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Abstract
Electrical Energy Engineering Curriculum, XXXI cycle

Department of Industrial Engineering

Doctor of Philosophy

Magnetic gears numerical modelling and optimization

by Mattia Filippini

The main focus of this thesis is to provide efficient modelling and optimization strategies for
a certain electro-magnetic device known as magnetic gear. In particular, magnetic, thermal and
mechanical models are discussed and the non-linear material models are examined, including
permanent magnets demagnetization algorithms and hysteresis models in laminated sheets.

From the magnetic modelling point of view, an analytic approach for the initial simplified
gear design is presented. A special focus is given to the computational burden of the method
that is especially tailored for stochastic optimization procedures.
For the detailed analysis of magnetic gears, an algorithm based on Finite Element / Boundary
Element coupling is proposed, including ferromagnetic non-linearities, mechanical ordinary dif-
ferential equations, eddy currents and circuit equations.
Detailed models are introduced and discussed to analyze the effects of soft material hysteresis
and permanent magnets magnetization, demagnetization and recoil.
Loss mechanisms in magnetic gears are also investigated, and the transmission losses at varying
rotational speeds and load angles are analyzed.

A simplified mechanical model of the magnetic gear is presented and formulated as a set
of inequality constraints, thus giving a direct link to optimization strategies. The mechanical
constraints include the iron poles displacements and stresses and the limitations on the rota-
tional speed due to excessive stresses, resonances and vibrations. A simplified analysis based
on an equivalent thermal network is also presented, where the axial cooling flux is also considered.

Stochastic optimization techniques are discussed for a multi-physic optimized machine de-
sign, and the analytic model is embedded in a Differential Evolution scheme.

Finally, the optimized results are discussed and compared to commercial mechanical gear-
boxes. A solution based on the stiffness rods connection is also proposed and analyzed to provide
a damping effect when the gear operation becomes asynchronous.

During the PhD, there has been a constant effort aimed at building a prototype for the val-
idation of the numerical models but, for different reasons, none of the manufacturers finalized
the project. Thus, all the algorithms have been validated by comparing their output with com-
mercial codes or, when possible, with data from experiments retrieved from literature. Because
of this reasons and since the major objective of this thesis regards the numerical techniques for
magnetic gears simulation, different magnetic transmissions have been adopted as numerical test
cases for the validation of the algorithms.
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Chapter 1

Motivation

Mechanical gears have been known before Christ: first prototypes are described in Aristotle’s
writings (330 B.C.) but according to [1] even some chariots in the Yellow Emperor were equipped
with primitive gears (over 4500 years ago).

Nowadays gears represent a well consolidated way to convert torque and speed and are
manufactured for a wide speed and power ranges, covering almost all the applications that
involve rotating parts. Wind turbines are normally equipped with gearboxes stages to match
the low-speed power input with the high-speed electrical generator. Helicopters power-trains
use gearboxes to convert power from the high-speed turbine to the low-speed rotor blades.
The power take-off systems of wave energy plants have to convert the small linear motion of
buoys into possibly wide displacements of linear or conventional generators through mechanical
transmissions. In general, all applications where two non-coaxial shafts have to be connected
adopt a mechanical device that allows the transmission. Potentially, all these applications could
benefit from magnetic contact-less solutions.

In Sec. 1.1, the main causes of failure of mechanical gears are briefly presented, while in Sec.
1.2 the magnetic gear is introduced.

1.1 Mechanical gears: causes of failure

Gears have a limited life and after this time period they have to be substituted. Apart from the
materials aging, multiple factors influence the gear life: load, alignment, materials, temperature,
lubricant film, geometrical and surface properties are the most common. Pitting is a well known
phenomenon that affect gears and it is one of the main failure reason. Every time there is contact
between two radius, contact stresses occur: this generally happens for gears and bearings. In
case of two spheres in contact, the entire load will be imparted into a theoretical point. Due to
elastic properties of the materials, this point will deform into a contact area. The deformation
that occurs will produce high tensile and compressive stresses in the materials and even if the
load is lower than the static limit, several effects related to fatigue, overload or failure in the
teeth lubrication can damage the gear. The most common effects are abrasive wear, corrosive
wear, pitting, spalling and scoring [2].

Pitting is usually classified in initial and progressive categories: the former is also called
corrective pitting and his severity decreases with the number of cycles, the latter is the most
harmful because it grows his intensity and severity increasing the number of cycles till the surface
is completely destroyed. Some examples of pitting are depicted in Figs. 1.1, 1.2 and 1.3, while
other failures are shown in Figs. 1.4 and 1.5.

In [3], an extensive survey of the Swedish wind power systems showed that gearboxes failure
cover around 10% of the overall number of failures, while the downtime due to gearboxes failure
is close to 20% of the overall downtime (see Figs. 1.6, 1.7).

According to [4], the gearbox is the largest contributor to wind turbine downtime and the
costliest damage to repair. Among the 257 records of the database, 26% of the faults are due to
the gears, while 70% to the bearings.

Mechanical gears have several advantages such as the relative low price and high torque to
weight ratio, however vibrations have to be compatible with the application, safety factors and
clutches have to be adopted in case of overloads and the lubrication must always be guaranteed

1



2 Chapter 1. Motivation

Figure 1.1: Corrective pitting example. Figure 1.2: Dedendum wear of a hardened gear.

Figure 1.3: Destrutive pitting example.
Figure 1.4: Overload crushing.

Figure 1.5: Misalignment failure.

Figure 1.6: Swedish wind power system failure
statistics in % [3].

Figure 1.7: Swedish wind power system failure
downtime statistics in % [3].
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Model Power (kW) rpmout ratio rpmin weight (kg) Nm/kg kW/kg
oh58A 220.5 350 95 33250 70 86 2.56
ch47D 5512 225 68 15300 1850 126.46 43.6
UH60 2205 258 81 20898 680.4 119.95 18.38

tp400d6 8085 860 9.5 8170 ≃ 450 200 18
UL 44.1 550 110 60500 59 12.98 0.75

Table 1.1: Typical gearboxes values for aircraft applications. The weight of the lubrication oil is
included.

in order to avoid premature failures. The temperature is another key factor that affect the
probability of gear failure as explained in [5].

[6, 7, 8] describe three cases of failure in a vehicle gearbox, in power plant and for an helicopter
drivetrain respectively, just to name a few.

1.2 The magnetic counterpart

Because of these reasons, a device equivalent to the mechanical gearbox but with less require-
ments in terms of maintenance would be highly competitive on the market. Magnetic gears
could be the candidates to substitute the conventional gearboxes in all the applications where
maintenance-free operation is required, since they do not need lubrication systems and they in-
trinsically guarantee overload protection. A coaxial magnetic gear schematic example is shown
in Fig. 1.8, where the tree main components are depicted.

Several comparisons between mechanical and magnetic transmissions have been carried out
in the recent years. A comparative study is reported in [9], where the authors show that the
mechanical torque density in Nm/L is strictly dependent on the safety factors adopted and
rapidly decreases increasing the gear ratio, while the volumetric torque density achievable by
magnetic gears is generally higher than the mechanical transmissions.

[10] and [11] compare both volumetric and mass torque densities. According to [10], there is
a great potential for magnetic gears in the micro-electro-mechanical systems where mechanical
gears suffer from low mass torque densities due to friction forces. In [11], the mass torque density
of magnetic gears is still lower than the one of conventional transmissions, but further improve-
ments are expected since the number of magnetic gear prototypes is still limited. According
to [12], a coaxial magnetic gear can reach up to 200 kNm/m3, 5.47 Nm/$ and 86.8 Nm/kg
even if the best prototype reached a torque density of 17 Nm/kg according to [13]. A recent
paper [14] proposed a gear with an outer dual flux modulator that reached a torque density
above 21 Nm/kg, but further improvements may be be expected since the the geometry was not
optimized.

In literature, several research groups have discussed the possible application of magnetic
gears (e.g. [15]) and are currently developing prototypes or advanced level commercial solutions
[16, 17, 18].

In this thesis, detailed numerical models are presented to analyze magnetic, thermal and
mechanical physics of magnetic gears for a complete gear simulation package. The models range
from analytic-based procedures for the first magnetic gear design, to advanced nonlinear models
for hysteresis and permanent magnet simulations.
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Chapter 2

Magnetic gears quick overview

Electrical machines play key roles in industrial applications. Since the machine size is inversely
proportional to its operating speed, high speed machines achieve higher power density and it is
always desirable to use high speed machines whenever possible. Looking for example at direct-
drive systems, they suffer from large size and material usage in case of high torque demand
due to their low speed. A good alternative option is to combine a high speed machine with a
gear transmission system, leading to an effective solution in terms of cost and weight. Geared
devices are commonly used to match the operating speed and torque of the power source with
the second-mover. Such conventional geared devices are usually mechanical gears of different
topologies, including, among others, spur gears, planetary gears, worm gear, spiral gears, hypoid
gears, harmonic gears, cage gears and strain wave gearing. Although some of them achieve quite
high torque density, mechanical gears usually suffer from the disadvantages of noisy, potential
limited reliability, required lubrication and regular maintenance.

Magnetic gears (MGs), on the other hand, are becoming promising devices. This is mainly
due to several inherent merits, such as physical detachment between moving parts, no gear lu-
brication, overload protection and reduced maintenance. The first ideas of magnetic gears date
back as early as the 1900s. A patent proposed by Armstrong introduced a power-transmitting
device by means of magnetic force, even if the magnetism is produced by coils instead of perma-
nent magnets (PMs) [19]. The magnetic gear, which initially adopted only PMs, was invented
in 1941 [20]. In 1964, a patent concerning a coaxial magnetic gear was proposed by Martin [21].
Many different magnetic gear topologies appeared at that period, however, the torque density
was quite poor due to the low performance and utilization of magnets. With the development
of high-energy rare-earth magnets, magnetic gears revive the researchers’ attention. Since 2001,
when a novel coaxial magnetic gear equipped with NdFeB magnets was proposed by Atallah
[22], magnetic gears have been gaining interest among researches.

This Section will provide an overview on the development of magnetic gears, especially over
the last 20 years. It will cover the key publications related to magnetic gears. Several articles have
been published to review magnetic gears [23, 24, 25, 26, 27, 28], whereas they show either limited
topologies or focus on specified applications. In this Chapter, a general review on magnetic
gears is presented, with special attention on coaxial transmission gears. The most common and
recent discovered topologies are presented in Sec. 2.1. The working principle of these devices is
described in Sec. 2.2. Sec. 2.3 focuses on the computational strategies that have been proposed
and finally in Sec. 2.4 the key design aspects are discussed.

From the overview presented in this Chapter a contribution has been published in [29].

2.1 Magnetic gear topologies

2.1.1 Conventional non-modulated magnetic gears

Conventional magnetic gears are related to the basic non-contact magnetic gears in which PMs
on different arrangements interact magnetically. Generally speaking, the ideas of conventional
MGs stem from mechanical gears, such as spur gear [30] (Fig. 2.1(a)), worm gear [31] (as shown
in Fig. 2.1(b)), skew gear [53], perpendicular gear [32] (as shown in Fig. 2.1(c)) and magnetic
screw [33] (as shown in Fig. 2.1(d)). Although they are quite simple, the poor utilization of
magnets and the resulting low torque density make them unattractive for industrial applications
[27, 25].

5
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(a) Spur MG [30] (b) Worm MG [31] (c) Perpendicular MG
[32]

(d) Magnetic screw [33]

(e) Planetary MG [34] (f) Cycloid MG [35] (g) Harmonic MG [36] (h) Trans-Rotary MG
[37]

Figure 2.1: Schemes of various conventional magnetic gears.

On the contrary, some other conventional topologies exhibit fairly high torque density but
complex structures. A magnetic planetary gearing arrangement (counterpart of the mechanical
planetary gear) was simulated and fabricated in [34] (as shown in Fig. 2.1(e)). It was shown that
torque density of this magnetic gear is close to 100 kNm/m3 with six magnetic planet gears, and
less than 50 kNm/m3 with the three-planetary-gear. In [35], a cycloid permanent-magnet gear
(as shown in Fig. 2.1(f)), based on the cycloid gearing principle was described. The cycloid action
is utilized to modulate the air gap between the two magnetic rings, achieving a significant gear-
reduction ability and a torque density close to 107 kNm/m3 was demonstrated experimentally. A
magnetic harmonic gear (counterpart of the mechanical harmonic gear, as shown in Fig. 2.1(g)),
which is particularly suitable for high-gear-ratio applications, was analyzed in [36]. It was shown
that the transmitted torque is ripple-free and a torque density of up to 150 kNm/m3 can be
achieved at relatively high gear ratios. A trans-rotary magnetic gear was investigated in [37] (as
shown in Fig. 2.1(h)), which is used to convert linear motion to rotation.

2.1.2 Modulated magnetic gears

Among the magnetic gear topologies, the modulated type seems to be the most promising, since
it exhibits both high efficiency and high torque density. The key merit of this configuration is
that all the PMs contribute to torque transmission, achieving a torque density comparable with
that of mechanical gears.

The coaxial magnetic gear using rare-earth magnets was initially proposed in [22] (as shown
in Fig. 2.2(a)), while its design and performance analysis were given in [22, 54]. PMs are used
on both inner and outer rotors, and steel pole-pieces are placed between these two rotors. The
yokes of both rotors and steel pole-pieces are composed of silicon steel laminations. It was shown
that a transmitted torque density exceeding 70 kNm/m3 was achieved in a prototype [54].

In [38], a coaxial magnetic gear with a spoke type inner rotor was presented (as shown in
Fig. 2.2(b)). A torque density of 54 kNm/m3 was achieved in the experiment. It was also
advised that a surface-mounted PM rotor seems to be preferable to a spoke one with the same
volume.

In [39], a low-cost flux-focusing magnetic gear using ferrite magnets was investigated (as
shown in Fig. 2.2(c)), which resulted a relatively high torque density from experimental setups.
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In [40], a new stator arrangement, interior permanent magnet design were utilized in a coaxial
magnetic gear (as shown in Fig. 2.2(d)). Three ways of connecting stator pole-pieces were also
investigated.

In [41], a new topology of coaxial magnetic gear with interior-magnet outer-rotor configura-
tion was designed and implemented (as shown in Fig. 2.2(e)). The inserted PMs are with the
same polarity along the circumference of the outer rotor, making it much easier to manufacture.
The achieved torque density of the prototype was around 53 kNm/m3.

In [42], a coaxial magnetic gear with Halbach PM arrays was proposed and a complete
analysis was performed (as shown in Fig. 2.2(f)). It was verified that a 13 % higher torque
density, 67 % reduction in cogging torque and 28 % reduction of the total iron losses over a
conventional one were achieved.

In [43], a new coaxial magnetic gear with optimal stationary pole piece shape and Halbach
magnetic arrangement was developed (as shown in Fig. 2.2(g)). Using the proposed pole-piece,
the torque density could be increased by 15 % or more, as compared to a conventional one.

In [44], a novel reluctance magnetic gear for the high speed transmission was proposed (as
shown in Fig. 2.2(h)). Salient poles are utilized in the high speed rotor constructed by only iron
core, resulting a very simple and robust structure. Besides, the proposed magnetic gear achieves
high efficiency since the magnet eddy current loss is removed. The achieved torque density from
simulation was 29.4 kNm/m3.

In [45], a bearingless solution is proposed, with levitation windings embedded between the
iron pole-pieces (as shown in Fig. 2.2(i)). Through a proper current control, radial forces can be
produced to provide additional levitation capabilities, while the torque density is not affected
by the suspension winding.

An interesting solution for applications where the shafts to couple are not intersecting is the
one shown in [46], where the topology is equivalent to the conventional coaxial one but the flux
modulators are bent (as shown in Fig. 2.2(j)). The torque density of the topology was limited
to 5.4 kNm/m3 due to the bulky modulators and the flux leakages.

In [47], an axial-field magnetic gear was described (as shown in Fig. 2.2(k)), with a torque
density around 70 kNm/m3 achieved in simulation.

In [55], the Halbach PM arrays for an axial-field magnetic gear was proposed, achieving a
higher torque density compared to the conventional axial-field MG.

In [48], a novel axial-flux magnetic gear with L-shaped modulators and spoke-type magnet
arrangement was presented (as shown in Fig. 2.2(l)). Due to the geometrical complexity, a 3D
printing process was adopted. It was shown that the reduction of flux leakages and improvement
of torque density are both achieved. According to the 3D FEM simulations, the torque density
reaches 74 kNm/m3 with NdFeB magnets.

In [49], an axial-transverse-flux magnetic gear with T-shape flux modulators was proposed
(as shown in Fig. 2.2(m)). The saturation level of iron pole-pieces is decreased in comparison
to the standard axial topology considering the same device size and flux leakages are limited. A
significant higher torque density (up to 280 kNm/m3) was obtained by 3D simulations.

In [50], a hybrid transverse-axial magnetic gear where additional PMs are employed on the
flux modulator side was proposed (as shown in Fig. 2.2(n)). The torque density found through 3D
finite element method (FEM) simulation was 181.2 kNm/m3 which is around 20 % improvement
over the axial-flux magnetic gear.

A high-performance linear magnetic gear was proposed in [51] (as shown in Fig. 2.2(o)),
achieving a thrust force density of 1.7 MN/m3. The principle of operation is similar to that of
the coaxial magnetic gear.

A new tubular linear magnetic gear utilizing high temperature superconductor (HTS) bulks
for field modulation was proposed in [52] (as shown in Fig. 2.2(p)). The thrust force transmission
capacity is significantly improved compared to the conventional one.

The comparison of magnetic gears in literatures is shown in Tab. 2.1. The numbers with
stars are verified by prototypes. It is demonstrated that the modulated gears offer compatible
torque densities as the mechanical ones.
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Gear type Gear ratio Torque density
(kNm/m3)

Mechanical gear [25] 1–18000 100–600
Planetary MG [34] 3:1 97.3
Cycloid MG [35] 21:1 142 (107∗)

Harmonic MG [36] 360:1 (75∗)
Coaxial MG [54] 5.75:1 117 (72∗)
Spoke MG [38] 5.5:1 92 (54∗)

Spoke Ferrite MG [39] 3.25:1 40
IPM MG [40] 5.5:1 64 (42∗)

Homopolar IPM MG [41] 7.33 (53∗)
Halbach MG [42] 4.25 124

Reluctance MG [44] 8:1 29
Axial MG [47] 5.75:1 70

L-shaped axial MG [48] 3.17:1 280
T-shaped axial MG [49] 3.17:1 74

Hybrid-flux MG [50] 5.5:1 181

Table 2.1: Comparison of magnetic gears from data in literature. Values with ∗ refer to prototypes
measurements.

2.2 Working principle

2.2.1 Conventional non-modulated magnetic gears

Generally speaking, the operating principle of conventional magnetic gears is based on the mag-
netic force interaction between permanent magnets. Usually, the magnetic poles work as the
teeth of mechanical gears, thus the torque is transmitted. In order to operate analogously, some
requirements should be taken into account [30, 56]:

1) the magnetic ratio P1 : P2 is analogous to the mechanical ratio N1 : N2 (where N1 and N2

are the number of teeth, and P1 and P2 are the number of poles of the two rings, respectively);
2) the total number of poles of each rotor should be even.
Concerning the cycloid and harmonic magnetic gears, the working principles are again based

on the force acting between magnets. For further details, the reader is referred to [35, 36].

2.2.2 Modulated magnetic gears

In this kind of magnetic gear, which is the main topology under investigation in this thesis, the
number of poles of inner and outer rotors are different. The working principle is based on the
flux modulation effect of the ferromagnetic pole-pieces (see Secs. 3.1 and 3.2). Due to their
modulation effect, from the field distribution produced by the PMs of one rotor, an appropriate
space harmonic component, corresponding to the number of pole pairs of the other PM rotor, is
generated. Therefore, quasi-constant torque transformation is achieved by the interaction of the
harmonics with the same order. In order to achieve the highest torque transmission capability,
the number of the steel pole-pieces (q) needs to obey the following relationship [54]:

q = Pi+ Po (2.1)

where Pi and Po are the number of pole-pairs on the inner and outer rotor, respectively. The
rotational speed of each parts then related by:

Piωin + Poωout = qωpoles (2.2)

where ωin, ωout and ωpoles are the mechanical speeds of the inner, outer rotors and the modulator,
respectively. As far as the gear ratio is concerned, three operating modes can be obtained
(depending on which part is fixed), corresponding to three different gear ratios. The gear ratios
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are given by:

Gos =
q

Po
Gio = −Po

Pi
Gis =

q

P i
(2.3)

where Gos, Gio, Gis are gear ratios when the inner ring, middle ring and outer ring are fixed,
respectively. For further details, the reader is referred to [54, 57].

2.3 Computational models

Several models have been proposed for the simulation of magnetic gears, following three main
approaches: analytic models based on equivalent networks, analytic models based on the math-
ematical solution of the field equations and purely numerical models.

The first method is based on machine modelling through reluctance networks as shown in
[58], [59] and in Sec. 3.1. The machine domain is discretized through nodes that are connected
through magnetic reluctances: this is equivalent to to solving the integral form of the magneto-
static equations (eddy currents are neglected) on a very coarse mesh with appropriate boundary
conditions. If the reluctances depend on the unknowns, a nonlinear problem is obtained and
magnetic saturation can be taken into account. The accuracy of this method depends on the
number of nodes adopted for the discretization and generally this scheme is used for an initial
design because of its simplicity.

The analytic approaches based on the solution of the field equations are formulated starting
from the exact solution of the Laplace or Poisson equations in the case of linear ideal materials
(iron with infinite permeability) and negligible eddy currents. Using the variables separation
technique, the mathematical problem becomes the well known periodic Sturm-Liouville case.
The gear domain is divided into several regions that communicate through a proper set of
boundary conditions. The exact solution is written as a truncated Fourier series and all the
unknown Fourier coefficients are computed to find the solution of the whole system of equations
(see Sec. 4.1). For coaxial magnetic gears this approach has been followed in [60] adopting the
2D scalar potential formulation and in [61] adopting the 2D vector potential formulation. In [62]
the same approach of [61] is adopted for axial gears. In [63] the analytic method is introduced
for the case of spur gears and in [64] the approach is extended to arbitrary magnetization (e.g.
Halback pattern). The efficiency of these techniques with respect to purely numerical approaches
depends on how many harmonics are needed to accurately represent the field behavior.

FEM has been used since 1997 for studying magnetic transmissions [65] and is still the
main tool when accurate nonlinear simulations have to be performed (Sec. 4.2). The analytic
methods provide a fast analysis tool that can be as accurate as FEM in case of linear materials
[66]. When the machines being studied are slightly saturated, the results still match the FEM
ones; in deep saturation conditions or when eddy currents cannot be neglected, the analysis has
to be performed numerically [67]. In [68], the comparison between the 2D and 3D FEM results
is discussed: 2D simulations can overestimate up to 40% the torques because the end effects
and the 3D flux leakages are neglected, especially when the machines are axially short (see Sec.
4.8). As pointed out in [27], in most cases the transmission gears do not exhibit any symmetry
for ripple limitations (see Sec. 2.4.4), thus 3D FEM modelling can be computationally very
demanding.

Recently several papers discussed the optimized gear design procedure adopting either finite
element [69],[70] or analytic approaches [71]. As described in [71], the design procedures are
moving towards multi-physic stochastic approaches.

2.4 Gear design aspects

2.4.1 Gear ratio

The choice of the gear ratio has a significant influence on the maximum torque transmission
capability, torque ripple and efficiency [54, 72]. As a consequence, its selection is one of the
key points in gear design procedures (see Secs. 3.3 and 3.4). An interesting feature of magnetic
gears is the possibility to obtain variable gear ratios, in analogy to the mechanical planetary gear
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set. According to Eq. (2.2), if the iron poles are kept fixed, the gear ratio is Gio otherwise the
gear ratio changes accordingly to ωpoles. In [73] and [74] the operation as continuously variable
transmission was explained and validated through scaled prototypes.

A different approach for varying the gear ratio is to combine the concepts of flux-switching
machines and magnetic gears: the ratio in this case can take discrete values by changing the
number of pole pairs of the PMs. This solution is proposed in [75] and [76]. Another complex
solution to obtain discrete variable gear ratios is the one shown in [77]: PMs are divided in small
rod-shaped geometries that can rotate with respect to their axis and the flux modulators are
composed by segments that can be moved and grouped in different numbers of flux modulators.

2.4.2 Iron pole pieces design

The geometry of the modulator is one of the crucial aspects of MG design, since it influences the
torque transmission capabilities and the iron losses [43]. Mechanical stiffness and thermal dissi-
pation properties should be given more consideration due to the large forces and rich harmonics
in the iron pole-pieces [54, 71]. In [43], the effect of different shapes on the transmission torque
was analyzed. In [78], the effect of connection bridges was considered from the electromagnetic
and mechanical point of view and in [79] a prototype with inner bridges was designed with 3D
FEM tools. According to [78], the inner bridge has the best performance when compared to the
middle or outer bridge solution concerning average torque and torque ripple, but the iron losses
are higher than the other two cases. The outer bridges solution provides the best structural
stiffness.

The iron poles losses, forces, and displacements are analyzed in Secs. 4.9, 5.3, and 5.4
respectively.

2.4.3 Transmission losses

One of the key aspects of a gearbox is its efficiency. The losses in magnetic gears are mainly due
to iron loss and eddy current loss in the permanent magnets (see Secs. 4.6 and 4.7). Modulated
magnetic gears differ from conventional electrical machines because of the modulation effect of
the pole pieces: several sub-harmonics are introduced as explained in [80], which cause eddy
current losses in the PMs and rotational flux loci in the iron parts [81]. In order to compute
the iron losses, the main approaches are the Bertotti’s equation adopted in [81] and [82], or the
Steinmetz one adopted in [80] and [83]. In [84] an alternative procedure is proposed in the frame
of the loss separation method considering the rotational behavior of the flux loci. Normally yokes
and flux modulators are laminated in magnetic gears thus the eddy currents in the iron regions
can be neglected. According to [80]-[84], the highest iron losses are produced in the outer yoke
and the losses due to eddy current in PMs are generally higher than the iron losses. Therefore,
PMs segmentation should be adopted to achieve high efficiency in modulated magnetic gears.

2.4.4 Cogging torque

Based on the simplified approach of magnetomotive forces and the Fourier expansions of the
reluctances, [85] predicted the cogging torques on the inner and outer rotors of a coaxial magnetic
gear (see Sec. 3.4). The predicted harmonics were validated through 3D FEM modelling and
through a prototype. A common practice is to introduce a cogging factor Cf as proposed in [86,
54]:

Cf =
2pns

Nc
(2.4)

where p is the number of rotor pole pairs, ns is the number of flux modulators and Nc is the
least common multiple between 2p and ns. It was found that the smaller the factor Cf the lower
will be the cogging torque. Thus normally gears are designed to be aperiodic with fractional
gear ratios.

Some classical approaches adopted for electrical machines can also be used for ripple reduc-
tion. For example in [87], step skewing was shown to be effective for the low speed rotor.
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2.4.5 Dynamic operation

Magnetic gears suffer from transient oscillations due to the low torsional stiffness [40]. Since gear
operating principle is similar to a synchronous machine, passive damper windings were proposed
by [40]. [88] discussed the beneficial effect of cage rotor bars on the torque ripples and on the
static torque. In [89], the transient operation of an axial magnetic gear was shown through
analytic calculations and through a prototype. In particular, the asynchronous operation due to
overload was also discussed. In Sec. 7, a solution is proposed to avoid over-speed in asynchronous
operation of magnetic gears that can also be adopted, with a proper control system, to damp
the oscillations.
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outer rotor

inner rotor

steel pole-pieces

PMs

(a) Modulated coaxial MG [22] (b) Spoke MG [38] (c) Spoke Ferrite MG [39] (d) IPM MG [40]

(e) Homopolar IPM MG [41] (f) Halbach MG [42] (g) Halbach-PM
optimal-pole-pieces MG
[43]

(h) Reluctance MG [44]

(i) Bearingless MG [45] (j) Intersecting-axes MG [46] (k) Axial MG [47] (l) L-shaped axial MG [48]

(m) T-shaped axial MG
[49]

(n) Hybrid-flux MG [50] (o) Linear MG [51] (p) HTS linear MG [52]

Figure 2.2: Schemes of various modulated magnetic gears.



Chapter 3

Magnetic transmissions basics

As briefly introduced in Sec. 2.2.2, the operation principle of the most diffused magnetic trans-
missions is based on the modulation of the magnetic fields produced by two PM rotors using
ferromagnetic pole pieces. Unlike different topologies such as spur gears (see Fig. 2.1), since
all the magnets contribute to the torque an high torque density can be reached. This Chapter
focuses on the main aspects that characterize a magnetic transmission, ranging from the modu-
lation effect, which is the basic principle on which magnetic transmission relies, to the peculiar
overload protection.

In Sec. 3.1 a qualitative explanation is given based on a simplified model.
In Sec. 3.2, the general case with three moving rotors is analyzed and the theoretical predic-

tions are validated through a Finite Element simulation.
Secs. 3.3, 3.4 and 3.5 deal with the machine periodicity, the torque ripple analysis and

the intrinsic overload protection of magnetic transmissions respectively. From the theoretic
point of view, a magnetic gear could have the low speed rotor outside and the high speed rotor
inside and vice-versa. For mechanical and manufacturing reasons that will be clarified in the
next Chapters, normally the topology adopted is the one with the fast rotor inside: this is the
standard configuration adopted in all the thesis (Pi < Po).

3.1 Permeances network formulation

In order to find a simple relation between torque and geometrical parameters of a magnetic gear,
the Fourier’s analysis is applied and the first harmonic is considered in the following calculations.
The magneto motive force F due to both inner and outer rotor can be expressed as:

F =
4

π
·N · I

(
sin
(
Pi · (θ + α)

)
+ sin

(
Po · (θ + β)

))
(3.1)

Radial flux tube with

low permeance

Radial flux tube with

high permeance

Figure 3.1: Approximation of radial flux tubes.

0 1 2 3 4 5 6 7

Angle in rad

L

m

H

Permeance with q=5

Figure 3.2: Permeance square wave with number
of iron poles q = 5.
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where NI are the equivalent ampere-turns that model the magnets and α and β are the dis-
placement angles of the inner and outer magneto-motive forces (MMFs) referred to a reference
position. In Fig. 3.1 the inner and outer magnets are considered to have the same equivalent
NI. F represents the sum of the first harmonic of inner and outer rotor, with periodicities Pi
and Po respectively.

For the following development in this Section, the magnetic gear end-effects and flux leakages
are neglected and the iron permeability is assumed as infinite. Under these hypothesis, the
machine permeance can be approximated to a square wave moving along the angular coordinate
according to Fig. 3.1: the permeance wave is shown in Fig. 3.2 as functions of the angular
coordinate dθ. ΛL and ΛH are the low and high permeances respectively, thus the differential
permeances read:

dΛL =
µ0L · rpoles · dθ

g
(3.2)

dΛH =
µ0L · rpoles · dθ

(g + lpoles)
(3.3)

where g is the total gap size (sum of inner and outer airgap dimension), lpoles is the pole radial
size, rpoles is the pole barycentre radius and L is the machine axial length. Expanding the
reluctance square wave through the Fourier’s series, the differential mean and first harmonic
permeances dΛm and dΛ1are:

dΛm = µ0L · ·rpoles · dθ ·
2 · g + lpoles

2 · g · (g + lpoles)
(3.4)

dΛ1 =
4

π
· ∆dΛ

2
=
µ0L · 2 · rpoles · lpoles · dθ

πg · (g + lpoles)
(3.5)

dΛ = dΛm + dΛ1 · cos(Ps · (θ + kp)) (3.6)

where q is the number of iron poles and kp is the angular shift of the permeance waveform. If
the permeance is set as the reference system, kp is nil and the magnetic flux density calculated
at the iron poles mean radius rpoles is:

B = F · dΛ

rpoles · dθ · L
=

4

π
·NI · µ0 · 2 ·

(
2g + lpoles

2g · (g + lpoles

)
·

(
sinP i

(
θ + α

)
+ sinPo(θ + β)

)
+

+
4

π
·NI 2µ0lpoles

g · (g + lpoles)
·

(
1

2
sin
(

(q + Pi)θ + Pi · α
)

+
1

2
sin
(

(q − Pi)θ − Pi · α
)

+

+
1

2
sin
(

(q + Po)θ + Poβ
)

+
1

2
sin
(

(q − Po)θ − Poβ
))

(3.7)

and the approximated magnetic flux density inside the inner magnet can be calculated using
the radius ratio. From (3.7), the effect of the modulation pole pieces is clear: the permanent
magnet MMFs with spatial periodicities Pi and Po are modulated, resulting in four MMFs with
periodicities q + Pi, q − Pi, q + Po, q − Po.

The magnetic energy stored into the device airgaps, is:

W (α, β, θ) =

∫ 2π

0

1

2
F 2Λdθ (3.8)

and the torques on the rotors are computed as Tin = ∂W (α,β,θ)
∂α and Tout = ∂W (α,β,θ)

∂β . According

to [57], a device with steady characteristics is obtained only when:

• Pi = Po, q ̸= 2Pi
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Figure 3.3: Coaxial magnetic gear structure, similar to the one proposed in [22].

• Pi ̸= Po, q = Po± Pi

The former case is the one of unitary ratio transmissions, normally adopted in all applications
where mechanical insulation is requested but the rotational speed of the inner and outer rotors
is the same. The torque has an expression:

|Tin| = |Tout| = πPi(NI)2Λm sin(Pi(α− β)) (3.9)

The latter case is the most interesting one:{
Tin = ∓0.5πPo(NI)2Λ1 sin(Piα− Poβ)

Tout = −0.5πPo(NI)2Λ1 sin(Piα− Poβ)
(3.10)

These torque equations are derived only to understand the physical principle beyond the gear
modulating effect. In the next Chapters it will be clear that (3.10) is too simplified for being
adopted for real calculations.

3.2 Modulation effect and harmonic analysis

In Sec. 3.1 the basic idea of the modulation effect has been given. In the current Section
the general case with three moving rotors is analyzed. For the sake of clarity, an example of
modulated coaxial magnetic gear is shown in Fig. 3.3.

In [54] the radial and tangential flux density distribution produced by either permanent
magnet rotors are written, in analogy to the procedure in Sec. 3.1, as:

Br(r, θ) =

( ∑
m=1,3,5...

brm(r) cos(mp(θ − ωrt) +mpθ0)

)

×

(
Λr0(r)

∑
j=1,3,5...

Λrj(r) cos(jq(θ − ωst) +mpθ0)

) (3.11)

Bθ(r, θ) =

( ∑
m=1,3,5...

bθm(r) sin(mp(θ − ωrt) +mpθ0)

)

×

(
λθ0(r)

∑
j=1,3,5...

λθj(r) cos(jq(θ − ωst) +mpθ0)

) (3.12)
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Parameter Value

High speed rotor pole pairs 4
Low speed rotor pole pairs 22

Iron pole pieces 26
Remanence NdFeB 1.25 T

m coefficient 1
k coefficient -1

Table 3.1: Parameters adopted in [22].

where p is the generic number of pole pairs on the permanent magnet rotor (since (3.11) and
(3.12) can be applied for both inner and outer rotors), ωr and ωs are the rotational speeds of
the permanent magnet rotor and pole-pieces respectively, brm and bθm are Fourier coefficients of
the flux density distribution without pole pieces. In particular, (3.11) and (3.12) have the same
structure of (3.7) without Fourier series truncation. Developing the equations further as in [22],
the number of pole pairs in the space harmonic flux density distribution can be computed as
follows:

pm,k = |mp+ kq| (3.13)

m = 1, 3, 5, ...∞ (3.14)

k = 0,±1,±2,±3, ...,±∞ (3.15)

Eq. (3.13) can be applied to find the inner rotor modulated field (when p = Pi) or the outer
rotor modulated field (when p = Po). Clearly (3.13) defines the link between the number of
poles of the inner rotor, outer rotor and the number of ferromagnetic pole pieces. Once the
couple (m,k) is defined, Pi, Po and q are linked according to (3.13). The rotational velocity of
the flux density space harmonics is given as:

ωm,k =
m · p

m · p+ k · q
· ωr (3.16)

Eq. (3.16) proposed in [22] is valid in the case of stationary pole pieces and can be also found
starting from (3.7) if the inner or outer rotors are rotated by α = ∆θ or β = ∆θ.

According to Eqs. (3.13) and (3.16), the effect of the pole pieces is well understandable.
Considering the inner rotor with Pi pole pairs, the number of pole pairs seen by the outer rotor
is different form Pi (as already demostrated with the simple model in (3.7)). The speed of the
modulated space harmonic also differs from the one of the rotor which is producing it by the
factor in Eq. (3.16).

From (3.11) and (3.12), developing the products with ωs ̸= 0, Eq. (3.16) reads:

ωm,k =
m · p

m · p+ k · ns
· ωr +

k · ns
m · p+ k · ns

· ωs (3.17)

Using the couple m = 1, k = −1 that gives the maximum torque contribution, if the iron poles
are kept stationary the nominal gear ratio Gn becomes:

Gn =
ns − p

p
(3.18)

otherwise if the outer rotor is kept stationary, the gear ratio becomes:

Gn =
ns
p

(3.19)

If all the three parts are free to move and the rotational speed of the iron poles can be modified,
the gear ratio is continuously variable.
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Figure 3.4: Test case geometry adopted for the
Finite Element simulation.

Figure 3.5: Magnetic vector potential Az color
map and contour lines.
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Figure 3.6: Inner magnets active, outer air gap
magnetic flux density. Arc length is in p.u.
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Figure 3.7: Inner magnets active, outer air gap
magnetic flux density harmonics.

Using the same geometry adopted in [22] reported in Tab. 3.1 but changing the residual flux
density Br to Br = 0.4 T (ferrite magnets), the radial magnetic flux density has been computed
enabling the inner magnets and the outer magnets. The results are reported in Figs. 3.6 and 3.8.
As visible in the bar plots in Figs. 3.7 and 3.9, the iron poles affect the flux density waveform:
considering the inner rotor with 4 pole pairs, in the outer air gap the 22th harmonic has a
considerable amplitude. The same happens with the outer magnets that cause a 4th harmonic in
the inner air gap. The bar plots also indicate that the couple m = 1, k = −1 gives the maximum
torque contribution. A different set for the parameters could be used but the torque density of
the magnetic gear wouldn’t be the optimal one.

In Fig. 3.10 the magneto-static simulations of the torque ripple has been reported. In this
case the device losses are neglected and the rotors are supposed to rotate with a constant speed.
Since in steady state operation the magnetic fields must rotate at the same speed, the iron losses
affects the output torque that is lower than the loss-less case.

3.3 Periodicity

The rotor magnets MMFs and iron poles permeances can be thought as trigonometric space
functions in order to find periodicities. The relations are:⎧⎪⎨⎪⎩

yin = cos(Pi(x− ωin · t+ φi))

yout = cos(Po(x+ ωin · Pi
Po · t+ φo))

ypole = cos(q · x)

(3.20)
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Figure 3.8: Outer magnets active, inner air gap
magnetic flux density. Arc length is in p.u.
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Figure 3.9: Outer magnets active, inner air gap
magnetic flux density harmonics.
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Figure 3.10: Stall torques of the inner and outer
rotors. The simulation is a magneto-static para-

metric sweep of angular positions.

Order Harmonic From FEM
Pi 4
Po 22

q+Pi 30
q-Pi 22

q+Po 48
q-Po 4

Figure 3.11: Magnetic flux density expected har-
monics from Eq. (3.7) and comparison with the

obtained results in Figs. 3.8 and 3.9.
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Figure 3.12: Periodicity detection for Pi = 2, Po = 3, q = 5. The solution is not periodic for rational
gear ratios.

where x is the angular coordinate referred to the iron poles fixed system, φi and φo are spatial
shifts, ωin is the inner rotor speed. The field distribution has a periodicity p = GCD(Pi, Po, P i+
Po). The parameter p is greater than zero if the gear ratio is integer; in this case only a sector
2·π
p could be studied reducing the computational effort. As already introduced in Sec. 2.4.4, the

integer gear ratio geometry suffers from poor performance in terms of cogging torque therefore
generally a full machine simulation is required. When adopting Finite Element Method (FEM)
magneto-static position sweeps, the parameter that needs to be set is the angle span ∆θin,
referred to the inner rotor. In order to study the entire fields distribution, an immediate choice
is ∆θin = 2·π

2·Pi since the inner rotor electrical angle is 2π and the outer rotor is consequently
shifted by ∆θout = 2π

Po mechanical degrees equivalent to 2π electrical degrees.
In order to understand how magnetic fields evolve rotating both inner and outer rotor, the

solution of the system (3.20) has to be analyzed. The angles φi and φo are considered zero
therefore at time t = 0 both the rotors are aligned with the iron poles and yin = yout = ypole = 0.
By imposing yin = yout = 1, the spatial positions where the inner and outer rotor are aligned as
in the initial condition are found. In particular the solutions are:{

yin = 1 → xi = ωin · t+ 2k1π
Pi

yout = 1 → xo = −ωin·t·Pi
Po + 2k2π

Po

(3.21)

where k1 and k2 are integers. Searching for the condition yin = yout, the solution becomes:

ωin · t ·
(

1 +
Pi

Po

)
= 2π ·

( k2
Po

− k1
Pi

)
→ ωint =

k2 · Pi− k1 · Po
Pi · (Pi+ Po)

(3.22)

The solutions of Eq. (3.22) are the angles referred to the inner rotor for which the inner and outer
rotors are aligned in at least one point. The graphical representations in Figs. 3.13 and 3.14
allow to find the parameters k1 and k2 easily. Assuming the case of Fig. 3.13, k1 = {0 : (Pi−1)}
and k2 = {0 : (Po− 1)}. By ordering the terms ωint, the sweep of k1 and k2 gives the sequences
(K1) = k11...k

Pi−1
1 and (K2) = k12...k

Po−1
2 . These vectors represent the sequences of alignments

increasing the inner (and outer) rotor angles in the inner and outer rotor material frame reference
respectively.

If the frame is changed to the poles one, the sequence (Kp) = (ωint(K1,K2)
2π + K1

Pi ) · (Pi+Po)
gives the iron poles order. For example, Fig. 3.15 shows the radial forces acting on the iron
poles of a gear with Pi = 2, Po = 7, q = 9. The periodicity condition allows to study an angular
sweep ∆θ = 2·π

18 . Rearranging (3.22) the real waveform can be built as shown in Fig. 3.16.

If LCM(Pi, Po) = Pi ·Po, the term Pi(̇Pi+Po) = Pi · q is the number of alignments when
the inner rotor is rotated by an angle equal to δ = 2π. Otherwise if Pi and Po have common

factors, the number of periodic angular positions decreases to Pi(̇Pi+Po)
f where f is the product

of the common factors between Pi and Po.
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Figure 3.13: Periodicity diagram, Pi = 2, Po =
3,q = 5. Red lines represent the inner rotor peaks
positions, the blue lines the outer rotor peaks, the
dashed lines the alignments between the MMFs

peaks.
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Figure 3.14: Periodicity diagram, Pi = 3, Po =
4,q = 7. Red lines represent the inner rotor peaks
positions, the blue lines the outer rotor peaks, the
dashed lines the alignments between the MMFs

peaks.

Pi Po q K1 K2 Kp
2 3 5 0, 1 0, 2, 1 1, 4, 2, 5, 3
3 5 8 0, 1, 2 0, 2, 4, 1, 3 1, 4, 7, 2, 5, 8, 3, 6

Table 3.2: Example of sequences.
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from Fig. 3.15 according to Eq. (3.22).
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Inner rotor LCM(2 · Pi, q)
Outer rotor LCM(2 · Po, q)

Table 3.3: Estimated torque ripple harmonics.

3.4 Torque ripple

Mechanical gears, as all electrical machines in general, should be designed in order to transmit
a torque with the lowest possible ripple. Magnetic gears suffer from torque ripple because of
the intrinsic operating principle: some rotor angle combinations are described by a high energy
states and therefore a cogging torque naturally tries to minimize this energy. The torque equation
already introduced in Sec. 3.1 is:

T (θ) = −∂W (θ)

∂θ
(3.23)

where T (θ) can represent an inner or outer torque, while W is the magnetic energy. Adopting
the hypothesis of magnetic energy stored mainly in the air gap with low magnetic permeability,
the energy expression becomes:

W (θ) =
1

2µ0

∫
V

B2dV (3.24)

This behaviour is generally shown when studying permanent magnet machines. The cogging
torque depends mainly on the gear geometry.

The inner rotor rotation angle is expressed by δ. According to [85], the air volume dV can
be expressed as:

dV = L · g · rgap · dδ (3.25)

where L is the axial machine length, g is the airgap thickness and rgap is the middle airgap
radius. F (δ) is the MMF Fourier’s series and Λ(δ − θ) is the iron poles permeance where θ
denotes the angular shift between inner rotor and pole pieces, the magnetic flux density is:

B =
F (δ) · Λ(δ − θ)

2πrgapL
(3.26)

The energy expression is therefore:

W (θ) =
g

8µ0rgapLπ2

∫ 2π

0

F 2(δ)Λ2(δ − θ)dδ (3.27)

In [85] the Fourier’s series are developed and the global harmonic content of the torque ripple is
shown in Tab. 3.3. This method only gives informations about the expected harmonic content
but the torque ripple amplitude is unknown because of the difficult evaluation of the permeance
Λ. The exact calculation of the amplitude requires nonlinear FEM simulations.

In the hypothesis of MMF with a square wave shape, the Fourier’s series coefficients are:

an =
4

nπ
K n = 1, 3, 5... (3.28)

This means that higher harmonics will have lower values. Based on this law, a general cogging
factor Cfactor is normally adopted to describe the magnetic gear behaviour in terms of torque
ripple, as briefly introduced in Sec. 2.4.4:

Cfactor =
2Pi · q

lcm(Pi, q)
(3.29)

The lower cogging factor the lower torque ripple is expected. The gears that guarantees the
lowest cogging factor are the one with the highest least common multiple between Pi and q,
therefore fractional gear ratios are preferred. In particular with higher number of poles Pi for
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the low pole pairs rotor there are more combinations to obtain fractional ratios but also the
outer magnets pole pairs Po are harder to be manufactured.

The choice of the pole pairs is therefore a trade off between the device complexity (several
magnets with reduced size on the outer rotor) and the torque ripple requirements. Generally
the pole pairs of the low speed rotor is at least fixed to Pi ≥ 2.

3.5 Overload protection

Mechanical gearboxes must be sized for the maximum expected torque. If the torque exceeds
the limit and there are no mechanical frictions, the gear is irreversibly damaged because of the
tooth plastic deformation and needs to be replaced. Instead, magnetic gears are synchronous
machines: if the torque exceeds the maximum limit, the operation becomes asynchronous and
the device is no longer capable of transmitting torque. In this operational condition, the average
transferred torque is nil while the torque ripple effects remain. Considering the input shaft to
be torque controlled, when the operation becomes asynchronous the input rotor accelerates till
a new equilibrium is reached (at much higher rotational speed). Once the transmitted torque
goes again below the limit, the magnetic gear starts its normal operation.

In applications such as wind power generation, gearboxes are mandatory in order to keep
the generators size small. Since the wind load is variable, the gearboxes have to operate in safe
conditions: the device sizing takes into account the maximum estimated overload.

Adopting magnetic gears for the wind turbine case, the overload protection would be auto-
matically guaranteed. In order to understand what happens when the torque exceeds the design
threshold, the mechanical equations of the two rotors are implemented as well as the magnetic
gear magneto-static equations in the simplifying hypothesis of negligible eddy current effects.⎧⎪⎪⎨⎪⎪⎩

Jin · dθ2
in

dt2 + bin · dθin
dt = Tinjected − Tin

Jout · dθ2
out

dt2 + bin · dθout

dt = Tout − Textracted

Jpoles ·
dθ2

poles

dt2 + bpoles · dθpoles
dt = Tpoles − Ts

(3.30)

The system (3.30) represents the mechanical equations when the input rotor is the inner one,
the output rotor is the outer one and the iron poles rotor is not held stationary. Tin, Tout
and Ts are the torques due to the couplings between the rotors. Tinjected is the input torque
on the high speed inner rotor, Tpoles is the torque injected through the iron poles rotor and
Textracted is the load torque applied on the low speed rotor. In particular Tpoles can be positive
or negative depending on the effect of the middle rotor on the reduction rate; when negative
power is extracted from the rotor and vice-versa. Textracted is generally the sum of a constant,
a damping and an acceleration term:

Textracted = TL + bload ·
dθload
dt

+ Jload ·
dθ2load
dt2

(3.31)

where all the contributes could be functions of both time t and space θload.
In order to simplify the control structure, the output torque is fixed to Textracted = bload· dθload

dt
and two cases are considered:

• speed regulation input rotor;

• torque regulation of the input rotor.

The former regulation requires the modelling of a PI controller: a speed error is calculated at
each time instant as difference between the reference and current speed. Through a PI the torque
applied to the inner rotor becomes:(

Kp+
Ki

s

)
· ωerr =

Ki · (1 + sτc)

s
ωerr (3.32)
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Inner pole pairs Pi 2 −
Outer pole pairs Po 13 −

Iron poles q 15 −
Gear ratio Gn 6.5 −

Inner inertia Jin 0.0063 kgm2

Outer inertia Jout 0.0447 kgm2

Poles inertia Jpoles 0.02 kgm2

Load inertia Jload 10 kgm2

Inner friction bin 0.05 Nms
rad

Outer friction bout 0.05 Nms
rad

Poles friction bpoles 0.05 Nms
rad

Load friction bload 10 Nms
rad

Control rise time tr 1 s
Control time const τc 0.4 s

Table 3.4: Mechanical parameters adopted for the transient simulations.

where T = Kp
Ki is the regulation time constant introduced by the controller. The coefficients Kp

and Ki can be the ones adopted in the electronic controller (if the prime mover is a synchronous
electric motor) or they can model a physical principle (for example in an induction motor without
frequency regulation the torque can be considered proportional to the slip).

The latter regulation is easier to be implemented numerically because Tinjected is directly
applied in (3.30).

Generally the control in real applications is more complicated: for example if an asynchronous
electric motor is connected as input source, the regulation is similar to a speed regulation but
the target velocity changes according to the load because of the machine slip. If a gas turbine is
considered as input, the controlled variable is the fuel mass flow which is related to the current
power of the turbine. If the rotational speed is variable, the control becomes intrinsically non-
linear (the product between torque and speed is involved). In order to keep the analysis simple
these general solutions are not implemented.

In the test case here reported, mechanical transients are performed on the geometry depicted
in Fig. 3.17. The parameters are reported in Tab. 3.4. The equivalent time constant of the the
gear can be calculated as:

τg =
Jeff
Beff

=
Jin + Jload+Jout

G2
n

bin + bload+bout

G2
n

(3.33)

where the low speed rotor parameters have been reported at the high speed rotor using the
nominal ratio Gn as well as the electric transformer case. The same procedure can be used to
write the overall gear transfer function reporting the low speed parameters on the high speed
side. The gear mechanical transfer function is:

Egear =
1

Jeff · s+ beff
(3.34)

3.5.1 Speed control

When speed control is adopted, the system overall transfer function (open loop) becomes:

Er =
Ki · (1 + τc · s)

beff · s · (1 +
Jeff

beff
· s)

(3.35)

In Fig. 3.18 the rotor speeds have been depicted during a start up. The PI parameters causes
a visible overshoot and then the rotational speed of the inner rotor is fixed to Vin = 600 rpm.
The overshoot is strictly related to the PI controller coefficients: substituting the parameters
in Tab. 3.4 into Eq. (3.35) and then calculating the Laplace anti-transform of the closed loop
function, an overshoot of ∆ = 6.8% is found, in accordance to the one obtained solving the ODE.
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Figure 3.17: Gear geometry and inner rotor torque at varying load angle. The torque limit capability
is approximately Cin−lim ≃ 26 Nm on the inner rotor.

Figure 3.18: Speed regulation control: speed waveforms (left) and mechanical
angles (right). The rotor speed reaches the steady state condition after a visible

overshoot due to the PI controller.
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Figure 3.19: Speed regulation control when the torque exceed the limit: speed
waveforms (left) and mechanical angles (right). Between t = 5 s and t = 10 s the
gear operation becomes asynchronous since the torque capability is exceeded. The

transmission goes back to the normal operation when t > 10 s.

When the speed control is implemented, the maximum speed of the inner rotor is:

Vin−lim =
Cin−lim

(bload+bext)
G2

n
+ Tload

· 60

2π
=

25
(10+0.05)

6.52 + 0
· 60

2π
= 1000 rpm (3.36)

where Cin−lim is the maximum torque that the magnetic transmission can transmit.
In Fig. 3.19 the reference speed is fixed to 3 different values:⎧⎪⎨⎪⎩

Vin = 600 rpm if 0 < t < 5 s

Vin = 1200 rpm if 5 < t < 10 s

Vin = 300 rpm if 10 < t < 15 s

(3.37)

Therefore when the rotational speed is fixed to Vin = 1200 rpm the gear is not be capable to
drive the low speed rotor according to (3.36). In Fig. 3.19, the rotor speeds and mechanical
angles are depicted. When the torque exceeds the maximum limit, the outer rotor speed tends
to decrease following a mechanical transient given by the rotor inertia and friction. When the
transient is extinguished the torque ripple effects are still visible while the mean torque tends to
zero.

When the speed reference value is decreased below the limit speed, the gear should be able
to restore the synchronous operation. When Vin = 300 rpm in Fig. 3.19, the outer rotor starts
to increase its speed according to his mechanical transient.

An important factor that is worth to be considered is the speed of the inner rotor during the
asynchronous operation: the PI effect leads to an average speed equal to the reference value, but
speed oscillations are clearly visible in Fig. 3.19. In fact the gear transfer function is changed
when the synchronism is lost:

Egear =
1

Jin · s+ bin
(3.38)
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Figure 3.20: Bode diagrams of open loop transfer functions: synchronous case (blue) and asynchronous
case (red).

and the open loop transfer function is modified as:

Er =
Ki · (1 + τc · s)

bin · s · (1 + Jin

bin
· s)

(3.39)

Comparing Eqs. (3.35) and (3.39), the gear cut-off frequency is shifted and also the constant

term Ki
b changes by a factor

beff

bin
> 1. This means that all the transfer function is shifted upwards

as visible in Fig. 3.20. If from the phase margin point of view the asynchronous operation is
better, the system bandwidth is much increased. The relation between bandwidth and rise time
is:

Trise =
ln(10)

Bandwidth
(3.40)

and therefore the controller operates much faster. The torque noise produced by the outer
combined with the lower rise time produces the oscillations of Fig. 3.19. If these oscillations
are too large, the outer rotor may not be able to restart even if the medium inner speed value
is lower than the speed limit Vin−lim. This is related to the control loop instability. Therefore,
in order to acquire again synchronism, the speed level can be lower than the limit calculated in
(3.36); an example is shown in Fig. 3.21.

The asynchronous operation mode can also be caused by a sudden variation of the load
torque. The key is to estimate the maximum load level in the worst condition and to set a
reference speed that allows the gear to work for all load levels.

3.5.2 Torque control

Similarly to the speed control, the torque control can be implemented. If the torque level is
set on the inner rotor, if the transmitted torque is set to a value lower than the maximum gear
capability the safe operation is ensured, as shown in Fig. 3.22 where the friction factor bout is
changed. Even if a step load torque is applied, the gear operation remains synchronous. On the
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other side, if the torque reference is suddenly increased to a value above the maximum value
for the current speed, the magnetic gear will operate in asynchronous mode. If there is no
source limit on the maximum rotational speed, the torque balance will be reached at a speed
much higher than the nominal one, causing mechanical failures. Therefore when torque control
is implemented asynchronous operations must be avoided. As soon as the operation turns to
asynchronous the torque has to be heavily reduced in order to keep the input rotor speed lower
than the limit speed that guarantees the synchronous operation. In Fig. 3.23 the asynchronous
mode is shown when 5 s < t < 10 s. When t > 10 s, the initial reference torque is fixed but the
synchronism is lost.

Another factor to consider is related to the gear start-up phase. If a step torque is applied
as reference, the dynamical equations are:

Tref = Jin
dωin

dt
+ bin✟✟ωin + J2

dωout

dt
+ bout✘✘✘ωout (3.41)

where the speed terms ωin and ωout are nil at the initial instants. The torque repartition is only
based on the rotor inertias and this may lead to asynchronous operation as shown in Fig. 3.24.
Using ramps instead of steps can avoid loss of synchronism during start-up.
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Figure 3.21: Speed regulation control. Speed (left) and angular position (right).
The reference speed is Vin = 1200 rpm when 5 s < t < 10 s and Vin = 600 rpm

when t > 10 s.

Figure 3.22: Torque regulation when the friction term has a step change. Speed
(left) and angular position (right). The transmission exhibits synchronous operation

even when the damping value is changed.
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Figure 3.23: Torque control when the reference exceeds the limit. Speed (left)
and angular position (right). When t > 10 s the previous value is set, but the

operation remains asynchronous.
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Figure 3.24: Torque regulation without initial torque ramp. Speed (left) and
angular positions (right). The synchronism is suddenly lost because the inner rotor
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Chapter 4

Magnetic modelling

In this Chapter, several numerical models for the magnetic and electro-magnetic field compu-
tation are presented. All of them are especially tailored for the magnetic gear case and have
been validated through the comparison with commercial Finite Element codes or through the
comparison with experimental data retrieved in literature.

Sec. 4.1 shows the analytic modelling of magnetic gears based on the solution of the Laplace
and Poisson equations, as introduced in Sec. 2.3. This fast simulation tool is the ideal method
that can be used for the first approximated design of magnetic gears and it is particularly suited
for stochastic optimizations.

In Sec. 4.2, a 2D Finite Element / Boundary Element code (FEM/BEM) is described and
validated on a magnetic transmission test case. This efficient algorithm allows to simulate in
details a general magneto-quasi static device with nonlinear magnetic materials, permanent
magnets and multiple moving parts. This is the principal tool that can be adopted for the
detailed simulation of a specific gear geometry.

Section 4.3 describes a method to accelerate fixed point iterations in nonlinear electromag-
netic problems. The algorithm has ben succesfully tested on several static or quasi-static test
cases, thus it has been implemented in the FEM/BEM algorithm of Sec. 4.2.

In Sec. 4.4 a dynamic hysteresis model capable to include eddy currents in laminated steels
is presented and embedded into a FEM formulation. The hysteresis model is the one introduced
in Sec. 4.3.7 to test the Anderson acceleration on the TEAM 32 case [90]. The post-processing
and direct on-line application of the hysteresis model are compared on a magnetic gear test case.

Section 4.5 describes a nonlinear model for permanent magnets capable to simulate mag-
netization, demagnetization and recoil of rare-earth PMs. The Finite Element implementa-
tion is described as well as the material implementation. The proposed algorithm is validated
through two experimental datasets retrieved in literature, and finally the in-situ simulation of a
segmented-PMs magnetic gear rotor magnetization is carried out.

Secs. 4.6 and 4.7 focus on the losses mechanisms in magnetic gears: in the former Section an
algorithm for the iron losses in highly rotational loci condition is discussed, while in the latter
the models for eddy current loss estimation in PMs are reported.

In Sec. 4.8 2D and 3D FEM simulations of magnetic gears are compared since several au-
thors in literature found mismatches between real prototypes and the classical 2D simulations
adopted for electrical machines (e.g. [68]). The 3D Finite Element formulation is shown, includ-
ing segmented permanent magnets. The PMs losses are also computed varying the number of
segments.

Sec. 4.9 shows the losses trend varying the rotational speed and load percentage of a test
case magnetic transmission.

The algorithms and results shown in this Chapter have been published in [84, 91, 92, 93].

4.1 Analytic modelling

This Section is organized as follows: in Secs. 4.1.1-4.1.3 the analytic approach for the field
computation in low permeability regions (air and PMs) is described and details are provided
regarding the implementation and the computational issues.

In Sec. 4.1.4 the field solution from Sec. 4.1.1 is extended to the high permeability domains
(poles and yokes) through a simple finite difference scheme.

31
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Figure 4.1: Magnetic gear structure and subdomains. According to [61], the regions are: Inner magnets
→ I; Inner airgap → II; Outer airgap → III; Outer magnets → IV .

In Sec. 4.1.5 a simplified saturation model is discussed and formulated as optimization
constraint.

Finally, in Sec. 4.1.6 the validation of the analytic simulation tool is carried out through the
comparison with the commercial FEM code.

4.1.1 Modelling in low permeability regions

The formulation adopted for low permeability regions is the one proposed in [61] which is exactly
the dual of [60]. The eddy currents effect is neglected and the iron permeability is considered
infinite in this Chapter. Adopting a 2D vector potential formulation, the magnetic field is
B = ∇ × (0, 0, Az) where Az is the z component of the vector potential. The constitutive
equation in the whole machine reads:

B = µ0µrH + µ0M (4.1)

where M is the magnetization (in magnetic media), µ0 and µr are the vacuum and relative
permeability. Therefore, Ampere’s law expressed in cylindrical coordinates can be expressed as:

−∇2Az = µ0∇×M · e⃗z = −µ0

r

∂Mr

∂θ
e⃗z (4.2)

in the hypothesis of radially-magnetized permanent magnets. Considering that the magnets
relative permeability is µr ≃ 1, there is an analogy between this formulation and the one proposed
in [60]:

∇2Ψ =
1

µr
∇ ·M =

1

rµr

∂(r ·Mr)

∂r
(4.3)

where H is expressed through the scalar potential Ψ as H = −∇Ψ. The Laplace equation in the
air regions is:

∇2ξ = 0 (4.4)

where ξ can be equal to Az or Ψ depending on the adopted formulation. The solution of (4.2)-
(4.4) is found by fixing the boundary conditions. At the inner and outer boundary the magnetic
scalar and vector potentials are subjected to a Dirichlet and homogeneous Neumann boundary
constraint respectively: {

ΨI(R1, θ) = 0

ΨIV (R6, θ) = 0

{
∂AI

z(R1,θ)
∂θ = 0

∂AIV
z (R6,θ)
∂θ = 0

(4.5)

At the interface between the inner magnets and the inner air-gap, the normal component of the
magnetic flux density Br or the tangential magnetic field Hθ are conserved and the potentials
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are continuous: {
ΨI(R2, θ)=ΨII(R2, θ)
∂ΨII(R2,θ)

∂r =∂ΨI(R2,θ)
∂r

{
AI

z(R2, θ)=AII
z (R2, θ)

∂AII
z (R2,θ)
∂r =

∂AI
z(R2,θ)
∂r

(4.6)

The conditions are at the surface between the inner air-gap and the slots S are the same of Eq.
(4.6): {

ΨS(R3, θ) = ΨII(R3, θ)
∂ΨII(R3,θ)

∂r = ∂ΨS(R3,θ)
∂r

{
AS

z (R3, θ) = AII
z (R3, θ)

∂AII
z (R3,θ)
∂r =

∂AS
z (R3,θ)
∂r

(4.7)

while at the interfaces between iron poles and air gap the condition is a Dirichlet constraint for
the Ψ formulation or an homogeneous Neumann for the A one. The flux lines are always normal
to the iron regions with infinite permeability: this means that according to the Ψ formulation
each ferromagnetic pole is equipotential with scalar potential Ψi associated to the ith pole, while
in the A case the poles boundaries are subjected to homogeneous Neumann conditions. Eqs.
(4.6) and (4.7) are are also valid for the outer magnets and air-gap. The PDEs that have to be
solved adopting the A formulation are:{

∂Az

∂r2 + 1
r
∂Az

∂r + 1
r2

∂2Az

∂2θ = 0
∂Az

∂r2 + 1
r
∂Az

∂r + 1
r2

∂2Az

∂2θ = µ0

r
∂(Mr)
∂θ

(4.8)

Using the separation of variables, the general solution in the air regions for both the A and Ψ
formulation is:

ξ(r, θ) =

∞∑
n=1

(
(Enr

n + Fnr
−n) cos(nθ) + (Gnr

n+

+Hn · r−n) sin(nθ)
)

+ E0 ln r + F0

(4.9)

where n is the number of harmonics of the Fourier series and ξ can be Az or Ψ. The summation
in (4.9) is in fact computed with only K terms in the slot regions and N terms inside the air
gaps. In the magnet regions, the equation involves permanent magnets magnetic field harmonics
and reads for both the A and Ψ formulations:

ξ(r, θ) =

∞∑
n=1

(
Anr

n +Bnr
−n +Wn(r) cos(nθ)

)
·

cos(nθ) +
(
Cnr

n +Dnr
−n +Wn(r) sin(nθ)

)
sin(nθ)

(4.10)

where Wn is a function of the geometry and Fourier decomposition of the magnetic field produced
by the magnets. The summation in (4.10) is in fact computed with N terms. As extensively
explained in [61] and [60], additional equations have to be added to ensure the solenoidality of
the magnetic flux density in the iron poles and in the air gap regions. Through the boundary
conditions (4.5)-(4.7) all the unknown coefficients in (4.9) and (4.10) can be computed in all the
gear domains. The A formulation has been implemented in this Chapter since the extension of
the solution to the iron domains is easier than the dual one. In air domains the duality relation
reads:

B = µ0 ·H →
(

0 1
−1 0

)
· ∇Az = −µ0 · ∇Ψ (4.11)

4.1.2 Implementation and remarks

Being Q the number of slots, there are a total of e = 12N + 2KQ + 2Q + 1 unknown Fourier
coefficients. The Laplace operators can be discretized inside a matrix [A]e×e and the source
terms can be discretized inside a vector [b]e×1. The matrix setup and sparsity pattern is shown
in (4.12), where Ij stands for the identity matrix of size j × j, P j are blocks where non-zero
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coefficients are computed through the procedure in [61] and Rj are the non-zero coefficients on
the right end side. The [x]e×1 unknown Fourier coefficients can be found by solving the problem:

[A]e×e · [x]e×1 = [b]e×1 (4.13)

A problem that arises during the implementation of this approach is intrinsically related to
exponential functions. When the number of poles of the outer rotor Po is high, the number of
harmonics N has to be higher than Po in order to obtain a good representation through the
Fourier series. All expressions have to be carefully written in order to minimize the numerical
errors and considering reordering operations. As an example in the expression

∆ = −
n
R1

(
r
R1

)n−1

− n
R1

(
r
R1

)−n−1

(
R2
R1

)n
+
(

R2
R1

)−n (4.14)

that appears when building the term Wn, when r > R1 and n is sufficiently high, the calculation
can overflow; ∆ also suffers from cancellation errors that occur when the numerator tends to
zero.

A further aspect is related to the solution of (4.13). When high ratio gears are analyzed,
since the number of harmonics N is constrained by Po, the problem size grows with Po even
if many of the n Fourier coefficients in each region will be zero. The harmonic content can be
determined a-priori as combinations of Pi, Po,Q and the problem size can be reduced without
loss of accuracy. Being e× e the matrix size, once the e−m 0-value harmonics are known, the
system can be rewritten as:

D  [
A
] [
P
]t y  [

P
] [
x
]

=
[
b
][

[D1,1] [D1,2]
[D2,1] [D2,2]

] [
[y1,1]
[02,1]

]
=

[
[b1,1]
[b2,1]

] (4.15)

where [P ] is a permutation matrix that can be built once the unnecessary harmonics are known.
In particular the effect of P is to shift all the m equations relative to non zero contributions to
the upper part of D. The k −m null harmonics are shifted to the bottom part of D. Therefore
the solution terms [y2,1] will be zero and the system is reduced to:

[D1,1][y1,1] = [b1,1] (4.16)

The system size is reduced from the original size e × e to m × m where for typical problems
m ≈ e

2 .
In order to find the non zero harmonics Eq. (3.7) has to be used. In the magnet regions

the magnetization Mr is expressed as a square wave and the effect of both the rotors is visible.
The harmonics due to the modulation effect of the iron pieces are also present. The expected
harmonics in both the rotors are: ⎧⎪⎨⎪⎩

Pi · (2k + 1)

Po · (2k + 1)

aPo± bP i

(4.17)

where k, a, b are 1, 2, 3.... Looking at the solution, the coefficients relative to the slots seem to
decay quickly to zero and generally only the first 10 terms have to be considered. This aspect
can be considered in the choice of the number of harmonics K that has to be adopted for the
slot regions.

4.1.3 Problem conditioning

An important aspect that is worth to be considered is the matrix conditioning. Considering the
general inverse problem Ax = b, the conditioning is an intrinsic matrix property that is linked to
the sensitivity of the solution to a variation of the known term b. In particular if the problem is
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Figure 4.2: Singular values of the full matrix
with Pi = 2, Po = 7, n = 200.
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Figure 4.3: Singular values of the reduced matrix
with Pi = 2, Po = 7, n = 200.

Parameters Case Cond. numb. k Lost digits
Pi = 2, Po = 7 Full, n = 200 6.1 · 105 5
Pi = 2, Po = 7 Full, n = 500 3.89 · 106 6
Pi = 2, Po = 7 Full, n = 700 7.61 · 106 6
Pi = 2, Po = 7 Reduced, n = 200 5.98 · 105 5
Pi = 2, Po = 7 Reduced, n = 500 3.85 · 106 6
Pi = 2, Po = 7 Reduced, n = 700 7.57 · 106 6

Table 4.1: Effect of model reduction on the conditioning number.

bad conditioned or ill-conditioned a small variation of the term b will produce an huge variation
of the solution x. Thus the solution of problem highly bad-conditioned can be challenging. The
conditioning number is calculated as:

k(A) =
σmax

σmin
(4.18)

where σmax and σmin are the maximum and minimum singular values of the matrix A. For
backward stable methods such as the Matlab backslash operator based on QR factorizations the
solution precision is:

∥xv − x∥
∥x∥

≤ k · ϵmachine (4.19)

where xv is the computed solution and x the real one, while ϵmachine is the computer precision.
Writing the conditioning number as k = 10τ , in each calculation τ is the number of digits that
is lost due to the precision of the numerical method.

As a test-case example, a magnetic gear with Pi = 2 and Po = 7 is considered. The singular
values have been depicted changing for the case n = 200 with and without reduction: in Fig. 4.2
the full matrix singular values is depicted while in Fig. 4.3, the reduced matrix is analyzed. The
matrix reduction affects all the singular values while the conditioning number slightly decreases
as visible in Tab. 4.1.

4.1.4 Modelling in high permeability regions

For high permeability regions a finite difference approach has been adopted. The Laplace equa-
tion in cylindrical coordinates reads:

∂2Az

∂2r
+

1

r

∂Az

∂r
+

1

r2
∂2Az

∂2θ
= 0 (4.20)
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Figure 4.4: Vector potential boundary condition for iron regions. Az is computed along the red line
and applied on the black one as boundary condition.

which is solved using a finite difference method applied to a regular grid in cylindrical coordinates.
Using the reference system of Fig. 4.4, the grid consists of the points:

ri = Rext − (i− 1

2
)∆r θj = θ1 − (j − 1

2
)∆θ (4.21)

In (4.20) the first and second derivatives are computed with respect to an arbitrary coordinate
ξ as:

∂U

∂ξ
=
Ui+1,j − Ui−1,j

2 · ∆ξ
(4.22)

∂2U

∂2ξ
=

1

∆ξ

(Ui+1,j − Ui,j

∆ξ
− Ui,j − Ui−1,j

∆ξ

)
=
Ui+1,j + Ui−1,j − 2 · Ui,j

∆ξ2

(4.23)

Once a regular grid is built in the iron regions, the previously calculated boundary potential is
used as Dirichlet condition and the magnetic vector potential Az can be found in each point by
solving (4.20) using (4.22) and (4.23). When the potential inside the iron regions is known, the
magnetic flux density components can be easily computed.

4.1.5 Simplified iron saturation model

The magnetic material saturation level is a strict constraint when the weight of the magnetic gear
has to be optimized. Since the analytic model considers iron regions with infinite permeability,
the saturation effect is not taken into account directly. Therefore, the radial and tangential
components of the magnetic flux densities are computed with a finite difference scheme and a
simple limitation is added as follows:

|B| =

{
|B| if |B| < Bsat

Bsat if |B| ≥ Bsat

(4.24)

where Bsat is the material saturation limit. When in a certain point h the magnetic flux density
norm |B| is higher or equal than Bsat, the cell area with barycentre h is assumed to be saturated;
hence the percentage of ferromagnetic material above the saturation limit Vsat can be estimated.
This parameter influences the gear performance: FEM simulations of nonlinear materials allow to
compute the torque decay curve as function saturation percentage and once the working point of
this curve has been chosen, the maximum saturation percentage Vmax becomes an optimization
constraint as follows:

Vsat =
1

V

np∑
h=1

(
Vh if |B| ≥ Bsat; 0 otherwise

)
≤ V%max (4.25)

where V is the overall iron area, Vh is the area associated to the hth cell, np is the global number
of points in the iron domains.
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Figure 4.5: Torque drop, 2V-Supermendur. Figure 4.6: Torque drop, Silicon50PN800.

Figure 4.7: Low saturation case of the inner ro-
tor yoke for the 2V-Supermendur material. The
flux lines are completely closed inside the ferro-

magnetic material.

Figure 4.8: High saturation case of the inner
rotor yoke for the 2V-Supermendur material. The

flux lines are partially closed in air.

Two materials have been taken as test case and the torque drop functions have been cal-
culated. The materials are 2V-Permendur and the non oriented steel Si50pm800. The drop
functions have been reported in Figs. 4.5 and 4.6. The magnetic flux density norm and the
magnetic vector potential contours have been reported in Fig. 4.8. The material is considered
saturated when the differential permeability falls below µdiff = 30; the saturation flux densities
Bsat to substitute in (4.24) are therefore B = 2.5 T and B = 1.7 T respectively.

From the analysis of Figs. 4.5 and 4.6, the torque drop function depends on the material:
2V −Permendur has a lower decay slope which is visible also at low saturation percentages while
the other material has a negligible torque decay when the saturation is lower than vsat = 15%
and then the curves decays faster than the previous case. The inner number of poles Pi influences
the decay function: the effect is lower increasing Pi.

In Fig. 4.9 a qualitative comparison between the flux loci computed through proposed sim-
plified saturation model and the results given by the commercial finite element code is shown.
The results match with a reasonable approximation.

4.1.6 Model validation

Tab. 4.2 shows the comparison between the results obtained through the analytic procedure
and the commercial finite element code Comsol Multiphysics [94]. The test case geometry is
the one proposed in [61]. The stall torques, ripples and losses are in agreement. A qualitative
comparison between the radial flux densities is reported in Fig. 4.10, where the colour-maps are
in agreement.

Tab. 4.3 shows a comparison between the computational times of the proposed analytical
tool and FEM results for two different pole pairs combinations: the analytical elements are the
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Figure 4.9: Comparison of radial and tangential flux density loci in two distinct nodes of the iron poles,
computed with the simple model (4.24) trough the analytical algorithm (left) or through the commercial

FEM software (right).

Quantity Analytic FEM 2D
- No segm. Segm No segm. Segm.

Inner stall torque (Nm) 70 70 65 65
Outer stall torque (Nm) 104 104 97.5 97.5

Inner ripple (Nm) 7.71 7.71 5.79 5.79
Outer ripple (Nm) 8.26 8.26 5.39 5.39

PM losses (W) 2761 84 2600 60
Iron loss GSE (W) 4.84 4.84 4.1 4.1

Efficiency max. load 0.7256 0.9912 0.7447 0.993

Table 4.2: Analytic model validation through 2d FEM. The geometry is taken from [62], with Pi = 2
and Po = 3. The rotational speed is ωin = 1500 rpm. The iron loss model is the Generalized Steinmetz

equation in Sec. 4.6.3, the PMs loss are computed according to Sec. 4.7.
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Figure 4.10: Example of comparison between the flux density radial component computed through the
analytical algorithm (left) and the commercial Finite Element code (right).

Pi Po FEM DOF. Analytic DOF. FEM time Analytic. time
2 17 82E3 52E3 525 s 147 s
3 25 96E3 66E3 669 s 164 s

Table 4.3: Time comparison between analytical (A) and commercial FEM relatively to 12× 30 = 360
simulations. The workstation adopted has two 6-core 12 thread processors (Intel Xeon E5645 @2.4 GHz)

and 112 GB of RAM.
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ones of the iron regions, while an equivalent discretization with FEM requires a higher number
of elements since the air and permanent magnet domains have to be discretized. Tab. 4.3 shows
the results for 12 simulations of different geometries, each one with an angular parametric sweep
with 30 angles. FEM uses linear shape functions and linear materials and the triangulation time
is taken into account in Tab. 4.3; both FEM and analytical procedure are parallelized on 12
cores. FEM results slower because of the re-meshing time and the stiffness matrix size. Tab. 4.2
shows the comparison between the proposed analytical tool and FEM results for two different
geometries and the results are in accordance.

4.2 2D Finite Element / Boundary Element in Julia

Computer simulations of physical phenomena and devices play a key role in the modern product
design process across all application areas, including the case of low frequency electromagnetics.
Several commercial solutions provide reliable and flexible tools, typically based on the Finite
Element Method, capable of solving the vast majority of problems of practical interest. However,
this generality comes at the cost of either not being able to satisfactorily cover some niche
applications or not being particularly optimized for some specific scenarios. Therefore it is
sometimes convenient or necessary, particularly in an academic environment, to write either some
parts or complete applications ex-novo. In such circumstances an initial decision has to be made
concerning the implementation language, and at a more fundamental level the implementation
approach. Common choices are:

1. C++, C and Fortran: best execution time, low level language, lengthy source codes, stat-
ically compiled

2. Matlab and Python: possibly slow, high level language, compact source codes, interpreted

Quite recently the Julia language, now at version 0.6, was born with the aim of providing, through
an LLVM-based just-in-time (JIT) compiler, performances close to 1) (if written properly) with
a high level syntax and compact source code similar to 2). The language, initially developed
by computer scientists and mathematicians, alumni of MIT and Harvard, has over 1,800,000
downloads as of January 2018 and is together with C, C++, and Fortran among the only four
high-level languages in which petaflop computational codes have been written.

In order to cope with the need for a specialized code for the design and optimization of
magnetic gears which required some specific features not fully/optimally/robustly/conveniently
provided by the commercial codes available to them, Julia was chosen because of its promising
features. In this Section a 2D Finite Element Method-Boundary Element Method (FEM/BEM)
code is described, with a special focus on its implementation in Julia. The main language features
that have been used for the implementation are introduced in Sec. 4.2.1. Sec. 4.2.2 describes
the formulation of the FEM/BEM algorithm adopted, with a special focus on the magnetic gear
test case. In Sec. 4.2.4, the core parts of code are shown together with some remarks on the
implementation. Finally, Sec. 4.2.6 reports the results for some magneto-static and magneto-
quasi-static simulations, and the performances of the algorithm are compared to a commercial
Finite Element software.

4.2.1 Julia features

Julia has a multitude of unique interesting features, partially deriving from other programming
languages, the descriptions of which is beyond the scope of this thesis, and for a complete
documentation the reader is referred to [95, 96]. Some characteristics of particular interest in
the context of the developed FEM/BEM simulation code are:

• Method based language (see Appendix A.1);

• Simple interface with other languages (see Appendix A.2);

• Easy to parallelize (see Appendix A.3);

• Free and open source (MIT license);
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Figure 4.11: Magnetic gear test case geome-
try. Gray: iron, Red/Blue: permanent mag-
nets, Cyan: air. In the physical device the
outer iron region and magnets as well as the in-
ner iron region and magnets rotate at different
speeds while the field-shaping iron pole pieces,
completely surrounded by air, are stationary.

Figure 4.12: Typical mesh used by the
FEM/BEM solver. The air-gaps and the air
slots between the iron poles are not discretized
since the boundary element method is adopted.

• Tools for memory and time profiling (see Appendix A.4);

• Greek letters can be used, thus the syntax can be closer to the mathematical notation.

In the following Sections some examples concerning the functionalities that have been used in
the FEM/BEM implementation are shown.

4.2.2 FEM/BEM algorithm for magnetic gears

Conventional strategies to deal with movement in FEM-based electrical machine simulations
include re-meshing of the air-gap, lock-step movement, sliding interfaces or the use of Lagrange
multipliers. All these approaches introduce limitations, computational bottlenecks or additional
causes of simulation breakdown during long transients. The alternative approach followed in
this Section is to adopt a hybrid FEM/BEM strategy. Obviously, also this choice is not devoid
of inconveniences but it also offers interesting possibilities which where deemed to be the best
option for this very specific application which refers to a magnetic gear, whose geometry and
mesh are shown in Figs. 4.11 and 4.12, respectively. The air regions are not meshed since a
BEM formulation is adopted in the air-gap and in the slots which separate the field-shaping iron
pole pieces.

Finite element formulation

The main features of the Finite Element approach that has been implemented are:

• Linear shape functions;

• Mesh imported from external mesh generator;

• Nonlinear magnetization treated with a fixed point approach. The nonlinear problem will
be extensively discussed in Sec. 4.3.

The 2D vector potential formulation in quasi-stacic case reads:

σ
∂Az

∂t
−∇ · ν∇Az = Jz + ∇2D ×M(Az) (4.26)
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where Az is the z component of the vector potential, σ is the electrical conductivity, ν is the
reluctivity, M(Az) includes the nonlinear iron magnetization or the linear permanent magnet
magnetization and Jz is the source current density. The vector potential Ampere’s law (4.26)
will be recalled several times in the thesis development, in the static or quasi-static, 2D or 3D,
strong or weak forms, e.g. in Eqs. (4.48), (4.134), (4.135), (4.67), (4.77), (4.128), (7.1). For the
sake of readability, the proper equation will be reported in all the sections where needed.

From the weak form of Eq. (4.26), the usual stiffness and mass matrices K and M are
obtained with entries:

Ki,j =

∫
Ω

ν∇Ni · ∇NjdΩ (4.27)

Mi,j =

∫
Ω

σNi ·NjdΩ (4.28)

where Ni indicates the ith nodal shape function. A compact code listing for the FEM matrix
assembly is available in Appendix A.5.

Boundary element formulation

For the BEM part, since the method is only applied in the air-gap regions, the key points are
the following:

• Linear shape functions

• Laplace fundamental solution

When the Boundary Element method is applied to the boundary of the BEM region, referred
as Γ, denoting by n the normal of Γ and ω = − log r

2π the fundamental solution of the Laplace
equation, the general equation reads [97]:

c ·Az(ξ, η) = −
∫
Γ

Az
∂ω

∂n
dΓ +

∫
Γ

∂Az

∂n
ωdΓ (4.29)

The coefficient c depends on the location of the point (ξ, η) and on the shape of the domain:
c = 1 if the point is inside the BEM domain, c = 0 if the point is outside and c = α

2π where α
is the angle formed by the edges of the BEM node if the point (ξ, η) is on the boundary of the
BEM domain. Eq. (4.29) in matrix form is written as:

[G] · {Az} = [H] ·
{∂Az

∂n

}
(4.30)

All integrals are computed through Gauss-Legendre quadrature. The adopted parallel imple-
mentation for the BEM matrix assembly is available in Appendix A.6.

FEM/BEM coupling

In the interface edges, the FEM/BEM coupling has to be performed. Since the FEM scheme
is discretized through nodal shape functions, the coupling is trivial in the sense of nodal vector
potential because the interface nodes shares the same Az. The boundary fluxes instead have to
be coupled: the FEM method uses edge-distributed boundary fluxes while BEM method uses
nodal fluxes.

The FEM Neumann boundary condition of the ith node in the weak form reads:∫
Γ

Niϵq
F dΓ =

∫
Γ

ϵNe
i (qBi−1N

e
i−1 + qBi N

e
i )dΓ+

+

∫
Γ

ϵNe+1
i (qBi N

e+1
i + qBi+1N

e+1
i+1 )dΓ

(4.31)

where ϵ is the material property (considered constant along the edge), qF is the FEM normal
potential derivative, qBi is the BEM normal potential derivative associated to the ith node, Ni

is the nodal shape function and Ne
i is the Ni contribute from the eth edge (Ni =

∑
eN

e
i ). Thus
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Figure 4.13: Interface edges between FEM and BEM regions. The nodal qB in the BEM reference and
the respective qF are shown.

generally the potential derivatives in the FEM and BEM references are related through the
matrix M in the expression qF = [M ]qB , where the elements relative to the edge e + 1 in case
of linear shape functions are: ⎧⎪⎨⎪⎩

Me+1
i,i = 1

3 (Le + Le+1) sin(αi

2 )

Me+1
i,i+1 = 1

6 (Le + Le+1) sin(αi

2 )

Me+1
i+1,i = 1

6 (Le + Le+1) sin(αi

2 )

(4.32)

The FEM/BEM linear system, for the magneto-static case, is:⎡⎣[KFEM

] [
0
][

−M
]

[0] [G] [H]

⎤⎦⎧⎨⎩AFEM

Aint

qBEM

⎫⎬⎭ =

⎧⎨⎩gFE

0
0

⎫⎬⎭ (4.33)

where KFEM denotes the finite element stiffness matrix reordered to obtain the FEM/BEM
interface node equations at the bottom, AFEM and Aint denote the vector potential solution
for the FEM nodes and for the BEM nodes respectively, G and H are the matrices from the
BEM equation (4.30) and qBEM are the nodal tractions qBEM = ∂Az

∂n . The matrix M is the
conversion matrix (4.32) from the BEM normal derivatives to the FEM Neumann conditions.

Torque computation

Several techniques can be implemented for the torque calculation in electrical machines [98,
99]. Maxwell’s stress tensor approach has been adopted in this thesis, therefore the magnetic
flux density on a surface that encloses the rotor in the BEM domain has to be calculated. A
circumference is taken to integrate the stress tensor, thus the magnetic flux density has to be
evaluated in the query points, thus (4.29) has to be computed repeatedly with c = 1. This
equation links the potential on a query point uQ with two boundary integrals performed on the
boundaries of the BEM domain.

Two different approaches can be adopted to calculate the flux density: the former uses (4.29)
to evaluate Az on the query points and then the x and y derivatives can be estimated through
a finite difference scheme, the latter substitute the derivatives directly in (4.29). The second
approach has been followed for the proposed algorithm. The distance between the query point

and the BEM node is denoted by r = |r| =
√
r2x + r2y, while n is the BEM normal vector.

Bx = −2

∫
Γ

Az
ry

2π|r|3
[∇r · n] dΓ +

∫
Γ

Az

2π|r|

[
(0, 1)

|r|
· n

]
dΓ −

∫
Γ

∂Az

∂n

ry
2π|r|2

dΓ (4.34)

A similar expression is obtained for By. The integrands involve different powers of the singular
terms 1

r , thus special care is required when r is close to zero because of the hypersingular terms.
The integration could be performed numerically if the query points are in the center of the airgap
with size ξ, thus the minimum distance is lower bounded by ξ

2 .
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As it will be extensively treated in Sec. 5.3, the forces are computed through the Maxwell
stress tensor integration along a closed surface that includes the machine rotor:

[T ] =
1

µ0

[
B2

x−B2
y

2 BxBy

BxBy
B2

y−B2
x

2

]
(4.35)

The parallel implementation of the torque subroutine in reported in Appendix A.7.

4.2.3 Motion and time domain problem

The conventional strategies adopted to deal with the movement in electrical machine finite
element simulations are the machine re-meshing, the locked step or the sliding interfaces. The
new mesh is the less efficient since a new triangulation at each motion step has to be performed.
The locked step approach requires the mesh to be uniform along the sliding circumference, while
the last one is the most flexible since there are no special requirements on the triangulation
but normally the formulation is more complicated because of the non conformal mesh. When
an hybrid FEM/BEM is adopted, the motion can be implemented easily working on the BEM
couplings. Since the BEM matrices depend on the node positions, the nodes on the rotors
circumferences can be virtually shifted when the BEM matrices have to be computed, while the
position of the real nodes does not change.

The time domain problem is addressed through a fixed time step integration:

• θ-method for DAEs;

• Modified Crank-Nicholson scheme [100].

The easiest approach to solve time domain problems is the θ method. The general DAE
problem is formulated as:

[M1(x)] · x + [M2]
dx

dt
= s(t) (4.36)

where [M1] is the nonlinear stiffness matrix, [M2] is the mass matrix (considered constant),
s(t) is the source term. Applying the θ method, the time derivative is expressed through finite

differences as dx
dt = xn+1−xn

∆t and (4.36) becomes:(
θ[M1(xn)] +

1

∆t
[M2]

)
xn+1 =

=
( 1

∆t
[M2] − (1 − θ)[M1(xn)]

)
xn + θsn+1 + (1 − θ)sn

(4.37)

The parameter θ allows to switch between different schemes: with θ = 0 the method is the explicit
Euler approach, θ = 1 is the implicit Euler one and finally θ = 0.5 is the Crank-Nicolson (CN)
algorithm. Normally the Crank-Nicolson approach is adopted since it is unconditionally stable
and a second order scheme. As suggested in [100], depending on the system being modelled in
some cases CN suffer from weakly damped oscillations due to the sudden jump of the boundary
conditions at the first time step. From [100], the growth factor between consecutive time steps
is:

g(φ) =
1 − 2δγ sin2(φ

2 )

1 + 2δγ sin2(φ
2 )

(4.38)

where γ = ∆t
∆x2 is the ratio between the simulation time and squared spatial discretization

respectively, δ is the diffusion coefficient and φ is a frequency dependent parameter. The relation
0 ≤ φ ≤ π holds and φ → 0 means slowly varying components while φ → ±π means highly
oscillatory components of the solution. The growth factor g is always bounded since |g(φ) ≤ 1|,
thus CN is said to be unconditionally stable.

When CN is applied for the solution of magneto quasi static problems, the diffusion coefficient
is δ = ν

σ , where ν is the reluctivity and σ is the conducibility. Fixing for example the parameters
for an hypothetical electrical machine ∆t = 5e − 4 s and ∆x = 1e − 3 m, σ = 1e7 S/m and
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ν = 8e5 m/H (case of alluminium), the growth factor becomes:

g(φ) ≃
1 − 40 sin2(φ

2 )

1 + 40 sin2(φ
2 )

(4.39)

In (4.39) the oscillatory components (φ → ±π) are propagated as weakly damped oscillations
since g(φ) → −1.

The growth factor in the case of implicit Euler method reads:

g(φ) =
1

1 + 4δγ sin2(φ
2 )

(4.40)

thus, as suggested in [100], one solution in this case is to adopt the implicit Euler method for
the first two time steps and Crank-Nicolson for the subsequent steps.

When the mechanical transient has to be solved, an ordinary differential equation ODE is
added to the system and the structure is the same of (4.36):

J
d2θ

dt2
+ b

dθ

dt
= Tem − Tload (4.41)

where θ is the angular rotor position, J is the rotor inertia, b is the damping coefficient, Tem
is the electromagnetic torque and Tload is the load torque. In order to solve the mechanical
dynamic equation, (4.41) could be included in (4.36) or solved separately. In this Section the
Verlet approaches have been adopted, thus (4.41) is discretized through central differences for
the cases of linear or quadratic damping term. In the linear damping case, b is constant:{

θn+1 =
2Jθn+( b

2∆t−J)θn−1+∆t2(Tem−Tload)

J+ b
2∆t

θ1 = θ0 + ∆tω0 + ∆t2

2J (−bω0 + Tem − Tload)
(4.42)

while in the quadratic case, b = B|ω|. If the nonlinear term is discretized through the mean

term θn|θn| = θn+
1
2 |θn− 1

2 , the updating equation reads:{
θn+1 = 2Jθ−Jθn−1+bθn|θn−θn−1|+∆t2(Tem−Tload)

J+b|θn−θn−1|
θ1 = θ0 + ∆tω0 + ∆t2

2J (−bω0|ω0| + Tem − Tload)
(4.43)

4.2.4 Julia implementation

Mesh import

The first step is the mesh import from a text file. This is rather easy once the file structure is
known, therefore the parse instructions will not be reported. The key information that has to
be imported are:

• Node coordinates;

• Triangle material domain;

• Connectivity matrix, with positively oriented triangles.

Useful packages

Some packages available online have been used to speed-up the implementation time of the code.
1D and 2D quadrature rules are required for numerical integration. In particular, line integrals
have to be computed for the construction of the BEM matrices, while integrals on triangles have
to be computed for the construction of the FEM matrices. The 1D case has been addressed with
the fast and robust Julia package FastGaussQuadrature.jl, freely available on GitHub [101],
which provides, among others, suitable Gauss-Legendre rules. On the other hand standard 2D
quadrature rules on triangles have been implemented from scratch. The package WriteV TK.jl
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[102] is useful for the export of VTK files, readable by ParaV iew, an open source tool for post
processing operations.

Dierckx.jl [103] has been used for the interpolation of the nonlinear HB curve.
Finally, Pardiso.jl [104] has been used, in order to use the parallel system solver features

combined with the MKL libraries.

4.2.5 Acceleration methods for nonlinear problems

In literature, a variety of acceleration methods are available to try to speed-up the convergence
rate of fixed point iteration. Among others, Anderson acceleration proved to have good perfor-
mances in electronics component simulations, but it has been rarely applied to electro-magnetics.
This acceleration has been tested on static and magneto-quasi static problems giving impressive
speed-ups, thus the FEM/BEM algorithm here presented has been equipped with this accelera-
tion technique. A separate Section (Sec. 4.3) has been dedicated to the method description and
validation, which will not be described in the current one.

4.2.6 Model validation

The nonlinear magnetic material used in the simulations is a silicon steel with non-oriented
grains. Experimental data have been interpolated by means of the Langevin equation:

B(H) = k1 coth (k2 ·H) − 1

k2 ·H
+ µ0 ·H (4.44)

where B is the flux density, H is the magnetic field, k1 and k2 are the coefficients of the fit. For
the given material, k1 = 1.803 and k2 = 0.0027. The permanent magnets have a fixed remanence
Br = 1.2 T.

Figs. 4.14 and 4.15 show the z component of the magnetic vector potential and the magnetic
flux density norm, respectively.

Fig. 4.16 shows the results of a magneto-static parametric sweep of the angular positions of
inner and outer rotors. In particular, inner and outer torques are depicted and the respective
Finite Element results are shown adopting linear and quadratic shape functions. It is worth
noting that the FEM/BEM result is closer to the quadratic FEM case: this happens because the
air-gap, the region where the mesh size impacts more on the torque, uses the BEM formulation,
which is mathematically exact (the errors are due just to numerical integration).

Fig. 4.17 shows the comparison of the outer and inner rotor torques in dynamic operation,
thus when the mechanical ordinary differential equations are solved. The wave forms are in full
accordance, a small difference is noticeable at the beginning of the time domain simulation since
the ramp-up of magnetizations and non-linearities is slower for the FEM/BEM case.

Fig. 4.18 shows the dynamic response of the magnetic gear when the initial rotors position
is a non-equilibrium point. The positions show a damped oscillatory behaviour due to both
electrical and mechanical damping, and the stationary position at the end of the transient is the
zero torque equilibrium position.

Fig. 4.19 shows the speed-up obtained for the torque computation subroutine varying the
number of parallel workers. While at low number of workers the speed-up is close to linear,
increasing the number of processors the allocation time and inter-process communication impact
becomes more relevant, thus the time speed-up saturates, as is to be expected. According to
Amdahl’s law, the parallel performance depends on both intrinsic features of the algorithm as
well as the specific implementation details. The results shown Fig. 4.19 are in agreement with
others available in literature for the same type of task.

In Tab. 4.4 the simulation time for the FEM/BEM algorithm and for the commercial finite
element software are reported for a workstation with two 6-core 12 thread processors (Intel Xeon
E5645 @2.4 GHz) and 112 GB of RAM. The number of degrees of freedom (DOFs) is different
for the compared methods since in the FEM case the air-gap elements are considered, while in
the FEM/BEM case the problem size is the one in (4.33). The time/iterations ratio is computed
since in the dynamic case (time-domain) the FEM algorithm takes some small time steps at the
beginning of the simulation in order to satisfy the same requirements on the relative tolerance
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Figure 4.14: Magnetic gear test case: Az plot
obtained with ParaView.

Figure 4.15: Magnetic gear test case: flux
density norm plot obtained with ParaView.
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FEM/BEM and commercial FEM with linear
(Lin. el.) and quadratic (Quad. el.) shape
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Test case Tool DOFs Time Time/iterations
Position sweep FEM/BEM 20567 39.64 s 1.32 s/iter
Position sweep FEM 21287 70 s 2.33 s/iter
Time domain FEM/BEM 20567 114.82 s 3.83 s/iter
Time domain FEM 21287 387 s 8.41 s/iter

Table 4.4: Time comparison between the FEM/BEM algorithm and the commercial FEM, both with
linear shape functions. The nonlinear convergence criteria is set to relative tolerance ∆A < 1e− 5. The
workstation has two 6-core 12 thread processors (Intel Xeon E5645 @2.4 GHz) and 112 GB of RAM.

∆A of the FEM/BEM algorithm. Because of its features, the FEM/BEM algorithm is faster
than the commercial FEM for this class of problems, while the accuracy regarding the torque
computation is close to the higher order shape function FEM case.

4.3 Anderson acceleration for electromagnetic nonlinear
problems

Numerical simulations are mandatory for general non-linear mathematical models and the com-
mon approach is to adopt algorithms of the Newton-Raphson (NR) family, which can provide
convergence with a low number of iterations [105]. Normally, relaxation parameters are adopted
to guarantee convergence, and their tuning can be either manual or self-adapted. A different
approach that can be adopted to solve non-linear problems is the Fixed Point (FP) iteration.
The FP approach is adopted, when possible, especially for its implementation simplicity and
the lower requirements to achieve convergence in comparison to the NR scheme. On the con-
trary, it typically requires a high number of iterations to converge in comparison with the NR
method, thus the choice is generally a trade-off dependent on the application. In electromag-
netic problems, common non-linearities are due to ferromagnetic materials, which can exhibit
hysteretic behaviour. For this special class of materials, NR methods cannot cope easily with
the Preisach or Jiles-Atherton models, thus the FP iteration is still widely adopted in elec-
tromagnetics. In order to improve the convergence speed of FP methods, several acceleration
techniques have been suggested in the past [106]. One of them, i.e. Anderson acceleration [107],
has been widely applied to FP problems in electronic structure computations, but it is still not
diffused in electromagnetic computations. In this Section Anderson acceleration is tested for the
magneto-quasi-static case, and the performances of the resulting iterative scheme are compared
to the standard FP implementation.

4.3.1 Fixed point for the magnetostatic problem

In most electrical machines design problems saturation plays an important role, thus an im-
portant aspect to consider is the capability of the chosen formulation to model the BH curve
non-linearity. In literature a common approach is the NR technique because of its super-
linear convergence property. The well known NR iterative scheme allows to find the solution
of a system of non-linear equations F (x) = 0 with an iterative scheme of the type xk+1 =

xk − [dF/dxk]−1F (xk), but for achieving convergence the terms [dF/dxk]
−1

and d2F/dx2
k have

to be bounded and often in turn the BH curve and its fist derivative have to be strictly mono-
tonic. Practically the NR implementation is always supplemented by under-relaxation schemes,
and this combination provides the most efficient tool for the solution of nonlinear equations,
when it is convergent [108].

Another technique for the solution of systems of non-linear equations is the Picard-Banach
fixed point (FP) iteration scheme, in which xk+1 = G(xk). This approach converges linearly for
magneto-quasi-static problems, but choosing an optimal permeability and implementing suitable
acceleration schemes the rate of convergence can be significantly improved. In order to guarantee
convergence, the problem has to be formulated in such a way that G is a contraction, which
can be exactly proven when the material function is Lipschitzian and uniformly monotone [108].
In particular, a function G is a contraction on a domain G : Ω → Ω if ∀u∗ ∈ Ω there exist a
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coefficient 0 ≤ α < 1 for which [109]:

||G(u) −G(u∗)|| ≤ α||u− u∗|| (4.45)

where ||·|| is a suitable norm and α the contraction coefficient. Because of the lower requirements
on the differential reluctivity, FP can be adopted for example with hysteretic materials where
NR cannot be.

In this Section the FP scheme has been adopted for its simplicity and to avoid the compu-
tation at each non-linear step of the Jacobian matrix. In order to understand if the iteration is
a contraction, the approach in [108] is followed, leading to the same result of [109]. Maxwell’s
equations in the magnetostatic case read:⎧⎪⎨⎪⎩

∇×H = J

∇ ·B = 0

H = f(B)

(4.46)

where H is the magnetic field, B is the magnetic flux density and f stands for the non-linear
BH relation. The ferromagnetic material law can be written as:

B = µ0µFPH + I = µ0(µFPH + M) (4.47)

where µ0 is the vacuum permeability, µFP is a reluctivity-like quantity that can be adjusted for
convergence purposes and I is the ferromagnetic non-linear polarization (M is the dual non-linear
magnetization). Substituting (4.47) into (4.46):

∇×B = µ0µFPJ + µ0∇× I (4.48)

In (4.48), the polarization I is a function of the flux density B through Ampere’s law, but the
material relation (4.47) still holds. Thus a fixed point problem has to be solved and adopting
the B-correction the iterative procedure is written as:

Ik+1 = Bk − µ0µFPHk = G(B(Ik)) = F(Ik) (4.49)

where the function F is the fixed point function. The iterative procedure is set up as follows:

a) an initial guess I0 is fixed;

b) Maxwell’s equations in (4.46) are solved with Bk = µ0µFPHk + Ik−1;

c) Ik = G(Bk);

d) repeat steps b) and c) till convergence.

According to [108], the relative permeability µFP can be chosen in order to make the function
G a contraction. Adopting the B-correction approach (4.49), in the case of isotropic media the
choice µFP < 2µrmin , where µrmin is the minimum permeability along the BH curve, ensures
that the function G is a contraction. Since for a ferromagnetic material the minimum relative
permeability is µrmin ≥ 1, the nonlinear medium can be replaced by a linear one with higher
permeability in order to improve the convergence speed while the G function is still contractive.
The optimal µFP that results in the lowest α in (4.45) is:

µopt
FP =

(
µ−1
rmin

+ µ−1
rmax

2

)−1

(4.50)

Since the Picard-Banach iteration converges linearly, several techniques have been proposed to
accelerate the convergence. In [109] a locally convergent fixed point scheme is suggested for the
2D case:

µFP =
2

Cµ0

(
∂Bx

∂Hx

⏐⏐⏐⏐⏐
k=0

+
∂By

∂Hy

⏐⏐⏐⏐⏐
k=0)

(4.51)
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where C > 1 is a coefficient that should avoid convergence issues. (4.51) is evaluated at each
iteration. A similar approach based on the optimal choice of µFP has been studied in [110] and
[111], but in these approaches the stiffness matrix has to be updated at each nonlinear iteration
thus the complexity would be the same of NR with a linear or super-linear convergence still
lower than quadratic.

[108] and [112] suggest to adopt a relaxation scheme Bnew
k+1 = Bk + ω∆Bk+1 with ∆Bk+1 =

Bk+1−Bk to adjust the subsequent iterations. Bk+1 is the next iteration flux density computed
through the fixed point iteration, Bnew

k+1 is the flux density modified by the over-relaxation scheme

and ω is the relaxation parameter. The error at the kth iteration referring to the fixed point
solution B∗ is:

||Bk+1 −B∗||1/µ ≤ 1

1 − α
||Ik+1 − Ik||1/µ (4.52)

thus the modified Bnew
k+1 is sought such that ϵ(ω) = ||F(Ik)−Ik||µ−1 is the lowest possible. In [112]

this dynamic over-relaxation scheme gives good results in terms of convergence of the non-linear
problems.

Although the previous description of the FP technique was given for the static case for
simplicity, similar results have been derived for the quasi-static case [109].

4.3.2 Anderson acceleration

The relaxation-based correction attempts to produce a better estimation of the fixed point
based on the knowledge of the last two iterations. Following the same idea, one may expect
that a more efficient FP scheme would be obtained considering all the previous iterations, i.e.
through a Krylov space method. Anderson in [107] found an acceleration method based on the
extrapolation from the previous k − 1 residual vectors rk = G(xk) − xk, where the fixed point
iteration is denoted by the expression xk+1 = G(xk).

Set x0; m ≥ 1;

x1 =G(x0);

For k = 1, 2...convergence

mk = min(m, k);

Rk = (rk−mk
, rk−mk+1...rk),

with ri = G(xi) − xi;

Find αk : minα=(α0...αmk
)T ||Rkα||2 . . . such that

mk∑
i=0

αi = 1;

xk+1 =

mk∑
i=0

αki

(
(1 − βk)xk−mk+i + βkG(xk−mk+i)

)
; (4.53)

The parameter m is the maximum number of residuals used for the extrapolation and βk is
a relaxation parameter that is fixed to βk = 1 in this thesis. The residuals ri are calculated
as magnetic flux density residuals ri = Bi+1 − Bi, thus the algorithm in (4.53) is adopted to
extrapolate the new step solution Bk+1.

As shown in [113], this schemes tends to be the GMRES algorithm if all the previous residual
vectors are used for the computation (m→ ∞). In practice in order to limit the computational
effort and to avoid ill conditioned matrices, the number of vectors taken for the projections is
limited, and in this Section 4 ≤ m ≤ 30 is adopted.

The minimization problem in (4.53) is solved through QR updated factorizations which result
in a good compromise between accuracy and conditioning. The function being minimized is
rewritten as:

minγ
⏐⏐⏐⏐ [rk−mk+1 − rk−mk, . . . , rk − rk−1

]  
Tk

·γ − rk
⏐⏐⏐⏐
2

(4.54)

where the matrix Tk is factorized through a QR-update procedure since consecutive iterations
have the effect to overwrite the first column of the T matrix and to apply a circular shift.
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The constrained least-squares problem in (4.53) can be recast in an unconstrained one whose
solution can be easily determined making use of QR-update factorizations. Introducing the
matrix Tk as in (4.54), the new solution becomes γk = (γk0, ..., γkmk−1)T where α0 = γ0,
αi = γi − γi−1 with 1 ≤ i ≤ mk − 1 and αmk

= 1 − γmk−1.

Set x0; m ≥ 1;

x1 =g(x0);

For k = 1, 2...convergence

mk = min(m, k);

Find γk : minγ=(γ0...γmk−1)T ||rk − Tkγ||2

xk+1 = G(xk) −
mk−1∑
i=0

γki

(
G(xk−mk+i−1) −G(xk−mk+i)

)
; (4.55)

At each iteration, the new least-square problem can be solved simply updating the factors of the
QR factorization Tk = QkRk. The solution is determined solving the triangular linear system
Rkγ = (Qk)T rk.
As previously noted, a proper choice of mk is crucial to speed up the convergence of the al-
gorithm. If mk is chosen to be too small, too little information from the previous iterations
is considered and therefore the acceleration may be negligible. On the contrary, if mk is too
large the problem may become ill-conditioned and this can result in a degraded convergence
rate. Several techniques have been proposed to address the conditioning issue: [113] proposed
to monitor the conditioning number ϵ of the Rk matrix, deleting the older column data if ϵ
is greater than a certain threshold. [114] suggested to monitor the norm of the new solution,
restarting the iterative procedure when the norm exceeds a threshold. [115] similarly to the
GMRES algorithm, suggested to restart the iterations every m iterations.

For an extensive analysis of the Anderson acceleration convergence, the reader is referred to
[116], where the r-linear convergence on non-linear problems is proven.

4.3.3 Test case validation: geometry

In order to evaluate the performances of the acceleration scheme, two different approaches are
adopted to solve a magneto-quasi static test case. The first is a Finite Element/Boundary
Element time-domain one, while the second is a Finite Element harmonic-balance one. Both
algorithms are equipped with Anderson acceleration and the solution is validated through the
comparison with a pure Finite Element commercial software. The test case geometry is shown
in Figure 4.20.

In the first example, the coil is fed by a uniform sinusoidal current density. The frequency is
chosen to be 50 Hz and the peak value is set to 7 × 107 A m−2 to strongly saturate the ferromag-
netic core. Eddy currents are induced in the conductive domain which is linear, its conductivity
is equal to 3.774 × 107 S m−1. The ferromagnetic material is a non conductive domain. The
nonlinear magnetic material is a silicon steel with non oriented grains, 35JN200. In order to
help the Finite Element convergence, the BH curve is fitted through the Langevin equation:

B(H) = k1 coth (k2 ·H) − 1

k2 ·H
+ µ0 ·H (4.56)

where k1 and k2 are the coefficients of the fit. For the given material, k1 = 1.803 and k2 = 0.0027.
In the second example, the excitation is the same as the one of the previous test case. The

ferromagnetic material is non conductive and it is chosen to be linear with a constant perme-
ability µr = 1000 H m−1. The conductive domain is a nonlinear material with a conductivity of
0.7 × 106 S m−1, its BH curve is again the one of the 35JN200 steel.

4.3.4 FEM/BEM acceleration

The Finite Element / Boundary Element (FEM/BEM) approach is the one introduced in 4.2,
the iron nonlinearity is enclosed into the magnetization at the right-end side of the equation as
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Figure 4.20: Test case (Dimension in mm)

Figure 4.21: FEM/BEM domains subdivision and discretization.

in (4.48) and the fixed point method adopted is the one of Eq. (4.49). While the use of BEM
part is not mandatory for this particular test case it was adopted to demostrate the effect of
Anderson acceleration on a nonlinear differential algebraic problem with general matrices (with
sparse blocks and full blocks). The FEM/BEM problem discretization is shown in Fig. 4.21.

4.3.5 Harmonic Balance FEM acceleration

The Anderson acceleration is a general method that can be applied in arbitrary iterative schemes.
In this Section, the Harmonic Balance (HB) formulation is adopted and accelerated through this
method.

The Harmonic Balance method permits to determine an approximate steady-state solution
of a nonlinear differential equation considering a truncated Fourier series expansion [117]. With
this approach the steady-state solution of the problem is computed directly avoiding transient
calculations and, therefore, this technique turns out to be computationally convenient especially
for those systems which exhibit a slow dynamic. Here, the Harmonic Balance method coupled
with a FEM discretization (HBFEM) is used to solve the eddy current PDE via a fixed point
scheme.

The starting point is the use of the Galerkin method applied to the eddy current equation:

∇× (ν∇×A) + σ
∂A

∂t
= J (4.57)



Chapter 4. Magnetic modelling 53

this permits to obtain the following nonlinear system of ordinary differential algebraic equations:

K
[
ν
(
x (t)

)]
x(t) + M(σ)ẋ(t) = s(t) (4.58)

where K
[
ν
(
x (t)

)]
is the stiffness matrix, M(σ) is the mass matrix, x(t) is the unknown vector

and s(t) is the source which is assumed to be periodic with period T . The HB method is based
on the ansatz that also the solution has to satisfy the condition x(t) = x(t+ T ). The unknown
vector is expressed with a truncated Fourier series representation:

x(t) = ℜ

(
N∑

n=1

Xne
jnω0t

)
(4.59)

where the terms Xn can be computed as:

Xn = Fn

(
x(t)

)
=

1

T

∫
T

x(t)e−jnω0tdt (4.60)

where Fn stands for the Fourier operator. The solution of (4.58) is carried out adopting a fixed
point scheme. In this case, the fixed point reluctivity ν = νFP + (ν − νFP ) is introduced in
(4.57) to linearize the problem as:

∇× (νFP∇×A) + σ
∂A

∂t
= J + ∇×

(
(νFP − ν)∇×A

)
(4.61)

The application of the Galerkin method to (4.61) gives rise to:

K(νFP )x(t) + M(σ)ẋ(t) = s(t) + K
[
νFP − ν

(
x(t)

)]
x(t) (4.62)

which can be recast in the iterative scheme:

K(νFP )x(k+1) + M(σ)ẋ(k+1) = s + K
[
νFP − ν(x(k))

]
x(k) (4.63)

where the time dependence is not explicitly stated to simplify the notation. In this work, the
value of νFP is kept constant although [110] shows that adaptive approaches can be used to
speed up the convergence of the iterative method. The only acceleration considered here is the
one due to the Anderson scheme and therefore adaptivity will not be analyzed.

Finally, the Harmonic Balance method is applied to (4.63) equating the Fourier coefficients
in the frequency domain:[

K(νFP ) + jnω0M(σ)
]
X(k+1)

n = Fn

[
s + K

(
νFP − ν(x(k))

)
x(k)

]
(4.64)

By using the fixed point approach decoupling has been performed allowing to solve each harmonic
independently. For each iteration in (4.64), N complex linear systems have to be solved to
determine the space dependent frequency domain solution.

4.3.6 Acceleration results

The two codes have been validated comparing the obtained solutions with the one computed with
a FEM commercial software. Figure 4.22 shows the steady state solution in a reference mesh
node of the ferromagnetic domain in Figure 4.20 for the two test cases analyzed. The comparison
is shown for the reference node but the same applies to the whole mesh, demonstrating the
correctness of the two implemented codes. The FEM/BEM simulation results of case 1 refers to
times t ≥ 50 ms to guarantee that the steady state solution is achieved, the time step is fixed
to ∆t = 0.1 ms and the convergence criterion is set on the residual norm that has to be lower
than ϵ = 1e− 6.

Fig. 4.23 shows a comparison of the behaviour of the residual r = |Ak+1 − Ak| with and
without acceleration for two different time instants. At the first iteration, r collapses to the norm
of the potential r = |A0| which is initialized as the previous iteration converged value. The fixed
point residual decreases linearly while the accelerated residual is not monotonically decreasing.
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Figure 4.22: Comparison between the FEM/BEM, HBFEM and a commercial FEM code

Test case Method Iter. Iter. AA Reduction to
Case 1 FEM/BEM 23321 5113 22%
Case 1 HBFEM 409 75 18%
Case 2 FEM/BEM 38658 9914 26%
Case 2 HBFEM 1465 237 16%

Table 4.5: Comparison between the iterations required to achieve convergence.

The effect of the acceleration is especially visible at low fields (Fig. 4.22 left), when the fixed
point permeability that guarantees the scheme contraction µFP = 2µmin is far from the real one
which is close to µ = µmax below the BH knee. The comparison of the iterations number for the
whole time domain simulation is reported in Fig. 4.24. The total number of iterations without
acceleration is KFP = 23321, while with Anderson accelerations the iterations are reduced to
KFP+AA = 5113, thus a 75% reduction in iterations which corresponds to a 75% reduction in
time due to the negligible cost of the QR-updated factorisation. The HBFEM simulations have
been carried out with a constant permeability µFP = 2µmin to ensure the convergence of the
iterative scheme. The number of harmonics considered for the approximation has been set to
seven to guarantee an adequate accuracy for the solution. In this case, a suitable criterion to
stop the iterative scheme is the one proposed in [111]. The solution is considered to be achieved
when the maximum and the mean variations of the permeability in two consecutive iterations
are below a suitable threshold, respectively equal to 1% and 0.1%. The acceleration due to the
Anderson scheme is visible in the convergence diagram of the first test case shown in Figure
4.25. The natural implementation of the Anderson technique in the HBFEM code consists in
the acceleration of the magnetic vector potential. This can be done only on the nodes of the
nonlinear domain to reduce the size of the matrices that arise from the QR factorization. The
optimal size of the basis used for Anderson scheme results m = 25 and m = 20 for the first and
the second test case respectively. Table 4.5 summarizes the results obtained with the various
techniques. The use of the Anderson scheme allows a very significant decrease of the iterations
required to determine the solution in all cases.
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Figure 4.23: Convergence diagram FEM/BEM method of two different time steps. The basis size is
set to m = 20.
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Figure 4.25: Convergence diagram of the HBFEM method for the first test case. The basis size is set
to m = 25.

4.3.7 FEM/BEM case with hysteresis

The FEM/BEM approach introduced in Sec. 4.3.4 has been equipped with the simplified hys-
teresis model adopted in [118]. The magnetic field H at each step is calculated as:

H(B, Ḃ, pk) = (p0 + p1|B|2p2) ·B + p3Ḃ +
p4Ḃ√
p25 + |Ḃ|2

(4.65)

where the dot indicates the time derivative. The parameters p0 − p5 are the material constants
that have been found through an identification procedure. Eq. (4.65) will also be adopted for
the case of laminated sheets in magnetic gears in Sec. 4.4.

The benchmark geometry is the one of TEAM problem 32 [90], which is normally adopted to
test vector hysteresis models. The hysteresis model accuracy depends on the fit of the material
coefficients in (4.65) and is beyond the scope of the thesis. The relevant information concerns the
performance of Anderson acceleration given a certain hysteresis model that normally requires
the FP method to converge.

Fig. 4.26 shows the hysteresis cycle in the point C6 for the case 2 defined in [90]. The model
is therefore capable to catch nontrivial examples with minor loops as described in [118]. The
iterations required for the hysteresis problem are reported in Tab. 4.6. If the number of iterations
it is greater than 1000, the time step is considered as not converged. The restart approach is
proven to be fundamental to avoid over-iterations steps, and the strategy that results in the best
performance is to restart the acceleration every m steps, in accordance with [115].

4.4 Hysteresis in soft magnetic materials

The magnetic field components interactions play a crucial role in magnetic gear behavior. As
discussed in Sec. 2.3, a variety of approaches in literature discuss both analytic and numerical
models for magnetic field computation in the gears. To achieve a higher accuracy, the detailed
magnetic gear design should be finite element-based. In particular, iron poles require an accurate
model to assess losses and torque. However, the problem results numerically challenging because
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Figure 4.26: TEAM 32 case 2: hysteresis loop in point C6. The plot shows the By-Hy loop.

Method Base Restart Iter. Not conv. Reduction
(it > 1000) to

FP No No 17838 61
FP+AA m = 30 No 4968 13 28%
FP+AA m = 30 50 4631 0 26%
FP+AA m = 30 30 2716 0 15%

Table 4.6: Comparison between Anderson accelerations (AA) with different settings. The test case is
the TEAM 32, case 2, and the convergence criterion is tolerance τ < 1e− 5.
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of the rotational nature of the magnetic flux density and the nonlinear hysteretic behavior in
the ferromagnetic poles.

Li et al. in [119] discuss the role of hysteresis on the torque waveforms of a permanent
magnet machine, while in [120] the intrinsic dependence between eddy currents and hysteresis
is highlighted: hysteresis should be included for accurate machine modelling.

This Section deals with the hysteresis effect on a coaxial magnetic gear using the homoge-
nized model already introduced in 4.3.7 for the Anderson acceleration test case. A simple post
processing implementation based on the non-hysteretic FEM results (referred as open loop) is
discussed and compared to a direct implementation (referred as closed loop implementation).

4.4.1 FEM implementation

To overcome convergence problems of the simulation due to magnetic material models, a differ-
ential reluctivity tensor can be applied to solve the finite element formulation of the magnetic
vector potential [118].

Using the 2D A formulation, the magnetic flux density B is defined as B = ∇×A and the
magnetic vector potential A = (0, 0, Az) is discretized through linear piece-wise functions:

Az(x, y, t) =

Ne∑
j=1

αj(t)βj(x, y) (4.66)

where Ne is the number of nodes, αj(t) is the nodal value of the vector potential z component,
βj(x, y) is the shape function. The vector associated to the shape function is ωj = (0, 0, βj)
since in the 2D formulation only the z component of the magnetic vector potential is not zero.

Assuming negligible eddy currents in the permanent magnets, the weighted residual approach
is applied on Ampere’s law, leading to the weak formulation:∫

Ω

H · ∇ × ωidΩ +

∮
∂τ

H× ωidτ =

∫
Ωs

Js · ωidΩs (4.67)

where Js is the source current in a subspace Ωs of the entire domain Ω. The closed integral on
the boundary is equal to zero due to homogeneous Neumann or Dirichlet boundary conditions.
To solve (4.67) in the time domain, a time-stepping technique is applied: this is due to the time
dependencies of the hysteretic materials. If A(tn) is a given state of the magnetic problem the
state at the next time instant tn+1 = tn + ∆t is calculated using iterative Newton-Raphson
(NR) method. For each NR iteration Ak = Ak−1 + ∆Ak the increment ∆Ak must be calculated.
Therefore Eq. (4.67) is linearized around Ak−1. This linearization is obtained deriving the
equation with respect to αj , which can be achieved through the differential reluctivity:

dH

dαj
=
dH

dB
· ∇ × ωj = νd∇× ωj (4.68)

Substituting (4.68) in (4.67), Ampere’s law becomes:

Ne∑
j=1

∆αk
j

∫
Ω

(νd · ∇ × ωj) · (∇× ωi)dΩ =

=

∫
Ωs

J(tn+1) · ωidΩ −
∫
Ωs

Hk−1 · ∇ωidΩ

(4.69)

In the discrete time-stepping scheme the differential reluctivity can be expressed as νd = ∆H
∆B =

∆H·∆B
∆B·∆H with ∆H = Hk+1(tn+1) −H(tn) and ∆B = Bk+1(tn+1) −B(tn).

In all elements where hysteresis is considered, the homogenized parametric algebraic model
(PAM) described in [121] is adopted to include eddy currents and hysteresis:

H(B, Ḃ, pk) = (p0 + p1|B|2p2) ·B + p3Ḃ +
p4Ḃ√
p25 + |Ḃ|2

(4.70)



Chapter 4. Magnetic modelling 59

p0 p1 p2 p3 p4 p5 Bs

95.9 0.29 11.4 0.041 28.6 8.03 1.67 T

Table 4.7: List of parameters for the PAM model retrieved by [121].

ωinner

ωouter

R0 R1 R2 R3 R4 R5 R6 R7

Yoke

Yoke

Inner rotor:
Pi pole pairs

Iron pole: PAM
hysteretic model

Outer rotor:
Po pole pairs

P1

P2

P3

Parameter Value
R0 0.02 m
R1 0.04 m
R2 0.05 m
R3 0.052 m
R4 0.062 m
R5 0.064 m
R6 0.074 m
R7 0.094 m

Axial length 0.1 m
Inner poles Pi 4
Outer poles Po 7

Iron poles q 11
Gear ratio 1.75

1
Figure 4.27: Magnetic gear test geometry and query points P1, P2, P3.

Ḃ is the time derivative of the magnetic flux density and the parameters p0 − p5 are material
constants that have been found through the identification procedure in [121]. In particular, the
parameters p0, p1 and p2 are related to the anhysteretic magnetization curve, p3 is related to
eddy currents in the laminated sheets, p4 and p5 are linked to the hysteresis phenomena. Since
the term B2·p2 is not asymptotic, Eq. (4.70) has been applied below the saturation flux density
|B| = Bs, while above saturation the BH curve is assumed to be linear with a slope equal to
the vacuum permeability µ0. Bs is computed as:

Bs =
2p2

√
1
µ0

− p0

p1 · (2p2 + 1)
(4.71)

Since the waveforms in the magnetic gear are sinusoidal in first approximation, the set of pa-
rameters chosen from [121] is the one reported in Tab. 4.7.

Eq. (4.69) is computed elementwise for the hysteretic regions providingHk
elem = f(Bk

elem(tn+1),
Belem(tn)) which is subsequently substituted in the differential reluctivity expression. In the
proposed strategy, (4.69) is directly implemented in the FEM model, constituting a closed loop
integration of the PAM material model in the FEM algorithm. The open loop implementation
consists of the simple implementation of (4.70) as post processing, while the nonlinear BH curve
adopted for the FEM simulation is the one extracted by the anhysteretic part in (4.70).

4.4.2 Magnetic gear test case

Fig. 4.27 shows the test case geometry (1/4th of the entire model) and dimensions. The iron
poles are modelled using the hysteresis model, while for the yoke area the classical nonlinear
BH curve is adopted. The rotational speed of the inner rotor is set to vin = 955 rpm and
to vin = 3180 rpm, thus the outer rotor speed is vout = 545.7 rpm and vout = 1817 rpm
respectively. The magnets use a linear model with magnetic remanence Br = 1.2 T on both
inner and outer rotors and unitary relative permeability. As test case geometry, a magnetic
transmission gear with low fractional gear ratio and a high number of inner pole pairs (Pi = 4)
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is adopted, hence the lowest order of harmonics of the cogging torque on the inner and outer
rotor are h1 = 154 and h2 = 286 respectively according to [85]. These harmonics are due to the
combined interaction between permanent magnets magneto-motive force and reluctances due to
iron poles. In this Section, the open and closed loop application of Eq. (4.70) are compared:
the resulting loss magnitude’s order is validated through the dynamic version of the typical loss
separation method applied for the steel M330-35HS with density δ = 7650 kg/m3:

PSt = khystfB
α + keddy

(dB
dt

)2
+ kexc

(dB
dt

)1.5
(4.72)

where f is the frequency and the material parameters calculated through the fitting are: khyst =
0.0194 Wm−3T−αs, keddy = 6.78 · 10−5 Wm−3T−2s2, keddy = 8.77 · 10−6 Wm−3T−1.5s1.5,
α = 2. Eq. (4.72), referred as Bertotti’s equation, is only used to compare the results of the
PAM model with the most diffused semi-empirical method for loss calculation, but could lead
to wrong estimations when applied to rotational loci or with frequencies f > 400 Hz according
to [122]. The validity of (4.70) has been extensively discussed in [121].

4.4.3 Model results

Fig. 4.28 shows the x and y components of the magnetic flux density in the points P1, P2
and P3 depicted in Fig. 4.27. Since the differences between the waveforms with hysteresis and
without hysteresis are hardly distinguishable, two different zooms have been depicted in Figs.
4.29 and 4.30. In particular Fig. 4.30 shows the multiple inflection points of By computed in
P1; multiple minor loops are therefore expected in the ByHy plane when the the flux density is
maximum.

Fig. 4.31 shows the rotational flux loci computed at the points P1, P2, P3 again in both
cases with and without hysteresis.

Fig. 4.32 shows the Bx versus Hy waveform at P1. Similar results are obtained for P2 and
P3. Thus in this Section only the results relative to P1 has been reported.

Fig. 4.33 shows the results for the y component of P1.
Fig. 4.34 shows the torques developed on inner and outer rotors and on the iron poles when

the gear load angle is maximum.

4.4.4 Discussion and remarks

As depicted in Fig. 4.28, the field waveforms are composed of the fundamental harmonic with
some additional higher order harmonics, due to the interaction between inner and outer magneto
motive forces.

The implementation of the PAM model rather than its anhysteretic part during the FEM
calculation affects only slightly the magnetic flux density (Fig. 4.29). This small difference
justifies the application of hysteresis models as post processing (or in open loop), in an effort to
combine the accuracy of the hysteresis models with the efficiency of the nonlinear FEM [123].

The flux loci in Fig. 4.31 are strongly rotational in all the nodes of the iron poles and the
influence of the closed loop implementation is clearly visible.

The analysis of Figs. 4.32 and 4.33 is the key point in this Section that allows us to compare
the open loop and closed loop implementation of the hysteresis models. In the case without
hysteresis the component wise BH characteristics enclose an area in the first quadrant that is
opposite to the one on the third quadrant: this is due to the fact that the nonlinear BH curve
is applied at the absolute values of B and H, thus when looking at the x components the y
components effects are implicitly included. In the cases with hysteresis the difference between
open and closed loop has a remarkable impact on the BH loops: in particular with the closed
chain the loop area is bigger than the other case. Some minor loops are also visible, as expected
from Fig. 4.29 and 4.30 where Bx and By have an inflection point: minor loops have been
observed in both implementations.

The same consideration of Fig. 4.32 applies with the exception of the minor loops that appear
at high flux densities again due to the inflection points visible in Fig. 4.28.
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Figure 4.28: Magnetic flux density waveforms
evaluated in the points P1, P2 and P3 of Fig.
4.27. The results for both nonlinear BH curve
without and with hysteresis are reported at inner

rotational speed vin = 955 rpm.
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Figure 4.29: Zoom of Fig. 4.28. The difference
between the magnetic flux density waveforms is
only due to the closed loop implementation of the
PAM model. A small inflection point on the Bx

component on the point P1 is depicted.
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Figure 4.30: Zoom of Fig. 4.28. Multiple in-
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Figure 4.34: Computed torques on the inner, outer and iron poles rotor when the magnetic gear is at
his maximum load capability. The torque ripple is lower than 0.5% because of the high number of pole
pairs. The difference due to the hysteresis model is negligible on the torque waveforms in this case. The

torque ripple harmonics are in accordance with the predictions in [85].

According to Fig. 4.34, the torque ripple is lower than ∆R = 0.5% for all the rotors because
of the high number of pole pairs of the test case geometry. The shift due to the different model
adopted is of the order of ∆T = 0.07%. The shift is directly linked to the power losses obtained
in the iron poles when using the closed loop hysteresis implementation. In order to estimate the
power loss, the areas of the BH loops have to be calculated:

Ploss = Px + Py = f

∮
HxdBx + f

∮
HydBy (4.73)

In order to improve the integral calculation, the H components are interpolated through piece-
wise cubic Hermite polynomial functions and then the integration is performed. This procedure
allows us to estimate area of arbitrary loops accurately when the number of data points is re-
duced or crowded in certain regions of the BH space. The minor loop calculation is automatically
included.

In Tab. 4.8 the results relative to two different gear speeds are reported. Eq. (4.73) is used
using the magnetic field H calculated from FEM in the first column of Tab. 4.8 or through
(4.70) using the magnetic flux density B from FEM in the second column. In the case of open
loop, Ploss is zero since both the integrals are zero. When adopting the closed loop hysteresis,
the post processing calculation of H is performed through the same law adopted in the finite
element implementation, thus the calculation will yield the same results: as expected in the
open loop case direct integration gives approximatively zero (*) and in the closed loop hysteresis
model direct integration and post processing calculation are in agreement (∧ and ∧∧). The
most interesting comparison is the one between the losses computed through the open loop and
closed loop application of the PAM equation (** and ∧). In Tab. 4.8 the losses computed
through closed loop are respectively 60% and 50% higher than the ones computed with open
loop approximation. This implies that applying the PAM equation as post processing calculation
could lead to very misleading results, even if the magnetic flux density B variation due to the
closed loop implementation is limited.

The losses computed through (4.72) and (4.73) are in agreement, thus the procedure based
on the PAM model provides physically meaningful results and the material coefficients p0 − p5
are reliable. In the high speed case, the losses computed through Bertotti’s equation are 20%
lower than the closed loop implementation while in the low speed case the discrepancy is less
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W
∫
HdB

∫
HpdB Physt Peddy Pexc PSt

No hyst −0.01∗ 3.12∗∗ 3.33 1.66 0.16 5.15
Hyst 4.91∧ 4.95∧∧ 3.31 1.65 0.16 5.12

No hyst −0.03∗ 24.29∗∗ 11.1 18.41 0.99 30.5
Hyst 36.2∧ 36.3∧∧ 11.01 18.1 0.98 30.1

Table 4.8: Comparison between closed and open loop loss calculation. Hp stands for the post processing
magnetic field while H is the one adopted in the finite element model. No hyst means that only the
anysterecic part of the material model is implemented in FEM, while Hyst means that the FEM material

model is the one in (4.70) with both hysteretic and anhysteretic parts.

noticeable. The mismatch occurs since the loss separation method is a simple procedure normally
introduced in the linear material case [122]. Several modifications to the standard equation have
been introduced in order to adapt the loss model to the more general cases such as waveforms
with minor loops, DC biases and non linearities as shown in [124, 125]. In the magnetic gear
case, where the B loci are rotational and minor loops are present, (4.72) provide a poor estimate
of losses. The theoretical rigorous approach for loss computation is the one in (4.73), where B
and H take into account hysteresis, eddy currents and material non linearities. Assuming that
the material coefficients p0 − p5 are exactly fitted for the case under investigation, (4.73) should
provide a better loss estimation than (4.72).

The discussion presented in this Section is based on the magnetic gear test case but the results
can be extended to the general case: in fact the BH curves only affect the material coefficients
p0 − p5 while all the other comparisons between the open and closed loop implementations still
hold.

4.5 Hysteresis and modelling of hard magnetic materials

Soft non-linear BH characteristic are normally implemented in FEM (e.g. Sec. 4.2), where lin-
early or quadratically converging schemes, such as the fixed point and Newton-Raphson methods,
deal with the non-linearity iteratively. Several models [126, 127, 128] capable of taking into ac-
count permanent demagnetization phenomena have been proposed in literature, where classical
hysteresis models are normally adapted for hard magnetic materials. In permanent magnets
(PM) machines (except flux switching machines) the hard magnetic material are not subject
to full hysteresis cycles, therefore a material class based on the measurement and interpolation
would be preferable to a complex and approximated hysteresis model. Moreover, the initial
condition imposed for the PM is a uniform magnetic flux density equal to the remanence, or
dually a uniform coercive field. This condition would be the actual one if the magnetic field
in all the points of the PM exceeds the magnetizing field above which the BH curves collapse
to a single curve. For NdFeB hard materials this implies that the magnetic flux density has to
reach high values (e.g. up to 3 T), leading to expensive capacitor banks. A trade-off could be
to design a smaller capacitor bank, but the magnetization level at the end of the pulse is not
uniform. Eddy currents are also to be considered in the magnetization procedure: the rapid field
variation could even lead to reversed magnetization near the PM surface areas [93].

Several PM non-linear models have been proposed in literature, mainly to model the demag-
netization in electrical machines. In [129] a dynamic PM model is adopted: the algorithm has
the capability to switch between the second quadrant nonlinear BH curve and the linear recoil
lines, but this model can only be adopted starting from premagnetized magnets.

In [130] magnets are magnetized in situ through simulations based on polynomial fitting of the
demagnetization curves, but the procedure is limited to the case of isotropic magnets that obey
such quadratic fit. [131] and [132] focus on isotropic ferrite magnets, through the knowledge of
the remanence vs magnetizing field curve and permeability vs magnetic field, respectively. These
models do not cover the case of recoil, anisotropic PMs or permanent demagnetization due to
overload currents.

In [133] several demagnetization models are compared ranging from linear to the full hys-
teretic approaches. The well known full hysteresis models such as the Preisach [134, 135] one or
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the Zirka one [136] are accurate but these algorithms can suffer from convergence issues and the
tuning for hard magnetic materials can be non trivial [133].

In this Section a non-linear model capable of representing the PM during magnetization,
demagnetization and recoil is presented. The model is based on pure PM non-linear curves
interpolation while the recoils are considered as linear.

The proposed procedure can be adopted to assess, with a certain degree of approximation,
the non-uniform fields in permanent magnets when little knowledge of the PMs is available, i.e.
the virgin curve and some demagnetization curves.

The implementation of the model as an external material class within the framework of an
existing finite element code (Comsol Multiphysics [94]) is described in Sec. 4.5.2 and the code
is tested on the magnetization of a magnetic gear outer rotor with Po = 36 poles which is
equivalent to the rotor of a classical PM machine.

4.5.1 Nonlinear formulation

Finite element formulation

Permanent magnets are normally represented through a linear equation between the magnetic
flux density B and the magnetic field H:

B = µ0 ·H + P = µ0 · (H + M) (4.74)

where µ0 is the vacuum permeability, P is the polarization and M is the magnetization. When
adopting a formulation based on the magnetic vector potential A, B is the output of the simu-
lation and the material model is used to find the magnetic field H:

H = B · ν0 −M (4.75)

with ν0 = 1/µ0. Maxwell’s equations in 3D adopting the AV formulation with the nonlinear
magnetization term reads:{

σ ∂A
∂t + ∇× ν∇×A + σ∇V = J + ∇×M(A)

∇ · σ(∂A
∂t + ∇V ) = 0

(4.76)

where J is the source current density, V is the scalar potential, σ is the conductivity and ν is
the reluctivity.

The PM scheme adopted in this Section can be applied for general 3D geometries. Since
the test cases that have been chosen for validation are axisymmetric and 2D, the finite element
formulation that will be shown is the two dimensional one, but the material class is implemented
for the 3D case. In the 2D case (4.76) reads:

σ
∂Az

∂t
−∇ · ν∇Az = Jz + ∇2D ×M(Az) (4.77)

where Jz is the z component of the source current and ∇2D ×M(Az) = ∂yMx(Az)− ∂xMy(Az)
is the 2D curl which can be expressed as a gradient. The finite element weak form of (4.77),
without the boundary terms related to Dirichlet and Neumann conditions, reads:∫

Ω

σ
∂Az

∂t
ωdΩ −

∫
Ω

(∇ω)T · ν · ∇AzdΩ −
∫
Ω

Jz · ωdΩ =

=

∫
ΩPM

∇2D ×M(Az) · ωdΩ =

=

∫
ΩPM

M(Az) · ∇2D × ωDΩ −
∫
ΓPM

(0, 0, ω) ×M(Az) · ndγ

(4.78)

where ω is the shape function ΓPM is the PM boundary, Ω is the 2D domain and ΩPM is the
PM domain only. The inclusion of the PM non-linearities can be obtained in two different ways,
referred as Method 1 and Method 2 in the following Sections.
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Figure 4.35: Easy axis BH characteristic of a permanent magnet: the blue curve is the virgin curve,
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c relative to the working point (Hk, Bk) are shown.

Method 1

According to this method, a linearization of the magnetization term M(Az) is adopted, leading
to [137, 138]:

M(A + ∆A) = M(A) +
∂(ν0B−H)

∂B

∂B

∂A
∆A =

= M(A) +
(
1ν0 − νd

)
· ∇ × ∆A

(4.79)

where νd is the differential reluctivity tensor that has to be updated at each nonlienar step.

Method 2

In this method the PM non-linearity is included in the reluctivity tensor and therefore the
material law has to be linearised [139]. If the linearization of the problem is performed in each
material point (Hk,Bk), the equation using B rather than ∆B is [140]:⎧⎪⎨⎪⎩

H(B) = Hk
c + ν

k
dB

Hk
c = Hk

c · Bk

|Bk|
νkd(i,j) = ∆Hi

∆Bj
|k i, j = 1 . . . 3

(4.80)

The index k refers to the kth nonlinear step. The application of (4.80) for the PM case is shown
in Fig. 4.35. Substituting (4.80) in Ampere’s law, the first Eq. in (4.76) becomes:

σ
∂A(k+1)

∂t
+ ∇× ν

k
d∇×A(k+1) = J−∇×Hk

c (4.81)

The differential reluctivity tensor ν
k
d needs special care bacause its components should be mono-

tone to achieve convergence. Since the data relative to the magnetization M is normally the
result of measurement fitting, the monotonicity has to be enforced [137].

Time dependent problem

The Differential Algebraic Equation (DAE) system that results from the FEM discretization is:

R∗(t) = [M ]
∂A(t)

∂t
+ [K(A(t))]A(t) − g(t) = 0 (4.82)

where the mass matrix [M ] is semi-positive definite and [K] depends on the solution A, R∗ is
the theoretical residual at exact convergence. The stiffness matrix [K] and the source term g



66 Chapter 4. Magnetic modelling

change according to the method adopted for including the non-linearities. The linearisation of
the residual through the Jacobian [J ] gives the iterative Newton-Raphson scheme:

A(t+ 1) = A(t) + α[J ]−1 ·R(t) (4.83)

In this section the formulation with the differential reluctivity is adopted (Method 2, Sec. 4.5.1),
thus the material model is in the form H = f(B) according to (4.75) and the matrices in (4.82)
are computed as in [140]. The magnetization is denoted as M = M · e⃗z where e⃗z is the PM easy
direction.

PM measurements

From the measurements on the PM probe with different magnetic flux densities b0, b1 . . . bn and
different maximum magnetizing fields h0, h1 . . . hn, the rectangular matrix Mmeas can be built:

Mmeas =

⎡⎢⎣Mh0,b0 Mh0,b1 . . .
...

. . .

Mhk,b0 . . . Mhk,bn

⎤⎥⎦ (4.84)

Adopting a regular grid of measurements (h, b), there is no need for 2D interpolation schemes
based on Delaunay triangulation. If h∗ and b∗ are the nodal maximum magnetizing field during
virgin magnetization and the magnetic flux density, the matrix Mmeas can be easily reduced to
the 2 × 2 sub-matrix Mpoint for each node.

Mpoint =

[
Mhi,bj Mhi,bj+1

Mhi+1,bj Mhi+1,bj+1

]
(4.85)

Linear interpolation indices can be computed as follows:

kh =
h∗ − hi
hi+1 − hi

kb =
b∗ − bj
bj+1 − bj

(4.86)

and thus the nodal value of the magnetization M is found through the 2D linear interpolation.
When recoil lines have to be implemented, a different approach has to be adopted. The usual
relation for linear recoil lines in the hypothesis of constant magnetic susceptibility χ is:

Mrec = χ · ∆H +M0 =
χ

1 + χ
· (B −B0)ν0 +M0 (4.87)

where M0 and B0 are the magnetization and magnetic flux density stored when the recoil starts.
During recoil the vector Mrec(bj , bj+1 . . . bn) ∀bj ≥ B0 substitutes the values interpolated over
the magnetizing field from (4.84).

For the numerical calculation of the reluctivity tensor, the quantities ∆M and ∆B are com-
puted:

∆M = Mh∗,bj+1
−Mh∗,bj ∆B = bj+1 − bj (4.88)

and the incremental reluctivity becomes:

νd =

⎛⎝ν0 − ∆M
∆B 0 0

0 ν0 0
0 0 ν0

⎞⎠ (4.89)

PM algorithm

The material algorithm scheme is depicted in Fig. 4.36. The magnet easy axis is the vector
e⃗m, and along the hard axis the magnetic field is supposed to grow linearly as H⊥ = ν · B⊥.
According to Fig. 4.35, the blue path indicates the virgin magnetization, the red path indicates
the PM demagnetization and the green path indicates the recoil line. The variable ind keeps
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memory of the previous PM state: ind = 0 is associated to the virgin state, ind = 1 when the PM
is demagnetized the first time and ind = 2 when the magnet recoils. The variable ind switches
its state when the time derivative of flux the density along the magnetization axis changes
sign. The last state is the recoil one where the magnet normally remains trapped. However, in
principle both further demagnetization or a re-magnetization are possible. In the former case a
new working point will be reached on a parallel but lower recoil line, while in the latter case,
typical of multi-step magnetization procedures (see test case 4.5.4) a different scenario occurs.
The block Remag. Check accounts for this case and allows to switch from the recoil line (green
line in Fig.4.35) to the re-magnetization curve, referred as Reversal approx. in Fig. 4.35. In
this Section the measurements of the first reversal curves are assumed not be available, thus the
re-magnetization curve is approximated with a linear recoil line until the intersection with the
virgin curve (green curve Fig. 4.35) and with the virgin curve itself as the magnetic filed further
increases (dashed magenta curve in Fig. 4.35). This approximation is adopted only in the test
cases where the PM magnetization is obtained through multiple steps, e.g. Sec. 4.5.4, while
usually the PM works along the recoil line only. If minor-loop measurements are available they
can be used within this material model instead of the proposed simplified approach, however
when the main focus of the simulation are the minor loops, full hysteresis models should be
preferred because of their higher accuracy.

When the time derivatives ∆B∗

∆t have to be computed at the ith time step, the last nonlinear
step flux density B and the last converged solution from the previous time step Bconv are
considered in order to avoid wrong detections due to the Newton-Raphson iterative scheme.

The time derivative is therefore approximated as ∆B∗

∆t = B−Bconv

∆t · e⃗m =
B∗−B∗

conv

∆t , where ∆t is
the time step and the ∗ apex denotes the vector projections along the PM easy direction.

The model outputs are the new magnetic field Hn and the differential reluctivity νd. After
each nonlinear step k at time i, the convergence of the scheme is checked through a residual norm
estimation; if the check fails the algorithm proceeds with the subsequent nonlinear iteration k+1,
otherwise the time step counter is incremented.

It is worth noting that the proposed PM non-linear scheme can be adopted for arbitrary
permanent magnets, once measurements of demagnetization curves are available and the PM
saturation and anisotropy model are known.

4.5.2 Comsol implementation and results

In order to demonstrate the applicability of the proposed approach within the framework of ex-
isting FEM codes, the model depicted in Fig. 4.36 has been implemented in Comsol Multiphysics
through an external material class written in C. This ensures a fast compiled function that does
not create bottlenecks during the simulation. Several state variables have been introduced for
the communication between the finite element solver and the external material class, as visible in
Tab. 4.9). The state variables are domain variables computed and stored in each finite element
belonging to a PM, while the parameters are global immutable variables. Concerning the solver

Table 4.9: List of state variables and parameters.

Variable Symbol Description
1 Bconv Flux density of previous time step
2 B Current iteration flux density
3 H Current iteration magnetic field
4 νd Computed differential reluctivity
5 H∗

max Max. magnetic field in magn. direction
6 ∆t Time step
7 M0 Saved recoil magnetization
8 B0 Saved recoil flux density
9 Hn New iteration mag. field

Param. Symbol Description
1 e⃗m PM Easy direction axis
2 χ Recoil slope of MH curve
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Figure 4.37: Magnetization against magnetic flux density for different magnetizing fields Hm. The
data are retrieved from [141]: the soft magnetic behaviour is visible especially for high magnetizing field

strength.

settings, in order to ensure stability, linear shape functions have been adopted and the tolerance
on the norm of the residual has been fixed to toll = 1e− 5. The time dependent problem have
been solved adopting the backward Euler formula with order five and self-adjusted time step.

Fig. 4.37 shows the magnetization curves as a function of the magnetic flux density for
different magnetizing fields. The data has been fitted from [141] for a NdFeB magnet with grade
N38, remanence Br = 1.25 T, maximum energy BH = 310 kJ/m3, resistivity ρ = 1.44 µΩm.
The relative permeability during recoil is assumed to be constant and equal to µ = 1.05 · µ0.

4.5.3 Temperature dependence

Since the proposed material class is based on measurement interpolation, the temperature can
be easily added as additional variable. In this case the measurement matrix Mmeas is a 3D
matrix:

Mmeas =

Mh0,b0,T1 ... Mh0,bn,T1

Mhk,b0,T1 ... Mhk,bn,T1
Mh0,b0,T2 ... Mh0,bn,T2

Mhk,b0,T2 ... Mhk,bn,T2
Mh0,b0,T3 ... Mh0,bn,T3

Mhk,b0,T3 ... Mhk,bn,T3

Adapting the scheme in Fig. 4.36, the recoil procedure can be triggered when permanent de-
magnetization has occurred because of the temperature. The dependence of the PM properties
with the temperature can have an important role during the simulation of electrical machines,
but the studies are assumed to be temperature independent because of the time scale of the
current pulse.

4.5.4 Model validation

In this Chapter two experimental validations of the proposed method are reported: the former
refers to a two-step magnetization of an electrical machine rotor through a fractional slot stator,
while the latter refers to the magnetization of an axis-symmetric PM through a conventional
winding. Both test cases show that the simulation results are in agreement with the experimental
data.
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Two-step post assembly magnetization

[142] describes a two-step magnetization procedure of rare-earth PMs through a fractional slot
stator and reports the post-assembly magnetization measurements after extracting the magnets
from the machine. In order to model the procedure and ensuing measurements, the PM demag-
netization curves, geometries and current values have been retrieved from [142]. In Fig. 4.38,
the magnetic flux density at the first current peak with amplitude Imax = 1334 A is shown: the
ferromagnetic material of the stator is fully saturated and the magnets are not equally magne-
tized as expected, i.e. the one on the right has a much stronger magnetization. The flux density
peak reaches the value Bp = 5.76 T, which is normal in the soft iron parts during the pulse
magnetization of rare-earth PMs. The nonlinear iron adopted is a standard one with initial
relative permeability µr = 1200 and saturation Bs = 2.1 T.

Fig. 4.39 shows the comparison between the measurements and the simulation of the magnetic
flux density along the line reported in [142] after the second magnetization step and extraction
from the machine at two different current peak values. The computed results match the mea-
surements reasonably well, even if some discrepancies, in the order of 15% on average, can be
observed. These are due to, among others, the limited knowledge on the ferromagnetic material
of the stator, on the full PM hysteresis loop cycles and on the feeding current profile. Since the
curves in [142] are only given for the virgin magnetization and for the demagnetization (first
and second quadrants in the BH plane), the re-magnetization curve has been supposed to be
the virgin curve (see 4.5.1). This latter approximation is mainly responsible for the mismatch
of Fig. 4.39. It is worth noting that according to both measurements and simulations the flux
density is asymmetric.

Axisymmetric PM magnetizer

The geometry proposed in [141] is adopted here as an example of magnetization, demagnetization
and recoil phenomena for a NdFeB permanent magnet. The results of the proposed material
model have been compared with the measurements in [93] showing good agreement. Fig. 4.40
shows the geometry retrieved from [141]: the model is axis-symmetric and the coil consist of N =
440 turns. Fig. 4.42 shows the comparison, already shown in [93], between the measurements and
the simulation results for two points Q1 and Q2 close to the surface of the PM, on the edge and on
the axis, respectively. The measurements and the simulations have been run changing the feeding
voltage. The results match even if some discrepancies can be observed, especially in the centre
of the permanent magnet. In this benchmark the causes for the discrepancies are the missing
information of the demagnetization curves in the first quadrant and the missing information
of the exact z coordinates of Q1 and Q2 which are not specified in [141]. Furthermore, in
[141] a mismatch of 12% in the peak flux density was observed between measurements and FEM
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simulations and the source of the discrepancy was attributed to be the Hall sensor fluxmeter.
An additional mismatch of 10% was found between the simulated and measured current values
because of the accuracy of parameters in the lumped model. Because of these reasons, and since
the flux density in the centre is more challenging to be computed because the eddy current effects
and self-demagnetization are severe on the magnet axis, the simulation in Fig. 4.42 provides a
qualitative validation which is fully acceptable.

In the benchmark of Figs. 4.43 and 4.44, which differs from the one presented in [93], an
initial positive magnetization pulse is followed by two smaller negative pulses, as shown in Fig.
4.43. Since the second negative current peak is greater than the first, two distinct recoil lines
are expected.

Fig. 4.44 shows the BH characteristics for the points P1 and P2 depicted in Fig. 4.40. The
point P1 is close to the magnetizing winding therefore the magnetic flux density reached during
the magnetization is Bm = 2.7 T while the maximum field reached in P2 is Bm = 2.3 T. This
non-uniform distribution leads to different magnetization levels inside the PM domain and the
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density at point Q2 on the PM axis and at point Q1 on the PM edge. For further details, the reader is
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based on the dimensions a,b and h.

regions near the magnet axis are subject to lower magnetization. This is clear in the second
quadrant when the negative current pulses occur: the recoil lines of the point P1 are almost
coincident with the demagnetization line itself, but in the point P2 the demagnetization due to
the negative current pulses is more visible. The load lines at the end of the simulation are also
depicted in Fig. 4.44: since the PM is wide, the central points tends to be demagnetized by the
outer regions.

4.5.5 Magnetic gear test case

This example refers to a device, a magnetic gear, characterized by a fairly complex geometry.
In such devices the easiest way to reduce the losses consists in magnet segmentation similarly to
the approach of laminating ferromagnetic parts . Fig. 4.45 shows the example of a solid magnet
and of a segmented one. The segmentations are circumferential and axial since the cuts have to
be tangential to the magnetic flux density.

Considering the geometry depicted in Fig. 4.45 where b > a, from Maxwell’s laws:∫
l

E · tdl = − ∂

∂t

∫
S

B · undS (4.90)



Chapter 4. Magnetic modelling 73

where E is the induced electric field and B is the magnetic flux density. Adopting the hypothesis
of constant B on the magnet surface, the electric field integral becomes [143]:

U =

∫
l

E · tdl = −∂B
∂t

· a · b (4.91)

The resistance considering the hypothesis of negligible skin depth effect and assuming an even
current distribution can be calculated as:

R = ρ
length

Section
= ρ ·

(
a
bh
2

+
b
ah
2

)
=
ρ

h
·
(2a

b
+

2b

a

)
(4.92)

The power loss can be calculated as:

P =
U2

R
=
(∂B
∂t

)2 a2b2h

ρ
(

2a
b + 2b

a

) =
(∂B
∂t

)2 a3b3h

2ρ · (a2 + b2)
(4.93)

From (4.93) the power losses are linearly proportional to the magnets thickness h. This means
that magnet segmentations normal to the magnetic flux density do not affect the losses. Since
the commercial magnet shapes have limited geometrical ratios, the magnet can be cut along the
circumferential direction without increasing the losses.

The result obtained in (4.93) is a simple relation that considers the current flowing into
a rectangular loop with size 1

2 of the magnet edges. If different current paths are considered
the power loss changes; the key factors are the dependencies between the power loss and the
geometrical parameters, which remain unaltered.

In the case of axial segmentation the power loss is:

Paxial = naxial ·
(∂B
∂t

)2
· a3b3h

2ρ · n3axial · (a2 + b2

n2
axial

)

=
(∂B
∂t

)2
· a3b3h

2ρ · (n2axial · a2 + b2)

(4.94)

where naxial is the number of axial segments. From (4.94) the axial segmentation produces
negligible effects if the magnets have a rather elongated shape, while when n2axial · a2 ≃ b2 the
axial segmentation effects are more visible.

A similar formula can be found in case of circumferential segmentation:

Pcirc = ncirc ·
(∂B
∂t

)2
· a3b3h

2ρ · n3circ · (b2 + a2

n2
circ

)

=
(∂B
∂t

)2
· a3b3h

2ρ · (n2circ · b2 + a2)

(4.95)

where ncirc is the number of circumferential segments. From (4.95) the advantage given by this
kind of segmentation is clearly visible: n2circ · b2 > a according to the previous hypothesis and
therefore the power losses are proportional to 1

n2
circ

when n2circ · b2 >> a. The effectiveness of

(4.95) is proven in Sec. 4.8, where the equation is used to fit the PMs losses in 3D finite element
simulations.

Considering 2D simulations the circumferential and radial segmentation can be taken into
account but the axial segmentation requires a further modification. Since the power loss is related
to ρ, an artificial magnet resistivity ρ′ can be used in order to consider the axial segmentation:

ρ′ = ρ · n
2
axial · a2 + b2

a2 + b2
(4.96)

The limitations of the magnets segmentation are discussed in [144]: above a certain number of
segments the eddy currents increase and therefore an optimal magnet segmentation size exists.
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The main drawback related to segmentation is the mechanical assembly that is complicated
due to the small size of the magnets and the repelling forces acting between the segments. In
this case the benefit of the PMs a-posteriori magnetization is clear.

The test case geometry of a rotor magnetizer for high segmented poles is shown in Fig. 4.46:
only two segments are displayed but the number of segments can be arbitrary. A magnetizing
yoke made with the steel 35JN200 with saturation Bs = 1.73 T is adopted in order to limit the
feeding current.

Fig. 4.47 shows the magnetic flux density plot and the flux lines when the current pulse is
completed: the distribution is symmetric and the edges are subject to low flux density.

Fig. 4.48 shows the magnetic flux density at the current peak. Since the iron is saturated
the flux lines are distributed differently than Fig. 4.47; the higher magnetization is obtained
close to the magnetizer teeth, were the magnetic flux density is higher.

Fig. 4.49 shows the magnetization in the permanent magnets: the current with this magne-
tizier geometry is not sufficient to achieve a good level of magnetization especially in the regions
near to the outer edges. The design of the magnetizer can be optimized in order to maximize
the field obtained in the PM domains and minimizing the energy stored in the capacitor bank;
the variables of the search space are geometrical dimensions, materials and currents (capacitor
voltages).

4.5.6 Demagnetization in magnetic gears

The intrinsic coercive force Hci is a key parameter in order to evaluate limit working conditions
of the permanent magnets. Hci decays linearly with the temperature according to:

Hci|T = Hci|T0 · (1 + β∆T ) (4.97)

where β is the material temperature dependence parameter that can be considered to be constant
if the temperature ranges between 0 − 100◦C. The magnetic flux density expression is:

B = µ · µr ·H +Br · (1 + α∆T ) (4.98)

where Br is the residual magnetic flux density, α is a temperature decay parameter, µ and µr

represent the vacuum and permanent magnet permeability. Considering the permanent magnets
curves approximated as depicted in Fig. 4.50, the limit magnetic flux density Blim is:

Blim = µ0 · µr ·Hci · (1 + β∆T ) +Br · (1 + α∆T ) (4.99)
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and the maximum working temperature may be computed as:

Tmax = T0 +
Blim − µ0 · µr ·Hci −Br

β · µ0 · µr ·Hci + α ·Br
(4.100)

where T0 is the reference temperature according to the magnets datasheets. On the side of
caution, a will be considered nil since a and b are both negative and |α| < |β|. The maximum
temperature then becomes:

Tmax = T0 +
Blim − µ0 · µr ·Hci −Br

β · µ0 · µr ·Hci
(4.101)

In order to apply (4.101), Blim has to be computed: this value is calculated from the Fourier
coefficients of the magnetic vector potential Az in the permanent magnet regions. In particular
the radial magnetic flux density coincides with the magnet local working point in terms of BH
curve.

Therefore, as result of magneto-static simulations Blim is computed as function of the rotors
positions and applying Eq. (4.101) the maximum temperature working point Tmax can now
be calculated. In order to understand if the machine cooling is sufficient, a thermal model has
to be built in order to estimate the temperature Tsim reached in all the permanent magnet
regions. If Tsim > Tmax, the demagnetization constraint is not satisfied and either a permanent
magnet with an higher grade need to be used or a forced cooling through the machine has to be
impressed.

Fig. 4.51 shows the Blim plots on the magnet-air gap interface of the most stressed magnet
in the worst alignment condition between the inner and outer rotors and the iron poles. The
worst alignment is the one of Fig. 5.10 on the left. In this case Blim results 0.05 T and using
Eq. 4.101 the maximum temperature Tmax to avoid the permanent demagnetization can be
computed. Since its calculation has been performed in the worst alignment condition, Tmax is
the limit temperature for all the inner magnets to avoid demagnetization.

High energy rare-earth magnets are nowadays applied in many applications ranging from
electro-mechanical devices to sensors [141]. The virgin material magnetization requires the
application of magnetic fields up to several kA/m. To achieve sufficient fields in the magnetizing
coils currents in range of several hundred kA are produced by pulse magnetizers [145]. The
magnetization process is the key point for obtaining high performance magnets: non-uniform
patterns could lead to failures in the worst cases. It is therefore crucial to dispose of numerical
tools [146] and measuring devices [147] capable of correctly assessing the physical properties
of the permanent magnet subjected to a magnetization process. Some authors have adopted
the classical Preisach [148] or Jiles-Atherton [149] hysteresis model to predict the behaviour of
hard magnetic materials: these approaches generally works for fully (pre-)magnetized samples,
while the inter-dependency of the virgin magnetization process and the demagnetization is still
challenging. In this Section, a FEM-based simulation scheme that rely on interpolations of virgin-
field dependent demagnetization curves is proposed. This scheme is suitable for evaluating the
local magnetic flux density in all the points of the permanent magnet once the geometry and
the current pulses are known.

4.6 Losses in ferromagnetic materials

The advantage of the magnetic gear is the absence of mechanical contacts; this means that the
losses are limited only to the bearings losses, viscous losses due to the air friction and iron losses.
In order to assess the torque transfer in steady state conditions and dynamic operation, it is
extremely important to model all the loss contribution inmagnetic transmissions. The aspect of
magnetic losses evaluation is particularly difficult because the magnetic flux density locus has a
rotational shape in all of the iron regions. For the magnetic gear special case, previous papers
assesed power loss by measurements only [150, 151, 152] and in [153] only the losses due to eddy
currents are taken into account.

This Section provides some models that can be adopted for the loss calculation in magnetic
gears. In Sec. 4.6.1 the loss theoretical formulation is derived from Maxwell’s equations.
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Since the iron cores in magnetic gears are laminated, in order to apply (4.107) correctly the
sheet conductivity σ and the power loss expression should be modified as shown in Sec. 4.6.2.

Sec. 4.6.3 shows instead one of the classical empirically-based approach normally adopted for
the electrical machines case, where the flux loci exhibit traces less rotational than the magnetic
gear case.

In Sec. 4.6.4 an approach still based on the loss separation method is adopted, but its
formulation is tailored for general rotational loci.

4.6.1 Theoretical formulation

Losses in ferromagnetic materials such as nickel, iron and alloys can be derived using Maxwell’s
equations and Poynting’s theorem. {

∇×E(t) = −∂B(t)
∂t

∇×H(t) = J(t)
(4.102)

The energy that flows inside a volume can be calculated according to the Poynting’s theorem:

U =
1

2

∫
V

(E ·D + B ·H)dV (4.103)

∂U

∂t
= −

∫
∂V

(E×H)dS −
∫
V

E · JdV = −
∫
V

∇ · (E×H)dV (4.104)

where U is the energy and the term E · J can be neglected if there are no charges inside the
material (hypothesis of perfect conductor). Using the vector identity:

∇ · (A×B) = (∇×A) ·B−A · (∇×B) (4.105)

the energy per unit time which flows inside the material can be rewritten as:

−
∫
V

∇ · (E×H)dV =

∫
V

(
H(t)

∂B(t)

∂t
+ E(t) · J(t)

)
dV (4.106)

Considering a magnetic flux density variation dB(t)
∂t and if the material properties are isotropic,

the vectorial relation becomes a scalar one:

∂U

∂t
=

∫
V

(
H
dB

dt
+ ρJ2

)
dV (4.107)

However the behaviour of the iron materials is hysteretic as shown in Secs. 4.4 and 4.5 and when
rotational fields are applied the magnetic flux density lags the magnetic field. The hysteresis
phenomena is related to rotation and movement of magnetic domains and depends on the ma-
terial properties. Because of the complexity of hysteresis model, the common practice is to use
empirical formulas for the losses estimation in electrical machines.

4.6.2 Lamination effect

Another challenge that has to be faced to estimate the iron losses is the iron lamination. In order
to reduce the eddy current losses, many insulated sheets are stacked together and the result is
a reduced section where the currents are induced. The lamination modelling is a challenging
task in FEA analysis since the reproduction of all the iron sheets geometry would produce an
huge mesh. Some formulations have been proposed in order to overcome these aspects and the
simplest idea is to introduce an anisotropic conductivity and permeability as suggested in [33].

[σ] =

⎡⎣σx σy
σz

⎤⎦ =

⎡⎣Fσ σ′

Fσ

⎤⎦ (4.108)
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Figure 4.52: Example of laminated iron.

[µ] =

⎡⎣µx

µy

µz

⎤⎦ =

⎡⎢⎣(1 − F )µ0 + FµFe
µFe

F+
(1−F )µFe

µ0

(1 − F )µ0 + FµFe

⎤⎥⎦ (4.109)

In (4.108) and (4.109) the lamination direction is along the y axis according to Fig. 4.52; F
is the stacking factor. From (4.102) developing the curls:

∂Hz

∂y
= σxEx

∂Hz

∂x
= −σyEy (4.110)

Considering the eddy currents to have only x component, Hz is uniform along x. In a single
iron sheet the boundary condition is:

Hz(y)|y=±d/2 = H0 (4.111)

Substituting the Maxwell equations the 1D differential equation is obtained:

∂2Hz

∂y2
= jωµzσHz (4.112)

Solving the equation and applying the Poynting’s theorem the specific power loss becomes:

p =
H2

0ξ

σd2
· sinh ξ − sin ξ

cosh ξ − cos ξ
(4.113)

where

ξ =
d√
2

ωµzσ

(4.114)

In [33] under the low-frequency approximation the equivalent conductivity is:

σ′ =
1

F

(d
a

)2
· σ (4.115)

Equation (4.115) can be applied when solving simple cases such as transformer cores or eddy
current problems in cylindrical coordinates when the induced current is of the type J = [0, Jφ, 0].
When studying electrical machines the problem is more complicated and equation (4.115) cannot
be applied, thus in this case the common approach is to use a-posteriori procedures where the
losses effect on the simulations are neglected. This is for example the case of Secs. 4.6.3 and
4.6.4.
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Figure 4.53: Elliptic flux loci: major and minor
axis.

Figure 4.54: Knockman γ parameter.

4.6.3 Generalized Steinmetz’s equation model

Generally, Steinmetz empirical formulas are adopted in order to compute the losses associated
to ferromagnetic components. The most common equation is:

Piron = K · fα ·Bβ (4.116)

where B = µ ·H is the magnetic flux density, f the frequency and K is a material constant. This
approach is valid in the hypothesis of sinusoidally varying magnetic field with frequency f . In
the case of magnetic gears the hypothesis of sinusoidal single frequency waveforms is not valid:
accroding to Sec. 4.1, the harmonic responsible of the torque transmission is not the only one
that appears. This is especially true inside the iron poles, where the flux loci exhibit a rotational
behaviour (see Figs. 4.9 and 4.31). In order to avoid the frequency and equivalent frequency
based models, the Generalized Steinmetz equation (GSE) has been chosen for the inner and
outer iron yokes [154]:

P =
1

T

∫ T

0

k

⏐⏐⏐⏐⏐dBdt
⏐⏐⏐⏐⏐
α

· |B(t)|β−αdt (4.117)

where α and β are experimental coefficients and:

k =
K

2π(α−1) ·
∫ 2π

0
| cos θ|α · | sin θ|β−αdθ

(4.118)

where K is the coefficient of the classical Steinmetz approach. The magnetic flux densities are
known inside the iron regions, therefore using several magneto-static simulations the derivative

term
⏐⏐⏐dBdt ⏐⏐⏐ can be computed using the central difference approach:

⏐⏐⏐dB
dt

⏐⏐⏐
t

=
Bt+1 −Bt−1

2 · ∆t
(4.119)

In the iron poles the losses are calculated according to an approach based on an experimental
coefficient γ [155]:

γ =
P (a,Bmajor)

P0(Bmajor) + P90(aBmajor)
(4.120)

where a is the ratio between Bminor and Bmajor, P is the power loss produced by an elliptical
field, P0 are the losses produced by an alternating magnetic field parallel to the rolling direction
and P90 are the losses produced by an alternating magnetic field perpendicular to the rolling
direction. The magnetic flux densities are known in cylindrical coordinates, therefore for each
point of the grid the major and minor flux densities have to be calculated. Considering the flux
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Material k α β k − range α− range β − range

NO10 0.0017 1.425 1.759 0.0013− 0.0022 1.396− 1.454 1.724− 1.794
NO20 0.001527 1.506 1.797 0.00126− 0.0018 1.485− 1.528 1.772− 1.822

NO20-1200 0.00077 1.583 1.908 0.00063− 0.00091 1.56− 1.606 1.883− 1.934
Hiperco 50 0.15 0.0012 1.506 1.836 0.0006− 0.0018 1.439− 1.573 1.747− 1.924

Table 4.10: Steinmetz coefficients examples.

loci to be elliptical: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Bmajor(r, θ) = max|t

√
(Br(r, θ, t)2 +Bθ(r, θ, t)2)

Bminor(r, θ) = min|t
√

(Br(r, θ, t)2 +Bθ(r, θ, t)2)

δmax(r, θ) = arctan2
Bθ(r,θ,tmax)
Br(r,θ,tmax)

δmin(r, θ) = arctan2
Bθ(r,θ,tmin)
Br(r,θ,tmin)

(4.121)

The term |dBdt | can be computed along minor and major axis using (4.119). According to (4.117)
and (4.120), the iron poles losses are computed as:

P = γ · (P0(Bmajor) + P90(Bminor)) (4.122)

As example, some Steinmetz empirical coefficients have been found fitting the losses data
for three non oriented electrical steels (data retrived from [156]) and also for an high saturation
material. The fitting expression is the conventional Steinmetz equation (4.116). The fit results
are depicted in Tab. 4.10. These coefficients are the basis to apply the MSE approach.

4.6.4 2D Rotational loss model

In this section a more precise loss model tailored for rotational loci is adopted.
The formulation of a comprehensive two-dimensional magnetic hysteresis model of magnetic

sheets by which the loss might be calculated under arbitrary polarization loci (alternating,
circular, elliptical, etc.) and time behavior has been accomplished to little extent so far. However,
a rational approach to the 2D magnetic losses and their frequency dependence can be pursued in
non-oriented steel (NO) sheets following the method proposed in [157] and [158]. This method
is based on the concept of loss separation, by which the total loss W is expressed as:

W = Whyst +Wexc +Wclass, (4.123)

the sum of the hysteresis, excess, and classical components, and the connection with their unidi-
rectional (scalar) counterpart by an equivalent ellipsoid. Following this approach, the hysteresis
loss for a given elliptical flux locus is expressed as:

Whyst (Jp, a) ≃W (ALT )
hyst (Jp) +W

(ALT )
hyst (aJp) (Rhyst(Jp)−1) (4.124)

where Rhyst = W
(ROT )
hyst /W

(ALT )
hyst is the experimental ratio between the hysteresis losses obtained

under circular and alternating polarization, Jp, expressed as Jp = Bp − µ0Hp, is the peak
polarization measured along the major axis of the ellipse, and a is the ratio between minor
to major axis lengths. If a = 0 only alternating loss are present while a = 1 means purely

rotating loss. Fig. 4.55 shows the experimental behavior of W
(ROT )
hyst , W

(ALT )
hyst and the ensuing

ratio Rhyst(Jp) versus Jp/Js for a non-oriented Fe-(3.2 wt%)Si sheet, thickness d = 0.356 mm,
electrical conductivity σ = 2.04 MS/m, density δ = 7650 kg/m3, and saturation polarization
Js = 2.01 T. The experimental data are retrieved from [159]. It is worth noting that, as
demonstrated in [160], the ratioRhyst(Jp) can be assumed as generally valid for any ferromagnetic
material at different sheet thicknesses and lamination types.
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The excess loss is expressed as:

Wexc(Jp, a, f) ≃ g(a)

√
f√
f0

·

·
{
W

(ALT )
exc (Jp, f0) +W

(ALT )
exc (aJp, f0)

[
Rexc(Jp)

g(1)
− 1

]} (4.125)

where W
(ALT )
exc (Jp, f0) is the excess loss obtained under alternating conditions at peak polariza-

tion Jp and at the reference frequency f0 = 50 Hz, Rexc(Jp) is the experimental ratio, at a given
frequency, between the excess losses obtained under circular and alternating polarization and
the function:

g(a) =

√
2π

8.76

∫ 2π

0

(
sin2(ϕ) + a2 cos2(ϕ)

)3/4
dϕ (4.126)

The function g(a) calculated for circular polarization (a = 1) is g(1) = 1.8. Fig. 4.56 shows,

for the same material, the experimental behavior of W
(ROT )
exc , W

(ALT )
exc and their ratio Rexc(Jp)

versus Jp/Js [159]. It is worth noting that the ratio Rexc(Jp) is to a good extent independent of
the frequency.

The classical loss, under negligible skin effect, at frequency f is obtained as:

Wclass =
σd2

12

∫ 1/f

0

[(
dBx

dt

)2

+

(
dBy

dt

)2
]

dt (4.127)

where Bx(t) and By(t) are the induction components along x and y axis respectively.
The proposed equations are used to evaluate the losses in the iron poles. As the loci of

magnetic flux density are not always elliptical due to harmonic distortion and geometrical effects,
a simulated ellipse equivalent to the actual one is generated for every point in the pole keeping
as fixed the peak of the polarization and the area of the locus. On this equivalent locus the
parameter a is computed. An example of this simulated ellipse is reported in Fig. 4.57.

4.7 Losses in PMs

Usually the losses inside the magnets are neglected when studying electrical machines. In the
case of magnetic gears this is no more true as pointed out in Sec. 4.8, where 3D simulations
were conducted to evaluate the eddy current losses in PMs. In fact there are spatial magneto
motive forces that are synchronous with both the rotors (and these MMFs are useful for the
torque transmission) and others that are asynchronous and only contribute to losses. Consid-
ering sintered NdFeB magnets, the resistivity is around 150 µΩm while the iron resistivity is
approximatively 1

3 of this value. In this thesis the PMs are supposed to exhibit only eddy current
losses, thus the hysteresis loss contribute in minor loops is neglected according to the study in
[161].

Since different formulations have been proposed for the gear modelling in Sec. 4.1, Sec. 4.2
and Sec. 4.8, different approaches are adopted for the eddy current loss estimation in PMs.

If the analytic approach of Sec. 4.1 is adopted, the PMs eddy currents have to be found
through different approaches. The analytic solver in PM domains solves:

∇2
rθAz =

µ0

r
· ∂Mr

∂θ
(4.128)

and from post processing calculations Az can be computed in a grid of points. The eddy current
is therefore:

Jeddy = −σ · ∂A
∂t

+ c′(t, V ) (4.129)

where σ is the material conductivity. As already discussed the analytical solver does not take
into account the eddy current as well as the magnetic material real behaviour. In the hypothesis
of low eddy currents, in the (4.129) the term Jmagnets + Jeddy ≃ Jmagnets. Calculating the term
σ · ∂Az

∂t , the eddy currents will be calculated in the hypothesis of negligible contribute on the
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Figure 4.55: Alternating and rotational hysteresis loss com-
ponents and their ratio Rhyst as a function of the reduced po-
larization Jp/Js for the the NO 0.356 mm thick Fe-Si sheet

(experimental data retrieved from [159]).

Figure 4.56: Behavior of the excess alternating and rotational
losses versus Jp/Js at 50 Hz and their ratio from [159].

Figure 4.57: B-locus at a given point within the iron pole:
computed cycle and equivalent ellipsoidal one.
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magnetic fields. This hypothesis have to be verified in an efficient magnetic gear, otherwise the
magnet heating would be excessive and the performance quite poor. Therefore simply storing
the Az values in regular grids of points at each time instant the losses can be computed as:

Pmagnets =
1

T

∫
t

∫
V

ρ · J2
eddydV dt =

1

T

∫
t

∫
V

1

ρ
·

(
Azt+1 −Azt−1

2 · ∆t
+ c(t, V )

)2

dV dt (4.130)

using the expression of the central finite differences. ρ is the magnet bulk resistivity. The
coefficient c(t, V ) is the term that fix the eddy current surface integral on the cross sections to
be null:

c(t, V ) = −
∫
S

JeddydS (4.131)

Indeed considering the magnets cross section, the global current that flows through the section
has to be null because the magnets are insulated from the machine iron. The constant c depends
on the time instant and can be easily computed as post-processing operation.

In Sec. 4.8 an equivalence between the 3D and 2D eddy current modelling will be introduced
through empirical coefficients based on the assumptions in (4.94) and (4.95). Adopting the 3D
formulation (4.135), the PMs losses P 3D

PM in segmented case can be computed as:

P 3D
PM =

∑
i

∫
VPMi

1

σ

(∂A
∂t

)2
dV (4.132)

in accordance with the symbolism in (4.135) and where VPMi is the volume of the ith segment
of PMs.

If instead the 2D formulation (4.134) is adopted, the PMs losses are computed through:

P 2D
PM =

∫
ΩPM

σPM

k

(∂Az

∂t
+ σ

VPM

L

)2
dΩ (4.133)

where ΩPM is the PM cross section and k is a reduction coefficient that consider the PMs
segmentation with an equivalent electrical property in the same spirit of (4.96) in Sec. 4.5.5. An
example of the coefficient k for a test case geometry can be found in Tab. 4.12.

4.8 2D vs. 3D simulations

In magnetic transmissions, the presence of the flux modulator constituted by the iron poles
gives rise to a wide air gap and a consequent high reluctance path for the magnetic flux of the
permanent magnets. According to this consideration, it is hard to estimate if a 2D model of the
machine can provide accurate results as typically happens for classical electric rotating machines
[162]. For this reason, a preliminary analysis has been carried out in order to compare the results
in terms of magnetic flux distribution for a 3D and a 2D finite element model for the test case
in Fig. 4.58.

The equations that have to be solved within the gear domain, are the quasi-static Maxwell
equations. In this Section, the magnetic field, flux density and current density will be referred
as H, B and J.

High permeability domains are modelled neglecting the eddy currents effects but considering
the iron non-linearities H = ν(|B|) · B. The material law adopted for the permanent magnets
(PMs) is the linear equation B = µ ·H + Br, where µ is the magnet permeability and Br is the
residual flux density. The current density term J in the studied case is only constituted by eddy
currents since there are no source terms due to windings. In the 2D case, the problem geometry
allows the eddy currents to close at infinity, the current density integral over the cross section
V of each magnet is not zero: this net current is present in the induction machine case since
all the rotor bars are short-circuited, but in the PMs case the net current flowing through the
cross section has to be nil. In order to impose the eddy currents Je = Jeez to be solenoidal in
each permanent magnet, an additional equation

∫
V
JedV = 0 is adopted for each PM. The A
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ωin

ωout

Inner rotor

Iron pole

Outer rotor

R0 R1 R2 R3 R4 R5 R6 R7

Parameter Value

R0 0.02 m
R1 0.04 m
R2 0.05 m
R3 0.052 m
R4 0.062 m
R5 0.064 m
R6 0.074 m
R7 0.09 m

Axial length L 0.1 m
Inner pole pairs Pi 2
Outer pole pairs Po 11

Iron poles q 13
Gear ratio |G| = |−Po/P i| 5.5

Figure 4.58: Magnetic gear structure and list of parameters adopted.

formulation in the ith PM, with A = (0, 0, Az) is:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇× (ν∇×A) = −σ∂A

∂t
− σ

V i
PM

L
ez + ∇× (νBr)∫

V

JedV =

∫
V

(
−σ∂A

∂t
− σ

V i
PM

L
ez

)
dV = 0

(4.134)

where σ is the magnet conductivity, L is the machine length, −σ V i
PM

L ez is the additional current
density term and V i

PM is the equivalent voltage drop across the ith PM that ensures the solenoidal
property. In this work the magnets are considered to be made of NdFeB with conductivity
σ = 0.65 MS/m. Such a low value is a fictitious conductivity that takes into account the
segmentation effects in 2D simulations, and it is consistent with the considerations in Tab. 4.12.
The 3D formulation adopted is standard, based on the magnetic vector potential A and the
scalar electric potential V on the conductive permanent magnet regions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇× ν∇×A + σ ∂A
∂t = J + ∇×M− σ∇V

∇ ·
(

∂A
∂t + ∇V

)
= ∇ · J′ = 0

J′
s · n = 0 (segmentation planes)

V = 0 (PM segments gauge)

∇ · 1
µ(Ψ)∇Ψ = 0 (current free regions)

∇×A · n = −µ∇Ψ · n (interfaces)

ν∇×A× n = −∇Ψ × n (interfaces)

(4.135)

The resulting magnetic flux density norm and the induced eddy currents of the 3D model
are shown in Fig. 4.59. These results are compared with the ones provided by the 2D model of
the magnetic gear in correspondence of different sections of the machine and for its three main
parts.

In Fig. 4.59 cross-sections of a 3D model of the magnetic gear, without segmentations, is
shown. The plot shows the flux density norm and the white arrows represent the induced eddy
currents.

Fig. 4.61-4.62 show comparisons of the flux density along lines taken inside the inner rotor,
outer rotor and non-linear iron poles, respectively. In each plot three curves are displayed, one
for the 2D case and the others for the 3D case where the query points lie on two slices located
at z = L/2 (half machine) and z = 9L/10 (close to the machine edge). Some unphysical peaks
are visible in Fig. 4.62, these are due to the rather coarse 3D model mesh which had to be
used in order to limit the computational requirements. The comparison shows anyway a good
match between 2D and 3D simulations, especially as far as the main quantities are concerned. In
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Figure 4.59: Magnetic flux density norm and
eddy current arrow plot. The model does not in-

clude segmentations.
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Figure 4.60: Comparison of Bx(r = 86.3 mm,
angle = 0−360◦) between 2D and 3D simulations

(outer rotor).
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Figure 4.61: Comparison of Bx(r = 36.4 mm,
angle = 0−360◦) between 2D and 3D simulations

(inner rotor).
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Figure 4.62: Comparison of Bx(r = 52.5 mm,
angle = 167 − 180◦) between 2D and 3D simula-

tions (iron poles).
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Slice Norm ratio |∆B|
|B|

z = L/2 13.6%
z = 9L/10 18.3%

Table 4.11: Flux density norm comparison referring to the 2D simulation.

Model Inner segm. Outer segm. σPMin σPMout
PPMin PPMout

(W) (W)
3D No No σ σ 230 560
3D 2C. 2C. σ σ 220 160
3D 2A 2A σ σ 209 490
3D 2A+2C 2A+2C σ σ 205 155
3D 2A+3C 2A+3C σ σ 190 77
3D 2A+14C 2A+3C σ σ 87.5 77
2D No No σ/1.2 σ/1.52 252 620
2D 2C 2C σ/1.6 σ/5.5 221 165
2D 2A 2A σ/1.8 σ/1.9 205 488
2D 2A+2C 2A+2C σ/1.95 σ/6 206 155
2D 2A+3C 2A+3C σ/2.28 σ/11.7 187 78
2D 2A+14C 2A+3C σ/4.5 σ/11.7 87 78

Table 4.12: Comparison of the PMs losses at ωin = 5000 rpm with no segmentation and with circum-
ferential (C) or axial (A) segmentation.

Table 4.11 the norm of the difference vector |∆B| = ||B3D−B2D||
B3D

where B is a vector containing
the flux density norm in all query points, is reported. This is higher if the slice is close to the
machine edge rather than the machine center, since some flux lines close in the air, but the 2D
approximation is still satisfactory. Based on these considerations, the loss estimation is based
on the flux density computed from 2D simulations.

From the comparison of 2D and 3D simulations, an interesting aspect is the evaluation of
the eddy currents, an intrinsic 3D phenomena, and the PM losses, according to Sec. 4.7. In
Tab. 4.12 the PM Joule losses P 3D

PM are computed through 3D finite element simulations with
inner speed ωin = 5000 rpm with and without segmentations with the usual volume integration
equation (4.132).

The physical effects of the segmentation with two axial segment and two circumferential seg-
ments are shown in Fig. 4.63 and Fig. 4.64 for outer permanents magnets and inner permanent
magnets respectively. These figures show that the segmentation is much more effective for the
outer PMs while the losses are lowered by a smaller factor for the inner PMs. In the case of the
outer rotor, shown in Fig. 4.63, the eddy current is evenly distributed in the segments. Con-
versely, Fig. 4.64 shows that, in the inner permanent magnets, the eddy currents distribution
locally concentrates in correspondence of the stationary pole pieces. In this case, the loss re-
duction is less effective as the adopted segmentation of the inner magnets gives rise to segments
wider than the concentration regions.

By collecting the results reported in Table 4.12, it is possible to obtain the behavior of the
PMs losses as a function of the number of circumferential segmentations shown in Fig. 4.64. For
convenience, the analyzed points are interpolated through a fitting function in order to better
point out the losses trend. Fig. 4.65 indicates that, despite the circumferential segmentation
allows to strongly decrease the PMs losses, it starts to be less effective after a certain number of
segments.

On the base of the discussed results, the overall loss evaluation for the gear test-case in
this Section is carried out by considering 2 axial segmentations and 14 circular segmenta-
tions for the inner magnets, 2 axial segmentations and 3 circular segmentations for the outer
magnets. This kind of segmentation gives rise to comparable segments surface for inner and
outer PMs. In the 2D model this means to consider an equivalent conductivity of the in-
ner rotor PMs σPMin = σ/kin = σ/4.5 and an equivalent conductivity of the outer rotor PMs
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Figure 4.63: Effect of outer permanent magnet
segmentation on eddy currents: current density
norm (multislice colormap) and current vectors
(black arrows). The figure refers to the 3D simu-
lation with 2 axial segments and 2 circumferential

segments.

Figure 4.64: Effect of inner permanent magnet
segmentation on eddy currents: current density
norm (multislice colormap) and current vectors
(black arrows). The figure refers to the 3D simu-
lation with 2 axial segments and 2 circumferential

segments.

σPMout = σ/kout = σ/11.7. Hence, the latters are the values of PMs conductivity adopted for
the loss computation.

By collecting the results reported in Table 4.12, it is possible to obtain the behavior of the
PMs losses as a function of the number of circumferential segmentations shown in Fig. 4.64.
For convenience, the analyzed points are interpolated through a fitting function in order to
better point out the losses trend; the fitting equation will be presented in Sec. 4.5.5. Fig. 4.65
indicates that, despite the circumferential segmentation allows to strongly decrease the PMs
losses, it starts to be less effective after a certain number of segments.

4.9 Losses vs. speed

In this Section the losses for the magnetic gear test case in Fig. 4.58 are computed for different
operational speeds in the rangeωin = 0 − 5000 rpm. Soft material losses have been estimated
through the approach in Sec. 4.6.4, while the PMs losses are evaluated through (4.133).

Similarly to the electric rotating machines, the power loss depends on the rotational speed
and also on the load angle θL (i.e. the phase shift between the first harmonic of the rotating
magnetic fields generated by the inner and the outer rotor, respectively):

θL = θin − θout ·
(
−Po
Pi

)
= θin − θout ·G (4.136)

In this Section, the results relative to the maximum torque capability are shown. A great
part of the iron loss has to be attributed to iron poles as they are subject to high flux densities
that, as shown in the previous section, show rotational behavior. The iron yokes are interested
by the superposition of fields with periodicity Pi and Po, hence rotational loci are also expected
even if the area enclosed by the loop is smaller than the one of the iron poles and a DC bias
is present. The loci frequency in the gear components, at ωin = 5000 rpm, ωpoles = 0 rpm,
ωout = −909.09 rpm, reads:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fpoles =
ωin

60
Pi

fin yoke =
ωin

60
q

fout yoke =
ωin

60

Pi · q
Po

−−→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fpoles = 167 Hz

fin yoke = 1083 Hz

fout yoke = 197 Hz

(4.137)
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Figure 4.65: PMs losses trend, comparison with constant number of axial segments and
variable number of circumferential segments. The fit is made according to the expression in
(4.96). According to Fig. 4.45, the parameters a and b are in agreement with the PMs size

as predicted in Sec. 4.5.5.
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Figure 4.66: Inner iron yoke loss components.
The losses are computed varying the rotors speed

at the maximum torque capability.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Inner speed in rpm

0

5

10

15

20

25

30

35

P
o

w
e

r 
lo

s
s
 i
n

 W

P hyst

P class

P exc

Figure 4.67: Outer iron yoke loss components.
The losses are computed varying the rotors speed

at the maximum torque capability.
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Figure 4.68: Iron poles loss components. The
losses are computed varying the rotors speed at

the maximum torque capability.
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Figure 4.69: Total inner yoke, outer yoke, iron
poles power losses Ptot inner, Ptot outer, Ptot poles

and permanent magnets power losses varying the
rotational speed. The inner yoke losses are negli-

gible for the efficiency calculation.
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Figure 4.70: Global efficiency, permanent magnets efficiency and specific iron loss plots varying the
rotational speed. The efficiency decay is practically linear in this speed range and above ωin = 1000

rpm the highest specific losses are in the iron poles.
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Figure 4.71: Hysteresis losses varying rotational
velocities and load angle.
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Figure 4.72: Eddy current losses varying rota-
tional velocities and load angle.
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Figure 4.73: Excess losses varying rotational ve-
locities and load angle.
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Figure 4.74: Global losses varying rotational ve-
locities and load angle.

Fig. 4.66 shows the losses components in the inner yoke versus the inner rotational speed. The
classical Steinmetz frequency dependency applies to the plot: the hysteresis loss grows linearly
with the rotational speed, the classical component quadratically and the excess component as
ω1.5
in . The hysteresis loss is the predominant term with lamination thickness δ = 0.356 mm.

Fig. 4.67 shows the losses components in the outer yoke and the same considerations of
Fig. 4.66 applies. The absolute loss value differs by 2 orders of magnitude in comparison to
the previous case: this happens because of the bigger iron volume and because the inner rotor
magnetic field has a strong influence on the outer loci while, on the contrary, a great part of the
flux lines of the outer rotor magnets close on the iron poles without affecting the inner yoke.

Fig. 4.68 shows the losses in the iron poles: the eddy current loss is the predominant one,
while the hysteresis and excess relative contributes are lower than in the inner and outer yokes
cases. This is due to the change in the loss mechanism: because of the reduced volume, the flux
density in the iron poles is higher than the yokes. At these JP values, according to Fig. 4.55
and Fig. 4.56 due to the rotational component of flux density the loss contributions drop and
this explains the smaller contributions of excess and hysteresis loss. For further details on the
loss mechanism in hysteretic materials, the reader is referred to [163].

As a final evaluation, Fig. 4.69 shows the total losses on inner and outer yokes, iron poles
and permanent magnets. The inner yoke losses are negligible while the PMs losses are not, since
their value is higher than the one of the iron losses in ferromagnetic part.

Finally, Fig. 4.70 shows the global efficiency plot, the PMs efficiency contribution and the
specific power losses in the iron domains. The highest specific loss is obtained in the iron poles.
This high specific loss has to be expected in any case as the iron poles are the elements subject
to the highest magnetic induction at the highest harmonic content.

The iron losses are function of the load angle since the magnetic flux density map changes
when the transmitted torque varies. 4 torque levels are set for the magnetic gear of Fig. 4.58
and the iron losses in the soft materials are depicted in Figs. 4.71,4.72,4.73, 4.74. The major
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changes are visible in the iron poles, where hysteresis, eddy current and excess losses tend to
decrease increasing the torque.





Chapter 5

Mechanical and thermal
modelling

Magnetic gears, as all the electro-mechanical devices, are multi-physic devices. Often to simplify
the problem, the physics interactions are neglected or not strongly coupled.

In this thesis, the coupled multi-physic problem is not solved, but rather the coupling be-
tween electro-magnetic, mechanical and thermal physics is uni-directional, meaning that strains,
displacements and temperatures are supposed to have a negligible effect on the electro-magnetic
simulation. In the previous Chapters, the coupling between temperature and electro-magnetic
simulations has already been introduced, in particular in Secs. 4.5.3 and 4.5.6. In this Chapter
the mechanical and thermal problems are stated for the magnetic transmission.

In Sec. 5.1 the mechanical limit speed due to internal stresses is analyzed, for both cases with
and without retaining sleeve. Morover, the speed limit due to penetration depth is analyzed,
especially for the cases with solid cores. Finally, the relations between rotation speed and
resonace frequencies is introduced.

In Sec. 5.2 the case of three moving rotors is analyzed, and the power split due to the
magnetic gear is studied.

Sec. 5.3 shows how to apply the Maxwell’s stress tensor for the computation of the forces
acting on the pole pieces.

In Sec. 5.4, a simplified mechanical model for the displacements analysis of the iron poles is
introduced for the cases with and without rods.

In Sec. 5.5 an equivalent lumped thermal model is adopted to study the temperature distri-
bution inside the magnetic gear.

The models and results in this Chapter have been published in [71].

5.1 Rotational speed limit for magnetic gears

From the mechanical point of view, the first parameter that is worth to be discussed is the
rotational speed. The rotational velocity is strictly linked to the losses calculation and once the
geometry is defined, the speed limit is obtained considering efficiency, structural constraints and
thermal aspects.

High-speed electrical machines have been studied for several years, and are still an hot topic
[164]. Magnetic gears, because of their intrinsic modulation effect that causes many spatial
harmonics, could not reach such high values of rotational speed mainly because of excessive
losses and demagnetization issues. Nevertless, in [150] a magnetic gear prototype was built
with an efficiency η = 92% with an inner speed rpmin = 19 krpm. At these high speeds, the
mechanical limitations due to the rotor structure must be checked in order to avoid failures.

Sec. 5.1.1 introduces the mechanical rotor speed limitations due to internal stresses, while
in Sec. 5.1.3 the speed-related skin effect is described. Finally, in Sec. 5.1.4 the vibrations role
on the speed limit is discussed.

93
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5.1.1 Rotor speed limit without retaining sleeve

In the easiest configuration for SPM machines, the permanent magnets are glued to the iron
laminates through adhesive layers. In this case, the glue has to withstand the radial and tan-
gential forces developed on the permanent magnets. These forces are due to both mechanical
accelerations (centrifugal, Euler force) and magnetic interactions. In this Section, a simplified
analysis will be carried out considering that the PMs are only subjected to radial forces and
considering that the temperature is not affecting the bonded joints. Thus, the only loading
conditions that are considered for the adhesive layer are tension and compression, while shear,
cleavage and peel are neglected.

Fig. 5.1 shows the cases of inner and outer rotors. If the magnet is considered to have thick-

ness tPM , angular pitch θPM and density ρPM , the PM mass ismPM = (R+tPM )2−R2

2 θPMLρPM =
t2PM+2RtPM

2 LθPMρPM , where R is defined according to Fig. 5.1 and L is the machine axial
length. Considering the case of inner rotor in steady state (no Euler force contribution) with a
magnetic force FM , the global adhesive tensile stress σ is:

σ =

∑
F

LRθPM
=
mPMω

2
inR+ FM

RθPML
=

t2PM+2RtPM

2 LθPMRω
2
inρPM + FM

LRθPM
=

=
t2PM + 2RtPM

2
ω2
inρPM +

FM

LRθPM

(5.1)

From (5.1), if σlim
T is minimum value between the limit tensile stress of the adhesive and the PM

limit tensile strength σlim
T = min(σlim

ad.−T , σ
lim
PM−T ), the speed ωin has to satisfy:

ωin ≤

√(
σlim
T − FM

LRθPM

) 2

(t2PM + 2RtPM )ρPM
(5.2)

For example, considering σlim
T = σlim

ad.−T = 10 MPa, FM = 1000 N, L = 0.1 m, R = 0.04 m,
tPM = 0.007 m, θPM = π/2 and ρPM = 7500 kg/m3, the inner rotor speed has to be ωin < 28
krpm according to (5.2). The value of σad.−T is in accordance with the measurements in [165].

For the outer rotor case, the approach of (5.1) is adopted, but this time the centrifugal
force results in a compressive stress, thus the PM compressive stress limit defines the speed
limit. At zero speed the adhesive has to withstand the magnetic force: σlim

ad. >
FM

LRθPM
. Once

this is verified, the limit compressive stress is the minimum between PM and adhesive ones
σlim
C = min(σlim

ad.−C , σ
lim
PM−C). The outer speed limit has to satisfy:

ωout ≤

√(
σlim
C − FM

LRθPM

) 2

(−t2PM + 2RtPM )ρPM
(5.3)

The approach shown in this Section allows to obtain a simplified estimation of the mechanical
speed at which the adhesive or the PMs fails. The parameters required for the estimation are
the adhesive tensile and compressive strength of both adhesive and permanent magnets.

5.1.2 Rotor speed limit with retaining sleeve

Before showing the stresses calculation in magnetic gear rotors, the basic equations of radial
and tangential stresses are reported for the cases of homogeneous hollow and bulky cylinder
accroding to the plain strain hypothesis (see. [166] for an extensive survey on the rotor stresses).

Considering an hollow cylinder with inner radius ri outer radius ro, density ρ and Poisson
ratio ν, the radial and tangential stresses σr and σθ in a cylindrical reference system are:

σr =
3 + ν

8
· ρ · ω2 ·

(
r2o + r2i −

r2or
2
i

r2
− r2

)
(5.4)
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Figure 5.1: Inner and outer rotors of an SPM magnetic gear and centrifugal force F .
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Figure 5.2: Hollow rotor dimensionless stresses with ri/ro = 0.2, ri/ro = 0.5 and ri/ro = 0.8.
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σθ =
3 + ν

8
· ρ · ω2 ·

(
r2o + r2i +

r2or
2
i

r2
− 1 + 3ν

3 + ν
· r2
)

(5.5)

The maximum stress calculated through Von Mises σVMcriterion occurs at the inner radius
ri:

σVM =
√
σ2
r + σ2

θ − σrσθ (5.6)

σmax
VM = (3 + ν)

ρv2o
4

+ (1 − ν)
ρv2o
4

( ri
ro

)
≃ ρv2o (5.7)

In Fig. 5.2, σr, σθ and σVM are shown for three different ratios between inner and outer radius.
The tangential stress is the dominant one, and the maximum occurs at the inner radius.

Considering instead the case of a bulky cylinder with radius ro, Eq. (5.4) and (5.5) become:

σr =
3 + ν

8
· ρ · ω2 ·

(
r2o − r2

)
(5.8)

σθ =
3 + ν

8
· ρ · ω2 ·

(
r2o −

1 + 3ν

3 + ν
· r2
)

(5.9)

The maximum stress occurs at the cylinder central point:

σmax
VM = (3 + ν)

ρv2o
8

(5.10)

Since the ratio between the hollow case maximum stress when lim(ri) → 0 and the full cylinder
stress is 0.5, the bulky cylinder allows a rotational speed

√
2 times higher than the hollow one

keeping the same outer radius.
High speed rotors are generally equipped with glass or carbon fibers enclosures. These non

magnetic materials have the role to ensure the structural integrity at high speeds.
In a rotor constituted by k elements (e.g. shaft, PMs annulus, glass fiber annulus), adopting

the hypothesis of non-orthotropic materials, inside the ith domain the stresses σ and displace-
ments u obey to: ⎧⎪⎨⎪⎩

σri = E′

1−ν′Ai − E′

1+ν′
Bi

r2 − 3+ν′

8 ρr2ω2

σθi = E′

1−νAi + E′

1+ν′
Bi

r2 − 1+3ν′

8 ρr2ω2

ui = Ai · rBi

r − (1 − ν′2)ρr3ω2

8E′

(5.11)

where ω is the rotational speed, E′ and ν′, for the case of plane strain, are related to the material
Young modulus E and the Poisson ratio ν as: E = E

1−ν2 and ν′ = ν
1−ν . The coefficients Ai and

Bi can be found using the boundary conditions:⎧⎪⎨⎪⎩
σri(R

i
i−1) − σr(i−1)(R

i
i−1) = 0

uri(R
i
i−1) − ur(i−1)(R

i
i−1) = δ(Ri

i−1) → i = 2 : k

σrk(Rext) = 0

(5.12)

where Ri
i−1 stands for the interface radius between the domains i − 1 and i and δ(Ri

i−1) is
the interference parameter at the Ri

i−1 domains interface. Combining (5.12) and (5.11), the
radial and tangential stresses are computed in all the rotor regions, and the expressions can be
rewritten in the compact form: ⎧⎪⎨⎪⎩

σr = Υrω + Ψrδ

σθ = Υθω + Ψθδ

σVM =
√
σ2
r + σ2

θ − σrσθ

(5.13)

where the functions Υ and Ψ depend on the geometry and on the material parameters. The
mechanical constraints impose that the limit stress σU > τσmax

VM with τ safety factor, and
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Figure 5.3: Structural limits and influence of the interference parameter δ on the maximum speed
[166].

the contact pressure between magnets and yoke must be negative (otherwise contact is not
maintained). Thus, the interference δ affects the maximum speed in (5.13) as shown in Fig. 5.3.

5.1.3 Skin depth

Another speed limit is the one due to the skin effect. When time-varying magnetic fields are
involved, the penetration depth δ can be calculated as:

δ =

√
ρ

π · µ · f
(5.14)

The magnetic fundamental magnetic field for both rotors has an electrical frequency equal to:

f =
rpmin · Pi

60
=
rpmout · Po

60
(5.15)

where rpmin and rpmout are the inner and outer rotor rotational speeds.
The maximum rotational speed in order to guarantee that the penetration depth δ is at least

larger than the smallest dimension of the magnetic conductors ξ is:

rpmin <
60 · ρ

P i · π · µ · ξ2
(5.16)

Therefore using steels with high resistivity and low magnetic permeabilities the speed limit can
be increased. The magnetic relative permeability µ decreases when the iron starts to saturate;
this means that (5.16) is non-linear. In Fig. 5.4 the speed limit is depicted as function of the
magnetic conductor dimension and of the flux density. From Fig. 5.4, while (5.16) is normally
fulfilled in the case of standard laminations, in the case of solid magnetic cores Eq. (5.16)
can limit the gear operation speed. This is the case of [46], where the inner speed was set to
rpmin = 30 rpm.

5.1.4 Vibrations modes

The low vibration operation and the capability to suppress the input rotor shaft vibration are,
among others, some of the main reason which drains attention on the magnetic transmissions
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Figure 5.4: Speed limit changing the flux density B and the magnetic conductor size. The material in
this analysis is the electrical steel NGO35PN250, and the number of inner pole pairs is Pi = 2.

(see Chapter 2). Indeed, the low torsional stiffness and the non-contact motion transmission play
a fundamental role in terms of vibrations. Still, the electromagnetic interactions between the
rotors and the cogging torque produce vibrations, that have to be evaluated to avoid resonances
and to assess the noise level of the magnetic transmission.

[167] suggested a general equation to find the shaft resonance frequencies of an electrical
machine rotor:

ωn|res = αn

√
EI

µ
(5.17)

where E and I are the rotor Young modulus and inertia, µ is the rotor mass and αn are boundary-
dependent coefficients. Eq. (5.17) can be applied with the coefficients retrived from [167] for a
simple identification of the resonance frequancies and rotors critical speeds, but FEM simulations
are requested for precise calculations.

Once the structure resonance frequencies are found, the mechanical constraint that must be
satisfied is: ⏐⏐⏐ωin − ωn−in|res

ωn−in|res
⏐⏐⏐ ≥ τ (5.18)

where τ defines a safety tolerance margin. An equation identical to (5.18) can be adopted for
the outer rotor.

For the special case of magnetic gears, [168] and [169] focused on the vibration problem of
coaxial gearboxes, but literature still largely lacks of models for the iron poles rotor natural
frequencies evaluation.

5.2 Variable speed

Considering Tm the maximum torque depeloped in the iron poles rotor and adoptinf the same
notation of Sec. 3.5, the torque expressions are the following:⎧⎪⎨⎪⎩

Tin = Tm · Pi
q · sin(θe)

Tout = Tm · Po

q · sin(θe)

Tpoles = −Tm · sin(θe)

(5.19)
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where
θe = Pi · θin + Po · θout − q · θs (5.20)

In stationary conditions the angle θ for each rotor can be expressed as θ0 + ω · t. Therefore the
θe expression becomes:

θe = Pi · θin0 + Pi · ωin · t+ Po · θout0 + Po · ωout · t− q · θpoles0 − q · ωpoles · t (5.21)

The space harmonic rotational velocity expression found in Sec. 3.17 was:

ωin = −Po
Pi

· ωout +
q

P i
· ωpoles (5.22)

and substituting (5.22) in (5.21), the angle θe becomes:

θe = Pi · θin0 + Po · θout0 − q · θpoles0 (5.23)

The angle θe is therefore stationary when the three rotors are in stationary conditions (constant
speed). Considering that the load torque is constant changing the rotational speed, if the iron
poles are suddenly rotated reaching a regime velocity, the load angle will be subjected to a
transient but the final condition will be again a steady state as in (5.23).

The power balance is given by the product between torques and rotational speeds:⎧⎪⎪⎨⎪⎪⎩
Wi = Tm · Pi

q ·
(
− Po

Pi · ωout + q
Pi · ωpoles

)
· sin θe

Wo = Tm · Po
q · ωout · sin θe

Wpoles = −Tm · ωpoles · sin θe

=

=

⎧⎪⎪⎨⎪⎪⎩
Wi = Tm ·

(
− Po

q ωout + ωpoles

)
· sin θe

Wo = Tm · Po
q · ωout · sin θe

Wpoles = −Tm · ωpoles · sin θe

(5.24)

where Wi, Wo and Wpoles are the inner, outer and poles rotor powers respectively. Writing the
gear ratio G including the poles rotor motion, the equation reads:

G(> 1) =
ωin

ωout
= −Po

Pi
+

q

P i
· ωpoles

ωout
= −Gn +

q

P i
· ωpoles

ωout
(5.25)

the gear ratio relative variation ∆ due to the rotation of the iron poles can be expressed as:

∆ =

q·ωpoles

Pi·ωout

Po
Pi

=
q

Po
· ωpoles

ωout
(5.26)

If the gear ratio G is high (5 and higher), the ratio q
Po is approximatively equal to 1, therefore

the in order to guarantee a variation ∆ the ratio ωs

ωout
= ∆. The power that must be provided

in order to guarantee ∆ is:

Wpoles = −Tm · Po
q

· ∆ · ωout · sin θe (5.27)

while the power on the low speed rotor (considered as the other input):

Wo = Tm · Po
q

· ωout · sin θe (5.28)

The control power that is injected in order to change the gear ratio is ∆ times the output power.
This means that the torque required to move the iron poles is high and this surely affects the
design of the electrical machines connected to the iron poles.
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Another solution could be to use the outer rotor as control rotor. In this case the input is
again the inner rotor and the output is the iron poles rotor. In this case the gear ratio is:

G(> 1) =
ωpoles

ωin
=
Pi

q
+
Po

q
· ωout

ωin
(5.29)

and the gear ratio variation becomes:

∆ =

Po·ωout

q·ωin

Pi
q

=
Po

Pi
· ωout

ωin
(5.30)

In this case the ratio ωout

ωin
= ∆ · Pi

Po . The power that must be injected when the gear ratio is
modified is:

Wo = Tm · Po
q

· Pi
Po

· ∆ · ωin (5.31)

while the input power is:

Wi = Tm · Pi
q

· ωin (5.32)

and therefore the ratio between the control power and the input power is ∆.

5.3 Magnetic forces on iron poles

The flux modulator in a magnetic gear is a key component that has to be designed in order
to withstand the cyclic forces on each iron pole. As reported in [170], the forces are generally
higher in the cases of low gear ratios.

The Maxwell stress tensor is an important method to compute forces and torques. The local
force acting on the domain with volume V in Fig. 5.5 can be computed according to the Lorentz
force:

f = J×B (5.33)

and the total force is given by volume integration:

F =

∫
V

J×BdV (5.34)

This expression can be easily implemented in finite element codes where there are active coils
with currents flowing through them. When this relation has to be applied to magnetically active
regions the current formulation is not practical. Using the Ampere’s law the following realtion
holds:

J =
1

µ0
∇×B (5.35)

where J includes real currents and permanent magnets equivalent currents. The force reads:

F =
1

µ0

∫
V

(∇×B) ×BdV (5.36)

and developing the curl operator, the force becomes:

F =
1

µ0

∫
V

(
Bz ·

∂Bx

∂z
−Bz ·

∂Bz

∂x
−By ·

∂By

∂x
+By ·

∂Bx

∂y

)
dV (5.37)

Considering the following vector:

Rx =
1

µ0
·

(
x ·

B2
z −B2

y −B2
z

2
+ y ·Bx ·By + z ·Bz ·Bx

)
(5.38)
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Figure 5.5: Iron pole: the Maxwell stress tensor is integrated on the surface witch is the extrusion of
the red border in the z direction.

and its divergence results:

∇ ·Rx = Bx

(∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z

)
−By

∂By

∂x
−Bz

∂By

∂x
+By

∂Bx

∂y
+Bz

∂Bx

∂z

= −By
∂By

∂x
−Bz

∂By

∂x
+By

∂Bx

∂y
+Bz

∂Bx

∂z

(5.39)

The force along the x direction can be expressed as:

Fx =
1

µ0
·
∫
V

∇ ·RxdV =
1

µ0
·
∫
S

Rx · n · dS (5.40)

where n is the normal of the integration path shown in Fig. 5.5. The global force is computed
as:

Fxyz =
1

µ0
·
∫
S

R · n · dS (5.41)

where R isthe Maxwell stress tensor:

Rxyz =

⎛⎜⎜⎝
B2

x−B2
y−B2

z

2 Bx ·By Bx ·Bz

By ·Bx
B2

y−B2
x−B2

z

2 By ·Bz

Bx ·Bz Bz ·By
B2

z−B2
x−B2

y

2

⎞⎟⎟⎠ (5.42)

In a similar way the Maxwell stress tensor is derived for a cylindrical coordinate system:

Rrθz =

⎛⎜⎝
B2

r−B2
θ−B2

z

2 Br ·Bθ Br ·Bz

Br ·Bz
B2

θ−B2
r−B2

z

2 Br ·Bθ

Bθ ·Bz Br ·Bθ
B2

z−B2
r−B2

θ

2

⎞⎟⎠ (5.43)

and the force expression is:

Frθz =
1

µ0
·
∫
S

Rrθz · n · dS (5.44)

The global radial force is given only by the contributes calculated on the segments 1 and 3:

Fr =

∫ θ2

θ1

Br12

2µ0
· L · r · dθ −

∫ θ2

θ1

B2
r

2µ0
· L · r2 · dθ (5.45)

and the tangential force (positive anticlockwise) is:

Fθ =

∫ r2

r1

B2
θ1

2µ0
· L · dr −

∫ θ2

θ1

B2
θ2

2µ0
· L · dr (5.46)

The cylindrical forces are useful to compute the displacements of the iron poles. If the xy
components are required considering the barycentre coordinates the following equation can be
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Figure 5.6: Iron pole geometry without and with structural rod.

adopted: {
Fx = Fr · cos θbarycentre − Fθ · sin θbarycentre

Fy = Fr · sin θbarycentre + Fθ · cos θbarycentre
(5.47)

5.4 Mechanical deformations

In order to calculate the mechanical deformations of the ferromagnetic poles, the mechanical
structure and its stiffness need to be known. Two different cases are considered in this thesis. In
the former the pole pieces are considered to withstand the electro-magnetic forces alone without
additional structures. This is the case for example of solid pole pieces. In the latter case, circular
rods are inserted inside the pole pieces, thus the pole stiffness is supposed to be only due to the
bars. Different cases can be easily solved once the equivalent bending moments are evaluated.

5.4.1 Solid poles case

In this case the poles withstand the forces without additional rods, thus the inertias that have
to be considered are the ones of the iron pole itself. This is the case of [46], where solid poles
where adopted. This would also be the case of iron poles made by soft magnetic composites
(SMC): because of the recent developements on high-strength composites [171], a solution for
the flux modulator realization could adopt SMCs, as shown in [152].

The area of the iron pole is computed as:

A =

∫ θ2

θ1

∫ r2

r1

r · dr · dθ = α · r
2
2 − r12

2
(5.48)

The barycentric radius can be computed as the x static moment when θ1 = −θ2. The relation
is:

xb =

∫
A
r2 cos θdθdr

A
=

4

3 · α
r32 − r31
r22 − r21

sin
α

2
(5.49)

The second order moments can be computed as:

Iθ =

∫ r2

r1

∫ θ2

θ1

r3 · sin2 θdθdr =

(
1

2
α− sin(2 · α)

4

)(
r42 − r41

4

)
(5.50)

Ir =

∫ r2

r1

∫ θ2

θ1

r3 · cos2 θdθdr =

(
1

2
α+

sin(2 · α)

4

)(
r42 − r41

4

)
− α

2

(
r22 − r21

)
· xb (5.51)

5.4.2 Stiffness rods case

The additional rods are supposed to be in the center of the iron poles as depicted in Fig. 5.6.
An additional hypothesis is to consider that the ferromagnetic laminates do not contribute to
the mechanical stiffness of the assembly. Hence, the inertias calculated along the radial and
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Figure 5.7: Iron pole considered as a beam fixed at both the extremities.

tangential directions Ir and Iθ are equal to:

Iθ = Ir =
πr4bar

4
(5.52)

where rbar is the radius of the bar.

5.4.3 Displacements and stresses

Considering the magnetic forces as distributed loads acting on a beam fixed at both extremities
(see Fig. 5.7), the maximum displacement ∆max occurs in the middle of the beam:

∆max =
w · L4

384 · E · I
(5.53)

where E is the equivalent Young modulus of the structure in the z direction and I is the
moment of inertia. This approach is generally followed with isotropic materials: the hypothesis
is still valid with iron poles made with moulding compound materials (SMC), but because
of the anisotropy this approach is theoretically incorrect when dealing with glued laminated
sheets. This approach can still be applied using an equivalent Young modulus E along the axial
direction that has to be evaluated experimentally. The maximum bending moment occurs at the

extremities of the beam and can be expressed as M = w·L2

12 . The global force can be calculated
using the Maxwell stress tensor integration. In the hypothesis of radial and tangential forces
applied on the barycentre projection in the z direction, the distributed forces are Fr = wr · L
and Fθ = wθ · L. The global displacements are evaluated as:

∆r =
Fr · L3

384 · E · Ir
, ∆θ =

Fθ · L3

384 · E · Iθ
(5.54)
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Figure 5.9: Linearized magnetic gear: maximum radial forces Fr1 and Fr2 for an high ratio magnetic
gear (q ≃ Po). These alignments correspond to the positions θin = 0 and θin = 45◦ in Fig. 5.8: even if

the hypothesis of high gear ratio is not verified, the radial force peaks match.

This procedure is valid in the hypothesis of long beams. If the machine is axially long (L >> D),
the iron poles are typically immersed in plastic materials in order to obtain a stronger mechanical
design (see Chapter 7): in this case the displacements have to be computed through more
sophisticated FEM-based analysis for higher accuracy.

Fig. 5.8 shows the comparison between the analytically and FEM-computed forces acting
on an iron pole for the geometry studied in [61] with gear ratio |G| = 1.5; since the machine is
axially short, the maximum radial displacement is ∆r ≃ 1% · gapsize far below the limit (here
fixed to ∆r−max = 0.4 · gapsize considering the Young modulus equal to Eaxial = 100 GPa).

Fig. 5.9 and 5.10 show the positions of maximum and minimum radial and tangential forces
in high ratio magnetic gears (|G| ≥ 2.5, q ≃ Po): the x axis represents the inner rotor angle
θin, the outer rotor angle is θout = G · θin where G is the gear ratio. The plots are not in
full accordance with Fig. 5.8 because the hypothesis of long machine are not fulfilled. The
displacements relative to these positions can be evaluated easily, giving an immediate feedback
about the design feasibility.

From the forces and the geometric parameters, the local stresses can be evaluated in the
hypothesis of bulky iron poles (otherwise if laminates are considered, the cases of plain stresses
or strain have to be discussed).

The stresses associated to the radial and tangential bending moments are calculated as:

σzz(Mr) =
Mr

Wr
=
Mr

Ir
· d (5.55)
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Figure 5.10: Linearized magnetic gear: maximum and minimum tangential forces for an high ratio
magnetic gear (q ≃ Po). These alignments correspond to the positions θin = 27◦ and θin = 63◦ in Fig.

5.8: the mismatch due to the low gear ratio is especially visible in Fθ2.
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Figure 5.11: Iron pole stresses σzz due to the bending moments of the forces Fr and Fθ.

σzz(Mθ) =
Mθ

Wθ
=
Mθ

Iθ
· d (5.56)

where d is the distance from the neutral axis, W is the bending flexibility and I is the inertia
moment. An example of the stresses σzz due to the radial and tangential forces on a bulky iron
pole are shown in Fig. 5.11. The barycentre location is also depicted and the stresses due to the
bending moment vary linearly with the distance from the barycentre.

The stress equation that has to be verified in each point is for example according to the Von
Mises criterion:

σVM =
√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2 ≤ σlimit (5.57)

where σ1, σ2 and σ3 are the principal stresses computed in each point of the structure and σlimit

is the material limit stress. According to the previous hypothesis of axially-long machine and
neglecting the shear stresses, (5.57) can be approximated to

∑
σzz ≤ σlimit.

Fatigue analysis can also be performed, but these are beyond the scope of the thesis.

5.5 Thermal model

The thermal model is useful in order to understand if the temperatures exceed the limit values:
these are generally the Curie temperatures, temperatures at which the PMs exibit permanent
demagnetization and other limits related to the structure. The general heat equation written in
differential form is:

cp · ρ ·
∂T

∂t
= Q+ ∇ · λ∇T (5.58)
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where cp, ρ, Q and λ are heat capacity, material density, local heat source and thermal con-
ductivity respectively. A general analytic approach is based on equivalent thermal networks in
analogy to the electrical networks: all the components are modelled through the thermal resis-
tances and the thermal capacitances, while the power losses are modelled as current generators.
Unfortunately the analytical model of rotating electrical machines is a challenging problem be-
cause the Navier Stokes equations are involved and secondary flows rise because of the rotational
components of the air flows.

Several complicated thermal equivalent networks have been studied in literature; these net-
works try to fit the real behaviour using high number of components. In this case a simple
network have been chosen, knowing that when the model complexity increases the finite element
method provides more reliable results than the analytic model (that also requires a non-negligible
effort for the components discretization).

The analytic network does not aim to fit exactly the real behaviour but only to give an idea
of the temperatures order of magnitude.

5.5.1 Air flow distribution

In the general case, an air flux will be forced to flow through the machine airgaps; this air flow
can be produced for example by a fan connected to the high speed rotor or by an external fan.
The machine geometry can have different sections where the air is free to flow: if the inner rotor
is hollow one channel is the inner hollow cylinder, the other paths are given by the inner and
outer airpags and the external rotor-box airgap. In order to increase the iron poles stiffness,
the inter-pole space can be filled with mechanically performant materials (see Fig. 5.12); in
this case the inner and outer gaps are split and two independent channels are formed. The air
flow therefore has to be split between the channels and the axial speed in each one depends on
the gear geometry and hydraulic losses, function of the rotational speeds. The first step is the
computation the air repartition between the channels. In the hypothesis of axially-imposed air
flux, the fluid flow in each channel can be supposed to be only due to the hydraulic conditions
(pressure, velocity, hysraulic losses), while the change of fluid density can be neglected (thus the
natural convection phenomenum are neglected). The classical fluid loss equation for pipe flows
is given by:

∆p =
λ(Re, ϵr, dH)

dH
· L · ρ · v2axial (5.59)

where dH is the hydraulic diameter, Re is the Reynolds number and ϵr is the relative roughness,
L is the axial lenght, ρ the gas density and vaxial is the air speed in the axial direction. A
well-known relation for the friction factor λ has been introduced by Colebrook [172]:

1√
λ

= −2 · log10

( ϵr
3.7dH

+
2.523

Re
√
λ

)
(5.60)

Supposing that the Reynolds number due to axial and tangential velocities is higher than the
laminar to turbulent transition, the λ factor can be calculated in several ways as reported in
[173], e.g. with the approximation:

λ =
0.25

log210

(
ϵr
3.7 + 5.4

Re0.9

) (5.61)

The axial Reynolds number is calculated as:

Re =
ρ · vaxial · dH

µ
(5.62)

where µ is the fluid dynamic viscosity. In order to keep into account the air swirl motion, an
additional coefficient have been introduced in [174]:

kcorrective =

(
1 +

(7

8

)
·
( ω · r

2 · vaxial

)2)0.38

(5.63)
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Figure 5.12: Air flow cross sections with 2 channels (left) or 3 channels (right).

where ω · r is the tangential rotor speed. This equation has been introduced for the case of air
flow passing through an annular gap with the inner cylinder kept into rotation. Additional shock
losses have been estimated in [174] when the axial reynolds number range between (2300-12000)
as:

kshock = 0.043 ·
( ωr

vaxial

)2
(5.64)

therefore the overall loss factor becomes:

λrot =
0.25

log10

(
ϵr
3.7 + 5.4

Re0.9

) ·

((
1 +

(7

8

)
·
( ωr

2 · vaxial

)2)0.38

+ 0.043 ·
( ωr

vaxial

)2)
(5.65)

The loss factor is a function of ϵr, r, vaxial. Considering a magnetic gear with a bulky inner
rotor, there can be 2 or 3 airgaps where the air can circulate depending on the structure (see
Fig. 5.12). The solution with 2 airgaps is obtained if the iron poles are completely surrounded
by air (slots are not filled), thus the two gear airgaps are connected and the external airgap is
the one between the external box and the outer rotor. The second solution is obtained when the
slots are filled with reinforcing fibers. In this case the outer air will be divided between 3 paths
and the speed in each one have to be calculated fixing the same pressure drop along the three
channels. Combining (5.59) and (5.65), the nonlinear equation to be solved reads:

λrot1(v1)

dH1
Lρv21 =

λrot2(v2)

dH1
Lρv22 = ∆pext (5.66)

where λrot1 and λrot2 are the friction loss coefficients, while ∆pext is the externally imposed
pressure (for example, due to a fan).

The expressions that have been reported are based on empirical coefficients found for simple
cases. The solutions v1 and v2 of (5.66) can give inaccurate results for the real complex cases.
For finer calculations, the use of other numerical methods (e.g. finite elements or finite volumes)
is recomended since several coupled effects are involved and the swirl flow with Taylor vortices
is still challenging.

5.5.2 Thermal resistance

Once the axial velocities in each channel have been computed from Sec. 5.5.1, the equivalent
thermal resistances and capacitances can be calculated to complete the thermal analysis. The
thermal resistance concept derives from the Fourier’s law:

q = −λ · ∇T (5.67)
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where λ is the thermal conductivity and T is the temperature variable. When λ is constant and
the heat propagating direction is known, the 1D Fourier’s expression reads:

qx = −λ · S · ∆T

∆x
= −λ · S · T1 − T2

d
=
T1 − T2
Rth

(5.68)

where Rth = d
λ·S is the thermal resistance, d is the thickness in the propagating direction, S is

the area crossed by the heat flux and T1 and T2 are the temperatures at the extremities. The
thermal resistance of cylindrical objects is found as:

Rth =

∫ R2

R1

dr

λ · r · α · L
=

1

λ · L · α
· log

(
R2

R1

)
(5.69)

where α is the angular length of the arc (α = 2π if the object is an annulus). The iron yokes,
magnets, iron poles and shaft thermal resistances are calculated according to (5.69).

The most difficult contribution to be estimated is the convective heat exchange of a rotating
object. The thermal resistance between a solid surface and a fluid is:

Rth =
1

α · S
(5.70)

where α is the heat transfer coefficient and S is the area subjected to convection. The heat
transfer coefficient normally requires precise numerical approaches in order to be correctly esti-
mated (see [175] for an example of simulation setup) and because of the problem complexity the
solution proposed in this Section is considered as a rough estimation of the real one.

Adopting the approaches already available for electrical machines [176],[177], dimensionless
numbers are introduced to describe the heat exchange. The Nusselt number represents the ratio
between convective and conductive heat transfer:

α =
λair ·Nu

dh
(5.71)

where dh = δ ·
√

8
3 . Nu = 2 corresponds to laminar flow, while with higher speeds or uneven

surfaces the parameter tends to grow.
In order to assess the heat exchange between moving objects, another dimensionless param-

eter has to be introduced. The Taylor’s number is the ratio between centrifugal forces due to
the rotation and the viscous forces and the calculation gives:

Ta =
ρ2air · ω2 · rg · δ3

µ2
(5.72)

where, in accordance to the previous notation, ρair is the air density, ω is the rotor speed, rg is the
middle radius, δ is the airgap length and µ is the air dynamic viscosity. Increasing the Taylor’s
number above a certain threshold, the Couette flow evolves and axisymmetric toroidal vortex
emerges, turning the flow to Taylor’s flow. In order to keep into account the Taylor-Couette
flow, a modified parameter Ta1is evaluated [176]:

Ta1 = Ta ·
1697 ·

(
0.0056 + 0.0571 ·

(
2·rg−2.304·δ

2·rg−δ

)2)
·
(

1 − δ
2rg

)
π4
(

2·rg−2.304δ
2rg−δ

) (5.73)

The Nusselt number is:⎧⎪⎨⎪⎩
Nu = 2 Ta1 < 1700

Nu = 0.128 · Ta10.367 1700 < Ta1 < 104

Nu = 0.409 · Ta10.241 104 < Ta1 < 107
(5.74)
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When the rotational speed is high Ta1 > 107 the Nusselt number becomes:

Nu = 0.0214 ·
((ρ · vr · dh

µ

)0.8
− 100

)
· Pr0.4 ·

(
1 +

(
dh
L

)0.66)
(5.75)

vr =

√(ωR
2

)2

+ v2axial (5.76)

Substituting all the parameters in (5.71), the α parameter is known and the air thermal resistance
can be modelled.

After the calculation of the air equivalent thermal resistance, the air temperature has to
be computed in order to solve the model. Considering that the inlet air flux is split in inner
air, poles air and outer air three different temperatures will be considered respectively. The
temperature raise is:

∆T =
Q

cair · ρair · vaxial · S
(5.77)

where Q is the heat flux, cair is the air specific heat, ρair is the air density, vaxial is the air axial
speed and S is the cross section. Since the temperature generator depends on the heat flux,
the cooling air flux can be modelled as a thermal resistance. The expressions for the thermal
resistances Rgas−in and Rgas−out are therefore:

Rgas =
∆T

Q
=

1

cair · ρair · vaxial · S
(5.78)

In the poles zone, two temperature generators have to be used, but in the hypothesis of perfect
air mixing (reasonable considering the turbulent flow with open slots) the two impressed temper-
atures will be the same. This temperature value depends on the global heat flux adsorbed by the
air flow, thus two driven temperature generators have been used. In particular, the temperature
Tair−flux is:

Tair−flux =
Q1 +Q2

cair · ρair · vaxial · S
(5.79)

where Q1 and Q2 are the heat fluxes flowing through the driven generators. The two terms can
be easily modelled through the thermal resistance matrix as off-diagonal terms.

5.5.3 Capacitance

The knowledge of the thermal resistances allows to find the temperature distribution in stationary
conditions. The time domain temperature can also be computed if the equivalent thermal
capacity is assessed. The general expression is:

Cth =

∫
V

ρ · csp · dV (5.80)

where ρ is the material density and csp is the specific heat.

5.5.4 Matrix notation

The general Tableau for the thermal network solution is:⎡⎢⎣
[
A
]
n−1×l

[
0
]
n−1×l

[
0
]
n−1×n−1[

0
]
l×l

[
−1
]
l×l

[
A
]t
l×n−1[

Rth

]t
n−1×l

[
Gth

]t
n−1×l

[
0
]t
n−1×n−1

⎤⎥⎦ ·

⎡⎣
[
q
]
l[

∆T
]
l[

T
]
n−1

⎤⎦+

+

⎡⎢⎣
[
0
]
n−1×l

[
0
]
n−1×l

[
0
]
n−1×n−1[

0
]
l×l

[
0
]
l×l

[
0
]t
l×n−1[

0
]t
n−1×l

[
Cth

]t
n−1×l

[
0
]t
n−1×n−1

⎤⎥⎦ · d
dt

⎡⎣
[
q
]
l[

∆T
]
l[

T
]
n−1

⎤⎦ =
[
0
]
2l+n−1,1

(5.81)
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Parameter Symbol Value Unit

Fe conducibility λFe 25 W
mK

PM conducibility λPM 9 W
mK

Air conducibility λair 0.024 W
mK

Shaft conducibility λs 40 W
mK

Air density ρair 1.3 kg
m3

Air dyn. viscosity νair 1.95e− 5 Pas
Prandtl air Pr 0.75 -

Table 5.1: Parameters adopted for the thermal modelling of the magnetic gear.

Figure 5.14: Fluid dynamic simulation of the
magnetic gear with empty slots. The FEM simula-
tions, for simplicity, are 2D. The turbulence model
adopted is the RANS algebraic yPlus of Comsol

Multiphysics [94].
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Figure 5.15: Parametric temperature variation
with the radial dimansion for the case without
slots computed with Comsol and with the analytic

procedure proposed in this Section.

where q and ∆T are the heat fluxes and temperature drop on each branch, Tj is the jth nodal
temperature, A is the incidence matrix, Rth is the termal resistance matrix, Gth is the thermal
conductance matrix. The proposed thermal network is the one depicted in Fig. 5.13. The
solution of (5.81) allows to compute the temperature in each gear domain. These temperatures
normally have to be compliant to the PMs requirements or the maximum temperatures that the
insulation material can withstand. The constraints are formulated as:

Tdomain ≤ Tmax−domain (5.82)

5.5.5 Thermal model validation

As extensively highlighted in this Chapter, the thermal model validation requires complicated
analysis that involve the coupling between fluid dynamics and thermal physics. In order to
simplify the computation, a 2D machine model is adopted for the case of magnetic gear with
open slots, while a 2D axisymmetric model can be adopted in the case of filled slots. The Taylor
vortex cannot be seen in a simple 2D simulation (vortex are intrinsic 3D phenomena), but the
2D axisymmetric case can model the swirl flow and these vortex.

For the analytic model validation, the magnetic gear of Fig. 4.58 is considered. The slots are
considered empty, thus the air is free to circulate between airgaps and slots, while the axial flux
is fixed to vaxial = 1.5 m/s in the casing gap and considered as negligible in the gear airgaps (no
imposed axial flux). The thermal parameters are summarized in Tab. 5.1.

Fig. 5.14 shows the FEM velocity map in the airgaps and slots and the steamline plot. The
counter-rotating effect produces q vortex in the q slots that increase the ventilation losses in the
trasmission. In Fig. 5.15 the comparison between the FEM-computed and analytically-computed
temperatures is reported for different values of the inner rotational speed (the outer is set to the
corrispondent steady state value). The results match with a reasonable approximation.





Chapter 6

Optimized gear design

In order to obtain a competitive device, the magnetic gear has to be optimized. Depending on
the application requirements, the objectives can be different e.g. overall weight, dimensions,
torque density, torque ripple, magnet quantity, efficiency. The optimization variables are all the
geometrical dimensions, the number of inner or outer poles and the materials used to build the
magnetic gear.

The problem to be solved is heavily constrained. The constraints can be divided in two
categories: the explicit ones depend directly on variables or functions of variables and their
evaluation does not require any simulation results while the implicit ones involve the objectives
or other quantities computed through the simulation results. While the former can be checked
directly before evaluating the objective function, the latter can be verified only after the ob-
jective function has been calculated and thus computational resources have been spent. In the
case of real constrained problems, such as the present one, the probability of unfeasible popula-
tion members is generally high due to both implicit and explicit constraints. The detection of
constraint violations at the beginning of the parallel function evaluation reduces memory and
processor usage significantly. Depending on the adopted parallel structure, the population size
can be chosen to be bigger than the number of computational cores relying on the fact that in
each iteration some individuals will be unfeasible.

Depending on the model accuracy, several constraints can be included.
The key is therefore to find an algorithm that allows to find n-dimensional Pareto’s fronts

for k-dimensional problems.
Optimization problems can be solved generally adopting different strategies:

• deterministic algorithms;

• stochastic algorithms;

• genetic algorithms.

Deterministic methods start the research from a seed point and then the consecutive points are
chosen according to some gradient expressions; an example could be the steepest descent method
and the conjugate gradient method. Stochastic methods are based on evolutionary schemes:
they do not involve the derivatives calculation but they follow the ”survival of the fittest” rule.
Common examples are the particle swarm optimization PSO and differential evolution DE.

In this Chapter, a Differential Evolution algorithm has been chosen for the magnetic gear
optimization.

In Sec. 6.1, the complexity definition of a general optimization problem is stated.
Sec. 6.2 reports the DE implementation and discusses how to implement the constraints.
In Sec. 6.3 the optimization problem is formulated with the identification of constraints and

objective functions.
Sec. 6.4 reports the optimization results for a single-stage magnetic gear, while in 6.5 a

multi-stage gear is optimized and discussed.
Finally, in Sec. 6.6 mechanical and optimized-magnetic solutions are compared.
The results shown in this Chapter have also been published in [71, 91, 178, 179, 180].
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Problem type V erifiable in P time Solvable in P time Complexity
P Y es Y es +
NP Y es Y es−No∗ ++

NP − complete Y es Unknown + + +
NP −Hard Y es−No∗∗ Unknown∗∗∗ + + ++

Table 6.1: Summary of optimization complexity. (∗): NP problem which is also P is solvable in P time;
(∗∗) NP-Hard problem which is also NP-Complete is verifiable in P time; (∗∗∗) NP-Complete problem

might be solvable in P time, the rest NP-Hard are not solvable in P time.

6.1 Complexity definition

According to [181], if one word is used to differentiate between easy and hard problems, convexity
is probably the ”watershed”. A set X ⊂ ℜn is said to be convex if all the segments are inside
X:

∀(x, y, α) ∈ X ×X × [0, 1], (1 − α)x+ αy ∈ X

The same property can be defined for a function f : X → ℜ:

∀(x, y, α) ∈ X ×X × [0, 1], f((1 − α)x+ αy) ≤ f((1 − α)x) + αf(y)

which means that all the chords are above the function f . In convex problems if x is a local
minimum of f then x is also a global minimum of f : the optimization of such problems can be
performed using fast gradient-based approaches. When dealing with engineering problems most
of the times the objective functions and-or constraints are nonconvex and therefore the problems
are hard. Since convexity is not topological invariant under change of variables [181] a diffused
technique is the transformation of the problem to an equivalent convex one. This method is
problem-dependent and cannot be applied to arbitrary object functions.

Randomized heuristic algorithms are robust problem-independent search strategies. This is
an important advantage if the objective function is not known or when there is no knowledge to
build a problem-dependent algorithm. The algorithm efficiency is evaluated on the time required
to find the optimal solution: the method is efficient if the solution time is bounded above by a
polynomial function of the problem size.

A classification of the optimization problems have been adopted in the computer combina-
torial fields. If a decision problem is in the P class, there is an algorithm capable of solving it
in polynomial time. If the problem belongs to NP-Hard class, then it is not expected that an
algorithm can find a solution in polynomial time unless P=NP (that still have to be proven, but
the equivalence is considered unlikely) [182]. A brief summary of the optimization complexity is
depicted in Tab. 6.1.

The magnetic gear optimization is in general NP-Hard with non-convex constraints and
objective functions. Because of these reasons, the stochastic approaches are generally adopted
for the electrical machine case, and in this thesis a Differential Evolution strategy is implemented
for the gear optimization.

6.2 Differential Evolution strategy

Evolution strategies and genetic algorithms try to imitate the natural evolutionary behavior.
These method are ”zeroth order” and hence function derivative calculations are not involved.
This feature is particularly useful when the optimization is non-convex and the variables are
integer, discontinuous and discrete. Evolutionary strategies can also be easily run in parallel;
the main drawback is the high number of evaluations of the objective function and the parameters
tuning which is non trivial.
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6.2.1 Mutation and crossover

Mutation and crossover are the essential components of the Differential Evolution method [183].
Starting from an initial random population, mutation is applied as follows:

yt+1
i = xta1 + F · (xta2 − xta3) (6.1)

where xta1, x
t
a2, x

t
a3 are the variable vectors of 3 randomly chosen population members a1, a2, a3

taken at generation t; the result yt+1
i is is the ith of m elements. The crossover operator allows

to combine a previous element xti with a mutated element yt+1
i through a random procedure:

ut+1
i,j =

{
yt+1
i,j ifrandi,j ≤ CR

xti,j otherwise
(6.2)

where t + 1 indicates next generation and the elements ut+1 are the result of mutation and
crossover operation.

One of the main problems in evolution strategies is the choice of the control parameters: in
the case of DE mutation and crossover have to be set in order to prevent premature convergence
or stagnation and to ensure an acceptable convergence ratio towards the global optimum. Since
in DE the perturbation is based on differences between population elements, when the popula-
tion looses diversity the perturbation vanishes and therefore the algorithm stagnates. In order
to avoid premature convergence it is important to calculate the population diversity e.g. by
measuring the variance.

According to [184] if x = (x1, x2...xm) is the current population, y = (y1, y2...ym) is the
intermediate population after applying mutation and u = (u1, u2...um) is the population obtained
crossing x and y, the expected values E() are:

E(V ar(y)) =
(

2F 2 +
m− 1

m

)
V ar(x) (6.3)

E(V ar(u)) =
(

2F 2CR− 2CR

m
+
CR2

m
+ 1
)
V ar(x) (6.4)

where CR is the crossover probability, m is the population size, F is the mutation coefficient

and V ar is the variance V ar(x) = E[(x − x)2]. If 2F 2CR − 2CR
m + CR2

m < 0 the population
variance tends to decrease after mutation and crossover otherwise the variance tends to increase;
this relation has been implemented in order to guarantee an increase the variance.

According to [185], in order to improve the population distribution, NSGA-II concepts have
been implemented: in each step the current individuals and the ones stored inside an archive are
ranked in fronts and the elements on the same fronts are ordered according to their crowding
distance.

6.2.2 Constraints handling

Since multiple constraints handling procedures have been introduced in the algorithm, the bench-
mark problems CF6 and CF7 [186] have been used in order to test the performances. The
benchmark variable space has the same dimension of the magnetic gear case and the objectives
are non-convex subjected to non-convex constraints. The maximum number of iterations in the
CEC contest was fixed to nmax = 300 k.

Three different algorithms have been tested and the results are shown in Fig. (6.1)-(6.6) and
in Table 6.2. DE−direct is a simple DE algorithm with the NSGA-II concepts of multiple front
ranking and crowding distance. DE−direct+reseed is similar to theDE−direct but additionally
a population reseed scheme has been implemented: when the algorithm stagnates, the population
is restarted keeping the previous Pareto front in an archive. DE − indirect + reseed scheme
handles the constraints in an indirect way and reseeding is applied as in the previous algorithm.

Fig. 6.1, 6.2 and 6.3 show the results for CF6. The first part of the Pareto front is well
approximated by all the algorithms; the constraints limit the second and third portion of the
front. Clearly the simple direct implementation is really inefficient when constraints are present.
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Problem Algorithm % unfeasible
IGD

Mean Min Max
CF-06 DE-direct 13.69 0.1266 ± 0.047 0.0406 0.1984
CF-06 DE-direct-reseed 16.8 0.0599 ± 0.029 0.0283 0.1182
CF-06 DE-indirect-reseed 27.42 0.0234 ± 0.0027 0.0186 0.0299
CF-07 DE-direct 12.11 0.3255 ± 0.1266 0.161 0.6982
CF-07 DE-direct-reseed 16.35 0.0881 ± 0.0335 0.0435 0.1583
CF-07 DE-indirect-reseed 29.81 0.0597 ± 0.0135 0.044 0.0858

Table 6.2: Direct and indirect optimization comparison on CEC-09 benchmarks [186]. Maximum
iterations n = 300 k, F = 0.5, CR = 0.55, Pop. size = 100. In the ”reseed” versions population

reseeding is applied when the algorithm stagnates.

Adding the reseeding scheme the performance improves but the standard deviation of the results
is high. The indirect scheme guarantees better results with a far better standard deviation.

Fig. 6.4, 6.5 and 6.6 show the results relatively to the CF7 benchmark. In this case the
constraints are much more severe and the first approach can find only few points of the true
front. The reseeding scheme gives a much better performance but the optimization results are
affected by a high standard deviation. Again, the indirect procedure allows to find a better
Pareto front approximation with lower standard deviations.

NSGA-II directly constrained

The algorithm that has been implemented for magnetic gears is a non-dominated sorting genetic
algorithm (NSGA-II) where the Pareto’s front is split in multi-rank parts and crowding distances
are calculated in order to obtain non-clustered solutions.

The variables on which the solver acts can be classified in geometrical and non-geometrical
variables. The geometrical parameters are all the geometrical parameters of the gear in Fig.
4.58, while the non geometrical parameters are rotational speeds and materials generally.

The flag index represents the geometry feasibility: if its value is zero the geometry does
not violate any constraint, otherwise at each failure a respective flag value is associated. When
flag ̸= 0 the individual violates at least one constraint and the algorithm decides how to proceed.
In case of number of failures during one iteration below a given number, the solver proceeds
with the subsequent iterations. The new calculation can produce a new feasible or unfeasible
individual starting from the previous. The flag can be included inside the domination calculation
as follows:

• If both the points satisfies the constraints, the domination is computed according to the
fitness;

• if one point is feasible while the other is unfeasible the feasible is considered as dominant;

• if both the points violate the constraints, the dominant is the one with the best fitness.

which is similar to an unfeasible elimination scheme. This criterion is easy to be implemented
but the performance will be poor since the unfeasible areas are completely unexplored.

When the constraints are expressed as inequality constraints a different approach may be
adopted given by the unfeasible solution sorting based on the degree of unfeasibility. In each
step the bad points are ranked based on the RMS sum of distances from the constraints. For
example given a set of inequality constraints ϵji < ci where i stands for the constraint number
and j is the population individual identifier, the degree of unfeasibility of the individual j is

γj =
√∑

i ψ
j
i , where:

ψj
i =

{
0 if ϵji < ci

(ϵji − ci)
2 otherwise

(6.5)

In this implementation apart from the heuristic mutation F , crossover CR and population
size Np, additional parameters have to be fixed such as the number of ”bad points” in each
iteration and the number of converted ones because of low rank index.
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Figure 6.1: Direct implementation: minimum
IGD Pareto front of the CF6 function [186].
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Figure 6.2: Direct implementation with reseed-
ing scheme: minimum IGD Pareto front of the

CF6 function [186].
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Figure 6.3: Indirect implementation with reseed-
ing scheme: minimum IGD Pareto front of the

CF6 function [186].
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Figure 6.4: Direct implementation: minimum
IGD Pareto front of the CF7 function [186].
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Figure 6.5: Direct implementation with reseed-
ing scheme: minimum IGD Pareto front of the

CF7 function [186].
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Figure 6.6: Indirect implementation with reseed-
ing: minimum IGD Pareto front of the CF7 func-

tion [186].
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NSGA-II indirectly constrained

Another way to deal with constraints is the indirect implementation: in this case an additional
object that represent the constraints violation is built. In this manner the population naturally
drift through feasible regions, allowing in each iteration also unfeasible points that can be chosen
for mutation and crossover.

In this implementation the control of the unfeasible points in each iteration is lost: if the
constraints are too restrictive, the final solution could have a low populated feasible front and
this is the main drawback of this implementation.

6.3 Optimization problem statement

Depending on the optimization targets (e.g. space limitation, weight limitation etc.), several
objectives can be chosen. In this Section, three variables are chosen:

• Efficiency η to be maximized, computed with the approximated GSE approach in Sec.
4.6.3 for soft materials and with the approach in Sec. 4.7 for hard materials.

• Specific torque Kt to be maximized, computed according to (6.6);

• Number of inner pole pairs Pi, to be minimized.

The algorithm is designed to find global minima hence the efficiency and specific torque are
considered as negative in order to keep the same calculation procedure independently of the
objective functions.

The specific torque Kt is computed only considering the permanent magnets and magnetic
iron weights

∑
wmag and

∑
wiron, neglecting the weight of the shafts and other mechanical

components (such as gear housing, bearings, etc.):

Kt =
max(|Tout|)∑
wmag +

∑
wiron

(6.6)

The number of pole pairs Pi is both an optimization variable and an objective function: gears
with low number of pole pairs are preferred since they are easier to assembly and they require
bigger magnets if compared to gears with equal size and gear ratio, with higher number of inner
poles Pi.

The optimization constraints are summarized in Table 6.3.
The variables that are chosen for the optimization are all the geometrical dimensions of Fig.

4.1, the number of inner and outer pole pairs and the hard and soft magnetic materials. Basic
relations from electrical machines theory are applied to define the search space boundaries: the
magnetic flux density value in the yokes are set and from the magnets magneto-motive force the
yokes dimensions are derived.

6.4 Example of single gear optimization

The Pareto set for a problem with 10 variables is shown in Fig. 6.7. The constraints limitations
on the variable range have been analysed and depicted. The constraints are frequently in conflict:
from Fig. 6.7 an example could be torque density against saturation level. The best trade-off
depends on the objective functions and is the goal of the optimization algorithm. In this Section
the results relative to one single-stage and one multi-stage gear are presented.

The multi-objective optimization results of a single stage magnetic gear with gear ratio
|G| ≃ 8.5 are reported in Figs. 6.8, 6.9, 6.10 and 6.11. The materials have been set as follows:
the iron adopted is 2V −Permendur, a high saturating ferromagnetic material, while the magnets
are NdFeB with grade REN50H. The inner speed is fixed to vin = 1400 rpm, the inner and outer
magnet circumferential segmentation consist of 12 and 3 segments respectively, the axial length
is L = 0.1 m. Fig. 6.8 shows the optimal points location in the objective space: the red dots
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Constraint From Constraint Expression
Magnetic Eq. (4.101) Tmax > Tsim
Magnetic Sec. 3.4 ∆Torque% ≤ ∆Torque%max = 15%
Numerical Eq. (4.18) k(A) < 1e8
Saturation Eq. (4.25) Vsat ≤ V%max = 15 %
Saturation Eq. (5.16) rpmin ≤ rpmlimit

in

Mechanical Eqs.(5.2), (5.3) ωin ≤ kin, ωout ≤ kout
Mechanical Eq. (5.13) σU ≤ kσmax

VM

Mechanical Eq. (5.54) ∆r ≤ ∆r−max; ∆θ ≤ ∆θ−max

Mechanical Eq. (5.57) σVM ≤ σlimit = 50 MPa

Mechanical Eq. (5.18) |ωin−ωres
n−in

ωres
n−in

| ≥ 0.04

Thermal Eq. (5.82) T ≤ Tmax

Efficiency Sec. 4.6 |η| ≥ ηmin = 0.85
Specific torque Eq. (6.6) |Kt| ≥ Kt−min = 10 Nm

kg

Table 6.3: List of implemented constraints for the magnetic gear optimization.
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Pi Po ratio L(m) D(m) Mag. segm. rpmin Mass(kg) Tool mat. Nm/kg To(Nm) η

5 42 8.4 0.1 0.2 12x2, 3x2 1400 12
An. Hiperco50 39.47 473.6 0.997

FEM lin. lossless 37.92 455 0.997
FEM Hiperco50 37.08 445 0.996

Table 6.4: Optimal magnetic gears: analytic (An.) validation through a FEM code.

represent the population in the last iteration while the blue dots are the elements stored in the
archive (see [185] for further details). The specific torque and efficiency increase with the number
of inner pole pairs: since higher pole pairs implies smaller magnets for the same geometry, the
best trade-off design of the outer magnets is also defined by the technological limitations. Fig.
6.9 shows the optimal Pareto set: the outer gap (variable 6) has a great influence on the torque
since all the optimal solutions are crowded near the lower variable boundary. In Fig. 6.10 the
constraint violation of all the optimization test geometries is shown. Fixing the number of inner
pole pairs the specific torque is limited by the saturation constraint (see saturation region in Fig.
6.10) while increasing the number of pole pairs the saturation volume tends to decrease pushing
further the specific torque ratio. Fig. 6.11 shows an example of optimal geometry taken from
the Pareto front: since one objective function is the specific torque, the optimal machines tend
to fill completely the available volume (maximum outer radius) and to be hollow.

Tab. 6.4 reports the results comparison obtained for the optimal geometry in Fig. 6.11: the
analytic torque and efficiency are compared with the ones computed through the commercial
finite element code. For the analytic case, PMs losses are computed through the simplified
approach (4.130), while soft magnetic material losses are computed through the GSE model
(4.117). According to the low losses obtained in [150], the high efficiency values obtained in Tab.
6.4 are due to the PMs segmentation.

6.5 Multi-stage gears

When high ratio mechanical gearboxes are designed, a common practice is to adopt a multi-shaft
structure. The same concept can be applied to magnetic gears: in this case the machine becomes
a three stage device with an inner, outer and middle shaft, where one magnetic gear is placed
inside another hollow magnetic gear resulting in a multi-stage coaxial gear. In [187] different
connections between magnetic gears are analyzed and optimized; the cascade-connection seems
to be the most promising in terms of efficiency and torque density. The approach used in
[61] imposes a homogeneous Neumann condition on the inner and outer boundaries while the
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solution in the airgaps is known up to a constant A0 that is normally fixed to zero. Adopting the
hypothesis of infinite permeability, the inner and outer magnetic gears can be studied separately
adopting the same gauge A0 = 0. The middle iron forms a closure path for the flux lines and the
magnetic fields inside the low permeability regions of the multi-stage gear are exactly the same
in the two separated gears. Therefore, considering the magnetic vector potential Az along the
two sides of the middle iron and given the relative displacement δ between the inner and outer
gears, the magnetic vector potential inside the middle iron can be computed.

The minimum simulation angle of inner and outer gears referred to the middle rotor of the
multi-stage gear are respectively ∆out = 2π

Poout·qout
and ∆in = 2π

Piin·qin , where the index out
means outer gear and in identifies the inner gear. Since the effect of inner and outer gear
generally have different periodicities, a global rotation of the middle rotor ξ equal to 2π have
been considered.

Considering two equal magnetic gears with ratio z and torque per unit mass k, one solution
that allows to obtain a reduction ratio k2 is the cascade connection. The output shaft torque is
c, the medium shaft torque is c

z and the input torque is c
z2 . The overall torque density (Nm/kg)

is:
Ktot =

c

kg2 + kg1
=

c
c
k + c

k·z
= k · z

z + 1
(6.7)

when the ratio of the single stage z is high, the overall torque to weight ratio can be approximated
to the single stage specific torque k.

Combining two different gears with reduction ratios z1, z2 and torque per unit mass k1, k2
the relation becomes:

Ktot =
c

kg1 + kg2
=

c
c
k2

+ c
k1·z2

=
z2 · k1 · k2
k2 + z2 · k1

(6.8)

The contour plot of (6.8) has been reported in Fig. 6.14. The Torque per unit weight k1 and
k2 are variables in the range (10 − 50) Nm/kg while the ratio of the second gear z2 varies in
the range (2− 40). From the results analysis the torque per unit weight of the combined gear is
always lower the maximum torque per unit weight of both the stadiums. Rearranging (6.8) as
Ktot = xy

x+y , Ktot < x,Ktot < y ∀x, y > 0. It is worth to notice that when the transmission ratio
of the second gear is sufficiently high the influence of the first stadium torque to weight ratio is
low on the overall torque to weight, regardless the first stadium transmission ratio. In order to
obtain an high overall torque per unit weight both the second stage ratio and the product z2 ·k1
have to be the high.
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stad. Pi Po ratio L(m) D(m) Mag. segm. rpmin Mass(kg) Tool mat. Nm/kg To(Nm) η

Slow
Fast

2
2

11
9

5.5
4.5

0.1 0.2
30 × 2, 8 × 2
30 × 2, 8 × 2

1111
5000

19.52
An. NO20 15.29 298.5 0.995

FEM lin. lossless 14.75 288 0.997
FEM NO20 13.93 272 0.996

Table 6.5: Optimal magnetic gears: analytic (An.) validation through a FEM code.

When the input shaft speed is high, the geometry may be affected by the peripheral rotor
speed or the efficiency of a single stadium gear can be low. If two gears are combined these
problems can be avoided.

For a given multi-stage transmission, the inner and outer gear will be referred with the indexes
in and out respectively and the geometrical parameters are in accordance with the ones adopted
in Figs. 6.12 and 6.13. The outer machine radius has been fixed to R13 = 0.1 m as well as the
axial length L = 0.1 m. The variables are therefore all the 13 geometrical variables (see Figs. 6.12
and 6.13). The target gear has a gear ratio |G| = 25, an inner speed vinner = 5000 rpm and the
inner number of pole pairs for both inner and outer magnetic gear are fixed to Piin = Piout = 2.
The number of outer gear outer pole pairs Poout has been chosen as variable ranging in the
discrete set {9, 11, 13, 15} in order to avoid integer gear ratios. The inner gear ratio is therefore
found satisfying the requirement on the overall gear ratio |G|. The last optimization variable is
the relative displacement angle δ described in Figs. 6.12 and 6.13. The ferromagnetic material
is fixed to NO20 and the magnets have a fixed grade REN 50H.

Figs. 6.15, 6.16, 6.17 show the Pareto front, set of variables, flag violation history during
the iterations with the same conventions adopted in Figs. 6.8-6.11. The optimization variables
are the specific torque and efficiency of the global machine. As can be seen in Fig. 6.15, the
front is divided in two parts: the solutions with an outer gear ratio |Gout| = 4.5 provide a lower
specific torque but an higher efficiency, while the opposite happens when |Gout| = 5.5. Another
interesting fact also visible from Fig. 6.16 is that the optimal multi-stage solutions seem to be
composed by equal gear ratio units since the optimal variable Poout lies exactly in the middle of
the given range. Therefore, given a target gear ratio |Gn| that has to be obtained through two
connected stages, each single stage should have a gear ratio close to

√
|Gn| if the constraints

are satisfied rather than having two units with very different gear ratios. Fig. 6.17 shows the
flag violations plot: high saturation and low specific torque are the most severe constraints in
accordance with the objective functions choice. Finally, Fig. 6.18 shows an optimal geometry
point chosen from those in Fig. 6.15.

Tab. 6.5 shows the results regarding a multi-stadium gear compared to the 2D FEM analysis
results, where the transmissions are disposed in line (not one inside the other): the torque
values on the outer rotor To computed through the analytic model are slightly over-estimated in
comparison to the FEM procedure while the efficiencies computed with both methods matches
since the loss estimations are based on the same approach of Sec. 4.6.3.
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Figure 6.14: Analytic contour of (6.8). For a fixed target torque c, higher gear ratios on the second
stage lead to a lower effect of the first stage specific torque.
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ID ratio Pi Po L(m) D (m) Weight (kg) (Nm/kg) To An. (Nm) To FEM (Nm) η An.
1M 8.4 5 42 0.1 0.4 43.46 50.1 2177 2080.5 0.9963
2M 8.5 4 34 0.1 0.4 36.38 45.89 1667 1506 0.996
3M 8.33 3 25 0.1 0.4 27.64 35.82 990.1 889.3 0.996
4M 8.5 2 17 0.1 0.4 26.934 15.61 420.4 392.1 0.995
5M 27.5 2 55 0.1 0.4 55.05 22.67 1248 1109 0.9922

Table 6.6: Examples of optimal magnetic gears: the input speed is fixed to vin = 1400 rpm, while the
magnets segmentation pattern is fixed to 15 × 2 for the inner PMs and 4 × 2 for the outer PMs. The
ID column is an identifier, and M stands for magnetic. The weights does not include housing, shaft and

bearings.

ID code ratio L D rpmin weight (kg) Torqued.(Nm/kg) To(Nm) Eff.
1H mec502C 8.38 0.2 0.2 1400 16 225/16 = 14.06 225 0.96
2H mec502C 25.85 0.18 0.18 1400 16 320/16 = 20 320 0.96
3H mec702C 8.82 0.2 0.2 1400 32 410/32 = 12.81 410 0.96
4H mec702C 29.23 0.2 0.2 1400 32 675/32 = 21.09 675 0.96
5H mec852C 8.33 0.26 0.38 1400 80 800/80 = 10 800 0.96
6H mec852C 25.88 0.26 0.38 1400 80 1600/80 = 20 1600 0.96
7H mec1200 8.15 0.3 0.412 1400 120 2100/120 = 17.5 2100 0.96
8H mec1200 27.78 0.3 0.412 1400 120 2900/120 = 24.16 2900 0.96
9H mec1102 8.15 0.3 0.45 1400 165 3400/165 = 20.6 3400 0.96
10H mec1102 27.78 0.3 0.45 1400 165 4500/165 = 27.27 4500 0.96
11H mec853C 70.05 0.32 0.22 1400 71 1800/71 = 25.35 1800 0.94

Table 6.7: Mechanical gears data, retrived from [188]. The ID column is an identifier, and H stands
for hydraulic mechanical gearbox.

6.6 Comparison between magnetic and mechanical gears

Tab. 6.6 reports some examples of optimal points taken from 3D Pareto fronts for different gear
ratios. The optimizations are similar to the one in Sec. 6.4, with 3 objectives and single-stadion
transmissions. The outer gear size axial length L and diameter D are fixed, while the constraints
have been fixed as in Tab. 6.3. From 6.6, it is clear that higher pole pairs give higher torque
densities keeping constant axial length and outer gear diameter: this is due to the lower fluxes in
the yokes that allows to further reduce the yokes size. In turn, higher pole pairs lead to smaller
PMs and iron poles, thus mechanical and manufacturing limits become more important.

In order to compare the torque densities with the ones of equivalent mechanical transmissions,
Tab. 6.7 reports the details of the conventional gears retrived from [188], where the weight
includes the lubrication oil. If from one side the torque density can quickly compared between
Tabs. 6.7 and 6.6, a detailed comparison require to set some common parameters between the
gearboxes. For example, if the target outer diameter D is set to D = 0.4 m and the gear ratio k
is set to 8 ≤ k ≤ 8.5, 1M could be compared to 7H. The outer torque is appreciatively the same,
while the weight is lower for the magnetic gearbox case. According to Sec. 1.2, the prototypes
so far reached a maximum torque density of Kmass ≈ 20Nm/kg, value which is comparable to
the ones found in Tab. 6.6 (but shafts, housing and bearings weight have not been estimated).
The efficiency is higher for the magnetic transmission case. Another interesting comparison
could be between 5M and 8H, where outer diameters and gear ratios are appreciatively equal.
The mechanical outer torque is 2.6 times higher since the axial length is 3 times higher. Since
both magnetic gear torque and weight grow linearly with the machine length, the torque density
remains constant changing the machine length (in the hypothesis of non-violated constraints
due to the increased length in Tab. 6.3). The torque density is approximatively the same for
the mechanical and magnetic transmissions. This is mainly due to the high saturation values
reached with low number of pole pairs. In Figs. 6.19 and 6.20 the constraint violation and the
geometry that results in the highest torque density for the optimization of the 5M-type gear are
shown. The most severe constraints is the high saturation one, in Fig. 6.20 the yokes give the
highest contribute on the gear mass.

The mechanical gear 11H in Tab. 6.7 is made by three mechanical stages and such a high
gear ratio is difficult to be obtained with a single magnetic gear stage. In order to compare
this solution with a combination of two magnetic gears as explained in Sec. 6.5, three solution
are adopted, as reported in Tab. 6.8. All the magnetic gears have the same fixed maximum
diameter D = 0.2 m, similar to the mechanical one 11H. The cascade connection is therefore
made placing the second stage consecutively to the first gear stage, while in Sec. 6.5 the high
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opt Pi Po ratio L (m) D (m) segm. rpmin Weight (kg) Nm/kg To Nm η
First 5 42 8.4 0.037 0.2 12x2, 3x2 1400 4.52 39.53 178.26 0.997

Second 5 42 8.4 0.312 0.2 12x2, 3x2 1400/8.5 38.33 39.53 1515.2 0.995
Coupled − − 70.56 0.349 0.2 − 1400 42.85 35.36 1515.2 0.992
First 6 16 2.667 0.0068 0.2 10x2, 3x2 1400 1.38 39.83 55.1 0.997

Second 2 55 27.5 0.28 0.2 15x2, 8x2 1400/2.67 50.49 23.03 1515 0.996
Coupled - - 73.43 0.28 0.2 − 1400 51.87 29.21 1515 0.993
First 2 55 27.5 0.069 0.2 15x2, 8x2 1400 24.86 22.85 568 0.992

Second 6 16 2.667 0.187 0.2 10x2, 3x2 1400/27.5 38 39.83 1515 0.997
Coupled - - 73.43 0.256 0.2 − 1400 62.86 24.1 1515 0.989

Table 6.8: Combinations of optimal magnetic gears to trying to obtain the total gear ratio ktot = 70.05
of the gear 11H in Tab. 6.7. The weight estimations does not include housing, bearings and shaft.

speed stage was directly embedded in the low speed stage. The first case in Tab. 6.8 adopts
two equal gears with gear ratio k1 = k2 = 8.5; in accordance to the conclusions in Sec. 6.5, this
solution results in the maximum torque density.

In the second and third case, two gears with k1 = 2.67 k2 = 27.5 and k1 = 27.5 k2 = 2.67
are connected respectively. These solutions results in a torque density that is still comparable
to the one obtained from the mechanical solution 11H (again the weight of shafts, housing and
bearings is not included), but lower than the equal stage case. The efficiencies are for all the
cases higher than the mechanical ones.



Chapter 7

Damping effects in magnetic
gears

As already introduced in Sec. 2.4.5 and simulated in Sec. 3.5, the asynchronous operation offers
an intrinsic advantage since mechanical frictions are no more required in the transmission chain.
On the other hand, special care has to be taken if the synchronism is lost, since the rotors speed
can become excessive [189, 37]. A common constructive practice is to fill the slots between the
iron poles with epoxy resins or glass fibers and normally stainless-steel rods are adopted for
enhancing the structure’s stiffness. In this Section the iron poles rotor has a fixed position and
the rods are connected together when the synchronism is lost through an external switch. Thus,
in analogy with damping windings of synchronous machines, a damping effect is introduced to
limit the rotor rotational speed. The switch could be commanded also to damp the oscillations
due to rapid dynamics that normally arise because of mechanical load or speed variations. The
effect is the same obtained in [37] without adding damper windings.

This Chapter is organized as follows: Sec. 7.1 describes the test case geometry and the model
adopted for the equivalent network.

In Sec. 7.2 the 2D (FEM/BEM) technique adopted in Sec. 4.2 is equipped with the circuit
equations needed for the rods-cage modelling.

In Sec. 7.3, the circuital 2D FEM/BEM is validated through the comparison with Comsol
Multiphysics [94] for both static and quasi-static cases.

In Sec. 7.4, the rods-cage damping effect is shown for the test case geometry and the com-
putational time is compared to the commercial FEM one.

7.1 Magnetic gear geometry

The crucial component in magnetic gears is the flux modulator. Large forces are developed on
the iron poles (Sec. 5.3), thus glass fibres, epoxy resins and stainless rods are normally adopted
to enhance the iron pole stiffness (Sec. 5.4.2). A possible solution is shown in Fig. 7.1, where
a magnetic gear with Pi = 2 inner pole pairs, Po = 11 outer pole pairs and q = 13 pole pieces
is equipped with 2q stainless rods, and the assembly of rods and iron poles is encapsulated
with glass fibres. The rods are practically solid conductors with a conductivity in the order
of σ ≃ 1 MS/m. Normally the induced eddy currents have a negligible effect, but if the bars
are short circuited through conductive rings, a closed cage is built and the current is free to
circulate. The lumped equivalent circuit is depicted in Fig. 7.2, where the model of the outer
rings is constituted just by a resistive network (since the end-ring self and mutual inductances
calculation would require a 3D FEM calculation).

7.2 Problem formulation

The usual 2D vector potential formulation adopted in this thesis reads:

σ
VPM

L
+ σ

∂Az

∂t
−∇ · ν∇Az = Jz + ∇2D ×M(Az) (7.1)
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Parameter Symbol Value

Inner radius Rin 0.02 m
Inner yoke yin 0.02 m

PMs thickness tPM 0.01 m
Airgaps size tgap 0.002 m

Poles thickness tpole 0.01 m
Outer yoke yout 0.014 m
Rods radius rrods 0.001 m
Axial length L 0.1 m

Figure 7.1: Test case geometry with M2 stainless steel rods (orange color) positioned close to the inner
airgap. In this Section, the flux modulator is fixed, while inner and outer rotors can rotate.
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Figure 7.2: Circuit scheme of the magnetic gear with bars: the ring model is considered as a purely
resistive network in this case, while inductances are used symbolically in the picture but are actually

modelled by FEM.
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where, in accordance to the previous notations, Az is the z component of the vector potential, σ is
the electrical conductivity, VPM is the voltage between the permanent magnets (PMs) end faces,
L is the machine length, ν is the reluctivity, M(Az) includes the nonlinear iron magnetization or
the linear PMs magnetization and Jz is the source current density. In the case of non-magnetic
solid conductors or single turn windings, (7.1) reads [190]:{

σi
∂Az

∂t −∇ · ν∇Az − σi

Si

∫
Ωi

∂A
∂t dΩ = ii

Si
L
Si

∫
Ωi

∂A
∂t dΩ + ii

σiSi
= ei +Ri · ii = ui

(7.2)

where σi, Si, Ωi are the ith bar conductivity, cross section and computational domain, ii, ui, Ei

and Ri are the ith bar net current, voltage, electromotive force and resistance respectively (see
Fig. 7.2).

Following the same steps in Sec. 4.2, Eqs. (7.1), (7.2) and the BEM equations are coupled
with two mechanical ordinary differential equations (ODE) as shown in Sec. 4.2.3:

J
d2θ

dt2
+
(
b+ kfan · dθ

dt

)
· dθ
dt

= Tem(θ) + Tmecc (7.3)

where J is the rotor inertia, b and kfan are the linear and cubic damping factors due to bear-
ings and air friction respectively, θ is the rotor angular position, Tem is the electro-magnetic
torque developed on the rotor and Tmecc is the external mechanical torque applied. When the
switch closes, their resistance value in the circuit equations changes accordingly. In Eq. (7.1),
considering the case of insulated and segmented PMs, VPM = L

Si

∫
Ωi

∂A
∂t dΩ and σ is taken as

a fictitious value σ′ = σPM/k to consider the segmentation effect. In particular this reduction
factor is k = 10 for the outer PMs and k = 4.5 for the inner ones in accordance to the results
found in Sec. 4.8.

Since the time domain simulation is computationally expensive, theθ-method scheme adopted
in Sec. 4.2.3 is equipped with a simple adaptive feature: the time step ∆t is doubled if the number
of nonlinear iterations is below a fixed threshold (and vice versa).

7.3 Model validation

In Fig. 7.3, the model is validated with a constant speed quasi-static problem where the initial
solution is the null vector: at t = 0 s the magnetic field starts to diffuse and the torque grows till
the steady state value. Adopting the same discretization, the FEM/BEM results are closer to
the quadratic order FEM case because of the BEM higher accuracy. The same simulation is run
in Fig. 7.4, with short-circuited rods and Rc = 1 µΩ in Fig. 7.2. In order to obtain the same
solution accuracy, the FEM degrees of freedom in the airgap have been increased by a factor
2. The bar current is reported in Fig. 7.5: the initial peak is due to the sudden magnetization
step at t = 0 s. The electromagnetic torques on the inner and outer rotors required to keep the
stationary-speed regime are higher in Fig. 7.2 than Fig. 7.3, because of the damping effect due
to the rods cage.

7.4 Damping effect

The magnetic gear studied in this Chapter has the parameters in Tab. 7.1. The rotors inertias are
lower than the real values for this test case in order to reduce the mechanical time constants and
consequently the computational time required, but the steady state results are not affected. The
power source connected to the inner shaft is supposed to deliver a constant torque Tmecc below
the maximum power point and a constant power above the same point. When the synchronism
in lost, in the hypothesis of no action from the source controller (because of slow operation or
fault in detection systems), Eq. (7.3) for the inner rotor can be written as:

Jin
dωin

dt
+ (kq + ke) · ω2

in + binωin = Tmecc =
Pmax

ωin
(7.4)
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Figure 7.3: Validation of the proposed algorithm with open-ended bars through the comparison with
the commercial FEM Comsol. Inner and outer speeds are fixed according to the gear ratio ωin = 5000

rpm ωout = −909 rpm.

0 1 2 3 4 5 6

Time in s ×10-4

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

T
o
rq

u
e
 i
n
 N

m

Ramp with short-circuited bars

Outer torque FEMBEM

Inner torque FEMBEM

Outer torque FEM lin

Inner torque FEM lin.

Outer torque FEM quad.

Inner torque FEM quad.

Outer torque FEM lin finer mesh

Inner torque FEM lin. finer mesh

Figure 7.4: Same simulation of Fig. 7.3 with short-circuited bars.
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Figure 7.5: Current comparison for one bar for the simulation in Fig. 7.4.

where kq is the quadratic damping term that includes the air friction coefficient kfan and the eddy
current loss in yokes and iron poles, ke is the electrical damping coefficient that includes eddy
current losses in PMs and also the losses associated to the rods currents. Thus, the transmission
electromagnetic loss due to iron sheets and PMs previously embedded in the term Tem of (7.3)
have been incorporated into kq and ke respectively.

In order to show the rods-cage damping effect, two identical simulations have been used,
one with open switch and the other with closed switch. The magnetic gear is in a zero-torque
equilibrium as initial condition and a step torque Tmecc = 30 Nm is applied at t = 0, causing
the asynchronous operation of the magnetic transmission.

Fig. 7.6 shows the steady state solutions varying kq and ke and the dynamic response of the
nonlinear ODE (7.4). Magnetic gears with high mechanical and electromagnetic efficiency have
small kq coefficients and the reduction effect due to the electrical damping ke is more visible.
For the study case under investigation, the simulation time is in the range [0−0.05] s, according
to Fig. 7.6.

Fig. 7.7 shows the comparison between the inner and outer rotor torques for the cases with
open and closed switch. When the rods are not connected, the torque components are sinusoidal
and the inner torque has a small negative DC bias due to the PMs eddy current loss. In the
closed-circuit case, the negative DC bias is bigger because of the additional damping contribute
due to the rods. This DC bias allows to reduce the stationary speed, as visible in Fig. 7.8. The
inner rotor tip speed is reduced from ωin = 23.3 krpm to ωin = 13.7 krpm, with a reduction
factor k = 1.71. Therefore, the rods-cage damping effect can prevent mechanical failures in
the fast transients during the asynchronous operation. The bar current peak in steady state is
Ip = 150 A and the closed-switch operation is limited by the rods over-temperature limit ∆T .
According to the geometry and the material parameters, the limit operation time with closed
switch has been estimated as ∆t = 1.9 s in adiabatic conditions according to cρVb∆T = Pb∆t,
where c = 500 J/kgK, ρ = 7800 kg/m3, Vb = 314 mm3 and Pb ≈ 500 W are specific weight,
heat capacity, volume and power loss of each bar (∆T = 800 K).

In Tab. 7.2 the FEM/BEM code time is compared with the commercial software Comsol.
The discretization in Comsol is based on linear shape functions and the time domain problem
is solved through a backward difference method (BDF) with fixed time step ∆t = 1e− 4 s. The
simulations are run on a workstation with two 6-core 12 thread processors (Intel Xeon E5645
@2.4 GHz) and 112 GB of RAM. For both cases, DOF ≈ 40k holds. The case study 2 is a gear
initially operating in steady state with open switch. At t = 0.18 s, the outer rotor is suddenly
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Quantity Symbol Value Unit
Inner pole pairs Pi 2 -
Outer pole pairs Po 11 -
Modulator poles q 13 -

Inner rotor inertia Jin 1E − 4 kgm2

Outer rotor inertia Jout 0.17 kgm2

Inner rotor damping bin 1E − 3 Nm · s/rad
Outer rotor damping bout 1.7 Nm · s/rad

Air friction + iron loss kq 1E − 6 Nms2/rad2

Nominal inner speed ωin 5000 rpm
Failure speed ωmax

in 15 krpm
Nominal torque Tmecc−n 30 Nm

Max source power Pmax 18 kW
Rings resistance Rc 1 µΩ
Rod conductivity σr 1.45 MS/m
PMs remanence Br 1.2 T

Table 7.1: Electro-mechanical parameters: the rotor inertias are lower than the real ones (≈ 1/10)to
limit the computational time.
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with kq = 1e− 6 Nms2/rad2 according to Tab 7.1 (right).

Switch state Tool Method Convergence Time
Open Comsol BDF Tol. factor τ < 0.1 15148 s
Open FEM/BEM θ-method Rel.Tol. γ < 10−4 7057 s
Closed FEM/BEM θ-method Rel.Tol. γ < 10−4 8072 s

Table 7.2: Computational time for FEM/BEM and commercial code. Both methods adopts linear
shape functions.



Chapter 7. Damping effects in magnetic gears 133

0.04 0.045 0.05

Time in s

-150

-100

-50

0

50

100

150

T
o
rq

u
e
 i
n
 N

m

Open switch

Outer torque

Inner torque

0.04 0.045 0.05

Time in s

-150

-100

-50

0

50

100

150

T
o
rq

u
e
 i
n
 N

m

Closed switch

Outer torque

Inner torque

X: 0.0478

Y: -31.33

X: 0.0466

Y: 20.33

X: 0.0478

Y: -42.13

X: 0.0484

Y: 30.97

Figure 7.7: Comparison between the electromagnetic torques of inner and outer rotor in steady state
for the cases with open and closed switch. The PM eddy current loss and rods-induced currents generate

a constant resistive torque. The steady state rods current density is J ≈ 50 A/m2.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Time in s

0

0.5

1

1.5

2

S
p
e
e
d
 i
n
 r

p
m

 (
d
a
s
h
-d

o
t 
lin

e
)

×104

0

10

20

30
T

o
rq

u
e
 i
n
 N

m
 (

s
o
lid

 l
in

e
s
)

Inner speed open sw.

Inner speed closed sw.

Outer speed open sw.

Outer speed closed sw.

T
mecc

 open sw.

T
mecc

 closed sw.

X: 0.0495

Y: 1.366e+04

X: 0.0488

Y: 2.332e+04

Figure 7.8: Inner rotor speed and external torque for open and close switch cases. The rods-cage
decreased the tip speed by a factor k = 1.71. Since the source is power-limited, the torque Tmecc is

higher in the case with lower speed.



134 Chapter 7. Damping effects in magnetic gears

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Time in s

-200

-150

-100

-50

0

50

100

150

200
T

o
rq

u
e
 i
n
 N

m

Outer torque

Inner torque

Sudden block

outer shaft

Switch trigger

Phase 2Phase 1

Figure 7.9: Inner and outer torques (study case 2). In phase 1 the gear operates in steady state and
at t = 0.18 the outer rotor is suddenly blocked. The rods switch is triggered when the inner rotor speed

is ωin > 10 krpm.

0 0.025 0.05 0.075 0.1 0.125 0.15

Time in s

-1

0

1

2

S
p

e
e

d
 i
n

 r
p

m

10
4

-20

0

20

40
T

o
rq

u
e

 i
n

 N
m

Inner speed

Outer speed

T
mecc

Sudden block

outer shaft

Source controller

operates

Phase

2

Phase 3Phase 1

Switch trigger:  >10 krpm

Figure 7.10: Inner, outer rotors speed and external torque (study case 2). Phase 1 is the steady state
operation, phase 2 is the accelerating fast inner transient and phase 3 is the damped transient till stop.

The maximum inner speed in phase 2 is the same obtained in Fig. 7.8 with closed switch.
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blocked and the operation becomes asynchronous. Considering that the source controller takes
∆t = 15 ms to detect the fault and nullify the source power, the inner rotor starts to accelerate
and the switch closes when the rotor speed ωin > 10 krpm. Figs. 7.9 and 7.10 show the torques
and speed for this test case. The rods damping is fundamental to reduce the rotor speed in
phase 2 of Fig. 7.10.

The switch could also be commanded in order to reduce the oscillatory performance when
sudden load variations occur. In this case, the switch should be replaced with electronic transis-
tors in order to change the circuit impedance smoothly form the closed circuit state (damping
phase) to the open circuit one (undamped phase). This solution is proposed to avoid the os-
cillatory behavior due to the quick transition between the damped and undamped phases. A
further advantage of the electronic switches is the possibility to control the current that flows in
each bar through thermistors and vibration detectors. With a proper control, the bars can be
automatically short-circuited when speed oscillations occur, and the thermistors can limit the
asynchronous operation when the rods temperature become excessive. This solution is clearly
more expensive than the mechanical switch, but it could help to increase the low torsional rigidity
in dynamic conditions.





Chapter 8

Conclusions and future work

In this thesis, a complete modelling and optimization approach for magnetic transmissions is
presented. The approach consists of an initial magnetic gear design tool based on a fast and
simplified magnetic analysis, which is coupled with mechanical and thermal constraints and
embedded into a Differential Evolution scheme. This efficient optimization tool allows to identify
the optimal Pareto set and front once the objective functions are chosen. The detailed analysis of
designs on the Pareto front can be conducted through the proposed Finite Element / Boundary
Element method, that allows to include non linearities, motion, eddy currents, circuit equations
and mechanical equations which are neglected or highly simplified in the analytic model. A
special effort has been devoted to increasing the efficiency of the numerical FEM/BEM technique:
a powerful acceleration method (Anderson acceleration) has been implemented and successfully
tested on different classes of electro-magnetic problems and implemented, providing iteration
reductions up to 75%.

Models for hysteresis simulation in laminated sheets cases and for the non-linear BH simula-
tion of permanent magnets are also proposed and validated in the case of in-situ magnetization
of a segmented-PMs rotor.

All the proposed algorithms have been compared to commercial Finite Element codes or to
experimental data retrieved from literature.

For the future work activity, the most important step is the validation of the algorithms
through the comparison with measurements on a magnetic gear prototype. As already explained
in the Abstract, this activity was originally planned, but because of external factors the prototype
has not been built, although several companies declared their interest and preliminary discussions
and technical meetings were held.

Furthermore, an investigation that would be important concerns the analysis of demagne-
tization due to bad alignment of the rotors and to permanent magnets over-temperature. The
algorithm introduced for the analysis of magnetization, demagnetization and recoil developed in
this thesis can be adopted for this purpose.

Finally, the 2D FEM/BEM algorithm developed in this work can be extended to the 3D case,
since magnetic gears two-dimensional simulations are known to over-estimate the stall torque
because of possible non negligible fringing and end effects.
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Appendix A

Julia code

The code examples reported in this appendix aim at guiding the reader interested in the Julia
programming language in understanding some of the basic operations normally required for
numerical modelling. The code snippets are extracted from the developed software.

A.1 Methods

The Julia language is based on multiple dispatch, thus methods and functions are polymorphic
and each operation selects dynamically the best implementation among the ones available based
on the arguments being processed. Let us consider for example the sum operation: typing + on
the command window the available methods are shown:

+ has 181 methods:
+(A:: AbstractArray , B:: AbstractArray)
+(A::Number , B:: AbstractArray)
+(A:: AbstractArray , B:: Number)
+(A:: Bidiagonal , B:: Bidiagonal)
+(A::BitArray , B:: BitArray)
+(x::Bool , y::Bool)
+(x::Bool , y::T)
+(y:: AbstractFloat , x::Bool)
+(x::Char , y:: Integer)
+ . . .

The sum of two AbstractArrays is different from the one of two Bools and so on. Each
operation is optimized based on the type of the arguments, and this is one of the peculiarities
on which Julia bases its speed while allowing a very high level syntax.

A.2 Call external code

In Julia calling external high-quality, mature libraries for numerical computing already written
in C and Fortran does not require the use of wrappers. For example the following code shows a
direct call to the DQRINC Fortran subroutine included in the QRUPDATE dynamic link library
[191] .

function dqrinc !(Q,R:: Matrix{Float64},x:: Vector{Float64})
# matrix in input must have the dimension of Q1 and R1!!
#input parameters
m::Int64=size(Q,1);
n::Int64=size(Q,2) -1;
k=n;
ldq::Int64=max(m,k);
ldr::Int64=n+1;
w=zeros(Float64 ,k);
j=n+1;
ccall(("DQRINC","QRUPDATE.dll"),Void ,(Ptr{Int64},Ptr{Int64},...,&n,&k,Q,&ldq ,R,&ldr ,&j,x,w)

end

The subroutine in the external library is called with just one line of code, where the pointers to the memory locations
or the objects are set.

A.3 Parallelism

In Julia code parallelization can be achieved with limited effort, with mechanisms similar to
those provided by OpenMP or MPI.
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The following code shows a toy code with OpenMP-like parallelization, similar to the ”parfor”
syntax provided by Matlab :

function parallel test()
@time for i=1:5

sleep (1);
end
@time @sync @parallel for j=1:5

sleep (1);
end
nothing

end

#The output calling parallel test are:
addprocs (5);
parallel_test ();
5.0086 seconds (25 allocations: 960 bytes)
1.0054 seconds (768 allocations: 46.313 KiB)
#parallelism works!

MPI-like parallelization is shown in the following code, where the computation of the function
field shared chunk is segmented in multiple chunks and the function myrange assigns tasks to
the different workers:

@everywhere function myrange(q:: SharedArray)
idx = indexpids(q)
if idx == 0 #master worker

return 1:0, 1:0
end
nchunks = length(procs(q))
splits = [round(Int , s) for s in linspace(0, size(q,1), nchunks +1)]
out:: UnitRange{Int64}=splits[idx ]+1: splits[idx +1];
return out

end

@sync begin
for p in procs(cBx)

#processor has the identifier p!
@async remotecall_wait(field_shared_chunk!,data..., myrange(cBx))

end
end

The different mechanisms to call parallel tasks provide maximum flexibility, since the code
can be effectively optimized based on the hardware and on the requirements.

A.4 Memory profiling

Julia natively offers several tools to measure execution time and to track memory allocations.
The macros @timev, @elapsed, @profile are available for this purposes. A toy example is
shown below. Launching Julia in track-allocation mode, the file emf.mem contains the memory
allocations of each single source code line:

#emf.mem memory alloc tracker
- function main()
- temp =0.0;

80096 a=zeros (10000);
0 emf!(a,temp);
0 return nothing
- end
-
- function emf!(a,temp)
0 for i=1: size(a,1)
0 a[i]=i^2;
0 temp=temp+i;
- end
0 return nothing
- end

@timev main()

#The results in the command window are:
0.000045 seconds (6 alloc: 78.359 KiB)
elapsed time (ns): 45340
bytes allocated: 80240
pool allocs: 5
malloc () calls: 1

The memory allocations are therefore easy to track for an immediate feedback on code bot-
tlenecks.

A.5 Finite element matrices assembly

This part is standard and the commented code is reported below. It is worth noting the compact
syntax of the routine and the math-like expressions of the quantities.

@time for iel =1:nf #sweep on triangles , track assembly time and allocations!
nd:: Vector{Int64}=facs[:,iel]; #nd contains the nodes index of the ie1 triangle 3X1
v=coords[:,nd];
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∇λ,area ,k0= trinorm(v); #∇λ is a matrix 2X3 with the gradient of Φ1,Φ2,Φ3
#of the vertex of the iel tri
if (area<=0) #check on area: if non positive oriented tri , break

print("impossible negative area");
break

end
#curl matrix: in 2d=gradient rotated
rotx [1:3,iel]=∇λ[2 ,1:3];
roty [1:3,iel]=-∇λ[1 ,1:3];
Weights :: Vector{Float64}=area*w gauss;
for igp =1: rules.npoints #sweep gauss points

ip=ip+1;
for i=1:3 #sweep tri nodes of current tri

nd2 [1]=nd[i];
∇wi:: Vector{Float64}=view(∇λ,1:2,i);#grad Wi
Wi:: Float64=k0[i]+∇λ[1,i]*x[ip]+∇λ[2,i]*y[ip]; #Wi for mass matrix
if (isempty(findin(pm num dom ,domains[iel ]))== false)
#magnetization rhs calculation (only in PM domains)

ip2=ip2 +1;
temp:: Float64=(-Mpm[ip ,2]*∇λ[1,i]+Mpm[ip ,1]*∇λ[2,i]);
temp2:: Float64=getindex(Weights ,igp);

M val[ip2]=temp.*temp2; #
∫
Hc∇ × WidΩ =

∫
Hcx ∗ b − Hcy ∗ a

irow M[ip2]=nd2 [1]; #store magnetization index
end #PM element case
for j=1:3 #sweep tri nodes -> Wj

nd2 [2]=nd[j];
∇wj:: Vector{Float64}=view(∇λ,1:2,j); #grad Wj
Wj:: Float64=k0[j]+∇λ[1,j]*x[ip]+∇λ[2,j]*y[ip];
a1:: Float64=getindex(f,ip);
b1:: Float64=getindex(Weights ,igp);
dot prod:: Float64=dot(∇wi,∇wj);
vv:: Float64=broadcast (*,a1,b1 ,dot prod);#local stiffness element
#local mass element
a:: Float64=getindex(f mass ,ip);
mass:: Float64=broadcast (*,a,Wi ,Wj,b1); #mass=f mass[ip]*Wi*Wj*Weights[igp];
nnz=nnz +1;
#store the values for stiffness and mass matrices
irow[nnz]=nd2 [1];
icol[nnz]=nd2 [2];
vals[nnz]=vv;
vals mass[nnz]=mass;
#update mur stiffness , useful if mur is changed dynamically
if is Fe[iel ]==1

ip3=ip3+1;
store mur ind[1:2,ip3]=nd2;
store mur ind[3,ip3]=iel;
store mur[1,ip3]=-vv; #negative cause the stiffness matrix is build with minus
store mur[2,ip3]=-b1*dot prod;

end #nonlinear iron element
end #enddo on i

end #enddo on j
end #enddo on gp

end #enddo on iel

A.6 BEM matrices assembly

In this part, the 2D Boundary Element matrices are set up. This task is done in parallel (Sec.
A.3), and the notation is the same of Eq. (4.30). The SharedArray class has been adopted in
order to allow each process to access the proper matrix location. For the sake of clarity, only
the key parts are shown while the standard BEM assembly is not reported.

#initialize BEM matrices , shared between workers
G=SharedArray{Float64}(length(nodes border),length(nodes border ));
H=SharedArray{Float64}(length(nodes border),length(nodes border ));
#parallel sweep on the BEM points , exit when all the tasks have been executed!
@sync @parallel for r in eachindex(nodes border)

point rx=getindex(points tot ,r,1); #bem point1 x coord
point ry=getindex(points tot ,r,2); #bem point1 y coord
#variables initialization:
r components x1=Array{Float64}(dim); .... #several other declarations
for k in eachindex(nodes border) #inner sweep of nodes

point kx=getindex(points tot ,k,1)
point ky=getindex(points tot ,k,2)
dist x=-punto rx+punto kx
dist y=-punto ry+punto ky
compute_stuff .... #several computation not reported here , including:
#find nodes of the edges that shares node k; extract the values of interp function needed ,
#compute jacobians , compute gauss points coordinates , compute distances ,compute potential
#derivative along normal vectors , compute ai bem contributes , compute bi bem contributes
G[r,k]=int; #write on the shared array!
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H[r,k]=int2; #write on the shared array!
end

end
return G,H #return the BEM matrices
end

A.7 Torque calculation

The torque developed on the inner and outer rotors is computed through (4.35) once the flux
densities Bx and By are known (see(4.34). The computation of the flux densities in the query
points is parallelized (Sec. A.3, as well as the stress tensor integration along the query points.
The parallelism is set in this routine through the MPI-like approach in Sec. A.3, for example
Bx is computed as:

@sync begin
for p in procs(Bx)

#processor has the identifier p! #func myrange defined in Sec. parallelism
@async remotecall_wait(field_shared_chunk!,data..., myrange(Bx));

end
end

where the function field shared chunck! actually computes the magnetic flux density.
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