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Abstract 

The negative energy balance experienced by dairy cows in early lactation 

caused by the lack of trade-off between energy intake (input) and requests for 

lactogenesis (output) is responsible for the occurrence of metabolic disorders. Blood 

metabolites are important indicators to monitor nutritional and energy status of the 

cows, and to detect the presence of metabolic disorders. In particular, the 

hyperketonemia (HYK) is one of the most frequent and costly metabolic diseases in 

early-lactation dairy cows, and it is commonly diagnosed through the determination of 

β-hydroxybutyrate (BHB) concentration in blood.  

With this background, the overall objectives of the present thesis were: i) to 

summarise literature results on phenotypic and genetic aspects of BHB concentration 

in blood and milk of dairy cows; ii) to develop mid-infrared (MIR) spectroscopy 

prediction models for routine determination of blood metabolites; iii) to describe 

phenotypic variation of MIR-predicted blood metabolites in Brown Swiss, Holstein-

Friesian and Simmental cattle breeds; iv) to assess the genetic variation of blood BHB 

and nonesterified fatty acids (NEFA) predicted by MIR spectroscopy, and their 

correlations with milk production and composition traits in early-lactation Italian 

Holstein dairy cows. 

Hyperketonemia is an abnormal concentration of circulating ketone bodies in 

the blood; in particular, concentration of blood BHB ≥ 1.2 mmol/L is commonly 

recognized as indicator of HYK. In general, HYK impairs health of dairy cows by 

increasing the risk of the onset of other early-lactation diseases, and it negatively 

affects reproductive performance. Although the relationship with milk yield is still 

controversial, HYK has a detrimental effect on milk composition. Costs of HYK are 

mainly imputable to impaired fertility and milk loss. From a genetic point of view, 
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results from the literature suggested the feasibility of selecting cows with low 

susceptibility to HYK. Milk is the most promising matrix to monitor HYK, taking 

advantage of using MIR spectroscopy during routine milk recording. 

The effectiveness of using routine milk MIR spectra to predict main blood 

metabolites in early-lactation dairy cows was evaluated. Blood BHB, urea and NEFA 

were the most predictable traits. Predicted blood BHB showed an improved 

performance in detecting cows with HYK, compared with commercial calibration 

equation for milk BHB. 

Factors associated with the phenotypic variation of MIR-predicted blood 

metabolites were investigated on a large spectral multi-breed database. Holstein-

Friesian cows had the greatest concentration of blood BHB and NEFA, and the lowest 

blood urea content. Blood BHB and NEFA concentrations generally increased with 

parity. The greatest BHB concentration was observed in the first 10 days of lactation, 

except for Simmental cows. From 5 to 35 days in milk, NEFA concentration 

decreased, whereas urea content increased for all considered breeds. The maximum 

levels of blood BHB and NEFA concentrations were recorded in spring and early 

summer. Blood urea generally increased across the year, from spring to winter. 

Genetic parameters for MIR-predicted blood BHB and NEFA concentrations 

were estimated. The greatest heritability for both metabolites was assessed in the first 

10 days after calving (0.32 for BHB and 0.23 for NEFA), and their genetic correlation 

varied from 0.50 to 0.60. Moreover, an unfavourable trend of estimated breeding 

values for both blood BHB and NEFA concentrations across year of birth of the bulls 

was detected. Genetic correlations of BHB and NEFA with milk yield, somatic cell 

score, protein, lactose and urea content were similar or at least in the same direction, 

whereas opposite correlations were observed with fat content and fat-to-protein ratio.
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Riassunto 

Ad inizio lattazione, le vacche da latte vanno comunemente incontro ad un 

bilancio energetico negativo, causato da uno squilibrio tra energia fornita dalla dieta e 

richieste della lattogenesi. Tale condizione può portare all’insorgenza di diversi 

disordini metabolici. I metaboliti presenti nel sangue fungono da importanti indicatori 

per monitorare lo stato nutrizionale ed energetico degli animali e per rilevare la 

presenza di disordini metabolici. Ad esempio, l’iperchetonemia (HYK) è una tra le 

più frequenti e costose malattie metaboliche, e viene individuata misurando la 

concentrazione di β-idrossibutirrato (BHB) nel sangue. 

Gli obiettivi del presente lavoro di tesi sono stati: i) riassumere i risultati 

presenti in letteratura riguardo gli aspetti fenotipici e genetici del contenuto di BHB 

nel sangue e nel latte bovino; ii) sviluppare modelli di predizione basati sulla 

spettroscopia nel medio infrarosso (MIR) per determinare parametri metabolici nel 

sangue; iii) descrivere la variazione fenotipica dei metaboliti del sangue predetti con 

spettroscopia MIR in bovine di razza Bruna, Frisona e Pezzata Rossa; iv) stimare 

l’ereditabilità della concentrazione di BHB e acidi grassi non esterificati (NEFA) nel 

sangue predetti con tecnologia MIR a partire dagli spettri del latte, e la loro 

correlazione con caratteri di produzione e composizione di bovine di razza Frisona. 

Un’elevata concentrazione di corpi chetonici circolanti è definita HYK. 

L’HYK compromette la salute delle vacche da latte aumentando il rischio di 

insorgenza di altre malattie. Sebbene la relazione con la produzione di latte sia ancora 

controversa, l’HYK ha un effetto negativo sulla composizione. I costi per l’HYK sono 

principalmente imputabili alla ridotta fertilità e alla perdita di latte. La letteratura 

suggerisce la possibilità di selezionare animali con ridotta suscettibilità all’HYK. Il 
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latte è la matrice più promettente per il monitoraggio dell’HYK, avvantaggiandosi 

dell’utilizzo della spettroscopia MIR nei controlli funzionali. 

È stata valutata l’efficacia dell’utilizzo degli spettri MIR raccolti in condizioni 

di routine per la predizione dei principali metaboliti nel sangue di vacche ad inizio 

lattazione. I caratteri predicibili con maggiore accuratezza sono stati BHB, urea e 

NEFA. Il BHB predetto nel sangue ha mostrato performance migliori nell’individuare 

i soggetti con HYK rispetto al BHB predetto nel latte dall’equazione di calibrazione 

commerciale. 

I fattori associati alla variazione fenotipica dei metaboliti del sangue predetti 

con spettroscopia MIR sono stati valutati utilizzando un dataset di spettri derivanti 

dalle analisi del latte di bovine di razza Frisona, Bruna e Pezzata Rossa. La razza 

Frisona si è caratterizzata per la più elevata concentrazione di BHB e NEFA e per il 

valore più basso di urea. Mediamente le concentrazioni di BHB e NEFA sono 

aumentate con l’ordine di parto. I livelli più alti di BHB sono stati raggiunti nei primi 

10 giorni di lattazione, ad eccezione della Pezzata Rossa. Tra i 5 e i 35 giorni di 

lattazione, le concentrazioni di NEFA si sono ridotte, mentre quelle di urea sono 

aumentate. I livelli massimi di BHB e NEFA si sono registrati in primavera e inizio 

estate. Le concentrazioni di urea sono aumentate nel corso dell’anno. 

Sono stati stimati i parametri genetici delle predizioni MIR di BHB e NEFA 

nel sangue. Per entrambi i metaboliti l’ereditabilità più elevata si è registrata nei primi 

10 giorni dopo il parto (0.32 per BHB e 0.23 per NEFA). La correlazione genetica tra 

loro è risultata compresa tra 0.50 e 0.60. Le correlazioni genetiche di BHB e NEFA 

con la maggior parte dei caratteri del latte considerati sono risultate simili tra loro o 

almeno nella stessa direzione, mentre correlazioni in senso opposto si sono riscontrate 

con il contenuto di grasso e il rapporto grasso-proteina nel latte. 
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General introduction 

Metabolic disorders 

Metabolic disorders are the manifestation of a dysfunction or physiological 

imbalance of one or more metabolic processes, that involve the release and conversion 

of metabolites either used in production processes or excreted as waste (Pryce et al., 

2016). Breeding strategies for increased milk production have led to a dependence on 

body reserves to support early lactation. As a consequence, dairy cows experience a 

negative energy balance at the beginning of lactation, which leads to an imbalance in 

hormones, immune functions and metabolites, involving the potential onset of 

metabolic diseases (LeBlanc et al., 2010; White, 2015).  

Approximately 75% of health and metabolic disorders in dairy cattle occur in 

the first month postpartum (LeBlanc, 2010), and the most important ones are retained 

placenta, hypocalcemia, metritis, mastitis, displaced abomasum and ketosis (Suthar et 

al., 2013). Several studies have demonstrated that these diseases cause substantial 

farm financial losses by increasing diagnosis and treatment costs and decreasing milk 

production and fertility in dairy herds (Dohoo and Martin, 1984; Liang et al., 2017). 

For this reason, accurate and easy diagnostic strategies and opportunities to select for 

general disease resistance have been investigated in the last years. 

 

Metabolic parameters 

Prediction or early detection of cows with health, nutritional or metabolic 

problems is an important goal. Several metabolic parameters can be tested and used to 

support or anticipate veterinary diagnoses during early lactation. For instance, the 

severity and duration of the negative energy balance is reflected by the rise in 

circulating nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) and by the 
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level of decreased glucose concentrations (Esposito et al., 2014). On the other hand, 

urea mirrors protein intakes and nitrogen utilization, providing information on the diet 

(Kohn et al., 2005; Macrae et al., 2006; Kume et al., 2008). Therefore, circulating 

concentrations of these metabolites can be used as indicators of nutritional and 

metabolic status of the animals. The monitoring of the herd, early detection of 

potential diseases, large-scale data collection and feasible access to phenotypes for 

genetic evaluations, are only some of the several advantages derive from using the 

determination of specific indicators instead of veterinary diagnosis. 

 

Determination of metabolic indicators 

Blood and milk are the most important matrixes for metabolites determination. 

Related reference tests commonly rely on blood analyses performed in laboratory. 

However, laboratory analyses require a considerable amount of time and economic 

resources, and thus, they are not applicable on a large-scale for routine monitoring. In 

addition, several cow-side tests have been implemented for an easier but semi-

quantitative measurement in field conditions (Bach et al., 2016; Ruoff et al., 2017). 

Milk mid-infrared (MIR) spectroscopy has been considered as alternative method for 

assessing and monitoring health traits (De Marchi et al., 2014; Grelet et al., 2016), as 

it is a quick and cost-effective technique allowing the prediction of numerous traits on 

a large-scale. Several efforts have been made to predict either milk metabolites such 

as acetone, BHB, fat-to-protein ratio and urea, or blood metabolites such as NEFA, 

BHB, and urea, and to investigate these traits as potential indicators of metabolic 

status at herd level (van Knegsel et al., 2010; Santschi et al., 2016; Luke et al., 2019). 

Using routine MIR spectroscopy data to predict and record information about cow 
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metabolic status at individual cow level is a great challenge for researches in the dairy 

sector. 
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Aims of the thesis 

The overall aim of the present thesis was to develop prediction models for 

blood BHB and other relevant metabolites, and to investigate phenotypic and genetic 

aspects of the predicted traits. The specific aims were: 

1. to summarise results on the associations of BHB concentration in blood and 

milk with cow health, milk production and composition, and reproductive 

performance, and to describe its genetic aspects and economic implications in 

dairy cattle; 

2. to assess the feasibility of using routine milk MIR spectra for the prediction of 

blood metabolites in dairy cows using partial least squares regression analysis 

coupled with spectral variable selection; 

3. to investigate the associations between measured blood metabolites and 

predicted milk traits in early lactation; 

4. to identify factors associated with blood BHB, NEFA and urea predicted by 

MIR spectroscopy in a large database of Brown Swiss, Holstein-Friesian, and 

Simmental cattle breeds; 

5. to assess the genetic variation of MIR-predicted blood BHB and NEFA, and 

their correlations with milk production and composition traits in early-

lactation Holstein cows. 



18 

 

  



19 

 

Chapter 1 

 

Invited review: β-hydroxybutyrate concentration in blood and milk and its 

associations with cow performance 

 

A. Benedet*, C. L. Manuelian*, A. Zidi†, M. Penasa*, and M. De Marchi* 

 

*Department of Agronomy, Food, Natural resources, Animals and Environment 

(DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro (PD), 

Italy.  

†Department of Animal Medicine, Production and Health (MAPS), University of 

Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy. 

 

 

 

 

 

 

 

 

 

 

 

 

Published in: Animal 13 (2019):1676-1689



20 

 

ABSTRACT 

Hyperketonemia (HYK) is one of the most frequent and costly metabolic 

disorders in high-producing dairy cows and its diagnosis is based on β-

hydroxybutyrate (BHB) concentration in blood. In the last 10 years, the number of 

papers that have dealt with the impact of elevated BHB levels in dairy cattle has 

increased. Therefore, this paper reviewed the recent literature on BHB concentration 

in blood and milk, and its relationships with dairy cow health and performance, and 

farm profitability. Most studies applied the threshold of 1.2 mmol/L of BHB 

concentration in blood to indicate HYK; several authors considered BHB 

concentrations between 1.2 and 2.9 mmol/L as subclinical ketosis, and values ≥ 3.0 

mmol/L as clinical ketosis. Results on HYK frequency (prevalence and incidence) and 

cow performance varied according to parity and days in milk, being greater in 

multiparous than in primiparous cows, and in the first 2 weeks of lactation than in 

later stages. Hyperketonemia has been associated with greater milk fat content, fat-to-

protein ratio and energy-corrected milk, and lower protein and urea nitrogen in milk. 

The relationships with milk yield and somatic cell count are still controversial. In 

general, HYK impairs health of dairy cows by increasing the risk of the onset of other 

early lactation diseases, and it negatively affects reproductive performance. The 

economic cost of HYK is mainly due to impaired reproductive performance and milk 

loss. From a genetic point of view, results from the literature suggested the feasibility 

of selecting cows with low susceptibility to HYK. The present review highlights that 

milk is the most promising matrix to identify HYK, because it is easy to sample and 

allows a complete screening of the herd through BHB concentration predicted using 

mid-IR spectroscopy during routine milk recording. Further research is needed to 

validate accurate and convenient methods to discriminate between cows in risk of 
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HYK and healthy animals in field conditions and to support farmers to achieve an 

early detection and minimise the economic losses. 

 

Keywords: cattle, health, hyperketonemia, ketone body, milk production 

 

INTRODUCTION 

Ketosis is one of the most detrimental metabolic diseases in dairy cows. It 

occurs in early lactation when animals experience a negative energy balance (NEB), 

defined as the lack of trade-off between energy intake (input) and demands for 

increased milk production (output) (Herdt, 2000). During this period, cows use 

alternative energy sources to supply the decrease of available glucose that comes from 

gluconeogenesis; glucose is a fundamental nutrient strictly linked to the maintenance 

of normal functions in most of body tissues and lactogenesis. The inability of cows to 

cope with NEB and glucose drop due to an inadequate metabolic adaptation leads to 

an excessive mobilisation of adipose reserves, releasing abnormal concentrations of 

non-esterified fatty acids (NEFA) and ketone bodies (acetone, acetoacetate and BHB) 

in the blood. Thus, biochemical analyses are fundamental to help with the diagnosis of 

this complex disease. Elevated concentrations of ketone bodies in blood, defined as 

HYK, negatively affect immune function, health and milk production (McArt et al., 

2013). The BHB is the most common ketone body used to diagnose HYK (Oetzel, 

2004) because it is the predominant and more stable circulating ketone body in cow 

fluids (Duffield et al., 2009). However, BHB measurements vary for several reasons 

such as diurnal variation in body fluids (Nielsen et al., 2003), and methods of 

sampling and analysis (Krogh et al., 2011; Bach et al., 2016). 
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Hyperketonemia can result in subclinical ketosis (SCK) or clinical ketosis 

(CK). Some signs described in literature in animals suffering from CK are ketone 

smell in breath, reduced activity and appetite, excessive loss of body condition, 

weakness and apparent blindness (Berge and Vertenten, 2014), but those signs are 

unspecific and/or difficult to be detected; this increases the error of diagnosis and 

makes arduous to precisely discriminate between CK and SCK. Both CK and SCK 

affect milk production, reproduction performance and health of dairy cattle (McArt et 

al., 2013; Raboisson et al., 2014), and thus, they are responsible of increased culling 

rate (Seifi et al., 2011) and costs at herd level (Liang et al., 2017; Mostert et al., 

2018). Given this background, the reinforcement of farmers’ awareness of HYK 

effects, the search for new opportunities of genetic improvement (Pryce et al., 2016) 

and the implementation of herd management strategies against HYK have recently 

gained more and more importance in the scientific community and dairy sector. The 

aim of this review is to summarise results on the associations of BHB concentration in 

blood and milk with cow health, milk production and composition, and reproductive 

performance, and to describe its genetic aspects and economic implications in dairy 

cattle. 

 

CRITERIA AND METHODOLOGY OF THE REVIEW 

Papers included in the present review were retrieved from Scopus 

(www.scopus.com) and ISI Web of Science (www. webofknowledge.com) databases 

for the period January 2007 to January 2018. The keywords used in the literature 

search were: ketosis, dairy cows, cattle, bovine, beta-hydroxybutyrate, β-

hydroxybutyrate, BHB, milk betahydroxybutyrate, milk β-hydroxybutyrate, milk 

BHB, milk composition, milk yield, milk production, genetic, genomic, economic, 
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cost, hyperketonemia, subclinical ketosis, performance, health, reproduction, fertility, 

ketone body and metabolic disease. Even if ketosis is a complex disease, only papers 

that focussed on the effects of blood and milk BHB concentrations on milk 

production, milk composition, reproduction and health performance, and on economic 

and genetic aspects of this ketone body and HYK or ketosis were considered. The 

determination of the most accurate blood BHB cut-off to diagnose HYK was not an 

aim of this review because it has been previously discussed in McArt et al. (2013).  

In the reviewed papers ketosis and HYK have been often used as synonyms 

(McArt et al., 2012; Vanholder et al., 2015; Rutherford et al., 2016), and thus, we 

decided to use the term HYK because we consider it more adequate when 

investigating BHB concentration in blood or milk. The terms SCK and CK have been 

used when referring to studies that made clear reference to SCK and CK in the text. 

The unification of terminology such as HYK, CK and SCK, or frequency defined as 

prevalence or incidence, was sometimes very problematic and made difficult the 

comparison among studies. Data quality when analysing health events differed among 

the reviewed studies because some of them were based on voluntary declaration from 

farmers (Ospina et al., 2010a; Koeck et al., 2014; Parker Gaddis et al., 2018) and 

others were from veterinarians (Suthar et al., 2013). Moreover, although efforts have 

been made to standardise the clinical diagnosis, the participation of several observers 

leads to an unquantifiable error of diagnosis, involving a difficult interpretation of the 

results. 

Studies on BHB effects on cow production have increased since 2012 (Figure 

1), with an increasing incidence of papers dealing with genetic parameters and 

economic aspects. The increment of BHB studies underlines that metabolic disorders 

have been assuming more and more relevance in dairy industry and scientific 
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community. Moreover, the increase of papers on genetic and economic aspects of 

HYK is likely related to the more recent availability of large data including BHB 

concentration as a routinely recorded trait in some production systems, which is 

necessary, for example, to estimate its genetic parameters. 

 

Figure 1. Number of reviewed studies in dairy cattle per area of interest and year of 

publication. Phenotypic area includes milk production and composition, reproduction and 

health performance. 
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Table 1. Description of reviewed studies on hyperketonemia in Holstein cows detected from blood or milk analysis 

Reference Country1 Herds (n) Cows (n)2 Parity Observation period 

Blood      

  Walsh et al. (2007) CDN 25 796 2, 3 -3 to 9 weeks from calving 

  van Haelst et al. (2008) NL 1 16 2, 3, 4 9 weeks from calving 

  Duffield et al. (2009) CDN 25 1,010 1, 2, 3 2 weeks from calving 

  Ospina et al. (2010a) USA 100 2,758 1, ≥2 -2 to 2 weeks from calving 

  Ospina et al. (2010b) USA 91 2,290 1, ≥2 -2 to 2 weeks from calving 

  McArt et al. (2011) USA 4 1,717 1, 2, ≥3 3 to 16 days in milk 

  Seifi et al. (2011) CDN 16 8,49 1, 2, ≥3 3 weeks from calving 

  Chapinal et al. (2012a) CDN/USA 45 1,919 1, ≥2 -1 to 3 weeks from calving 

  Chapinal et al. (2012b) CDN/USA 55 2,365 1, ≥2 -1 to 1 weeks from calving 

  McArt et al. (2012) USA 4 1,717 1, 2, ≥3 3 to 16 days in milk 

  Roberts et al. (2012) CDN/USA 69 5,979 1, 2, ≥3 -1 to 2 weeks from calving 

  van der Drift et al. (2012a) NL 118 1,678 1, 2, 3, ≥4 5 to 60 days in milk 

  van der Drift et al. (2012b) NL 122 1,615 1, 2, 3, ≥4 5 to 60 days in milk 

  Suthar et al. (2013) several4 528 5,884 1, 2, 3, ≥4 2 to 15 days in milk 

  Vanholder et al. (2015) NL 23 1,715 1, 2, ≥3 7 to 14 days in milk 

  Kaufman et al. (2016) CDN 4 339 1, 2, ≥3 -2 to 4 weeks from calving 

  Mann et al. (2016) USA 1 84 2, ≥3 3 to 14 days in milk 

  Rutherford et al. (2016) GB 3 203 1, 2, ≥3 7 to 21 days in milk 

  Song et al. (2016) CHN 1 45 >1 - 

  Stangaferro et al. (2016) USA 1 1,080 1, ≥2 -2 to 4 weeks from calving 
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  Belay et al. (2017b) N 2,828 179,691 1, 2, 3, 4 11 to 120 days in milk 

  Rathbun et al. (2017) USA 1 570 1 to ≥6 5 to 18 days in milk 

  Ruoff et al. (2017) D 6 621 1, ≥2 1 to 42 days in milk 

  Weigel et al. (2017) USA 3 1,453 1 to ≥5 5 to 18 days in milk 

  Chandler et al. (2018) USA 16 1,005 1, ≥2 5 to 20 days in milk 

Milk      

  van der Drift et al. (2012b) NL 122 1,615 1, 2, 3, ≥4 5 to 60 days in milk 

  Buitenhuis et al. (2013) DK 20 371 1, 2, 3 129 to 228 days in milk 

  Berge and Vertenten (2014) D, F, GB, I, NL 131 4,709 1 to 12 7 to 21 days in milk 

  Koeck et al. (2014) CDN - 61,331 1 5 to 100 days in milk 

  Moyes et al. (2014) DK 1 30 1 4 to 6 weeks from calving 

  Kayano and Kataoka (2015) J 50 693 1 to 12 7 to 30 days in milk 

  Penasa et al. (2015) I 299 19,980 1, 2, 3 5 to 305 days in milk 

  Jamrozik et al. (2016) CDN - 35,575 1 to 5 5 to 40 days in milk 

  Lee et al. (2016) ROK - 7895 1, 2, 3 4 to 305 days in milk 

  Santschi et al. (2016) CDN 4242 498,310 1, 2, ≥3 5 to 35 days in milk 

  Rathbun et al. (2017) USA 1 570 1 to ≥6 5 to 18 days in milk 

  Parker Gaddis et al.  (2018)3 USA - 23,865 1 to 5 1 to 60 days in milk 

1CDN = Canada; CHN = China; D = Germany; DK = Denmark; F = France; GB = United Kingdom; I = Italy; J = Japan; NL = the Netherlands; N 

= Norway; ROK = South Korea; USA = United States.  

2Berge and Vertenten (2014) (German Black Pied and other breeds); Suthar et al. (2013) (Holstein-Friesian crossbreds, Jersey and Brown Swiss); 

Belay et al. (2017b) (Norwegian Red); Chandler et al. (2018) (Jersey); Parker Gaddis et al. (2018) (Jersey). 

3Producer-recorded cases. 

4Denmark, Spain, Croatia, Hungary, Italy, Poland, Portugal, Slovenia, Serbia, Turkey.
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Table 1 reports some information retrieved from the reviewed studies on HYK 

in dairy cattle, namely the country where the study was conducted, number of herds 

and cows, cow breed and parity, and observation period. Papers (n=4) that dealt with 

economic aspects were not included in Table 1 because they were based on literature 

values and data simulations. The papers mainly dealt with Holstein, as it is the most 

popular and productive cosmopolitan dairy cattle breed, and only few studies focussed 

on other breeds such as Jersey, Brown Swiss, Norwegian Red and local populations. 

The studies were conducted in 20 countries, with United States and Canada being the 

most represented with 15 and 10 papers, respectively (Table 1). As only few studies 

dealt with an observation period that started 1 to 3 weeks before calving, this review 

focused more on the postpartum period. Table 1 also shows that in recent years 

several papers have dealt with BHB concentration in milk, which is a more practical 

matrix than blood. 

 

Figure 2. Author’s keywords occurrence map for reviewed studies in dairy cattle. The closer 

two terms are located in the map, the stronger the relation between the terms and the bigger 

the nucleus, the more frequent the word has been used. 
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The keywords reported in each paper by their authors were extracted by 

adapting the Bibliometrix package (Aria and Cuccurullo, 2017) for R v. 3.4 (R Core 

Team, 2017), which produced the network of all recurrent keywords weighted by their 

frequency (Figure 2). The closer two terms are located in the map, the stronger the 

relationship between the terms, and the bigger the nucleus, more frequently the word 

has been used. The total number of keywords retrieved after editing of synonyms was 

75 and ‘dairy cows’, ‘β-hydroxybutyrate’, ‘ketosis’, ‘non-esterified fatty acids’ and 

‘hyperketonemia’ were the most recurrent keywords. 

 

METHODS AND THRESHOLDS USED TO DEFINE HYPERKETONEMIA 

The tested matrix, method of determination and diagnostic threshold affect the 

results about relationships between BHB concentration and HYK and, consequently, 

the impact on cow performance. However, universal method and threshold for 

defining HYK and linking it to ketosis have not been established yet, probably 

because of the difficulty of accurately diagnose CK, and therefore discriminate 

between CK and SCK. Moreover, the cut-offs used in the reviewed papers could 

increase the error of HYK detection because BHB concentration in blood and milk 

fluctuates during the day (Nielsen et al., 2003). Most reviewed studies did not specify 

sampling times, which could lead to unpredictable differences between outcomes. 

However, a clear pattern of the diurnal variation of BHB concentration in blood and 

milk has not been described yet, even if a relationship with the energy content of the 

diet has been reported by Nielsen et al. (2003). In particular, cows fed a total mixed 

ration with low-energy content showed a decrease of blood and milk BHB 

concentration in the evening and lower variation among cows, whereas cows fed a 

total mixed ration with high-energy content showed an increase of blood and milk 
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BHB concentration in the evening and greater variation among cows (Nielsen et al., 

2003). In the same study (Nielsen et al., 2003), BHB concentrations in blood of a cow 

fed a total mixed ration with high-energy content exceeded the most common 

threshold used to define HYK in blood (1.2 mmol/L) for 37.5% of the day, which 

could lead to a misclassification of positive HYK. Therefore, the tested matrix, 

method of determination and threshold need to be taken into account to correctly 

interpret the results. Table 2 summarises the methods of determination of BHB 

concentration and the cutoffs of BHB used to establish HYK, or SCK and CK, in the 

reviewed papers. 

The BHB can be detected in blood and milk. In particular, blood BHB 

concentration is the most common indicator to diagnose HYK and this explains why 

the majority of reviewed papers dealt with blood sampling (Table 2). The laboratory 

determination of BHB concentration is based on a colorimetric enzymatic reaction 

followed by a spectrophotometric analysis. Moreover, handheld blood ketone meters 

have been developed and validated in order to provide a more practical tool for on-

field data collection. These on-farm testing systems include handheld devices and test 

strips based on an electrochemical reaction with a small amount of blood to determine 

the ketone concentration with acceptable specificity and sensitivity for HYK 

diagnosis (Bach et al., 2016; Sailer et al., 2018). However, it should be taken in 

consideration that blood BHB concentration is usually based on a single blood sample 

and it represents the status of the animal at that sampling point of the day. 

Blood sampling is a labourious and time-consuming procedure, and it is 

stressful for the animals. The possibility of using milk BHB concentration to diagnose 

HYK has been investigated (Table 2) because milk recording is already a routine and 

non-invasive procedure, and it facilitates monitoring at herd level. Moreover, it differs 
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from blood measurement of BHB status of the animal as a milk sample represents a 

period of time. Although laboratory analyses such as photometrical method or 

enzymatic assays (Chandler et al., 2018) and cowside strip tests (Keto-Test; Berge 

and Vertenten, 2014) exist in this field, mid-IR spectroscopy (MIRS) is the most 

promising tool for the determination of milk BHB (Grelet et al., 2016). Indeed, the 

use of chemical analysis or handheld meter to measure BHB in routine milk recording 

is not feasible because it is too expensive and time consuming, whereas MIRS allows 

to collect data at population level cheaply and provide routine reports to farmers for 

monitoring their herd. Currently, the accuracy of the developed prediction equations 

for BHB concentration in milk is not high enough to quantify the exact content but it 

has proved to be useful for screening purposes to detect cows with elevated BHB 

concentrations in milk (Grelet et al., 2016; Lee et al., 2016; Santschi et al., 2016). 

Moreover, predicted milk acetone and BHB have been used to develop models for the 

prediction of blood BHB from test-day milk and performance traits (Chandler et al., 

2018), and the use of MIRS milk spectra has been proposed to directly predict blood 

BHB concentration (Belay et al., 2017a and 2017b). Nevertheless, for this approach, 

we have to consider that usually blood BHB concentration is determined using a 

single blood sample that represents the status of the animal at the time of blood 

sampling, whereas a milk sample represents the BHB concentration of a period of 

time, which could interfere with the accuracy of the developed calibration model. To 

increase the accuracy of the prediction models using milk samples, several blood 

samples during the same period of time that the milk sample would represent could be 

collected. 

For both blood and milk, different thresholds have been used (Table 2). In 

general, the optimum thresholds of BHB concentration for postpartum diseases 
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occurrence (Duffield et al., 2009; Ospina et al., 2010a; Suthar et al., 2013), fertility 

indicators (Chapinal et al., 2012a), and change in milk production and composition 

traits (Duffield et al., 2009) have been identified based on the highest combination of 

sensitivity and specificity of the analysis performed. However, most of reviewed 

studies have defined the cut-offs before starting the experiment (Koeck et al., 2014; 

Vanholder et al., 2015; Rutherford et al., 2016). The main difficulty was to unify 

terminology as some authors clearly specified a distinction between SCK and CK, 

whereas others considered only HYK. In general, regarding BHB cut-offs reported in 

the papers, HYK and SCK were defined from the same threshold. In blood, BHB ≥ 

1.2 mmol/L is generally used as cut-off to identify cows with HYK, or affected by 

SCK. A deeper analysis of the adequacy of this cut-off in blood has been discussed in 

McArt et al. (2013). A less uniform BHB cut-off for CK has been proposed in 

literature. Although most papers have reported a direct relationship between blood 

BHB concentrations and CK incidence and established the threshold at blood BHB ≥ 

3.0 mmol/L, some authors observed that CK occurrence can be associated to lower 

BHB concentration (e.g., BHB ≥ 1.1 mmol/L) (Seifi et al., 2011; Suthar et al., 2013; 

Song et al., 2016).  

Only few papers have used milk BHB concentration to detect HYK (Table 2) 

and, considering the limitations of strip tests and MIRS prediction models, there is not 

a clear cut-off point. Ranges of milk BHB concentrations to classify cows with 

suspect HYK (0.15 to 0.19 mmol/L) or positive HYK (≥ 0.20 mmol/L) have been 

recently proposed by Koeck et al. (2014) and Santschi et al. (2016). On the other 

hand, Lee et al. (2016) considered cows as affected by SCK with milk BHB 

concentration between 0.01 and 0.20 mmol/L, and affected by CK with milk BHB 

concentration ≥ 0.20 mmol/L. However, even with elevated concentrations of milk 
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BHB, a blood test and/or a veterinary visit is necessary to help on the diagnosis of 

HYK.  
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Table 2. Thresholds of β-hydroxybutyrate (BHB) concentration in blood and milk (mmol/L) used in the literature to determine hyperketonemia (HYK), 

also defined as subclinical ketosis (SCK) and clinical ketosis (CK) in some cases, in dairy cattle 

Reference Method of analysis HYK/SCK CK 

Blood BHB    

  Walsh et al. (2007) Automated analyser: Dacos 2 Analyzer (Coulter Electronics) ≥ 1.0 - 1.41 - 

  van Haelst et al. (2008) Automated analyser: Unicel DxC 600 (Beckman Instruments B.V.) ≥ 1.2 - 

  Duffield et al. (2009) Automated analyser: Dacos 2 Analyzer (Coulter Electronics) ≥ 1.4 - 

  Ospina et al. (2010a and 2010b) Automated analyser: Hitachi 917 (Roche Diagnostics) ≥ 1.0 - 

  Seifi et al. (2011) Automated analyser: Hitachi 911 (Roche Diagnostics) - ≥ 1.2 

  Chapinal et al. (2012a and 2012b) Automated analyser: Hitachi 911 (Randox Laboratories) ≥ 1.4 - 

  McArt et al. (2011 and 2012); Weigel et al. (2017)  Handheld meter: Precision Xtra (Abbott Laboratories) 1.2 to 2.9 ≥ 3.0 

  van der Drift et al. (2012a and 2012b) Kit test: Ranbut kit; (Randox Laboratories) ≥ 1.2 - 

  Suthar et al. (2013) Handheld meter: Precision Xtra (Abbott Laboratories) ≥ 1.2 ≥ 1.1 

  Vanholder et al. (2015) Handheld meter: Precision Xceed (Abbott Laboratories) 1.2 to 2.9 ≥ 3.0 

  Kaufman et al. (2016); Mann et al. (2016);  

  Rathbun et al. (2017)  

Handheld meter: Precision Xtra (Abbott Laboratories) ≥ 1.2 - 

  Ruoff et al. (2017) Handheld meter: NovaVet (Nova Biomedical) ≥ 1.2 - 

  Rutherford et al. (2016) Handheld meter: Optium Xceed (Abbott Laboratories) 1.2 to 2.9 ≥ 3.0 

  Song et al. (2016) Not specified 1.2 to 1.5 ≥ 1.5 

  Belay et al. (2017b) FT-MIR spectrometer: Milkoscan Combifoss 6500 (Foss Electric) ≥ 1.2 - 

  Chandler et al. (2018) Colorimetric assay ≥ 1.2 - 

Milk BHB    

  van der Drift et al. (2012a) FT-MIR spectrometer: MilkoScan FT6000 (Foss Electric) ≥ 0.08 - 

  Berge and Vertenten (2014) Keto-Test: Ketolac test strip (Sanwa Kagaku Kenkyusho Co. Ltd.) ≥ 0.10 - 

  Koeck et al. (2014); Santschi et al. (2016)  FT-MIR spectrometer: MilkoScan FT6000 (Foss Electric) ≥ 0.15 - 0.20 - 

  Lee et al. (2016) FT-MIR spectrometer: CombiFoss FT+ (Foss Electric) 0.01 to 0.19 ≥ 0.20 

1Thresholds for first and second week of lactation, respectively. 
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FREQUENCY AND RISK FACTORS OF HYPERKETONEMIA 

A disease frequency can be described through two different measures, 

prevalence and incidence, usually expressed as a percentage. Prevalence is defined as 

the number of existing cases of a specific disorder divided by the number of sampled 

animals at a given time, that is, a single test is required. Incidence is calculated as the 

number of new cases of a specific disease divided by the number of animals at risk 

during a defined period of time. Thus, to estimate incidence is necessary to test 

animals frequently enough to ensure that all cows that develop the disease during the 

observation period will be correctly identified. Moreover, incidence can be expressed 

as cumulative incidence or as incidence rate. Cumulative incidence is the most 

common one and provides a measure of risk in a given period of time. Incidence rate 

is the proportion of new cases calculated per unit of time and the result should be 

expressed per unit of time. Therefore, the ease of prevalence calculation explains why 

there is a lower number of papers that computed incidence (Table 3). Even if not 

clearly expressed in most of the cases, incidence values reported in reviewed studies 

corresponded to cumulative incidence, meaning that some misleading use of 

terminology to express frequency exists in literature. For instance, cumulative 

incidence was wrongly referred as rate in Weigel et al. (2017), whereas prevalence 

and incidence rate were used as synonyms in Lee et al. (2016), leading to a difficult 

interpretation of the results. 

Prevalence and incidence of HYK reported in reviewed papers are displayed in 

Table 3. Prevalence ranged from 11.2% (van der Drift et al., 2012b) to 47.2% 

(Vanholder et al., 2015) when papers considered HYK or SCK. On the other hand, the 

percentage dropped off considerably when CK was considered, ranging from 3.7% 

(Seifi et al., 2011) to 11.6% (Vanholder et al., 2015). A similar situation was observed 
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in the studies reporting incidence, showing a range between 19.7% (McArt et al., 

2012) and 44% (Kaufman et al., 2016) for HYK or SCK and a value of 2.4% for CK 

(Weigel et al., 2017). 

As reported above, to interpret and compare correctly the measures of 

frequency, several factors such as method of detection, threshold used and biological 

fluid analysed should be taken into account. Moreover, these frequency expressions 

greatly depend on stage of lactation (observation period) and parity (Table 1). As 

HYK is mainly the consequence of NEB experienced by the cow after calving, the 

highest HYK prevalence has been detected in the first 2 weeks of lactation, declining 

greatly thereafter (van der Drift et al., 2012a; Koeck et al., 2014; Santschi et al., 

2016). For example, a decrease of prevalence by 60% (from 18% to 7%) between the 

first and the second month of lactation has been reported by van der Drift et al. 

(2012a). Moreover, both HYK peak incidence (22.3% of cows with their first positive 

test) and prevalence (28.9% of cows with a positive test) have been detected at 5 days 

in milk in McArt et al. (2012). Considering these high frequencies in first days of 

lactation, the calculation of the risk of disease occurrence through multiple tests 

during early lactation would be an appropriate approach to measure HYK frequency. 

Several authors observed a higher frequency of HYK in multiparous than 

primiparous cows (Santschi et al., 2016; Rathbun et al., 2017; Chandler et al., 2018), 

and suggested a direct relationship between increasing parity and HYK occurrence. 

Cumulative incidence from 8.6% to 26.2% (Rathbun et al., 2017) and prevalence from 

18.8% to 27.6% (Santschi et al., 2016) have been detected moving from first to third 

or greater lactation. The increase of HYK occurrence with parity may be due to the 

concurrent needs of gestation and lactation, as indicated by Berge and Vertenten 

(2014). For this reason, it could be appropriate to record separately HYK risk-



36 

 

estimates for different parity orders and then compute a herd level incidence risk by 

standardising parity-specific percentages. Conversely, the same pattern has not been 

observed in Jersey breed, as HYK was more prevalent in primiparous than 

multiparous cows (Chandler et al., 2018). 

Other factors that should be considered for interpreting HYK occurrence are 

season of calving, breed and herd management. Authors generally agreed to identify 

spring as the season with greater prevalence of HYK, whereas contrasting results have 

been reported for late autumn and winter (Vanholder et al., 2015; Santschi et al., 

2016) or summer (van der Drift et al., 2012a; Suthar et al., 2013). However, in most 

cases, no biological reason or evidence has been reported to justify the greater HYK 

prevalence in spring (Santschi et al., 2016). It has been suggested for Dutch farmers 

that the lower quality of the silage used during the first half of the year could explain 

the greater HYK prevalence in spring (Vanholder et al., 2015). Concerning breed, 

higher overall HYK prevalence in Jersey (19%) than Holstein cows (14%), with 

values that ranged from 11.4% to 25% in Jersey herds and 0% to 28% in Holstein 

herds, has been observed by Chandler et al. (2018). Management and feeding of 

gestating heifers, dry cows and cows in early lactation, as well as on-farm prevention 

approaches and incidence of other diseases contribute to HYK prevalence (Santschi et 

al., 2016). A negative association between the increase of herd size and HYK 

prevalence has been reported (Berge and Vertenten, 2014) as bigger herds usually 

implemented strategies such as grouping cows based on milk production to better 

meet nutritional requirements. Berge and Vertenten (2014) also observed a lower 

prevalence of HYK in systems with cubicles, cubicles and yards, or tie-up bars than in 

systems with straw yards, and a slightly greater frequency in systems in which cows 

were on pastures rather than housed indoor. Moreover, a lower prevalence of HYK 
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was reported in herds feeding forage and concentrate separately or total mixed ration 

compared with herds using partial mixed ration. Mixed ration refers to cows fed a 

total mixed ration between grazing periods. These differences in prevalence might be 

due to the fact that farmers cannot easily control animals in terms of nutritional level 

and health status when they are on pasture or housed in straw yards. 
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Table 3. Prevalence and incidence (%) of hyperketonemia (HYK), also defined as subclinical ketosis 

(SCK) and clinical ketosis (CK) in some cases, in dairy cattle 

Reference HYK/SCK CK 

Prevalence   

Walsh et al. (2007) 18.8 to 36.2  - 

Duffield et al. (2009) 16.6 to 18.6  

Seifi et al. (2011) - 3.7 

Chapinal et al. (2012a) 12 to 20 - 

van der Drift et al. (2012a) 11.2 - 

Suthar et al. (2013) 21.8 - 

Berge and Vertenten (2014) 39 - 

Koeck et al. (2014) 14 - 

Vanholder et al. (2015) 47.2 11.6 

Mann et al. (2016) 30.5 - 

Rutherford et al. (2016) 17 - 

Santschi et al. (2016) 22.9 - 

Chandler et al. (2018) 14 to 19 - 

Incidence   

McArt et al. (2012) 43.2 - 

Kaufman et al. (2016) 44 - 

Rathbun et al. (2017) 19.7 - 

Weigel et al. (2017) 24 2.4 
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ASSOCIATIONS OF Β-HYDROXYBUTYRATE WITH DAIRY COW 

PERFORMANCE 

Health  

Cows with BHB concentration ≥ 1.2 or 1.1 mmol/L in blood (Seifi et al., 2011; 

Suthar et al., 2013) or ≥ 0.10 mmol/L in milk (Berge and Vertenten, 2014) are from 

4.7 to 14.7 times more likely to manifest clinical signs of HYK. In these studies, CK 

was diagnosed by veterinarians (Seifi et al., 2011; Suthar et al., 2013; Berge and 

Vertenten, 2014) or herd managers (Suthar et al., 2013) according to the following 

definitions decreased feed intake or appetite, decreased milk production, a positive 

urine or milk ketone test, low rumen fill, reduced activity or demeanour, excessive 

loss of body condition, constipation or hard/dry faeces, ketone odour in breath/milk 

and nervous signs. However, in the reviewed papers, it is not clear how authors used 

all those variables to establish CK. Moreover, it is commonly agreed that HYK 

increases the risk of the onset of other early lactation diseases, such as displaced 

abomasum (odds ratio (OR) = 1.6 to 19.3; Seifi et al., 2011; McArt et al., 2011 and 

2012; Suthar et al., 2013; Berge and Vertenten, 2014), metritis (OR=1.5 to 1.7; Suthar 

et al., 2013; Berge and Vertenten, 2014) and lameness (OR = 1.7 to 1.8; Suthar et al., 

2013; Berge and Vertenten, 2014), and the risk increased with blood BHB 

concentration (Ospina et al., 2010a; McArt et al., 2012; Suthar et al., 2013). Overall, 

reviewed studies supported the hypothesis of Roberts et al. (2012) that cows with high 

blood BHB concentrations, especially multiparous animals, had greater probability of 

being removed from the herd in early lactation. In particular, in McArt et al. (2012) 

cows diagnosed with HYK were three times more likely to die or be culled than non-

hyperketonemic cows, observing also that each 0.1 mmol/L increment of blood BHB 

concentration during the first month of lactation increased the risk of culling by 1.4 
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times. Although most studies have focussed on the very early lactation (≤ 21 days in 

milk), consequences of elevated BHB levels on health can be observed until 60 days 

in milk. Some authors noted that a greater disease risk occurred for cows diagnosed 

with HYK in the first week after calving (Seifi et al., 2011; McArt et al., 2012). For 

instance, in McArt et al. (2012) cows diagnosed with HYK from 3 to 5 days in milk 

were 6.1 times more likely to develop displaced abomasum than cows diagnosed with 

HYK after the first week. Furthermore, several authors highlighted that the risk of 

HYK occurrence (Berge and Vertenten, 2014; Kaufman et al., 2016) or being culled 

after its detection (Roberts et al., 2012) was more likely for multiparous cows, 

probably due to the greater milk yield and to possible problems experienced during 

the previous lactation and dry period. 

The relationships between early lactation disorders are complex. From the 

outcomes of reviewed papers, displaced abomasum appears as a result of HYK. 

Despite this, in the studies of McArt et al. (2011 and 2012) some cows developed 

displaced abomasum before being diagnosed positive for HYK. Displaced abomasum 

and HYK are both generated by a poor adaptive response to early lactation 

requirements. Indeed, after calving cows (especially high-producing animals) do not 

assume the appropriate amount of energy to face the requirements of high production, 

mainly because the maximum intake capacity is reached 7 to 8 weeks postpartum. In 

addition, since HYK leads to hypoglycaemia in multiparous cows (Ruoff et al., 2017), 

and to reduced rumination time and activity (Duffield et al., 2009; Kaufman et al., 

2016; Stangaferro et al., 2016), HYK can be considered as a cause of displaced 

abomasum. 

In a recent study, high levels of blood BHB have been described to be 

significantly correlated to oxidative stress and liver apoptosis damage (Song et al., 
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2016). Thus, it is reasonable to conclude that the NEB status in early lactation and the 

physiological stress occurring during HYK have a role in the depression of the 

immune system. As a consequence, cows with HYK are more likely to be affected by 

metritis and lameness during the early lactation (Duffield et al., 2009; Ospina et al., 

2010a; Suthar et al., 2013; Berge and Vertenten, 2014). Regarding mastitis, 

controversial results have been reported. Although Berge and Vertenten (2014) found 

that cows diagnosed with HYK were almost twice as likely to have a mastitis event in 

the first month of lactation compared with healthy cows and Moyes et al. (2014) 

observed that udder inflammation caused an increase of milk BHB concentration, 

Duffield et al. (2009) and Suthar et al. (2013) did not detect any association between 

mastitis and HYK. 

 

Milk production 

The effects of elevated blood or milk BHB levels on milk yield are 

controversial. While a decrease of daily milk production between 1% and 18% has 

been observed in several studies, an increase of daily milk yield from 5% to 11% in 

hyperketonemic cows has been reported by other authors (Figure 3). Besides, van der 

Drift et al. (2012a) and Chandler et al. (2018) did not report significant differences 

between cows with or without HYK. Generally, HYK affects more negatively milk 

production of multiparous than primiparous cows (Ospina et al., 2010b; Chapinal et 

al., 2012b; Kayano and Kataoka, 2015; Santschi et al., 2016), which is reasonable 

because first lactation cows do not have NEB status of the previous lactation as 

potential risk factor, and on average they have better body condition and yield less 

milk than multiparous animals. However, Rathbun et al. (2017) reported that the onset 

of HYK is not related to milk yield in previous lactation or to genetic potential for 
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milk production. They suggested that HYK in high-producing cows is indeed due to 

energy requirements of current lactation. Further research is needed to confirm this 

hypothesis which seems contradictory to the results observed for primiparous and 

multiparous cows. The negative impact of HYK on milk yield is more pronounced 

when detected in the first week rather than in the second week of lactation, even if 

cows show the same blood BHB concentration (Duffield et al., 2009; Chapinal et al., 

2012a; McArt et al., 2012). The difference of milk yield between cows with HYK and 

without HYK increases during lactation (Kayano and Kataoka, 2015; Santschi et al., 

2016), probably due to the cumulative NEB in hyperketonemic cows. 

 

 

Figure 3. Greatest significant differences between normal and hyperketonemic cows for daily 

milk yield. Black bars express milk in %/day per cow and grey bars express milk in kg/day 

per cow. Negative and positive values indicate lower and higher values in hyperketonemic 

cows, respectively. 

 

Milk composition 

Hyperketonemia has been associated with greater milk fat content, fat-to-

protein ratio (F:P) and energy-corrected milk, and lower protein, lactose and urea 

nitrogen in milk (Table 4; Kayano and Katatoka, 2015). An increment in fat content 
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between 2.4% (Vanholder et al., 2015) and 23.9% (Santschi et al., 2016) has been 

reported in hyperketonemic compared with healthy cows. Generally, greater 

differences of fat content between hyperketonemic and healthy cows have been 

observed in very early lactation (Koeck et al., 2014; Rathbun et al., 2017). However, a 

greater increment of fat percentage for cows with HYK in the second rather than in 

the first week of lactation was reported in the study of Duffield et al. (2009). This 

discrepancy could be related to the fact that Duffield et al. (2009) defined a greater 

BHB concentration threshold for the second week (2 mmol/L) than for the first week 

of lactation (1.2 mmol/L). Moreover, while Santschi et al. (2016) reported that 

differences in milk fat content between hyperketonemic and healthy cows increased 

with parity, no significant differences were observed by Chandler et al. (2018). 

Hyperketonemia negatively affects milk protein content; hyperketonemic animals 

produced milk with 0.3% (Santschi et al., 2016) to 11.6% (Chandler et al., 2018) less 

protein compared with healthy animals. Moreover, the greatest differences between 

hyperketonemic and healthy cows were detected in primiparous animals (Santschi et 

al., 2016; Chandler et al., 2018) and, when the week effect was considered, in the 

second week of lactation (Rathbun et al., 2017). 

The F:P has been reported to be 10% to 32.8% higher in hyperketonemic than 

in healthy animals (Chandler et al., 2018). As it has been indicated for protein, those 

differences were greater for primiparous than multiparous cows. In addition, F:P and 

fatty acids (FA) have been proposed as indicators of HYK in early lactation (van 

Haelst et al., 2008; Mann et al., 2016). A significant decrease of several de novo 

(C6:0, C8:0, C10:0, C12:0, C14:0) and a medium-chain (C15:0) FA has been 

observed in milk of cows with HYK (Mann et al., 2016). Moreover, Chandler et al. 

(2018) reported increased concentrations of long-chain as well as total unsaturated 
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and trans-FA in hyperketonemic Jersey cows. In both studies, monounsaturated FA 

increased with HYK. The decrease of the synthesis of de novo FA in milk might 

suggest a less metabolically active mammary gland, while the increment of long-chain 

FA and total unsaturated FA could be related to a greater acidogenic ruminal 

fermentation due to lower dry matter intake and higher passage rate. Overall, the 

association between milk FA and elevated concentrations of BHB needs further 

investigation. 

High-producing cows suffer a pronounced lipomobilisation in early lactation, 

concurrently with low serum concentrations of glucose, total proteins and urea which 

could explain the results of Table 4. Hyperketonemic cows had from 4.6% to 16.6% 

less milk urea nitrogen compared with healthy animals. The greatest decrease between 

hyperketonemic and healthy cows has been observed in multiparous cows (Santschi et 

al., 2016). The decrease of milk urea nitrogen could be related to the reduced feed 

intake, the oxidative stress and the liver apoptosis damage in cows affected by HYK, 

which leads to a low dietary protein availability and a lower protein biosynthesis in 

the liver, respectively (Duffield et al., 2009; Song et al., 2016). Energy-corrected milk 

has been reported to increase from 2% (Santschi et al., 2016) to 12.6% (Rathbun et 

al., 2017) in hyperketonemic compared with healthy cows. Moreover, the greatest 

differences in energy-corrected milk between hyperketonemic and healthy cows were 

observed in the first week of lactation (Rathbun et al., 2017) and in pluriparous cows 

(Santschi et al., 2016). The increase of energy-corrected milk in cows with HYK 

within the first month of lactation is mostly influenced by elevated fat percentage 

(Santschi et al., 2016; Rathbun et al., 2017) and in some cases by greater milk yield 

(Rathbun et al., 2017). Regarding lactose content, the inverse relationship between 

circulating BHB and glucose at metabolic level reduces the availability of this 
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fundamental precursor for lactose synthesis in epithelial cells of the mammary gland. 

Thus, for lactose content a reduction between 0.6% (Belay et al., 2017b) and 3.7% 

(Santschi et al., 2016) has been reported in hyperketonemic compared with healthy 

cows. As indicated for the other traits, the difference in lactose concentration between 

hyperketonemic and healthy cows was greater in primiparous than pluriparous cows 

(Santschi et al., 2016). As hyperketonemic cows have higher incidence of clinical 

mastitis compared with healthy cows (Berge and Vertenten, 2014), greater somatic 

cell count is expected in hyperketonemic animals. Although results of Santschi et al. 

(2016), who reported a 61.3% increment of mastitis incidence in hyperketonemic 

multiparous cows compared with healthy animals, supported this hypothesis, HYK 

and somatic cell count were uncorrelated in Vanholder et al. (2015) and Chandler et 

al. (2018), and were negatively associated in Rathbun et al. (2017), who observed that 

the incidence of mastitis decreased by 3.2% in hyperketonemic compared with 

healthy cows. In addition, milk acetone concentration has shown a coefficient of 

correlation with blood BHB between 0.50 and 0.79, and thus it has been proposed as 

an additional milk indicator of HYK, similarly to milk BHB (van der Drift et al., 

2012a and 2012b; Chandler et al., 2018). 
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Table 4. Significant differences between normal and hyperketonemic cows for milk composition1 

Reference Fat (%)  Protein (%) F:P Lactose (%) MUN (mg/dL) SCC ECM (kg/day) 

Duffield et al. (2009)2 +0.22 to +0.48  -0.09 - - - - - 

van der Drift et al. (2012a) +0.66 -0.11 +0.26 - - - - 

Koeck et al. (2014)2,3 
- - 0 to +0.33  - - - - 

Vanholder et al. (2015)4 +0.10 to +0.31 -0.10 to -0.22 - - - - - 

Santschi et al. (2016)3,5 +0.46 to +0.98 -0.01 to -0.10 +0.17 to +0.33 -0.05 to -0.17 -0.50 to -1.70 +55 to +1846 +0.60 to +2.10 

Belay et al. (2017b)2 +0.40 to +0.50 -0.13 to -0.15 - -0.03 to -0.06 - - - 

Rathbun et al. (2017)2 +0.25 to +0.36 -0.16 to -0.24 - - - -0.067 +3.29 to +5.51 

Chandler et al. (2018)5 +0.59 -0.12 to -0.39 +0.12 to +0.43 - - - - 

Negative and positive values indicate lower and higher values in hyperketonemic cows, respectively. Values are mean, or minimum and maximum. 

1F:P = fat to protein ratio; MUN = milk urea nitrogen; SCC = somatic cell count; ECM = energy-corrected milk calculated as in NRC (2001). 

2Values represent differences between days or weeks of lactation. 

3Values represent differences between suspect or positive cows for hyperketonemia. 

4Values represent differences between subclinical and clinical ketosis. 

5Values represent differences between parities. 

6SCC expressed as SCC ×103/mL. 

7SCC expressed as log10 of SCC. 
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Reproductive performance 

The cow has to be in positive energy balance to fully express oestrus 

behaviour and become pregnant (Rutherford et al., 2016). All reviewed studies on the 

effect of HYK on reproductive performance dealt with HYK diagnosed with the 

analysis of blood BHB (Table 5). Animals with elevated blood BHB in the first 2 

weeks after calving had lower pregnancy success at first artificial insemination than 

healthy cows (OR = 0.47, P = 0.003; Walsh et al., 2007), whereas no effects were 

observed by Chapinal et al. (2012a) and McArt et al. (2012). However, a decrease of 

pregnancy success within 70 days post-voluntary waiting period with a hazard ratio of 

0.87 (P = 0.10) was reported by Ospina et al. (2010b). Moreover, greater number of 

inseminations per pregnancy (2.8 vs. 2.0, respectively; P < 0.05), lower peak activity 

(35% less activity), shorter activity at oestrus (14% less hours) and longer interval 

from calving to first observed oestrus in HYK than healthy cows were observed by 

Rutherford et al. (2016), who reported also prolonged days open for multiparous 

cows.  

 

Table 5 Associations between hyperketonemia and reproductive performance in dairy cattle 

Reference Days open 
Successful to first 

insemination  

Oestrus 

duration 

Oestrus 

activity 

Walsh et al. (2007) prolonged reduced - - 

Ospina et al. (2010b) - reduced - - 

Chapinal et al. (2012a) - no difference - - 

McArt et al. (2012) no difference no difference - - 

Rutherford et al. (2016) prolonged reduced reduced reduced 
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Genetic aspects 

In recent years, genetic investigations on BHB have become more relevant, 

leading to an increased number of papers on this topic (Figure 1). Several authors 

described blood and milk BHB as heritable traits, with estimates that ranged from 

0.09 to 0.37 and 0.04 to 0.29, respectively (Table 6). On average, estimates of 

heritability of both traits increased during lactation (Koeck et al., 2014; Lee et al., 

2016; Belay et al., 2017b), probably because the environmental and residual factors 

play a stronger role in early rather than in mid or late lactation. Some authors (Penasa 

et al., 2015; Jamrozik et al., 2016) observed that heritability of milk BHB decreased 

with increasing parity. On the other hand, an increase of heritability from first to 

second parity, and a slight decrease in third parity have been reported by Lee et al. 

(2016). 

 

Table 6. Heritability of blood and milk β-hydroxybutyrate (BHB) in dairy cattle 

Reference Breed blood BHB milk BHB 

van der Drift et al. (2012b) Holstein 0.17 0.16 

Koeck et al. (2014) Holstein  0.14 to 0.291 

Penasa et al. (2015) Holstein  0.08 to 0.142 

Jamrozik et al. (2016) Holstein  0.07 to 0.132 

Lee et al. (2016) Holstein  0.04 to 0.171,2 

Belay et al. (2017b) Norwegian Red 0.25 to 0.371  

Weigel et al. (2017) Holstein 0.09  

1Values in different stages of lactation. 

2Values in different parities. 
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Heritability estimates of blood and milk BHB were greater than estimates of 

CK assessed by Koeck et al. (2014), Jamrozik et al. (2016) and Belay et al. (2017b) 

using linear animal models (Table 7); this could depend not only on the less 

variability of CK, which is a dichotomous variable (presence/absence of disease), but 

also on the possible discrepancy of health data, which were recorded by more than 

one observer in the studies of Koeck et al. (2014), Jamrozik et al. (2016) and Belay et 

al. (2017b). The greater heritability of blood and milk BHB compared with CK, 

coupled with positive moderate to strong genetic correlations between these traits 

suggest that BHB is a useful indicator to select against ketosis (Koeck et al., 2014; 

Jamrozik et al., 2016; Belay et al., 2017b). Although BHB has been reported as a 

relatively good genetic indicator for metabolic disorders, it did not exhibit any 

potential as a predictor of fertility problems (Table 7; Jamrozik et al., 2016). 

Considering genetic correlations of BHB with milk yield and composition 

traits (Table 7), some controversial results have been reported in studies that 

considered the early (van der Drift et al., 2012b; Koeck et al., 2014; Jamrozik et al., 

2016) or entire lactation (Penasa et al., 2015) rather than mid lactation (Buitenhuis et 

al., 2013). Weak to moderate positive (Buitenhuis et al., 2013; Belay et al., 2017b) 

and negative (Penasa et al., 2015) relationships were observed between milk or blood 

BHB and milk yield. Negative genetic associations with milk protein, lactose and urea 

content were generally consistent in literature (Buitenhuis et al., 2013; Belay et al., 

2017b), and a positive genetic correlation with milk fat percentage has been reported 

by Belay et al. (2017b), probably due to the larger fat mobilisation required in early 

lactation by selecting for high milk production. A general consensus in the literature 

described milk BHB and F:P as positively genetically correlated (Koeck et al., 2014; 
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Penasa et al., 2015; Jamrozik et al., 2016) and blood or milk BHB to be strongly 

positively correlated with acetone (van der Drift et al., 2012b).  

On average, genetic correlations of BHB with diseases and milk production or 

composition traits were stronger in early lactation (Penasa et al., 2015; Belay et al., 

2017b) and for primiparous cows (Penasa et al., 2015; Jamrozik et al., 2016) 

compared with later stages of lactation and parity orders. Nevertheless, a clear 

explanation for the stronger correlations in early lactation and primiparous cows has 

not been provided yet. 

Genetic perspectives for analysis of HYK and ketosis have been emerging in 

recent years. For instance, Weigel et al. (2017) reported that the incorporation of 

genomic data to pedigree-based analyses enhanced estimates of HYK heritability, 

breeding values and predicted phenotypes. Parker Gaddis et al. (2018) observed that 

susceptibility to ketosis in Jerseys was affected by numerous regions along the 

genome, involving genes related with several pathways as immune system, insulin 

regulation and lipid metabolism. However, in this study ketosis events were retrieved 

from a voluntary producer-recorded database which increases the error of diagnosis 

because of the several producers involved and the declarations collected on a 

voluntary basis. 



51 

 

Table 7. Heritability and genetic correlations (rg) of early-lactation diseases, milk yield, fat, protein and lactose percentages, fat to protein ratio (F:P), and 

acetone with blood and milk β-hydroxybutyrate (BHB) in dairy cattle 

Trait Heritability rg with blood BHB rg with milk BHB Reference 

Disease     

  Clinical ketosis 0.02 - 0.48 Koeck et al. (2014) 

 0.02 to 0.04 - 0.25 to 0.63 Jamrozik et al. (2016)2 

 0.08 0.18 to 0.47 - Belay et al. (2017b)3 

  Displaced abomasum 0.04 - 0.07 Koeck et al. (2014) 

 0.02 to 0.06 - 0.05 to 0.36 Jamrozik et al. (2016)2 

  Metritis 0.02 - 0.09 to 0.37 Jamrozik et al. (2016)2 

  Retained placenta 0.02 to 0.03 - 0.12 to 0.16 Jamrozik et al. (2016)2 

Milk trait     

  Milk yield, kg/day 0.31 - 0.45 Buitenhuis et al. (2013)  

 - - -0.21 to -0.09  Penasa et al. (2015)2  

 0.16 to 0.23 0.05 to 0.19/-0.03 to 0.281 - Belay et al. (2017b)3  

     

  Fat, % 0.39 - -0.94 Buitenhuis et al. (2013)  

 0.10 to 0.17 -0.01 to 0.17/0.03 to 0.081 - Belay et al. (2017b)3  

  Protein, % 0.27 to 0.44 -0.28 to -0.23/-0.36 to -0.221 - Belay et al. (2017b)3  

  F:P 0.12 - 0.49 Koeck et al. (2014)  

 - - 0.28 to 0.33 Penasa et al. (2015)2  

 0.10 to 0.16 - 0.15 to 0.49  Jamrozik et al. (2016)2  

  Lactose, % 0.41 to 0.46 -0.23 to -0.15/-0.19 to -0.161 - Belay et al. (2017b)3  

  Acetone, mmol/L  0.10 0.52 0.90 van der Drift et al. (2012b)  
1Correlations within and across stages of lactation. 
2Values represent differences between parities. 
3Values represent differences between stages of lactation.
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Economic aspects 

Recent studies have been conducted to evaluate the economic impact of HYK 

in the dairy herd. The HYK cost in European countries has been evaluated using a 

stochastic model with distribution laws as input parameters (Raboisson et al., 2015) 

and a dynamic stochastic simulation model (Mostert et al., 2018). The economic 

impact of HYK in United States has been assessed using a deterministic model 

(McArt et al., 2015; Liang et al., 2017), even if in the deterministic model of Liang et 

al. (2017) several variables were modelled stochastically. While McArt et al. (2015) 

calculated the cost for HYK with blood BHB concentration ≥ 1.2 mmol/L, Liang et al. 

(2017) did not clearly define the diagnostic method. 

All the studies observed that the cost of HYK, which can be increased twice 

considering diseases related to HYK (mastitis, metritis, displaced abomasum, 

lameness and CK), is mainly due to impaired reproductive performance and milk loss. 

Despite the variation of prices (e.g. milk, feed, replacement and slaughter prices) on 

the market of each region and year, observed results followed the same trend. The 

total average cost of HYK has been estimated between $77 (Liang et al., 2017) and 

$289 (McArt et al., 2015) per case and year in United States, and between €130 

(Mostert et al., 2018) and €257 (Raboisson et al., 2015) per case and year in Europe. 

In general, the cost is at least twice greater in multiparous than primiparous cows 

(Liang et al., 2017; Mostert et al., 2018). However, a higher cost for primiparous 

($374) than multiparous animals ($256) has been reported by McArt et al. (2015). 

Although cost distribution was difficult to compare among studies due to the different 

variables considered in each formula, McArt et al. (2015) and Mostert et al. (2018) 

clearly reported that the most important cost was related to impaired reproductive 

performance (34% to 36%) and milk production loss (24% to 26%). Interestingly, the 
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cost of the milk that was discarded following the treatment of HYK-related diseases 

(14%) has been additionally considered by Mostert et al. (2018). Most of HYK total 

costs (80%) were attributable to several HYK-related diseases (e.g. displaced 

abomasum, lameness, clinical mastitis and metritis) and consequently early culling, 

allocating less relative importance to milk production loss (11%) and prolonged days 

open (9%) in Raboisson et al. (2015). On the other hand, Liang et al. (2017) assigned 

most of the total costs to veterinary interventions and treatments (68%) or to extended 

days open (47%) for primiparous or multiparous cows, respectively. 

 

CONCLUSIONS AND PERSPECTIVES 

The present review summarised the major impacts of elevated blood or milk 

BHB concentrations on productive, fertility and economic aspects in early lactation 

dairy cows. A general consensus defined HYK as cause of increased risk of health 

problems during early lactation, with consequent negative effects on herd 

profitability. Nevertheless, controversial results have been observed for milk 

production and somatic cells count. The associations between BHB concentrations 

and milk yield are still not well defined both from a phenotypic and genetic point of 

view, and further studies are necessary to better understand the mechanisms 

underlying these relationships. Although the reviewed literature is consistent in 

reporting that elevated blood BHB concentration is detrimental to reproductive 

performance, Ospina et al. (2010a and 2010b) highlighted that NEFA concentration is 

a stronger predictor of fertility depletion than BHB. A debate about the most 

convenient indicator concerns also milk composition traits, for which routinely 

predicted traits as acetone, F:P and FA profile have been assuming increasing 

importance. Moreover, the interest of using multiple measurable indicators to 
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determine HYK has been emerging because until now most papers established HYK 

on the basis of a single predictor.  

Therefore, the following relevant points deserve further investigations: 

(i) Identification and validation of trustworthy methods to discriminate between cows 

affected by HYK and healthy animals in field conditions. Although the determination 

of blood BHB concentration is the most common method to identify HYK, it is not a 

useful tool in field conditions both from the economic and animal welfare point of 

view. The possibility to predict BHB in milk using MIRS is currently the most 

concrete and feasible way to collect phenotypes at population level and some studies 

have demonstrated that this approach is useful for monitoring HYK in dairy cows. 

Nevertheless, MIRS does not allow to collect detailed individual milk BHB 

concentrations with enough accuracy; this issue has been widely discussed in several 

papers and it is one of the main topics that lead researches on MIRS and metabolic-

related indicators. The combination of several milk test-day predicted traits (e.g. 

BHB, acetone, F:P, FA) and performance variables has been proposed as an 

interesting strategy to predict HYK (Chandler et al., 2018). Another approach that has 

been recently suggested is the use of BHB concentration in blood rather than in milk 

as reference method to calibrate MIRS devices (Belay et al., 2017b). The possibility 

to predict the metabolic profile of cow by MIRS is a great challenge for the dairy 

sector. 

(ii) Some of the controversial results highlighted in this review between the effect of 

elevated BHB concentration and health, milk production and composition, and 

reproductive performance, as well as HYK economic cost and genetic aspects could 

be related to data quality. Considering that ketosis is a complex metabolic disease, the 

diagnosis by using a single cut-off could be not enough to correctly discriminate 



55 

 

between healthy and hyperketonemic animals, or to properly separate between SCK 

and CK. Further research should focus on BHB variability within and between cows, 

in order to provide essential information for the development of a more accurate 

diagnosis method. Moreover, when dealing with health events, results could vary if 

they come from a voluntary declaration, if the declaration comes from the farmers or 

the veterinarians, or if the health event is registered by only one person or different 

persons. In addition, further investigation using ordinal or multinomial logistic 

regression to assess the relation between HYK (or CK) and various predictors is 

needed. A more detailed review focussed on data quality could help to better 

understand how the quality of recorded data may affect the impact of HYK on cow’s 

health and performance. 

 (iii) Quantification of phenotypic and genetic variation of HYK in different breeds 

and environmental conditions. This issue is very relevant for scientists and 

technicians, and the possibility of recording BHB concentration or other predicted 

traits at population level, as mentioned above, would help investigate this topic. 

Several impacts of HYK on cow performance are controversial or not quantified yet, 

and the difficulties to have large and accurate data in the first days after calving is one 

of the main concerns for future research. Moreover, the possibility of combining 

metabolic information of dairy cows in early lactation with milk production and 

composition will support farmers to achieve an early detection of metabolic problems 

minimizing the economic losses. 
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ABSTRACT 

Dairy cows commonly experience an unbalanced energy status in early 

lactation, and this condition can lead to the onset of several metabolic disorders. 

Blood metabolic profile testing is a valid tool to monitor and detect the most common 

early lactation disorders, but blood sampling and analysis are time-consuming and 

expensive, and the procedure is invasive and stressful for the cows. Mid-infrared 

(MIR) spectroscopy is routinely used to analyze milk composition, being a cost-

effective and nondestructive method. The present study aimed to assess the feasibility 

of using routine milk MIR spectra for the prediction of main blood metabolites in 

dairy cows, and to investigate associations between measured blood metabolites and 

milk traits. Twenty herds of Holstein Friesian, Brown Swiss or Simmental cows 

located in Northeast Italy were visited 1 to 4 times between December 2017 and June 

2018, and blood and milk samples were collected from all lactating cows within 35 d 

in milk. Concentrations of main blood metabolites and milk MIR spectra were 

recorded from 295 blood and milk samples and used to develop prediction models for 

blood metabolic traits through backward interval partial least squares analysis. Blood 

β-hydroxybutyrate (BHB), urea, and nonesterified fatty acids were the most 

predictable traits with coefficients of determination of 0.63, 0.58, and 0.52, 

respectively. On the contrary, predictive performance for blood glucose, triglycerides, 

cholesterol, glutamic oxaloacetic transaminase, and glutamic pyruvic transaminase 

were not accurate. Associations of blood BHB and urea with their respective contents 

in milk were moderate to strong, whereas all other correlations were weak. Predicted 

blood BHB showed an improved performance in detecting cows with hyperketonemia 

(blood BHB ≥ 1.2 mmol/L), compared with commercial calibration equation for milk 

BHB. Results highlighted the opportunity of using milk MIR spectra to predict blood 
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metabolites and thus to collect routine information on the metabolic status of early-

lactation cows at a population level. 

 

Keywords: dairy cow, metabolic disorder, β-hydroxybutyrate, milk infrared 

spectroscopy 

 

INTRODUCTION 

Dairy cows experience an unbalanced energy status in early lactation as a 

consequence of the transition from gestation and dry-off to lactogenesis. Metabolic 

adaptations and high energy demands required for milk production cause a negative 

energy balance (McArt et al., 2013), which in turn is responsible for the occurrence of 

several metabolic and reproductive disorders (LeBlanc, 2010; Suthar et al., 2013; 

Raboisson et al., 2014).  

Serum metabolic profile testing is a common method to monitor the metabolic 

health and nutritional status of dairy cows. Among blood metabolites, glucose, 

nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHB), and blood urea nitrogen 

(BUN) are commonly used as key indicators of metabolic status. Glucose is the main 

metabolic energy source and the precursor of lactose synthesis pathway, and thus its 

demand increases around the time of calving, especially for high-producing cows 

(Drackley et al., 2001; LeBlanc, 2010). If glucose demand exceeds the 

gluconeogenesis, circulating glucose concentration decreases, impairing the use of 

this monosaccharide as an energy supply (Ingvartsen, 2006). Insufficient blood 

glucose levels lead to the mobilization of body energy reserves to cope with negative 

energy balance; this induces an increase of blood NEFA, which are oxidized in liver 

to produce energy. When oxidizing capacity of liver is overloaded, circulating ketone 
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bodies are released (Esposito et al., 2014). The abnormal concentration of ketone 

bodies is known as hyperketonemia (HYK) and it is commonly identified through 

blood BHB quantification, BHB being the predominant and most stable circulating 

ketone body (McArt et al., 2012). On the other hand, BUN provides indication about 

effective RDP intakes, nitrogen utilization efficiency, and nitrogen excretion (Kohn et 

al., 2005; Macrae et al., 2006; Kume et al., 2008). Moreover, relevant metabolites 

such as triglycerides, cholesterol, and liver enzymes [glutamic oxaloacetic 

transaminase (GOT) and glutamic pyruvic transaminase (GPT)] are often included in 

serum metabolic profile testing to have information on hepatic functionality and 

identify potential physiological imbalance (González et al., 2011; Bjerre-Harpøth et 

al., 2012). 

Although blood metabolic profile testing is a valid tool to detect common 

disorders in early lactation, blood sampling and analysis are time-consuming and 

expensive, and the procedure is invasive and stressful for cows. For this reason, large-

scale blood metabolic profiling is not feasible. Thanks to routine data availability, 

milk has been widely investigated as alternative biological matrix to blood for 

assessing and monitoring health traits through mid-infrared (MIR) spectroscopy 

(Grelet et al., 2016). Predicted milk metabolic indicators, such as acetone, BHB, and 

fat-to-protein ratio (F/P), have been used to monitor metabolic status at herd level 

(van Knegsel et al., 2010; Santschi et al., 2016; Tatone et al., 2017), but given their 

moderate diagnostic accuracy, they have been considered improper diagnostic tools at 

an individual cow level (van Knegsel et al., 2010; Chandler et al., 2018). To increase 

the diagnostic capability of data derived from milk MIR spectra, van der Drift et al. 

(2012b) and Chandler et al. (2018) have developed linear and logistic regression 

models combining available test-day information such as milk production and 
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composition, milk ketone bodies, days in milk, and parity to assess metabolic 

disorders. Moreover, several efforts have been made to directly predict blood 

metabolites at individual cow level using milk MIR spectra (Belay et al., 2017; Grelet 

et al., 2019; Luke et al., 2019) or merging them with milk composition and producer-

reported variables (Pralle et al., 2018; Grelet et al., 2019). Using routine milk MIR 

data to predict cow metabolic status would not only prevent the need for expensive 

analyses but also allow recording of information at a population level. Therefore, the 

aims of the present study were to assess the feasibility of using routine milk MIR 

spectra for the prediction of blood metabolites in dairy cows and to investigate the 

associations between measured blood metabolites and predicted milk traits. 

  

MATERIALS AND METHODS 

Data Collection 

Animal sampling and handling protocols were approved by the Ethical 

Committee for the Care and Use of Experimental Animals of the University of 

Padova, and carried out in accordance with the EU Directive 2010/63/EU for animal 

experiments. 

Twenty herds of Holstein Friesian, Brown Swiss, or Simmental cows (herd 

size from 15 to 500 cows) located in Northeast Italy were visited 1 to 4 times from 

December 2017 to June 2018. On average, 10 lactating cows, from 5 to 35 days in 

milk (DIM) and from parity 1 to 10, were sampled at each visit. Four herds were 

visited more than once, with a time interval between visits ranging from 5 to 28 d. In 

total, 194 lactating cows were sampled, from a minimum of 3 to a maximum of 41 

cows per herd. Moreover, 64% of the animals were sampled once, and 20%, 15%, and 

1% were sampled two, three, and four times, respectively. Milk and blood samples 
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were collected from the same cow at each sampling. Individual milks were collected 

following the same procedure used during routine cow milk testing, in which each 

sample is representative of the composition of the entire milking. Samples were 

immediately added with preservative (Bronopol, 2-bromo-2-nitropropan-1,3-diol, 

Knoll Pharmaceuticals, Nottingham, UK) and stored in portable refrigerators at 4°C. 

One blood sample was collected within 1 h from the end of morning (259 samples) or 

afternoon milking (36 samples) by jugular venipuncture into vacuum-sealed tubes (9-

mL Vacutainer; Becton Dickinson and Company, Franklin Lakes, NJ) containing 

lithium heparin and gently inverted several times to prevent blood clotting.  

 

Milk and Blood Analysis 

Milk samples were transferred to the laboratory of the South Tyrolean Dairy 

Association (Bolzano, Italy) and analyzed for fat, protein, casein (CN), and lactose 

percentages, milk urea nitrogen (MUN) and BHB concentration (mBHB) using 

MilkoScan FT7 (Foss, Hillerød, Denmark). The device was calibrated with the 

equations developed and commercialized by Foss, and milk MIR spectra were 

standardized according to manufacturer guidelines. Fat-to-protein ratio was calculated 

from predicted milk composition traits. Somatic cell count was analyzed by 

Fossomatic (Foss) and values were transformed to SCS through the formula SCS = 3 

+ log2(SCC/100,000).  

Blood samples were centrifuged at 1,800 x g for 15 min at 4°C to separate 

plasma, which was stored in 2-mL Eppendorf tubes at -20°C. Frozen plasma samples 

were sent to the Clinical Biochemistry Laboratory of the Experimental 

Zooprophylactic Institute of Lombardy and Emilia Romagna (IZSLER, Brescia, Italy) 

and analyzed for metabolic parameters through an ILab 650 chemistry analyser 
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(Instrumentation Laboratory SpA, Milano, Italy) using colorimetric assay for NEFA, 

enzymatic kinetic colorimetric assay for BHB, kinetic assay (IFCC, International 

Federation of Clinical Chemistry and Laboratory Medicine) for GOT and GPT, 

dichromatic colorimetric end point assay (Allain et al., 1974) for total cholesterol, 

colorimetric trinder end point assay for glucose, colorimetric end point assay for 

triglycerides, and urease test for BUN. 

 

Associations Between Blood Metabolic Parameters and Milk Traits  

The first observation available for each cow was used to investigate the 

phenotypic associations between blood metabolites, as well as the phenotypic 

associations of blood metabolites with milk metabolic parameters and quality traits. In 

particular, Pearson correlations between the residuals were assessed after adjusting 

metabolite concentrations for the effects of parity, week in milk, breed, and herd-

month of sampling. The effect of sampling time (morning and afternoon milking) was 

also tested, but it was not statistically significant in explaining the variation of the 

studied traits and thus it was excluded from the final model. Statistical analysis was 

performed using the MIXED procedure of SAS software version 9.4 (SAS Institute 

Inc., Cary, NC), according to the following linear model:  

yijklm = μ + Pi + Wj + Bk + HMl + εijklm, 

where y is the dependent variable (blood metabolites, milk production, or 

quality traits); μ is the overall intercept of the model; Pi is the fixed effect of the ith 

parity of the cow (i = primiparous and multiparous); Wj is the fixed effect of the jth 

class of week of lactation of the cow (j = 1 to 5); Bk is the fixed effect of the kth breed 

of the cow (k = Brown Swiss, Holstein-Friesian, and Simmental); HMl is the random 

effect of the lth herd-month of sampling (l = 1 to 22); and ε is the random residual. 



72 

 

 

Prediction Models 

Milk MIR spectra collected by the South Tyrolean Dairy Association were 

used to develop MIR prediction models for blood metabolites. Milk MIR spectra were 

paired with the reference values for blood and transformed from transmittance (T) to 

absorbance (A) by applying the formula: A = log10(1/T). The dataset was checked for 

spectral outliers using Mahalanobis distance (threshold = 3.0), and no outliers were 

detected. Following infrared instrument manufacturer specifications (Foss), spectral 

wavelengths in regions commonly associated with high variability and low 

repeatability induced by water content of milk were removed. Thus, the final dataset 

comprised 450 spectral variables in the intervals 964.5 to 1,562.5 cm-1, 1,720.7 to 

2,291.7 cm-1, and 2,415.1 to 2,970.7 cm-1, from 295 samples. Blood BHB was 

normalized via log10 transformation. 

Prediction models and fitting statistics were computed using a macro 

developed in SAS software version 9.4 (SAS Institute Inc.). Backward interval partial 

least squares (BiPLS) analysis was performed according to Zou et al. (2007), to 

improve predictive ability of the developed models. Milk MIR spectra were divided 

into 45 intervals across the MIR range from 964.5 to 2,970.7 cm-1, each including 10 

spectral variables, and the partial least squares (PLS) procedure of SAS was 

iteratively performed excluding one interval at a time. Predicted residual error sum of 

squares (PRESS) was calculated for each iteration. The interval to be excluded from 

the subsequent BiPLS round was the one resulting in the lowest PRESS statistic when 

left out. The procedure was iterated until only one interval remained (Xiaobo et al., 

2010). For each iteration, the number of latent variables to perform the PLS procedure 

was defined as the minimum number of latent variables from 1 to 10 to achieve the 
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lowest PRESS, with P > 0.10. Root mean square error in leave-one-out cross 

validation was calculated for each BiPLS round, and the model with the best 

performance was selected as the final prediction model. For comparison, PLS was 

performed using the same parameters considered for BiPLS, including the whole 

spectrum to develop the prediction model. Calibration outliers were defined as 

observations having a residual between predicted and observed values in calibration 

that deviated more than 3 standard deviations (SD) from the residual average. The 

BiPLS procedure was repeated after calibration outliers exclusion. 

The external validation was conducted by randomly assigning 1 third of the 

sampled cows to the validation set and 2 thirds of the samples to the calibration set. 

The external validation was iterated 3 times, each time over a different third of cows, 

and reported fitting statistics were the average of the fitting statistics of the 3 

iterations. Fitting statistics of PLS and BiPLS models were the standard error in cross 

validation and in external validation, the coefficient of determination in cross 

validation (R2
cv) and in external validation (R2

v), and the ratio performance to 

deviation in cross validation and external validation, calculated as the ratio between 

SD and root mean square error in leave-one-out cross validation and between SD and 

root mean square error in external validation, respectively. 

 

RESULTS AND DISCUSSION 

Descriptive Statistics 

Descriptive statistics of blood metabolites and milk traits are summarized in 

Table 1. Among blood components, NEFA and BHB were the most variable traits, 

with coefficient of variation of 73% and 63%, respectively. Considering blood NEFA 

concentration ≥ 0.70 mmol/L as a critical threshold to identify cows with high body 
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reserves mobilization (McArt et al., 2013), 22.4% of blood samples were above this 

threshold. On average, descriptive statistics of NEFA and prevalence of high NEFA 

concentrations were in agreement with findings of Luke et al. (2019) in early-lactation 

Holstein cows. The percentage of hyperketonemic samples (BHB ≥ 1.2 mmol/L; 

McArt et al., 2012) was 9.8%. Although mean blood BHB and the percentage of 

samples with elevated BHB concentrations agreed with Pralle et al. (2018), lower and 

more variable statistics were reported by Grelet et al. (2019) and Luke et al. (2019) in 

Holstein cows, probably because of the longer observation period considered in Grelet 

et al. (2019; 1 to 50 DIM) and Luke et al. (2019; 5 to 49 DIM) compared with the 

present study. The BUN averaged 3.82 mmol/L and had coefficient of variation of 

36%, which is lower and less variable compared with results of Luke et al. (2019). 

Only 3 samples showed abnormal concentrations of BUN (1 sample below 1.7 

mmol/L and 2 samples above 6.8 mmol/L; Butler et al., 1996; Macrae et al., 2006), 

indicating a low prevalence of RDP-related disorders. Glucose was the least variable 

metabolic trait, with coefficient of variation of 23%. Average glucose concentration 

was 3.03 mmol/L, which is slightly lower than that reported by Grelet et al. (2019). In 

our data set, 9.5% of samples had glucose concentrations ≤ 2.2 mmol/L, which is a 

critical cutoff for hypoglycaemia (Gordon et al., 2013). 

Means of milk production and composition traits were comparable with those 

reported in a recent study conducted among multibreed herds of Northeast Italy 

(Visentin et al., 2018). The mBHB averaged 0.02 mmol/L, which is lower than 

concentrations from previous reports (around 0.07 to 0.08 mmol/L; van der Drift et 

al., 2012a; Chandler et al., 2018; Pralle et al., 2018).  
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Table 1. Descriptive statistics of blood metabolites, milk yield, and composition traits 

 

Trait1 n2 Mean SD CV, % Minimum Maximum 

Blood       

BHB, mmol/L 295 0.73 0.46 63 0.28 3.55 

NEFA, mmol/L 295 0.48 0.35 73 0.01 2.23 

BUN, mmol/L 295 3.82 1.38 36 1.20 20.80 

Glucose, mmol/L 295 3.03 0.71 23 1.70 11.30 

Triglycerides, 

mmol/L 

295 
0.09 0.05 

56 0.03 0.93 

Cholesterol, mmol/L 295 3.19 1.08 34 0.49 7.00 

GOT, IU/L 295 97.93 35.61 36 54.00 352.00 

GPT, IU/L 295 18.64 4.60 25 3.00 31.00 

Milk       

Milk yield, kg/d 286 18.69 5.38 29 7.00 36.10 

Fat, % 295 4.13 0.93 22 1.56 7.93 

Protein, % 295 3.32 0.41 12 2.38 5.03 

F/P 295 1.25 0.27 22 0.48 2.37 

Casein, % 295 2.55 0.34 13 1.67 4.14 

Lactose, % 295 4.76 0.22 13 4.08 5.27 

MUN, mg/dL  293 22.61 8.55 5 7.40 126.60 

SCS  294 2.24 1.88 84 -1.32 8.85 

mBHB, mmol/L 295 0.02 0.05 250 -0.103 0.34 
1BHB = β-hydroxybutyrate; NEFA = nonesterified fatty acids; BUN = blood urea nitrogen; 

GOT = glutamic oxaloacetic transaminase; GPT = glutamic pyruvic transaminase; F/P = 

fat-to-protein ratio; mBHB = milk β-hydroxybutyrate. 

2n = number of samples. 

3Fourier-transform infrared spectroscopy analysis may lead to negative values. 

 

Associations Between Blood Metabolic Parameters and Milk Traits 

Pearson correlations between blood metabolic parameters corrected for 

environmental and genetic (breed) effects are summarized in Table 2. The strongest 

positive correlation was observed between BHB and NEFA (0.45; P < 0.001); this 

estimate was close to that reported by Luke et al. (2019) and much higher than the one 

assessed by González et al. (2011), who observed a weak and not different from zero 

association (0.11) between measured blood BHB and NEFA in early-lactation 

Holstein cows. The lower correlation estimated by González et al. (2011) could be 

due to the much higher mean BHB concentration calculated in their study (1.45 
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mmol/L), which notably exceeded both the mean BHB concentration of the present 

study (0.73 mmol/L) and the cutoff commonly used to identify HYK (1.2 mmol/L). 

On the other hand, average NEFA reported in González et al. (2011; 0.54 mmol/L) 

was similar to that reported in the current study (0.48 mmol/L). The second strongest 

relationship was observed between NEFA and triglycerides (0.42; P < 0.001); 

moreover, triglycerides showed weak but significant correlation with BHB (0.22; P < 

0.001). Conversely, González et al. (2011) concluded that triglycerides cannot be 

considered adequate indicators of lipomobilization, reporting nonsignificant 

correlations of triglycerides with NEFA and BHB. Moderate to weak correlations of 

GOT with BHB (0.33; P < 0.001) and NEFA (0.28; P < 0.01) were observed in the 

present study, whereas González et al. (2011) estimated correlations of 0.16 between 

GOT and BHB, and -0.46 between GOT and NEFA.  

As expected, glucose concentration was negatively associated with blood BHB 

(-0.54; P < 0.001), NEFA (-0.23; P < 0.01), and BUN (-0.23; P < 0.01), highlighting a 

significant association between hypoglycaemia, fat mobilization, and circulating 

nitrogen. The relationship between BHB and glucose was also reported by González 

et al. (2011), who estimated a significant negative correlation (-0.63) between these 2 

traits. Similar to results reported in previous studies (González et al., 2011; Luke et 

al., 2019), a weak negative association was estimated between BUN and NEFA (-

0.17; P < 0.05), and a very low and nonsignificant correlation was assessed between 

BUN and BHB (0.08). 
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Table 2. Pearson correlations between blood metabolites at first observation of each cow (n = 

194), corrected for parity, week in milk, breed, and herd-month of sampling 

Trait1 NEFA Trigl Chol BUN Gluc GOT GPT 

BHB 0.45*** 0.22** 0.01 0.08 -0.54*** 0.33*** -0.09 

NEFA  0.42*** -0.19** -0.17* -0.23** 0.28*** -0.23** 

Triglycerides   0.05 -0.06 0.05 0.11 -0.07 

Cholesterol    0.30*** -0.03 -0.17* 0.31*** 

BUN     -0.23** -0.09 0.14* 

Glucose      -0.15* 0.02 

GOT       0.23** 
 

1BHB = β-hydroxybutyrate, mmol/L; NEFA = nonesterified fatty acids, mmol/L; Trigl = 

Triglycerides, mmol/L; Chol = Cholesterol, mmol/L; BUN = blood urea nitrogen, mmol/L; Gluc 

= Glucose, mmol/L; GOT = glutamic oxaloacetic transaminase, IU/L; GPT = glutamic pyruvic 

transaminase, IU/L. 

*P < 0.05, **P < 0.01, ***P < 0.001. 

 

Pearson correlations between the linear mixed model residuals of blood 

metabolites and those of milk BHB, F/P, and quality traits are reported in Table 3. 

The correlation between mBHB and blood BHB was 0.58 (P < 0.001). Similarly, van 

der Drift et al. (2012a) estimated a correlation of 0.52 between blood and milk BHB, 

and Chandler et al. (2018) reported correlations between 0.40 and 0.62 for Holstein 

cows. Like blood BHB, mBHB showed significant moderate correlations with glucose 

(−0.41; P < 0.001) and NEFA (0.38; P < 0.001), and weak associations with GOT 

(0.20; P < 0.01) and triglycerides (0.16; P < 0.05). Associations between F/P and 

other blood metabolites were in the same direction but weaker than those between 

mBHB and blood parameters (Table 3), suggesting that mBHB could be used as a 

more accurate indicator of metabolic disorders than F/P, supporting previous findings 

(van Knegsel et al., 2010). The strongest association was observed between MUN and 

BUN (0.70; P < 0.001), similar to results reported by Wittwer et al. (1999). On the 

other hand, a weak correlation between MUN and glucose was observed (−0.25; P < 
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0.001), which resembled the association between BUN and glucose (Table 2). The 

moderate associations of protein and CN percentage with blood BHB (−0.29 and 

−0.32, respectively; P < 0.001) can be explained by the detrimental effect that HYK 

exerts on milk protein content (Benedet et al., 2019). Moreover, CN percentage was 

the trait most strongly correlated with GOT (−0.25; P < 0.001), suggesting that 

impaired hepatic functionality leads to reduced milk protein synthesis. Lactose was 

moderately (P < 0.001) associated with NEFA (−0.31) and cholesterol (0.26). The 

negative association between milk lactose content and NEFA could be explained by 

the detrimental effect that metabolic imbalance has on milk quality (Benedet et al., 

2019), whereas the correlation between lactose and cholesterol could be related to 

increased milk production, as cholesterol showed weak but significant (P < 0.05) 

negative correlations with fat and protein percentage (Table 3). 
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Table 3. Pearson correlations between blood metabolites, milk β-hydroxybutyrate and milk quality traits at first observation of each cow (n = 194), 

corrected for parity, week in milk, breed, and herd-month of sampling 

Trait1 mBHB, mmol/L F/P Fat, % Protein, % Casein, % Lactose, % MUN, mg/dL SCS 

BHB, mmol/L 0.58*** 0.34*** 0.23** -0.29*** -0.32*** -0.25*** 0.18* -0.06 

NEFA, mmol/L 0.38*** 0.23** 0.17* -0.21** -0.23** -0.31*** -0.07 0.03 

Triglycerides, mmol/L 0.16* 0.14 0.08 -0.17* -0.20** -0.10 0.04 -0.05 

Cholesterol, mmol/L -0.10 -0.10 -0.16* -0.16* -0.12 0.26*** 0.14* -0.16* 

BUN, mmol/L -0.06 0.08 0.02 -0.14 -0.15* 0.08 0.70*** -0.02 

Glucose, mmol/L -0.41*** -0.19** -0.13 0.18* 0.16* 0.10 -0.25*** 0.19** 

GOT, IU/L 0.20** 0.16* 0.08 -0.21** -0.25*** -0.08 -0.03 -0.09 

GPT, IU/L -0.13 -0.14 -0.16* -0.05 -0.04 0.22** 0.01 -0.14 
 

1BHB = β-hydroxybutyrate; NEFA = nonesterified fatty acids; BUN = blood urea nitrogen; mBHB = milk β-hydroxybutyrate; F/P = fat-to-protein 

ratio; GOT = glutamic oxaloacetic transaminase; GPT = glutamic pyruvic transaminase. 

*P < 0.05, **P < 0.01, ***P < 0.001. 
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Prediction of Blood Metabolites 

For each blood metabolite, specific spectral regions were selected through 

BiPLS procedure to develop the prediction models. Useful wavenumbers for the most 

important metabolic traits are depicted in Figure 1. Wavenumbers selected by BiPLS 

for BUN, NEFA, and BHB calibration models included the spectral region between 

1,450 and 1,200 cm−1, known to be associated with acetone content in milk, which is 

an indicator of subclinical ketosis (Heuer et al., 2001). Moreover, the calibrations of 

BUN, NEFA, and BHB include spectral regions typical of milk lactose (1,250 to 

1,000 cm−1) and fat content (1,450 to 1,390 cm−1; Grelet et al., 2015). Considering the 

negative association between milk lactose percentage and BHB in blood and milk 

(Benedet et al., 2019), the inclusion of spectral regions typical for lactose content in 

the BHB prediction model was somewhat expected (Table 3). Finally, BiPLS for 

BHB prediction also included wavelengths between 1,500 and 1,400 cm−1, typical of 

milk protein content (De Marchi et al., 2014). Comprehensive descriptions of selected 

wavelengths with associated compositions are listed in Supplemental Table S1. 
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Figure 1. Whole (A) and selected wavenumber variables/spectral regions for predicting blood 

urea nitrogen (B), nonesterified fatty acids (C), and β-hydroxybutyrate (D). 
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Table S1. Selected wavenumber variables/spectral regions for predicting blood β-

hydroxybutyrate (BHB), nonesterified fatty acids (NEFA), and urea nitrogen (BUN) 

Trait Spectral region NV1 Assignment2 

BHB, mmol/L 

964.5 – 1,037.802 20 Lactose 

1,080.24 – 1,153.542 20 Lactose 

1,195.98 – 1,307.862 30 Lactose/Acetone 

1,350.3 – 1,423.602 20 Acetone/Fat 

2,044.74 – 2,079.462 10 Protein Backbone 

2,550.138 – 2,584.86 10 Thiols/Fat 

2,743.038 – 2,777.76 10 Fat 

NEFA, mmol/L 

1,003.08 – 1,037.802 10 Lactose 

1,080.24 – 1,114.962 10 Lactose 

1,273.14 – 1,346.442 20 Acetone 

1,427.46 – 1,462.182 10 Acetone/Fat 

BUN, mmol/L 

1,003.08 – 1,037.802 10 Lactose 

1,118.82 – 1,153.542 10 Lactose 

1,234.56 – 1,269.282 10 Lactose/Acetone 

1,388.88 – 1,423.602 10 Acetone/Fat 

1,466.04 – 1,732.242 30 Protein 

1,774.68 – 1,809.402 10 Fatty acids 

2,935.938 – 2,970.66 10 Fatty acids 
 

1NV = number of variables. 

2Dufour et al. (2009); Grelet et al. (2015). 
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Fitting statistics of developed models greatly varied among blood metabolites 

(Table 4). Prediction models for BHB, BUN, and NEFA had R2
cv of 0.64, 0.54, and 

0.53, and R2
v of 0.63, 0.58, and 0.52, respectively. The ratio of performance to 

deviation in cross validation ranged from 1.45 (NEFA) to 1.61 (BHB), and the ratio of 

performance to deviation in external validation from 1.41 (NEFA) to 1.58 (BHB). 

Glucose, triglycerides, cholesterol, GOT, and GPT were predicted with less accuracy 

compared with BHB, BUN, and NEFA; indeed, R2
cv and R2

v were smaller than 0.50. 

The accuracy of prediction of BHB was slightly higher compared with other studies 

(Belay et al., 2017; Pralle et al., 2018; Luke et al., 2019), and similar to the results of 

Grelet et al. (2019), who obtained R2
cv of 0.70. Grelet et al. (2019) concluded that the 

model was not appropriate for providing exact BHB values, but it was accurate 

enough for distinguishing between high and low blood BHB concentrations. 

Similarly, our results suggest that prediction models could be used to discriminate 

between low, medium, and high BHB concentrations and, thus, between cows with or 

without HYK. The moderate accuracy of blood NEFA prediction was reported also by 

Luke et al. (2019), who observed R2 from 0.45 to 0.61 in external and random 

validation, respectively, whereas Grelet et al. (2019) reported lower R2
cv (0.39) for 

NEFA. Despite the moderate accuracy, predicted blood NEFA may reasonably be 

used to facilitate the detection of negative energy balance in sampled cows. The 

prediction model for BUN showed lower-than expected performance, especially 

compared with the findings of Luke et al. (2019), who reported R2
cv and R2

v of 0.90. 

This could be due to the limited range of variation observed in our study for BUN 

concentration compared with that of Luke et al. (2019). This hypothesis is supported 

by the fact that external validation conducted by Luke et al. (2019) on a data set with 

means and variation similar to the present study showed a low R2
v (0.35). 
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Nevertheless, MUN analysis is routinely provided in milk recording systems, and a 

moderate to strong positive Pearson correlation exists between MIR-predicted MUN 

and measured BUN in the present study (r = 0.70 for corrected data and r = 0.85 for 

raw data; P < 0.001). For this reason, MUN can be considered a reliable tool to 

monitor nitrogen utilization (Jonker et al., 1998; Wittwer et al., 1999). To our 

knowledge, this is the first study that attempted to predict bovine blood triglycerides, 

cholesterol, GOT, and GPT using milk MIR spectra; the prediction models for these 

traits were not accurate. Regarding glucose, low R2
cv for this trait was already 

observed by Grelet et al. (2019), who attributed the difficulties of developing a 

reliable model to the limited variability of glucose. As a matter of fact, the low 

variability of glucose observed by Grelet et al. (2019), expressed by a coefficient of 

variation of 15%, was close to the coefficient of variation (17%) observed in the 

present study after removal of outliers (Table 4). Limited variability could also be a 

possible reason for low predictive accuracy for the other traits (triglycerides, 

cholesterol, GOT, and GPT), along with the difficulties of detecting low blood 

concentrations (Table 1 and Table 4) and the absence of a direct correspondence or 

relationship with milk traits (Table 3). 

Overall, the comparison of MIR models developed in different studies is 

difficult; prediction performances of blood traits are influenced by blood sampling 

techniques (e.g., time between milk and blood collection, and standardization) and the 

validation procedures used. In our study, similar to that of Pralle et al. (2018), a 

stringent protocol for milk and blood samples collection was applied to obtain blood 

and milk samples within 1 h. Conversely, in other recent studies (Grelet et al., 2019; 

Luke et al., 2019), sampling procedures were characterized by longer intervals 

between milk and blood collection. Moreover, only a few studies included an external 
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validation step, using different approaches (Belay et al., 2017; Pralle et al., 2018; 

Luke et al., 2019). For instance, Luke et al. (2019) used data from an independent 

farm as external validation dataset. A similar or a herd-by-herd approach is useful to 

avoid possible overly optimistic results from cross-validation (Wang and Bovenhuis, 

2019). However, due to the limited number of early-lactation cows available in each 

herd, a herd-by-herd validation approach was not possible in the present study. This is 

a potential limitation that should be considered in future investigations. 
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Table 4. Fitting statistics1 of blood metabolites predictions in calibration, cross-validation, and external validation 

Trait2 n Mean SD NV LV SEC R2 SECV R2
cv RPDcv SEPV R2

v RPDv 

BHB, mmol/L 295 0.73 0.46 120 9 0.26 0.70 0.28 0.64 1.61 0.29 0.63 1.58 

NEFA, mmol/L 294 0.48 0.34 50 7 0.22 0.57 0.23 0.53 1.45 0.24 0.52 1.41 

BUN, mmol/L 294 3.76 0.96 90 10 0.60 0.61 0.65 0.54 1.47 0.62 0.58 1.55 

Glucose, mmol/L 294 3.00 0.52 60 8 0.44 0.29 0.47 0.20 1.11 0.47 0.20 1.11 

Triglycerides, mmol/L 293 0.09 0.02 50 7 0.02 0.25 0.02 0.16 1.12 0.02 0.18 1.10 

Cholesterol, mmol/L 295 3.19 1.08 50 5 0.82 0.42 0.85 0.39 1.28 0.80 0.44 1.32 

GOT, IU/L 294 97.06 32.43 50 4 27.49 0.28 28.34 0.24 1.14 28.29 0.24 1.15 

GPT, IU/L 295 18.64 4.60 40 10 4.15 0.18 4.72 0.05 0.97 4.69 0.07 0.98 
 

1n = number of samples; NV = number of variables; LV = latent variables; SEC = standard error of calibration; R2 = coefficient of determination in 

calibration; SECV = standard error of prediction in cross-validation; R2
cv = coefficient of determination in cross-validation; RPDcv = ratio of 

performance to deviation in cross-validation; Nv = number of samples in external validation; SEPV = standard error of prediction in external 

validation; R2
v = coefficient of determination in external validation; RPDv = ratio of performance to deviation in external validation. 

2BHB = β-hydroxybutyrate; NEFA = nonesterified fatty acids; BUN = blood urea nitrogen; GOT = glutamic oxaloacetic transaminase; GPT = 

glutamic pyruvic transaminase. 
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Discriminant Ability of Predicted Blood and Milk Indicators  

Predicted blood and milk BHB and F/P were tested for their performance in 

discriminating between cows affected or not affected by HYK. To achieve this goal, 

samples with predicted BHB in cross-validation (BHBcv) of 1.2 mmol/L or higher 

were classified as indicating HYK, according to McArt et al., (2013). On the other 

hand, a concentration of 0.14 mmol/L for mBHB was selected as the cutoff to identify 

cows with potential HYK, as reported in Renaud et al. (2019). Although recognized as 

a milk HYK indicator with lower accuracy than that of ketone bodies (van Knegsel et 

al., 2010), F/P has the advantage of being an easy-access indirect indicator of HYK, 

computed from robustly predicted milk composition traits (fat and protein content). A 

cutoff of 1.5 was proposed by van Knegsel et al. (2010), and we applied this on our 

recorded data to discriminate between cows with or without HYK. Classification 

obtained through this test was compared with results from reference blood analyses to 

determine the discriminant capabilities of BHBcv, mBHB, and F/P.  

Accuracy, sensitivity, specificity, positive predictive value, and negative 

predictive value of HYK determination were computed for each metabolic indicator 

(Table 5). Accuracy is the proportion of correctly assigned observations (HYK or not) 

among all observations tested, and it ranged from 0.85 (F/P) to 0.92 (BHBcv) for the 

predictors tested in this analysis. Although different but satisfactory accuracies were 

estimated, a poor sensitivity (0.14 to 0.28), defined as the ability to detect cows with 

HYK, was observed for all metabolic indicators. The BHBcv showed the best positive 

predictive value (0.67), which is the probability that an animal predicted positive for 

HYK has a measured blood BHB ≥ 1.2 mmol/L, whereas F/P showed the worst 

positive predictive value (0.26) and, consequently, a high proportion of false 

positives. This is in accordance with the findings of van Knegsel et al. (2010), who 
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reported less capability of F/P than ketone bodies to detect cows affected by HYK. 

Overall, BHBcv showed the most promising combination of specificity (0.98) and 

negative predictive value (0.93), these being the probability that the test result is 

negative for HYK when the disorder is not present (specificity) and that HYK is not 

present when the cow is tested negative for HYK (negative predictive value). 

Several attempts to classify cows with or without HYK through prediction 

models based on milk MIR spectra, traits, and performance variables have been 

described in literature. Considering mBHB, although using thresholds lower than 0.14 

mmol/L to identify HYK, van der Drift et al. (2012b; 0.07 mmol/L) and Chandler et 

al. (2018; 0.10 mmol/L) did not report results more promising than ours, observing 

high false positive rates and limited accuracy and efficiency. Renaud et al. (2019) 

obtained greater sensitivity and specificity than we observed in the present study. 

Nevertheless, the same authors concluded that the low prevalence of HYK in the 

population limited the statistical robustness of the test and that a larger number of 

cows should have been enrolled to achieve adequate performance. Similar limitations 

should be taken into account in considering the low sensitivity of BHBcv. True 

positive cases of HYK detected through this test had measured blood BHB 

concentrations ≥ 1.37 mmol/L, averaging 2.55 mmol/L. Conversely, the average 

measured BHB of misclassified HYK cases was 1.53 mmol/L, suggesting that the 

higher the concentration, the greater the ability to discriminate samples with BHB 

below or above the HYK threshold. Thus, a much higher number of cows with HYK 

would have contributed to achieve more power and accuracy in predicting elevated 

BHB concentrations. To increase MIR predicting power, Pralle et al. (2018) combined 

producer-reported variables and milk composition traits with milk MIR spectra. 

However, due to the marginal improvement in model performance, Pralle et al. (2018) 
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concluded that there are more advantages in considering these variables for predicting 

HYK status separately. 

 

Table 5. Accuracy, sensitivity, specificity, and predictive values (95% confidence interval) of 

predicted metabolic indicators for hyperketonemia1 diagnosis 

 

  Metabolic indicator2 

Diagnostic statistic  BHBcv mBHB F/P 

Recommended threshold3  1.2 mmol/L 0.14 mmol/L 1.5 

Accuracy  0.92 (0.88-0.95) 0.89 (0.86-0.93) 0.85 (0.81-0.89) 

Sensitivity  0.28 (0.11-0.44) 0.14 (0.05-0.33) 0.28 (0.11-0.47) 

Specificity  0.98 (0.97-1.00) 0.98 (0.96-1.00) 0.91 (0.88-0.95) 

Positive predictive value  0.67 (0.40-0.93) 0.40 (0.10-0.70) 0.26 (0.10-0.41) 

Negative predictive value  0.93 (0.90-0.96) 0.91 (0.88-0.95) 0.92 (0.89-0.95) 
1Defined as blood β-hydroxybutyrate ≥ 1.2 mmol/L (McArt et al., 2013). 

2BHBcv = blood β-hydroxybutyrate concentration predicted in cross-validation; mBHB = milk 

β-hydroxybutyrate; F/P = fat-to-protein ratio. 

3Thresholds proposed by Renaud et al. (2019) for milk BHB and van Knegsel et al. (2010) for 

F/P. 

 

CONCLUSIONS 

In the present study, milk and blood samples of early-lactation dairy cows 

were collected and analyzed to assess metabolic status information. Moderate to 

strong correlations between blood metabolites, and weak to moderate associations 

between blood and milk metabolic indicators in early lactation were observed. 

Although the first attempt at predicting bovine blood triglycerides, cholesterol, GOT, 

and GPT using milk MIR spectra did not show accurate results, milk MIR spectra 

demonstrated potential for predicting important blood metabolites, in particular blood 

BHB. Predicted blood BHB was more strongly correlated with measured blood BHB 

than with mBHB, showing the most powerful ability to discriminate hyperketonemic 

cows. Therefore, blood metabolites predicted through milk MIR spectra are an 

important source of routine information on the metabolic status of early-lactation 
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cows. This is a prelude to large-scale phenotyping of predicted blood BHB for use in 

breeding programs to reduce cows’ susceptibility to HYK postpartum. We aim to 

increase the sample size in the near future, to increase the variability of the calibration 

data set and improve the accuracy of prediction models. 
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ABSTRACT 

Early lactation is a critical period in which dairy cows usually experience 

severe metabolic changes that can lead to the occurrence of metabolic diseases. Serum 

metabolic profile is the most common method to monitor metabolic health and 

nutritional status of early-lactation dairy cows, but blood analysis is time-consuming 

and expensive, and requires blood sampling, which is an invasive and stressful 

procedure for the animals. Mid-infrared (MIR) prediction models for blood 

metabolites have been recently developed, allowing the prediction of metabolic traits 

on a large scale. The current study aimed to investigate factors associated with blood 

β-hydroxybutyrate (BHB), nonesterified fatty acids (NEFA), and blood urea nitrogen 

(BUN) predicted from milk MIR spectra in a large database of Brown Swiss, 

Holstein-Friesian, and Simmental cows. The database consisted of the first test-day 

record (n = 43,201) of early-lactation cows from 5 to 35 days in milk (DIM) farmed in 

multi-breed herds. Sources of variation of predicted blood metabolites were 

investigated using linear mixed models, including the fixed effects of herd, year and 

month of sampling, breed, parity, stage of lactation, and interactions between the 

effects. Random factors were cow nested within breed and the residual. Holstein-

Friesian cows exhibited the greatest concentration of blood BHB and NEFA, followed 

by Simmental and Brown Swiss cows. An opposite situation was detected for BUN, 

with the greatest and the lowest concentrations in Brown Swiss and Holstein-Friesian, 

respectively. Blood BHB and NEFA concentrations generally increased with parity. 

The greatest BHB concentration was observed between 5 and 15 DIM, except for 

Simmental cows, which exhibited a slightly increasing trend across early lactation. 

From 5 to 35 DIM, NEFA concentration declined, whereas BUN increased for all 

considered breeds. The maximum levels of blood BHB and NEFA were recorded 
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during spring and early summer. Trends of BUN generally increased across the year, 

from spring to winter. Environmental effects identified in the present study can be 

included as adjusting factors in within-breed estimation of genetic parameters for 

major blood metabolites. 

 

Key words: dairy cattle, milk mid-infrared spectroscopy, blood metabolite, metabolic 

profile 

 

INTRODUCTION  

During early lactation, dairy cows experience severe metabolic changes due to 

the transition from gestation to milk production and may suffer a negative energy 

balance (NEB) which makes cows prone to develop metabolic disorders and health 

issues (LeBlanc et al., 2010; McArt et al., 2013). The NEB induces the mobilisation 

of body reserves and the oxidation of nonesterified fatty acids (NEFA) in liver to 

produce energy, which results in their increased concentration in blood. If the 

maximum oxidizing capacity of liver is reached, ketone bodies are produced and 

released in blood (Esposito et al., 2014). Thus, elevated serum concentrations of 

NEFA and BHB are key indicators of the mobilisation of body energy reserves and 

the presence of hyperketonemia (HYK), i.e., an abnormal concentration of circulating 

ketone bodies in body fluids (McArt et al., 2013). On the other hand, BUN is an 

indicator of protein status and provides information on the effective RDP intakes, and 

nitrogen utilization efficiency and excretion (Kohn et al., 2005; Macrae et al., 2006; 

Kume et al., 2008). The concentration of BUN normally increases during the first 

weeks of lactation (Luke et al., 2019), being associated with an increased feed intake 

(Seifi et al., 2007).  
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To monitor the metabolic status of farmed animals and promptly intervene in 

the possible occurring of metabolic disorders, the availability of information on 

metabolic indicators is crucial. A common method to monitor the metabolic health 

and nutritional status of dairy cows is the metabolic profiling, which is based on the 

determination of blood metabolites such as NEFA, BHB, and BUN. Nevertheless, 

blood sampling is invasive, stressful, and time-consuming, and the laboratory analyses 

are expensive to be performed routinely. The semi-quantitative cow-side tests 

available to measure metabolites (Iwersen et al., 2009; McArt et al., 2013) are also 

laborious and costly if used as a whole-herd screening tool.  

Recently, calibration models to predict blood metabolites using milk mid-

infrared (MIR) spectra have been developed (Benedet et al., 2019a; Grelet et al., 

2019; Luke et al., 2019). The MIR spectroscopy is of particular interest to collect 

information about HYK, considering that test-day milk recording procedures are 

widely used to analyse milk gross composition. Thus, the new calibration models for 

blood metabolites from milk MIR spectra have the advantage of providing routine 

data useful to monitor cow metabolic status, and thus to prevent invasive samplings 

and expensive analyses. Moreover, the availability of large data allows to investigate 

phenotypic variation of blood metabolic traits at population level. Currently, there is a 

paucity of large-scale studies that have investigated sources of variation of blood 

BHB, NEFA, and BUN in early-lactation cows of different breeds (Urdl et al., 2015; 

Chandler et al., 2018). Therefore, the aim of the present research was to investigate 

sources of variation of blood BHB, NEFA, and BUN in multi-breed herds of Brown 

Swiss (BS), Holstein-Friesian (HF), and Simmental (SI) cows using data predicted 

from routine test-day milk MIR spectra. 

 



101 

 

MATERIALS AND METHODS 

Data Collection 

The initial data comprised spectra of individual milk samples of BS, HF, and 

SI cows from multi-breed herds collected during the monthly test-day recording in 

Bolzano province (Italy) between January 2011 and December 2018. The study area is 

mostly characterized by small farms with traditional feeding (forage or hay and 

concentrates), and approximately 20% of the herds move cows to mountain pastures 

in summer (Visentin et al., 2018; Franzoi et al., 2019). 

During the test-day, milk samples were collected, immediately added with 

preservative (Bronysolv; ANA.LI.TIK Austria, Vienna, Austria), and processed 

according to International Committee for Animal Recording (ICAR, 2012) 

recommendations at the milk laboratory of the South Tyrolean Dairy Association 

(Sennereiverband Südtirol, Bolzano, Italy). For each sample, fat (%), protein (%), 

casein (%), lactose (%), and MUN (mg/dL) were determined, and spectral information 

containing 1,060 infrared transmittance wavelengths in the region between 900 and 

5,000 cm-1, were stored using MilkoScan FT6000 (Foss Electric A/S, Hillerød, 

Denmark). Values of SCC were assessed by Fossomatic (Foss Electric A/S, Hillerød, 

Denmark) and transformed to SCS through the formula SCS = 3 + 

log2(SCC/100,000). 

 

Prediction of Blood Metabolites  

Mid-infrared prediction models previously developed by Benedet et al. 

(2019a) were applied to the stored spectra of the present study to predict 

concentrations of blood BHB, NEFA, and BUN. Briefly, between December 2017 and 

June 2018, 295 individual bovine blood and milk samples were collected from early-
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lactation BS, HF, and SI cows in Northeast Italy, also including herds belonging to 

the dataset of the current study. Reference analyses on blood samples for the 

determination of BHB, NEFA, and BUN concentrations were conducted in the 

Clinical Biochemistry Laboratory of the Experimental Zooprophylactic Institute of 

Lombardy and Emilia Romagna (IZSLER, Brescia, Italy) through an ILab 650 

chemistry analyser (Instrumentation Laboratory SpA, Milano, Italy) using 

colorimetric assay for NEFA, enzymatic kinetic colorimetric assay for BHB, and 

urease test for BUN. Prediction models were developed using partial least squares 

regression approach after a backward interval partial least squares procedure as 

described in Benedet et al. (2019a). Coefficients of determination in cross-validation 

were 0.64 for BHB, 0.54 for BUN, and 0.53 for NEFA.  

 

Data Editing 

The initial dataset was edited to ensure that considered multi-breed herds were 

under test-day recording scheme for at least 4 yr during the study period (2011 to 

2018). Moreover, only herds with at least two breeds and two cows per breed were 

considered. The first test-day record between 5 and 35 DIM of each lactation was 

retrieved from cows of parity 1 to 13. For each milk trait and blood metabolite, values 

that deviated more than 3 SD from the respective mean were considered inconsistent 

information and treated as missing values. After data editing, 43,201 test-day records 

of 24,566 cows in 765 herds were available for statistical analysis. Frequencies for 

each breed-herd combination were: BS+HF, 278 herds, 9,633 cows, 16,849 records; 

BS+SI, 216 herds, 4,823 cows, 8,683 records; HF+SI, 168 herds, 5,943 cows, 10,585 

records; BS+HF+SI, 103 herds, 4,167 cows, 7,084 records. Herd size ranged from 4 

to 159 cows. Parity and DIM averaged 2.78 ± 1.76 and 20.70 ± 8.55 d, respectively.  
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Statistical Analysis 

Sources of variation of the studied traits were investigated using the MIXED 

procedure of SAS software ver. 9.4 (SAS Institute Inc., Cary, NC), according to the 

following linear mixed model:  

yijklmnop = μ + Bi + Pj + Dk + Ml + Ym + Hn + (B x P)ij + (B x D)ik + (B x M)il + 

(P x D)jk + cowo(Bi) + εijklmnop, 

where yijklmnop is the dependent variable (milk yield, fat percentage, protein 

percentage, casein percentage, lactose percentage, MUN, SCS, BHB, NEFA, or 

BUN); μ is the overall intercept of the model; Bi is the fixed effect of the ith breed of 

the cow (i = Brown Swiss, Holstein-Friesian, and Simmental); Pj is the fixed effect of 

the jth parity of the cow (j = first, second, third, and fourth and later parities); Dk is 

the fixed effect of the kth class of stage of lactation of the cow (k = 1 to 6, the first 

being a class from 5 to 10 d, followed by 5 classes of 5 d each); Ml is the fixed effect 

of the lth month of sampling (l = January to December); Ym is the fixed effect of the 

mth year of sampling (m = 2011 to 2018); Hn is the fixed effect of the nth herd (n = 1 

to 765); (B x P)ij is the fixed interaction effect between breed and parity; (B x D)ik is 

the fixed interaction effect between breed and stage of lactation; (B x M) il is the fixed 

interaction effect between breed and month of sampling; (P x D)jk is the fixed 

interaction effect between parity and stage of lactation; cowo is the random effect of 

the oth cow (n = 1 to 24,566) nested within the ith breed; and εijklmnop is the random 

residual. A multiple comparison of means for the fixed effects was performed using 

Bonferroni’s test (P < 0.05). 

 

Single-Breed Analysis 
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A single-breed analysis was performed in addition to the multi-breed 

investigation to compare results of cattle breeds farmed in multi- or single-breed herd 

types. Thus, after the same editing procedure used for multi-breed data, 78,762 first 

milk test-day records between 5 and 35 DIM and related predicted blood BHB, 

NEFA, and BUN of BS, HF, or SI cows in 1,859 single-breed herds were available for 

statistical analysis. For the considered 43,236 cows, parity and DIM averaged 2.87 ± 

1.84 and 20.76 ± 8.51, respectively. Three subsets were created according to the breed 

and the frequencies for each breed were: BS, 912 herds, 17,845 cows, 31,488 records; 

HF, 234 herds, 7,138 cows, 12,285 records; SI, 713 herds, 18,253 cows, 34,989 

records.  

For each breed, data on blood metabolites were analyzed using the MIXED 

procedure of SAS software ver. 9.4 (SAS Institute Inc., Cary, NC), according to the 

following linear mixed model: 

yijklmno = μ + Pi + Dj + Mk + Yl + Hm + (P x D)ij + cown + εijklmno, 

where yijklmno is the dependent variable (BHB, NEFA, or BUN); μ is the overall 

intercept of the model; Pi is the fixed effect of the ith parity of the cow (i = first, 

second, third, and fourth and later parities); Dj is the fixed effect of the jth class of 

stage of lactation of the cow (j = 1 to 6, the first being a class from 5 to 10 d, followed 

by 5 classes of 5 d each); Mk is the fixed effect of the kth month of sampling (k = 

January to December); Yl is the fixed effect of the lth year of sampling (l = 2011 to 

2018); Hm is the fixed effect of the mth herd (m = 1 to 912 for BS, 1 to 234 for HF, 1 

to 713 for SI); (P x D)ij is the fixed interaction effect between parity and stage of 

lactation; cown is the random effect of the nth cow (n = 1 to 17,845 for BS, 1 to 7,138 

for HF, 1 to 18,253 for SI); and εijklmno is the random residual. A multiple comparison 

of means for the fixed effects was performed using Bonferroni’s test (P < 0.05). 
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RESULTS AND DISCUSSION 

Descriptive Statistics 

Descriptive statistics of predicted blood metabolites and milk traits are 

summarised in Table 1. Average BHB (0.65 mmol/L) was intermediate between mean 

BHB reported by Luke et al. (2019; 0.54 mmol/L) and Pralle et al. (2018; 0.80 

mmol/L) for HF cows, whereas NEFA (0.36 mmol/L) was lower than that observed 

by Luke et al. (2019; 0.49 mmol/L) in HF but similar to the value obtained by 

Djoković et al. (2017; 0.38 mmol/L) in early-lactation SI cows. On average, BUN 

(2.87 mmol/L) was lower than previous findings in early-lactation cows (Djoković et 

al., 2015; Luke et al., 2019). The lower blood metabolites concentration compared 

with results reported in literature may be due to the management of the considered 

multi-breed farms, which were located in a mountain area characterized by traditional 

feeding and lower productivity than herds in the plain. As a matter of fact, in the 

current analysis, the percentages of records with abnormal blood metabolites 

concentrations were very low, meaning that herds had low prevalence of metabolic 

disorders. The percentage of records suggesting HYK (BHB ≥ 1.2 mmol/L; McArt et 

al., 2013) was 2.4%. Also, 5.3% of the data exhibited NEFA concentration ≥ 0.70 

mmol/L, which is considered a critical threshold to identify cows with high body 

reserves mobilisation (McArt et al., 2013). About 10% of samples showed abnormal 

concentrations of BUN (< 1.7 mmol/L or > 6.8 mmol/L; Butler et al., 1996; Macrae et 

al., 2006), suggesting possible wrong RDP feeding strategies. 

Results for milk yield and composition traits were in agreement with those 

reported in recent studies conducted in multi-breed herds of Northeast Italy (Penasa et 
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al., 2014; Manuelian et al., 2019), bearing in mind that only the first month of 

lactation was investigated in the present study. 

 

Table 1. Descriptive statistics of blood metabolites, milk yield, and composition traits of 

early-lactation cows in multi-breed herds (43,201 observations) 

 

Trait1 Mean SD CV, % Minimum Maximum 

Blood metabolite, mmol/L      

BHB 0.65 0.23 35.05 0.19 2.78 

NEFA 0.36 0.19 53.27 0.01 1.32 

BUN 2.87 0.84 29.37 1.20 11.53 

Milk trait      

Milk yield, kg/d 30.95 6.98 22.54 9.10 56.50 

Fat, % 4.10 0.74 17.93 1.68 6.87 

Protein, % 3.28 0.35 10.77 2.18 4.52 

F/P 1.26 0.24 18.68 0.54 2.32 

Casein, % 2.57 0.27 10.54 1.65 3.51 

Lactose, % 4.81 0.17 3.51 4.06 5.36 

MUN, mg/dL  18.87 7.17 38.00 0.10 43.40 

SCS  2.08 1.94 93.12 -3.64 9.61 
1NEFA = nonesterified fatty acids; F/P = fat-to-protein ratio. 

 

Breed Effect 

Least squares means of predicted blood metabolites, milk yield, and 

composition traits for BS, HF, and SI breeds are in Table 2. Small but significant (P < 

0.05) differences were observed between BHB concentrations in blood of the three 

breeds; the greatest (0.65 mmol/L; P < 0.05) and the lowest (0.62 mmol/L; P < 0.05) 

BHB concentrations were detected for HF and BS, respectively, whereas SI was 

intermediate (0.63 mmol/L; P < 0.05). Moreover, HF exhibited the greatest NEFA 

(0.42 mmol/L; P < 0.05) and the lowest BUN concentrations (2.67 mmol/L; P < 

0.05), which could suggest that HF cows are more prone to incur abnormal metabolite 

concentrations and metabolic disorders than other breeds. In fact, elevated BHB and 

NEFA, and low BUN commonly indicate an insufficient energy and protein intake 
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due to the diet or inability of the animal to cope with the NEB that characterizes the 

first month of lactation (Macrae et al., 2006; LeBlanc, 2010). Brown Swiss and SI 

showed the same concentration of NEFA (0.35 mmol/L), but different BUN 

concentration (3.18 vs. 2.80 mmol/L, respectively; P < 0.05). These results partially 

agreed with Urdl et al. (2015), who reported similar concentrations for BUN but 

opposite for BHB in early-lactation BS, HF, and SI cows. Moreover, the same authors 

did not observe a significant breed effect on NEFA, concluding that breed is a less 

important effect than energy intake or milk production on blood metabolites. On the 

contrary, our findings suggested that breed is an important source of variation for 

early-lactation blood metabolites, even if the reason of some differences among 

breeds are still unclear. For instance, the dual-purpose SI breed was expected to be the 

best to cope with the energy stress for milk production and thus we expected the 

lowest NEFA and BHB concentrations for this breed. However, SI is probably 

characterized by a different but not well-known metabolic pathway following the 

slower milk production increase than specialized dairy breeds (HF and BS). 

Holstein-Friesian yielded greater milk (32.83 kg/d; P < 0.05) than the other 

breeds, and BS exhibited the greatest percentages of fat (4.13%), protein (3.33%), and 

casein (2.61%) (P < 0.05). In general, SI cows had an intermediate level of these milk 

traits, with the exception of fat percentage which was very similar to fat percentage of 

HF cows. The greatest (20.80 mg/dL; P < 0.05) and the lowest (16.42 mg/dL; P < 

0.05) MUN contents were estimated for BS and HF, respectively, reflecting the same 

situation depicted by BUN concentration in each breed (P < 0.05; Table 2). The 

lowest SCS was observed for SI breed (1.74; P < 0.05) and the greatest for HF (2.24; 

P < 0.05). Overall, although considering the whole lactation, Penasa et al. (2014) and 



108 

 

Manuelian et al. (2019) obtained similar trends for milk production and composition 

traits of BS, HF, and SI cattle breeds. 

 

Table 2. Least squares means1 (standard error) of blood metabolites, milk yield, and 

composition traits of Brown Swiss, Holstein-Friesian, and Simmental cows in multi-breed 

herds 

 

Trait2 Brown Swiss Holstein-Friesian Simmental 

Blood metabolite, mmol/L    

BHB 0.62 (0.001)a 0.65 (0.002)c 0.63 (0.002)b 

NEFA 0.35 (0.002)a 0.42 (0.002)b 0.35 (0.002)a 

BUN 3.18 (0.01)c 2.67 (0.01)a 2.80 (0.01)b 

Milk trait    

Milk yield, kg/d 29.28 (0.06)a 32.83 (0.07)b 29.40 (0.07)a 

Fat, % 4.13 (0.007)b 4.06 (0.008)a 4.05 (0.009)a 

Protein, % 3.33 (0.003)c 3.16 (0.003)a 3.30 (0.004)b 

F/P 1.25 (0.002)a 1.30 (0.003)b 1.24 (0.003)a 

Casein, % 2.61 (0.002)c 2.47 (0.003)a 2.58 (0.003)b 

Lactose, % 4.82 (0.002)b 4.77 (0.002)a 4.81 (0.002)b 

MUN, mg/dL  20.80 (0.07)c 16.42 (0.08)a 18.47 (0.09)b 

SCS  2.08 (0.02)b 2.24 (0.02)c 1.74 (0.03)a 

Herds, n 597 549 487 

Cows, n 9,992 8,203 6,371 

Records, n 17,600 13,854 11,747 
1Least squares means with different superscript letters within a row are significantly different 

according to Bonferroni’s test (P < 0.05). 

2NEFA = nonesterified fatty acids; F/P = fat-to-protein ratio. 

 

Interactions between Effects of Breed, Parity, Stage of Lactation, and Month of 

Sampling 

In addition to multi-breed analysis, a dataset of single-breed herds was 

considered and analyzed for blood metabolites to compare results. In fact, although 

considering multi-breed herds is necessary to properly disentangle breed and herd 

effects, management and feeding strategies adopted in these herds could have 

smoothed the typical characteristics of different cattle breeds, which could be more 

detectable in single-breed farms. 
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Figure 1 depicts the least squares means of predicted blood metabolites across 

parities in multi-breed herds, and results for single-breed analysis are given in 

Supplemental Figure S1. In both analyses, BHB and NEFA concentrations were 

generally greater in third and later than first and second parities for all considered 

breeds (P < 0.05). Focusing on HF, primiparous cows had similar or greater BHB and 

NEFA than cows in second lactation. For BS and SI, the lowest BHB concentrations 

were observed for primiparous cows (P < 0.05). On the other hand, the trend of NEFA 

across parities of BS and SI was similar to that of HF, in which NEFA was greater in 

first than second lactation (P < 0.05), similarly to Mäntysaari et al. (2019). In contrast 

with these findings, an increasing blood BHB and NEFA concentration with 

increasing parity was generally expected (Benedet et al., 2019b; Gärtner et al., 2019). 

However, elevated concentrations of BHB and NEFA in blood of first-lactation cows 

could be due to their increased energy demands for growth occurring concurrently 

with the requirements of lacto-genesis or a worse energy status than multiparous cows 

before calving (Meikle et al., 2004; Wathes et al., 2007). Overall, BUN decreased 

slightly across parities in all considered breeds (Figure 1 and Supplemental Figure 

S1). Even in this case, no significant association or an opposite weak tendency 

between parity and BUN (Wathes et al., 2007) or milk (Yoon et al., 2004) was 

expected. 
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Figure 1. Least squares means of blood (A) β-hydroxybutyrate (BHB), (B) nonesterified fatty 

acids (NEFA), and (C) urea nitrogen (BUN) across parities in Brown Swiss (BS), Holstein-

Friesian (HF), and Simmental (SI) cows in multi-breed herds. Different superscript letters 

indicate significantly different least squares means within breed according to Bonferroni’s test 

(P < 0.05). 
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Figure S1. Least squares means of blood (A) β-hydroxybutyrate (BHB), (B) nonesterified 

fatty acids (NEFA), and (C) urea nitrogen (BUN) across parities in Brown Swiss (BS), 

Holstein-Friesian (HF), and Simmental (SI) cows in single-breed herds. Different superscript 

letters indicate significantly different least squares means within breed according to 

Bonferroni’s test (P < 0.05). 
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Trends of predicted blood metabolites across the first month of lactation in 

multi-breed analysis are shown in Figure 2. Although with greater concentrations, HF 

exhibited a pattern for BHB that was comparable to that of BS, showing a peak 

between 11 and 15 DIM and a fluctuating decline thereafter. On the other hand, SI 

exhibited a nonlinear but generally consistent increase across early lactation. 

Considering NEFA and BUN, a decreasing and an increasing linear trend was 

observed, respectively (Figure 2). Holstein-Friesian had the greatest NEFA 

concentrations, whereas BS and SI had similar NEFA concentrations from 5 to 35 

DIM. The greatest and the lowest BUN concentrations were observed for BS and HF, 

respectively, with intermediate values for SI. Overall, trends of predicted blood 

metabolites detected in the current study agreed with previous findings for HF cows 

(Seifi et al., 2007; Weber et al., 2013; Barletta et al., 2017). The opposite direction of 

NEFA and BHB patterns between 5 and 15 DIM may be explained by the different 

utilization of these metabolites by liver and other body tissues (Wathes et al., 2007), 

whereas the increase of BUN concentration after calving is probably associated with 

the increase of feed intake across the lactation (Seifi et al., 2007). 

Focusing on the breed effect, while NEFA and BUN exhibited similar trends 

in the first classes of DIM in multi- and single-breed analyses, different patterns of 

BHB were observed for BS, HF, and SI farmed in single-breed herds (Supplemental 

Figure S2). In the single-breed analysis, trends of BHB in blood were more 

accentuated across DIM classes for HF and SI breeds, in opposite directions, whereas 

BS exhibited a flatter BHB pattern than in multi-breed analysis. Although a stationary 

(Valergakis et al., 2011) or increasing (Seifi et al., 2007) BHB trend was previously 

observed in the first month of lactation of HF cows, there is a lack of information 

about BS and SI breeds in literature. 
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Figure 2. Least squares means of blood (A) β-hydroxybutyrate (BHB), (B) nonesterified fatty 

acids (NEFA), and (C) urea nitrogen (BUN) across early-lactation in Brown Swiss (BS), 

Holstein-Friesian (HF), and Simmental (SI) cows in multi-breed herds. 
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Figure S2. Least squares means of blood (A) β-hydroxybutyrate (BHB), (B) nonesterified 

fatty acids (NEFA), and (C) urea nitrogen (BUN) across early lactation in Brown Swiss (BS), 

Holstein-Friesian (HF), and Simmental (SI) cows in single-breed herds. 
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Least squares means of blood metabolites across months of sampling for HF, 

BS, and SI breeds are depicted in Figure 3 and Supplemental Figure S3. 

Concentration of blood BHB fluctuated across the year, peaking in early summer and 

then decreasing towards autumn (Figure 3 and Supplemental Figure S3). Similarly, 

but with a more linear trend, NEFA concentrations increased from January to June 

and then decreased until winter (Figure 3 and Supplemental Figure S3). The increased 

fat mobilisation denoted by increased BHB and NEFA concentrations may have been 

caused by the beginning of grazing season, with the correlated metabolic changes. 

Moreover, the same reason could have affected trends of BUN across months for all 

studied breeds (Figure 3 and Supplemental Figure S3). In fact, following a slightly 

increasing trend from February to May, especially for SI and HF cows, BUN dropped 

in June and then increased again during summer. The influence of pasture and calving 

on DMI could have caused a negative protein balance in early summer (Yoon et al., 

2004). On the other hand, diet used to feed cows in winter could be the reason of 

increased BUN concentrations during cold months. 
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Figure 3. Least squares means of blood (A) β-hydroxybutyrate (BHB), (B) nonesterified fatty 

acids (NEFA), and (C) urea nitrogen (BUN) across months of sampling in Brown Swiss (BS), 

Holstein-Friesian (HF), and Simmental (SI) cows in multi-breed herds. 
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Figure S3. Least squares means of blood (A) β-hydroxybutyrate (BHB), (B) nonesterified 

fatty acids (NEFA), and (C) urea nitrogen (BUN) across months of sampling in Brown Swiss 

(BS), Holstein-Friesian (HF), and Simmental (SI) cows in single-breed herds. 
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CONCLUSIONS 

In the present study, significant differences were observed for blood 

metabolites in the most important Italian cattle breeds. The greatest concentration of 

BHB and NEFA in blood were detected for HF cows, followed by SI and BS. 

Conversely, the greatest and the lowest BUN were observed in blood of BS and HF, 

respectively. Blood BHB and NEFA concentrations increased with parity. The 

greatest BHB was observed in the first days of lactation, except for SI, which 

exhibited a small increase across early lactation. In all breeds, NEFA declined and 

BUN increased in the first month of lactation. The maximum concentrations of blood 

BHB and NEFA were recorded during spring and early summer, whereas BUN 

generally increased from spring to winter. Environmental effects identified in the 

present study can be considered as adjusting factors in within-breed estimation of 

genetic parameters of major blood metabolites. In perspective, it would be interesting 

to conduct the same investigation using data from highly intensive mixed herds, 

characterized by greater prevalence of metabolic disorders and thus greater variability 

of blood metabolites.  
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ABSTRACT 

At the beginning of lactation, high-producing cows commonly experience an 

unbalanced energy status, generally responsible for the onset of metabolic disorders 

and impaired health and performances. Blood β-hydroxybutyrate (BHB) and 

nonesterified fatty acids (NEFA) are indicators of excessive fat mobilisation and 

circulating ketone bodies. Recently, prediction models based on mid-infrared (MIR) 

spectroscopy have been developed to assess blood BHB and NEFA from routinely 

collected individual milk samples. This study aimed to estimate genetic parameters of 

blood BHB and NEFA predicted from milk MIR spectra and to assess their 

phenotypic and genetic correlations with milk production and composition traits in 

early-lactation Holstein cows. 

The data set comprised the first test-day record of each cow and lactation, and 

spectra of individual milk samples (n = 24,894) of 14,379 Holstein cows collected 

from 5 to 35 days in milk (DIM). Blood BHB and NEFA were predicted from milk 

MIR spectra using previously developed prediction models. Blood metabolites and 

milk traits were analysed across the whole observational period (5 to 35 DIM) and 

within 6 classes of DIM using univariate and bivariate animal models to assess 

heritabilities and genetic correlations, respectively. 

Blood BHB and NEFA showed similar trends of genetic variation across DIM, 

with the greatest heritability in the first 10 days after calving (0.32 and 0.23 for BHB 

and NEFA, respectively). These two metabolites were moderately to strongly 

genetically correlated each other (0.50 to 0.60). Moreover, bulls’ estimated breeding 

values for NEFA and BHB showed an unfavourable trend across year of birth. 

Genetic correlations of BHB and NEFA with milk yield, somatic cell score, protein 

percentage, lactose percentage and urea content were similar or at least in the same 
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direction, whereas opposite correlations were observed with fat percentage and fat-to-

protein ratio. 

Results of the current study suggest that blood BHB and NEFA predicted from 

milk MIR spectra have genetic variation that is potentially exploitable for breeding 

purposes. Therefore, both predicted BHB and NEFA would be useful indicator traits 

of hyperketonemia in a selection index aimed to reduce the susceptibility of dairy 

cows to metabolic disorders in early lactation. 

 

Key words: blood metabolite, mid-infrared spectroscopy, milk, genetic correlation, 

dairy cow 

 

INTRODUCTION  

Early lactation is a critical period for the dairy cow because it commonly 

coincides with an unbalanced energy status due to a disequilibrium between energy 

intake (input) and increased requirements for milk production (output). In particular, 

the energy demand necessary to support lactogenesis in early lactation affects body 

reserves (Pryce et al., 2016) and leads to a negative energy balance often responsible 

for increased incidence of metabolic disorders and reproductive issues (LeBlanc, 

2010; Suthar et al., 2013; Esposito et al., 2014). The excessive mobilisation of body 

reserves in cows is reflected by the increase in circulating β-hydroxybutyrate (BHB) 

and nonesterified fatty acids (NEFA) (McArt et al., 2013). The determination of the 

concentration of these metabolites in blood is generally considered the reference test 

to monitor cow metabolic and nutritional status. For instance, NEFA concentration ≥ 

0.70 mmol/L is potential alert for post-partum health problems (McArt et al., 2013), 
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and BHB concentration ≥ 1.2 mmol/L is used to define hyperketonemia and has been 

associated with ketosis (Benedet et al., 2019a). 

Although blood metabolic profile testing relies on laboratory analyses, it 

requires blood sampling and is thus expensive, time-consuming and invasive. To limit 

costs and labour, milk mid-infrared (MIR) spectroscopy has been exploited to develop 

prediction models for blood metabolites (Grelet et al., 2019; Luke et al., 2019; 

Benedet et al., 2019b). Mid-infrared spectroscopy allows large-scale data collection 

and has been successfully implemented in the routine milk recording system to 

determine milk composition (De Marchi et al., 2014). Moreover, the phenotypes 

assessed from routinely collected data could be exploited at both phenotypic and 

genetic level. In fact, blood metabolites may be used to monitor and diagnose 

metabolic issues in dairy farms, and could be evaluated as indicator traits in breeding 

programs to reduce the prevalence of ketosis in dairy herds (Pryce et al., 2016). For 

instance, blood BHB is more heritable than ketosis (0.09 to 0.37 vs 0.02 to 0.08; 

Benedet et al., 2019a), and shows moderate genetic correlation with the observed 

disease (Belay et al., 2017a). Considering that veterinary diagnoses of ketosis are 

scarce in Italy, an indirect selection based on predicted blood BHB could be feasible 

and effective.  

Few genetic studies have been conducted on blood BHB measured by 

reference methods (Oikonomou et al., 2008; van der Drift et al., 2012; Cecchinato et 

al., 2018) or predicted using milk MIR spectra (Belay et al., 2017a). Therefore, the 

present study aimed to estimate heritability of blood BHB and NEFA concentrations 

predicted from milk MIR spectra, and to assess their genetic correlations with milk 

production and composition traits in early-lactation Holstein cows. 
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MATERIALS AND METHODS 

Data 

The initial data comprised 536,685 spectra of individual milk samples of 

Holstein cows collected during monthly test-day recording procedures in Bolzano 

province (Italy) between January 2011 and December 2018. The study area is mostly 

characterised by small farms, with an average herd size of 22 lactating cows present 

throughout the year (Zuliani et al., 2018) and traditional feeding (forage or hay and 

concentrates), some with access to highland pastures in summer season. After milk 

collection, preservative (Bronysolv; ANA.LI.TIK Austria, Vienna, Austria) was 

immediately added and samples were processed according to International Committee 

for Animal Recording recommendations (ICAR, 2019) in the milk laboratory of the 

South Tyrolean Dairy Association (Sennereiverband Südtirol, Bolzano, Italy). For 

each milk sample, fat, protein, casein, and lactose percentage, and urea nitrogen 

content (MUN, mg/dL) were determined. Fat-to-protein ratio (F/P) was calculated. 

Spectral information containing 1,060 infrared transmittance data in the region 

between 5,000 and 900 cm-1 were stored using a MilkoScan FT6000 (Foss Electric 

A/S, Hillerød, Denmark). Values of somatic cell count (SCC) were determined using 

Fossomatic (Foss Electric A/S, Hillerød, Denmark) and transformed to somatic cell 

score (SCS) through the conventional formula: SCS = 3 + log2(SCC/100,000).  

Mid-infrared prediction models were applied on the stored spectral data to 

predict concentrations of blood BHB and NEFA (for full details see Benedet et al., 

2019b). Briefly, between December 2017 and June 2018, 295 blood and milk samples 

were collected from early-lactation dairy cows in 20 herds of Northeast Italy. 

Reference analyses were performed on blood samples for the determination of BHB 

and NEFA concentrations and milk spectra were used to develop the prediction 
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models through partial least squares regression after a backward interval partial least 

squares. Coefficients of determination in cross-validation for BHB and NEFA were 

0.64 and 0.53, respectively. 

Days in milk (DIM) were restricted to be between 5 and 35, and only the first 

test-day of each lactation of a cow was kept in the dataset. Parity ranged from 1 to 10 

and 47% of the cows had repeated observations, i.e., they had one test-day in more 

than 1 lactation. Moreover, for each trait, observations that exceeded 3 standard 

deviations from the mean were not considered in subsequent analyses. Herds with less 

than 5 cows sampled and present for less than 4 years (between 2011 and 2018) were 

removed from the dataset. After editing, 24,894 test-day records of 14,379 cows in 

634 herds were available for genetic analyses. 

 

Estimation of genetic parameters 

The pedigree of cows with phenotypic information was traced back to 6 

generations of ancestors, ending up with 43,943 animals. Variance and covariance 

components of blood metabolites and milk traits were estimated in ASReml 4.1 

(Gilmour et al., 2015) using univariate and bivariate repeatability animal models, 

respectively. The general form of the model for the entire dataset (5 to 35 DIM), in 

matrix notation, was: 

y = Xb + Za + Ww + e, 

where y was the vector of observations for blood BHB, NEFA, and milk traits; b was 

the vector of fixed effects of parity (4 classes: 1, 2, 3, and ≥ 4), class of DIM (6 

classes: 5 to 10 days, 11 to 15 days, 16 to 20 days, 21 to 25 days, 26 to 30 days, and 

31 to 35 days), season of calving (4 classes: December to February, March to May, 

June to August, and September to November), and herd (n = 1 to 634); a was the 
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vector of solutions for random additive genetic effect of the animal; w was the vector 

of permanent environmental effect of the cow; e was the vector of random residuals; 

and X, Z and W were incidence matrices relating the corresponding effects to the 

dependent variable. Random effects were assumed to be normally distributed with 

null means and variance-covariance structures of additive genetic, permanent 

environmental and residual effects equal to G  A, P  I and R  I, respectively, 

where G, P and R were the additive genetic, permanent environmental and the 

residual (co)variance matrices, A was the additive genetic relationship matrix and I 

was an identity matrix of appropriate order.  

The same model, excluding the fixed effect of DIM class, was used to estimate 

genetic parameters of data within each class of DIM. 

Estimates of heritability (h2) and genetic correlations (ra) were computed as:  

h2 =
σa

2

σa
2+ σe

2   and  ra  =
σ12

√σa1
2 ∗ σa2

2
, 

where σ2
a and σ2

e were the additive genetic and residual variances of the trait, σ12 was 

the additive genetic covariance between trait 1 and trait 2, and σ2
a1 and σ2

a2 were the 

additive genetic variances of traits 1 and 2, respectively.  

Coefficients of phenotypic variation (CVp) of each studied trait was computed 

as the ratio of the phenotypic standard deviation to the mean of the trait, and 

coefficient of additive genetic variation (CVa) was calculated as the ratio of the 

additive genetic standard deviation to the mean of the trait. Pearson’s correlations (rp) 

between the traits were assessed using the CORR procedure of SAS 9.4 software 

(SAS Institute Inc., Cary, NC, USA). 
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RESULTS 

Descriptive Statistics 

Concentrations of BHB and NEFA averaged 0.66±0.24 mmol/L and 0.41±0.21 

mmol/L, respectively, with mean values across DIM depicted in Figure 1. Concerning 

BHB, the greatest values were in the window from 5 to 15 DIM (0.68 mmol/L) with a 

slight reduction until 35 DIM, whereas NEFA showed a linear and evident decreasing 

trend moving from the class 5 to 10 DIM (0.54±0.23 mmol/L) to the class 31 to 35 

DIM (0.32±0.16 mmol/L). The CVp of the class between 31 and 35 DIM was the 

greatest for NEFA and the lowest for BHB (Figure 1). Moving from 5 to 35 DIM, fat 

percentage, protein percentage and SCS reduced by 15%, 19% and 28%, respectively 

(Table 1). On the other hand, milk yield increased from 31.19±6.78 kg/d (5 to 10 

DIM) to 35.17±7.50 kg/d (31 to 35 DIM; Table 1). Lactose percentage and MUN 

content increased with DIM and, on average, F/P did not show a clear tendency, 

peaking in the DIM class between 21 and 25 DIM and decreasing thereafter (Table 1). 



133 

 

Table 1. Mean and standard deviation of MIR-predicted blood metabolites, milk yield and quality traits across days in milk 

 

Trait1 
Days in milk 

5 to 35 5 to 10 11 to 15 16 to 20 21 to 25 26 to 30 31 to 35 

N of records 24,894 3,783 4,051 4,221 4,303 4,368 4,168 

BHB, mmol/L 0.66±0.24 0.68±0.25 0.68±0.26 0.67±0.24 0.66±0.23 0.65±0.22 0.65±0.21 

NEFA, mmol/L 0.41±0.21 0.54±0.23 0.46±0.21 0.42±0.19 0.38±0.18 0.35±0.17 0.32±0.16 

Milk yield, kg/d 33.90±7.48 31.19±6.78 32.77±7.13 34.02±7.32 34.73±7.53 35.13±7.68 35.17±7.50 

Fat, % 4.10±0.76 4.52±0.78 4.27±0.75 4.10±0.73 4.01±0.73 3.91±0.70 3.84±0.69 

Protein, % 3.16±0.35 3.61±0.31 3.31±0.28 3.13±0.26 3.03±0.25 2.98±0.26 2.95±0.26 

F/P 1.30±0.24 1.26±0.23 1.30±0.24 1.32±0.24 1.33±0.25 1.32±0.25 1.31±0.24 

Lactose, % 4.78±0.17 4.65±0.16 4.76±0.16 4.81±0.15 4.82±0.16 4.83±0.16 4.83±0.16 

MUN, mg/dL 16.95±6.55 15.92±6.60 16.59±6.38 16.72±6.43 16.89±6.56 17.46±6.63 18.00±6.49 

SCS 2.19±1.90 2.70±1.78 2.36±1.84 2.14±1.86 2.05±1.90 2.01±1.93 1.93±1.96 
1N = number; F/P = fat-to-protein ratio; MUN = milk urea nitrogen; SCS = somatic cell score. 

 

 



134 

 

Genetic variation and heritability 

Although BHB exhibited lower CVa than NEFA (Figure 1), it was generally 

more heritable within the first month of lactation (Figure 1), with overall h2 of 

0.22±0.01 vs. 0.17±0.01. For both metabolites the greatest h2 was estimated between 

5 and 10 DIM, and the lowest between 11 and 15 DIM. Moreover, the lowest CVa for 

BHB (7.78%) was observed in correspondence of the greatest CVa for NEFA 

(21.67%), i.e. from 31 to 35 DIM (Figure 1). 

Estimates of h2 of milk traits are summarised in Table 2. Focusing on the 

entire time window (5 to 35 DIM), the minimum h2 was observed for milk yield and 

SCS (0.10±0.01) and the maximum for lactose percentage (0.39±0.02); on the other 

hand, CVa ranged from 1.95% (lactose percentage) to 26.97% (SCS). In all DIM 

classes, the lowest h2 were obtained for milk yield and SCS and the greatest for 

lactose percentage. 
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Figure 1. (A) Mean, (B) coefficient of phenotypic variation (CVp), (C) coefficient of additive 

genetic variation (CVa) and (D) heritability of mid-infrared predicted blood β-

hydroxybutyrate (BHB) and nonesterified fatty acids (NEFA) across days in milk. 
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Table 2. Heritability1 (h2) and coefficient of additive genetic variation (CVa, %) of milk yield and quality traits across days in milk 

 

Trait2 

Days in milk 

5 to 35 5 to 10 11 to 15 16 to 20 21 to 25 26 to 30 31 to 35 

h2 CVa h2 CVa h2 CVa h2 CVa h2 CVa h2 CVa h2 CVa 

Milk yield, kg/d 0.10 5.39 0.16 6.89 0.14 6.39 0.15 6.37 0.09 5.10 0.11 5.51 0.17 6.85 

Fat, % 0.16 6.49 0.20 7.15 0.15 6.19 0.25 8.20 0.14 6.00 0.16 6.49 0.15 6.32 

Protein,% 0.25 4.08 0.24 4.04 0.29 4.36 0.25 4.02 0.35 4.75 0.27 4.27 0.36 4.99 

F/P 0.11 5.65 0.15 6.51 0.10 5.26 0.20 7.68 0.11 5.79 0.09 5.19 0.15 6.59 

Lactose, % 0.39 1.95 0.35 1.98 0.45 2.12 0.49 2.11 0.49 2.18 0.48 2.13 0.51 2.18 

MUN, mg/dL 0.11 11.67 0.20 17.22 0.13 12.97 0.14 13.23 0.18 14.93 0.13 12.55 0.04 6.75 

SCS 0.10 26.97 0.13 23.76 0.14 28.76 0.15 33.01 0.17 37.77 0.14 35.38 0.08 28.41 
1Standard errors of heritability estimates ranged from 0.01 to 0.04. 

2F/P = fat-to-protein ratio; MUN = milk urea nitrogen; SCS = somatic cell score. 
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Correlations between predicted blood metabolites and milk traits 

The rp and ra of BHB and NEFA with milk yield and composition traits during 

the whole observational period (5 to 35 DIM) are presented in Table 3. In general, for 

BHB the magnitude and direction of rp and ra with NEFA, protein percentage, lactose 

percentage and MUN content were similar. Conversely, rp and ra between NEFA and 

fat percentage (0.27 and -0.42±0.06, respectively) and between NEFA and F/P (0.41 

and -0.14±0.07) had opposite directions. Moreover, except for the correlations with 

milk yield (rp = 0.09; ra = 0.63±0.06), both rp and ra of NEFA with other milk traits 

were negative. 

Table 4 summarises the ra between BHB and NEFA estimated in the different 

DIM classes. The strongest (0.69±0.06) and weakest (0.29±0.14) relationships were 

assessed from 5 to 10 DIM and 11 to 15 DIM, respectively. The ra of BHB and NEFA 

with milk yield and composition traits in the different DIM classes are depicted in 

Figure 2. The pattern of ra between BHB and milk yield fluctuated across DIM 

classes, whereas a linear decrease was observed between NEFA and milk yield. Both 

ra of BHB and NEFA with fat percentage had a minimum between 11 and 15 DIM 

and peaked in the subsequent DIM class; however, the ra between NEFA and fat 

percentage had a more persistent trend. The pattern of ra of protein and lactose 

percentage with BHB and NEFA were almost identical. The across DIM-pattern of ra 

between BHB and F/P resembled that of NEFA and F/P, but overall, the ra between 

BHB and F/P were positive whereas they were negative between NEFA and F/P. The 

ra between MUN and BHB ranged from 0.09±0.15 to -0.23±0.11 and between MUN 

and NEFA from -0.51±0.14 to -0.03±0.15. In both cases, the maximum ra was reached 

in the class from 16 to 20 DIM. As regards SCS, trends and magnitude of ra with BHB 
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and NEFA were comparable until 30 DIM, whereas opposite directions were observed 

in the last DIM class. 

Bulls’ estimated breeding values (EBV) of blood NEFA and BHB were 

significantly correlated (0.59, P < 0.001). When only bulls with a reliability ≥ 0.50 

and born after 1994 were selected (n = 230), Pearson’s correlation between EBV of 

the two blood metabolites was 0.54. Figure 3 depicts the correlations of BHB and 

NEFA EBV with those of milk yield, composition traits, SCS and MUN. The 

strongest and weakest associations were between NEFA and milk yield (0.48, P < 

0.001) and between BHB and MUN (0.01, P = 0.051), respectively. In fact, all 

correlations involving MUN were almost close to zero, while those including SCS 

were negative. In this study, both protein and lactose percentage were negatively 

correlated with NEFA and BHB at EBV level; instead, the correlations of NEFA and 

BHB with fat percentage had opposite direction (Figure 3), being -0.139 (P < 0.001) 

and 0.120 (P < 0.001), respectively.  
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Table 3. Pearson’s (above diagonal) and genetic correlations1 (below diagonal) between mid-infrared predicted blood metabolites and milk yield and 

quality traits 

Trait2 BHB NEFA Milk yield Fat Protein F/P Lactose MUN SCS 

BHB, mmol/L - 0.56*** 0.09*** 0.27*** -0.22*** 0.41*** -0.25*** -0.03*** -0.02* 

NEFA, mmol/L 0.52 - 0.04*** 0.27*** -0.09*** 0.33*** -0.32*** -0.18*** 0.05*** 

Milk yield, kg/d 0.25 0.63 - -0.05*** -0.20*** 0.06*** 0.01* -0.01 -0.09*** 

Fat, % 0.02 -0.42 -0.38 - 0.31*** 0.82*** -0.23*** 0.01 0.10*** 

Protein, % -0.20 -0.45 -0.45 0.53 - -0.28*** -0.18*** -0.06*** 0.15*** 

F/P 0.18 -0.14 -0.08 0.78 -0.11 - -0.13*** 0.04*** 0.02** 

Lactose, % -0.20 -0.17 -0.21 0.08 0.22 -0.10 - 0.09*** -0.20*** 

MUN, mg/dL -0.07 -0.15 0.02 0.21 0.12 0.13 -0.09 - -0.06*** 

SCS -0.15 -0.15 -0.20 -0.07 -0.08 -0.02 -0.17 -0.14  
 

1Standard errors of estimates of genetic correlations ranged from 0.03 to 0.09. 

2F/P = fat-to-protein ratio; MUN = milk urea nitrogen; SCS = somatic cell score. 

*P < 0.05, **P < 0.01, ***P < 0.001. 
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Table 4. Genetic correlation (standard error) between mid-infrared predicted blood β-

hydroxybutyrate and nonesterified fatty acids across days in milk 

Days in milk Genetic correlation 

5 to 10 0.69 (0.06) 

11 to 15 0.29 (0.14) 

16 to 20 0.45 (0.10) 

21 to 25 0.54 (0.08) 

26 to 30 0.38 (0.10) 

31 to 35 0.64 (0.08) 
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Figure 2. Genetic correlations (ra) of mid-infrared predicted blood (A) β-hydroxybutyrate and 

(B) nonesterified fatty acids with milk traits across days in milk (F/P = fat-to-protein ratio; 

MUN = milk urea nitrogen; SCS = somatic cell score). 
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Figure 3. Correlations between estimated breeding values of mid-infrared predicted blood β-

hydroxybutyrate (BHB) and nonesterified fatty acids (NEFA) with milk traits (F/P = fat-to-

protein ratio; MUN = milk urea nitrogen; SCS = somatic cell score). All correlations were 

significant (P ≤ 0.05).  
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DISCUSSION 

Phenotypic overview 

The current study focused on early-lactation cows. A decreasing concentration 

of blood BHB and NEFA across DIM was somehow expected (McArt et al., 2013). 

However, the overall mean BHB was generally lower and exhibited a smaller 

decrease across DIM compared with previous studies in Holstein (van der Drift et al., 

2012) and Norwegian Red cows (Belay et al., 2017b). The BHB trend was however 

more similar to that observed in primparous Holstein cows (Oikonomou et al., 2008). 

Conversely, NEFA concentrations were in line with those recently observed in the 

first three weeks of lactation of Nordic Red cows (Mäntysaari et al., 2019).    

Concerning milk traits, the decrease of fat and protein percentage and the 

increase of milk yield and lactose percentage from 5 to 35 DIM were reported also in 

other studies (Miglior et al., 2006; Abdullahpour et al., 2013; Haile-Mariam and 

Pryce, 2017; Costa et al., 2019a). The trend for F/P was similar to that observed in 

Canadian Holsteins (Koeck et al., 2014). Moreover, in agreement with results of the 

present study, average fat (4.15%), protein (3.22%), lactose (4.84%), MUN (18.10 

mg/dL) and F/P (1.30) at first test-day in early lactation (8 to 49 DIM) have been 

observed in Austrian Fleckvieh cows (Ederer et al., 2014). 

 

Genetic variance 

Overall, h2 estimates of BHB and NEFA were consistent with those recently 

obtained from MIR predictions in Holstein cows (Hammami et al., 2017). As 

observed in the literature (Oikonomou et al., 2008), the greatest h2 for BHB and 

NEFA were observed from 5 to 10 DIM. Despite this, in the present study the h2 of 

both metabolites slightly decreased in the subsequent weeks.  
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The observed patterns of h2 for milk yield and fat and protein percentage were 

similar to those reported for Holstein cows in Iran (Abdullahpour et al., 2013). 

Heritability of lactose exhibited an increasing trend along DIM as previously reported 

(Haile-Mariam and Pryce, 2017). Concerning F/P, MUN and SCS, h2 estimates of the 

whole first month of lactation agreed with previous findings in Holstein (Negussie et 

al., 2008; Koeck et al., 2014; Hammami et al., 2017) and Austrian Fleckvieh cows 

(Ederer et al., 2014). 

 

Correlations 

The overall positive correlations of milk yield with BHB and NEFA (Table 3 

and Figure 3) indicated that the best sires for milk production were those with 

offspring exhibiting on average greater blood BHB and NEFA in the first 35 DIM. 

This also supported the general idea that, in dairy cattle, genetic selection only 

focused on production has detrimental effects on health and fitness across generations 

(van der Werf et al., 2009; Stefani et al., 2018). In fact, high-producing dairy cows are 

subjected to homeorhesis, i.e. all metabolic pathways are addressed to mammary 

gland and are intended to milk synthesis (Baumann and Currie, 1980; Costa et al., 

2019b). Therefore, the greater the energy requirements for milk synthesis, the greater 

the circulating blood NEFA and ketone bodies due to fat reserves mobilisation 

(McArt et al., 2013). Blood BHB and NEFA were negatively related to SCS in the 

first 35 DIM (Table 3 and Figure 3), suggesting that there may not be an indirect 

(desired) selection for udder health by acting on metabolic traits. In addition, this 

highlighted that different selection strategies and criteria should be adopted in order to 

simultaneously reduce milk SCS and enhance resistance to metabolic diseases in the 

Italian Holstein population in early lactation. However, it is worth highlighting that 
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from the current study it cannot be excluded that blood BHB and NEFA could be 

positively related to SCS in the rest of lactation. In fact, several studies estimated a 

positive correlation between ketosis and mastitis (Pfeiffer et al., 2015; Pryce et al., 

2016; Costa et al., 2019c). Moreover, although SCS is the most adopted indicator of 

udder health, the ra between SCS and mastitis may vary from 0 to 0.80 in dairy cows 

(Coffey et al., 1986; Lund et al., 1994), and this justifies the inclusion of both traits in 

some indexes for mastitis resistance and/or udder health (Heringstad et al., 2000). As 

expected, blood BHB and NEFA negatively correlated with lactose percentage (Table 

3 and Figure 3), that is negatively genetically related to ketosis in cattle (Costa et al., 

2019c). However, the correlation between NEFA EBV and lactose percentage EBV (-

0.06) was weaker than the ra between these two traits. The opposite associations of 

EBV for NEFA and BHB with EBV of fat percentage suggested different 

dependencies of the two blood metabolites with this trait in early lactation (≤ 35 DIM) 

at population level. In particular, the difference could be explained by the change of 

fat synthesis during and after lipomobilisation, when the peak of NEFA and BHB 

occurs, respectively. As regards protein content, the negative ra with BHB confirmed 

recent findings (Belay et al., 2017a), whereas the negative rp with NEFA was in 

contrast with the estimate (0.12) obtained in Nordic Red cows (Mäntysaari et al., 

2019). According to the selection index theory, findings support the use of F/P as 

genetic indicator of ketosis resistance; in fact, F/P showed genetic variation, it is 

genetically correlated with the objective trait, and it is heritable (Klein et al., 2019). 

Focusing on correlations across DIM, the non-linear trend of ra between BHB 

and NEFA (Table 4) generally reflects the h2 patterns of the two metabolites in the 

first month of lactation (Figure 1). In fact, between 11 and 15 DIM, both metabolites 

exhibited low CVa and h2 (Figure 1), as well as the lowest ra. The low genetic 
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variance observed between 11 and 15 DIM may suggest that the potential of genetics 

in reducing susceptibility to ketosis in Italian Holstein population is not constant, 

fluctuating in the first 35 DIM. To our knowledge, this is the first study that assessed 

ra of BHB and NEFA with milk traits specifically in the first month of lactation, thus 

it may be unfair to compare findings of current study with previous literature.  

 

Population trend 

The genetic trend of blood BHB and NEFA concentrations assessed using 

sires’ EBV with reliability ≥ 50% (n = 230) is depicted in Figure 4. An increasing 

trend of EBV across year of birth of the sires was detected for both blood BHB and 

NEFA. The high pressure on milk production in the past, coupled with an 

unfavourable genetic association of milk yield with blood BHB and NEFA 

concentrations, are likely the main reasons to explain the worsening of cow metabolic 

status in early lactation at population level. In fact, EBV of blood metabolites 

similarly increased along years of birth and peaked in 2010. Overall, this suggest that 

bulls born in 2010 produce offspring more susceptible to negative energy balance at 

the beginning of lactation and thus to ketosis. 
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Figure 4. Trend of sires’ (n = 230 bulls, with reliability ≥ 50%) estimated breeding values 

(EBV) for mid-infrared predicted blood (A) β-hydroxybutyrate (BHB, mmol/L) and (B) 

nonesterified fatty acids (NEFA, mmol/L) across year of birth. 
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CONCLUSIONS 

In the current study we estimated h2 of blood BHB and NEFA predicted from 

milk MIR spectra, and their genetic correlations with milk production and 

composition traits in the first 35 DIM. Both BHB and NEFA showed similar 

phenotypic and genetic variation across DIM, with the greatest concentrations and h2 

in the first 10 days after calving. Blood BHB and NEFA were genetically correlated 

(0.50 to 0.60). These findings suggest that BHB and NEFA should be taken into 

account in case of selection against metabolic issues. Blood BHB and NEFA were 

positively correlated with milk yield, suggesting that selection for milk production 

had detrimental effects on cow metabolic status. A negative genetic correlation of 

SCS, indicator of udder health, with both BHB and NEFA was estimated, making a 

simultaneous selection for both udder health and ketosis challenging. On average, 

genetic correlations of BHB and NEFA with MUN content, protein percentage and 

lactose percentage were similar, whereas opposite associations were observed with fat 

percentage and F/P. Using MIR-predicted blood metabolites has allowed to exploit 

phenotypes for large scale screening and genetic purposes. However, further 

investigations including ketosis data should be conducted to validate BHB and NEFA 

as proper indicators of ketosis resistance. 
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General conclusions 

Metabolic disorders and their related indicators are becoming increasingly 

important in the dairy sector. Due to its negative consequences on cow health and 

herd profitability, HYK has been widely studied in recent years, and methods to 

predict and monitor its occurrence has been investigated in several studies. The 

opportunity of using milk MIR spectra to predict blood metabolic indicators leads to 

the possibility of collecting routine information on the metabolic status of early-

lactation cows at population level. In fact, prediction of blood indicators is more 

useful than milk metabolic indicators to monitor metabolic problems, as demonstrated 

for blood and milk BHB tested for HYK detection.  

However, considering their moderate performance, developed MIR prediction 

models are still not accurate enough to be considered a diagnostic method, but they 

can be used to predict and investigate phenotypic and genetic variation of blood 

metabolites and related disorders on a large scale in dairy cattle. Differences between 

the most important Italian dairy breeds showed that Holstein-Friesian had the greatest 

concentration of BHB and NEFA, and the lowest blood urea, which may underline a 

more altered energy and nutritional status than Brown Swiss and Simmental cows in 

early lactation. For specialized dairy breeds, blood BHB and NEFA declined, whereas 

urea increased during the first month of lactation. In all breeds, BHB and NEFA 

concentrations increased with parity and reached a peak in spring and early summer, 

whereas blood urea increased from spring to winter. 

Genetic analysis of predicted blood BHB and NEFA showed that these two 

metabolites were heritable, especially in the first 10 days after calving, and genetically 

correlated. Blood BHB and NEFA were positively genetically correlated with milk 

yield, suggesting that selection for milk production had detrimental effects on cow 
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metabolic status. On average, genetic correlations of BHB and NEFA with milk traits 

were similar, with the exception of those with fat percentage and F/P, for which 

opposite correlations were observed. 

In conclusion, using MIR prediction models to determine blood metabolites 

has shown several advantages for large scale phenotypic investigations and genetic 

purposes. However, further analyses should be conducted in order to improve the 

accuracy of the developed models and to provide a feasible tool in the screening for 

metabolic problems at cow level. 
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