the one hand, RP+ items are better recalled than RP- and 

NRP items, due to the well-known testing effect associated with retrieval 

practice (e.g., Chan, 2009), usually termed facilitation (FAC) in the RIF 

literature. More surprisingly, NRP items are also better recalled than RP-, even 

though none of them underwent retrieval-practice. Crucially, NRP items belong 

to categories that were not shown during retrieval practice. This apparently 

paradoxical finding constitutes the behavioural manifestation of RIF. Figure 1.2 

shows the typical pattern of results observed with the RPP. 
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Figure 1.2 Typical results in a RPP paradigm. FAC = RP + vs NRP; RIF = NRP vs RP-.  

 

1.2 Theoretical models of RIF 

Even though various mechanisms have been put forth to explain RIF, it is 

possible to differentiate between two main families of theoretical accounts, 

based on either inhibition or competition. Anderson, who is the main developer 

of the RPP, is also the main proponent of inhibition as the principal mechanism 

underlying forgetting observed as a consequence of retrieval practice (e.g., 

Anderson et al., 1994). In his view, retrieving information from memory activates 

similar, competing information, which may interfere with the correct retrieval of 

the target information. In order to mitigate this interference, inhibitory 

mechanisms would be recruited to inhibit the mnestic representations of the 

competing information. This, in turn, may impair later attempts at recalling the 

previously interfering. According to other Authors, inhibition may instead act on 

the associative path between the specific cue used for retrieval and the target 

information (e.g., Storm & Levy, 2012). In any case, all proponents of inhibitory 

accounts of RIF agree on describing the phenomenon as the consequence of 

an adaptive process that promotes retrieval by reducing the accessibility of 

competing information.  

Proponents of competition-based accounts of RIF, on the contrary, argue that 

the strengthening of information during retrieval practice blocks the accessibility 

of the non-strengthened associated information at test, when the shared 
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retrieval cue is presented, thus ruling out inhibition as an explanatory 

mechanism of RIF (e.g., Perfect, Stark, Tree, Moulin, Ahmed, & Hutter, 2004; 

Raaijmakers & Jakab, 2013; Verde, 2012). It should be noted that these 

different views on RIF are not mutually exclusive (Anderson, 2003; Storm & 

Levy, 2012) and both mechanisms, i.e., inhibition and blocking, may contribute 

to different extent to RIF. There is, however, a strong debate about the need for 

inhibition at all in the production of RIF. In particular, as mentioned before, 

proponents of competition-based accounts often argue that inhibition does not 

play a role at all in RIF. This debate is centred on what Anderson (2003) 

described as the fundamental tenets of the inhibitory accounts of RIF: 

independence from output interference, cue independence, retrieval specificity, 

strength independence, and interference dependence. The inhibitory account of 

RIF is central to the present dissertation, and the experiments and related 

results presented here were carried out and interpreted within this particular 

explanatory framework of the phenomenon. Nonetheless, alternative 

explanations are always discussed and considered. 

In the following sections, I will briefly review the current status of the evidence 

about each of these critical properties of RIF (for extensive reviews, see 

Anderson, 2003; Storm & Levy, 2012; Verde, 2012; Raaijmakers & Jakab, 2013; 

Murayama, Miyatsu, Buchli, & Storm, 2014). After that, I will provide a critical 

assessment of a recent, diverging theoretical stance of RIF, which assigns a 

key role to context as the main force behind this phenomenon. In the final 

section I will present and discuss the two-factor account of RIF, which could be 

better suited to explain the phenomenon compared to other account based on 

single mechanisms.  

1.2.1 Output interference  

Decades before the RPP was conceived, there was already awareness in the 

field of memory research about a “disparity between availability and 

accessibility” of information (Roediger, 1973), and that under some 

circumstances retrieving information from memory could impair later recall of 

similar information. Tulving and Arbuckle (1963) termed this phenomenon 
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“output interference”, i.e. the observation that recall performance decreases as 

the serial position of the to-be-remembered item increases. When the RPP was 

first proposed (Anderson et al., 1994), the Authors acknowledged that output 

interference may have very well played an essential role in the pattern of results, 

without the need to resort to inhibition as an additional explanatory mechanism. 

Specifically, because the first instance of RPP employed category labels alone 

(e.g., FRUIT) as retrieval cues at test, and because RP+ items would have been 

more accessible due to their strengthening during the retrieval practice phase, it 

could have been argued that participants confronted with category cues related 

to practiced categories would have systematically retrieved the RP+ items first, 

thus impairing recall of RP- items. Because of that, the Authors devised a 

strategy to control for output interference in subsequent iterations of the RPP, 

which consisted of presenting item-specific retrieval cues (e.g., FRUIT-L___) so 

that the output order could be controlled by systematically presenting RP- 

retrieval cues before RP+ retrieval cues. Numerous studies found reliable RIF 

with this strategy (e.g., Anderson et al., 1994; Anderson & McCulloch, 1999; 

Storm, Björk, & Björk, 2007, 2008), even with materials other than the standard 

category-exemplar word pairs (e.g. Anderson & Bell, 2001). It is worth 

mentioning that, in contrast with the above, Butler, Williams, Zacks, and Maki 

(2001) failed to observe RIF when output interference was controlled for with 

several types of item-specific retrieval cues, as opposed to when category cues 

were used instead. However, Goodmon and Anderson (2011) argued that 

uncontrolled semantic associations in the experimental material used by Butler 

and Colleagues (2001) might have shielded competitors from forgetting, due to 

semantic integration dynamics (Anderson & McCulloch, 1999). It is also 

important to note that controlling for output interference reduces the magnitude 

of RIF (e.g., Murayama et al., 2014), suggesting that both mechanisms (i.e., 

output interference and inhibition) may play a role in shaping the results.  

1.2.2 Cue independence 

According to the inhibitory account of RIF, the forgetting measured with 

performance at test phase originates during the retrieval practice phase, when 
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interference arising from competing memories calls for inhibitory mechanisms 

that target them. More specifically, inhibition would take place at the 

representational level of the interfering memory, weakening its later accessibility 

irrespectively of the retrieval cue, and therefore retrieval route, that is used to 

probe such accessibility. On the contrary, the blocking account of RIF does not 

allow for cue independency, because blocking would occur by strengthening of 

the connection between the specific retrieval cue and the to-be-retrieved item in 

memory, but not of the item itself. A number of studies produced evidence in 

favour of the cue independency of RIF, even though a few ones failed to do so. 

Anderson and Spellman (1995) first manipulated the RPP by introducing a new, 

cue-independent test phase format, which they refer to as the “independent 

probe” test. In their study, participants engaged in a cross-category cuing 

variant of the RPP, where categories were characterized by semantic 

relationships that allowed inhibition to act on exemplars of non-practiced 

categories that were later used as recall cues at test. For example, participants 

may have studied LEMON and STRAWBERRY within the FRUIT category, and 

BANANA and CORN within the YELLOW category. Given that LEMON is also a 

member of the YELLOW category, and BANANA is also a member of the 

FRUIT category, performing retrieval-practice on FRUIT-STRAWBERRY should 

impair later recall of YELLOW-BANANA. YELLOW would also act as an extra-

list cue, ensuring cue independence of RIF measured with this procedure. 

Anderson and Spellman (1995) were able to induce RIF with this RPP variant, 

although smaller in size in respect to the RIF effect observed with the typical 

RPP. An alternative independent probe method consists of assessing memory 

performance at test through extra-list retrieval cues, which were not shown 

during either the study or the retrieval practice phases of the RPP (e.g., SODA-

___, in place of FRUIT-L___). Relevant to the inhibitory account, the magnitude 

of RIF appears to be similar between item-specific and non-specific cues when 

using cue independent designs, reflecting a reduced susceptibility of this 

procedure to blocking dynamics at test (Murayama et al., 2014). Regarding the 

smaller RIF effect generally observed with these designs, it could be argued 

that the RIF effect measured with more typical designs is determined by more 



Retrieval-Induced Forgetting (RIF) 

Davide Francesco Stramaccia - November 2016   13 

than just inhibitory mechanisms, and that part of forgetting may take place at 

test (e.g., due to blocking dynamics), whereas cue independent designs are 

able to highlight the net contribution of inhibition to forgetting. An alternative or 

concurrent explanation concerns the possibility that inhibition during retrieval 

practice affects both the competing items’ representational strength in memory 

and their association to the retrieval cue. Because the strength of such 

association is irrelevant in cue independent designs (unless the independent 

cues are largely semantically overlapping with the study cues), these designs 

may be able to detect only part of the inhibitory effects. 

However, some Authors have argued against the cue independence of RIF 

(Jonker, Seli, & MacLeod, 2012; Perfect et al., 2004; Raaijmakers & Jakab, 

2013). For example, covert cuing has been widely proposed as an alternative 

explanation to forgetting in cue independent designs. According to the covert 

cuing hypothesis, participants provided with independent cues (e.g., SODA-___ 

in place of FRUIT-L___) may be engaging in covert retrieval of the original 

category cue (i.e., FRUIT) to facilitate retrieval, thus jeopardizing cue 

independence (e.g., Camp, Pecher, & Schmidt, 2005, 2007). Ironically, the 

inhibitory account of RIF predicts that covert cuing should reduce or abolish RIF, 

because practiced items rather than to-be-suppressed items would benefit more 

from the availability of multiple cues (Anderson, 2003). Indeed, a recent study 

failed to show any RIF when participants were explicitly instructed to adopt a 

covert cuing strategy during the final, cue independent test phase Weller, 

Anderson, Gómez-Ariza, and Bajo (2013). This result could also suggest that 

the cause of smaller RIF in studies employing cue independent design is 

caused by covert cuing strategies spontaneously adopted by the participants. 

Finally, cue independence is also supported by studies that used implicit 

memory tests to probe recall in the final phase of the RPP, such as in the 

second experiment from Veling and van Knippenberg’s study (2004, experiment 

2), where the Authors observed RIF with a lexical decision task. 
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1.2.3 Retrieval specificity 

A core assumption of the inhibitory account of RIF is that forgetting takes 

place during the retrieval practice phase, and only a competitive retrieval 

practice format, as opposed to simple additional study, should induce forgetting 

of non-practiced items, since they would not compete for retrieval if additional 

study was performed in place of retrieval practice. On the contrary, strength-

based accounts of RIF predict blocking of non-practiced items due to 

competition that arises at the final test of the RPP. Therefore, non-competitive 

re-exposure to a subset of the study material should be sufficient to impair later 

recall of the non-practiced subset, as long as it is able to strengthen that subset 

of the material. Many studies addressed this fundamental tenet of the inhibitory 

account of RIF. Past work employed restudy or non-competitive retrieval 

practice format in place of the typical retrieval-practice phase. In the former 

case, participants were simply re-exposed to a subset of the study material (e.g., 

Ciranni & Shimamura, 1999). In the latter case, participants were asked to 

complete the category label, given the exemplar and a letter stem as a cue (e.g., 

FR___-LEMON; e.g., Anderson, Björk, & Björk, 2000a). None of these studies 

found RIF when non-competitive retrieval practice formats were used, in line 

with the inhibitory account of RIF.  

However, some Authors (e.g., Raaijmakers and Jakab, 2013, Verde, 2012) 

recently argued that studies employing restudy or non-competitive retrieval 

practice formats may still be interpreted within the strength-based account of 

RIF, depending on the particular format implemented. In this view, it would not 

be surprising to fail at observing RIF in a plain restudy retrieval practice phase, 

because it may selectively strengthen the practiced items without affecting their 

association to the cue, which could in turn produce insufficient blocking at test. 

However, recent studies (Raaijmakers and Jakab, 2013, Verde, 2012) that 

challenged the retrieval specificity tenet employed non-competitive retrieval 

practice formats that were effective at strengthening the practiced item’s 

association to the cue, and managed to induce RIF-like forgetting. In the former 

study (Ciranni & Shimamura, 1999), participants retrieved category labels upon 

presentation of associated exemplars (e.g., ___-LEMON), so that the retrieval 
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practice phase was reasonably more difficult than in Anderson and Colleagues’ 

study (2000a) discussed before. In the latter work instead (Anderson et al., 

2000a), participants either judged the appropriateness of the category labels 

associated to the practiced items, or rated the pleasantness of the practiced 

items. In both cases, the category-exemplar word pairs were shown in full (e.g., 

FRUIT-LEMON), and both methods lead to RIF-like forgetting. Moreover, 

Saunders, Fernandes, and Kosnes (2009) used a mental imagery task in place 

of the typical retrieval practice phase, where participants were asked to mentally 

visualize physical features of the practiced category-exemplar word pairs 

(shown in full, e.g., FRUIT-LEMON), such as the shape, size, or colour. This 

manipulation was effective at inducing RIF-like forgetting. Moreover, in their 

recent meta-analysis of RIF, Murayama and colleagues (2014) found that even 

the category retrieval practice format (e.g., FR___-LEMON) used in Anderson 

and Colleagues’ study (2000a) was found to elicit reliable RIF-like forgetting 

across a number of studies, in contrast with the retrieval specificity tenet of the 

inhibitory account of RIF. One potential explanation in line with the inhibitory 

account is that the category cued retrieval practice might elicit competition, 

especially when more demanding retrieval-practice formats are used (e.g., ___-

LEMON), and therefore it might require inhibition similarly to what happens 

when typical category-plus-stem retrieval cues are employed. However, it is not 

clear why retrieving category labels from memory would elicit competition from 

exemplars belonging to the target categories but not used as cues. Additionally, 

it is possible that strengthening the category-exemplar association elicits 

interference independently of whether the category or the exemplar is retrieved 

during the retrieval practice phase, causing blocking at the time of test. However, 

as discussed in the next paragraph, this strengthening should also positively 

correlate with the amount of RIF, which however is not the case in studies 

controlling for output interference at test.  

Nevertheless, this body of research is not sufficient to fully challenge the 

retrieval specificity tenet of RIF, and the inhibitory account of the phenomenon 

as well. In fact, studies employing a typical competitive retrieval practice format 

have found RIF with recognition tests (e.g., Hicks & Starns, 2004), whereas 
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studies that used a non-competitive retrieval practice format and probed 

recognition at test failed to show RIF (Grundgeiger, 2014; Rupprecht & Baüml, 

2016). Importantly, these studies employed non-competitive retrieval practice 

formats that were able to induce RIF in cued recall tests, thus suggesting that 

recognition tests may be the optimal test format to capture the pure effect of 

inhibition over competing memories. At the same time, cued recall test may be 

partly influenced by blocking dynamics, suggesting that a two-factor account of 

RIF, where both blocking and inhibition contribute to forgetting, might be better-

suited to explain the wealth of results obtained so far with the typical RPP. 

Consequently, RPPs employing recognition tests may constitute a more reliable 

benchmark for the ability to inhibit competing memories. 

1.2.4 Strength independence 

Competition-based accounts of RIF explain this phenomenon on the basis of 

strength-based associative interference (e.g., McGeoch, 1942; Mensink & 

Raaijmakers, 1988). According to this theoretical stance, retrieval practice 

would strengthen retrieved information, while at the same time blocking 

subsequent retrieval of related information, even when the test format is 

controlled for output interference (see section 1.2.1). One problem with this 

account is the fact that RIF and FAC are usually found to be uncorrelated (e.g., 

Hulbert, Shivde, & Anderson, 2012), even though it would be logical to predict 

otherwise, if the magnitude of RIF is assumed to reflect the amount of 

strengthening of practiced material. The lack of association between the degree 

of strengthening of RP+ items and the degree of forgetting of RP- items is 

referred to as strength independence. Strength independence is also closely 

tied to retrieval specificity (see section 1.2.3), because the absence of RIF with 

RPPs employing additional study instead of retrieval practice further supports 

the notion that strengthening of RP+ items does not necessarily lead to 

forgetting of RP- items. Indeed, other studies suggested that strengthening of 

RP+ might not be necessary at all to observe RIF. For example, RIF has been 

observed in a RPP employing an “impossible” retrieval practice phase, where 

non-existing exemplars (e.g., FRUIT-WO___) were cued instead of study 
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material (Storm, Björk, Björk, & Nestojko, 2006; Storm & Nestojko, 2010). In this 

condition, only inhibitory accounts of RIF would predict forgetting of RP- items, 

as competition would arise regardless of successful strengthening of RP+ items. 

Similarly, receiving feedback during retrieval practice benefits RP+ items without 

positively affecting RIF (Erdman & Chan, 2013), a finding which is also more 

easily reconciled with inhibitory accounts of RIF. In addition to that, when 

participants perform retrieval practice on items characterized by low-taxonomic 

strength (e.g., Anderson et al., 1994), and output interference is controlled for, 

RIF is not observed, thus suggesting that strengthening of RP+ items is not 

sufficient to induce forgetting. Therefore, the current status of the literature 

speaks in favor of the tenet of strength independence. 

1.2.5 Interference dependence 

As mentioned earlier, the inhibitory account of RIF predicts that, without 

competition, there would be no need for inhibitory mechanisms to facilitate 

retrieval, and forgetting of RP- items should not be observed in the test phase of 

the RPP. Therefore, it follows that non-practiced exemplars of practiced 

categories have to exert a sufficient amount of interference during the retrieval 

practice phase, by competing for recall upon presentation of the relevant 

category cues. Indeed, when competition within the retrieval practice phase of 

the RPP is manipulated (i.e., by manipulation of the taxonomic strength of the 

RP+ and RP-), it is often observed that exemplars with high taxonomic strength 

(i.e., e.g., LEMON for the FRUIT category), which are thought to exert more 

competition, are also forgotten the most. Because these exemplars are strongly 

associated to the corresponding category cue, and thus likely to be reactivated 

upon its presentation, performing retrieval practice on weakly associated 

exemplars of the same category may incidentally activate the former as well, 

which however are irrelevant to the task at hand (being RP- items). This, in turn, 

would trigger inhibitory mechanisms, aimed at reducing interference from the 

RP- items.  On the opposite, exemplars with low taxonomic strength (e.g., 

NECTARINE for the FRUIT category), which are unlikely to become activated 

upon presentation of their corresponding category cue, do not suffer from 
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forgetting (e.g., Anderson et al., 1994, 2000a). This evidence not only 

corroborates the notion that RIF depends on mechanisms that overcome 

interference, but is also at odds with non-inhibitory accounts of RIF, where 

forgetting should be observed regardless of the amount of competition during 

the retrieval practice phase (but see Jakab & Raaijmakers, 2009). 

Interference dependence has also been tested with other approaches. For 

example, Storm et al., (2007) found that the instruction to remember a set of 

items (later used as RP- items in a RPP) makes that set more susceptible to 

RIF, compared to the instruction to forget it. Interpreting this result within a 

theoretical framework of RIF based on inhibition, the Authors argued that the 

former instruction made the items more likely to interfere during the retrieval 

practice phase. In another study, Shivde and Anderson (2001) had participants 

perform retrieval practice on either the dominant or the subordinate meaning of 

a homograph. Retrieval practice on the dominant meaning did not lead to 

forgetting of the subordinate meaning, whereas retrieval practice on the 

subordinate meaning was able to induce RIF for the dominant meaning, which 

was assumed to be more likely to interfere, and therefore to trigger inhibition.  

However, not all studies found evidence consistent with an inhibitory account of 

RIF. For example, Jakab and Raaijmakers (2009) manipulated study position of 

RP- items in order to probe the effect of primacy on RIF. In keeping with 

inhibitory theories of RIF, forgetting should have been stronger for items studied 

earlier on the list, due to primacy making the items more likely to interfere during 

retrieval practice. Instead, they found that study position did not affect RIF. 

Similarly, increasing the amount of study time in the initial study phase of the 

RPP does not generally enhance RIF, even though it could promote interference 

by making RP- items more accessible on later stages. However, study time is 

also thought to promote integration of studied material in a coherent framework 

(see 1.3.2), which is detrimental to RIF (e.g., Anderson, Green, & McCulloch, 

2000b; Goodmon & Anderson, 2011). Inconsistent findings in studies of 

interference dependence of RIF have been at least partially addressed by 

Anderson and Levy (2010). The Authors argued that, while on the one hand 

demand for inhibition increases as a function of interference, on the other hand 
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inhibitory effectiveness decreases as a function of interference. Indeed, a recent 

study found suggested that an inverted U-shaped function, rather than a purely 

monotonic one, might describe more adequately the relationship between RIF 

and interference (Keresztes & Racsmány, 2013), although this pattern was only 

supported by a statistical tendency.  

Given its importance for theoretical models of RIF, the interference 

dependence assumption warrants further investigation and invites the 

development of experimental manipulations capable of providing a more 

accurate description of the relationship between RIF and interference. For 

example, to address the need for stronger evidence regarding the interference 

dependence tenet, a recent study by Chan, Erdman, and Davis (2015), 

manipulated the amount of competition exerted by RP- exemplars during the 

retrieval practice phase of a modified RPP, and found that only retrieval practice 

under high competition induced RIF in category-plus-stem cued recall. The 

Authors subsequently replicated this result with a RPP where a recognition test 

was used to probe memory in the final phase. However, employing a category-

cued final test (thus contaminated by output interference) lead to RIF under both 

high- and low-competition at retrieval practice. Importantly, competition across 

these experiments was varied only by manipulating the input order of the study 

items, thereby ruling out a series of possible methodological objections arising 

from experimental manipulations of the retrieval practice format (as in previous 

studies that manipulated competition), of the associative strength of the 

experimental material, and of the taxonomic strength of practiced/non-practiced 

material. Therefore, results from Chan and colleagues (2015) are highly 

consistent with the interference dependence tenet of the inhibitory account of 

RIF. 

1.2.6 A context-exclusive account of RIF: Summary of recent evidence  

Recently, an alternative account of RIF has been proposed that relates to 

effects of encoding and retrieving information within a specific context on 

subsequent retrieval in a similar context. Past research highlighted the influence 

of context on memory performance, exploring a broad range of physical (e.g., 
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time, location, presentation modality), internal (e.g., mood, altered states), and 

task-related (e.g., varying format and features) contexts manipulations. For 

example, Godden and Baddeley (1975) found that recall performance was 

maximized when encoding and test context matched (manipulated by the 

means of different locations), as opposed to a change of context. Based, on this 

body of literature, Jonker and Colleagues (2012) proposed a context-dependent 

account of RIF, which attempts to rule out both inhibitory and blocking 

mechanisms. This alternative account of RIF is also based on the observation 

that the transition from passive learning tasks (akin to the study phase in the 

RPP) to more active memory tasks (such as retrieval practice) can induce an 

internal change in context that affects performance (e.g., Sahakyan & Hendricks, 

2012). The two main assumptions of the context account are that RIF is 

observed only when a context shift takes place between the study phase and 

the retrieval practice phase of the RPP, and that the context surrounding the 

final test phase has to be more similar to that of the retrieval practice phase, 

more than that of the study phase. According to Jonker and Colleagues (2012), 

upon presentation of a category during the test phase od the RPP, participants 

may search for the appropriate answer within the more recent context where 

that particular category was last presented. Because practiced categories 

(contributing to RP+ and RP- items) were encountered in both the study phase 

and the retrieval practice phase of the RPP, while non-practice categories 

(contributing to NRP items) where only processed in the study phase, during the 

test phase participants may end up searching for RP- items in the retrieval 

practice phase context. This, in turn, would make RP- items less accessible 

than NRP items, because the former were not encountered at all within the 

retrieval practice phase context, thus leading to a form of “RIF-like” forgetting 

(the definition “RIF-like” is used to highlight the fact that forgetting of RP- items 

would depend on presentation of RP categories, rather than retrieval of the RP+ 

items, and that retrieval-practice is merely one method to induce a context shift). 

Therefore, the reinstatement of the retrieval practice context for the practice 

categories, along with the reinstatement of the study context for the non-

practice categories, are both critical for observing RIF according to the context 
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account. Importantly, neither inhibition nor blocking would be playing any role at 

all in shaping the results.  

In a series of experiments, Jonker and Colleagues (2012) provided evidence 

in support of their context-account of RIF. In one experiment, the Authors 

succeeded in inducing RIF-like forgetting with a RPP that employed a restudy 

format at retrieval practice (whereas past work generally failed at this, e.g., 

Anderson et al., 2000a), which is at odds with both the retrieval specificity (see 

1.2.3) and the interference dependence (see section 1.2.5) tenets of the 

inhibitory accounts of RIF. To do so, they implemented a context shift-inducing 

task between the initial study phase and the restudy, since in their view the 

normal transition between the two phases is not sufficient to induce a context 

change, which would also explain the lack of RIF in past work employing 

restudy in place of the typical retrieval practice phase. In a subsequent 

experiment, Jonker and Colleagues (2012) abolished RIF by strongly reinstating 

the study phase context prior to the test phase, and therefore argued that due to 

this manipulation participants were now able to search for the appropriate 

context at test, thus circumventing the context shift that would otherwise lead to 

forgetting of NRP items. Moreover, in another experiment that employed a 

typical RPP, Jonker and Colleagues (2012) manipulated the context where 

participants would search for when presented with retrieval cues at test. To this 

end, during the study phase, they associated all exemplars within a category to 

a specific context, induced by the concurrent presentation of a video segment, 

and subsequently paired the practiced items with a new context (a different 

video segment). During the test phase, participants where shown either the 

original study phase video, or the one saw during the practice phase. Critically, 

the Authors observed RIF only in the latter condition. Therefore, proponents of 

the context account of RIF argue that forgetting at test depends exclusively on 

the context shift induced by the structure of the RPP, and thus it does not 

predict the retrieval specificity property of RIF, because the effect would only 

depend on the inappropriate context search that takes place during the test 

phase. Moreover, the context account is at odds with the cue independence 
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tenet of RIF, because presentation of the original category cues at test is 

necessary to reinstate the retrieval practice context for the practiced categories.  

Past work seems to be at odds with the predictions of the context account of 

RIF. For instance, RIF can be reduced or eliminated by manipulations that 

reliably induced stress or negative mood in healthy participants prior to the 

retrieval practice phase of the RPP (e.g., Bäuml & Kuhbandner, 2007; Koessler, 

Engler, Riether, & Kissler, 2009), even though these manipulations might have 

reasonably led to critical changes in context. Moreover, presenting an 

instruction to forget between the study and the retrieval practice phases of the 

RPP, which should be an effective method to induce an internal context shift 

(Sahakyan & Kelley, 2002), was in fact detrimental to RIF, as predicted by the 

inhibitory account of RIF, according to which the instruction to forget would 

reduce the amount of associative interference exerted by RP- items, as 

opposed to the instruction to remember (Storm et al., 2007). In addition to that, 

Román, Soriano, Gómez-Ariza, and Bajo (2009) have shown that RIF is 

abolished when the retrieval practice phase of the RPP is performed under 

divided attention, which does not fit well with the context account of RIF since 

the context shift from study to retrieval practice would be enhanced by such 

manipulation, but is instead more compatible with the inhibitory account of RIF, 

which predicts that under divided attention executive resources would be less 

available to suppress interfering items under.  Importantly, even though this 

alternative account of RIF is a relatively recent proposal and needs further 

validation, a few studies already challenged its specific predictions. For 

example, Miguez, Mash, Polack, and Miller (2014) failed to observe a 

decreased RIF as a result of a context shift between retrieval practice and test, 

with the context at test matching the study context, whereas the context account 

would have predicted no RIF in the same circumstances, because RP 

categories were not selectively reinstated. However, the internal context related 

to retrieval practice (e.g., presentation style, task features) might have been still 

active, and the effectiveness of the context shift induced by the Authors was not 

assessed independently. Therefore, it could be argued that selective 

reinstatement of RP categories was not entirely prevented in this study design. 
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More recently Buchli, Storm, and Björk (2016) and Soares, Polack, and Miller  

(2016) failed to replicate Jonker and Colleagues’ work (2012). Buchli and 

colleagues (2016) carried out a series of experiments with the intent to both 

replicate and extend their findings, by testing the prediction that stronger context 

shifts between the study and retrieval practice phases should increase 

forgetting. However, none of their three experiments provided evidence 

supporting the context account of RIF. Instead, the results of this study are in 

line with the retrieval specificity and the strength independence tenets of the 

inhibitory account of RIF. Indeed, RIF was found only when a typical, 

competitive retrieval practice phase was employed, as opposed to additional 

study, regardless of the magnitude of the context shift. The Authors suggested 

that the dissimilarity with the results of Jonker and Colleagues (2012) might 

reflect either a false positive in the original finding, or subtle discrepancies in the 

study design (e.g., study time allotted for each category-exemplar word pair, 

different filler task between retrieval practice and test phases) or major ones 

(e.g., different final test phase formats) that could have impacted on the results 

unpredictably. Related to this point, Jonker and Colleagues (2012) employed a 

test format that was blocked by category, with RP- items probed before RP+ 

items for each category, which could have interacted with the probability of 

reinstating the study context. Soares and Colleagues (2016) instead performed 

a series of ad-hoc experiments to demonstrate that context shifts alone are not 

sufficient to provide an “inhibition-free” explanation of RIF. To do so, the Authors 

manipulated the contextual features typically embedded in the RPP, such as 

demands and presentation format within each phase, as opposed to the 

manipulations employed by Jonker and Colleagues (2012), which resulted in 

fairly atypical RPP formats. It is worth noting that proponents of the context 

account argue that RIF in the standard RPP results from context shift caused by 

the constituting features of the paradigm. Indeed, none of the manipulations 

employed in the study impacted on the magnitude of RIF.  

Moreover, in the study carried out by Rupprecht and Bäuml (2016), which 

was designed to investigate the effects of competitive and non-competitive 

retrieval practice on RIF, as measured by either cued-recall or item recognition 
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in the final test phase, the Authors found that only non-competitive retrieval 

practice induced RIF when an item recognition test was used. This finding 

cannot be accounted for by the context account of RIF, which predicts that 

context effects should be observed in RPP employing item recognition 

regardless of competition during the retrieval practice phase (Jonker et al., 

2012). Taken together, the results from Buchli and Colleagues (2016), Soares 

and Colleagues (2016), and Rupprecht and Baüml (2016), suggest that while 

context may play a role in shaping RIF, it cannot provide a general explanation 

of the phenomenon that fits with the entirety of the literature. Therefore, 

additional studies are needed to shed light on the exact influence of context on 

RIF. 

1.2.7 A two factor account of RIF: Where inhibition and blocking meet 

So far, the majority of studies addressing the theoretical debate on RIF have 

focused on either inhibition or blocking as exclusive general mechanisms 

underlying the phenomenon. However, some Authors suggested that both 

inhibition and blocking might contribute to the typical findings on RIF (e.g., Aslan 

& Baüml, 2010; Grundgeiger, 2014; Rupprecht & Bäuml, 2016; Storm & Levy, 

2012). According to this view, competition during the retrieval practice phase 

would mobilize inhibition of the representations of RP- items in memory, while 

concurrently the strengthening of the cue-target associations within the RP+ 

items would lead to blocking of RP- items in the subsequent test phase. 

Importantly, a higher specificity of the retrieval cues would correspond to a 

lower involvement of blocking in the observed RIF. Therefore, the relative 

contribution of inhibition and blocking would primarily depend on the format of 

the retrieval cues employed. 

Numerous findings in the literature of RIF are consistent with a two-factor 

account of RIF. For example, Murayama and colleagues (2014) showed that 

RIF and FAC are correlated only when category cues are employed in the test 

phase. Moreover, Schilling, Storm, and Anderson (2014) found a positive 

relationship between control over interfering memories, as measured with RIF, 

and motor stopping, as measured with the stop-signal task (SST; Logan & 
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Cowan, 1984), when item-specific recall cues were used at test, whereas a 

relationship in the opposite direction was observed when category cues were 

used instead. In addition to that, other studies addressing RIF in clinical 

populations (e.g., Soriano, Jiménez, Román, & Bajo, 2009; Storm & White, 

2010) and young children (Aslan & Bäuml, 2010) observed RIF in these classes 

of participants only with category cues at test, whereas the same participants 

displayed no RIF with item-specific recall cues, thus suggesting that the latter 

type of test format is more adequate to capture individual differences in memory 

control. 

Recently, Rupprecht and Bäuml (2016) investigated the possibility of a two-

factor account of RIF in a series of experiments. Their main finding was that RIF 

was observed in both recall and recognition when a competitive retrieval 

practice was employed, whereas re-exposure induced RIF only when recall was 

tested, as opposed to recognition (see also Grundgeiger, 2014), thus 

demonstrating retrieval specificity for this particular test format. The Authors 

argued that blocking cannot cause RIF on its own, and inhibition is a necessary 

mechanism underlying RIF, at least (but not limited to) when recognition tests 

are used, which rules out the contribution of strength-based blocking dynamics 

on the effect. In this regard, it is also worth noting that the net contribution of 

inhibition to RIF could also be isolated by the means of independent-probe 

testing (e.g., Anderson, 2003; see 1.2.2), which consists of employing retrieval 

cues at test that were not shown before in the earlier phases of the RPP (e.g., 

SODA-L____ to probe LEMON, previously associated with FRUIT) and should 

be immune to strength-based interference at test, similarly to item recognition 

test formats. 

1.3 Relevance of RIF 

The pattern of results presented above has been directly and conceptually 

replicated with a broad range of variations and manipulations related to the 

different phases of the procedure and to the experimental material used. 

Importantly, several lines of research on RIF are characterized by a strong 

applied potential. In particular, a wealth of studies has been dedicated to the 
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occurrence of RIF in relationship to individual differences, in eyewitness 

testimony, in educational settings, in social scenarios, and in relationship with 

reasoning and creative problem solving. In this section, I dedicate a paragraph 

to each of these different lines of research. Because the abundance and variety 

of the literature on RIF strongly suggests that its underlying mechanisms may 

be ubiquitous across all memory systems, two concluding paragraphs are 

dedicated to the pervasiveness of RIF in memory, and to the importance of 

efficient memory control mechanisms for well being, respectively. For a more 

extensive review on the subject of the various applied venues pertaining 

research on RIF, the reader may refer to Storm, Angello, Buchli, Koppel, Little, 

and Nestojko (2015). 

1.3.1 RIF in the study of individual characteristics 

A great deal of research has been devoted into characterizing which 

individual differences correlate with or predict the efficiency of the ability to 

overcome interference in memory. In particular, since the inhibitory account of 

RIF claims that optimal control over interfering memories depends on efficient 

executive systems (e.g., Anderson, 2003; Levy & Anderson, 2002), it has been 

hypothesized that indexes of executive control such as working memory 

capacity (e.g., Kane & Engle, 2002) should be correlated with the former ability, 

and that specific populations known to exhibit executive deficits (patients 

suffering from psychiatric disorders characterized by impulsivity) may also 

exhibit memory control impairments. 

With respect to the association between the ability to suppress competing 

memories and working memory (WM), Aslan and Bäum (2011) found a positive 

correlation between RIF and performance at the Operation Span (Turner & 

Engle, 1989), a common measure of WM. Importantly, the correlation was 

specific for RIF, whereas no relationship was found with FAC. In their study, 

participants with higher WM capacity exhibited the least amount of RIF. A more 

recent study by Storm and Bui (2016) provided additional evidence in favour of 

a positive correlation between RIF and WM across three experiments, and 

further clarified some of the boundary conditions of this association (but see 
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Mall & Morey, 2013). Related to this point, Román and Colleagues (2009), 

provided converging evidence in favour of a relationship between RIF and 

executive control, by showing that RIF was impaired when participants 

performed the retrieval practice phase (where inhibition is supposed to come 

into play) under a dual task manipulation. These results are difficult to reconcile 

with a purely interference-based theoretical of RIF, as it would not be clear why 

individuals with higher executive abilities would also suffer more from interfering 

memories, compared with individuals equipped with fewer executive resources. 

Concerning RIF in populations that may suffer from reduced executive control, 

as well as prefrontal lobe damage (which may affect RIF; see 1.4.4), the first 

studies addressing this line of research found evidence that does not speak in 

favor of a relationship between RIF and executive functioning, and thereby are 

also at odds with the inhibitory theory of RIF. For example, several studies 

found typical levels of RIF in young children (Ford, Keating, & Patel, 2004; 

Zellner & Bäuml, 2005), older adults (Aslan, Bäuml, & Pastötter, 2007), patients 

with Alzheimer’s disease (Moulin, Perfect, Conway, North, Jones, & James, 

2002), and patients with schizophrenia (Nestor, Piech, Allen, Niznikiewicz, 

Shenton, & McCarley, 2005). However, Aslan e Bäuml (2012) highlighted the 

fact that the normal RIF observed in the experimental groups investigated by 

these studies failed may have been determined by the test phase formats 

employed in the RPP, which did not allow to rule out common confounds like 

output interference or associative blocking. Importantly, populations suffering 

from executive control deficits would probably be even more susceptible to 

these forms of interference, compared to healthy adults. Therefore, interference 

could have very well masked memory control impairments in these populations. 

As a matter of fact, later studies employing RPP variants that controlled for 

these sources of interference found abolished RIF in patients suffering from 

ADHD (Storm & White, 2010), clinical depression (Groome & Sterkaj, 2010), 

obsessive-compulsive disorder (Demeter, Keresztes, Harsányi, Csigó, & 

Racsmány, 2014), schizophrenia (Soriano et al., 2009), as well as in young 

children (Aslan & Bäuml, 2010), therefore providing general support for the 



An investigation into memory control: Neuromodulatory approaches and potential clinical target populations 

28  Davide Francesco Stramaccia - November 2016 

inhibitory account of RIF (but see Murayama et al., 2014, for a more nuanced 

discussion on the issue). 

1.3.2 RIF in education and testing 

Another important applied venue for RIF is the investigation of optimal study, 

practice, and test formats in educational psychology. In particular, many studies 

have shown that forgetting of information due to retrieval practice can be 

modulated by the degree of integration of information occurring at the encoding 

stage. Therefore, in the experimental context of the RPP, higher integration 

corresponds to lower RIF (e.g., Anderson & McCulloch, 1999). To identify 

situations when retrieval may induce forgetting of studied material, instead or 

along with facilitation of a different subset of the same material (e.g., Chan, 

McDermott, & Roediger, 2006; Chan, 2009), has the potential to improve best 

practices in educational psychology and beyond. 

In the first study that directly tested a relationship between integration and 

RIF, Anderson and McCulloch (1999) found that instructing participants to 

integrate information (i.e., by searching for common/grouping features between 

the different exemplars of the experimental categories) could reduce RIF. In a 

subsequent study (Anderson & Bell, 2001) where explicit instructions regarding 

integration were not provided, participants that later declared to have adopted 

integration strategies also showed a reduced RIF effect. Other studies 

employing ecological material more akin to real-life testing situations. For 

instance, Carroll, Campbell-Ratcliffe, Murnane, and Perfect (2007), asked both 

a group of novice students and a group of senior students to study two clinical 

cases from a psychopathology textbook. After that, all the students performed 

retrieval practice on a subset of the details of one clinical case only, by 

answering questions related to those specific details, similarly to the practice 

that often precedes an exam. In the final test phase, the students were asked 

questions about all the details of both clinical cases. Results showed that novice 

students exhibited RIF for non-practiced details of the practiced clinical case, 

whereas senior students did not show RIF. According to the Authors, senior 

students would have been more effective at integrating the studied material into 
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a pre-existing knowledge schema, thus reducing competition during retrieval 

practice, which in turn abolished forgetting for non-practiced material. This result 

strongly suggests that the strategies employed during study and the level of pre-

existing expertise on a given type of material/topic may affect memory 

performance on subsequent tests by reducing the amount of forgetting for non-

practiced material. 

Taken together, the evidence discussed so far suggest that, within an 

educational contexts involving competing information (e.g., leaning about the 

classification of minerals, learning about the mountains and rivers of a certain 

country; see Little, Storm, & Björk, 2011, and Little, Björk, Björk, & Angello, 

2012, for experiments involving similar realistic material) specific attention is 

warranted toward the format and timing of the study, practice, and test stages of 

the educational process, in order to avoid excessive interference that could 

hinder optimal performance. 

1.3.3 RIF in legal practice 

Beginning with the study by Shaw, Björk, and Handal (1995), RIF entered the 

court of law as a phenomenon of interest in the context of eyewitness memory. 

The study moved from the hypothesis that important information acquired by 

witnesses to a crime scene could be hampered by repeated retrieval of 

associated information pertaining the very same crime scene, due to repeated 

questioning of the witness, similarly to what had been shown by Anderson and 

Colleagues (1994) with simple word pairs on year earlier. In this study, 

participants first examined a slide show depicting a domestic environment, and 

characterized by the presence of a series of similar items of two different kinds 

(i.e., sweatshirts and schoolbooks). Subsequently, participants answered a 

series of interrogation-style written questions pertaining half the items of either 

category (e.g., four schoolbooks). Afterwards, participants were tested on all the 

items presented in the slide show. Shaw and Colleagues (1995) found that this 

form of incomplete questioning between initial study and final test, mimicking 

the retrieval practice phase of the RPP, was able to elicit RIF. Importantly, RIF 

was absent in a second group of participant that did not receive the written 
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interrogation. Therefore, it appears that repeated questioning is able to induce 

both enhancement of repeated material and forgetting of related unrepeated 

material, thus manipulating the witness’ memory even in the absence of 

misleading information or ill intentions on behalf of the interrogators.  

More recently, García-Bajos, Migueles, and Anderson (2009) demonstrated a 

similar effect with complex and naturalistic experimental material. In their study, 

participants were shown a video of a bank robbery where prototypical events 

that would take place within that context (e.g., bank robbers threatening people 

at gunpoint) were intertwined with less typical actions (e.g., a robber pointing his 

gun at a security guard’s neck), in order to address the role of typicality in 

memory performance for this kind of material. Only the latter kind of actions was 

subject to RIF, whereas high-typicality actions were not affected by forgetting.  

These results were interpreted in line with the notion that high-typicality material 

is more easily integrated in pre-existing schemas, which in turn shield the 

material from the inhibitory mechanisms that lead to RIF (Anderson and 

McCulloch, 1999; see 1.3.2 above). Because atypical details of witnessed 

events are often of critical importance for testimony, this line of research 

provides important information on the reliability (and the fallibility) of eyewitness 

performance, as well as indications to guide interrogation format in order to 

prevent loss of essential information.  

Another fundamental aspect of RIF that may impact its relevance for 

eyewitness testimony (as well as educational psychology, see 1.3.2 above) 

concerns how long lasting the memory impairment may be. Indeed, 

eyewitnesses may be called into testimony even months later they experienced 

the event to be recounted in court. If RIF were just a relatively short-lived 

phenomenon, there would be no relevant implications in an actual testimony. 

The durability of RIF has been subject to many studies, which produced mixed 

results that nonetheless suggest a durability exceeding the 24 hours, especially 

when experimental material other than text is used (see Murayama et al., 2014). 

More specifically, studies that specifically addressed the duration of RIF in 

eyewitness-memory paradigms found forgetting up to one week after retrieval 

practice (García-Bajos et al., 2009), but not two weeks later (Odinot, Wolters, & 
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Lavender, 2009). However these studies may have been unable to elicit a RIF 

effect comparable to the real life scenarios they refer to, because eyewitnesses 

often endure repeated interrogation over several weeks or months, which could 

produce additional strengthening of practiced memories of the event under 

scrutiny, at an increasingly greater expense for non-practiced elements of the 

event. Further research with eyewitness-memory paradigms is warranted to 

clarify whether this is the case. 

1.3.4 RIF in the study of social phenomena 

Sharing experiences with other conspecifics is the primary driving force 

behind both the creation and the transformation of individual and collective 

memories, and constitutes a fundamental aspect of human societies. An 

important aspect of this process is how and why some memories are kept, while 

others are forgotten. Studies on RIF have contributed to this point, highlighting 

that the very act of sharing some experiences can induce forgetting for other 

related, but untold, experiences. Importantly, this particular instance of RIF 

seems to affect both the experiences’ narrator and the listener. Cuc, Koppel, 

and Hirst (2007) first showed the possibility of inducing this peculiar “socially 

shared RIF” in a group of participants that directly performed only the study and 

test phase of a RPP, but just assisted and listened to other participants 

engaging in the retrieval practice phase. Moreover, the Authors found RIF in the 

listening participants only when they were instructed to monitor the accuracy of 

the narrator’s recall, compared to a different experimental condition when they 

were instructed to monitor the narrator’s fluency instead. This finding has later 

been replicated with various types of realistic material and contexts (e.g., 

autobiographical memories, Coman, Manier, & Hirst, 2009; group-membership 

status, Coman, Stone Castano, & Hirst, 2014; propagation through a social 

network, Coman & Hirst, 2012; medical information, Coman & Berry, 2015). For 

example, Coman and colleagues (2009) were able to produce a similar socially 

shared RIF for autobiographical memories in relationship to the 09/11/2001 

terroristic attacks at the World Trade Center, U.S.A. In the study, the Authors 

replaced the typical retrieval practice phase with either individually tailored 



An investigation into memory control: Neuromodulatory approaches and potential clinical target populations 

32  Davide Francesco Stramaccia - November 2016 

structured interviews or free conversation, which both induced RIF in a later 

recognition test phase, thereby showing that conversations can modify later 

memory performance for both narrators and listeners, even when the 

information being shared does not exactly matches the individual experiences 

(i.e., in the free conversation condition). Interestingly, in a subsequent study, 

Barber and Mather (2012) found a significant socially shared RIF in their 

participants only when the speakers were of the same sex of the listeners.  

1.3.5 RIF in the study of creative thinking 

A recent line of research has established a relationship between the ability to 

overcome interference in memory and the ability to generate novel ideas. Many 

of these studies have employed the Remote Associate Test (RAT; Mednick, 

1962) to investigate such relationship. Participants performing the RAT are 

asked to generate a word that is semantically associated to three other words 

that act as cues (e.g., “falling”, “actor”, and “dust”, with “star” being the correct 

answer). Importantly, in the RAT, the stronger associations for each cue are 

often unrelated to the other cues, which in turn may induce participants to fixate 

on the semantic associations pertaining only to a single cue, thereby hampering 

the production of the correct answer. Therefore, performance at the RAT is 

assumed to reflect the individual ability to overcome such cognitive fixation and 

engage in creative thinking.  

Storm and Angello (2010) measured the correlation between the individual 

amount of RIF and performance at the RAT, moving from the hypothesis that 

inhibitory mechanisms would be essential to overcome fixation, by weakening 

the task-irrelevant contents of cognitive fixation. Prior to the RAT, the Authors 

also exposed the participants to distracting associations (i.e., with strong 

relevance to only one of the available cues) before they confronted the actual 

RAT problems, thereby manipulating the amount of cognitive fixation 

experienced by the participants. In fact, the Authors found that the individual 

amount of RIF was inversely related to the detrimental effects of fixation at the 

RAT, as the inhibitory account of RIF would predict. The Authors argued that 

inhibitory mechanisms might contribute to overcoming cognitive fixation, but 
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only when the benefits of such inhibition would surpass the risk of weakening a 

possible correct answer along with the inappropriate ones (see also Storm & 

Koppel, 2012). In a following study, Koppel and Storm (2014) further 

demonstrated that providing participants with an incubation period (i.e., a break 

between solving attempts) modulated the correlation between RIF and RAT, in 

a way that suggests that their need for inhibition was reduced by incubation. 

Other measures of creativity that have been related to suppression of 

interference in memory stem from the Alternative Uses Task (AUT; Guilford, 

1957). The AUT measures creative and divergent thinking by probing the 

participants’ ability to think about as many possible uses of an object as 

possible, which are then rated based on the basis of their number (i.e., fluency) 

or distinctiveness (i.e., originality). It is assumed that good performance in the 

AUT reflects the individual ability to overcome creative fixation due to their 

previously established knowledge of the most common uses of each object. In 

keeping with this line of reasoning, a study. Storm and Patel (2014) combined 

the logic of the RPP with the AUT to investigate an instance of RIF that they 

refer to as “thinking induced forgetting”. In their study, participants first studied 

several uses for common objects, in order to increase competition in the 

subsequent phase, where they had to generate new uses for a subset of the 

studied objects. In a final cued-recall test phase, the participants were tested for 

their memory of the studies uses. As hypothesized by the Authors, memory 

performance was worse for the studied uses that were related to the subset of 

the objects that participants had to generate new uses for in the AUT (which 

was basically used in place of the retrieval practice phase). Moreover, the 

amount of “thinking induced forgetting” was correlated with the individual 

creative performance at the AUT. In a following study employing a similar 

approach, Ditta and Storm (2016) demonstrated that even participants’ own 

generated ideas (i.e., objects uses generated by each participant before the 

AUT) were susceptible to “thinking induced forgetting”. 

It should be noted that inhibition is not necessarily beneficial to performance 

in creativity tasks. For example, it could be argued that creative thinking may 

sometimes require access to mental contents that previously underwent the 
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action of inhibitory control. Related to this point, in a recent study, Gómez-Ariza, 

del Prete, Prieto del Val., Valle, Bajo, and Fernandez (in press), found that 

words supposed to be suppressed during a retrieval practice phase of the RPP 

(i.e., the RP- items) were in fact less likely to be generated as solutions in the 

RAT, relative to baseline words (i.e., the NRP- items). 

1.3.6 The ubiquity of RIF in memory 

In the previous paragraphs, I have tried to summarize the findings from a 

large body of literature that investigated a range of important out-of-lab contexts 

were our knowledge of RIF may prove valuable for appropriate and effective 

decisions (e.g., education, legal practice, individual differences, problem 

solving). These diverse but interrelated research lines also suggest that RIF 

may be the consequence of a domain-general memory mechanism, 

encompassing all memory systems. This conclusion is also supported by 

numerous studies that investigated RIF employing a wide range of different 

materials, manipulations, and test formats. 

Particularly important to the notion of a domain-general mechanism, RIF has 

also been investigated in the context of pure semantic representations in 

memory, whereas the majority of other works included an episodic component 

to their behavioural procedures. Johnson and Anderson (2004) investigated RIF 

with a RPP that excluded a study phase (where episodic associations are 

established to allow for subsequent practice and test), but tested previously 

formed associations instead. Specifically, they tested whether retrieving one of 

the meanings of a homograph (i.e., ”bow”, as in the weapon) would lead to 

forgetting of the alternative meaning of that homograph (i.e., ”bow”, as in the act 

of bending as a sign of respect). Because participants practiced the least 

common meanings of the homographs, the Authors hypothesized that they 

would have suffered from interference from the dominant meanings during 

retrieval practice, thereby triggering the need for inhibitory control. As predicted 

by the Authors, in a later test of the homographs’ meanings, based on free 

associations, participants showed RIF for non-practice meanings of practiced 

homographs. This result suggests that, similarly to what is observed in the 
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typical studies of RIF in long-term episodic memory, semantic retrieval may 

recruit inhibitory mechanisms in order to overcome interference from competing 

memory representations, thereby reducing their later accessibility (Anderson, 

2003). 

Turning to a rather different line of research, a number of studies investigated 

RIF in memory for motor sequences of different complexity. Tempel and Frings 

(2013) first demonstrated an instance of RIF resulting from overcoming 

interference between body movements. In their study, participants learned 

sequential finger movements, six of which involved the right the left hand and 

the other six the left hand. Subsequently, they performed retrieval practice on 

half the sequences from either the left or the right hand, followed by a final test 

phase where they were tested for memory for all the sequences. With this 

modified RPP, Tempel and Frings (2013) showed that practiced sequences 

were better recalled than non-practiced ones (i.e., FAC) and, most importantly, 

non-practiced sequences of a non-practiced hand were better recalled than 

non-practiced sequences of the practiced hand (i.e., RIF). Results of this study 

have been conceptually replicated and extended by Reppa, Worth, Greville, and 

Saunders (2013), and Tempel and Frings (2014a). In addition to that, 

subsequent studies by Tempel and colleagues demonstrated that RIF for motor 

programmes is cue independent (Tempel & Frings, 2014b), retrieval specific 

(Tempel & Frings, 2015), and interference dependent (Tempel, Aslan, & Frings, 

2015). Finally, Tempel, Loran, and Frings (2015), found that this peculiar 

instance of RIF extended to more complex and realistic study material, in the 

form of dance figures, thereby highlighting the strong applied value of this line of 

research. 

Finally, RIF has also been found for arithmetic facts, employing one-figure 

multiplications. Theoretical models describe the arithmetic lexicon as stored 

within an associative network (e.g., Ashcraft, 1992), where numbers are 

represented as nodes and arithmetic operations as associative links between 

them. Phenix and Campbell (2004) first demonstrated RIF within this arithmetic 

associative network. In their experiment, participants were instructed to solve a 

subset of the classic arithmetic tables (e.g., 6 x 7 = ?). Subsequently, they 
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performed an arithmetic verification task, judging whether the presented 

answers were correct (e.g., 6 x 7 = 42) or not (e.g., 6 x 7 = 45). Multiplications 

used in this phase of the procedure belonged to one of three different types: 

“zero operands” operations, where none of the two operands had been shown 

in the previous arithmetic-solving task (functioning as NRP- items); “one 

operand” multiplications, where one of the two operands was used before 

(functioning as RP- items); “two operands” multiplications, where both operands 

were seen before (functioning as RP+ exemplars). The results have shown that 

performance in the correctness judgment was higher for “two operands” 

multiplications compared to “zero operand” multiplications, thereby mimicking 

the FAC effect found in the typical RPP. More interestingly, performance for 

“zero operands” multiplications was higher than for “one operand” 

multiplications. The Authors interpreted the latter result as the RIF equivalent in 

the domain of arithmetic facts, arguing that actively retrieving the correct 

solutions for the multiplications in the practice phase (e.g., 6 x 7 = ?) hinder the 

subsequent attempt to retrieve multiples of the operands practiced before (e.g., 

4 x 7 = 28). Similar results have been observed with slight variations to the 

procedure described above (e.g., Campbell & Phenix, 2009; Campbell & 

Thompson, 2012; Galfano, Penolazzi, Fardo, Dhooge, Angrilli, & Umiltà, 2011), 

further supporting the idea that RIF encompasses associative memory related 

to arithmetic facts. 

1.3.7 RIF as an instance of adaptive forgetting 

The bulk of evidence reviewed so far clearly demonstrates not only that RIF 

is pervasive across memory systems and, subsequently, in out-of-lab contexts, 

but also highlights a relationship between the ability of overcoming interference 

in memory and a range of important and highly adaptive functions (e.g., efficient 

cognitive control and emotion regulation, creative thinking, intact executive 

functioning). In a recent review, Nørby (2015) has summarized the results from 

studies that addressed the possible role of forgetting as a regulating mechanism 

deputed to promote adaptive behaviours. Nørby (2015) argued that forgetting 

may serve at least three broad purposes: i) it supports emotional regulation, by 
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limiting access to and interference from negative emotions or memories (e.g., 

Storm & Jobe, 2012); ii) it facilitates acquisition of knowledge; iii) related to the 

previous point, it promotes “contextual attuning”, i.e., sensitivity to the current 

status of the surrounding environment in both time and space. This line of 

reasoning is strikingly counterintuitive with the layman notion of memory 

retrieval efficiency as indexed by the ability to retrieve as much information as 

possible, but is strongly supported by the current literature. Instead, retrieval 

efficiency may be more appropriately described as the ability to selectively 

retrieve the information with the highest value for the task at hand. This different 

approach to forgetting conveys a representation of the phenomenon as a 

mechanism that may serve adaptive purposes, as opposed to popular 

characterizations of forgetting as a mere failure or limitation of memory systems 

(e.g., Storm, 2011; Nørby, 2015). For example, RIF has been shown to 

negatively correlate with the frequency of recall for negative autobiographical 

memories, so that individuals with greater control over interference in memory 

recalled significantly less negative memories concerning their personal 

experiences (Storm & Jobe, 2012). Interestingly, in a different study, Giebl, 

Storm, Buchli, Björk, and Björk (2015) found that individuals that exhibited 

higher levels of RIF imagined fewer personal future negative scenarios. 

Moreover, Groome, Thorne, Grant, & Pipilis (2005) found a significant inverse 

correlation between RIF and the individual amount of cognitive failures (i.e., 

forgetfulness) as measured by a self-reported questionnaire, which suggests 

that individuals displaying a lower ability to control interference in memory may 

be more susceptible to failures of memory in the everyday life.  

In this view, RIF represents the by-product of mechanisms that help 

maintaining our own well being, as well as shaping our own sense of identity 

through the modulation of autobiographical memories. Related to this point, 

Ditta and Storm (2016) also showed that imagining future scenarios could also 

have detrimental effects on subsequent recall of autobiographical memories that 

shared similar contexts. Of course, none of the studies described so far 

suggests that forgetting is always a positive or desired occurrence, but rather 

that not all instances of forgetting should be regarded as undesirable outcomes.  
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1.4 Cognitive neuroscience of RIF 

In the past ten years, there has been a growing interest in outlining the neural 

mechanisms underlying RIF. A series of techniques, ranging from event-related 

potentials (ERPs) to functional Magnetic Resonance Imaging (fMRI), oscillatory 

brain activity, and animal models, have been used to address a set of question 

regarding the neural underpinnings of both the retrieval practice and the test 

phases of the RPP. In the following paragraphs, I review the vast majority of the 

studies that employed neuroscientific methods in order to further our knowledge 

about suppression of competing memories, with a focus on the distinct sets of 

evidence pertaining the retrieval practice and the test phases of the RPP. A 

separate paragraph is dedicated to two recent studies that provided particularly 

informative evidence of RIF in animal models. Importantly, each of the studies 

described in the following paragraphs also contributed to the on-going debate 

between the inhibitory account of RIF and competing explanatory models. 

Finally, the last paragraph is devoted to briefly summarize the main contribution 

of the evidence presented in this section, and provides a link between the 

existing literature and the set of novel experiments presented in the current 

work. 

1.4.1 Neural correlates of the retrieval-practice phase of the RPP 

In the first study that employed EEG to investigate the neural underpinnings 

of RIF, Johansson, Aslan, Bäuml, Gäbel, and Mecklinger (2007) showed a 

sustained difference in the amplitude of the electrical activity associated to 

active retrieval-practice, compared to additional study, localized to the frontal 

EEG sites. Moreover, this difference predicted the individual magnitude of RIF, 

but not FAC, observed in the final test phase. The Authors proposed that this 

pattern might reflect a different executive load associated to the two retrieval 

practice formats. 

Kuhl, Dudukovic, Kahn, and Wagner (2007) instead first used fMRI to shed 

light on the neural correlates of RIF, employing a RPP with a practice phase 

characterised by a high number of practice trial repetitions, and found a 

reduction of the BOLD in lateral PFC regions and anterior cingulate cortex 
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(ACC) proportional to the number of repetitions. This BOLD decrement was also 

associated to the individual RIF measured at test. According to the Authors, 

activity in these cortical areas may reflect the involvement of executive control 

mechanisms, whose engagement might decrease after the first successful 

attempts at suppressing interference. 

Using fMRI as well, Wimber, Rutschmann, Greenlee, and Bäuml (2009) 

demonstrated that the activity of medial and lateral PFC regions during the 

retrieval practice phase of the RPP was negatively correlated with RIF at test, 

but only during active retrieval practice, compared to passive retrieval practice, 

suggesting that similarly to Kuhl and Colleagues’ findings (2007) a reduced 

BOLD activity in these areas may signify a reduced demand for inhibitory 

mechanisms due to interference being successfully overcome within the early 

practice trials (see also Levy, Kuhl, & Wagner, 2010, for a more comprehensive 

review on the functional neuroimaging of forgetting).  

Differences related to the retrieval practice format have also been 

investigated in studies that measured electrical oscillatory activity in the brain. 

For instance, Hanslmayr, Staudigl, Aslan, and Bäuml (2010) examined the time 

course of the theta rhythm (4-7 Hz) during the retrieval practice phase of the 

RPP, and found that a competitive retrieval practice was characterized by an 

increase of this specific oscillatory rhythm, and that this increase was 

significantly higher than the increase observed in a non-competitive retrieval 

practice. Moreover, this increment was predictive of RIF (but not FAC) at 

subsequent test. Staudigl, Hanslmayr, and Bäuml (2010) further clarified the 

main source of theta activity during retrieval practice, which was localized at the 

level of the ACC. More recently, Ferreira, Marful, Staudigl, Bajo, and Hanslmayr 

(2014) also investigated the role of prefrontal theta in RIF. In their study, 

competitive retrieval practice in the RPP was contrasted with non-competitive 

retrieval practice, and category cues were presented before the item-specific 

cues in order to disentangle the interference arising the former with the 

inhibitory signal associated with the inhibitory mechanisms recruited to weaken 

the competing memory traces once the target exemplar was revealed. As 

predicted, the Authors observed RIF in the competitive condition only and, more 
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importantly, higher levels of theta power localized to the ACC within this 

condition occurred upon presentation of the category cues. Theta power then 

decreased upon presentation of item-specific cues, and the magnitude of this 

decrease was associated to that of RIF at later test. Therefore, the results 

suggest that the time course of theta power during the (competitive) retrieval 

practice phase of the RPP tightly follows the temporal dynamics of interference.  

In keeping with the previous studies that highlighted a prominent role of 

prefrontal areas in RIF, Wimber, Schott, Wendler, Seidenbecher, Behnisch, 

Macharadze, anc Colleagues (2011) carried out a combined genetic-fMRI study, 

aimed at investigating the role of prefrontal dopamine, which is known to 

support higher cognitive processing and to be involved in many pathological 

conditions characterized by memory deficits, in long-term memory regulation. In 

particular, the Authors hypothesized that PFC dopamine availability predicted by 

the individual catechol-O-methyltransferase (COMT Val108/158Met 

polymorphism), would have predicted RIF at both the behavioural and the 

neural level. Results confirmed the role of the PFC dopaminergic system in 

supporting suppression of interfering memories, by showing that a variation in 

the gene responsible for PFC dopamine regulation was predictive of the amount 

of RIF, and of anterior right PFC activation as indexed by BOLD signal in the 

fMRI. Specifically, Met allele (associated with higher availability of PFC 

dopamine) carriers displayed the greatest amount of RIF at test, as well as the 

highest response reduction in right inferior PFC during the retrieval practice 

phase of the RPP. 

In a more recent study, Hellerstedt and Johansson (2014) employed EEG to 

test the interference dependence tenet of the inhibitory account of RIF, 

recording and examining ERPs related to reactivation of competing memory 

traces during the retrieval practice phase of the RPP. The Authors also varied 

the category-exemplar associative strength of non-practiced items of practiced 

categories, in order to modulate the amount of competition at retrieval practice. 

As in the previous study, competitors’ reactivation and target retrieval were 

disentangled by presenting the relevant cues in a two-stage fashion, i.e., 

presenting the category shortly followed by the target exemplar, as opposed to 
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the typical RPP where the two are presented together within the same display. 

In line with their hypothesis, the Authors observed more RIF for competitors 

characterized by stronger category-exemplar association, replicating the typical 

findings of the RIF literature (e.g., Anderson et al., 1994). Furthermore, a 

competition-modulated ERP components (i.e., FN400; e.g., Curran & Hancock, 

2007) correlated with individual differences in RIF was found in anterior 

prefrontal sites.  

1.4.2 Neural correlates of the test phase of the RPP 

Much fewer studies looked into the neural underpinnings of forgetting of 

competing memories in the final test phase of the RPP where, according to the 

inhibitory account of RIF, only the after-effects of inhibition can be detected. 

Nonetheless, research efforts conducted within an inhibitory theoretical 

framework of memory control have been dedicated to elucidate this aspect of 

RIF.  

Wimber, Bäuml, Bergström, Markopoulos, Heinze, and Richardson-Klavehn 

(2009) first employed fMRI to investigate the neural correlates of inhibition in the 

specific phase of the RPP where its effects become manifest at the behavioural 

level, i.e., within the final test phase. The Authors found that activity in the 

ventrolateral PFC (VLPFC) and left posterior temporal cortex was correlated to 

the individual magnitude of RIF, whereas activity in the precuneus and right 

intraparietal lobule was correlated with the individual magnitude of FAC, thereby 

demonstrating that the beneficial and detrimental effects of retrieval practice are 

associated with different neural mechanisms. Importantly, this result is also 

consistent with pre-existing evidence of similar PFC areas in the retrieval of 

memory traces weakly tied with their retrieval cues (e.g., Badre & Wagner, 

2007). 

The electrophysiological correlates of RIF during the final test phase of the 

RPP have also been investigated (Spitzer, Hanslmayr, Opitz, Mecklinger, & 

Bäuml, 2009; see also Galfano et al., 2011, in the context of cognitive 

arithmetic). Spitzer and Colleagues (2009) investigated the ERPs and 

oscillatory measures associated with recognition of words based on their role 
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(practice vs non-practiced) in the preceding retrieval practice phase of the RPP. 

The results showed worse recognition performance for non-practiced items 

relative to control items. Moreover, the former items were associated to 

reduction in the amplitude of the prefrontal P2 ERP component. Concerning the 

oscillatory correlates of the test phase, the gamma (60-90 Hz) and theta (4-7 

Hz) oscillatory bands were reduced for RP- items compared to control items. 

Finally, practiced items were found to be associated with a different component 

and oscillatory signature, originating from different EEG sites as well, pointing to 

a clear dissociation between the neural signatures of RIF and FAC effects.  

1.4.3 Animal models of RIF 

In a previous section (see 1.3.6, 1.3.7 above), I have summarized evidence 

for the ubiquity of RIF across memory systems, as well as the importance of its 

underlying mechanisms to an optimal functioning of memory systems. Related 

to this point, few recent studies investigated RIF in animal models. Yamada, 

Ueno, Takana, and Ichitani (2014) demonstrated that rats could exhibit RIF-like 

effects in spontaneous object recognition tests. In their study, rats were tested 

on a modified spontaneous recognition test, consisting of a sample phase, a 

retrieval or interference phase, and a final test phase. Rats were randomly 

assigned to a retrieval or interference group. In the sample phase, two different 

objects (X, Y) were placed in an area that rats were allowed to explore freely. 

Subsequently, for rats that took part in the retrieval phase, two objects identical 

to either of the previous ones (e.g., Y, Y) were placed in the area, whereas for 

rats that took part in the interference phase two identical objects that were novel 

for the animals (Z, Z). In a final test phase, two different objects (X, W), one of 

which was identical to one of those presented in the sample phase, were placed 

in the area. The main dependent variable, collected within the test phase, was 

the time spent by the rats exploring each object. The Authors found that rats 

assigned to the interference group spent significantly longer time on the novel 

object than the familiar object, whereas rats in the retrieval group did not show 

any difference in exploration time spent between the two objects. Because rats 

that were assigned to the interference group were better at discriminating the 
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novel object in the test phase, the above result cannot be explained in terms of 

interference. Importantly, the availability of an animal model of RIF could be 

exploited to deepen our knowledge of the neural correlates of RIF. 

Related to this point, in a different study, Wu, Peters, Rittner, Cleland, and 

Smith (2014) provided a rodent model of RIF based on a different procedure. In 

their study, rats were trained on several odour cues associated to rewards, and 

subsequently half of the rats took part in additional practice on a subset of these 

cues. On a later memory test employing unrewarded odours, rats exposed to 

additional practice showed worse memory performance (as indexed by the time 

spent by the rat into searching for the previously associated reward) for non-

practiced odours, compared with memory performance for the same items by 

the rats that did not receive additional practice. In addition to that, because of 

the lack of controlled lesion studies in the literature, in the face of many 

neuroimaging studies highlighting the contribution of the hippocampus (HPC) 

and the PFC to RIF (see 1.4.1, 1.4.2 above), the Authors carried out an identical 

procedure with two groups of rats whose HPC or the medial Prefrontal Cortex 

(mPFC) was temporarily inactivated. As predicted, none of the two groups 

showed a similar RIF effects as the healthy rats, and the mPFC-inactivated 

group also showed perseverative responding behaviour, in addition to the lack 

of RIF. Overall, these results demonstrate that the need for interference 

resolution in memory may be a common problem across different species, and 

provide suggestive evidence that these different species might share similar 

mechanisms that achieve this goal. 

1.4.4 Suppression of competing memories and the prefrontal cortex 

According to the inhibitory account of RIF, forgetting would arise from 

inhibitory mechanisms mainly involving PFC that specifically target the 

competing memory traces during the retrieval practice phase of the RPP, 

thereby weakening their representational status in memory and thus impairing 

their later availability for recall (e.g., Anderson, 2003; Levy & Anderson, 2002). 

However, another (more economical) possibility is that forgetting could be a by-

product of PFC-mediated mechanisms that control the retrieval of task-relevant 
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representation in memory (e.g., Miller & Cohen, 2001). For instance, Norman, 

Newman, and Detre (2007), who first developed a neural network capable of 

simulating RIF, suggest that competition resulting from co-activation of 

competing memory traces would be detected by the ACC, which, in turn, would 

trigger recruitment of PFC regions deputed to resolve this competition by 

selectively strengthening the task-relevant memory traces. Therefore, according 

to the Authors’ proposal, and in line with Miller and Cohen’s model of PFC 

functioning (2001), RIF would be a by-product of response selection. Instead, 

according to Kuhl and Wagner (2009; see also Levy et al., 2010), numerous 

regions within the PFC would be activated in response to arising competition 

between memory traces, but only a subset of these regions would be 

responsible for the inhibition of interfering memories, corresponding to the 

regions primarily associated with RIF in the studies reviewed above, i.e., 

DLPFC, VLPFC, and ACC. With to the theoretical debate surrounding RIF, as 

illustrated in the first part of this chapter, the studies reviewed so far that 

borrowed from neuroscientific techniques to clarify aspects of RIF provided 

evidence that favour an inhibitory explanation of RIF, as opposed to a response 

selection model. Importantly to this point, all of the above studies regularly 

observed a dissociation between the beneficial (i.e., FAC) and the detrimental 

(i.e., RIF) effects of memory retrieval on subsequent memory tests, which 

suggests that the two phenomena may be supported by segregated 

mechanisms, as posited by the inhibitory account of RIF (e.g., Anderson, 2003).  

The most recent piece of scientific evidence in favour of the inhibitory 

account of RIF has been provided by Wimber, Alink, Charest, Kriegeskorte, and 

Anderson (2015). In this study, the Authors were able to exploit fMRI to quantify 

the activation and track the time course of retrieval and inhibition dynamics at a 

single-item level. Therefore, they were able to first show how inhibition resulting 

from repeated retrieval of target memories among competitors weakened the 

specific memory traces (i.e., decoded cortical activity patterns) associated to the 

interfering items. Critically, memory suppression was mediated by PFC regions 

similar to those engaged in past studies of interference resolution in memory 
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(see Levy et al., 2010), and the magnitude of their involvement predicted the 

individual amount of RIF at test. 

In summary, the majority of the literature reviewed so far speaks in favour of 

a primary role of the PFC in resolving interference arising from competing 

memory traces. Future studies should focus on clarifying the specific 

localization and contribution of PFC areas responsible for RIF, which would 

provide precious information that could inform the development of new clinical 

strategies aimed at targeting dysfunctional memory regulation in clinical 

populations such as patients suffering from posttraumatic stress disorder (see 

Catarino, Küpper, Werner-Seidler, Dalgleish, & Anderson, 2015), as well as 

other clinical conditions characterized by impulsivity (see chapters 6 and 7). In 

this view, the novel studies reported in the present PhD thesis tried to capitalize 

as much as possible on the wealth of evidence reviewed in this section on the 

neuroscientific investigations of RIF, where the PFC emerges as the leading 

force in the control over interference in memory. In particular, in keeping with 

previous work on the neural underpinnings of RIF, the non-invasive brain 

stimulation experiments presented here (see chapters 3 and 5) employed 

transcranial Direct Currenst Stimulation (tDCS) to investigate the possibility of 

selectively modulating suppression of competing memories in the RPP, and 

provided the first causal evidence of PFC involvement in this ability. Instead, the 

experiments involving clinical populations (see chapters 6 and 7) were aimed at 

providing novel insights into the cognitive profile of the targeted psychiatric 

disorders, as well as establishing new therapeutic targets for novel treatment 

strategies involving modulatory techniques such as tDCS to alleviate cognitive 

symptoms. 

 

 

 

 

 



An investigation into memory control: Neuromodulatory approaches and potential clinical target populations 

46  Davide Francesco Stramaccia - November 2016 

 



Transcranial Direct Current Stimulation (tDCS) 

Davide Francesco Stramaccia - November 2016   47 

2 TRANSCRANIAL DIRECT CURRENT 

STIMULATION (TDCS) 

2.1 A brief history of non-invasive direct current stimulation 

The interest toward electrical stimulation as a therapeutic tool is 

unsuspectedly old. As a matter of fact, almost two thousands year ago, 

Scribonius Largus, physician at the service of the Roman emperor Claudio (who 

ruled between 41 and 54 AD), first reported in his De Compositionibus 

Medicamentorum that physicians at that time were using electric fishes on the 

scalp of patients (1529), grasping the potential effectiveness of electric currents 

as lenitive techniques, with particular regard to severe headaches. Galen of 

Pergamon, Greek physician and philosopher, suggested that a similar approach 

could be also used to treat diseases such as epilepsy, and so did the Roman 

philosopher and naturalist Pliny the Elder. Later in the 11th century, the 

physician Ibn-Sidah was among those recommending the application of the 

electric fish to treat ailments and diseases like headaches, epilepsy, and 

arthritis (Kellaway, 1946). 

The introduction of the electric battery in the 18th century stemmed a series of 

attempts to stimulate the central nervous system. Charles Le Roy, along with 

Duchenne de Boulogne, Galvani, Volta, and Aldini, first explored this possibility. 

For instance, Aldini (Galvani’s nephew) authored one of the first detailed reports 

about the clinical application of galvanic (i.e., continuous) current for the 

treatment of the so-called melancholia (Aldini, 1804). Soon enough the use of 
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low-intensity continuous current, delivered through the muscles or the scalp, 

spread across and beyond Europe. George (1994) reported that one of 

Charcot‘s pupils (the famous French neurologist) used to deliver continuous 

current stimulation to his patients in Paris, particularly in cases of muscular 

dystrophies. 

However, in the first half of the 20th century and after a series on variable and 

mostly inconclusive or exaggerated results, this therapeutic approach was 

gradually abandoned in favour of the more recently introduced psychiatric drugs 

and other brain stimulation techniques that were deemed more effective, like the 

electroconvulsive therapy (ECT; high-intensity stimulation, up to 500mA). 

Therefore, low-intensity electrical stimulation was almost forgotten, with limited 

exceptions such as the treatment of muscular and bone ailments and 

neuropathic pain, and electrosleep therapy (i.e., stimulation was delivered 

during sleep) in Russia (see Gomez & Mikhail, 1978). 

At the very beginning of the 21thcentury, as a consequence of the rising 

interest in magnetic stimulation due to the invention of transcranial magnetic 

stimulation (TMS; Barker, Jalinous, and Freeston, 1985), other electrical 

stimulation techniques received renewed attention. Importantly, TMS provided a 

new approach to explore the effects of low-intensity stimulation techniques on 

the human brain, as indexed by motor-evoked potentials (MEPs; e.g., Bestmann 

& Krakauer, 2015). Priori, Berardelli, Rona, Accornero, and Manfredi (1998) first 

applied low-intensity transcranial Direct (i.e., continuous) Current Stimulation 

(tDCS) to the human scalp, in order to stimulate the underlying motor cortex, 

and subsequently employed MEPs to detect changes in cortical activity due to 

the tDCS. In a subsequent study, Nitsche and Paulus (2000) used a similar 

approach to detect the effects of weak continuous electric currents applied on 

the scalp, observing changes in cortical excitability that could last even hours 

after the stimulation ended, depending on the stimulation parameters and setup. 

Importantly, they also showed that anodal stimulation enhanced motor cortex 

excitability, while cathodal stimulation had the opposite effect.  
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Thanks to these pioneeristic studies, tDCS and related transcranial Electrical 

Stimulation techniques (tES) are now undergoing a period of extreme popularity, 

and earned a primary place among other neuroscientific tools, due to their 

relative simplicity of use, availability, and minimal side effects (within controlled 

contexts and expert supervision). These features all contribute to make tES a 

prominent candidate in basic and applied research, with particular regard to the 

opportunity to develop novel clinical strategies.  

In this chapter, I first describe the most commonly used tES devices, with 

particular regard to tDCS, and I summarize the main findings in the tES 

literature concerning the most effective montages and parameters, which can 

be rather different with respect of the intended effects and contexts of 

application. Secondly, I provide an outline of the putative mechanisms of action 

of tES, i.e., the neural dynamics and mechanisms that could explain the 

observed effects of tES.  More recently employed tES waveforms (i.e., 

transcranial alternated current stimulation, tACS, and transcranial random noise 

stimulation, tRSN) are described as well. Thirdly, I provide a short review of the 

main findings of the tDCS literature so far, as concerns basic and applied (both 

clinical and non-clinical) research, with a focus on the studies that investigated 

scientific hypotheses that more closely match the scope of the present work, i.e., 

cognitive control in memory and action. 

It is worth noting that the burst of enthusiasm for tES and the increasing 

amount of studies addressing its application in a vast range of domains has also 

stemmed concern about the quality and reliability of the bulk of results provided 

so far. Given the pressure to publish outstanding results in the tES literature and 

to quickly develop therapeutic protocols, healthy scepticism and caution are 

both warranted and welcomed. Moreover, ethical concerns have been raised in 

regard to the potential application of tES as a form of “neurodoping”, as well as 

safety concerns for the growing DYI tES community. The reader may refer to 

(e.g., Riggal, Forlini, Carter, Hall, Weier, Partridge, et al., 2015; Santarnecchi, 

Feurra, Galli, Rossi, & Rossi, 2013; Walsh, 2013; Wurzman, Hamilton, Pascual-

Leone, & Fox, 2016) for recent discussions of these important points. 
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2.2 tDCS: Technical and application notes 

2.2.1 Device, basic components, and montage 

The core component of a tDCS device is a constant current generator, 

generally powered by a pair of batteries (AA) or a single 9-volt battery. The 

generator is placed in series with a potentiometer, which allows the user to 

select the amount of current delivered by the stimulator by modulating its 

internal resistance. Conductive rubber electrodes (most often a couple) are 

connected to the generator through cables. The electrodes, i.e., an anodal 

electrode (positive polarity) and cathodal electrode (negative polarity) are 

inserted in sponges of varying surface, typically between 16 cm2 and 100 cm2, 

depending on the intended target and current density (i.e., the proportion 

between the amount of current being delivered and the active area of the 

electrode). The shape and positioning of the electrode will determine which 

portion of the brain will be affected by the resulting electric field, and to what 

extent. 

Stimulation intensity is usually set between 0.5 mA and 2 mA, while duration 

usually ranges between 5 and 30 min. Target site selection is generally 

achieved in agreement with the 10-20 International System (Jasper, 1958), but 

alternative methods are used as well (e.g., the non-navigated Beam F3-System 

and the OLE-system for targeting of the DLPFC; see Seibt, Brunoni, Huang, 

and Bikson, 2015), and neuronavigation techniques can also be used to assist 

in the localization of the target area. Once the target areas have been 

individuated, the electrode-filled sponges are soaked in saline solution and/or a 

similar medium (e.g., EEG gel) in order to improve conductivity on the scalp (or 

body, in the case of extra-cephalic setups), and then applied on it through 

rubber bands or similar, non-conductive headgear. Optimal tightening of the 

headgear is necessary to prevent drift of the electrodes across the scalp, which 

could compromise the effectiveness of the protocol, undermine reliability and 

replicability of results, and favour dispersion of the conductive medium (e.g., 

because of sponge squeezing under the rubber bands) that could lead to 

unintended stimulation or sensations at near-target sites, or even complete 
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failure of the stimulation protocol (e.g., due to higher impedances on the scalp). 

The reader can find more thorough practical advices on performing a stable 

tDCS setup in a recent work by Woods, Bryant, Sacchetti, Gervits, and Hamilton, 

(2015).  

2.2.2 The electrodes  

Several studies investigated how different tDCS electrodes’ shape and size 

affect the resulting electric field in the brain, the behavioural outcomes of tDCS, 

and the cutaneous sensations due to stimulation (e.g., Minhas, Datta, & Bikson, 

2011). Moreover, Datta, Elwassif, Battaglia, and Bikson 2008) e Datta, Bansal, 

Diaz, Patel, Reato, and Bikson (2008) found that a shorter distance between the 

electrodes increased the degree of shunting through the scalp (i.e., the loss of 

current due to high resistivity of the skull), with the consequence that higher 

current is needed to produce an equivalent electric field on the cortex. However, 

there also seems to be a negative correlation between the inter-electrode 

distance and the duration and magnitude of tDCS after-effects (Moliadze, Antal, 

& Paulus, 2010). Therefore, one should deliver higher stimulation intensity for 

setups with large inter-electrode distances, as it is often the case with montages 

employing an extra-cephalic reference (see also Nasseri, Nitsche, & Ekhtiari, 

2015, for a categorization and description of the various tDCS montages). 

It should be noted that modelling studies on the tDCS-induced electric field 

(e.g., Neuling, Wagner, Wolters, Zahele, & Herrmann, 2012; Miranda, Lomarev, 

& Hallett, 2006) showed that the stimulation affects areas of the scalp and brain 

that can be far removed from the intended target site. Moreover, current density 

on the scalp appears to be at its highest at the edges of the electrodes, 

whereas in the brain the highest current density is achieved in the area 

immediately under the electrode. 

Along with the shape and size of the electrodes, excessive saturation of the 

electrode or sponges with the conductive medium can alter the distribution and 

flow of the current on the scalp and the resulting electric field in the brain, as 

well as worsen cutaneous sensations typically associated with tDCS (e.g., 

Minhas et al., 2011). According to Dundas, Thickbroo, and Mastaglia (2007), 
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the optimal medium concentration of NaCL to minimize discomfort during 

stimulation with tDCS ranges from 15 to 140 mM. 

2.2.3 Focality  

The lack of focality of tDCS is often considered the Achilles’ heel of the 

technique, although few expedients can be used to ensure maximal stimulation 

of the target site while reducing current spreading. For instance, it has been 

suggested that reducing the size of the electrode that is placed on the target 

area, and increasing the size of the reference electrode, can increase focality 

under the target electrode site if current density is kept constant (e.g., DaSilva, 

Volz, Bikson, & Fregni, 2011; Nitsche, Doemkes, Karakose, Antal, Liebetanz, 

Lang, et al., 2007). This is also important if one considers that the reference 

electrode in the context of tDCS is most often a functionally active one, and thus 

effects at the reference site, as well as combined effects of both electrodes, 

need to be taken into account when making inferences about observed 

outcomes of tDCS. This is especially true for bipolar montages (i.e., with both 

anodal and cathodal electrodes on the scalp). In this view, increasing the size of 

the active reference electrode represents a useful expedient to at least partially 

address the issue. Some authors have also proposed the use individually 

tailored electrodes with personalized size and shape (e.g., Santi, Cancelli, 

Cottone, Carducci, & Tecchio, 2016). However, this approach might actually 

yield additional sources of inter-subject variability while minimizing others, as it 

could reasonably lead to different current flow, physiological effects, and 

sensations, between individuals. Moreover, increasing current intensity might be 

necessary to adjust for over-proportional decrease in the current flow into the 

brain due to when reducing electrodes size. 

Finally, a new type of putatively focal tDCS called “high definition tDCS” has 

also been proposed (HD tDCS; e.g., Kuo, Bikson, Datta, Minhas, Paulus, Kuo, 

et al., 2013), but the extent of its actual benefits and differences with respect to 

“standard” tDCS devices and protocols is currently under scrutiny. In any case, 

it should be noted that the lack of focality of the vast majority of tDCS protocols 

is not necessary a weakness of the technique. Instead, depending on the 
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context, initial hypothesis, and desired outcomes, more widespread effects of 

tDCS could be a desired feature (e.g., in specific therapeutic applications).  

2.2.4 Intensity, duration, timing, and polarity  

Concerning current intensity, higher densities generally induced stronger 

effects (e.g., Iyer, Mattu, Grafman, Lomarev, Sato, & Wasserman, 2005; 

Nitsche & Paulus, 2000). However, it is worth noting that higher currents would 

not necessarily yield either better behavioural outcomes (e.g., Hoy, Emonson, 

Arnold, Thomson, Daskalakis, & Fitzgerald, 2013) in terms of magnitude, 

direction, and duration, of the effects of interest, or larger changes in cortical 

excitability. For instance, Batsikadze, Moliadze, Paulus, Kuo, and Nitsche 

(2013) applied tDCS at varying intensities to healthy participants, and observed 

significant effects (in the same direction) of both anodal and cathodal 

stimulation over the left primary motor cortex at 2 mA in the MEPs amplitude 

(i.e., corticospinal excitability). On the contrary, MEPs amplitude was reduced 

after 1 mA cathodal tDCS, pointing to an intensity-dependent, rather than 

polarity-dependent, stimulation effects. It is worth noting that, depending on the 

stimulation site, somatosensory-evoked potentials (SEPs; e.g., Sehm, Hoff, 

Gundlach, Taubert, Conde, Villringer, et al., 2013) and visual evoked potentials 

(VEPs; e.g., Accornero, Li Voti, La Riccia, & Gregori, 2007) have been used as 

well to asses the effects of tDCS.  

Regarding the duration of tDCS effects, longer stimulation protocols are more 

often associated to longer lasting effects (up to several hours), but only for 

cathodal stimulation (Paulus, 2011). Studies addressing the modulation of 

MEPs with a frontopolar montage (e.g., Nitsche & Paulus, 2000, 2001; Nitsche, 

Nitsche, Klein, Tergau, Rothwell, & Paulus, 2003) found that a few seconds of 

tDCS at moderate intensity could induced temporary acute excitability 

alterations, which did not result in after-effects, whereas short-lived after-effects 

(up to 10 min) were achieved by stimulating for a few minutes (up to 7). 

Stimulation exceeding 10 min induced after-effect that lasted approximately 1 h. 

Related to this point, Stagg and Nitsche (2011) provided an outline of the 

physiological basis underlying after-effects of tDCS. It is also important to 
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consider that longer stimulation, may have the counterintuitive outcome of 

inverting the direction of stimulation effects (i.e., the direction that we would 

expect to observe at lower parameters; see Batsikadze et al., 2013; Monte-

Silva, Kuo, Hessenthaler, Fresnoza, Liebetanz, Paulus, et al., 2013), similarly to 

what is observed for increases in stimulation intensity. Importantly, it is still 

unclear whether the known stimulation effects in the motor cortex domain can 

be generalized to other cortical areas. This is particularly challenging, as we do 

not currently have objective indexes such as MEPs for the main targets of 

interest in tDCS research. To this end, co-registration (i.e., employing 

neuroimaging techniques alongside stimulation) may help better clarifying the 

neural consequences of stimulation parameters. 

Polarity of the electrode(s) over the target area is also critical feature of the 

tDCS setup. It is often assumed that anodal current enhances cortical 

excitability, along with the behavioral performance that reflects the cognitive 

mechanisms associated with the stimulated region, whereas cathodal 

stimulation would yield the opposite effect, i.e., decreased cortical excitability 

and related performance at the behavioral level (see also 2.3). However, this 

anodal-excitatory / cathodal-inhibitory model stems from a line of research on 

tDCS that begun with the first studies that investigated modulation of the motor 

cortex excitability with electrical stimulation (e.g., Nitsche & Paulus, 2000; 2001; 

Priori et al., 1998), but that by no means pretended to inform the whole range of 

potential applications of the technique. Eventually, researchers soon realized 

that results from studies where brain regions other than the motor cortex were 

stimulated with tDCS rarely fitted this model. A recent review and meta-analysis 

by Jacobson, Koslowsky, and Lavidor (2012c) suggests that this is clearly the 

case. In fact, while anodal and cathodal stimulation showed consistent direction 

of the tDCS outcoms in studies addressing motor cortex excitability, a much 

more nuanced scenario emerged from research that employed stimulation to 

investigate high-order cognitive processes, where anodal stimulation behaves 

similarly to motor studies, but cathodal stimulation rarely induce increased 

inhibition. Sometimes even inverse polarity effects can be observed: For 

example, Accornero and Colleagues (2007) reported a reduction of VEPs after 



Transcranial Direct Current Stimulation (tDCS) 

Davide Francesco Stramaccia - November 2016   55 

anodal tDCS, and an increase in the same neurophysiological measure after 

cathodal stimulation. In any case, whenever a study is designed to demonstrate 

specific effects of polarity of tDCS, delivering the opposite polarity as well (while 

keeping the other parameters constant) is an optimal choice of control condition.  

In addition to all of the above setup parameters, timing of the stimulation (i.e., 

when to stimulate) is also important depending on the desired outcomes and the 

research hypotheses being tested. Both off-line (i.e., before data collection) and 

online (i.e., during data collection) tDCS have been employed, with different 

outcomes depending on the context and dependent variables (e.g., MEPs, 

behavioural measures). Interestingly, when administering multiple tDCS 

sessions, the duration of the inter-session interval (which could vary from few 

minutes to several hours or days, depending on the study) seems to 

significantly modulate the regulation of cortical excitability in terms of duration of 

the after-effects of stimulation as indexed by MEPs (Monte-Silva, Kuo, Paulus, 

& Nitsche, 2008). 

2.2.5 Target areas and target functions 

Almost every tDCS application, in either basic or clinical research, moves 

from the hypothesis that a certain area of the brain is involved in a cognitive 

process, and that successful modulation of that particular area may allow for 

enhancement or impairment in the associated cognitive process of interest. 

Similarly, we may hypothesize that a brain region is involved in specific 

symptoms and dysfunctional mechanisms associated to a clinical condition, and 

we may want to investigate the possibility of using tDCS to normalise a 

compromised function or alleviate certain symptoms. Therefore, establishing the 

right target is a primary concern when devising a tDCS experiment. 

Subsequently, one can explore the large space of the possible combinations of 

the parameters described above, aiming to find an optimal combination 

according to the intended outcomes, while taking into account the boundaries of 

the stimulation protocol according to the safety regulations of tDCS, as well as 

past works that investigated the modulation of identical or similar brain areas 

and underlying cognitive processes.  
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Apart from studies that applied tDCS to modulate motor cortex excitability 

(e.g., Nitsche & Paulus, 2000, 2001), electrical stimulation has already been 

used in a broad range of different applications, spanning almost every research 

domain within the cognitive sciences. In particular, a wealth of studies have 

been devoted to the application of tDCS to modulate important high-order 

cognitive functions such as attention, language, memory, and executive 

functions. For instance, left prefrontal stimulation delivered at the F3 site 

(corresponding to the left DLPFC) of the 10-20 EEG electrodes placement 

system (Jasper, 1958), has been shown to increase performance at naming 

facilitation and verbal fluency tasks (Fertonani, Rosini, Cotelli, Rossini, & 

Miniussi, 2010; Iyer et al., 2005). The same site has been stimulated in 

numerous studies employing tDCS to modulate working memory (WM) as 

indexed by the n-back task (e.g., Fregni, Boggio, Nitsche, Bermpohl, Antal, 

Feredoes, et al., 2005; Ohn, Park, Yoo, Ko, Choi, Kim, et al., 2008).  Turning to 

the investigation of tDCS effects on learning, Meinzner, Jähnigen, Copland, 

Darkow, Grittner, Avirame, and Colleagues (2014) found that repeated sessions 

of tDCS (over multiple days) applied to the left posterior temporo-parietal 

junction induced an improvement in learning and maintenance of newly 

acquired words. Stimulation of sensory cortices and related perceptual 

processes has been investigated as well: For instance, Costa, Hamer, Nagy, 

Barboni, Gualtieri, Boggio, and Colleagues (2015) were able to selectively 

modulate different processing channels in the visual cortex with tDCS over OZ 

in the 10-20 EEG system, whereas Reinhart, Xiao, McClenahan, and Woodman 

(2016) stimulated either the P1 (i.e., left visual cortex) or the P2 (i.e., right visual 

cortex) site of the 10-20 system, and found an immediate beneficial effect on 

visual acuity in the contralateral  visual field. Regarding the auditory cortex, for 

example, Heimrat, Kuehne, Heinze, and Zaehle (2014) applied tDCS over either 

the C3 or the C4 10-20 sites, corresponding to the left and right auditory 

cortices respectively, and observed an impairment in the perception of rapidly 

changing acoustic information specific for C3 stimulation, thereby suggesting a 

left hemisphere dominance for this specific process. Related to the cognitive 

domain of perception, there is also evidence of tDCS-induced modulation of 
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cross-modal effects (e.g., disruption of the McGurk illusion with tDCS over the 

T3 and T4 10-20 sites, corresponding to superior temporal sulcus; Marques, 

Lapenta, Merabet, Bolognini, & Boggio, 2014). 

A few years after the inception of tDCS into the field of cognitive 

neuroscience, some researchers begun applying electrical stimulation to the 

cerebellum as well, a procedure that has been termed “cerebellar tDCS” 

(cTDCS), in order to investigate the involvement of this under-studied brain 

structure in many cognitive processes, and to explore new possibilities for novel 

therapeutic interventions (e.g., Ferrucci, Marceglia, Vergari, Cogiamanian, 

Mrakic-Sposta, Mameli, et al., 2008, for a study on WM; see Ferrucci, Cortese, 

& Priori, 2014, for review and practical recommendations). 

As a general rule, experiments designed to provide evidence for the causal 

involvement of a particular brain region on a certain cognitive process or 

behaviour should employ control conditions where additional unrelated brain 

regions are stimulated. Moreover, a double-dissociation design can be 

implemented in tDCS studies as well in order to allow for even stronger 

inferences on the results. 

As I mentioned before, previous studies with similar or overlapping rationales 

are the most valuable source of information regarding which tDCS setup to use 

in one’s own study. However, it should be kept in mind that the majority of works 

on tDCS so far, with particular regard to the first seminal studies that 

investigated the most effective parameters to induce cortical excitability, have 

been carried out on the primary motor cortex, which cannot be assumed as a 

model of the whole cortex’s response to tDCS. More generally, anatomical 

differences between portions of the cortex, state-dependency (i.e., the current 

status of the cortex while receiving tDCS, due to on-going tasks or additional 

manipulations), and other factors as well, all speak against direct transferability 

of tDCS outcomes from one context of application to another (e.g., Gill, Shah-

Basak, & Hamilton, 2015; Kessler, Turkeltaub, Benson, Hamilton 2012; Nitsche 

& Paulus, 2000). In addition to that, the complexity of the brain hinders accurate 

predictions of stimulation effects, thereby requiring a more nuanced approach 
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where, for each stimulation protocol, specific predictions are advanced on the 

basis of the functional and structural features of the target area, its connections 

to other brain regions, and the functional networks it partakes into. Hypotheses 

will also be shaped according to the behavioural and physiological measures 

that will be implemented in the protocol. Coupled with the considerable inter-

individual differences often observed in tDCS outcomes (López-Alonso, 

Cheeran, Rodríguez, & Fernández-del-Olmo, 2014; Wiethoff, Hamada, & 

Rothwell, 2014), related to age, gender, and genetic characteristics of the 

stimulated individual, among many other factors (e.g., Chaieb, Antal, & Paulus, 

2008; Fritsch, Reis, Martinowich, Schambra, Ji, Cohen, et al., 2010; Suppa & 

Cheeran, 2015) these considerations call for caution against over-generalisation 

but also for exploration of the optimal parameter space with respect to the 

peculiar research questions under scrutiny, especially when no precedent has 

been established for a particular application of the technique (e.g., Iyer et al., 

2005).  

2.2.6 Sham stimulation: Achieving blinding in tDCS research 

2.2.6.1 Blinding the participants 

A common and important feature of tDCS devices is the option to deliver of a 

simulated stimulation, i.e., “sham” stimulation, which allows for the inclusion of 

control groups blinded (or even double-blinded), which is often essential to 

make sense of results from studies employing this kind of modulatory approach. 

Sham stimulation generally consists of a very brief stimulation, ramped up for a 

few seconds at the beginning of the tDCS protocol, aimed at generating 

sensations that are quite common in the very first stage of electrical stimulation 

of the scalp, and usually fade after a short habituation period. At the beginning 

of stimulation, participants often report an itching or tingling sensation, however 

the extremely short stimulation is not able to induce after-effects. Several 

studies found this protocol to induce sensations that were undistinguishable 

from those experienced by groups of participants receiving real stimulation, 

especially when the participants did not have previous experience of tDCS (e.g., 

Ambrus, Al-Moyed, Chaieb, Sarp, Antal, & Paulus, 2012; Gandiga, Hummel, & 
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Cohen, 2006; Palm, Reisinger, Keeser, Kuo, Pogarell, Leicht, et al., 2013; see 

also O’Connell, Cossar, Marston, Wand,Bunce,Moseley, et al., 2012, for 

potential concerns regarding effective blinding at intensities of 2 mA). It should 

be noted that higher currents may lead to increased sensations, thus potentially 

compromising blinding of the stimulation procedure, in particular with repeated 

measure (i.e., multiple within-participant stimulation protocols) experimental 

designs (O’Connell et al., 2012; Palm et al., 2013), whereas this issue might be 

irrelevant for studies employing a parallel experimental design (i.e., between-

group comparison of stimulation protocols). Related to this point, it is important 

to monitor and record sensation due to tDCS at the end of the protocol (see 

Fertonani, Ferrari, & Miniussi, 2015, for a standardized sensations 

questionnaire), which may contribute to establishing effectiveness of the 

blinding procedures across sessions/stimulation groups, as well as ensuring 

that the stimulation protocol is well-tolerated by participants or patients, 

depending on the context of usage (see Poreisz, Boros, Antal, & Paulus, 2007, 

and Fertonani et al., 2015, for surveys of the potential adverse effects of tDCS). 

Another approache to blinding of participants in tDCS experiment consists of the 

application of topical anaesthetics (Guleyupoglu et al., 2014) to abolish 

sensations on the skin.  

2.2.6.2 Blinding the experimenter 

Achieving double blinding of tDCS experiments requires the device operator 

to be as unaware as the participants regarding the specifics of the protocol. This 

is generally accomplished thanks to options available to several tDCS devices, 

where codes for a specific setup are inputted on the device that would 

subsequently deliver stimulation according to the parameters associated to that 

particular setup, without further programming on behalf of the operator. 

However, it should be noted that the operator would necessarily be aware of the 

gross features of the montage (i.e., targeted areas), which could be used to 

infer part of the experimental hypotheses and predictions underlying the 

stimulation protocol. In addition to that, the possible stimulation-induced skin 

erythema due to vasodilation could be exploited as well to correctly guess 
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whether participant is being stimulated or not (Durand et al, 2002; Ezquerro et 

al., 2016). 

In summary, ensuring efficient blinding in tDCS experiments is essential to 

test the specificity of the stimulation setup in producing a set of observed 

outcomes.  

2.2.7 Safety and tolerability 

A safe and tolerable tDCS administration is based on four prerequisites: 

Firstly, a careful selection of volunteers or patients based on exclusion criteria 

related to the interaction between electrical currents to the head/brain and their 

interactions with pre-existing medical conditions, medications, and symptoms. 

Typical exclusion criteria include but are not limited to history of head trauma, 

convulsions or seizures, faint spells or syncope, metal implants, cochlear 

implants, metal fragments or apparatus, medications, cardiac pacemaker.  

Depending on the class, objectives, setting, and tDCS parameters, which 

characterize a particular study, certain criteria may be relapsed (e.g., excluding 

individuals with history of seizures, if the study is aimed at reducing their 

occurrence), or else, additional constraints may apply (see Rossi, Hallett, 

Rossini, & Pascual-Leone, 2011, for a set of screening questions for TMS safety 

that can be easily adapted for use with tDCS). Secondly, the experimenters 

should be aware of, monitor, and record, the typical sensations associated with 

tDCS, and the modulation of their magnitude depending on the montage 

parameters (i.e., intensity, density, target area, electrodes, duration). Recently 

Fertonani, Ferrari, and Miniussi (2015) provided a review on sensations induced 

by electrical stimulation, as well as a useful questionnaire for participants to 

report which sensations were experienced and how intensely. The most typical 

sensations associated with tDCS are mild itching, burning, or tingling, under the 

electrodes. Apart for physical sensations not associated with tissue damage 

(with few exceptions, e.g., Wang, Wei, Wen, & Li, 2014), potential cognitive and 

neurobiological side-effects have been hypothesized as well, even though none 

of them have been observed so far within the range of the stimulation 

parameters recommended by safety guidelines (e.g., Ardolino, Scelzo, 
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Cogiamanian, Bonara, Nozza, & Rosa, 2014, on the effects of tDCS on 

circulating lymphocytes). For obvious reason, the main concern with electrical 

stimulation pertains the risk of inducing seizures, with particular regards to 

healthy volunteers. However, so far, none have been reported. A thorough 

report on tDCS safety has recently been published by Bikson, Grossman, 

Thomas, Zannou, Jiang, Adnan, and Colleagues (2016) (see also Krishan, 

Santos, Peterson, & Ehinger, 2015, for a report on tDCS safety in children and 

adolescents). Thirdly, as mentioned above, stimulation parameters in human 

experimentations should strictly adhere to the recommended values in the 

literature (e.g., Bikson et al., 2016; Bikson, Datta, & Elwassif, 2009). Last, but 

not least, it is essential that tDCS operators be comprehensively trained in the 

foundational aspects of electrical stimulation: theoretical background, rationale 

of use, safety and screening guidelines, determination of parameters, montage 

and setup, emergency conducts, and monitoring and reporting of adverse 

events (Woods, Antal, Bikson, Boggio, Brunoni, Celnik, et al., 2016).  

2.2.8 Other tES waveforms 

The majority of devices used to administer tDCS can also deliver different 

waveforms. The most common waveforms besides tDCS are transcranial 

Alternated Current Stimulation (tACS; Antal, Boros, Poreisz, Chaieb, Terney, & 

Paulus, 2008), and transcranial Random Noise Stimulation (tRNS; Terney, 

Chaieb, Moliadze, Antal, & Paulus, 2008). The following paragraphs provide a 

brief outline of these two waveforms. The reader is referred to Paulus, Nitsche, 

and Antal  (2016) for a comprehensive review of the three main tES waveforms 

(i.e., tDCS, tACS, tRNS). 

2.2.8.1 transcranial Alternated Current Stimulation (tACS) 

Transcranial Alternated Current stimulation (tACS) consists of sinusoidal 

waves (most often, but other waveforms are possible) of bidirectional, biphasic 

current, which can be applied at different intensities and frequencies (see also 

Chaieb, Antal, Pisoni, Saiote, Opitz, Ambrus, et al., 2014, for a report on tACS 

safety). Ideally, tACS in the EEG range or in the so-called “ripple” range (e.g., 

Moliadze et al., 2010) allows interfering with the oscillatory brain activity by 
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enhancing their amplitude or entraining them (Helfrich, Schneider, Rach, 

Trautmann-Lengsfeld, Engel, & Hermann, 2014) by stimulating at the 

corresponding frequency. Therefore, it has been proposed that application of 

tACS may yield promising results in disorders characterized by abnormal 

oscillatory activity in the brain, by restoring optimal oscillatory patterns. Phase-

locking of endogenous EEG could also be accomplished with tACS, which also 

enables modulation of phase coherence between different brain areas. In the 

kHz range, instead, tACS could affect more selectively the neuronal 

membrane’s excitability. These effects could be exploited to modulate 

behavioral, cognitive, and neurophysiological mechanisms, known to be 

associated to the target frequency. Frequency, intensity, and phase of 

stimulation, are the main parameters of a tACS protocol, and contribute in 

shaping the outcomes of the stimulation. Duration could reasonably be 

important as well, but it has not been systematically investigated yet, and 

evidence provided by studies with tDCS may not directly translate to tACS. 

Similarly to tDCS, the first studies to employ tACS investigated the modulation 

of the motor cortex, providing mixed results with respect to neurophysiological 

effects (e.g., Antal et al., 2008; Feurra, Blanco, Santarnecchi, Del Testa, Rossi, 

& Rossi, 2011; Moliadze et al., 2010; Pogosyan, Gaynor, Eusebio, & Brown, 

2009; Zaghi, de Freitas Rezende, de Oliveira, El-Nazer, Menning, Tadini, et al., 

2010).  

A critical aspect of tACS is the setup and interpretation of different electrodes, 

because when tACS is applied they will keep switching between anodal and 

cathodal current at each half cycle of oscillation, whereas in tDCS the anode 

and cathode maintain the same function throughout the whole stimulation 

session. Therefore, during tACS, all target areas will receive similar stimulation. 

This particular feature of oscillating electrical stimulation also implies a different 

rational when planning a study, compared to tDCS experiments: Identifying the 

oscillatory signature and its specific parameters whose modulation may shape 

the cognitive process of interest. Moreover, cross-frequency effects should be 

taken into account; Indeed, it has been shown that delivering tACS at a certain 

frequency can induce changes in “antagonistic” frequencies as well (e.g., 
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Helfrich, Knepper, Nolte, Strüber, Rach, Hermann, et al., 2014, for gamma-

alpha cross-frequency effects). 

A relevant phenomenon associated with tACS is the observation that 

stimulation protocols close to the retina or targeting the visual cortex can induce 

retinal or cortical phosphenes, respectively, but not in the “ripple” range. It 

should be noted that retinal phosphenes might also appear with tDCS close to 

the eyes, and therefore their occurrence is one of the reasons why tDCS 

protocols are delivered with a fade-in and a fade-out of current intensity. 

Because of the occurrence of phosphenes in tACS protocols, the potential for 

blinding in tACS studies has been questioned (e.g., Raco, Bauer, Olenik, Brkic, 

& Gharabaghi, 2014; Schutter & Hortensius, 2010), and effective strategies 

should be developed by future research, with particular regard to stimulation 

protocols within the alpha and gamma ranges. 

2.2.8.2 transcranial Random Noise Stimulation (tRNS) 

Among the three main waveforms that can be delivered with regular tES 

equipment, transcranial Random Noise Stimulation (tRNS) is the most recent, 

as well as the one we know the least about. This electrical stimulation method 

may be regarded as a special case of tACS, consisting of a bidirectional 

biphasic current that randomly oscillates within a spectrum of pre-defined 

frequencies and is not sensitive to the direction of the current flow, and it has 

been first introduced by Terney et al., (2008). Terney and Colleagues found that 

weak tRNS in the high-frequency spectrum (between 100 and 640 Hz) applied 

on the motor cortex for 10 min enhanced corticospinal excitability both online 

and offline with respect to the stimulation session. In general, delivering tRNS to 

the motor cortex enhances cortical excitability, but the stimulation effects could 

be dependent on current intensity (Moliadze, Atalay, Antal, & Paulus, 2012). 

The effects of tACS are likely dependent on the task performed during 

stimulation and the ongoing baseline oscillatory activity (Neuling, Rach, & 

Hermann, 2013). For instance, Ambrus, Zimmer, Kincses, Harza, Kovacs, 

Paulus, and Colleagues (2011) found that tRNS over the DLPFC induced more 

mistakes in a probabilistic classification task, whereas Mulquiney, Hoy, 
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Daskalakis, and Fitzgerald (2011) did not observe any effects of tRNS on an n-

back task when stimulating on the same site. In other studies, tRNS over the 

visual cortex enhanced neuroplasticity in a perceptual learning paradigm 

(Fertonani, Pirulli, & Miniussi, 2011), but only when stimulation was delivered 

concurrently with the task (Pirulli, Fertonani, & Miniussi, 2013). 

Concerning safety of stimulation, tRNS seems to yield even smaller side 

effects and unpleasant sensations than tDCS, to the point of being almost 

unnoticeable and painless to many volunteers, thereby granting this stimulation 

technique with unparalleled blinding potential compared to other tES protocols. 

If tRNS will prove effective at modulating pathological oscillatory activity, in 

addition to brain rhythms in the healthy brain, it could provide great economical 

and practical advantages in clinical settings, compared to other stimulation 

techniques such as repeated TMS (rTMS) that are used with a similar rationale 

(i.e., inducing or disrupting brain plasticity). 

2.3 Putative mechanisms of action 

Several mechanisms of action underlying the effects of tDCS have been 

proposed. Importantly, as opposed to TMS, the weak electric fields (0.5-2 mA) 

employed in tDCS are not able to induce action potential, but act at a sub-

threshold level instead. Consequently, tDCS is usually referred to as a 

neuromodulation technique, compared to other neurostimulation methods that 

are known to eliicit action potentials. At the neural level, it has been suggested 

that tDCS might be able to induce a polarity-dependent shift in the resting 

membrane potential. Therefore, for instance, anodal tDCS would depolarize the 

neuronal membranes within the target area, thus making spontaneous neuronal 

firing more likely to occur, whereas cathodal tDCS should have the opposite 

effect, through hyperpolarization of the neuronal membranes (but see 2.2.4 for a 

less clear-cut distinction between the two polarities of tDCS).  

The two polarities of tDCS seem to be dissociable in their neurochemical 

effects as well. Indeed, pharmacological studies reported that administering 

drugs that induced blockage of Na+ (i.e., carbamazepine) and Ca+ (i.e., 

flunarizine) channels impaired the excitatory after-effects typically associated 
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with anodal current, whereas cathodal stimulation was unaffected by the 

pharmacological manipulation (Liebetanz, Nitsche, Tergau, & Paulus, 2002; 

Nitsche, Liebetanz, Lang, Antal, Tergau, & Paulus, 2003). 

These evidences are in line with the hypothesis that tDCS is able to modulate 

the neuronal resting membrane potential in a polarity-dependent fashion. 

Moreover, they suggest that tDCS could be modulated by the concurrent 

administration of drugs affecting the central nervous system. This could be an 

important venue for future studies, because it could both provide new combined 

therapeutic strategies and inform the use of tDCS in clinical populations that are 

already receiving prescription drugs.  

Because tDCS induces effects that outlast the stimulation window, it is 

unlikely that the underlying neural mechanisms that mediate such effects can be 

solely attributed to changes in the baseline neuronal resting membrane potential. 

Indeed, besides direct polarizing effects, tDCS can also induced indirect 

functional and structural modifications in cortical and subcortical areas that may 

be even far removed from the target site, through alterations of connectivity 

between the areas (e.g., Boros, Poreisz, Münchau, Paulus, & Nitsche, 2008). 

Studies that employed fMRI revealed that, even though tDCS seems to exert its 

strongest effect at the target site (e.g. Kwon, Ko, Ahn, Kim, Song, Lee, et al., 

2008), stimulation could induce diffuse and sustained modifications in other 

regions as well (Lang, Siebner, Ward, Lee, Nitsche, Paulus, et al., 2005). EEG 

studies also provided evidence in favour of long-range tDCS effects, showing 

that stimulation was able to induce widespread and synchronized changes of 

the oscillatory activity in the brain (e.g., Ardolino, Bossi, Barbieri, & Priori, 2005; 

Marshall, Molle, Hallschmid, & Born, 2004). 

Modification of the synaptic environment induced by tDCS has also been 

observed, at the level of both receptors and neurotransmitters (e.g., Nitsche et 

al., 2003; Liebetanz et al., 2002; Stagg, Best, Stephenson, O'Shea, Wylezinska, 

Kincses, et al., 2009). In addition to that, animal studies (e.g., Fritsch et al., 

2010; see Jackson, Rahman, Lafon, Kronberg, Ling, Parra, et al., 2016, for a 

thorough review of the contribution of animal studies to the comprehension of 
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tES) suggest that stimulation effects may be related to long-term potentiation 

(LTP). Related to this point, tDCS also induced changes in synaptic plasticity 

dependent from secretion of the neurotrophic factor in the mouse brain (BDNF; 

Fritsch, et al., 2010). 

Recently, it has been proposed that tDCS may work in an altogether different 

way, that is, by affecting glial cells, rather than neurons (see Roth, 2012, and 

Ruohonen & Karhu, 2012; see also Monai, Ohkura, Tanaka, Oe, Konno, Hirai, 

et al., 2016, for a study of calcium imaging in the mouse brain). Although this 

hypothesis is still in need of thorough investigation, it has sparkled a great 

interest in the literature, as it may address several concerns related to the 

current assumptions underlying tDCS effects, such as the fact that neuronal 

membrane polarization could happen under electric fields as low as those 

produced by tDCS, especially when current dispersion due to intervening 

tissues (e.g., skin and bones) are taken into account. 

In any case, it should be noted that neurophysiological markers of tDCS such 

as those presented above do not necessarily translate into effects of stimulation 

that could be relevant for investigating or shaping human behaviour, with 

particular regard to the clinical setting. The interested reader may refer to 

Medeiros, de Souza, Vidor, de Souza, Deitos, Volz, and Colleagues (2012), for 

a review on the neurobiological mechanisms underlying tDCS. 

Turning to tRNS (2.2.8.2), the effects of oscillating currents have been 

explained in terms of temporal summation of neural activity mediated by 

repeated opening of the Na+ channels, as suggested as well by a recent study 

showing inhibited MEPs after concurrent administration of tRNS and 

carbamazepine (Chaieb et al., 2015). Alternatively, the concept of stochastic 

resonance has been proposed as an explanatory framework for tRNS. 

Stochastic resonance refers to the phenomenon that a signal too weak to 

overcome a threshold can be amplified by adding random noise  (see 

Cappelletti, Gessaroli, Hithersay, Mitolo, Didino, & Kanai, 2015; Fertonani & 

Miniussi, 2016; Miniussi, Harris, & Ruzzoli, 2013). Therefore, effects of tRNS 

would be task-dependent (i.e., the on-going task would establish the need for 
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exceeding the threshold to discharge). Another possibility is that tRNS may 

prevent homeostasis of the stimulate system, compared to other tES techniques, 

due to its unpredictable and varying nature (Fertonani et al., 2011). All these 

proposals could very well coexist into shaping the observed effects of tRNS in 

the literature. For comprehensive reviews on the physiological bases and the 

proposed mechanisms of actions of tES, the reader may refer to Stagg and 

Nitsche (2011), and Fertonani and Miniussi (2016), respectively. 

2.4 Neuromodulation and treatment of cognitive control 

One of the main objectives of tDCS is to effectively influence behavioural 

performance associated to cognitive processes that are supposed to be 

modulated by stimulation of their neural underpinnings. This, in turn, would 

allow to use tDCS and related stimulation techniques to enhance behavioural 

performance in healthy individuals, and more importantly, to repair impaired 

performance in patients suffering from a wide range of clinical conditions.  So 

far, a wealth of studies employed tDCS on a broad variety of cognitive tasks 

addressing hypotheses stemming from the principal domains of the cognitive 

sciences (i.e., attention, emotion, language, memory, perception), in both 

healthy volunteers and patients. In this regard, tDCS has provided mixed 

evidence of effectiveness. However, several important points should be 

considered when evaluating or comparing outcomes of tDCS research. 

To begin with, tDCS has been usually coupled with typical cognitive and 

neuropsychological tasks, which are not necessarily sensitive enough to reflect 

the effects of electrical stimulation that neurophysiology studies suggest to be 

very subtle. Moreover, different stimulation protocols and tasks are used by 

different authors that work on the same research questions, which may lead to 

diverging results due to even minimal changes between experimental 

procedures (see also 2.2), or between different study samples (especially when 

they are rather small, as it is often the case with tDCS studies). Electrical 

stimulation may also interact with the behavioural tasks being performed during 

the stimulation session, but at the moment there is minimal knowledge about 

the characteristic of such interaction, and how to beneficially exploit it. 
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In the following paragraphs (2.4.1, 2.4.2), I focus on past studies that 

investigate the modulation of the core cognitive process that ties together all the 

original experiments presented here, i.e., cognitive control, in a broad range of 

behavioural instances (2.4.1) and across different clinical populations suffering 

from impulsivity and impairment in this fundamental ability (2.4.2). 

2.4.1 Modulation of cognitive control in healthy volunteers 

tDCS has been widely used in basic research applications aimed at 

disentangling the neural underpinnings of several behavioural tasks often used 

to probe cognitive control. For instance Beeli, Casutt, Baumgartner, and Jäncke 

(2008) found that tDCS to the rDLPFC impaired performance in a go/no-go task, 

where participants respond to the majority of the stimuli as fast as they can, but 

also have to refrain from responding when a smaller subset (typically ¼) of the 

stimuli is presented, with cathodal stimulation having the strongest impact on 

false alarm rates. 

The stop-signal task (SST; e.g., Logan & Cowan 1984), which puts the 

participants in a situation where they are sometimes required to outright stop 

their motor response, allows to measure the covert latency of the inhibitory 

process responsible for successful stopping, and it has been extensively 

employed to test the effects of tDCS on inhibitory control of motor action, as well 

as to demonstrate the causal involvement of right prefrontal areas in this ability. 

The bulk of evidence on this specific domain of tDCS research is of particular 

importance with respect to the scope of the present thesis, because of the 

putative relationship between selection and inhibition of motor action and 

episodic memory retrieval (e.g., Levy & Anderson, 2002; Schilling et al., 2014). 

Jacobson, Javitt, and Lavidor (2011) first applied tDCS to the rIFG before a SST, 

and observed an improvement of the stopping process only for the anodal tDCS 

stimulation. Subsequent studies confirmed and extended this right PFC 

inhibitory enhancement induced by anodal tDCS, with few mixed results (e.g., 

Cai, Li, Liu, Li, Feng, Wang, et al., 2016; Cunillera, Brignani, Cucurell, 

Fuentemilla, & Miniussi, 2015; Cunillera, Fuentemilla, Brignani, Cucurell, & 

Miniussi, 2014; Ditye, Jacobson, Walsh, & Lavidor, 2012; see also Castro-
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Meneses, Johnson, & Sowman, 2015, for a study that included also vocal 

response inhibition task, and Hogeveen, Grafman, Aboseria, David, Bikson, & 

Hauner, 2016, for a study that employed HD-tDCS). Liang, Lo, Yang, Peng, 

Cheng, Tseng, and Colleagues (2014) also investigated the neural correlates of 

response inhibition improvement by tDCS, and found an increase in a measure 

of complexity of the EEG signal associated to improvement in motor stopping in 

participants that initially (i.e., without stimulation) showed poorer performance. 

However, they adopted a different tDCS montage compared to the studies 

discussed above, which was identical to the one implemented by Hsu, Tseng, 

Yu, Kuo, Hung, Tzeng, and Colleagues (2011; but see Berryhill, Peterson, 

Jones, and Stephens, 2014, for a failure to replicate Hsu et al., 2011, and 

related discussion). 

Turning on instances of cognitive control other than motor stopping, tDCS 

seems to yield the potential to improve performance in risk-taking tasks such as 

the Balloon Analog Risk Task, by promoting more cautious decision making 

(e.g., Fecteau, Pascual-Leone, Zald, Liguori, Théoret, Boggio et al., 2007; see 

also Fecteau, Knoch, Fregni, Sultani, Boggio, & Pascual-Leone, 2007, for 

similar results with a different task involving gambling). In particular, a recent 

study has shown detrimental effects of cathodal tDCS on performance in list-

method directed forgetting, a task that probes the voluntary ability to control 

interfering memories (Silas & Brandt, 2016). In a different study, Oldrati, 

Patricelli, Colombo, and Antonietti (2016) also found a detrimental effect of 

prefrontal cathodal tDCS on inhibitory performance, as indexed by incorrect 

impulsive responses at the cognitive reflection test, which probes the ability to 

overcome cognitive conflict. 

Different results have been observed in a study employing the Hayling Task 

(Metzuyanim-Gorlick, & Mashal, 2016), which requires participants to complete 

sentences with compatible words in the initiation condition, and on the contrary 

to generate incompatible and unrelated words in the suppress condition 

(Burgess & Shallice, 1997). In this study, left anodal/right cathodal stimulation 

significantly improved inhibition of irrelevant responses, compared to a sham 

control group. However, the use of a bilateral montage, as opposed to the two 
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studies above that employed fronto-polar montages (Oldrati et al., 2016; Silas & 

Brandt, 2016), does not lend to a straightforward comparison of this result with 

the evidence presented so far. Finally, Herrmann, Beier, Simons, and Polak 

(2016) were able to attenuate skin conductance response to unpredictable 

threatening stimuli by the means of anodal tDCS to the rIFG, thus providing 

evidence in favour of a role of this area in emotional regulation, which could be 

regarded as a specific instance of cognitive control. 

In general, tDCS seems to be a promising technique for the manipulation and 

enhancement of cognitive control (for extensive reviews, see Brevet-Aeby, 

Brunelin, Iceta, Padovan, & Poulet, 2016, and Sarkis, Kaur, & Camprodon, 

2014). However, it should be noted that electrical stimulation effects are far from 

being consistent across different studies. Related to this point, Berryhill and 

Colleagues (2014) discussed possible sources of variability in tDCS outcomes 

as concerns modulation of performance in similar tasks.  

2.4.2 Modulation of cognitive control in clinical populations 

Many studies have already investigated the use of tDCS to ameliorate a wide 

range of pathological conditions, as concerns both psychiatric, 

neuropsychological, and neurological disorders (for recent reviews, see Kuo, 

Paulus, & Nitsche, 2014, Cappon, Jahanshahi, & Bisiacchi, 2016, and Convento, 

Russo, Zigiotto, & Bolognini, 2016, respectively). In particular, relevant to the 

present work, tDCS yields promising results in the reduction of symptoms 

pertaining to impulsivity, craving, and lack of control, in both healthy individuals 

and patients with psychiatric diagnoses. 

For instance, a recent study by Kekic, McClelland, Campbell, Nestler, Rubia, 

David, and Colleagues (2014) suggests that prefrontal tDCS may be effective at 

temporarily lowering food craving in healthy women suffering from frequent 

occurrences of this particular symptom. Other studies found beneficial effects of 

administering tDCS to the DLPFC on craving (e.g., Boggio, Sultani, Fecteau, 

Merabet, Mecca, Pascual-Leone, et al., 2008, on alcohol craving; Fregni, Orsati, 

Pedrosa, Fecteau, Tome, Nitsche, et al., 2008, on food craving) The neural 

underpinnings that may mediate these effects have been subsequently 
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investigated, by Lapenta, Di Sierve, Coutinho de Macedo, Fregni, and Boggio 

(2014), which found a significant modulation of ERP components typically 

associated with inhibitory control (i.e., N2 and P3a). Moreover, a recent review 

by Sauvaget, Trojak, Bulteau, Jiménez-Murcia, Fernández-Aranda, Wolz, and 

Colleagues (2015) suggests that tDCS may be effective as a treatment strategy 

for food and behavioural addiction, and in particular the Authors recommend 

additional efforts into the investigation the neuromodulatory effects of tDCS on 

the latter symptom, which appears to be under-studied with respect to the 

former (see also Ljubisavljevic, Maxood, Bjekic, Oommen, & Nagelkerke, 2016). 

There is also compelling evidence of reduced smoking behaviour as a 

consequence of prefrontal tDCS (Fecteau, Agosta, Hone-Blanchet, Fregni, 

Boggio, Ciraulo, et al., 2014). 

Apart from addiction, the use of prefrontal tDCS to ameliorate inhibitory 

control has been investigated in other clinical populations with inhibitory 

disregulation and undiagnosed individuals with impulsivity-related traits. For 

instance, Soltaninejad, Nejati, and Ekhtiari (2016) delivered tDCS to the left 

DLPFC of adolescents suffering from ADHD symptoms, and observed an 

improvement of inhibition of prepotent response in a go/no-go task following 

cathodal tDCS. Taken together, results from the literature discussed above not 

only suggest a central role of the DLPFC in cognitive control, but also highlight 

an ideal target for neuromodulatory attempts aimed at manipulating this ability. 
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3 TDCS OVER THE RIGHT DORSOLATERAL 

PREFRONTAL CORTEX (RDLPFC) 

ABOLISHES RIF 

This chapter has been published in Penolazzi, B., Stramaccia, D. F., Braga, M., Mondini, S., 

& Galfano, G. (2014). Human memory retrieval and inhibitory control in the brain: beyond 

correlational evidence. Journal of Neuroscience, 34, 6606-6610. 

    

Retrieving information from long-term memory can result in the episodic 

forgetting of related material. One influential account states that this retrieval-

induced forgetting (RIF) phenomenon reflects inhibitory mechanisms called into 

play to decrease retrieval competition. Recent neuroimaging studies suggested 

that the prefrontal cortex, which is critically engaged in inhibitory processing, is 

also involved in retrieval competition situations. Here, we used transcranial 

direct current stimulation (tDCS) to address whether inhibitory processes could 

be causally linked to RIF. tDCS was administered over the right dorsolateral 

prefrontal cortex during the retrieval- practice phase in a standard retrieval-

practice paradigm. Sixty human participants were randomly assigned to anodal, 

cathodal, or sham-control groups. The groups showed comparable benefits for 

practiced items. In contrast, unlike both the sham and anodal groups, the 

cathodal group exhibited no RIF. This pattern is interpreted as evidence for a 

causal role of inhibitory mechanisms in episodic retrieval and forgetting. 
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3.1 Introduction 

Retrieving information from long-term memory is known to elicit two well-

established phenomena. On the one hand, processing of the retrieved items is 

enhanced, an effect known as retrieval-induced facilitation (FAC). On the other 

hand, how- ever, processing of items related to those that have been retrieved 

is impaired, resulting in a phenomenon called retrieval-induced forgetting (RIF; 

Anderson et al., 1994). These effects have typically been studied with the 

retrieval-practice paradigm (Levy & Anderson, 2002), in which participants first 

learn several category–exemplar pairs from several categories (study phase) 

and then actively retrieve some of the studied exemplars of half categories only 

(retrieval-practice phase). The final phase (test phase) consists of a recall test 

involving all learned exemplars. Typically, the FAC effect consists of a better 

recall of practiced items over un- practiced items from non-practiced categories 

(i.e., control items), whereas the RIF effect consists of a better recall of control 

items over non-practiced items from practiced categories.  

RIF has proved a robust effect and has been replicated in a variety of 

domains (Galfano et al., 2011; Johnson & Anderson, 2004). According to an 

influential class of models, RIF would reflect inhibitory mechanisms actively 

engaged by retrieval processing during the practice phase, aimed to maximize 

the retrieval of the to-be-practiced items (Anderson, 2003; for a review, see 

Storm & Levy, 2012). Crucially, according to inhibitory accounts, facilitation of 

practiced items is functionally independent from forgetting of non-practiced, 

related competitors, whereas, according to non-inhibitory accounts, RIF and 

FAC are function- ally related, because forgetting of non-practiced, related items 

is attributable to the strengthening of practiced items. Neuroimaging studies 

suggested that a broad prefrontal neural network, involved in executive control, 

is engaged during retrieval practice, and some of the activated areas within this 

network [i.e., anterior cingulate cortex, anterior ventrolateral prefrontal cortex, 

dorsolateral prefrontal cortex (DLPFC)] seem to be directly linked to forgetting of 

competitors, because their activation predicts the amount of RIF but not that of 

FAC (Kuhl et al., 2007; Wimber, Bäuml, Bergström, Markopoulos, Heinze, & 

Richardson-Klavehn, 2008). Nevertheless, these data are correlative in nature. 
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The present study aimed to establish a causal relationship between prefrontal 

areas and the specific cognitive mechanisms underlying RIF using transcranial 

direct current stimulation (tDCS), a non-invasive neuromodulation technique 

(Dayan, Censor, Ruch, Sandrini, & Cohen, 2013). We targeted the DLPFC 

because fMRI data suggest that its activation correlates with the amount of RIF 

(Wimber et al., 2009) and is engaged in direct suppression of unwanted 

thoughts (Benoit & Anderson, 2012; Gagnepain, Henson, & Anderson, 2014). 

Based on previous neuromodulation studies investigating inhibitory control 

(Juan & Muggleton, 2012), active stimulation was delivered over the right 

hemisphere. tDCS was administered during the practice phase of a standard 

retrieval-practice paradigm, because inhibitory processes would act specifically 

during this phase according to inhibitory accounts (Anderson, 2003). If the right 

DLPFC plays a causal role in RIF and inhibition is a critical mechanism 

underlying such phenomenon, then we would expect no alterations of FAC but a 

significant, stimulation-dependent, alteration of RIF.  

3.2 Methods 

3.2.1 Participants 

Sixty students (10 males; mean 23.4, SD, 2.1 years), who met the inclusion 

criteria for participating in brain stimulation studies, gave their written informed 

consent to take part in the experiment, performed in accordance with the 

principles of the Declaration of Helsinki. The local ethical committee approved 

the study, which adopted the safety procedures of non-invasive brain 

stimulation. Sample size for each group was determined a priori on the basis of 

both previous neuroimaging studies addressing RIF (Wimber et al., 2009) and 

neuromodulation studies implementing between-participants designs (Penolazzi, 

Pastore, & Mondini, 2013). A single blind, sham-controlled, between-group 

design was used: Participants were randomly assigned to one of three 

stimulation conditions (two active stimulations and one sham-placebo 

stimulation), without being informed about the kind of stimulation they received.  
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3.2.2 Retrieval Practice Paradigm (RPP) 

RIF was assessed using a standard RPP (Anderson et al., 1994). Stimuli 

were 96 Italian nouns of exemplars belonging to eight semantic categories 

selected from the category production norms for Italian language (Boccardi & 

Cappa, 1997). Criteria for stimuli selection were those generally used for this 

paradigm: (1) categories were relatively unrelated; (2) semantic associations 

between items of different categories were kept to a minimum; (3) only at least 

five letter items were included; and (4) within each category, each item had a 

unique first letter. In all categories, 7 of 12 items were strong exemplars (i.e., 

they were generated with a high frequency according to the production norms; 

mean number of produced exemplars, 73.7; range, 39.43–102.4), whereas the 

other five items were weak exemplars (i.e., they were generated with a low 

frequency according to the production norms; mean number of produced 

exemplars, 6.1; range, 1–16). Because weak exemplars suffer significantly less 

RIF than strong exemplars do (Anderson et al., 1994), to maximize the 

probability of eliciting the effect, weak exemplars served as to-be-practiced 

items, whereas strong exemplars served as non-practiced, related items. 

As shown in Figure 3.1 and Figure 3.2, in the first phase of the paradigm 

(study phase), participants studied the 96 category-exemplars pairs randomly 

presented in a categorized blocked order. Each trial started with a fixation cross 

for 0.5 s, followed by a blank lasting 0.5 s, and a category-exemplar pair for 2.5 

s. The inter-trial interval consisted of a blank lasting 0.5 s. In the second phase 

(retrieval-practice phase), participants retrieved only weak exemplars from half 

of the studied categories through a cued-recall test. Specifically, items were 

randomly presented four times each, in the form category-plus-three-letter-stem 

(e.g., FRUIT-pru__). This allowed to distinguish items as follows: (1) practiced 

items from practiced categories (RP+; corresponding to weak exemplars); (2) 

non-practiced items from practiced categories (RP-; corresponding to strong 

exemplars); and (3) control items, i.e., non-practiced items from non-practiced 

categories [in turn, distinguished in weak exemplars (NRP+) acting as control 

for RP+ items and strong exemplars (NRP-) acting as control for RP- items]. 

Each trial started with a fixation cross for 1 s, followed by a blank lasting 1 s, 
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and an item for 4 s. The inter-trial interval lasted 1 s. In the third phase (test 

phase), participants performed a cued-recall task (items in the form category-

plus-one-letter-stem, e.g., FRUIT-p__), including all items studied in the first 

phase. Each trial started with a fixation cross lasting 0.5 s, followed by a blank 

screen lasting 0.5 s, and an item for 4 s. The inter-trial interval lasted 1 s. To 

ensure that RIF was not caused by output interference (i.e., interference exerted 

by RP+ items, which tend to be recalled first), RP- items were always tested 

before RP+, NRP+, and NRP- items, which appeared in random order. Although 

this presentation order might have caused NRP- items to undergo more 

interference than RP- items, such bias was held constant across participants 

and hence is unlikely to have influenced the results as a function of stimulation. 

Four balanced lists differing in the subgroups of categories acting as either to-

be-practiced categories or control categories were built and randomly assigned 

to participants. 

3.2.3 tDCS 

tDCS was delivered through a battery-driven current stimulator   (BrainStim; 

EMS), using a pair of surface saline-soaked sponge electrodes (16 cm2). A 

constant current of 1.5 mA was applied for 20 min  (fade-in/fade-out time, 60 s) in 

both the active stimulation conditions. In   the anodal group, the anode was 

positioned over the right DLPFC (F4 site of the 10 –20 EEG system), whereas 

the cathode was positioned over the  left supraorbital area, a commonly used 

site for the reference electrode.  Although other regions are also known to be 

involved in RIF (Wimber et  al., 2009), we focused on DLPFC for two critical 

reasons. First, DLPFC is  critically engaged in inhibitory processing (Knoch, 

Gianotti, Pascual-Leone, Treyer, Regard, Hohmann et al., 2006; De Neys, 

Vartanian, & Goel, 2008) and thought suppression (Benoit and Anderson, 2012). 

Second, DLPFC is more consistently identified as underlying a specific site 

of  the 10–20 EEG system compared with other areas (e.g., ventrolateral   

prefrontal cortex). We focused on the right hemisphere because brain   

stimulation studies addressing motor inhibition highlighted its key role in 

inhibitory control (for a review, see Juan and Muggleton, 2012). Furthermore, 
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given the linguistic nature of our stimuli, we preferred to  minimize the possible 

modulation of areas involved in linguistic process  ing. In the cathodal group, 

electrode positioning was reversed with respect to the anodal group. In the 

sham group, a 1.5 mA current was   applied for 15 s at the beginning and 15 s at 

the end of the stimulation period. 

To rule out alternative accounts of tDCS effects, a self-report questionnaire 

measuring mood and arousal was administered at both the beginning and the 

end of the experiment. In addition, to detect possible differences in the 

sensations experienced during the different stimulation conditions, at the end of 

the experiment, participants were asked to complete a five-point-scale 

questionnaire (Fertonani et al., 2010).  

Stimulation was delivered during the retrieval-practice phase, in which 

inhibitory processes are assumed to operate according to inhibitory accounts. 

Because the retrieval-practice phase lasted less than the stimulation period, 

when the former finished, participants were asked to complete unrelated filler 

questionnaires until the end of the stimulation. When the stimulation finished, 

the test phase started. 

 

Figure 3.1 Schematic illustration of the experimental procedure. A standard retrieval-

practice paradigm (RPP) was employed. Stimulation was administered during the phase 

whereby inhibitory processes are assumed to occur according to inhibitory accounts, 

and lasted 20 min. Between the practice and test phases, participants completed filler 

questionnaires unrelated to the present research. The test phase was performed 

immediately after the end of the stimulation but after a brief delay with respect to the 

practice phase, in line with the typical RPP. 
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Figure 3.2 Schematic representation of trial structure across the three phases of the 

RPP: (a) study phase; (b) practice phase; (c) test phase. (b&c) Participants responded by 

recalling the name of the exemplar associated to the cue provided on screen aloud 

(sound waves symbol). 

 

3.2.4 Analysis 

A one-way ANOVA with group (anodal, cathodal, sham) as the between-

participant factor was conducted on the percentage of correctly recalled items in 

the retrieval-practice phase. However, the crucial analyses to test our 

experimental hypothesis were related to the percentage of correctly retrieved 

items in the test phase. In this regard, a mixed-design ANOVA was performed 

for FAC, with group as a between-participant factor and item type (RP+, NRP+) 

as a within-participant factor. An analogue ANOVA was performed for RIF, with 

group as a between-participant factor and item type (NRP-, RP-) as a within-

participant factor. For significant interactions, Bayesian analyses were used to 

disentangle which model (null vs alternative hypothesis) was more strongly 
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supported by the available data. Specifically, the Bayesian information criterion 

(BIC) was computed to test the presence of the investigated effects (FAC and 

RIF) in each group (Masson, 2011). Within this framing, the posterior probability 

that the data favor the alternative hypothesis, i.e., pBIC(H1|D), ranges from 0 to 1 

and is just the complement of the posterior probability that the data favour the 

null hypothesis. Thus, pBIC(H1|D) higher than 0.50 indicate that there is more 

evidence for the alternative than for the null hypothesis, whereas values lower 

than 0.50 indicate the opposite. Finally, Pearson’s correlations between FAC 

(i.e., RP+ and NRP+) and RIF (i.e., NRP- and RP-), for both the entire sample 

and the three groups, were performed to further test the hypothesis of their 

independency, with positive correlations indicating that RIF increases as FAC 

increases. 

3.3 Results 

Retrieval Practice Paradigm (RPP) 

Table 3.1 shows the mean percentage of correct recall during the test phase 

as a function of both Item Type and Stimulation Group. As for the FAC effect 

(i.e., difference in correct recall between RP+ and NRP+ items), the ANOVA 

only revealed a significant main effect of Item type, F(1,57) = 285.93, p < .001, 

η
2

p = .83, indicating that RP+ items were recalled better than NRP+ items, 

irrespective of the Stimulation Group (MRP+ = 59.42%, 95%CIRP+ = 55.24/63.59 

and MNRP+ = 22.92%, 95%CINRP+ = 20.08/25.75). Neither the main effect of 

Stimulation Group, F(2,57) = .25, p = .778, η2
p = .01, nor the Stimulation Group 

× Item type interaction, F(2,57) = 1.84, p = .168, η2
p = .06, were significant (see 

Figure 3.3). As regards RIF (i.e., difference in correct recall between NRP- and 

RP- items), the ANOVA showed a non-significant main effect of Item type, 

F(1,57) = 3.35, p = .073, η2
p = .05 and a significant main effect of Stimulation 

Group, F(2,57) = 4.11, p = .022, η2
p = .13 (MSham = 34.20%, 95%CISham = 

30.00/38.39; MAnodal=29.64%, 95% CIAnodal=25.45/33.84; MCathodal = 25.71%, 

95%CICathodal = 21.52/29.91). Critical for the purpose of the study, the Group × 

Item type interaction was also significant F(2,57) = 4.98, p = .01, η2
p = .15, (see 

Figure 3.3). Bayesian analyses showed that the posterior probability favouring 
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the alternative hypothesis (presence of RIF, that is NRP- items recalled better 

than RP- items) in the Sham group was pBIC(H1|D) = 0.823, which, according to 

the conventional categorization of degrees of evidence (see Masson, 2011), 

constitutes a positive evidence for the presence of RIF in this group. As regards 

the Anodal group, the posterior probability favouring the alternative hypothesis 

was pBIC(H1|D) = 0.660, which constitute a weak evidence for the presence of 

RIF in this group. Crucially, the posterior probability favouring the alternative 

hypothesis in the Cathodal group was pBIC(H1|D) = 0.338, indicating that no RIF 

was present for this group. Correlations between FAC and RIF scores 

performed for both the entire sample and each of the three groups separately 

were not significant (highest r = -0.39). 

 

Figure 3.3 Recall data from the final test phase in the three groups. FAC is computed 

as follows: FAC = (%RP+) - (%NRP+). RIF is computed as follows: RIF = (%NRP-) - (%RP-). 

Bars represent 95% CIs. 
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Table 3.1 Mean percentage of recall in the retrieval-practice phase and in the final test 

phase as a function of both item type and stimulation group. 

  

Retrieval 

Practice 

Phase 

Final Test Phase 

  
  

  

 

Item Type Item Type   
  

  

Stimulation 

Group 
RP+ RP+ NRP+ RP- NRP- 

Sham 74.61 59.75 24.25 30.18 38.21 

 

(69.44/79.79) (52.94/66.56) (19.26/29.24) (24.80/35.56) (32.73/43.69) 

Anodal 75.12 55.75 23.75 27.32 31.96 

 

(69.95/80.29) (47.49/64.01) (17.78/29.72) (23.04/31.60) (26.45/37.48) 

Cathodal 77.50 62.75 20.75 27.68 23.75 

  (72.33/82.67) (55.22/70.28) (16.44/25.06) (22.07/33.28) (18.63/28.87) 

 

3.3.1 Questionnaires 

Analyses of the self-report questionnaire measuring mood and arousal 

revealed no significant differences in any of the items as a function of 

stimulation conditions. With regard to the self-report questionnaire assessing 

the sensations experienced during the stimulation, sham and active protocols 

were found to be indiscernible, because none of the assessed sensations 

significantly varied as a function of group. 

3.4 Discussion 

In the present study, we tested whether RIF could be modulated by tDCS 

over the right DLPFC by administering stimulation during the retrieval-practice 

phase of a standard retrieval-practice paradigm. Retrieval-practice data showed 

that perturbing the practice phase by administering tDCS did not affect accuracy. 

Although this result might seem surprising, past work has shown that dividing 

attention with a concurrent task during retrieval practice does not impair retrieval 
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success while disrupting inhibitory processes (Román et al., 2009). Regarding 

the data of the final test phase, FAC (i.e., the classic practice effect) was 

present in all stimulation groups, as practiced items were recalled better than 

control items regardless of group. Concerning RIF, sham and anodal 

stimulations induced a similar effect (although stronger for the sham group): 

non-practiced items from practiced categories were recalled significantly worse 

than control items. In sharp contrast, cathodal stimulation abolished RIF. 

3.4.1 Causal evidence for rDLPFC involvement in RIF 

Several fMRI studies (e.g., Wimber et al., 2009) suggested that DLPFC, 

among the many prefrontal regions engaged in competitive retrieval practice, 

could have an active role in determining RIF, given that its recruitment during 

the practice phase predicted the amount of subsequent forgetting in the test 

phase. The present study, overcoming a correlational approach, provided the 

first data supporting a causal involvement of the right DLPFC in the functional 

genesis of RIF. However, this does not necessarily mean that this is the only 

area causally involved in the phenomenon. Similarly, given that tDCS electrode 

size is relatively large and transynaptic effects are also possible, one cannot 

rule out the possibility that the present electrode montage also resulted in 

influencing other areas, adjacent to the DLPFC, also involved in the neural 

circuitry underlying RIF. However, the critical point here is that the present 

results attest that the right DLPFC has a key role within the network involved in 

the suppression of un- wanted episodic memories, as suggested by recent fMRI 

data (Benoit & Anderson, 2012). Importantly, a growing literature focusing on 

encoding, retrieval, and reconsolidation mechanisms showed that right lateral 

prefrontal cortex plays a pivotal role in episodic memory (Manenti, Cotelli, 

Robertson, & Miniussi, 2012; Sandrini, Censor, Mishoe, & Cohen, 2013). The 

present findings extend this body of evidence by showing that such a region is 

also relevant for episodic forgetting. 

Besides providing topographical information concerning the neural network 

underpinning RIF, the present findings are also crucial for evaluating current 

theoretical perspectives concerning the functional mechanisms that allow us to 
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overcome interference from competing memories. At the functional level, RIF 

has been interpreted as reflecting two possible mechanisms (Storm & Levy, 

2012) based on either inhibitory or non-inhibitory processes (the latter being 

often referred to as associative interference accounts). Inhibitory accounts 

(Anderson, 2003) assume that inhibitory mechanisms are actively engaged 

during the practice phase to resolve retrieval competition by decreasing 

activation of the items related to those that have been practiced, in such a way 

that they would be less available with respect to control items in the test phase. 

In contrast, associative–interference accounts assume that the only mechanism 

active in the retrieval-practice phase is the strengthening of the category–item 

associations for items to be practiced. This reinforcement would block or 

weaken access to non-practiced, related competitors in the subsequent test 

phase, thus determining their retrieval disadvantage as a mere side effect. 

Crucially, according to inhibitory accounts, facilitation of practiced items is 

functionally independent from forgetting of non-practiced, related items, 

whereas, according to non-inhibitory accounts, RIF and FAC are functionally 

related, because forgetting of non-practiced items is attributable to the 

strengthening of practiced items. In this regard, our results, obtained by 

stimulating the right DLPFC when inhibitory mechanisms are assumed to act on 

interfering memories (Anderson, 2003), strongly support inhibitory accounts 

based on two arguments. First, stimulation-induced effects were obtained by 

perturbing an area of the right prefrontal cortex that is known to play an 

important role in inhibitory control according to studies addressing different 

cognitive domains (Knoch et al., 2006; De Neys et al., 2008). Second, the 

modulation of RIF in the absence of a concomitant modulation of FAC indicates 

a clear dissociation between the cortical key areas causally involved in these 

phenomena and, in turn, a dissociation between the underlying cognitive 

mechanisms. These dissociations are only consistent with inhibitory accounts, 

because associative interference accounts postulate a direct relationship 

between the extents to which non-practiced, related items are forgotten and the 

extent to which practiced items are strengthened (Mensink & Raaijmakers, 

1988). In this regard, our findings not only fail to confirm the positive correlation 
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predicted by associative interference accounts but, in line with previous 

evidence (Weller et al., 2013), seem to go significantly against it, because the 

correlation between RIF and FAC, albeit not statistically significant, was in- 

verse. This is consistent with evidence showing that the two phenomena are not 

only differentially sensitive to manipulations aimed to overload executive control 

processes (with only RIF being selectively affected by stress and dual-task 

requirements; Koessler et l., 2009, and Román et al., 2009, respectively) but 

also linked to different neurotransmitters (Wimber et al., 2011). 

Although one may have expected a reduction in RIF as a result of better 

recall of RP- items for the active stimulation groups than for the sham group, it 

is important to note that we used a between-participant design, and because 

active stimulation groups were not tested for RIF before receiving tDCS, we 

cannot rule out the possibility that the three groups were different in their 

baseline. Therefore, when referring to this type of design, it is safer to rely on 

comparisons involving differential (i.e., relative) rather than absolute scores, that 

is to focus on relative variations in the performance on the two key item types 

necessary to assess RIF and FAC within each group, and compare such effects. 

Although the combined use of brain stimulation and retrieval- practice paradigm 

may be difficult to implement in a within-participant design, future studies 

adopting such experimental logic may address this issue in a more 

straightforward manner. 

3.4.2 Effects of anodal and cathodal tDCS on RIF 

Concerning the effects exerted by the two types of active stimulation used 

here, we did not find opposite behavioural effects of anode and cathode. Such a 

pattern might have been expected based on the fact that cortical excitability is 

increased by anodal stimulation and decreased by cathodal stimulation. 

However, these dual-polarity effects have not been reported consistently, 

especially in the cognitive domain (Penolazzi, Di Domenico, Marzoli, 

Mammarella, Fairfield, Franciotti, et al, 2010; Jacobson et al., 2012c). 

Interestingly, the only study addressing motor inhibition processes indexed by 

the number of false alarms in a go/no-go task (Beeli et al., 2008) and delivering 
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stimulation over the right DLPFC showed that, consistent with our findings, 

cathodal stimulation decreased inhibition, whereas anodal stimulation did not. 

This suggests that excitatory and inhibitory effects of anodal and cathodal 

stimulations may emerge by complex interactions between the stimulated areas 

and the task used to assess the behavioural effects of inhibitory control. The 

observed asymmetrical effect of anodal and cathodal stimulation does not 

change the meaning of the present results, which indicate that altering neural 

activity of the right DLPFC by administering tDCS during the retrieval practice of 

some items does not affect their subsequent retrieval but only the forgetting of 

non-practiced, related items.  

3.4.3 Conclusions 

The stimulation-induced abolishment of RIF observed here is likely 

dependent on active inhibition of competitor items and emphasizes the need for 

incorporating inhibitory mechanisms in general theories of episodic retrieval and 

forgetting at both behavioural and neural levels. Future studies should address 

the role of other areas potentially relevant for memory control and inhibitory 

processing (e.g., ventrolateral prefrontal cortex and the left DLPFC), whose 

involvement was demonstrated in fMRI studies addressing RIF-related 

phenomena (Wimber et al., 2009; Benoit & Anderson, 2012; Hanslmayr, 

Volberg, Wimber, Oehler, Staudigl, Harmann, et al., 2012). The combined use 

of tDCS and neuroimaging techniques might provide additional critical insights 

for understanding the functional dynamics underlying the interplay between 

these areas in orchestrating episodic memory processes (Venkatakrishnan & 

Sandrini, 2012). 
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4 A COMPARISON OF TDCS MONTAGES 

FOR MOTOR INHIBITION 

This chapter has been published in Stramaccia, D. F., Penolazzi, B., Sartori, G., Braga, M., 

Mondini, M., & Galfano, G. (2015). Assessing the effects of tDCS over a delayed response 

inhibition task by targeting the right inferior frontal gyrus and right dorsolateral prefrontal cortex. 

Experimental brain research, 233(8), 2283-2290. 

 

Many situations in our everyday life call for a mechanism deputed to outright 

stop an on-going course of action. This behavioural inhibition ability, known as 

response stopping, is often impaired in psychiatric conditions characterized by 

impulsivity and poor inhibitory control. Transcranial direct current stimulation 

(tDCS) has recently been proposed as a tool for modulating response stopping 

in such clinical populations, and previous studies in healthy humans have 

already shown that this non-invasive brain stimulation technique is effectively 

able to improve response stopping, as measured in a stop-signal task (SST) 

administered immediately after the stimulation. So far, the right inferior frontal 

gyrus (rIFG) has been the main focus of these attempts to modulate response 

stopping by the means of non-invasive brain stimulation. However, other cortical 

areas such as the right dorsolateral prefrontal cortex (rDLPFC) have been 

implicated in inhibitory control with other paradigms. In order to provide new 

insight about the involvement of these areas in response stopping, in the 

present study, tDCS was delivered to 115 healthy subjects, using five 
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stimulation setups that differed in terms of target area (rIFG or rDLPFC) and 

polarity of stimulation (anodal, cathodal, or sham). The SST was performed 15 

min after the offset of the stimulation. Consistently with previous studies, only 

anodal stimulation over rIFG induced a reliable, although weak, improvement in 

the SST, which was specific for response stopping, as it was not mirrored in 

more general reaction time measures. 

4.1 Introduction 

On many occasions in our everyday life, we face situations that require 

suddenly stopping an on-going course of action. Often, this ability is essential to 

ensure ours or others’ safety. For example, if while cooking we accidentally drop 

a boiling pot, we could instinctively try to catch it, as we often do when an object 

we are currently using falls toward the floor. However, this would probably result 

in getting burnt; hence, a process for outright stopping of an overlearned 

response to a situation which is similar, but not identical, to the one where such 

behaviour would have been appropriate is needed. 

There is now a growing amount of evidence from neuroimaging studies (e.g., 

Aron, Behrens, Smith, Frank, & Poldrack, 2007; Chevrier, Noseworthy, & 

Schachar, 2007; Li, Huang, Constable, & Sinha, 2006) that response stopping is 

associated with activation in prefrontal areas, such as the inferior frontal gyrus 

(IFG), the dorsolateral prefrontal cortex (DLPFC), and the medial frontal gyrus, 

as well as in the basal ganglia. Among these areas, the right portion of the IFG 

(rIFG) has been proposed as the core component of a prefrontal-basal ganglia 

network selectively deputed to response stopping (e.g., Aron, Robbins, & 

Poldrack, 2014; but see Swick & Chatham, 2014, for a different viewpoint). 

The involvement of rIFG in response stopping processes is also supported by 

lesion (e.g., Aron, Fletcher, Bullmore, Sahakian, & Robbins, 2003), and brain 

stimulation studies including both transcranial direct current stimulation (tDCS; 

Ditye et al. 2012; Jacobson et al. 2011) and Transcranial Magnetic Stimulation, 

(TMS, Chambers, Bellgrove, Stokes, Henderson, Garavan, Robertson, et al. 

2006). Recently, non-invasive brain stimulation techniques (NIBS) such as 

tDCS and TMS have gained credit as promising tools for investigating and 
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modulating the neural substrates of high-level cognitive functions (e.g., 

Vannorsdall et al. 2012; Metuki, Sela, & Lavidor, 2012; Penolazzi et al. 2010, 

2013; see also Jacobson, Goren, Lavidor, & Levy, 2012b) and inhibitory control 

processes (Juan and Muggleton 2012). Indeed, the same techniques are being 

tested for use as therapeutic tools to improve symptoms in many psychiatric 

disorders, with a particular attention to tDCS, given its relative inexpensiveness 

and ease of use (e.g., Brunoni, Shiozawa, Truong, Javitt, Elkis, Fregni, et al. 

2014; Feil & Zangen, 2010; Krause & Cohen Kadosh, 2013). Since inhibitory 

deficits have been implicated in many psychiatric conditions, inhibitory 

processes are among the favoured cognitive processes targeted in brain 

stimulation studies (see Juan and Muggleton 2012, for a review on both tDCS 

and TMS studies). 

As regards response stopping, for instance, a recent study by Jacobson et al. 

(2011) has shown that anodal tDCS could be effectively used to modulate 

performance in a commonly used behavioural inhibitory task called stop- signal 

task (SST) (e.g., Logan & Cowan 1984). This modulation was obtained by 

targeting the rIFG. A subsequent study (Jacobson et al. 2012a) with EEG 

recordings provided supporting evidence for the efficacy of a rIFG direct current 

stimulation, showing a selective theta band reduction over the rIFG after anodal 

tDCS administration. On a later study, Ditye et al. (2012) found that combining 

anodal tDCS over the rIFG with training in a SST yielded a better improvement 

in response stopping than training alone, but only after the third session of four 

combined training and stimulation sessions. 

Remarkably, different stimulation loci have been shown to successfully 

modulate performance in other inhibitory tasks. For example, Beeli et al. (2008) 

found an increase in false alarms in a go/no-go task that followed cathodal 

stimulation of the right prefrontal region. In the same vein, Penolazzi, 

Stramaccia, Braga, Mondini, & Galfano (2014) showed that cathodal tDCS over 

the right dorsolateral prefrontal cortex (rDLPFC) during a retrieval-practice task 

induced a reduction in retrieval- induced forgetting, a measure of forgetting 

which is thought to reflect the intervention of an inhibitory process deputed to 

selective retrieval from competing memories (Anderson, 2003). 
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In the present study, we aimed to address two main questions related to the 

literature discussed above. Firstly, we aimed to address the persistence of the 

modulatory effects of tDCS in response stopping reported in previous studies 

that delivered electrical stimulation over the prefrontal cortex (Ditye et al. 2012; 

Jacobson et al. 2011). To this end, we adopted a tDCS protocol where 

participants were asked to perform a standard SST 15 min after the offset of the 

stimulation (delayed task). 

The SST probes inhibitory motor control by requiring participants to withhold 

a response that has already been triggered. In a typical SST, participants take 

part in a choice RT task (e.g., a shape judgment task) and are instructed to 

withdraw their response whenever they hear a stop signal (e.g., a sound), which 

can be presented shortly after the target stimulus has appeared. Trials that 

include the stop signal are usually quite infrequent (e.g., 25 %) compared to 

trials where participants must respond (go trials). This is assumed to elicit a bias 

in the participants, who are somehow “pushed” into responding. According to 

the horse- race model of response inhibition in the SST (e.g., Logan & Cowan 

1984; Osman, Kornblum, & Meyer, 1986), during a stop trial, the inhibitory 

process triggered by the stop signal races against the on-going response 

process triggered by the tar- get. Response inhibition is therefore successful 

whenever the former process acts faster, leading to inhibition of the initiated 

response. Critically, the individual probability of successful inhibition in a given 

stop trial is a function of the stop-signal delay (SSD), i.e., the time elapsed 

between the target stimulus and the stop-signal in that particular trial. Indeed, 

longer SSD mean that the response process will be closer to execution when 

the competing inhibitory process is triggered. Inhibitory performance in the SST 

is typically measured with the stop-signal reaction time (SSRT) index, which is 

computed as the difference between mean RT in the go trials (no-signal RT, 

NSRT) and the mean SSD in the trials where they must interrupt response. 

SSRT is interpreted as the covert latency of the response stopping process, so 

that shorter SSRTs indicate a more efficient response inhibition. The task is 

often kept challenging by using an adaptive staircase procedure which adjusts 

the SSD in a trial-wise fashion. This procedure is intended to keep the 
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probability of effectively inhibiting response at ~0.5. Previous work has shown 

that SSRT could also yield clinical relevance, since high SSRTs had been 

associated with several psychiatric conditions such as attention-deficit 

hyperactivity disorder (Depue, Burgess, Willcutt, Ruzic, & Banich, 2010), eating 

disorders (Wu, Giel, Skunde, Schag, Rudofsky, de Zwaan, et al., 2013a), 

obsessive–compulsive disorder (Boisseau, Thompson-Brenner, Caldwell-Harris, 

Pratt, Farchione, & Harrison Barlow, 2012), schizophrenia (Enticott, Ogloff, & 

Bradshaw, 2008), and substance abuse disorder (Fillmore and Rush 2002). 

In the context of our study, we decided not to administer the SST both 

immediately after tDCS and after this short delay, because we did not want to 

make the experimental session too demanding for our participants (which, in 

turn, also allowed us to test a reasonably larger sample com- pared to standard 

tDCS studies). As for the effects observed immediately after tDCS, we relied on 

the pattern observed in previously published reports attesting that stimulation 

over both the right IFG and right DLPFC is effective in modulating inhibitory 

processing (Beeli et al. 2008; Jacobson et al. 2011, 2012a; see Juan and 

Muggleton 2012, for a review). In addition, we decided to test participants after 

15 min because this time delay seemed a good compromise between our aim of 

estimating the short-term effects of single session tDCS and the need to keep 

the duration of the experimental session not too long for our participants. In this 

regard, assessing the persistence of tDCS-induced effects on behaviour is 

particularly relevant. Indeed, on the one hand, many studies have shown that, 

depending on stimulation parameters and montage, tDCS is able affect cortical 

excitability up to several hours after the current has been delivered (Batsikadze 

et al. 2013). However, on the other hand, much less effort has been devoted to 

assess whether measures of behavioural performance mirror this long-lasting 

effects. Hence, although some recent studies have already suggested tDCS 

effects on delayed cognitive tasks related to high-level cognitive processes 

(Falcone, Coffman, Clark, & Parasuraman, 2012; Penolazzi et al. 2010, 2013), 

the durability of stimulation effects is in need of further investigation. The 

second aim of the present study was to clarify the role of areas other than the 

rIFG in response stopping. To this purpose, anodal, cathodal, or sham 
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stimulations were delivered to either the rIFG or the rDLPFC in five groups of 

human participants. We targeted the rDLPFC to probe the involvement of this 

area in response stopping, thus contributing to the debate about the specificity 

of the neural underpinnings of inhibitory processes. Assuming that our tDCS 

protocol was capable of inducing long-lasting neuromodulatory effects, and in 

light of pre-existing evidence of the association between anodal tDCS and faster 

SSRT (i.e., more effective response inhibition; Ditye et al. 2012; Jacobson et al. 

2011), our main prediction was to observe beneficial effects in inhibitory 

performance—if any—in the experimental group that received anodal 

stimulation over the rIFG. In light of the findings reported by Beeli and 

Colleagues (2008) and Penolazzi and Colleagues (2014), we expected to 

observe also a possible modulation of SSRT when administering tDCS over 

rDLPFC. 

4.2 Methods 

4.2.1 Participants 

One hundred and fifteen undergraduate students participated in the study (29 

males, M = 23.37, SD = 2). All participants met the inclusion criteria for taking 

part in brain stimulation protocols (Bikson et al. 2009; Nitsche et al. 2003), had 

normal or corrected-to-normal vision, and did not suffer from hearing impairment. 

All participants gave a written informed consent before taking part in the study, 

which was performed in accordance with the principles of the Declaration of 

Helsinki and approved by the local ethical committee. Participants were 

randomly assigned to one of four experimental groups or to a control group and 

were naïve to the purpose of the experiment. 

4.2.2 Stop-Signal Task (SST) 

We administered the SST provided within the STOP-IT software 

(Verbruggen,, Logan, & Stevens, 2008). The task consisted of two experimental 

blocks of 64 trials each (128 total), and a shorter practice block (32 trials) at the 

beginning to ensure that participants understood the instructions. The primary 

task engaged participants in a choice reaction time test, where they had to 
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respond as fast and accurately as possible. Each trial began with a 250-ms 

central fixation (+), followed by a visual stimulus (either a square or a circle) that 

stayed centrally on screen until participants responded or 1.250 ms had elapsed. 

Both fixation and stimuli were presented in a white font on a black background. 

The ISI was 2000 ms and was independent of RTs. Participants used the 

keyboard to respond, and they had to press “A” for squares or “L” for circles. On 

25 % of the trials, shortly after stimulus onset, a sound (750 Hz, 75 ms) was 

presented through loudspeakers as a stop-signal. When the stop-signal was 

presented, participants had to hold back their response. The task began with a 

stop-signal delay of 250 ms, which then increased or decreased by 50 ms after 

each successful or unsuccessful stopping trial, respectively. Under this tracking 

procedure, participants correctly stopped half the responses, which is required 

by the method used to calculate SSRT. According to the horse-race model 

(Logan and Cowan 1984; Osman et al. 1986), SSRT is calculated as the 

difference between mean RT in the trials where participants must respond and 

mean SSD in the trials where they must withhold response. 

The SST used here is schematically represented in Figure 4.1. 

 

Figure 4.1 Illustration of the different trial types in the stop-signal task (SST) and 

sequence of events in a stop trial. 
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4.2.3 tDCS 

The study adopted the procedures for safe administration of NIBS (Bikson et 

al. 2009; Nitsche et al. 2003). In the active stimulation conditions, we delivered 

a 1.5 mA direct current for 20 min (fade-in/fade-out time: 60 s) with a battery-

driven current stimulator (BrainStim, EMS, Italy), wired to a pair of surface 

saline-soaked sponge electrodes (16 cm2, resulting in a current density of 0.094 

mA/cm2). In the sham (i.e., control) condition, instead, we delivered a 1.5 mA 

direct current for 15 s at the beginning and 15 s at the end of the stimulation 

time. We choose to stimulate with parameters that lead to a higher current 

density (i.e., intensity/electrode size) than previous studies (Ditye et al. 2012; 

Jacobson et al. 2011), in order to increase the spatial focality of tDCS effects 

(Nitsche, M. A., Doemkes, S., Karakose, T., Antal, A., Liebetanz, D., Lang, et al., 

2007). 

We used a single blind, between-group design: Depending on the random 

assignment to conditions, participants could receive either anodal stimulation 

over the right IFG (N = 20; 6 males, M = 23.95, SD = 2.26), cathodal stimulation 

over the right IFG (N = 20; 8 males, 23.35, SD = 1.53), anodal stimulation over 

the right DLPFC (N = 20; 3 males, M = 23.65, SD = 2.08), cathodal stimulation 

over the right DLPFC (N = 20; 3 males, 23.10, SD = 2.57), or sham stimulation 

on either right DLPFC or right IFG (N = 35; 9 males, M = 23.06, SD = 1.61). In 

all conditions, electrode placement followed the 10–20 EEG system (Jasper 

1958). The rIFG was identified as the area underlying the crossing point 

between T4-Fz and F8-Cz (Jacobson et al. 2011), the rDLPFC was identified as 

the area underlying F4, and the reference electrode was positioned above the 

left supraorbital area in all groups. An overview of the different tDCS montages 

used here is shown in Figure 4.1 (see both Panel A and B). As anticipated 

earlier, we choose the right IFG as a stimulation site because we sought to 

extend previous findings on SST targeting this area with tDCS. Furthermore, we 

stimulated the right DLPFC, since previous studies suggest its involvement in 

several tasks probing response stopping (Hughes, Budd, Fulham, Lancaster, 

Woods, Rossell, et al. 2014) as well as other inhibition-related phenomena 

(Beeli et al. 2008; Bermpohl, Fregni, Boggio, Thut, Northoff, Otachi, et al., 2006; 
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Penolazzi et al. 2014). Both at the beginning and at the end of the procedure, 

participants completed a self-report questionnaire about arousal and mood as 

further control to rule out alternative accounts of tDCS effects on response 

stopping. At the very end of the experiment, participants completed a self-report 

questionnaire (Fertonani et al. 2010) dealing with unpleasant sensations (if any) 

due to tDCS stimulation. 

 

 

 

Figure 4.2 A) Schematic illustration of the tDCS montages used in the study. Anodal 

electrodes are gray, cathodal electrodes have an oblique texture, inactive electrodes are 

transparent. Dotted lines in the Sham group indicate that for half participants the 

montage involved the rIFG, whereas for the remaining participants it included the 

rDLPFC. Electrodes are not drawn to scale. B) Modeled image of the human head 

schematically showing the position of the electrodes in the two montages aimed at 

targeting the rIFG (on the left side) and the rDLPFC, displayed on the left and right sides 

respectively (rendered with the COMETS toolbox in MATLAB; Jung et al. 2013). 

 



An investigation into memory control: Neuromodulatory approaches and potential clinical target populations 

96  Davide Francesco Stramaccia - November 2016 

4.2.4 Procedure 

The experiment began with a 20-min tDCS session. About 15 min after the 

end of the stimulation, participants performed the SST. During the stimulation 

and the 15-min interval prior to the SST, participants performed filler tasks (i.e., 

they were required to learn word-pairs and to fill paper-and-pencil 

questionnaires) aimed at delaying SST administration but unrelated to motor 

inhibition processes. 

4.3 Analysis and Results 

Data from one participant of the Cathodal rIFG Group were lost due to a 

technical failure of the software. In order to investigate whether tDCS effectively 

and selectively modulated inhibitory performance in the SST, we first calculated 

SSRT and NSRT separately for each participant using the ANALYZE-IT 

software (Verbruggen et al. 2008), which comes as companion software to 

STOP-IT. To calculate individual SSRT, ANALYZE-IT first computes the mean 

RTs for all trials without a stop signal and then subtracts the mean stop-signal 

delay from this value (Verbruggen et al. 2008). First, we performed a between-

participant ANOVA with Group as factor. Subsequently, we performed a series 

of independent samples t tests to compare SSRT of each experimental group 

with SSRT of the control, sham stimulation group. Independent samples t tests 

on NSRT were also carried out to assess any effect of the stimulation on RTs in 

go trials, which, if found, could be attributed to mechanisms different from those 

responsible of SSRT, thus undermining the selective effect of tDCS on response 

stopping. To minimize the occurrence of type II error while controlling for type I 

error, we adjusted the α level for the number of comparisons according to the 

False Discovery Rate procedure for multiple testing (Benjamini and Hochberg 

1995). This latter approach is well established (e.g., Betta, Galfano, & Turatto, 

2007; Galfano, Betta, & Turatto, 2004; Stefan, Cohen, Duque, Mazzocchio, 

Celnik, Sawaki, et al. 2005) and is particularly suited and powerful for analyzing 

RT data, as shown by Montecarlo studies (Pastore, Nucci, & Galfano, 2008). 

The tracking procedure was effective in keeping the overall probability 

(respond/signal) at about 0.5 for all participants. The main effect of Group in the 
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ANOVA approached significance, F (4,114) = 2,221, p = 0.07. The FDR-

corrected t tests revealed that only the comparison between SSRT of anodal 

rIFG group and control group showed a significant difference, t(53) = 2.281, p < 

0.02, with lower SSRT (indicating better inhibitory performance) for the anodal 

right IFG group compared to the control group (Figure 4.3 ; Table 4.1). No 

significant differences between groups emerged on NSRT (Figure 4.4). 

Analyses of questionnaires revealed no effect of stimulation on any of the 

items (i.e., mood/arousal and sensations perceived during stimulation) for 

participants assigned to sham and real stimulation groups. No differences in the 

percentage of correctly recalled word pairs (filler task) emerged as a function of 

group. 

 

Table 4.1 Mean percentage and 95 % confidence intervals of SSRT and NSRT as a 

function of stimulation group. 

Stimulation Group SSRT NSRT 

Sham 

291,18 

(276.97/305.38) 

568.66 

(521.97/615.35) 

Anodal rIFG 

264.02 

(243.24/284.80) 

583.86 

(511.25/656.46) 

Cathodal rIFG 

272.57 

(254.15/291.00) 

587.43 

(503.47/671.40) 

Anodal rDLPFC 

291.38 

(277.03/305.72) 

525.66 

(484.91/566.38) 

Cathodal rDLPFC 

287.58 

(270.61/304.54) 

590.05 

(527.04/653.05) 
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which is recruited whenever a change in the context occurs and an overlearned, 

prepotent, behavioural response needs to be suppressed because inappropriate 

to the updated environment. 

For the purpose of extending previous findings on the modulation of the 

response stopping ability, the present study tested the hypothesis that tDCS to 

the rIFG could improve SSRT even on a delayed SST, whereas in previous 

studies (Ditye et al. 2012; Jacobson et al. 2011) participants engaged in the 

SST immediately following tDCS application. Overall, the observed results 

confirmed this hypothesis, as SSRTs were lower for participants assigned to the 

rIFG anodal tDCS condition compared to those assigned to the control group. 

Interestingly, the magnitude of such improvement was similar to that reported in 

previous studies (Ditye et al. 2012; Jacobson et al. 2011). This finding indicates 

that, in the domain explored by the pre- sent study, at least for brief post-

stimulation periods (i.e., about 15 min), the magnitude of behavioural effects 

induced by tDCS does not seem to diminish. It is worth noting that this response 

stopping improvement is unlikely to result from a general cognitive 

enhancement. Indeed, it is more likely to reflect a specific effect on a process 

selectively deployed during stop trials, because NSRT analysis failed to show 

any significant between-group difference. 

In sharp contrast, delivering tDCS to the rDLPFC did not affect response 

stopping. This is remarkable if one considers that the stimulation sites were 

closely contiguous (but see Penolazzi et al. 2013, for similar results with 

partially overlapping tDCS montages), and that tDCS is generally described as 

characterized by a low spatial resolution (especially when compared to other, 

more invasive, neurostimulation techniques such as TMS). This finding might be 

prone to several interpretations. One possibility is that rDLPFC may be not 

involved in the process of response stopping as measured in the SST. Notably, 

however, this would not necessarily imply that rDLPFC plays no role in inhibitory 

processing, given that this area is known to be involved in other tasks that 

probe this cognitive function (e.g., Beeli et al. 2008; Penolazzi et al. 2014). 

Another possibility is that the stimulation-induced engagement of rDLPFC is 

short lasting and hence not evident in the pre- sent (delayed) protocol. 
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Alternatively, tDCS parameters implemented in the protocol adopted in the 

present study, which were higher in both intensity and duration compared to 

previous studies (Ditye et al. 2012; Jacobson et al. 2011), could have been sub-

optimal to produce an effective modulation of the rDLPFC. Likely, all the 

different factors illustrated above played some role in accounting for the 

absence of tDCS-induced modulations when targeting the rDLPFC. Further 

studies focusing on the manipulation of both tDCS parameters (e.g., density and 

duration) and stimulation-task delay will possibly shed light on the relative 

weight of the different alternatives illustrated above. 

One may wonder whether the present findings may reflect a different 

engagement of the rIFG and rDLPFC networks by the filler tasks used during 

stimulation to delay the SST administration. We discard this alternative account 

based on neuroimaging evidence (e.g., Kuhl et al. 2007) revealing that both the 

rIFG and the rDLPFC are critically involved in the cognitive processes called 

into play by our filler memory tasks as parts of a broad prefrontal network 

considered to support cognitive control. 

4.4.1 Different roles for rIFG and rDLPFC in response stopping 

Recently, Hughes et al. (2014) have proposed that performance in the SST 

would be supported by two dissociable networks, one including the rIFG 

responsible for phasic, transiently activated, response stopping and the other 

comprising the rDLPFC involved in tonically maintaining the stopping rule (see 

also Chikazoe, Jimura, Hirose, Yamashita, Miyashita, & Konishi, 2009). Within 

this perspective, it could be well possible that perturbing the neural 

underpinnings of either process would produce different effects on response 

stopping, as the two processes could be not only differently sensitive to 

disruption or enhancement by means of tDCS, but even differently related to 

behavioural performance in the SST. The version of the SST implemented in the 

present experiment was more apt to probe the phasic, reactive, component of 

response inhibition. In this regard, a recent study by Cunillera and Colleagues 

(2014) used a hybrid response-stopping task which allowed investigating both 

the tonic and the phasic components of response inhibition. Stimulating the rIFG 
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modulated both components. Using a similar task by targeting both the rIFG and 

the rDLPFC might represent a promising avenue to disentangle the specific 

contribution of these areas in the two types of response stopping. 

Research so far suggests a role of the rIFG in response stopping. However, 

there is far from unanimous agreement on whether this inhibitory process is 

critically orchestrated by the IFG and mainly dependent on the right hemisphere 

(Aron et al. 2014; Banich & Depue 2015), or else results from the combined 

action of a more widespread network of areas (Schall & Godlove 2012; Swick, 

Ashley, & Turken, 2011). Moreover, studies addressing the role of areas other 

than the rIFG in response stopping obtained mixed results. For example, Hsu et 

al. (2011) modulated inhibition as measured by non-cancelled rates in a SST by 

delivering tDCS over the pre- supplementary motor area, but failed to observe a 

significant effect on SSRT. Finally, Berryhill et al. (2014) failed to find any effect 

of a stimulation protocol similar to the one used by Hsu et al. (2011) on 

response inhibition in a go/no-go task (Swick et al., 2011). 

As a final remark, given the importance of the reference electrode in 

determining the current flow distribution, it is worth noting that, in tDCS studies, 

findings should generally be ascribed to the combined effect of the active and 

the reference electrodes than to the effect of stimulated target areas in isolation. 

Therefore, our results are more likely to reflect the joint effect of stimulation of 

the rDLPFC and left frontal pole on the one hand, and stimulation of the rIFG 

and left frontal pole on the other hand. Nevertheless, it is important to note that, 

although the same reference was used, stimulation of two close but distinct 

areas resulted in different behavioural effects related to the phenomenon under 

investigation that, in turn, highlights that these two areas contributed to the 

investigated process to a different extent. 

4.4.2 Conclusions 

In summary, the results obtained in the present study support the notion that 

tDCS-induced effects can be relatively long lasting by exploring a different 

cognitive domain with respect to those already investigated in the literature 

(Falcone et al. 2012; Penolazzi et al. 2010, 2013). Interestingly, the present 



An investigation into memory control: Neuromodulatory approaches and potential clinical target populations 

102  Davide Francesco Stramaccia - November 2016 

findings add to the growing amount of evidence that the rIFG is critically 

involved in response stopping. In our opinion, the current state of the literature 

suggests that the rIFG is the most reliable target for brain stimulation studies 

aimed to modulate response stopping in the SST, and perhaps favoured target 

for clinical investigations interested in developing therapeutic proto- cols based 

on NIBS (especially tDCS) with regard to clinical populations that suffer from 

lack of inhibitory control. 
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5 TDCS MODULATION OF MEMORY 

CONTROL AND MOTOR STOPPING 

This chapter is in preparation for submission as Stramaccia, D. F., Penolazzi, B., Altoè, G., 

& Galfano, G. Cathodal tDCS to the rIFG Disrupts Control over Interference in Memory Retrieval. 

 

In a previous study, we demonstrated that tDCS over the right PFC can 

modulate performance in suppression of competing memories during selective 

retrieval. Specifically, cathodal stimulation to the right DLPFC abolished the 

detrimental effects of selective memory retrieval, whereas the beneficial effects 

of repeated practice were unaffected. Here, we turn to the modulation of a 

different brain area of the right PFC, i.e., the right IFC. To this end, we delivered 

tDCS over the right IFG during the retrieval-practice phase in a standard 

retrieval-practice paradigm. In Experiment 1, fifty-three healthy volunteers were 

randomly assigned to anodal, cathodal, or sham-control groups. In Experiment 

2, we tried to further clarify the effects of tDCS over the right IFG, and also 

tested modulation of motor stopping performance in the SST. Across the two 

experiments, the groups showed comparable benefits for practiced items. In 

contrast, with particular regard to Experiment 2, the anodal and cathodal group 

exhibited no RIF, compared to the sham control group. Importantly, influence 

analyses on the semantic categories employed here revealed diverging patterns 

of results in different subsets of the experimental material. In contrast, we did 

not find any evidence of modulation of motor stopping performance. 
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5.1 Introduction 

Cognitive control refers to a set of essential abilities that allow us to maintain 

an adaptive behaviour within an ever-changing environment. From abruptly 

stopping a course of action that is not optimal anymore (Verbruggen & Logan, 

2008), to suppressing unwanted or irrelevant memories from coming to mind 

(Anderson & Hanslmayr, 2014; Storm & Levy, 2012), cognitive control is 

constantly recruited in our everyday life. According to some Authors, the inferior 

frontal gyrus (IFG) orchestrates inhibitory control across cognitive domains via 

top-down regulation of other cortical and subcortical areas depending on the 

task at hand (e.g., Aron et al., 2014). In this view, the IFG represents a key 

node for the neural networks deputed to both motor stopping and memory 

suppression. The two abilities, in turn, may constitute different but interrelated 

instances of inhibitory control. Levy and Anderson (2002) also described a 

similar perspective. In their model, response selection in both action and 

memory might be supported by inhibitory mechanisms that share similar neural 

substrates mainly located in the prefrontal cortices. In particular, the Authors 

pointed to the dorsolateral prefrontal cortex (DLPFC) as a putative central hub 

for the cognitive processes mediating inhibitory control in both domains, 

whereas the anterior cingulate cortex (ACC) would be deputed to the role of 

conflict detector and signaller to the DLPFC.  

In respect to cognitive control over memory retrieval, neuroimaging evidence 

suggests a role for both the DLPFC and the IFG during selective retrieval from 

episodic memory in the face of interference arising from competing memory 

traces (Wimber et al., 2008, 2009, 2015; see also 1.4.4). Moreover, these 

studies suggested a greater contribution of right prefrontal areas, similar to what 

as been reported in other work on related domains (e.g., Benoit & Anderson, 

2012, in voluntary forgetting, and Goghari & MacDonald III, 2009, in the go/no-

go task).  

Because we have already investigated the role of right DLPFC (rDLPFC) in 

resolving interference from competing memory traces, the present study 

focused on testing the involvement of the right IFG (rIFG) instead. We 

hypothesized that interfering with the activity of this particular brain region 
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during a task that putatively relies on the ability to suppress interfering 

memories would affect later recall of these memories. To this end, we targeted 

the rIFG with transcranial Direct Current Stimulation (tDCS) in healthy 

volunteers performing a retrieval practice paradigm (RPP; Anderson et al., 

1994; see Murayama et al., 2014, for a recent meta-analytical review), which is 

commonly used to assess the individual ability to overcome interference in 

memory. 

In the RPP, participants first study a series of category-exemplar word pairs 

(e.g., “FRUIT-CHERRY”). Immediately after that, they repeatedly perform active 

retrieval practice on half the exemplars from half the categories (e.g., “FRUIT-

CHE____”). Finally, participants’ memory for all the experimental material is 

tested (e.g., “FRUIT-C____”). The RPP allows measuring two distinct effects. 

On the one hand, the well-known superiority of memory performance on 

subsequent recall of study material that underwent additional practice, 

compared to different study material that was unrehearsed, typically referred to 

as facilitation (FAC) effect in the context of the RPP. On the other hand, the 

observation that selectively practicing retrieval of certain exemplars leads to 

impairment of unrehearsed exemplars that share the same category cue (e.g., 

FRUIT-), compared to unrehearsed exemplars belonging to different categories 

(e.g., WEAPONS-). The latter phenomenon has been called retrieval-induced 

forgetting (RIF), to highlight the fact that the very act of selectively retrieving 

memory traces is responsible for the later inaccessibility of related memory 

traces. According to an influential model in the RIF literature (Anderson, 2003) 

during selective retrieval practice on a subset of the study material, inhibitory 

mechanisms would be implicitly recruited to overcome interference from related 

exemplars by weakening the memory traces associated to them, thereby 

promoting retrieval of the cued exemplars. Therefore, in the final test phase of 

the RPP, the inhibited exemplars would be less available to recall from memory. 

The reasons for employing tDCS as a method to modulate the cognitive 

processes underlying RIF are twofold. Firstly, in a previous study from our group 

(Penolazzi et al., 2014), we used a similar approach to provide the first causal 

evidence for the involvement of DLPFC in control over interfering memories, as 
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indexed by RIF. Specifically, RIF was gradually reduced in two stimulation 

groups, which received anodal and cathodal tDCS respectively, compared to a 

sham control group. In particular, on average, participants receiving cathodal 

tDCS, which is thought to inhibit endogenous activation in the target area, 

showed the least amount of RIF, to the point of observing a reversed effect, 

compared to a sham stimulation (i.e., control) group, where a significant effect 

was observed. Moreover, our manipulation did not affect the amount of FAC in 

any of the experimental groups.  

The second reason to for using tDCS is that a great interest has recently 

developed into investigating strategies and techniques that could allow 

modulating or even enhancing cognitive control in healthy individuals, as well as 

potentiating recovery of normal control abilities in people suffering from a range 

of psychiatric and neuropsychological conditions characterized by impairments 

in this ability. To this end, transcranial electrical stimulation (tES) techniques 

may offer a unique opportunity to provide a feasible and economical modulation 

strategy. In particular, many studies already employed transcranial direct 

current stimulation (tDCS) to modulate performance in behavioural tasks related 

to inhibitory control, with overall promising results (e.g., Ditye et al., 2012; 

Jacobson, Javitt, & Lavidor, 2011; Metzuyanim-Gorlick & Mashal, 2016; 

Penolazzi et al., 2014; Stramaccia, Penolazzi, Sartori, Braga, Mondini, & 

Galfano, 2015). In addition to that, tDCS has proven to be relatively safe and 

tolerable (Bikson et al., 2016), and easily manageable for autonomous use 

(Charvet, Kasschau, Datta, Knotkova, Stevens, Alonzo, et al., 2015; Kasschau, 

Reisner, Sherman, Bikson, Datta, & Charvet, 2016). Finally, within the specific 

context of the RPP, tDCS allows for modulation  of performance without 

excessive disruption of the typical experimental procedure, and with minimal 

discomfort for the participants as well. 

In the present work, we delivered anodal, cathodal, or sham stimulation, to 

three groups of healthy participants performing an RPP that was identical to that 

employed in our previous study (Penolazzi et al., 2014). If rIFG plays an 

important role in RIF, we may expect to observe a pattern similar to our 

previous study, with cathodal stimulation showing the greatest impact on the 
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behavioural index of successful inhibition. On the contrary, the absence of major 

group differences could signify that rIFG is not primarily involved in this 

internally directed instance of cognitive control, compared to the well-

established contribution of the rDLPFC (Penolazzi et al., 2014; Wimber et al., 

2008, 2009, 2015). Moreover, in keeping with the inhibitory account of RIF, we 

did not expect to observe any stimulation effects on FAC, as the two 

phenomena would rely on different neural substrates and, different cognitive 

processes. For the same reason, we looked at the correlation between RIF and 

FAC in the three groups, expecting not to find evidence of an association 

between the measures, as posited by the strength independence assumption of 

the inhibitory account of RIF (Anderson, 2003; Storm & Levy, 2012; see also 

1.2.4). 

5.2 Experiment 1 

5.2.1 Methods 

5.2.1.1 Participants 

The ethical committee for psychological research of the University of Padua 

approved the study, which was performed in accordance with the principles of 

the Declaration of Helsinki. All participants underwent an eligibility screening for 

the tDCS procedure, and provided an informed consent prior to their 

participation and a final consent at the end of the experimental procedure. 53 

healthy volunteers (18 males) aged between 21 and 27 years (mean age = 

23.30, SD = 1.70; mean years of education = 17.43, SD = 1.64) took part in the 

experiment. All participants were Italian native speakers with no history of 

neurological disease, psychiatric disorders, heart conditions, severe head injury, 

seizures (personal or in first degree relatives), recurring syncope, or learning 

disability. Additional exclusion criteria included pregnancy, presence of metal in 

the face or the head (other than dental work), presence of skin conditions on the 

scalp or history of severe dermatitis, on-going or recent use of medical 

prescriptions other than contraceptives, and excessive use of alcohol on the 

day prior to the stimulation session. 
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5.2.1.2 Retrieval Practice Paradigm (RPP) 

We used the RIF effect as an index of memory suppression (Anderson et al., 

1994; Storm & Levy, 2012), and we administered a typical three-phase RPP in 

order to obtain an individual measure of the effect. The RPP employed here 

was identical to that used in our previous work (Penolazzi et al., 2014). Our 

paradigm included 96 category-exemplar word pairs (e.g. “FRUIT-CHERRY”), 

divided by 8 semantic categories, with twelve exemplars for each category. We 

selected and adapted all the material from the categorical productions norm for 

the Italian language by Boccardi and Cappa (1997), according to the following 

criteria: (i) within each category, we included seven exemplars with high 

taxonomic strength (strong exemplars) and five with low taxonomic strength 

(weak exemplars), according to the production norms; (ii) words within the same 

category always had a different initial letter; (iii) we tried to keep semantic 

associations between and within categories to a minimum, to avoid semantic 

integration (Goodmon & Anderson, 2011); (iv) we included only words that were 

no longer than ten or no shorter than four letters; v) we chose only 

unambiguous, non-compound words for both exemplars and categories. 

It is worth noticing that participants were completely naïve to the procedure: 

participation to previous studies using this behavioural paradigm constituted an 

additional exclusion criterion. The RPP used here is schematically represented 

in Figure 3.1. 

In the study phase, we instructed the participants to memorize all of the 96 

category-exemplar word pairs, by relating each exemplar to its category. We 

also informed them that they would have been tested later on the exemplars. 

Study trials began with a brief fixation (500 ms), followed by a blank screen (500 

ms); subsequently, one category-exemplar word pair was presented on screen 

(2500 ms), followed by a blank screen (500 ms). We delivered the stimuli in a 

randomized blocked-by-category order, where each block contained one 

exemplar from each semantic category, with the additional constraint that two 

items from the same category could not be presented one after another. 
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In the practice phase, participants repeatedly practiced the weak exemplars 

of half the semantic categories (four repetitions of 30 exemplars, 72 trials in 

total). In the practice trials, we provided the category and the first three letters of 

each exemplar (e.g. “FRUIT-CHE___”) to the participants, and we instructed 

them to answer vocally with the name of the specific exemplar associated to the 

particular cue in full (4000 ms). Presentation of practice stimuli was randomized, 

and each practice item was preceded by a fixation cross for 1 s, followed by a 

blank screen lasting 1 s. The intertrial interval consisted of a blank screen 

lasting 1 s. We labelled the practiced weak exemplars as RP+ items, the non-

practiced strong items from practiced categories as RP- items, the weak non-

practiced items from non-practiced categories NRP+ items, and the strong non-

practiced items NRP-. NRP+ and NRP- items served as controls for RP+ and 

RP- items, respectively. Importantly, practicing weak exemplars only should 

boost the RIF effect due to increased competition from the remaining strong 

exemplars (Anderson, 2003). We used four lists of categories to fully 

counterbalance the practiced categories across groups.  As a result, all 

semantic categories contributed equally to all four types of items. We presented 

the stimuli in a similar order to the previous phase.  

In the final test phase, we presented again all the stimuli from the initial study 

phase (96 trials). Presentation format and timing, response modality, and 

instructions, were the same as above, the only difference being that we 

provided the participants with the category plus the first letter of an exemplar 

only (e.g. “FRUIT-C____”). We presented the stimuli in a similar order to the 

previous phases, with the additional constraint that all RP- items were 

presented before all the NRP-, RP+, and NRP+ items, in order to control for 

output interference at test, which is known to inflate the RIF effect (Anderson, 

2003). 

5.2.1.3 transcranial Direct Current Stimulation (tDCS) 

We used a battery-driven Direct Current stimulator (BrainStim, EMS, Italy) 

wired to pair of surface 4 cm × 4 cm conductive rubber electrodes inserted in 

saline-soaked sponges, and secured to the scalp with rubber bands. We 
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delivered anodal, cathodal, or sham tDCS over the rIFG at 1.5 mA (current 

density of 0.09 mA/cm2). We located the target area at the FC4 position in the 

EEG 10-20 system (Jasper, 1958) as the crossing point between T4-Fz and F8-

Cz (e.g., Jacobson et al., 2011), and we placed the (active) reference electrode 

(anode, cathode, or sham according to stimulation group) on the left 

supraorbital area (see Figure 4.2, panel B, left side). We selected the 

stimulation parameters according to our previous work (Penolazzi et al., 2014). 

We used a single blind, between group design: Participants were randomly 

assigned to anodal (N = 17, 6 males, mean age = 23.65, SD = 1.80), cathodal 

(N = 16, 6 males, mean age = 23.25, SD = 1.34), or sham tDCS (N = 20, 6 

males, mean age = 23.05, SD = 1.90). Stimulation begun prior to the practice 

phase of the RPP, and it lasted 20 minutes in total for all three groups, covering 

the entire practice phase. In the active tDCS conditions, we ramped up the 

stimulation to 1.5 mA over 30 s, maintained it for 20 minutes, and ramped it 

down over 30 s again at the end to minimize unpleasant sensations. In the 

Sham stimulation group, we ramped up and then immediately ramped down 

stimulation over 15 s at both the beginning and end of the protocol, an approach 

that is commonly used to blind participants in tDCS experiments (e.g., Gandiga 

et al., 2006; Brunoni, Nitsche, Bolognini, Bikson, Wagner, Merabet, et al., 2012).  

5.2.2 Procedure 

As soon as participants completed the screening process for tDCS and gave 

written consent, we prepared the montage for the tDCS, without starting the 

stimulation. Participants first performed the study phase of the RPP. After that, 

we checked the integrity of the montage, and turned the stimulation on. As soon 

as the participants felt comfortable with the stimulation (always within moment 

from the initial ramp up period), they performed the retrieval practice phase of 

the RPP, followed by filler questionnaires whose contents were unrelated to the 

experimental material. Stimulation ended shortly before completion of the 

questionnaires, and we removed the montage before proceeding with the final 

test phase of the RPP. Upon completion of the experimental procedure, 
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participants also filled out a self-report questionnaire about unpleasant 

sensations related to tDCS (Fertonani et al., 2010). 

 Figure 3.1 and Figure 3.2 show a schematic representation of the RPP and 

overall experimental procedure used here. 

5.2.3 Analysis 

We analysed recall accuracy in the test phase of the RPP as the main 

dependent variable. Exact answers only were considered as correct, with the 

exception of occasional and obvious spelling mistakes. In keeping with the 

typical approach in the RIF literature, we analysed FAC-relevant items (RP+ 

and NRP+) separately from RIF-relevant items (RP- and NRP-). We analysed 

the data with R (R Core Team, 2016), and fitted generalized linear (logistic) 

mixed models using the glmer procedure in the lme4 package (Bates, Maechler, 

Bolker, & Walker, 2015), which is more appropriate to examine accuracy data 

with respect to repeated measures ANOVA (e.g., Jaeger, 2008).  

Following Baayen, Davidson, and Bates (2008), we entered item type, 

stimulation group, and the possible interaction term, as fixed effects, and 

subject and category as random intercept terms, in order to account for both 

subject- and item-related variability. In particular, we entered category in the 

model as a random factor to counter the well-known language-as-fixed-effect 

fallacy (e.g., Clark, 1973), while keeping the stability of the model (i.e., avoiding 

convergence issues due to the relatively small number of observations per 

single item) and the experimental grouping of the stimuli within categories in 

mind. We used the Akaike’s information criterion (AIC; Akaike et al., 1973) 

transformed to conditional probabilities for each model, i.e., AIC weights 

(Wagenmakers & Farrell, 2004) to select the models that more appropriately 

described our data throughout the whole data analysis. Indeed, AIC weights 

improve the interpretation and the accessibility of results for further analyses, 

provide a deeper insight on the features of the competing models, and quantify 

conclusions based on AIC (Wagenmakers & Farrell, 2004). We employed the 

“qpcR” package (Spiess, 2014) to compute AIC weights. Post-hoc contrasts for 

selected models were then computed with the “testInteraction” function in the 
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“phia” package (De Rosario-Martinez, 2015). Moreover, “effects” package (Fox, 

2003, Fox & Hong, 2009) was used to display effects, and the “stargazer” 

package (Marek, 2015) was used to create the tables reporting model 

comparisons. 

Finally, we performed correlational analyses to assess whether RIF and FAC 

were uncorrelated, as posited by the strength independence tenet of the 

inhibitory account of RIF (Anderson, 2003).   

5.2.4 Results 

Mean proportions of recall in the final test phase for each item type and 

FAC/RIF effects are reported in Table 5.1). 

 

Table 5.1 Mean proportion of recall in the final test phase as a function of item 

type/effect and stimulation group. 

  Final Test Phase       

 

Item Type         

Stimulation 

Group 
RP+ NRP+ RP- NRP- FAC RIF 

Sham 
0.538 

(±0.174)  

0.212 

(±0.142) 

0.246 

(±0.131)  

0.279 

(±0.139) 

0.325 

(±0.169) 

0.032 

(±0.098) 

Anodal 
0.626 

(±0.134)  

0.241 

(±0.119) 

0.313 

(±0.118) 

0.296 

(±0.147) 

0.385 

(±0.140) 

-0.017 

(±0.084) 

Cathodal 
0.566 

(±0.141)  

0.250 

(±0.108) 

0.292 

(±0.122) 

0.261 

(±0.092) 

0.316 

(±0.133) 

-0.031 

(±0.161) 

 

 

 

For the FAC effect, the model including only the main effect of item type best 

fit the data, as showed by the available evidence  (AICw(type*group) = 0.087, 
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AICw(type+group) = 0.287, AICw(type) = 0.626; see also Table 5.2). In line with our 

predictions, the FAC effect was significant in each group: 

Chisq Test:  

P-value adjustment method: holm 

         Value Df   Chisq Pr(>Chisq)     

group1 0.17037  1  90.747  < 2.2e-16 *** 

group2 0.14434  1 101.240  < 2.2e-16 *** 

group3 0.18754  1  67.372  2.249e-16 *** 

 

“group1”=Sham tDCS; “group2”=Anodal tDCS; “group3”=Cathodal tDCS. 

 

Concerning the RIF effect, in contrast with our predictions, the winning model 

was again the one that included only the main effect of item type (AICw(type*group) 

= 0.096, AICw(type+group) = 0.195, AICw(type) = 0.709; see also Table 5.2). 

Furthermore, post-hoc contrasts did not reveal a significant RIF in any of the 

three stimulation groups (Figure 5.1): 

Chisq Test:  

P-value adjustment method: holm 

         Value Df  Chisq Pr(>Chisq) 

group1 0.54510  1 1.6580     0.5936 

group2 0.48426  1 0.1873     0.7656 

group3 0.46675  1 0.7616     0.7656 

 

“group1”=Sham tDCS; “group2”=Anodal tDCS; “group3”=Cathodal tDCS. 

 

 

Figure 5.1 Interaction plot for each stimulation group separately. “group1”=Sham 

tDCS; “group2”=Anodal tDCS; “group3”=Cathodal tDCS. Sham tDCS shows a 

numerically larger difference between NRP- and RP-, compared to Anodal and Cathodal 

tDCS. 
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Table 5.2 Model comparisons for the FAC effect in Experiment 1. 95% CI are reported 

in parentheses. 

FAC model comparison 

 

Memory performance 

 

Accuracy 

 

full main effects type 

RP+ 1.583
***

 1.611
***

 1.611
***

 

 

(1.257, 1.909) (1.412, 1.810) (1.412, 1.810) 

Anodal tDCS 0.189 0.300 

 

 

(-0.275, 0.653) (-0.076, 0.675) 

 

Cathodal tDCS 0.239 0.174 

 

 

(-0.230, 0.709) (-0.208, 0.556) 

 

RP+:Anodal tDCS 0.197 

  

 

(-0.276, 0.669) 

  

RP+:Cathodal tDCS -0.117 

  

 

(-0.592, 0.358) 

  

Constant -1.414
***

 -1.431
***

 -1.282
***

 

 

(-1.835, -0.994) (-1.823, -1.039) (-1.618, -0.946) 

Observations 2,120 2,120 2,120 

Log Likelihood -1,255.849 -1,256.658 -1,257.876 

Akaike Inf. Crit. 2,527.698 2,525.316 2,523.752 

Bayesian Inf. Crit. 2,572.971 2,559.271 2,546.389 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Table 5.3 Model comparisons for the RIF effect in Experiment 1. 95% CI are reported 

in parentheses. 

RIF model comparison 

 

Memory performance 

 

Accuracy 

 

full main effects type 

RP- -0.181 -0.003 -0.003 

 

(-0.456, 0.094) (-0.169, 0.162) (-0.169, 0.162) 

Anodal tDCS 0.103 0.223 

 

 

(-0.312, 0.518) (-0.142, 0.588) 

 

Cathodal tDCS -0.053 0.104 

 

 

(-0.477, 0.371) (-0.268, 0.476) 

 

RP-:Anodal tDCS 0.244 

  

 

(-0.153, 0.640) 

  

RP-:Cathodal tDCS 0.314 

  

 

(-0.092, 0.721) 

  

Constant -1.022
***

 -1.109
***

 -1.006
***

 

 

(-1.373, -0.671) (-1.445, -0.773) (-1.278, -0.734) 

Observations 2,968 2,968 2,968 

Log Likelihood -1,709.865 -1,711.160 -1,711.869 

Akaike Inf. Crit. 3,435.731 3,434.320 3,431.737 

Bayesian Inf. Crit. 3,483.696 3,470.294 3,455.720 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Finally, as predicted, correlational analysis did not show any evidence of a 

correlation between FAC and RIF effects across the whole sample (r = -

0.13;Figure 5.2). 

 

Figure 5.2 Scatterplot of the correlation between the RIF and FAC effects. 

 

5.2.5 Discussion 

The results concerning the beneficial effect of retrieval practice were in line 

with our predictions, with a reliable FAC observed in all the experimental groups 

and no interaction with our tDCS protocol. Turning to RIF, the results observed 

in this first experiment were quite unexpected. As a matter of fact, in light of our 

previous work, upon which the present experiment capitalized, we were not 

surprised about the lack of RIF in the two real stimulation groups, in particular 

regarding the cathodal stimulation group. However, the absence of an 

interaction between item type and stimulation group, coupled with the lack of a 

significant RIF effect in the control group, does not allow either supporting or 

completely rejecting our initial hypotheses. Therefore, results from this first 

experiment appeared to be inconclusive on whether interfering with rIFG during 

a RPP has any effects on inhibitory performance as indexed by RIF. 
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It is important to note that the RPP variant used in this experiment suffered 

from a few limitations, which also affected and were partially addressed in our 

previous work (Penolazzi et al., 2014), and which could have influenced the 

current results nonetheless: i) We employed a blocked-by-category study format 

that could have facilitated encoding strategies based on grouping the exemplars 

together under the category label, thus favouring integration in our participants, 

which is known to reduce RIF (Anderson & McCulloch, 1999); ii) The study 

material consisted of a standard number of categories (eight) compared to the 

literature on RIF (e.g., Anderson et al., 1994), but quite a large number of 

exemplars (twelve) by the same standards, therefore we hypothesized that 

interference during retrieval practice in our paradigm may have been more 

diluted among the many competing items (seven), thus potentially limiting the 

inhibitory demands, and/or the subsequent inhibitory effort may have been less 

effective at reducing the competing items’ representation in memory to a point 

that later recall would suffer from such impairment; iii) While the test format 

allowed to rule out output interference on RP- items (Anderson, 2003), it could 

have caused NRP- items to undergo more interference than the RP- items, 

since the former items were mixed together with the RP+ and NRP+ items (It is 

worth mentioning that such bias was held constant across participants and 

hence is unlikely to have influenced the results as a function of stimulation (see 

also Penolazzi et al., 2014). In addition to these points, variability in our 

sample’s performance due to individual characteristics and their interaction with 

the aforementioned issues in the study design, even though the current 

experiment’s control group was very similar to the one that took part in our 

previous study (Penolazzi et al., 2014), in terms of age, education, gender, and 

cultural background. In consideration of all these critical points, and because 

results provided by this experiment did not lend themselves to a clear 

interpretation, we carried out a second experiment in which we employed a 

similar rationale and improved upon the behavioural procedure, 

neuromodulation parameters, and sample size.  

This new experiment was not just a refined replication of the previous one, 

but included also an important element of novelty. In fact, we took the chance to 
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replace the filler questionnaires acting as a buffer between the retrieval practice 

and test phases of the RPP with an additional task aimed at measuring the 

individual ability to override an initiated course of action. Specifically, we 

employed a stop-signal task (SST; Verbruggen & Logan, 2008) that participants 

performed immediately after the retrieval practice phase, while tDCS was still 

active. In the SST, participants perform a choice RT task and withhold response 

when a stop signal is presented shortly after the target stimulus. In order to 

push participants into committing mistakes, trials that require stopping are 

infrequent (often 25%) compared to go trials, and the delay between the target 

and stop signal (stop-signal delay, SSD) is adaptively adjusted by a staircase 

procedure aimed at keeping participants’ accuracy at about 50%. The horse-

race model of inhibition in the SST (e.g., Logan & Cowan 1984; Osman et al., 

1986) posits that whenever a stop trial occurs, the inhibitory process triggered 

by the stop signal competes with the response process elicited by the target. 

Consequently, longer SSDs make for harder stop trials, as the response 

process will be closer to translate into action and further “out of reach” for the 

inhibitory process. The main index of the efficiency of inhibitory performance in 

the SST at the individual level is the stop-signal reaction time (SSRT), which 

can be computed as the difference between mean RTs in the go trials (no-signal 

RTs, NSRTs) and the mean SSD in the stop-trials, for a given participant. Given 

that the SSRT is interpreted as the covert latency of the inhibitory process that 

overrides motor action, shorter SSRTs indicate a more efficient stopping 

process.  

Many tDCS studies have shown that stimulation of prefrontal areas 

significantly modulates control abilities in different tasks spanning both memory 

and action; however, they all investigated a single inhibitory measure at a time 

(see Brevet-Aeby, Brunelin, Iceta, Padovan, & Poulet, 2016, for a review on 

PFC involvement in inhibitory control as revealed by non invasive brain 

stimulation). Moreover, although a few works have investigated the relationship 

between motor inhibition and suppression of competing memories (e.g., 

Schilling et al., 2014; Storm & Bui, 2016), none of them has implemented tES as 

a method of concurrent modulations of the two mechanisms, and correlational 
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results have been inconsistent (see also Noreen & MacLeod, 2015). Hence, to 

further our understanding of tDCS effects over memory and action control, as 

well as the relationship between the two cognitive mechanisms, in the second 

experiment we first combined multiple behavioural methods typically used for 

measuring inhibitory control in episodic memory and motor action within a PFC-

tDCS study. We predicted that active tDCS over the rIFG would modulate 

suppression of competing memories, i.e., RIF, compared to sham stimulation, 

but also affect the ability to override a prepotent motor response, as indexed by 

SSRTs, because of the importance of this brain region for motor stopping (e.g., 

Aron et al., 2014; Stramaccia et al., 2015). Concerning the latter hypothesis, in 

particular, we predicted a better inhibitory performance in the anodal stimulation 

group, compared to the sham and cathodal stimulation groups, based on results 

from previous work that investigated the effects of tDCS to the rIFG in the SST 

(e.g., Jacobson et al., 2011; Ditye et al., 2012; Stramaccia et al., 2015). Finally, 

we sought to explore the relationship between measures of motor stopping and 

memory suppression. 

5.3 Experiment 2 

5.3.1 Methods 

5.3.1.1 Participants 

The ethical committee for psychological research of the University of Padua 

approved the study, which was performed in accordance with the principles of 

the Declaration of Helsinki. All participants, none of which had taken part in the 

previous experiment, underwent an eligibility screening for the tDCS procedure, 

and provided an informed consent prior to their participation and a final consent 

at the end of the experimental procedure. With respect to the previous 

experiment, sample size was increased to 72 healthy volunteers (28 males) 

aged between 20 and 40 years (mean age = 23.57, SD = 2.86; mean years of 

education = 17.43, SD = 1.28). All participants were screened for possible 

exclusion criteria that were identical to Experiment 1 (5.2.1.1).  
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5.3.1.2 Retrieval Practice Paradigm (RPP) 

As for Experiment 1, we used the RIF effect as an index of memory 

suppression and we administered a typical three-phase RPP (Anderson et al., 

1994) in order to obtain an individual measure of the effect. However, there 

were several changes in our paradigm with respect to the previous experiment, 

concerning both the stimuli and some features of the three phases. Our revised 

paradigm included 84 category-exemplar word pairs (e.g. “FRUIT-PRUNE”), 

divided by 12 semantic categories, with seven exemplars for each category. We 

reasoned that to observe a stronger RIF in the control group, it would have been 

better to include more semantic categories with fewer exemplars each, rather 

than relatively few categories with many exemplars each, because competition 

under the latter circumstances could be more diluted among the exemplars, and 

subsequent inhibitory efforts less effective. Moreover, having more exemplars in 

each category increased the risk of unwanted semantic associations (Goodmon 

& Anderson, 2011). We selected and adapted all the material from the 

categorical production norm for the Italian language by Boccardi and Cappa 

(1997), according to the same criteria used for the first experiment, with the 

exception that in all categories, four out of seven items were strong exemplars, 

whereas the other three items were weak exemplars. All participants were 

completely naïve to the procedure. The RPP used here is schematically 

represented in Figure 5.3. 

In the study phase, we instructed the participants to memorize all of the 84 

category-exemplar word pairs, by relating each exemplar to its category. We 

also informed them that they would have been tested later on the exemplars, 

but not about the specific format, duration, or repetition (both the practice and 

the test phases are testing instances) of such testing. Study trials began with a 

brief fixation (500ms), followed by a blank screen (500ms); subsequently, one 

category-exemplar word pair was presented on screen (3500ms), followed by a 

blank screen (500ms). In order to discourage integration strategies, which may 

hamper RIF (Anderson & McCulloch, 1999), we delivered the stimuli in a 

randomized blocked order, in which each block contained one exemplar from 
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each semantic category, with the additional constraint that two items from the 

same category could not be presented one after another. 

In the practice phase, participants repeatedly practiced the weak exemplars 

of half the semantic categories (three repetitions of 18 exemplars, 72 trials in 

total). Practicing weak exemplars only should boost the RIF effect due to 

increased competition from the remaining strong exemplars (Anderson, 2003). 

In the practice trials, we provided the category and the first two letters of each 

exemplar (e.g. “FRUIT-PR____”) to the participants, and we instructed them to 

answer with the name of the specific exemplar associated to the particular cue 

in full (8000ms). We labelled the practiced weak exemplars as RP+ items, the 

non-practiced strong items from practiced categories as RP- items, the weak 

non-practiced items from non-practiced categories NRP+ items, and the strong 

non-practiced items NRP-. NRP+ and NRP- items served as controls for RP+ 

and RP- items, respectively. We used four lists of categories to fully 

counterbalance the practiced categories across groups.  As a result, all 

semantic categories contributed equally to all four types of items. We presented 

the stimuli in a similar order to the previous phase.  

In the final test phase, we presented again all the stimuli from the initial study 

phase (84 trials). Format, response modality, and instructions were the same as 

above, however now we provided the participants with the category plus the first 

letter of an exemplar only (e.g. “FRUIT-P____”) We presented the stimuli in a 

similar order to the previous phases, with the additional constraint that all RP- 

and NRP- items came before all the RP+ and NRP+ items, in order to control for 

output interference at test, which could inflate the RIF effect (Anderson, 2003). 

This particular order was also different from that of Experiment 1 (5.2.1.2). In 

fact, as mentioned before (3.4) the test format implemented in Experiment 1 

might have lead to an imbalance in the amount of interference received by 

NRP- items, compared to RP- items, thus reducing the chances to observe RIF. 

5.3.1.3 Stop-Signal Task (SST) 

Between the retrieval practice phase and the test phase of the RPP, 

participants performed the SST provided within the STOP-IT software 
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(Verbruggen et al., 2008), which probes the individual efficiency of the covert 

motor stopping process (i.e., SSRTs). The task begun with a short practice 

block (32 trials) allowing the participants to familiarize with the task, followed by 

two experimental blocks of 64 trials each (128 total trials). In the primary task, 

participants performed a choice reaction time test, with the instruction to 

prioritize both speed and accuracy of responses. Each trial began with a 250-

ms central fixation (+), followed by a visual stimulus (either a circle or a square) 

that stayed centrally on screen until the participants responded, with the 

constraint that participants had up to 1.250 ms to respond. The central fixation 

and stimuli were presented in white on a black background. The ISI was 2000 

ms, independently of RTs. The participants used a keyboard to respond, and 

they had to press “A” for squares or “L” for circles. On 25 % of the trials, shortly 

after stimulus onset, a sound (750 Hz, 75 ms) signalling to hold back the 

response (i.e., a stop-signal) was presented through loudspeakers. The stop-

signal delay was 250 ms at the beginning of the task, and subsequently 

increased or decreased by 50 ms after each successful or unsuccessful 

stopping trial, respectively. Under this tracking procedure, participants correctly 

withheld approximately half the responses, meeting the requirements of the 

method used to calculate SSRT. According to the horse-race model (Logan & 

Cowan 1984; Osman et al. 1986), SSRT is calculated as the difference between 

mean RT in the trials where participants must respond and mean SSD in the 

trials where they must hold back the response. A schematic representation of 

the task is displayed in Figure 4.1.  

5.3.1.4 transcranial Direct Current Stimulation (tDCS) 

The stimulation parameters, montages, and overall procedure, were identical 

to the first experiment (see Figure 4.2, panel B, left side). We used a single 

blind, between group design: We randomly assigned the participants to anodal 

(N=24, 9 males, mean age 23.96, SD 3.74), cathodal (N=24, 12 males, mean 

age 23.33, SD 2.28), or sham stimulation (N=24, 7 males, mean age 23.42, SD 

2.43). Stimulation begun prior to the practice phase of the RPP, and it lasted 20 

minutes in total for all three groups, covering the entire practice phase and the 

subsequent SST. In the active tDCS conditions, we ramped up the stimulation to 
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1.5 mA over 30 s, maintained it for 19 minutes, and ramped it down over 30 s 

again at the end to minimize unpleasant sensations. In the Sham stimulation 

group, we ramped up and then immediately ramped down stimulation over 60s 

at both the beginning and end of the protocol.  

5.3.2 Procedure 

We received the participants in a sound-attenuated testing room, and sat 

them at the computer. We prepared the montage for the tDCS, without starting 

the stimulation. Participants first performed the study phase of the RPP. After 

that, we checked the integrity of the montage, and turned the stimulation on. As 

soon as the participants felt comfortable with the stimulation (always within 

moment from the initial ramp up period), they performed the retrieval practice 

phase of the RPP, followed by the SST. Stimulation ended shortly before 

completion of the SST, and we removed the montage before proceeding with 

the final test phase of the RPP. In keeping with Experiment 1 (5.2.2), we also 

administered a sensation questionnaire (Fertonani et al., 2010) at the end of the 

whole procedure.  

See Figure 5.3 below for a schematic representation of the experimental 

procedure. 

 

Figure 5.3 Schematic representation of the experimental procedure employed in 

Experiment 2. The SST is embedded between the retrieval practice and test the test 

phases of the RPP. 
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5.3.3 Analysis 

We performed identical treatment and subsequent analysis of RPP data with 

respect to Experiment 1 (5.2.3). 

Concerning the SST, we discarded data from one participant in the cathodal 

rIFG Group due to a technical failure. To assess whether tDCS selectively 

modulated motor stopping, we calculated individual SSRTs and NSRTs using 

the ANALYZE-IT software (Verbruggen et al. 2008). With respect to individual 

SSRTs, ANALYZE-IT computes the mean RTs for all successful go trials and 

then subtracts the mean stop-signal delay from this value (Verbruggen et al. 

2008). 

5.3.4 Results 

5.3.4.1 Retrieval Practice Paradigm (RPP) 

Mean proportions of recall in the final test phase for each item type and 

FAC/RIF effects are reported in Table 5.4 below. 

Table 5.4 Mean proportion of recall in the final test phase as a function of item 

type/effect and stimulation group. 

    Final Test Phase        

 

Item Type         

Stimulation 

Group   
RP+ NRP+ RP- NRP- FAC RIF 

Sham 
0.449 

(±0.149)  

0.213 

(±0.144) 

0.354  

(±0.117)  

0.436 

(±0.110) 

0.236 

(±0.167) 

0.082 

(±0.169) 

Anodal 
0.447 

(±0.163)  

0.227 

(±0.133) 

0.385  

(±0.154) 

0.408 

(±0.101) 

0.220 

(±0.118) 

0.023 

(±0.140) 

Cathodal 
0.396  

(±0.173)  

0.227 

(±0.096) 

0.354  

(±0.120) 

0.366 

(±0.099) 

0.211 

(±0.142) 

0.012 

(±0.128) 

Note. Standard deviations are reported in parentheses. 
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For the FAC effect, the model including only the main effect of item type best 

fitted the data (AICw(type*group) = 0.037, AICw(type+group) = 0.264, AICw(type) = 0.698; 

Table 5.5). The FAC effect was significant in each group, and numerically lower 

than that observed in both Experiment 1 and Penolazzi and Colleagues’ work 

(2014; compare Table 5.4, Table 5.1, and Table 3.1): 

Chisq Test:  

P-value adjustment method: holm 

         Value Df  Chisq Pr(>Chisq)     

group1 0.23463  1 55.710  2.520e-13 *** 

group2 0.24684  1 50.106  2.912e-12 *** 

group3 0.24249  1 48.127  3.994e-12 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

“group1”=Sham tDCS; “group2”=Anodal tDCS; “group3”=Cathodal tDCS. 

 

As for the RIF effect, in contrast with our predictions, the best fitting model 

was again the one that included only the main effect of item type (AICw(type*group) 

= 0.193, AICw(type+group) = 0.253, AICw(type) = 0.554; Table 5.6). Post-hoc 

contrasts driven by our initial hypothesis revealed a significant RIF in the Sham 

tDCS group only (Figure 5.4), whose magnitude was numerically similar to that 

observed in our previous study (in chapter 3; compare Table 5.4 and Table 3.1):  

Chisq Test:  

P-value adjustment method: holm 

         Value Df  Chisq Pr(>Chisq)   

group1 0.58807  1 8.3178    0.01178 * 

group2 0.52470  1 0.6447    0.84401   

group3 0.51361  1 0.1892    0.84401  

 

“group1”=Sham tDCS; “group2”=Anodal tDCS; “group3”=Cathodal tDCS. 

 

As for the correlational analysis, we did not find any evidence for a 

correlation between FAC and RIF effects across the whole sample (r < -0.01; 

see Figure 5.5). 

 

 

 

 



An investigation into memory control: Neuromodulatory approaches and potential clinical target populations 

126  Davide Francesco Stramaccia - November 2016 

Table 5.5 Model comparisons for the FAC effect in Experiment 2. 95% CI are reported 

in parentheses. 

 

FAC model comparison 

 

Memory performance 

 

Accuracy 

 

full main effects type 

RP+ 1.182
***

 1.146
***

 1.146
***

 

 

(0.872, 1.493) (0.964, 1.328) (0.964, 1.328) 

Anodal tDCS 0.059 0.019 

 

 

(-0.390, 0.508) (-0.349, 0.388) 

 

Cathodal tDCS -0.201 -0.227 

 

 

(-0.659, 0.256) (-0.598, 0.144) 

 

RP+:Anodal tDCS -0.067 

  

 

(-0.504, 0.370) 

  

RP+:Cathodal tDCS -0.043 

  

 

(-0.489, 0.403) 

  

Constant -1.412
***

 -1.391
***

 -1.460
***

 

 

(-1.809, -1.015) (-1.759, -1.022) (-1.762, -1.157) 

Observations 2,592 2,592 2,592 

Log Likelihood -1,493.640 -1,493.686 -1,494.714 

Akaike Inf. Crit. 3,003.280 2,999.372 2,997.429 

Bayesian Inf. Crit. 3,050.162 3,034.533 3,020.870 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Table 5.6 Model comparisons for the RIF effect in Experiment 2. 95% CI are reported 

in parentheses. 

RIF model comparison 

 

Memory performance 

 

Accuracy 

 

full main effects type 

RP- -0.356
***

 -0.171
**
 -0.171

**
 

 

(-0.598, -0.114) (-0.311, -0.031) (-0.311, -0.031) 

Anodal tDCS -0.120 0.006 

 

 

(-0.401, 0.161) (-0.220, 0.232) 

 

Cathodal tDCS -0.303
**
 -0.155 

 

 

(-0.586, -0.020) (-0.382, 0.072) 

 

RP-:Anodal tDCS 0.257 

  

 

(-0.085, 0.599) 

  

RP-:Cathodal tDCS 0.302
*
 

  

 

(-0.043, 0.646) 

  

Constant -0.269
*
 -0.359

***
 -0.409

***
 

 

(-0.546, 0.008) (-0.619, -0.099) (-0.635, -0.183) 

Observations 3,456 3,456 3,456 

Log Likelihood -2,256.578 -2,258.306 -2,259.524 

Akaike Inf. Crit. 4,529.156 4,528.613 4,527.049 

Bayesian Inf. Crit. 4,578.339 4,565.500 4,551.640 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Figure 5.4 Interaction plot for each stimulation group separately. “group1”=Sham 

tDCS; “group2”=Anodal tDCS; “group3”=Cathodal tDCS. Altough the interaction is not 

significant, Sham tDCS exhibits a significant RIF effect. 

 

Figure 5.5 Scatterplot of the correlation between the RIF and FAC effects. 

 



tDCS modulation of memory control and motor stopping 

Davide Francesco Stramaccia - November 2016   129 

At a first glance, these results seemed to merely suggest a similar pattern 

with respect to our previous work (Penolazzi et al., 2014), though with little 

statistical support behind it. At the same time, it should be noted that, when 

compared directly, the interaction model and the main effects model did not 

show a large difference in AICw. Interestingly, further visual inspection of the 

data suggested large differences in the amount of RIF elicited by the different 

semantic categories employed here. To shed light on the contribution of the 

individual categories to the overall results, we analysed the amount of evidence 

in favour of a main effect of item type within each category taken separately, 

and for the sham (control) group alone (to rule out additional effects due to the 

neuromodulatory manipulations). 

This procedure revealed that few categories showed a particularly weak or 

reversed RIF effect in the control group (i.e., “BIDS”, “FLOWERS”, “FRUITS”, 

“SPORTS”). Because of that, we performed new model comparisons between 

the full model (type * group) and the model without interaction (type + group), 

gradually excluding the categories that showed the least support for the 

presence of RIF in the control group, in order to assess whether the inability of 

these categories to elicit RIF in the control group was related to the lack of 

evidence in support of the interaction model. Surprisingly, removing the two 

categories that showed the least amount of even reversed RIF in the control 

group (i.e., “SPORTS” and “BIRDS”, respectively) improved the amount of RIF 

in the control group to a magnitude that was unparalleled in the experimental 

groups, resulting in the new analysis now largely favouring the full model over 

the model with fixed effects only (AICw(type*group) = 0.773, AICw(type+group) = 0.227; 

Figure 5.6):  

Chisq Test:  

P-value adjustment method: holm 

         Value Df   Chisq Pr(>Chisq)    

group1 0.61516  1 11.8524   0.001728 ** 

group2 0.52775  1  0.6721   0.824635    

group3 0.49995  1  0.0000   0.998747    

 

“group1”=Sham tDCS; “group2”=Anodal tDCS; “group3”=Cathodal tDCS. 
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Figure 5.6 Interaction plot for each stimulation group separately, after removal of 

“BIRDS” and “SPORTS” categories from Experiment 2 data. “group1”=Sham tDCS; 

“group2”=Anodal tDCS; “group3”=Cathodal tDCS. 

 

Further removal of the two additional “negative” categories (i.e., “FLOWERS” 

and “FRUITS”) resulted in an even stronger change in the amount of evidence 

in favour of the interaction model (AICw(type*group) = 0.931, AICw(type+group) = 0.069; 

Figure 5.7): 

Chisq Test:  

P-value adjustment method: holm 

         Value Df   Chisq Pr(>Chisq)     

group1 0.64971  1 16.2692  0.0001649 *** 

group2 0.54633  1  1.5204  0.4351216     

group3 0.49384  1  0.0260  0.8719660     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

“group1”=Sham tDCS; “group2”=Anodal tDCS; “group3”=Cathodal tDCS. 
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Figure 5.7 Interaction plot for each stimulation group separately, after removal of 

“BIRDS”, “FLOWERS”, “FRUITS”, and “SPORTS” categories from Experiment 2 data. 

“group1”=Sham tDCS; “group2”=Anodal tDCS; “group3”=Cathodal tDCS. 

 

It is worth noting that the procedure employed in this additional category-wise 

influence analysis allowed looking into the contribution of each category to the 

effect of interest (i.e., RIF) in the control group, and subsequently to the item 

type x stimulation group interaction, while keeping the random effect of item into 

account. Because of the valuable information provided by these additional 

analyses, we decided to reanalyse RPP data from the first experiment as well, 

in order to ascertain whether specific semantic categories had a similar impact 

on the results, and more specifically whether the same categories behaved 

similarly across the two experiments 

5.3.4.2 Re-Analysis of Experiment 1 

We carried out category-wise analyses to assess the contribution of each 

category to RIF in the control group. These new analyses revealed that different 

categories impacted differently on RIF in the control group. More specifically, 

four out of the eight semantic categories employed in the first experiment 

exhibited none to reversed RIF, with “BIRDS”, “FRUITS”, “JOBS”, and 
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“WEAPONS”, being the categories showing the least amount of forgetting for 

RP- items compared to the NRP-. Interestingly, two of them overlapped with the 

null-RIF categories detected in the previous re-ANALYSIS of Experiment 2 (i.e., 

“BIRDS” and “FRUITS”), although it should be noted that there were also some 

differences in the exemplars contributing to the same category in the two 

experiments. We then proceeded to compare the interaction model with the 

main effects model by excluding an increasing number of null-RIF categories. 

This procedure yielded a pattern similar to that observed in the second 

experiment. Indeed, when we removed the two categories that showed the least 

amount of RIF in the control group (i.e., “BIRDS” and “WEAPONS”), the 

available evidence favoured the interaction model, although to a very limited 

extent (AICw(type*group) = 0.517, AICw(type+group) = 0.483; Figure 5.8): 

Chisq Test:  

P-value adjustment method: holm 

         Value Df  Chisq Pr(>Chisq)   

group1 0.59476  1 5.3019    0.06391 . 

group2 0.51142  1 0.0720    1.00000   

group3 0.47564  1 0.2951    1.00000   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

“group1”=Sham tDCS; “group2”=Anodal tDCS; “group3”=Cathodal tDCS. 

 

Further excision of the remaining null-RIF categories (i.e., “FRUITS” and 

“JOBS”) resulted in much larger evidence in favour of the interaction model 

(AICw(type*group) = 0.629, AICw(type+group) = 0.371; Figure 5.9):  

Chisq Test:  

P-value adjustment method: holm 

         Value Df  Chisq Pr(>Chisq)   

group1 0.61588  1 6.5915    0.03074 * 

group2 0.49313  1 0.0216    1.00000   

group3 0.48566  1 0.0852    1.00000   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

“group1”=Sham tDCS; “group2”=Anodal tDCS; “group3”=Cathodal tDCS. 

 

Once again, the interaction was mainly dependent on the increased RIF 

observed in the control group, whereas removing the “negative” categories did 

not affect RIF in the stimulated group as much as in the sham group. 
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Figure 5.8 Interaction plot for each stimulation group separately, after removal of 

“BIRDS” and “WEAPONS” categories from Experiment 1 data. “group1”=Sham tDCS; 

“group2”=Anodal tDCS; “group3”=Cathodal tDCS. 

 

 

Figure 5.9 Interaction plot for each stimulation group separately, after removal of 

“BIRDS”, “FRUITS”, “JOBS”, and “WEAPONS” categories from Experiment 1 data. 

“group1”=Sham tDCS; “group2”=Anodal tDCS; “group3”=Cathodal tDCS. 
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5.3.4.3 Stop-Signal Task (SST) 

Data from one participant (Cathodal tDCS group) were discarded because of 

technical failure of the software. No differences were found between groups for 

either SSRTs, F(2,68) = 1.13, p > .250 (MSHAM-SSRT = 286.025, SDSHAM-SSRT = 

38.906; MANODAL-SSRT = 287.186, SDANODAL-SSRT = 47.616; MCATHODAL-SSRT = 

269.370, SDCATHODAL-SSRT = 48.851), or NSRTs, F(2,68) = .03, p > .250 (MSHAM-

NSRT = 564.688, SDSHAM-NSRT = 148.073; MANODAL-NSRT = 566.913, SDANODAL-NSRT 

= 131.117; MCATHODAL-NSRT = 567.861, SDCATHODAL-NSRT = 132.007). The 

correlation between SSRTs and RIF was also not significant (r = .069).  

5.3.5 Discussion 

Results from the second experiment closely resembled the pattern observed 

by Penolazzi and Colleagues (2014). In particular, limiting the analysis to the 

subset of the experimental material that better expressed RIF in the control 

group reproduced results that were highly similar to Penolazzi and Colleagues’ 

findings (2014), even though the detrimental effect of tDCS on the cathodal 

group was not as strong as in that study. There are several reasons that 

support the rationale for looking at category-specific patterns in our data. In 

particular, memory performance on the semantic categories employed here 

might have very well been influenced by the amount of pre-existing knowledge 

in our experimental groups, as well as possible different baseline levels of 

relevant psycholinguistic variables such as memorability and imageability, 

possibly leading to various degree of uncontrolled semantic integration 

(Goodmon & Anderson, 2011) whose effects would not just be ruled out by 

counterbalancing the categories across participants and groups, and which may 

have partially jeopardized our attempt to separate high- from low-interfering 

exemplars. These features may have the potential to specifically affect the 

amount of forgetting due to competition resolution (i.e., RIF), while not affecting 

the magnitude of the benefit from additional study (i.e., FAC) at all. Critical to 

our argument, across the new analyses the control group steadily constituted 

the main drive behind the interaction, showing a gradual increase in the 

detected RIF effect as we removed more “negative” categories, whose 

magnitude was not mirrored in the stimulation groups. Interestingly enough, 
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there was some overlapping between the categories that negatively affected 

RIF (in the control group considered in isolation) in the first and in the second 

experiment. For example, “BIRDS” consistently showed a reversed RIF pattern, 

with higher recall for RP- than NRP- items. Unfortunately, indexes pertaining the 

specific features of the semantic categories that we hypothesized may have had 

a negative impact on RIF in the control group were not readily available to us, 

therefore we cannot directly quantify the potential contributions of these factors 

toward the observed pattern of results. 

Turning to the results concerning the motor stopping task, Experiment 2 

failed to show any difference (5.3.4.3), as opposed to what has been reported 

by previous studies (e.g., Cunillera et al, 2014; Dityie et al., 2012; Jacobson et 

al., 2011; Stramaccia et al., 2015). Moreover, we did not find a correlation 

between the individual ability to suppress competing memories as indexed by 

RIF, and the individual efficiency of the motor stopping process as indexed by 

SSRTs. We will address these null findings in the following section. 

5.4 General discussion 

The present study moved from the observation that, so far, only a handful of 

studies examined the potential of tDCS to modulate behavioural performance in 

tasks addressing cognitive control over covert mental processes such as the 

ability to overcome interference from competing memory traces (e.g., Anderson, 

J., et al., 2015; Penolazzi et al., 2014; Silas & Brandt, 2016; also see Oldrati et 

al., 2016, for relevant results in a different but related domain). In particular, the 

emerging pattern from this relatively scarce literature points to consistent, 

detrimental effects of prefrontal cathodal tDCS on suppression of competing 

memories and related abilities, across a range of slightly different stimulation 

parameters. This notion may prove important to design and implement 

therapeutic strategies intending to employ tES to alleviate cognitive control and 

impulsivity-related deficits, and constitutes a starting point for further 

investigation into the specific cognitive processes and neural underpinnings at 

the interface between non-invasive brain stimulation and its behavioural 

outcomes. In this view, our study presents a set of findings that support this 
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prefrontal cathodal tDCS impairing effect, with a varying degree of 

generalizability of our results across the two experiments. Specifically, we 

delivered anodal, cathodal, or sham (control) tDCS to healthy volunteers in 

order to modulate memory control as indexed by RIF, which reflects the 

negative effects of selective memory retrieval in the face of competition on 

subsequent recall of competing memory traces. The tDCS procedure targeted 

the rIFG, a key area in the brain network deputed to inhibitory control (e.g., Aron 

et al., 2014), whose activity during the inhibitory effort in the RPP has been 

associated with the amount of RIF in previous neuroimaging studies (Wimber et 

al., 2008, 2009, 2015). Across two experiments that followed a similar rationale, 

results indicated that cathodal tDCS had the highest, detrimental impact on 

memory control. One the one hand, our work provided causal evidence for the 

involvement of the rIFG in this ability, and confirmed the feasibility of tDCS 

modulation of RIF. On the other hand, future research efforts should aim at 

identifying stimulation parameters that improve cognitive control over 

interference, which would yield a relevant applied potential.  

5.4.1 No evidence for a relation between RIF and motor stopping 

The inclusion of a measure of motor stopping ability was a remarkable 

feature of Experiment 2, because to our knowledge no other study so far 

attempted to manipulate cognitive control in both action and memory. Along with 

the two experiments reported here, past work hinted at the possibility to 

modulate control over interfering memories (Anderson, Davis, Fitzgerald, & Hoy, 

2015; Penolazzi et al., 2014), as well as motor stopping (e.g., Jacobson et al., 

2011; Stramaccia et a., 2015), by delivering tDCS to the PFC. Importantly, the 

two abilities may constitute different but interrelated instances of inhibitory 

control (Levy & Anderson, 2002; Schilling et al., 2014). In this view, combined 

investigations of memory control and motor stopping measures have the 

potential to be highly informative with respect to this theoretical stance. This 

was the main reason behind the inclusion of the SST in Experiment 2, whose 

aims were twofold: i) We sought to test the association between RIF and SSRTs, 

because of the mixed results provided so far by the literature concerning the 
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positive relationship between memory control and motor stopping (Schilling et 

al., 2014; Storm & Bui, 2016); ii) We expected to replicate the anodal rIFG-tDCS 

modulation on motor stopping, specifically showing a reduction in SSRTs that 

would have indicated a speeding-up of the underlying stopping process, as first 

shown by Jacobson and Colleagues (2011) and replicated in subsequent 

studies (e.g., Stramaccia et al., 2015; Cunillera et al., 2014). 

Concerning the former objective, we did not find any significant correlation 

between RIF and SSRTs. Interestingly, Schilling and colleagues (2014) who first 

detected a positive correlation between RIF and SSRTs employed a RPP that 

was extremely similar to the RPP used here (Experiment 2), in particular as 

concerns the format of the testing phase Importantly, in their study, participants 

that were administered a testing phase contaminated by output interference 

within an otherwise similar RPP showed a reverse correlation between RIF and 

SSRTs, compared to participants that received a RPP whose design matched 

the one in Experiment 2 from the present study. Failures to find a positive 

association between different measures of cognitive inhibition is not new in the 

literature (e.g., Noreen & MacLeod, 2015; Storm & Bui, 2016), and calls for 

further studies employing behavioural paradigms that are maximally informative 

with respect to the theoretical debate between the inhibitory account of 

phenomena such as RIF and other explanatory proposals based on different 

mechanisms (e.g., by competition at test; see Raaijmakers & Jakab, 2013).  To 

better illustrate this point, it is worth noting that recent work suggested that 

when recall performance in the final test of the RPP is probed by category-plus-

one-letter-stem cued recall tests, interference may still contribute the amount of 

observed RIF (e.g., Rupprecht & Bäuml, 2016), whereas recognition tests may 

be better suited at detecting the amount of forgetting that could be genuinely 

ascribed to inhibitory mechanisms. 

Regarding the latter objective of Experiment 2, no differences in SSRTs 

emerged as a function of group (5.3.4.3). While being at odds with the 

aforementioned studies, this result is not entirely surprising, nor necessarily 

unexpected. For example, Cunillera and Colleagues (2015), observed prefrontal 

tDCS effects on electroencephalographic correlates of motor stopping, but failed 
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to induce a behavioural modulation as concerns SSRTs. Because we did not 

employed central measures of neural activity on our study, we cannot rule out 

that our manipulation induced differences that were not detected behaviourally. 

Similarly, a recent study from a different research group failed to observe any 

significant of tDCS over a different but nonetheless widely used measure of 

behavioural inhibition, i.e., the go/no-go task, as a function of anodal stimulation 

of the inferior frontal cortex (Dambacher, Schuhmann, Lobbestael, Arntz, 

Brugman, & Sack, 2015). It is worth noting that both studies (Cunillera et al., 

2015; Dambacher et al., 2015) employed a bilateral tDCS montage, as opposed 

to a fronto-polar montage such as the one used in Jacobson and Colleagues’ 

study (2011) to first modulate SST performance with tDCS, indicating that future 

attempts at modulating motor inhibition should turn to fronto-polar montages, 

which produced more consistent results (with the exception of Experiment 2 

presented here). In light of this conflicting evidence, additional research 

integrating both neuroimaging and neuromodulatory techniques is warranted to 

assess which one of the many tES protocols applied to modulation of motor 

stopping so far yields the highest consistency between behavioural and neural 

measures of the relevant outcomes, and also importantly why protocols 

targeting a similar area (i.e., rIFG) but employing different stimulation 

parameters (polarity, duration, intensity, etc.) produce different results (e.g., 

Sarkis et al., 2014).  

5.4.2 Conclusions 

The current study presented two experiments that overall provided evidence 

for a role of the rIFG in cognitive control over interfering memory traces as 

indexed by RIF. In particular, RIF was maximally reduced in the cathodal 

stimulation groups across the two experiments. However, the investigation of 

the relationship between RIF and cognitive control over prepotent motor 

responses, as well as the opportunity to jointly modulate the two abilities with 

tDCS, yielded inconclusive results. In this light, the main merits of the study are 

consolidating our previous finding concerning the effects of cathodal tDCS on 

RIF (Penolazzi et al., 2014), and extending it to the right IFG. This, in turn, 
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strengthens the notion that tDCS can be effectively used to modulate cognitive 

control, and poses new research questions worthy of future research efforts, 

especially concerning the development of stimulation protocols that may induce 

enhancement, rather than disruption, of memory control abilities, which could in 

turn inform novel therapeutic approaches to cognitive control impairments 

based on electrical stimulation. 
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6 RIF IS IMPAIRED IN SUBSTANCE-RELATED 

AND ADDICTIVE DISORDERS 

This chapter is currently in press as Stramaccia, D. F., Penolazzi, B., Monego, A. L., 

Manzan, A., Castelli, L., & Galfano, G. Suppression of Competing Memories in Substance-

Related and Addictive Disorders: A Retrieval-Induced Forgetting Study. Clinical Psychological 

Science. 

 

Substance-related and addictive disorders have been strongly linked to 

inhibitory control impairment. However, so far, inhibitory deficits in this class of 

psychiatric disorders have been tested almost exclusively with measures of 

inhibition of motor, overt behaviour. Here, instead, we investigated inhibitory 

deficits in these disorders by assessing the integrity of inhibitory control over 

internal, covert responses. Two groups of patients with alcohol and drug 

addiction and a control group of healthy individuals were administered a 

retrieval- practice paradigm assessing inhibition of competing memories. All 

groups showed comparable beneficial effects of retrieval practice. In contrast, 

only the control group achieved successful suppression of competing memories. 

This indicates that the deficit in clinical groups can be ascribed to impairment in 

inhibitory control over memory retrieval, rather than to general memory 

impairment. In conclusion, inhibitory deficits in addiction are more widespread 

than previously shown, as they encompass memory control mechanisms. 
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6.1 Introduction 

To maintain an adaptive and flexible behaviour, we need to be able to 

override habitual or inappropriate responses when circumstances require a 

change in the course of action. This ability, often termed “inhibitory control”, is a 

core cognitive process that is essential to goal-directed behaviour. Given the 

importance of this process, it is not surprising that it has been found to be 

impaired in a broad range of psychiatric conditions. In particular, inhibitory 

deficits represent a consistent feature characterizing substance-related and 

addictive disorders. Until now, however, research in this domain focused almost 

exclusively on inhibitory control of overt actions (e.g., Smith, Mattick, Jamadar, 

& Iredale, 2014). 

Here, we investigated the relationship between substance-related and 

addictive disorders and inhibitory control, with a focus on alcohol and heroin 

addiction. Poor inhibitory control is indeed a key feature of this class of 

disorders, acting as both a development and maintenance factor, and 

potentially emerging as a consequence of it (Smith et al., 2014). For example, it 

has been hypothesized that individuals with lower levels of inhibitory control 

may have higher chances of developing substance use disorders. Related to 

this point, substance abuse often sets off during adolescence. According to 

some authors (e.g., López-Caneda, Rodríguez Holduín, Cadaveira, Corral, & 

Doallo, 2014), inhibitory mechanisms and their neural underpinnings are still 

immature during adolescence, and this may increase the propensity to engage 

in substance abuse compared to adults. Substance abuse, in turn, could 

produce marked alterations in the brain and either prevent or disrupt the 

complete development of inhibitory control mechanisms during adolescence 

(Petit, Maurage, Kornreich, Verbanck, & Campanella, 2013). Moreover, 

substance abuse may impair control over impulsive behaviour, thus further 

increasing the chances of relapse in chronic users (e.g., Perry & Carroll, 2008). 

For these reasons, research on the failures of inhibitory control is chiefly 

important to design effective anti-drug strategies. 

Importantly, inhibitory control does not solely concern overt behaviour, but 

exerts its covert influence on the content of our thoughts, the unfolding of 
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emotions, and the process of memory retrieval (Anderson & Weaver, 2009). 

The present work aims to broaden our understanding of inhibitory deficits in 

substance-related and addictive disorders by focusing on a different, internally 

directed aspect of inhibitory control, which is the suppression of episodic 

memories. The abilities to suppress competing or unwanted memories are 

thought to be specific sub-processes of a broader inhibitory control mechanism 

(e.g., Storm & Levy, 2012), and to be mediated by lateral Pre-Frontal Cortex 

(PFC) activity, as shown by both neuroimaging (e.g., Wimber et al., 2008) and 

non-invasive brain stimulation (Penolazzi et al., 2014) studies. These forgetting 

abilities have been associated to beneficial outcomes and may be important to 

achieve adaptive functions such as memory updating, overcoming of 

interference, creative problem solving, and emotion regulation (e.g., Storm, 

2011). Suppression of competing or unwanted memories has been mainly 

investigated with the Retrieval-Practice Paradigm (RPP; Anderson et al., 1994), 

which probes incidental memory suppression, and the Think/No-Think paradigm 

(e.g., Anderson & Hanslmayr, 2014), which requires a voluntary memory 

suppression effort.  

In the present study, we investigated inhibition of competing episodic 

memories in two clinical populations diagnosed with substance-related and 

addictive disorders for alcohol and heroin, respectively. Inhibitory deficits in 

overt behaviour have been documented in both alcohol (e.g., Kamarajan, 

Porjesz, Jones, Choi, Chorlian, Padmanabhapillai, et al., 2005) and drug (Fu, Bi, 

Zou, Wang, Ye, Ma, et al., 2008) abuse. Importantly, both addictive disorders 

are often associated to impairments in episodic memory (e.g., Fernández-

Serrano, Pérez-García, & Verdejo-García, 2011; Pitel, Beaunieux, Witkowski, 

Vabret, Guillery-Girard, Quinette,,et al., 2007). However, little is known about 

deficits of incidental episodic memory suppression in relationship to these 

substances. To address this issue, we recruited a group of patients with a 

prevalent primary diagnosis of drug (mostly heroin) addiction and one group 

with primary diagnosis of alcohol addiction, and we compared them on 

performance in the RPP with a matched control group of healthy individuals. In 

the RPP, participants first study a list of category-exemplar word pairs. On a 
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subsequent phase, they repeatedly practice half the exemplars from half the 

categories. In a final test phase, participants’ memory for the entire study list is 

tested with a category-cued test. Typical results show memory enhancement for 

practiced over non-practiced exemplars (facilitation effect, FAC), and memory 

impairment for non-practiced exemplars from practiced categories, compared to 

non-practiced exemplars from non-practiced categories. The latter result shows 

that, under some circumstances, the very act of retrieving information from 

memory can elicit subsequent forgetting of related information, an effect that 

has been called Retrieval-Induced Forgetting (RIF, Anderson et al., 1994; see 

also Murayama et al., 2014).  

We predicted a stronger RIF effect in the control group, compared to the 

clinical groups, in which we expected a reduced or abolished effect. Because of 

the documented episodic memory deficits in both alcoholism and heroin abuse 

(e.g., Fernández-Serrano et al., 2011; Pitel et al., 2007), we did not necessarily 

expect performance in the FAC effect to be comparable across groups. 

However, unlike RIF, we expected the FAC effect to be reliable within each 

group and uncorrelated to RIF. Indeed, according to the inhibitory account of 

memory suppression (Anderson et al., 1994), FAC and RIF would reflect 

independent processes. 

6.2 Methods 

6.2.1 Participants 

84 participants entered the study: 56 patients with a primary diagnosis of 

addiction, and 28 healthy individuals (see Table 6.1). We recruited the patients 

in a clinic located in Northern Italy, where they were undergoing treatment for 

their disorder. Diagnoses were made by a board-certified attending research 

team of psychiatrists using the Diagnostic and Statistical Manual of Mental 

Disorders (DSM 5, American Psychiatric Association, 2013). 28 patients were 

included in the alcohol addiction (AA) group, and the other 28 were included in 

the drug addiction (DA) group, mainly composed of polyabusers (with a strong 

prevalence of opioid consumption). Most patients in the AA group were in 

treatment with disulfiram. Most patients in the DA group were in substitution 
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therapy with methadone or buprenorphine. Patients were tested at least three 

hours after receiving their daily treatment.  

All participants were native Italian speakers with no history of neurological 

disease or learning disability. The ethical committee for psychological research 

of the University of Padua approved the study. All participants signed an 

informed consent form prior to their participation. 

 

Table 6.1 Demographics and BIS-11 mean scores. Standard deviations are given in 

parentheses. * p < .05. 

 

Characteristic AA DA Control group 
Group 

comparison 

  (n=28) (n=28) (n=28) (F, t, or χ²) 

Age (years) 49.3 (8.2) 35.4 (10.2) 42.9 (15.5) F = 9.92* 

Gender 23 males 24 males 22 males χ² = 0.49 

Education (years) 9.8 (2.8) 10.3 (2.1) 11.3 (1.9) F = 3.89* 

Employed 20 21 25 χ² = 2.97 

Duration of addiction  

(days) 

3525.4 (3181.0) 3830 (3110.1) 

 

t =-0.36 

Duration of abstinence  

(days) 

449.8 (625.7) 210.7 (439.4) 

 

t = 1.66 

BIS-11 (mean score) 61.4 (8.4) 69.5 (11.6) 58.6 (8.5) F = 9.85* 

Attentional 16.9 (3.9) 18.6 (4.7) 15.3 (2.9) F = 5.09* 

Motor 19.7 (3.2) 23.4 (3.7) 19.3 (3.1) F = 12.88* 

Nonplanning 24.8 (3.8) 27.5(5.1) 23.9 (4.5) F = 4.90* 
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6.2.2 Retrieval Practice Paradigm 

Participants sat approximately 57 cm from a 15-in. laptop monitor (1024 × 

768 pixels, 60 Hz) on which stimuli were presented, using E-prime 1.1, in black 

against a grey background. 

All material was selected from the categorical production norms for the Italian 

language (Boccardi & Cappa, 1997). 84 category-exemplar word pairs 

belonging to 12 semantic categories were included, with 7 exemplars for each 

category. Stimuli were selected according to the following criteria: (i) within each 

category, 4 exemplars had high taxonomic strength (strong exemplars) and 3 

had low taxonomic strength (weak exemplars); (ii) words within the same 

category always had a different initial letter; (iii) semantic associations between 

and within categories were minimized; (iv) all words were between 5 and 10 

letters long. 

In the study phase, participants studied all the 84 category-exemplar word 

pairs (e.g. “fruit-prune”). They were instructed to memorize each exemplar by 

relating it to its category. Trials started with a 500-ms fixation cross, followed by 

a 500-ms blank screen; after that, the category-exemplar word pair appeared 

and remained visible for 3500 ms, followed by a final 500-ms blank screen. To 

discourage integration strategies, which can impair RIF (Murayama et al., 2014), 

stimuli were presented in a randomized blocked order, with the constraint that 2 

items from the same category could not be shown one after another. Blocks 

consisted of 12 items, with each item randomly drawn from one of the 12 

semantic categories.  

In the practice phase, participants practiced 4 times only the weak exemplars 

of half the semantic categories (72 trials in total). This was done to increase RIF, 

as the remaining strong exemplars are more likely to exert competition 

(Anderson et al., 1994). In this phase, on each trial, participants were shown 

only the category and the first two letters of each exemplar (e.g. “fruit-pr___”). 

Each pair was visible for 8000 ms. Participants were instructed to type the full 

name of the associated exemplar. Since about half the patients had poor 

familiarity with computers, they received a modified version of the task, where 
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they answered by speaking loudly to the experimenter, who then typed the 

answer. An identical number of participants in the control group performed the 

practice phase in the same fashion. 

To allow for subsequent analysis of RIF and FAC effects, the weak 

exemplars practiced during this phase were labelled as RP+ items, while non-

practiced strong items belonging to practiced categories were labelled RP-. 

Weak items belonging to non-practiced categories were labelled NRP+, 

whereas strong items belonging to non-practiced categories were labelled NRP-. 

Categories shown in this phase were counterbalanced across participants and 

groups, so that every category contributed equally to all four types of items, and 

to the suppression and facilitation effects at a group level. To this end, we used 

four counterbalanced lists.   

Between the practice phase and the final test phase of the RPP, participants 

filled several questionnaires as a distractor task. The semantic content of the 

items in the questionnaires was unrelated to the category-exemplar pairs used 

in the RPP. The questionnaires also included the Barratt Impulsiveness Scale-

11 (BIS-11; Patton, Stanford, & Barratt, 1995) consisting of 30 items rated on a 

4-point Likert scale, encompassing Motor Impulsiveness, Nonplanning 

Impulsiveness, and Attentional Impulsiveness.  

In the test phase, participants were shown all stimuli (84 trials) again. 

Presentation format and response modality for the stimuli was the same as in 

the practice phase, with the exception that on each trial participants were now 

shown the category plus the first letter of an exemplar (e.g. “fruit-p____”). 

Participants were instructed to type the full name of the associated exemplar. 

Presentation order was similar to the previous phases, with the additional 

constraint that all RP- and NRP- items were shown before all the RP+ and 

NRP+ items, thus allowing to control for test-based output interference effects 

on the RIF measure (e.g., Storm & Levy, 2012). Moreover, it has been shown 

that RIF measured with this specific final test format, as opposed to test formats 

that allow for greater contribution of interference, is positively correlated with the 

efficiency of motor inhibition in healthy individuals (Schilling et al., 2014). 
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6.2.3 Sustained Attention to Response Task (SART) 

After the participants had completed the RPP, they performed the SART 

(Robertson, Manly, Andrade, Baddeley, & Yiend, 1997), included as a control 

measure for a general attentional or reactivity impairment. The participants were 

instructed to respond to each item of a rapid sequence of digits, interleaved with 

masks, except for the digit “3” for which they were asked to withhold response. 

225 single digits from “1” to “9” were centrally presented for 250 ms, 25 times 

each, interleaved with a mask (“#”) lasting 900 ms. To discourage perceptual 

strategies, digits were presented at varying font size (48, 72, 94, 100, or 120 

point, Symbol font). Participants were instructed to respond as quickly and 

accurately as possible by pressing the spacebar. The SART is intended to elicit 

and probe slips of attention, as the task is very fast and repetitive but also 

includes highly infrequent trials (4%) associated to a different instruction.   

6.2.4 Analysis 

6.2.4.1 Retrieval Practice Paradigm (RPP) 

For the RPP, only the test phase data were analysed. For each participant, 

the proportion of correct recall for each item type (i.e. RP+, NRP+, RP-, NRP-) 

was computed. Subsequently, we computed individual FAC (RP+ minus NRP+) 

and RIF (NRP- minus RP-) effects. Higher values of FAC indicate the beneficial 

effects of practice, whereas higher values of RIF indicate more efficient memory 

suppression. Next, we performed a mixed-design ANOVA for FAC, with group 

(i.e. AA, DA, Control) as a between-participant and item type (i.e. RP+, NRP+) 

as a within-participant factor. Similarly, we conducted a mixed-design ANOVA 

for RIF, with group as a between-participant and item type (i.e. NRP-, RP-) as a 

within-participant factor. Because groups were different in terms of age and 

education (see Table 6.1), in the presence of significant effects involving group 

as factor, we also reported the outcomes of ANCOVA, in which the impact of 

these variables was controlled for.  

6.2.4.2 Sustained Attention to Response Task (SART) 

A similar approach was adopted to analyse SART data, with Group as factor, 

and RTs for correct responses, percentage of total errors, and percentage of 
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commission errors as dependent measures. To address group differences in 

self-reported impulsivity, a measure that might potentially be related to memory 

suppression, we computed BIS-11 total scores and submitted them to an 

ANOVA with group as factor. Because group was significant (see Table 6.1), we 

performed an ANCOVA on RIF scores with BIS-11 total score as covariate to 

ascertain whether group differences in memory suppression could be affected 

by different self-reported impulsivity. Finally, Pearson’s correlations were 

performed to address possible associations between cognitive processes 

underlying RPP, SART, and self-reported impulsivity. 

6.3 Results 

6.3.1 Retrieval Practice Paradigm (RPP) 

As for the FAC effect, the ANOVA revealed a significant main effect of Item 

Type, F(1,81) = 146.88, p < .001, η2
p = .64, reflecting a better recall of RP+ (M =  

34.19, 95%CI = 30.30/38.09) items than NRP+ items (M = 14.88, 95%CI = 

12.59/17.17). Neither the main effect of Group, F(2,81) = 2.79, p = .068, η2
p 

= .06, nor the Group x Item Type interaction, F(2,81) = 1.10, p > .250, η2
p = .03, 

were significant. Hence, all groups were able to learn from practice to a similar 

extent (see Figure 6.1, Panel A). 

As for the RIF effect, the ANOVA revealed a significant main effect of Group, 

F(2,81) = 3.47, p = .036, η2
p = .08. Critical for the purpose of the study, the 

Group x Item Type interaction approached statistical significance, F(2,81) = 

3.05, p = .053, η2
p = .07. As anticipated above, to rule out the possibility that 

differences in RIF among the three groups reflected differences in 

age/education (see Table 6.1) rather than cognitive alterations in memory 

suppression mechanisms related to substance abuse, an ANCOVA was 

conducted using the two variables as covariates. Neither the Age x Item Type 

interaction, F(1,79) = 1.30, p > .250, η2
p = .02, nor the Education x Item Type 

interaction, F(1,79) = 1.05, p > .250, η2
p = .01, were significant. The main effect 

of Group disappeared when controlling for age and education, F(2,79) = 1.41, p 

> .250, η2
p = .03. Most important, the Group x Item Type interaction yielded the 

predicted significant effect, F(2,79) = 3.68, p = .030, η2
p = .08 (Figure 6.1, Panel 
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B), whereas the main effect of Item Type was not significant, F(1,79) = 2.47, p 

= .120, η2
p = .03. Two-tailed Bonferroni-corrected t-tests indicated that RIF was 

significant in the control group, t(27) = 2.78, p = .010, but not in the DA, t(27) = -

.17, p > .250, and AA, t(27) = -.06, p >.250, groups. The Bayesian information 

criterion (BIC) was computed to disentangle which model (null vs. alternative 

hypothesis) was more strongly supported by the data regarding the presence of 

RIF in each group. The posterior probability favoring the alternative hypothesis 

(NRP- items recalled better than RP- items) in the control group was pBIC(H1|D) 

= 0.866 which, according to the conventional categorization of degrees of 

evidence (Masson, 2011), constitutes a positive evidence for the presence of 

RIF in this group. In sharp contrast, the posterior probability supporting the 

alternative hypothesis was pBIC(H1|D) = 0.161, for the DA group and pBIC(H1|D) = 

0.159 for the AA group, clearly indicating that no RIF was present in these 

patients.  
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Figure 6.1 Recall data from the final test phase in the three groups. Panel A shows 

that FAC (better recall of RP+ items than NRP+ items) was significant and comparable in 

the three groups. Panel B shows that RIF (better recall of NRP- items than RP- items) 

was significant only for the control group. Bars represent 95% CIs. 

 

Given that the DA group was not entirely homogeneous in terms of diagnosis, 

we re-run all the analyses by restricting this group to the 24 patients with a 
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primary diagnosis of heroin addiction. The overall results were virtually 

unchanged.  

6.3.2 Sustained Attention to Response Task (SART) 

Turning to SART, the Group factor did not yield a significant effect in the 

ANOVAs conducted on RTs for correct responses, F(2,81) = .79, p > .250, η2
p = 

.02, percentage of total errors, F(2,81) = 1.79, p = .174, η2
p = .04, and 

percentage of commission errors, F(2,81) = .23, p > .250, η2
p = .01. Thus, the 

three groups did not exhibit any reliable differences in their sustained attention 

abilities. 

The ANOVA on BIS-11 total scores revealed a significant main effect of 

Group, F(2,81) = 9.85, p < .001, η2
 = .20. Bonferroni-corrected post-hoc 

analyses revealed that participants in the DA group reported to be significantly 

more impulsive (M = 69.54, 95%CI = 65.05/74.02) than both participants in the 

AA (M = 61.39, 95%CI = 58.12/64.66) and the control group (M = 58.57, 95%CI 

= 55.29/61.85), which were not significantly different from each other (see Table 

6.1). An ANCOVA on the proportion of correct recall for RP- and NRP- items 

(RIF effect) with total BIS-11 score as covariate confirmed the presence of a 

significant Group x Item Type interaction, F(2,80) = 3.25, p = .044, η2
p = .08, in 

the absence of a significant BIS-total x Item Type interaction, F(1,80) =.48, p > 

.250, η2
p = .01. This pattern clearly shows that the differences in RIF among the 

three groups were not driven by differences in self-reported impulsivity. 

Finally, Pearson’s correlation analyses conducted between RPP measures, 

SART measures, and BIS-11 scores revealed that RIF and FAC were not 

associated with each other (p > .250), and that neither RIF nor FAC exhibited 

significant correlations with the different SART measures and BIS-11 total and 

subscale scores. A similar lack of association was also observed when 

correlating SART and BIS-11 measures. 

6.4 Discussion 

Deficits in inhibition and cognitive control are a key feature of substance-

related and addictive disorders, as they may contribute to the onset, 
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maintenance, and relapse of addiction (e.g., Smith et al., 2014). The majority of 

research so far has focused on motor inhibition and impulsivity. However, 

inhibitory mechanisms have been hypothesized also in the context of episodic 

memory. Failures of inhibitory control in this domain may be as important for our 

understanding of this class of disorders as those observed in overt action, but 

remain largely unexplored. The present study opens a new window in this 

regard, by investigating the suppression of competing memories in two distinct 

clinical populations, namely individuals affected by alcohol- and heroin- use 

disorders. Indeed, previous research has documented impairment of intentional 

memory suppression in these patients (e.g., Noël, Billieux, Van der Linden, Dan, 

Hanak, de Bournonville, et al., 2009; Zou, Zhang, Huang, & Weng, 2011), 

although the paradigms used so far do not allow establishing the involvement of 

a pure inhibitory mechanism (e.g., Sahakyan & Delaney, 2005). Importantly, 

here we focused on incidental suppression mechanisms, which have been 

found to be impaired in other clinical populations characterised by dysregulation 

of executive control, such as patients suffering from ADHD (Storm & White, 

2010), or schizophrenia (Racsmány, Conway, Garab, Cimmer, Janka, Kurimay , 

et al., 2008). 

Our hypothesis was primarily driven by two sets of evidence: The known 

inhibitory deficits regarding motor action, extensively investigated in substance 

abuse, and the prefrontal loci of brain damage due to extensive substance 

abuse. As discussed above, substance-related and addictive disorders can 

have a dramatic impact on cognitive and neurological integrity. With respect to 

the clinical populations examined here, both alcoholism and opioid abuse have 

been associated to widespread deficits in executive control and to structural 

changes comprising the fronto-temporal cortices and the hippocampus (e.g., 

Stavro, Pelletier, & Potvin, 2013; Wang, Li, Zhou, Liao, Tang, Liu, et al., 2012). 

Given that PFC has been proposed as one of the key nodes in the neural 

network supporting memory suppression (e.g., Anderson & Hanslmayr, 2014; 

Penolazzi et al., 2014), we hypothesized that substance abuse might be 

associated to impairments in the ability to suppress competing memories.  
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Our results from the RPP confirmed the hypothesis, with both clinical groups 

showing impaired RIF (i.e., memory suppression) compared to the control group. 

Importantly, the present clinical samples exhibited an intact FAC effect. This 

opposed pattern of impaired RIF and intact facilitation points to a specific deficit 

in suppressing competing memories, rather than an overarching impairment of 

the episodic memory system. Moreover, we provided two additional and 

mutually independent pieces of evidence in favour of a selective deficit 

interpretation of our results: i) overall recall performance in the test phase did 

not significantly differ across groups, when controlling for demographic 

variables that were not evenly matched between groups; ii) similarly, 

performance in the SART was comparable across groups, indicating that our 

participants in the clinical samples did not display a deficit in sustained attention 

compared to the control group.  

6.4.1 Relevance 

These findings have important implications for the understanding of 

substance-related and addictive disorders and for their relevance in testing 

extant accounts of RIF. An interesting future development of this study will be 

testing the same clinical populations with material specifically tailored to the 

disorders under examination. This approach has recently proved very effective 

in the investigation of selective forgetting deficits in anxiety disorders as a 

function of the semantic relatedness of the material with respect to the disorder 

(Kircanski, Johnson, Mateen, Bjork, & Gotlib, 2016; Law, Groome, Thorn, Potts, 

& Buchanan, 2012). This latter approach might further clarify the source and 

extent of the inhibitory deficits characterizing substance-related and addictive 

disorders. For example, it could be hypothesized that category-exemplar word 

pairs that directly relate to substance abuse may undergo even poorer memory 

suppression in these patients, due to increased familiarity with such material or, 

alternatively, the presence of a memory bias that forces toward additional 

processing of disorder-relevant material (e.g., Saunders, 2012). Turning to 

extant accounts of RIF, the present study provides strong evidence of inhibitory 

deficits in episodic memory suppression within substance-related and addictive 



RIF is impaired in substance-related and addictive disorders 

Davide Francesco Stramaccia - November 2016   155 

disorders. Importantly, although deficits in episodic memory have been reported 

in addictive disorders (e.g., Fernández-Serrano et al., 2011; Pitel et al., 2007), 

in the present study, this deficit was specific for the detrimental (i.e. RIF), but 

not for the beneficial effects (i.e. FAC) of retrieval practice. This pattern, 

together with the observation of a null correlation between the two phenomena, 

is in line with predictions stemming from inhibitory accounts of RIF (see Storm & 

Levy, 2012), which posit RIF and facilitation to reflect independent cognitive 

mechanisms, and less consistent with alternative accounts based on either 

interference or inappropriate contextual cuing (e.g., Raaijmakers & Jakab, 2013). 

Extending inhibitory impairment to the memory domain in addictive disorders 

may lend support to a more domain-general account based on the proposal of a 

unitary inhibitory mechanism over action and memory (Anderson & Weaver, 

2009). 

6.4.2 Limitations 

Due to the present experimental design, it is difficult to establish whether the 

deficit in memory suppression is either caused by, or rather responsible for, the 

onset of the disorders examined here, and inhibitory deficits could entail either 

or both these relationships with substance addiction. Longitudinal studies, along 

with research addressing the recovery of cognitive performance in abstinent 

patients, will contribute to disentangle the role of inhibitory deficits within 

substance abuse, and their relationship with possible altered working memory 

functioning. 

6.4.3 Conclusions 

In conclusion, the present findings highlight that alterations in inhibitory 

abilities in substance-related and addictive disorders are more widespread than 

previously shown, as they involve not only overt behaviour but also internally-

directed aspects of inhibitory control related to memory and the content of our 

thoughts. This result suggests that neuropsychological assessment of addicted 

patients should also test memory suppression abilities. Future clinical research 

will have the important task of addressing whether other types of addictive 

disorders (e.g., pathological gambling) exhibit a similar cognitive profile with 
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respect to internal inhibitory mechanisms. This, in turn, might have important 

implications for a better understanding of addictions and for planning more 

comprehensive clinical interventions taking into account all of the different 

facets of inhibitory control impairments. 
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7 RIF IN ANOREXIA AND BULIMIA NERVOSA 

This chapter has been submitted for publication as Stramaccia, D. F., Penolazzi, B., Libardi, 

A., Genovese, A., Castelli, L., Palomba, D., & Galfano, G. Control over Interfering Memories in 

Eating Disorders. 

  

Recent studies have suggested that patients suffering from either anorexia 

nervosa (AN) or bulimia nervosa (BN) exhibit abnormal performance in the 

ability to control cognitive interference in response selection. Here, we assessed 

the status of cognitive control in episodic memory, by addressing the ability to 

inhibit interfering memories. To this end, we used the retrieval-practice 

paradigm, which allows for measuring both the beneficial and the detrimental 

effects of memory practice. The latter phenomenon, known as retrieval-induced 

forgetting (RIF), is thought to reflect an adaptive inhibitory mechanism aimed at 

reducing competition in memory retrieval. Twenty-seven healthy controls and 27 

patients suffering from eating disorders (either AN or BN) performed a retrieval-

practice paradigm and a control task addressing general reactivity, and filled a 

self-report questionnaire on impulsivity. No differences between patients and 

healthy controls were observed for the beneficial effects of practice. The same 

pattern also emerged for RIF. However, when patients with AN and BN were 

analyzed separately, a clear dissociation emerged: Patients with AN displayed 

no hint of RIF, whereas patients with BN showed an intact memory suppression 

performance that was even better than that of the control group. No group 
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differences emerged in the control task. Limitations The limited sample size 

does not allow to draw inferences about subtypes of AN. Our findings suggest a 

specific impairment in the ability to suppress interfering memories in patients 

with AN, thus extending current evidence of cognitive control deficits in AN to 

episodic memory. 

7.1 Introduction 

Research aimed at investigating the nature and the aetiology of eating 

disorders (ED) has been the target of an increasing number of studies in recent 

years (e.g., Treasure, Claudino, & Zucker, 2010). Indeed, there is a great bulk 

of knowledge concerning behavioural manifestations involved in the 

psychopathology of anorexia nervosa (AN) and bulimia nervosa (BN), with 

some studies suggesting a link between AN and compulsive traits on the one 

hand (e.g., Serpell, Livingstone, Neiderman, & Lask, 2002) and BN and 

impulsive personality on the other hand (e.g., Fischer, Smith, & Cyders, 2008). 

Yet, much more effort needs to be directed towards characterising the cognitive 

profile of patients with ED, as the cognitive reflections of these mental disorders 

are not fully understood (Zakzanis, Campbell, & Polsinelli, 2010). For instance, 

evidence is accumulating suggesting that AN patients exhibit an alteration in the 

ability to control shifts of spatial attention (Dalmaso, Castelli, Franchetti, Carli, 

Todisco, Palomba, & Galfano, 2015; Dalmaso, Castelli, Scatturin, Carli, Todisco, 

Palomba, & Galfano, 2016; Watson, Werling, Zucker, & Platt, 2010). However, a 

less consistent picture emerges from studies addressing executive functions 

and cognitive control, which yielded mixed results. For example, in their 

systematic review of reactive inhibitory control in EDs, Bartholdy, Dalton, O’Daly, 

Campbell, and Schmidt (2016) showed that many studies failed to observe 

impairment of reactive inhibition, as indexed by Stop-Signal Reaction Times 

(SSRTs), which are thought to reflect the individual covert latency of the 

cognitive process that reactively inhibits motor behaviour (Logan, Schachar, & 

Tannock, 1997). They further argued that other inhibitory control components 

could have a stronger relationship with EDs and their symptoms. In contrast, a 

meta-analysis on inhibitory control in bulimic-type EDs (Wu, Hartmann, Skunde, 
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Herzog, & Friederich, 2013), which tried to address the variability in the results 

observed so far on this issue, found a general impairment of inhibitory control in 

both reactive inhibition tasks (e.g., stop-signal task) and cognitive interference 

control tasks (e.g., Stroop task). A similar deficit has recently been documented 

by Yano, Kawano, Tanaka, Kohmura, Katayama, Nishoka et al. (2016), who 

found dysfunctional cognitive control in ED patients (mainly diagnosed with AN) 

as measured by a modified Simon task, despite preserved sustained attention.   

Neuroimaging techniques such as functional Magnetic Resonance Imaging 

(fMRI) have also been used, in order to provide additional evidence regarding 

the status of inhibitory control in EDs, as well as its neural underpinnings. For 

example, Skunde, Walther, Simon, Wu, Bendszus, Herzog, et al. (in press) 

found evidence of altered activation in the fronto-striatal circuit during inhibitory 

performance in BN, and suggested that it could moderate the severity of the 

disease symptoms. Moreover, a few studies found altered prefrontal activity in 

AN, related to cognitive control tasks (e.g., Lock, Garrett, Beenhakker, & Reiss, 

2011; Zastrow, Kaiser, Stippich, Walther, Herzog, Tchanturia et al., 2009). For 

instance, Collantoni, Michelon, Tenconi, Degortes, Titton, Manara, and 

Colleagues (2016) reported impaired response inhibition in a stop-signal task 

accompanied by aberrant functional connectivity in the right inferior frontal gyrus, 

which is a critical brain region in inhibitory control (e.g., Stramaccia et al., 2015).  

An important aspect of the studies reviewed so far is that they highlighted 

how executive functions and inhibitory processing are important not only in the 

control of action, but also in the control of covert behaviour, potentially involved 

in the pathogenesis of ED symptoms (e.g., compulsive eating or uncontrolled 

food restriction). However, a limited variety of tasks (e.g., Simon task, Go/No-

Go task) has been used to address the issue in EDs. Here, we aimed to further 

this line of research by investigating control of interference over episodic 

memory, which may also be important regarding the cognitive profile of patients 

suffering from EDs. In particular, recent works with healthy participants have 

pointed out the beneficial role that suppression over interfering or unwanted 

memories can play in achieving goal-oriented behaviour, emotion regulation, 

and wellbeing (e.g., Nørby, 2015; Storm, 2011; Storm & Angello, 2010). 
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Because of that, the aim of the present study was to investigate whether the 

specific ability to recruit executive control mechanisms deputed to suppress 

interfering memories is altered in patients with a primary diagnosis of ED. To 

this end, we measured for the first time the amount of retrieval-induced 

forgetting (RIF) in a sample of ED patients, and compared it to a healthy control 

group. The RIF effect describes the counterintuitive situation where retrieving 

items from episodic memory impairs subsequent recall of related items. RIF 

represents the detrimental effect of practice and is generally interpreted as the 

by-product of inhibitory mechanisms that are recruited to reduce interference 

from associated, task-irrelevant items, in order to promote retrieval of the task-

relevant items (Anderson, 2003). Moreover, RIF seems to be a ubiquitous effect 

in episodic memory, as it has been measured with a broad variety of stimuli 

(e.g., Galfano et al., 2011), and it has been found to be impaired in a variety of 

psychiatric and neuropsychological conditions other than EDs (e.g., Storm & 

Levy, 2012). In the present study RIF was investigated by using the retrieval-

practice paradigm (RPP; Anderson, 1994), which is the procedure most 

commonly used to probe RIF in a laboratory setting. In the RPP, participants 

study a list of numerous word pairs composed of a semantic category and an 

exemplar belonging to that category. Subsequently, they perform repeated 

practice on half the exemplars from half the categories. Lastly, participants’ 

memory for the entire study list is tested, most frequently by means of a 

category-plus-letter cued recall test. This procedure bears two typical findings: 

on the one hand, memory at test is enhanced for practiced over non-practiced 

exemplars, an effect often called “facilitation” (FAC); on the other, and more 

surprisingly, memory is impaired for non-practiced exemplars that belong to 

practiced categories, compared to non-practiced exemplars that belong to non-

practiced categories, which is what is usually referred to as RIF effect.  

Clinical populations characterized by symptoms associated with either 

impulsivity or compulsivity (e.g., Attention Deficit Hyperactivity Disorder; 

Obsessive-Compulsive Disorder, OCD) often show reduced levels of RIF which 

has been interpreted as evidence for a deficit in the mobilization of inhibitory 

mechanisms in the context of episodic memory (e.g., Demeter et al., 2014; 
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Racsmány et al., 2008; Storm & White, 2010). Similar findings have been 

reported with other experimental tasks that probe memory control, such as the 

think/no-think paradigm (Depue et al., 2010; Sala, Caverzasi, Marraffini, De 

Vidovich, Lazzaretti, d’Allio, et al., 2009). Because patients with ED are 

characterized by impulsive and compulsive symptoms, with the former 

apparently being more prominent in BN (e.g., Fischer et al., 2008) and the latter 

in AN (e.g., Serpell et al., 2002), patients with ED could exhibit alterations in 

exerting control over interfering memories. According to an influential class of 

models available in the literature (Anderson, 2003; Bäuml, Pastötter, & 

Hanslmayr, 2010), RIF and FAC would be independent phenomena, as only 

RIF would rely on executive processing and suppression mechanisms. This 

view is supported by evidence suggesting that the two phenomena rely on 

dissociable neural underpinnings (e.g., Penolazzi et al., 2014; Wimber et al., 

2009). In this regard, it is worth noting that the brain regions that seem to be 

chiefly involved in RIF (mainly located in the prefrontal cortex, see Wimber et al., 

2009) are partially overlapping with those showing a reduced activity in patients 

with ED performing cognitive control tasks (e.g., Lock et al., 2011; Zastrow et al., 

2009). Based on this reasoning, and in consideration of the possible link 

between ED and dysfunctional executive processing (Wu et al., 2013), we 

expected to observe a weaker RIF effect in the ED group, compared to the 

control group, signifying impairment in memory control ability. In contrast, we 

expected to observe similar levels of FAC across the two groups, reflecting an 

intact ability to strengthen items in episodic memory through repeated retrieval 

practice.  

7.2 Methods 

7.2.1 Participants 

54 participants took part in the study: 27 malnourished outpatients with a 

primary diagnosis of eating disorders (ED group) in treatment at the Azienda 

Provinciale per i Servizi Sanitari, Trento, Italy, and 27 healthy volunteers 

recruited from the local community and university (Control group). All patients 

were diagnosed by a board-certified attending research team of psychiatrists 
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according to the DSM-5 criteria for ED (American Psychiatric Association, 2013). 

The ED group was composed of 2 males and 25 females, and included 15 AN 

patients (mean age = 29.53, SD = 10.97; mean years of education = 14.33, SD 

= 1.76; mean BMI = 17.3, SD = 2.06) and 12 BN patients (mean age = 27.42, 

SD = 8.72; mean years of education = 14.25, SD =1.76; mean BMI = 22.51, SD 

= 3.94). Five of the AN patients were classified as Binge Purge subtype, and 10 

as Restrictive subtype. Two AN patients were reported to display OCD and 

borderline personality disorder symptoms, respectively. Four BN patients were 

reported to display depressive symptoms. Sixteen patients were medicated (10 

patients with AN, 6 patients with BN). Most common medications consisted of 

benzodiazepines and/or SSRI antidepressants. Medical treatment also included 

vitamins and dietary supplements. The Control group consisted of 8 males and 

19 females (mean age = 27.22, SD = 7.63; mean years of education = 15.67, 

SD = 2.97; mean BMI = 21.88, SD = 2.52). There was no significant difference 

in either age, t(52) = -.57, p = .57, or years of education, t(52) = 1.90, p = .07, 

between the ED group and the healthy control group. All participants were 

native Italian speakers with no history of neurological disease or learning 

disability. The Ethics Committee for Psychological Research of the University of 

Padua approved the study. All participants signed an informed consent form 

prior to their participation, and another one at the end of the whole procedure. 

7.2.2 Retrieval Practice Paradigm (RPP) 

Participants sat in front of a 15-in. laptop monitor (1366 × 768 pixels, 60 Hz), 

where stimuli were presented in black against a grey background (Courier New 

bold font, 30pt). All tasks were delivered using E-prime 2.0. 

We used an adapted version of the Retrieval-Practice Paradigm (Anderson et 

al., 1994). All stimuli were selected and adapted from the categorical production 

norms for the Italian language (Boccardi & Cappa, 1997). Ninety-six category-

exemplar word pairs belonging to 12 semantic categories were included, with 2 

parallel subsets of 4 exemplars for each category. Stimuli were selected 

according to the following criteria: (i) semantic associations within and between 

categories were minimized; ii) exemplars had medium to high taxonomic 
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strength; (iii); on average, exemplars had a very low lexical frequency, 

according to the online database itWac (Baroni, Bernardini, Ferraresi, & 

Zanchetta, 2009); (iv) categories and subsets were roughly balanced in term of 

taxonomic strength and lexical frequency of their respective exemplars v) 

exemplars within the same category never begun with the same initial letter; (vi) 

all words were no longer than 11 and no shorter than 5 letters. 

The participants proceeded to study all the 96 category-exemplar word pairs 

(e.g. “birds-sparrow”), with the instruction to memorize each exemplar by 

thinking of how it could be related to its category (see Figure 7.1). Study trials 

started with a 500-ms fixation cross, followed by a category-exemplar word pair 

that stayed on screen for 4000 ms, followed by a 500-ms blank screen. Stimuli 

were presented in a randomized blocked order, with the constraint that 2 items 

belonging to the same category were never shown one after another. Each 

block consisted of 12 items, and each item was randomly drawn from one of the 

12 semantic categories. These precautions were used to discourage strategies 

known to promote integration, which in turn can reduce RIF (Anderson & 

McCulloch, 1999).  

 

Figure 7.1 Schematic illustration of the experimental procedure, with tasks ordered 

chronologically from left to right. Participants studied all the experimental material from 

the RPP first, and after that they immediately engaged in repeated practice on a subset 

of the material (see section 2.2.1.2.). Subsequently, participants performed the SART and 

filled the BIS-11 questionnaire. Finally, participants performed the test phase of the RPP, 

where they were tested on all the stimuli from the study phase. 

trees–beech 

birds–sparrow 

trees–willow 

birds–vulture 

trees–w____ 

birds–v____ 

trees–b____ 

birds–s____ 

birds–sp___ 

…… 

birds–sp___ 

…… 

RPP – PRACTICE PHASE RPP – STUDY PHASE RPP – TEST PHASE SART & BIS-11 

SART 

BIS-11 

RP+ 

RP+ 

RP+ 

RP- 

NRP- 

NRP+ 

TIME 



An investigation into memory control: Neuromodulatory approaches and potential clinical target populations 

164  Davide Francesco Stramaccia - November 2016 

In the following practice phase, the participants actively practiced one subset 

(four exemplars) of half categories for three times, with 72 trials in total. 

Presentation order was similar to the previous phase. On each trial, participants 

were first shown a fixation cross for 500 ms, followed by the presentation of a 

semantic category alone (e.g. “birds”) for 1500 ms to promote activation of 

interfering exemplars (see Bajo, Gómez-Ariza, Fernandez, & Marful, 2006) and 

subsequent need for memory control, followed by the same category and the 

first two letters of an exemplar (e.g. “birds-sp___”) for 8000 ms. During that time, 

participants were instructed to type in full the name of the associated exemplar 

that they had previously studied that matched both the category and the stem 

provided. Exemplars that received practice during this phase were labelled as 

RP+ items, while non-practiced exemplars belonging to practiced categories 

were labelled RP-. Exemplars from one of the subsets of each non-practiced 

categories were labelled NRP+, whereas exemplars from the remaining subsets 

of non-practiced categories were labelled NRP-. The designation of practiced 

and control categories and exemplars that contributed to the measurement of 

both RIF (NRP- minus RP-) and FAC (RP+ minus NRP+) effects was roughly 

counterbalanced across all participants by using predetermined lists (24 lists in 

total). 

After the practice phase and the Sustained Attention to Response Task 

(SART, Robertson et al., 1997; see 7.2.3 below), participants took part in the 

test phase of the RPP (see Figure 7.1), and they were tested on all the stimuli 

presented in the study phase (96 trials). Each trial started with a 500-ms fixation 

cross, followed by the stimulus for 8000 ms, with a similar presentation format 

and response modality as in the practice phase, with the exception that 

participants were shown the category along with the first letter only (e.g. “birds-

s____”). Participants were instructed to type the corresponding exemplar in full. 

Presentation order was handled as in the previous phases, with the additional 

constraint that all RP- and NRP- items were shown before all the RP+ and 

NRP+ items, to avoid output interference effects that could inflate the RIF 

measure (Anderson, 2003).  
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7.2.3 Sustained Attention to Response Task (SART) 

Between the practice phase and the final test phase of the RPP, participants 

performed the SART (Robertson et al., 1997), which was included as a control 

measure to address a more general impairment of attentional or reactivity 

abilities, as opposed to a specific deficit in the ability to exert cognitive control 

over interference. Participants were instructed to respond to each item of a 

rapid sequence of digits, interleaved with masks, except for the digit “3” for 

which they were asked to withhold response. Two-hundred and twenty-five 

single digits from “1” to “9” were presented for 250 ms, 25 times each, 

interleaved with a mask (“#”) lasting 900 ms. Digits were presented at a varying 

font size (48, 72, 94, 100, or 120 point, Symbol font), in order to discourage 

participants from using perceptual strategies. Stimuli were presented centrally, 

in black against a grey background. Participants were instructed to respond as 

quickly and accurately as possible with a key press of the spacebar, and to 

withhold response upon presentation of the digit “3”. As the main purpose of the 

SART is to elicit slips of attention, the task works at a very quick and repetitive 

pace, but also incorporates highly infrequent trials (4%) that require a different 

response. After completing the SART, participants also filled the Italian version 

of the Barratt Impulsiveness Scale-11 (BIS-11; Fossati, Di Ceglie, Acquarini, & 

Barratt, 2001), whose semantic content is unrelated to the material used in the 

RPP. The questionnaire consists of 30 items rated on a 4-point Likert scale, 

pertaining to three dimensions: Motor Impulsiveness (tendency to act on 

impulse without forethought), Nonplanning Impulsiveness (lack of future 

planning), and Attentional Impulsiveness (difficulty in maintaining attention).  

7.2.4 Analysis 

7.2.4.1 Retrieval Practice Paradigm (RPP) 

For the RPP, we analysed the data collected during the test phase to obtain 

an individual measure of FAC and RIF effects. For each participant, we 

computed the proportion of correct recall for each Item Type (i.e., RP+, NRP+, 

RP-, NRP-). We then focused on the beneficial and the detrimental effects of 

practice, by computing FAC (RP+ minus NRP+) and RIF (NRP- minus RP-) 
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effects, respectively. We first performed two mixed-design ANOVAs on FAC 

and RIF effects, with Group (ED, Control) as a between-participant factor and 

Item Type (i.e., RP+, NRP+ for FAC, NRP-, RP- for RIF) as a within-participant 

factor. Subsequently, we explored whether patients diagnosed with AN and 

those diagnosed with BN displayed similar patterns of cognitive response. 

Because visual inspection of the data suggested different patterns in the two 

types of patients, we performed the same analyses on FAC and RIF effects, 

with the Group factor now consisting of three levels (i.e., AN, BN, Control). 

Because the latter analyses yielded the most informative results, all the 

subsequent analyses were performed with Group as a three-levels factor. 

7.2.4.2 Sustained Attention to Response Task (SART) 

For the SART, we conducted three one-way ANOVAs with Group as factor, 

each dealing with a different dependent measure (mean RTs for correct 

responses only, percentage of total errors, and percentage of commission 

errors). A similar approach was used to analyse data from the BIS-11 measures 

of self-reported impulsivity (total score, and Motor Impulsiveness, Nonplanning 

Impulsiveness, and Attentional Impulsiveness subscales). Finally, we computed 

Pearson’s correlations to detect potential associations between the measure of 

cognitive control over interference (RIF), the measure of the beneficial effect of 

practice (FAC), sustained attention (SART), and self-reported impulsivity (total 

BIS-11 score, Motor Impulsiveness, Nonplanning Impulsiveness, and 

Attentional Impulsiveness scores). 

7.3 Results 

7.3.1 Retrieval Practice Paradigm (RPP) 

For the FAC effect, the mixed ANOVA revealed a significant main effect of 

Item Type, F(1,52) = 274.53, p < .01, η2
p = .84, reflecting a better recall of RP+ 

items (M = 67.75, 95%CI = 64.48/71.01) than NRP+ items (M = 38.04, 95%CI = 

34.44/41.64), in line with a FAC effect. The main effect of Group, F(1,52) = 

13.49, p < .01, η2
p = .21, was also significant, with patients (M = 58.26, 95%CI = 

54.11/62.4) displaying an overall better performance than controls (M = 47.53, 
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95%CI = 43.39/51.67), in line with recent evidence of elevated performance-

based perfectionism in patients with EDs (Lloyd, Yiend, Schmidt, & Tchanturia, 

2014). The Group × Item Type interaction was not significant, F(2,52) = .82, p 

= .37. Therefore, all groups benefited from retrieval practice to a similar extent. 

Concerning the RIF effect, a mixed ANOVA revealed a significant main effect 

of Item Type, F(1,52) = 14.76, p < .01, η2
p = .22, indicating better recall of NRP- 

items (M = 48.26, 95%CI = 44.64/51.81) than RP- items (M = 40.51, 95%CI = 

36.79/44.22), consistent with a standard RIF effect (Murayama et al., 2014). 

Again, Group yielded a significant main effect, F(1,52) = 6.72, p = .02, η2
p = .11), 

suggesting  an overall better memory performance in the patient group (M = 

48.30, 95%CI = 44.00/52.61) compared to healthy controls (M = 40.43, 95%CI = 

36.13/44.74). Most importantly for the purpose of the study, the Group × Item 

Type interaction was not significant, F(1,52) = .02, p = .88, suggesting an intact 

ability to suppress interfering memories in the ED group, and was at odds with 

our predictions, as well as with previous evidence hinting at an altered ability to 

control interference in EDs (e.g., Wu et al., 2013b). 

Next, we aimed to ascertain whether the two categories of patients included 

in the ED group displayed the same pattern for both RIF and FAC. Performing 

the same analysis on the three groups (Control, BN, AN) yielded quite different 

results.  

The scenario observed for the FAC effect was consistent with that emerged 

in the previous analysis, as a mixed ANOVA showed a main effect of Item Type, 

F(1,51) = 252.21, p < .01, η2
p = .83, a significant main effect of Group, F(2,51) = 

6.69, p < .01, η2
p = .21 (Control, M = 47.53, 95%CI = 43.35/51.71; BN, M = 

57.47, 95%CI = 51.19/63.74; AN, M = 58.89, 95%CI = 53.28/64.50), and no 

Group × Item Type interaction, F(2,51) = .57, p = .57 (see Figure 7.2), 

confirming that the three groups displayed a robust and very similar FAC effect. 
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Figure 7.2 Recall performance from the final test phase for items relevant to the 

Facilitation (FAC) effect (RP+ minus NRP+ items) in the three groups. The FAC effect was 

significant in all groups. Bars represent 95% CIs. 

 

In sharp contrast, a mixed ANOVA for the RIF effect not only confirmed a 

significant effect of Item Type, F(1,51) = 20.70, p < .001, η2
p = .29, as well as a 

significant main effect of group, F(2,51) = 7.40, p < .01, η2
p = .23 (Control, M = 

40.43, 95%CI = 36.36/44.50; BN, M = 42.19, 95%CI = 36.08/48.29; AN, M = 

53.19, 95%CI = 47.73/58.66), but, crucially, also a significant Group × Item 

Type interaction, F(2,51) = 7.80, p < .01, η2
p = .23 (see Figure 7.3). Two-tailed t-

tests comparing memory performance on NRP- and RP- items showed that RIF 

was present in healthy controls, t(26) = 2.85, p < .01, in BN patients, t(11) = 

4.64, p < .01, but not in AN patients, t(14) = -.29, p = .77. In addition, RIF was 

significantly more pronounced in BN patients compared to healthy controls, 

t(37) = 2.46, p = .02. These analyses suggest that AN patients have an 

impaired ability to overcome interference in memory, in the absence of a 

generalized memory problem, as testified by a reliable FAC effect with the same 

magnitude as that displayed by healthy controls (see Figure 7.3). 
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Figure 7.3 Recall performance from the final test phase for items relevant to the 

Retrieval-Induced Forgetting (RIF) effect (NRP- minus RP- items) in the three groups. RIF 

was significant in the Control and BN groups only. Bars represent 95% CIs. 

 

7.3.2 Sustained Attention to Response Task (SART) 

The series of one-way ANOVAs performed on SART measures with Group 

as factor did not reveal any significant effect (mean RTs for correct responses: 

F(2,51) = 1.29, p =.28; percentage of total errors: F(2,51) = .13, p = .88; 

percentage of commission errors: F(2,51) = 1.53, p = .23). Therefore, the three 

groups exhibited a similar ability to maintain attention.  

7.3.3 Barratt Impulsiveness Scale (BIS-11) 

The series of one-way ANOVAs performed on the BIS-11 questionnaire 

measures with Group as factor failed to show significant effects (total BIS-11 

score: F(2,51) =.23, p = .80; Motor Impulsiveness score: F(2,51) =.12, p =.88; 

Nonplanning Impulsiveness score: F(2,51) =.66, p =.52; Attentional 

Impulsiveness score: F(2,51) = 1.61, p = .21). This suggests that the three 

groups were not different in terms of impulsiveness. 
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7.3.4 Correlations 

Pearson’s correlation analyses conducted between RPP measures, SART 

measures, and BIS-11 scores showed a clear lack of association between RIF 

and FAC (r = .02). In addition, neither RIF nor FAC displayed significant 

correlations with the different SART measures and BIS-11 scores. A similar 

pattern was also observed when correlating SART and BIS-11 measures. 

7.4 Discussion 

The present study was aimed at enriching the knowledge concerning the 

cognitive profile of ED patients. Specifically, our goal was addressing cognitive 

control in a group of patients with either AN or BN, by focusing on the previously 

unexplored domain of episodic memory. To this end, we used the RPP, a task 

that is known to elicit two phenomena thought to reflect both the beneficial and 

the detrimental effects of memory retrieval practice on the subsequent recall 

(Anderson et al., 1994). The former phenomenon, known as FAC effect, reflects 

the well-established advantage of trained over untrained material due to active 

practice. The latter phenomenon, known as RIF, is thought to probe an adaptive 

aspect of forgetting which, according to a prominent class of models, is 

achieved through the implicit recruitment of inhibitory processing aimed at 

decreasing interference between competing memories (Anderson, 2003; Bäuml 

et al., 2010). This choice of paradigm was motivated by the fact that, despite 

evidence of impaired cognitive control over interference has been reported in 

EDs, this pattern has been observed almost exclusively by means of tasks 

addressing selective attention (e.g., Yano et al., 2016; see Wu et al., 2013b for 

a review). Therefore, the present research represents the first attempt to 

investigate the cognitive profile of ED patients in the specific domain of 

resistance to interference in episodic memory. 

The procedure also included the SART as a control task to rule out general 

reactivity deficits (Robertson et al., 1997), and the BIS-11 questionnaire (Fossati 

et al., 2001) to explore potential correlations between self-reported dimensions 

of impulsivity and cognitive control in memory.  
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We expected ED patients to exhibit a weaker RIF compared to a group of 

healthy controls based on two lines of evidence: (i) hampered cognitive control 

in EDs (Wu et al., 2013b; Yano et al., 2016), (ii) similar prefrontal brain regions 

associated with abnormal activity in ED patients performing cognitive control 

tasks (e.g., Collantoni et al., 2016) and RIF in healthy participants (e.g., Wimber 

et al., 2009). In addition, we hypothesized no group difference in either the 

beneficial effects of memory practice (i.e., FAC effect; see Demeter et al., 2014 

for a similar dissociation in patients with Obsessive-Compulsive Disorder) or 

general reactivity (i.e., SART measures; e.g., Yano et al., 2016). 

The results were partially in line with our predictions. Indeed, both FAC and 

SART measures were preserved in ED patients, as expected. However, a 

similar pattern emerged also for RIF. Subsequently, based on an explorative 

inspection of the data that suggested a different performance in the RPP 

depending on the specific ED type, we re-analysed the data with Group as a 

three-level factor (i.e., AN, BN, Control). These analyses confirmed that the 

groups had comparable levels of performance in both SART and FAC measures. 

In sharp contrast, critical for the purpose of the study, the new analyses 

revealed a striking difference in memory control, as indexed by RIF, as a 

function of Group. Specifically, patients with AN did not display any evidence of 

RIF, whereas patients with BN exhibited a significant RIF effect whose 

magnitude was larger than that of healthy controls. 

7.4.1 Memory control differences between AN and BN 

 The results observed in patients with AN are in line with our predictions, and 

extend our knowledge about the status of cognitive control to the domain of 

episodic memory in this clinical population, which was previously unexplored, 

pointing to a very specific deficit. Indeed, cognitive control over interference 

appeared to be selectively impaired in patients affected by AN, which otherwise 

perform as well as healthy individuals in both control measures of attention and 

reactivity, and in the ability to benefit from memory practice. The specificity of 

this impairment in inhibition is in line with recent findings of dissociable cognitive 

control and sustained attention (Yano et al., 2016), and is further supported by 
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the version of the RPP used here, which was designed to control for the main 

confounds that may affect RIF (e.g. Anderson, 2003; Storm & Levy, 2012). 

Interestingly, Demeter and Colleagues (2014) found a similar pattern of results 

(impaired RIF in the face of intact FAC) in patients suffering from OCD, which 

are thought to share many important similarities to patients diagnosed with AN 

(Altman & Shankman, 2009; Pollack & Forbush, 2013; Serpell et al., 2002). 

Because the psychopathological features shared by AN, OCD, and obsessive-

compulsive personality disorder are not fully understood (Altman & Shankman, 

2009; Boisseau, Thompson-Brenner, Pratt, Farchione & Barlow, 2013), our 

results suggest that the RPP may be used as a benchmark to further investigate 

differences and similarities between these psychiatric disorders, which could, in 

turn, provide useful information to orient both their diagnosis and treatment. 

Turning to BN patients, the results were unexpected, in that we hypothesized 

a decreased RIF effect irrespective of the specific type of ED diagnosis. The 

obtained pattern of findings suggests that the ability to suppress interfering 

memories was fully preserved in patients with BN. Indeed, RIF in the BN group 

persisted even when participants showing a RIF that exceeded 2 SD from 

sample average were removed from the analyses. A possible interpretation to 

account for the observed findings is related to the observation that patients with 

BN were not significantly more impulsive than the control group according to the 

BIS-11 questionnaire. To the extent that an altered control ability in BN can be, 

at least partially, ascribed to an impulsive disposition, as some studies seem to 

suggest (e.g., Kemps, & Wilsdon, 2010), it might be speculated that the 

presence of an intact RIF effect could simply result from the low level of self-

reported impulsiveness in our sample of patients with BN. Clearly, this pattern of 

results calls for further studies in order to possibly confirm these findings and 

shed light on this issue. 

7.4.2 Limitations 

Although we made every effort to control for major confounds in this study, a 

few important limitations remain that need to be addressed. First, due to the 

small sample size, we were not able to distinguish performance as a function of 
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whether patients affected by AN were diagnosed with the restrictive subtype or 

the binge-purge subtype. Because past work has provided mixed evidence 

concerning different behavioural performance between the two subtypes in 

several cognitive tasks (see, Dalmaso et al., 2016; Rosval, Steiger, Bruce, 

Israël, Richardson, & Aubut, 2006; Yano et al., 2016), we have no specific 

reason to hypothesize that a dissociation should emerge in the RPP. However, 

this is an open empirical question that needs to be addressed in future studies. 

Another relevant limitation is the presence of medicated patients in the 

clinical sample, within both the AN and BN groups, which could have influenced 

the results. While we cannot entirely exclude medication effects on our 

measures of interest, additional control analyses, summarised below, 

comparing medicated vs. non medicated patients in RIF magnitude, FAC 

magnitude, and the three SART measures in the groups of patients with AN and 

BN indicate that this is not the case. Indeed, a series of independent samples, 

two-tailed t-tests failed to show any differences due to medication in both AN 

and BN patients (lowest p = .11). In addition to medication, depression could 

also have influenced the results, specifically by reducing the magnitude of RIF 

(e.g., Groome & Sterkaj, 2010), due to the presence of comorbidity in four of the 

BN patients tested here. However, because the BN subgroup displayed an 

intact RIF, we can safely assume that the presence of depressive symptoms 

played only a limited role – if any – in shaping the results. 

7.4.3 Conclusions 

In conclusion, the present study found a selective impairment of the ability to 

inhibit interference from competing information in episodic memory, which was 

specific for patients suffering from AN, compared to a healthy control group, 

whereas this ability was preserved in patients with BN. No general deficit in 

sustained attention or motor reactivity, nor substantial differences in self-

reported dimensions of impulsive behaviour were found that could provide 

alternative accounts for our findings. These results significantly extend our 

knowledge about the status of executive functioning in EDs, and open the way 

for future research on the features of a previously unexplored instance of 
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cognitive control in this clinical population. In this view, a valuable trajectory for 

future work would be using experimental stimuli relevant to the disorders (e.g., 

Kircanski et al. ,2016; Tekcan, Taş, Topçuoğlu, & Yücel, 2008) such as food-

related categories/words (or pictures), which would provide a deeper 

understanding of the nature and generalizability of this cognitive control 

impairment in EDs. 
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8 GENERAL DISCUSSION 

In the following chapter, I provide a concise summary of the main findings of 

each experiment presented over the course of this dissertation, and discuss 

whether or not a coherent narrative can be inferred from the bulk of evidence 

provided by the present work in the subsequent paragraphs. In particular, I 

focus on the contribution of our experiments to the notion that right lateralized 

brain regions in the PFC serve an important role in memory control, and on the 

observation that RIF is impaired in clinical populations suffering from psychiatric 

disorders that are characterized by impulsivity, cognitive control problems, and 

altered PFC functioning. The importance of appropriate statistical analyses that 

can also take into account features of the experimental material employed in the 

RPP, and the fuzzy status of the evidence in respect to the putative relationship 

between memory control and motor stopping are also discussed. Finally, I 

suggest few research trajectories that stem from the main findings of the 

present dissertation, and discuss their theoretical and applied relevance. 

8.1 Brief summary of experiments 

8.1.1 tDCS over the rDLPFC abolishes RIF 

In this first experiment, we first provided causal evidence for a role of the 

rDLPFC in overcoming interference from competing memory traces, as indexed 

by RIF. To do so, we delivered anodal, cathodal, or sham tDCS to healthy 

volunteers while performing the retrieval practice phase of the RPP. Compared 
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to the sham group, participants that received real stimulation displayed weaker 

RIF. In particular, RIF was abolished in the group that received cathodal 

stimulation. Moreover, FAC was unaffected by the stimulation, suggesting a 

specific role of the rDLPFC in the detrimental, but not in the beneficial, effects of 

selective memory retrieval, as well as a differentiation between the cognitive 

mechanisms underlying the two facets of selective memory retrieval, as posited 

by the inhibitory account of RIF. 

8.1.2 A comparison of tDCS montages for motor inhibition  

In this experiment, we turned to another instance of cognitive control that is 

overriding a prepotent motor response. Here we examined the effects of four 

different tDCS montages, compared to sham tDCS, over this ability, as indexed 

by SSRT. Specifically, we administered 20 min of tDCS on five different groups 

of healthy volunteers, each receiving a different tDCS montage, prior to a SST 

that was administered with a delay of about 15 minutes in respect to the offset 

of stimulation. In line with previous work, we found that only anodal tDCS to the 

rIFG modulated behavioural performance in the SST. Specifically, anodal tDCS 

to the rIFG enhanced motor stopping (i.e., shorter SSRTs), whereas RTs in go 

trials were unaffected, suggesting that this particular tDCS montage may be 

able to selectively affect SSRTs up to 15 min after stimulation ends. 

8.1.3 tDCS modulation of memory control and motor stopping 

In this experiment, we adopted an identical procedure to our previous 

investigation of tDCS effects on RIF. However now we delivered tDCS to the 

rIFG, as opposed to our previous work on the rDLPFC, while keeping all the 

other stimulation parameters and behavioural procedures fixed. The aims of the 

experiment were twofold: i) Ascertain whether the rIFG is involved in RIF; ii) 

Pave the way to concurrent investigation of memory control and motor stopping. 

We expected rIFG stimulation to have at least some impact on RIF, but not 

necessarily as much as rDLPFC stimulation (as seen in our previous 

experiment). To our surprise, we could not provide a clear interpretation of 

results: In fact, even though visual inspection of the data suggested reduced 

RIF in volunteers receiving real stimulation, particularly in the cathodal 
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stimulation condition, we did not find any interaction between stimulation group 

and item type. This was mainly due to an extremely weak effect in the control 

group. Therefore, we could not infer either favourable or problematic results in 

respect to our initial hypothesis and objectives. 

Because the previous experiment failed to provide straightforward results, we 

designed an experiment with a similar rationale but also improved on the 

behavioural procedure in order to have a more efficient test of memory control. 

Therefore, in this experiment we employed similar tDCS parameters and a 

revised RPP. However, we also added a SST immediately after the retrieval 

practice phase of the RPP, in order to stimulate participants during both 

memory suppression and motor stopping, thereby allowing investigating tDCS 

effects on both abilities, and potential relationships between the two as well. 

Analyses on the different stimulation groups revealed significant RIF in the 

sham tDCS group only. However, group differences were not statistically 

significant. Again, visual inspection of the data suggested that a weak effect in 

the control group might have been primarily responsible for the lack of 

interaction. Moreover, interestingly, visual inspection also revealed peculiar 

differences in the observed pattern of results that appeared to depend on the 

experimental material. To ascertain whether this was the case, we carried out 

additional analyses that looked into the contribution of the stimuli into the main 

effect in the control group. These analyses revealed that some of the semantic 

categories employed in the experiment displayed a large reversed difference 

between recall from the critical item types for RIF. Obviously, reanalysing the 

whole dataset excluding these specific categories improved RIF in the control 

group. More surprisingly, this increase in RIF was not mirrored in the real 

stimulation groups, so that even though larger effects were observed in these 

groups, the interaction between stimulation group and item type was now 

significant. Therefore, we concluded that tDCS to the rIFG is able to impair 

memory control, but this effect appears to be highly susceptible to features of 

the stimuli. In addition to that, re-analysing the previous experiment targeting 

the rIFG with tDCS to modulate RIF revealed a similar, although weaker, pattern 

of results. Finally, we did not find any evidence in favour of a relationship 
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between RIF and SSRTs and, in partial contrast with results from the second 

experiment of this dissertation, anodal tDCS to the rIFG did not affect motor 

stopping. 

8.1.4 RIF is impaired in substance-related and addictive disorders 

In this experiment we first investigated RIF in two groups of patients suffering 

from alcohol and drug (mainly opioids) addiction respectively, and compared 

their behavioural performance with that of a group of matched healthy 

volunteers. The RPP used here was similar to those of previous RIF 

experiments discussed in the context of this dissertation. In agreement with our 

initial hypothesis, the results showed that both groups displayed impairments in 

memory control compared to the control group. Moreover, no group differences 

were observed with respect to FAC, suggesting that general memory deficits 

were not responsible for their reduced memory control ability, and to an 

attention and reactivity task. Altogether, the results pointed toward a specific 

inhibitory impairment in the patients. 

8.1.5 RIF in Anorexia and Bulimia Nervosa 

This experiment first investigated the status of inhibitory control over 

interfering memory traces in patients suffering from eating disorders, compared 

to a group o matched healthy volunteers. We used the RPP to obtain a measure 

of the participants’ memory control ability as indexed by RIF. However, visual 

inspection of the data suggested different patterns of behavioural performance 

depending on the specific diagnosis assigned to the patients. Therefore, we 

carried out additional analysis splitting the patients group in two distinct AN and 

BN groups. Unfortunately, sample size was not sufficient to further differentiate 

the patients in the various sub-types of AN and BN. Nonetheless, results 

revealed quite a different pattern compared to the previous analysis. In fact, RIF 

was abolished in patients affected by AN , whereas patients affected by BN 

displayed intact RIF. 
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8.2 Causal evidence for the role of right PFC in RIF 

Recent studies presented a new aspect of forgetting: From accidental 

occurrence or side effect of our memory systems’ limitation, to an adaptive 

process that actively shapes our mental life (e.g., Anderson & Hanslmayr, 2014; 

Nörby, 2015; Storm, 2011), thereby contributing to our every day well-being and 

the efficient functioning of memory systems. In this dissertation, I focused on an 

instance of adaptive forgetting, i.e., RIF, that putatively manifests itself as a 

consequence of inhibitory mechanisms that suppress interference during 

selective memory retrieval in the face of completion from memory traces that 

are associated to the target memory, but irrelevant to the task at hand 

(Anderson, 2003; Storm & Levy, 2012). In particular, several experiments 

presented here attempted at identifying brain regions causally involved in RIF 

by altering their activity with non-invasive brain stimulation. 

Numerous findings from past studies that investigated RIF with neuroimaging 

techniques revealed a strong association between activity in the PFC and the 

ability to overcome interference from competing memory traces (e.g., Wimber et 

al., 2008, 2009, 2011), as indexed by RIF through the RPP (1.4.4). In particular, 

the right DLPFC and IFG appear to be candidate brain regions for a primary role 

in supporting the cognitive mechanisms underlying RIF. This notion is also 

supported by neuroimaging (see Anderson & Hanslmayr, 2014, for a review) 

and non-invasive brain stimulation (e.g, Hanslmayr, et al., 2012; Oldrati et al., 

2016; Silas & Brandt, 2016) studies that investigated putatively similar cognitive 

processes. However, so far, causal evidence for PFC involvement in RIF was 

lacking in the literature. Across three experiments (see chapters 3 and 5) 

presented here we first demonstrated that perturbing the activity of the rDLPFC 

and the rIFG is sufficient to weaken or even abolish memory control over 

competing memories. Specifically, in these experiments we delivered anodal, 

cathodal, or sham tDCS to healthy volunteers in a between-subjects design, 

while they engaged in repeated selective retrieval in the retrieval practice phase 

of the RPP. Overall, this manipulation selectively impaired RIF, whereas FAC 

was unaffected by tDCS. In particular, cathodal stimulation had the highest 

detrimental effects on memory control performance. Importantly, the 
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dissociation between tDCS effects on RIF and FAC, along with the absence of 

correlation between the two measures, suggest differential underlying cognitive 

mechanisms, thereby appearing mostly consistent with the inhibitory account of 

RIF (see 1.2.4), whereas according to alternative theoretical models based on 

associative interference (e.g., Mensink & Raaijmakers, 1988) the two 

phenomena should be directly proportional. 

The importance of PFC for adaptive memory control, and most importantly, 

the specific neural effects and after-effects of its involvement in suppression of 

competing memory traces, was recently object of an elegant neuroimaging 

study published by Wimber and Colleagues (2015). In their study, the Authors 

were first able to track down the suppression of distributed activation patterns in 

the neocortex corresponding to competing memory traces during the retrieval 

practice phase of the RPP, and subsequently showed their weaker reactivation 

compared to baseline items during the test phase of the behavioural procedure. 

The study revealed that during retrieval practice the cortical patterns 

corresponding to the competing memories were reactivated in the visual cortex 

and hippocampus, and then gradually weakened on each repetition of the items, 

to the point that their cortical traces displayed below-baseline activity, as 

posited by the inhibitory account of RIF, whereas associative interference 

accounts of the phenomenon would just predict baseline levels for competing 

memory traces at best. Moreover, the characteristics of the observed neural 

pattern suppression suggests that the inhibitory mechanisms targeted those 

features of competing memory traces that distinguished them from other 

members of their categories, as well as from the target, as one would predict on 

the basis of the inhibitory account of RIF (Anderson et al., 2000a). Most relevant 

to our work, PFC regions were found to be maximally responsible for weakening 

of interfering memory traces, highlighting the goal-directed, task-relevant nature 

of the instance of memory suppression observed in this study, as argued by the 

Authors, as opposed to past computational modelling work (Norman et al., 

2007) which excluded PFC contribution to RIF. In particular, activity in the 

ventrolateral PFC (VLPFC) positively predicted the suppression of irrelevant 

memory traces at the level of sensory patterns of activation in the ventral visual 
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cortex. Interestingly, the hippocampus showed much weaker evidence for 

pattern suppression, suggesting that memory traces stored at neocortical level 

may be more prone to interference). In summary, Wimber and Colleagues 

(2015) provided an effective method to pinpoint the brain mechanism underlying 

suppression of competing memory traces, and track the dynamic changes in 

individual memories’ activity over the course of the RPP, providing an 

unparalleled window into the neural underpinning of RIF. In my opinion, the 

impressive results obtained by Wimber and Colleagues (2015) pave the way to 

a wide range of future studies that may very well benefit from the opportunity to 

modulate RIF with non-invasive brain stimulation that we thoroughly explored in 

our own experiments.  

8.3 Relevance of RIF in studies of clinical populations 

Across the chapters of this dissertation I tried to convey the notion that RIF 

results from mechanisms that are highly adaptive and essential to an optimal 

cognitive functioning. In keeping with this stance on forgetting, it becomes 

important to assess whether this ability is intact in clinical populations 

characterized by impairments of cognitive control, as previously indexed by 

more traditional measures (e.g., in substance-related and addictive disorders, 

Smith et al., 2014; in bulimic-type EDs, Wu et al., 2013b).  

Several studies already found impaired RIF in few psychiatric disorders (e.g., 

in OCD, Demeter et al., 2014; in ADHD, Storm & White, 2010; in schizophrenia, 

Racsmány et al., 2008), as well as evidence of impaired suppression-induced 

forgetting as measured through the think/no-think paradigm (e.g., Depue et al., 

2010; Sala et al., 2009). Dysfunctional memory control abilities in these patients 

may originate from compromised brain regions or networks including the PFC, 

from structural or functional alterations in the connectivity between the PFC and 

other sites in the brain that are targeted by its top-down inhibitory modulation, 

but also from changes in the amount of neurotransmitter that have been linked 

to inhibitory control in memory (e.g., prefrontal dopamine, Wimber et al., 2011). 

In respect to some of the psychiatric disorders that have been associated 

with impulsivity (e.g., substance-related and addictive disorders; EDs), most 
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research so far focused on motor inhibition and self-report measures of 

impulsivity. While highly informative, these measures do not cover the entire 

range of abilities and behaviours that are putatively associated with cognitive 

control. In particular its more covert aspects, like the memory control ability 

captured by RIF, remain under-investigated, even though a more 

comprehensive assessment of the many facets of cognitive control could 

provide valuable information to orient diagnosis and clinical interventions, since 

inhibitory impairments are likely to contribute to the onset, maintenance, and 

relapse of psychiatric disorders characterized by impulsivity. 

Across two experiments presented in this dissertation (chapters 6 and 7), we 

contributed at filling this gap in the literature, by assessing the status of memory 

control as indexed by RIF in groups of patients affected by substance-related 

and addictive disorders (chapters 6) and EDs (chapter 7). Specifically, the 

former experiment employed a RPP to probe RIF in two patients groups 

affected by alcohol addiction and drug (mostly opioids) addiction respectively, 

compared to a matched healthy control group, while the latter experiment 

adopted a similar approach to investigate differences in memory control in a 

group of patients affected by EDs, which were subsequently differentiated in 

patients suffering from AN and patients suffering from BN, and compared them 

to a matched group of healthy volunteers. In these experiments, we also 

implemented an additional control measure for attention motor reactivity (SART; 

Roberston et al., 1997), and a self-report questionnaire about multiple aspects 

of impulsivity (BIS-11; Fossati et al., 2001) to evaluate the presence of potential 

relations between these dimensions of impulsivity and memory control. Critically, 

in both experiments, we predicted to find evidence of significant RIF only in 

healthy volunteers as opposed to patients.  

The choice of clinical populations was dictated by three main reasons: i) The 

absence of previous studies addressing suppression of competing memory 

traces in patients suffering from these specific psychiatric disorders; ii) Evidence 

of structural or functional alterations at the level of brain regions that have been 

involved in RIF (e.g., for substance-related and addictive disorders, Stavro et al., 

2013; Wang et al., 2012; for EDs, Collantoni et al. 2016; Lock et al., 2011; 
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Skunde et al., in press; Zastrow et al., 2009); iii) Previous evidence of impaired 

inhibitory performance in tasks probing cognitive control or motor stopping (e.g., 

for substance-related and addictive disorders, Fu et al., 2008; Kamarajan et al., 

2005; Noël et al., 2009; Zou et al., 2011; for EDs, Yano et al., 2016). 

The results from these experiments partially confirmed our initial hypothesis: 

In fact, we did not find evidence of RIF in three out of the four patients group 

(EDs group is considered as split in two groups of patients suffering from AN 

and BN, respectively). The only exception was the group of patients affected by 

BN, which displayed a RIF effect that was not only intact, but also even larger 

than that of the control group. While we already provided tentative explanations 

for this pattern of results in the discussion section of the relevant chapter (7.4.1), 

we could further speculate that observing intact RIF in the BN may relate to the 

clinical observation that patients affected by bulimia often display exaggerated 

control over their attitudes and behaviour (which would explain normal RIF), but 

lose this constant grip when confronted with stimuli that are relevant for their 

condition, i.e., food. This notion warrants additional research efforts, which 

should employ stimuli that are relevant for the specific clinical condition under 

investigation, in order to uncover potential attention and/or memory biases that 

could further inform our understanding of the disorders, as well as clinical 

practice. Related to this point, few studies have already employed disorder-

relevant material in studies of cognitive control in psychiatric disorders (e.g., 

Kircanski et al., 2016; Tekcan et al., 2008). This strategy could help clarifying 

the origin and pervasiveness of inhibitory deficits in the different clinical 

populations, such as those explored in our studies, which could either show 

even poorer memory suppression for material salient in respect to their 

pathological condition. Moreover, it could be an important point for the 

characterization of the cognitive profile of these disorders, more so since RIF 

has been proposed as the behavioural phenotype of cognitive control 

mechanisms that promote memory efficiency and wellbeing (e.g., Nørby, 2015; 

Storm, 2011).  
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8.4 RIF is highly variable across different semantic categories 

In chapter 5, I presented an approach to data analysis of RPP data that is 

rather different from the rationale typically employed in the literature (and in our 

other RIF experiments as well). Specifically, after separating FAC- and RIF-

relevant items, we fitted generalized linear (logistic) mixed models using the 

glmer procedure in the lme4 package (Bates et al., 2015), with recall accuracy 

as our main dependent binary valuable, whereas accuracy in the RIF literature 

is typically analysed as percentage of correct answers proportion. This 

particular approach is better suited at analysing accuracy data (and nowadays 

computationally feasible) in respect to repeated measures ANOVA (e.g., Jaeger, 

2008), and allows to account for both subject- and item-related variability, the 

latter being particularly relevant when employing linguistic stimuli (e.g., Clark, 

1973). We then used AIC weights (Wagenmakers & Farrell, 2004) to select the 

most informative models throughout the analysis. An additional advantage of 

this analytical approach was the opportunity to explore and quantify the 

contribution of each individual semantic category to RIF in the control group, 

which we took advantage of when visual inspection of the data hinted at the 

possibility of category-specific patterns in RIF. As a matter of fact, we 

discovered a large variability in the amount of RIF associated to each semantic 

category in Experiment 1 (5.2), where about half categories did not show any 

RIF at all, and a smaller but relevant variability in Experiment 2 (5.3), with fewer 

categories displaying null or negative RIF in the control group. Because our 

experimental hypothesis concerned the presence of an interaction between 

stimulation with tDCS and item type, we gradually excluded categories from the 

analysis on the basis of their contribution to RIF in the control group, as looking 

at the impact on the interaction would have been recursive (i.e., we would have 

just discarded data that did not fit with our hypothesis). Crucially, removing 

these categories also improved the interaction, as the increase in RIF in the 

control group was not mirrored by an increase of similar magnitude in the 

stimulated groups. In particular, the cathodal tDCS group consistently displayed 

the smaller amount of RIF. In addition to that, we carried out a re-analysis of the 

data from our very first experiment as well (not reported here) as a diagnostic 
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check on the consistency of results and to further validate the analytical 

approach employed in the subsequent experiments. The analysis with the glmer 

procedure essentially mirrored the pattern observed with conventional analyses 

reported here (0), while also providing an efficient way to quantify the amount of 

evidence in favour of RIF within each group. Moreover, looking into each 

category’s contribution to RIF in the control group, we found that a similar 

pattern as compared to the subsequent experiments, where removing 

categories that had a negative impact on RIF also improved the interaction. 

A number of considerations support the rationale of formulating hypotheses 

about category-specific effects in RPP data. For instance, it is possible that 

different categories display large variability in a number of psycholinguistic 

dimensions, such as concreteness, imageability, and memorability, and 

similarity (see Bäuml & Hartinger, 2002), of their constituting exemplars, that 

could interact with RIF. This in turn, could also lead to varying degrees of 

semantic integration (Goodmon & Anderson, 2011), which is generally 

detrimental to RIF. Because at the time when our experiments were designed 

we did not have access to means to control for all of these characteristics of the 

stimuli, all of these linguistic dimensions may have entered the experimental 

material and contributed in shaping the results. Moreover, it is also extremely 

difficult to quantify these variables post-hoc, especially due to the scarcity of 

standardized norms for the Italian language. Nevertheless, future studies should 

take advantage of the category-wise analytical procedure presented here in 

order to better clarify how specific groupings of stimuli along defined features 

may moderate suppression of competing memories. Importantly, this approach 

could also benefit related studies aimed at uncovering memory biases for 

specific stimuli, i.e., stimuli relevant to a particular psychiatric disorder (e.g., 

Kircanski et al., 2016). 

It is worth noting that the semantic categories that showed the least amount 

of RIF in the first experiment were not fully overlapping with the problematic 

categories detected in the subsequent experiments, although one category in 

particular (i.e., “BIRDS”) seemed to detrimentally affect RIF in the control group 

across the three experiments. This finding may implicate that along with the 
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categories’ linguistic features, certain characteristics pertaining to participants 

may also interact with the different semantic categories, and they should also 

be explored as possible moderators of RIF (e.g., pre-existing knowledge about 

a certain category, which may promote integration; see 1.3.2). 

8.5 Memory control and motor stopping 

Over the course of our work on neuromodulation of memory control, we also 

took the opportunity to investigate the putative relationship between RIF and the 

ability to override an initiated course of action. This detour from our main 

research goal, i.e., the investigation of memory control in the context of non-

invasive brain stimulation and clinical populations, was mainly motivated by few 

Authors’ theoretical stance that the two abilities may share at least partially 

overlapping neural substrates and related cognitive processes (e.g., Levy & 

Anderson, 2002). In fact, neuroimaging and neuromodulation studies provided 

converging evidence for an involvement of similar brain areas in memory control 

and motor stopping, with regions within the PFC such as the DLPFC and the 

IFG emerging as the leading actors in the inhibitory scenario (e.g., for studies 

on memory control, Hanslmayr et al., 2012; Wimber et al. 2008, 2009, 2011; for 

motor stopping, Aron et al. 2007, Chevrier et al, 2007, Ditye et al., 2012, 

Jacobson et al., 2011, Li et al. 2006; see also Aron et al., 2014, for a review on 

evidence suggesting a primary role of the IFG in cognitive control over different 

cognitive domains). Moreover, past evidence for an impairment of motor 

stopping was among the main reasons that prompted our studies on clinical 

populations. In fact, previous work showed that SSRTs, and therefore the 

modulation of their underlying mechanisms, may entail clinical relevance, 

because poor SSRTs have been associated with clinical conditions such as 

attention-deficit hyperactivity disorder (e.g., Depue et al., 2010), eating 

disorders (e.g., Bartholdy et al., 2016), obsessive–compulsive disorder 

(Boisseau et al., 2012; Morein-Zamir, Voon, Dodds, Sule, van Niekerk, 

Sahakian, et al., 2015), schizophrenia (Hughes, Fulham, Johnston, & Michie, 

2012), and substance abuse and addiction (Fillmore & Rush 2002; Smith et al., 

2014). 
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The three memory control neuromodulation experiments reported in the 

present work (chapters 3 and 5), along with few other that employed a similar 

approach (Anderson, J., et al., 2015) or investigated cognitive control in different 

but related task (Silas, & Brandt, 2016), showed that tDCS to the right PFC was 

able to modulate control over interfering memories. Similar tDCS protocols also 

resulted in the modulation of motor stopping performance (e.g., Jacobson et al., 

2011). These relatively segregated lines of research support the notion that the 

two abilities may share similar neural underpinnings and cognitive mechanisms 

(e.g., Levy & Anderson, 2002), and that tDCS may be particularly effective at 

modulating behavioural performance associated to them. The latter point also 

suggest that tDCS may hold the potential to become a therapeutic tool in clinical 

populations affected by disorders of cognitive control (e.g., Bikson, Paneri, & 

Giordano, 2016; Kuo, Paulus, & Nitsche, 2014).  

Because of the above reasons, we deemed potentially informative to employ 

tDCS to attempt at concurrently modulating cognitive control over interference 

from competing memory traces, as reflected in RIF, and prepotent motor 

responses, as indexed by SSRTs. The first step of our investigation was 

identifying the most suitable tDCS montage to selectively modulate SSRTs in 

the SST, which resulted in selecting the rIFG (4.4.1) as the target area for a 

subsequent experiment (5.3), where we inserted few SST blocks within the RPP, 

i.e., in place of the buffer tasks typically employed between the retrieval practice 

and test phases of the RPP, in order to deliver tDCS during the motor stopping 

task immediately after the inhibitory window of the RPP. However, in sharp 

contrast with our previous experiment (chapter 3) whose results we relied on to 

inform the combined modulation of RIF and SSRTs (5.3), we did not find any 

evidence in favour of modulation of motor stopping by administering tDCS to the 

rIFG, in the face of stimulation effects on RIF. Moreover, we failed to observe a 

significant correlation between RIF and SSRTs, which we expected to detect in 

line with Schilling and Colleagues’ previous work (2014), more so since we 

employed a RPP that was similar to that implemented by the Authors. 

These results should be contextualized with the mixed findings of both RIF 

and tDCS literature. In respect to the latter results (i.e., absence of correlation), 
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other studies failed to provide evidence in favour of an association between 

different inhibitory measures (e.g., Noreen & MacLeod, 2015; Storm & Bui, 

2016). Moreover, recent work suggests that RPPs employing recognition 

memory tests are least influenced by interference (e.g., Rupprecht & Bäuml, 

2016), thus implying that experiments aimed at detecting correlations with other 

inhibitory measures should implement this particular testing format. Importantly, 

Schilling and Colleagues (2014) already showed that RIF detected by a test 

phase maximally contaminated by output interference was negatively 

associated to SSRTs, whereas a reversed correlational pattern was observed 

between motor stopping and RIF measured by a more controlled test format. 

 Concerning the former results (i.e., absence of modulation), it is worth noting 

that in our experiment (5.3) tDCS was delivered online in respect to the SST, 

whereas previous work that successfully modulated motor stopping 

performance stimulated before the SST (e.g., Jacobson et al., 2011; Dityie et al., 

2012; Stramaccia et al., 2015). This is not a trivial point when electrical 

stimulation is employed to modulate behavioural measures, as the optimal 

timing of the stimulation (i.e., when to stimulate) is object of on-going debate, 

and most probably different depending on the target function and the desired 

outcome of the stimulation protocol.  

In addition to that, other studies failed to find evidence for prefrontal 

modulation of behavioural performance in motor stopping tasks (e.g., in the SST, 

Cunillera et al., 2015; in the go/no-go task, Dambacher et al., 2015). In 

particular, there is evidence of tDCS-induced modulation of EEG correlates of 

motor stopping in the absence of behavioural changes (Cunillera et al., 2015). 

Therefore, multimodal studies combining non-invasive brain stimulation and 

neuroimaging techniques may be essential to shed light on the mixed results 

reported in the literature.  

8.6 Conclusions 

A total of six experiments presented here examined various aspects of 

cognitive control in selective memory retrieval: The brain regions underlying 

such ability, the opportunity to modulate its behavioural manifestations with 
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tDCS, its relationship with motor stopping, and its integrity in several clinical 

populations. The bulk of evidence provided by these experiments highlights few 

major achievements of this line of research: First, it provided causal evidence 

for involvement of right PFC in supporting the cognitive processes underlying 

memory control, because altering the activity of this region was sufficient to 

disrupt the RIF effect. Secondly, it demonstrated the effectiveness and viability 

of tDCS as a tool to modulate this peculiar effect. Thirdly, it provided compelling 

evidence for the advantages of analysing RPP data with a statistical approach 

that is more consistent with the nature of the data, as well as informative in 

respect of the different dimensions of the data that contribute to results. Last, 

but not least, it contributed to the characterization of the cognitive profile of 

patients affected by substance-related and addictive disorders and EDs, paving 

the way to future research that could further investigate the extents and 

specificity of the previously unexplored memory control deficits that we unveiled 

in these patients. 

8.7 Future research trajectories 

In this dissertation, I presented several experiments that may constitute the 

starting point toward a range of more finely tuned investigations of memory 

control, in both healthy volunteers and patients, taking advantage of different 

techniques and behavioural approaches. In the following paragraphs I provide a 

brief outline of the main implications and suggestions for future research that 

stem from our results. 

8.7.1 Testing the inhibitory account of RIF with tDCS 

Non-invasive brain stimulation techniques may offer the opportunity to test 

specific predictions of the inhibitory account of RIF (Anderson, 2003) other than 

the fundamental role of PFC in the genesis of the effect (which is, in itself, a 

rather specific prediction of the inhibitory account; e.g., Wimber et al., 2015). 

Moreover, designing tDCS experiments on RIF needs to account for the on-

going theoretical debate on the determinants of the phenomenon, in order to 

validate the specificity of tDCS effects on inhibitory mechanisms rather than 
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alternative processes, which may be important for future application in clinical 

settings.   

In keeping with this reasoning, our results already provided a partial test of 

the strength independence tenet of RIF (1.2.4), because the two facets of 

selective memory retrieval, i.e., FAC and RIF, were always found to be 

unrelated to each other, (this point applies to our studies on patients as well), or 

even trending toward a negative association in our very first tDCS experiment 

(see also Weller et al., 2013). In addition to that, output interference (1.2.1) was 

always accounted for in our experiments, thus ruling out otherwise potentially 

relevant inflations of our measures of forgetting due to interference dynamics in 

the final test phases of the RPPs employed here. However, future studies 

should employ test formats that are even more impervious to the contribution of 

interference to RIF, such as recognition memory tests (e.g., Rupprecht & Bäuml, 

2016), implicit tests, or measures of the integrity of the memory traces that rely 

on neuroimaging techniques (e.g., Wimber et al., 2015). 

The retrieval specificity tenet of RIF (1.2.3) may also be tested with tDCS, by 

stimulating at different stages of the behavioural procedure. In particular, 

stimulation may be delivered during either the retrieval practice phase or the 

test phase of the RPP. If retrieval specificity holds true, only stimulation during 

the retrieval practice phase should selectively affect RIF, whereas potential 

effects of stimulation at test, if any, should have a more generalized impact on 

the overall memory performance, across all item types. Note, however, that in 

keeping with this reasoning a test format impervious to interference should be 

used at all costs: For instance, if tDCS at test is somehow able to reduce 

interference by ways other than altering the putative inhibitory mechanisms 

responsible for RIF, stimulation on either the retrieval practice or test phases of 

the RPP may end up having similar effects on memory performance, even 

though by different underlying neural dynamics. This would be especially true if 

the test format employed to measure RIF in the RPP is contaminated by 

interference. Moreover, it is not necessarily the case that stimulation would 

equally affect general memory performance across all items, given that 

presentation order at test is rarely fully randomized, thus allowing for interaction 
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between stimulation and serial position effects. Finally, it is also problematic to 

assume at all costs that to-be-forgotten items (i.e., RP-) may benefit less or 

suffer more from stimulation than the relevant control items (i.e., NRP-), as RP- 

would be putatively far below the activation threshold for recall or recognition as 

compared to NRP-. 

8.7.2 Testing the context account of RIF with tDCS 

Even though the three experiments presented in chapter 3 and 5 were not 

designed to directly test competing theoretical accounts of RIF, nonetheless 

they do not fit well with a recent model of the phenomenon based on context 

shift rather than inhibitory mechanisms (Jonker, Seli, & MacLeod, 2015). 

According to Jonker and Colleagues (2015), forgetting for RP- items at test 

compared to NRP- items is mediated by a context shift that would happen 

between the study and retrieval practice phases of the RPP, due to different 

task features associated with the two distinct phases. In the subsequent test 

phase, participants would erroneously search for RP- items within the retrieval 

practice phase context, because their associated category cues were last 

shown at that point in the procedure. However, RP- items were never produced 

during the retrieval practice phase, thus rendering this search effort ineffective. 

On the contrary, categories associated with the NRP- items were last seen 

during the study phase, alongside the relevant exemplars, so that upon 

presentation of the relevant category cues participants spontaneously search 

within the appropriate retrieval context that matches the actual presentation of 

the target items in memory, subsequently enhancing the probability of correct 

recall. Therefore, a “RIF-like” forgetting should emerge when confronting items 

searched for in an inappropriate context (i.e., the retrieval practice phase for the 

RP-) with the relevant control items recovered from an appropriate context (i.e., 

the study phase for the NRP- items). Although we did not test specific 

predictions regarding this theoretical proposal, some features of our 

experiments should have produced rather different scenarios. In fact, across our 

three tDCS experiments on RIF (chapters 3 and 5), RIF was neither reduced nor 

abolished in the real stimulation groups even though we employed a 
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manipulation (i.e., tDCS) that should have made the transition between the 

study and retrieval practice phases even more pronounced than that of a typical 

RPP, because of the sensations associated to the stimulation, as well as the 

initial nervousness experienced by many participants that were naïve to the 

technique. This line of reasoning should be especially valid for both Experiment 

1 (in chapter 5) and our very first tDCS investigation (in chapter 3), where the 

presentation order of the experimental material in the study phase (i.e., blocked-

by-category randomization) was even more different to that of the subsequent 

retrieval practice phase, compared to experiment 2 (i.e., blocked randomization). 

According to the context account of RIF, this should have induced an even 

stronger context shift between the study and retrieval practice phases of the 

RPP in experiment 2, because of the increased difference between the two 

phases. Finally, we argue that the suboptimal test format used in Experiment 1 

(in chapter 5) and chapter 3 should have favoured RIF within the theoretical 

framework provided by the context account of the phenomenon, because RP- 

items were systematically presented before all the remaining items, thus 

providing the participants with no opportunities at all to reactivate the study 

context that could have promoted their retrieval, until all RP- items were 

presented. Yet, all the stimulation groups in both Experiment 1 and Penolazzi 

and Colleagues’ work (2014), as well as those in Experiment 2, consistently 

showed reduced to abolished RIF. 

One possibility, however, is that the neuromodulatory manipulations 

employed in our studies could have impaired context formation during the 

retrieval practice phase, or else, interfered with context search in the 

subsequent test phase, if delayed effects of stimulation are hypothesized (as 

observed before, e.g., Stramaccia et al., 2015), to the point that “RIF-like” 

forgetting would have been reduced or abolished. At the same time, it should be 

noted that several studies have directly addressed the hypothesis that context 

alone may be sufficient to explain RIF, and provided convincing evidence 

against a context-exclusive account of RIF (Buchli, Storm, & Björk, 2016; 

Rupprecht & Bäuml, 2016; Soares et al., 2016). Therefore, while the above 

reasoning could challenge the specificity of our manipulation as far as the role 
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of inhibitory mechanisms in RIF is concerned, and is therefore deserving of 

further investigation (for example, to characterize context effects due to tDCS, 

whose relevance could extend well beyond the phenomenon investigated here), 

the current status of the literature speaks in favour of the inhibitory account of 

RIF. 

8.7.3 A potential test for the net zero-sum model of tDCS effects 

Establishing cathodal right prefrontal tDCS as a reliable neuromodulatory 

approach toward cognitive control over memory also opens the possibility to test 

new intriguing research hypotheses. For example, a recent study by Gómez-

Ariza and Colleagues (in press) found that participants struggled to produce RP- 

items as solutions to an ad-hoc Remote Associate Test (a test of creative 

problem solving; Mednick, 1962) delivered in place of the typical test phase of a 

RPP, and was therefore preceded by a retrieval practice phase where these 

items were supposedly weakened by inhibition. In light of this finding, and in 

keeping with research arguing that the application of tES techniques should be 

framed within a net zero-sum model, i.e., that we should expect performance 

gains due to neuromodulation to be always accompanied by performance 

losses, and vice-versa (see Brem, Fried, Horvath, Robertson, & Pascual-Leone, 

2014), it would be interesting to test whether applying cathodal tDCS, which we 

assume to detrimentally modulate cognitive inhibition, within a similar RPP-RAT 

combined procedure, would allow participants to exhibit better creative problem 

solving performance, at the cost of diminished memory control capabilities. 

8.7.4 Neuromodulation of memory control: what’s next? 

According to Anderson and Hanslmayr (2014), efficient memory control 

mechanisms are essential towards a range of adaptive behaviours such as 

negative affect regulation, forgiveness, attachment, deceptiveness, and the 

preservation of one’s self-image, beliefs, and attitudes. Therefore, not 

surprisingly, many scientists are devoting increasing efforts to clarify the neural 

substrates that support memory control mechanisms, which in turn may help the 

development of more effective strategies aimed at modulating their functioning. 

Related to this point, throughout the present PhD thesis, I tried to make the 
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point that non-invasive brain stimulation techniques such as tDCS may 

constitute a viable method, or at least a promising starting point, toward 

developing stimulation protocols that can accomplish this goal. 

So far, one fundamental missing piece in studies of neuromodulatory 

strategies of memory control is constituted by within-participants, repeated 

measures experiments where participants undergo several sessions of 

stimulation and RPP, thereby exploring the parameter space of tDCS (i.e., 

polarity, target, intensity, to name a few) or manipulations of the paradigm like 

the retrieval practice or the test phase format. For example, in our 

neuromodulation experiments on memory control, one may have expected a 

smaller RIF effect as a result of better recall of RP- items for the active 

stimulation groups, compared to sham control groups. Instead, in the former 

groups, we observed different recall performance for both RP- and NRP- items. 

Because we always employed between-participant designs, and because we 

did not have a tDCS-free baseline for RIF in active stimulation groups, we 

cannot rule out the possibility that the active stimulation groups were different in 

their baseline compared to the sham groups. Therefore, we only relied on 

comparisons involving differential (i.e., relative) rather than absolute scores, 

focusing on relative variations in the performance on the two item types relevant 

for RIF and FAC within each group, and compared such effects. The combined 

use of brain stimulation and retrieval-practice paradigm in a within-participant 

design may help addressing this issue in a more straightforward manner. 

To our knowledge, so far, only one study has attempted at modulating RIF 

within a repeated measures design (Anderson, J., et al., 2015). Interestingly, 

the study showed that cathodal tDCS to the PFC was beneficial to participants 

that displayed the least amount of RIF in the sham condition, but detrimental 

those participants with the highest amount of RIF at baseline. However, this 

study suffered from a series of methodological shortcomings (i.e., minimal 

sample size, delivery of tDCS before the study phase of the RPP, sub-optimal 

test format in respect to interference dynamics, to name the most relevant). 

Therefore, although these findings provided compelling evidence for individual 

differences in participants’ response to the tDCS, and for the possibility to 
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enhance memory control as indexed by RIF extreme caution is warranted in 

their interpretation, as future studies are needed to clarify whether this pattern of 

results is replicable and, therefore, can be improved upon. 

Finally, in my view combining tDCS with other neuroscientific investigation 

methods may be a necessary step forward to accurately describe the effects of 

tDCS on memory control. For instance, the neuroimaging-based method to 

track item-specific inhibitory dynamics at the neural level described by Wimber 

and Colleagues (2015; see 8.2) could be combined to non-invasive brain 

stimulation techniques such as tDCS, which appears to be a reliable strategy to 

modulate activity in the PFC. This approach would not only strengthen the 

evidence in favour of the causal role of PFC in memory control, but also clarify 

whether the effects of tDCS on memory control are mediated by modulation of 

the same inhibitory mechanisms revealed by Wimber and Colleagues (2015), or 

else rely on different neural dynamics. 
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RETRIEVAL PRACTICE PARADIGM: STIMULI 

Stimuli used for the RPP employed in chapter 3 and chapter 5 (Experiment 1).  

Ninety-six category-exemplars word pairs were adapted from the category 

production norms for Italian language compiled by Boccardi and Cappa (1997). 

Twelve exemplars were selected for each of the 8 semantic categories, among 

which 7 were high-ranked, frequently reported exemplars, and 5 were low-

ranked, infrequently reported selected exemplars according to the norms. Rank 

and production frequency for each exemplar and summary statistics for each 

category are reported below. The categories were assigned to 4 different 

counterbalance lists, with each category equally contributing to target and 

control items. 

 

ABBIGLIAMENTO ARMI BEVANDE FRUTTA 

high freq rank pfreq high freq rank pfreq high freq rank pfreq high freq rank pfreq 

PANTALONI 2 156 PISTOLA 1 188 GRAPPA   3 139 BANANA 3 176 

GONNA 4 122 FUCILE 2 179 VODKA   4 119 ARANCIA 4 157 

CRAVATTA 14 65 CANNONE 3 113 AMARO 7 61 FRAGOLA 10 88 

SCIARPA 15 49 BOMBA 5 99 COGNAC 8 57 CILIEGIA 11 81 

REGGISENO 17 34 SPADA 6 71 BRANDY 9 55 MANGO 13 66 

IMPERMEABILE 22 19 ARCO 13 39 TEQUILA  11 36 PAPAIA 17 53 

BOXER 24 17 LANCIA 14 28 SAMBUCA 14 19 LIMONE 18 50 

mean 14,00 66,00 mean 6,29 102,43 mean 8,00 69,43 mean 10,86 95,86 

low freq rank pfreq low freq rank pfreq low freq rank pfreq low freq rank pfreq 

ACCAPPATOIO  34 6 GRANATA  22 15 LAMBRUSCO  27 1 RIBES 27 27 

MANTELLA 34 6 RAZZO 31 5 MALVASIA  27 1 DATTERO 28 22 

TANGA 36 4 ESPLOSIVO 33 3 NOCINO 27 1 NESPOLA 32 14 

VESTAGLIA  37 3 MAZZA 33 3 PINOT  27 1 SUSINA 33 13 

FRAC 38 2 DARDO  34 2 ROSOLIO  27 1 GIUGGIOLA 39 4 

mean 35,80 4,20 mean 30,60 5,60 mean 27,00 1,00 mean 31,80 16,00 
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INSETTI PROFESSIONI SPORT UCCELLI 

high freq rank pfreq high freq rank pfreq high freq rank pfreq high freq rank pfreq 

MOSCA 1 172 INSEGNANTE 5 68 TENNIS  3 146 AQUILA 1 136 

ZANZARA  2 148 MURATORE 9 44 GOLF 11 54 CANARINO 5 87 

FORMICA 4 111 COMMERCIALISTA 11 41 CICLISMO  14 39 RONDINE 6 77 

VESPA 6 76 DENTISTA 12 38 BASEBALL  15 35 MERLO 8 73 

RAGNO 7 73 ARCHITETTO 14 33 PATTINAGGIO 18 28 PAPPAGALLO 9 65 

COCCINELLA 13 43 ELETTRICISTA 15 32 VELA 19 26 GUFO 13 47 

GRILLO 16 29 GIORNALISTA 22 20 SCHERMA 21 22 USIGNOLO 19 28 

mean 7,00 93,14 mean 12,57 39,43 mean 14,43 50,00 mean 8,71 73,29 

low freq rank pfreq low freq rank pfreq low freq rank pfreq low freq rank pfreq 

BRUCO 26 10 TAXISTA 32 10 ALPINISMO 32 10 NIBBIO 30 7 

TARMA 28 8 FABBRO 34 8 MARATONA  33 9 FENICOTTERO 32 5 

PIDOCCHIO 29 7 BARBIERE 37 5 LOTTA 37 5 TUCANO 32 5 

ACARO 30 5 OCULISTA 38 4 DELTAPLANO  42 1 BECCACCIA 34 3 

LOCUSTA 32 3 REGISTA 40 2 RAFTING 42 1 SPARVIERO 34 3 

mean 29,00 6,60 mean 36,20 5,80 mean 37,20 5,20 mean 32,40 4,60 
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Stimuli used for the RPP employed in chapter 5 (Experiment 2) and chapter 6. 

Eighty-four category-exemplars word pairs were adapted from the category 

production norms for Italian language compiled by Boccardi and Cappa (1997). 

Seven exemplars were selected for each of the twelve semantic categories, 

among which 4 were high-ranked, frequently reported exemplars, and 3 were 

low-ranked, infrequently reported selected exemplars according to the norms. 

Rank and production frequency for each exemplar and summary statistics for 

each category are reported below. The twelve categories were assigned to 4 

different counterbalance lists, with that each category equally contributing to 

target and control items. 

 

FRUTTA rank totrec METALLI rank totrec STRUMENTI rank totrec 

albicocca 9 103 alluminio 6 85 basso 11 79 

ciliegia 11 81 nichel 10 39 clarinetto 9 96 

mango  13 66 platino 8 65 flauto 7 115 

papaia 17 53 zinco 5 98 tamburo 13 70 

mean - high 12,50 75,75 mean - high 7,25 71,75 mean - high 10,00 90,00 

giuggiola 39 4 berillio 32 7 liuto 39 6 

nespola 32 14 cobalto 21 9 ocarina 43 2 

susina 33 13 titanio 24 5 sonaglio 44 1 

mean - low 34,67 10,33 mean - low 25,67 7,00 mean - low 42,00 3,00 

mean - total 23,58 43,04 mean - total 16,46 39,38 mean - total 26,00 46,50 

SPORT rank totrec INSETTI rank totrec UCCELLI rank totrec 

baseball 15 35 cimice 10 64 corvo 7 76 

ciclismo 14 39 formica 4 111 merlo 8 73 

nuoto 4 137 libellula 14 39 piccione 11 55 

rugby 12 53 vespa 6 76 rondine 6 77 

mean - high 11,25 66,00 mean - high 8,50 72,50 mean - high 8,00 70,25 

deltaplano 42 1 acaro 30 5 allocco 35 2 

pugilato 29 13 pidocchio 47 1 sparviero 34 3 

snowboard 41 2 tarlo 34 1 folaga 36 1 

mean - low 37,33 5,33 mean - low 37,00 2,33 mean - low 35,00 2,00 

mean - total 24,29 35,67 mean - total 22,75 37,42 mean - total 21,50 36,13 
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VERDURE rank totrec FIORI rank totrec PESCI rank totrec 

lattuga 18 45 ciclamino 11 44 anguilla 7 58 

melanzana 9 77 giglio 6 59 carpa 13 43 

sedano 7 82 orchidea 4 75 orata 17 32 

verza 12 61 papavero 12 42 sogliola 8 57 

mean - high 11,50 66,25 mean - high 8,25 55,00 mean - high 11,25 47,50 

bietola 36 5 azalea 22 16 lampreda 40 1 

cicoria 29 17 dalia 24 13 murena 32 9 

porro 30 13 begonia 24 13 persico 32 9 

mean - low 31,67 11,67 mean - low 23,33 14,00 mean - low 34,67 6,33 

mean - total 21,58 38,96 mean - total 15,79 34,50 mean - total 22,96 26,92 

DESSERT rank totrec ARMI rank totrec ALCOLICI rank totrec 

budino 4 91 cannone 3 113 brandy 9 55 

crostata 5 64 sciabola 15 26 cognac 8 57 

meringa 22 15 pugnale 11 47 spumante 10 39 

sorbetto 12 32 balestra 17 23 vodka 4 119 

mean - high 10,75 50,50 mean - high 11,50 52,25 mean - high 7,75 67,50 

granita 30 1 dinamite 32 4 lambrusco 27 1 

torrone 29 7 forca 35 1 malvasia 27 1 

zabaione 33 3 mannaia 35 1 rosolio 27 1 

mean - low 30,67 3,67 mean - low 34,00 2,00 mean - low 27,00 1,00 

mean - total 20,71 27,08 mean - total 22,75 27,13 mean - total 17,38 34,25 
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Stimuli used for the RPP employed in chapter 5 (Experiment 2) and chapter 6. 

Ninety-six category-exemplars word pairs were adapted from the category 

production norms for Italian language compiled by Boccardi and Cappa (1997). 

Eight exemplars were selected for each of the twelve semantic categories, 

among which 4 were assigned to a subset (A), and 4 to a different subset (B), 

which were similar for lexical frequency (Baroni et al., 2009) and taxonomic 

strength (Boccardi & Cappa, 1997). Rank and production frequency for each 

exemplar and summary statistics for each subset are reported below. The 

twelve categories were assigned to 24 different counterbalance lists, with each 

category equally contributing to target and control items. 

 

CATEGORY SET EXEMPLAR LFREQ TSTR CATEGORY SET EXEMPLAR LFREQ TSTR 

ALBERI 

A 

quercia 7,7 2 

ALCOLICI 

A 

grappa 4,7 3 

faggio 1,6 8 marsala 3,5 17 

pioppo 1,3 7 spumante 2,3 10 

larice 0,6 13 brandy 1 9 

mean 2,8 7,5 mean 2,875 9,75 

B 

cipresso 1,4 11 

B 

cognac 0,9 8 

salice 1,6 11 amaretto 0,3 23 

abete 3 3 tequila 0,5 11 

betulla 0,9 6 vodka 1,4 4 

mean 1,725 7,75 mean 0,775 11,5 

CATEGORY SET EXEMPLAR LFREQ TSTR CATEGORY SET EXEMPLAR LFREQ TSTR 

AUTOMOBILE 

A 

cofano 1,5 8 

DESSERT 

A 

tartufo 4,6 24 

motore 72,6 3 panettone 1,6 20 

freno 10,8 7 sorbetto 0,6 12 

lunotto 0,4 24 gelato 8,4 1 

mean 21,325 10,5 mean 3,8 14,25 

B 

batteria 19,4 21 

B 

meringa 0,2 22 

pistone 3,2 15 crostata 0,8 5 

sedile 5,7 2 budino 0,7 4 

ruota 27,8 3 frittella 0,9 31 

mean 14,025 10,25 mean 0,65 15,5 
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CATEGORY SET EXEMPLAR LFREQ TSTR CATEGORY SET EXEMPLAR LFREQ TSTR 

FIORI 

A 

giglio 4,7 6 

FRUTTA 

A 

mango 1,2 13 

tulipano 1,1 3 pesca 50,3 7 

azalea 0,3 22 banana 5,5 3 

narciso 1,5 20 dattero 1,2 28 

mean 1,9 12,75 mean 14,55 12,75 

B 

orchidea 1,5 4 

B 

arancia 6 4 

papavero 0,6 12 limone 10,1 18 

ciclamino 0,4 11 fragola 3,8 10 

mimosa 0,8 23 ciliegia 3,1 11 

mean 0,825 12,5 mean 5,75 10,75 

 

CATEGORY SET EXEMPLAR LFREQ TSTR CATEGORY SET EXEMPLAR LFREQ TSTR 

INSETTI 

A 

pulce 2,2 18 

METALLI 

A 

magnesio 1,6 15 

mosca 19,2 1 piombo 12,5 7 

termite 0,3 19 zinco 1,7 5 

vespa 6,1 6 cromo 1,1 19 

mean 6,95 11 mean 4,225 11,5 

B 

pulce 2,2 18 

B 

alluminio 7,6 6 

mosca 19,2 1 litio 0,9 19 

termite 0,3 19 stagno 5,9 12 

vespa 6,1 6 nichel 0,8 10 

mean 6,95 11 mean 3,8 11,75 

CATEGORY SET EXEMPLAR LFREQ TSTR CATEGORY SET EXEMPLAR LFREQ TSTR 

PESCI 

A 

branzino 1 19 

SPORT 

A 

atletica 25,1 8 

sogliola 0,6 8 pattinaggio 1,8 18 

trota 2,5 1 rugby 2,5 12 

orata 0,6 17 tennis 8,3 3 

mean 1,175 11,25 mean 9,425 10,25 

B 

carpa 1,4 13 

B 

ippica 0,6 17 

luccio 1 14 ciclismo 11 14 

merluzzo 0,9 10 nuoto 7,5 4 

anguilla 1,7 7 basket 8,4 6 

mean 1,25 11 mean 6,875 10,25 
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CATEGORY SET EXEMPLAR LFREQ TSTR CATEGORY SET EXEMPLAR LFREQ TSTR 

UCCELLI 

A 

merlo 3 8 

VERDURE 

A 

lattuga 1 18 

rondine 2,2 6 finocchio 2 5 

struzzo 1,6 22 carota 4,8 2 

passero 1 3 melanzana 2,8 9 

mean 1,95 9,75 mean 2,65 8,5 

B 

merlo 3 8 

B 

lattuga 1 18 

rondine 2,2 6 finocchio 2 5 

struzzo 1,6 22 carota 4,8 2 

passero 1 3 melanzana 2,8 9 

mean 1,95 9,75 mean 2,65 8,5 
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Mean lexical frequency (Baroni et al., 2009) and mean taxonomic strength 

(Boccardi & Cappa, 1997) for all item types in each of the twenty-four lists 

employed in chapter 5 (Experiment 2) and chapter 6 are reported below. 

 

LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR 

1 

RP- 2,188 11,500 

2 

RP- 5,479 11,333 

3 

RP- 2,188 11,500 

NRP- 5,363 10,583 NRP- 6,792 10,292 NRP- 6,792 10,292 

RP+ 6,792 11,333 RP+ 5,363 11,500 RP+ 5,363 11,333 

NRP+ 5,479 10,292 NRP+ 2,188 10,583 NRP+ 5,479 10,583 

mean 4,955 10,927 mean 4,955 10,927 mean 4,955 10,927 

LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR 

4 

RP- 5,479 11,333 

5 

RP- 3,654 11,000 

6 

RP- 4,013 11,833 

NRP- 5,363 10,583 NRP- 7,088 10,458 NRP- 5,067 10,417 

RP+ 6,792 11,500 RP+ 5,067 11,833 RP+ 7,088 11,000 

NRP+ 2,188 10,292 NRP+ 4,013 10,417 NRP+ 3,654 10,458 

mean 4,955 10,927 mean 4,955 10,927 mean 4,955 10,927 

LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR 

7 

RP- 5,363 10,583 

8 

RP- 6,792 10,292 

9 

RP- 5,363 10,583 

NRP- 2,188 11,500 NRP- 5,479 11,333 NRP- 5,479 11,333 

RP+ 5,479 10,292 RP+ 2,188 10,583 RP+ 2,188 10,292 

NRP+ 6,792 11,333 NRP+ 5,363 11,500 NRP+ 6,792 11,500 

mean 4,955 10,927 mean 4,955 10,927 mean 4,955 10,927 

LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR 

10 

RP- 6,792 10,292 

11 

RP- 5,067 10,417 

12 

RP- 7,088 10,458 

NRP- 2,188 11,500 NRP- 4,013 11,833 NRP- 3,654 11,000 

RP+ 5,479 10,583 RP+ 3,654 10,458 RP+ 4,013 10,417 

NRP+ 5,363 11,333 NRP+ 7,088 11,000 NRP+ 5,067 11,833 

mean 4,955 10,927 mean 4,955 10,927 mean 4,955 10,927 

LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR 

13 

RP- 5,225 10,167 

14 

RP- 8,775 10,375 

15 

RP- 5,225 10,167 

NRP- 2,325 11,917 NRP- 3,496 11,250 NRP- 3,496 11,250 

RP+ 3,496 10,375 RP+ 2,325 10,167 RP+ 2,325 10,375 

NRP+ 8,775 11,250 NRP+ 5,225 11,917 NRP+ 8,775 11,917 

mean 4,955 10,927 mean 4,955 10,927 mean 4,955 10,927 
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LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR 

16 

RP- 8,775 10,375 

17 

RP- 7,200 10,333 

18 

RP- 6,800 10,208 

NRP- 2,325 11,917 NRP- 3,254 11,667 NRP- 2,567 11,500 

RP+ 3,496 10,167 RP+ 2,567 10,208 RP+ 3,254 10,333 

NRP+ 5,225 11,250 NRP+ 6,800 11,500 NRP+ 7,200 11,667 

mean 4,955 10,927 mean 4,955 10,927 mean 4,955 10,927 

LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR 

19 

RP- 2,325 11,917 

20 

RP- 3,496 11,250 

21 

RP- 2,325 11,917 

NRP- 5,225 10,167 NRP- 8,775 10,375 NRP- 8,775 10,375 

RP+ 8,775 11,250 RP+ 5,225 11,917 RP+ 5,225 11,250 

NRP+ 3,496 10,375 NRP+ 2,325 10,167 NRP+ 3,496 10,167 

mean 4,955 10,927 mean 4,955 10,927 mean 4,955 10,927 

LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR LIST ITEM LFREQ TSTR 

22 

RP- 3,496 11,250 

23 

RP- 2,567 11,500 

24 

RP- 3,254 11,667 

NRP- 5,225 10,167 NRP- 6,800 10,208 NRP- 7,200 10,333 

RP+ 8,775 11,917 RP+ 7,200 11,500 RP+ 6,800 11,500 

NRP+ 2,325 10,375 NRP+ 3,254 10,333 NRP+ 2,567 10,208 

mean 4,955 10,927 mean 4,955 10,885 mean 4,955 10,927 
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QUESTIONNAIRES 

Italian version of the BIS-11 questionnaire (Fossati et al., 2001; Patton et al., 

1995) employed in chapter 6 and chapter 7. The scoring grid is reported in the 

following page. 

 

 

BIS-11
1
 

 
Gentile Signore/a, nel seguente questionario vengono elencate una serie di situazioni nelle quali le 

persone usualmente vengono a trovarsi nel corso della propria vita. Ad ogni frase può rispondere 

scegliendo la modalità che si presta meglio a descriverLa. Il questionario va compilato nella sua 

totalità secondo quanto Lei pensa e senza l'aiuto di altre persone. Ovviamente, non esistono risposte 

giuste o sbagliate; è importante solo descrivere i propri sentimenti personali. 

 

 Mai/ 

Raramente 

Talvolta Spesso Quasi 

sempre/

Sempre 

1. Pianifico le attività attentamente      
2. Faccio le cose senza pensarci     
3. Decido velocemente     
4. Mi affido alla sorte     
5. Non “focalizzo l’attenzione”     
6. I miei pensieri “vanno a gran velocità”      
7. Pianifico i viaggi con molto anticipo     
8. Ho autocontrollo     
9. Mi concentro facilmente     
10. Risparmio con regolarità     
11. Non riesco a star fermo durante gli spettacoli o 

le lezioni 
    

12. Sono un attento pensatore     
13. Faccio progetti per una sicurezza lavorativa     
14. Dico cose senza pensare     
15. Mi piace pensare a problemi complessi     
16. Cambio lavoro     
17. Agisco “d’impulso”     
18. Mi annoio facilmente quando devo risolvere dei 

problemi concettuali 
    

19. Agisco sull’impulso del momento     
20. Sono un pensatore assiduo     
21. Cambio residenza     
22. Compro le cose d’impulso     
23. Riesco a pensare ad un solo problema per volta     
24. Cambio hobby     
25. Spendo più di quello che guadagno     
26. Quando penso ho spesso pensieri estranei     
27. Mi interesso più al presente che al futuro     
28. Sono irrequieto a teatro o durante le lezioni   
29. Mi piacciono i rompicapo     
30. Sono orientato verso il futuro     

                                                            
1 Traduzione italiana curata da Andrea Fossati, Michela Donini, Deborah Donati. 
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BIS-11 – GRIGLIA DI CORREZIONE 

 

 

Mai/Raramente = 1 – Talvolta = 2 – Spesso = 3 – Quasi Sempre/Sempre = 4. 

Se (r): Mai/Raramente = 4 – Talvolta = 3 – Spesso = 2 – Quasi Sempre/Sempre = 1. 

 

 

A Im Ac Cc P Ic 

5. 2. 1.(r) 10.(r) 16. 6. 

9.(r) 3. 8.(r) 15.(r) 21. 24. 

11. 4. 7.(r) 18. 23. 26. 

20.(r) 17. 12.(r) 27 30.(r) Totale: 

28. 19. 13.(r) 29.(r) Totale:  

Totale: 22. 14. Totale:   

 25. Totale:    

 Totale:   

 

 

Impulsività Attentiva Impulsività Motoria Impulsività da Non Pianificazione 

Totale A Totale Im Totale Ac 

Totale Ic Totale P Totale Cc 

   

Totale: Totale: Totale: 

 

Totale BIS-11 (Impulsività Attentiva+Motoria+Non Pianificazione):  

 

 

 

A = Attenzione – Im = Impulsività Motoria – Ac = Autocontrollo – Cc = Complessità 

Cognitiva – P = Perseveranza – Ic = Instabilità Cognitiva.  
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Screening form employed prior to every tDCS experiment reported in the 

present PhD dissertation (Chapters 3-5). 

 

Codice

sogg: _________ 



Per cortesia, prima di sottoporsi a stimolazione elettrica transcranica (tDCS) risponda alle

seguenti domande. Le informazioni che fornirà sono strettamente confidenziali.

 
Sesso:____ Età: ____  Anni di scolarità:____
 
Soffre o ha mai sofferto di crisi epilettiche, convulsioni febbrili o ricorrenti
svenimenti?

SI NO

Ci sono in famiglia casi di epilessia?
Se SI, indichi il grado di parentela del/dei familiare/i.

SI NO

Ha mai subito un trauma cranico?
Se SI, fornisca di seguito i dettagli.
 

SI NO

Ha inserti metallici o clip chirurgiche “in testa” ? SI NO

Ha protesi dentarie o inserti metallici ai denti? SI NO

Ha problemi di cuore? SI NO

È portatore di pacemaker cardiaco? SI NO

È portatore di protesi acustiche? SI NO

Ha(o ha avuto) eczemi o dermatiti? SI NO

Prende psicofarmaci (es. antidepressivi triciclici, neurolettici, ansiolitici, ecc.) SI NO

          Se Sì, quali e con che frequenza?   

Fuma? SI NO

Ha bevuto più di 3 unità alcoliche nelle ultime 24 ore? SI NO

Nelle ultime 2 ore, ha bevuto più di 2 tazze di caffè o assunto caffeina da altre
fonti?

SI NO

Ha usato sostanze stupefacenti nelle ultime 24 ore?
SI NO

Soffre di severi e frequenti mal di testa?   

Ha già partecipato ad altri esperimenti con la stimolazione cerebrale (TMS o
tDCS)?

SI NO

E’destrimane o mancino?
 

destrimane mancino

Solo per le donne:

Potrebbe essere incinta?
SI NO

 
 

Padova, lì _______________________
 
 

Firma _______________________________________________________
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Discomfort questionnaire (Fertonani et al., 2010) delivered at the end of 

every tDCS experiment reported in the present PhD dissertation (Chapters 3-5). 

 

 

 

 

 

 

 

 

Come accade in ogni protocollo sperimentale i partecipanti sono casualmente assegnati o alla condizione di 

reale stimolazione o alla condizione di controllo in cui la stimolazione non è reale, ma solo simulata. Se 

dovesse scommettere su che tipo di trattamento le è stato somministrato oggi, pensa di far parte del gruppo che 

ha ricevuto la stimolazione con corrente continua o del gruppo che non l'ha ricevuta (= condizione di 

simulazione o placebo)? 

 reale stimolazione con corrente continua 

 simulazione di stimolazione 
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