UNIVERSITA
DEGLI STUDI
DI PADOVA

Sede Amministrativa: UNIVERSITA DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

CORSO DI DOTTORATO DI RICERCA IN: INGEGNERIA INDUSTRIALE
CURRICULUM: INGEGNERIA CHIMICA, DEI MATERIALI E MECCANICA
CICLO: XXIX

AN INVESTIGATION ON MICROALGAE GROWTH AT
DIFFERENT SCALES: FROM PHOTOSYNTHETIC
MECHANISMS MODELLING TO OPERATION
OPTIMISATION IN OPEN POND CULTIVATION
SYSTEMS.

DIRETTORE DELLA ScUOLA: CH.MO PRrRoOF. PaAoLo COLOMBO
COORDINATORE D’INDIRIZZO: CH.MO PROF. GIOVANNI MENEGHETTI
SUPERVISORE : CH.MO PROF. FABRIZIO BEzzO

DOTTORANDO: RICCARDO DE LUCA






Foreword

The research project presented in this Thesis has involved the financial and intellectual
support of many people, to whom the author is most grateful. The research activity reported
in the Thesis has been mainly developed at the Department of Industrial Engineering of the
University of Padova (DII), under the supervision of Prof. Fabrizio Bezzo. Part of the work
has been also carried out at INRIA-Biocore, Sophia Antipolis (FR), under the supervision
of Prof. Olivier Bernard. The realisation of this study has been made possible thanks to the
financial support of ‘VII UE Program IDEAS-ERC 2012’ for the project ‘Biotechnological
optimization of light use efficiency in algae photobioreactors’. The full list of publications

and presentations made during the PhD period is reported below.

Articles published in international journals

Galvanin F., R. De-Luca, G. Ferrentino, M. Barolo, S. Spilimbergo, F. Bezzo (2014).
Bacterial inactivation on solid food matrices through supercritical CO2: a correlative study.
J. Food Eng., 120:146-157;

De-Luca R., F. Galvanin, F. Bezzo. (2016). A methodology for direct exploitation of
available information in the online model-based redesign of experiments. Comput. Chem
Eng., 91:195-205;

De-Luca R., Q. Béchet, F. Bezzo, O. Bernard (2016). Optimal management of raceways
using weather forecasts. IFAC-PapersOnLine, 49(7):1062-1067.

Articles accepted in international journals

De-Luca R., F. Bezzo, Q. Béchet, O. Bernard (2017). Exploiting meteorological forecasts
for the optimal operation of algal ponds. In: Journal of Process Control.  doi:
10.1016/j.jprocont.2017.03.010

Articles submitted in international journals

De-Luca R., F. Bezzo, Q. Béchet, O. Bernard (2017). Meteorological data-based optimal

control strategy for microalgae cultivation in open pond systems. In: Bioresource Technology.

il



iv Foreword

Conference proceedings

Ferrari, M., L. Bosa, R. De-Luca, M. Barolo, C. F. Zambon, V. Pengo, R. Padrini, F.
Bezzo (2016). A pharmacokinetic-pharmacodynamic model for individualisation of an oral
anticoagulation therapy. In: Computer-Aided Chemical Engineering 38, 26th European
Symposium on Computer Aided Process Engineering (Z. Kravanja and M. Bogataj, Ed.),
FElsevier, Amsterdam (The Netherlands), 2313-2318.

Oral presentations

De-Luca, R., F. Galvanin, F. Bezzo (2015). A framework for direct exploitation of available
information in the online model-based redesign of experiments. In: 12th International
Symposium on Process Systems Engineering and 25th European Symposium in Computer
Aided Process Engineering. (31 May - 4 June 2015, Copenhagen, Denmark);

De-Luca, R., Q. Béchet, O. Bernard, F. Bezzo (2016). Optimal management of raceways
using meteorological forecasts. In: 11th IFAC Symposium on Dynamics and Control of
Process Systems. (06 June - 08 June 2016, Trondheim, Norway);

De-Luca, R., Q. Béchet, O. Bernard, F. Bezzo (2016). Utilizzo di dati meteorologici per
'ottimizzazione di microalghe in sistemi open pond. In: GRICU 2016 (Chemical Engineering
for sustainable production of energy and fne chemicals). (12 September - 17 September 2016,
Anacapri, Italy).



Abstract

Microalgae processing represents one of the most promising new technologies for sustainable
production of a wide range of commodities and value-added products, including cosmetics,
pharmaceuticals and nutraceuticals. Morevoer, at a larger time horizon, microalgae are
expected to contribute for fossil carbon replacement with renewable carbon, especially for
supplying green chemicals and liquid biofuel in the transport sector. Nevertheless, much
research is still needed in order to make this potential new energy source a practically
and economically feasible technology, since all the existing technological assessments are
based on specific assumptions or gross estimates of productivity, derived by extrapolation of
laboratory-scale data.

The development of reliable mathematical models predicting both the behavior of
large-scale outdoor microalgae culture and the underlying multiple time-scale biophysical
and chemical processes is therefore necessary. These models are valuable tools to support
both system design and operation optimization, with consequent potential increase of the
process profitability. This Thesis aims at investigating the complex behavior of microalgae
growth by following two main approaches.

The first objective was to extend an existing growth model of marine water alga
Nannochloropsis Salina describing photosynthetic efficiency through chlorophyll fluorescence
dynamics.  This micro-scale model integrates photoproduction, photoregulation and
photoinhibition processes in a semi-mechanistic way, but it is limited to the description of the
most significant photosystem (PSII). The proposed model extension aims at describing the
complete electron transport, together with the dynamics of each protein complex involved
in the photosynthetic process, through absorbance data-based calibration/validation. The
results show that the calibrated model is capable of accurate quantitative predictions of the
photosynthetic transport chain paths under a wide range of transient light conditions.

The second contribution objective was to develop a macro-scale model for Chlorella
Vulgaris cultivation in open pond systems by coupling existing growth/temperature
sub-models with real meteorological data. The utilization of this dynamic model will
underline the benefits of model building activities on practical process optimization, since
a reduced set of ‘rules of thumb’ was extracted by different simulations done at different
weather conditions. The proposed optimization strategy significantly increased productivity
compared to standard operation at constant dilution rate and pond depth, by up to a factor

2.2. Furthermore, a deeper insight into optimal operation in case of inaccurate forecasts has
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been developed and discussed. The different strategies proposed can guarantee both high
productivity and feasible operation in case of inaccurate weather forecasts. The resulting
control strategies, despite the high amount of water required, can prevent culture death

conditions due to unpredicted high temperatures.



Riassunto

L’incremento dell’instabilita dei prezzi petroliferi, la volonta di incentivare 1'utilizzo di risorse
rinnovabili e la necessita di affrontare problematiche relative al riscaldamento globale sono
alcuni dei motivi che hanno incrementato lo sforzo della comunita scientifica al fine di
utilizzare le microalghe a scopo energetico. Queste ultime, infatti, presentano un’alta velocita
di crescita e sono in grado di contenere ricche quantia di olio; oltre a questo possono essere
coltivate in zone dedicate, riducendo 1'utilizzo dei terreni per unita di biomassa prodotta,
possono essere utilizzate per mitigare 'impatto ambientale dovuto a emissioni di COs
(essendo questa fissata dalle cellule durante il processo fotosintetico) e, necessitando dei
nutrienti presenti in acque reflue inquinate, possono essere utilizzate anche a fini depurativi.

Nonostante vi sia un alto potenziale teorico per 1'utilizzo di microalghe come materia
prima per la produzione di biocarburanti e prodotti ad alto valore aggiunto (generalmente
destinati al settore cosmetico, farmacologico e nutraceutico), la produzione su larga scala
risulta attualmente non competitiva in termini economici. Le previsioni piu ottimistiche,
infatti, sono basate su estrapolazioni di dati ottenuti in laboratorio in condizioni controllate,
che risultano notevolmente differenti da quelle che si verificano su larga scala. Oltre a questo,
le valutazioni tecno-economiche basate su estrapolazioni di dati di laboratorio dipendono
fortemente dalla metodologia applicata. La disponibilita di modelli meccanicistici in grado
di prevedere il comportamento delle colture microalgali in sistemi di coltivazione industriali
risulta quindi di primaria importanza per progettare, simulare e ottimizzare i processi di
produzione.

Il primo obiettivo di questa Tesi ¢ stato quello di estendere un modello di microscala
in grado di desrivere la crescita della microalga marina Nannochloropsis Salina tramite la
rappresentazione dei meccanismi di fluorescenza causati dall’attivita fotosintetica. Questo
modello semi-meccanicistico descrive i meccanismi di fotoproduzione, fotoregolazione e
fotoinibizione attraverso la rappresentazione della dinamica del fotosistema (PSIT), complesso
proteico coinvolto nel processo fotosintetico. Il lavoro presentato in questa Tesi consiste
nell’estensione del suddetto modello tramite la descrizione dell’intero processo di trasporto
elettronico a livello della membrana tilacoidale e delle dinamiche di ossidoriduzione dei
complessi proteici coinvolti nel processo fotosintetico. I modello e stato calibrato e validato
grazie a dati di assorbanza ricavati tramite spettrometro di tipo Joliot. I risultati ottenuti
dimostrano come il modello sia in grado fornire previsioni quantitative accurate del trasporto

fotosintetico per una vasta gamma di condizioni di luce.
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Il secondo obiettivo e stato quello di sviluppare un modello di macroscala basato
su previsioni meteorologiche per la coltivazione di Chlorella Vulgaris in sistemi a vasca
aperta. L’utilizzo di questo modello dinamico sottolinera i benefici derivanti dall’attivita
di modellazione ai fini dell’ottimizzazione di processo. Infatti la strategia di ottimizzazione
proposta permettera di ottenere un significativo aumento di produttivita (fino a un fattore
2.2 per le stagioni piu calde e soleggiate) rispetto a quanto puo essere ottenuto applicando le
tradizionali strategie di coltivazione (a tempo di permanenza e volume costante). L’attivita
di ricerca ha inoltre individuato e paragonato differenti strategie di controllo che permettono
di garantire la fattibilita del processo nel caso in cui i dati meteorologici non risultino accurati.
Gli approcci studiati permettono di evitare condizioni critiche a seguito di ottimizzazioni
basate su previsioni meteorologici inaccurati, richiedendo un maggiore consumo d’acqua per

la regolazione del sistema, ma riuscendo in tal modo a garantire elevati valori di produttivita.

Il lavoro di Tesi e organizzato secondo il seguente schema concettuale.

Nel Capitolo 1 viene introdotta una panoramica riguardante I'attuale utilizzo di microlalghe
come risorsa rinnovabile e una breve descrizione relativa agli attuali processi di coltivazione;
succcessivamente vengono illustrati i principali approcci modellistici usati per descrivere
i meccanismi di crescita delle microalghe. Nella parte finale del capitolo si andranno a
evidenziare gli obiettivi di ricerca di questo lavoro di Tesi.

Il Capitolo 2 presenta un’estensione del modello semi-meccanicistico proposto da Bernardi
et al. (2016). Questo modello a stati descrive i principali processi biologici che agiscono
sul fotosistema PSII presente nei cloroplasti delle microalghe: tali processi ricoprono scale
temporali che vanno dai millisecondi (fenomeni di fotoproduzione) a minuti/ore/giorni
(Non-Photochemical Quenching, fotoinibizione, fotoacclimatazione). Il modello & stato
sviluppato e convalidato utilizzando esperimenti di flourescenza. L’estensione del modello
proposta in questo lavoro di Tesi mira a descrivere le dinamiche dei fondamentali complessi
proteici coinvolti nella catena di trasporto elettronico facendo uso di dati assorbanza della
luce ottenuti tramite spettrometro di tipo Joliot (JTS-10).

Il Capitolo 3 presenta la descrizione dettagliata di un nuovo modello dinamico proposto
per descrivere la produttivita microalgale in vasche aperte; questo modello ¢ il risultato
della combinazione di modelli esistenti in grado di prevedere sia I'impatto della temperatura
sul sistema di coltivazione (e sui parametri di crescita del ceppo algale coltivato) sia
I'impatto della distribuzione della luce sulla crescita delle microalghe. Inoltre, la variabilita
delle condizioni climatiche a cui avviene la fase di coltivazione e rappresentata attraverso
I'implementazione di previsioni meteorologiche reali. Il modello proposto ¢ stato utilizzato
per svolgere differenti attivita di ottimizzazione al fine di verificare i vantaggi derivati dalla
manipolazione continua dei flussi in ingresso e in uscita dal reattore rispetto alle tradizionali
modalita di controllo della vasca.

Nel Capitolo 4 viene fornita un’analisa dettagliata delle strategie di ottimizzazione ottenute
per diverse stagioni dell’anno, derivando un numero ridotto di ‘rules of thumb’ utilizzabili

in future applicazioni pratiche. L’analisi e stata condotta sia per il caso ideale in cui si
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assume di avere a disposizione dati meteorologici perfetti, sia per il caso reale in cui i dati
meteorologici risultano affetti da incertezza.

Il Capitolo 5 presenta uno studio di fattibilita condotto al fine di prevenire la perdita di
produttivita che puo derivare da ottimizzazioni basate su previsioni meteorologiche non
accurate. Infatti, 'eventuale strategia di controllo ottenuta tramite ottimizzazione con
dati inaccurati puo portare al raggiungimento di condizioni critiche per la crescita (e.g.
temperature del sistema di coltivazione eccessivamente alte con conseguente rischio di morte
cellulare). Sono stati quindi proposti due differenti approcci di ottimizzazione al fine di
garantire la fattibilita della coltivazione anche in assenza di dati precisi. I due metodi
verranno infine confrontati in termini di produttivita, fabbisogno idrico e relativi costi di
processo. Il Capitolo 6 riassume i principali risultati raggiunti in questo lavoro di Tesi e
propone alcuni suggerimenti per futuri lavori di ricerca.

In Appendice A viene discusso un metodo alternativo di progettazione sperimentale basata
su modello (MBDoE). L’approccio proposto ¢ fondato sul concetto di riprogettazione
sperimentale online al fine di sfruttare I'aumento progressivo dell’informazione derivante
dall’esecuzione dell’esperimento stesso. L’efficacia di questa tecnica, proposta in particolare
per casi ad alto mismatch parametrico, dimostrata tramite due casi studio non strettamente
inerenti all’argomento della Tesi. Tuttavia, si riportano i risultati ottenuti a causa del loro

potenziale per attivita future di calibrazione/validazione di modelli di crescita microalgale.
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Chapter 1
Introduction

Microalgae processes have emerged during the last decade as one of the most promising
new technologies for providing innovative molecules for the cosmetic and pharmaceutical
industry, and as a source of proteins for animal and human nutrition (Mata et al. (2010);
Skjanes et al. (2013)). At a larger time horizon, microalgae are expected to contribute for
fossil carbon replacement with renewable carbon, especially for supplying green chemistry
and liquid biofuel in the transport sector (Foley et al. (2011b)). The great interest in this
technology is not only related to the substantial higher productivity compared to terrestrial
plants (Chisti (2007)), but also to the possibility of coupling the microalgal production
process to industrial COy mitigation and wastewater treatments to finally recycle carbon,
nitrogen and phosphorus. Nevertheless, much research is still needed in order to make this
potential new energy source a real feasible technology, since all the existing techno-economic
assessments (Wigmosta et al., 2011; Yang et al., 2011; Moody et al., 2014) were limited by

uncertainties regarding the biomass productivity that can actually be reached at full-scale.

In fact, while few assessments based productivity assumptions on model predictions, most
of the existing studies used experimental data collected either indoors or at certain time of
the year to extrapolate outdoor algal yields over an entire year of cultivation, then leading to
significant differences in assessment conclusions regarding the sustainability of full-scale algal
cultivation. A better understanding of the multiple time-scale underlying biophysical and
chemical processes is therefore necessary: firstly, an accurate description of solar irradiance,
temperature and nutrients mutual interaction and impact on microalgae growth is required.
Secondly, a complex analysis of the cultivation system design and management is needed,
by taking into account macroscale phenomena, such as macro-mixing for optimal nutrients
uptake, light distribution optimization, external effects on culture medium (evaporation,

contamination,..).

The work presented in this Thesis aims at investigating microalge growth behavior at two
different scales: firstly, the ‘first-principles’ state model of Bernardi et al. (2016), describing
microalge photosynthetic mechanisms, was extended by implementing the electron transport

chain process. Then, the productivity optimization of an open pond system through
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meteorological data was investigated at different seasons, in order to both understand the
system behavior and propose a reduced set of practical guidelines for future operation.
Finally, different approaches to cope with wrong system control manipulation caused by
inaccurate weather forecasts were proposed and discussed. The main objective of this
Chapter is to present the aim of the Thesis research activity. First, a general overview of the
energy situation is presented to discuss of the state of the art in microalgae-based processes;
then, a focus on microalgae as renewable energy sources is discussed together with the main
production process alternatives. Next, a focus on the cultivation phase is presented, with a
brief comment on the advantages and drawbacks associated to current cultivation systems.
Finally, a literature review of microalgae dynamics modelling is assessed. The motivation of

the work and a scheme of the Thesis structure will conclude this Chapter.

1.1 Towards sustainable energy and chemicals production

Energy usage has been considered one of the most important and ongoing issues of
the modern time: the continuously growing enhanced living standards of developed
countries (Organisation for Economic Co-operation and Development (OECD)) and the
rapid population growth (Roser and Ortiz-Ospina (2017)), especially in non-OECD realities
(such as India, China, sub-Saharian Africa and Middle East countries), result in a rapid rise

in global energy demand. In order to fulfill the global energy requirements (13699 Mtoe in

Table 1.1: Actual and predicted annual energy consumption (in quadrillion BTU) world-wide by
geographic area. Data collected from EIA (2016) website.

Avg. Annual Percent

Region yr 2016 yr 2025 yr 2040 Change (yr 2012 - yr 2040)
OECD 246.7 260.6 282.1 0.6%
Asia 201.1 246.4 279.9 2.2% (India + 3.2%)
Africa 23.3 30.0 44.0 2.6%
Non-OECD Middle East 35.2 45.4 61.8 2.4%
Central and South America 31.0 36.7 47.3 1.5%

2014, according to IEA (2016)), consumption of fossil fuels has increased; in particular the
world demand of crude oil, coal and natural gas accounted for 81.1% of total energy demand
in 2014 (31.3%, 28.6% and 21.2%, respectively, see Fig.1.1). Table 1.1 shows that global
energy demand is predicted to grow at two different rates: at a lower average annual change
(0.6%) for already developed countries and at a rapid average speed in emerging Asiatic and
African countries (with a maximum peak of 3.2% for India). This dramatic trend towards

an ever increasing energy consumption triggers different questions about our near future:

e Finiteness of fossil resources. Fossil fuel reserves are likely to be rapidly depleted;
Shafiee and Topal (2009) proposed a modified version of Klass (1998) model describing
fossil fuels consumption and concluded that fossil fuel reserves depletion for oil, coal

and natural gas is, respectively, 35, 107 and 37 years, starting from 2005. In other
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words, according to this prediction, coal reserves will be available up to 2112, and
will be the only fossil fuel remaining after 2042. More pessimistic predictions for coal
depletion were given by Mohr et al. (2015): in this work different scenarios at different
risk probability were simulated for four countries (China, USA, Canada and Australia)
with a final estimation of coal production peak before 2025 due to China industrial
production. Focusing on crude oil production, Nashawi et al. (2009) stated that, on the
basis of 2005 world crude oil production and recovery techniques, the world oil reserves
will be depleted at an annual rate of 2.1%. This is due to the fact that oil demand
has increased in the past few years because of the rapid growth in the transportation
sector, in addition to the absence of viable economic alternatives for fossil fuel. Even
though different forecasting assessments on fossil fuels depletion are given in literature,
many experts agree that fossil resources supply cannot satisfy the growing demand of

energy by itself.
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Figure 1.1: World primary energy assessment (IEA (2016))

e Climate Changes.

In order to maintain the thermodynamic balance of the Earth at an equilibrium
temperature, the amount of energy absorbed as solar radiation should be kept equal to
the amount of energy emitted back into space at infrared wavelenghts (Guerrero-Lemus
and Martinez-Duart (2013)). Nevertheless, the so-called greenhouse gases (GHG,
mainly CO,, CH; and NO,, accounting for 73.5%, 19.0% and 5.9% of the total
GHG emissions, respectively, see EIA (2016)) in the atmosphere absorb and re-emit
infrared radiation, hence warming up the lower atmosphere and the Earth’s surface
with negative consequences for life and environmental protection (Pann, 2011). The
increasing use of fossil fuels (especially due to industry (29.1%), building (18.3%) and
transport sector (14.5%) demand, see Fig.1.2) has been the main responsible of the
continuous increase of GHG emissions (51840 MtCOqeq in 2016). A lot of policies
have been recently developed in order to cope with climate change issues; one of the
most recent examples in Europe is The Paris Agreement, which entered into force on

4 November 2016 to set a major step forward in the fight against global warming. The
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main target consists of holding the increase in the global average temperature to well
below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature
increase to 1.5 °C above pre-industrial levels. Yet, meeting such ambitious climate
goals will be extremely challenging and would require a step change in the pace
of decarbonisation and efficiency. Despite Paris Agreement theoretical targets, IEA
(2016) reports that implementing current international pledges will only slow down
the projected rise in energy-related carbon emissions from an average of 650 million
tonnes per year since 2000 to around 150 million tonnes per year in 2040. A lot
of technical assessment were done in order to test the practical feasibility of Paris
Agreement topics: as an example, Meinshausen et al. (2009) made a comprehensive
probabilistic analysis aimed at quantifying GHG emission budgets for the 2000-2050
period that would limit warming throughout the twenty-first century to below 2 °C,
based on a combination of published distributions of climate system properties and
observational constraints. According to their results, the probability of exceeding 2 °C
would be within 53-87% if global GHG emissions are still more than 25% above 2000
levels in 2020. Unfortunately, despite the pledges made for the Paris Agreement on
climate change, the era of fossil fuels appears far from over (natural gas continues to
expand its role, while the shares of coal and oil fall back) and underscores the challenge
of reaching more ambitious climate goals. The path to 2 °C is tough (IEA, 2016), and
it can be achieved only if policies to accelerate further low carbon technologies and

energy efficiency are put in place across all sectors.

e Risk to living creatures on the Earth. Climate change has produced numerous
shifts in the distributions and abundances of animal species over the past 30 years.
Thomas et al. (2004) assessed the extinction risk for sample regions covering 20% of
the Earth’s surface and predict, on the basis of mid-range climate-warming scenarios
for 2050, that 15-37% of species will be ‘committed to extinction’. These estimates
show the importance of rapid implementation of technologies to decrease greenhouse

gas emissions and strategies for carbon sequestration.

In order to keep the Earth safe and to counter the environmental/economical threats,
sustainable and pollutant-free technologies have been introduced, known as renewable
sources. Renewable energies (i.e. solar energy, wind energy, geothermal energy, biomass
energy, biofuels,..) can reduce the planet thermal imbalance, limiting greenhouse gases
increase in the atmosphere. Currently, the above cited renewable energy sources supply
about 13.8% of total world energy demand (IEA, 2016); moreover, new emerging renewable
technologies are under investigation, such as marine energy, concentrated solar photovoltaic
(CSP) and enhanced geothermal energy (EGE) (Hussain et al., 2017). Renewables had an
impressive development worldwide, with highest growth of solar photovoltaic (42% annual
growth over the last decade) and wind (27% annual growth, see IEA (2016)). In related

terms, the most significant growth was made by the renewable energy use in transport
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section (+223% between 2005 and 2012); the use of biomass-based biofuels has continuously
increased to 106 billion liters worldwide in 2012 (82.6 of ethanol and 23.6 of biodiesel).
The main driver in this field is related to the fact that the transport sector is almost
totally dependent on crude oil (more than 97% of total supplies for this specific sector)
and new technologies must be rapidly developed to cope with crude oil depletion. After
the initial great interest on first/second generation of biofuels, based on traditional crops or
ligno-cellulosic materials, a new third generation of biofuels based on microalgae is now under
investigation, given its potential as a new renewable energy and chemical source. The current
potential of microalge-based biofuels is mainly based on its high theoretical productivity,
if compared to terrestrial plants. Microalgae, in fact, can potentially convert 13% of
total solar light into chemical energy through photosynthesis (Smil, 2008). Nevertheless,
microalgae cultivation in artificial systems dramatically reduces the actual light-to-energy
conversion to 1%-3%, depending on the chosen cultivation system (Norsker et al., 2011).
Further process understanding is therefore required to quantify the key variables affecting
growth and metabolic mechanisms, in order to improve the current process efficiency. Recent
scientific breakthroughs should be mentioned about fourth generation biofuels and the so
called ‘synthetic biology’, enabling direct conversion of solar energy to fuels from sun light,
water and CO,. Nonetheless, further maturity of synthetic biology as a technology is required
in order to make biology fully engineerable and production systems economically viable (Aro,
2016). For this reason, the work presented in this Thesis deals with third generation biofuels.
In fact, microalgae processing currently represents one of the most promising technologies
for both sustainable production of a wide range of high values products and biofuels in the

transport sector.

1.2 Renewable energy sources: microalgae

Microalgae are microscopic, unicellular/multicellular prokaryotic/eukaryotic photosynthetic
organisms that can produce biomass and oxygen by using sunlight as energy source, CO,
as carbon source and inorganic salts as nutrients. They can guarantee higher growth and
photosynthetic rates with respect to other plants, for their all-year production capability
(Kiran et al., 2014). Furthermore, they can grow under extreme environmental conditions,
low nutritional and water requirements and without herbicides or pesticides. Among the
different cultivation technologies for bulk production of microalgae biomass, phototrophic
cultivation is currently one of the most investigated ones for large scale microalgae biomass
production; it means that the key fundamental process responsible of microalgae-based
chemical energy generation is photosynthesis.

The photosynthetic process (Eberhard et al. (2008); Antal et al. (2013)) is commonly
split into two main phases: the first one is the light-induced electron transport chain for
adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH)

generation. In this phase oxygen is produced through water splitting as a side product
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(see Fig.1.3). ATP and NADPH energy carriers are used in a second stage, independent
of light, during which the energy stored in the ATP and NADPH molecules is used to
fix COy and product sugars or other molecules. In microalgae the light-dependent phase
occurs in the thylakoids membrane, a phospholipidic membrane that separates two zones
called lumen (the inner region) and stroma (the outer one). Two main complex proteins
(LHCII and LHCI), binding the bulk of chlorophyll and carotenoids of the entire cell, are
responsible of light capturing, harvesting and excess energy dissipation in case of excess of
solar irradiation. The light energy captured by LHCII and LHCI is transported, respectively,
to the reaction centres (photosystem II (PSII) and photosystem I (PSI)) via a coordinated
network of pigments. The energy absorbed by LHCII for PSII reaction centre activation is
used to drive the water splitting reaction. This reaction turns water into electrons, protons,
and oxygen. The electrons are transported along the membrane by a series of electron carriers
(plastoquinone (PQ), cytochrome b6f complex (Cytb6f), plastocyanine (Pc), ferrodoxin (Fd)
and PSI), following the so-called linear electron flow (LEF). The final acceptor is generally
the NADP* molecule, which is converted in NADPH, an energetic molecule used in the dark
phase of photosynthesis. At the same time, a proton flux is built between stroma and lumen
thanks to PQ oxidation, with a consequent acidification of the lumen. The proton gradient
drives the ATP production in the ATP synthase. An alternative electron path is the cyclic
electron flow (CEF), driven by PSI. The cyclic reaction is similar to the linear reaction but
produces only ATP and no NADPH is generated. Furthermore, once the electrons leave PSI
they are passed down through the electron carriers and returns to PSI through a different
path (blue arrow in Fig.1.3). Photosynthetic dark reactions occurs in the stroma region of
thylakoids through a 3-step process referred as Calvin-Benson cycle, which uses ATP and
NADPH generated by the light reactions to fix COs.
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The growth rate and the maximum biomass production of microalgae cultures does not
depend uniquely on light. In fact, microalge culture is also affected by abiotic (temperature,
pH, salinity, oxygen, nutrients, and toxic chemicals), biotic (pathogens and competition by
other algae), and operational (mixing, depth control, harvest frequency, ...) factors (Mata
et al., 2010).

Depending on the species (Medipally et al., 2015), microalgae are capable to
produce varying amounts of lipid, polyunsaturated fatty acid, natural dye, carotenoid,
antioxidant, enzyme polymer, peptide, toxin and sterols (Moreno-Garcia et al.,
2017), with potential applications in different industrial sectors (biofuels, cosmetics,
pharmaceuticals, nutrition and food additives, aquaculture and pollution prevention).
Valuable co-products, such as proteins and pigments, could be obtained from microalgae
through biomass composition modulation by modifying the nutritional requirements/growth
conditions/process technologies (Bona et al., 2014) according to the desired final use (see
Patel et al. (2017)). As you can see in Fig.1.4, culture harvesting (and dewatering) follows the
cultivation phase. The algal biomass is usually harvested through centrifugation, flotation

or filtration techniques. At this step, several process strategies can be adopted, depending
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on the desired final use. For example, ethanol and bioplastics can be obtained with
direct fermentation; if the user is interested in biohydrogen production, algal biomass can
be gasified and converted through a Fischer-Tropsh process. Finally, the biomass could
be used as a direct energy source through direct combustion. If we want to produce

biofuels (through lipids transesterification into methyl esters) or high value compounds
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(such as proteins, pigments, carbohydrates), an additional phase of extraction is required;
the three most common alternatives are the mechanical expeller, the extraction with
solvent (usually hexane) and supercritical COq fluid extraction (Krichnavaruk et al., 2008).
Following a path rather than another requires deep knowledge of the right cultivation and
pretreatment conditions, since high biomass productivity values is often associated to low
lipid/carbohydrates content. It is therefore necessary to gain better understanding of the
trade-offs between lipid and co-products accumulation and productivity (Araya et al., 2014).

Since in this Thesis work we will almost exclusively focus on the cultivation phase of
microalge production process, a brief description of the most common cultivation technologies

is given in the following paragraph.

1.2.1 Microalgae cultivation technologies

If we considered phototrophic cultivation, the most commonly used systems are the so-called

open ponds or the enclosed photobioreactors (PBRs).

e Open Ponds. Open ponds are the oldest (practiced since the '50s, as stated in
Borowitzka (1999)) and simplest cultivation systems used for large scale microalgae
production (covering about 98% of commercial algae production in 2015). The open
pond systems differ in terms of size, shape, building materials, mixing equipment, and
inclination with respect to the ground surface (Borowitzka, 2005). Raceway ponds can
be stirred by a paddle wheel (the most common option, see Jiménez et al. (2003)) or
used as extensive shallow unmixed systems. In any case, open pond systems are the
cheapest technology for large scale cultivation of microalgae compared to close PBRs.
Furthermore, cultivating in open ponds does not compete with agricultural crops for
land (Chisti, 2007), does not require frequent maintenance and cleaning and consume
relatively low energy (Ridolfi et al., 2009). However, there are some drawbacks in
terms of final productivity, such as the strong dependence on highly fluctuating local
conditions (temperature, light intensity, ...) and high probability of contamination

from the air and ground (Belay, 1997).

e Enclosed Photobioreactors (PBRs). PBRs are generally available in the form of
glass, plastic, or other transparent materials tubes, bags, or plates. Some common
PBRs designs include annular, tubular, and flat-panel reactors, with large specific
surfaces (Pulz, 2001). Photobioreactors present many advantages, such as high system
efficiency given by major control over culture conditions (evaporation elimination,
nutrients supply optimization), but their construction, operation, and maintenance
cost is currently higher than open ponds. This problem still limits the cost-effective

production of microalgae biomass on large scale.

Jorquera et al. (2010) recently made a comparative life cycle analysis (LCA) study in order

to compare open ponds, tubular and flat photobioreactors in terms of net energy ratio
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Figure 1.5: Tubular photobioreactor and open pond schematisation. Figures are taken by Jorquera

et al. (2010).

(NER). NER is the ratio between the energy produced by the cultivation system and the
energy required to operate it. The results showed that only raceways ponds and flat PBRs
are economically sustainable, with NER > 1. A more pessimistic evaluation was made by
Richardson et al. (2012); in this work a multi-year, Monte Carlo financial feasibility model
was developed to estimate the costs of production and chance of economic success for large
scale production with different cultivation systems. The financial feasibility analysis showed
that the only way to achieve a 95% probability of economic success in the PBR system was
to reduce CAPEX by 80% or more and OPEX by 90% or more. For the open pond system
there were more options that could return a 95% or greater chance of economic success, for
example, reducing CAPEX by 60% and OPEX by 90%.

The high uncertainty on microalgae cultivation practical feasibility at large scales
requires further technological improvement, together with a deeper and an ever increasing
understanding of the underlying mechanisms of microalgae growth. In this perspective,
microalge growth modelling can be considered a valuable tool to support both system design

and operation optimization, with consequent potential increase of cultivation profitability.

1.3 Microalge growth modelling: a multiscale problem

Microalgae cultivation processes exhibit high complexity due to the interaction of multiple
phenomena that span multiple time scales, ranging from milliseconds to days, and from
nanometers to the hundreds of meters in industrial cultivation plants, involving quantum
phenomena, cell metabolism, turbulence and fluid flow behavior, light diffusion in a
non-transparent medium, mass and energy transport phenomena, interactions with the
equipment design and the external environment. Focusing on the photosynthetic mechanism,
several sub-processes are responsible of the overall productivity: photoproduction, the
collection of all processes from photons utilization to CO, fixation, that occurs in a fraction
of a second; photoinhibition, the observed loss of photosynthetic production due to excess of

light, which acts on time scales of minutes to hours; photorequlation, the set of mechanisms
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by which microalgae protect photosynthetically active components via the dissipation of
excess energy as heat (Non Photochemical Quenching NPQ), that occurs within minutes;
photoacclimation, the ability of microalgae to adjust their pigment content and composition
under fluctuating light and nutrient conditions, acting on time scales of hours to days; and
finally, the mechanisms of nutrient uptake that lasts within hours to days.

Several dynamic models of microalge growth have been developed in the last 60 years
(especially for investigating oceanography, ecology and biotechnology scientific domains),
from the simple description of microalgae growth rate through the hyperbolic function
proposed by Baly (1935) up to the more complex representations. The first developed
models were built to describe microalgae growth in their original environment, to which
the specific strain adapted over billions years of evolution. The model proposed by Riley
(1946), for example, was proposed to describe the population of Georges Bank by considering
both the effect of light (through an exponential function representing the light decrease
along the culture medium depth) and the impact of nutrient on growth. However, the
artificial cultivation systems described in the previous paragraph must be considered as
new sub-optimal systems to which microalge are not naturally adapted. Amongst the
main differences with respect to cultivation in natural habitats we can highlight: (i) the
high biomass concentrations usually required for large-scale production (microalge naturally
grow at very low concentrations), (4i) the artificial administration of macronutrients to avoid
limiting conditions and (74) the cultivation temperature, often fixed at values (specially in
PBRs) that guarantee maximum productivity for the specific strains considered.

Different modelling strategies have been adopted in the last 60 years (Bernard (2011))
to describe microalgae growth: from the first empirical models (see, as an example, the
above mentioned model by Baly (1935), then extended by Vollenweider (1965)) based on
empirical correlations, to the more sophisticated mechanistic representation of the underlying
physical-biological processes through the so-called ‘first-principles’ models. If we focus our
attention on this last class of models, two main categories can be identified: physiological
and state models.

Physiological models aim to describe the dynamics of the most significant sub-processes
involved in both photosynthesis and cell metabolism. The basic idea is to propose an
approximation of the actual mechanisms of mass and energy storage/transport that are
responsible of microalge growth. As an example, Baroukh et al. (2014) recently proposed a
dynamic metabolic modelling framework that handles non-balanced growth conditions and
accumulation of intracellular metabolites. The metabolic network was split into sub-networks
describing spatially close reactions; then each sub-network was reduced to a limited set of
macroscopic reactions with simple kinetics. Finally, an ordinary differential equation system
was obtained to describe substrate consumption, biomass production, products excretion
and accumulation of internal metabolites.

Physiological models are therefore extremely detailed and generally involve a large

amount of variables and parameters, despite recent implementation of advanced techniques
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for model simplification. The identification procedure results extremely difficult, sometimes
impossible, due to the high number of parameters used. For this reason, especially to
describe the main key processes involving nutrient uptake and transport in the cell, simpler
compartmental model structures were adopted in literature. Nutrient uptake models are
usually based on Droop (1968) modelling approach (based on Dugdale (1967) nutrients
uptake description and reformulated by Burmaster (1979)), initially used to represent the
effect of vitamine B, internal quota on the growth rate of phytoplankton and recently
extended to the representation of macronutrients (nitrogen and phosphorus) effects on
microalge growth rate at constant light. This model was adopted in several works;
as an example, Mairet et al. (2011) used a modified Droop model in order to assess
the hysteresis phenomenon in neutral lipid production: in practice, the lipids dynamics
after nitrogen starvation is highly different from the dynamics after nitrogen recovery.
Simplified compartmental models are highly useful to predict significant metabolic paths
without considering unnecessary biological details for macroscale production. Furthermore,
the simpler the model, the simpler the coupling with other models (light distribution,

temperature,...) will be in terms of final identifiability.

In parallel to nutrient compartmental models, several kinetics models of photosynthesis
have been proposed to describe the impact of light on growth. The effect of light on
microalge is complex: in fact, as described at the beginning of this section, light irradiance
is not only responsible of triggering CO, fixation through photosynthesis, but can also drive
photoinhibitory phenomena. In particular, the excess of incoming light can be responsible for
the production of reactive oxygen species (ROS) that damage D1 proteins, hence hindering
the energetic efficiency of the photosynthetic process. Moreover, microalgae have evolved by
developing a complex regulatory systems to protect themselves via heat dissipation of excess
incoming energy. This is the above mentioned NPQ, whose dynamics is conventionally split
into three components: the most rapid component (qE), depending on pH gradients between
stroma and lumen and on xantophyll protein synthesis; the second component (qT), relaxing
within minutes, associated to LHCIT uncoupling from PSII (‘state transition’); the slow third
component (ql) related to photoinhibition-driven mechanisms (Miiller et al. (2001)). The
great complexity in describing microalgae behavior at variable light intensities has recently
increased the interest on mechanistic models development, in particular on the so-called

‘state-models’.

State models (Steele (1962), Peeters and Eilers (1978), Platt et al. (1980), Han (2002)) are
based on the concept of PSU unit, which consists of the antenna complex and the associated
reaction center, together with the stoichiometric apparatus that is activated by a specific
amount of light to produce a given amount of NADPH. The name ‘state model’ was coined to
reflect that PSUs can be in different states of excitation (open, closed and light-damaged).
Wu and Merchuck (2001) model, as an example, is based on Peeters and Eilers (1978)
assumption that only the closed centers can be damaged by light in excess; then, the

damaged PSUs centers can be directly recovered to open state through a first-order kinetics.
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Conversely, Nikolau et al. (2015) changed the model structure (as proposed by Han (2002))
assuming that the damaged PSUs centers are first recovered to the closed state through a
first-order kinetics and then to the open state with a fast reaction. Another approach was
tested by Bernardi et al. (2014); in this work the model proposed by Camacho-Rubio et al.
(2003), based on the assumption that photoinhibition affects both open and closed PSUs,
was simplified and modified through the implementation of photoregulation mechanisms. An
interesting contribution was proposed by Papadakis et al. (2012), who described the cyclic
transport through the introduction of a fourth state.

In the past decade several models have also been proposed to include another key
regulatory mechanism, photoacclimation. This mechanism accounts for the response of
microalgal pigment/protein density to both light intensity and limiting nutrients and acts
on a timescale of days to weeks. In practice, it consists on the cell capacity to reduce its
pigment content in case of exposition at high light irradiances. Geider et al. (1998) were
the first to propose a simple photoacclimation representation introducing chlorophyll as
model variable (in addition to microalgal carbon and nitrogen) and integrating the known
response of photosynthesis to both light and nitrogen status in the cell. An important
contribution was given by Flynn (1991) with a growth model considering the light effects
on growth, photoacclimation phenomena and also the growth dependence on temperature.
Other models have been proposed for photoacclimation description (Zonneveld (1998) and
Pahlow (2005)) by implementing more complex details on the fundamental mechanism.
Recently, Garcia-Camacho et al. (2012) proposed a novel model formulation taking into
account the dynamics of photoacclimation, the effect of non-photochemical quenching as
a response to high irradiation, as well as other aspects such as dark respiration. The
model recently proposed by Ebenhoh et al. (2014) for Chlamydomonas recapitulated the
basic fluorescence features of short-term light acclimation (state transitions); furthermore, a
photosynthetic electron transport chain representation was coupled to a heuristic description

of CEF to simulate qE triggering.

Typically, temperatures effects on microalgae growth have been studied following two
main approaches (Béchet et al. (2013)): the first one considers light and temperature as two
independent variables acting on growth (uncoupled approach), whereas the second one aims
at representing the interdependency between the two variables (coupled approach); this last
approach has been used by Duarte (1995), who proposed a state model whose dynamics were
described through Arrhenius-like kinetics. Although coupled models theoretically represent
temperature effects on growth with a detailed description of the underlying mechanisms,
uncoupled models are usually preferred due to the low number of parameters required. As
an example, we cite the uncoupled model proposed by Bernard and Remond (2012) who
introduced the concept of multiplying the parameter representing the growth rate at the
optimal temperature by a temperature-dependent function ¢ bounded between 0 and 1,
being 1 the value assumed at the optimal temperature. This brief model overview showed the

different issues/approaches used in literature to describe the key aspects of microalgae growth
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(light, temperature, nutrients). The majority of the above-cited works aimed at modelling
ideal growth conditions (through lab-scale experimental tests) to focus on the fundamental
bioprocesses involving microalgae growth. Nonetheless, modelling microalgae cultivation at
large scales introduce further complications, such as the description of light and nutrients
distribution along the reactor depth, the representation of heat and mass transfer in the
culture medium, the implementation of fluctuating environmental conditions (in particular
for open systems), the necessity to describe the hydrodynamics/mixing efficiency with fluid
dynamics computation software. For example, Béchet et al. (2011) proposed a universal
temperature model applicable to open pond systems and Ali et al. (2017) recently presented
a novel empirical correlation to estimate the heat transfer in raceway ponds for different
pond sizes and depths. Heat transfer in outdoor raceway ponds was modeled with the
effects of pond design, hydrodynamics, and environmental conditions. Park and Li (2015)
developed a CFD model to show the variability of biomass at different locations within the
system, as well as the light attenuation dependent on depth and cell concentration. Then,
it showed that biomass productivity was significantly affected by changes in the incoming
COs concentration, while the paddlewheel velocity had no significant effect under turbulent
conditions. Another modelling approach was proposed by Solimeno et al. (2015); the aim of
the study was to calibrate a mechanistic model built in COMSOL Multiphysics ™ platform
to describe both photorespiration, photochemical quenching and photoinhibition together
with the influence of temperature, light intensity, pH and nutrients on microlgae growth. In
order to assess the mixing effects in a complex hydrodynamic regime Hartmann et al. (2014)
proposed a model to reconstruct the light profile received by a single cell. It simulated
cells Lagrangian trajectories and the light distribution, hence modelling the light pattern
perceived by a cell. This pattern was finally used with a dynamical model for photosynthesis
in order to estimate the average growth over a set of trajectories.

In conclusion, the available literature offers a huge quantity of models based on several
assumptions on different limiting factors. For this reason, we need to admit that still a lot of
key phenomena related both to photosynthesis/metabolism and to cultivation scaling from

lab conditions to large-scale production have to be assessed.

1.4 Motivation of the work

Microalgae are one of the most promising renewable feedstocks to cope with fossil sources
depletion. Despite their potential, the lack of perfect knowledge about both the fundamental
biomass growth processes and the actual possibility to achieve economically satisfactory
productivity at large-scale currently raises the question of the real effectiveness of this
technology. Mathematical modelling can be of great help to bridge the current gap of
uncertainty on microalge growth behavior. Models are in fact valuable tools to support
both microscale biological processes representation and macroscale cultivation design and

management, with consequent potential increase of cultivation profitability. This Thesis
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aims at exploring some modelling issues considering both a microscopic and macroscopic

perspective. In particular, the following areas have been tackled:

e Microscale modelling. We considered the extension of an existing mathematical state
model validated through growth and fluorescence data. In fact, the current model is
limited to PSII state description. In this Thesis, we proposed a modelling approach
to link PSII dynamics to the whole electron chain transport, in order to describe the

dynamics of all the protein complexes involved in the process.

e Macroscale modelling. Open pond systems are commonly considered less efficient
than PBRs in terms of productivity; nonetheless open pond systems are commonly
operated at constant dilution rates and by maintaining constant pond depth
for all the cultivation duration. A new model, developed by coupling existing
growth /temperature sub-models with real meteorological data, was used to simulate
and optimize an open pond system by acting on independent inflow and outflow rates
manipulation, hence allowing depth variation. The utilization of this dynamic model
will underline the benefits of model building activities on practical process optimization

and control.

In addition to the above, some investigations on MBDoE techniques were conducted.
Biological tests for model calibration/validation are often based on fixed protocols (often
generated by shared experience or literature reviews) with the risk to conduct sub-informative
experimental tasks. In order to cope with this problem, model-based design of experiments
(MBDoE) techniques represent a valuable tool for the rapid assessment and development
of mathematical models at different levels of the model building procedure, in order to
reduce time and costs required for model identification. For this reason, a modified version
of classic MBDoE procedure based on online redesign of experiments was proposed, with
the perspective to be used for long duration experiments on microalge growth. Since the
proposed methodology was not tested directly on microalgae models, it will be discussed in

a separate Appendix.

1.5 Dissertation roadmap

A scheme of the Thesis roadmap is presented in Fig.1.6. It presents the main structure of
the Thesis, split into two macro-regions associated to the two different approaches used to
investigate microalgae growth dynamics.

Chapter 2 presents an extension of the semi-mechanistic model proposed by Bernardi
et al. (2016). This state model describes the main biological processes acting on PSII in
time scales from milliseconds (photoproduction) to minutes/hours/days (photoinhibition,
non-photochemical quenching, photoacclimation). The model was developed and validated
by coupling classical photosynthesis rate samples to fast pulse amplitude modulation (PAM)

flourescence experiments. The extended model aims at describing the dynamics of the key
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protein complexes involved in the electron transport chain through absorbance data.
Chapter 3 presents a detailed description of a new dynamic model describing microalgal
productivity in outdoor open ponds; this model was generated by coupling existing
sub-models predicting temperature fluctuation effects on the cultivation system (and on
growth parameters, too) and the light distribution impact on microalgae growth to real
weather data forecasts. The proposed model has been used to perform different optimization
tasks in order to check the benefits of acting on inlet and outlet flowrates dynamic
manipulation with respect to standard management operation (constant residence time and
depth).

Chapter 4 aims at investigating the optimization strategies proposed at different seasons and
deriving a unique reduced set of ‘rules of thumb’ to be used for future practical application.
The analysis was conducted both assuming perfect weather forecasts and uncertain meteo
data.

Chapter 5 presents a feasibility study to prevent productivity loss and potential critical
conditions caused by wrong control manipulation due to inaccurate weather predictions. Two
different approaches were proposed, compared and discriminated in terms of productivity,
water demand and related process costs.

Chapter 6 summarizes the main achievements reached in this Thesis and proposes some hints
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for future work.

In Appendix A a new online model-based design of experiments technique to exploit
the progressive increase of information resulting from running experiments in case of
high parametric mismatch is discussed. The proposed technique is demonstrated with
two simulated case studies not strictly related to the Thesis topic. Nonetheless, the
results obtained are reported here due to their potential for microalgae growth models

calibration/validation.






Chapter 2

A semi-mechanistic model to describe

photosynthetic electron transport

In this Chapter a dynamic model predicting electron transport in thylakoid membranes
is described in detail. The proposed model is based on the existing model by Bernardi
et al. (2016) that couples PSII dynamics representation with fluorescence fluxes quantitative

description.

2.1 Introduction

Despite microalgae potential as renewable feedstock, one of the main issues to address
is bridging the gap between maximal theoretical productivity and practical biomass
productivity in large scale cultivation systems. To meet this objective, a quantitative
description of key phenomena affecting microalgae growth, such as light utilization, can be
useful to improve our current knowledge for future process optimisation. Several modelling
approaches have been proposed over the recent years, as described in the Introduction of
this Thesis. The focus here is on the so-called state models, frequently used in literature
for their efficiency in describing photosynthetic operation. Nikolau et al. (2015) have
recently proposed a semi-mechanistic model (based on Han (2002) ‘state-model” approach)
to link three distinct processes acting on PSII at different time scales (photoproduction,
photoinhibition and photoregulation (NPQ)) to the respective fluorescence fluxes.

Nikolau et al. (2015) showed how considering chlorophyll-a fluorescence dynamics may
help providing reliable predictions of the photosynthetic response under variable light
conditions, thus allowing for key photosynthetic mechanisms mathematical modelling.

However, this fluorescence model was not able to describe photoregulation adequately
over long-term experiments, thus advocating for a more detailed biological representation.

Recently, Bernardi et al. (2016) have considered the model by Nikolau et al.
(2015) and concluded that photoregulation mechanisms were based on at least two
interdependent processes, hence requiring a more complex representation of NPQ dynamics

and, consequently, more experimental data for model calibration. Bernardi et al. (2016)

19
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proposed MBDoE techniques to provide a systematic approach to determine the different
experimental protocols that would maximise the avaiable information content for model
identification. Eventually, a complete description of the PSII was reached, leading to a

significantly improved description of photosynthetic production at different light irradiances.

In this Chapter, Bernardi et al. (2016) work has been used as a starting point to describe
the photosynthesis-driven electron transport. In section 2.2 a brief description of the model
proposed by Bernardi et al. (2016) is presented; in section 2.3 the proposed model extension
for electron transport description is showed. In section 2.4 the calibration/validation were
presented and discussed, whereas section 2.5 concludes the Chapter and give some hints for

future works.

2.2 The PSII model

The model proposed by Nikolau et al. (2015) and Bernardi et al. (2016) is summarized below.
The dynamics of PSII is described according to Han (2002) modelling approach, which is
based on the assumption of varying photosystem states. In particular, the reaction centers of
PSII can be open (electron free, A), closed (electron charged, B) or inhibited (light damaged,

(). Each photosystem can change its state, according to the following set of equations:

dA 1
—_ = —IUPS]]A + B (21)
dt TPSII
dB
— = IUPSIIA_ B—f—k)ro—k’dO'pS[[]B (22)
dt TPSII
1=A+B+C, (2.3)

where I is the light irradiance (uE m™2 s™1), opgr is the effective cross-section of PSII (m?
pE™Y), Tpsyr is the turnover rate (s), k, is repair rate constant (s™') and &y is the damage rate
constant (-). The effective cross-section opgy; is directly correlated to fluorescence through

the equation:
Utc77P¢fA (2 4)

OpSIT = )
4Nep

where oy, is the total cross-section (m? g;hll), np is the rate of photoproduction related to
the rate of fluorescence (=), ¢4 is the quantum yield of fluorescence of an open reaction
centre of PSIT and N, is the chlorophyll specific number of photosynthetic units (pmolp,
g_v). The number 4 in the denominator is a stoichiometric factor reflecting the minimum
theoretical value of 4 electrons per oxygen molecule produced during water splitting. The

quantum yield of fluorescence ¢;* is given by the following expression:

1

A
_ , 2.5
& L+np+np+ e (2:5)
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Table 2.1: Parameter estimates along with their 95% confidence interval and t-values. The
reference t-value is 1.65. Data extracted by Bernardi et al. (2016). Note that parameter Sy assume
different values for each experimental tasks used for parameter estimation (in this case, 3 set of
experiments have been used.)

Parameter Estimated value 95% conf. int. t-value 95% Units

& 2.68 x 1071 3.50 x 1072 7.67 s~1

&g 1.32x 1073 6.97 x 107 18.88 51
I,k 5.95 x 102 2.07 x 101 28.76 pEm—2s71

kaq 9.95 x 107 2.67 x 1077 3.73 —

k, 5.10 x 1075 2.67 x 1075 1.78 s71
Nt 4.83 x 1071 7.52 x 1072 6.43 pmolo, g
NgE 2.40 x 10° 1.27 x 1071 18.87 —

nr 1.41 x 10! 3.98 x 109 3.54 -
ks 5.96 x 10° 4.98 x 1071 11.95 -
ﬁ%E 1.23 x 10! 5.75 x 107! 21.35 -
e 2.47 x 10 1.69 x 10° 14.58 -
np 1.04 x 10! 2.33 x 1071 44.54 -

e 7.33 x 107! 7.50 x 1072 6.84 m2g )
TPSII 6.95 x 1073 7.50 x 1074 9.26 s
St1 1.81 x 10° 3.01 x 10! 6.82 Vgenm ™2
Sto 2.06 x 10° 3.01 x 107! 6.81 Vgem™?2
St 1.30 x 10° 1.90 x 107! 6.82 Vgem™?2

where 7p is the rate of basal thermal decay related to the rate of fluorescence (—) and 7, is
the rate of energy dependent quenching related to the rate of fluorescence (—). Given that a
first-order process is not enough to describe the photo regulation mechanism in an accurate

way, Bernardi et al. (2016) proposed the following more complex dynamics:

NgE = OéF(ﬁfE + OésﬁqCE) + @Sﬁgm (2.6)

where 775 B ﬁfE and ﬁch represent different rates of NP(Q processes, whereas ar and ag are,
respectively, the fast and slow activities of NPQ, whose dynamics are described through the

following equations:
do F

T {r(ass — ar) (2.7)
% = {s(ass — asg), (2.8)

where £ and £g are the fast and slow time constant for NPQ and agg is the reference steady

state value reached during the light phase, defined as:

["e

. 2.9
I,5"" + I"ar (2.9)

ass =
Parameters I,z and n,g in the above sigmoid function represent, respectively, the irradiance
level at which half of the NPQ is triggered and the sharpness of the switch-like transition.

This model has been calibrated and validated through different kind of experiments on
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Nannochloropsis gatidana (see Bernardi et al. (2016)). Parameter estimation was performed
by using the entity Parameter estimation of gPROMS software (4.1 version), which uses the
Maximum Likelihood method. The list of the estimated values of the model parameters is

reported in Table 2.1. The practical link to measured fluorescence fluxes F; is modelled as:
E = SfO'thzsf, (210)

where Sy is a parameter depending on the characteristics of the PAM fluorometer used and

the chlorophyll content of the sample (V,,, m~?) and ¢; is the total fluorescence quantum

YGehl

yield (—), described with the following expression:

Of = , (2.11)

1
A 4 B 4 _C
¢fA'_F o8 + I

where ¢/ and ¢;% are the quantum yield of fluorescence of closed and inhibited reaction

centres, respectively. According to the definition of ¢;#, these two new variables are defined

as: 1
B—-__ - 2.12
oy [ (2.12)

1
5 (2.13)

Cl4nr+np+ s

where 77 is the rate of inhibition related to the rate of fluorescence (—).

2.3 Electron transport description

The complete photosynthetic electron transport chain for Nannochloropsis gatidana consists
of PSII, PQ, Cytb6f, Cytc6, PSI and Fd (Rochaix (2011)). Light-driven charge separation
events occur at the level of the above-modelled PSII and PSI, thus generating the electron
transport for ATP and NADPH generation. The electron transport is conventionally split
into two main electron fluxes (linear (LEF) and the cyclic (CEF) electron flow, see Eberhard
et al. (2008)). Some authors also introduced the so-called pseudolinear cyclic electron flow,
in order to describe the complex transient behavior of the electron transport chain just
after light activation after long dark periods (Vredenberg and Bulychev (2010)). Despite
the proposal of this new electron transport flow, the proposed extension model is uniquely
based on LEF and CEF description. The proposed model describes the electron transport
by simulating the process represented in Fig. 2.1. As you can see, the final electron acceptor
complex (Fd) is responsible of the choice of the final electron flow path; in fact, electrons can
be either given to final acceptors (not shown in the graph) or re-introduced in the thylakoid
membrane through Cytb6f. The related model is therefore based on the following set of

equations:
dx PQ,1 1

= TpQ2Bnpsir — Qreghpg® PO 1T Cytbe f 2N Cytbs f (2.14)
dt TPSII
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dSCC
ytb6 f,1
T - aregkpquQ,leytbﬁf,QnPQ - kcythytbe,lnyth,lnCytc6+ (2 15)

+ Ayeg kcycmFd,l oyt f 2N Fd

dl’c
ytc6,1
T = kcythytbe,lxC’yth,QnC'ytbe - kcyt$0yt06,1xPSI,2nPSI (216)
drpsr
i = = keytTeyte6,1TPSI 2N Cytes — OPSILTPSI 1T R 2N Fd (2.17)
dxpa,
T = opsilTpsi1Tra2npsr — KeyeTrd (2.18)
Tig+ Tig =1, (2.19)

where each term w; ; refers to the molar fraction of the i-th complex (PQ, Cytb6f, Cytc6,
PSI or Fd) at its j-th redox state (j=1 for reduced states, and j=2 for oxidised states). In
practice, no inhibited state is assumed for the protein complexes except for PSII. In a similar
way, each term n; refers to the molar quantity of the i-th complex. In particular, Eq.2.14
describes PQ redox state dynamics: the first right-hand term represents PQ reduction by
light excited PSIIs, whereas the second right-hand term represents PQ oxidation due to
electron transport to oxidised Cytb6f centers. Then, Eq.2.15 describes Cytb6f dynamics:
the first right-hand term represents Cytb6f reduction by reduced PQs, the second right-hand
term represents Cytb6f oxidation due to electron transport to oxidised Cytc6 centers and
the third right-hand term represents Cytb6f reduction due to cyclic electron flow. Eq.2.3
represents Cytc6 dynamics: the first right-hand term represents Cytc6 reduction by reduced
Cytb6fs and the second right-hand term represents Cytc6 oxidation due to electron transport
to oxidised PSI centers. PSI dynamics is given by Eq.2.17; in this case the first right-hand
term represents PSI reduction by reduced Cytc6 electron carriers and the second right-hand
term represents PSI oxidation due to light-driven transport to Fd. Finally, Eq.2.18 describes
Fd state dynamics: the first right-hand term represents PSI driven reduction of Fd whereas
the second term represents the total electron transport to final acceptors. In other words,
no electron transport between two generic complexes A and B is allowed if B is reduced or A
is oxidised. The link between this model extension and Bernardi et al. (2016) work is given
by the implementation of parameter 7pg;; and B in the model equations. kpg, keyr and keye
are the different electron transport rates between the electron carriers all along the electron
transport chain. The variable a4, introduced to simulate the regulation mechanism used
by the cell to control the electron flux, was modeled through the following equation:

d(1 — oyeg) I

dt = greg(ﬁreg,SS - (1 - areg>>; Breg,SS = nregm; (220)

The proposed formulation is based on the assumption that transport reduction at steady
state (Breg,s5) practically does not depend on light intensity magnitude; the only effect of
light is triggering the regulation mechanism. The parameters 7,., and .., represents the

efficiency and the activation constant of the regulation mechanism, respectively. The a4
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Yo a
1/tpsy

PSII — pq — Cyt bsf

eg koyc (1 'areg )kcyc

0,

Otreg hipg

ket key

cyt c6 — > PSI

Figure 2.1: Model flowsheet. The arrows show the connections (and the related kinetics) between
the protein complexes involved in the electron transport.

coefficient was used to simulate the cyclic electron transport decrease after actinic light

activation. In this Thesis work two different hypothesis were considered and compared:

o First case-With Acidification. The electron transport between PQ and Cytb6f at light
conditions is gradually reduced due to lumen acidification caused by cyclic electron
transport high rates (see Tikhonov and Vershubskii (2014)). The coefficient o, was
then used to simulate both cyclic electron transport decrease after the initial transient

and the linear electron transport reduction due to lumen acidification.

e Second case- Without Acidification. The electron transport between PQ and Cytb6f at
light conditions is unaffected by lumen acidification (in mathematical terms, the oy,

coefficient in Eq.2.14 is removed).

The following assumptions were used for both the two case studies: (i) the electron
transport between two complexes only takes place where the two complexes have opposite
redox state; as an example, reduced PQ complexes can react uniquely with oxidised Cytb6f
complexes. This behavior has been highlighted in the previous equations by coloring the
subscripts of each protein complex fraction in a different way (red for oxidised complexes
and blue for reduced ones); (ii) Cytc6 was assumed to be non-zero at the beginning of the
light phase. This behavior could be explained by considering that at the end of any light
treatment, the excess of electrons is blocked just before PSI (since no oxidation takes place
at dark conditions); (7ii) we assumed the following stoichiometry for the quantity of each

complex involved in the electron flow:
e nps; was set equal to 1 mol;
e nps; = 1.5 npgrr (Falkowski and Raven (2007));

e npo = 30 npgr (Falkowski and Raven (2007));



Chapter 2 25

e noywer = 1.5 npgyr (Falkowski and Raven (2007)).

The values of ncytcﬁ/npg]], TLfd/’flpS[[, UPSII/UPSI have been estimated due to the low

information on these parameters in the literature.

2.4 Results and discussion

In the following sub-paragraphs the calibration and validation tasks are defined and
discussed; it should be noted that the model parameters of Bernardi et al. (2016) model
are kept constant to the original values reported in Table 2.1. The parameters considered in

the following are therefore uniquely related to the model extension proposed in this study.

2.4.1 Model calibration

The microalgae strain Nannochloropsis gaditana (CCAP, strain 849/5) was grown in a sterile,
filtered F/2 medium, using sea salts (32 gL.™!) from Sigma, 40 mMTris HCI, pH 8 and Sigma
Guillard’s (F/2) marine water enrichment solution. Growth experiments were performed in
the multi-cultivator MC 1000-OD system (Photon Systems Instruments, Czech Republic)
at a temperature of 21°C and a light intensity of 100 puEm~2s~! provided continuously by
an array of white LEDs. The suspension culture was constantly mixed and aerated by
bubbling air. Pre-cultures were grown at 100 gEm~2 s~! in glass bottles of 0.25 L under a
continuous airflow, enriched with 5% CO,. After reaching the exponential growth phase, the
pre-culture was centrifuged and re-suspended in fresh medium to have a final concentration of
9-10%ellsmL™!, before introduction in the multi-cultivator. The culture analyzed was kept
in exponential phase by dilution with fresh medium. Spectroscopic analyzes were performed
in vivo using a Joliot-type spectrophotometer (JTS-10, Biologic, France). The spectroscopic
quantification was performed by measuring the behavior of the primary electron donor (P700)
at 705 nm in intact cells at a final concentration of 300 - 10° cells ml~!. The experimental task
was conducted by exposing the samples to different actinic lights (from limiting to saturating
actinic light; 80-150-320-940-2050 mol of photons m~2 s!) for 15000 ms to maximize P700
donor oxidation at a given actinic light and reach a steady state. At the end of each light
treatment, the light was switched off for the oxidised P700 re-reduction to occur subsequently
in the dark.

The measurement variable used for models calibration is the oxidised fraction of PSI
centers (zpgr2), obtained as the ratio between the absorbance signal at normal conditions
at a specific light (80-150-320-940-2050 mol of photons m™2 s71) and the absorbance signal
obtained at 2050 mol of photons m™2 s™! through cell-pretreating with DBMIB-poisoner,
corresponding to complete oxidation of all PSI centers. Parameter estimation was performed
by using the entity Parameter estimation of gPROMS software (4.1 version), which uses the
Maximum Likelihood method. The lists of the obtained parametric estimates for the two
case studies are reported in Tables 2.2 and 2.3. The results showed that for both the
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Table 2.2: First case-With acidification. Parameter estimates along with their 95% confidence
interval and t-values. The reference t-value is 1.65.

Parameter Estimated value 95% conf. int. t-value 95%
Ereg 4.22 0.48 8.77
xcytcﬁ,l(t = 0) 0.22 0.036 6.04
keye 158.66 34.40 4.61
keyt 17.13 2.67 6.41
kpq 22.56 9.54 2.37
Nreg 0.96 0.018 51.48
TbcthG/npS]] 6.06 1.18 5.14
nfd/npsu 0.27 0.04 5.53
O'pS[[/O'pS] 056 015 501

Table 2.3: Second case-Without acidification.  Parameter estimates along with their 95%
confidence interval and t-values. The reference t-value is 1.65. The asterisks highlight the
parameters whose estimates assume the preset physical boundary values: in this cases no statistical
info are provided.

Parameter Estimated value 95% conf. int. ¢-value 95%
Ereg 1.33 0.07 18.06
xcytcﬁ,l(t = O) 1 - -
Eeye 11.80 0.90 12.29
keyt 130.78 15.14 8.64
kpq 0.95 0.04 24.06
nreg ]—* - -
ncytce/n})s[} 1.68 0.21 8.03
nfd/npsn 3.28 0.28 11.81
UPSII/UPSI 523 036 14.44

two case studies all the parameters were estimated in a statistically satisfactory way. All
t-values are, in fact, always higher than the reference t-values at 95% of confidence. The case
Without Acidification presents higher ¢t-values, hence a more precise parameter estimation.
Nonetheless, the final estimates of parameters 7,., and Zeyue1(t = 0) (highlighted with
asterisks in Table 2.3) tend to overcome the biological threshold and get stuck to the preset
boundary values, hence suggesting that Without Acidification case study can be based on
wrong assumptions. Both the two cases presents a satisfactory goodness of fitting, as reported
in Fig.2.2. For the sake of simplicity, only the model description of oxidised zpg; fraction
dynamics at each actinic light for the case With Acidification is reported in this graph.
In fact, the case Without Acidification practically showed the same behavior, except for a

slightly lower re-oxidation rate at 320 mol of photons m—2 s~!.

2.4.2 Model validation

In this paragraph a model validation activity for the above-defined case studies discrimination
is described. In this case, absorbance measurements have been used to quantify linear and

cyclic electron flows. The experimental values were compared to the simulations obtained
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Figure 2.2: Photosystem 1 oxidized fraction at different actinic lights: (a) 80 pEm=2s~%, (b)
150 pEm~2s71, (¢) 320 pEm=2s7t, (d) 940 uEm=2s71, (e) 2050 pEm=2s~t. The bar above the
graphs represents the dark phase (grey) and the light phase (yellow) of the protocol.
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with the parameter values obtained after calibration.

The spectroscopic quantification of the electron flow through the photosynthetic electron
transport chain was performed by measuring the behavior of the primary electron donor
(P700) to PSI at 705 nm in intact cells at a final concentration of 300 - 10° cells ml~*. The
total electron flow TEF obtained at different light treatment was estimated measuring the
oxidised P700 re-reduction rates after each illumination in untreated cells. By multiplying
this rate constant by the fractions of oxidised P700 at a given light (obtained by comparison
with DCMU and DBMIB-poisoned cells treated with 2050 mol of photons m~2 s7!, i.e.,
maximal level of P700 oxidation) we evaluate the number of electrons transferred per unit of
time electron flux (Meneghesso et al. (2016)). The same procedure was repeated in samples
treated with DCMU (80 M) to evaluate the contribution of cyclic electron flow (CEF) and
with DCMU in combination with DBMIB (300 M) to measure any possible residual electron
injection into PSI. LEF data was then calculated as the difference between TEF and CEF.
The experimental data were compared to the simulated LEF and CEF transport flows,
defined as:

LEF = (1 — ayeg)kcycTraTpsi 2, (2.21)

CEF = (areg)kcycl'Fd,leSl,Q- (222)

The results, reported in 2.3 and 2.4 show how only the first case ( With Acidification) is able
to represents both LEF and CEF in a good way. The case With Acidification shows, in
accordance with the experimental data, how LEF behavior dramatically changes with light.
In fact, at high actinic lights (940 and 2050 mol of photons m~2 s7!) a rapid function increase
is shown, then LEF gradually decreases to reach lower stationary values do to acidifcation.
At low lights, LEF function is monotone all along the protocol duration. LEF shows an high
peak and then a rapid decrease to low values at all lights (the maximum value at steady
state is equal to 4.3 e- s7* PSI™!). Conversely, the case Without Acidification shows both
very low LEFs at all lights and almost null CEF after a low transient peak.

In Figure 2.5 the dynamic simulation of all the protein complexes involved in the electron
transport chain is reported. The graphs show that PQs are almost completely reduced
after a few milliseconds at each light intensity and this condition is maintained during all
the light phase. When light is turned off the PQ centers relax to different redox states
depending on the actinic light used. The two cytochromes Cytb6f and Cytc6 start from
complete (or almost complete) oxidation to reach different stationary values by about 3s of
light, after a transient peak (whose magnitude is strongly dependent on the actinic light
used). When light is turned off, both Cytb6f and Cytc6 are completely reduced. Finally,
Fd starts from zero reduced centers, shows a light-dependent peak after turning on the
actinic light, then rapidly decrease to a stationary value. A final complete re-oxidation of
all the centers happens when light is turned off. In summary, the current simulations show
that the final state of some protein complexes does not correspond to their initial redox

state; nonetheless, since low information is given in the literature about electron carriers
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Figure 2.3: LEF at different actinic lights (80, 150, 320, 940, 2050 uEm=2s~') for case study: (a)
with lumen acidification and (b) without lumen acidification. The bar above the graphs represents
the dark phase (grey) and the light phase (yellow) of the protocol.

[
80 L) L) L) L) v L) L) L) 1) 80 v L) L) L) L) L) L)
60 - 60
=80 LE =80 LE
150 PE 150 pE
40 320 UE b 40 320 PE
940 LE | 940 uE
= 2050 UE 2050 UE
TR T H 3
w w
© 10} 4 O 10k
5k - 5k
[ ] [ ]
1 [

oL = = = = =
0 2000 4000 6000 8000 1000012000140001

time[ms]

(a)

600018000

0 N N N N N :
0 2000 4000 6000 8000 1000012000140001600018000

time[ms]

(b)

Figure 2.4: CEF at different actinic lights (80, 150, 320, 940, 2050 uEm=2s~1) for case study: (a)
with lumen acidification and (b) without lumen acidification. The bar above the graphs represents
the dark phase (grey) and the light phase (yellow) of the protocol.
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Figure 2.5: PQ, Cytb6f, Cytc6, Fd reduced fraction dynamics at different actinic lights (80, 150,
820, 940, 2050 nEm~25='). The bar above the graphs represents the dark phase (grey) and the
light phase (yellow) of the protocol.
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dynamics, the assumption of unmodelled dark-phase hysteresis mechanisms for electron
carriers relaxation cannot be rejected a-priori. New experiments should therefore be designed
to investigate this behavior. Further experimental validation may consists on modifying the
current protocol in order to check microalgae behavior at multiple and rapid dark/light cycles
and compare it with current model predictions. Furthermore, the existence of dark-phase
dependent mechanisms must be investigated and implemented in the existing model to deal

with eventually unconsidered mechanisms.

2.5 Conclusions

The proposed extension of Bernardi et al. (2016) work gives a more detailed view of the
complete transport chain dynamics. The results show that the model is able to predict
both PSI behavior at different light and linear and cyclic flow dynamics. Furthermore, the
current model can benefit of fast fluorescence and absorbance measurements, hence reducing
the required experimental efforts for model calibration/validation tasks. We precise that
the proposed model extension is uniquely meant to describe the photosynthetic process
in a more detailed way with respect to the original model. No direct benefits in terms
of microalgae growth predictability have been considered as primary objective. Although
the model parameters are obtained for Nannochloropsis gaditana strain, the model remains
applicable to other microalgae species. Nevertheless, new recalibration tasks should be
designed to estimate the parameters associated to both Bernardi et al. (2016) model and
its extension proposed in this Chapter. Furthermore, the protein complexes involved in the
electron transport chain may vary from a strain to another. In this case, the model equations
should be adapted to the specific case in order to maintain the biological significance of the
model. Further work will focus on investigating the behavior of all the electron carriers
between PSII and PSI, in order to improve the process description given by the current
model and to confirm (or falsify) some of the model predictions that could not be verified

with available experimental data.






Chapter 3

A model to describe algal ponds
dynamics accounting for future

meteorology

In this Chapter! a dynamic model predicting microalgal productivity in outdoor open ponds
is described in detail. The selected model consists of three validated sub-models predicting:
(i) the temperature fluctuations affecting open cultivation systems (Béchet et al. (2013)),
(7) the light distribution dynamics in the culture medium (Bernard (2011)) and () the

algal productivity as a function of both temperature fluctuations and light distribution.

3.1 Introduction

Microalgae is currently being investigated as a promising renewable feedstock for biodiesel
production (Mata et al. (2010)) due to its various advantages, such as potential high yields,
utilization of non arable land and possible integration with wastewater treatment processes
(Foley et al. (2011a)). Nevertheless, current process alternatives for microalgae-based
biofuels present critical energy hotspots (Molina Grima et al. (2003); Bennion et al.
(2015)) and sub-optimal management, hindering large scale production in an economically
satisfactory way. The techno-economic assessments on algal cultivation profitability in
open pond systems are currently limited by many uncertainties, especially regarding the
biomass productivity that can actually be reached at full-scale. For example, the most
cited assessments (Wigmosta et al. (2011); Yang et al. (2011); Moody et al. (2014)) reported
productivity values ranging within 1.6-31.6 kg m~2 yr=!, depending on the evaluation method
used. This large variation of productivity values led to significant differences in assessment
conclusions regarding the sustainability of full-scale algal cultivation. A lot of models were
recently developed to describe microalgae dynamics and predict yields at full-scale by taking

into account different cultivation options and microalgae strains (Bernard et al. (2015); Lee

'Part of this work is reported in the article by De-Luca R., Q. Béchet, F. Bezzo, O. Bernard (2016).
Optimal management of raceways using weather forecasts. IFAC-PapersOnLine, 49(7):1062-1067.
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et al. (2015)). These models are valuable tools to support both system design (Slegers
et al. (2013)) and operation optimization (Mufioz-Tamayo et al. (2013)), with consequent
potential increase of cultivation profitability. Nevertheless, building model for open ponds
systems presents further complications due to the high variation of key-variables (such as
light irradiance, and pond temperature) driven by weather conditions fluctuation. Since the
timescale associated with algal growth (i.e. doubling time) has the same order of magnitude
than the timescale over which weather forecast can be considered reasonably accurate (i.e.
1-2 days), the knowledge of the weather forecast can be used to optimize system operation
on a daily basis and therefore maximize algal productivity. Then, a new model was built to
predict both temperature fluctuations in an outdoor pond from weather data and the impact
of pond temperature and solar irradiance on algal productivity. The model building task
was done by coupling the existing model of microalgae growth proposed by Bernard (2011)
with the temperature model of Béchet et al. (2013). The coupled models were then slightly
modified by introducing a universal function representing the temperature effects on all the

growth-related parameters. The resulting model is described in the following paragraphs.

3.2 The model

A schematic representation of the main structure of the model (coupling biological, thermal
and meteorological equations) and the objective function implemented in this work is shown
in Fig. 3.1. This representation highlights the interconnection variables between the different
sub-models enclosed in the main model; for example, the temperature fluctuation effects are
linked to microalgae growth through the ¢7 function (defined in section 3.2.1), whereas solar

irradiance H, data is implemented in microalgae growth description. A detailed description

Temperature
model

Ty, v, RH

eteorologica
data and
correlations

Growth
model

OBJECTIVE FUNCTION: net productivity
P, net

Figure 3.1: Schematic representation of the models implemented in this work. The arrows show
the key variables of interconnection between the various models.
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of all the model equations is presented in sections 3.2.1 and 3.2.2. Section 3.2.3 defines
the weather data implemented in the model and the correlations used to simulate the solar
irradiance profile. The optimization strategy was applied to algal ponds located in two
regions of France representing two different climates. The specific details regarding the
optimization at these two locations are discussed in section 3.3. In this section a complete
summary of initial /boundary conditions was described, together with the objective function
Pet, the water demand WD and the ‘compensation function’ f.mp, used to analyze the

optimizer behavior discussed in the following Chapter.

3.2.1 Growth model

Let us consider a homogeneous algal open pond of depth [, (m). If fresh medium is injected

into the pond at the rate ¢ (m® s™') and culture is extracted from the pond at the rate

q°"* (m? s71), the following mass balance can be derived:
d(x,V
(gzlbt ) _ —2¢”" + G()V — R(-)V, (3.1)

where ¢ is the time variable (s), 3 is the algal biomass concentration (kg m™—?), G(-) and
R(-) are, respectively, the specific growth and respiration rates (kg m™3 s71), and V is the
pond volume (m?). The open algal raceway pond is supposed to be perfectly mixed (Bernard
et al. (2013); Mendoza et al. (2013)). Since the pond is an open system, V' varies over time

according to the following equation:

av

o= ¢ — " 40,8 — meS/ pu, (3.2)

where S is the pond surface area (m?), p, is the pond density (kg m™3; assumed equal to
water density), v, is the rainwater flow (m s™!), and m, is the evaporation mass flux (kg m™2
s71). The specific growth rate G(-) in Eq. 3.1 depends on the biomass concentration x;, the
pond temperature 7}, and the solar irradiance Hy (W m~2). The impact of photoinhibition
on microalgae growth was not explicitly included in this study. Indeed, as suggested by
Bernard (2011), a Monod kinetics can efficiently represent algal growth at high biomass
density. This is explained by the fact that only a small fraction of cells are photo-inhibited
in the dense cultures, leading to an average behavior of Monod type. The growth function

G(xp, Hs, T,) was therefore expressed as (Béchet et al. (2015a)):

—OpTp2

I
Glan T = 7 [ (T

P

oy Hse
dz
T,) + opng Hye=ovw0?

(3.3)

where i, is the maximum specific growth rate (s™), oy is the extinction coefficient (set
equal to 120 m? kg™1), ny is the fraction of photosynthetically active fraction (PAR) in solar
light (set equal to 0.47), z is the local depth (m) and K7 is the half-saturation parameter
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(W kg!). The specific respiration rate R(-) in Eq. 3.1 depends on biomass concentration
and pond temperature through the following law (Béchet et al. (2015a)):

R(l’b,Tp) = )\T(Tp)l'b, (34)

where ), is the respiration coefficient (s7!). Experimental values for p,,, K; and )\, for
Chlorella vulgaris were extracted from the study of Béchet et al. (2015a). Bernard and
Remond (2012) showed that the evolution of the parameter pu,, with temperature could be
fitted to the following function:

Hm = /flm,mangTa (35)

where [ty mar 18 the maximum value of pu,, (s7') and ¢r is the temperature-dependent

function defined in Bernard and Remond (2012) as follows:

0 if T, < Thin
_ (Tp—Tmaz) (Tp—Tmin)* . ‘
ng - (Topt_Tmin)[(Topt_Tmin)p(Tp_Tmin)p_(Topt_Tmaac)(Topt+Tmin_2Tp)] lf Tmzn<Tp S Tmaw (36)
0 if T)>Thnaa-

The function ¢r includes three parameters: T)in, Topt and Trap (°C). Thnin is the temperature
below which the growth is assumed to be zero, T),.. is the temperature above which there
is no growth, Ty, is the temperature at which p,, = ftm maez- As A and K; exhibited similar
evolution with temperature, the same function ¢ was used for fitting the evolution of these

two parameters with temperature:
KI - KI,maszTy (37)

)\r = )\T,maa:ng- (38)

Fitting these parameters was performed by using the entity Parameter estimation of
gPROMS software (4.1 version), which uses the Maximum Likelihood method. The function
o7 successfully fitted the experimental data for both u,,, K; and A, (see Fig. 3.2). The
complete set of fitted values is reported in Table 3.2.

Table 3.1: Experimental evaluation of growth and respiration parameters at different temperatures
(Béchet et al. (2015a)). The reported data of pum and A\, are converted from kgo, /kgviomass/S to
kgviomass/kbiomass /s through the corrective factor (0.76) proposed in the same article.

Variables Values
T,(°C) 5.5 14.2 21.7 29.3 38.0 42.1
Ar(s71) 0 8.82:1077 1.26:107% 1.36-107% 1.51.1076 0
Kr(W kg™1) 540 1580 3180 5590 8510 0

fm(s™Y)  0.95107° 2.27-107° 3.721075 5.22:107° 6.57.10°° 0
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Table 3.2: Temperature-dependent parametric estimates

Parameter Physical Definition Value

Trnin Minimum growth temperature -10.0 (°C)

Traz Maximum growth temperature 42.1 (°C)

Topt Optimum growth temperature 35.8 (°C)

A maz Max. respiration coefficient 2.01-1076 (s71) = 0.17 (day 1)
JU— Max. specific growth rate 6.48-1075 (s71) = 5.59 (day 1)
K max Max. half-saturation constant 7192.92 (W kg~ 1)
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Figure 3.2: ¢p fitting of the experimental data (Béchet et al. (2015a)) related to: (a) pm, (b) K1
and (c) A\

3.2.2 Temperature Model

The temperature dynamics during the cultivation was modeled through a heat balance on
the pond that can be expressed as (Béchet et al. (2011)):

dT,
pwvcpwd_tp - Qra,p + Qra,s + Qra,a + Qev + Qcom; + Qcond + Qz + QT: (39)

where ¢, is the specific heat capacity of water (J kg7'K™!), @Q,4, is the radiation flow
from the pond surface (W), Q45 is the total (direct+diffuse) solar irradiance (W), Qrqq is
the radiation flow from the air to the pond system (W), @, is the evaporation flow (W),
Qconv 18 the convective flow at the pond surface (W), Qeona is the conductive flow with the
ground at the pond bottom (W), Q; is the heat flow due to the water inflow (W), and @, is
the heat flow associated with rain (W). This model was validated by (Béchet et al. (2011))
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against 1 year of experimental data, collected from a wastewater treatment high rate algal
pond; then, the proposed model was compared to other nine models that differed in the
formulation of each heat fluxes involved in the temperature dynamics, showing the best fit
between the experimental and predicted temperature profiles. The formal expression of each
heat flow in Eq. 3.9 was extracted from Béchet et al. (2011). Assuming the water surface to
be gray-diffuse, the radiation @),,, from the pond surface to the atmosphere was given by

Stefan-Boltzmann’s fourth power law:
Qra,p = _8wO-SBTp4S; (310)

where ¢,, is the emissivity of water and ogp is the Stefan-Boltzmann constant (W m=2 K—*).

The heat flow associated with solar irradiance ), was expressed as follows:

Qra,s = (1 - fa)H357 (311)

where f, is the theoretical photosynthetic efficiency (the fraction of PAR that is effectively
used during the photosynthetic process). The heat flow generated by air radiation was
described as:

Qraa = CafuwospTy*S, (3.12)

where ¢, is the emissivity of the air and T}, is the air temperature (K). The evaporation heat

flow Q., was given by the equation:
Qev = _mesta (313)

where L, is the water latent heat (J kg™!), whereas m, is the evaporation rate (kg m=2 s71).

The following expression was used to calculate m..:

P, RH-P,\ M,
P ‘o R Y 3.14
" (Tp Ta ) Rg ( )

where K, is the mass transfer coefficient (m s™1), RH is the relative air humidity above the
pond surface, M, is the molecular weight of water (kg mol™!) and R, is the universal ideal
gas constant (Pa m® mol™! K71). P, and P, are, respectively, the saturated vapor pressure

(Pa) at T, and Ty, evaluated through the following empirical correlation:

P — 33855 . 6(78.0929+O.97608(Ti+42.6O77273.15)0‘5) (3.15)

where the i index represents air or water. The mass transfer coefficient K, in (3.14) was

calculated through the following two correlations:

Sh = 0.035Re*%Sct?  for turbulent flows, (3.16)
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Sh = 0.628Re®>Sc!/3  for laminar flows, (3.17)

where Sh = K,,Lep,/Dy.o, Re = Lepvy /v, and Sc = v,/D,, o. The dimensionless variables
Sh, Re and Sc are, respectively, the Sherwood, Reynolds and Schmidt numbers, L., is the
characteristic pond length (m), D,,, is the mass diffusion coefficient of water vapor in air
(m? s71), v, is the wind velocity (m s™!) and v, is the air kinematic viscosity (m? s7!). The

convective low Q.ony, defined as:

Qconv = hconv<Ta - Tp>S (318)

was calculated by evaluating the heat transfer coefficient heon, (W m=2 K1) value through

the following set of correlations:
Nu = 0.035Re*®Pr'/?  for turbulent flows, (3.19)

Nu = 0.628Re®>Pr'/®  for laminar flows, (3.20)

where Nu = heonyLen/Aa and Pr = v,/aq,, A, is the air thermal conductivity (W m= K1)
and a, the air thermal diffusivity (m? s1). The dimensionless variables Nu and Pr are,
respectively, the Nusselt and Prandtl numbers. Meteorological stations measure the wind
velocity at a certain height z,,0 (m) which usually differs from the height at which v, is
needed in the previous correlations (0.5 m). The conversion of the wind velocity from the

height 2, to 0.5 m was performed by using the following expression:

Ve = Vg (Z—m) : (3.21)

Zm,0

where vy is the wind velocity (m s™!) measured at height z,¢ and a,s is a power law
exponent. The equation that describes the conductive heat flow between the pond and the

soil was based on Fourier’s law:

dT
Qcond = kssg(z = O), (322)

where k; is the soil conductivity (W m™' K=1) and T} is the soil temperature (K). The value

of Ty was obtained from the following equation and initial/boundary conditions:

dTy d*T,
CPSPSE(Z,t) = k‘sﬁ(z,t) (323)
Ty(t,> =0)=T,(t)  b.c.(1)

Ty(t,z=1,.,)="T,., bc(2) (3.24)

CL(t =0) =0 ic.
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where ¢,, is the soil specific heat capacity (J kg™ K1), ps is the soil density (kg m™®), and
T.

Sref

is the soil temperature (K) at the reference depth I, . (m). The heat flow associated

with fresh medium inflow (); was computed from the equation:
Qi = pwcpwqm(ﬂn - Tp) (325)

where T, is the water inflow temperature (K). Finally, the rain heat flow @), was expressed
as:
Qr = pwcpva(Ta - TP)S (326)

All the parameters values used in the energy balance are tabulated in the study of Béchet
et al. (2011) and reported in Table 3.3.

3.2.3 Meteorological data and correlations

Continuous weather data was linearly interpolated from the 6-hourly weather data extracted
from the European Centre for Medium-Range Weather Forecast (ECMWF) website. This
weather data was used to determine the dynamics of the air temperature T,, the sky
cloudiness C'C', the relative humidity RH, the wind velocity v, and the rain volumetric
flux v, as all these variables have a significant impact on pond temperature as shown by
Béchet et al. (2011). Solar irradiance Hy was computed at any time from both the amount
of solar radiation reaching the external surface of the atmosphere at the location considered
Hy, and the cloudiness C'C'. First, H, was calculated from cloudiness data C'C', by using the
Kasten and Czeplak correlation (Marthews et al. (2012)):

H— { 0 if w< -wy or w > wy (3.27)

H UG f gy, < w < w,,
where C'C' is the cloudiness value expressed in okta (range [0—8]), H. is the clear-sky total
irradiance (W m~2), w is the hour angle which varies from -7 to 7 over 24 hours, -w, and w;
are, respectively, the hour angle values at sunrise and sunset calculated from the expression
proposed by Duffie and Beckman (1958): The clear-sky radiation H. was given by Duffie
and Beckman (1958):

H.=Hy.+ Hp.= (Tac+ ™0.c)Ho (3.28)

where 74, = Hq./Hoy and 7p. = Hp./Hy; Ha. and Hp . are, respectively, the diffuse and
the direct components of the clear-sky total irradiance (W m~2). The variable Hy was given

by Duffie and Beckman (1958):

360 Nyq
Hy = I, (1 +0.033 cos W‘“’) cos ., (3.29)
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Table 3.3: Parameter values of the temperature model
Parameter Physical Definition Value
Water Parameters
Puw water density 998 (kgm~3)
Cpo water heat capacity 4.1810% (J-)kg 1-K™1)
L, water latent heat 2.45-10% (J-kg™1)
Ea water emissivity 0.97 (-)
M, water molecular weight 0.018 (kg-mol~1)
Soil Parameters
ks soil thermal conductivity 1.7 (Wm~ 1K)
Cp, soil heat capacity 1.25-10% (J-.kg=1-K™1)
Ps soil density 1.9-10% (kgm=3)
Ts,.; soil temperature at [, ,, = 4.5m 286.75 (K)
Air Parameters
€a air emissivity 0.8 (-)
Vg air kinematics viscosity 1.5:1075 (m-s1)
Aa air thermal conductivity 2.6:1072 (W-m~— LK)
Qg air thermal diffusivity 2.2:1075(m-s71)
Dya mass diffusion coefficient of water vapor in air 2.4-1075 (m-s™2)
Pond parameters
Vo initial pond volume 30 (m?)
S pond surface 100 (m?)
Lep pond characteristic length 10 (m)
Qys power law exponent 0.29 (-)
Zm wind velocity height 0.5 (m)
Zm.0 wind sensor height 10 (m)
fa algal absorption fraction 2.5 (%)
Universal constants
0SB Stephan-Boltzmann constant 5.67-107% (W-m~2.K~%)

ideal gas constant

8.314 (Pa-m?-mol~1.K~1)
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where I, is the solar constant (1367 W m~2), Ngqy is the Julian day of the year and 0, is
the zenith angle (the angle between a vertical axis at the location considered and the sun
direction).

The variable 7p . was obtained through the following expression (Marthews et al. (2012)):

e = exp(=Vox Tk ALk), (3.30)

where T is an empirical coefficient (set to 2.74). The term ~y,x was given by the equation:

1

SR — 31
9.4+ 0.94, (3:31)

YLK
and Apx is the pressure-corrected air-mass, obtained from the following correlation
(Marthews et al. (2012)):

1
e 16364 (3.32)
cos 0, + 0.50572 (96.07995 — §,180) 7+

Finally, the variable 7,4, is determined through the Erbs correlation (recommended by Duffie
and Beckman (1958)):

1.0 — 0.09k7 if kr<0.22
0.9511 — 0.1604ky + 4.388k,>+

Ky = AR : (3.33)
—16.638k7> + 12.336k7 if 0.22<kr < 0.8
0.16527 if kr>0.8

where Ky = Tuc/(Tac+7p,c) and kr = Ty c+7p ..

3.3 The optimization

A detailed description of the initial/physical conditions of the system is given in 3.3.1.
Section 3.3.2 defines the objective function for all the optimization tasks performed in the
Thesis work. Finally, 3.3.3 and 3.3.4 focus on the definitions of two key variables used for

case studies comparisons in the following discussion.

3.3.1 System description

The optimization strategy was applied at two different locations in France (Nice and Rennes)
during the first 7 days of different months in 2012. A complete graphical representation of
the meteorological data implemented in this Thesis work is reported in Appendix B.

The pond surface S was 100 m? and the initial conditions were:

e the initial pond temperature 7),(¢t = 0) was set at the average value of air temperature

Ta.avg OVer the period 7 of simulation/optimization;
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e the initial biomass concentration x;, was set to 0.4 kg/m?;
e the initial pond depth [, was set to 0.3 m;

e the inflow temperature 73, was set equal to T 4.

3.3.2 System optimization

The optimal control strategy aimed at maximizing microalgal productivity, by continuously
adjusting pond depth through the injection of fresh medium (¢™) or extraction of culture

(q
control problem:

out) . The control vector q = (¢, ¢°*)T was therefore the solution of the following optimal

maxg Pt = maxq ) (G(ay, Hy, T,) — R(ay, Ty))Vdt

s.t.

O S q; (t) S Gmax ) (334)
l

where & is the state vector and gu., is the upper bound of the flow rates. The dynamical
system g(&, q, t) therefore gathered the biological and thermal dynamics (see Equations
(3.1) and (3.9)). The objective function P, is the cumulative difference between growth and
respiration during the cultivation period. The chosen formulation is based on the expression
proposed in Béchet et al. (2015b) for the specific case where Monod formula is used to
represent microalge growth and respiration rate is considered. The main difference between
The key difference with the control problem addressed in (Munoz-Tamayo et al. (2013)) is
that the pond depth was made vary in this study. The pond depth was constrained between
lpmin (0.05 m) and I, max (0.5 m).

The optimization task was implemented through gPROMS software (4.1 version) by using
the default optimization solver NLPSQP, which uses a sequential quadratic programming
(SQP) method for the solution of nonlinear programming (NLP) problems. The NLPSQP
solver uses 4 tolerances to decide whether or not a local optimal solution has been reached;
the default value of the tolerances was used for all the optimization tasks conducted in this
Thesis. For the numerical implementation adopted in this Thesis work, the two control

ot were considered as piecewise constant variables within the range [0-1]

inputs ¢ and ¢
m?/s.

In order to assess the gain of productivity obtained with this control strategy, other
simulations were performed under ‘standard’ conditions. These standard conditions
correspond to typical assumptions made in the field of micro-algae outdoor cultivation:
constant depth of 0.25 m and dilution rate equal to 0.1 day~! (Jorquera et al. (2010), Rogers

et al. (2014)).
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3.3.3 Water Demand

The net water demand (Water Demand (WD)) associated with algal cultivation was
calculated as follows: .
WD = / ¢ (t)dt + max(0, Vo — Vo), (3.35)
0

where Vj and V, are, respectively, the pond volume at the beginning and at the end of the
cultivation period. This expression accounts for both water use during fresh water injection
into the pond and any net decrease of the pond volume between the start and the end of

the cultivation period considered.

3.3.4 The compensation function

The compensation function f.om, has often been proposed as a key criterion to be optimized
(Takache et al. (2010), Munoz-Tamayo et al. (2013)). The compensation function is the ratio
between the growth and the respiration rates at the pond bottom and it should be as close

as possible to 1:
opni Hs (t)e 6% ()ip(t)
K maz®r(t)+0oynm Hs(t)e b= (Hip ()

fcomp(t) = Um,maz (336)

Armaz
In other words, if the function is higher than 1 the pond productivity could be improved
by, for example, increasing the amount of biomass in the system. Conversely, values lower
than 1 indicate that the net rate of growth at the pond bottom is negative. Consequently,
diluting the system would increase productivity. The optimal biomass concentration wp opt

is therefore reached when f.,m, equals 1.

3.4 Conclusions

In this Chapter a weather data-based dynamic model predicting microalgal productivity in
open ponds has been described in detail. The model describes both temperature fluctuations
and light distribution dynamics, hence their effects on microalgae growth efficiency. This
model was used to run several optimization tasks in order to check the potential efficiency of
the proposed optimization strategy with respect to standard open pond management. We
precise that no model mismatch was assumed and that all the results reported in the following
are generated by ‘in silico’ simulations; future experiments should be performed for model
validation to estimate the amount of uncertainty generated by each specific sub-model. In the
next Chapter, the optimization results obtained with the proposed model will be discussed

in detail.
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Exploiting meteorological forecasts for

optimal open pond management

The first objective of this Chapter® is to investigate how the optimization strategy defined
in the previous Chapter can boost algal productivity in outdoor open ponds. The secondary
objective is to derive a reduced set of ‘rules of thumb’ which represent ‘optimal operation’
to reduce the time required for future applications of this optimization strategy. We
considered both the case where weather forecasts are perfect and the more realistic case

where meteorology becomes uncertain after 24 hours.

4.1 Strategy impact on productivity

The proposed strategy consists of determining iteratively the optimal inflow and outflow
hourly rates for an entire week based on the weekly weather forecasts. Unlike
in Munoz-Tamayo et al. (2013), the culture depth can vary, and thus thermal inertia
of the cultivation system can be modified to optimize system temperature fluctuations.
Alternatively, we propose an optimization strategy that is based on the knowledge of future
weather conditions instead of using a control approach based on on-line measurements. In
practice, this optimization task consists of determining the optimal rates at which culture is
replaced in the system in advance for an entire week based on the weather forecast for the
following week. Table 4.1 shows the algal productivity values obtained during optimized
and standard cultivation, at Nice and Rennes and at three seasons (Winter (January),
Spring (March), and Summer (July). The reported results show that the optimization
strategy investigated in this study significantly increased productivity compared to standard

operation, by up to a factor 2.2 for the Summer case in Nice.

IPart of this work is reported in the article by De-Luca R., F. Bezzo, Q. Béchet, O. Bernard (2017).
Exploiting meteorological forecasts for the optimal operation of algal ponds. In: Journal of Process Control.
(doi: 10.1016/j.jprocont.2017.03.010) and in the submitted article by De-Luca R., F. Bezzo, Q. Béchet, O.
Bernard (2017). Meteorological data-based optimal control strategy for microalgae cultivation in open pond
systems. In: Bioresource Technology.
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Table 4.1: Productivity and water demand: optimal case vs standard pond management (Jorquera
et al. (2010), Rogers et al. (2014)).

Productivity Water demand
Case studies (kg-week 1) (m3-week 1)
Nice Rennes Nice Rennes
Winter Standard cultivation strategy  2.59 1.25 17.53 17.53
Optimal control strategy 3.73 2.12 26.83 25.02
Sorin Standard cultivation strategy  5.60 3.96 17.53 17.33
pring Optimal control strategy 9.02 561 3260  27.48
Summer Standard cultivation strategy 11.62 12.71 17.53 17.53
Optimal control strategy 25.83 19.59 122.98 45.97
6.0 12.0
Nice Nice
= =Rennes 96k = =Rennes
45k '
_ = 72f
% 30 ﬁ,
o & 48}
15
24}
0.0 0.0
0 0
time [day] time [day]
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35

Nice
= =Rennes

Pro kgl

time [day]

()

Figure 4.1: Optimal weekly Py dynamics obtained for Nice (solid line) and Rennes (dashed line)
in: (a) Winter, (b) Spring, (c) Summer. (The background is colored in white at daytime and in
grey at nighttime.)
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Figure 4.2: Optimal weekly ¢
(dashed line) in: (a, b) Winter, (¢, d) Spring, (e, f) Summer. (The background is colored in white
at daytime and in grey at nighttime.)

and ¢°“* dynamics obtained for Nice (solid line) and Rennes

Interestingly, Table 4.1 shows that productivity was slightly higher in Rennes than in

Nice in Summer under standard operation. This result is explained by the occurrence of high
temperature peaks in Nice, which cause productivity to significantly drop. The importance
of temperature on productivity is further discussed in the following discussion. Fig. 4.2 shows
the optimal ¢ and ¢°* profiles maximizing algal productivity over the entire cultivation
period. Fig. 4.2 reveals that medium injection or culture extraction only occurred at day time
under optimal operation. Although the resulting control strategy was different for the two
locations, a qualitatively recurrent behavior can be identified despite the weather variability
between different days of cultivation and the different periods of the year. The behavior of

the optimizer was therefore analyzed on a time window of 3 cultivation days only.
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4.2 Optimal operation strategy: key features

Before analyzing the control strategy followed by the optimizer, a brief summary of the
ideal control logic ensuring the highest possible productivity is described in this paragraph.
Firstly, algal concentration must be optimized at daytime by accounting for two processes:
1) biomass losses through respiration linearly increase with the algal concentration, and 2)
the amount of light intensity captured by algal cells, hence photosynthetic rate, increases
with algal concentration. As a result, there is an optimal algal concentration that should
ensure that most of the light entering the pond is captured by algae while still maintaining
respiration rates at a low value. Previous studies show that this optimal concentration is
reached when the specific rate of photosynthesis at the pond bottom equals the specific rate
of respiration (Takache et al. (2010)). Mathematically, these conditions are reached when
the ‘compensation function’ f,.,, defined in the previous Chapter is equal to 1. In summary,
the ideal optimal biomass concentration at daytime ., (t) is the algal concentration that
guarantees that the compensation function defined in Eq. 3.36 equals 1. Secondly, maximal
productivity is achieved when the pond temperature 7,(¢) is maintained at 7,,; at daytime.
At nighttime, the pond temperature 7,(¢) and the biomass concentration z;(t) values should
be maintained as low as possible in order to minimize respiration rates, hence biomass
losses. The ideal optimal pond operation would therefore require a drastic change of the
algal concentration and pond temperature at sunrise and sunset to ensure that these two
variables are maintained at their optimal values at daytime and nighttime. Such drastic
changes are in practice very difficult to achieve and the next paragraph discusses how the

optimization scheme investigated in this Thesis handled these practical difficulties.

4.3 Detailed analysis of the optimization scheme

The analysis of the optimization scheme is split into four phases, from morning to night.

Morning. Focusing first on the Summer case study, Figures 4.7(a) and 4.7(b) show that
no water was injected to or extracted from the pond in the morning (¢™, ¢°“* = 0), which
led to maintain the pond depth in Rennes at a constant and low value ([,(t) = 0.05 m,
see Fig. 4.8(a)). Very small depths indeed minimize the thermal inertia of the pond and
thus allow a fast increase of the pond temperature 7,(t) (see Fig. 4.8(b)), hence a greater
productivity increase. The same control strategy was used in Nice although the pond depth in
Nice was slightly above the minimal physical constraint of 0.05 m (see Fig. 4.8(a)). This result
can be explained by the fact that removing culture from the pond would lead to lower the
biomass content and therefore increase the compensation function. Yet, the compensation
function is already significantly higher than 1 in the morning in Nice (Fig. 4.8(d)), which
means that removing more biomass would cause productivity losses. In Spring and Winter
the morning control strategy was similar to Summer (Fig. 4.3(a), Fig. 4.3(b), Fig. 4.5(a) and

Fig. 4.5(b)), if we neglect very small control peaks used to injected the culture medium when
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Figure 4.3: Three-days zoom of: (a) ¢ and (b) ¢°“* dynamics obtained for Nice (solid line) and
Rennes (dashed line) in January. (The background is colored in white at daytime and in grey at

nighttime. )
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T;, was hotter than the algal culture in the pond at sunrise. Based on these observations,
the optimizer behavior in the Morning phase can be schematized by the following simple

rules:

e During the morning the pond depth is maintained as low as possible in order to help
reaching both optimal pond temperature and biomass concentration as soon as possible

at the start of the afternoon;

e In winter, if pond temperature is lower than inflow temperature and if the biomass
content in the pond is high enough to avoid ‘washout’ conditions, the culture can be

partially replaced with fresh medium to increase the pond temperature.

Afternoon. Figures 4.7(a) and 4.7(b) show that the inflow rate ¢ in Nice case exhibits a ‘bell
curve’ profile from midday until late afternoon in Summer. ¢°“* followed the same dynamics
but started slightly later in the day. In other words, the control strategy was mainly based on
replacing the pond culture by fresh medium (‘flushing’ strategy). This culture replacement
had mainly two consequences. Firstly, as shown in Fig. 4.8(d), the compensation function
feomp Was maintained at a value close to 1 during the afternoon, indicating that the algal
concentration was at its optimal value xy o (t) during the afternoon. Secondly, replacing
algal culture by relatively cold fresh medium helped maintaining pond temperature close to
its optimal level T,,; (35.8 °C, Fig. 4.8(b)). Fig. 4.8(a) shows that the pond depth [, in Nice
increased until mid-afternoon and then decreased, which indicates that culture replacement

was not sufficient to maintain pond temperature at the optimal level.
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Figure 4.5: Three-days zoom of: (a) ¢ and (b) ¢°“* dynamics obtained for Nice (solid line) and
Rennes (dashed line) in March. (The background is colored in white at daytime and in grey at
nighttime. )

Increasing the pond depth indeed limited high temperature increases by increasing the
pond thermal inertia. In summary, temperature control is the result of two combined
strategies: culture replacement (‘flushing strategy’) by cold fresh medium and thermal
increase through depth increase (‘depth strategy’). Figures 4.7(a), 4.7(b) and 4.8(a) show

that the same ‘flushing’ and ‘depth’ strategies were also used in Rennes in Summer during
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Figure 4.6: Three-days zoom of: (a) l,, (b) Tp, (c) xp and (d) feomp dynamics obtained for Nice
(solid line) and Rennes (dashed line) in March. (The background is colored in white at daytime
and in grey at nighttime.)

day 5, but not during days 3 and 4. As Fig. 4.8(d) shows that the compensation function was
significantly lower than 1 during the afternoons of days 3 and 4 in Rennes, further culture
replacement could have theoretically been used to maintain the biomass concentration at
its optimal value. Yet, replacing the culture by cold fresh medium (7}, was set at 16.5
°C in Rennes) at a faster rate would have significantly decreased the pond temperature
and therefore lower biomass productivity. Fig. 4.8(b) shows indeed that days 3 and 4 were
relatively cold, differently from day 5 in which the pond temperature reached its optimal
value. In other words, the optimizer found the best trade-off between optimal biomass
concentration and optimal temperature conditions in the case of warm but not hot weather
conditions. In addition, Fig. 4.8(a) shows that in Rennes the depth was maintained at
its lowest value in the afternoon of days 3 and 4 (warm days) in order to maximize the
temperature increase at daytime. Figures 4.3(a), 4.3(b), 4.5(a) and 4.5(b) show that both
g™ and ¢°** were maintained at 0 in Winter and Spring in Rennes and Nice. As a result, the
biomass concentration slightly increased at daytime (Figures 4.4(c) and 4.6(c)). In addition,
the depth was left at its lowest value (0.05 m) all day long. These observations indicate
that the optimal strategy during cold days consists of maintaining the pond temperature as
high as possible during daytime even if biomass concentration is significantly higher than

the optimal concentration. This is mostly due to low pond temperatures that ensured low
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biomass losses through respiration during Spring and Winter. The optimizer behavior in the

Afternoon phase can be schematized by the following simple rule:

e In the afternoon the culture can be flushed to maintain the algal concentration at
its optimal level. In Summer, this ‘flushing strategy’ can be combined with depth
increase strategy to control temperature at its optimal level. In Spring and Winter,
the optimal strategy consists of neither injecting fresh medium nor extracting culture
during daytime while maintaining the pond depth at a low value, to ensure that pond

temperature reaches the highest possible value.

Sunset. In Summer, Figures 4.7(a) and 4.7(b) show that a high fraction of the culture was
replaced by fresh medium at sunset in Rennes. ‘Flushing’ the system at sunset both lowered
pond temperature (see Fig. 4.8(b)) and biomass concentration (see Fig. 4.8(c)), which in
return limited respiration rates at nighttime. The alternative strategy used in Nice was
based on decreasing the pond depth when approaching sunset (Fig. 4.8(a)), which removed
a significant fraction of the biomass from the pond. In addition, decreasing pond depth
accelerates the pond temperature decrease at night. Similarly to the ‘flushing’ strategy used
in Rennes, this ‘depth-decrease’ control strategy reduced respiration at nighttime. Removing
all the biomass from the system would obviously ensure no respiration at nighttime but this
would also cause the productivity to be null the day after. As a result, the optimizer
finds the optimal algal concentration ensuring both low respiration rates at nighttime and
high productivities the following morning. In Winter only a small fraction of the culture
was replaced by fresh medium in Nice (Figures 4.3(a) and 4.3(b)) as night-time respiration
rates were limited by cold temperatures (Fig. 4.8(b)). In Rennes the ‘flushing strategy’
at sunset was not applied, mostly because inflow temperature was higher (9.2 °C) than
pond temperature 7),(¢) at sunset. Injecting relatively warm water at sunset would therefore
only lead to high respiration rates at nighttime. The optimal strategy at Nice in Spring
consisted on partly ‘flushing’ the system at sunset similarly to the summer case. In Rennes,
no culture was replaced at sunset in Spring, mostly because maintaining temperatures as
high as possible was the best strategy to optimize productivity (Figures 4.5(a) and 4.5(b)).

The optimizer behavior at Sunset can be schematized by the following simple rule:

e During hot days, a fraction of the culture is replaced with fresh medium at sunset to
minimize nighttime respiration rates. Pond depth is also maintained at a low level
to ensure low nighttime temperatures. In Winter or in colder climates, no culture is
replaced by fresh medium at sunset to ensure that temperature is as high as possible

during the following day.

Night. The pond depth was maintained at its sunset value all night long independently
on the season considered mostly (Figures 4.4(a), 4.6(a) and 4.8(a)). In addition,
Figures 4.3(a), 4.3(b), 4.5(a), 4.5(b), 4.7(a) and 4.7(b) show that, in general, no ‘flushing’

was used at nighttime (¢ = 0 and ¢°** = 0). Some exception were reported in Spring at
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day 4 for Rennes and at day 5 for Nice (the peaks correspond to culture extraction just
after rainfall to maintain the pond depth at its lowest possible value) or in Winter at day 4
and 5 in Nice, where slight culture replacements were done both to decrease the respiration
rates by acting on biomass reduction and to avoid too low temperatures for the following
day of cultivation. In Summer, this strategy ensured low temperatures at nighttime. In
Winter, maintaining a low depth at daytime is necessary to reach high productivity values
and practically constrains low pond depths at nighttime. The optimizer behavior at Night

can be schematized by the following simple rule:

e The depth is maintained at the value set at sunset and no water is injected to or

extracted from the pond.
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Figure 4.7: Three-days zoom of: (a) ¢™ and (b) ¢°“* dynamics obtained for Nice (solid line)
and Rennes (dashed line) in July. (The background is colored in white at daytime and in grey at
nighttime. )

4.4 Discussion

The optimization technique significantly increased the productivity at the two locations
and three seasons considered. The 