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Abstract

Over the last two decades the advancement in DNA sequencing technologies has 

enormously increased the amount of sequencing data available to researchers and 

geneticists. This has been accompanied by the development of tools for sequencing 

data  analysis,  including  the  human  reference  genome,  that  is  undoubtedly  an 

indispensable resource.  It  is known that the reference genome does not always 

represent  the  real  consensus  sequence  of  the  human  population,  due  to  the 

inclusion of rare alleles and sequencing errors. Moreover, genomic duplications 

are  often  misassembled  and,  as  a  result,  they  may  be  found  in  the  reference 

genome as a collapsed consensus, thus generating false variants. In this work I 

performed  a  thorough  search  for  conflicting  information  between  the  human 

reference genome (GRCh37 and GRCh38) and some of the most popular human 

genetic resources such as the 1000 Genomes Project, to disclose minor alleles and 

to mine genetic inconsistencies. To search for unreported genomic duplications, I 

performed a genome wide screening for unbalanced heterozygosity. I found that 

inaccuracies and errors are much higher than expected.  Minor alleles occurring 

with  a  frequency <10% are  found on average every ~7,000 bases  and include 

many rare variants that are never found elsewhere,  producing high numbers of 

false positives as well as possible false negatives. The systematic screening for 

unbalanced heterozygosity revealed ~86,000 variants that are likely the result of 

unreported genomic duplications,  involving functionally relevant  genes  such as 

MAP2K3 and KCNJ12. My findings may help the ongoing quest to obtain a highly 

accurate human genome reference sequence.  Moreover, the results presented in 

this  thesis  will  be  useful  to  human  geneticists  in  the  process  of  filtering  and 

selecting causative variants. 

The  advancement  in  DNA  sequencing  technologies  also  accounts  for  the 

increasing usage of Whole Genome Sequencing approaches both in the research 

and  clinical  fields,  thus  revealing  that  the  large  majority  of  disease-associated 

SNPs  are  located  in  non-coding  regions  of  the  human  genome.  However,  the 

functional  interpretation of  non-coding variants  is  still  challenging.  Part  of  my 
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work also addressed this  problem, aiming to develop a method for non-coding 

variant prioritization. The method, presented in the last chapter of this thesis, is 

based on a  comparative genomics  approach for  the identification  of  functional 

constraints  in  primate  orthologous genes.  The first  steps  of  my approach have 

proved  to  be  powerful  in  identifying  orthologous  genes,  but  further  work  is 

necessary to optimize the multiple sequence alignment step and the identification 

of conserved domains.
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Chapter 1

Introduction

Over the last two decades the advancement in DNA sequencing technologies has 

enormously increased the amount of sequencing data available to researchers and 

geneticists. Handling and interpreting these data still remain the major challenge in 

the human genetics field. This challenge has driven the entire research carried out 

during my PhD. 

My PhD project mainly addressed the problem of improving the quality of the 

human  reference  genome.  The  ideal  reference  genome  should  represent  the 

consensus sequence of the human population1. In its standard format it consists in 

a  linear  haploid  DNA sequence  and  serves  as  the  foundation  for  sequencing 

analyses, by providing a substrate for read alignment. Since its first draft release in 

20012,  the reference sequence of the human genome underwent several updates 

and improvements and, even now, continuous efforts aim to ameliorate it. 

Starting  from  the  study  of  recurrent  variants  in  both  exome  and  genome 

sequencing data, I contributed to identify some  inconsistencies in the reference 

sequence, both at base-pair and assembly level, not yet reported in literature. These 

findings  could  be  useful  to  make  the  reference  more  accurate  and,  no  less 

important,  to  help  researchers  and  geneticists  to  avoid  wrong  inferences  in 

sequencing data analyses due to the incompleteness of the reference genome. 

In the first sections of this thesis, I will describe how the introduction of Next 

Generation  Sequencing  (NGS)  technologies  led  to  the  reduction  of  DNA 

sequencing  costs  and,  as  a  result,  to  an  increasing  use  of  high  throughput 

sequencing in both the research and clinical context. This has been accompanied 

by the development of tools for sequencing data analysis, including the human 

reference genome that is undoubtedly an indispensable resource. The development 

of the reference sequence of the human genome and its limitations are extensively 

described in the following paragraphs. 
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The following chapters illustrate my project outline and the methods that I used to 

identify errors in the reference genome, together with the results that I obtained. 

These results have been also described in a manuscript entitled  ‘Data mining of  

recurrent variants reveals inconsistencies in the human reference genome’ that has 

been submitted for publication. The draft of the manuscript is enclosed at the end 

of the thesis. 

Part of my PhD project also addressed the problem of interpreting the functional 

effect  of  nucleotide  variants  in  non-coding  regions  of  the  human  genome.  As 

extensively discussed below, the sequencing of the whole genome is  more and 

more widespread. Nevertheless, due to difficulties in determining the functional 

relevance of mutations outside protein coding genes, non-coding variants remain 

largely understudied.

In  particular,  my  study  aims  to  develop  a  method  for  non-coding  variant 

prioritization starting from the identification of functional constraints in long non-

coding  RNAs.  For  this  purpose  I  used  a  comparative  genomics  approach  by 

aligning orthologous sequences found in phylogenetically related organisms and 

looking for regions that are conserved across species. 

Although  the  approach  is  still  under  development  and  requires  further  work, 

preliminary results  seem to be very promising.  For this reason this  part  of my 

research will be described as future perspectives in the last chapter of this thesis. 

1. 1 The Next Generation Sequencing era

1.1.1 The cost of DNA sequencing 

Accurately determining the cost of the first human genome sequence is not simple. 

It  was reported that  the initial  draft  published in 2001 by the Human Genome 

Project  (HGP)  international  consortium2 required  ~300  million  dollars,  with  a 

further  cost  of  ~150  million  dollars  to  obtain  the  complete  human  genome 

sequence published in 20033. 

Over  the  last  two  decades  advances  in  the  field  of  genomics  have  led  to  a 

remarkable  reduction  in  DNA sequencing  costs  (Figures  1  and  2).  The  costs 

associated  with  the  DNA sequencing  are  periodically  tracked  by  the  National 
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Human Genome Research Institute (NHGRI)4. In this evaluation only 'production' 

costs are included (costs of labor, sequencing reagents and instruments and data 

processing), while 'non-production' activities are not considered (quality control, 

technology development or data analysis). To highlight the impressive reduction in 

DNA sequencing costs, data are compared to the hypothetical line reflecting the 

Moore's Law, according to which the compute power doubles every two years. 

A deep separation between DNA sequencing costs  trend and Moore’s law line 

occurred in 2008: data from 2001 through 2007 represent the costs of sequencing 

based  on  Sanger  chemistries  and  capillary  instruments  (first  generation 

sequencing), followed by the introduction of Next Generation Sequencing (NGS) 

technologies accountable for the cost drop. In 2005 454 Life Sciences released the 

Genome Sequencer 20 (GS20), the first next generation DNA sequencing machine 
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Figure 1. Cost per megabase of DNA sequence. The cost per megabase deeply 
decreased in 2008 with the introduction of NGS technologies in DNA sequencing. Data of 
production cost were calculated by National Human Genome Research Institute4. When 
multiple data were provided for the same year, corresponding to different months, only the 
last one was considered. The red line represents the Moore’s Law. Note the logarithmic 
scale on the y-axis. 



on the market, in 2006 Solexa launched the Genome Analyzer instrument and in 

2007 Applied Biosystem announced the SOLiDTM system. As consequence of the 

use of these new technologies in the DNA sequencing, the price for a whole human 

genome dropped rapidly since 2008. In July 2017, the last available data at the 

NHGRI website, the estimated cost was 1,121 dollars. To figure out where we are 

right now, with the introduction of the NovaSeqTM series Illumina promised the 

sequencing of the human genome for 100 dollars5.

Simultaneously to the decrease of whole genome sequencing cost, its usage has 

grown:  the  number  of  citations  for  ‘Whole  Genome  Sequencing’  in  Scopus 

increased from 74 in 2001 to 4,688 in 2017, with a rapid growth in the last few 

years (Figure 2)6. This data reflects the fact that WGS is becoming the leading 

strategy routinely used not only in the research context but also in the clinical one7.

12

Figure 2. Production cost and usage of whole genome sequencing over time. The 
decrease of the cost of genome sequencing (blue) is shown together with the increase of 
the number of articles containing the phrase ‘whole genome sequencing’ (green). Data of 
production cost were calculated by National Human Genome Research Institute4. When 
multiple data were provided for the same year, corresponding to different months, only the 
last one was considered. The number of citations derives from Scopus6. The red line 
represents the Moore’s Law. Note the logarithmic scale on the y-axis. Figure adapted from 
Katsonis et al.8.



1.1.2 Next Generation Sequencing in diagnostics

As a result of the remarkable reduction in DNA sequencing costs, NGS has been 

widely  introduced  in  the  diagnosis  field.  NGS  encompasses  three  different 

approaches: i) targeted sequencing (TS) to analyze a subset of genes or regions of 

the genome; ii) whole exome sequencing (WES) to obtain the sequence of protein 

coding regions (exons); iii) whole genome sequencing (WGS) to determine the 

complete sequence of the entire genome. 

For many years TS has been used as the gold standard method for the molecular 

diagnosis of genetic diseases with a good knowledge of the associated genes, as in 

the case of inherited cardiomyopathies for which many target panels have been 

developed since 20078–10. Advantages of customize targeted gene panels include 

the possibility to focus on the most relevant genes associated to the disorder, a 

higher coverage in the interesting regions compared to WES and WGS, a faster 

and cheaper sequencing and minimal chance of incidental findings. However, this 

approach  requires  a  good  a  priori knowledge  of  the  disease  and  limits  the 

possibility to discover novel unsuspected disease genes. In this respect gene panels 

could be view as an inexpensive and rapid first-tier test, followed by WES or WGS 

in case of negative results11. 

WES  was  used  in  genetic  diagnosis  for  the  first  time  in  2009,  when  patients 

suspected  to  have  Bartter  syndrome  were  tested  for  a  homozygous  missense 

mutation at the known congenital chloride diarrhea locus12. The authors were able 

to  capture  approximately  95%  of  the  targeted  coding  sequences  with  high 

sensitivity and specificity. The estimated sensitivity to detect heterozygous variants 

was 81%, 90% and 95% at mean coverage of 20x, 30x and 40x respectively, while 

the specificity reaches 99.9% at mean coverage of 30x. These data supported the 

clinical utility of WES for the first time. Moreover the authors highlighted WES 

strength in new disease genes discovery: compared to TS, WES not only covers 

exons of genes already associated to the disease, but also allows to identify novel 

causative genes in diseases with yet unknown molecular basis. However WES has 

two important limitations: the risk to insufficiently cover coding exons, especially 

those  GC-rich11,13,  and  the  impossibility  to  identify  non-coding  pathogenic 

variants12. 
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These limits are overcome by WGS that provides the most continuous coverage as 

the  capturing  is  no  longer  necessary  and  WGS  is  much  less  sensitive  to  GC 

content14–17.  Moreover WGS has the advantage to detect variants in non-coding 

regions and to improve copy number variations (CNVs) detection11,16. For these 

reasons several recent papers reported WGS as more powerful than WES11,16. 

Finally, the cost of sequencing must be taken into account: WGS cost is directly 

related to the cost per megabase of DNA which has decreased very much faster 

than the cost of any capture kit. This advantage, together with the high diagnostic 

yield, explains why several papers suggested the use of WGS as the first-tier test in 

diagnosis18–20. 

1.1.3 Prioritization of genetic variants

In the NGS era the major challenge researchers and geneticists face has moved 

from obtaining DNA sequences to interpreting the enormous amount of generated 

data. Even now the ability to sequence DNA exceeds the ability to analyze it.

Sequencing platforms provide the DNA sequence in the form of sequencing reads, 

generally collected in a FASTQ* format file. Sequencing reads are then aligned to 

the human reference genome, a database of all human DNA sequence that should 

ideally represent the entire human population21.  The alignment is performed by 

appropriate  alignment tools,  for example the commonly used Burrows-Wheeler 

Aligner (BWA)22. The resulting alignment file is called Sequence Alignment Map 

(SAM**) file - BAM and CRAM for the corresponding binary and compressed 

files,  respectively. The following steps  are  to  identify those sites  in  which the 

sequenced DNA differs from the reference genome and assign a genotype to the 

subject. These steps are carried out by using a variant caller, such as the Genome 

Analysis Toolkit (GATK) developed by the Broad Institute23, that provides a list of 

identified  variants  and  corresponding  genotypes  in  a  Variant  Call  Format 

(VCF***) file.
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*FASTQ format: It is a text-based format for storing base call and quality information for sequencing reads. 
Each entry in a FASTQ file consists of four lines: sequence identifier, sequence, quality score identifier line 
(consisting only of a +), quality score.
**SAM (Sequence Alignment Map) format: It is a TAB-delimited text format consisting of a header section, 
which is optional, and an alignment section. Header lines start with ‘@’. Each alignment line has 11 
mandatory fields for essential alignment information, such as mapping position, and variable number of 
optional fields for flexible or aligner specific information.
***VCF (Variant Call Format) format: It is a text file containing meta-information lines (included after the 
‘##’ string), a header line (included after the ‘#’ string) and data lines, each containing information about a 
position in the genome. 



Sequencing the exome of an individual, an average of 48,785 variants is identified, 

while sequencing the entire genome the average number of variants is 4,491,760 

(data shown in the Results and Discussion). With this wealth of information and 

with more candidate variants to evaluate than ever before, researchers’ efforts have 

been  directed  to  understand  which  variations  drive  disease  or  contribute  to 

phenotypic  traits.  Especially  in  the  clinical  field,  disease  associated  genetic 

variants  must  be  separated  from  the  broader  background  of  rare,  potentially 

functional, but not pathogenic variants present in all individuals. This can be done 

by  applying  a  sequential  series  of  filters  until  the  candidate  mutation  list  is 

sufficient short  for  in vitro and or  in vivo functional studies.  This procedure is 

called ‘prioritization of variants’. 

Thorough guidelines on prioritization strategy can be found in literature24–26 and 

several filter-based tools have been implemented, for example the recent Queryor 

platform developed by the CRIBI Center of the University of Padua27.

Researchers’ ability of prioritizing variants is good mainly for non-synonymous 

variations. In this case the severity of a sequence alteration on protein function can 

be  predicted  in  silico by  using  multiple  computational  tools  based  on  the 

conserved sequence of protein coding genes and amino acid changes. Examples of 

these tools are MutationAssessor28, SIFT29 and PolyPhen-230.

More  difficult  is  to  understand  the  functional  effect  of  variants  in  non-coding 

regions, regulatory regions or splice sites. It is well known that these variants play 

an important role in determining human traits and complex diseases31–34. Several 

aspects can be investigated to reveal the role of non-coding variants, for example 

chromatin interactions and gene expression. Moreover different tools allow their 

prioritization,  such  as  Genome-Wide  Annotation  of  VAriants  (GWAVA)35 and 

Combined Annotation-Dependent  Depletion  (CADD)36.  However  the  functional 

interpretation of non-coding variants remains a challenging and demanding task34 

and, especially in the case of non-coding regions, the classification of a genetic 

variant  into  deleterious  or  neutral,  although  very  convenient,  may  be  too 

simplistic.

A further level of complexity in analyzing NGS data derives from the awareness 

that no human reference genome - the fundamental necessity for all resequencing 
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test - is fully complete and correct at the moment1,37. As discussed in the following 

sections, erroneous bases and missing sequences still affect the reference genome 

and  it  has  been  demonstrated that  these  inconsistencies  can  be  the  source  of 

misunderstandings in variant prioritization and interpretation38,39. The work begun 

in the 1990s to create the most complete and correct human reference genome is 

not over yet. 

1.2 The human reference genome

1.2.1 From the first draft to the GRCh38 release

In  February  2001 the  Human Genome Project  (HGP)  international  consortium 

announced the publication of the first draft of the human genome. The draft was 

produced with  a  clone-based approach and collapsing  sequences  from over  50 

individuals into a single consensus haplotype representation of each chromosome. 

It  was three billion base pairs  long and covered more than 90% of the human 

genome. The announcement paper appeared on 15 February in the journal Nature2. 

The  following  day  another  draft  sequence  was  published  also  in  the  journal 

Science by Celera Genomics40. 

The  HGP required 2.7 billion  dollars  and the collaboration of  20 groups from 

United States, United Kingdom, Japan, France, Germany and China and it took 13 

years to complete with the publication of the full sequence in April 2003. 

Since then the reference sequence of the human genome has undergone several 

updates and improvements (Table 1). The aim was and still remains to obtain a 

‘human pan-genome’, defined as ‘the nonredundant collection of all human DNA 

sequence present in the entire human population’21. In this respect a good reference 

genome should represent the entire human genetic variability as much as possible. 

The last reference assembly, called GRCh38 and published in December 2013, is 

now the reference genome most able to satisfy this necessity.
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Release name Date of release UCSC version Total sequence length 

NCBI Built 33 April 2003 hg15 3,104,781,186

NCBI Build 34 July 2003 hg16 3,091,959,510

NCBI Build 35 May 2004 hg17 3,091,649,889

NCBI Build 36 March 2006 hg18 3,104,054,490

GRCh37 February 2009 hg19 3,137,144,693

GRCh38 December 2013 hg38 3,209,286,105

Table 1: Human reference genome releases since 2003. Data from NCBI website41. 

1.2.2 The GRCh37 and GRCh38 assembly model 

The  first  assembly  models  allowed  a  simple  linear  genome  sequences 

representation, with low diversity in sequence and structure. It was thought that the 

genome assembly should be represented by a single 'Golden Path', that is a non-

redundant chromosome sequence that would fully represent the sequence at  all 

loci42.  The  following  and  progressive  identification  of  large-scale  structural 

variations  and regions  with complex allelic  diversity  unveiled  the limit  of  this 

model for those genomic regions that required more than one sequence path. 

In 2007 the Genome Reference Consortium (GRC), consisting of The Genome 

Institute  at  Washington  University,  The  Wellcome  Trust  Sanger  Institute,  The 

European  Bioinformatics  Institute  and  The  National  Center  for  Biotechnology 

Information, formalized a new assembly model (Figure 3)43. This new model was 

used for the first time with the GRCh37 release and then with the GRCh38 release. 

The main advance was the introduction of ‘alternative sequence paths’ in regions 

with  complex  sequence  and  structural  variations.  According  to  this  model: 

i) assembly is constructed by one or more assembly units; ii) sequences for the 

non-redundant haploid assembly are contained in the primary assembly unit, that 

includes also unlocalized scaffolds (known chromosome but unknown location or 

order)  and  unplaced  scaffolds  (unknown  chromosome);  iii)  alternate  loci  and 

patches are placed in separate assembly units. 
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Figure 3. The GRCh37 and GRCh38 assembly model. The figure shows an ideogram 
representation of  the  human genome with  a  blow-up on  chromosome 6.  The primary 
assembly unit  contains  the  chromosome sequence,  unplaced  scaffolds  and unlocalized 
scaffolds.  The  separate  assembly  units  contain  alternate  loci  and  patches.  The  highly 
variant MHC region is represented by 7 alternate scaffolds placed in different assembly 
units, as they are different representations of the same sequence. All patches are placed in 
a unique assembly unit. Red triangles indicate alternate loci, yellow circles represent fix 
patches and blue circles represent novel patches. Reprinted from Church et al.43. 

As a consequence, the new assembly model is neither haploid nor diploid; instead 

it includes alternate loci scaffolds providing an alternate representation of highly 

variable  regions  and  divergent  haplotypes  and  necessary  for  representing 

structurally complex loci. Patches allow the continuous correction of errors (fix 

patches) and addition of alternate  loci  (novel patches) in the assembly without 

changing the chromosome sequences or coordinate system. The introduction of 

patches is considered a ‘minor’ assembly update and in the next ‘major’ assembly 

release fix patches will be introduced as sequence corrections, while novel patches 

will be moved to a proper assembly unit. 

The new assembly model allows to maintain the linear chromosome representation 

and to add improvements and corrections without frequently change the coordinate 

system. Even more importantly, with the possibility to introduce complexity and 

heterogeneity  to  the  assembly, the  model  satisfy  the  need  to  make  the  human 

genome reference a pan-human genome, rather than the representation of single 

individuals  or  population  groups.  For  example,  the  Major  Histocompatibility 
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Complex (MHC) region, known to have a high degree of allelic complexity, is 

represented by 8 different paths in GRCh3842.

1.2.3 From GRCh37 to GRCh38

The  GRCh38  was  released  to  the  International  Nucleotide  Sequence  Database 

Collaboration (INSDC) on December 2013 (GCA_000001405.15) by the GRC. 

The consortium was aware of the efforts required to move to a new assembly, but 

at  the  same  time  it  stated  that  updating  the  coordinate  system  had  become 

essential1. In fact 13 patches releases for GRCh37 were made available on public 

databases in  the period from 2009 to 2013 (GCA_000001405.2 – GCA_00000 

1405.14),  but softwares and file formats were unable to handle the complexity 

introduced and the use of the new information was limited. 

GRCh38 was assembled from the DNA of multiple donors and the gold standard 

Sanger sequencing was used to produce longer reads and more accurate sequences 

than high throughput short read sequencing.

Compared to the previous GRCh37.p13 release (GCA_000001405.14, June 2013), 

the total sequence length of GRCh38 decreases, as well as the total gap length, 

even if the gap number increases (Table 2). The increase in gap count is mainly 

due to the replacement of the single centromere gap on all GRCh37 chromosomes. 

Also  the  number  of  regions  with  alternate  loci  or  patches  increases.  Lastly, a 

26.9.0% increment in exome size is present in GRCh3837. 

Major improvements in the new release include:

I. correction of 8248 erroneous bases, 35 of which were annotated as ClinVar 

variants in GRCh37;

II. addition  of  missing  copies  of  segmental  duplications  with  emphasis  on 

paralogous sequences;

III. introduction of centromere sequence replacing the 3 Mb centromeric gap 

on all GRCh37 chromosomes with modeled centromeres derived from a 

database of centromeric sequences;

IV. introduction  of  261  alternative  scaffolds  (ALT)  to  represent  diverse 

haplotypes in 178 chromosomal regions;

V. reduction of sequence gaps.
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Genome assembly
GenBank accession
Submission date

Total sequence 
length

Gap number Total gap 
length

Regions with 
alternate loci or 
patches

GRCh37.p13
GCA_000001405.14
June 2013

3,234,834,689 271 243,146,473 182

GRCh38
GCA_000001405.15
December 2013

3,209,286,105 349 159,970,007 207

GRCh38.p12
GCA_000001405.27
December 2017

3,257,319,537 349 161,368,351 317

Table 2. Comparison between assemblies. Data from the NCBI website44–46.

Thanks to these improvements, GRCh38 is now the reference assembly most able 

to represent the extent of structural variation and population genomic diversity. 

However it is still not a perfect representation of the human reference genome37. 

The Genome Reference Consortium declared that none of the recently published 

individual human de novo assemblies yet overcome the quality of GRCh38, even if 

some sequences are still missing1. 

Since the first  release of GRCh38 on December 2013 to the submission of the 

latest  GRCh38.p12  release  (GCA_000001405.27,  December  2017),  12  patches 

updates have been submitted. The total sequence length increases, as well as the 

number of regions with alternate loci or patches (Table 2). 

1.2.4 Missing sequences in the human reference genome

As just mentioned, none currently available reference genome can be considered 

entirely complete and correct. One of the main problems are missing sequences. In 

the last decade several studies have addressed the problem of missing sequences in 

the human reference genome and have significantly contributed to the continuous 

update and amelioration of the reference itself. 

In 2010 Li  et al. estimated that the NCBI Build 36.3 lacked about 20-40 Mb of 

novel  sequences21.  This  and  other  preliminary  studies47–49 identified  novel 

sequences absent in the reference genome analyzing only few individuals. More 

recent studies overcome the analysis of individual genomes and discovered novel 

sequences common in the human populations.
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In 2013 Genovese and colleagues proposed a new approach for localizing human 

genome  sequences  that  had  not  been  included  or  mapped  in  GRCh3750.  The 

approach was based on patterns of sequence variation that have been created by 

the admixture of human population. It allowed to successful localize 70 scaffolds 

spanning 4 Mb pairs of unplaced euchromatic sequences. Even more important, 

they  highlighted  the  presence  of  8  new  cryptic  segmental  duplications  (or 

paralogs)  of  known  genomic  sequences;  these  duplications  are  missing  in  the 

reference genome as  they have been considered as the same sequence of  their 

known paralogs. Utilizing the same admixture mapping approach and adding new 

genome data, some months later the authors published a similar study in which 

they  described  the  localization  of  569  scaffolds  containing  almost  20  Mb  of 

sequences unlocalized or missing from GRCh3751. Only 38 of these scaffolds were 

shared with the previous work. 

In the same year a list of gene fragments missing in GRCh37 was provided by 

Chen et al.52. They compared the NCBI human reference genome build 37.2 with 

the Celera genome40 and the genome assembly from the Craig Venter Institute, 

called HuRef genome53. They reported that none of the compared human genome 

assemblies was fully complete and estimated that 3.78 Mb from Celera and 2.37 

Mb from HuRef were either missed from their homologous chromosomes on the 

NCBI 37.2 assembly or partially or completely absent from it. 

In 2014 a study performed by Liu et al. identified 309 missing common sequences 

(micSeqs) with a length of at least 100 bp and present in at least 1% of the human 

population,  but  absent  in  GRCh3754.  They  reported  also  that  on  average  each 

individual had 50 micSeqs comprised of 5 kb or more sequences that were absent 

in the reference genome. The comparison with GRCh38 revealed that sequences 

with similarity higher than 95% were detected in the latest reference genome for 

only  43  of  309  micSeqs.  The  authors  suggested  the  remaining  micSeqs  as 

candidate for integration in the following release. 

With  the  single-molecule  sequencing  of  a  haploid  human  genome,  in  2015 

Chaisson et al. resolved 50 gaps and extended the boundaries of others 40 gaps, 

adding respectively 398 kb and 721 kb of novel sequence to GRCh3755. 
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1.2.5 ‘Decoy’ and ‘sponge’ databases to compensate for missing sequences

In 2014 Li performed the first  study about the incompleteness of the reference 

genome  as  source  of  mistaken  inference  in  NGS  data  analyses38.  The  author 

evaluated the number of heterozygous variants in a haploid genome using three 

different assemblies: GRCh37 and GRCh38 primary assemblies and hs37d5. The 

latter  contains  extra  35.4  Mb  sequences  missing  from  the  GRCh37  primary 

assembly  and  called  ‘decoy’ sequences,  as  they  are  supposed  to  attract  many 

mismapped reads. The number of heterozygous Single Nucleotide Polymorphisms 

(SNPs)  and  insertions/deletions  (INDELs)  called  with  GRCh37  was  double  in 

comparison to hs37d5. This demonstrated that the lack or the under-representation 

of  sequences  in  the  commonly  used  GRCh37  reference  account  for  reads 

misalignments and false positive variants identification. GRCh38 further resolved 

a fraction of heterozygotes called from hs37d5, but it retained some heterozygotes 

called from GRCh37 but not from hs37d5. Li was not able to clarify the source of 

these  false  heterozygous  variants  and  in  general  concluded  that  hs37d5  and 

GRCh38 are more complete than GRCh37. 

One year later Miga et al. focused on the problem of the under-representation of 

repeat-rich sequences in both GRCh37 and GRCh38 in mapping and peak-calling 

steps  of  Chromatin  Immunoprecipitation  Sequencing  (ChIP-Seq)  pipelines39. 

Reads deriving from these missing sequences are forced to map to a small number 

of homologous regions, resulting in inappropriate alignments and high read-depth 

signals. To address this problem, they constructed mapping targets, defined as the 

‘sponge’ sequence database,  that represent roughly 8.2% of the HuRef genome 

generally omitted from the reference assembly. The sponge database provides a 

larger representation of sequences (128,636 fasta sequences, 201 Mb) compared to 

the previously published decoy genome (4,715 fasta  sequences,  35.4 Mb).  The 

integration of this wider database in standard mapping and peak-calling protocols 

lead to a 10-fold reduction in bases aligned to the so called ‘blacklisted regions’, 

i.e. a collection of signal artifact regions in the human genome56. 

Despite the more accurate representation of segmental duplications and alternate 

loci in the latest release of the human reference genome1, the problem of missing 

sequences concerns also GRCh38 and in December 2014 the Decoy version 1 for 
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GRCh38 (hs38d1) with a total length of 5.7 Mb was submitted to NCBI57. The 

inclusion of these sequences in the read alignment process allows a better read 

mapping of highly repetitive sequences that are difficult to align58. 

1.2.6 Segmentally duplicated genes not represented in the reference genome

As  mentioned  above,  a  source  of  missing  sequences  in  the  human  reference 

genome  is  the  presence  of  cryptic  segmental  duplications  of  known  genomic 

sequences50. The problem of copy number-variable genes incorrectly classified as 

diploid  in  the  reference  genome was  studied  in  2010 by Sudmant  et  al.59.  By 

analyzing 159 human genomes from the 1000 Genome Project, they discovered 

173 segmentally duplicated regions present in the majority of genomes with a copy 

number  greater  than  that  of  the  reference  genome.  Among  the  44  ‘hidden’ 

duplicated gene families,  they cited  ANKRD (about  six missing copies),  NBPF 

(more  than  nine  missing  copies)  and  NPIP (about  five  missing  copies)  gene 

families. In 2015 always Sudmant and colleagues sequenced the genome of 236 

individuals  from  125  different  human  populations  and  identified  2,026  loci 

(corresponding to 6.2 Mbp) of fixed-copy 2 in all human genomes but absent from 

the reference genome60. 

It is well known that duplicated genes can gradually accumulate mutations over 

time,  becoming  non-functionalized,  sub-functionalized  or  neo-functionalized61. 

However, they may retain a high degree of sequence homology, especially if they 

duplicated recently. These paralogous differences are known to contribute to the 

false positive variants calls in NGS analysis62. A database of nucleotide variants in 

duplicated gene loci was published in 201162,63, but it was based on the NCBI build 

36.3 of the reference genome and it has not been updated. 

Given the difficulty in distinguishing variants between duplicated genes, in 2013 

Nuttle et al. proposed a sequencing-based method for genotyping duplicated genes 

using molecular inversion probes (MIPs), short oligonucleotides designed to target 

unique paralogous sequences variants64. 

However, the identification of variants in duplicated genes is still a challenging 

task and these regions are often excluded from NGS data analysis as considered 

low-confidence regions65,66. 
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1.2.7 GRCh38 in NGS data analysis

In  2017 the  Genome Reference  Consortium published  a  paper  to  describe  the 

updates introduced with the release of the latest human reference genome and the 

improvements provided by GRCh38 compared to GRCh37 on genomic analysis1. 

They mapped genome reads on the GRCh37 and GRCh38 primary assemblies and 

to  the  GRCh38  full  assembly,  which  consists  of  the  primary  assembly  plus 

alternate loci and patches42. They reported that 64.32% of the unmapped reads in 

GRCh37 mapped to the GRCh38 primary assembly, mainly on new sequences 

added at GRCh37 gaps. These data confirmed GRCh38 as a more robust mapping 

target.  They reported also that  23.71% of the unmapped reads in  the GRCh38 

primary  assembly  mapped  to  the  GRCh38  full  assembly,  thanks  to  the  more 

accurate  representation  for  population  variation  provided  by  alternate  loci. 

Furthermore, the read mapping was investigated considering only the 2.6 Gb of 

unchanged reference sequence: 4.19% of reads mapped uniquely but imperfectly 

to a not modified region of GRCh37 mapped to a different location in GRCh38. In 

many  cases  this  new  location  corresponded  to  GRCh38  centromeres.  In 

conclusion,  Schneider  et  al. recommended  to  use  GRCh38  as  substrate  for 

genomic analyses.

In  the  same  period  Guo  et  al. analyzed  30  exomes  using  both  GRCh37  and 

GRCh38 and quantified the difference in using the two releases37. First of all, all 

30  samples  showed  an  improved  mapping  rate  with  GRCh38,  in  particular  in 

exome regions. Moreover, the number of both Single Nucleotide Variants (SNVs) 

and  INDELs identified  with  GRCh38 decreased;  also  fewer  structural  variants 

were identified using GRCh38. 

The higher percentage of reads mapped to GRCh38 compared to GRCh37 was 

confirmed also by the realignment of 1000 Genomes Project reads to GRCh38 

performed by Zheng-Bradley  et al. in 201758. In this study they used a complete 

version of GRCh38 that includes the primary assembly, the mitochondrial genome, 

unlocalized  contigs  (known  chromosome  but  unknown  location  or  order), 

unplaced contigs (unknown chromosome), the Epstein-Barr virus (EBV) sequence, 

alternative  contigs,  decoy  sequences  and  more  than  500  HLA sequences.  To 
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manage a such complex reference, they performed the alignment with a new BWA 

version (v. 0.7.12) able to handle alternate contigs. 

Although the documented improvements in using GRCh38, researchers have been 

slow to switch to the latest human reference genome and GRCh37 is still largely 

being used.  It  was calculated that  in  2016 the total  number of GRCh38 BAM 

submissions  to  the  NCBI Sequence Read Archive  (SRA) represented only one 

third of the total number of GRCh37 BAM submissions; furthermore in the period 

October 2013 - December 2016 the total amount of CRAM submissions to the 

European  Nucleotide  Archive  (ENA)  consisted  of  39%  GRCh38  and  60% 

GRCh371.  Several  reasons  explain  the  hesitation  of  researchers  to  switch  to 

GRCh38,  first  and foremost  the  delay in  updating analysis  pipelines  and tools 

previously developed on GRCh37 reference. For example only with the Torrent 

Suite™ Software v5.2.1 (17 October 2016) (Thermo Fisher Scientific), GRCh38 

was introduced as optional reference to be used67. 

1.2.8 Towards the graph of human variation

In the last years a new idea of the assembly model is spreading in the scientific 

community: the graph-based assembly, with edges representing all variation found 

within  the  source  sequences  (Figure  4).  To better  describe  human  diversity,  a 

genome graph that compactly includes an ensemble of possible sequences would 

be more appropriate than a single reference genome68. 

One of the first attempts for creating a graph-based genome was made in 2015 by 

Dilthey  et al.69;  they proposed a population reference graph (PRG) to represent 

known genetic variation combining multiple reference sequences and catalogues of 

variation. 

A very recent work carried out by a task team of the Global Alliance for Genomics 

and  Health  (GA4GH)  reported  different  methods  for  graph  construction  and 

demonstrate that, in comparison to GRCh38, genome graphs improve the fractions 

of reads that map uniquely and perfectly70.

The  task  is  surely  not  trivial  and  researchers  have  explored  the  different 

possibilities for solving some aspects, for example how to define the coordinate 

systems71 and the handling of hundreds of different sequences that overlap each 
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genomic location. With this premises, further efforts will be necessary not only to 

define the new model of the reference genome, but also to develop databases and 

tools able to support it. With this scope, the first graph genome toolkit have been 

recently developed by Rakocevic and colleagues72. The toolkit includes a Graph 

Genome Aligner, which maps sample reads to the Graph Genome Reference taking 

into  account  many  alternate  haplotypes  for  each  locus,  and  a  Graph-Genome-

Assisted  Variant  Caller. The  authors  claimed  that  their  pipeline  improves  read 

mapping sensitivity and improves SNP recall by around 0.5% over the coupled use 

of BWA and GATK. 

At present, the graph-based assembly seems to be the most promising alternative 

to represent the human genome reference. 

26



Chapter 2

Project outline

The previous introductory paragraphs describe the state of the art of the human 

genome reference, the route taken to date and the way forward. In this perspective, 

my PhD project aimed to contribute to the identification of further inconsistencies 

in  the reference genome and to determine  the impact  of  these inaccuracies  on 

exome and genome sequencing analyses. 

The work originated from the analysis of a heterogeneous dataset of 222 exomes 

produced at  the CRIBI center of the University of Padua using the Ion Proton 

technology (Thermo Fisher  Scientific).  The 222 samples  derived from patients 

included into different  medical  studies  and from healthy controls.  Surprisingly, 

using the GRCh37 reference genome in the alignment and variant calling steps, I 

found that some variants were unexpectedly frequent and, given the heterogeneity 

of  the  projects  involved,  they  were  supposed  to  be  not  correlated  with  any 

pathology. I defined variants found with an allelic frequency higher than 50% as 

high frequency (HF) variants. It should be considered that the reference genome 

should ideally contain the most common alleles in the population and, as a result, 

variants with allelic frequencies above 50% should not be theoretically caught. 

Interestingly,  when  I  performed  the  alignment  and  the  variant  calling  with 

GRCh38, the latest release of the human reference genome, I found that the large 

majority of HF variants were again identified.

First of all, I excluded the possibility that HF variants might be instrument-specific 

sequencing  errors.  For  this  purpose  I  performed  some technology  assessments 

using independent datasets obtained with Illumina and SOLiD sequencers. As will 

be further detailed, I found that exomes obtained by different technologies exhibit 

a largely overlapping set of these HF variants, indicating that the problem was not 

due to artefacts of a particular chemistry or sequencing platform.

It  was clear that the nature of HF variants should be found elsewhere.  Thus, I 

proposed  a  wide  range  of  analyses  to  discover  inconsistencies  in  the  human 

reference genome, both in terms of assembly and nucleotide sequence. In fact, as 
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extensively  discussed  above,  an  incomplete  or  not  entirely  correct  reference 

genome could cause the identification of false positive variants and, as a results, 

errors  in  the  interpretation  of  exome  data38.  Importantly,  this  applies  both  to 

GRCh37 and GRCh3838.

The literature reports that several thousand positions of the reference genome do 

not carry the major allele of the population27,74. In these positions, defined as Minor 

Alleles  in Reference (MAiRs),  variant  callers identify an alternative allele  that 

indeed  represent  the  most  common  one,  thus  increasing  the  number  of  false 

positives.  To identify  HF  variants  in  the  Ion  Proton  dataset  falling  in  MAiR 

positions, I analyzed their allelic frequencies in three different variant databases. A 

genomic position was marked as MAiR if the reference allele frequency was lower 

than any alternative allele frequency in all three databases. Using GRCh37 I found 

18,839 HF variants mapped on MAiRs. I further checked whether they have been 

corrected in GRCh38 and found that this  occurred only for 1,808 HF variants, 

while the remaining 17,031 were unchanged.

MAiRs  undoubtedly  provide  a  very  easy  and  satisfactory  explanation  of  the 

identification of HF variants. However, even after removing what is reported as 

common variant  in  the database with appropriate  tools27,  many shared variants 

were  still  remaining.  Therefore,  the  presence  of  some  HF  variants  cannot  be 

explained only by MAiRs.

A closer  look at  some of the HF variants revealed that  assembly errors  in  the 

reference genome may also be involved in the problem. In particular, I observed 

that  the  sequence  coverage  was  consistently  higher  than  the  average  in  some 

specific  regions  of all  individuals.  A possible  explanation is  that  there may be 

genomic duplications that are reported as single regions in the reference, which 

could be the source of false variant calling62. This can be experimentally verified 

because any ‘collapsed’ repeated sequence in the reference genome would be the 

target for reads derived from two or more real genomic regions,  resulting in a 

disproportion  between  frequency,  heterozygosity  and  homozygosity  of  alleles. 

Indeed, any difference between two repeats would be seen in all individuals as a 

heterozygous variant mapping on the ‘collapsed’ reference. Figure 5 provides a 

schematic representation of a tandem duplication that in the reference is collapsed 
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into a single region.

To prove my hypothesis I performed a statistical test to compare the observed and 

the expected heterozygous genotype frequency of each variant. Overall, in the Ion 

Proton  exome  target  I  found  45  gene  presenting  variants  with  unbalanced 

heterozygosity in GRCh37. I decided to investigate whether or not the reference 

genome of these 45 ‘unbalanced’ genes was modified in the GRCh38 release. I 

selected reads previously mapped on the unbalanced genes and I re-mapped them 

to GRCh38. 

Figure 5. Hypothetical genomic region with a tandem repeat. The hypothetical tandem 
repeat  is  almost  identical  with  the  exception  of  four  positions:  A,  B,  C  and D.  This 
condition may be ancestral and shared by the entire population, repeat 1 having A1, B1,  
C1, D1 and repeat 2 having A2, B2, C2, D2. Two new variants are also shown as N1 and 
N2. Sometimes this kind of repeat may be misassembled in the reference genome, being 
reported as a single collapsed sequence, as shown in the bottom frame on the right. As a 
result, the four loci A, B, C and D will show a heterozygous genotype in all the individuals 
and the consequent variant call in all the loci, which is incompatible with the genetics.

This analysis demonstrated that for only 15 genes a duplicated region have been 

reported in the primary assembly of GRCh38. As a result, these amended genes 

lost  their  unbalanced  variants  in  GRCh38.  However,  the  remaining  30  genes 

remained unchanged or only partially corrected in GRCh38. 

Being aware of the importance of these findings, I decided to move my analyses 

towards a new and wider direction and I extended the analysis to whole genome 

sequencing data available at the 1000 Genomes Project website75.

First of all, I found that the surprisingly high number of HF variants observed in 

exomes was also confirmed in whole genomes. Then I evaluated the total number 

of  HF  variants  found  in  GRCh37  that  have  been  amended  in  GRCh38  and  I 

observed that this occurred for only the 3% of HF variants. These findings clearly 
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suggested that a further deep revision of base pair level errors is necessary to make 

the  reference  genome  the  accurate  representation  of  the  most  common  DNA 

sequence in the population. 

In  addition  to  base  pair  level  errors,  I  detected  several  exomic  regions  hiding 

duplications  not  reported  in  GRCh37.  In  search  of  all  the  possible  unreported 

duplicated  regions  in  the  entire  genome,  I  performed  a  statistical  test  for  the 

unbalanced heterozygosity on the 1000 Genomes Project data. Many regions with 

a strong unbalanced heterozygosity were detected. All these unbalanced regions 

might conceal a duplication and require to be carefully revised.

Results  described  so  far  highlighted  two  important  aspects.  Firstly,  all 

resequencing analyses should take into account that false positive variants could 

originate  from  the  reference  used.  Secondly,  although  the  improvements  of 

GRCh38, some reference driven problems are still detectable. Exome and genome 

data  analyses  allowed  me  to  accurately  identify  some  of  these  problems,  for 

example unreported gene duplications and genomic positions that do not represent 

the  most  frequent  alleles.  I  believe  that  these  findings  should  encourage  the 

Genome  Reference  Consortium  to  update  and  correct  the  human  reference 

genome. Moreover, providing a repertoire of the recurrent miscalls, my work will 

help  geneticists  in  analysing  exome  data,  facilitating  the  process  of  variant 

prioritization. 
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Chapter 3

Materials and Methods

3.1 Exome Datasets

In  this  study, three  different  exome datasets  were  used.  The main  dataset  was 

composed  by  222  exomes  enriched  with  the  Ion  AmpliSeq  Exome  panel  and 

sequenced with the Ion Proton system (Thermo Fisher Scientific)  at  the CRIBI 

facility at the University of Padua76. These samples came from a wide range of 

projects including cohorts of individuals, trios and individual patients (Table 3). 

The second dataset included 22 exomes enriched with the Illumina TruSeq Exome 

panel and sequenced with the Illumina NextSeq 500 platform at CRIBI76. The third 

dataset referred to the study published by de Ligt et al.77 on 300 exomes enriched 

with SOLiD-optimized target enrichment and sequenced with SOLiD 4 System 

(Life Technologies), belonging to 100 trios composed of patients with unexplained 

severe intellectual disability and their unaffected parents78.

Project
Exomes 
number

1 47

2 45 

3 29 

4 22 

5 18 

6 17 

7 10 

8 9

9 9 

10 6

11 5 

12 2 

13 2 

14 1 

Total exomes 222 

Table 3. Number of Ion Proton exomes for each project.
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3.2 Alignment and variant calling

Unless otherwise specified, in this work I took as reference genome the GRCh37 

primary assembly, that is about 3.1 Gb long, containing one single consensus base 

per  position.  However, full  assemblies  are  also available,  which  consist  of  the 

primary assembly plus alternate loci and patches42. In this respect, the GRCh37 

and GRCh38 full assemblies contain respectively 31 and 46 Gb. 

3.2.1 Ion Proton dataset

Exomes  were  sequenced  to  reach  a  final  mean  coverage  of  80x  and  a  target 

uniformity  higher  than  90%.  Reads  were  aligned  against  the  GRCh37,  as 

recommended by the manufacturers of the enrichment kits. Alignment and variant 

calling were carried out according to the Torrent Suite 5.0 exome analysis pipeline. 

Briefly, alignment was performed with tmap (v. 5.0 with the following parameters: 

-J  25  --end-repair  15  --do-repeat-clip  stage1  map4)  and  variant  calling  was 

performed with the Torrent Variant Caller (v. 5.0) with germline high stringency 

parameters, as supplied by the producer. Variants were merged into a unique file 

using  CombineVariants  of  Genome  Analysis  Toolkit  (GATK  v.  3.6)  and  then 

normalized  applying the  method proposed by Tan and colleagues79 in  order  to 

eliminate different representations of the same variant. Figure 6 recapitulates the 

main steps of the Ion Proton exome pipeline from the alignment to the variants 

collection in the VCF file.

Variant  annotation,  based  on  GRCh37.82  version  of  Ensembl  transcripts,  was 

performed using an in-house software. 

In  2014  Life  Technologies  provided  a  new  smaller  exome  BED  file,  the  Ion 

AmpliSeq  Exome  Hi-Q  Effective  Regions,  without  actually  changing  the 

AmpliSeq Exome panel. In this file poor performing regions are masked during the 

variant calling step. According to the manufacturer, the usage of this file should 

guarantee a higher confidence variant calling. To remove possible discrepancies in 

our dataset caused by the usage of different BED files, only variants covered by 

the new BED file were considered in this study. The complete list of these variants 

is available at https://github.com/margheritaferrarini/PhD-Thesis-Exome-Data. 
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The 222 Ion Proton exomes were also aligned on GRCh38.p10, downloaded from 

Ensembl. Alignment and variant calling were performed according to the Torrent 

Suite 5.0 exome analysis pipeline. The target regions (release 2014) were migrated 

from GRCh37 to GRCh38 coordinates using CrossMap (v 0.2.5)80. Variants from 

all samples were merged and processed as described above. 

Figure 6. Ion Proton exome pipeline. 

3.2.2 Illumina dataset

Each sample was sequenced with 75 bp paired-end reads by Illumina NextSeq 500 

to  a  final  average  coverage  of  103x.  Reads were  aligned against  the  GRCh37 

primary assembly. Alignment and variant calling were performed according to the 

recommendations of the GATK Best Practices81. Briefly, reads were aligned using 

BWA mem (v. 0.7.12)  with  default  parameters.  The resulting  BAM files  were 

further processed by Picard MarkDuplicatesWithMateCigar (Picard v. 1.55) and 

GATK  BaseRecalibrator  (GATK  v.  3.6).  Variant  calling  was  performed  using 

GATK HaplotypeCaller (GATK v. 3.6) with default parameters. Single VCF files 

were then combined with the GATK JointGenotype (GATK v. 3.6). The collected 

variants were firstly filtered using GATK VariantRecalibrator (GATK v. 3.6) and 

then normalized as previously described.  The complete list  of these variants is 

available at https://github.com/margheritaferrarini/PhD-Thesis-Exome-Data.
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Figure 7 recapitulates the main steps of the Illumina exome pipeline from FASTQ 

files preprocessing to variants filtering.

Figure 7. Illumina exome pipeline.
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3.2.3 SOLiD dataset

VCF  files  of  de  Ligt  et  al.77 were  downloaded  from The  European  Genome-

phenome Archive78. Variant normalization was performed as indicated above.

3.3 Identification of exome variants mapped on MAiRs

Minor Allele  in  Reference (MAiR) are those positions  of  the human reference 

genome with an allele that is not the most frequent in the population27. To identify 

variants in the Ion Proton dataset falling in these positions their allelic frequencies 

were  analyzed  in  3  different  variant  databases:  i)  the  Single  Nucleotide 

Polymorphism database (dbSNP)82,83 version 144, modified to recover old variants 

excluded from this release but present in the online version; ii) the NHLBI Exome 

Sequencing  Project  (ESP)  database  version  ESP6500SI-V284;  iii)  the  Exome 

Aggregation  Consortium  (ExAC)  database  version  0.3.185,86.  When  different 

populations  frequencies  were  present,  only  the  total  one  was  considered.  A 

genomic position was marked as MAiR if the reference allele frequency was lower 

than any alternative allele frequency in all three databases. 

3.4 Impact of MAiR positions at the protein level

Variants in GRCh37 MAiR positions confirmed in GRCh38 were annotated using 

both  SnpEff  (v.  4.2)87 and  VEP  (v.  84)88,  employing  respectively  UCSC  and 

RefSeq  transcripts.  These  two  different  annotations  were  chosen  to  avoid 

transcript-dependent  biases.  Missense  variants  were  selected  from  the  two 

annotated VCF files  and analyzed with an in-house Python script  (available  at 

https://github.com/margheritaferrarini/PhD-Thesis-Scripts, file MAiR_Uniprot.py) 

to allocate them to one of the following three classes: i) match to the manually 

reviewed  human  protein  sequence  of  SwissProt,  ii)  match  to  the  Human 

Polymorphisms and Disease Mutations release 2017_05 of UniProt, iii) neither of 

the above.

3.5 Statistical test on heterozygous genotype frequencies 

The Ion Proton dataset was searched for variants with unbalanced heterozygous 

genotype  frequency.  Each  variant  was  tested  with  a  one-tailed  binomial  test 
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between  observed  and  expected  heterozygous  genotype  frequencies.  Observed 

frequencies were calculated as the number of times that genotype occurred divided 

by  the  total  number  of  exomes  (222  exomes).  Expected  frequencies  were 

computed with the Hardy-Weinberg formula in which the heterozygous genotype 

frequency can be calculated as x=2pq, where q is the alternative allele frequency, 

i.e. the number of times that specific allele was found divided by the total allele 

number (444 alleles), and p is the reference frequency calculated as 1-q. Resulting 

probabilities were corrected for false discovery rate using the Benjamini-Hochberg 

procedure89.  Variants  were  considered  significantly  unbalanced  if  the  corrected 

probability was lower than 0.01. This analysis was performed only for biallelic 

variants,  defined as  loci  that  have two observed alleles:  the  reference  and one 

alternative allele.

The same test  was performed also on whole genome data,  in particular on the 

GRCh37  dataset  of  Phase3  1000  Genomes  Project.  In  this  case  observed 

frequencies were computed as the number of heterozygous genotypes divided by 

the total number of genomes and the alternative allele frequency (q in the x=2pq 

formula) was reported in the VCF file. A WIG* format file was then obtained as 

follow: for each chromosome the percentage of resulting unbalanced variants on 

the  total  number  of  biallelic  variants  was calculated  in  non-overlapping 10 kb 

sized windows. Values range from 0.0 to 100, with 0.0 indicating the absence of 

unbalanced variants in the given window; NaN values indicate that any biallelic 

variant was found in the given window. 

These analyses were performed with several  in-house developed Python scripts 

(available  at  https://github.com/margheritaferrarini/PhD-Thesis-Scripts,  files 

unbalanced_heterozigosity_EXOMES.py,  unbalanced_heterozigosity_1000G.py, 

unbalanced_heterozigosity_gnomAD.py). 
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*WIG (wiggle) format: The WIG format is designed for display of dense continuous data such as probability 
scores. A WIG file consists of one of more blocks, each containing a declaration line followed by lines 
defining data elements. There are two main formatting options: fixedStep and variableStep. VariableStep 
format is designed for data with irregular intervals between data points and is the more commonly used 
format. It begins with a declaration line, followed by two columns containing chromosome positions and data 
values. FixedStep format is designed for data with regular intervals between data points and is the more 
compact of the two wiggle formats. It begins with a declaration line, followed by a single column of data 
values.  
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3.6 Confirmation of unbalanced variants of MAP2K3

VCF  files  containing  variants  in  chromosome  17  were  downloaded  from  two 

different databases: Genome Aggregation Database (gnomAD) version 2.0.186 and 

1000 Genomes Project database Phase1 release90 and Phase3 release91. Using the 

one-tailed binomial test described above, variants with a heterozygous genotype 

frequency significantly higher than the expected were selected and subsequently 

compared with variants identified in MAP2K3 in the Ion Proton dataset.

3.7 Frequency of bases updated in GRCh38 

VCF  file  with  the  8,248  bases  updated  in  GRCh38  by  Schneider  et  al.1 was 

downloaded  from  Genome  Research  Supplemental  Material92.  Frequencies  of 

variants in these positions were downloaded from 1000 Genomes Project database 

Phase1 release90, the same used by Schneider et al., and plotted with an in-house 

developed Python script (available at  https://github.com/margheritaferrarini/PhD-

Thesis-Scripts, file schneider_plot.py). 

3.8 HF variants in 1000 Genomes on GRCh37 and GRCh38

1000 Genomes Project VCF files Phase3 for both GRCh37 and GRCh38 were 

collected  respectively  from  1000  Genomes  ftp  website91 and  Ensembl  ftp 

website93. Variants reported with frequencies higher than 50% were marked as high 

frequency (HF). A HF variant was considered amended if it  was called against 

GRCh37, but not in GRCh38. These analyses were performed using an in-house 

pipeline  (available  at  https://github.com/margheritaferrarini/PhD-Thesis-Scripts, 

file 1000G_phase3_comparison.job).

3.9 Analysis of the physical coverage in mate pair whole genome data

Whole genome sequencing mate pair data were downloaded from the Genome In 

A Bottle project94.  Samples were parents of an Ashkenazi Trio95 and a Chinese 

trio96. For details on libraries preparation and sequencing refer to the work of Zook 

and colleagues97. Reads were aligned against the GRCh37 and GRCh38 primary 

assemblies with BWA mem (v. 0.7.12 with default parameters). An in-house script 

(available  at  https://github.com/margheritaferrarini/PhD-Thesis-Scripts,  file 
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local_tracks.py) was used to produce a physical coverage profile in MAP2K3 and 

KCNJ2 regions on chromosome 17.

3.10 Identification of conserved domains in lncRNAs

The method for prioritizing variants in lncRNAs is based on the identification of 

conserved functional domains by a comparative genomics approach. The pipeline 

structure consists of three different steps: i) identification of orthologous genes of 

the  human  lncRNA in  the  genomes  of  28  primates;  ii)  multiple  alignment  of 

orthologous  sequences;  iii)  identification  of  conserved  domains  in  the  human 

lncRNA. Each of these steps is detailed below. 

3.10.1 Identification of orthologous genes in the genomes of 28 primates

This first step to identify orthologous genes was developed with a Python3 script 

(available  at  https://github.com/margheritaferrarini/PhD-Thesis-Scripts,  file 

orthologous_genes_identification.py).  It  requires  four  different  inputs:  i)  a 

FASTA* format file with the human lncRNA sequence; ii) a BED** format file 

with the human lncRNA genomic coordinates in GRCh38; iii) the GRCh38 human 

reference genome; iv) a list of files with primate genomes, all of them in FASTA 

format  and  downloaded  from  the  NCBI  website98.  The  28  primate  organisms 

included  in  the  analysis  are:  Aotus  nancymaae,  Callithrix  jacchus,  Carlito  

syrichta,  Cebus  capucinus,  Cercocebus  atys,  Chlorocebus  sabaeus,  Colobus 

angolensis, Daubentonia madagascariensis, Eulemur flavifrons, Eulemur macaco, 

Gorilla  gorilla,  Macaca  fascicularis,  Macaca  mulatta,  Macaca  nemestrina, 

Mandrillus  leucophaeus,  Microcebus  murinus,  Nasalis  larvatus,  Nomascus 

leucogenys,  Otolemur  garnettii,  Pan  paniscus,  Pan  troglodytes,  Papio  anubis, 

Piliocolobus  tephrosceles,  Pongo  abelii,  Propithecus  coquereli,  Rhinopithecus  

bieti, Rhinopithecus roxellana, Saimiri boliviensis boliviensis. 

First  of  all,  a  BLAST  alignment  is  performed  between  the  human  lncRNA 
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*FASTA format: A sequence in FASTA format begins with a single-line description, followed by lines of 
sequence data. The definition line (defline) is distinguished from the sequence data by a greater-than (">") 
symbol at the beginning. It is recommended that all lines of text be shorter than 80 characters in length.
**BED (Browser Extensible Data) format: A BED file is a tab-delimited text file that defines a feature track. 
BED lines have three required fields and nine additional optional fields. The first three required BED fields 
are the name of the chromosome or scaffold, the starting position of the feature in the chromosome or scaffold 
and the ending position of the feature in the chromosome or scaffold. The optional fields report additional 
information. 
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sequence  and  the  genome of  the  first  primate.  BLAST default  parameters  are 

maintained  at  this  stage,  including  the  soft  masking  option,  as  suggested  by 

Moreno-Hagelsieb and Latimer99. With this option, BLAST uses the database mask 

only during the initial word-finding phase.

The BLAST match with the highest  bit-score is considered the best hit. The  bit-

score is defined as the required size of a sequence database in which the current 

match could be found just  by chance.  Thus, the higher the  bit-score,  the more 

significant the match is. If two matches have the same  bit-score, the  E-value is 

considered. The E-value is the number of expected hits of similar score that could 

be found just by chance.  Thus, the lower the  E-value,  the more significant the 

match is. If two matches have also the same  E-value, more than one best hit is 

present. 

A further BLAST alignment is performed between the identified best hit sequence 

and  the  GRCh38  human  reference  genome.  BLAST  default  parameters  are 

maintained again.  Start  and end positions of this  second BLAST alignment are 

then compared with genomic coordinates of the human lncRNA: if start and end 

positions correspond to lncRNA coordinates or are included between them, the 

best  hit  match  resulting  from  the  first  BLAST  alignment  is  considered  the 

orthologous  gene  of  the  human  lncRNA.  Since  the  orthologous  gene  and  the 

human lncRNA, each in a different genome, find each other as the best scoring 

match in the other genome, they are defined ‘reciprocal best hits’ (RBHs).

Both BLAST alignments are then repeated for each of the remaining 27 primates. 

At the end of this first step, an output FASTA format file is produced with the 

human lncRNA sequence followed by the 28 orthologous sequences. If one of the 

28  primate  genomes  lacks  the  orthologous  sequence,  the  organism  will  be 

excluded from the following steps. 

3.10.2 Multiple alignment of the orthologous sequences

In this second step of my pipeline, the FASTA file with the human lncRNA plus 

the orthologous genes is used to perform a multiple sequence alignment. For this 

purpose,  the  T-Coffee  package  developed  by  Notredame  et  al.100 was  chosen 

because, according to several benchmarks, it  is on overall  much more accurate 
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than  the  most  widely  used  ClustalW101,102.  At  each  alignment  step of  the 

progressive alignment, T-Coffee considers information from all sequences, not just 

those being aligned at that stage. The increase in accuracy makes T-Coffee slower 

than ClustalW (about N times for N Sequences)102. Since the number of sequences 

to  align  is  very  low (only  29  sequences)  and  since  the  program is  by  default 

parallelized, meaning that it can use multiple cores when running on a cluster, T-

Coffee slowness does not affect the compute time of the pipeline. Moreover, T-

Coffee  was  preferred  rather  than  other  multiple  sequence  aligners,  such  as 

MUSCLE103 and  MAFFT104,  because  their  usage  is  recommended  when  the 

number of sequences to align is very high. 

The Linux/Unix T-Coffee version 11.00.8cbe486 is used as follows:

t_coffee  -seq  sequences.fa  -mode  regular  -output  fasta_aln 

score_html -n_core=12

With this command line three different output files are obtained: i) the alignment 

file in FASTA format (.fasta_aln); ii) the alignment file in html format (.html); iii) 

the guide tree in Newick* format (.dnd). This last file can be visualized in R with 

the  Analyses  of  Phylogenetics  and Evolution  (ape)  package (version  5.1).  The 

guide  tree  is  not  a  phylogenetic  tree,  it  is  used  in  the  alignment  process  for 

clustering the sequences.

3.10.3 Identification of conserved blocks in the human lncRNA

The last step defines a set of conserved blocks starting from the multiple sequence 

alignment by using a program called Gblocks, developed by Castresana in 2000105. 

Gblocks is able to eliminate poorly aligned positions and divergent regions of a 

DNA alignment.  The conserved blocks  selected by Gblocks satisfy the lack of 

large segments of contiguous non-conserved positions, the lack or low density of 

gap positions and the high conservation of flanking positions. Several parameters 

can be modified to make the selection of blocks more or less stringent. 
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a way of representing graph-theoretical trees with edge lengths using parentheses and commas.



The  Linux  Gblocks  version  0.91b  is  used  as  follows  (see  the  Gblocks  online 

documentation106 for a detailed explanation of each parameter):

Gblocks  alignment.fasta_aln  -t=d  -b1=X  -b2=Y  -b3=3  -b4=3  -b5=a 

-s=y -p=t -p=y -v=10000 -n=n -u=n

In  this  case  b1 (threshold  for  the  definition  of  conserved  positions)  and  b2 

(threshold for the definition of flank conserved positions) are equal to X and Y, 

since  they  should  be  set  every  time on the  basis  of  the  number  of  previously 

identified orthologous sequences. 

With this command line two different output files are obtained: i) the alignment 

file with the selected blocks in FASTA format (.fasta_aln-gb); ii) the HTML file 

with colored conserved positions (.fasta_aln-gb.htm). 
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Chapter 4

Results and Discussion

4.1 Recurrent variants in the Ion Proton exome dataset

The work presented in this thesis originated from the analysis of a heterogeneous 

dataset of 222 exomes produced at the CRIBI center using the Ampliseq chemistry 

and the  Ion  Proton technology, as  detailed  in  the  Materials  and Methods.  The 

strength of this dataset came from the fact that the samples derived from patients 

included  into  different  medical  studies  and from healthy  controls.  The  overall 

analysis of the data led to the identification of 264,303 variants called against the 

GRCh37 reference genome, including 239,255 SNPs and 25,048 small INDELs 

(14,075 deletions and 10,973 insertions). Among the total variants, 245,088 were 

detected as biallelic, whereas 19,215 were multiallelic.

Surprisingly, I found that 9,313 variants were present in more than 90% of the 

individuals  and,  among these,  2,349 variants  were shared  by the  100% of  the 

individuals. Given the heterogeneity of the projects involved, these variants were 

supposed to be not correlated with any pathology. I immediately realized that such 

a high number of recurrent variants was unexpected, considering that the average 

number  of  variants  in  each  sample  was  48,785.  This  finding  was  even  more 

surprising since a considerable number of recurrent variants was reported with a 

low frequency in databases and in some cases they were not reported at all  as 

known  variants,  making  difficult  the  process  of  recognizing  them  as  false 

positives. Interestingly, when I used the GRCh38 reference genome in the mapping 

and variant calling steps, I found that 8,132 out of 9,313 remained uncorrected.

The above values refer to the presence of variants in a diploid genome. In terms of 

allelic frequency, I  found that 3,898 variants had an allelic frequency equal  or 

greater than 90%; of these, 841 scored 100% allelic frequency, being homozygous 

in all the samples. I defined variants with an allelic frequency higher than 50% as 

high  frequency  (HF)  variants.  A  total  number  of  18,043  HF  variants  were 

identified. 
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It should be considered that the reference genome should ideally contain the most 

common alleles in the population and, as a result, variants with allelic frequencies 

above 50% should not be theoretically caught. Fluctuations due to subsampling 

and/or ethnicity are certainly possible, but cannot explain this high number of HF 

variants. These findings are not completely unexpected because Minor Alleles in 

Reference (MAiRs) are a known problem27,74; however the large number of their 

occurrences was notable. 

4.2 Comparison with Illumina and SOLiD exome datasets

First of all I verified whether the recurrent variants found in more than 90% of the 

exomes could result from Ion Proton specific errors. For this purpose I analyzed 

the  exomes  of  two  independent  datasets  produced  with  Illumina  and  SOLiD 

technologies, using their respective enrichment, sequencing and analysis pipelines, 

as detailed in the Materials and Methods. In Table 4 it can be seen that the large 

majority of variants that occurred in more than 90% of the Ion Proton exomes was 

confirmed also with the Illumina and SOLiD platforms.

Unfortunately,  the  exomic  target  regions  captured  with  the  three  different 

technologies  were  not  precisely  overlapping;  thus,  of  the  9,313  Ion  Proton 

variants, only 6,085 fell in regions covered by the Illumina target and 7,046 in 

regions covered by the SOLiD target (‘on target’ variants in Table 4). 

Ion Proton Illumina control dataset SOLiD control dataset

9313

on target off target on target off target

6085

3228

7046

2267confirmed
not 

confirmed
confirmed

not 
confirmed

6008 77 5733 1313

Table 4. Recurrent variants in Ion Proton exomes and their sharing in Illumina and 
SOLiD datasets. The 9,313 variants found in more than 90% of the Ion Proton exomes 
were analyzed to verify whether they were also present in at least 50% of the exomes 
obtained with Illumina and SOLiD technologies. As the exomic target regions captured 
with the three technologies did not precisely overlap,  ‘confirmed’ and  ‘not  confirmed’ 
refer  to  variants  falling  in  target  regions  shared  between Ion  Proton  and Illumina  or  
between Ion Proton and SOLiD (‘on target’ variants). However, also the number of Ion 
Proton  variants  outside  Illumina  and  SOLiD  target  regions  is  reported  (‘off  target’ 
variants).  A large percentage of variants that  shared the exomic target  was confirmed: 
6,008 of the 6,085 on target variants were confirmed by Illumina (99%) and 5,733 of the 
7,046 on target variants were confirmed by SOLiD (81%). 
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Variants were considered ‘confirmed’ if they were respectively present in at least 

50% of Illumina or SOLiD control datasets. As shown in Table 4, the very large 

majority (99%) of the on target variants were confirmed by Illumina, while 81% 

were confirmed by SOLiD. Unconfirmed variants could either be false positives of 

the Ion Proton or false negatives of the Illumina and SOLiD. Only 41 variants that 

were localized in common target regions were not confirmed in both Illumina and 

SOLiD and therefore these could be Ion Proton specific systematic errors.

4.3 European and total population allele frequencies

All the exomes of the study belonged to European people. I wondered if variants in 

the Ion Proton dataset could present a higher alternative allele frequency in the 

European population in respect to the general population (only frequencies from 

the ExAC database were considered). In fact, the high number of shared variants in 

our samples could be explained as european-specific polymorphisms. The plot in 

Figure 8 shows the almost perfect correlation between the frequencies in the two 

populations, indicating that there is no evidence of a possible bias due to ethnical 

origin of the samples.

Figure 8. Correlation of allele frequencies between European and Total populations. 
Frequencies derived from ExAC database.  Red line shows the high correlation between 
the two datasets.
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4.4 GRCh38 variants comparison

Alignment and variant calling of the Ion Proton dataset were performed also using 

GRCh38 as  genome reference.  I  identified  255,124 variants,  a  smaller  number 

compared to the previous genome release. This was somehow expected as data 

published by Guo and colleagues37 claimed a lower number of SNPs due to the 

improvements introduced in the last release of the human genome reference. The 

number of variants shared between GRCh37 and GRCh38 was 242,259 (91.66% 

of the GRCh37 variants dataset).

4.5 Identification of exome variants mapped on MAiRs

As mentioned above, the literature reports that several thousand positions of the 

reference  genome do not  carry  the  major  allele  of  the  population27,74.  In  these 

positions, defined as Minor Alleles in Reference (MAiRs), variant callers identify 

an alternative allele that indeed represents the most common one, thus increasing 

the number of false positives.

To identify HF variants  in the Ion Proton dataset  falling in  MAiR positions,  I 

analyzed  their  allelic  frequencies  in  three  different  variant  databases  (dbSNP, 

ExAC and ESP databases, see Materials and Methods). A genomic position was 

marked as MAiR if the reference allele frequency was lower than any alternative 

allele frequency in all three databases. Using GRCh37 I found 18,839 HF variants 

mapped  on  MAiRs.  I  further  checked  whether  they  have  been  corrected  in 

GRCh38 and I  found that  this  occurred only  for  1,808 HF variants,  while  the 

remaining 17,031 were unchanged.

I  also  examined  whether  any  of  the  17,031  HF  variants  retained  in  GRCh38 

matched their corresponding protein in the UniProt variation database. I annotated 

the  variants  both  with SnpEff87 and  VEP88,  employing respectively  UCSC and 

RefSeq transcripts. I detected a comparable number of missense variants in the two 

databases: 3,814 with RefSeq and 3,761 with UCSC. I found that ~100 of them 

were  included  in  the  reference  protein  primary  sequence,  indicating  that  the 

alternative allele found at genome level represented the most common amino acid 

at  protein  level.  Moreover, ~2,800 of  missense  variants  were  known as  minor 

protein variants. Finally, ~880 alleles found with high frequency in exomes did not 
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show any known counterpart at the protein level. These data confirm a previous 

finding by Barbitoff et al.74 and indicate that some general revision of the reference 

is required also at the protein level.

4.6 Mining for incongruities

MAiRs  undoubtedly  provide  a  very  easy  and  satisfactory  explanation  of  the 

identification of HF variants. However, the observation that the sequence coverage 

was consistently higher than the average in some specific regions of all individuals 

revealed that assembly errors in the reference genome may also be involved in the 

problem. I hypothesized the presence of gene and region duplications not already 

annotated in the reference genome as one possible cause for a misleading variant 

calling in the target regions. Since these duplicated regions can be enriched and 

sequenced together with the original target gene, the corresponding reads will align 

to an improper position, causing the identification of variants not really present in 

the gene.  Consequently, a  heterozygous genotype should be expected for these 

variants, with the reference allele deriving from the original target gene and the 

alternative allele from the duplicated region. Indeed, as shown in Figure 5 of the 

Introduction, any difference between two repeats in the genome would be seen in 

all individuals as a heterozygous variant mapping on the ‘collapsed’ reference.

To verify my hypothesis, I performed a statistical test to compare the observed and 

the expected heterozygous genotype frequency of each variant. According to the 

Hardy-Weinberg  equation  I  should  expect  that  p2+2pq+q2=1,  where q is  the 

alternative allele frequency and p is the reference frequency calculated as 1-q. This 

null  hypothesis was verified with a one-tailed binomial test,  corrected for false 

discovery as discussed in the Materials  and Methods. Variants were considered 

significantly unbalanced if their corrected p-values were lower than 0.01. 

4.7 Exome target regions with unbalanced heterozygosity

Overall,  in  the  Ion  Proton  exome  target  I  found  753  variants  identified  with 

GRCh37 presenting an unbalanced heterozygosity. In particular I found 145 target 

regions (amplicons) containing more than one unbalanced variant, for a total of 

560 variants spanning over 45 genes. In the process of investigating these regions, 
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I observed that two different groups of aligned reads were always distinguishable: 

reads having all the selected unbalanced variants and reads having none of them. 

This observation suggested a possible different genomic origin of the two pools of 

reads,  even  if  they  aligned  on  the  same  region  using  GRCh37.  This  was  in 

agreement with the hypothesis of duplicated regions not present in the reference 

genome used for the analysis. Therefore I wanted to investigate whether or not the 

reference genome of these 45 ‘unbalanced’ genes was modified in the GRCh38 

release. 

As explain in the Material and Methods, unless otherwise specified, in this work I 

took as reference genome the GRCh37 primary assembly, that is  about 3.1 Gb 

long, containing one single consensus base per position. Full assemblies are also 

available, which consist of the primary assembly plus alternate loci and patches42. 

In this respect, the GRCh37 and GRCh38 full assemblies contain respectively 31 

and  46  Gb.  To better  understand  the  progress  of  the  current  human  reference 

genome, I selected reads previously mapped on the 45 unbalanced genes and I re-

mapped them on GRCh37 and GRCh38 full assemblies using BLAST (with an 

identity percentage cutoff set to 90%). The alignment to the GRCh37 full assembly 

was  useful  to  check  if  duplicated  regions  had  been  introduced  already  in  the 

GRCh37 release in the form of alternate loci or patches. Instead the alignment to 

the GRCh38 full  assembly helped to understand if  these duplications had been 

subsequently inserted in the GRCh38 primary assembly or remained in the form of 

alternate loci or patches. 

Assuming that the highest identity percentage indicated the real genomic origin of 

reads,  BLAST  results  showed  several  possible  scenarios  and  led  to  the 

classification of the 45 unbalanced genes in 5 different classes (Table 5).

I classified 11 genes as ‘unchanged’ in GRCh38 (Table 5, column 5) since both 

classes of reads with unbalanced variants and reads without variants aligned only 

to the target gene, thus indicating that neither duplicated regions nor alternative 

loci had been reported in the latest release of the reference genome. These genes 

still presented the same heterozygosity problem as their unbalanced variants were 

identified also with GRCh38.

Of the remaining genes, only 15 were classified as ‘fully amended’ in GRCh38 
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(Table 5, column 1),  i.e. duplicated in the chromosomal primary sequence. For 

these genes, reads with unbalanced variants aligned to a different position of the 

same chromosome where the target gene localized or to a different chromosome, 

whereas reads with none variant aligned to the target gene. These fully amended 

genes  lost  their  unbalanced  heterozygosity  in  GRCh38.  Among  them  I  found 

PRIM2. This was expected since it had been previously reported as a paralog gene 

misassembled  in  GRCh3750,  which  was  fully  amended  in  GRCh381.  PRIM2 

paralog  contains  only  exons  6-14  of  the  original  transcripts50,  that  actually 

correspond to the exons covered by the enriched target regions with unbalanced 

variants in GRCh37. Since my screening process placed  PRIM2 as an amended 

gene  in  GRCh38,  it  could be considered a  ‘positive control’ that  validates  my 

criteria for classifying genes. 

5  genes  were  only  partially  duplicated  and  they  still  had  some  regions  with 

unbalanced  heterozygosity  (Table  5,  column  2).  An  interesting  case  is  the 

MAP2K3 gene, extensively discussed in the following paragraph.

For other 4 genes reads with unbalanced variants aligned on unplaced scaffolds, so 

the location of the duplication on chromosome is unknown (Table 5, column 3).

Finally, 10 genes were not duplicated, but reads with variants aligned to alternative 

loci  in  the  full  assembly  (Table  5,  column  4).  According  to  the  Assembly 

Terminology  of  the  Genome  Reference  Consortium,  an  alternate  locus  is  ‘a 

sequence that provides an alternate representation of a locus found in a largely 

haploid  assembly’107.  For  example  the  KIR2DL3 gene,  coding  the  killer  cell 

immunoglobulin  like  receptor,  is  known  to  be  highly  polymorphic  in  the 

population108,109;  many  alternate  loci  for  this  gene  were  introduced  in  the  full 

assembly and as a result they ‘trapped’ reads with unbalanced variants. However, it 

should be noticed that highly polymorphic alleles should not produce unbalanced 

heterozygosity when aligned on the primary reference genome. For the majority of 

variants in the genes reported in column 4, I found a heterozygous genotype in all 

the 222 individuals. This was unexpected, as highly polymorphic loci should lead 

to a mixture of homozygous and heterozygous genotypes. Therefore, some of these 

genes should be revised as they could be duplications.
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1 
Fully amended

2
Partially 
amended 

3
Unplaced 
scaffold

4
Alternative loci

5
Unchanged

BCLAF1
CCDC144NL
FRG1
HYDIN
KRTAP4-11
LOC653486*
NBPF10
NOTCH2NL
OR4C3
OR4C45
OR4M2
PDE4DIP
PPYR1*
PRIM2
SEC22B

FRG2B
FRG2C
KCNJ12
KRT6B
MAP2K3

CTBP2
FAM104B
MLL3
NBPF1

CES1
HLA-DQA2
HNRNPCL1
KIR2DL3
KIR2DS4
KRTAP9-2
MUC20
OR9G1
PRSS3
TNXB

ALG1L2
ANKRD36
FAM131C
FAM194B
GPRIN2
OR1D5
PCDH11X
PDPR
PER3
TPTE
ZDHHC11

Table  5.  Genes  with  unbalanced  heterozygosity  in  GRCh37  and  their  status  in 
GRCh38. Column 1: Fully amended genes that have been duplicated within chromosomes 
in GRCh38 and as a result lost the variants with unbalanced heterozygosity. Column 2: 
Partially amended genes that are still showing unbalanced variants in some of the exons. 
Column 3: Genes whose duplication was found on extra chromosomal scaffolds in the 
primary assembly and as a result lost the variants with unbalanced heterozygosity. Column 
4: Genes that have not been duplicated, but reported as different alternative loci in the full 
assembly. Column 5: Unchanged heterozygosity in GRCh38. *LOC653486 and  PPYR1 
have changed name in GRCh38 respectively to SCGB1C1 and NPY4R. More details are 
given in the text.

4.8 MAP2K3 as an example of partially amended gene

The  MAP2K3 (MAP Kinase Kinase 3) gene, also known as  MKK3, encodes the 

mitogen-activated protein kinase kinase 3. This protein participates in the MAP 

kinase-mediated signaling cascade and has a well known role in tumor invasion 

and progression110,111. The gene maps on chromosome 17 and includes 12 exons. 

Globally, in the Ion Proton dataset I identified 54 unbalanced variants localized in 

MAP2K3.  First  of  all  I  verified  whether  these  variants  were  found  with  an 

unbalanced  heterozygous  genotype  frequency  also  in  public  databases.  In 

particular I selected three genomes databases (gnomAD, 1000 Genomes Project 

Phase1 release and 1000 Genomes Project Phase3 release, see the Materials and 

Methods) and I performed the previously described statistical test to check if the 

54  variants  were  reported  with  an  unbalanced  heterozygosity.  Results  are 

summarized in Table 6. 
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Chromosome Position
Reference 
Allele

Alternative 
Allele

GnomAD
1000 Genomes 
Project Phase1

1000 Genomes 
Project Phase3

17 21201719 T C unbalanced unbalanced not in database

17 21202056 G A not in database not in database not in database

17 21202063 G C not in database not in database not in database

17 21202067 A G not in database not in database not in database

17 21202078 G A not in database not in database not in database

17 21202102 C T not in database not in database balanced

17 21202123 A G not in database not in database balanced

17 21202191 C A unbalanced unbalanced balanced

17 21202237 G C unbalanced unbalanced balanced

17 21202272 C G unbalanced unbalanced balanced

17 21203893 T C unbalanced unbalanced not in database

17 21203907 T C unbalanced unbalanced not in database

17 21203934 G A unbalanced unbalanced not in database

17 21203941 G A unbalanced unbalanced not in database

17 21203949 C T unbalanced unbalanced not in database

17 21203998 G A unbalanced unbalanced not in database

17 21204153 C T unbalanced unbalanced not in database

17 21204187 G T multiallelic unbalanced not in database

17 21204192 C T unbalanced unbalanced not in database

17 21204210 C T unbalanced unbalanced not in database

17 21204257 G A unbalanced not in database not in database

17 21204266 T C unbalanced unbalanced balanced

17 21204308 G T multiallelic not in database not in database

17 21204315 T C unbalanced not in database not in database

17 21204316 G A not in database not in database not in database

17 21204318 A G multiallelic not in database not in database

17 21205460 C T unbalanced unbalanced not in database

17 21207844 C T unbalanced unbalanced not in database

17 21208413 C T unbalanced unbalanced not in database

17 21208449 G T unbalanced unbalanced not in database

17 21208456 A G unbalanced unbalanced not in database

17 21215483 C T unbalanced unbalanced balanced

17 21215537 C A unbalanced unbalanced balanced

17 21215552 C T unbalanced unbalanced not in database

17 21215557 G A unbalanced unbalanced not in database

17 21215637 G A unbalanced unbalanced not in database

17 21215643 A G unbalanced unbalanced not in database

17 21215682 G A not in database not in database not in database

17 21215700 T G not in database not in database not in database
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Chromosome Position
Reference 
Allele

Alternative 
Allele

GnomAD
1000 Genomes 
Project Phase1

1000 Genomes 
Project Phase3

17 21216661 C T not in database not in database not in database

17 21216664 A G not in database not in database not in database

17 21216686 C A not in database not in database not in database

17 21216710 T C not in database not in database not in database

17 21216758 G GCTTC unbalanced not in database not in database

17 21216788 C T unbalanced unbalanced not in database

17 21216846 G C unbalanced unbalanced not in database

17 21217397 A G not in database not in database balanced

17 21217400 G A not in database not in database balanced

17 21217411 T C unbalanced unbalanced balanced

17 21217513 G A unbalanced unbalanced not in database

17 21217547 T C unbalanced unbalanced balanced

17 21217554 C T unbalanced unbalanced not in database

17 21217566 C T unbalanced unbalanced balanced

17 21217586 G T unbalanced unbalanced not in database

Table  6.  List  of  unbalanced  variants  in  MAP2K3 compared  with  gnomAD,  1000 
Genomes Project Phase1 release and 1000 Genomes Project Phase3 release.  Among 
the  54  variants  with  an  unbalanced  heterozygosity  in  MAP2K3,  36  variants  were 
unbalanced in gnomAD, 34 in 1000 Genomes Project Phase1 release and none in 1000 
Genomes Project  Phase3  release.  Unbalanced:  p-value<0.01;  balanced:  p-value>=0.01; 
not in database: variant not reported in the VCF file; multiallelic: variant with multiple 
alternative alleles.

The majority of variants were confirmed to have an unbalanced heterozygosity in 

gnomAD and 1000 Genomes Project Phase1 release, where GRCh37 was used as 

reference genome.  The not  confirmed variants  were absent  in  the databases  or 

present with multiple alternative alleles (these variants were not included in the 

statistical test). Differently, in 1000 Genomes Project Phase3 release variants were 

collected using the hs37d5 genome reference, which corresponds to the GRCh37 

primary  assembly  integrated  with  rCRS  mitochondrial  sequence,  Human 

herpesvirus 4 type 1 and the concatenated decoy sequences. As reported by Li et  

al.38, the integration in standard pipelines of decoy sequences allows the resolution 

of false heterozygous calls. In fact, the majority of the 54 unbalanced variants in 

MAP2K3 were not present in 1000 Genomes Project Phase3 release, while those 

reported  in  the  database  had  a  balanced  heterozygosity.  As  a  result,  none  of 

MAP2K3 variants were unbalanced in 1000 Genomes Project Phase3 release. 

52



Then  I  focused  on  8  enriched  regions  of  MAP2K3 carrying  more  than  one 

unbalanced variant: the first three regions match exons 3, 4 and 5, while the last 

five regions match exons 9, 10, 11, 12 (see Table 7). Reads from these regions 

were realigned against the GRCh37 and GRCh38 full assemblies.

Results in Table 7 show that exons 3, 4 and 5 behaved very differently from exons 

9, 10, 11 and 12. In the former, reads aligned only to the target gene independently 

of the reference used. In the latter, the amelioration of the reference genome led to 

different  results:  using  the  GRCh37  full  assembly  reads  carrying  all  variants 

aligned  to  a  fix  patch,  called  HG987_PATCH  (NCBI  Reference  Sequence: 

NW_003315950.2), while using the GRCh38 full assembly they aligned to a new 

region added in the chromosome 17; on the other side, reads with none variant 

aligned to the target gene using both the references. These results indicate that a 

sequence  very  similar  to  the  last  portion  of  MAP2K3 was  included  in  the 

HG987_PATCH added  in  the  GRCh37 full  assembly. This  sequence  is  indeed 

absent  in  the  GRCh37 primary  assembly. This  patch  was  then  inserted  in  the 

GRCh38  release  and  its  coordinates  correspond  to  the  new  region  in  the 

chromosome 17 where reads aligned. Therefore I can conclude that MAP2K3 has 

been partially amended in GRCh38, with the insertion of a duplication of the last 

part  of  the  gene,  including  exons  9  to  12,  while  it  remains  with  its  original 

unbalanced heterozygosity at the beginning of the gene, as seen in exons 3 to 5. In 

fact, a BLAST search confirmed that the duplication spans only exons from 8 to 

12. However, results suggested the presence of a duplication also for exons 3, 4 

and 5. In fact, I saw two groups of reads, one carrying all the variants and the other 

any of them, but they both aligned only to the target gene. 

Importantly, of the 51 unbalanced variants localized in the 8 analyzed exons of 

MAP2K3, 26 variants were confirmed using GRCh38 for variant calling. Of these, 

25 were localized in exons 3, 4 and 5 and only one variant was localized in exon 

12 - it should be pointed out that this variant was identified in only one sample 

using GRCh38, thus indicating a private variant. This is a confirmation that the last 

portion of MAP2K3 lost his unbalanced heterozygosity in GRCh38.
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target region name exon

reads with all 
variants

reads with none 
variant

GRCh38
confirmed
variantsGRCh37 GRCh38 GRCh37 GRCh38

MAP2K3_158294.12020 3 gene gene gene gene 9

MAP2K3_158295.17245 4 gene gene gene gene 6

MAP2K3_158296.5164 5 gene gene gene gene 10

MAP2K3_158296.5164 9 patch
new 

region
gene gene 0

MAP2K3_158296.5164 10 patch
new 

region
gene gene 0

MAP2K3_158296.5164 10 patch
new 

region
gene gene 0

MAP2K3_158296.5164 11 patch
new 

region
gene gene 0

MAP2K3_158296.5164 12 patch
new 

region
gene gene 1

Table 7. BLAST results of read realignments. The results for reads with all variants or 
none of them are reported separately: for each group the alignments on both the references  
used (GRCh37 and GRCh38 full assemblies) are shown; ‘gene’ corresponds to the target 
gene, ‘new region’ stands for a different region within the same chromosome and ‘patch’  
refers to HG987 patch. The number of variants confirmed in the last release of the human 
reference genome is also reported.

4.9 Analysis of the physical coverage in mate pair whole genome data

To further  confirm  that  the  MAP2K3 genomic  regions  hid  a  duplication  not 

reported in GRCh37, I analyzed genome sequencing mate pair data downloaded 

from the Genome In A Bottle project94. Reads from parents of an Ashkenazi Trio 

and  a  Chinese  trio  were  aligned  against  the  GRCh37  and  GRCh38  primary 

assemblies.  Figure  9  shows  the  physical  coverage  of  a  570  kb  region  of 

chromosome  17,  containing  MAP2K3 and  KCNJ2 (Potassium  Voltage-Gated 

Channel, J2), another gene classified as partially duplicated (Table 5, column 2). In 

agreement with our findings, the coverage in these two genes was at least doubled 

than the average when mapped on GRCh37. Using GRCh38, the physical coverage 

of MAP2K3 and KCNJ12 genes was still higher than the flanking regions, but to a 

lesser extent than what was observed with GRCh37. In the box of Figure 9 the 

region of  MAP2K3 is enlarged to show in more detail the reduction of physical 

coverage starting from exon 9 which actually is the last part of the gene, known to 

be duplicated in GRCh38.
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Figure 9. Physical coverage profiles of a 570 kb region of chromosome 17. The set of 
mate pair from the Genome In A Bottle project was aligned on the GRCh37 and GRCh38 
primary assemblies; numbers 1, 2 refer to two Ashkenazi individuals, whereas 3 and 4 
refer to two Chinese individuals. The frame at the bottom shows the percentage of variants  
with unbalanced heterozygosity based on the total number of biallelic variants in non-
overlapping 10 kb sized windows. In the box the region of MAP2K3 is enlarged to show 
the reduction of physical coverage starting from exon 9 in GRCh38.

4.10 Recap of recurrent exome variants analyses 

This paragraph aims to summarize the results obtained with the analyses of the 

9,313 variants  that  I  unexpectedly  found in more than 90% of  the Ion Proton 

samples. First of all, I compared the Ion Proton dataset with independent Illumina 

and SOLiD datasets. In addition, I identified variants falling in MAiR positions. 

Finally,  I  performed  a  statistical  test  on  allele  and  genotype  frequencies  to 

recognize  ‘unbalanced’  regions  and  I  re-mapped  reads  on  different  reference 

assemblies.  Through  this  wide  set  of  analyses, I  demonstrated  that:  i)  8,680 

variants of the 9,313 fell in MAiR positions, meaning that the reference does not 

carry the most frequent allele in the population; ii) 316 were possible indicators of 

gene or region duplications;  iii)  82 were both MAiRs and with an unbalanced 

heterozygous genotype, thus involving the issues of points i and ii; iv) 16, among 

which 1 was also MAiR, could be Ion Proton specific errors as they were absent in 

Illumina  and  SOLiD  samples,  v)  only  219  stand  without  a  clear  explanation. 

Among the latter, 41 variants have never been previously reported, while for the 

178 remaining I hypothesized they might be population specific polymorphisms. 
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In  fact,  the  frequencies  of  these  178  variants  are  significantly  higher  for  the 

Europeans compared to the total population, as reported in Figure 10.

Figure 10. European and Total frequencies of the 178 possible population specific 
polymorphisms.  The  difference  between  allele  frequencies  in  the  two  analyzed 
populations is highly significant (p-value<0.0001).

4.11 From exomes to genomes

Results  described so far  highlighted  two important  aspects:  i)  all  resequencing 

analyses should take into account that false positive variants could originate from 

the reference used;  ii)  although the improvements  of GRCh38, some reference 

driven problems are still detectable. Exome data analyses allowed me to accurately 

identify some of these problems, for example unreported gene duplications and 

genomic positions that do not represent the most frequent alleles. 

Being aware of the importance of these findings, I decided to move my analyses 

towards  a  new and wider  direction,  the  analysis  of  whole  genome sequencing 

(WGS) data.  As discussed in the Introduction, thanks to the reduction of DNA 

sequencing cost, together with several advantages of sequencing the entire genome 
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-  uniform  coverage,  detection  of  non-coding  variants  and  copy  number 

variations -, WGS is becoming the leading strategy routinely used not only in the 

research field but also in the clinical one7. As a result, the non-coding regions are 

increasingly analyzed to  understand their  functional  roles  and to  discover  non-

coding variants involved in determining human traits and complex diseases. From 

this perspective, it  is now essential  to have a reference genome that accurately 

represents the entire human DNA sequence. 

4.12 Minor Alleles in GRCh37 and GRCh38 reference genomes

In 2017 the Genome Reference Consortium (GRC) published a paper to describe 

the  assembly  updates  in  GRCh38,  including the  correction  of  8,248 erroneous 

bases1. The graph in Figure 11 shows the alternative allele frequency of these sites 

in GRCh37: for the large majority of the 8,248 positions the reported alternative 

allele frequency was higher than 90%, indicating that the corresponding reference 

allele was very rare in the population. In these MAiR positions the reference allele 

was replaced with the most common allele in the population in GRCh38. 

Figure 11: Frequency of bases updated in GRCh38 by the GRC. The authors identified 
8,248 erroneous positions in GRCh37 and corrected them in GRCh381.  The histogram 
shows the alternative allele frequency of these positions in GRCh37. The large majority of 
corrected positions have a frequency higher than 0.9, thus confirming the authors’ choice 
to report in the reference genome the most common allele in the population. Frequencies 
derive from 1000 Genomes Project Phase1 data. Note the logarithmic scale on the y-axis.
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Since the analysis of the Ion Proton exome dataset revealed that the number of 

variants mapped on MAiRs in GRCh37 was 18,839, I expected that much more 

than 8,248 genomic positions required a revision by the GRC. To better clarify 

how many minor alleles are present in the reference genome, I screened the Phase3 

VCF  files  of  the  1000  Genomes  Project,  consisting  of  2,504  whole  genome 

sequences from 26 populations, aligned on GRCh37112. The results of this analysis 

are shown in Figure 12A.

A total number of 84,801,880 variants were present in the GRCh37 Phase3 VCF 

file. I found 436,700 (about 145 variants per Mbp) with an allelic frequency equal 

or greater than 90% and 32,105 variants (about 11 variants per Mbp) with 100% 

allelic frequency, in homozygosity in all the individuals. These findings showed 

that the surprisingly high number of HF variants observed in exomes was also 

confirmed in whole genomes.

Recently, the European Bioinformatics Institute has re-aligned the 1000 Genomes 

Project sequencing data on the GRCh38 reference genome58.  A total number of 

82,218,941 variants were present in the GRCh38 Phase3 VCF file, confirming the 

previously discussed results of Guo and colleagues37. 

More importantly, I were interested in evaluating the number of HF variants found 

in GRCh37 that have been amended in GRCh38. 2,198,258 HF variant positions 

were present in the GRCh37 Phase3 VCF file. For each position I checked if in the 

GRCh38 release the reference allele was substituted with the most common allele 

in the population or if the position was not included in GRCh38. I found that this  

correction occurred only in 70,497 cases, while 2,127,761 positions maintained the 

less frequent allele in the population. 

Figure 12B shows these results in detail. It can be seen that the rate of correction is 

practically  the  same,  around  3%,  in  the  range  between  0%  and  95%.  Some 

improvement is  seen for the alleles with a frequency between 95%-100%, that 

were corrected in 5.6% of the cases. Nevertheless, the large majority of these loci 

still maintain the minor allele in the GRCh38 reference genome, including 8,593 

alleles with a frequency of 100%. These findings clearly suggested that a further 

deep revision of base pair level errors is necessary to make the reference genome 

the accurate representation of the most common DNA sequence in the population. 
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Figure  12.  Allelic  frequencies  of  variants  found  in  GRCh37  and  amended  in
GRCh38. The variants of 2,504 genomes (1000 Genomes Project, Phase3) were divided 
into classes according to their allelic frequency. Frame A: the blue blocks indicate the 
average number of variants per Mbp of each class. Note that the first bar is outside the  
range of the Y-axis. The red line indicates the sum of values from a given allele frequency 
to the right end, that is the number of variants with at least the indicated allele frequency. 
It can be seen that there are about 730 variants/Mbp with an allele frequency >50%. The  
yellow  sector  at  the  bottom  of  the  95-100%  block  corresponds  to  variants  found  in  
homozygosity in 100% of the individuals (about 11 variants / Mbp). Frame B shows the 
percentage of variants that have been amended in the GRCh38 release.

4.13 Genome regions with unbalanced heterozygosity

In  addition  to  base  pair  level  errors,  I  detected  several  exomic  regions  hiding 

duplications  not  reported  in  GRCh37.  In  search  of  all  the  possible  unreported 

duplicated  regions  in  the  entire  genome,  I  performed  the  previously  described 

statistical  test  for the unbalanced heterozygosity  on the 1000 Genomes Project 

Phase3 data.  For each chromosome I considered non-overlapping 100 kb sized 

windows and for each window I calculated the percentage of unbalanced variants 
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based on the total number of biallelic variants. For each variant I considered its 

allele frequency in the whole 1000 Genomes Project population and the observed 

frequency of heterozygous genotypes. As previously described, I performed a one-

tailed binomial test, corrected for false discovery, to identify all deviations from 

the Hardy-Weinberg equation. Variants were considered significantly unbalanced if 

their  corrected  p-values were lower  than  0.01.  The results  of  this  analysis  are 

shown in Figure 13. Many regions with unbalanced heterozygosity can be clearly 

detected. All these unbalanced regions might conceal a duplication.

As shown in Table 5, column 4 some genes with unbalanced heterozygosity in the 

GRCh37 lost  their imbalance thanks to the introduction of alternate loci in the 

GRCh38  full  assembly.  However,  as  stated  above,  highly  polymorphic  alleles 

should  not  produce  unbalanced  heterozygosity  when  aligned  on  the  reference 

genome.  This is  proved by the portion of  chromosome 6 corresponding to the 

Major Histocompatibility Complex (MHC), indicated by an asterisk in Figure 13: 

although  it  is  possibly  the  most  polymorphic  region  of  the  genome,  it  is  not 

particularly associated to unbalanced heterozygosity, suggesting that the nature of 

this genetic inconsistency should be found elsewhere.

Figura  13.  Genome  wide  analysis  of  regions  with  unbalanced  heterozygosity  in 
GRCh37. For  each  non-overlapping  100  kb  window  I  considered  the  percentage  of 
biallelic variants with a significant unbalanced heterozygosity. Centromeres are indicated 
by a small triangle below the baseline. The region marked by the asterisk in chromosome 
6 indicates the MHC.
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I detected a total of 86,649 unbalanced variants that I believe to be mostly due to 

unreported genomic duplications. An interesting issue is to understand how many 

HF variants are produced by these putative unreported genomic duplications in 

each individual.  To answer this  question I  analyzed the VCF file  of the 2,504 

individuals belonging to the 1000 Genomes Project and I found that on average 

each individual carries 4,491,760 variants of which 1,950,334 are HF; I also found 

that on average each individual carries 62,308 unbalanced variants; finally I found 

that  in  each  individual,  on  average  24,768  HF  variants  are  unbalanced.  The 

diagram in Figure 14 confirm that HF variants are not only due to MAiRs, but also 

to  regions  with  unbalanced  heterozygosity,  possibly  derived  from  unreported 

genomic duplications.

Figure 14. Variants per individual in the 1000 Genomes Project.  Average number of 
variants  per  individual  found  in  the  population  of  2,504  people  studied  in  the  1000 
Genomes  Project.  Variants  have  been  further  subdivided  in  High  Frequency  and 
Unbalanced variants.

4.14 Variants distribution in exomes and genomes 

The results  obtained from exomes and whole genomes are slightly different  in 

terms of the number of variants per Mbp. Typically, in the genome of a single 

individual about 4.5 million variants are detected (Figure 14), equivalent to ~1500 
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variants/Mbp, whereas in exomes the average number of variants is 48,785, over a 

target  region  of  57  Mbp,  equivalent  to  only  856  variants/Mbp.  This  is  not 

surprising as it is known that protein coding sequences tend to be more conserved 

than other genomic regions. Similarly, the reference genome seems to be slightly 

more accurate in coding regions. This can be reckoned by considering the number 

of minor alleles in the reference genome. In this respect, in whole genomes I found 

~145 variants per Mbp with an allelic frequency greater than 90%, whereas in the 

exomes  I  found  only  68  such  variants  per  Mbp.  Surprisingly,  the  number  of 

variants  with  100%  allelic  frequency  (meaning  that  the  allele  reported  in  the 

genome was never found in my analyses) is slightly greater in exomes (15/Mbp) 

than  in  whole  genomes  (11/Mbp).  Unfortunately,  I  found  that  only  a  small 

percentage  of  these  genomic  positions,  about  3%,  have  been  corrected  in  the 

GRCh38 release, rising to ~5% for the variants found with a frequency above 95% 

(see Figure 12).

4.15 Brief summary of main results

In this work I presented a comprehensive study of variants found in two datasets, 

the former composed by 222 exomes sequenced at the CRIBI center and the latter 

by 2,504 genomes included in the 1000 Genomes Project. I focused my analyses 

on  the  possible  explanations  for  the  presence  of  anomalous  variants  both  in 

exomes and genomes and on the strategies adopted to individuate, characterize and 

filter  them.  These  strategies  allowed  me  to  discriminate  variants  associated  to 

reference genome errors, including uncorrected bases and misassemblies. 

I  firstly  analyzed  all  the  samples  with  two  different  releases  of  the  human 

reference genome, GRCh37 and GRCh38. I saw, as already reported in literature37, 

that  the  number  of  variants  identified  using  the  latest  reference  was  reduced, 

dropping  from  264,303  to  255,124  for  the  exomes  and  from  84,801,88  to 

82,218,941 for the genomes, using respectively GRCh37 and GRCh38. 

Nevertheless, despite the upgrade in the reference, many positions still carry the 

minor allele, instead of the major one as it should be expected. I found that the 

90.40% of variants mapped in MAiR exome positions in GRCh37 were kept in 

GRCh38 and that  this  percentage  increased  to  96,80% in  whole  genome data. 
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These results indicated that, although more than 8,000 bases have been corrected 

in the last release of human genome1, others efforts are necessary to further reduce 

the base-pair-level errors.

On the other hand, to investigate the presence of misassemblies, in particular gene 

duplications, I selected variants with an unbalanced heterozygous genotype. This 

characteristic is consistent with the hypothesis that some genomic regions are still 

not reported as duplicated. With this analysis I identified 45 genes that could have 

undergone to gene duplication events not reported in GRCh37. As Schneider et al. 

in  2017  claimed  that  GRCh38  provides  reference  assembly  representation  for 

previously missing human-specific and paralogous sequences1, I checked whether 

the new regions added to GRCh38 contained the sequences of the 45 suspicious 

genes marked as duplicated in GRCh37. Only 15 genes turned out to be ‘fully 

amended’ in GRCh38 (Table 5, column 1), while the remaining 30 genes are still 

unresolved in GRCh38. Moreover, the analysis of unbalanced heterozygosity on 

whole genome data revealed that unreported duplications might concern numerous 

and wide regions of the genome. 

63



64



Chapter 5

Conclusions

Whole exome sequencing and whole genome sequencing are powerful tools for 

analyzing human genetic variation and rare hereditary diseases. Nevertheless, the 

big amount of data obtained in exome and genome sequencing projects may be 

difficult  to  handle  and  researchers  and  geneticists  can  fall  in  misleading 

interpretations  of  the results.  In  order  to  reduce errors,  the performed analyses 

must be as reliable as possible. 

A crucial  role  in  determining  the  accuracy  of  exome and  genome sequencing 

analyses is played by the human reference genome. The reference assembly affects 

the read alignment process and the variant calling step, as well as it serves as the 

foundation for variants annotation. Ideally, the human reference genome should be 

representative of the total sequence variations and, as a result, it is a very dynamic 

resource:  as  our  comprehension  of  the  global  human  diversity  evolves,  the 

reference assembly also evolves and new findings lead to the need of continuous 

ameliorations. 

GRCh38 represents the current and most updated version of the reference genome. 

However,  it  is  still  scarcely  used  in  exome  and  genome  studies1. My  work 

confirmed that GRCh38 is more complete and accurate than GRCh37, even if my 

results indicated that some inconsistencies are still there. Many positions of the 

reference genome should be amended to avoid the call of high frequency (HF) 

variants in exome and genome sequencing analyses. Most of these HF variants 

map  on  the  minor  alleles  in  the  reference  (MAiRs)  and  some  map  on 

misassembled regions with unbalanced heterozygosity. 

In  this  thesis  different  methods  to  identify  these  inexact  positions  have  been 

presented. In particular, the described statistical test on the heterozygous genotypes 

has proved to be powerful in unveiling all regions with unbalanced heterozigosity; 

importantly, duplications for some of the resulting regions have been confirmed by 

read realignment and coverage analysis of mate pair whole genome data. These 

important results should draw attention of the Genome Reference Consortium and 
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encourage a further revision of repetitive and segmentally duplicated regions. At 

present the assembly of these complex regions is not a trivial task. Hopefully, it 

might  be  facilitated  by  technological  advancements  leading  to  an  improved 

assembly contiguity, for example a further increase in read length or the use of 

longer library inserts, as stated by the Genome Reference Consortium1. 

In addition, a more deep integration of information from different databases could 

be useful both in defining the most common alleles in the global population – and 

therefore  the  consensus  sequence  of  the  human  reference  genome  –  and  in 

increasing our knowledge on human diversity. As discussed in the Introduction, the 

number of  entirely sequenced genomes is strongly growing and data from them 

should  serve  as  additional  information  useful  to  update  the  current  reference 

genome. In this context, an important resource is now represented by the Genome 

Aggregation Database (gnomAD)86, developed for aggregating data from 123,136 

exomes and 15,496 whole genomes belonging to unrelated individuals sequenced 

as part of various disease-specific and population genetic studies. The number of 

sequenced  individuals,  extremely  higher  than  any  other  exome  and  genome 

database, makes gnomAD a very precious resource in collecting the global human 

variation. 

The  inclusion  of  the  entire  known  human  variation  in  the  reference  genome, 

although desired, poses some practical problems. According to the assembly model 

developed  by  the  Genome  Reference  Consortium,  the  additional  variation  is 

included in the full assembly in the form of patches and alternate loci. In my work 

I considered GRCh37 and GRCh38 both as primary and full assembly versions. 

The full assembly references with patches and alternate loci could be useful to 

improve the accuracy in read mapping and, therefore,  to reduce the number of 

false  positive calls.  However, their  huge size (31 and 46 Gb for GRCh37 and 

GRCh38, respectively) and the lack of suitable bioinformatic tools make their use 

very impracticable for most practical applications. 

For this reason, it is now spreading the idea that a comprehensive graph-based 

representation of genome-wide population variation would be more appropriate 

than a single reference genome68. Although this means to revolutionize the model 

that supports the infrastructure and the tools used in the sequencing data analysis, 
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this effort would allow to develop a more robust analysis framework. 

Even if the graph-based assembly will be successful, it will be a long time before 

the new model enters in the common practice. GRCh38 will continue to be the 

most  comprehensive  and  highest  quality  representation  of  the  human  genome 

usable in resequencing analyses, more and more demanded in the clinical field. As 

a result, its correctness and completeness are fundamental. 
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Chapter 6

Future perspectives: variant prioritization in lncRNAs

As stated  at  the  very beginning of  this  thesis,  I  spent  part  of  my PhD period 

addressing the problem of interpreting the functional effect of nucleotide variants 

in  non-coding  regions  of  the  human  genome.  This  part  of  the  project  is  here 

described  as  future  perspectives  for  two  reasons.  Firstly,  although  preliminary 

results seem to be very promising, this study requires further work. Secondly, this 

project deals with the problem of understanding the meaning of DNA alterations 

far beyond the limited portion of protein coding genes and this actually represents 

one of the major future challenges in the human genetics field.

It has become largely accepted that the non-coding portion of the human genome 

accounts for the regulation of gene expression, a complex process involving many 

different  factors  and  levels  of  control113.  Data  from  genome-wide  association 

studies  (GWAS) suggested that more than 90% of disease-associated SNPs are 

located in functional non-coding regions of the human genome, for example in 

promoter regions, enhancers elements or in non-coding RNA genes114. These data 

indicate  that  many  disease-causing  variants  are  likely  to  exert  their  effect  by 

altering the regulation of genes rather than by directly affecting genes and protein 

functions.

It is thus evident that the analysis of the human genome, both to better understand 

the mechanisms behind gene regulation and to discover new genetic alterations 

driving diseases  development,  can no longer  afford to  neglect  variants  in non-

coding regions. In this context, the usage of Whole Genome Sequencing (WGS) 

approaches  has  rapidly  grown  over  the  last  few  years,  also  thanks  to  the 

remarkable reduction in DNA sequencing costs (see the Introduction, Figure 2). 

However, the prioritization and the functional interpretation of non-coding variants 

are still challenging. While non-synonymous variants and their effects on protein 

functions can be predicted by computational methods based on protein sequence 

homology and physical properties of amino acids,  such an approach cannot be 

applied to non-coding variants. Alternative types of computational methods that 
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use various genomic and epigenomic annotations have been developed to allow 

their  prioritization.  Examples  of  these  tools  are  Genome-Wide  Annotation  of 

VAriants (GWAVA)35, Combined Annotation-Dependent Depletion (CADD)36 and 

FunSeq2115, specifically developed for prioritizing non-coding regulatory variants 

in  cancer.  All  these  approaches  integrate  a  wide  range  of  variant-specific 

annotations of different classes: conservation metrics, regulatory sites information 

(for example DNase hypersensitivity sites and transcription factor binding sites) or 

transcript  information  (for  example  distance  to  exon-intron  boundaries  and 

expression  levels  in  cell  lines).  A  more  recent  model  for  the  prediction  of 

functional  effects  of  non-coding variants is  DeepSEA116, a  deep learning-based 

algorithm requiring large-scale  chromatin-profiling data  to  train  the  model. All 

these methods are  therefore based on a wide  a priori knowledge derived from 

several sources. 

Here  I  describe  the  first  steps  towards  the  development  of  a  new method  for 

prioritizing non-coding variants based on an alternative strategy: the comparative 

genomics  approach.  The  idea  is  that  nucleotide  variants  located  in  conserved 

domains are more likely involved in disrupting the functional role of non-coding 

elements.  It  was  reported  that  conserved  domains  are  generally  involved  in 

determining the secondary structures of non-coding RNAs as well as in interacting 

with  targets,  for  example  mRNAs  or  DNA  double  helix,  or  in  the  splicing 

process34.  In  my method,  these  conserved  functional  domains  are  searched  by 

comparing orthologous sequences found in phylogenetically related organisms and 

looking for regions that are conserved across species. 

Given the extent and the  heterogeneity of the non-coding portion of the human 

genome, I decided to focus first on a single class of non-coding elements, the long 

non-coding  RNAs.  Among  non-coding  elements,  long  non-coding  RNAs  are 

emerging as central players in cell biology, but these functional components of the 

human genome are still largely unexplored. 

6.1 Brief introduction on long non-coding RNAs

Long  non-coding  RNAs  (lncRNAs)  are  a  heterogeneous  class  defined  as 

transcripts more than 200 nucleotides in length with absent or low protein coding 
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ability. They are also called long intergenic non-coding RNAs (lincRNAs) when 

they do not overlap with any protein coding transcription unit. 

With  the  advancement  in  DNA sequencing  techniques,  thousands  of  lncRNAs 

have  been  identified  in  the  human  genome  -  the  estimated  number  is  over 

100,000117.  To  date,  only  a  limited  number  of  human  lncRNAs  has  been 

functionally  characterized.  Among  them,  H19 and  Xist (X-inactive  specific 

transcript)  were  discovered  in  the  early  1990s118,119.  Other  two  well  studied 

lncRNAs,  HOTAIR (HOX antisense  intergenic  RNA)  and  HOTTIP (HOXA 

transcript at the distal tip), were described only several years later120,121. However, 

the number of characterized lncRNAs is expected to grow very quickly. 

Although the detailed mechanism of  action is  known only for  a few dozen of 

annotated lncRNAs, the available examples show the complexity of their biology: 

they act as crucial regulators in many different cellular processes by interacting 

with  DNA,  RNA and  proteins;  they  are  involved  in  post-transcriptional  gene 

regulation by controlling protein synthesis, RNA maturation and RNA transport; 

they  have  been also  implicated  in  transcriptional  gene  silencing via  epigenetic 

regulation and chromatin remodeling117. 

Given  their  role  in  so  many  different  processes,  lncRNAs are  involved in  the 

etiopathology of numerous human disorders,  including hepatocellular carcinoma, 

Alzheimer's disease and diabetes122. Two types of alterations can affect lncRNAs 

function  and  drive  diseases  development:  large  chromosomal  rearrangements 

(translocations,  amplifications  or  deletions)  and  small  mutations  (small 

insertions/deletions or SNPs). While larger alterations usually alter the expression 

of  lncRNAs,  understanding  how  small  mutations  are  involved  in  disease 

etiopathology  can  be  more  challenging.  Also  small  alterations  can  affect  the 

expression  level  of  lncRNAs,  for  example  if  they  are  located  in  promoter 

sequences.  Moreover,  they  may  have  other  consequences  on  the  alternative 

splicing process of the transcript or on the secondary structure determination. 

To date, more than 7 millions SNPs in human lncRNAs have been identified and 

some  of  them  have  been  described123.  For  example,  it  was  reported  that  the 

expression of the previously mentioned HOTAIR lncRNA,  an oncogene involved 

in  gastric  cancer  development,  is  altered  by SNP  rs920778,  contributing  to 
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increase cancer susceptibility124. On the contrary, SNP rs2839698 in  H19 gene is 

associated with a significantly decreased risk of bladder cancer125. Nevertheless, a 

very high number of variants in lncRNAs has not yet been investigated and their 

prioritization represents the fundamental first step to face this task. 

6.2  Identification of conserved domains in lncRNAs

As mentioned above, my method for prioritizing non-coding variants in lncRNAs 

is  based  on  the  identification  of  conserved  domains  by  using  a  comparative 

genomics  approach.  The pipeline  structure,  described in  detail  in  Material  and 

Methods  chapter,  consists  of three  different  steps.  The  first  one  identifies  the 

orthologous  genes  of  the  human  lncRNA in  the  genomes  of  28  primates  by 

performing two BLAST alignments in search of the ‘reciprocal best hits’ (RBHs). 

In the second step, the orthologous sequences are aligned with a multiple sequence 

alignment tool called T-Coffee100.  Finally, the conserved domains in the human 

lncRNA are identified with Gblocks105.  

6.3 Pipeline validation by comparison with published data

The UCSC Genome Browser website  provides WIG* format  files containing a 

‘conservation score’ for each base of the human reference genome126. These data 

derived  from the  multiple  alignment  of  the  human  reference  genome  with  32 

placental mammal genomes; the multiple alignment is then used to compute base-

by-base  conservation  scores.  These  scores  were  calculated  with  phastCons,  a 

program able to identify conserved elements in the genome of different organisms 

using genome-wide multiple alignments127. 

I used these available data to assess the accuracy of my pipeline. In particular, I 

checked whether the conserved blocks identified with my pipeline correspond to 

the positions with the highest conservation scores in the WIG files. 

Compared  to  the  published  data  based  on  the  alignment  of  the  whole  human 
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genome with other 32 genomes, my pipeline aligns only a specific region of the 

human  genome,  the  lncRNA of  interest,  with  the  other  genomes;  this  should 

guarantee a more accurate alignment of the region of interest. A second advantage 

of my pipeline is that any organism can be included in the analysis. 

6.4 LINCMD1 as positive control

As initial test to assess the accuracy of my pipeline, I chose a well studied human 

lncRNA,  called  Long  Intergenic  Non-Protein  Coding  RNA  Muscle 

Differentiation 1  (LINCMD1,  NCBI  Gene  ID:  101154644,  Ensembl  Gene  ID: 

ENSG00000225613). LINCMD1 is a long non-coding cytoplasmic RNA expressed 

during myoblast differentiation. 

The gene  is  localized  on  the  reverse  strand of  chromosome 6  p-arm and it  is 

structured in three exons and two introns, for a total length of 4,306 bases. The 

first intron of  LINCMD1 hosts the  MIR133B sequence (NCBI Gene ID: 442890, 

Ensembl Gene ID: ENSG00000199080). 

The functional role of LINCMD1 in mouse has been extensively described in two 

different  works128,129.  In  mouse  LINCMD1 has  two  different  binding  sites  for 

MIR135 and one single binding site for  MIR133128. It was found that  LINCMD1 

acts in the cytoplasm as a competing endogenous RNA (ceRNA) for MIR133 and 

MIR135, thus limiting their binding to their natural mRNA targets: the Myocyte-

specific enhancer factor 2C (MEF2C) targeted by MIR135 and Mastermind-like-1 

(MAML1) controlled by MIR133128. Both these proteins have a relevant function in 

myogenesis.  MEF2C protein  belongs  to  a  family  of  transcription  factors  that 

activate  the  expression of  numerous muscle-specific  genes130;  moreover, it  was 

shown to play a key role in differentiation of muscle cells131.  MAML1 encodes 

critical  transcriptional  coactivators  for  Notch  signaling,  that  have  documented 

roles in myogenesis132. Even more importantly, a crosstalk between  MAML1 and 

MEF2C have been described in muscle cells133 and their expression is regulated by 

MIR133 and  MIR135128,129.  According  to  the  role  of  LINCMD1 as  decoy  for 

MIR133 and MIR135, Cesana et al. observed that a LINCMD1 depletion decreases 

the  levels  of  both  MAML1  and  MEF2C  proteins,  while  a  LINCMD1 over-

expression leads to their accumulation128.
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LINCMD1 sequence was found to be conserved in human myoblasts, in particular 

around  the  recognition  motifs  for  MIR135 and  MIR133;  also  its  function  is 

maintaned in human muscle cells128. For this reason, I chose this lncRNA to test 

my pipeline:  I  expected to find the miRNA binding sites within the conserved 

blocks identified with my pipeline.

6.4.1 Results for LINCMD1

The first step of my pipeline, which aims to identify orthologous genes of a human 

lncRNA in  the  primate  genomes,  allows  to  find  the  orthologous  sequences  of 

LINCMD1 in  all  the 28 organisms. I  found that,  compared to the human gene 

(4,306 bases long), the sequences of 7 primates are significantly shorter: 1,169 for 

Carlito  syrichta, 1,137  for  Daubentonia  madagascariensis,  1,324  for  Eulemur 

flavifrons and Eulemur macaco, 1,258 for Microcebus murinus, 732 for Otolemur 

garnettii and 1,326 for Propithecus coquereli. This could be explained by the lack 

of  LINCMD1 gene  conservation  in  these  species,  but  also  by  the  possible 

incompleteness  of  genome  sequences  for  these  organisms.  In  fact,  except  for 

Microcebus murinus, genome sequences of these 7 primates are not assembled in 

chromosomes, but published as scaffolds. 

Since  the  multiple  alignment  of  sequences  with very  different  lengths  may be 

problematic, I performed the T-Coffee100 alignment both including and excluding 

the  shorter  orthologous  sequences.  Even  if  in  some  regions  the  alignment  of 

shorter sequences was very fragmented, with stretches of few nucleotides aligned 

far a part,  I  observed that a well aligned block of at least 500 nucleotides was 

present  for  all  orthologous  sequences.  Thus,  I  chose  to  continue  the  analysis 

including shorter sequences. 

The resulting alignment file in FASTA format (.fasta_aln) was used as input file 

for Gblocks105, with the minimum number of sequences for a conserved position 

(b1) equal to 15 (default parameter,  50% of the number of sequences + 1), the 

minimum number of sequences for a flank position (b2) equal to 22 (75% of the 

number of sequences) and the minimum length of a block (b4) equal to 3. In fact, 

also very short sequences can be crucial in determining secondary structures or in 

binding  other  molecules.  A total  number  of  20  blocks  was  found  with  these 

parameters. 
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The most interesting result is the extremely high conservation of 374 bases of the 

human  LINCMD1 intron 1, from position  52,148,824 to position  52,149,197 of 

chromosome 6  (genomic  coordinates  refer  to  GRCh38).  This  region  hosts  the 

MIR133B sequence,  from  position  52,148,923  to  position  52,149,041. 

Interestingly, the WIG file,  derived from the  multiple  alignment  of  the human 

reference  genome  with  32  placental  mammal  genomes126,  reports  the  highest 

conservation scores for the genomic region extending from position 52,148,902 to 

position  52,149,050.  This  region  is  included  in  the  most  conserved  domain 

identified with my pipeline, which, however, is longer on both sides (see Figure 

15, where the dark blue profile represents the conservation score for each base of 

LINCMD1 and  the  two  light  blue  rectangles  represent  two  conserved  blocks 

identified with my pipeline).

Figure  15.  Conserved  domains  of  LINCMD1.  The  dark  blue  profile  represents  the 
conservation scores reported in the WIG file available at  the UCSC Genome Browser 
website126 and derived from the multiple alignment of the human reference genome with 
32 placental mammal genomes. Conservation scores go from 0 (no conservation) to 1.00 
(maximum conservation). The two light blue rectangles represent two conserved blocks 
identified with my method. The red line represents the average conservation score of the 
entire  gene.  According  to  the  WIG  file,  the  central  part  of  LINCMD1 is  the  most 
conserved, even if also a very short conserved sequence is present in the first portion. 
Both these regions are included in wider conserved domains identified with Gblocks.   
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The  WIG file  reported  also  a  short  but  well  conserved  sequence  of  12  bases 

(GGGAGGACATGT,  from  position  52,146,989  to  position  52,147,000), 

represented by the first dark blue pick in Figure 15. Once again, this region is 

included in a wider conserved block identified with my pipeline. 

These results seem to indicate that my pipeline is less accurate in identifying short 

conserved regions. It should be considered that my method compares orthologous 

sequences  belonging  to  primates,  while  data  in  the  WIG  file  derive  from the 

alignment of the human reference genome with 32 placental mammal genomes. As 

a consequence, considering phylogenetically closer organisms, resulting conserved 

regions are wider. 

6.5 Future improvements of the pipeline

In light of the above, some improvements could make my pipeline more accurate 

in identifying conserved domains of lncRNAs. Firstly, by gradually including less 

related organisms, the degree of conservation could be evaluated depending on the 

phylogenetic distance. The identification of few nucleotides highly conserved in 

very different species would be more informative than the identification of long 

sequences conserved only in close organisms. 

Secondly,  I  should  select  only  organisms  with  as  much  as  possible  complete 

genomes,  assembled  in  chromosomes  and  not  only  released  as  scaffolds.  This 

would make possible to know if shorter orthologous sequences are due to the lack 

of conservation along the entire gene or to an incomplete gene sequence in the 

selected organism. Among available genomes, only 12 of the 28 primate genomes98 

and only 37 of the 178 mammal genomes134 are assembled in chromosomes (data 

referred to April 2018). Thanks to advancement in DNA sequencing techniques 

and  genome  assembly  approaches,  these  numbers  are  expected  to  grow  and 

genomes are expected to be more complete in the near future. 

Once the process of identification of conserved domains will  be improved, the 

following steps  will  consist  in  integrating  information  from other  sources.  For 

example  LINCMD1 is  known  to  interact  with  two  miRNAs,  MIR135 and 

MIR133128. Different programs allow to predict miRNAs binding sites on target 

genes. For example the StarMir135 tool provides, for each position of the lncRNA, 
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the  probability  that  the  position  is  involved  in  miRNAs binding.  This  will  be 

particularly  useful  to  check  if  positions  with  the  highest  probability  to  bind 

miRNAs correspond to the most conserved regions. In these positions, nucleotide 

variants may affect the ability to bind miRNAs, thus compromising the LINCMD1 

function. 

Although the approach presented in this last chapter is still under development and 

results  are  very  preliminary,  some  general  considerations  can  be  done.  The 

comprehension  of  the  whole  human  genome  and,  in  particular,  of  the  still 

unexplored non-coding portions, depends also on the availability of genomic data 

referred to other species. More complete genomes of related organisms could help 

to perform more accurate comparative analyses and transcriptome data of different 

organisms could open the way for better understanding the non-coding transcripts 

world. These data are expected to be available in the near future as, according to 

what discussed in the previous chapters of this thesis, the revolution started one 

decade ago in DNA sequencing techniques is still ongoing.
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Abstract

In human genetics several problems are responsible for the call of false-positive 

variants occurring with high frequency in exome and genome analyses. It is known 

that the reference genome does not always represent the real consensus sequence 

of the human population, due to the inclusion of rare alleles and sequencing errors. 

In particular, genomic duplications are often misassembled and as a result they 

may be found in the reference genome as a collapsed consensus, thus generating 

false  variants.  In  this  work  we  performed  a  thorough  search  for  conflicting 

information between the human reference genome (GRCh37 and GRCh38) and 

some of the most popular human genetic resources such as the 1000 Genomes 

Project, to disclose minor alleles and to mine genetic inconsistencies. To search for 

unreported  genomic  duplications,  we  performed  a  genome  wide  screening  for 

unbalanced heterozygosity. We found that inaccuracies and errors are much higher 

89



than  expected.  Minor  alleles  occurring  with  a  frequency  <10%  are  found  on 

average every ~7,000 bases and include many rare variants that are never found 

elsewhere,  producing high numbers  of  false  positives  as  well  as  possible  false 

negatives.  The  systematic  screening  for  unbalanced  heterozygosity  revealed 

~86,000 variants  that  are  likely  the  result  of  unreported  genomic  duplications, 

involving functionally relevant genes such as MAP2K3 and KCNJ12. Our findings 

may help the ongoing quest to obtain a highly accurate human genome reference 

sequence. Moreover, the results presented in this study will be useful to human 

geneticists in the process of filtering and selecting causative variants.

Key  words:  whole  exome  sequencing;  whole  genome  sequencing;  human 

reference genome; recurrent variants; GRCh37; GRCh38 

Introduction

Since its first draft, released in 20011, the reference sequence of the human genome 

has undergone several updates and improvements. Notably, in 2009 the Human 

Genome Reference Consortium made available the GRCh37 release (also known 

as hg19) that was followed by the GRCh38 release in 2013 and further updated in 

the following years, in the form of “patches” and alternative loci.

Interestingly, many users are still adopting GRCh37 for their studies2. This can be 

partly explained by the difficulties in updating tools and pipelines when a new 

version of the genome becomes available. Indeed, many commercially available 

exome kits, for instance the “Ion AmpliSeq Exome RDY Kit” from Thermo Fisher 

Scientific or the “Nextera Rapid Capture Exome” from Illumina are still based on 

the old GRCh37 release.  As a consequence,  GRCh37 is  also recommended for 

bioinformatics analyses.

The reluctance to update to the new release of the genome has several drawbacks 

because GRCh38 contains  important  improvements.  It  was  derived from many 

donors instead of a few and includes many amendments; furthermore, GRCh38 

supports  the  representation  of  complex  haplotypes  with  the  introduction  of 
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alternative loci as well as many regions that were missing in the previous release 

such as segmental duplications, centromeres and telomeres2.

The problems arising from using the old reference genome for next generation 

sequencing  (NGS)  data  analysis  have  already  been  widely  discussed  in  the 

literature.  Two  different  studies  demonstrated  that  the  poor  representation  of 

repeated sequences in GRCh37 produces read misalignments and false positive 

variants3,4. To solve this problem it is possible to include in the analysis “decoy” 

sequence3 or “sponge” database4 that allow an improvement in read mapping and 

in the resolution of false heterozygous calls3.

More  recent  studies  on  GRCh38  showed  a  further  improvement  of  read 

mappability and a decrease of false positive single-nucleotide variants5,6. However 

we observed  that  the  problem of  many false  positive  variants  remains  also  in 

GRCh38. In general, both GRCh37 and GRCh38 produce false positive recurrent 

variants that are  found with an allelic frequency >50%. Generally, in a typical 

exome several thousand such variants are expected, while in whole genomes they 

can be well over one million. In many cases these high frequency (HF) variants are 

due to minor alleles in reference genome (MAiR), which can be easily filtered out 

with appropriate tools7. However, even after removing what is reported as common 

variant in the databases, many shared variants still remain. Therefore, the presence 

of  some  HF  variants  cannot  be  explained  only  by  MAiRs.  An  interesting 

hypothesis is that there may be instrument-specific sequencing errors, but as will 

be further detailed, we found that exomes obtained by different technologies such 

as  Ion  Proton,  Illumina  and  SOLiD,  exhibit  a  largely  overlapping  set  of  HF 

variants, indicating that the problem is not due to artifacts of a particular chemistry 

or sequencing platform.

The study presented in this paper has two main aims: firstly we want to evaluate 

and classify HF variants, both in GRCh37 and GRCh38. We believe that a clear 

repertoire of the recurrent miscalls will help geneticists in analyzing exome data, 

facilitating the process of variant prioritization.

A second, but not less important scope of this paper is to better understand the 

nature  of  this  problem  and  to  verify  the  hypothesis  that  some  of  these  false 
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positives  may  originate  from  duplicated  regions  that  are  not  reported  in  the 

reference genome. This can be experimentally verified because any “collapsed” 

repeated sequence in the reference genome would be the target for reads derived 

from two  or  more  real  genomic  regions,  resulting  in  a  disproportion  between 

frequency, heterozygosity and homozygosity of alleles.

With this premise we analyzed exomes from different platforms, as well as whole 

genome sequencing (WGS) data, using both GRCh37 and GRCh38. We found that 

the problem of collapsed repeats is indeed responsible for the call of many false 

positive variants, several of which are still present in GRCh38. Furthermore, we 

suggest several positions of the reference genome that require a revision in future 

updates.

Materials and Methods

Exome Datasets

In  this  study,  three  different  exome  datasets  were  used.  The  main  dataset  is 

composed  by  222  exomes  enriched  with  the  Ion  AmpliSeq  Exome  panel  and 

sequenced at  the CRIBI facility, University  of Padua (genomics.cribi.unipd.it)8, 

with the Ion Proton system (Thermo Fisher Scientific). These samples came from a 

wide  range  of  projects  including  cohorts  of  individuals,  trios  and  individual 

patients. The second dataset includes 22 exomes enriched with Illumina TruSeq 

Exome panel and sequenced with Illumina NextSeq 500 platform at CRIBI8. The 

third  dataset  refers  to  the  study  published  by  de  Ligt  et  al.9,  on  300  exomes 

enriched with SOLiD-optimized target enrichment and sequenced with SOLiD 4 

System (Life  Technologies),  belonging to  100 trios  composed of  patients  with 

unexplained severe intellectual disability and their unaffected parents (European 

Genome-phenome Archive,  https://www.ebi.ac.uk/ega:  study EGAS0000100028, 

dataset EGAD00001000277).

Alignment and variant calling

All  the  exomes  were  aligned  against  the  primary  assembly  of  GRCh37,  as 

recommended by the manufacturers of the enrichment kits. A detailed description 
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of the analysis workflow of each dataset is available in Supplementary File S1. 

The 222 Ion Proton exomes were also aligned on GRCh38.p10, downloaded from 

Ensembl. Alignment and variant calling were performed according to the Torrent 

Suite 5.0 exome analysis pipeline. The target regions (release 2014) were migrated 

from GRCh37 to GRCh38 coordinates using CrossMap10.

Identification of exome variants mapped on MAiRs

Minor Allele  in  Reference (MAiR) are those positions  of  the human reference 

genome with an allele that is not the most frequent in the population7. To identify 

variants in the Ion Proton dataset falling in these positions we analyzed their allelic 

frequencies in 3 different databases, namely dbSNP11 release 144 , ExAC12 release 

0.3.1  and  ESP6500SI-V2. A  genomic  position  was  marked  as  MAiR  if  the 

reference allele frequency was lower than any alternative allele frequency in all 

three databases. More details are reported in Supplementary File S1.

Impact of MAiR positions at the protein level

Variants  in  GRCh37  MAiR  positions  confirmed  in  GRCh38  genome  were 

annotated using both SnpEff v.4.213 and VEP v.8414, employing respectively UCSC 

and  RefSeq  transcripts.  These  two  different  annotations  were  chosen  to  avoid 

transcript-dependent  biases.  Missense  variants  were  selected  from  the  two 

annotated VCF files and analyzed with an in-house developed Python script to 

allocate  them to  one  of  the  following  three  classes:  i) match  to  the  manually 

reviewed  human  protein  sequence  of  SwissProt,  ii)  match  to  the  Human 

Polymorphisms and Disease Mutations release 2017_05 of UniProt, iii) neither of 

the above.

HF variants in 1000 Genomes on GRCh37 and GRCh38

1000 Genomes Project VCF files Phase3 for both GRCh37 and GRCh38 were 

collected respectively from 1000 Genomes ftp website and Ensembl ftp website. 

Variants  reported  with  frequencies  higher  than  50%  were  marked  as  high 

frequency (HF). A HF variant was considered amended if it  was called against 

GRCh37, but not in GRCh38. These analyses were performed using an in-house 

Python script.
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Statistical test on heterozygous genotype frequencies

The GRCh37 dataset of Phase3 1000 Genomes Project was searched for variants 

with unbalanced heterozygous genotype frequency. Each variant was tested with a 

one-tailed  binomial  test  between  observed  and  expected  allele  frequencies. 

Observed frequencies were computed as the number of heterozygous genotypes 

divided by the total number of genomes. The expected frequencies were computed 

with the Hardy-Weinberg formula in which the heterozygous genotype frequency 

can be calculated as x=2pq, where q is the alternative allele frequency reported in 

the  VCF  file  and  p  is  the  reference  frequency  calculated  as  1-q.  Resulting 

probabilities were corrected for false discovery rate using the Benjamini-Hochberg 

procedure15.  Variants  were  considered  significantly  unbalanced  if  the  corrected 

probability was lower than 0.01. This analysis was performed only for biallelic 

variants.

Results

Ion Proton exome dataset

The work presented in this paper originated from the analysis of a heterogeneous 

dataset of 222 exomes produced in our laboratory using Ion Proton technology and 

Ampliseq chemistry, as detailed in the Material and Methods.

The overall analysis of the data led to the identification of 264,303 variants called 

against the GRCh37 reference genome, including 239,255 SNPs and 25,048 small 

INDELs  (14,075  deletions  and  10,973  insertions).  Among  the  total  variants, 

245,088 were detected  as  biallelic  in  the  analyzed population,  whereas  19,215 

were multiallelic.

We should expect that the reference genome reports the most common alleles in 

the population; therefore, the variants found in the exomes should be minor alleles. 

Instead  we  found  that  9,313  variants  were  present  in  more  than  90%  of  the 

individuals. A full list of these variants is provided in the Supplementary File S2. 

Remarkably, 2,349 variants were found in 100% of the individuals. This finding is 

not  completely unexpected because Minor Alleles In Reference (MAiRs)  are  a 
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known problem7,16;  however  the  large  number  of  their  occurrences  is  notable. 

Interestingly, we realigned the exomic sequences on GRCh38 and found that 8,132 

out of 9,313 remained uncorrected.

The above values refer to the presence of variants in a diploid genome. In terms of 

allelic frequency, we found that 3,898 variants had an allelic frequency equal or 

greater than 90%; of these, 841 scored 100% allelic frequency, being homozygous 

in  all  of  the  samples.  This  number  of  recurrent  variants  is  unexpectedly  high, 

considering that the average number of variants in each sample was 48,785. This 

finding is even more surprising since a considerable number of recurrent variants 

are reported with a low frequency in databases and in some cases they are not 

reported at all as known variants, making difficult the process of recognizing them 

as false positives.

It should be considered that the reference genome should ideally contain the major 

alleles and therefore as a result we should not find variants with allelic frequencies 

above  50%.  Fluctuations  due  to  subsampling  and/or  ethnicity  are  certainly 

possible, but cannot explain this high number of HF variants.

Comparison with Illumina and SOLiD exome datasets

To verify whether the recurrent variants found in at least 90% of the exomes could 

result from Ion Proton specific errors, we analyzed the exomes of two independent 

datasets  produced with Illumina and SOLiD, using their  respective enrichment, 

sequencing and analysis pipelines, as detailed in the Materials and Methods. In 

Table 1 it can be seen that the large majority of variants that occur in >90% of the 

exomes was confirmed also with the Illumina and SOLiD technologies.

Unfortunately, the exomic target regions captured with different technologies are 

not precisely overlapping; thus, of the 9,313 Ion Proton variants, only 6,085 fell in 

regions covered by the Illumina target and 7,046 in regions covered by the SOLiD 

target. Variants were considered “confirmed” if they were respectively present in at 

least 50% of Illumina or SOLiD analyses. As shown in Table 1, the very large 

majority (99%) of the variants on target were confirmed by Illumina, while 81% 

were confirmed by SOLiD. Unconfirmed variants could either be false positives of 

the Ion Proton or false negatives of the Illumina and SOLiD. Only 41 variants that 

95



were localized in common target regions were not confirmed in both Illumina and 

SOLiD and therefore these could be Ion Proton specific systematic errors.

Minor Alleles in GRCh37 and GRCh38 reference genomes

To better clarify how many minor alleles are present in the reference genomes, we 

screened the Phase 3 VCF files of the 1000 Genomes Project (1KGP), consisting 

of 2,504 whole genome sequences, from 26 populations, aligned on GRCh3717. 

The results of this analysis are shown in Figure 1A.

We found 436,700 (about 145 variants per Mbp) with an allelic frequency equal or 

greater  than 90% and 32,105 variants  (about  11 variants per  Mbp) with 100% 

allelic frequency, in homozygosity in all the individuals. These findings show that 

the  surprisingly  high  number  of  HF  variants  observed  in  exomes  was  also 

confirmed in whole genomes.

Recently,  the  European  Bioinformatics  Institute  has  re-aligned  the  1KGP 

sequencing data on the GRCh38 reference genome6. Therefore, we were interested 

in evaluating the number of HF variants found in GRCh37 that have been amended 

in GRCh38. A total number of 2,198,258 HF variants positions were present in the 

GRCh37 VCF file. For each position we checked if in the GRCh38 release the 

reference allele was substituted with the most common allele in the population or 

if the position was not included in GRCh38. We found that this correction occurred 

only in 70,497 cases, while 2,127,761 positions maintained the less frequent allele 

in the population. Figure 1B shows these results in more detail. It can be seen that 

the rate of correction is practically the same, around 3%, in the range between 0% 

and 95%. Some improvement  is  seen for the alleles with a frequency between 

95%-100%,  that  were  corrected  in  5.6% of  the  cases.  Nevertheless,  the  large 

majority  of  these loci  still  maintain  the  minor  allele  in  the GRCh38 reference 

genome, including 8,593 alleles with a frequency of 100%.

Mining for incongruities

MAiRs undoubtedly provide a very easy and satisfactory explanation of variants 

that are found in the population with a high frequency. However, a closer look at 

some of the HF variants revealed that assembly errors in the reference genome 

may also be involved in the problem. In particular, we observed that the sequence 
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coverage of WGS is consistently higher than average in some specific regions of 

all individuals. A possible explanation is that there may be genomic duplications 

that are reported as single regions in the reference, which could be the source of 

false variant calling18. Indeed, any difference between the two repeats would be 

seen  in  all  individuals  as  a  heterozygous  variant  mapping  on  the  “collapsed” 

reference. Figure 2 provides a schematic representation of a tandem duplication 

that in the reference is collapsed into a single region.

To verify the extent of the above problem, we performed a genome-wide analysis, 

aiming  at  the  detection  of  regions  with  unbalanced  genotypes.  For  each 

chromosome we considered non-overlapping 100kb sized windows and for each 

window we calculated the percentage of unbalanced variants based on the total 

number of biallelic variants. For each variant we considered its allele frequency in 

the  whole  1KGP population  and  the  observed  frequency  of  homozygous  and 

heterozygous  genotypes.  We considered  that  according  to  the  Hardy-Weinberg 

equation  we  should  expect  that  p2+2pq+q2=1;  therefore,  to  verify  this  null 

hypothesis, we performed a one-tailed binomial test, corrected for false discovery 

as discussed in the Material and Methods. Variants were considered significantly 

unbalanced if their corrected p-values were lower than 0.01. The results of this 

analysis are shown in Figure 3. Many regions with unbalanced heterozygosity can 

be clearly detected. The portion of chromosome 6 corresponding to the MHC is 

indicated by an asterisk. It can be seen that although the MHC is possibly the most 

polymorphic region of the genome, it is not particularly associated to unbalanced 

heterozygosity, suggesting that the nature of this genetic inconsistency should be 

found  elsewhere.  A  detailed  list  of  unbalanced  regions  is  supplied  in  the 

Supplementary File S3.

We detected  86,649  unbalanced  variants  that  we  believe  to  be  mostly  due  to 

unreported genomic duplications. An interesting issue is to understand how many 

HF variants are produced by these putative unreported genomic duplications in 

each individual. To answer this question we analyzed the VCF file of the 2,504 

individuals belonging to the 1KGP and we found that on average each individual 

carries  4,491,760 variants  of  which  1,950,334 are  HF;  we  also  found  that  on 

average each individual carries 62,308 unbalanced variants; finally we found that 
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in each individual, on average 24,768 HF variants are unbalanced. The diagram in 

Figure S1 summarizes these observations.

Analysis of the physical coverage in mate pair whole genome data

To further  verify whether  the genomic regions  with  unbalanced heterozygosity 

hide  duplications,  we  focused  on  570kb  of  chromosome  17,  particularly 

remarkable for the presence of important genes such as  MAP2K3 (MAP Kinase 

Kinase 3) and  KCNJ2 (Potassium Voltage-Gated Channel,  J2).  We downloaded 

mate pair whole genome sequencing data from “The Genome in a Bottle” project19 

and aligned them both on the GRCh37 and on toplevel GRCh38 (more details in 

Supplementary File S1, Figure S2). Figure 4 shows the physical coverage of this 

genomic region. In agreement with our findings, the coverage in these two genes is 

at least doubled than the average when mapped on GRCh37. Using GRCh38, the 

physical coverage of MAP2K3 and KCNJ12 genes is still higher than the flanking 

regions, but to a lesser extent than what was observed with GRCh37.

Discussion

The results  obtained from exomes and whole genomes are slightly different  in 

terms of the number of variants per Mbp. Typically, in the genome of a single 

individual we detect about 4.5 million variants (Figure S1), equivalent to ~1500 

variants/Mbp, whereas in exomes the average number of variants is 48,785, over a 

target region of 57Mbp, equivalent to only 856 variants/Mbp. This is not surprising 

as it is known that protein-coding sequences tend to be more conserved than other 

genomic regions. Similarly, it is not surprising that the reference genome seems to 

be slightly more accurate in coding regions. This can be reckoned by considering 

the number of high frequency variants, that reflects the presence of a minor allele 

in the reference genome. In this respect, in whole genomes we found ~145 variants 

per Mbp with an allelic frequency greater than 90%, whereas in the exomes we 

found only 68 such variants per Mbp. Surprisingly, the number of variants with 

100% allelic frequency (meaning that the allele reported in the genome was never 

found  in  our  analyses)  is  slightly  greater  in  exomes  (15/Mbp)  than  in  whole 

genomes (11/Mbp). Unfortunately, we found that only a small percentage of these 
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genomic positions, about 3%, have been corrected in the GRCh38 release, rising to 

~5% for the variants found with a frequency above 95% (see Figure 1).

As shown in Figure S1, an interesting result of our analysis is that HF variants are 

not  only  due  to  MAiRs  but  also  to  regions  with  unbalanced  heterozygosity, 

possibly  derived  from unreported  genomic  duplications  (Figures  2  and  4).  To 

better understand this point, we focused on the impact of HF variants on protein 

coding regions; moreover, we analyzed whether the corresponding position of the 

genome had been corrected in GRCh38. To obtain an answer to this question we 

focused our analysis on the exomic Ion Proton regions. Using GRCh37 we found 

18,839  HF  variants  that  have  the  alternative  allele  frequency  higher  than  the 

reference  in  all  three  major  databases  (dbSNP, ExAC, ESV, see Materials  and 

Methods). We further checked whether they had been corrected in GRCh38 and 

found that this occurred only for 1,808 HF variants, while the remaining 17,031 

were unchanged.

We also examined whether any of the 17,031 HF variants retained in GRCh38 

matched  their  corresponding  protein  in  the  UniProt  variation  database.  We 

annotated  the  variants  both  with  SnpEff13 and  VEP14,  employing  respectively 

UCSC and RefSeq transcripts.  We detected  a  comparable  number  of  missense 

variants in the two databases: 3,814 with RefSeq and 3,761 with UCSC. We also 

found that ~2,800 of them were already known, but as minor  protein variants, 

while only ~100 corresponded to the most frequent amino acid in the reference 

protein; finally, ~880 alleles found with high frequency in exomes did not show 

any known counterpart at the protein level. These data confirm a previous finding 

by Barbitoff  et al.16 and indicate that some general revision of the reference is 

required also at the protein level.

A further  point  that  we want  to expand in this  discussion is  about  unbalanced 

heterozygosity  on  protein  coding  sequences.  This  is  particularly  interesting 

because  it  is  very  likely  that  these  genomic  regions  may  have  been  wrongly 

assembled and the resulting proteins may be different from what was indicated in 

the  reference  genome.  Overall,  in  the  Ion  Proton  exome target  we found  753 

variants with unbalanced heterozygosity. In particular we found 145 target regions 
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(amplicons)  containing  more  than  one  unbalanced  variant,  for  a  total  of  560 

variants spanning over 45 genes.

We also  investigated  whether  the  genome  reference  of  these  45  “unbalanced” 

genes was modified in the GRCh38 release. As mentioned before, unless otherwise 

specified, in this paper we took as a reference the GRCh37 primary assembly, that 

is  about  3.1  Gbp  long,  containing  one  single  consensus  base  per  position. 

However,  toplevel  assemblies  are  also  available,  which  include  unmappable 

scaffolds,  haplotypes  and  patches.  In  this  respect,  the  toplevel  GRCh37  and 

GRCh38 releases contain respectively 31 and 46 Gbp. To better understand the 

progress of the current human reference genome, we selected the reads previously 

mapped on the 45 unbalanced genes and we re-mapped them on toplevel GRCh38 

using  BLAST. We found that  11 genes  out  of  the  45 still  presented  the  same 

heterozygosity problem (Table 2, column 5). Of the remaining genes, only 15 were 

duplicated in the chromosomal primary sequence (Table 2,  column 1);  5 genes 

were only partially duplicated and they still had some regions with heterozygosity 

(Table  2,  column  2);  4  genes  were  duplicated  on  scaffolds  not  placed  in 

chromosomal sequences (Table 2, column 3) and 10 genes were not duplicated, but 

reported as different haplotypes in the toplevel assembly (Table 2, column 4). It 

should be noticed that haplotypes should not produce unbalanced heterozygosity 

when aligned on the primary reference genome, as seen for the MHC locus on 

chromosome 6 (Figure 3).  Therefore,  some of the genes  reported in  column 4 

should be revised as they could be duplications rather than haplotypes.

Among the genes with unbalanced heterozygosity in GRCh37 we found PRIM2. 

This  was  expected  since  it  had  been  previously  reported  as  a  paralog  gene 

misassembled in GRCh3720, which was fully amended in GRCh382. In fact, our 

screening process placed PRIM2 as an amended gene in GRCh38.

Another interesting case is the  MAP2K3 gene (Figure 4), also known as  MKK3, 

which  encodes  the  mitogen-activated  protein  kinase  kinase  3.  This  protein 

participates in the MAP kinase-mediated signaling cascade and has a well known 

role in tumor invasion and progression21,22. The gene maps on chromosome 17 and 

includes 12 exons. When we re-aligned the reads on toplevel GRCh38 we found 

that they mapped on the first portion of the gene, in particular exons 3, 4 and 5, 
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still on the same position of MAP2K3, maintaining the unbalanced heterozygosity. 

Instead, the reads from exons 9, 10, 11, 12 have a more complex behavior: they 

mapped on the same position if they did not carry the variants, otherwise they 

mapped on a nearby region that was not present on GRCh37. Therefore we can 

conclude that MAP2K3 has been partially amended in GRCh38, with the insertion 

of a duplication of the last  part  of the gene,  including exons 9 to 12, while it  

remains with its original unbalanced heterozygosity at the beginning of the gene, 

as seen in exons 3 to 5. This can also be appreciated in Figure 4, reporting shotgun 

coverage  of  four  individuals,  showing  a  considerable  normalization  of  the 

coverage in GRCh38 as compared to GRCh37. On the other hand it can also be 

noted that some problems are still there as the coverage remains relatively high in 

the  first  part  of  the  gene,  thus  confirming  the  indications  resulting  from  the 

unbalanced heterozygosity about the residual inconsistency in GRCh38. A detailed 

description of the MAP2K3 data is reported in the Supplementary File S1.

Conclusions

The results of our analysis show that there are many positions of the reference 

genome  that  could  be  amended  to  avoid  the  call  of  so  many  high  frequency 

variants in exome and genome sequencing. Most of these HF variants map on the 

minor allele in the reference (MAiRs) and some map on misassembled regions 

with unbalanced heterozygosity. We also considered both GRCh37 and GRCh38, 

as  primary  and  toplevel  versions.  Although  there  are  several  improvements  in 

GRCh38,  many  amendments  could  be  easily  done  to  further  improve  it.  The 

toplevel references with haplotypes and patches could be useful, but their huge 

size and the lack of suitable bioinformatic tools make their use very impracticable 

for most practical applications.

Acknowledgments

The  authors  are  grateful  to  their  colleagues  Stefano  Campanaro,  Georgine 

Faulkner,  Chiara  Romualdi,  Luca  Pagani,  Riccardo  Schiavon,  Stefano  Toppo, 

Nicola Vitulo for useful suggestions.

101



The authors would thank the University of Padua for funding this study.

The authors would also like to thank the Exome Aggregation Consortium and the 

groups that provided exome variant data for comparison. A full list of contributing 

groups can be found at http://exac.broadinstitute.org/about.

Funding

This  work  was  supported  by  the  University  of  Padova,  [Strategic  project 

BIOINFOGEN].

Manuscript references

1 International Human Genome Sequencing Consortium. Initial sequencing and 
analysis of the human genome. Nature 2001; 409: 860–921.

2 Schneider VA, Graves-Lindsay T, Howe K et al. Evaluation of GRCh38 and de 
novo  haploid  genome assemblies  demonstrates  the  enduring  quality  of  the 
reference assembly. Genome Res 2017; 27: 849–864.

3 Li H. Toward better understanding of artifacts in variant calling from high-
coverage samples. Bioinformatics 2014; 30: 2843–2851.

4 Miga  KH,  Eisenhart  C,  Kent  WJ.  Utilizing  mapping  targets  of  sequences 
underrepresented  in  the  reference  assembly  to  reduce  false  positive 
alignments. Nucleic Acids Res 2015; 43: e133–e133.

5 Guo Y, Dai Y, Yu H, Zhao S, Samuels DC, Shyr Y. Improvements and impacts 
of  GRCh38 human reference  on high throughput  sequencing data  analysis. 
Genomics 2017; 109: 83–90.

6 Zheng-Bradley  X,  Streeter  I,  Fairley  S,  Richardson D,  Clarke  L,  Flicek  P. 
Alignment of 1000 Genomes Project reads to reference assembly GRCh38. 
GigaScience 2017; 6: 1–8.

7 Bertoldi  L,  Forcato  C,  Vitulo  N  et  al. QueryOR:  a  comprehensive  web 
platform for genetic variant analysis and prioritization.  BMC Bioinformatics 
2017; 18: 225.

8 CRIBI C. Genomics Facility. genomics.cribi.unipd.it.
9 de Ligt J, Willemsen MH, van Bon BWM et al. Diagnostic Exome Sequencing 

in Persons with Severe Intellectual Disability. N Engl J Med 2012; 367: 1921–
1929.

10 Zhao H, Sun Z, Wang J, Huang H, Kocher J-P, Wang L. CrossMap: a versatile 
tool  for  coordinate  conversion  between  genome assemblies.  Bioinformatics 
2014; 30: 1006–1007.

11 Sherry  ST, Ward  M-H,  Kholodov  M  et  al. dbSNP:  the  NCBI  database  of 

102



genetic variation. Nucleic Acids Res 2001; 29: 308–311.
12 Lek M, Karczewski KJ, Minikel EV et al. Analysis of protein-coding genetic 

variation in 60,706 humans. Nature 2016; 536: 285–291.
13 Cingolani P, Platts A, Wang LL et al. A program for annotating and predicting 

the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin) 2012; 6: 
80–92.

14 McLaren  W, Gil  L,  Hunt  SE  et  al. The  Ensembl  Variant  Effect  Predictor. 
Genome Biol 2016; 17: 122.

15 Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical 
and Powerful  Approach to  Multiple  Testing.  J  R Stat  Soc  Ser  B Methodol 
1995; 57: 289–300.

16 Barbitoff  YA, Bezdvornykh IV, Polev DE  et  al. Catching hidden variation: 
systematic correction of reference minor allele annotation in clinical variant 
calling. Genet Med 2017. doi:10.1038/gim.2017.168.

17 Consortium T 1000 GP. A global reference for human genetic variation. Nature 
2015; 526: 68.

18 Ho M-R, Tsai K-W, Chen C, Lin W. dbDNV: a resource of duplicated gene 
nucleotide variants  in  human genome.  Nucleic  Acids  Res 2011;  39:  D920–
D925.

19 Zook JM, Chapman B, Wang J  et al. Integrating human sequence data sets 
provides  a  resource  of  benchmark  SNP  and  indel  genotype  calls.  Nat 
Biotechnol 2014; 32: 246.

20 Genovese G, Handsaker RE, Li H  et al. Using population admixture to help 
complete maps of the human genome. Nat Genet 2013; 45: 406–414.

21 Bossi G. MKK3 as oncotarget. Aging 2016; 8: 1–2.
22 Wysk M, Yang DD, Lu H-T, Flavell RA, Davis RJ. Requirement of mitogen-

activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced 
cytokine expression. Proc Natl Acad Sci 1999; 96: 3763–3768.

103



Figure and legends of manuscript

Figure 1.  Allelic frequencies of variants found in GRCh37 and amended in 

GRCh38. The variants of 2,504 genomes (1000 Genomes Project, phase 3) were 

divided into classes according to their allelic frequency. Frame A: the blue blocks 

indicate  the  average  number  of  variants  per  Mbp of  each  class.  The  red  line 

indicates the sum of values from a given allele frequency to the right end, that is 

the number of variants with at least the indicated allele frequency. It can be seen 

that there are about 730 variants/Mbp with an allele frequency >50%. The yellow 

sector  at  the  bottom  of  the  95-100%  block  corresponds  to  variants  found  in 

homozygosity  in  100% of  the individuals (about  11 variants  /  Mbp).  Frame B 

shows the percentage of variants that have been amended in the GRCh38 release.
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Figure 2. Hypothetical genomic region with a tandem repeat. The hypothetical 

tandem repeat is almost identical with the exception of four positions: A, B, C and 

D. This condition may be ancestral and shared by the entire population, repeat 1 

having A1, B1, C1, D1 and repeat 2 having A2, B2, C2, D2. Two new variants are 

also shown as N1 and N2. Sometimes this kind of repeat may be misassembled in 

the reference genome, being reported as a single collapsed sequence, as shown in 

the bottom frame on the right. As a result, the four loci A, B, C and D will show a 

heterozygous genotype in all the individuals and the consequent variant call in all 

the loci, which is incompatible with the genetics.

Figure 3. Genome wide analysis of regions with unbalanced heterozygosity. 

For each non-overlapping 100kb window we considered the percentage of biallelic 

variants with a significant unbalanced heterozygosity. Centromeres are indicated 

by  a  small  triangle  below the  baseline.  The  region  marked  by  the  asterisk  in 

chromosome 6 indicates the MHC.
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Figure 4. Physical coverage profiles of a 570kb region of chromosome 17. The 

set of mate pairs from “The genome in a bottle” project were aligned on GRCh37 

(3.1  Gbp)  and  on  toplevel  GRCh38  (48.7  Gbp);  numbers  1,  2  refer  to  two 

Ashkenazim individuals, whereas 3 and 4 refer to two Chinese individuals. The 

frame  at  the  bottom  shows  the  percentage  of  variants  with  unbalanced 

heterozygosity.

Figure  S1.  Variants  per  individual  in  the  1000  Genomes  Project. Average 

number of variants per individual found in the population of 2,504 people studied 

in  the  1000  Genomes  Project.  Variants  have  been  further  subdivided  in  High 

Frequency and Unbalanced variants.
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Table and legends of manuscript

Ion Proton Illumina control dataset SOLiD control dataset

9313

on target off target on target off target

6085

3228

7046

2267confirmed
not 

confirmed
confirmed

not 
confirmed

6008 77 5733 1313

Table  4.  Recurrent  variants  in  Ion  Proton  exomes  and  their  sharing  in 

Illumina and SOLiD datasets. The 9,313 variants found in more than 90% of the 

Ion Proton exomes were analyzed to verify whether they were also present in at 

least 50% of the exomes obtained with Illumina and SOLiD technologies. As the 

exomic  target  regions  captured  with  the  three  technologies  did  not  precisely 

overlap, ‘confirmed’ and ‘not confirmed’ refer to variants falling in target regions 

shared between Ion Proton and Illumina or between Ion Proton and SOLiD (‘on 

target’ variants). However, also the number of Ion Proton variants outside Illumina 

and SOLiD target regions is reported (‘off target’ variants). A large percentage of 

variants that shared the exomic target was confirmed: 6,008 of the 6,085 on target 

variants  were  confirmed  by  Illumina  (99%)  and  5,733  of  the  7,046  on  target 

variants were confirmed by SOLiD (81%). 
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1 
Fully amended

2
Partially 
amended 

3
Unplaced 
scaffold

4
Alternative loci

5
Unchanged

BCLAF1
CCDC144NL
FRG1
HYDIN
KRTAP4-11
LOC653486*
NBPF10
NOTCH2NL
OR4C3
OR4C45
OR4M2
PDE4DIP
PPYR1*
PRIM2
SEC22B

FRG2B
FRG2C
KCNJ12
KRT6B
MAP2K3

CTBP2
FAM104B
MLL3
NBPF1

CES1
HLA-DQA2
HNRNPCL1
KIR2DL3
KIR2DS4
KRTAP9-2
MUC20
OR9G1
PRSS3
TNXB

ALG1L2
ANKRD36
FAM131C
FAM194B
GPRIN2
OR1D5
PCDH11X
PDPR
PER3
TPTE
ZDHHC11

Table 5. Genes with unbalanced heterozygosity in GRCh37 and their status in 

GRCh38.  Column  1:  Fully  amended  genes  that  have  been  duplicated  within 

chromosomes  in  GRCh38  and  as  a  result  lost  the  variants  with  unbalanced 

heterozygosity.  Column  2:  Partially  amended  genes  that  are  still  showing 

unbalanced variants in some of the exons. Column 3: Genes whose duplication 

was found on extra chromosomal scaffolds in the primary assembly and as a result 

lost the variants with unbalanced heterozygosity. Column 4: Genes that have not 

been duplicated,  but  reported  as  different  alternative  loci  in  the  full  assembly. 

Column 5: Unchanged heterozygosity in GRCh38. *LOC653486 and PPYR1 have 

changed name in GRCh38 respectively to SCGB1C1 and NPY4R. More details are 

given in the text.
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Supplementary File S1 

Supplementary Materials and Methods

Ion Proton dataset, alignment and variant calling. Exomes were sequenced to 

reach a  final  mean coverage  of  80x and a  target  uniformity  higher  than  90%. 

Alignment and variant calling were carried out according to the Torrent Suite 5.0 

exome analysis pipeline, as suggested by the manufacturer. Variants were merged 

into a unique file using CombineVariants of Genome Analysis Toolkit (GATK v. 

3.6) and then normalized applying the method proposed by Tan and colleagues 

(Tan et al. 2015) in order to eliminate different representations of the same variant. 

Variant  annotation,  based  on  GRCh37.82  version  of  Ensembl  transcripts,  was 

performed using  in-house software.  In 2014 Life  Technologies provided a new 

smaller  exome  BED  file,  the  Ion  AmpliSeq  Exome  Hi-Q  Effective  Regions, 

without actually changing the AmpliSeq Exome panel. In this file poor performing 

regions are masked during the variant calling step. According to the manufacturer, 

the usage of this file should guarantee high confidence variant calling. For this 

study we considered only the variants covered by the new BED file. 

Illumina  control  dataset, alignment  and  variant  calling. Each  sample  was 

sequenced with 75 bp paired-end reads by Illumina NextSeq 500 to a final average 

coverage of 103x. Alignment and variant calling were performed according to the 

recommendations of the GATK Best Practices. Briefly, reads were aligned using 

BWA mem (v. 0.7.12)  with  default  parameters.  The resulting  BAM files  were 

further processed by Picard MarkDuplicatesWithMateCigar (Picard v. 1.55) and 

GATK  BaseRecalibrator  (GATK  v.  3.6).  Variant  calling  was  performed  using 

GATK  HaplotypeCaller  (GATK  v. 3.6)  with  default  parameters.  The  collected 

variants were firstly filtered using GATK VariantRecalibrator (GATK v. 3.6) and 

then normalized as previously described.

SOLiD control dataset.  VCF files of de Ligt et al. (de Ligt  et al. 2012) were 

downloaded from The European Genome-phenome Archive. Variant normalization 

was performed as indicated above.
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Identification of exome variants  mapped on MAIRs.  The varinats databases 

used were: i) the Single Nucleotide Polymorphism database (dbSNP) (Sherry et al. 

2001) version 144, modified to recover old variants excluded from this release but 

present  in  the online version; ii)  the NHLBI Exome Sequencing Project  (ESP) 

database version ESP6500SI-V2; iii) the Exome Aggregation Consortium (ExAC) 

database version 0.3.1 (Lek  et al. 2016).  When different populations frequencies 

were present, only the total one was considered.

Supplementary File  3.  This  is  a  wig format  file  obtained as follow: for  each 

chromosome the percentage of unbalanced variants on the total number of biallelic 

variants was calculated in non-overlapping 10 kb sized windows. Values range 

from 0.0 to 100, with 0.0 indicating the absence of unbalanced variants in the 

given window; NaN values indicate that any biallelic variant was found in the 

given window. Data refer to GRCh37. This wig file can be downloaded at NAR 

online.

Confirmation  of  unbalanced  variants  of  MAP2K3.  VCF  files  containing 

variants  in  chromosome  17  were  downloaded  from  two  different  databases: 

Genome Aggregation Database  (gnomAD) version  2.0.1 (Lek  et  al. 2016)  and 

1000 Genomes Project (1KGP) database Phase1 release and Phase3 release. Using 

the  statistical  test  described  in  the  main  text  (see  paragraph Statistical  test  on 

heterozygous  genotype  frequencies),  variants  with  a  heterozygous  genotype 

frequency significantly higher than the expected were selected and subsequently 

compared with variants identified in MAP2K3 in the Ion Proton dataset.

Analysis  of  the  physical  coverage in mate pair whole genome data. Whole 

genome sequencing mate pair data were downloaded from the Genome In A Bottle 

project. Samples were parents of an Ashkenazi trio and a Chinese trio. For details 

on libraries preparation and sequencing refer to the work of Zook and colleagues

(Zook et al. 2016).  Reads were aligned against GRCh37 (primary assembly) and 

GRCh38 (toplevel) with BWA mem (v. 0.7.12 with default parameters). In-house 

script was used to produce a physical coverage profile in  MAP2K3 and  KCNJ2 

regions on chromosome 17.

110



Supplementary Results

MAP2K3 gene. Globally, 54 unbalanced variants were localized in MAP2K3. We 

checked if these variants were unbalanced in three genomes databases: gnomAD, 

1KGP Phase1 release and 1KGP Phase3 release.  See Material  and Methods in 

Supplementary information for details. The majority of variants were confirmed to 

have an unbalanced heterozygosity in gnomAD and 1KGP Phase1 release. The not 

confirmed  variants  were  absent  in  the  databases  or  present  with  multiple 

alternative alleles (these variants were not included in the statistical test). Variants 

in 1KGP Phase3 release were collected using the hs37d5 genome reference, which 

corresponds to the GRCh37 primary assembly (chromosomal plus unlocalized and 

unplaced  contigs)  integrated  with  rCRS  mitochondrial  sequence,  Human 

herpesvirus 4 type 1 and the concatenated decoy sequences. As reported by Li et  

al. (Li 2014), the integration in standard pipelines of decoy sequences allows the 

resolution of false heterozygous calls. In fact, the majority of unbalanced variants 

in  MAP2K3 were  not  present  in  the  1KGP Phase3 release  because  reads  with 

variants align to the decoy sequences. As a result, none of MAP2K3 variants were 

unbalanced in 1KGP Phase3 release. Results are summarized in Supplementary 

File 4.

We focused on 8 enriched regions of MAP2K3 carrying more than one unbalanced 

variant: the first three regions match exons 3, 4 and 5, while the last five regions 

match exons 9, 10, 11, 12 (see Table S1). Reads from these regions were realigned 

against the GRCh37 and GRCh38 toplevel human genome assemblies.

Results  in Table S1 show that exons 3,  4 and 5 behaved very differently from 

exons 9, 10, 11 and 12. In the former, reads aligned only to the original target gene 

independently of the reference used. In the latter, the amelioration of the reference 

genome lead to different results: in GRCh37 reads carrying all variants aligned to a 

fix  patch,  called HG987_PATCH, while  in  the GRCh38 they aligned to  a new 

region added in the chromosome 17; on the other side, in both the references reads 

with none variant aligned to the original target gene. 
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target region name exon
reads with all variants reads with none variant GRCh38

confirmed 
variants

GRCh37 GRCh38 GRCh37 GRCh38

MAP2K3_158294.12020 3 gene gene gene gene 9

MAP2K3_158295.17245 4 gene gene gene gene 6

MAP2K3_158296.5164 5 gene gene gene gene 10

MAP2K3_158300.13718 9 patch new region gene gene 0

MAP2K3_158301.11673 10 patch new region gene gene 0

MAP2K3_158301.16511 10 patch new region gene gene 0

MAP2K3_158302.11191 11 patch new region gene gene 0

MAP2K3_158303.8516 12 patch new region gene gene 1

Table S1.  BLAST result of read realignments. The results for reads with all or none 
variants are reported separately: for each group the alignments on both the references  
used (toplevel GRCh37 and GRCh38) are shown; “gene” corresponds to the original 
target gene, “new region” stands for a different region within the same chromosome and 
“patch” refers to HG987 patch. The number of variants confirmed in the last release of 
the human genome reference is also reported.

These results indicate that a sequence very similar to the last portion of MAP2K3 

was included in the HG987_PATCH added in the GRCh37 toplevel release. This 

sequence  is  indeed  absent  in  the  GRCh37  primary  assembly.  This  patch  was 

inserted in the GRCh38 release and its coordinates correspond to the new region in 

the chromosome 17 where reads aligned.

We suggest a similar solution also for exons 3, 4 and 5. In fact, we saw two groups 

of reads, one carrying all the variants and the other any of them, but they both 

aligned only to the target gene.  Of the 51 unbalanced variants localized in the 

analyzed  exons  of  MAP2K3,  26  variants  were  confirmed  using  GRCh38  for 

variant  calling.  Of these,  25 were localized in  exons 3,  4 and 5 and only one 

variant was localized in exon 12 - it should be pointed out that this variant was 

identified in only one sample using GRCh38, thus indicating a private variant. We 

can  conclude  that  the  duplication  inserted  in  chromosome  17  with  the 

HG987_PATCH resolution could be extended also to include the first three exons. 

In fact, a BLAST search confirmed that the duplication span only exons from 8 to 

12.

These findings are supported also by the physical coverage analysis of mate pair 

reads. As shown in the Figure S2, the physical coverage increases for the first part 

of the gene, while it decreases starting from exon 9 which actually is the last part  

of the gene, known to be duplicated in GRCh38.
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Figure S2. Physical coverage profiles of a 570 kb region of chromosome 17. The set of 
mate pairs from “The genome in a bottle” project was aligned on GRCh37 (3.1 Gb) and 
on toplevel GRCh38 (48.7 Gb); numbers 1, 2 refer to two Ashkenazi individuals, whereas 
3 and 4 refer to two Chinese individuals. The frame at the bottom shows the percentage of 
variants with unbalanced heterozygosity. In the box the region of MAP2K3 is enlarged to 
show the reduction of physical coverage starting from exon 9 in the toplevel GRCh38 
reference.
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