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Abstract

Microalgae processing represents one of the most promising new technologies for sustainable

production of a wide range of commodities and value-added products, including cosmetics,

pharmaceuticals and nutraceuticals. Morevoer, at a larger time horizon, microalgae are

expected to contribute for fossil carbon replacement with renewable carbon, especially for

supplying green chemicals and liquid biofuel in the transport sector. Nevertheless, much

research is still needed in order to make this potential new energy source a practically

and economically feasible technology, since all the existing technological assessments are

based on specific assumptions or gross estimates of productivity, derived by extrapolation of

laboratory-scale data.

The development of reliable mathematical models predicting both the behavior of

large-scale outdoor microalgae culture and the underlying multiple time-scale biophysical

and chemical processes is therefore necessary. These models are valuable tools to support

both system design and operation optimization, with consequent potential increase of the

process profitability. This Thesis aims at investigating the complex behavior of microalgae

growth by following two main approaches.

The first objective was to extend an existing growth model of marine water alga

Nannochloropsis Salina describing photosynthetic efficiency through chlorophyll fluorescence

dynamics. This micro-scale model integrates photoproduction, photoregulation and

photoinhibition processes in a semi-mechanistic way, but it is limited to the description of the

most significant photosystem (PSII). The proposed model extension aims at describing the

complete electron transport, together with the dynamics of each protein complex involved

in the photosynthetic process, through absorbance data-based calibration/validation. The

results show that the calibrated model is capable of accurate quantitative predictions of the

photosynthetic transport chain paths under a wide range of transient light conditions.

The second contribution objective was to develop a macro-scale model for Chlorella

Vulgaris cultivation in open pond systems by coupling existing growth/temperature

sub-models with real meteorological data. The utilization of this dynamic model will

underline the benefits of model building activities on practical process optimization, since

a reduced set of ‘rules of thumb’ was extracted by different simulations done at different

weather conditions. The proposed optimization strategy significantly increased productivity

compared to standard operation at constant dilution rate and pond depth, by up to a factor

2.2. Furthermore, a deeper insight into optimal operation in case of inaccurate forecasts has

v
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been developed and discussed. The different strategies proposed can guarantee both high

productivity and feasible operation in case of inaccurate weather forecasts. The resulting

control strategies, despite the high amount of water required, can prevent culture death

conditions due to unpredicted high temperatures.



Riassunto

L’incremento dell’instabilità dei prezzi petroliferi, la volontà di incentivare l’utilizzo di risorse

rinnovabili e la necessità di affrontare problematiche relative al riscaldamento globale sono

alcuni dei motivi che hanno incrementato lo sforzo della comunità scientifica al fine di

utilizzare le microalghe a scopo energetico. Queste ultime, infatti, presentano un’alta velocità

di crescita e sono in grado di contenere ricche quantià di olio; oltre a questo possono essere

coltivate in zone dedicate, riducendo l’utilizzo dei terreni per unità di biomassa prodotta,

possono essere utilizzate per mitigare l’impatto ambientale dovuto a emissioni di CO2

(essendo questa fissata dalle cellule durante il processo fotosintetico) e, necessitando dei

nutrienti presenti in acque reflue inquinate, possono essere utilizzate anche a fini depurativi.

Nonostante vi sia un alto potenziale teorico per l’utilizzo di microalghe come materia

prima per la produzione di biocarburanti e prodotti ad alto valore aggiunto (generalmente

destinati al settore cosmetico, farmacologico e nutraceutico), la produzione su larga scala

risulta attualmente non competitiva in termini economici. Le previsioni più ottimistiche,

infatti, sono basate su estrapolazioni di dati ottenuti in laboratorio in condizioni controllate,

che risultano notevolmente differenti da quelle che si verificano su larga scala. Oltre a questo,

le valutazioni tecno-economiche basate su estrapolazioni di dati di laboratorio dipendono

fortemente dalla metodologia applicata. La disponibilità di modelli meccanicistici in grado

di prevedere il comportamento delle colture microalgali in sistemi di coltivazione industriali

risulta quindi di primaria importanza per progettare, simulare e ottimizzare i processi di

produzione.

Il primo obiettivo di questa Tesi è stato quello di estendere un modello di microscala

in grado di desrivere la crescita della microalga marina Nannochloropsis Salina tramite la

rappresentazione dei meccanismi di fluorescenza causati dall’attività fotosintetica. Questo

modello semi-meccanicistico descrive i meccanismi di fotoproduzione, fotoregolazione e

fotoinibizione attraverso la rappresentazione della dinamica del fotosistema (PSII), complesso

proteico coinvolto nel processo fotosintetico. Il lavoro presentato in questa Tesi consiste

nell’estensione del suddetto modello tramite la descrizione dell’intero processo di trasporto

elettronico a livello della membrana tilacoidale e delle dinamiche di ossidoriduzione dei

complessi proteici coinvolti nel processo fotosintetico. Il modello è stato calibrato e validato

grazie a dati di assorbanza ricavati tramite spettrometro di tipo Joliot. I risultati ottenuti

dimostrano come il modello sia in grado fornire previsioni quantitative accurate del trasporto

fotosintetico per una vasta gamma di condizioni di luce.
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Il secondo obiettivo è stato quello di sviluppare un modello di macroscala basato

su previsioni meteorologiche per la coltivazione di Chlorella Vulgaris in sistemi a vasca

aperta. L’utilizzo di questo modello dinamico sottolinerà i benefici derivanti dall’attività

di modellazione ai fini dell’ottimizzazione di processo. Infatti la strategia di ottimizzazione

proposta permetterà di ottenere un significativo aumento di produttività (fino a un fattore

2.2 per le stagioni più calde e soleggiate) rispetto a quanto può essere ottenuto applicando le

tradizionali strategie di coltivazione (a tempo di permanenza e volume costante). L’attività

di ricerca ha inoltre individuato e paragonato differenti strategie di controllo che permettono

di garantire la fattibilità del processo nel caso in cui i dati meteorologici non risultino accurati.

Gli approcci studiati permettono di evitare condizioni critiche a seguito di ottimizzazioni

basate su previsioni meteorologici inaccurati, richiedendo un maggiore consumo d’acqua per

la regolazione del sistema, ma riuscendo in tal modo a garantire elevati valori di produttività.

Il lavoro di Tesi è organizzato secondo il seguente schema concettuale.

Nel Capitolo 1 viene introdotta una panoramica riguardante l’attuale utilizzo di microlalghe

come risorsa rinnovabile e una breve descrizione relativa agli attuali processi di coltivazione;

succcessivamente vengono illustrati i principali approcci modellistici usati per descrivere

i meccanismi di crescita delle microalghe. Nella parte finale del capitolo si andranno a

evidenziare gli obiettivi di ricerca di questo lavoro di Tesi.

Il Capitolo 2 presenta un’estensione del modello semi-meccanicistico proposto da Bernardi

et al. (2016). Questo modello a stati descrive i principali processi biologici che agiscono

sul fotosistema PSII presente nei cloroplasti delle microalghe: tali processi ricoprono scale

temporali che vanno dai millisecondi (fenomeni di fotoproduzione) a minuti/ore/giorni

(Non-Photochemical Quenching, fotoinibizione, fotoacclimatazione). Il modello è stato

sviluppato e convalidato utilizzando esperimenti di flourescenza. L’estensione del modello

proposta in questo lavoro di Tesi mira a descrivere le dinamiche dei fondamentali complessi

proteici coinvolti nella catena di trasporto elettronico facendo uso di dati assorbanza della

luce ottenuti tramite spettrometro di tipo Joliot (JTS-10).

Il Capitolo 3 presenta la descrizione dettagliata di un nuovo modello dinamico proposto

per descrivere la produttività microalgale in vasche aperte; questo modello è il risultato

della combinazione di modelli esistenti in grado di prevedere sia l’impatto della temperatura

sul sistema di coltivazione (e sui parametri di crescita del ceppo algale coltivato) sia

l’impatto della distribuzione della luce sulla crescita delle microalghe. Inoltre, la variabilità

delle condizioni climatiche a cui avviene la fase di coltivazione è rappresentata attraverso

l’implementazione di previsioni meteorologiche reali. Il modello proposto è stato utilizzato

per svolgere differenti attività di ottimizzazione al fine di verificare i vantaggi derivati dalla

manipolazione continua dei flussi in ingresso e in uscita dal reattore rispetto alle tradizionali

modalità di controllo della vasca.

Nel Capitolo 4 viene fornita un’analisa dettagliata delle strategie di ottimizzazione ottenute

per diverse stagioni dell’anno, derivando un numero ridotto di ‘rules of thumb’ utilizzabili

in future applicazioni pratiche. L’analisi è stata condotta sia per il caso ideale in cui si
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assume di avere a disposizione dati meteorologici perfetti, sia per il caso reale in cui i dati

meteorologici risultano affetti da incertezza.

Il Capitolo 5 presenta uno studio di fattibilità condotto al fine di prevenire la perdita di

produttività che può derivare da ottimizzazioni basate su previsioni meteorologiche non

accurate. Infatti, l’eventuale strategia di controllo ottenuta tramite ottimizzazione con

dati inaccurati può portare al raggiungimento di condizioni critiche per la crescita (e.g.

temperature del sistema di coltivazione eccessivamente alte con conseguente rischio di morte

cellulare). Sono stati quindi proposti due differenti approcci di ottimizzazione al fine di

garantire la fattibilità della coltivazione anche in assenza di dati precisi. I due metodi

verranno infine confrontati in termini di produttività, fabbisogno idrico e relativi costi di

processo. Il Capitolo 6 riassume i principali risultati raggiunti in questo lavoro di Tesi e

propone alcuni suggerimenti per futuri lavori di ricerca.

In Appendice A viene discusso un metodo alternativo di progettazione sperimentale basata

su modello (MBDoE). L’approccio proposto è fondato sul concetto di riprogettazione

sperimentale online al fine di sfruttare l’aumento progressivo dell’informazione derivante

dall’esecuzione dell’esperimento stesso. L’efficacia di questa tecnica, proposta in particolare

per casi ad alto mismatch parametrico, dimostrata tramite due casi studio non strettamente

inerenti all’argomento della Tesi. Tuttavia, si riportano i risultati ottenuti a causa del loro

potenziale per attività future di calibrazione/validazione di modelli di crescita microalgale.
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Qra,a radiation flow form the air to the pond.
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R specific respiration function.
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Re Reynolds dimensionless number.

Rg universal ideal gas constant.

rg growth rate used in IDRO case study.

RH relative air humdity.

Rut tissue rate utilization.
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TCuo total cost associated to a generic unit operation.

t(·) t-value distribution.
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TLK empirical term in τD,c definition.
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Tp open pond temperature.
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Tr reference computational time.
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tsp,i i-th sampling time.
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vii ii-th element of the parametric variance-covariance matrix.
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vr rainwater flow.

Vτ final open pond volume.

vw wind velocity.
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x generic state variable.

xb biomass concentration.

xb,opt optimal biomass concentration.

XI variation of insulin concentration in the sub-compartment with respect to the basal value.

y generic measured output.

z depth coordinate.

zm wind velocity height.

zm,0 wind sensor height.
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Chapter 1

Introduction

Microalgae processes have emerged during the last decade as one of the most promising

new technologies for providing innovative molecules for the cosmetic and pharmaceutical

industry, and as a source of proteins for animal and human nutrition (Mata et al. (2010);

Skj̊anes et al. (2013)). At a larger time horizon, microalgae are expected to contribute for

fossil carbon replacement with renewable carbon, especially for supplying green chemistry

and liquid biofuel in the transport sector (Foley et al. (2011b)). The great interest in this

technology is not only related to the substantial higher productivity compared to terrestrial

plants (Chisti (2007)), but also to the possibility of coupling the microalgal production

process to industrial CO2 mitigation and wastewater treatments to finally recycle carbon,

nitrogen and phosphorus. Nevertheless, much research is still needed in order to make this

potential new energy source a real feasible technology, since all the existing techno-economic

assessments (Wigmosta et al., 2011; Yang et al., 2011; Moody et al., 2014) were limited by

uncertainties regarding the biomass productivity that can actually be reached at full-scale.

In fact, while few assessments based productivity assumptions on model predictions, most

of the existing studies used experimental data collected either indoors or at certain time of

the year to extrapolate outdoor algal yields over an entire year of cultivation, then leading to

significant differences in assessment conclusions regarding the sustainability of full-scale algal

cultivation. A better understanding of the multiple time-scale underlying biophysical and

chemical processes is therefore necessary: firstly, an accurate description of solar irradiance,

temperature and nutrients mutual interaction and impact on microalgae growth is required.

Secondly, a complex analysis of the cultivation system design and management is needed,

by taking into account macroscale phenomena, such as macro-mixing for optimal nutrients

uptake, light distribution optimization, external effects on culture medium (evaporation,

contamination,..).

The work presented in this Thesis aims at investigating microalge growth behavior at two

different scales: firstly, the ‘first-principles’ state model of Bernardi et al. (2016), describing

microalge photosynthetic mechanisms, was extended by implementing the electron transport

chain process. Then, the productivity optimization of an open pond system through

1



2 Introduction

meteorological data was investigated at different seasons, in order to both understand the

system behavior and propose a reduced set of practical guidelines for future operation.

Finally, different approaches to cope with wrong system control manipulation caused by

inaccurate weather forecasts were proposed and discussed. The main objective of this

Chapter is to present the aim of the Thesis research activity. First, a general overview of the

energy situation is presented to discuss of the state of the art in microalgae-based processes;

then, a focus on microalgae as renewable energy sources is discussed together with the main

production process alternatives. Next, a focus on the cultivation phase is presented, with a

brief comment on the advantages and drawbacks associated to current cultivation systems.

Finally, a literature review of microalgae dynamics modelling is assessed. The motivation of

the work and a scheme of the Thesis structure will conclude this Chapter.

1.1 Towards sustainable energy and chemicals production

Energy usage has been considered one of the most important and ongoing issues of

the modern time: the continuously growing enhanced living standards of developed

countries (Organisation for Economic Co-operation and Development (OECD)) and the

rapid population growth (Roser and Ortiz-Ospina (2017)), especially in non-OECD realities

(such as India, China, sub-Saharian Africa and Middle East countries), result in a rapid rise

in global energy demand. In order to fulfill the global energy requirements (13699 Mtoe in

Table 1.1: Actual and predicted annual energy consumption (in quadrillion BTU) world-wide by
geographic area. Data collected from EIA (2016) website.

Region yr 2016 yr 2025 yr 2040
Avg. Annual Percent

Change (yr 2012 - yr 2040)

OECD 246.7 260.6 282.1 0.6%

Non-OECD

Asia 201.1 246.4 279.9 2.2% (India + 3.2%)
Africa 23.3 30.0 44.0 2.6%

Middle East 35.2 45.4 61.8 2.4%
Central and South America 31.0 36.7 47.3 1.5%

2014, according to IEA (2016)), consumption of fossil fuels has increased; in particular the

world demand of crude oil, coal and natural gas accounted for 81.1% of total energy demand

in 2014 (31.3%, 28.6% and 21.2%, respectively, see Fig.1.1). Table 1.1 shows that global

energy demand is predicted to grow at two different rates: at a lower average annual change

(0.6%) for already developed countries and at a rapid average speed in emerging Asiatic and

African countries (with a maximum peak of 3.2% for India). This dramatic trend towards

an ever increasing energy consumption triggers different questions about our near future:

• Finiteness of fossil resources. Fossil fuel reserves are likely to be rapidly depleted;

Shafiee and Topal (2009) proposed a modified version of Klass (1998) model describing

fossil fuels consumption and concluded that fossil fuel reserves depletion for oil, coal

and natural gas is, respectively, 35, 107 and 37 years, starting from 2005. In other
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words, according to this prediction, coal reserves will be available up to 2112, and

will be the only fossil fuel remaining after 2042. More pessimistic predictions for coal

depletion were given by Mohr et al. (2015): in this work different scenarios at different

risk probability were simulated for four countries (China, USA, Canada and Australia)

with a final estimation of coal production peak before 2025 due to China industrial

production. Focusing on crude oil production, Nashawi et al. (2009) stated that, on the

basis of 2005 world crude oil production and recovery techniques, the world oil reserves

will be depleted at an annual rate of 2.1%. This is due to the fact that oil demand

has increased in the past few years because of the rapid growth in the transportation

sector, in addition to the absence of viable economic alternatives for fossil fuel. Even

though different forecasting assessments on fossil fuels depletion are given in literature,

many experts agree that fossil resources supply cannot satisfy the growing demand of

energy by itself.

Figure 1.1: World primary energy assessment (IEA (2016))

• Climate Changes.

In order to maintain the thermodynamic balance of the Earth at an equilibrium

temperature, the amount of energy absorbed as solar radiation should be kept equal to

the amount of energy emitted back into space at infrared wavelenghts (Guerrero-Lemus

and Martinez-Duart (2013)). Nevertheless, the so-called greenhouse gases (GHG,

mainly CO2, CH4 and NOx, accounting for 73.5%, 19.0% and 5.9% of the total

GHG emissions, respectively, see EIA (2016)) in the atmosphere absorb and re-emit

infrared radiation, hence warming up the lower atmosphere and the Earth’s surface

with negative consequences for life and environmental protection (Pann, 2011). The

increasing use of fossil fuels (especially due to industry (29.1%), building (18.3%) and

transport sector (14.5%) demand, see Fig.1.2) has been the main responsible of the

continuous increase of GHG emissions (51840 MtCO2eq in 2016). A lot of policies

have been recently developed in order to cope with climate change issues; one of the

most recent examples in Europe is The Paris Agreement, which entered into force on

4 November 2016 to set a major step forward in the fight against global warming. The
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main target consists of holding the increase in the global average temperature to well

below 2 ◦C above pre-industrial levels and to pursue efforts to limit the temperature

increase to 1.5 ◦C above pre-industrial levels. Yet, meeting such ambitious climate

goals will be extremely challenging and would require a step change in the pace

of decarbonisation and efficiency. Despite Paris Agreement theoretical targets, IEA

(2016) reports that implementing current international pledges will only slow down

the projected rise in energy-related carbon emissions from an average of 650 million

tonnes per year since 2000 to around 150 million tonnes per year in 2040. A lot

of technical assessment were done in order to test the practical feasibility of Paris

Agreement topics: as an example, Meinshausen et al. (2009) made a comprehensive

probabilistic analysis aimed at quantifying GHG emission budgets for the 2000-2050

period that would limit warming throughout the twenty-first century to below 2 ◦C,

based on a combination of published distributions of climate system properties and

observational constraints. According to their results, the probability of exceeding 2 ◦C

would be within 53-87% if global GHG emissions are still more than 25% above 2000

levels in 2020. Unfortunately, despite the pledges made for the Paris Agreement on

climate change, the era of fossil fuels appears far from over (natural gas continues to

expand its role, while the shares of coal and oil fall back) and underscores the challenge

of reaching more ambitious climate goals. The path to 2 ◦C is tough (IEA, 2016), and

it can be achieved only if policies to accelerate further low carbon technologies and

energy efficiency are put in place across all sectors.

• Risk to living creatures on the Earth. Climate change has produced numerous

shifts in the distributions and abundances of animal species over the past 30 years.

Thomas et al. (2004) assessed the extinction risk for sample regions covering 20% of

the Earth’s surface and predict, on the basis of mid-range climate-warming scenarios

for 2050, that 15-37% of species will be ‘committed to extinction’. These estimates

show the importance of rapid implementation of technologies to decrease greenhouse

gas emissions and strategies for carbon sequestration.

In order to keep the Earth safe and to counter the environmental/economical threats,

sustainable and pollutant-free technologies have been introduced, known as renewable

sources. Renewable energies (i.e. solar energy, wind energy, geothermal energy, biomass

energy, biofuels,..) can reduce the planet thermal imbalance, limiting greenhouse gases

increase in the atmosphere. Currently, the above cited renewable energy sources supply

about 13.8% of total world energy demand (IEA, 2016); moreover, new emerging renewable

technologies are under investigation, such as marine energy, concentrated solar photovoltaic

(CSP) and enhanced geothermal energy (EGE) (Hussain et al., 2017). Renewables had an

impressive development worldwide, with highest growth of solar photovoltaic (42% annual

growth over the last decade) and wind (27% annual growth, see IEA (2016)). In related

terms, the most significant growth was made by the renewable energy use in transport
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Figure 1.2: Greenhouse gases flowchart (EIA (2016)).
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section (+223% between 2005 and 2012); the use of biomass-based biofuels has continuously

increased to 106 billion liters worldwide in 2012 (82.6 of ethanol and 23.6 of biodiesel).

The main driver in this field is related to the fact that the transport sector is almost

totally dependent on crude oil (more than 97% of total supplies for this specific sector)

and new technologies must be rapidly developed to cope with crude oil depletion. After

the initial great interest on first/second generation of biofuels, based on traditional crops or

ligno-cellulosic materials, a new third generation of biofuels based on microalgae is now under

investigation, given its potential as a new renewable energy and chemical source. The current

potential of microalge-based biofuels is mainly based on its high theoretical productivity,

if compared to terrestrial plants. Microalgae, in fact, can potentially convert 13% of

total solar light into chemical energy through photosynthesis (Smil, 2008). Nevertheless,

microalgae cultivation in artificial systems dramatically reduces the actual light-to-energy

conversion to 1%-3%, depending on the chosen cultivation system (Norsker et al., 2011).

Further process understanding is therefore required to quantify the key variables affecting

growth and metabolic mechanisms, in order to improve the current process efficiency. Recent

scientific breakthroughs should be mentioned about fourth generation biofuels and the so

called ‘synthetic biology’, enabling direct conversion of solar energy to fuels from sun light,

water and CO2. Nonetheless, further maturity of synthetic biology as a technology is required

in order to make biology fully engineerable and production systems economically viable (Aro,

2016). For this reason, the work presented in this Thesis deals with third generation biofuels.

In fact, microalgae processing currently represents one of the most promising technologies

for both sustainable production of a wide range of high values products and biofuels in the

transport sector.

1.2 Renewable energy sources: microalgae

Microalgae are microscopic, unicellular/multicellular prokaryotic/eukaryotic photosynthetic

organisms that can produce biomass and oxygen by using sunlight as energy source, CO2

as carbon source and inorganic salts as nutrients. They can guarantee higher growth and

photosynthetic rates with respect to other plants, for their all-year production capability

(Kiran et al., 2014). Furthermore, they can grow under extreme environmental conditions,

low nutritional and water requirements and without herbicides or pesticides. Among the

different cultivation technologies for bulk production of microalgae biomass, phototrophic

cultivation is currently one of the most investigated ones for large scale microalgae biomass

production; it means that the key fundamental process responsible of microalgae-based

chemical energy generation is photosynthesis.

The photosynthetic process (Eberhard et al. (2008); Antal et al. (2013)) is commonly

split into two main phases: the first one is the light-induced electron transport chain for

adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH)

generation. In this phase oxygen is produced through water splitting as a side product
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Figure 1.3: Photosynthetic dynamics representation

(see Fig.1.3). ATP and NADPH energy carriers are used in a second stage, independent

of light, during which the energy stored in the ATP and NADPH molecules is used to

fix CO2 and product sugars or other molecules. In microalgae the light-dependent phase

occurs in the thylakoids membrane, a phospholipidic membrane that separates two zones

called lumen (the inner region) and stroma (the outer one). Two main complex proteins

(LHCII and LHCI), binding the bulk of chlorophyll and carotenoids of the entire cell, are

responsible of light capturing, harvesting and excess energy dissipation in case of excess of

solar irradiation. The light energy captured by LHCII and LHCI is transported, respectively,

to the reaction centres (photosystem II (PSII) and photosystem I (PSI)) via a coordinated

network of pigments. The energy absorbed by LHCII for PSII reaction centre activation is

used to drive the water splitting reaction. This reaction turns water into electrons, protons,

and oxygen. The electrons are transported along the membrane by a series of electron carriers

(plastoquinone (PQ), cytochrome b6f complex (Cytb6f), plastocyanine (Pc), ferrodoxin (Fd)

and PSI), following the so-called linear electron flow (LEF). The final acceptor is generally

the NADP+ molecule, which is converted in NADPH, an energetic molecule used in the dark

phase of photosynthesis. At the same time, a proton flux is built between stroma and lumen

thanks to PQ oxidation, with a consequent acidification of the lumen. The proton gradient

drives the ATP production in the ATP synthase. An alternative electron path is the cyclic

electron flow (CEF), driven by PSI. The cyclic reaction is similar to the linear reaction but

produces only ATP and no NADPH is generated. Furthermore, once the electrons leave PSI

they are passed down through the electron carriers and returns to PSI through a different

path (blue arrow in Fig.1.3). Photosynthetic dark reactions occurs in the stroma region of

thylakoids through a 3-step process referred as Calvin-Benson cycle, which uses ATP and

NADPH generated by the light reactions to fix CO2.
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The growth rate and the maximum biomass production of microalgae cultures does not

depend uniquely on light. In fact, microalge culture is also affected by abiotic (temperature,

pH, salinity, oxygen, nutrients, and toxic chemicals), biotic (pathogens and competition by

other algae), and operational (mixing, depth control, harvest frequency, ...) factors (Mata

et al., 2010).

Depending on the species (Medipally et al., 2015), microalgae are capable to

produce varying amounts of lipid, polyunsaturated fatty acid, natural dye, carotenoid,

antioxidant, enzyme polymer, peptide, toxin and sterols (Moreno-Garcia et al.,

2017), with potential applications in different industrial sectors (biofuels, cosmetics,

pharmaceuticals, nutrition and food additives, aquaculture and pollution prevention).

Valuable co-products, such as proteins and pigments, could be obtained from microalgae

through biomass composition modulation by modifying the nutritional requirements/growth

conditions/process technologies (Bona et al., 2014) according to the desired final use (see

Patel et al. (2017)). As you can see in Fig.1.4, culture harvesting (and dewatering) follows the

cultivation phase. The algal biomass is usually harvested through centrifugation, flotation

or filtration techniques. At this step, several process strategies can be adopted, depending

Figure 1.4: Microalgae-based processes flowchart (Patel et al. (2017)).

on the desired final use. For example, ethanol and bioplastics can be obtained with

direct fermentation; if the user is interested in biohydrogen production, algal biomass can

be gasified and converted through a Fischer-Tropsh process. Finally, the biomass could

be used as a direct energy source through direct combustion. If we want to produce

biofuels (through lipids transesterification into methyl esters) or high value compounds
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(such as proteins, pigments, carbohydrates), an additional phase of extraction is required;

the three most common alternatives are the mechanical expeller, the extraction with

solvent (usually hexane) and supercritical CO2 fluid extraction (Krichnavaruk et al., 2008).

Following a path rather than another requires deep knowledge of the right cultivation and

pretreatment conditions, since high biomass productivity values is often associated to low

lipid/carbohydrates content. It is therefore necessary to gain better understanding of the

trade-offs between lipid and co-products accumulation and productivity (Araya et al., 2014).

Since in this Thesis work we will almost exclusively focus on the cultivation phase of

microalge production process, a brief description of the most common cultivation technologies

is given in the following paragraph.

1.2.1 Microalgae cultivation technologies

If we considered phototrophic cultivation, the most commonly used systems are the so-called

open ponds or the enclosed photobioreactors (PBRs).

• Open Ponds. Open ponds are the oldest (practiced since the ’50s, as stated in

Borowitzka (1999)) and simplest cultivation systems used for large scale microalgae

production (covering about 98% of commercial algae production in 2015). The open

pond systems differ in terms of size, shape, building materials, mixing equipment, and

inclination with respect to the ground surface (Borowitzka, 2005). Raceway ponds can

be stirred by a paddle wheel (the most common option, see Jiménez et al. (2003)) or

used as extensive shallow unmixed systems. In any case, open pond systems are the

cheapest technology for large scale cultivation of microalgae compared to close PBRs.

Furthermore, cultivating in open ponds does not compete with agricultural crops for

land (Chisti, 2007), does not require frequent maintenance and cleaning and consume

relatively low energy (Ridolfi et al., 2009). However, there are some drawbacks in

terms of final productivity, such as the strong dependence on highly fluctuating local

conditions (temperature, light intensity, ...) and high probability of contamination

from the air and ground (Belay, 1997).

• Enclosed Photobioreactors (PBRs). PBRs are generally available in the form of

glass, plastic, or other transparent materials tubes, bags, or plates. Some common

PBRs designs include annular, tubular, and flat-panel reactors, with large specific

surfaces (Pulz, 2001). Photobioreactors present many advantages, such as high system

efficiency given by major control over culture conditions (evaporation elimination,

nutrients supply optimization), but their construction, operation, and maintenance

cost is currently higher than open ponds. This problem still limits the cost-effective

production of microalgae biomass on large scale.

Jorquera et al. (2010) recently made a comparative life cycle analysis (LCA) study in order

to compare open ponds, tubular and flat photobioreactors in terms of net energy ratio
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Figure 1.5: Tubular photobioreactor and open pond schematisation. Figures are taken by Jorquera
et al. (2010).

(NER). NER is the ratio between the energy produced by the cultivation system and the

energy required to operate it. The results showed that only raceways ponds and flat PBRs

are economically sustainable, with NER > 1. A more pessimistic evaluation was made by

Richardson et al. (2012); in this work a multi-year, Monte Carlo financial feasibility model

was developed to estimate the costs of production and chance of economic success for large

scale production with different cultivation systems. The financial feasibility analysis showed

that the only way to achieve a 95% probability of economic success in the PBR system was

to reduce CAPEX by 80% or more and OPEX by 90% or more. For the open pond system

there were more options that could return a 95% or greater chance of economic success, for

example, reducing CAPEX by 60% and OPEX by 90%.

The high uncertainty on microalgae cultivation practical feasibility at large scales

requires further technological improvement, together with a deeper and an ever increasing

understanding of the underlying mechanisms of microalgae growth. In this perspective,

microalge growth modelling can be considered a valuable tool to support both system design

and operation optimization, with consequent potential increase of cultivation profitability.

1.3 Microalge growth modelling: a multiscale problem

Microalgae cultivation processes exhibit high complexity due to the interaction of multiple

phenomena that span multiple time scales, ranging from milliseconds to days, and from

nanometers to the hundreds of meters in industrial cultivation plants, involving quantum

phenomena, cell metabolism, turbulence and fluid flow behavior, light diffusion in a

non-transparent medium, mass and energy transport phenomena, interactions with the

equipment design and the external environment. Focusing on the photosynthetic mechanism,

several sub-processes are responsible of the overall productivity: photoproduction, the

collection of all processes from photons utilization to CO2 fixation, that occurs in a fraction

of a second; photoinhibition, the observed loss of photosynthetic production due to excess of

light, which acts on time scales of minutes to hours; photoregulation, the set of mechanisms
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by which microalgae protect photosynthetically active components via the dissipation of

excess energy as heat (Non Photochemical Quenching NPQ), that occurs within minutes;

photoacclimation, the ability of microalgae to adjust their pigment content and composition

under fluctuating light and nutrient conditions, acting on time scales of hours to days; and

finally, the mechanisms of nutrient uptake that lasts within hours to days.

Several dynamic models of microalge growth have been developed in the last 60 years

(especially for investigating oceanography, ecology and biotechnology scientific domains),

from the simple description of microalgae growth rate through the hyperbolic function

proposed by Baly (1935) up to the more complex representations. The first developed

models were built to describe microalgae growth in their original environment, to which

the specific strain adapted over billions years of evolution. The model proposed by Riley

(1946), for example, was proposed to describe the population of Georges Bank by considering

both the effect of light (through an exponential function representing the light decrease

along the culture medium depth) and the impact of nutrient on growth. However, the

artificial cultivation systems described in the previous paragraph must be considered as

new sub-optimal systems to which microalge are not naturally adapted. Amongst the

main differences with respect to cultivation in natural habitats we can highlight: (i) the

high biomass concentrations usually required for large-scale production (microalge naturally

grow at very low concentrations), (ii) the artificial administration of macronutrients to avoid

limiting conditions and (iii) the cultivation temperature, often fixed at values (specially in

PBRs) that guarantee maximum productivity for the specific strains considered.

Different modelling strategies have been adopted in the last 60 years (Bernard (2011))

to describe microalgae growth: from the first empirical models (see, as an example, the

above mentioned model by Baly (1935), then extended by Vollenweider (1965)) based on

empirical correlations, to the more sophisticated mechanistic representation of the underlying

physical-biological processes through the so-called ‘first-principles’ models. If we focus our

attention on this last class of models, two main categories can be identified: physiological

and state models.

Physiological models aim to describe the dynamics of the most significant sub-processes

involved in both photosynthesis and cell metabolism. The basic idea is to propose an

approximation of the actual mechanisms of mass and energy storage/transport that are

responsible of microalge growth. As an example, Baroukh et al. (2014) recently proposed a

dynamic metabolic modelling framework that handles non-balanced growth conditions and

accumulation of intracellular metabolites. The metabolic network was split into sub-networks

describing spatially close reactions; then each sub-network was reduced to a limited set of

macroscopic reactions with simple kinetics. Finally, an ordinary differential equation system

was obtained to describe substrate consumption, biomass production, products excretion

and accumulation of internal metabolites.

Physiological models are therefore extremely detailed and generally involve a large

amount of variables and parameters, despite recent implementation of advanced techniques
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for model simplification. The identification procedure results extremely difficult, sometimes

impossible, due to the high number of parameters used. For this reason, especially to

describe the main key processes involving nutrient uptake and transport in the cell, simpler

compartmental model structures were adopted in literature. Nutrient uptake models are

usually based on Droop (1968) modelling approach (based on Dugdale (1967) nutrients

uptake description and reformulated by Burmaster (1979)), initially used to represent the

effect of vitamine B12 internal quota on the growth rate of phytoplankton and recently

extended to the representation of macronutrients (nitrogen and phosphorus) effects on

microalge growth rate at constant light. This model was adopted in several works;

as an example, Mairet et al. (2011) used a modified Droop model in order to assess

the hysteresis phenomenon in neutral lipid production: in practice, the lipids dynamics

after nitrogen starvation is highly different from the dynamics after nitrogen recovery.

Simplified compartmental models are highly useful to predict significant metabolic paths

without considering unnecessary biological details for macroscale production. Furthermore,

the simpler the model, the simpler the coupling with other models (light distribution,

temperature,...) will be in terms of final identifiability.

In parallel to nutrient compartmental models, several kinetics models of photosynthesis

have been proposed to describe the impact of light on growth. The effect of light on

microalge is complex: in fact, as described at the beginning of this section, light irradiance

is not only responsible of triggering CO2 fixation through photosynthesis, but can also drive

photoinhibitory phenomena. In particular, the excess of incoming light can be responsible for

the production of reactive oxygen species (ROS) that damage D1 proteins, hence hindering

the energetic efficiency of the photosynthetic process. Moreover, microalgae have evolved by

developing a complex regulatory systems to protect themselves via heat dissipation of excess

incoming energy. This is the above mentioned NPQ, whose dynamics is conventionally split

into three components: the most rapid component (qE), depending on pH gradients between

stroma and lumen and on xantophyll protein synthesis; the second component (qT), relaxing

within minutes, associated to LHCII uncoupling from PSII (‘state transition’); the slow third

component (qI) related to photoinhibition-driven mechanisms (Müller et al. (2001)). The

great complexity in describing microalgae behavior at variable light intensities has recently

increased the interest on mechanistic models development, in particular on the so-called

‘state-models’.

State models (Steele (1962), Peeters and Eilers (1978), Platt et al. (1980), Han (2002)) are

based on the concept of PSU unit, which consists of the antenna complex and the associated

reaction center, together with the stoichiometric apparatus that is activated by a specific

amount of light to produce a given amount of NADPH. The name ‘state model’ was coined to

reflect that PSUs can be in different states of excitation (open, closed and light-damaged).

Wu and Merchuck (2001) model, as an example, is based on Peeters and Eilers (1978)

assumption that only the closed centers can be damaged by light in excess; then, the

damaged PSUs centers can be directly recovered to open state through a first-order kinetics.
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Conversely, Nikolau et al. (2015) changed the model structure (as proposed by Han (2002))

assuming that the damaged PSUs centers are first recovered to the closed state through a

first-order kinetics and then to the open state with a fast reaction. Another approach was

tested by Bernardi et al. (2014); in this work the model proposed by Camacho-Rubio et al.

(2003), based on the assumption that photoinhibition affects both open and closed PSUs,

was simplified and modified through the implementation of photoregulation mechanisms. An

interesting contribution was proposed by Papadakis et al. (2012), who described the cyclic

transport through the introduction of a fourth state.

In the past decade several models have also been proposed to include another key

regulatory mechanism, photoacclimation. This mechanism accounts for the response of

microalgal pigment/protein density to both light intensity and limiting nutrients and acts

on a timescale of days to weeks. In practice, it consists on the cell capacity to reduce its

pigment content in case of exposition at high light irradiances. Geider et al. (1998) were

the first to propose a simple photoacclimation representation introducing chlorophyll as

model variable (in addition to microalgal carbon and nitrogen) and integrating the known

response of photosynthesis to both light and nitrogen status in the cell. An important

contribution was given by Flynn (1991) with a growth model considering the light effects

on growth, photoacclimation phenomena and also the growth dependence on temperature.

Other models have been proposed for photoacclimation description (Zonneveld (1998) and

Pahlow (2005)) by implementing more complex details on the fundamental mechanism.

Recently, Gárcia-Camacho et al. (2012) proposed a novel model formulation taking into

account the dynamics of photoacclimation, the effect of non-photochemical quenching as

a response to high irradiation, as well as other aspects such as dark respiration. The

model recently proposed by Ebenhöh et al. (2014) for Chlamydomonas recapitulated the

basic fluorescence features of short-term light acclimation (state transitions); furthermore, a

photosynthetic electron transport chain representation was coupled to a heuristic description

of CEF to simulate qE triggering.

Typically, temperatures effects on microalgae growth have been studied following two

main approaches (Béchet et al. (2013)): the first one considers light and temperature as two

independent variables acting on growth (uncoupled approach), whereas the second one aims

at representing the interdependency between the two variables (coupled approach); this last

approach has been used by Duarte (1995), who proposed a state model whose dynamics were

described through Arrhenius-like kinetics. Although coupled models theoretically represent

temperature effects on growth with a detailed description of the underlying mechanisms,

uncoupled models are usually preferred due to the low number of parameters required. As

an example, we cite the uncoupled model proposed by Bernard and Remond (2012) who

introduced the concept of multiplying the parameter representing the growth rate at the

optimal temperature by a temperature-dependent function φT bounded between 0 and 1,

being 1 the value assumed at the optimal temperature. This brief model overview showed the

different issues/approaches used in literature to describe the key aspects of microalgae growth
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(light, temperature, nutrients). The majority of the above-cited works aimed at modelling

ideal growth conditions (through lab-scale experimental tests) to focus on the fundamental

bioprocesses involving microalgae growth. Nonetheless, modelling microalgae cultivation at

large scales introduce further complications, such as the description of light and nutrients

distribution along the reactor depth, the representation of heat and mass transfer in the

culture medium, the implementation of fluctuating environmental conditions (in particular

for open systems), the necessity to describe the hydrodynamics/mixing efficiency with fluid

dynamics computation software. For example, Béchet et al. (2011) proposed a universal

temperature model applicable to open pond systems and Ali et al. (2017) recently presented

a novel empirical correlation to estimate the heat transfer in raceway ponds for different

pond sizes and depths. Heat transfer in outdoor raceway ponds was modeled with the

effects of pond design, hydrodynamics, and environmental conditions. Park and Li (2015)

developed a CFD model to show the variability of biomass at different locations within the

system, as well as the light attenuation dependent on depth and cell concentration. Then,

it showed that biomass productivity was significantly affected by changes in the incoming

CO2 concentration, while the paddlewheel velocity had no significant effect under turbulent

conditions. Another modelling approach was proposed by Solimeno et al. (2015); the aim of

the study was to calibrate a mechanistic model built in COMSOL Multiphysics TM platform

to describe both photorespiration, photochemical quenching and photoinhibition together

with the influence of temperature, light intensity, pH and nutrients on microlgae growth. In

order to assess the mixing effects in a complex hydrodynamic regime Hartmann et al. (2014)

proposed a model to reconstruct the light profile received by a single cell. It simulated

cells Lagrangian trajectories and the light distribution, hence modelling the light pattern

perceived by a cell. This pattern was finally used with a dynamical model for photosynthesis

in order to estimate the average growth over a set of trajectories.

In conclusion, the available literature offers a huge quantity of models based on several

assumptions on different limiting factors. For this reason, we need to admit that still a lot of

key phenomena related both to photosynthesis/metabolism and to cultivation scaling from

lab conditions to large-scale production have to be assessed.

1.4 Motivation of the work

Microalgae are one of the most promising renewable feedstocks to cope with fossil sources

depletion. Despite their potential, the lack of perfect knowledge about both the fundamental

biomass growth processes and the actual possibility to achieve economically satisfactory

productivity at large-scale currently raises the question of the real effectiveness of this

technology. Mathematical modelling can be of great help to bridge the current gap of

uncertainty on microalge growth behavior. Models are in fact valuable tools to support

both microscale biological processes representation and macroscale cultivation design and

management, with consequent potential increase of cultivation profitability. This Thesis
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aims at exploring some modelling issues considering both a microscopic and macroscopic

perspective. In particular, the following areas have been tackled:

• Microscale modelling. We considered the extension of an existing mathematical state

model validated through growth and fluorescence data. In fact, the current model is

limited to PSII state description. In this Thesis, we proposed a modelling approach

to link PSII dynamics to the whole electron chain transport, in order to describe the

dynamics of all the protein complexes involved in the process.

• Macroscale modelling. Open pond systems are commonly considered less efficient

than PBRs in terms of productivity; nonetheless open pond systems are commonly

operated at constant dilution rates and by maintaining constant pond depth

for all the cultivation duration. A new model, developed by coupling existing

growth/temperature sub-models with real meteorological data, was used to simulate

and optimize an open pond system by acting on independent inflow and outflow rates

manipulation, hence allowing depth variation. The utilization of this dynamic model

will underline the benefits of model building activities on practical process optimization

and control.

In addition to the above, some investigations on MBDoE techniques were conducted.

Biological tests for model calibration/validation are often based on fixed protocols (often

generated by shared experience or literature reviews) with the risk to conduct sub-informative

experimental tasks. In order to cope with this problem, model-based design of experiments

(MBDoE) techniques represent a valuable tool for the rapid assessment and development

of mathematical models at different levels of the model building procedure, in order to

reduce time and costs required for model identification. For this reason, a modified version

of classic MBDoE procedure based on online redesign of experiments was proposed, with

the perspective to be used for long duration experiments on microalge growth. Since the

proposed methodology was not tested directly on microalgae models, it will be discussed in

a separate Appendix.

1.5 Dissertation roadmap

A scheme of the Thesis roadmap is presented in Fig.1.6. It presents the main structure of

the Thesis, split into two macro-regions associated to the two different approaches used to

investigate microalgae growth dynamics.

Chapter 2 presents an extension of the semi-mechanistic model proposed by Bernardi

et al. (2016). This state model describes the main biological processes acting on PSII in

time scales from milliseconds (photoproduction) to minutes/hours/days (photoinhibition,

non-photochemical quenching, photoacclimation). The model was developed and validated

by coupling classical photosynthesis rate samples to fast pulse amplitude modulation (PAM)

flourescence experiments. The extended model aims at describing the dynamics of the key
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for future work.

In Appendix A a new online model-based design of experiments technique to exploit

the progressive increase of information resulting from running experiments in case of

high parametric mismatch is discussed. The proposed technique is demonstrated with

two simulated case studies not strictly related to the Thesis topic. Nonetheless, the

results obtained are reported here due to their potential for microalgae growth models

calibration/validation.





Chapter 2

A semi-mechanistic model to describe

photosynthetic electron transport

In this Chapter a dynamic model predicting electron transport in thylakoid membranes

is described in detail. The proposed model is based on the existing model by Bernardi

et al. (2016) that couples PSII dynamics representation with fluorescence fluxes quantitative

description.

2.1 Introduction

Despite microalgae potential as renewable feedstock, one of the main issues to address

is bridging the gap between maximal theoretical productivity and practical biomass

productivity in large scale cultivation systems. To meet this objective, a quantitative

description of key phenomena affecting microalgae growth, such as light utilization, can be

useful to improve our current knowledge for future process optimisation. Several modelling

approaches have been proposed over the recent years, as described in the Introduction of

this Thesis. The focus here is on the so-called state models, frequently used in literature

for their efficiency in describing photosynthetic operation. Nikolau et al. (2015) have

recently proposed a semi-mechanistic model (based on Han (2002) ‘state-model’ approach)

to link three distinct processes acting on PSII at different time scales (photoproduction,

photoinhibition and photoregulation (NPQ)) to the respective fluorescence fluxes.

Nikolau et al. (2015) showed how considering chlorophyll-a fluorescence dynamics may

help providing reliable predictions of the photosynthetic response under variable light

conditions, thus allowing for key photosynthetic mechanisms mathematical modelling.

However, this fluorescence model was not able to describe photoregulation adequately

over long-term experiments, thus advocating for a more detailed biological representation.

Recently, Bernardi et al. (2016) have considered the model by Nikolau et al.

(2015) and concluded that photoregulation mechanisms were based on at least two

interdependent processes, hence requiring a more complex representation of NPQ dynamics

and, consequently, more experimental data for model calibration. Bernardi et al. (2016)

19
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proposed MBDoE techniques to provide a systematic approach to determine the different

experimental protocols that would maximise the avaiable information content for model

identification. Eventually, a complete description of the PSII was reached, leading to a

significantly improved description of photosynthetic production at different light irradiances.

In this Chapter, Bernardi et al. (2016) work has been used as a starting point to describe

the photosynthesis-driven electron transport. In section 2.2 a brief description of the model

proposed by Bernardi et al. (2016) is presented; in section 2.3 the proposed model extension

for electron transport description is showed. In section 2.4 the calibration/validation were

presented and discussed, whereas section 2.5 concludes the Chapter and give some hints for

future works.

2.2 The PSII model

The model proposed by Nikolau et al. (2015) and Bernardi et al. (2016) is summarized below.

The dynamics of PSII is described according to Han (2002) modelling approach, which is

based on the assumption of varying photosystem states. In particular, the reaction centers of

PSII can be open (electron free, A), closed (electron charged, B) or inhibited (light damaged,

C). Each photosystem can change its state, according to the following set of equations:

dA

dt
= −IσPSIIA+

1

τPSII

B (2.1)

dB

dt
= IσPSIIA− 1

τPSII

B + krC − kdσPSIIIB (2.2)

1 = A+B + C, (2.3)

where I is the light irradiance (µE m−2 s−1), σPSII is the effective cross-section of PSII (m2

µE−1), τPSII is the turnover rate (s), kr is repair rate constant (s
−1) and kd is the damage rate

constant (-). The effective cross-section σPSII is directly correlated to fluorescence through

the equation:

σPSII =
σtcηPφf

A

4Nchl

, (2.4)

where σtc is the total cross-section (m2 g−1
chl), ηP is the rate of photoproduction related to

the rate of fluorescence (−), φf
A is the quantum yield of fluorescence of an open reaction

centre of PSII and Nchl is the chlorophyll specific number of photosynthetic units (µmolO2

g−1
chl). The number 4 in the denominator is a stoichiometric factor reflecting the minimum

theoretical value of 4 electrons per oxygen molecule produced during water splitting. The

quantum yield of fluorescence φf
A is given by the following expression:

φf
A =

1

1 + ηP + ηD + ηqE
, (2.5)
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Table 2.1: Parameter estimates along with their 95% confidence interval and t-values. The
reference t-value is 1.65. Data extracted by Bernardi et al. (2016). Note that parameter Sf assume
different values for each experimental tasks used for parameter estimation (in this case, 3 set of
experiments have been used.)

Parameter Estimated value 95% conf. int. t-value 95% Units

ξF 2.68× 10−1 3.50× 10−2 7.67 s−1

ξS 1.32× 10−3 6.97× 10−5 18.88 s−1

IqE 5.95× 102 2.07× 101 28.76 µEm−2s−1

kd 9.95× 10−7 2.67× 10−7 3.73 −
kr 5.10× 10−5 2.67× 10−5 1.78 s−1

Nchl 4.83× 10−1 7.52× 10−2 6.43 µmolO2
g−1

chl

nqE 2.40× 100 1.27× 10−1 18.87 −
ηI 1.41× 101 3.98× 100 3.54 −
η̄FqE 5.96× 100 4.98× 10−1 11.95 −
η̄SqE 1.23× 101 5.75× 10−1 21.35 −
η̄CqE 2.47× 101 1.69× 100 14.58 −
ηP 1.04× 101 2.33× 10−1 44.54 −
σtc 7.33× 10−1 7.50× 10−2 6.84 m2g−1

chl

τPSII 6.95× 10−3 7.50× 10−4 9.26 s
Sf 1 1.81× 100 3.01× 10−1 6.82 Vgchlm

−2

Sf 2 2.06× 100 3.01× 10−1 6.81 Vgchlm
−2

Sf 3 1.30× 100 1.90× 10−1 6.82 Vgchlm
−2

where ηD is the rate of basal thermal decay related to the rate of fluorescence (−) and ηqE is

the rate of energy dependent quenching related to the rate of fluorescence (−). Given that a

first-order process is not enough to describe the photo regulation mechanism in an accurate

way, Bernardi et al. (2016) proposed the following more complex dynamics:

ηqE = αF (η̄
F
qE + αS η̄

C
qE) + αS η̄

S
qE, (2.6)

where η̄FqE, η̄
S
qE and η̄CqE represent different rates of NPQ processes, whereas αF and αS are,

respectively, the fast and slow activities of NPQ, whose dynamics are described through the

following equations:
dαF

dt
= ξF (αSS − αF ) (2.7)

dαS

dt
= ξS(αSS − αS), (2.8)

where ξF and ξS are the fast and slow time constant for NPQ and αSS is the reference steady

state value reached during the light phase, defined as:

αSS =
InqE

IqE
nqE + InqE

. (2.9)

Parameters IqE and nqE in the above sigmoid function represent, respectively, the irradiance

level at which half of the NPQ is triggered and the sharpness of the switch-like transition.

This model has been calibrated and validated through different kind of experiments on
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Nannochloropsis gatidana (see Bernardi et al. (2016)). Parameter estimation was performed

by using the entity Parameter estimation of gPROMS software (4.1 version), which uses the

Maximum Likelihood method. The list of the estimated values of the model parameters is

reported in Table 2.1. The practical link to measured fluorescence fluxes Fl is modelled as:

Fl = Sfσtcφf , (2.10)

where Sf is a parameter depending on the characteristics of the PAM fluorometer used and

the chlorophyll content of the sample (Vgchl m
−2) and φf is the total fluorescence quantum

yield (−), described with the following expression:

φf =
1

A
φf

A + B
φf

B + C
φf

C

, (2.11)

where φf
B and φf

C are the quantum yield of fluorescence of closed and inhibited reaction

centres, respectively. According to the definition of φf
A, these two new variables are defined

as:

φf
B =

1

1 + ηD + ηqE
(2.12)

φf
C =

1

1 + ηI + ηD + ηqE
, (2.13)

where ηI is the rate of inhibition related to the rate of fluorescence (−).

2.3 Electron transport description

The complete photosynthetic electron transport chain for Nannochloropsis gatidana consists

of PSII, PQ, Cytb6f, Cytc6, PSI and Fd (Rochaix (2011)). Light-driven charge separation

events occur at the level of the above-modelled PSII and PSI, thus generating the electron

transport for ATP and NADPH generation. The electron transport is conventionally split

into two main electron fluxes (linear (LEF) and the cyclic (CEF) electron flow, see Eberhard

et al. (2008)). Some authors also introduced the so-called pseudolinear cyclic electron flow,

in order to describe the complex transient behavior of the electron transport chain just

after light activation after long dark periods (Vredenberg and Bulychev (2010)). Despite

the proposal of this new electron transport flow, the proposed extension model is uniquely

based on LEF and CEF description. The proposed model describes the electron transport

by simulating the process represented in Fig. 2.1. As you can see, the final electron acceptor

complex (Fd) is responsible of the choice of the final electron flow path; in fact, electrons can

be either given to final acceptors (not shown in the graph) or re-introduced in the thylakoid

membrane through Cytb6f. The related model is therefore based on the following set of

equations:
dxPQ,1

dt
=

1

τPSII

xPQ,2BnPSII − αregkpqxPQ,1xCytb6f,2nCytb6f (2.14)
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dxCytb6f,1

dt
= αregkpqxPQ,1xCytb6f,2nPQ − kcytxCytb6f,1xCytc6,1nCytc6+

+ αregkcycxFd,1xCytb6f,2nFd

(2.15)

dxCytc6,1

dt
= kcytxCytb6f,1xCytc6,2nCytb6f − kcytxCytc6,1xPSI,2nPSI (2.16)

dxPSI,1

dt
= kcytxCytc6,1xPSI,2nCytc6 − σPSIIxPSI,1xFd,2nFd (2.17)

dxFd,1

dt
= σPSIIxPSI,1xFd,2nPSI − kcycxFd,1 (2.18)

xi,1 + xi,2 = 1, (2.19)

where each term xi,j refers to the molar fraction of the i -th complex (PQ, Cytb6f, Cytc6,

PSI or Fd) at its j -th redox state (j=1 for reduced states, and j=2 for oxidised states). In

practice, no inhibited state is assumed for the protein complexes except for PSII. In a similar

way, each term ni refers to the molar quantity of the i -th complex. In particular, Eq.2.14

describes PQ redox state dynamics: the first right-hand term represents PQ reduction by

light excited PSIIs, whereas the second right-hand term represents PQ oxidation due to

electron transport to oxidised Cytb6f centers. Then, Eq.2.15 describes Cytb6f dynamics:

the first right-hand term represents Cytb6f reduction by reduced PQs, the second right-hand

term represents Cytb6f oxidation due to electron transport to oxidised Cytc6 centers and

the third right-hand term represents Cytb6f reduction due to cyclic electron flow. Eq.2.3

represents Cytc6 dynamics: the first right-hand term represents Cytc6 reduction by reduced

Cytb6fs and the second right-hand term represents Cytc6 oxidation due to electron transport

to oxidised PSI centers. PSI dynamics is given by Eq.2.17; in this case the first right-hand

term represents PSI reduction by reduced Cytc6 electron carriers and the second right-hand

term represents PSI oxidation due to light-driven transport to Fd. Finally, Eq.2.18 describes

Fd state dynamics: the first right-hand term represents PSI driven reduction of Fd whereas

the second term represents the total electron transport to final acceptors. In other words,

no electron transport between two generic complexes A and B is allowed if B is reduced or A

is oxidised. The link between this model extension and Bernardi et al. (2016) work is given

by the implementation of parameter τPSII and B in the model equations. kpq, kcyt and kcyc

are the different electron transport rates between the electron carriers all along the electron

transport chain. The variable αreg, introduced to simulate the regulation mechanism used

by the cell to control the electron flux, was modeled through the following equation:

d(1− αreg)

dt
= ξreg(βreg,SS − (1− αreg)); βreg,SS = ηreg

I

I + 1
; (2.20)

The proposed formulation is based on the assumption that transport reduction at steady

state (βreg,SS) practically does not depend on light intensity magnitude; the only effect of

light is triggering the regulation mechanism. The parameters ηreg and ξreg represents the

efficiency and the activation constant of the regulation mechanism, respectively. The αreg
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Figure 2.1: Model flowsheet. The arrows show the connections (and the related kinetics) between
the protein complexes involved in the electron transport.

coefficient was used to simulate the cyclic electron transport decrease after actinic light

activation. In this Thesis work two different hypothesis were considered and compared:

• First case-With Acidification. The electron transport between PQ and Cytb6f at light

conditions is gradually reduced due to lumen acidification caused by cyclic electron

transport high rates (see Tikhonov and Vershubskii (2014)). The coefficient αreg was

then used to simulate both cyclic electron transport decrease after the initial transient

and the linear electron transport reduction due to lumen acidification.

• Second case-Without Acidification. The electron transport between PQ and Cytb6f at

light conditions is unaffected by lumen acidification (in mathematical terms, the αreg

coefficient in Eq.2.14 is removed).

The following assumptions were used for both the two case studies: (i) the electron

transport between two complexes only takes place where the two complexes have opposite

redox state; as an example, reduced PQ complexes can react uniquely with oxidised Cytb6f

complexes. This behavior has been highlighted in the previous equations by coloring the

subscripts of each protein complex fraction in a different way (red for oxidised complexes

and blue for reduced ones); (ii) Cytc6 was assumed to be non-zero at the beginning of the

light phase. This behavior could be explained by considering that at the end of any light

treatment, the excess of electrons is blocked just before PSI (since no oxidation takes place

at dark conditions); (iii) we assumed the following stoichiometry for the quantity of each

complex involved in the electron flow:

• nPSI was set equal to 1 mol;

• nPSI = 1.5 nPSII (Falkowski and Raven (2007));

• nPQ = 30 nPSII (Falkowski and Raven (2007));
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• nCytb6f = 1.5 nPSII (Falkowski and Raven (2007)).

The values of ncytc6/nPSII , nfd/nPSII , σPSII/σPSI have been estimated due to the low

information on these parameters in the literature.

2.4 Results and discussion

In the following sub-paragraphs the calibration and validation tasks are defined and

discussed; it should be noted that the model parameters of Bernardi et al. (2016) model

are kept constant to the original values reported in Table 2.1. The parameters considered in

the following are therefore uniquely related to the model extension proposed in this study.

2.4.1 Model calibration

The microalgae strain Nannochloropsis gaditana (CCAP, strain 849/5) was grown in a sterile,

filtered F/2 medium, using sea salts (32 gL−1) from Sigma, 40 mMTris HCl, pH 8 and Sigma

Guillard’s (F/2) marine water enrichment solution. Growth experiments were performed in

the multi-cultivator MC 1000-OD system (Photon Systems Instruments, Czech Republic)

at a temperature of 21◦C and a light intensity of 100 µEm−2s−1 provided continuously by

an array of white LEDs. The suspension culture was constantly mixed and aerated by

bubbling air. Pre-cultures were grown at 100 µEm−2 s−1 in glass bottles of 0.25 L under a

continuous airflow, enriched with 5% CO2. After reaching the exponential growth phase, the

pre-culture was centrifuged and re-suspended in fresh medium to have a final concentration of

9 · 106cellsmL−1, before introduction in the multi-cultivator. The culture analyzed was kept

in exponential phase by dilution with fresh medium. Spectroscopic analyzes were performed

in vivo using a Joliot-type spectrophotometer (JTS-10, Biologic, France). The spectroscopic

quantification was performed by measuring the behavior of the primary electron donor (P700)

at 705 nm in intact cells at a final concentration of 300 · 106 cells ml−1. The experimental task

was conducted by exposing the samples to different actinic lights (from limiting to saturating

actinic light; 80-150-320-940-2050 mol of photons m−2 s−1) for 15000 ms to maximize P700

donor oxidation at a given actinic light and reach a steady state. At the end of each light

treatment, the light was switched off for the oxidised P700 re-reduction to occur subsequently

in the dark.

The measurement variable used for models calibration is the oxidised fraction of PSI

centers (xPSI,2), obtained as the ratio between the absorbance signal at normal conditions

at a specific light (80-150-320-940-2050 mol of photons m−2 s−1) and the absorbance signal

obtained at 2050 mol of photons m−2 s−1 through cell-pretreating with DBMIB-poisoner,

corresponding to complete oxidation of all PSI centers. Parameter estimation was performed

by using the entity Parameter estimation of gPROMS software (4.1 version), which uses the

Maximum Likelihood method. The lists of the obtained parametric estimates for the two

case studies are reported in Tables 2.2 and 2.3. The results showed that for both the
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Table 2.2: First case-With acidification. Parameter estimates along with their 95% confidence
interval and t-values. The reference t-value is 1.65.

Parameter Estimated value 95% conf. int. t-value 95%

ξreg 4.22 0.48 8.77
xcytc6,1(t = 0) 0.22 0.036 6.04

kcyc 158.66 34.40 4.61
kcyt 17.13 2.67 6.41
kpq 22.56 9.54 2.37
ηreg 0.96 0.018 51.48

ncytc6/nPSII 6.06 1.18 5.14
nfd/nPSII 0.27 0.04 5.53
σPSII/σPSI 0.56 0.15 5.01

Table 2.3: Second case-Without acidification. Parameter estimates along with their 95%
confidence interval and t-values. The reference t-value is 1.65. The asterisks highlight the
parameters whose estimates assume the preset physical boundary values: in this cases no statistical
info are provided.

Parameter Estimated value 95% conf. int. t-value 95%

ξreg 1.33 0.07 18.06
xcytc6,1(t = 0) 1∗ − −

kcyc 11.80 0.90 12.29
kcyt 130.78 15.14 8.64
kpq 0.95 0.04 24.06
ηreg 1∗ − −

ncytc6/nPSII 1.68 0.21 8.03
nfd/nPSII 3.28 0.28 11.81
σPSII/σPSI 5.23 0.36 14.44

two case studies all the parameters were estimated in a statistically satisfactory way. All

t-values are, in fact, always higher than the reference t-values at 95% of confidence. The case

Without Acidification presents higher t-values, hence a more precise parameter estimation.

Nonetheless, the final estimates of parameters ηreg and xcytc6,1(t = 0) (highlighted with

asterisks in Table 2.3) tend to overcome the biological threshold and get stuck to the preset

boundary values, hence suggesting that Without Acidification case study can be based on

wrong assumptions. Both the two cases presents a satisfactory goodness of fitting, as reported

in Fig.2.2. For the sake of simplicity, only the model description of oxidised xPSI fraction

dynamics at each actinic light for the case With Acidification is reported in this graph.

In fact, the case Without Acidification practically showed the same behavior, except for a

slightly lower re-oxidation rate at 320 mol of photons m−2 s−1.

2.4.2 Model validation

In this paragraph a model validation activity for the above-defined case studies discrimination

is described. In this case, absorbance measurements have been used to quantify linear and

cyclic electron flows. The experimental values were compared to the simulations obtained
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Figure 2.2: Photosystem 1 oxidized fraction at different actinic lights: (a) 80 µEm−2s−1, (b)
150 µEm−2s−1, (c) 320 µEm−2s−1, (d) 940 µEm−2s−1, (e) 2050 µEm−2s−1. The bar above the
graphs represents the dark phase (grey) and the light phase (yellow) of the protocol.
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with the parameter values obtained after calibration.

The spectroscopic quantification of the electron flow through the photosynthetic electron

transport chain was performed by measuring the behavior of the primary electron donor

(P700) to PSI at 705 nm in intact cells at a final concentration of 300 · 106 cells ml−1. The

total electron flow TEF obtained at different light treatment was estimated measuring the

oxidised P700 re-reduction rates after each illumination in untreated cells. By multiplying

this rate constant by the fractions of oxidised P700 at a given light (obtained by comparison

with DCMU and DBMIB-poisoned cells treated with 2050 mol of photons m−2 s−1, i.e.,

maximal level of P700 oxidation) we evaluate the number of electrons transferred per unit of

time electron flux (Meneghesso et al. (2016)). The same procedure was repeated in samples

treated with DCMU (80 M) to evaluate the contribution of cyclic electron flow (CEF) and

with DCMU in combination with DBMIB (300 M) to measure any possible residual electron

injection into PSI. LEF data was then calculated as the difference between TEF and CEF.

The experimental data were compared to the simulated LEF and CEF transport flows,

defined as:

LEF = (1− αreg)kcycxFd,1xPSI,2, (2.21)

CEF = (αreg)kcycxFd,1xPSI,2. (2.22)

The results, reported in 2.3 and 2.4 show how only the first case (With Acidification) is able

to represents both LEF and CEF in a good way. The case With Acidification shows, in

accordance with the experimental data, how LEF behavior dramatically changes with light.

In fact, at high actinic lights (940 and 2050 mol of photons m−2 s−1) a rapid function increase

is shown, then LEF gradually decreases to reach lower stationary values do to acidifcation.

At low lights, LEF function is monotone all along the protocol duration. LEF shows an high

peak and then a rapid decrease to low values at all lights (the maximum value at steady

state is equal to 4.3 e- s−1 PSI−1). Conversely, the case Without Acidification shows both

very low LEFs at all lights and almost null CEF after a low transient peak.

In Figure 2.5 the dynamic simulation of all the protein complexes involved in the electron

transport chain is reported. The graphs show that PQs are almost completely reduced

after a few milliseconds at each light intensity and this condition is maintained during all

the light phase. When light is turned off the PQ centers relax to different redox states

depending on the actinic light used. The two cytochromes Cytb6f and Cytc6 start from

complete (or almost complete) oxidation to reach different stationary values by about 3s of

light, after a transient peak (whose magnitude is strongly dependent on the actinic light

used). When light is turned off, both Cytb6f and Cytc6 are completely reduced. Finally,

Fd starts from zero reduced centers, shows a light-dependent peak after turning on the

actinic light, then rapidly decrease to a stationary value. A final complete re-oxidation of

all the centers happens when light is turned off. In summary, the current simulations show

that the final state of some protein complexes does not correspond to their initial redox

state; nonetheless, since low information is given in the literature about electron carriers
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Figure 2.3: LEF at different actinic lights (80, 150, 320, 940, 2050 µEm−2s−1) for case study: (a)
with lumen acidification and (b) without lumen acidification. The bar above the graphs represents
the dark phase (grey) and the light phase (yellow) of the protocol.
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Figure 2.4: CEF at different actinic lights (80, 150, 320, 940, 2050 µEm−2s−1) for case study: (a)
with lumen acidification and (b) without lumen acidification. The bar above the graphs represents
the dark phase (grey) and the light phase (yellow) of the protocol.
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Figure 2.5: PQ, Cytb6f, Cytc6, Fd reduced fraction dynamics at different actinic lights (80, 150,
320, 940, 2050 µEm−2s−1). The bar above the graphs represents the dark phase (grey) and the
light phase (yellow) of the protocol.
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dynamics, the assumption of unmodelled dark-phase hysteresis mechanisms for electron

carriers relaxation cannot be rejected a-priori. New experiments should therefore be designed

to investigate this behavior. Further experimental validation may consists on modifying the

current protocol in order to check microalgae behavior at multiple and rapid dark/light cycles

and compare it with current model predictions. Furthermore, the existence of dark-phase

dependent mechanisms must be investigated and implemented in the existing model to deal

with eventually unconsidered mechanisms.

2.5 Conclusions

The proposed extension of Bernardi et al. (2016) work gives a more detailed view of the

complete transport chain dynamics. The results show that the model is able to predict

both PSI behavior at different light and linear and cyclic flow dynamics. Furthermore, the

current model can benefit of fast fluorescence and absorbance measurements, hence reducing

the required experimental efforts for model calibration/validation tasks. We precise that

the proposed model extension is uniquely meant to describe the photosynthetic process

in a more detailed way with respect to the original model. No direct benefits in terms

of microalgae growth predictability have been considered as primary objective. Although

the model parameters are obtained for Nannochloropsis gaditana strain, the model remains

applicable to other microalgae species. Nevertheless, new recalibration tasks should be

designed to estimate the parameters associated to both Bernardi et al. (2016) model and

its extension proposed in this Chapter. Furthermore, the protein complexes involved in the

electron transport chain may vary from a strain to another. In this case, the model equations

should be adapted to the specific case in order to maintain the biological significance of the

model. Further work will focus on investigating the behavior of all the electron carriers

between PSII and PSI, in order to improve the process description given by the current

model and to confirm (or falsify) some of the model predictions that could not be verified

with available experimental data.





Chapter 3

A model to describe algal ponds

dynamics accounting for future

meteorology

In this Chapter1 a dynamic model predicting microalgal productivity in outdoor open ponds

is described in detail. The selected model consists of three validated sub-models predicting:

(i) the temperature fluctuations affecting open cultivation systems (Béchet et al. (2013)),

(ii) the light distribution dynamics in the culture medium (Bernard (2011)) and (iii) the

algal productivity as a function of both temperature fluctuations and light distribution.

3.1 Introduction

Microalgae is currently being investigated as a promising renewable feedstock for biodiesel

production (Mata et al. (2010)) due to its various advantages, such as potential high yields,

utilization of non arable land and possible integration with wastewater treatment processes

(Foley et al. (2011a)). Nevertheless, current process alternatives for microalgae-based

biofuels present critical energy hotspots (Molina Grima et al. (2003); Bennion et al.

(2015)) and sub-optimal management, hindering large scale production in an economically

satisfactory way. The techno-economic assessments on algal cultivation profitability in

open pond systems are currently limited by many uncertainties, especially regarding the

biomass productivity that can actually be reached at full-scale. For example, the most

cited assessments (Wigmosta et al. (2011); Yang et al. (2011); Moody et al. (2014)) reported

productivity values ranging within 1.6-31.6 kg m−2 yr−1, depending on the evaluation method

used. This large variation of productivity values led to significant differences in assessment

conclusions regarding the sustainability of full-scale algal cultivation. A lot of models were

recently developed to describe microalgae dynamics and predict yields at full-scale by taking

into account different cultivation options and microalgae strains (Bernard et al. (2015); Lee

1Part of this work is reported in the article by De-Luca R., Q. Béchet, F. Bezzo, O. Bernard (2016).
Optimal management of raceways using weather forecasts. IFAC-PapersOnLine, 49(7):1062-1067.
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of all the model equations is presented in sections 3.2.1 and 3.2.2. Section 3.2.3 defines

the weather data implemented in the model and the correlations used to simulate the solar

irradiance profile. The optimization strategy was applied to algal ponds located in two

regions of France representing two different climates. The specific details regarding the

optimization at these two locations are discussed in section 3.3. In this section a complete

summary of initial/boundary conditions was described, together with the objective function

Pnet, the water demand WD and the ‘compensation function’ fcomp, used to analyze the

optimizer behavior discussed in the following Chapter.

3.2.1 Growth model

Let us consider a homogeneous algal open pond of depth lp (m). If fresh medium is injected

into the pond at the rate qin (m3 s−1) and culture is extracted from the pond at the rate

qout (m3 s−1), the following mass balance can be derived:

d(xbV )

dt
= −xbqout +G(·)V −R(·)V , (3.1)

where t is the time variable (s), xb is the algal biomass concentration (kg m−3), G(·) and

R(·) are, respectively, the specific growth and respiration rates (kg m−3 s−1), and V is the

pond volume (m3). The open algal raceway pond is supposed to be perfectly mixed (Bernard

et al. (2013); Mendoza et al. (2013)). Since the pond is an open system, V varies over time

according to the following equation:

dV

dt
= qin − qout + vrS −meS/ρw, (3.2)

where S is the pond surface area (m2), ρw is the pond density (kg m−3; assumed equal to

water density), vr is the rainwater flow (m s−1), and me is the evaporation mass flux (kg m−2

s−1). The specific growth rate G(·) in Eq. 3.1 depends on the biomass concentration xb, the

pond temperature Tp, and the solar irradiance Hs (W m−2). The impact of photoinhibition

on microalgae growth was not explicitly included in this study. Indeed, as suggested by

Bernard (2011), a Monod kinetics can efficiently represent algal growth at high biomass

density. This is explained by the fact that only a small fraction of cells are photo-inhibited

in the dense cultures, leading to an average behavior of Monod type. The growth function

G(xb, Hs, Tp) was therefore expressed as (Béchet et al. (2015a)):

G(xb, Hs, Tp) =
1

lp

∫ lp

0

µm(Tp)xb
σbηHHse

−σbxbz

KI(Tp) + σbηHHse−σbxbz
dz (3.3)

where µm is the maximum specific growth rate (s−1), σb is the extinction coefficient (set

equal to 120 m2 kg−1), ηH is the fraction of photosynthetically active fraction (PAR) in solar

light (set equal to 0.47), z is the local depth (m) and KI is the half-saturation parameter
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(W kg−1). The specific respiration rate R(·) in Eq. 3.1 depends on biomass concentration

and pond temperature through the following law (Béchet et al. (2015a)):

R(xb, Tp) = λr(Tp)xb, (3.4)

where λr is the respiration coefficient (s−1). Experimental values for µm, KI and λr for

Chlorella vulgaris were extracted from the study of Béchet et al. (2015a). Bernard and

Remond (2012) showed that the evolution of the parameter µm with temperature could be

fitted to the following function:

µm = µm,maxφT , (3.5)

where µm,max is the maximum value of µm (s−1) and φT is the temperature-dependent

function defined in Bernard and Remond (2012) as follows:

φT =















0 if Tp ≤ Tmin

(Tp−Tmax)(Tp−Tmin)
2

(Topt−Tmin)[(Topt−Tmin)(Tp−Tmin)−(Topt−Tmax)(Topt+Tmin−2Tp)]
if Tmin<Tp ≤ Tmax

0 if Tp>Tmax.

(3.6)

The function φT includes three parameters: Tmin, Topt and Tmax (
◦C). Tmin is the temperature

below which the growth is assumed to be zero, Tmax is the temperature above which there

is no growth, Topt is the temperature at which µm = µm,max. As λr and KI exhibited similar

evolution with temperature, the same function φT was used for fitting the evolution of these

two parameters with temperature:

KI = KI,maxφT , (3.7)

λr = λr,maxφT . (3.8)

Fitting these parameters was performed by using the entity Parameter estimation of

gPROMS software (4.1 version), which uses the Maximum Likelihood method. The function

φT successfully fitted the experimental data for both µm, KI and λr (see Fig. 3.2). The

complete set of fitted values is reported in Table 3.2.

Table 3.1: Experimental evaluation of growth and respiration parameters at different temperatures
(Béchet et al. (2015a)). The reported data of µm and λr are converted from kgO2/kgbiomass/s to
kgbiomass/kgbiomass/s through the corrective factor (0.76) proposed in the same article.

Variables Values

Tp(
◦C) 5.5 14.2 21.7 29.3 38.0 42.1

λr(s
−1) 0 8.82·10−7 1.26·10−6 1.36·10−6 1.51·10−6 0

KI(W kg−1) 540 1580 3180 5590 8510 0

µm(s−1) 0.95·10−5 2.27·10−5 3.72·10−5 5.22·10−5 6.57·10−5 0
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Table 3.2: Temperature-dependent parametric estimates

Parameter Physical Definition Value

Tmin Minimum growth temperature -10.0 (◦C)
Tmax Maximum growth temperature 42.1 (◦C)
Topt Optimum growth temperature 35.8 (◦C)

λr,max Max. respiration coefficient 2.01·10−6 (s−1) = 0.17 (day−1)
µm,max Max. specific growth rate 6.48·10−5 (s−1) = 5.59 (day−1)
KI,max Max. half-saturation constant 7192.92 (W kg−1)
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Figure 3.2: φT fitting of the experimental data (Béchet et al. (2015a)) related to: (a) µm, (b) KI

and (c) λr.

3.2.2 Temperature Model

The temperature dynamics during the cultivation was modeled through a heat balance on

the pond that can be expressed as (Béchet et al. (2011)):

ρwV cpw
dTp
dt

= Qra,p +Qra,s +Qra,a +Qev +Qconv +Qcond +Qi +Qr, (3.9)

where cpw is the specific heat capacity of water (J kg−1K−1), Qra,p is the radiation flow

from the pond surface (W), Qra,s is the total (direct+diffuse) solar irradiance (W), Qra,a is

the radiation flow from the air to the pond system (W), Qev is the evaporation flow (W),

Qconv is the convective flow at the pond surface (W), Qcond is the conductive flow with the

ground at the pond bottom (W), Qi is the heat flow due to the water inflow (W), and Qr is

the heat flow associated with rain (W). This model was validated by (Béchet et al. (2011))
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against 1 year of experimental data, collected from a wastewater treatment high rate algal

pond; then, the proposed model was compared to other nine models that differed in the

formulation of each heat fluxes involved in the temperature dynamics, showing the best fit

between the experimental and predicted temperature profiles. The formal expression of each

heat flow in Eq. 3.9 was extracted from Béchet et al. (2011). Assuming the water surface to

be gray-diffuse, the radiation Qra,p from the pond surface to the atmosphere was given by

Stefan-Boltzmann’s fourth power law:

Qra,p = −εwσSBTp4S, (3.10)

where εw is the emissivity of water and σSB is the Stefan-Boltzmann constant (W m−2 K−4).

The heat flow associated with solar irradiance Qra,s was expressed as follows:

Qra,s = (1− fa)HsS, (3.11)

where fa is the theoretical photosynthetic efficiency (the fraction of PAR that is effectively

used during the photosynthetic process). The heat flow generated by air radiation was

described as:

Qra,a = εaεwσSBTa
4S, (3.12)

where εa is the emissivity of the air and Ta is the air temperature (K). The evaporation heat

flow Qev was given by the equation:

Qev = −meLwS, (3.13)

where Lw is the water latent heat (J kg−1), whereas me is the evaporation rate (kg m−2 s−1).

The following expression was used to calculate me:

me = Km

(

Pw

Tp
− RH · Pa

Ta

)

Mw

Rg

, (3.14)

where Km is the mass transfer coefficient (m s−1), RH is the relative air humidity above the

pond surface, Mw is the molecular weight of water (kg mol−1) and Rg is the universal ideal

gas constant (Pa m3 mol−1 K−1). Pw and Pa are, respectively, the saturated vapor pressure

(Pa) at Tp and Ta, evaluated through the following empirical correlation:

Pi = 3385.5 · e(−8.0929+0.97608(Ti+42.607−273.15)0.5), (3.15)

where the i index represents air or water. The mass transfer coefficient Km in (3.14) was

calculated through the following two correlations:

Sh = 0.035Re0.8Sc1/3 for turbulent flows, (3.16)



Chapter 3 39

Sh = 0.628Re0.5Sc1/3 for laminar flows, (3.17)

where Sh = KmLch/Dw,a, Re = Lchvw/νa and Sc = νa/Dw,a. The dimensionless variables

Sh, Re and Sc are, respectively, the Sherwood, Reynolds and Schmidt numbers, Lch is the

characteristic pond length (m), Dw,a is the mass diffusion coefficient of water vapor in air

(m2 s−1), vw is the wind velocity (m s−1) and νa is the air kinematic viscosity (m2 s−1). The

convective flow Qconv, defined as:

Qconv = hconv(Ta − Tp)S (3.18)

was calculated by evaluating the heat transfer coefficient hconv (W m−2 K−1) value through

the following set of correlations:

Nu = 0.035Re0.8Pr1/3 for turbulent flows, (3.19)

Nu = 0.628Re0.5Pr1/3 for laminar flows, (3.20)

where Nu = hconvLch/λa and Pr = νa/αa, λa is the air thermal conductivity (W m−1 K−1)

and αa the air thermal diffusivity (m2 s−1). The dimensionless variables Nu and Pr are,

respectively, the Nusselt and Prandtl numbers. Meteorological stations measure the wind

velocity at a certain height zm,0 (m) which usually differs from the height at which vw is

needed in the previous correlations (0.5 m). The conversion of the wind velocity from the

height zm,0 to 0.5 m was performed by using the following expression:

vw = v0

(

zm
zm,0

)αvs

, (3.21)

where v0 is the wind velocity (m s−1) measured at height zm,0 and αvs is a power law

exponent. The equation that describes the conductive heat flow between the pond and the

soil was based on Fourier’s law:

Qcond = ksS
dTs
dz

(z = 0), (3.22)

where ks is the soil conductivity (W m−1 K−1) and Ts is the soil temperature (K). The value

of Ts was obtained from the following equation and initial/boundary conditions:

cpsρs
dTs
dt

(z, t) = ks
d2Ts
dz2

(z, t) (3.23)











Ts(t, z = 0) = Tp(t) b.c.(1)

Ts(t, z = lsref ) = Tsref b.c.(2)
d2Ts

dz2
(t = 0) = 0 i.c.

(3.24)
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where cps is the soil specific heat capacity (J kg−1 K−1), ρs is the soil density (kg m−3), and

Tsref is the soil temperature (K) at the reference depth lsref (m). The heat flow associated

with fresh medium inflow Qi was computed from the equation:

Qi = ρwcpwq
in(Tin − Tp) (3.25)

where Tin is the water inflow temperature (K). Finally, the rain heat flow Qr was expressed

as:

Qr = ρwcpwvr(Ta − Tp)S. (3.26)

All the parameters values used in the energy balance are tabulated in the study of Béchet

et al. (2011) and reported in Table 3.3.

3.2.3 Meteorological data and correlations

Continuous weather data was linearly interpolated from the 6-hourly weather data extracted

from the European Centre for Medium-Range Weather Forecast (ECMWF) website. This

weather data was used to determine the dynamics of the air temperature Ta, the sky

cloudiness CC, the relative humidity RH, the wind velocity vw and the rain volumetric

flux vr as all these variables have a significant impact on pond temperature as shown by

Béchet et al. (2011). Solar irradiance Hs was computed at any time from both the amount

of solar radiation reaching the external surface of the atmosphere at the location considered

H0, and the cloudiness CC. First, Hs was calculated from cloudiness data CC, by using the

Kasten and Czeplak correlation (Marthews et al. (2012)):

Hs =

{

0 if ω< -ωs or ω > ωs

Hc
(4−3(CC/8)3.4)

4
if -ωs ≤ ω ≤ ωs,

(3.27)

where CC is the cloudiness value expressed in okta (range [0−8]), Hc is the clear-sky total

irradiance (W m−2), ω is the hour angle which varies from -π to π over 24 hours, -ωs and ωs

are, respectively, the hour angle values at sunrise and sunset calculated from the expression

proposed by Duffie and Beckman (1958): The clear-sky radiation Hc was given by Duffie

and Beckman (1958):

Hc = Hd,c +HD,c = (τd,c + τD,c)H0 (3.28)

where τd,c = Hd,c/H0 and τD,c = HD,c/H0; Hd,c and HD,c are, respectively, the diffuse and

the direct components of the clear-sky total irradiance (W m−2). The variable H0 was given

by Duffie and Beckman (1958):

H0 = Isc

(

1 + 0.033 cos
360Nday

365

)

cos θz, (3.29)
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Table 3.3: Parameter values of the temperature model

Parameter Physical Definition Value

Water Parameters

ρw water density 998 (kg·m−3)
cpw

water heat capacity 4.18·103 (J·kg−1·K−1)
Lw water latent heat 2.45·106 (J·kg−1)
εw water emissivity 0.97 (-)
Mw water molecular weight 0.018 (kg·mol−1)

Soil Parameters

ks soil thermal conductivity 1.7 (W·m−1·K−1)
cps

soil heat capacity 1.25·103 (J·kg−1·K−1)
ρs soil density 1.9·103 (kg·m−3)

Tsref soil temperature at lsref = 4.5m 286.75 (K)

Air Parameters

εa air emissivity 0.8 (-)
νa air kinematics viscosity 1.5·10−5 (m·s−1)
λa air thermal conductivity 2.6·10−2 (W·m−1·K−1)
αa air thermal diffusivity 2.2·10−5(m·s−1)

Dw,a mass diffusion coefficient of water vapor in air 2.4·10−5 (m·s−2)

Pond parameters

V0 initial pond volume 30 (m3)
S pond surface 100 (m2)
Lch pond characteristic length 10 (m)
αvs power law exponent 0.29 (-)
zm wind velocity height 0.5 (m)
zm,0 wind sensor height 10 (m)
fa algal absorption fraction 2.5 (%)

Universal constants

σSB Stephan-Boltzmann constant 5.67·10−8 (W·m−2·K−4)
Rg ideal gas constant 8.314 (Pa·m3·mol−1·K−1)
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where Isc is the solar constant (1367 W m−2), Nday is the Julian day of the year and θz is

the zenith angle (the angle between a vertical axis at the location considered and the sun

direction).

The variable τD,c was obtained through the following expression (Marthews et al. (2012)):

τD,c = exp(−γLKTLKALK), (3.30)

where TLK is an empirical coefficient (set to 2.74). The term γLK was given by the equation:

γLK =
1

9.4 + 0.9ALK

(3.31)

and ALK is the pressure-corrected air-mass, obtained from the following correlation

(Marthews et al. (2012)):

ALK =
1

cos θz + 0.50572
(

96.07995− θz
180
π

)−1.6364 . (3.32)

Finally, the variable τd,c is determined through the Erbs correlation (recommended by Duffie

and Beckman (1958)):

Kd =























1.0− 0.09kT if kT≤0.22

0.9511− 0.1604kT + 4.388kT
2+

−16.638kT
3 + 12.336kT

4 if 0.22<kT ≤ 0.8

0.16527 if kT>0.8

, (3.33)

where Kd = τd,c/(τd,c+τD,c) and kT = τd,c+τD,c.

3.3 The optimization

A detailed description of the initial/physical conditions of the system is given in 3.3.1.

Section 3.3.2 defines the objective function for all the optimization tasks performed in the

Thesis work. Finally, 3.3.3 and 3.3.4 focus on the definitions of two key variables used for

case studies comparisons in the following discussion.

3.3.1 System description

The optimization strategy was applied at two different locations in France (Nice and Rennes)

during the first 7 days of different months in 2012. A complete graphical representation of

the meteorological data implemented in this Thesis work is reported in Appendix B.

The pond surface S was 100 m2 and the initial conditions were:

• the initial pond temperature Tp(t = 0) was set at the average value of air temperature

Ta,avg over the period τ of simulation/optimization;
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• the initial biomass concentration xb was set to 0.4 kg/m3;

• the initial pond depth lp was set to 0.3 m;

• the inflow temperature Tin was set equal to Ta,avg.

3.3.2 System optimization

The optimal control strategy aimed at maximizing microalgal productivity, by continuously

adjusting pond depth through the injection of fresh medium (qin) or extraction of culture

(qout). The control vector q = (qin, qout)T was therefore the solution of the following optimal

control problem:

maxq Pnet = maxq
∫ τ

0
(G(xb, Hs, Tp)−R(xb, Tp))V dt

s.t.

0 ≤ qi(t) ≤ qmax

lp,min ≤ lp(t) ≤ lp,max

ξ̇ = g(ξ,q, t), ξ(0) = ξ0

, (3.34)

where ξ is the state vector and qmax is the upper bound of the flow rates. The dynamical

system g(ξ, q, t) therefore gathered the biological and thermal dynamics (see Equations

(3.1) and (3.9)). The objective function Pnet is the cumulative difference between growth and

respiration during the cultivation period. The chosen formulation is based on the expression

proposed in Béchet et al. (2015b) for the specific case where Monod formula is used to

represent microalge growth and respiration rate is considered. The main difference between

The key difference with the control problem addressed in (Muñoz-Tamayo et al. (2013)) is

that the pond depth was made vary in this study. The pond depth was constrained between

lp,min (0.05 m) and lp,max (0.5 m).

The optimization task was implemented through gPROMS software (4.1 version) by using

the default optimization solver NLPSQP, which uses a sequential quadratic programming

(SQP) method for the solution of nonlinear programming (NLP) problems. The NLPSQP

solver uses 4 tolerances to decide whether or not a local optimal solution has been reached;

the default value of the tolerances was used for all the optimization tasks conducted in this

Thesis. For the numerical implementation adopted in this Thesis work, the two control

inputs qin and qout were considered as piecewise constant variables within the range [0-1]

m3/s.

In order to assess the gain of productivity obtained with this control strategy, other

simulations were performed under ‘standard’ conditions. These standard conditions

correspond to typical assumptions made in the field of micro-algae outdoor cultivation:

constant depth of 0.25 m and dilution rate equal to 0.1 day−1 (Jorquera et al. (2010), Rogers

et al. (2014)).
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3.3.3 Water Demand

The net water demand (Water Demand (WD)) associated with algal cultivation was

calculated as follows:

WD =

∫ τ

0

qin(t)dt+max(0, V0 − Vτ ), (3.35)

where V0 and Vτ are, respectively, the pond volume at the beginning and at the end of the

cultivation period. This expression accounts for both water use during fresh water injection

into the pond and any net decrease of the pond volume between the start and the end of

the cultivation period considered.

3.3.4 The compensation function

The compensation function fcomp has often been proposed as a key criterion to be optimized

(Takache et al. (2010), Muñoz-Tamayo et al. (2013)). The compensation function is the ratio

between the growth and the respiration rates at the pond bottom and it should be as close

as possible to 1:

fcomp(t) = µm,max

σbηHHs(t)e
−σbxb(t)lp(t)

KI,maxφT (t)+σbηHHs(t)e
−σbxb(t)lp(t)

λr,max

. (3.36)

In other words, if the function is higher than 1 the pond productivity could be improved

by, for example, increasing the amount of biomass in the system. Conversely, values lower

than 1 indicate that the net rate of growth at the pond bottom is negative. Consequently,

diluting the system would increase productivity. The optimal biomass concentration xb,opt

is therefore reached when fcomp equals 1.

3.4 Conclusions

In this Chapter a weather data-based dynamic model predicting microalgal productivity in

open ponds has been described in detail. The model describes both temperature fluctuations

and light distribution dynamics, hence their effects on microalgae growth efficiency. This

model was used to run several optimization tasks in order to check the potential efficiency of

the proposed optimization strategy with respect to standard open pond management. We

precise that no model mismatch was assumed and that all the results reported in the following

are generated by ‘in silico’ simulations; future experiments should be performed for model

validation to estimate the amount of uncertainty generated by each specific sub-model. In the

next Chapter, the optimization results obtained with the proposed model will be discussed

in detail.



Chapter 4

Exploiting meteorological forecasts for

optimal open pond management

The first objective of this Chapter1 is to investigate how the optimization strategy defined

in the previous Chapter can boost algal productivity in outdoor open ponds. The secondary

objective is to derive a reduced set of ‘rules of thumb’ which represent ‘optimal operation’

to reduce the time required for future applications of this optimization strategy. We

considered both the case where weather forecasts are perfect and the more realistic case

where meteorology becomes uncertain after 24 hours.

4.1 Strategy impact on productivity

The proposed strategy consists of determining iteratively the optimal inflow and outflow

hourly rates for an entire week based on the weekly weather forecasts. Unlike

in Muñoz-Tamayo et al. (2013), the culture depth can vary, and thus thermal inertia

of the cultivation system can be modified to optimize system temperature fluctuations.

Alternatively, we propose an optimization strategy that is based on the knowledge of future

weather conditions instead of using a control approach based on on-line measurements. In

practice, this optimization task consists of determining the optimal rates at which culture is

replaced in the system in advance for an entire week based on the weather forecast for the

following week. Table 4.1 shows the algal productivity values obtained during optimized

and standard cultivation, at Nice and Rennes and at three seasons (Winter (January),

Spring (March), and Summer (July). The reported results show that the optimization

strategy investigated in this study significantly increased productivity compared to standard

operation, by up to a factor 2.2 for the Summer case in Nice.

1Part of this work is reported in the article by De-Luca R., F. Bezzo, Q. Béchet, O. Bernard (2017).
Exploiting meteorological forecasts for the optimal operation of algal ponds. In: Journal of Process Control.
(doi: 10.1016/j.jprocont.2017.03.010) and in the submitted article by De-Luca R., F. Bezzo, Q. Béchet, O.
Bernard (2017). Meteorological data-based optimal control strategy for microalgae cultivation in open pond
systems. In: Bioresource Technology.

45
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Table 4.1: Productivity and water demand: optimal case vs standard pond management (Jorquera
et al. (2010), Rogers et al. (2014)).

Case studies
Productivity Water demand
(kg·week−1) (m3·week−1)
Nice Rennes Nice Rennes

Winter
Standard cultivation strategy 2.59 1.25 17.53 17.53
Optimal control strategy 3.73 2.12 26.83 25.02

Spring
Standard cultivation strategy 5.60 3.96 17.53 17.33
Optimal control strategy 9.02 5.61 32.60 27.48

Summer
Standard cultivation strategy 11.62 12.71 17.53 17.53
Optimal control strategy 25.83 19.59 122.98 45.97
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Figure 4.1: Optimal weekly Pnet dynamics obtained for Nice (solid line) and Rennes (dashed line)
in: (a) Winter, (b) Spring, (c) Summer. (The background is colored in white at daytime and in
grey at nighttime.)
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Figure 4.2: Optimal weekly qin and qout dynamics obtained for Nice (solid line) and Rennes
(dashed line) in: (a, b) Winter, (c, d) Spring, (e, f) Summer. (The background is colored in white
at daytime and in grey at nighttime.)

Interestingly, Table 4.1 shows that productivity was slightly higher in Rennes than in

Nice in Summer under standard operation. This result is explained by the occurrence of high

temperature peaks in Nice, which cause productivity to significantly drop. The importance

of temperature on productivity is further discussed in the following discussion. Fig. 4.2 shows

the optimal qin and qout profiles maximizing algal productivity over the entire cultivation

period. Fig. 4.2 reveals that medium injection or culture extraction only occurred at day time

under optimal operation. Although the resulting control strategy was different for the two

locations, a qualitatively recurrent behavior can be identified despite the weather variability

between different days of cultivation and the different periods of the year. The behavior of

the optimizer was therefore analyzed on a time window of 3 cultivation days only.
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4.2 Optimal operation strategy: key features

Before analyzing the control strategy followed by the optimizer, a brief summary of the

ideal control logic ensuring the highest possible productivity is described in this paragraph.

Firstly, algal concentration must be optimized at daytime by accounting for two processes:

1) biomass losses through respiration linearly increase with the algal concentration, and 2)

the amount of light intensity captured by algal cells, hence photosynthetic rate, increases

with algal concentration. As a result, there is an optimal algal concentration that should

ensure that most of the light entering the pond is captured by algae while still maintaining

respiration rates at a low value. Previous studies show that this optimal concentration is

reached when the specific rate of photosynthesis at the pond bottom equals the specific rate

of respiration (Takache et al. (2010)). Mathematically, these conditions are reached when

the ‘compensation function’ fcomp defined in the previous Chapter is equal to 1. In summary,

the ideal optimal biomass concentration at daytime xb,opt(t) is the algal concentration that

guarantees that the compensation function defined in Eq. 3.36 equals 1. Secondly, maximal

productivity is achieved when the pond temperature Tp(t) is maintained at Topt at daytime.

At nighttime, the pond temperature Tp(t) and the biomass concentration xb(t) values should

be maintained as low as possible in order to minimize respiration rates, hence biomass

losses. The ideal optimal pond operation would therefore require a drastic change of the

algal concentration and pond temperature at sunrise and sunset to ensure that these two

variables are maintained at their optimal values at daytime and nighttime. Such drastic

changes are in practice very difficult to achieve and the next paragraph discusses how the

optimization scheme investigated in this Thesis handled these practical difficulties.

4.3 Detailed analysis of the optimization scheme

The analysis of the optimization scheme is split into four phases, from morning to night.

Morning. Focusing first on the Summer case study, Figures 4.7(a) and 4.7(b) show that

no water was injected to or extracted from the pond in the morning (qin, qout = 0), which

led to maintain the pond depth in Rennes at a constant and low value (lp(t) = 0.05 m,

see Fig. 4.8(a)). Very small depths indeed minimize the thermal inertia of the pond and

thus allow a fast increase of the pond temperature Tp(t) (see Fig. 4.8(b)), hence a greater

productivity increase. The same control strategy was used in Nice although the pond depth in

Nice was slightly above the minimal physical constraint of 0.05 m (see Fig. 4.8(a)). This result

can be explained by the fact that removing culture from the pond would lead to lower the

biomass content and therefore increase the compensation function. Yet, the compensation

function is already significantly higher than 1 in the morning in Nice (Fig. 4.8(d)), which

means that removing more biomass would cause productivity losses. In Spring and Winter

the morning control strategy was similar to Summer (Fig. 4.3(a), Fig. 4.3(b), Fig. 4.5(a) and

Fig. 4.5(b)), if we neglect very small control peaks used to injected the culture medium when
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Figure 4.3: Three-days zoom of: (a) qin and (b) qout dynamics obtained for Nice (solid line) and
Rennes (dashed line) in January. (The background is colored in white at daytime and in grey at
nighttime.)
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Figure 4.4: Three-days zoom of: (a) lp, (b) Tp, (c) xb and (d) fcomp dynamics obtained for Nice
(solid line) and Rennes (dashed line) in January. (The background is colored in white at daytime
and in grey at nighttime.)
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Tin was hotter than the algal culture in the pond at sunrise. Based on these observations,

the optimizer behavior in the Morning phase can be schematized by the following simple

rules:

• During the morning the pond depth is maintained as low as possible in order to help

reaching both optimal pond temperature and biomass concentration as soon as possible

at the start of the afternoon;

• In winter, if pond temperature is lower than inflow temperature and if the biomass

content in the pond is high enough to avoid ‘washout’ conditions, the culture can be

partially replaced with fresh medium to increase the pond temperature.

Afternoon. Figures 4.7(a) and 4.7(b) show that the inflow rate qin in Nice case exhibits a ‘bell

curve’ profile from midday until late afternoon in Summer. qout followed the same dynamics

but started slightly later in the day. In other words, the control strategy was mainly based on

replacing the pond culture by fresh medium (‘flushing’ strategy). This culture replacement

had mainly two consequences. Firstly, as shown in Fig. 4.8(d), the compensation function

fcomp was maintained at a value close to 1 during the afternoon, indicating that the algal

concentration was at its optimal value xb,opt(t) during the afternoon. Secondly, replacing

algal culture by relatively cold fresh medium helped maintaining pond temperature close to

its optimal level Topt (35.8
◦C, Fig. 4.8(b)). Fig. 4.8(a) shows that the pond depth lp in Nice

increased until mid-afternoon and then decreased, which indicates that culture replacement

was not sufficient to maintain pond temperature at the optimal level.
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Figure 4.5: Three-days zoom of: (a) qin and (b) qout dynamics obtained for Nice (solid line) and
Rennes (dashed line) in March. (The background is colored in white at daytime and in grey at
nighttime.)

Increasing the pond depth indeed limited high temperature increases by increasing the

pond thermal inertia. In summary, temperature control is the result of two combined

strategies: culture replacement (‘flushing strategy’) by cold fresh medium and thermal

increase through depth increase (‘depth strategy’). Figures 4.7(a), 4.7(b) and 4.8(a) show

that the same ‘flushing’ and ‘depth’ strategies were also used in Rennes in Summer during
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Figure 4.6: Three-days zoom of: (a) lp, (b) Tp, (c) xb and (d) fcomp dynamics obtained for Nice
(solid line) and Rennes (dashed line) in March. (The background is colored in white at daytime
and in grey at nighttime.)

day 5, but not during days 3 and 4. As Fig. 4.8(d) shows that the compensation function was

significantly lower than 1 during the afternoons of days 3 and 4 in Rennes, further culture

replacement could have theoretically been used to maintain the biomass concentration at

its optimal value. Yet, replacing the culture by cold fresh medium (Tin was set at 16.5
◦C in Rennes) at a faster rate would have significantly decreased the pond temperature

and therefore lower biomass productivity. Fig. 4.8(b) shows indeed that days 3 and 4 were

relatively cold, differently from day 5 in which the pond temperature reached its optimal

value. In other words, the optimizer found the best trade-off between optimal biomass

concentration and optimal temperature conditions in the case of warm but not hot weather

conditions. In addition, Fig. 4.8(a) shows that in Rennes the depth was maintained at

its lowest value in the afternoon of days 3 and 4 (warm days) in order to maximize the

temperature increase at daytime. Figures 4.3(a), 4.3(b), 4.5(a) and 4.5(b) show that both

qin and qout were maintained at 0 in Winter and Spring in Rennes and Nice. As a result, the

biomass concentration slightly increased at daytime (Figures 4.4(c) and 4.6(c)). In addition,

the depth was left at its lowest value (0.05 m) all day long. These observations indicate

that the optimal strategy during cold days consists of maintaining the pond temperature as

high as possible during daytime even if biomass concentration is significantly higher than

the optimal concentration. This is mostly due to low pond temperatures that ensured low
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biomass losses through respiration during Spring and Winter. The optimizer behavior in the

Afternoon phase can be schematized by the following simple rule:

• In the afternoon the culture can be flushed to maintain the algal concentration at

its optimal level. In Summer, this ‘flushing strategy’ can be combined with depth

increase strategy to control temperature at its optimal level. In Spring and Winter,

the optimal strategy consists of neither injecting fresh medium nor extracting culture

during daytime while maintaining the pond depth at a low value, to ensure that pond

temperature reaches the highest possible value.

Sunset. In Summer, Figures 4.7(a) and 4.7(b) show that a high fraction of the culture was

replaced by fresh medium at sunset in Rennes. ‘Flushing’ the system at sunset both lowered

pond temperature (see Fig. 4.8(b)) and biomass concentration (see Fig. 4.8(c)), which in

return limited respiration rates at nighttime. The alternative strategy used in Nice was

based on decreasing the pond depth when approaching sunset (Fig. 4.8(a)), which removed

a significant fraction of the biomass from the pond. In addition, decreasing pond depth

accelerates the pond temperature decrease at night. Similarly to the ‘flushing’ strategy used

in Rennes, this ‘depth-decrease’ control strategy reduced respiration at nighttime. Removing

all the biomass from the system would obviously ensure no respiration at nighttime but this

would also cause the productivity to be null the day after. As a result, the optimizer

finds the optimal algal concentration ensuring both low respiration rates at nighttime and

high productivities the following morning. In Winter only a small fraction of the culture

was replaced by fresh medium in Nice (Figures 4.3(a) and 4.3(b)) as night-time respiration

rates were limited by cold temperatures (Fig. 4.8(b)). In Rennes the ‘flushing strategy’

at sunset was not applied, mostly because inflow temperature was higher (9.2 ◦C) than

pond temperature Tp(t) at sunset. Injecting relatively warm water at sunset would therefore

only lead to high respiration rates at nighttime. The optimal strategy at Nice in Spring

consisted on partly ‘flushing’ the system at sunset similarly to the summer case. In Rennes,

no culture was replaced at sunset in Spring, mostly because maintaining temperatures as

high as possible was the best strategy to optimize productivity (Figures 4.5(a) and 4.5(b)).

The optimizer behavior at Sunset can be schematized by the following simple rule:

• During hot days, a fraction of the culture is replaced with fresh medium at sunset to

minimize nighttime respiration rates. Pond depth is also maintained at a low level

to ensure low nighttime temperatures. In Winter or in colder climates, no culture is

replaced by fresh medium at sunset to ensure that temperature is as high as possible

during the following day.

Night. The pond depth was maintained at its sunset value all night long independently

on the season considered mostly (Figures 4.4(a), 4.6(a) and 4.8(a)). In addition,

Figures 4.3(a), 4.3(b), 4.5(a), 4.5(b), 4.7(a) and 4.7(b) show that, in general, no ‘flushing’

was used at nighttime (qin = 0 and qout = 0). Some exception were reported in Spring at
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day 4 for Rennes and at day 5 for Nice (the peaks correspond to culture extraction just

after rainfall to maintain the pond depth at its lowest possible value) or in Winter at day 4

and 5 in Nice, where slight culture replacements were done both to decrease the respiration

rates by acting on biomass reduction and to avoid too low temperatures for the following

day of cultivation. In Summer, this strategy ensured low temperatures at nighttime. In

Winter, maintaining a low depth at daytime is necessary to reach high productivity values

and practically constrains low pond depths at nighttime. The optimizer behavior at Night

can be schematized by the following simple rule:

• The depth is maintained at the value set at sunset and no water is injected to or

extracted from the pond.
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Figure 4.7: Three-days zoom of: (a) qin and (b) qout dynamics obtained for Nice (solid line)
and Rennes (dashed line) in July. (The background is colored in white at daytime and in grey at
nighttime.)

4.4 Discussion

The optimization technique significantly increased the productivity at the two locations

and three seasons considered. The productivity boost in summer mainly results from the

optimizer ability to maintain, during large periods of daytime, ideal growth conditions, i.e.

optimal concentration and temperature (via the ‘flushing’ and ‘depth’ strategies). In Spring

and Winter, the optimal temperature for the species Chlorella vulgaris (35.8 oC) cannot be

maintained, so the optimal strategy consists of limiting culture replacement to ensure high

pond temperatures, even if this strategy leads to relatively high biomass concentrations.

Because of relatively low temperatures, respiration rates are indeed relatively low, so these

high biomass concentrations do not lead to important biomass losses. The knowledge of

future weather is crucial to optimize the fresh medium injection rate and culture extraction

rate and this can be illustrated in several cases. Firstly, in hot days, slowly increasing

the pond depth can help to maintain the pond temperature at its optimal value during

daytime. As temperature change of water bodies is a relatively slow process due to the
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high thermal inertia of water, only an accurate knowledge of future weather conditions and

their impact on pond temperature can lead to a control of pond temperature at its optimal

value. Secondly, a fraction of the algal culture is replaced by fresh medium at sunset to

minimize respiration losses at nighttime. However, removing too much biomass from the

pond would lead to low productivity values the morning after, and especially if the day

after is particularly sunny. Determining the optimal fraction of culture to remove from

the pond at sunset therefore requires knowing the weather conditions of the following day.

Temperature control by playing on thermal inertia and culture replacement by fresh medium

is central in the optimization strategy. This point was so far never considered in the previous

optimization studies which focused on optimizing algal concentration through adjustment

of the compensation function. Chlorella vulgaris is relatively resistant to high temperatures

(Tmax = 42 oC). However, for a cold-adapted algae species, the possibility of culture crashes

due to relatively high temperatures (i.e. above Tmax) would increase further the impact

of temperature on productivity. In this case, the optimizer would likely place temperature

control above concentration control in summer to avoid culture crashes.
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Figure 4.8: Three-days zoom of: (a) lp, (b) Tp, (c) xb and (d) fcomp dynamics obtained for Nice
(solid line) and Rennes (dashed line) in July. (The background is colored in white at daytime and
in grey at nighttime.)

In this study, we did not include the water cost in the optimization criterion. However,

the optimal management induces high dilution rates, especially in Summer, both to reduce

temperature and to dilute culture at high density. Water demands were consequently
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relatively high (Table 4.1) as the standard management procedure always required a

significantly lower amount of water (only 17.53 m3 week−1 for all the seasons) than the

optimal control strategy. In particular, the optimized control strategy increased the WD at

Nice in Summer up to a factor 7, which means an increase by a factor 3.2 per kg of produced

algae: from 1.5 m3 kg−1 up to 4.76 m3 kg−1. This computation also highlights the necessity

to recycle water after biomass extraction to reduce the water need. As a perspective, the

Table 4.2: Optimal daily management of ideal ponds: the ideal strategy

Key variables Night Day

Tp as low as possible as near as possible to Topt

xb as low as possible
as soon as possible near to

xb,opt(t)|fcomp(t) = 1

same optimization strategy should be applied but by constraining the amount of water

that can be used in the process (based for example on the availability on rainwater at the

location considered), and assuming that an important fraction of the water can be recycled,

as suggested by White and Ryan (2015).

4.5 Optimization approach for MPC implementation

Model Predictive Control (MPC) (Camacho and Alba (2013)) has proven to be very efficient

to manage situations with complex modeling, where classical model based control cannot

be easily derived. MPC seems especially relevant when meteorology plays a key role, such

as energy efficient building climate control (Oldewurtel et al. (2012)), or management of

distributed power system with wind turbines (Zong et al. (2012)). MPC was already applied

to microalgae (Berenguel et al. (2004); Tebbani et al. (2014a,b)), but never to manage

weather forecasts in the control strategy. Alternatively, here we propose an optimization

strategy to be used in a MPC framework, accounting for the knowledge of future weather

conditions. We first detail the numerical approach developed for solving the problem, then

we consider the case where weather forecasts are perfect and we analyze the logic behind

the control action. Finally, we consider the more realistic case where meteorology becomes

uncertain after 24 hours. We show that our approach maintains the productivity increase

by a factor 2.2 compared to the reference case of constant dilution rate and raceway pond

depth.

4.5.1 Objective criterion

The control target was the maximization of microalgal productivity on a moving time window

from the current time τn to τn+Th. It consists in finding the optimal fresh medium volumetric

flow rate (qin) and the culture volumetric extraction rate (qout). The control vector q = (qin,
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Control variables switching frequency
Control horizon

1 day 2 days 4 days

2 hours Tr 1.98 Tr 4.04 Tr

1 hour 1.32 Tr 4.29 Tr 11.47 Tr

1/2 hour 8.17 Tr 33.64 Tr 209.19 Tr

Table 4.3: Computational cost evaluation for different discretization times and horizons. The
reference time Tr for a Samsung Electronics laptop, Intel(R) Core(TM) i7-3635QM CPU @ 2.40
GHz, 8.00 GB RAM, was Tr=13.3 minutes.

qout)T was therefore the solution of the optimal control problem over the time horizon τn+Th:

maxq Pnet = maxq
∫ τn+Th

τn
(G(xb, Hs, Tp)−R(xb, Tp))V dt

s.t.

0 ≤ qi(t) ≤ qmax

lp,min ≤ lp(t) ≤ lp,max

ξ̇ = g(ξ,q, t), ξ(0) = ξ0

, (4.1)

where ξ is the state vector and qmax is the upper bound of the flow rates. The dynamical

system g(ξ, q, t) therefore gathered the biological and thermal dynamics (see Equations

(3.1) and (3.9)). The upper bound of the two flow rates is qmax. The objective function Pnet

is the integral with respect to time of the difference between growth and respiration during

the considered time window, therefore representing the net algal productivity.

The computed optimal control is then applied for the period (τn, τn+1). Since new

weather forecasts are available at time τn+1, a new control is then computed for the new

period (τn+1, τn+1 + Th). The procedure was iterated until the end of the cultivation period

(at day 7). We assume that temperature and biomass density are perfectly on-line measured

and known at the beginning of each new optimization period (biomass can e.g. be assessed

by simple measurements of the optical density Havlik et al. (2013)). The optimization

task was implemented through gPROMS
TM

(4.1 version) default solver NLPSQP, which

uses a sequential quadratic programming SQP method to solve nonlinear programming

NLP problems (optimization tolerance = 0.001). The two control inputs qin and qout

were numerically implemented as piecewise constant within the range [0-1] m3/s. Each

new optimization problem is initialized with the flow vector resulting from the previous

optimization which both reduced the computation time and decreases the risk of local

minima.

Table 4.3 shows the computational times required for different optimization tasks. The

reported results were obtained through the variation of the switching frequency of each input

variable (30 mins, 1 hour, 2 hours) and the implementation of different control horizons

(1 day, 2 days and 4 days). We selected a reasonable trade-off between accuracy and

computation time with a 1 hour input discretization time for a 4 day horizon. This required

2.5 hours on our computer, which is realistic for an on-line implementation. Each case study
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Figure 4.10: The real and predicted profiles for cloudiness are reported. The solid line represents
the real weather dynamics whereas the dashed line represents the weather forecast used for the
optimization. (The vertical dashed-dotted line represents the artificial division between unaltered
and modified weather data for a generic (τn, τn + Th) time window.)

4.5.3 Numerical implementation of weather forecast uncertainty

Despite the increase in meteorological accuracy and computing power, the prediction

capability is in the range of a few days. To simulate weather forecast uncertainty, we assumed

a perfect forecast during the first day and we simply shifted the meteorological data by one

day for the rest of the period. This is probably a strong perturbation, in comparison with

the accuracy of the existing meteorological models (see Lorenz et al. (2009b); Perez et al.

(2013) for a detailed study) but it generates a credible weather forecast. This is illustrated

on Fig. 4.10 for cloudiness data, but the logic was used for all the five weather variables

extracted by ECMWF website. More accurately, for each preset optimization time window

(τn, τn + Th) (where τn is the current time and Th is the length of the considered time

horizon) the weather forecast data was corrupted in the following way:

• No discrepancies between real and predicted data were introduced in the time window

(τn, τn+1)

• For each j-th day in the interval (τn+1, τn + Th), the data used for the optimization

were the same collected for the (j + 1)-th day; as an example, if we consider the first

4 days of cultivation, the data used for day 2 were the same as the real ones collected

for day 3, and so on till day 4

4.5.4 Impact of inaccurate weather on the optimal solution over

the (τn, τn + Th) time window

In this paragraph we assess the impact of inaccurate weather forecasts. Optimizing the

control strategy by setting large time windows and, consequently, using highly uncertain

weather forecasts, has a great impact on the net productivity of the system. Fig. 4.11(d)
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shows that at day 3 there is a loss of productivity with respect to the predicted profile. This

critical point affected the productivity of the 4-day time window by lowering its value of

3.2 kg with respect to the ideal case previously described. This result can be explained by

considering the qin and qout optimal profiles. Focusing on day 3, Figures 4.11(a) and 4.11(b)

show low control peaks due to the fact that a cloudy day was wrongly predicted. Since

day 3 was a sunny day the optimal control strategy was not sufficient to cope with high

temperatures and high solar irradiances. In fact, Figure 4.11(c) shows that at day 3 the

raceway pond temperature overcame the Tmax value hindering the growth rate of the culture.

Now, in the next paragraph, we examine how a daily update of the weather forecasts

together with a 4 day time window can compensate for the possible impact of a wrong

meteorology.

4.5.5 Optimization with inaccurate meteorological forecasts

In this section, the predictive controller is implemented with Th = 4 days by using the

approach described in section 4.5.

For the sake of simplicity the results are reported only for the first two optimization

iterations. The inflow rate qin and the outflow rate qout profiles are reported in Figures 4.13(a)

and 4.13(b) whereas the raceway pond depth lp(t), the raceway pond temperature Tp(t) and

the biomass concentration xb(t) are reported in Fig. 4.14.

This optimization approach with daily re-optimization allows to maintain productivity

values close to the ideal case (25.83 kg). These results demonstrated that the optimal control

strategy is mainly linked to weather conditions related to the first days of optimization

and that a daily update seems enough to prevent the negative effect of weather forecast

uncertainty.
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Figure 4.13: (a) qin and (b) qout optimal control values. The horizontal arrows and the
dashed-dotted vertical lines are used to point out each optimization window. For the sake of
simplicity, only the first two optimization windows (τ0, τ0 + Th) (in black) and (τ1, τ1 + Th)
(in red) are represented. (The background is colored in white at daytime and in grey at nighttime.)
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4.6 Conclusions

The main result of our study is the key role played by temperature control for optimizing

microalgal productivity. Several studies have focused on control strategies deriving an

optimal microalgal density, balancing growth and respiration at the bottom of the reactor

(compensation condition). The control strategy however gives to this target only the second

rank. It first adapts the raceway pond volume and flow rates in order to get as close as

possible to the optimal temperature for growth, and always prevent the temperature to go

beyond this optimal value. The analysis of the rational behind the optimal control revealed

that this productivity gain was achieved via two main mechanisms: ‘flushing’ the culture and

controlling the raceway pond depth. The rather periodical control actions give the pace for

inflow and outflow. The compensation condition is then tracked once temperature is close to

the optimal value. This control scheme turns out to significantly increase the productivity of

algal open raceway ponds compared to standard operation with constant depth and dilution

rates. The proposed control strategy is highly dependent on the weather forecasts, and an

accurate prediction must be available at least for one day to guarantee an efficient process

optimization. Inaccurate predictions can be compensated by a more frequent optimization

update. It is shown that the complex optimal strategy can be reduced to six simple rules

whose implementations are simpler. Using these simple rules to optimize raceway operation

has therefore the potential to: (i.) minimize computational costs, (ii.) supply guidelines for

practical operation of open raceway ponds and (iii.) develop simple closed loop control loops

in order to reduce the sensitivity of the control strategy to inaccurate weather forecasts. It

should be noted that the proposed model does not take into account the effect of important

mechanisms, such as photoacclimation. However, the frequent culture replacements would

probably reduce photoacclimation impact on final microalgae productivity, but further work

is needed to validate this statement. Secondly, the optimization reliability in terms of

reproducibility should be further checked: some preliminary tests were conducted in order

to compare the optimal profiles obtained with different initializations, showing negligible

discrepancies between the different cases. Nonetheless, advanced optimization techniques

(e.g. multiple shooting) could be used in order to avoid local optima/sub-optimal solutions.

Finally, a post-optimal sensitivity analysis could be implemented in order to establish an

updated confidence interval for the most impactful model parameters.



Chapter 5

Feasibility approaches for open pond

management with inaccurate weather

forecasts

This Chapter proposes a feasibility analysis to prevent both high productivity loss due to

wrong control management and potential critical conditions caused by inaccurate weather

predictions (e.g. cell death due to high temperatures). In particular, the Chapter was

based on the evaluation and comparison of: (i) a constrained productivity optimization

based on the implementation of a dynamic threshold (Kookos and Perkins (2004)) generated

by the actual error on weather data measurements; (ii) a conservative control strategy

generated through the iterative implementation of the daily ‘worst case’ meteorological

scenario, regardless of the forecast data extracted. The objective of this study is to investigate

how these two approaches can guarantee both high productivity levels and feasible operation

in case of inaccurate weather forecasts. The secondary objective is to discriminate between

the two approaches in terms of productivity loss and water demand increase, with respect

to the ideal case of perfect weather predictions. The third objective is to implement the

open pond in a typical biofuels production process in order to evaluate the effects of each

proposed approach on total process cost.

5.1 Description of weather data inaccuracy

The representation of inaccurate weather data was based on modifying the real data

extracted by the European Centre for Medium-Range Weather Forecast ECMWF website.

Firstly, we conducted a preliminary sensitivity analysis in order to evaluate the most

impactful weather variables in terms of productivity loss. The sensitivity analysis on

productivity was done through the implementation of the same relative error (10%, -10%,

50% or -50%) to each meteorological data. It should be precised that the relative error on Ta

was calculated with respect to Celsius values. Moreover, a physical threshold was assumed

as the maximum allowable value for both CC and RH (8 okta and 100%, respectively).

63
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The sensitivity analysis, conducted at different seasons in Nice location (Winter, Spring,

Summer 2012, see Tables 5.1, 5.2, 5.3), demonstrated that CC and Ta are the most significant

variables especially in the hottest and sunniest period of the year. In addition to this, in

case of unpredicted high Ta and low CC, the actual control system could be unable to

avoid critical conditions for cultivation (for example, Tp higher than Tmax, with consequent

microalge death).

Forecast variable
Deviation from real meteo data (%)

-50% -10% +10% 50%

Relative humidity RH -4.85% -0.93% +0.90% +3.61%
Cloudiness CC +10.1% +3.53% -2.05% -5.34%

Rainwater rate vr +0.55% +0.11% +0.11% -0.54%
Air temperature Ta -7.49% -1.46% +1.44% +6.95%
Wind velocity vw +2.93% +0.50% -0.47% -2.10%

Table 5.1: Productivity variation in January (%) with respect to the optimal productivity obtained
when real data coincides with predicted data.

Forecast variable
Deviation from real meteo data (%)

-50% -10% +10% 50%

Relative humidity RH -2.94% -0.57% +0.55% +2.16%
Cloudiness CC +17.53% +6.01% -2.13% -4.99%

Rainwater rate vr +0.95% +0.18% -0.18% -0.87%
Air temperature Ta -4.41% -0.86% +0.85% +4.16%
Wind velocity vw +6.30% +1.09% -0.97% -3.96%

Table 5.2: Productivity variation in March (%) with respect to the optimal productivity obtained
when real data coincides with predicted data.

Forecast variable
Deviation from real meteo data (%)

-50% -10% +10% 50%

Relative humidity RH -0.56% -0.09% +0.068% +0.15%
Cloudiness CC -8.64% +2.26% -2.26% -6.63%

Rainwater rate vr +0.28% -0.01% -0.01% -0.21%
Air temperature Ta -3.91% -0.48% +0.22% -5.59%
Wind velocity vw -0.79% +0.02% -0.15% -1.20%

Table 5.3: Productivity variation in July (%) with respect to the optimal productivity obtained
when real data coincides with predicted data.

The inaccurate weather data was therefore represented through the addition of an

artificial error term to each 6-hourly value of CC and Ta; conversely, the other three

meteorological variables were kept constant at their real values.

The standard deviation of CC data extracted by ECMWF website was reported in

the annual evaluation report of ECMWF (Haiden et al. (2015)). This report showed

relative-mean-squared errors between 30-40% for cloudiness forecasts even on the first day

of prediction. Nevertheless, the assumption of a universal constant error on cloudiness
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measurements neglected important aspects, such as the error variability related to the specific

geographical conditions and the phase of the day at which each sample was collected. The

works of Lorenz et al. (2009b), Perez et al. (2013) showed in fact that the relative mean

square error of solar irradiance values (directly dependent on cloudiness data) given by

ECMWF highly varies with both the forecast time horizon and the considered location (see

Table 5.4). Furthermore, Lorenz et al. (2009a) proposed a correlation to directly estimate

Table 5.4: Relative mean square error of irradiance data collected by ECMWF website at different
locations and different forecast time horizons (Lorenz et al. (2009b) and Perez et al. (2013))

Location 1 day-horizon 2 days-horizon 3 days-horizon

Germany 40.3% 41.6% 44.9%
Switzerland 39.6% 41.8% 42.7%
Austria 45.6% 47.4% 50.5%
Spain 20.8% – 22% 21.3%–23% 22.4% – 23%

Central Europe 40% 42% 43%
Canada 32% 36% -
USA 33% 35% 37%

solar irradiance uncertainty through available ECMWF data. The correlation proposed by

Lorenz et al. (2009a) was generated through experimental data collected at different locations

in Germany. In this Thesis we used the same function correlation, but scaled up to a factor 2

(it corresponds to the addition of coefficient 2 (see Eq.5.1) to the original expression derived

by Lorenz et al. (2009a)), in order to adapt it to the sunnier conditions in Nice during

Summer (the highest solar irradiance peak (July 2012) in Nice was, in fact, twice as high as

the maximum solar peak in Germany in the same season). Then, the standard deviation of

solar irradiance measurements σHs
was defined as:

σHs
= 2× (8.455− 138.6 cos θz − 231kt∗ + 1127 cos2 θz + 123.5kt∗ cos θz+

+ 1315kt∗2 − 2381 cos3 θz + 290.8kt∗ cos2 θz + 570.8kt∗2 cos θz+

− 2154kt∗3 + 1583 cos4 θz − 306.5kt∗2 cos3 θz + 64.47kt∗2 cos2 θz+

− 735.2kt∗3 cos θz + 1074kt∗4),

(5.1)

where θz is the zenith angle (the angle between the vertical axis and the sun direction), whose

calculation was described in Chapter 3. The variable kt∗ is the clear-sky index, calculated

through CC data with the following expression (Lorenz et al. (2009a)):

kt∗ =
4− 3(CC/8)3.4

4
. (5.2)

The standard deviation of Ta data extracted by ECMWF was assumed to be independent

of local conditions and seasonal variations. The work presented by Haiden et al. (2015)

shows that the average standard deviation of Ta is between 2 and 3 K. In this work the
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measurement error εTa ,i associated to the i -th weather sample was defined as:

εTa ,i =
εTa ,i−1 + εrnd,i

2
, (5.3)

where εTa ,i−1 is the error associated to the (i -1)-th weather sample and εrnd,i is randomly

sampled by assuming a normal distribution with zero mean and standard deviation equal to

3.5 K. This approach allows to describe the measurements error in a reasonable way, since it

takes into account the precedent meteorological data and the thermal inertia of atmosphere,

hence avoiding unphysical temperature steps. The resulting σTa
value (∼ 2.5 K) can be

considered acceptable, according to the previously cited Ta standard deviation estimates

(Haiden et al. (2015)).

5.2 Case studies definition

All the optimization approaches investigated in this Chapter were based on the assumption

of working with an open pond whose surface area S was 100 m2. In this Chapter different

inlet temperature Tin values were tested (20 ◦C, 25 ◦C and 30 ◦C) in order to evaluate their

effect on final productivity. The initial conditions used are the same as defined in Chapter

3. The case studies compared in this Chapter are the following ones:

• Base case. The base case optimization was based on completely accurate weather

data, hence guaranteeing the maximum available productivity at the specific period

considered.

• 3σ case. The 3σ case optimization was based on productivity maximization of function

Pnet (kg) defined in base case through the implementation of a dynamic constraint, as

described in the following equation:

maxq Pnet = maxq
∫ τ

0
(G(xb, Hs, Tp)−R(xb, Tp))V dt

s.t.

Ddeath =
∫ τ

0
(max(Tp(t)− Cdeath(t), 0))dt ≤ 0,

0 ≤ qi(t) ≤ qmax

lp,min ≤ lp(t) ≤ lp,max

ξ̇ = g(ξ,q, t), ξ(0) = ξ0

, (5.4)

where Ddeath is the integral of threshold violation and Cdeath is the implemented

constraint on Tp(t), defined as:

Cdeath = Tmax − (Tpσ(t)− Tp(t)), (5.5)

where Tmax is the maximum allowable pond temperature for microalgae growth and

Tpσ(t) is the dynamic profile obtained for Tp(t) by adding a 3σ error to the extracted
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solar irradiance with respect to the base case (as an example, the days 1 and 4 of July

case represented in Fig. 5.1). This behavior is well represented both for June and July in

Figures 5.5 and 5.6), where the dynamic constraint was shown to operate on Tmax threshold

during all the cultivation period at different intensities. The strongest corrective action

was reached in correspondence with high forecasts error probabilities (around noon, in

correspondence to inaccurately predicted cloudy days).

The resulting weekly productivity values (at Tin = 20, 25, 30 ◦C in June/July) reported

in Table 5.6 show that 3σ approach always gave lower results in terms of productivity with

respect to base case. Nevertheless, productivity loss was limited to maximum -10% (for

June, at Tin = 20 ◦C). The proposed method, in fact, maintained similar qin and qout profiles

for sunny days with respect to base case (due to low temperature differences between real

and inaccurate predictions, hence low threshold dynamic modifications). Nevertheless, the

increase of qin and qout peaks in 3σ (due to high temperature differences between real and

inaccurate predictions) during inaccurately predicted cloudy days slightly sacrificed optimal

biomass growth conditions in order to guarantee acceptable Tp values through higher culture

replacement.

The productivity differences between base case and 3σ case decreased as Tin increased,

especially in June. This behavior can be explained by considering that the 3σ optimum

profiles at high Tin values were more similar to the optimum base case profiles than the ones

obtained at low Tin. At high Tin values, in fact, optimal qin assumed higher values around

noon, hence increasing the pond depth and, consequently, the thermal inertia of the system.

This behavior reduced the difference between Tp and Tp,σ and, consequently, the dynamic

constraint action on the maximum threshold.

The water demand for all 3σ case studies was higher than the one obtained with base

cases (up to 158% for Tin = 25 ◦C in June). This behavior was due to the fact that each

3σ case required higher (or equal) qin daily peaks in order to guarantee process feasibility.

Furthermore, WD increases with Tin; in fact, the higher the inlet temperature, the higher

the inflow rate required to cool down the system.

The weekly average concentration of the outlet flowrate was monitored for each Tin

due to its importance for the downstream processes. High concentration, in fact, reduce

the separation costs after the cultivation phase. Table 5.6 shows that the weekly average

concentration decreased with Tin for both June and July.

Conservative case. Conservative case studies allow to iteratively use the same daily

control strategy without considering the necessity of frequent weather forecasts update.

Nevertheless the resulting weekly productivity values (at Tin = 20, 25, 30 ◦C in June/July)

reported in Table 5.6 show that conservative case approach always gave lower results in terms

of productivity with respect to both base case (up to -19% with Tin = 20 ◦C in June) and 3σ

case (up to -10% with Tin = 20 ◦C in June). The relative productivity differences between

base/3σ case and conservative case decreased as Tin increased. The water demand for all

conservative case studies was higher than the one obtained with base cases (up to 191% for
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Tin = 30 ◦C in June) and 3σ (up to 73% for Tin = 30 ◦C in June). Furthermore, WD increased

with Tin as described for 3σ case studies; in fact, the higher the inlet temperature, the higher

the inflow rate required to cool down the system. The weekly average concentration of the

outlet flowrate followed the same behavior of the 3σ approach. In fact, Table 5.6 shows that

the weekly average concentration decreased with Tin for both June and July. Nevertheless,

the obtained weekly average concentration values were lower than the values obtained by

applying the 3σ approach.

Table 5.5: Evaluation of the number of scenarios at which Tp ≥ Tmax for base case, 3σ and
conservative case at different Tin values (June and July, 2012).

Tin Case studies
Tp ≥ Tmax

July June

20 ◦C
base case 62/200 10/200

3σ 0/200 0/200
conservative case 0/200 0/200

25 ◦C
base case 13/200 8/200

3σ 0/200 0/200
conservative case 0/200 0/200

30 ◦C
base case 4/200 9/200

3σ 0/200 0/200
conservative case 0/200 0/200

In summary, 3σ case study (with Tin = 20 ◦C) gave the best results in terms of

productivity loss minimization (with respect to base case), water demand and high biomass

concentration required by downstream processes.

The optimization results obtained in this work were compared in terms of operation

feasibility. In order to do that, a stochastic simulation of 200 scenarios was conducted for

each combination tested (base case, 3σ and conservative case at different Tin (20, 25, 30
◦C) in June or July). Each scenario represented the model response at different weather

data, which was generated by adding a random error (sampled by a normal distribution

N (0,σHs
) and N (0,σTa

)) to each Hs and Ta 6-hourly value, respectively. All 200 scenarios

related to a specific case study were simulated by implementing the control variables profiles

obtained by its optimization (qin and qout dynamics is reported in Appendix C for each

case study). In Table 5.5 the scenarios at which feasibility was not reached were reported

for each case study. The results show how both the two proposed methodologies (3σ and

conservative case) allowed operation feasibility for all the combinations tested. Moreover,

Table 5.5 shows that, optimizing the process by assuming ever higher Tin values increases

process feasibility, even avoiding the implementation of advanced tools to cope with weather

inaccuracy (base case). This result can be explained by considering that the higher the inlet

temperature, the higher the water amount required by the optimizer. Consequently, both

the cultivation volume and the thermal inertia of the system increase, hence guaranteeing

more stable temperature conditions in case of wrong predictions.
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5.4 Cost analysis

The different control strategies investigated in this work were compared in terms of process

cost per biomass produced. The proposed analysis was based on the assumption that the

cultivation system was part of the main process schematized in Fig. 5.7. In particular, we

assumed identical open ponds working in parallel (Npond = 50) through the same optimal

control logic. This choice was done in order to simulate an outdoor large-scale plant of 5000

m2. The proposed flowsheet shows a preliminary set of heat exchangers (Nhe = 5), used

to set the inlet medium flowrates at Tin for each open pond (the 1:10 ratio between the

number of heat exchangers and the number of ponds was chosen to reduce the number of

the heat exchanger units required, hence reducing the final cost). The flowrates processed in

the heat exchangers consist of the misture recycled from both the settler and the centrifuge

and a small amount of fresh water. In this work we assumed that these flowrates enter the

heat exchangers at Tp. After the cultivation phase all the culture was harvested in a single

Figure 5.7: Process flowsheet used for cost analysis

settling vessel and then treated in a final centrifuge unit. The installation costs of the open

pond was not considered due to its independence by the inlet and outlet flowrates. Cost of

nutrients and water was neglected, too. The cost related to flocculant agents needed in the

settling unit was neglected due to its low significance with respect to the other cost items.

The management and installation costs of the final centrifuge unit was based on the flowrate

coming out from the settler. Furthermore, it was assumed to reach a final dry biomass

percentage equal to 20% (Ramos Tercero et al. (2014)).

Since the two control variables to be optimized in this work were the inflow and outflow

rates qin and qout, the economic analysis only focused on the process costs that directly

depended on these two control variables. The comparison between the costs associated

to the different optimization strategies proposed in this work was therefore limited to the
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process cost component Cv ($ kg−1), defined as:

Cv =
TChe + TCst + TCcn

Npond(Pnet/τ)
, (5.6)

where TChe ($ kg−1 week−1) is the total cost associated to the heat exchanger, TCst ($ kg−1

week−1) is the total cost associated to the settler and TCcn ($ kg−1 week−1) is the total cost of

centrifuge. The recycle pump cost is not considered here due to its negligible contribution to

the total process cost. In other words, Cv represents the difference between the total process

cost and all the cost components that are not directly affected by the resulting control

strategies (such as the installation cost of the pond, the nutrient cost and the downstream

processes not represented in Fig. 5.7). In this paragraph the detailed correlations used to

calculate the terms TChe, TCst and TCst in Eq.5.6 are reported. Firstly, the total cost of a

generic unit operation TCuo ($ week−1) was calculated through the following equation:

TCuo =MCuo +
ICuo CCF

Nweek

, (5.7)

where MCuo is the manufacturing cost ($ week−1), ICuo is the installation cost ($), CCF is

the capital change factor (set to 0.333 year−1) and Nweek is the number of weeks the plant

operates per year (set to 39 weeks year−1 by excluding winter from the analysis).

5.4.1 The heat exchangers

The heat exchangers manufacturing cost MChe ($ week−1) was calculated as:

MChe = NpondCrw

∫ τ

0
qrw dt

ζττ
, (5.8)

where Crw is the cost of refrigerated water (0.313 $ m−3, Ramos Tercero et al. (2014)), qrw

is the volumetric flow rate of refrigerated water (m3 s−1) and ζτ is the conversion factor

used to get results on a weekly basis (1/604800 week s−1). The required amount of qrw was

defined by the following equation:

qrw =
qin(Tp − Tin)

∆Trw
, (5.9)

where ∆Trw (oC) is the temperature difference of the cold side of the heat exchanger (the

cold fluid was assumed to enter the heat exchanger at 5 oC and exit at 15 oC). The heat

exchanger installation cost MChe ($) was expressed from the following correlation (Douglas

(1988)):

IChe = Nhe
M&S

280
101.3(2.29 + Fc)(ζAAhe)

0.65, (5.10)

where Nhe is the number of heat exchangers (set to 5), M&S is the Marshall & Swift cost

index (equal to 1576.6, see Douglas (1988)), Fc is a corrective factor (set to 1) and ζA is the
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corrective index used to convert area values to ft2 (10.76 ft2 m−2). The heat exchanger area

Ahe (m
2) was expressed as:

Ahe =
Npond

Nhe

Qhe

Uhe∆Tml

, (5.11)

where Uhe is the global heat transfer coefficient (625 W m−2 K−1) and ∆Tml (
oC) is the

logarithmic mean temperature difference, calculated as:

∆Tml =
(Topt − Tin)−∆Trw
ln[(Topt − Tin)/∆Trw]

. (5.12)

The term Qhe in Equation 5.11 represents the heat exchanger duty (W), obtained through

the following correlation:

Qhe = ρwcpwq
he(Topt − Tin), (5.13)

where qhe represents a volumetric flow rate (m3 s−1) defined as:

qhe = min(qin,max, qbuf,max). (5.14)

The variable qin,max in Equation 5.14 is the maximum value of qin during the cultivation

period whereas qbuf,max is defined as:

qbuf,max = max
1≤i≤nday,w

(

1.3

∫ t2,i
t1,i

qin dt

ζτ (t2,i − t1,i)

)

, (5.15)

where t1,i is the first time at which qin assumes non zero values during the i -th day, t2,i is

the last instant at which qin assumes non zero values during the i -th day and nday,w is the

number of days used in the simulation/optimization. The coefficient 1.3 in Eq.5.15 was used

to increase the value of the involved flow rates for conservative heat exchanger design.

5.4.2 The settling unit

The settler was used to harvest the culture from each open pond (in this work we assumed

to have 50 open ponds that operate in the same way). The outlet biomass concentration was

assumed to be five times higher than the inlet culture medium concentration. The decanter

area Ast (m
2) was calculated as:

Ast =
VmaxNpond

hst
, (5.16)

where Vmax (m3) is the maximum daily volume of culture extracted by the open pond during

the cultivation period and hst represents the decanter depth (fixed at 6 m). The obtained

value of Ast was used to estimate the installation cost of the settler ICst ($) through the

following empirical correlation (Sharma et al. (2013)):

ICst = α1,st(ζAAst)
2 + α2,stζAAst + α3,st, (5.17)
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where α1,st (-0.0005 $ ft−2), α2,st (86.89 $ ft−1) and α3,st (182801 $) are empirical coefficients.

5.4.3 The centrifuge

Since the biomass concentration of the settler outlet flow qst (m3 s−1) was not high enough

for the downstream processes, one centrifuge unit was implemented to reach the 20% of dry

biomass (Molina Grima et al. (2003)). The settler outlet flow qst was defined as:

qst =
VmaxNpond

γxtop
, (5.18)

where γx is a concentration index used to scale the centrifuge volume with respect to the

settler unit (set to 5) and top is the assumed operation duration (57600 s). The installation

cost of the centrifuge ICcn was calculated as:

ICcn = β1,cn(ζqq
st)3 + β2,cn(ζqq

st)2 + β3,cn(ζqq
st) + β4,cn, (5.19)

where ζq is the flowrate conversion factor (15850.3 gal s min−1 m−3). β1,cn (0.0133 $ min3

gal−3), β2,cn (12.685 $ min2 gal−2), β3,cn (5635.3 $ min gal−1) and β4,cn (411407 $) are

empirical coefficients. Finally, the manufacturing cost MCcn was calculated as:

MCcn =
19829(ζqq

st)0.4168

Nweek

. (5.20)

5.4.4 Economic comparison between the control approaches

In this paragraph the 3σ and the conservative case studies were compared through the

evaluation of the cost index Cv previously defined. The two control approaches were tested

at different inlet temperatures (20 ◦C, 25 ◦C and 30 ◦C) for the two sunniest, most productive

and water demanding months (June and July 2012, Nice) considered in this work. The results

are reported in Table 5.7. In particular, qhe was calculated as the minimum value between

the maximum weekly qin peak and the function qbuf,max described in Eq.5.15.

July. Table 5.7 shows that the lowest Cv value obtained with the 3σ approach was the one at

Tin = 20 ◦C (Cv = 17.01 $ kg−1), whereas the highest was Cv = 18.23 $ kg−1 at Tin = 30 ◦C

(+ 7%). The conservative case does not show high cost differences between the simulations

at Tin = 20 ◦C and Tin = 25 ◦C, but both these two conservative case studies gave higher

cost estimations (up to 25% with respect to 3σ approach). Conversely, the simulation at

Tin= 30 ◦C for the conservative case presented the highest cost increase (+57% if compared

to the Cv value obtained in the 3σ case at Tin = 30 ◦C).

June. Table 5.7 shows that all Cv values obtained in the conservative case were higher than

those resulting from the use of 3σ approach. The highest Cv values were obtained at Tin =

30 ◦C, similarly to July results.

In summary, the two proposed approaches allow to guarantee both cultivation process
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feasibility (in case of inaccurate forecasts) and high productivity. In fact, the optimal

productivity values for both the two approaches are only slightly lower than the ones

achievable under the assumption of perfect meteorological data knowledge, especially if 3σ

approach is used. Unfortunately, both the proposed methods are more costly and water

consuming with respect to the base case; nonetheless, the 3σ approach can be considered

the best option both in terms of costs and water demand with respect to the conservative case

for the two months considered. This results can be justified by the fact that 3σ approach is

based on the dynamic adaptation of the temperature threshold, locally adjusted by following

the inaccuracy estimates generated by varying weather data. Conversely, the conservative

approach is more water, energy and cost demanding, due to the recursive control logic

resulting from the assumption of the daily iteration of the worst weather conditions for the

whole cultivation period. Nevertheless, the conservative approach is the best solution if the

user is looking for the simplest control management guaranteeing process feasibility. Finally,

the results obtained for all the two approaches show that, the lower the temperature of the

inlet flowrate, the lower the water demand required by the optimization and, consequently,

the associated process cost. This result is based uniquely on the temperature values tested

in this paper (20 ◦C, 25 ◦C and 30 ◦C); the extrapolation of this statement to lower Tins

should therefore be assessed through specific simulations.

Table 5.7: Evaluation of Cv ($ kg−1) for the 3σ and conservative case at different Tin values
(June and July, 2012).

Tin Case studies July June

20 ◦C
3σ 17.01 21.08

conservative case 20.78 29.99

25 ◦C
3σ 17.13 20.84

conservative case 21.08 27.68

30 ◦C
3σ 18.23 19.61

conservative case 28.50 30.89

5.5 Conclusions

Mathematical models able to describe microalgae growth in open ponds through

meteorological data are valuable tools for increasing cultivation phase productivity and

giving hints for practical operation. Nevertheless, the results obtained through this kind

of models could be misleading since they are based on the assumption of perfect weather

data. Firstly, two advanced optimal methods were proposed in this work in order to cope with

uncertain weather forecasts, leading to potential critical conditions for microalgae growth.

Both the two approaches guaranteed cultivation feasibility; moreover, the discrimination

between the two approaches led to the selection of the best approach (in particular, 3σ case)

in terms of productivity loss minimization, water demand reduction, optimal conditions for

downstream processes and total process costs. Secondly, the two advanced optimal methods
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were tested at different inlet flowrate temperature conditions; Tin variable has, in fact, a

key role on control magnitude peaks and, consequently, on water demand and productivity.

The final results showed that the best options was to operate at the lowest Tin temperature

tested (20 ◦C). Further research needs to address the optimal control conditions and Tin

temperature required to maximize a new objective function embedding both productivity

and total process costs.
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Conclusions and future perspectives

Microalgae are one of the most promising renewable feedstocks to cope with fossil sources

depletion and provide both high-value innovative compounds and biofuels. However, the

current assessment on practical feasibility and economics/environmental benefits is generally

limited by many uncertainties, especially regarding the biomass productivity that can

actually be reached at full-scale. In this context, mathematical modelling can be of great

help for developing our current knowledge on microalgae growth dynamics and optimizing

design, operation and control of microalgae culture systems. This Thesis work aimed at

exploring modelling issues with both a microscopic and a macroscopic perspective. From

a microscale perspective, we proposed an extension of an existing state-model in order

to deepen our current knowledge about the whole electron transport process involved in

photosynthesis. From a macroscale point of view, we considered an ‘in silico’ representation

of outdoor systems by coupling growth and temperature models to meteorological forecasts.

We precise that these two research areas were kept disconnected in this work, though

they may be merged in a unique multiscale model. The main achievements obtained with

these two different approaches and some hints for future research will be discussed in the

following. A final investigation on new MBDoE procedures based on online redesign of

experiments (see Appendix A) has been reported in this Thesis work, though no direct link

to microalgae modelling is considered. Nevertheless, the current benefits of standard MBDoE

techniques for microalgae model calibration/validation (see Bernardi et al. (2016) work) and

the possibility to use the proposed modified version to reduce otherwise long microalgae

cultivation experiments have a great potential in improving future model-based design of

experiment.

6.1 Microscale approach

The first objective of this Thesis was to propose an extension of an existing semi-mechanistic

state-model representing three distinct processes acting on PSII at different time scales

(photoproduction, photoinhibition and Non Photochemical Quenching (NPQ)) and at

different light intensities through fluorescence fluxes mathematical description. The objective

81
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was to use this model as a starting point for simulating the entire electron transport process

triggered by PSII in order to have a complete view of the most significant photosynthetic

mechanisms. In the following the main achievements are summarized:

• The proposed model proved to be a good candidate for describing PSI redox dynamics.

The model was calibrated through fast spectroscopic analysises performed in vivo

using a Joliot-type spectrophotometer. All the model parameters were estimated in a

statistically satisfactory way, hence guaranteeing local model identification; moreover,

the model is able to fit the experimental data in an accurate way;

• The model was validated against LEF and CEF experimental data in order to

discriminate between two different models that differed in the representation of linear

electron flow. The resulting best model is the one representing LEF reduction by

implementing lumen acidification through PQ transport rate regulation;

• Simulations of the dynamics of all the protein complexes involved in the electron has

been made with the proposed validated model. However, the final state of some protein

complexes does not correspond to its initial redox state. These model predictions

could not be verified with available experimental data; however, to our knowledge,

no literature model has been tested to demonstrate the existence of unkwnown dark

phase-driven hysteresis phenomena for over-reduced electron carriers.

The aim of future research should be to propose further investigation on the behavior of all

the electron carriers between PSII and PSI through dedicated protocols. A preliminary test

could be done by designing a a series of rapid dark/light cycles to test if protein complexes

redox state at the beginning of each light phase assume or not different initial values,

depending on the light path followed. Then, further work should be done for dedicated

absorbance experiment of the electron carriers between PSII and PSI, in order to improve

the process description given by the current model and to confirm (or falsify) some of the

model predictions that could not be verified with available experimental data. The model

has been validated for Nannochloropsis gaditana strain; further work is required to assess the

model reliability to describe different micralgae strains. New experimental campaigns should

be designed in order to collect new data and calibrate/validate the proposed model for each

new strain considered. Finally, model structure modifications should be taken into account

since the complexes involved in the electron transports vary depending on the microalgae

type.

6.2 Macroscale approaches

The second objective of this Thesis was to propose an optimization approach to maximise

microalgae productivity in open-pond systems at different weather conditions. The model

was built by coupling existing growth/temperature sub-models with real meteorological
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data. This dynamic model was used to test a new approach for raceways management

and underline the benefits of model building activities on practical process optimization and

control. Microalgal productivity maximization was achieved by continuously adjusting the

open pond depth through both the injection of fresh medium or extraction of culture. In

the following the main achievements are summarized:

• The control strategy proposed in this Thesis significantly increased microalgae weekly

productivity compared to standard operation at constant depth and dilution rate. The

optimal meteorological-based control strategy allowed to increase productivity values

up to a factor 2.2 for hot and sunny climates; however, this control strategies induces

high dilution rates, hence high water demand, especially in summer;

• The control strategy is mainly based on adapting the raceway pond volume and

flowrates to get as close as possible to the optimal temperature for the cultivated

strain and prevent cell death due to too high temperatures. The analysis of the rational

behind the optimal control revealed that process optimization are always based on two

main mechanisms: periodically ‘flushing’ the culture and controlling the raceway pond

depth. The compensation condition is then tracked once temperature is close to the

optimal value. Furthermore, we demonstrated that the complex optimal strategy can

be reduced to simple guidelines for future practical operation;

• Since the proposed control strategy is highly dependent on weather forecasts, an

accurate prediction of meteorological conditions must be available at least for one day

to guarantee an efficient process optimization. Daily re-optimization in fact allows to

maintain productivity values close to the ideal case based on weekly perfect forecasts,

due to the fact that daily control strategy is little influenced by weather conditions

related to other days. Inaccurate predictions can be compensated by a more frequent

optimization update;

• Uncertain weather forecasts, leading to potential critical conditions for microalgae

growth after optimization, can also be compensated by using different techniques

to guarantee process feasibility. In particular, the implementation of an additional

dynamic constraint on the pond temperature has been proven to be the best option to

maintain feasible growth conditions, thus avoiding cell death. This constraint, based

on local weather data inaccuracy estimates, allowed to maintain high productivities,

with a low increase of water demand and operating costs.

The aim of future research may be to propose the implementation of additional

phenomena in the current model; in fact, some important biological mechanisms, such

as photoinhibition and photoacclimation, are not considered though their impact on final

microalgae productivity may be significant. Furthermore, all the results presented are based

on complex optimization runs whose final results could be sub-optimal, given the high degree
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of freedom of the problem. A multiple shooting approach or advanced (global) optimization

techniques may therefore be used in order to check the actual optimization reliability. Finally,

since no model mismatch was assumed, future experiments should be performed to validate

the model against real/historical data and to estimate the amount of uncertainty generated

by each sub-model.

As a perspective, the same optimization strategy should be applied, but by constraining

the amount of water that can be used in the process (based for example on the availability

on rainwater at the location considered), and assuming that an important fraction of the

water can be recycled. This target could also be reached by implementing a multi-objective

optimization in order to investigate the control strategy required to get the best trad-off

between productivity maximization and water demand minimization.

The preliminary process cost evaluation made in Chapter 5 to discriminate between

different feasibility strategies showed that operating with inlet flowrates at low temperatures

is recommended to minimize the water demand. In fact, the lower the inflow temperature Tin,

the lower the amount of water needed to cool down the system to avoid critical temperatures

in the pond. However, cooling down water requires a refrigeration system, hence increasing

the process cost. Further research could focus on defining a more detailed process flowsheet

and evaluate the costs associated to each process unit. An interesting research direction,

in this case, could be to implement manufacturing and operation costs in the optimization

framework and adding Tin as control variable, by maintaining acceptable computational time

for future optimization tasks.

Finally, a third challenge could be to implement the optimal control strategy to an

actual MPC framework, in order to assess the reliability of the ‘in silico’ results obtained

in this Thesis to real open pond systems. Furthermore, advanced model predictive control

techniques, such as Adaptive MPC, should be considered in order to cope with the ideal

assumption of ‘no model mismatch’.



Appendix A

Information driven approach for

online model-based redesign of

experiments

In this Chapter1 a new online model-based design of experiments technique is discussed and

tested for two different case studies. The main objective is to exploit the progressive increase

of information resulting from running experiments in case of high parametric mismatch.

The proposed methodology allows determining when to redesign the experiment in an

automatic way, thus guaranteeing that an acceptable increase in the information content

has been achieved before proceeding with the intermediate estimation of the parameters

and the subsequent redesign of the experiment. Although the effectiveness of the proposed

experiment design technique is demonstrated through two simulated case studies not related

to the Thesis topic, the methodology was presented due to its applicability to microalgae

growth models (see, as an example, Bernardi et al. (2016) work).

A.1 Introduction

Model-based design of experiments (MBDoE) techniques (Pukelsheim (1993)) represent a

valuable tool for the rapid assessment and development of mathematical models at different

levels of the model building procedure (Asprey and Macchietto (2002)), allowing for the

maximization of the experimental information in order to reduce time and costs of the

model identification task. The effectiveness of the conventional iterative MBDoE procedure

(Franceschini and Macchietto (2008)) has been proved in a large variety of applications

(Prasad and Vlachos (2008); Galvanin et al. (2009b); Chakrabarty et al. (2013)) but it

is greatly limited by the fact that the design activity is affected by the initial available

estimates of parameter values; therefore high uncertainty on these values can severely

1Part of this work is reported in the article by De-Luca R., F. Galvanin, F. Bezzo. (2016). A methodology
for direct exploitation of available information in the online model-based redesign of experiments. Comput.
Chem Eng., 91:195-205
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affect the efficiency of the experimental design (Körkel et al. (2004)). In fact, several

approaches were proposed in order to overcome this problem. For example, Houska et al.

(2015) proposed an iterative optimal design method that consists of a modified A-criterion

weighting the terms information matrix trace calculated through an ad-hoc algorithm. As

stated by Mehra (1974), an efficient design procedure may be based on the exploitation of

the information as soon as it is generated by the running experiment through an online

adaptive input design (AID) strategy. AID strategies have been proposed and applied to

linear stochastic control system (Lindqvist and Hjalmarssonn (2001); Gerencsér et al. (2009),

where the design task is solved over a preset time horizon after which a new measurement

is taken and, consequently, a new estimation is acquired. Extension of this procedure to

nonlinear dynamic system is quite a recent achievement (Stigter et al. (2006)) and an online

model-based redesign of experiments (OMBRE) approach has been recently proposed as

a natural expansion of AID strategies (Galvanin et al. (2008, 2009a)). In OMBRE the

manipulated variables dynamic profiles and the sampling points allocation are updated by

performing one or more intermediate experiment designs (redesigns). The efficiency of this

technique has been tested for a wide range of cases by different research groups both for model

validation (Barz et al. (2013)) and model discrimination issues (Schenkendorf and Mangold

(2013)), providing a very efficient usage of measurement data and a great improvement

with respect to conventional MBDoE techniques. The OMBRE approach has been also

recently extended to systems where disturbances and systematic errors may be present

by using model updating policies including disturbance estimation procedures which are

embedded within the OMBRE strategy (Galvanin et al. (2012)). Unfortunately, OMBRE

technique is affected by some limitations, too: firstly, the redesign policy is decided a priori

by the user, without any rational criterion related to the achievable information; secondly,

OMBRE approach is still affected by the initial parameter uncertainty, especially until a first

redesign is done. In this Chapter a novel information-driven redesign optimization (IDRO)

is presented, where a robust design approach is applied to the online redesign procedure with

the purpose of determining when to redesign the experiment in an automatic and robust way.

IDRO is based on a new design concept, based on the maximization of a target profile of the

dynamic information profile, which guarantees a reliable increase in the information content

before proceeding with the intermediate estimation of the parameters and the subsequent

redesign of the experiment. Furthermore, the technique is much less affected by the negative

effects of parametric uncertainty, with great benefit in terms of robustness of the whole

redesign procedure. The applicability to nonlinear dynamic systems is demonstrated through

two simulated case studies: the first one is related to the identification of a fermentation

bioreactor model, the second one is based on the identification of a physiological model which

describes glucose homeostasis.
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A.2 Optimal design of experiments: methodology

A conventional MBDoE procedure (Asprey and Macchietto (2002); Körkel et al. (2004))

aims at decreasing the model parameter uncertainty region by acting on the nϕ-dimensional

experiment design vector ϕ and solving the following nonlinear optimization problem:

ϕopt = argmin
ϕ

{ψ [Vθ (θ,ϕ)]} = argmin
ϕ

{ψ [Hθ
−1 (θ,ϕ)]}

s.t.

f (ẋ(t),x(t),u(t),w,θ, t) = 0, ŷ = h (x(t))

C = x(t)−G(t) ≤ 0

ϕl ≤ ϕ ≤ ϕu

, (A.1)

with the set of initial conditions x(0) = x0. In Eq. A.1 Vθ is the variance-covariance matrix

of model parameters and Hθ corresponds to its approximated inverse, the dynamic Fisher

information matrix; x ∈ ℜNx is the time-dependent state variables vector, u(t) ∈ ℜNu

and w ∈ ℜNw are, respectively, the time-dependent and time-invariant control variables

(manipulated inputs), θ ∈ ℜNθ is the model parameters set, and t is time.

The symbol (ˆ) is used to specify the estimated value of a variable (or a set of variables):

for example, y represents the vector of measured values of the outputs, while ŷ is the vector

of the corresponding values estimated by the model. In Eq. A.1 C is the NC-dimensional

set of constraint functions expressed through the set G(t) ∈ ℜNC of active constraints on

state variables. Equation A.1 represents the nϕ-dimensional set of constraints on design

variables, usually expressed by lower (superscript l) and upper (superscript u) bounds on each

components of the experiment design vectorϕ, constraining the design to a hyperrectangular

subspace of the overall design space ℜnϕ . The experiment design vector ϕ is defined as:

ϕ =
[

y0,u(t),w, tsp, τ
]

(A.2)

It consists of the Ny-dimensional set of initial conditions for the measured variables y0, the

manipulated input variables u(t) and w, the total duration of the experiment τ and the

Nsp-dimensional set of output variables sampling times tsp.

The function ψ in Eq. A.1 is an assigned metric of the variance-covariance matrix of

model parameters Vθ and represents the design criterion adopted to maximize the expected

information content of the experiment as predicted by the model; the most common design

criteria are the alphabetical ones, i.e. A-, D-, E-optimal criteria which focus on trace,

determinant and maximum eigenvalue ofVθ minimization, respectively (Pukelsheim (1993)).

The dynamic information matrixHθ for a single experiment is usually expressed by a discrete

dynamic form of the Fisher information matrix (Bard (1974)). According to the notation

proposed by Zullo (1991), Hθ is here defined as:
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Hθ (θ,ϕ) = H0
θ +

Nsp
∑

k=1

Ny
∑

i=1

Ny
∑

j=1

sij

[

∂ŷi(tk)

∂θl

∂ŷj(tk)

∂θm

]

l,m=1,...,Nθ

= H0
θ +

Nsp
∑

k=1

Mk

, (A.3)

where sij is the ij-th element of the inverse of the Ny × Ny measurement error covariance

matrix Σy, Mk represents the amount of information that can be obtained at the k-th sample

and H0
θ is the preliminary information matrix, based on the preliminary statistics about the

parametric system at the beginning of the experimental campaign. The conventional MBDoE

(Franceschini and Macchietto (2008)) can be described as an iterative loop procedure

generally based on the following steps:

1. get prior knowledge on the parametric set value (and its related uncertainty Σθ);

2. choose an optimal design criterion and design the experiment;

3. start the experiment;

4. at the end of the experimental run, estimate the model parameters;

5. if the desired estimation quality is not reached by the end ofthe experiment, design a

new experiment, based on the model parameters estimated in step 4.

A.3 Online model-based redesign of experiments: OMBRE

When OMBRE procedure is used, intermediate parameter estimations are carried out at

specific updating times while the experiment is running, in order to exploit the information

obtained and use it to partially design the remaining part of the test. The experimental

run is thus split into sub-experiments, within which the experiment decision variables are

distributed according to the ‘a priori’ chosen redesign strategy (Galvanin et al. (2009a)).

Following this approach, the global design vector of the experiment ϕ can therefore be

rewritten as:

ϕ = [ϕ1,ϕ2, ...,ϕj, ...,ϕnup+1] , (A.4)

where nup is the number of updating times, and ϕj is the design vector before the j-th

update; each component ϕj of ϕ could have a different dimension in terms of number

of discretized control variables and/or sampling points. Obviously, ϕ1 will be the only

component including the initial values of measured variables. For each redesign activity an

optimization problem acting on the j-th component of ϕ is conducted in the corresponding

time frame; in particular, the optimality condition for ϕj is given by:

ϕ
opt
j = argmin

ϕj

{

ψ
[

Vθ |j (θ,ϕj)
]}

= argmin
ϕj

{

ψ
[

Hθ |j (θ,ϕj)
]}

, (A.5)
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where the information acquired by the j-th redesign can be expressed as a partial contribute

to the total dynamic information matrix:

Hθ |j (θ,ϕj) = H̃θ (θ,ϕj) +
j−1
∑

k=0

H̃θ |k (θ,ϕk) + Σθ
−1 = H̃θ (θ,ϕj) + L . (A.6)

The constant term L consists on the sum between the preliminary information matrix Σθ
−1

and the information acquired before the j-th redesign. The symbol (˜) indicates that the

information matrix refers to a single updating interval, and H̃θ |0 is the null matrix. At each

given updating time the information is obtained by executing online a parameter estimation

session followed by a redesign of the remaining part of the experiment. The detailed OMBRE

Design first sub-experiment

Parameter estimation

Start the experiment

Reached end of the 

experiments?

YES

NO

START

Get prior information

Define redesign policy

END

Is the estimate 

satisfactory?

Design a new experiment

END

Parameter estimation

Is it time to redesign?

Continue the experiment

Is the estimate 

satisfactory?

NO

YES

YES

NO

NO

YES

Design next 

sub-experiment

Figure A.1: Flowchart of OMBRE procedure.

procedure is therefore based on the following steps (see Fig. A.1):

1. get prior knowledge on the parametric set value (and its related uncertainty Σθ);

2. choose an updating strategy and design the first sub-experiment by calculating A.5;

3. start the experiment;
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4. if an updating time is reached, estimate the model parameters:

5. if a statistically sound parameter estimation is achieved, then stop the redesign

procedure (and possibly the experiment itself); otherwise:

(a) redesign the remaining part of the experiment by using Eq. A.5 with the update

on dynamic information given by Eq. A.6; implement the design in the running

experiment, and go to step 4.

(b) if the desired estimation quality is not reached by the end of the experiment,

design a new experiment, based on the model parameters estimated in step 4.

Note that a possible parametric mismatch can be managed by OMBRE only by adjusting

the model parameters according to the available observations. The optimality condition and

the feasibility conditions will be evaluated within each time frame according to the current

value of model parameters.

A.4 Information-driven redesign optimization (IDRO) for

model-based design of experiments

In OMBRE methodology the updating strategy is chosen a priori by the user without taking

into account any rational criterion related to the achievable information; in order to overcome

this issue a new updating strategy is here proposed including: (i) the optimization of the

information obtainable from the experiment based on a target information and (ii) the

identification of the best updating time to redesign. The design task, especially at the

beginning of the procedure, may be affected by an initial parametric mismatch.

Consequently, in order to preserve the quality of the experiment by poor starting values of

the parameters, a robust optimal design approach (Asprey and Macchietto (2002)) based on

the expected value of a measurement function of the predicted information is implemented.

IDRO methodology is essentially based on a robust A-optimal criterion applied for the

worst model parameter, by exploiting one of the most significant statistical indices used to

evaluate the parameter estimation precision: the t-value. This index is strictly linked to the

information that can be gained during the experimental run, as can be observed from the

following equation:

ti =
θi

t (1/2 + (1− α/2), Nsp −Nθ) ·
√
vii
, i = 1, ..., Nθ , (A.7)

where ti is the t-value related to the i-th model parameter, vii is the ii-th term of the

parametric variance-covariance matrix, t(·) is the t-value distribution with a [1/2 + (1

α)/2]% confidence level and (Nsp - Nθ) degrees of freedom, where α is the statistical level of

significance. As can be inferred from the previous equation, each ti value increases at each

sampling time both for the information acquired by the sample itself in terms of vii and for

the variation of the t-distribution due to the stepwise increase of Nsp at each sampling point.
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A statistically sound parameter estimation is reached for all the model parameters if each

parametric t-value is greater than the (1 α)% confidence reference t-value (tref1−α), which is

defined as:

tref1−α = t(1− α,Nsp −Nθ) . (A.8)

The IDRO method consists therefore in conducting the experiment in order to overcome the

tref1−α-value threshold by the end of experiment, through the online redesign of the experiment.

The objective function has been defined as the time integral of the difference between the

updating time for each redesign and the total duration of the experiment.2 Moreover, the

optimization is constrained by imposing that, for each redesign task, the predicted precision

of all parameters should be greater than a preset threshold.

The mathematical expression of the optimal values of each ϕj component of the ϕ design

vector, as defined in Eqs. A.2 and A.4, is therefore:

ϕ
opt
j = argmin

ϕj

∫ τ

tup,j
(t− tup,j)dt

s.t.

C = E
θ∈Θ

{

max
i=1,...,Nsp

[

wj−1 · tref1−α|t=tup,j − ti|t=tup,j

]

}

= 0

, (A.9)

where t is the time variable, tup,j is the j-th updating time, wj−1 is a weight corrector

that corresponds to the minimum fraction of the tref1−α to be reached by each parametric

t-value by the end of the j-th updating time and E(·) is the expected value of the function

in brackets, evaluated in the parameter domain Θ. In practice, for each sub-experiment,

ϕ
opt
j corresponds to the design vector that allows minimizing both a specific percentage of

deviation between the tref1−α and the minimum ti, and the value of the time tup,j necessary to

achieve this result.

The robustness of IDRO is based on the fact that each ϕ
opt
j is calculated by evaluating

the constraint defined in Eq. A.9, which is an average value obtained through a stochastic

simulation with Nsc scenarios. Each scenario represents the model response at different

θ values, which are randomly sampled in the parameter domain Θ of the parameter

variance-covariance matrix by assuming a normal distribution N (θ̂i, σ̂θi), where θ̂i is the

estimate of the i-th parameter and σ̂θi is the standard deviation of θ̂i. In order to follow the

logic of an A-optimal MBDoE, only the diagonal elements σ̂θi
2 of the variance-covariance

matrix of model parameters are considered during the sampling procedure (i.e. covariance

elements are ignored). Although this is an approximation, it has been verified that this

choice does not affect the quality of the sampling in a significant way.

The parametric set for each scenario has been randomly generated by considering only

the diagonal terms of the parametric variance-covariance matrix (diagonal approach). This

simplification is justified by the fact that the average and the standard deviation values of

2The integral formulation has been chosen in order to amplify the effect of the time distance between
tup,j and τ . Alternative formulations are possible.
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the sample distribution obtained through the diagonal approach only differ by 1% and 10%,

with respect to the case where all the terms of the variance-covariance matrix are included.

Furthermore, it should be noted that θ̂i and σ̂θi values are updated at each tup,j in order to

take into account the results obtained through the parameter estimations conducted at the

end of each sub-experiment, and the sampling effect is noticeable only at the very beginning

of the design procedure (i.e. in the first design).

The logic of IDRO iterative procedure is illustrated in Fig. A.2. The picture simulates

the hypothetical behavior of IDRO approach for a two-parameters model. The red solid

stepwise profile represents the weighted reference t-value profile, whose value decreases after

each sampling point has been collected (initially the profile is constant to a preset value since

no distribution can be computed for (Nsp - Nθ) < 0). The black solid and dashed stepwise

lines represent the time profiles of the t-values for the two model parameters. These profiles

will increase after each sampling point is collected as soon as additional information on

parametric variability is acquired. Let us assume that in this case the dashed line is related

to the most difficult parameter to be estimated (i.e. the parameter with minimum t-value);

after fixing a weight w0 for the first sub-experiment, the IDRO optimization (see Eq. A.9)

will minimize the time required for the minimum t-value to become larger than the target

w0 · tref1−αvalue; the optimal updating time tup,1 will be evaluated accordingly.

Note that weight w0 is initially introduced to set a minimum level of information to be

reached within the first update; as will be shown in the actual algorithm, this weight is

automatically adjusted to guarantee that the first update does not exploit all the available

experimental capability in terms of variations on the input variables (i.e. the maximum

number of switches on u(t), which is set a priori and typically depends on the equipment

characteristics) as well as in terms of samples (i.e. the maximum number of measurements

that can betaken, which is also set a priori and depends on the experimental settings and

on the cost and complexity of measurements). In other words, the procedure is built is such

a way that at least one update is always carried out and that the remaining part of the

experiment can still be designed according to an optimum criterion.

The experiment then starts and will be run till t = tup,1, time at which a parameter

estimation is carried out and a new (larger) weight w1 for t
ref
1−α is chosen. From this point on,

an iterative procedure is implemented until the end of the experiment is reached (in terms

of time τ) or tref1−α is achieved (i.e. wj ≥ 1) or there is no experimental design capacity in

terms of measurements or input switches. The detailed IDRO procedure (see Fig. A.3) is

therefore based on the following steps:

1. get prior knowledge on the parametric set value (and its related uncertainty Σθ) and

set j = 1, where j is the counter index of the sub-experiment to be designed;

2. set w0, i.e. fix the minimum amount of information, that has to be reached by all the

t-values (ti) at the end of the first sub-experiment, defined by w0 · tref1−α;

3. design the first sub-experiment from Eq. A.9;
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Figure A.2: Flowchart of IDRO procedure
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4. check if tup,j < β·τ , Nsw,j < γ·Nsw or Nsp,j < Nsp,j−1 + δ·Nsp are satisfied3; β,

γ and δ values are a priori set by the user in order to guarantee both sufficient

time and a sensible number of switching levels and sampling points for the following

sub-experiment(s);

(a) if all conditions are satisfied, carry out the sub-experiment, estimate the model

parameters and go to step 5.

(b) otherwise, set w0 = kε·w0 and go to step 3. kε represents a preset reduction

coefficient that allows to decrease the initial value assumed for w0 during the

iterative procedure;

At the end of the first sub-experiment, the following iterative procedure is used:

5. set j = j+1;

6. set wj = kw·wj−1, where kw is the incremental coefficient. This index, whose value is

preset by the user, represents the relative difference between the optimal weight wj−1

used for the design of the (j-1)-th sub-experiment and the initial tentative weight wj

tested at the beginning of the optimization loop for the j-th sub-experiment;

7. design the first sub-experiment from Eq. A.9;

8. check if tup,j ≤ τ ;

(a) if true, go to step 9;

(b) otherwise, set wj = kw·wj and go to step 7;

9. run the j-th sub-experiment (till tup,j) and estimate the model parameters;

10. if wj−1 < 1 and/or tup,j < tup,j−1 + β(τ - tup,j−1) and/or Nswj < γ(Nsw - Nsw,j−1)

and/or Nspj < δ(Nsp - Nsp,j−1):

(a) then go to step 5;

(b) otherwise, stop;

11. if a satisfactory parameter estimation is not achieved, design a new experiment.

Two simulated case studies were examined in order to compare, in terms of parametric

estimation precision at the end of the experimental run, standard MBDoE and OMBRE

3As anticipated above, this condition is required to ensure that one update is carried out and still the
remaining part of the experiment can be designed in an optimal way. In other words, we do not want that:
(a) the update is scheduled too close to the end of the experiment; (b) there is no further possibility to
excite the system (no enough switches on input variables); (c) there is no possibility to collect a reasonable
additional number of samples. Note that parameters β, γ and δ are the only ones that are indeed set by the
users and somewhat reflects his/her knowledge on the experimental facility and the viability of performing
portions of experiment.
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approaches with the proposed IDRO methodology; the two case studies differ in terms of

number of measured responses, simulated experimental error on measured variables, and for

the absence/presence of active constraints on the state variables. For standard MBDoE and

OMBRE designs, the A-criterion is used because of its similarity with the IDRO approach,

which is based on the diagonal terms of the variance-covariance matrix. This will allow a

more fair comparison between different criteria.

The gPROMSTM software has been adopted for design and simulation purposes, as well

as to conduct the ‘in silico’ experiments, and to analyze the results coming from them

through its Parameter Estimation entity. The NLPSQP solver has been used for the

optimization/design task; it employs a sequential quadratic approach (SQP) method for

the solution of a nonlinear programming (NLP) problem. The gPROMSTM software is used

in conjunction with external subroutines written in FortranTM via Foreign Object Interface

in order to implement the inversion of the information matrix and calculate the dynamic

t-value profiles required by the IDRO approach.

Figure A.3: The logic of IDRO approach applied to a generic two-parameters model: the red
solid stepwise profile represents the dynamic weighted tref1−α profile (at each tup,j the weight wj−1

is modified, as described in Fig. A.3). The black solid and dashed stepwise profiles represent the
parametric t-values of the two model parameters, whose values increase with the number of collected
samples. The dash-dot vertical lines represent the updating times tup,j for the experimental run.

A.5 Case study 1: fermentation bioreactor

Conventional MBDoE, OMBRE and IDRO approaches are here compared and applied to a

model that simulates a biomass fermentation process (Espie and Macchietto (1989); Munack
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and Posten (1989)). The model consists of the following set of equations:

dx1
dt

= (rg − u1 − θ4) · x1
dx2
dt

= −rgx1
θ3

+ u1(u2 − x2)

rg =
θ1x2

(θ2 + x2)

ŷi = xi, i = 1, 2

, (A.10)

where x1 is the biomass concentration (g/L), x2 is the substrate concentration (g/L), u1 is the

dilution factor (h−1), and u2 is the substrate concentration in the feed (g/L). The achievable

conditions that characterize the experimental tests are the dilution factor u1 (range 0.05-0.20

h−1) and the substrate concentration in the feed u2 (range 5-35 g/L). These manipulated

inputs are approximated by piecewise constant profiles over Nsw = 6 switching intervals. The

initial biomass concentration x01 is allowed to assume values in the range 1-10 g/L, whereas

the substrate concentration x02 is set to 0 g/L, respectively. It is assumed that both x1 and x2

can be measured during the experiment (i.e. ŷ = [x1 x2]
T) and that its total duration is τ =

48 h. Measurements are affected by Gaussian noise with zero mean and variance-covariance

matrix given by:

Σy =

(

0.01 0

0 0.05

)

. (A.11)

The ‘real’ system is assumed to be characterized through the parameter set θ = [0.310 0.180

0.550 0.050]T. It is then assumed that the initial parameter estimates are affected by a

90% relative error with respect to the true parameter values (in this case, θ0 = [0.589 0.018

1.045 0.005]T). The design and parameter estimation activities are implemented on the

normalized parametric set Θ, defined as the ratio between the current parametric estimates

and the true parameter values θ0. Note that this normalization procedure is an ideal one

since in practice the true value of the parameters is unknown. However, in a simulated case

study, the approach is useful to have an immediate grasp of the accuracy of the estimates

(in fact, it is also useful for numerical reasons; in real applications the initial guess of the

parameter values can be used for normalization).

The following design configurations have been considered and compared:

• Instance I: conventional MBDoE;

• Instance II: OMBRE. It is assumed that nup = 1 update may be performed and that

for each manipulated input three switching levels are allowed in each updating interval;

the length of eac hredesign time window has been fixed equal to 24 h;

• Instance III: IDRO. In this case the iterative procedure, described in detail in

Section A.4, requires to set some preliminary constants. In particular, the threshold

constants β, γ and δ are set to 2/3; the reduction coefficient kε set to 0.9, while the
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incremental coefficient kw set equal to 8. The number of scenarios Nsc implemented in

the stochastic simulation is set to 25: this value is a good compromise between the high

computational cost required by the optimization task and the necessity to simulate a

reliable representation of model parameters distribution (using a computer with CPU

2.40 GHz and RAM 8GB, IDRO requires about 5 h of calculation whereas OMBRE

needs 45 min; this time is required for the first design and, in fact, the calculation could

be carried out before initiating the experiment; the redesign calculation time is about

1 h). It is assumed that measurements (Nsp = 8) are equidistantly distributed along

the maximum experiment duration τ . Results are discussed in the following sections

for the three design configurations in terms of manipulated inputs, simulated profiles

and a-posteriori statistics on the final parameter estimation.

Table A.1: Case study 1 - Fermentation model: A-optimal MBDoE, OMBRE and IDRO. Results
from final parameter estimation including standard deviation and t-value 95% of the normalized
parametric set. Double asterisks (**) denote t-values failing the t-test (i.e. the t-value is smaller
than the reference one).

Normalized Real Final Standard t-value
parameter value value deviation 95%

Conventional
MBDoE

Θ1 1 1.016 0.017 28.17
Θ2 1 0.544 0.325 0.769**
Θ3 1 1.046 0.025 18.94
Θ4 1 1.188 0.082 5.075

Reference t-value 95% 1.783

OMBRE

1st sub-exp

Θ1 1 2.304 17.61 0.047**
Θ2 1 3.136 32.70 0.035**
Θ3 1 1.013 0.037 9.925
Θ4 1 1.028 0.095 3.905

Reference t-value 95% 2.132

2nd sub-exp

Θ1 1 2.528 20.42 0.057**
Θ2 1 2.742 27.77 0.045**
Θ3 1 0.988 0.034 13.19
Θ4 1 0.948 0.088 4.92

Reference t-value 95% 1.783

IDRO

1st sub-exp

Θ1 1 1.042 0.043 9.959
Θ2 1 0.799 0.435 0.731**
Θ3 1 1.053 0.060 7.196
Θ4 1 1.242 0.213 2.382

Reference t-value 95% 1.943

2nd sub-exp

Θ1 1 0.999 0.013 34.72
Θ2 1 0.912 0.145 2.88
Θ3 1 1.003 0.023 20.29
Θ4 1 1.020 0.079 5.917

Reference t-value 95% 1.783
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A.5.1 Instance 1: conventional MBDoE

Results in terms of predicted profiles and manipulated inputs are given in Figs. A.4(a)

and A.4(d). Table A.1 shows that the results obtained in terms of parameter precision

are unsatisfactory; in fact, it is not possible to achieve a statistically sound estimation of

parameter θ2.

A.5.2 Instance 2: OMBRE

Results in terms of predicted profiles and manipulated inputs are given in Figs. A.4(b)

and A.4(e). Also in this case, the estimation of the parameters values is quite unsatisfactory:

as summarized in Table A.1 parameters θ2 and θ3 cannot be estimated in a statistically

satisfactory way by the end of the experimental run. Note that OMBRE is outperformed

by the conventional MBDoE configuration. The initial uncertainty on model parameters is

such that during the first sub-experiment it is not possible to gather sufficient information

to produce an effective redesign. In fact, this issue was highlighted in the original article by

the authors themselves (Galvanin et al. (2009a)) when they observed that in the case of poor

initial information the quality of the experiments is highly affected by the updating policy

and that scarcely informative redesigns could be obtained in the initial phases.

A.5.3 Instance 3: IDRO

Results in terms of predicted profiles and manipulated inputs are given in Figs. A.4(c)

and A.4(f), while the parameter estimates are given in A.1. It is clear that, compared

to MBDoE and OMBRE configuration, IDRO gives the final best estimates in terms of

accuracy, thanks both to the robust approach and the innovative info-based updating time

optimization which guarantees the attainment of a minimum level of information in the

initial experimental phases. In fact, this is the only case where a satisfactory estimation of

all parameters can be achieved within the duration on one experiment. Note that in some

cases also a robust formulation for OMBRE may produce similarly good results, but the

performance is very much dependent on the updating policy, which is dealt explicitly with

only in the IDRO approach.

A.6 Case study 2: a physiological model for type 1 diabets

mellitus

This second case study considers a model of glucose homeostasis for the simulation of type

1 diabetes mellitus (Galvanin et al. (2011)), based on a previous work (Lynch and Bequette

(2002)). The model is described by the following set of differential and algebraic equations:
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Figure A.4: Case study 1 - Fermentation model: results in terms of predicted profiles for biomass
(y1) and substrate (y2) concentration for: (a) A-optimal MBDoE, (b) OMBRE, (c) IDRO. The
experimental samples are indicated by circles (y1) and triangles (y2) with error bars. Optimal
profiles for the dilution factor (u1) and the substrate concentration in the feed (u2) are reported for:
(d) A-optimal MBDoE, (e) OMBRE, (f) IDRO.

dCg

dt
= θ1Cg −XI(Cg − Cg,b) +

Dmeal(t)

VG
dXI

dt
= θ2XI + θ3Ic,

dIc
dt

= −θ4(Ic − Ic,b) +
u(t)

VI
dCgsc

dt
=
Cg − Cgsc

5
−Rut

Dmeal(t) =
5Agte

−0.05t

2
, ŷ = Cgsc,tot = Cgsc + Cgsc,b

, (A.12)

where Cg is the blood glucose concentration (mg/dL), XI the variation of insulin

concentration (mU/L) in the inaccessible compartment with respect to basal value, Ic the

variation of insulin concentration (mU/L) with respect to basal value, u(t) the rate of infusion

of exogenous insulin (mU/min). The measured response is the total subcutaneous glucose

concentration Cgsc,tot, modeled by a first-order 5 min lag between Cg and Cgsc. The meal

disturbances Dmeal(t) is expressed through Hovorka et al. (2004) correlation, with Ag being

the amount of carbohydrates of the meal, here set to be 30 gCHO (fixed). The constant

basal parameter are set to the following values: the basal glucose concentrations in the blood

Cg,b and Cgsc,b are assumed to be equal to 81 mg/dL, the basal insulin concentration Ic,b is

15 mU/L, the glucose distribution volume VG is 120 dL, the insulin distribution volume VI

is 12 L and the tissue rate utilization Rut is 0.75 mg/dL/min. With respect to the original
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formulation only the inequality constraint:

− y +Gd ≤ 0 (A.13)

is considered, where Gd = 70 mg/dL is the lower conservative threshold on the subcutaneous

glucose concentration (y). This bound is a hard constraint not to be violated because it

prevents hypoglycemic conditions (Cgsc,tot < 76 mg/dL) during real tests. The achievable

condition that characterize the experimental tests is the dilution factor u(t) (range 0 115

mU/min); this manipulated input is approximated as a piecewise constant function with

Nsw = 8 switching intervals. It is assumed that Nsp = 14 samples (equally distributed) can

be taken during a τ = 480 min long experiment. Measurements are affected by Gaussian

noise with zero mean and a standard deviation of σ = 5 mg/dL on y. The real system is

represented by the parameter set θ = [0.017 0.032 1.540E-5 0.096]T; it is then assumed that

the initial parameter estimates are affected by a 70% relative error with respect to the true

parameter values (in this case, θ0=[0.029 0.010 2.620E-5 0.027]T). The design and parameter

estimation activities are based on the normalized parametric setΘ, defined through the ratio

between the current parametric estimates and the true parameter values. Also in this case

study, conventional MBDoE, OMBRE and IDRO approaches have been compared:

• Instance I: conventional MBDoE;

• Instance II: OMBRE. It is assumed that nup = 1 update may be performed and that

for each manipulated input three switching levels are allowed in each updating interval;

the length of each redesign time window has been fixed equal to 240 min.

• Instance III: IDRO. In the same way described for the first case study, the threshold

constants β, γ and δ are set to 2/3; the reduction coefficient kε set to 0.9, while the

incremental coefficient kw set equal to 8. The number of scenarios Nsc implemented

in the stochastic simulation is set to 25. The calculation time is similar to the one

required for case study 1.

A.6.1 Instance 1: conventional MBDoE

Results in terms of predicted profiles and manipulated inputs are given in Figs. A.5(a)

and A.5(d). The parameter estimation task proves to be totally unsatisfactory; in fact, it is

not possible to achieve an accurate estimation of parameters θ1, θ2 and θ3 (see Table A.2).

A.6.2 Instance 2: OMBRE

Results in terms of predicted profiles and manipulated inputs are given in Figs. A.5(b)

and A.5(e). The OMBRE approach allows for a slightly better performance (see Table A.2),

but still both parameters θ2 and θ3 cannot be estimated in a statistical satisfactory way.
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Table A.2: Case study 2 - Diabetes model: A-optimal MBDoE, OMBRE and IDRO. Results
from final parameter estimation including standard deviation and t-value 95% of the normalized
parametric set. Double asterisks (**) denote t-values failing the t-test (i.e. the t-value is smaller
than the reference one).

Normalized Real Final Standard t-value
parameter value value deviation 95%

Conventional
MBDoE

Θ1 1 1.127 0.057 1.660**
Θ2 1 1.358 1.190 0.741**
Θ3 1 1.648 0.037 0.474**
Θ4 1 1.019 0.082 2.955

Reference t-value 95% 1.812

OMBRE

1st sub-exp

Θ1 1 0.654 0.260 0.793**
Θ2 1 0.586 0.678 0.272**
Θ3 1 0.388 0.565 0.216**
Θ4 1 0.312 0.920 0.107**

Reference t-value 95% 2.354

2nd sub-exp

Θ1 1 1.019 0.185 2.478
Θ2 1 1.657 0.560 1.327**
Θ3 1 1.586 0.848 0.840**
Θ4 1 1.067 0.073 3.352

Reference t-value 95% 1.812

IDRO

1st sub-exp

Θ1 1 1.059 0.116 2.873
Θ2 1 1.339 0.582 0.723**
Θ3 1 1.436 0.522 0.865**
Θ4 1 1.044 0.256 1.282**

Reference t-value 95% 2.354

2nd sub-exp

Θ1 1 1.106 0.055 9.035
Θ2 1 1.034 0.170 2.736
Θ3 1 1.247 0.169 3.322
Θ4 1 1.082 0.073 6.625

Reference t-value 95% 1.812

to increase the reliability of the design task; a specific advantage over the conventional

design techniques for improving parameter estimation is given by the fact that information

is exploited during the experimental run; moreover, with respect to online redesign techniques

(such as OMBRE), the great improvement consists in treating the design in a robust way by

optimizing both the redesign structure and the available information in a synergistic way.

Two distinct simulated case studies have been used to assess the effectiveness of the new

technique and compare it with conventional redesign approaches: one relates to a bioreactor

system, while the other one to a physiological system describing the effect of insulin on

patients suffering from diabetes; results of both case studies show the higher efficiency of

the proposed technique to exploit the information coming from the running experiment in

an info-driven way. Although the computational burden is still very demanding, much of

the effort is required during the first calculation only, i.e. before starting the experiment.

Furthermore, more tailored optimization methods and the usage of parallel computing

(especially for stochastic simulations) could improve the algorithm efficiency drastically.



Appendix B

Meteorological data profiles

The weather data extracted from the European Centre for Medium-Range Weather Forecast

(ECMWF) website were: the air temperature Ta, the sky cloudiness CC, the relative

humidity RH, the wind velocity vw and the rain volumetric flux vr. Figures B.1, B.2, B.3

and B.4 represent, respectively, the meteorologic data used to simulate summer (June-July),

winter and spring 2012.
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(a) June: Air temperature (b) June: Cloudiness

(c) June: Relative humidity (d) June: Wind velocity

(e) June: Rain velocity

Figure B.1: Meteorological data: Summer case-June (The background is colored in white at
daytime and in grey at nighttime.)
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(a) July: Air temperature (b) July: Cloudiness

(c) July: Relative humidity (d) July: Wind velocity

(e) July: Rain velocity

Figure B.2: Meteorological data: Summer case-July (The background is colored in white at daytime
and in grey at nighttime.)
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(a) Winter: Air temperature (b) Winter: Cloudiness

(c) Winter: Relative humidity (d) Winter: Wind velocity

(e) Winter: Rain velocity

Figure B.3: Meteorological data: Winter case (The background is colored in white at daytime and
in grey at nighttime.)
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(a) Spring: Air temperature (b) Spring: Cloudiness

(c) Spring: Relative humidity (d) Spring: Wind velocity

(e) Spring: Rain velocity

Figure B.4: Meteorological data: Spring case (The background is colored in white at daytime and
in grey at nighttime.)
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