


Abstract

This thesis investigates resource management procedures, within the Multi-access Edge

Computing (MEC) paradigm, to obtain energy savings and guarantee Quality of Service

(QoS) in Mobile Networks (MNs). Here, we enable energy savings within green-aware

network apparatuses (i.e., communication and computing facilities) through the appli-

cation of learning and control techniques, together with energy management procedures

(BS sleep mode, VM soft-scaling, tuning of transmission drivers). In this study, we

consider the MEC deployment scenarios suggested by ETSI and mobile operators for

our system models.

Firstly, we investigate energy-saving strategies within a remote site fully powered

by only green/renewable energy (solar and wind). Here, we consider a single Base

Station (BS) co-located with the MEC server, i.e., the BS is empowered with computing

capabilities. To address the energy consumption problem within the remote site, we

propose an online algorithm for edge network management. The algorithm make use

of a Long Short-Term Memory (LSTM) neural network for estimating the short-term

future traffic load and harvested energy, and control theory, specifically the Limited

Lookahead Control (LLC) principles, for foresighted optimization. It also make use

of energy management procedures, i.e., BS sleep modes and Virtual Machine (VM)

soft-scaling (the reduction of computing resources per time instance). To obtain the

energy savings and guarantee QoS, per time instance, the algorithm considers the future

BS loads, onsite green energy available and then provisions edge network resources

based on the learned information.

Secondly, we study the energy consumption problem within an environment where

BSs are densely-deployed, i.e., similar to an urban or semi-urban scenario. This work

extend the energy consumption problem from a single BS case to multiple BSs. Here,

each BS is powered by hybrid energy supplies (solar and power grid) and also empow-

ered with computation capabilities (each BS is co-located with a MEC server). Towards

edge system management, we propose a controller-based network architecture for man-
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aging energy harvesting (EH) BSs empowered with computation capabilities where

on/off switching strategies allow BSs and VMs to be dynamically switched on/off, de-

pending on the traffic load and the harvested energy forecast, over a given look-ahead

prediction horizon. To solve the energy consumption minimization problem in a dis-

tributed manner, the controller partitions the BSs into clusters based on their location;

then, for each cluster, it minimizes a cost function capturing the individual communica-

tion site energy consumption and the users’ QoS. To manage the communication sites,

the controller performs online supervisory control by forecasting the traffic load and

the harvested energy using a LSTM neural network, which is utilized within a LLC

policy to obtain the system control actions that yield the desired trade-off between

energy consumption and QoS.

Finally, we investigate the energy consumption problem within a virtualized MEC

server placed in proximity to a group of BSs. To address this challenge, we consider

a computing-plus-communication energy model, within the MEC paradigm, where we

focus on the communication-related energy cost in addition to the energy drained

due to computing processes. Towards server management, an online algorithm based

on traffic engineering and MEC Location Service is proposed. To obtain the energy

savings and QoS guarantee, we jointly launch an optimal number of VMs for computing

and transmission drivers coupled with the location-aware traffic routing for real-time

data transfers. In order to efficiently provisioned edge system resources, we forecast

the server workloads and harvested energy by using a LSTM neural network and the

output is then used within the LLC-based algorithm.

Our numerical results, obtained through trace-driven simulations, show that the

proposed optimization strategies (algorithms) leads to a considerable reduction in the

energy consumed by the edge computing and communication facilities, promoting en-

ergy self-sustainability within the MN through the use of green energy.

ii



Dedication

Dedicated to my family

iii



Acknowledgements

Words are often less to reveal one’s deep regards. An understanding of work like this

is never an outcome of a single person. I would like to take this opportunity to express

my profound sense of gratitude to my supervisor Professor Michele Rossi and fellow

researcher Ángel Fernández Gambín, for their guidance and editorial comments during

the course of my studies.

I would like to thank God, who has given me the strength to work on this research,

despite of daily challenges, and guided me to work on the right path of life. Without

his grace this would never been a success. I am also very grateful to my family, Mrs. N.

Shabangu-Dlamini, Uncle, Aunt and church members for keeping me in their prayers

so that I can be able to complete this work.

Lastly, this work received funding from the European Union’s Horizon 2020 research

and innovation programme under the Marie Sklodowska-Curie grant agreement No.

675891. I want to thank and wish the best of luck to my fellow researchers with whom

I worked with within the SCAVENGE project.

iv



Contents

List of Tables viii

List of Figures ix

List of Acronyms xi

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Manuscript Outline and thesis contributions . . . . . . . . . . . . . . . 5

2 Background Information 11

2.1 Softwarization of Mobile Network Functions . . . . . . . . . . . . . . . 12

2.1.1 Virtualization Technologies and Tools . . . . . . . . . . . . . . . 13

2.1.2 NFV-based Mobile Network Evolution . . . . . . . . . . . . . . 16

2.2 Energy Efficient Network Management Procedures . . . . . . . . . . . . 18

2.2.1 Sleep-modes strategies in MNs . . . . . . . . . . . . . . . . . . . 18

2.2.2 Energy savings in virtualized platforms through soft-scaling . . 22

2.2.3 Pattern forecasting along with foresighted optimization . . . . . 24

2.3 Renewable energy in MEC . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Mobile traffic datasets analysis . . . . . . . . . . . . . . . . . . . . . . . 28

3 Single BS Site Optimization 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . 34

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Traffic Load and Energy Consumption . . . . . . . . . . . . . . 35

3.2.2 Energy Patterns and Storage . . . . . . . . . . . . . . . . . . . . 38

v



3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Remote Site Management . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Traffic Load and Energy Prediction . . . . . . . . . . . . . . . . 40

3.4.2 Edge System Dynamics . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.3 The ENAAM Algorithm . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Multiple BS Sites Optimization 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . 51

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Traffic Load and Energy Consumption . . . . . . . . . . . . . . 53

4.2.2 Energy Patterns and Storage . . . . . . . . . . . . . . . . . . . . 57

4.3 Optimization for a Single Communication Site . . . . . . . . . . . . . . 59

4.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Communication Site Management . . . . . . . . . . . . . . . . . 61

4.4 Multiple Communication Sites . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.2 Cluster Formation . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.3 Edge Network Management . . . . . . . . . . . . . . . . . . . . 68

4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Virtualized Platform Optimization 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.2 Objective and Contributions . . . . . . . . . . . . . . . . . . . . 79

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Server Workload and Energy Consumption . . . . . . . . . . . . 81

vi



5.2.2 Energy Patterns and Storage . . . . . . . . . . . . . . . . . . . . 86

5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Resource Controller Design and Server Management . . . . . . . . . . . 89

5.4.1 Server Workload and Energy Prediction . . . . . . . . . . . . . 89

5.4.2 Edge System Dynamics . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.3 The ARCES Algorithm . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Conclusions 97

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . 98

List of Publications 100

References 102

vii



List of Tables

3.1 Notation: list of symbols used in the analysis. . . . . . . . . . . . . . . 36

3.2 LSTM Prediction Model Steps . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 System Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Notation: list of symbols used in the analysis. . . . . . . . . . . . . . . 54

4.2 System Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Average prediction error (RMSE) for harvested energy and traffic load

processes, both normalized in [0, 1]. . . . . . . . . . . . . . . . . . . . . 72

5.1 Notation: list of symbols used in the analysis. . . . . . . . . . . . . . . 82

5.2 System Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii



List of Figures

1.1 Manuscript outline showing each chapter target. . . . . . . . . . . . . . 6

2.1 An illustration showing the structure of VMs on top of the hypervi-

sor (2.1a) and containers on top of the docker engine (2.1b). . . . . . . 14

3.1 Energy Harvesting (EH) BS co-located with a MEC server. The elec-

tromechanical switch (SW) is responsible for aggregating the energy

sources to fulfill the energy required to power the BS site. . . . . . . . . 34

3.2 Example traces for harvested solar and wind energy, and normalized

traffic load in the BS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 One-step ahead predicted BS load . . . . . . . . . . . . . . . . . . . . . 47

3.4 One-step ahead predicted energy . . . . . . . . . . . . . . . . . . . . . 47

3.5 Hourly energy savings for α = 0. . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Hourly energy savings for α = 0.5. . . . . . . . . . . . . . . . . . . . . . 47

3.7 Energy savings vs the optimization weight α. . . . . . . . . . . . . . . . 48

3.8 MEC server utilization (α = 0.5) . . . . . . . . . . . . . . . . . . . . . 48

4.1 Edge network topology. The electromechanical switch (SW) aggregate

the energy sources to fulfill the energy required to power the BS site. . 52

4.2 Example traces for normalized BS traffic loads. The used dataset has

been split into four representative clusters. . . . . . . . . . . . . . . . . 55

4.3 Example traces for harvested solar energy. . . . . . . . . . . . . . . . . 58

4.4 One-step ahead predictive mean value for L(t). . . . . . . . . . . . . . . 73

4.5 One-step ahead predictive mean value for H(t). . . . . . . . . . . . . . 73

4.6 Mean energy savings for η = 0 and γmax = 5 MB. . . . . . . . . . . . . 73

4.7 Mean energy savings for η = 0 and γmax = 10 MB. . . . . . . . . . . . . 73

4.8 Energy savings vs weight η (single BS case). . . . . . . . . . . . . . . . 74

4.9 Energy savings vs cluster size. . . . . . . . . . . . . . . . . . . . . . . . 75

ix



4.10 Energy savings vs η for |Oi| = 6. . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Virtualized computing system powered by hybrid energy sources: on-grid

power and green energy. The electromechanical switch (SW) is for ag-

gregating the energy sources to fulfill the energy required to power the

computing platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Example traces for server workloads and harvested solar energy. . . . . 83

5.3 Forecast mean value for L(t) and H(t). . . . . . . . . . . . . . . . . . . 94

5.4 Mean energy savings within the MEC server. . . . . . . . . . . . . . . . 94

5.5 Average per-task consumed energy vs VMs. . . . . . . . . . . . . . . . . 94

x



List of Acronyms

5G Fifth Generation

API Application Programmable Interface

ARCES Automated Resource Controller for Energy-aware Server

BS Base Station

CDR Call Detail Record

CNN Convolutional Neural Network

CPU Central Processing Unit

DETA-R Dynamic and Energy-Traffic-Aware algorithm with Random behavior

DVFS Dynamic Voltage and Frequency Scaling

EB Energy Buffer

EH Energy Harvesting

EM Energy Manager

ENAAM Energy Aware and Adaptive Management

EPC Evolved Packet Core

ES Energy Saving

ETSI European Telecommunications Standards Institute

FTP File Transfer Protocol

GP Geometric Programming

HTTP HyperText Transfer Protocol

xi



ICT Information and Communication Technology

IP Internet Protocol

IRS Iterative-based Resource Scheduler

ITS Intelligent Transport System

LLC Limited Lookahead Control

LS Location Service

LSTM Long Short-Term Memory

LTE Long Term Evolution

MEC Multi-access Edge Computing

ML Machine Learning

MN Mobile Network

MPC Model Predictive Control

NF Network Function

NFV Network Function Virtualization

NIC Network Interface Card

OS Operating System

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RMSE Root Mean Square Error

RNIS Radio Network Information Services

RNN Recurrent Neural Network

SDN Software Defined Network

SMS Short Message Service

xii



TCP Transmission Control Protocol

TIM Telecom Italia Mobile

UE User Equipment

VLAN Virtual Local Area Network

VM Virtual Machine

VMM Virtual Machine Monitor

VNF Virtualized Network Function

xiii



Chapter 1

Introduction

1.1 Context

The evolution towards a softwarized Evolved Packet Core (EPC) is the driving force

towards overcoming the challenges observed in current Mobile Networks (MNs) and

set the way for high data rate and ultra-low latency 5G networks. Such changes avails

the possibility of running Network Functions (NFs) in software, instead of proprietary

hardware devices, and also it permit the possibility of dynamically scaling the net-

work resources for a more robust network management in 5G and beyond as network

complexity is reduced. Softwarization and virtualization of resources and services will

provide the mechanism for network management, i.e., flexibility and adaptability will

be guaranteed [1][2]. This is largely reliant on the use of virtualization technologies

and virtualized platforms.

Different approaches have been investigated towards the state-of-the-art EPC ar-

chitecture where vendors and researchers proposed the (i) grouping of the EPC func-

tions [3][4][5], (ii) running the virtualized functions on clouds [6][7], (iii) partitioning

the network resources into network slices [8][9][10][11], which refers to an isolated set of

(programmable) resources to enable NFs and services, and (iv) redesigning the network

to be based on Network Function Virtualization (NFV) technology [12][13]. A detailed

summary of the architecture proposals and approaches, similarities and differences,

their contributions towards an energy efficient MN and limitations, is presented in [2].

The architectural evolution involving redesigning the MN based on NFV is currently

appealing towards 5G and beyond, as it allows the virtualization of the mobile NFs and

then placing them within the access network. This is motivated by the expected data

explosion in the volume, variety and velocity, generated by pervasive mobile devices

and the Internet of Things [14] at the network edge (i.e., in close proximity to mobile
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devices, sensors, actuators and connected things). This is coupled with the demand

for stringent latency, requiring high computation resources which are not available at

the end-user device. As a remedy, Multi-access Edge Computing (MEC) has recently

emerged to enable ultra-low latency, distributed intelligence and location-aware data

processing at the network edge [12][13]. Undoubtedly, offloading to a powerful compu-

tation resource-enriched MEC server located closer to mobile users is an ideal solution.

Specifically, by offloading data- and computing-intensive tasks to the nearby MEC-

enabled Base Stations (BSs), resource-constrained mobile devices benefit from reduced

energy consumption and task completion time. Although this new approach is not

intended to replace the cloud-based infrastructure, it expands the cloud by increasing

the computing and storage resources available at the network edge. In order to reap the

full benefits of the virtualized infrastructure, the NFV technology shall be combined

with intelligent mechanisms for handling network resources management.

As suggested by the European Telecommunications Standards Institute (ETSI) [12][15]

and mobile operators [16], the Virtualized Network Functions (VNFs) can be deployed

at the BS, i.e., the BS site is empowered with computing capabilities (MEC server is

co-located with the BS), or placed at an aggregation point (a point in close proximity

to a group of BS) for edge network management. Some of the NFs that formerly only

existed in the EPC are migrated to the network edge resulting into significant savings

in cost, latency, round trip time (RTT), traffic download time and caching efficiency.

Placing intelligent nodes at the network edge enables the entire system to benefit from

more effective executive processes, primarily because the delay involved in reaching the

remote cloud is eliminated. Furthermore, local service management and access control

policies can be defined.

In light of the dense deployment pattern that is foreseen in 5G systems [17], the

expected dense deployment of MEC servers and BSs raises concerns related to energy

consumption. Specifically, energy drained in BSs is due to the always-on approach

and in MEC servers it is due to the computing and communication processes associ-

ated with: (i) the running Virtual Machines (VMs) [18][19]; (ii) the communication

within the server’s Virtual Local Area Network (VLAN) [20], and the presence of

transmission drivers (fast tunable optical drivers for data transfer) within the MN in-

frastructure [21][22]. Towards greener MNs, there arise a need for efficient edge network

management procedures that will yield the trade-off between energy savings and the

guarantee of Quality of Service (QoS).

The idea of using renewable or green energy sources to energize the computing and
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communication systems (network apparatuses), coupled with energy management pro-

cedures, is being considered towards the minimization of energy consumption, carbon

footprint, operational expenses (OPEX) in terms of annual electricity bills, and the

dependence on the conventional electricity grid in future MNs [2][23]. From mobile

operators perspective, reducing electrical energy consumption is not only a matter of

being green and responsible, it is also very much an economically important issue. The

motivation towards green energy usage is due to the fact that the components in solar-

and wind-based systems are usually modular, which makes the design, expansion, and

installation of these types of systems for the BS sites very practical and feasible. This

result in EH-powered BSs (EH BSs) and MEC (EH-MEC) systems. The use of renew-

able energy, coupled with the integration of MEC and BSs, can help extend network

coverage to areas where the electrical infrastructure cannot reach, or assist during the

case of a natural disaster scenario as the network can work in isolation assuming the

presence of the EPC application in the MEC server, where the conventional electricity

grid may become unavailable. Here, the assumption is that green energy is either prac-

tically free or at least cheaper than grid power, neglecting the capital cost of the EH

systems (e.g., solar panels, wind turbines) as it depends on the return of investment

time. Despite the use of green energy for powering network systems, the integration of

MEC and EH BS systems brings about new challenges related to energy consumption,

and resource scheduling. Thus, proper energy management strategies are required, as

effective operation of MEC is contingent upon this.

This thesis attempts to put forward research on dynamic resource management

towards energy saving and QoS guarantee, within the MEC paradigm, for green-aware

network apparatuses. Here, different MEC deployment scenarios are considered. In

addition, we use open source mobile traffic and harvested energy traces for developing

traffic-oriented network management procedures. In this research work, we identify and

quantify the source of energy consumption within a communication site (or computing

platform) and then propose online-based algorithms for green-aware dynamic resource

allocation and edge network management. The online algorithms use Machine Learning

(ML) tools, specifically the Long Short-Term Memory (LSTM) neural network [24] [25],

to forecast the short-term traffic load and energy harvested (solar and/or wind energy),

and then employing control-theorectic techniques (specifically the Limited Lookahead

Control (LLC) principles for foresighted optimization [26][27][28]) and heuristics to

obtain the best control input that yields the best system behavior, per time instance.

We argue that forecasting and foresighted optimization, over a given lookahead hori-
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zon, can be considered for dynamic resource management in order to obtain Energy

Savings (ESs) and guarantee QoS in MNs. We support this stance through trace-driven

simulations for each considered MEC deployment scenario. In the remainder of this

chapter, we discuss the main research objectives, outline the structure of the thesis and

summarize the contributions of this work (we summarize the publications included in

this dissertation).

Through out the thesis, we consider the BS as the default edge node and refer to the

combination of an edge node and associated MEC server as an edge system. The edge

network infrastructures consists of a two-layer architecture [29]: (i) edge node and (ii)

heterogeneous end devices which lacks computation capabilities. The edge node is a

networking component that can be characterized by a small to medium-size computing

capability and aims to provide extra computing, storage, and networking resources.

In the envisaged MEC scenarios, the edge node can embed complex functionality and

become the key components in meeting the increasingly stringent application perfor-

mance requirements, especially those concerning latency, as they are deployed closer

to heterogeneous end devices. The end devices generate traffic that is either delay

sensitive (locally processed workloads) or delay tolerant (i.e., standard workloads that

is forwarded to remote cloud for processing).

1.2 Research Objectives

The overall objective of this thesis is to develop dynamic resource management proce-

dures for edge system management, i.e., management of BSs and virtualized computing

environments (MEC servers), and then validating them through trace-driven simula-

tions. Through dynamic resource management procedures, we minimize the overall

energy consumption in the communication site over time, i.e., the consumption re-

lated to the BS transmission and the MEC server activities, and also guarantee QoS.

The ESs are obtained by jointly applying BS power saving modes (sleep modes), VM

soft-scaling, i.e., the reduction of computing resources per time instance, and in addi-

tion, switching on/off the transmission drivers (fast tunable optical drivers) within the

computing node. A parallel objective is to green the consumption of a network and

this is explored through two areas:

• Green Energy: we partially or fully replace the powering of the edge systems

through conventional energy sources with renewable energy sources such as solar
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and wind energy. At each time instance, we select the appropriate renewable

energy source taking into account current and forecast traffic loads.

• Energy Storage: we maximize the benefit from the integration of renewable energy

systems by using energy storage devices, hereby termed Energy Buffers (EBs).

Also, the EB level is reported to the authorized MEC application using the

pull transfer mode (e.g., File Transfer Protocol (FTP) [30]). That is, the MEC

application pulls the energy report1 from the Energy Manager (EM). The EM

is an entity responsible for selecting the appropriate renewable energy source to

fulfill the EB depending on the weather, and for monitoring the energy levels in

the system.

While many of the targets have been studied, this thesis is unique in that it at-

tempts to promote the use of green energy, development of traffic-oriented network

solutions, application of learning and control techniques to edge systems, at the same

time balancing energy savings and QoS. As a result, it produces several new insights

on how and when energy management procedures can be beneficial within the MEC

paradigm. For our simulations, Python is used as the programming language.

1.3 Manuscript Outline and thesis contributions

The outline of this manuscript is graphically shown in Figure 1.1. Chapter 2 dis-

cuss the literature review useful for all the remaining chapters. Chapters 3 investigate

dynamic resource management procedures within a single BS site fully powered by

green energy and Chapter 4 partially extends the single BS optimization case into

multiple BS optimization (here, the BS system is partially powered by green energy)

where the edge network management is handled by a controller. The chapters can be

read following one another. Chapter 5 considers the energy consumption due to the

computing and communication activities within the MEC server, and then investigate

how energy consumption can be minimized. This chapter can be read alone. Finally,

Chapter 6 draws the conclusions and describes some possible future research directions.

1In this work, we use open source datasets for solar and wind energy in order to emulate the energy

reports. The solar traces are obtained from one solar farm located in Armenia and the wind traces

are from one wind farm located in Belgium. For time slot scale not matching the dataset granularity,

the data is aggregated to match the used time slot scale.
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   Chapter 3
Single BS Case

   Chapter 2
Literature Review

     Chapter 4
Multiple BS Case

      Chapter 5
Computing Platform

   Chapter 6
  Conclusions  

Figure 1.1: Manuscript outline showing each chapter target.

In order to deliver on the objectives outlined in Section 1.2, the main contributions

of this thesis are summarized as follows.

Chapter 2 presents the background information related to our research.

• Section 2.1 presents the virtualization technologies and tools for the softwariza-

tion of MN, followed by NFV-based architectural EPC proposals. Here, the

enabling technologies are discussed and they include Software Defined Network

(SDN) and NFV, and the tools are: hypervisor, the environment allowing the

computing resources (i.e., VMs) to run on top of the virtualization layer, and the

docker engine, an environment for developing and running applications and also

creating a loosely isolated environment called a container.

• The work related to energy efficient network management procedures is presented

in Section 2.2. This work include sleep modes strategies in MNs, energy savings

in virtualized computing platforms through soft-scaling, and pattern forecasting

along with foresighted optimization techniques.

• Works related to optimization in MEC (edge) systems using green energy is dis-

cussed in Section 2.3. Here, we discuss work incorporating renewable energy

within the MEC paradigm, the optimization techniques used toward energy con-

sumption minimization. This is important, especially in light of the dense deploy-

ment pattern that is foreseen in 5G systems, whereby MEC servers are expected

to be densely deployed to provide ultra-low latency services.

• Lastly, Section 2.4 presents optimization work that make use of mobile traf-
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fic traces obtained from the mobile operator. Here, we review previous works

analyzing the spatio-temporal evolution of mobile traffic and their application

towards efficient and self-adaptable network solutions.

Chapter 3 presents research on online-based resource management achieved through

prediction and soft-scaling of computing resources within remote site (or single off-grid

BS site).

• In Section 3.2, the system model is presented. The use of open source mobile

traffic load traces is explained and the energy consumption model is defined. In

addition, the next time slot EB level energy model is formulated.

• The optimization problem to obtain energy savings through short-term traffic

load and harvested energy predictions along with energy management proce-

dures is formulated in Section 3.3. Here, a weighted cost function is formulated

consisting of two functions, one weighs the energy consumption due to BS trans-

mission and computation (MEC server) activities, and the other accounts for the

QoS cost (i.e., we push the computation load to be entirely processed by the local

MEC server).

• Section 3.4 presents a traffic load and energy harvesting prediction method, and

an online algorithm for managing the remote site. In this section, the LSTM neu-

ral network is used to predict the short-term future traffic loads and harvested

energy. Then, a state-space behavior of the control system is constructed and we

also introduce the online control key concepts. To solve the energy consumption

problem, an online algorithm based on control theory and heuristics is proposed

for enabling dynamic resource management within the edge system through fore-

sighted optimization. The online algorithm finds the best control input that yield

the desired energy savings and system behavior.

• The proposed online resource management procedure is evaluated in Section 3.5.

Numerical results, obtained with real-world energy and traffic traces, demonstrate

that the proposed algorithm achieves energy savings between 56% and 66% on

average, with respect to the case where no energy management techniques are

applied, and hold the server utilization between 30% and 96% over time, with an

average of 75%.
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Chapter 4 presents research based on online supervisory control and resource man-

agement for EH BS sites empowered with computation capabilities. This chapter par-

tially extends the work of Chapter 3, and in this chapter we consider an ultra-dense BS

environment, similar to urban or semi-urban, in contrast to the single off-grid BS case,

and the edge management is enabled by an controller. In addition, a hybrid energy

supply is considered, solar energy as the main source and the power grid as a backup.

• The considered MEC deployment scenario and the energy consumption model

is presented in Section 4.2. In this scenario, we consider that each EH BS is

co-located with the MEC server, forming a cluster/group that is placed in prox-

imity to the controller. In addition, the next time slot EB level energy model is

formulated.

• Section 4.3 presents the optimization problem to obtain energy savings through

short-term traffic load and harvested energy predictions, along with energy man-

agement procedures for a single communication site. Similar to Chapter 3, a

weighted cost function is presented. Then, a traffic load and energy harvesting

prediction method and an online management algorithm is proposed for single BS

management. The online algorithm makes use of learning and control techniques,

towards energy savings and the guarantee of QoS.

• Section 4.4 extends the work of Section 4.3 by considering the energy savings for

multiple communication sites. We formulate an optimization problem to obtain

energy savings through short-term traffic load and harvested energy predictions,

clustering, along with energy management procedures for the clustered BS sites.

In addition, we formulate the location-based (distance measure) clustering strat-

egy. To solve the energy consumption minimization problem in a distributed

manner, the online controller partitions the BSs into clusters based on their loca-

tion; then, for each cluster, it minimizes a cost function capturing the individual

communication site energy consumption and the users’ QoS. The network impact

is used as a performance metric for handling load balancing within the clustered

BSs.

• The proposed online controller-based algorithm performance is evaluated in Sec-

tion 4.5. Numerical results, obtained with real-world energy and traffic load

traces, demonstrate that the proposed algorithm achieves energy savings be-

tween 57% and 69%, on average, for the single communication site case, and
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a gain ranging from 9% to 16% on energy savings is observed when clustering is

applied, with respect to the allocated maximum per-VM loads of 5 MB and 10

MB. The energy saving results are obtained with respect to the case where no

energy management techniques are applied, either in one BS or single cluster.

Chapter 5 presents research related to adaptive resource allocation towards energy

management within a virtualized computing platform (i.e., the MEC server). This

work first address the short comings of the energy consumption model, i.e., the energy

consumption include the overall computing-plus-communication energy consumption

instead of assuming that the overall operational energy expenditure is related to solely

the computation process. Here, we focus on the integration of communication-related

energy consumption by considering the tuning of the transmission drivers.

• The system model and the computing-plus-communication energy consumption

model is presented in Section 5.2. Here, we assume that the MEC server is

virtualized, cache-enabled and Transmission Control Protocol (TCP)/Internet

Protocol (IP) offload-enabled (partial computation is performed at the network

adapter). The computing node is assumed to be deployed at an aggregation

point and powered by hybrid energy sources: on-grid power for back-up and

green energy (solar) as the main. The EB level update formula is defined.

• The optimization problem is presented in Section 5.3. We consider a computing-

plus-communication energy model, within the MEC paradigm, formulating a

constrained optimization problem. Then, we transform the non-convex function

to a convex one using the Geometric Programming (GP) theory. The main

goal is to minimize the overall energy consumption, under hard per-task delay

constraints (i.e., QoS), through the joint consideration of VM soft-scaling and the

tuning of transmission drivers, coupled with the location-aware traffic routing.

• In Section 5.4, we put forward a combination of a traffic engineering- and MEC

Location Service-based online server management algorithm with EH capabilities

for autoscaling and reconfiguring the computing-plus-communication resources.

To obtain energy savings, we forecast the short-term future server workload and

harvested energy, using LSTM network, allocating power using the GP concept,

CVXOPT toolbox2 and approximations. Then, an online algorithm using fore-

sighted (control theory) optimization and heuristics is employed. The online

2CVXOPT is a free software package for convex optimization based on the Python programming

language.
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algorithm obtain the best control action that will adjust the computing system

behavior at each time instance, with negligible computational overhead.

• Section 5.5 presents some selected numerical results of the proposed algorithm.

Numerical results, obtained with real-world energy and server workload traces,

demonstrate that the proposed algorithm achieves energy savings of 69%, on

average, with an energy consumption ranging from 31% to 45% at high per-VM

reconfiguration cost and from 21% to 25% at low per-VM reconfiguration cost,

with respect to the case where no energy management techniques are applied.

Chapter 6 provides conclusions and future research directions.
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Chapter 2

Background Information

There is growing awareness to the fact that the communication sector uses significant

amount of energy [14]. This is especially true for wireless, and in particular for the

BSs of cellular networks, where energy costs make up a large part of the operating

expenses of mobile operators. In addition, in future MNs the BSs will be empowered

with computation capabilities to enable local workload offloading (computation) and

the provision of ultra-low latency services. This requires efficient energy management

procedures. To handle the energy consumption challenge, we consider adaptive power

control mechanisms for tuning the BS energy consumption in proportion to the traffic

demand and the use of alternative energy sources (solar, wind). As EH technologies

advance, energizing the network apparatuses (edge systems) with green energy (e.g.,

solar and/or wind) is a promising solution to reduce the dependence from on-grid power

due to their location, reliability, carbon footprint and cost. Considering the ultra-dense

deployment of BSs and the dynamic characteristics of MNs, energy saving is of great

importance in green networks in order to exploit the benefits of sustainable networking

and computing within the edge network.

Green networking and computing is a broad research area and it generally involves

the combination of some of the following objectives:

• Minimizing the amount of energy drained/purchased from the power grid.

• Minimizing the total energy consumption of a network or part of the network.

• Minimizing the amount of the carbon footprint in order to support the energy

requirements.

• Minimizing the network complexity through network softwarization and virtual-

ization (currently being pursued in MNs).

11



In order to achieve the aforementioned objectives, green networking and computing

research relies on several methods including:

• On-demand resource management, i.e., autoscaling and reconfiguration of the

computing resources, together with the tuning of transmission drivers.

• Selectively switching on/off network elements to save energy.

• Integrating EH systems to harness the energy that energize the edge systems.

This enables energy self-sufficiency and sustainability in MNs (this is expected

in future MNs).

• Using content caching to store contents closer to mobile users in order to reduce

the amount of traffic on a network (this is outside the scope of this thesis)

This chapter presents literature review on the EPC architectural evolution, energy

management procedures in MNs focusing on green networking and computing, the use

of renewable energy within MEC paradigm, and the use of mobile datasets towards

traffic-oriented procedures for edge network management (i.e., dynamic BS and MEC

server management mechanisms design). In Section 2.1, we explain the softwarization

and virtualization tools, followed by NFV-based architectural proposals as an example

of the EPC architectural evolution. Then, Section 2.2 looks at the literature related

to energy management procedures in BSs, virtualized computing platforms, and the

mathematical tools (the control-theoretic and ML methods) for online resource man-

agement. Section 2.3 covers literature specifically related to optimization in MEC

systems using green energy. The importance of real MN traffic load traces for network

optimization is discussed in Section 2.4.

2.1 Softwarization of Mobile Network Functions

Softwarization and virtualization of resources and services are undoubtedly among the

main drivers of 5G and beyond 5G MNs, as they will provide flexibility and adapt-

ability, and also facilitate network maintenance and the update of all NFs. Towards

this end, researchers from industry and academia have presented different proposals

towards the EPC architectural evolution (see [2] for more details about EPC archi-

tectural proposals). Their contributions results into fragmented inputs, with a unified

goal of having an energy efficient EPC architecture for 5G networks. The outcome are
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designs/proposals that are somehow overlapping in terms of the functions being soft-

warized, technologies used, and so forth. Here, we discuss the enabling technologies

and tools in subsection 2.1.1, followed by the NFV-based architectural proposals in

subsection 2.1.2, as it is one of the appealing architectures towards meeting the latency

and data processing requirements at the network edge.

2.1.1 Virtualization Technologies and Tools

SDN and NFV are the emerging virtualization technologies that will enable flexibility

and agility in MNs. SDN involves the separation of the control plane of the network

devices from the data plane, allowing a centralized approach for networking control

that provides simplification and global optimization for the routing and switching of

network packets [31][32][33]. It also advocates for open Application Programmable

Interfaces (APIs) and a programmatic approach to networking. In addition, it is an

essential element of 5G that enables fast service provisioning (and de-provisioning) as

well as the optimal use of the underlying transport infrastructure. Through its support

for a programmable network, SDN-based architectures can also be implemented to

ensure that end-to-end paths are provisioned efficiently to maximize the transport

from the mobile User Equipment (UE) to the data center or edge services that they

are likely to consume.

NFV is a complementary movement to SDN, leveraging virtualization to take pro-

prietary physical hardware that is non-portable and hard to manage, and convert the

NFs into virtualized software-only versions [33][34]. These VNFs can be quickly moved

around as needed, and scaled up or down dynamically. NFV-based architectures sup-

port the ability to provision network slicing services flexibly, and this will likely take

the form of data centers spread across the network from core to edge to reduce the

latency of these services and for load distribution.

The combination of SDN and NFV is critical in achieving flexible network topology

and the realization of 5G targets such as 1000-times higher system capacity; 100-times

increase in data rates (10-Gb/s speeds); connectivity enablement for 100-times more

devices; latency reduction from 5ms to 1ms; and energy savings. Both technologies

limit the use of specialized hardware devices as they have been the limiting factor

towards MNs evolution and the fast deployment of new services within the mobile

space. Also, the technologies can co-exist within the same network, where SDN employs

a centralized approach on switching and routing elements [3], and NFV migrate the NFs

out of dedicated hardware into software that is imported into general purpose hardware.
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These technologies are expected to facilitate the ease of efficient network management.

The key to virtualization is that it enables on-demand or utility computing, a just

in time resource provisioning model in which computing resources such as Central

Processing Unit (CPU), memory, and disk space are made available to applications

only as needed [26].

The tools used in virtualized computing platforms consists of the hypervisor and

docker engine, and they are illustrated in Fig. 2.1. Virtualization making use of the

hypervisor is referred to as hypervisor-based virtualization, with the VMs as the

computing resources, and for the environment using docker engine is referred to as

container-based virtualization, with the containers as the computing resources.

Hypervisor

Host OS

Server

Hypervisor

Host OS

Server

Bins/Libs Bins/LibsBins/Libs

Guest OS Guest OSGuest OS

App 3App 1 App 2

(a) Hypervisor-based virtualization

Docker Engine

Host OS

Server

Docker Engine

Host OS

Server

App 1 App 2 App 3

Bins/Libs Bins/Libs Bins/Libs

(b) Container-based virtualization

Figure 2.1: An illustration showing the structure of VMs on top of the hypervisor (2.1a)

and containers on top of the docker engine (2.1b).

The hypervisor is the software that provides the environment in which the VMs

operate. A Hypervisor-based virtualization simply isolates the Operating System (OS)

and applications from the underlying computer hardware [35]. This abstraction allows

the underlying “host machine” hardware to independently operate one or more VMs

as “guest machines” (also referred to as guest VMs), allowing them to share the sys-

tem’s physical computing resources, such as processing time, memory space, network

bandwidth, etc. A new agnostic OS is generated to manage the underlying resources.

Since the hypervisor sit between the actual physical hardware and the guest OS, it is

also referred to as Virtual Machine Monitor (VMM). In Fig. 2.1a, we observe that each

VM has a virtual OS of its own and the hypervisor provides the VMs with a platform

to manage and execute multiple guest OS, and allows host computers to share their

resources among them. A drawback of VMs is that they can be slow to boot.
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Docker engine is a software technology written in the Go programming language

and it avails the environment for developing and running applications. It runs na-

tively on Linux systems (in recent Linux kernels), where it uses Linux kernel features

like namespaces, to provides a private, restricted view on certain system resources

within a container (i.e., a form of sandboxing), and control groups (cgroups), a tech-

nology that limits an application to a specific set of resources (i.e., provides resource

management for groups of processes), to create a loosely isolated environment called

a container. Mainly, it provides tooling, that is, software packaging tools that can

package an application and its dependencies in a virtual container that can run on

any Linux server, and a platform to manage the containers life-cycle. Containers are

abstraction units for isolating applications and their dependencies, that can run in any

environment. They can run on the same machine, on top of the docker engine, sharing

the OS kernel with other containers. Fig. 2.1b shows that containers only package up

the user space, and not the kernel or virtual hardware, like a VM does. Each con-

tainer gets its own isolated user space to allow multiple containers to run on a single

host machine. We observe that the entire OS level architecture is being shared across

them. The only parts that are created from scratch are the Bins and Libs. Despite

the process isolation and lightweight character, container-based virtualization is less

secure and more vulnerable compared to hypervisor-based virtualization.

Currently, the most commonly used virtualization tool is the one illustrated in

Fig. 2.1a (key platforms include VMware vSphere, Microsoft Hyper-V, Citrix Xenserver

or KVM). The tool also enable live VM migration (one of the key features of virtualiza-

tion), which is a process of duplicating and transmitting the VM memory image over

the network, in virtualized data centers, without or least service interruption [36][37].

With the continuous advancements in virtualization technologies and tools, the future

looks different as containers will probably co-exist with hypervisors. The use of con-

tainers, running on top of the docker engine, speeds up innovation, requires less space

and can be deployed across different platforms, and hypervisors, with VMs on top,

allows running multiple applications on multiple VMs. The combination of the virtu-

alization tools can be beneficial as operators can not be restricted to one infrastructure,

instead they can simply develop applications once and then run them on any infras-

tructure [38]. For example, the Unikernel, as a hybrid solution, promises to combine

the advantages of the aforementioned tools [39].

Determining which is the most suitable tool (hypevisor- or container-based) to be

used is a challenge. Mainly, this depends on the specific scenario and from that it re-
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quires a thorough analysis of the scenario design and performance requirements, along

with a meticulous analysis of the benefits and drawbacks associated with the use of one

tool rather than another. The quantitative comparison of different virtualization tech-

niques is presented in [40]. In light of the significant impact that software virtualization

has in the MEC paradigm, in this work we focus on the hypervisor-based virtualization,

where VMs are deployed on the MEC server for handling computation activities (delay

sensitive workloads), due to the fact that (i) VMs are secure and (ii) hypervisor-based

VMs can benefit from a well-established management mechanisms [35].

Discussion: The virtualization tools can play a role towards Energy Efficiency (EE)

improvement within MNs. For example, from the hypervisor-based virtualization, the

hypervisor can report resource usage to the orchestrator in order to trigger system

automated sleep mode states and also to implement policies provided by management

and orchestration entity, which includes power management and power stepping [35].

On the other hand, to enable the next level of flexibility in MNs, operators might have

to turn to more recent innovations in the data center world, containers and cloud-

native capabilities. Container-based virtualization can be considered as an alternative

to hypervisor-based virtualization, as containers demand less memory space, portable

(allow applications to be separated from the underlying infrastructure) and lightweight,

and have a shorter start-up time which translates to low latency and power consumption

as confirmed experimentally in [18]. They also provide lower overheads compared to

VMs, isolation from infrastructure and other tenants [33], speed and agility to allow

applications to be tested and deployed quickly.

2.1.2 NFV-based Mobile Network Evolution

The use of cloud-based approach with NFV platform has been proposed towards EPC

architectural evolution. This type of architecture enable dynamic deployment of edge

networks, the scaling of NFs, network monitoring, and load management. In addition,

it avails the possibility of intelligently pooling capacity of resources when required.

In [6], the key elements of the architecture are 1) a data-driven network intelligence

for optimizing network resources usage and planning, and 2) relaying and nesting tech-

niques: to support multiple devices, group mobility and nomadic hotspots. The EPC is

virtualized into three parts, namely; i) control plane entity (CPE), which is responsible

for authentication, mobility management, radio resource control and non-access stra-

tum (NAS) and access stratum (AS) integration, ii) the user plane entity (UPE), acting
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as a gateway, mobility anchor and over-the-air (OTA) security provisioner. Lastly, iii)

the network intelligence (NI) plane is for the extraction of actionable insights from big

data, orchestration or required services and functionalities (e.g., traffic optimization,

caching, etc.). The realization of the network cloud can be achieved by enabling virtual

function instances to be hosted in data centers when needed. The use of virtualization

techniques will enable quick deployment and scalability of CPE and UPE functions.

For example, in case of a natural disaster, with this technology the local data center

maybe unable to cope with the traffic upsurge, therefore, additional capacity can be

sourced quickly from other data centers. A different strategy is employed in [7]. In that

paper, the EPC architectural proposal simply abstracts the EPC network functions,

decomposing and allowing them to run as software instances (virtual machines), on

standard servers. This allows service providers to customize services and policies to

design networks in new ways, to reduce costs and simplify operations.

The aforementioned architecture proposals differ from one another. SDN is inte-

grated with NFV in [6] to provide network control and to host the network intelligence,

and in [7] only the NFV platform is available for enabling network services provision.

Moreover, the architecture proposed in [7] is commercially available. Their contribu-

tions towards energy efficiency is as follows: (i) both make use of NFV and cloud

computing platforms, and this avail the possibility of dynamically scaling resources

based on demand as presented in [6]; (ii) through the information centric approach

(collection of user-centric, network-centric and context-centric data), intelligent algo-

rithms, mainly network optimization tools, can be applied to the aggregated data in

order to provide useful outlook for network planning and resource management.

Following the ETSI MEC reference architecture in [41], a MEC NFV-based archi-

tecture is proposed. Here, new APIs are opened, availing hosting environments for

both mobile operators and external players, which can make use of the access network

related information for their services. This architecture consists of the infrastructure

plane, the control application plane and the management plane. In addition, there

is an orchestration and management plane hosting MEC management activities. The

hosting environment consists of hardware resources, a virtualization infrastructure (vir-

tual computation, storage, and network resources) and a set of associated management

services for MEC applications. Within the COMBO project [42], a new functional ar-

chitecture is proposed, where a new element called the universal access gateway (UAG)

is introduced. The EPC gateways, serving gateway (SGW) and packet data network

gateway (PGW), are virtualized and moved into the UAG. They are located in a central
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office closer to end-users so that they can access the national IP network and reach the

Internet sooner, thus enhancing latency and saving transport resources. By placing the

mobile gateways closer to end-users, all traffic that does not need specific treatment

is delivered locally to the remote cloud. A proper functional integration is of great

importance to offer virtual resources at the network edge, while effectively adapting to

the actual network load.

2.2 Energy Efficient Network Management Procedures

We first discuss literature review related to BS sleep modes techniques in subsec-

tion 2.2.1, followed by literature review related to energy savings in virtualized com-

puting platforms (i.e., works related to autoscaling of servers or VMs in computing

platforms) in subsection 2.2.2. Finally, in subsection 2.2.3, we review the mathemati-

cal tools that we use in this work for forecasting and foresighted optimization.

2.2.1 Sleep-modes strategies in MNs

The dramatic growth in mobile data has spurred the dense deployment of small cell

BSs to enhance spectrum efficiency and increase network capacity. Although small

cell BSs consumes less power compared to macro BSs, the overall power consumption

of a large number of small cell BSs is phenomenal. Two large trends appear in the

literature to address the energy efficiency challenge: (i) search for more energy effi-

cient transmission devices and technologies; (ii) new technology proposals aimed at

improving energy consumption in BSs, such as sleep mode, as it is known that switch-

ing on/off the BS transmission power during low traffic demand can yield significant

energy savings [43][44][45]. In this work, we consider the second (ii) trend as we focus

on the dynamic switching on/off of BS(s) and trend (i) is outside the scope of this

work. Therefore, we only consider the literature related to BS sleep mode strategies,

from a single operator or multi-operators perspective, highlighting the main applied

techniques that are related to our research work.

In order to minimize the energy consumption in MNs, some trade-offs in the op-

timization problem are expected where performance metrics are also introduced. The

Quality of Experience (QoE) is included as a trade-off metric in [46], where a dynamic

programming switching algorithm is put forward. In addition, the coverage probability

and the BS state stability parameter, i.e., the number of on/sleep state transitions, is

considered. For instance, a set of BSs switching patterns engineered to provide full

18



network coverage at all times, while avoiding channel outage, is presented in [47]. The

QoE is also affected by the UE position due to channel propagation phenomena. To this

respect, in [48] the selection of the BS to be switched off is taken so as to minimize the

impact on the UEs’ QoE, according to the distance from the handed off BS. Moreover,

QoS has been widely used as a trade-off metric [49][50]. A trade-off between delay cost

and power consumption is present in [51]. Here, an online algorithm based on the Lya-

punov optimization technique, mainly the drift-plus-penalty [52], is proposed for the

joint workload offloading decisions and the BS sleeping decisions within an ultra-dense

MN where each BS is co-located with a MEC server. The optimal BS activation and

offloading strategy, at each time slot, is obtained in an iterative manner (heuristics)

using the Gibbs sampling technique [53], in each distributed BS node. The obtained

performance achieves a close-to-optimal as future information is not considered.

When a BS is switched off, the whole traffic load is allocated to the neighboring

active BS(s) in which orthogonal resource allocation helps mitigate interference. To

support sleep modes, neighboring BSs must be capable of serving the offloaded traffic.

To achieve this, proper user association strategies are required. A user association

mechanism that maximize energy efficiency in the presence of sleep modes are addressed

in [45]. Here, a downlink HetNet scenario is considered, where the EE is defined as the

ratio between the network throughput and the total energy consumption. Since this

leads to a rather complex integer optimization problem, the authors propose a Quantum

particle swarm optimization algorithm to obtain a sub-optimal solution. In [54], a

framework to characterize the performance (outage probability and spectral efficiency)

of cellular systems with sleeping techniques and user association rules is presented. In

that paper, the authors devise a user association scheme where a user selects its serving

BS considering the maximum expected channel access probability. This strategy is

compared against the traditional maximum SINR-based user association approach and

is found superior in terms of spectral efficiency when the traffic load is in-homogeneous.

The use of clustering algorithms have been proposed as a way of switching off BSs

to reduce the energy consumption within MNs. A centralized and distributed algo-

rithms group BSs exhibiting similar traffic profiles over time is presented in [55]. Then,

in [56], a dynamic switching on/off mechanism that locally groups BSs into clusters

based on location and traffic load is proposed. The optimization problem is formulated

as a non-cooperative game aiming at minimizing the BS energy consumption and the

time required to serve their traffic load. Simulation results show energy costs and load

reductions, while also providing insights of when and how the cluster-based coordi-
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nation is beneficial. However, the dynamic BS switching on/off strategies, towards

energy savings where clustering is adopted, may have an impact on the network due

to the traffic load that is offloaded to the neighboring BSs. To avoid this, the BS to

be switched off must be carefully identified within a BS cluster. In [57], the network

impact is used to identify the BS to be switched off within a cluster, one at a time,

with no significant network performance degradation.

A marketing approach to promote the opportunistic utilization of the unexploited

small cell BS capacity in ultra-dense heterogeneous networks (HetNets) is presented

in [43]. There, an offloading mechanism is proposed, where the operators lease the

capacity of a small cell network owned by a third party in order to switch off their BSs

(Macro BSs) and maximize their energy efficiency, when the traffic demand is low. The

allocation of the small cell resources among a set of competing operators is mathemati-

cally formulated as an auction problem. Then, authors in [44], present a comprehensive

energy management model employing a BS switching on/off mechanism, within a BS

system powered by green energy. The model considers user mobility, different green

energy harvesting rates, weather conditions, energy storage with self-discharge effect,

and switching on/off frequency. The authors propose two algorithms: the first decides

which BSs are to be active based on the minimum energy cost, i.e., the energy price

per time period, while the second one determines the active BSs by first prioritizing

the minimum power consumption of the system, and then the energy cost.

Towards the effort of reducing the energy consumption through BS sleep modes, it is

observed in the literature that most of the existing works consider clusters of BSs from

a single mobile operator perspective, where some functions of the BS can be switched

off and then the remaining active BSs handle the upcoming traffic. A new mechanism

is presented in [58] which exploits the coexistence of multiple BSs from different mobile

operators in the same area. An intra-cell roaming-based infrastructure-sharing strategy

is proposed, followed by a distributed game-theoretic switching-off scheme that takes

into account the conflicts and interaction among the different operators. Then, the

work of [59] investigate the energy and cost efficiency of multiple HetNets (i.e., each

HetNet is composed of eNodeBs (eNBs) and small cell BSs from one operator) that

share their infrastructure and also are able to switch off part of it. Here, a form

of roaming-based sharing is also adopted, whereby the operator can roam its traffic

to a rival operator during a predefined period of time and area. An energy efficient

optimization problem is formulated and solved using a cooperative greedy heuristic

algorithm. Regarding the cost efficiency, the cooperation and cost sharing decisions
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among the operators are modeled using a Shapley Value based bankruptcy game.

To enable power transmission adaptation and load balancing across BSs, traffic

load information (operator mobile traffic datasets) obtained from the EPC can be

utilized to extract relevant demand patterns to design dynamic BS management mech-

anisms [60][61]. Optimization based on mobile traffic datasets, obtained from multiple

network elements described in [61], will make it possible to minimize the amount of

time it takes to steer traffic on a real time basis, thus provisioning the network resources

for computing and communication. In [60], a greedy algorithm is used to estimate the

energy savings, through dynamic BS operation, based on real cellular traffic traces and

actual BS location, within an urban environment. Then, in [62] datasets usage show

the potential of dynamically switching on/off BSs around a stadium (soccer field), as

some of the BSs experience low traffic load during a large event.

In the effort of greening future MNs, BSs are expected to be powered by green

energy sources. On the other hand, NFV technology is expected to improve energy

consumption by enabling the BS sleep modes, i.e., scaling down the NFs during low

traffic periods [35] or at low EB levels. The work of [63] models dynamic switching

on/off strategy for a BS energized by only solar energy. It considers the case of two

BSs and proposes a solution based on a robust Bayesian technique assuming complete

information on the network traffic. Based on this work, it is observed that an inte-

grated view of the networking and solar energy issues is lacking. Along the lines of MN

softwarization, a distributed user association scheme that makes use of the SoftRAN

concept for traffic load balancing via the RAN Controller (RANC) is proposed in [64].

Here, the user association algorithm runs on the RANC and the users report their

downlink data rates via the associated BS to the RANC, where the traffic loads from

individual users and BSs are measured. The algorithm enhance the network perfor-

mance by reducing the average traffic delivery latency in BSs as well as to reduce the

on-grid power consumption by optimizing the green energy usage.

Finally, an integrated view of networking (small cell BSs usage) and solar energy

issues that are important for a cost-effective green energy network planning are pre-

sented in [65]. Here, the relationship between installing a solar harvesting system to

power a BS and the energy management under varying demand is investigated. The

authors present a solar installation planning model by explicitly modeling solar panels,

batteries, inverters and charge controllers, as well as the cellular network demand and

energy management. They found that the solar installation and the energy manage-

ment of the BSs are so coupled that even the order in which these technologies are
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introduced can have a major impact on the network cost and performance.

2.2.2 Energy savings in virtualized platforms through soft-scaling

To address 5G use cases in a more energy efficient way, visibility into power usage is

required for developing energy management policies in virtualized computing platforms

(i.e., MEC servers or data centers). In virtualized computing platforms, the energy

consumption is related to the computing and communication processes. To minimize

energy consumption within such environments, energy saving studies have involved

autoscaling (the scaling up/down of servers/VMs [66][67][68][69]), VM migration [70]

and soft resource scaling [71]. With the advent of NFV, it is expected that the NFV

framework [35][72] will exploit the benefits of virtualization technologies to significantly

reduce the energy consumption of large scale network infrastructures. In addition,

the EE control framework [73] shall provide the control sequence and procedures for

controlling and managing EE, within self-managed automated edge systems.

Algorithms for the dynamic switching on/off the servers have been proposed as

a way of minimizing energy consumption in computing platforms. In [66], at the

beginning of each time slot computing resources are provisioned depending on the

expected server workloads via a reinforcement learning-based resource management

algorithm, which learns on-the-fly the optimal policy for dynamic workload offloading

and the autoscaling of servers. By adopting this approach, the number of turned

on physical servers is minimized. However, server consolidation typically does not

consider the contribution of network traffic exchange to the overall energy consumption

of the computing infrastructure. Then, in [70], the CPU utilization thresholds are

used to identify over-utilized servers. Hence, migration policies, enabled by the live

VM migration method [36], are applied for moving the VM between physical nodes

(servers). The VMs are only moved to hosts that will accept them without incurring

high energy cost, i.e., without any increase in the CPU utilization. Subsequently, the

idle servers are switched off.

Virtualization provides a promising approach for consolidating multiple online ser-

vices onto few computing resources within a enterprise data center. By dynamically

provisioning VMs, consolidating the workload, and switching servers on/off as needed,

service providers can maintain the desired QoS while achieving higher server utilization

and EE. In [26], a dynamic resource provisioning framework for a virtualized comput-

ing environment is presented and it is experimentally validated on a small server cluster

that provides online services. The control objective is to maximize the profit gener-
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ated by the server system through the reduction of power consumption and service-level

agreement violations. A predictive control for dynamic resource allocation in enterprise

data centers is presented in [74], to reduce resource over-provisioning (i.e., CPU alloca-

tion) for enterprise applications. In that paper, predictive and feedback control-based

techniques were used to periodically determine the amount of resources needed for each

server. The prediction algorithms were based on auto-regressive (AR) model, a com-

bined of Analysis of variance (ANOVA) and AR model (denoted by ANOVA-AR), and

multi-pulse (MP) mode. In addition, a set of CPU utilization traces were used within

the optimization problem.

Along the same lines of VM soft-scaling, in [67], a traffic engineering-based ada-

pative approach is presented with an aim of minimizing energy consumption induced

by computing, communication and reconfiguration costs of virtualized clouds within a

data center. An iterative method is used to obtain the energy savings within a server

that transmit wireless to clients. Then, in [68], the computing-plus-communication is

also considered towards a goal of saving energy through adaptive transmission rate

for a Fog node (virtualized node). In [69], an automated server provisioning algorithm

that aims to meet workload demand while minimizing energy consumption in data cen-

ters is presented. Here, energy-aware server provisioning is performed by taking into

account trade-offs between cost, performance, and reliability. Lastly, in [71], a power

management approach that exploits hardware power scaling, i.e., the dynamic power

management strategies using Dynamic Voltage and Frequency Scaling (DVFS), and

software-based methods, called VirtualPower, is presented. Here, due to the low power

management benefits obtained from hardware scaling, a soft resource scaling mecha-

nism is proposed whereby the scheduler shortens the maximum resource usage time for

each VM, i.e., the time slice allocated for using the underlying physical resources.

Although the aforementioned references goal is to minimize the energy consumption

within computing environments, none has considered the switching on/off the trans-

mission (optical) drivers towards ESs within such environments except for the works

of [21] and [22]. Both works show that having the least number of data transmission

drivers (i.e., fast tunable lasers) can yield significant amount of ESs. The computing

node (router) is assumed to be equipped with a set of tunable lasers working in parallel.

In [21], a joint scheduling and routing algorithm for guaranteeing the QoS for packet

transmission within Wavelength Division Multiplexing (WDM) network is presented

towards energy and bandwidth efficiency by cutting down the number of tunable lasers

and wavelengths required. Then, in [22], a cross-networks framework for EE improve-
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ment from WDM wired networks to 5G wireless networks is proposed. This work

extends the work of [21] by including the wireless component and then considering the

transmitted bits per unit energy consumption in the WDM networks. Even though

these works, [21][22], are not along the direction of MEC, but they propose the tuning

of the transmission drivers as one of the ES strategies within the MN infrastructure.

Thus, ESs within the MEC server can be jointly achieved by launching an optimal

number of VMs for computing and transmission drivers for real-time data transfers.

In summary, the need for jointly managing networking and computing components

will be even more evident in future MNs, which will extensively adopt virtualization

techniques. To this aim, it is expected that future computing platforms will exploit

different types of VMs, ranging from the ones devoted to classical computing tasks to

elements running VNFs.

2.2.3 Pattern forecasting along with foresighted optimization

In the paradigm of supervisory control for managing MNs, online forecasting using ML

techniques and the LLC method can yield the desired system behavior when taking

into account the environmental inputs, i.e., BS traffic load, server workloads and energy

to be harvested. Next, we briefly review the mathematical tools that we use in this

research work, namely the LLC method [26][27][28] and LSTM neural networks [24] [25].

Control-theoretic algorithms and the LLC method have been used to obtain control

actions that optimize the system behavior, forecast by a mathematical model, over

a limited look-ahead prediction horizon. The LLC is conceptually similar to Model

Predictive Control (MPC) [26][75]. It differs in the following ways: (i) LLC work in

a discrete domain whereas MPC deals with systems operating in a continuous input

and output domain; (ii) LLC problems must be solved quickly, given the dynamics

of server/data center workload, whereas MPC problems are usually computationally

expensive and suited for slow-changing processes.

An online supervisory control scheme based on LLC policies is proposed in [76].

Here, after the occurrence of an event, the next control action is determined by esti-

mating the system behavior a few steps into the future using the currently available

information as inputs. The control actions exploration is performed using a search tree

assuming that the controller knows all future possible states of the process over the

prediction horizon. In another paper [27], an online control framework for resource

management in switching hybrid systems is proposed, where the system’s control in-

puts are finite. The relevant parameters of the operating environment, e.g., workload
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arrival, are estimated and then used by the system to forecast future behavior over a

look-ahead horizon. From this, the controller optimizes the predicted system behavior

following the specified QoS through the selection of the system controls. The work

of [26] make use of the LLC to address a resource provision problem within virtualized

environments. The optimization problem is posed as a profit maximization problem

under uncertainty and the LLC formulation models the cost of control. To address

the uncertainty over the workload arrival, the Kalman filter is used. As the work-

load varies within the enterprise system, a hierarchical LLC structure is proposed to

achieve fast operation, wherein the control problem is decomposed into a set of smaller

sub-problems and solved in a cooperative fashion by multiple controllers.

To model time-series datasets, the LSTM network is used as it is able to handle

the long-term dependencies due to its inherent capability of storing past information

and then recalling it. In [77], a distributed LSTM online method based on the par-

ticle filtering algorithm is presented with an aim of investigating the performance of

online training of LSTM architectures in a distributed network of nodes. An LSTM

based model for variable length data regression is proposed, and then put into a non-

linear state-space form to train the model in an online fashion. Financial and real life

datasets are used for performance evaluation, and it is observed that the distributed

online approach yields the same results that are obtained in the centralized case, when

considering the mean square errors as the performance measure.

The application of LSTM network is extended to include Intelligent Transport Sys-

tems (ITSs) in [78]. A new ITS edge analytics architecture that makes use of deep

learning techniques that either runs on the mobile devices or on the intra-vehicle pro-

cessors for data analytics is presented. A combination of LSTM networks and deep

Convolutional Neural Networks (CNNs) is adopted, i.e., CNN-LSTM network, for path

selection in autonomous vehicles, whereby the CNN is used for feature extraction, and

then the extracted information is fed into LSTM networks for driving path selection.

Forecasting server workloads using LSTM network can be beneficial for dynamic

resource scaling and power consumption in cloud computing datacenters. In [79], a

forecasting model using the LSTM network for predicting future data center workloads

is proposed, and then the results are fed into the resource manager for decision making,

which either involves scaling up or down the computing resources (servers in this case).

HyperText Transfer Protocol (HTTP) traces were used for evaluating the algorithm

and from the mean square error results it is observed that the LSTM based forecasting

model yield better results when compared with the methods from [80] and [81].
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Discussion: The combination of the NFV framework [35][72] and EE control frame-

work [73] can potentially deliver significant energy savings. Within the NFV frame-

work, the hypervisor can utilize power management policies defined by the network

management entity. To optimize power management schemes, the policies and algo-

rithms must take into account the processor frequencies and running applications. On

the other hand, the EE control framework will facilitate coordinated actions for maxi-

mizing system wide energy efficiency gains in self-managed automated energy efficiency

control processes. It make use of the following key functions: (i) EE Policy Manage-

ment (it translates the policy information into configurations at the EE optimization

entities within the network), (ii) EE Control and Coordination (ability to control and

coordinate the power saving operations across all the relevant elements in the network,

equipment and site levels) and (iii) EE Profiles Management (monitors, collects, pro-

cesses, stores and provides EE related information and statistics). In addition, the use

of forecasting (e.g., LSTM), control-theoretic algorithms and foresighted optimization

can deliver significant energy savings MNs.

2.3 Renewable energy in MEC

Recently, renewable energy sources such as solar and wind energy have emerged as

viable and promising energy sources for various Information and Communication Tech-

nology (ICT) systems due to the advancement of EH techniques. This is important,

especially in light of the dense deployment pattern that is foreseen in 5G systems.

The work of [82] observed that solar energy is more suitable for workloads with high

peak-to-mean ratio (PMR) and wind energy fits better for workloads with small PMR.

This avails the development of proper strategies for renewable energy provisioning for

edge servers with the objective of eliminating any chance of energy shortage. This can

be achieved by selecting the appropriate renewable energy source at each time instance

taking into account current and forecast traffic loads. Since MEC servers are small-scale

data centers (or micro data centers), each of which consumes less energy than conven-

tional cloud data centers, it is expected that powering the MEC infrastructure with

green energy sources will reduce the overall network energy consumption.

Along the lines of green networks within the MEC paradigm, authors in [83] pro-

posed a framework for jointly performing load balancing, admission control and energy

purchase among a network of EH-powered BSs with the goal of minimizing the com-
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putation delay and data traffic drops (i.e., increasing the locally computed workloads).

To solve this problem, an online algorithm (distributed) is proposed leveraging the

Lyapunov optimization with perturbation technique. The algorithm makes decisions

using only current information as inputs. In [84], a new EE design principle for the BS

(co-located with the MEC server) to minimize its energy consumption, while ensuring

self-sustainable computation at the mobile devices (through wireless power transfer

(WPT)), is investigated using the Lagrangian duality method. A multi-user MEC sys-

tem consisting of a multi-antenna access point and multiple users is assumed. Each

mobile device is equipped with two antennas, one for WPT and the other for computa-

tional offloading. The antennas operate over different frequency bands such that WPT

and computational offloading can be performed simultaneously, without mutual inter-

ference. Users rely on their harvested wireless energy to execute the latency-sensistive

computational tasks either via local computing or (possibly partial) offloading to the

MEC server. The optimal policy under energy harvesting constraints is obtained lever-

aging the Lagrange duality [85] and the ellipsoid methods [86].

A Lyapunov optimization technique [52] based on channel state indicator and en-

ergy level in EB is used to obtain dynamic offloading policies for EH powered mobile

devices in [87]. In [66], the challenge of incorporating renewables into MEC is investi-

gated. Here, a joint offloading and edge server provisioning problem is formulated as

a Markov decision process (MDP). To overcome the curse of dimensionality in MDP

when the state space is large [88], a post-decision state based learning algorithm is

proposed.

Discussion: In view of the significant carbon footprint of grid power as well as the

increasing electricity prices, renewable energy harvested from wind and/or solar radi-

ation is embraced as a major or even sole power supply for edge systems, thanks to

the recent advancements of energy harvesting techniques [89]. To address the energy

consumption in 5G MNs in a more energy efficient way, within the MEC paradigm

and green-aware networks, visibility into power usage is required for developing power

management policies in virtualized computing platforms and communication systems.

Special attention is required when using green energy together with sleep modes in

BSs empowered with computing capabilities due to the unpredictable nature of green

energy. To fully utilize the harvested energy, it is desirable to incorporate the green

energy utilization as a performance metric in traffic load balancing strategies [64][83],

instead of using the traffic load (e.g., network impact [57]). This work advocates for
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the integration of EH systems in edge systems and the use of forecasting, in order to

make energy management decisions in a forward-looking fashion.

2.4 Mobile traffic datasets analysis

Understanding data traffic demands and user behavior is crucial to the evaluation of

strategies addressing the problem of high bandwidth usage and scalability of network

resources, with improvements in the offered services. Based on the mobile traffic de-

mands per user and user pattern, mobile operators can timely plan network resource

allocation and set better subscription plans. For many MN services, the traffic load de-

mand exhibits a diurnal behavior [90], thus it suffices to forecast the short-term traffic

loads in order to capture the daily behavior of subscribers.

From networking perspective, the understanding and characterization of traffic con-

sumption within the network can pave the way towards more efficient and user-oriented

networking solutions. This can be achieved through the use of historical mobile traffic

traces (called Call Detail Records (CDRs)) obtained from mobile operators, specifically

in the EPC network. The availability of such open source traces has triggered research

efforts from industrialists and academicians, who are actively seeking for networking

solutions, targeting the conception, design and management of 5G networks. Adequate

solutions are envisioned to considerably improve the overall performance of the network

at lowest possible costs.

In [91], anonymized datasets generated by smartphone subscribers (i.e., they are

collected at the core network of a 3G network) are used to characterize and model

real mobile data traffic demands. The motivation of using smartphones generated

datasets comes from the fact that they are mainly used for data compared to voice

calls. From the usage patterns analyses, identical patterns on different days of the week

were observed. Then, the authors proposed a traffic generator model that reproduces

real traffic demands, and benchmarked it with a sample test set and statistical tools

to observe its performance. The outcome is a synthetic measurement-based mobile

data traffic generator capable of imitating traffic-related activity patterns. The work

of [92] characterize the usage of YouTube in MNs using a large dataset containing

HTTP requests collected from a mobile operator. Specifically, they consider video

content and then study how video content popularity trends can be classified in order

to provide an insight into video access patterns of users. Based on their analysis, it

is recommended that caching be adopted to improve network efficiency, as content
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requests can be locally handled.

During crowded events (e.g., concerts, soccer games), MNs face voice and data

traffic volumes that are often orders of magnitude higher than what they face during

normal days. To address this, as large/special events are known in advance, mobile op-

erators deploy portable BSs for temporary increasing network capacity and free Wi-Fi

access points for offloading traffic from cellular networks. Despite of this, large events

still present significant challenges for mobile operators looking to reduce dropped call

events, energy consumption and improve Internet speeds. In [62], traffic traces are

used to characterize large events/venues and then providing some insights about the

challenges involved in the planning, design and deployment of wireless networks. When

considering the eNBs covering the large venue, it is observed that the traffic usage pat-

terns is non-uniform over time. This avails the opportunity of dynamically adjusting

the radio power and code allocation. The work of [93] investigates network perfor-

mance degradation in MNs during crowded events using real-world voice and data

traces collected from one mobile operator. Based on their results, it is suggested that

radio resource allocation tuning and opportunistic connection sharing (the aggregat-

ing of traffic from multiple devices into a single cellular connection) can improve the

network performance without incurring any costs related to infrastructure changes, as

large events are known beforehand. Then, in [94], user content consumption habits

are analyzed, as a function of time and place, to determine digital consumption hot

spots in the network. Here, datasets containing Internet data exchange (traffic traces)

between the mobile device and the wireless network are used, considering a normal

day temporal traffic traces and one special day (final game for a soccer tournament).

From their analysis, it is noted that content consumption must be taken into account

in conjunction with mobility patterns in order to distribute content services closer to

the users (i.e., caching contents closer).

If we consider traffic load variation during the day within a industrial zone, we can

observe that during the night not all BSs are required in order to accommodate the

minor traffic demand remaining in the area. Accordingly, a BS power control strategy,

with switch-off possibility, over the set of BSs surrounding the industrial zone, would

be very beneficial from an energy consumption point of view. Towards this goal, mobile

data traffic constitutes a very valuable source of information in this context. In [60],

the use of mobile datasets towards the development of a dynamic BS management

mechanism and understanding of the technical challenges that arise in implementing it

is explored. Here, real cellular traffic traces (voice traffic) and BS location information

29



is employed to observe users pattern for one week. Based on their analysis, they find

that during weekdays about 30 percent of the time the traffic is less than 10 percent

of the peak and during weekends and holidays, this low activity period increases to 43

percent of the time.

Discussion: The use of open source datasets or trace-driven simulations can speed-up

the development of traffic-oriented network management solutions. In addition, they

can bring mobile networking research efforts a step closer to real-world systems, at

a time in which it takes longer to develop networking solutions, from their early re-

search stage, to their actual implementations, in industry. By providing a realistic

evaluation environment that captures real-world usage patterns, it allows to assess

possible real-world energy savings resulting from such load-adaptive network manage-

ment strategies. However, due to the non-availability of traffic load traces from mobile

operators, researchers rely on open source datasets with limited information to try and

address some of the MN challenges1. The combination of harvested energy2 and mobile

traffic datasets can help provide insights about opportunities for green-aware dynamic

resource allocation within communication sites, i.e., BSs empowered with computation

capabilities. This thesis is along this direction. In our work, we focus on power control

strategies over BSs and resource allocation in computing platforms using the knowledge

learned from mobile traffic load and energy traces.

1Mobile traffic datasets are mainly available through open (mobile) data challenges initiated by

mobile operators, e.g., the Data for Development (D4D) challenge by Orange and the Telecom Italia

Mobile (TIM) Big Data Challenge. To preserve confidentiality and security of mobile users informa-

tion, some of the dataset information is hashed/anonymized.
2This type of datasets (solar energy, wind energy) are readily available as open source and they

contain significant relevant information.
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Chapter 3

Single BS Site Optimization

The results of this chapter are the subject of the following published paper:

T. Dlamini, A. F. Gambin, D. Munaretto, M. Rossi, “Online Resource Management

in Energy Harvesting BS Sites through Prediction and Soft-Scaling of Computing

Resources”, in Proceedings of the 2018 IEEE 29th Annual International Symposium

on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy,

September 2018.

3.1 Introduction

The wireless and mobile telecommunication networks plays a significant role in im-

proving the global economy and the way people share information and knowledge, due

to their capacity to provide radio coverage over a wide geographic area. This, in par-

ticular, is practical for remote/rural telecommunication applications where, through

the installation of BS, the development of the wireless and mobile telecommunication

networks can be achieved. However, continuous operation cannot be achieved in re-

mote/rural areas as the electricity might be unreliable or even very costly to extend

the electricity grid connection to such areas for the provisioning of communication ser-

vices. Over the years, the alternative has been the use of diesel generators to power

remote/rural BS sites. Despite of such, the idea of using diesel generators as a primary

or back-up power supply has become less favorable due to the challenges related to

reliability, availability, high operational and maintenance costs, and their significant

environmental impacts [95][96]. Hence, methods using renewables coupled with sus-

tainable energy storage solutions are now receiving more attention than before (e.g.,
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the LG Uplus project1).

Future MNs are expected to leverage the integration of MEC and EH BS, i.e., BSs

equipped with EH equipments, towards service provision and energy self-sufficiency in

remote/rural areas. Providing reliable and stable grid power supply in remote areas and

hazardous location can be costly and even infeasible since construction and operation of

transmission lines are often prohibitive, and grid-tied servers can violate environmental

quality regulations in areas that are ecologically sensitive [97]. This motivates the need

for energizing edge systems with green energy in order to help extend network coverage

to remote areas, minimize the carbon footprint and their dependence on the power

grid [2][23]. The green-powered BSs (also empowered with computation capabilities)

are more suitable in national parks, when considering environmental impact, as most

governments do not approve cable wiring in such areas. However, the integration of

MEC and EH BS systems brings about new challenges related to energy consumption,

and resource scheduling. In addition, bringing computing and storage services on the

BS for offloading some workload requires special attention, as resources are limited at

the edge.

In literature, energy savings in BSs have been studied to minimize the BS power

consumption by enabling sleep modes at low traffic load periods [57][60][62]. For in-

stance, if a BS has not harvested sufficient energy, its transmission power can be tuned

to be in proportion to the energy in its local energy storage and, for low traffic load

periods, some of the BS functions can be deactivated. ESs within the virtualized com-

puting platform (i.e., MEC server) are also of great importance. It is known that the

power drawn by the server consists of an idle component and a dynamic component,

which is the power consumed by the physical resources when working on behalf of some

VMs. In [18], it is shown that power consumption increases with a growth in the num-

ber of virtual entities (e.g., VMs) that are allocated to the physical core, and in [19],

it is further experimentally shown that increasing the number of VMs also increases

power consumption in virtualized platforms, when taking into account the CPU usage

only. From the obtained results, [18][19], the authors observed that the locus of energy

consumption for component of VNFs is the VM instance where the VNF is instanti-

ated/executed. Thus, the computing power demand depends on the number of VMs

as well as the locally computed workload.

In this work, focusing on the BS and MEC server energy consumption, we pro-

1This project involves the deployment of a solar-powered long-term evolution (LTE) BS and it is

found here: http://www.koreatimes.co.kr/www/news/tech/2016/06/133_207882.html
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pose online-based energy management procedures that employ a forecasting/prediction

method (i.e., LSTM neural network) that is used with foresighted optimization which

is achieved through the use of control theory techniques (i.e., the LLC principles) and

heuristics. Here, we forecast the short-term traffic load and harvested energy, and

then use the results in the online algorithm for edge system management. Within the

communication site, two energy saving strategies to mitigate the power consumption

are used and they are: VM soft-scaling and BS sleep modes. The proposed optimiza-

tion strategy reads to a considerable reduction in the energy consumed by edge system

for computing and communication activities, enabling mobile services to off-grid sites

under limited energy budget and predicted traffic loads.

3.1.1 Related work

Control-theoretic and ML methods for resource management at the edge have been

successfully applied to various problems, e.g., task scheduling, bandwidth allocation,

network management policies, etc. The works of [27] and [76] study online resource

management procedures, where control-theoretic methods are used. A generic online

control framework for resource management in switching hybrid systems is presented

in [27], where the system’s control inputs are finite. Then, in [76], a supervisory

online control scheme based on LLC policies is presented. Both works estimate the

environmental input, e.g., workload arrival, that is used by the system to forecast future

system behavior over a given lookahead horizon. From this, the controller optimizes

the predicted system behavior following the specified QoS through the selection of the

system control inputs. The work of [26] uses the LLC to solve a resource allocation

within a data center that is offering online services and the problem is posed as a one

sequential optimization. A Kalman filter is used to estimate workload arrival rate. The

authors in [66] presents a reinforcement learning-based resource management algorithm

to incorporate renewable energy into a MEC platform. At the beginning of the time

slot the servers are consolidated, i.e., the number of turned on physical servers are

minimized, using the learned optimal policy for dynamic workload offloading and the

autoscaling (or right-sizing). Our work differs from [66], as we minimize the number of

active VMs instead of server consolidation, and also we use a forecasting method instead

of only relying on the available current information for decision making. Moreover, this

work differs from the aforementioned works related to forecasting as we use a LSTM

neural network for forecasting traffic load and harvested (solar and wind) energy.
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Figure 3.1: EH BS co-located with a MEC server. The electromechanical switch (SW)

is responsible for aggregating the energy sources to fulfill the energy required to power

the BS site.

3.1.2 Objectives and Contributions

The main contributions of this work are as follows:

1) we estimate the short-term future traffic load and harvested energy in BSs, by us-

ing the LSTM neural network [25], coupled with forecasting knowledge from [24];

2) We develop an online algorithm for edge network management based on con-

trol theory. The main goal is to enable ES strategies within the remote site

through a joint consideration of BS sleep modes and VM soft-scaling, following

the energy efficiency requirements of a virtualized infrastructure from [35]. The

proposed management algorithm is called Energy Aware and Adaptive Manage-

ment (ENAAM) and is hosted in the MEC server, i.e., ENAAM application. The

ENAAM application considers the future BS loads, onsite green energy in the EB

and then provisions edge network resources based on the learned information.

3.2 System Model

The considered deployment scenario is illustrated in Fig. 3.1. As a major deployment

method of MEC suggested by ETSI [12], we consider a setup where a BS is co-located
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with a virtualized MEC server, forming a communication site termed remote site.

Both share the available energy stored in the EB. The solar modules and wind turbine

combine their effort to power the edge system. Following the motivation from the intro-

duction, we only consider an off-grid BS co-located with the MEC server. We assume

that uplink and downlink transmissions operate on orthogonal channels and focus on

the downlink traffic since energy consumption associated with downlink transmissions

predominates the total BS energy consumption [98]. The MEC server accounts for M

virtual machines as total computation resources, and it is cache-enabled, i.e., some con-

tents can be accumulated locally. The EM is responsible for selecting the appropriate

renewable energy source to fulfill the EB depending on the weather, and for monitoring

the energy levels in the system. Moreover, we consider a discrete-time model, whereby

time is discretized as t = 1, 2, . . . , and time slots have a constant duration τ . For data

communication from the remote site to the remote cloud, the system uses a microwave

backhaul, as fast roll-out over large distances makes microwave an ideal rural/remote

backhaul solution [99]. The list of the symbols that are used in this chapter is reported

in Table 3.1.

3.2.1 Traffic Load and Energy Consumption

Traffic load traces have been obtained using real MN data from the Big Data Challenge

organized by Telecom Italia Mobile (TIM) [100]. The open source dataset is a result

of users interaction within the TIM MN for the city of Milan during the month of

November 2013, whereby each interaction generates a CDR file. The considered TIM

dataset refers to standard traffic such as Short Message Service (SMS), Calls and

Internet browsing, and they are not yet a representative of future applications that

require processing at the edge2.

In this work, according to [92], we assume that 80% of the traffic from this dataset

requires processing at the edge, whereas the remaining 20% pertains to standard, delay

tolerant, flows3. The daily traffic load profile requiring computation at the BS, L(t), see

blue curve in Fig. 3.2, is obtained by accounting for 80% of the aggregated CDR data.

The normalized BS load at time slot t is approximated as ϕ(t) = L(t)/Lmax, where

Lmax represents the maximum load that can be served. Among this load, γ(t) ∈ [0, 1]

2This datasets are used due to the difficulties in obtaining relevant open source datasets containing

computing requests.
3This assumption is based on the Pareto principle (also known as the 80-20 rule), a phenomenon

that can be observed in many real-life situation.
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Table 3.1: Notation: list of symbols used in the analysis.

Symbol Description

Input Parameters

M maximum number of VM hosted in the MEC server, indexed by m

τ time slot duration

L(t) BS traffic load profile in time slot t

Lmax maximum traffic load that can be served

Γ(t) standard (non MEC) traffic at time t

ϕ(t) normalized BS traffic load at t

f operating frequency

θ0 BS load independent energy consumption or operation energy

θbh microwave backhaul transmission energy

βmax maximum energy buffer capacity

βup, βlow upper and lower energy buffer thresholds

Variables

γ(t) locally processed load (computation workload) at time t

θ(ζ, γ, t) total energy consumption of the remote site at time t

θtx(t) total downlink BS transmission power at time t

θbs(t) BS energy consumption due to communication at time t

θmec(γ, t) server consumption due to computation activities at time t

ζ(t) BS switching status indicator at t

I(t) number of VM to be active in time slot t

β(t) energy buffer level in slot t

H(t) harvested energy profile in slot t

Q(t) purchased grid energy in slot t
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Figure 3.2: Example traces for harvested solar and wind energy, and normalized traffic

load in the BS.

is processed locally and the rest Γ(t) = ϕ(t) − γ(t) ∈ [0, 1] is handled by the remote

cloud. Moreover, a low traffic threshold Llow is defined to be used in the ENAAM

algorithm. Note that γ(t) is a decision variable, as we shall see, γ(t) is ideally set to 1

for those time slots where the BS has enough energy, i.e., all the delay sensitive traffic

is processed at the edge. γ(t) will be set to a smaller value otherwise.

The total energy consumption ([J]) of the remote site is here obtained as the combi-

nation of the energy consumed by the BS and by the co-located MEC server operating

at a frequency f ([Hz]), with server maximum utilization factor γ(t) in time slot t. The

following model is inspired by [37] and [101], by additionally tuning the BS static en-

ergy and the server utilization factor, to scale the server dynamic energy consumption

in proportion to the expected load to be processed locally:

θ(ζ, γ, t) = θbs(t) + θmec(γ, t) , (3.1)

where θbs(t) is the BS energy consumption due to communication activities and θmec(γ, t)

is the computation energy at the server due to computing processes.

BS energy consumption

It is defined as: θbs(t) = ζ(t)θ0 + θtx(t) + θbh, where ζ(t) ∈ {ε, 1} is the BS switching

status indicator (1 for active mode and ε for power saving mode), θ0 is a constant
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value (load independent), representing the operation energy which includes baseband

processing, radio frequency power expenditures, etc. The constant ε ∈ (0, 1) accounts

for the fact that the baseband energy consumption can be scaled down as well whenever

there is no or little channel activity, into a power saving mode. θtx(t) represents the

total downlink transmission (load dependent) power from the BS to the served user(s).

Since we assume a noise-limited channel and the guarantee of low latency requirements

at the edge, to obtain θtx(t) we use the downlink transmission model in [51]. θbh is the

microwave backhaul transmission energy, which is here assumed to be constant.

MEC server energy consumption

It is defined as follows: θmec(γ, t) = θidle + γ(t)θdyn(t), where θidle is the server load-

independent operational component, and θdyn(·) is the maximum energy amount that

is consumed by the server when it operates at full power. Although omitted for the

sake of notation compactness, θidle and θdyn(·) depend on the MEC server computation

frequency f . Also, θdyn(·) is linearly scaled with respect to the load γ(t), assuming that

computation resources can be tuned. Finally, the number of virtual machines that shall

be active in time slot t to serve the offered load is here obtained as I(t) = round(γ(t)M),

where round(·) rounds the argument to the nearest integer.

3.2.2 Energy Patterns and Storage

The energy buffer of Fig. 3.1 is characterized by its maximum energy storage capacity

βmax, and power charging/discharging and leaking losses are not assumed. At the

beginning of each time slot t, the EM provides the energy level report to the authorized

MEC server application, thus the EB level β(t) is known, enabling the provision of the

required computation resources, i.e., VMs. Here, a pull transfer mode (e.g., FTP [30])

is assumed, where the MEC application pulls the energy report from the EM.

The amount of harvested energy H(t) in time slot t for the remote site is obtained

from open source solar traces within a solar panel farm located in Armenia [102] (see

green curve in Fig. 3.2), and also wind traces within a wind farm located in Bel-

gium [103] (see red curve in Fig. 3.2). The data is aggregated to match our time slot

duration (1 h). The datasets are a result of daily environmental records, considering

solar panel orientation, measured and forecast wind speed, temperature, wind power,

and pressure values. The solar panels and wind turbines are assumed to be placed in

an area free from surrounding obstructions (e.g., buildings, shades). In this work, H(t)
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is obtained by first scaling the datasets to fit the EB capacity βmax of 490 kJ, and then

selecting the wind energy as a source during the solar energy off-peak periods in order

to achieve steady operation. Thus, the available EB level β(t + 1) for the off-grid BS

in time slot t+ 1 is calculated as follows:

β(t+ 1) = β(t) +H(t)− θ(ζ, γ, t) (3.2)

where β(t) is the energy level in the battery at the beginning of time slot t and θ(ζ, γ, t)

is the energy that is used during the time slot for computation and communications

processes, see Eq. (3.1). For decision making in the MEC server, a lower battery

threshold is defined, βlow, with 0 < βlow < βmax, to steer how the energy management

algorithm provisions the required edge network resources. Our optimization in Sec-

tion 3.4 makes sure that β(t) never falls below βlow(t) low due to its transmission and

computing activities within a time slot.

3.3 Problem Formulation

In this section, we formulate an optimization problem and it is defined in subsec-

tion 3.3.1.

3.3.1 Optimization Problem

As green energy budget is unpredictable and hence unknown at the beginning of time

slot t, the edge system uses a forward-looking strategy towards workload offload and

autoscaling computing resources decisions. In this work, we aim at minimizing the

overall energy consumption in the remote site over time, i.e., consumption related to

the BS and MEC server, by applying BS power saving modes and VM soft-scaling,

i.e., tuning the number of active virtual machines. To achieve this, we define two cost

functions: F1) θ(ζ, γ, t), which weighs the energy consumption due to transmission

(BS) and computation (MEC server); and F2) a quadratic term (ϕ(t)− γ(t))2, which

accounts for the QoS cost. In fact, F1 tends to push the system towards energy efficient

solutions, i.e., where γ(t) → 0 and ζ(t) → ε. Instead, F2 favors solutions where the

load is entirely processed by the local MEC server, i.e., where γ(t) → ϕ(t). A weight

α ∈ [0, 1], is utilized to balance the two objectives F1 and F2. The corresponding

weighted cost function is defined as:

J(ζ, γ, t)
∆
= αθ(ζ(t), γ(t), t) + α(ϕ(t)− γ(t))2 , (3.3)
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where α
∆
= 1 − α. Hence, over time horizon, t = 1, . . . , T , the following optimization

problem is defined:

P1 : min
ζ,γ

T
∑

t=1

J(ζ, γ, t)

subject to:

C1 : 0 < γ(t) ≤ 1, t = 1, . . . , T

C2 : ζ(t) ∈ {ε, 1}, t = 1, . . . , T (3.4)

C3 : I(t) ≥ b, t = 1, . . . , T

C4 : β(t) ≥ βlow, t = 1, . . . , T

where vectors ζ (switching status) and γ (utilization factor) contain the control ac-

tions for the considered time horizon 1, 2, . . . , T , i.e., ζ = [ζ(1), ζ(2), . . . , ζ(T )] and

γ = [γ(1), γ(2), . . . , γ(T )]. Constraint C1 specifies the server utilization factor bounds,

C2 specifies the BS operation status, C3 forces the required number of VMs, I(t), to

be always greater than or equal to a minimum number b ≥ 1: the purpose of this

is to be always able to handle mission critical communications. C4 makes sure that

the EB level is always above or equal to a preset threshold βlow, to guarantee energy

self-sustainability over time.

To solve P1 in Eq. (3.4), we leverage the use of LLC [27][76] and heuristics. Once

P1 is solved, the control action to be applied in the edge system at time t is ς(t)
∆
=

(ζ(t), γ(t)).

3.4 Remote Site Management

In this section, a traffic load and energy harvesting prediction method, and an online

management algorithm are proposed to solve the previously stated problem P1. In

subsection 3.4.1, we discuss the ML tool used to predict the short-term future traffic

loads and harvested energy, and then in subsection 3.4.2, we solve P1 by first construct-

ing the state-space behavior of the control system, where online control key concepts

are introduced. Finally, the algorithm for managing the remote site is presented in

subsection 3.4.3.

3.4.1 Traffic Load and Energy Prediction

Future MNs are expected to learn the diverse characteristics of users behavior, as well

as renewable energy source(s) variations, in order to autonomously and dynamically
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Table 3.2: LSTM Prediction Model Steps

Modeling steps

Step 1: load and normalize the dataset

Step 2: split dataset into training and testing

Step 3: reshape input to be [samples, time steps, features]

Step 4: create and fit the LSTM network

Step 5: make predictions

Step 6: calculate performance measure

determine the desired system configurations. The network elements are expected to

rely on sophisticated learning and decision making procedures, for an efficient network

management. The use of ML techniques constitute a promising solution for network

management and ESs in MNs [104][105]. In this work, we consider a time slot duration

of 1 h and perform time series prediction, i.e., we obtain the 1 h-ahead estimates of

L̂(t+1) and Ĥ(t+1), by using an LSTM network developed in Python using Keras deep

learning libraries (Sequential, Dense, LSTM) where the network has a visible layer with

1 input, a hidden layer of 4 LSTM blocks or neurons, and an output layer that makes

a single value prediction. This type of recurrent neural network uses back-propagation

through time and memory blocks for regression [25]. The dataset is split as 67%

for training and 33% for testing. The network is trained using 100 epochs (2, 600

individual training trials) with batch size of 1. As for the performance measure of the

model, we use the Root Mean Square Error (RMSE). The prediction steps are outlined

in Table 3.2, and Figs. 3.3 and 3.4 show the prediction results that will be discussed in

subsection 3.5.2.

3.4.2 Edge System Dynamics

Here, we propose an online control technique where the actions governing system oper-

ation are obtained by optimizing its forecasted behavior, described by a mathematical
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model, for the specified QoS criteria over a limited lookahead prediction horizon. The

control action that drives the system towards the desired behavior is chosen from a

finite discrete set, i.e., the control input is selected from a sequence of feasible control

actions, per time instance. As a specific case study, we apply our control method to

manage the energy consumption within the remote site, taking into account the fore-

casted environmental input, i.e., traffic load and harvested energy, over the lookahead

horizon.

We denote the system state vector at time t by x(t) = (I(t), β(t)), which contains

the number of active VMs, and the EB level. ς(t) = (ζ(t), γ(t)) is the input vector,

i.e., the control action that drives the system behavior at time t. The system evo-

lution is described through a discrete-time state-space equation, adopting the LLC

principles [27][76]:

x(t+ 1) = Φ(x(t), ς(t)) , (3.5)

where Φ(·) is a behavioral model that captures the relationship between the current sys-

tem x(t), the control input ς(t), and the next state x(t+1). Note that this relationship

accounts for:

1) the amount of energy drained θ(ζ, γ, t) and the harvested H(t), which together

lead to the next buffer level β(t+ 1) through Eq. (3.2).

2) The traffic load L(t), from which we compute the offered load ϕ(t), that together

with the control γ(t) leads to I(t+ 1) (once a control policy is specified).

The remote site management algorithm (ENAAM application), acts as a controller that

finds the best control action vector to the system in an iterative manner. For each time

slot t, the best control action ς∗(t) is the one minimizing the weighted sum J(ζ, γ, t).

This control action amounts to setting the BS radio mode ζ∗(t), i.e., either active or

power saving, and the number of instantiated VMs, I∗(t), which directly follows from

γ∗(t).

An observation is in order. State x(t) and control ς(t) are respectively measured

and applied at the beginning of time slot t, whereas the offered load L(t) and the

harvested energy H(t) are accumulated during the time slot and their value becomes

known only by the end of it. This means that, being at the beginning of time slot t,

the system state at the next time slot t+ 1 can only be estimated, which we formally

write as:

x̂(t+ 1) = Φ(x(t), ς(t)) . (3.6)
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For these estimations we use the forecast values of load L̂(t) and harvested energy Ĥ(t),

from the LSTM forecasting module. The controller optimizes the forecast behavior as

per the specified QoS requirements by selecting the best control inputs to apply to the

system. The key ideas behind the controller decision making is discussed next.

Controller decision-making: The controller is obtained by estimating the relevant

parameters of the operating environment, that is, in our case its the BS load L̂(t) and

the harvested energy Ĥ(t), and subsequently using them to forecast the future system

behavior through Eq. (3.6) over a look-ahead time horizon of T time slots. The control

actions are picked by minimizing J(ζ, γ, t), see Eq. (3.3). At the beginning of each

time slot t the following process is iterated:

• Future system states, x̂(t+ k), for a prediction horizon of k = 1, . . . , T steps are

estimated using Eq. (3.3). These predictions depend on past inputs and outputs

up to time t, on the estimated load L̂(·) and energy harvesting Ĥ(·) processes,

and on the control ς(t+ k), with k = 0, . . . , T − 1.

• The sequence of controls {ς(t+ k)}T−1
k=0 is obtained for each step of the prediction

horizon by optimizing the weighted cost function J(·).

• The control ς∗(t) corresponding to the first control action in the sequence with

the minimum total cost is the applied control for time t and the other controls

ς∗(t+ k) with k = 1, . . . , T − 1 are discarded.

• At the beginning of the next time slot t + 1, the system state x(t + 1) becomes

known and the previous steps are repeated.

Finally, since the control actions are taken after exploring only a limited prediction

horizon, yielding a limited number of possible operating states, we must ensure the

stability of the edge system. For this, we rely on the notion that a system is said to be

stable under control, if for any state, it is always possible to find a control input that

forces it closer to the desired state or within a specified neighborhood of it [27]. This

implies that the controller can eventually achieve the desired QoS goal. In addition,

we further assume that since both the lookahead horizon and the number of control

inputs is small, the computational overhead is negligible, and this has been confirmed

through experimental validation in [28].
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Algorithm 1: ENergy Aware and Adaptive Management (ENAAM)

Input: x(t) (current state)

Output: ς∗(t) = (ζ∗(t), γ∗(t))

01: Initialization of variables

S(t) = {x(t)}, Cost(x(t)) = 0

02: for k = 1, . . . , T do

- forecast the traffic load L̂(t+ k − 1)

- forecast the harvested energy Ĥ(t+ k − 1)

- S(t+ k) = ∅

03: for all x ∈ S(t+ k − 1) do

04: for all ς = (ζ, γ) ∈ A(t+ k − 1) do

05: x̂(t+ k) = Φ(x(t+ k − 1), ς)

06: Cost(x̂(t+ k)) = J(ζ, γ, t+ k − 1) + Cost(x(t+ k − 1), ς)

07: S(t+ k) = S(t+ k) ∪ {x̂(t+ k)}

end for

end for

end for

08: Find x̂min = argminx̂∈S(t+T )Cost(x̂)

09: ς∗(t) := control leading from x(t) to x̂min

10: Return ς∗(t)

3.4.3 The ENAAM Algorithm

Let t be the current time. L̂(t + k − 1) is the forecast load in slot t + k − 1, with

k = 1, . . . , T , i.e., over the prediction horizon. For the control to be feasible, we have

ϕ̂(t+ k − 1) = L̂(t+ k − 1)/Lmax and γ ≤ γ ≤ ϕ̂(t+ k − 1), where γ is the smallest γ

such that round(γM) = b. For the buffer state, we heuristically set ζ(t+ k − 1) = ε if

β(t + k − 1) < βlow or L(t + k − 1) < Llow, and ζ(t + k − 1) = 1 otherwise (βlow and

Llow are preset thresholds). For slot t+ k − 1, the feasibility set A(t+ k − 1) contains
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the control pairs (ζ, γ) that obey these relations.

The algorithm is specified in algorithm 1 as it uses the technique in [27]: the search

starts (line 01) from the system state at time t, x(t), and continues in a breadth-first

fashion, building a tree of all possible future states up to the prediction depth T . A

cost is initialized to zero (line 01) and is accumulated as the algorithm travels through

the tree (line 06), accounting for predictions, past outputs and controls. The set of

states reached at every prediction depth t + k is referred to as S(t + k). For every

prediction depth t+ k, the search continues from the set of states S(t+ k− 1) reached

at the previous step t+k−1 (line 03), exploring all feasible controls (line 04), obtaining

the next system state from Eq. (5.10) (line 05), updating the accumulated cost as the

result of the previous accumulated cost, plus the cost associated with the current step

(line 06), and updating the set of states reached at step t + k (line 07). When the

exploration finishes, the action at time t that leads to the best final accumulated cost,

at time t+T , is selected as the optimal control ς∗(t) (lines 08, 09, 10). Finally, for line

04, we note that γ belongs to the continuous set [γ, ϕ̂(t + k − 1)]. To implement this

search, we quantized this interval into a number of equally spaced points, obtaining a

search over a finite set of controls.

3.5 Performance Evaluation

In this section, we show some selected numerical results for the scenario of Section 3.2.

The parameters that were used for the simulations are listed in Table 3.3.

3.5.1 Simulation setup

We consider a single offgrid BS co-located with a MEC server within a coverage area

of 40m. In addition, we use a virtualized server with specifications from [106] for a

VMware ESXi 5.1-ProLiant DL380 Gen8 that operates at f = 1, 600 MHz. Our time

slot duration is set to 1 h and the time horizon to T = 2 time slots.

3.5.2 Numerical results

Some example prediction results are shown in Figs. 3.3 and 3.4 for the traffic load

and harvested energy, respectively, reaching an RMSE performance of 0.42 MB. Quite

good accuracies are also obtained for the prediction of the harvested energy (RMSE of
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Table 3.3: System Parameters.

Parameter Value

Low traffic threshold, Llow 4 MB

Maximum load, Lmax 15 MB

Operating power, θ0 10.6W

Microwave backhaul power, θbh 50W

Maximum number of VMs, M 27

Minimum number of VMs, b 3

Idle power, θidle 30W

Dynamic maximum power, θdyn(t) 472.3W

Energy storage capacity, βmax 490 kJ

Lower energy threshold, βlow 30% of βmax

0.38 kJ over a range of about 450 kJ). The measured accuracy is deemed good enough

for the proposed optimization.

Figs. 3.5 and 3.6 show the energy savings achieved over time for α = 0 and α = 0.5

respectively, when on-demand and energy-aware edge resource provisioning is enabled

(i.e., BS sleep modes and VM soft-scaling), in comparison with the case where they

are not applied. Our remote site management algorithm (ENAAM) is benchmarked

with another one that heuristically selects the amount of traffic that is to be processed

locally, γ(t), depending on the expected load behavior. It is named Dynamic and

Energy-Traffic-Aware algorithm with Random behavior (DETA-R). Both ENAAM

and DETA-R are aware of the predictions in the future time slots, see subsection 5.4.1,

however, DETA-R provisions edge resources using a heuristic scheme. DETA-R heuris-

tic works as follows: if the expected load difference is L̂(t+ 1)− L̂(t) > 0, then γ(t) in

the current time slot t is randomly selected in the range [0.6, 1], otherwise, it is picked

evenly at random in the range (0, 0.6).

In Fig. 3.6 (α = 0.5), the ENAAM scheme achieves ES of about 56% and DETA-R

of 29% on average. As expected, this shows a reduction in energy savings compared to

when α = 0. This is due to the balance between the emphasis on energy savings and
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Figure 3.5: Hourly energy savings for

α = 0.
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Figure 3.6: Hourly energy savings for

α = 0.5.

QoS, i.e., locally computed tasks, within the remote site. The evolution of ES with

respect to α is presented in Fig. 3.7. As expected, a drop in energy savings is observed

when QoS is prioritized, i.e., α → 1, as in this case the BS energy consumption is no

longer considered.

Finally, Fig. 3.8 shows the MEC server utilization over time, i.e., the selected control

γ(t). For α = 0.5, the server utilization is about 76% for ENAAM and 95% for DETA-R

on average. A low server utilization can be observed in the performance of ENAAM

between 4 h and 7 h due to an expected low traffic load in the system. This indicates

that ENAAM has load adaptation capabilities, which are much desirable and lead to

substantial energy savings (see again Fig. 3.6 between 4 h and 7 h).
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Figure 3.8: MEC server utilization

(α = 0.5)

3.6 Conclusion

In summary, we have envisioned a renewable-powered remote site for extending net-

work coverage and promoting energy self-sustainability within mobile networks. The

BS at the remote site is endowed with computation capabilities for guaranteeing low

latency to mobile users, offloading their workloads. The combination of the energy sav-

ing methods, namely, BS sleep modes and VM soft-scaling, for the remote site helps

to reduce its energy consumption. An edge energy management algorithm based on

forecasting, control theory and heuristics, is proposed with the objective of saving en-

ergy within the remote base station, possibly making the BS system self-sustainable.

Numerical results, obtained with real-world energy and traffic traces, demonstrate that

the proposed algorithm achieves energy savings between 56% and 66% on average, with

respect to the case where no energy management techniques are applied, and to hold

the server utilization between 30% and 96% over time, with an average of 75%.
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Chapter 4

Multiple BS Sites Optimization

The results of this chapter are the subject of the following published paper:

T. Dlamini, A. F. Gambin, D. Munaretto, M. Rossi, “Online Supervisory Control and

Resource Management for Energy Harvesting BS Sites Empowered with Computation

Capabilities”, Journal on Wireless Communications and Mobile Computing, vol. 2019,

February 2019.

The contents of this chapter partly extend the following published paper:

T. Dlamini, A. F. Gambin, D. Munaretto, M. Rossi, “Online Resource Management

in Energy Harvesting BS Sites through Prediction and Soft-Scaling of Computing

Resources”, in Proceedings of the 2018 IEEE 29th Annual International Symposium

on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy,

September 2018.

4.1 Introduction

The convergence of communication and computing (MEC [13]) within the mobile space

poses new challenges related to energy consumption, as BSs are densely-deployed to

maximize capacity, yet traffic varies during the day, and also empowered with com-

puting capabilities to minimize latency. To cope with energy consumption challenges

in BSs, previous studies have put forward BS sleep modes [43][44][45][60][62] as BSs

are dimensioned for the expected maximum capacity, yet traffic varies during the day.

In addition, energy savings within the virtualized computing platform are of great

importance as virtualization can also lead to energy overheads. Therefore, a clear

understanding and a precise modeling of the server energy usage can provide a funda-
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mental basis for server operational optimizations. The experimental results in [18][19]

show that the locus of energy consumption for the VNF components is the VM instance

where the VNF is instantiated and executed. Thus, for a given expected traffic load,

the energy consumption can be minimized by launching an optimal number of VMs

(i.e., VM soft-scaling), together with BS power saving methods, i.e., BS sleep modes.

Along these lines, we propose a controller-based network architecture for managing

EH BSs empowered with computation capabilities where on/off switching strategies

allow BSs and VMs to be dynamically switched on/off, depending on the traffic load

and the harvested energy forecast, over a given lookahead prediction horizon. To solve

the energy consumption minimization problem in a distributed manner, the controller

partitions the BSs into clusters based on their location, then for each cluster, it mini-

mizes a cost function capturing the individual communication site energy consumption

and the users’ QoS. For communication sites management, the controller performs on-

line supervisory control by forecasting the traffic load and the harvested energy using a

LSTM neural network [25], which is utilized within a LLC policy (a predictive control

approach [27]) to obtain the system control actions that yields the desired trade-off

between energy consumption and QoS.

The proposed optimization strategy leads to a considerable reduction in the en-

ergy consumed by the edge computing and communication facilities, promoting self-

sustainability within the MN through the use of green energy. This is achieved under

the controller guidance, which makes use of forecasting, clustering, control theory and

heuristics.

4.1.1 Related work

Following the emerging concept of green networking and computing, the realization

of powering the BS sites (i.e., sites empowered with computing capabilities) using

sustainable solutions has received significant attention, at the sametime the importance

of energy saving procedures arises. Towards ES, the work of [51] proposed a joint

computation offloading and BS sleeping decisions in order to maximize the QoS while

keeping the energy consumption low. This work considers the dense deployment of

BSs, within the MEC paradigm, and then employ the Lyapunov optimization technique

(the drift-plus-penalty) towards network optimization. However, the consideration of

autoscaling the computing resources, i.e., VM soft-scaling, is not taken into account.

Then, towards traffic-oriented network solutions (in dense environments), real cellular

traffic traces and actual BS location is used in the work of [60], where a greedy algorithm
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estimate the energy savings through dynamic BS operation. In another paper, the usage

of mobile datasets show the potential of dynamically switching on/off BSs around a

stadium (soccer field), as some of the BSs experience low traffic load during a large

event [62]. Both works, [60][62], use only current traffic load information with no

forecasting and foresighted optimization consideration.

It is worth noting that the aforementioned works do not consider clustering algo-

rithms towards minimizing the energy consumption within MNs. To this end, only

the works of [55][56][57] have used clustering algorithms for switching off BSs. De-

spite of the efforts being made toward energy savings, the works are usually disjoint,

i.e., it is either the clustering algorithm is used in densely-deployed BSs lacking com-

putation capabilities or no clustering algorithm used, i.e., the BSs empowered with

computation capabilities simply cooperate with their neighbors (see [51]). Therefore, a

joint consideration of energy savings is essential in clustered EH BSs empowered with

computation capabilities. In this chapter, we group BSs based on their location (or

distance measures) similarity and then enable energy savings within the clustered BSs.

The consideration of BSs that cooperate (no clustering case) towards energy saving is

part of our future research work.

4.1.2 Objectives and Contributions

Our contributions is as follows:

1) we introduce the use of virtualization with the aim of investigating how VMs can

be soft-scaled based on the forecasted server workloads, as VMs are the source

of energy consumption in computing environments.

2) We put forward the edge controller-based architecture for small cell BSs manage-

ment, as one of the future trends for small cells [16] in 5G MNs.

3) We reconsider the BS sleeping control mechanism under the new MEC paradigm,

which has not been sufficiently covered in the literature. In addition, we use a

clustering method for enabling energy savings within the MN.

4) We estimate the short-term future traffic load and harvested energy in BSs, by

using LSTM neural network [24].

5) We develop an online supervisory control algorithm for the radio access (edge)

network management based on a predictive method, specifically the LLC method,
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Figure 4.1: Edge network topology. The electromechanical switch (SW) aggregate the

energy sources to fulfill the energy required to power the BS site.

along with clustering and energy management procedures. The main goal is

to enable ES strategies within the access network, BS sleep modes and VM

soft-scaling, following the energy efficiency requirements of a virtualized infras-

tructure from [35]. The proposed management algorithm is called ENergy Aware

and Adaptive Management (ENAAM) and is hosted in the edge controller. The

ENAAM algorithm considers the future BS traffic load, onsite green energy in

the EB and then provisions access network resources, per communication site,

based on the learned information, i.e., energy saving decisions are made in a

forward-looking fashion.

4.2 System Model

As a major deployment of MEC suggested by ETSI [12] and in line with current

trends for future mobile networks as suggested by prominent network operators (e.g.,

Huawei Technologies [16]), the considered scenario is illustrated in Fig. 3.1. It con-

sists of a densely-deployed MN featuring N BSs and co-located cache-enabled MEC

servers. Each MEC server hosts M VMs. Each communication site, i.e., the BS and

the co-located MEC server, is empowered with EH capabilities through a solar panel

and an EB that enables energy storage. Energy supply from the power grid is also
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available as a back up. Moreover, the EM is an entity responsible for selecting the

appropriate energy source and for monitoring the energy level of the EB. All BSs

communicate with a centralized entity called the edge controller, which is responsible

for managing the access network apparatuses. The energy level information is reported

periodically to the edge controller through the pull file transfer mode procedure (e.g.,

FTP [30]). Moreover, we consider a discrete-time model, whereby time is discretized

as t = 1, 2, . . . , and each time slot t has a fixed duration τ . The list of symbols that

are used in the chapter is reported in Table 4.1.

4.2.1 Traffic Load and Energy Consumption

Mobile traffic volume exhibits temporal and spatial diversity, and also follows a diurnal

behavior [107]. Therefore, traffic volume at individual BSs can be estimated using

historical mobile traffic datasets. In this work, real MN traffic load traces obtained from

the Big Data Challenge organized by TIM [100] are used to emulate the computation

workload1. Specifically, the used data was collected in the city of Milan during the

month of November 2013, and it is the result of users interaction within the TIM MN,

based on CDR files for a day considering four BS sites representing the traffic load

profiles. A CDR file consists of SMS, Calls and Internet records with timestamps.

To understand the behavior of the mobile data, we have applied the X-means clus-

tering algorithm [108] to classify the load profiles into several categories. In our numer-

ical results, each BS n = 1, 2, . . . , N is assigned a load profile Ln(t), which is picked at

random as one of the four clusters (each cluster represents a typical BS load profile) in

Fig. 4.2. Ln(t) consists of computation workloads Γn(t) ([MB]) and standard workloads

Γ′
n(t) ([MB]). According to [92], we assume that 80% of Ln(t) is delay sensitive and,

as such, requires processing at the edge, i.e., Γn(t) = 0.8Ln(t), whereas the remaining

20% pertains to standard flows, delay tolerant traffic, i.e., Γ′
n(t) = Ln(t)− Γn(t).

The total energy consumption ([J]) for the communication site n at time slot t is

formulated as follows, inspired by [37], [51], [101] and [109]:

θtot,n(t) = θBS,n(t) + θMEC,n(t) + θTX,n(t) , (4.1)

where θBS,n(t) is the BS energy consumption term, θMEC,n(t) is the MEC server con-

sumption term due to computation activities, and θTX,n(t) represents the data trans-

1In fact, the dataset is not a true representative of future applications that require processing at

the edge, but contains data that is exchanged with the purpose of communication. We nevertheless

use it due to the difficulties in finding open datasets containing computing requests.
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Table 4.1: Notation: list of symbols used in the analysis.

Symbol Description

Input Parameters

N number of BSs, indexed by n

M maximum number of VMs hosted by each MEC server

Ln(t) BS n traffic load profile in time slot t

Γn(t) workload handled by the MEC server at BS n at time slot t

Γ′

n
(t) standard (non MEC) traffic at time slot t

θ0 BS load independent energy consumption

fmax maximum processing rate for VM m

θov
m
(t) energy overheads incurred when turning on/off VMs at time slot t

θidle,m(t) static energy consumed by VM m in the idle state

θmax,m(t) maximum energy consumed by VM m at maximum rate

γm(t) workload fraction to be computed by the m-th VM at time slot t

γmax maximum computation load per-VM

∆ maximum per-slot and per-VM allowed processing time

βmax maximum energy buffer capacity

βup, βlow upper and lower energy buffer thresholds

Variables

θtot,n(t) total energy consumption for the communication site n

θBS,n(t) BS n energy cost at time slot t

θMEC,n(t) server consumption due to computation activities

θTX,n(t) data transmission cost between the BS and the MEC server at time slot t

ζn(t) BS n switching status indicator at time slot t

M(t) number of VMs to be active in time slot t

θload(t) total wireless transmission power at time slot t

fm(t) instantaneous processing rate

θop
m
(t) energy consumption of VM m operation at time slot t

Bn(t) total amount of load that is served by the BS site at time slot t

βn(t) energy buffer level in time slot t

Hn(t) harvested energy profile in time slot t

Qn(t) purchased grid energy in time slot t
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Figure 4.2: Example traces for normalized BS traffic loads. The used dataset has been

split into four representative clusters.

mission energy consumption between the BS and the MEC server.

BS energy consumption: It is defined as: θBS,n(t) = ζn(t)θ0 + θload(t), where

ζn(t) ∈ {ε, 1} is the BS switching status indicator (1 for active mode and ε for power

saving mode), θ0 is a constant value (load independent), representing the operation

energy which includes baseband processing, radio frequency power expenditures, etc.

The constant ε ∈ (0, 1) accounts for the fact that the baseband energy consump-

tion can be scaled down as well whenever there is no or little channel activity, into a

power saving mode. θload(t) represents the total wireless transmission (load dependent)

power to meet the target transmission rate from the BS to the served user(s) and to

guarantee low latency at the edge. Since we assume a noise-limited channel and the

guarantee of low latency requirements at the edge, θload(t) is obtained by using the

transmission model in [51]. Here, we neglect the imbalance of traffic volumes in up-

link and downlink, and also we do not account for the switching energy cost for the

BS mode transition [109] due to the fact that future BS functions will be virtualized [1].

MEC server energy consumption: It depends on the number of VMs running in

time slot t, namedM(t) ≤M , and on the CPU frequency that is allotted to each virtual

machine. Specifically, VMs are instantiated on top of the physical CPU cores, and
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each VM is given a share of the host server CPU, memory and network input/output

interfaces. The CPU is the main consumer of energy in the server [70] due to the

VM-to-CPU share mapping. Hence, in this work we focus on the CPU utilization only.

With fm(t) ∈ [0, fmax] we mean the instantaneous processing rate [110], expressed in

bits per second that are computed, and fmax is the maximum processing rate for VM

m. In this work, fm(t) is set within a finite set F = {f0, f1, . . . , fmax} where f0 = 0

represents zero speed of the VM (e.g., deep sleep or shutdown). At any given time t,

the total energy consumption of a virtualized server, with M(t) running VMs, is

θMEC,n(t) =

M(t)
∑

m=1

(θopm (t) + θovm (t)) , (4.2)

where θopm (t) is the energy consumption of VM m operation and θovm (t) ≥ 0 is the energy

cost incurred through the turning on/off the VM, i.e., θovm (t) > 0 only when VM m is

switched on/off and it is zero otherwise. θopm (t) is obtained using the linear relation-

ship between the CPU utilization contributed by VM m and the energy consumption,

from [110] and [67]:

θopm (t) = θidle,m(t) + αm(t)(θmax,m(t)− θidle,m(t)) , (4.3)

where θidle,m(t) represents the static energy drained by VM m in the idle state, and

θmax,m(t) is the maximum energy it drains. The quantity, αm(t)(θmax,m(t)− θidle,m(t)),

represents the dynamic energy component, where αm(t) = (fm(t)/fmax)
2 [27] is a load

dependent factor. Note that αm(t) and fm(t) are deterministically related as fmax is a

constant. θovm (t) is obtained from [67] as a constant and is typically limited to a few

hundreds of mJ per MHz2.

Conventionally, for each BS site, the hypervisor, i.e., the software that provides

the environment in which the VMs operate, is in charge of allocating fm(t) and the

workload fraction to be computed by the m-th VM, named γm(t). In our setup, we

have
∑M(t)

m=1 γm(t) ≤ Γn(t), where equality is achieved when the workload is fully served

by the M(t) VMs. We also note that, in practical application scenarios, the maxi-

mum per-VM computation load to be computed is generally limited up to an assigned

value, named γmax. Motivated by the energy efficient requirements from [35], i.e., the

hypervisor’s ability to accept and implement policies from a management entity, in

this research work, the edge controller usage is pursued. Here, the edge controller

determines the fm(t) value that will yield the desired or expected processing time,

µm(t) = γm(t)/fm(t), considering the workload γm(t) allotted to VM m. µm(t) must
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be less than or equal to the maximum per-slot and per-VM processing time (in sec-

onds), named ∆, i.e., µm(t) ≤ ∆. Note that ∆ is also the server’s response time, i.e.,

the maximum time allowed for processing the total computation load.

We remark that, as a result of the allocation procedure that is developed in this

work, for any BS site n, the processing rates fm(t) shall be found, similar to [67], as

fm(t)
∆
= γm(t)/∆. Then, the total amount of load that is served by the BS site may

be set as: Bn(t) =
∑M(t)

m=1 γm(t) ≤ Γn(t). The objective of the considered optimization

is to find the operating mode for the BS (either “on” or “power saving”), the num-

ber of VMs M(t) that are to be allocated and, for each of them, the processing rate

fm(t). In doing so: 1) the amount of delay sensitive load that is not served at the

edge, Γn(t)−
∑M(t)

m=1 γm(t), shall be minimized, while exploiting as much as possible

the energy harvested from the solar panels, so that the mobile network will be ener-

getically self-sufficient, and 2) the load is computed in a time shorter than or equal to ∆.

Data transmission energy consumption: We assume that the inter-communication

between the BS and the MEC server is bi-directional and symmetric. Hence, under

steady-state operating conditions, for the communication site n, θTX,n(t) is obtained

as, by using the VM migration hint from [111],

θTX,n(t) = θidle(t) + θdata(t)Bn(t) (4.4)

where θidle(t) (fixed value in J) is the energy drained by the network interfaces in idle

mode over a time slot t, θdata (fixed value in J/byte) is the cost of exchanging one byte

of data between the MEC server and the BS per time slot t, and Bn(t) is the amount of

data exchanged. These parameters, θidle(t) and θdata(t), are obtained from [111]. Note

that Bn(t) also corresponds to the amount of data to be processed at the MEC server

in bytes.

4.2.2 Energy Patterns and Storage

The energy buffer is characterized by its maximum energy storage capacity βmax. At

the beginning of each time slot t, the EM provides the energy level report to the edge

controller through the local MEC server, thus the EB level βn(t) is known, enabling

the provision of the required computation resources, i.e., the VMs. The energy level

report/file from the EM to the MEC server is transferred using the pull mode procedure

(e.g., FTP) [30].
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Figure 4.3: Example traces for harvested solar energy.

In this work, the amount of harvested energy Hn(t) in time slot t in the communi-

cation site n is obtained from open source solar traces within a solar panel farm located

in Armenia [102] (see Fig. 4.3). The dataset is the result of daily environmental records

and the data is aggregated to match our time slot duration (30min). In our numerical

results, Hn(t) represents a daily solar radiation record for three different areas. From

the three solar profiles, each communication site energy profile is picked at a random

to represent the daily energy harvested and then scaled to fit the EB capacity βmax of

490 kJ. Thus, the available EB level βn(t + 1) at the beginning of time slot t + 1 is

calculated as follows:

βn(t+ 1) = βn(t) +Hn(t)− θtot,n(t) +Qn(t), (4.5)

where βn(t) is the energy level in the battery at the beginning of time slot t, θtot,n(t) is

the energy consumption of the communication site over time slot t, see Eq. (4.1), and

Qn(t) ≥ 0 is the amount of energy purchased from the power grid. We remark that

βn(t) is updated at the beginning of time slot t whereas Hn(t) and θtot,n(t) are only

known at the end of it.

For decision making in the edge controller, the received EB level reports are com-

pared with the following thresholds: βlow and βup, respectively termed the lower and

the upper energy threshold with 0 < βlow < βup < βmax. βup corresponds to the desired

energy buffer level at the BS and βlow is the lowest EB level that any BS should ever
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reach. The suitable energy source at each time slot t is selected based on the forecast

expectations, i.e., the expected harvested energy Ĥ(t). If Ĥ(t) is enough to reach

βup, no energy purchase is needed. Otherwise, the remaining amount up to βup, i.e.,

Qn(t) = βup − βn(t) is bought from the electrical grid. Our optimization framework in

following section makes sure that βn(t) never falls below βlow and guarantees that βup

is reached at every time slot.

4.3 Optimization for a Single Communication Site

In this section, we formulate an optimization problem to obtain energy savings through

short-term traffic load, harvested energy predictions, along with energy management

procedures for a single communication site. The optimization problem is defined in

subsection 4.3.1, and the communication site management procedures are presented in

subsection 4.3.2.

4.3.1 Problem Formulation

At the beginning of each time slot t, the edge controller receives the energy level report

βn(t) from each EM (via the MEC application responsible for energy profiles in the

MEC server), using the pull mode file transfer. Here, we aim at minimizing the overall

energy consumption in the communication site over time, i.e., the consumption related

to the BS transmission activity and the MEC server, by applying BS power saving

modes and VM soft-scaling, i.e., tuning the number of active virtual machines. To

achieve this, we first consider the optimization for a single communication site. We

define two cost functions as:

F1) θtot,n(t), which weighs the energy consumption due to transmission (BS) and

computation (MEC server);

F2) a quadratic term (Γn(t)− Bn(t))
2, which accounts for the QoS cost.

In fact, F1 tends to push the system towards self-sustainability solutions, i.e., ζn(t)→ ε.

Instead, F2 favors solutions where the delay sensitive load is entirely processed by the

local MEC server, i.e., Bn(t) → Γn(t). A weight η ∈ [0, 1], is utilized to balance the

two objectives F1 and F2. The corresponding (weighted) cost function is defined as:

J(ζ, α, t)
∆
= ηθtot,n(ζn(t), {αm(t)}, t) + η(Γn(t)− Bn(t))

2 , (4.6)
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where η
∆
= 1−η, with {αm(t)} we mean the sequence of factors α1(1), α2(1), . . . , αM(t)(1).

Hence, letting 1 be the current time slot and T be the time horizon, the following op-

timization problem is formulated over time slots 1, . . . , T :

P1 : min
ζ,α

T
∑

t=1

J(ζ, α, t) (4.7)

subject to:

C1 : ζn(t) ∈ {ε, 1},

C2 : b ≤M(t) ≤M,

C3 : βn(t) ≥ βlow,

C4 : 0 ≤ fm(t) ≤ fmax,

C5 : 0 ≤ γm(t) ≤ γmax,

C6 : µm(t) ≤ ∆, t = 1, . . . , T ,

where m = 1, . . . ,M(t) (VM index), vectors ζ (BS switching status in time slots

1, . . . , T ) and α (load dependent factor) contain the control actions for the consid-

ered time horizon, per communication site, i.e., ζ = [ζ(1), ζ(2), . . . , ζ(T )] and α =

[{αm(1)}, {αm(2)}, . . . , {αm(T )}]. Constraint C1 specifies the BS operation status (ei-

ther power saving or active), C2 forces the required number of VMs, M(t), to be always

greater than or equal to a minimum number b ≥ 1: the purpose of this is to be always

able to handle mission critical communications. C3 makes sure that the EB level is

always above or equal to a preset threshold βlow, to guarantee energy self-sustainability

over time. Note that this constraint may imply that in certain time slots the BS is to

be switched off, although the workload may be non-negligible. When managing a single

BS site (the formulation in this section), this implies that the load will not be served,

but this fact may be compensated for when multiple communication sites are jointly

managed, e.g., handing off the workload to another, energy richer, BS. This is dealt

with in Section 4.4. Furthermore, C4 and C5, bound the maximum processing rate

and workloads of each running VM m, with m = 1, . . . ,M(t), respectively. Constraint

C6 represents a hard-limit on the corresponding per-slot and per-VM processing time.

To solve P1 in Eq. (4.7), we leverage the use of LLC principles [27][76] and heuristics,

obtaining the controls ς(t)
∆
= (ζ(t), {α(t)}) for t = 1, . . . , T . Note that Eq. (4.7) can

iteratively be solved at any time slot t ≥ 1, by just redefining the time horizon as

t′ = t, t+ 1, . . . , t+ T − 1.
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4.3.2 Communication Site Management

In this subsection, a traffic load and energy harvesting prediction method and an online

management algorithm are proposed to solve the previously stated problem P1. Firstly,

we discuss the prediction of the future (short-term) traffic load and harvested energy

processes, and secondly, we solve P1 by first constructing the state-space behavior of

the control system, where online control key concepts are introduced. Finally, the

algorithm for managing the single communication site is presented.

Traffic load and energy forecasting

ML techniques constitute a promising solution for network management and energy

savings in cellular networks [104][105]. In this work, given a time slot duration of

τ = 30min, we perform time series prediction, i.e., we obtain the T = 3 estimates of

L̂n(t) and Ĥn(t), by using an LSTM neural network developed in Python using Keras

deep learning libraries (Sequential, Dense, LSTM) where the network has a visible

layer with one input, one hidden layer of four LSTM blocks or neurons, and an output

layer that makes a single value prediction. This type of recurrent neural network uses

back-propagation through time for learning and memory blocks for regression [25].

The dataset is split as 67% for training and 33% for testing. The network is trained

using 100 epochs (2, 600 individual training trials) with batch size of one. As for the

performance measure of the model, we use the RMSE. In this work, prediction steps

similar to Table 3.2 are adopted, and Fig. 4.4 and Fig. 4.5 show the prediction results

that will be discussed in subsection 4.5.2.

Edge System Dynamics

We denote the system state vector at time t by x(t) = (M(t), βn(t)), which con-

tains the number of active VMs, M(t), and the EB level, βn(t), for the BS site n.

ς(t) = (ζ(t), {αm(t)}) is the input vector, i.e., the control action that drives the sys-

tem behavior at time t. The system evolution is described through a discrete-time

state-space equation, adopting the LLC principles [27] [76]:

x(t+ 1) = Φ(x(t), ς(t)) , (4.8)

where Φ(·) is a behavioral model that captures the relationship between (x(t), ς(t)),

and the next state x(t+ 1). Note that this relationship accounts for
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1) the amount of energy drained θtot,n(t), that harvested Hn(t) and that purchased

from the power grid Qn(t), which together lead to the next buffer level βn(t+ 1)

through Eq. (4.5);

2) The traffic load Ln(t), from which we compute the server workloads Γn(t), that

leads to M(t) and to the control ς(t).

The network management algorithm in the edge controller, the ENAAM algorithm,

finds the best control action vector for the communication site, following a model pre-

dictive control approach. Specifically, for each time slot t, problem (4.7) is solved,

obtaining control actions for the whole time horizon t, t+1, . . . , t+T − 1. The control

action that is applied at time t is ς∗(t), which is the first one in the retrieved control

sequence. This control amounts to setting the BS radio mode according to ζ∗(t), i.e.,

either active or power saving, and the number of instantiated VMs, M∗(t), along with

their obtained {α∗
m(t)} values (see remarks 1 and 2 below). This is repeated for the

following time slots t+ 1, t+ 2, . . . .

Remark 1 (Role of prediction): state x(t) and control ς(t) are respectively mea-

sured and applied at the beginning of time slot t, whereas the offered load Ln(t) and the

harvested energy Hn(t) are accumulated during the time slot and their value becomes

known only by the end of it. This means that, being at the beginning of time slot t,

the system state at the next time slot t+ 1 can only be estimated, which we formally

write as:

x̂(t+ 1) = Φ(x(t), ς(t)) , (4.9)

the same applies to the subsequent time slots in the optimization horizon t + 2, t +

3, . . . , t + T − 1. For these estimations we use the forecast values of load L̂n(t) and

harvested energy Ĥn(t), from the LSTM forecasting module.

Remark 2 (VM number and workload allocation): a remark on the provisioned

VMs per time slot per-MEC server, M(t), is in order. Specifically, the number of ac-

tive VM (i.e., the VM computing cluster) depends on the predicted load, L̂n(t + 1),

where the expected server workload is Γ̂n(t+ 1) = 0.8L̂n(t+ 1). Each VM can com-

pute an amount of up to γmax. Then, an estimate of the number of virtual machines

that shall be active in time slot t to serve the predicted server workloads is here ob-

tained as: M(t) =
⌈

(Γ̂n(t+ 1)/γmax)
⌉

, where
⌈

·
⌉

returns the nearest upper integer.

We heuristically split the workload among virtual machines by allocating a workload
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γm(t) = γmax to the first M(t) − 1 VMs, m = 1, . . . ,M(t) − 1, and the remaining

workload γm(t) = L̂n(t+ 1)− (M(t)− 1)γmax to the last one m =M(t).

Controller decision-making: the controller is obtained by estimating the relevant

parameters of the operating environment, i.e., the BS load L̂n(t) and the harvested

energy Ĥn(t), and subsequently using them to forecast the future system behavior

through Eq. (4.9) over a look-ahead time horizon of T time slots. The control actions

are picked by minimizing J(ζ, α, t), see Eq. (4.6). At the beginning of each time slot t

the following process is iterated:

1) Future system states, x̂(t+ k), for a prediction horizon of k = 1, . . . , T steps are

estimated using Eq. (4.9). These predictions depend on past inputs and outputs

up to time t, on the estimated load L̂n(·) and energy harvesting Ĥn(·) processes,

and on the control ς(t+ k), with k = 0, . . . , T − 1.

2) The sequence of controls {ς(t+k)}T−1
k=0 is obtained for each step of the prediction

horizon by optimizing the weighted cost function J(·), see Eq. (4.6).

3) The control ς∗(t) corresponding to the first control action in the sequence with

the minimum total cost is the applied control for time t and the other controls

ς∗(t+ k) with k = 1, . . . , T − 1 are discarded.

4) At the beginning of the next time slot t + 1, the system state x(t + 1) becomes

known and the previous steps are repeated.

The ENAAM algorithm

Let t be the current time. L̂n(t + k − 1) is the forecast load in slot t + k − 1, with

k = 1, . . . , T , i.e., over the prediction horizon. For the control to be feasible, we need

Γn(t) ≤ Bn(t) ≤ Γ̂n(t + k − 1), where Γn(t) is the smallest Γ such that round(Γ̂n(t +

1)/γmax) = b. For the buffer state, we heuristically set ζ(t + k − 1) = ε if either

βn(t + k − 1) < βlow or Ln(t + k − 1) < Llow, and ζ(t + k − 1) = 1 otherwise (βlow

and Llow are preset low thresholds for the EB and the BS load, respectively). For slot

t+ k− 1, the feasibility set A(t+ k− 1) contains the control pairs (ζ(t), {αm(t)}) that

obey these relations.

The algorithm is specified in Algorithm 2 as it uses the technique in [27]: the search

starts (line 01) from the system state at time t, x(t), and continues in a breadth-first

fashion, building a tree of all possible future states up to the prediction depth T . A cost
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Algorithm 2: ENergy Aware and Adaptive Management (ENAAM)

Input: x(t) (current state)

Output: ς∗(t) = (ζ∗(t), {α∗
m(t)})

01: Initialization of variables

S(t) = {x(t)}, Cost(x(t)) = 0

02: for k = 1, . . . , T do

- forecast the load L̂n(t+ k − 1)

- forecast the harvested energy Ĥn(t+ k − 1)

- S(t+ k) = ∅

03: for all x ∈ S(t+ k − 1) do

04: for all ς = (ζ, {αm(t)}) ∈ A(t+ k − 1) do

05: x̂(t+ k) = Φ(x(t+ k − 1), ς)

06: Cost(x̂(t+ k)) = J(ζ, α, t+ k − 1)

+Cost(x(t+ k − 1), ς)

07: S(t+ k) = S(t+ k) ∪ {x̂(t+ k)}

end for

end for

end for

08: Find x̂min = argminx̂∈S(t+T )Cost(x̂)

09: ς∗(t) := control leading from x(t) to x̂min

10: Return ς∗(t)

is initialized to zero (line 01) and is accumulated as the algorithm travels through the

tree (line 06), accounting for predictions, past outputs and controls. The set of states

reached at every prediction depth t+ k is referred to as S(t+ k). For every prediction

depth t + k, the search continues from the set of states S(t + k − 1) reached at the

previous step t+ k − 1 (line 03), exploring all feasible controls (line 04), obtaining the

next system state from Eq. (4.9) (line 05), updating the accumulated cost as the result
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of the previous accumulated cost, plus the cost associated with the current step (line

06), and updating the set of states reached at step t+k (line 07). When the exploration

finishes, the initial action (at time t) that leads to the best final accumulated cost, at

time t+T −1, is selected as the optimal control ς∗(t) (lines 08, 09, 10). Finally, for line

04, we note that Γn belongs to the continuous set [Γn, L̂n(t+k−1)]. To implement this

search, we quantized this interval into a number of equally spaced points, obtaining a

search over a finite set of controls.

ENAAM complexity: the computation complexity of the algorithm is O(NxNςT ),

where Nx
∆
= |x(t)| and Nς

∆
= |ς(t)| respectively represent the number of system states

and the number of feasible actions at time t. Note that state and action space are

respectively quantized into Nx = M × Nβ and Nς = 2 ×M × Nα levels, where M is

the number of virtual machines, Nβ is the number of quantization levels for the energy

buffer and Nα is the number of quantization levels for the load variable αm(t). Such

quantization facilitates the search in Algorithm 2. Note that exhaustive search would

entail a complexity of O((NxNς)
T ).

4.4 Multiple Communication Sites

In this section, we extend the work from section 4.3 by considering the energy savings

for multiple communication sites. We formulate an optimization problem to obtain

energy savings through short-term traffic load and harvested energy predictions, clus-

tering, along with energy management procedures for the clustered BS sites. The

problem formulation for multiple communication sites is described in subsection 4.4.1,

then cluster formation is discussed in subsection 4.4.2, and the edge management pro-

cedure for each cluster, enabled by the edge controller, is presented in subsection 4.4.3.

4.4.1 Problem Formulation

Our objective is to improve the overall energy savings of the network by clustering

BSs based on their location (or distance measures) similarity, and then optimizing the

energy savings within each cluster by employing the single optimization case described

in Section 4.3. From an energy efficiency perspective, in a cluster of BS nodes, one BS

(or more) might have a preference of switching off, by first offloading its (their) traffic

load to its (their) neighboring BS(s) that have enough spare capacity for handling

extra traffic load, and then switching off. The whole offloaded traffic load from the BS,
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denoted by BS n, is allocated to the neighboring cluster member (active BS) in which

orthogonal resource allocation helps mitigate intra-cluster interference, such that the

selected neighboring BS, denoted by BS n′, is allocated the incremental load, denoted

by Lnn′(t)
∆
= Ln(t). Whenever a BS is switched off, it should maintain service to its

users via a re-association process in order to offload the users to the neighboring active

BS having extra resources for handling upcoming extra traffic load. The re-association

process involves notifying the connected users to try and connect to neighboring BSs

with extra resources.

In the view of the above, we consider that all BSs are grouped into sets of clusters

O = {O1, . . . , O|O|}. Here, a given cluster Oi ∈ O, with i = 1, . . . , |O|, consists of a set

of BSs that coordinate with the controller. The clustering mechanism is discussed in

subsection 4.4.2. For each cluster Oi ∈ O, we aim to minimize the energy consumption,

i.e., the consumption due to BS transmission and the running VMs in the servers,

using BS power saving modes and VM soft-scaling per active cluster member. To do

so, we define a cost function which captures the individual communication site energy

consumption and its QoS. The (weighted) cost for each cluster member, BS n ∈ Oi, is

redefined as:

Jn(ζ, α, t)
∆
= ηθtot,n(ζn(t), {αm(t)}n, t) + η(Λn(t)− Bn(t))

2 , (4.10)

where ζn(t) is the activity status of BS n (either power saving or active), {αm(t)}n

is the set of factors for the allocated VMs at BS n. Moreover, Λn(t) ← Ln(t) if

BS n only handles its own traffic, whereas Λn(t)← Ln(t) + ∆Ln(t), in case one (or

multiple) BSs are switched off in time slot t and its (their) traffic is redirected (handed

off) to BS n. The computation of ∆Ln(t) is addressed in subsection 4.4.3. The per

cluster cost ΥOi
(ζi,αi, t) is the aggregated cost of all cluster members, ΥOi

(ζi,αi, t) =
∑

∀n∈Oi
Jn(ζ, α, t). Hence, over time horizon, t = 1, . . . , T , the following optimization

problem is defined:

P2 : min
E

∑

∀Oi∈O

ΥOi
(ζi,αi, t) (4.11)

subject to:

C1− C6 : from Eq. (4.7),

C7 : |Oi| ≥ 1, ∀Oi ∈ O,

C8 : Oi ∩Oj = ∅, ∀Oi, Oj ∈ O, Oi 6= Oj,

where E
∆
= {ζi,αi} is the collection of variables to be reconfigured for all the BS

clusters (the whole MN), for all time slots t = 1, . . . , T . As for the constraints, C7
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and C8 ensure that each BS is part of only one cluster. Solving P2 in Eq. (4.11)

involves BS clustering, the forecasting method from subsection 4.3.2, a heuristic rule

for the selection of which BSs have to be switched off, and the ENAAM algorithm (see

algorithm 2). Once P2 is solved, the control action to be applied at time t, per cluster

Oi, corresponds to the elements in {ζi,αi} that are associated with the first time slot

1 in the optimization horizon. As above, Eq. (4.11) can iteratively be solved at any

time slot t ≥ 1, by just redefining the time horizon as t′ = t, t+ 1, . . . , t+ T − 1.

4.4.2 Cluster Formation

Clustering algorithms have been proposed as a way of enabling energy saving mech-

anisms in BSs, where groups of inactive BSs or BSs with low loads are switched off.

With the advent of EH BSs, the BSs with βn(t) < βlow can be switched off, while

still guaranteeing the QoS through the other active BSs. That is, within each formed

cluster, the controller tries to minimize the cost function, which captures the trade-off

between the energy efficiency and the QoS of each cluster member. The key step in

clustering is to identify similarities or distance measures between BSs in order to group

BSs with similar characteristics. In this work, we use the location of the BSs as it

defines the relative neighborhood (the distance measures) with the other BSs. Using

the location of the BSs and the distance between the BSs, we obtain a distance-based

similarity matrix W d. In addition, we assume that the network topology is static

during the clustering algorithm execution.

Next, we detail the clustering measure that we use to obtain the similarities be-

tween BSs based on location, followed by the distance-based clustering algorithm.

Relative neighborhood based on BS adjacency and Gaussian similarity: Sim-

ilar to [56], we model the MN as a graphG = (N , E), whereN represents the set of BSs,

while the set E contains the edges between any two BSs. There is an edge (n, n′) ∈ E

if and only if n and n′ can mutually receive each other’s transmission. In this case, we

say that n and n′ are neighbors. We use a parameter rnn′ to characterize the presence

of a link between nodes, where rnn′ ∈ {0, 1}. Let yn be the coordinates of BS n ∈ N

in the Euclidean space. The relative neighborhood of BS n is defined by the nearness

of the BSs in its ed-radio propagation space (or neighborhood):

Zn = {n′ s.t. ‖yn − yn′‖ ≤ ed}. (4.12)

If n′ ∈ Zn we say that BSs n and n′ are neighbors, and we set rnn′ = 1, otherwise
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rnn′ = 0. The links between the vertices in N are weighted based on their similarities.

Based on the distance between BS n and n′, we can classify the BSs based on their

location using the Gaussian similarity measure [56] (a classification kernel function

used in machine learning), which is defined as:

wd
nn′ =















exp

(

−‖yn − yn′‖2

2σ2
d

)

if ‖yn − yn′‖ ≤ ed,

0 otherwise,

(4.13)

where 2σ2
d adjust the impact of the neighborhood size. In Eq. (4.13), we assume that

the BSs located far from each other have low similarities, compared to those that are

close to each other, as those that are close are more likely to cooperate with each other.

The distance-based similarity matrix W d is formed using wd
nn′ as the (n, n′)-th entry.

Distance-based clustering: The BS clustering is performed after obtaining the sim-

ilarity matrix W d of the MN graph G = (N , E). Given the matrix W d, we employ a

centralized clustering method, specifically the K-means [112], as the matrix provides

the full location knowledge. K-means partitions the set of nodes into clusters in which

each node belongs to the cluster with the nearest mean distance. In addition, the value

of K, i.e., the number of clusters (|Oi|), is known prior and is a design parameter.

This algorithm requires knowledge of all the BS locations, thus, it is categorized as a

centralized method. In our case, this process does not incur any computation delay as

the edge controller is assumed to have high computation capabilities.

4.4.3 Edge Network Management

Our aim is to implement and validate an LLC framework for dynamic resource provi-

sioning in multiple communication sites with the goal of achieving energy savings within

the access network through BS sleep modes and VM soft-scaling. Given the formation

of clusters, load and energy forecasting, our next goal is to developed a mechanism for

solving P2 (Eq. (4.11)) where each cluster of BSs adjust its transmission parameters

and its computing cluster entities based on the forecast information. In order to min-

imize the per cluster cost function, we introduce the notion of network impact which

is discussed the next, followed by the edge management procedure description and its

complexity analysis.
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Network Impact: The dynamic BS switching off strategies may have an impact on

the network due to the traffic load that is offloaded to the neighboring BSs. To avoid

this, the BS to be switched off must be carefully identified within a BS cluster. To

determine whether a particular BS can be switched off or not, we follow the work done

in [57]. As an example, we consider one cluster Oi, together with its cluster members

n ∈ Oi, then from it we choose one BS, BS n, where BS n neighbors set is denoted by

Nn. Note that the BS n′ ∈ Nn is the BS to which the traffic load will be offloaded to

after turning off BS n. Also, BS n can only be switched off if there exists a neighboring

BS n′ that satisfies the following feasibility constraint [57]:

Ln′(t) + Lnn′(t) ≤ 1, n′ ∈ Nn, (4.14)

where Ln′(t) is the original BS n′ traffic load and Lnn′(t) is the incremental traffic load

from BS n (the switched off BS) to BS n′ (the neighboring BS). We recall that the load

Ln′(t) is normalized with respect to the maximum load that a BS can sustain, so the

inequality in Eq. (4.14) means that it is feasible for BS n′ to take the extra load from

BS n. To quantify how the incremental system load affects the overall network load

due to the switching off process, we introduce the notion of network impact. For every

BS n within cluster Oi, i = 1, . . . , K, its network impact due to the offloaded system

load onto one of the neighboring BSs is defined as:

In(t) = max
n′∈Nn

[Ln′(t) + Lnn′(t)], ∀n ∈ Oi. (4.15)

Here, the maximum network impact value In(t) over the neighboring BSs is considered

as a measure for each BS towards switching off and generating extra traffic loads for

its neighboring BSs. In this work, considering cluster Oi, we switch off the BS n∗ that

has the least network impact, i.e.,

n∗ = argmin
n∈Oi

In(t). (4.16)

The BS that takes the load from n∗ is selected as the BS n′ that minimizes Ln′(t) +

Ln∗n′(t) over the set of active BSs that are on within the cluster Oi. For BS n′, we

then set Ln′(t) ← Ln′(t) + Ln∗n′(t). This procedure is sequentially repeated for all

the cluster members until there is no active BS whose neighbors satisfy the feasibility

condition of Eq. (4.14). Note that here, we focus only on which BS to switch off, as

for the BS turning on state, we assume that the commitment time (time configured so

that the BS automatically wakes up without external triggers) is a system parameter

that is pre-configured when the BS is switched off.

69



Edge management procedure: Here, we propose a distributed edge network man-

agement procedure that makes use of the ENAAM algorithm (see subsection 4.3.2).

The decision making criterion only depends on the BS information and on its neigh-

boring BSs, thus, the BS switching off decision can be localized within each cluster. To

decide which BSs shall be switched off, we follow a sequential decision process. While

this is heuristic, it allows coping with the high complexity associated with an optimal

(all BSs are jointly assessed) allocation approach. The edge management procedure is

as follows.

For each BS cluster Oi, with i = 1, . . . , K, do:

1) Initialize an allocation variable ∆Ln(t) = 0 for all BSs n ∈ Oi. Compute In(t),

using Eq. (4.15), for all BSs n and obtain the BS with the least network impact

n∗(t), using Eq. (4.16). Switch off BS n∗(t) and assign its load to the neighboring

BS n′ ∈ Oi that minimizes Ln′(t)+∆Ln′(t)+Ln∗n′(t). Update the extra allocation

for BS n′ as ∆Ln′(t)← ∆Ln′(t) +Ln∗n′(t). Recompute In(t) for all the BSs that

are still on and identify the next BS that can be switched off, i.e., the one with

the least network impact. This procedure is repeated until none of the BSs in the

cluster verifies Eq. (4.14). At this point, we have identified all the BSs n∗ that

shall be switched off in Oi.

2) For each active BS n′ ∈ Oi, the ENAAM algorithm is executed using Ln′(t) +

∆Ln′(t), where ∆Ln′(t) = 0 if BS n′ does not take extra load, whereas it is greater

than zero otherwise. Note that, ∆Ln′(t) corresponds to the total traffic that is

handed over to BS n′, possibly from multiple nearby BSs.

Edge network management complexity: the algorithm is independently executed

for each cluster and the corresponding time complexity is obtained as follows. Consid-

ering the action Step 1, from above, the time complexity associated with the computa-

tion of the BS having the least network impact is linear with the size of the cluster |Oi|.

Once that is computed, the complexity associated with updating the load allocation for

the active BSs is |Oi|−1, which leads to a total complexity of |Oi|(|Oi|−1) = O(|Oi|
2).

Moreover, such process is iterated for each BS that is switched off. In the worst case,

where all the BSs but one are switched off, the final complexity of step 1 is O(|Oi|
3).

As for Step 2, from above, the computation complexity depends on the ENAAM al-

gorithm, which is independently executed by each active BS. Thus, in the worse case

(no BSs are switched off), the total aggregated complexity is: O(|Oi|NxNςT ), which
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is linear in all variables, namely, number of cluster members, number of BS states,

number of actions and time horizon T .

4.5 Performance Evaluation

In this section, we show some selected numerical results for the scenario of Section 4.2.

The parameters that were used for the simulations are listed in Table 4.2.

Table 4.2: System Parameters.

Parameter Value

Total BSs, N 24

Max. number of VMs, M 27

Min. number of VMs, b 1

Time slot duration, τ 30min

Operating power, θ0 10.6W

Energy overheads for switching VM, θovm (t) 0.05 J/MHz2

Max. computation workload per VM, γmax {5, 10} MB

Max. allowed processing time, ∆ 0.8 s

Energy cons. of network interfaces, θidle 3 J

Cost of exchanging one unit of data, θdata 6 J/byte

Processing rate set, F {0, 4, 8, 12, 16, 20}

Static energy consumed by VM, θidle,m(t) 4 J

Max. energy cons. by VM at fmax, θmax,m(t) 10 J

Energy storage capacity, βmax 490 kJ

Lower energy threshold, βlow 30% of βmax

Upper energy threshold, βup 70% of βmax

Low traffic threshold, Llow 4 MB
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4.5.1 Simulation Setup

We consider multiple BSs, each one co-located with a MEC server and a coverage radius

of 40m. In addition, we use a virtualized server with specifications from [106] for a

VMware ESXi 5.1-ProLiant DL380 Gen8. Our time slot duration τ is set to 30min

and the time horizon is set to T = 3 time slots.

4.5.2 Numerical Results

Pattern forecasting: we show real and predicted values for the traffic load and har-

vested energy over time in Figs. 4.4 and 4.5, where we track the one-step predictive

mean value at each step of the online forecasting routine. Then, Table 4.3 shows the

average RMSE of the normalized harvested energy and traffic load processes, for dif-

ferent time horizon values, T ∈ {1, 2, 3}. Note that the predictions for H(t) are more

accurate than those of L(t) (confirmed by comparing the average RMSE), due to dif-

ferences in the used dataset granularity. However, the measured accuracy is deemed

good enough for the proposed optimization.

Table 4.3: Average prediction error (RMSE) for harvested energy and traffic load

processes, both normalized in [0, 1].

T = 1 T = 2 T = 3

L(t) 0.037 0.042 0.048

H(t) 0.011 0.016 0.021

Single communication site: Figs. 4.6 and 4.7 are computed with η = 0 using Cluster

1 and Solar 1 as traffic load and harvested energy profiles for each BS (see Figs. 4.2

and 4.3). Moreover, γmax = 5 MB and 10 MB, respectively. They show the mean

energy savings achieved over time when on-demand and energy-aware edge resource

provisioning is enabled (i.e., BS sleep modes and VM soft-scaling), in comparison

with the case where they are not applied. Our edge network management algorithm

(ENAAM) is benchmarked with another one that heuristically selects the amount of

traffic that is to be processed locally, Bn(t) ≤ Γn(t), depending on the expected load

behavior. It is named Dynamic and Energy-Traffic-Aware algorithm with Random

behavior (DETA-R). Both ENAAM and DETA-R are aware of the predictions in
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Figure 4.4: One-step ahead predictive

mean value for L(t).
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Figure 4.5: One-step ahead predictive mean

value for H(t).

future time slots (see Section 4.3.2), however, DETA-R provisions edge resources using

a heuristic scheme. DETA-R heuristic works as follows: if the expected load difference

is L̂(t+ 1)− L̂(t) > 0, then the normalize workload to be processed by BS n in the

current time slot t, Bn(t), is randomly selected in the range [0.6, 1], otherwise, it is

picked evenly at random in the range (0, 0.6).
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Figure 4.6: Mean energy savings for

η = 0 and γmax = 5 MB.
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Figure 4.7: Mean energy savings for η = 0

and γmax = 10 MB.

Average results for the ENAAM scheme show energy savings of 69% (γmax = 10 MB)

and 57% (γmax = 5 MB), while DETA-R achieves 49% (γmax = 10 MB) and 43%

(γmax = 5 MB) on average, where these savings are with respect to the case where

no energy management is performed, i.e., the network is dimensioned for maximum

expected capacity (maximum value of θtot,n(t), with M = 27 VMs, ∀ t). The results

show that the maximum load allocated to each VM, γmax, has an impact towards

energy savings. An increase in energy savings is observed when γmax = 10 MB due to
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the fact that the number of VMs demanded per time slot is reduced, when compared

to the allocation of γmax = 5 MB.
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Figure 4.8: Energy savings vs weight η (single BS case).

The ESs evolution with respect to η is presented in Fig. 4.8, taking into account the

load allocated to each VM, γmax. The results were obtained using Cluster 1 and Solar

1 as traffic load and harvested energy profiles (see Fig. 4.2 and Fig. 4.3). As expected,

a drop in energy savings is observed when QoS is prioritized, i.e., η → 1, as in this case

the BS energy consumption is no longer considered. It can be observed that ENAAM

achieves a 50% (or above) from η = [0, 0.4] when γmax = 5 MB and from η = [0, 0.7]

when γmax = 10 MB. This shows that the higher the load allocated to each VM, the

lesser the energy that is drained, as few VMs are running. DETA-R operates at below

50% for all η and γmax values.

Multiple communication sites: Figs. 4.9 and 4.10 present the mean energy savings

achieved with respect to the cluster size and the weight η, using all the traffic load

and harvested energy profiles from Fig. 4.2 and Fig. 4.3. Each BS randomly picks

its own traffic load and harvested energy profile at the beginning of the optimization

process. Here, to select the BS to be switched off, we use the management procedure of

section 4.4.3. As for DETA-R, a BS is randomly selected to evolve its operating mode

to power saving mode and offload its load to a nearby BS (in this case, the least loaded

neighboring BS is selected), without taking into account its network impact measure.
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Fig. 4.9 shows the average energy savings obtained when clustering is adopted,

i.e., here, the cluster size is increased from |Oi| = 1 to 10 and η = 0. The obtained

energy savings are with respect to the case where all BSs are dimensioned for maximum

expected capacity (maximum value of θtot,n(t), with M = 27 VMs, ∀ t, ∀n ∈ Oi). It

should be noted that the energy savings increase as the size of the cluster grows, thanks

to the load balancing among active BSs, which cannot be implemented in the single

communication site scenario (i.e., when BSs are independently managed).

Then, Fig. 4.10 shows the average energy savings with respect to η, when the

cluster size is set to an intermediate case (|Oi| = 6). Again, here the energy savings

are obtained with respect to the case where all the BSs are dimensioned for maximum

capacity. As expected, there is a drop in the energy savings achieved as the value

of η increases, as QoS is prioritized. It can be observed that ENAAM achieves a

value of 50% or above when η = [0, 0.8] (at γmax = 10 MB) and when η = [0, 0.6]

(at γmax = 5 MB). DETA-R achieves value above 50% or above when η = [0, 0.4] (at

γmax = 10) and η = [0, 0.1](at γmax = 5 MB).
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Figure 4.9: Energy savings vs cluster

size.
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Figure 4.10: Energy savings vs η for

|Oi| = 6.

Comparing Figs. 4.8 and 4.10, an average gain of 9% on the energy savings is ob-

served when clustering is applied, by considering the mean energy savings with respect

η achieved with ENAAM for both cases. From Fig. 4.9 we see that this gain can be as

high as 16% for ENAAM with γmax = 5 MB (red curve) and bigger for the DETA-R

approach. These results support the notion that performing a clustering-based opti-

mization is beneficial thanks to the additional cooperation within each neighborhood of

BSs. This cooperation allows to switch off more BSs through load balancing, increasing

the energy savings while still controlling the users’ QoS.
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4.6 Conclusion

In summary, we have envisioned an edge network where a group of BSs are managed by

a controller, for ease of BS organization and management, and also a mobile network

where the edge apparatuses are powered by hybrid supplies, i.e., using green energy

in order to promote energy self-sustainability and the power grid as a backup. Within

the edge, each BS is endowed with computation capabilities to guarantee low latency

to mobile users, offloading their workloads locally. The combination of energy saving

methods, namely, BS sleep modes and VM soft-scaling, for single and multiple BS sites

helps to reduce the mobile network’s energy consumption. An edge energy management

algorithm based on forecasting, clustering, control theory and heuristics, is proposed

with the objective of saving energy within the access network, possibly making the BS

system self-sustainable. Numerical results, obtained with real-world energy and traffic

load traces, demonstrate that the proposed algorithm achieves energy savings between

57% and 69%, on average, for the single communication site case, and a gain ranging

from 9% to 16% on energy savings is observed when clustering is applied, with respect

to the allocated maximum per-VM loads of 5 MB and 10 MB. The energy saving

results are obtained with respect to the case where no energy management techniques

are applied, either in one BS or single cluster.
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Chapter 5

Virtualized Platform Optimization

The results of this chapter are the subject of the following published paper:

T. Dlamini, A. F. Gambin, “Adaptive Resource Management for a Virtualized Com-

puting Platform within Edge Computing”, in Proceedings of the IEEE International

Conference on Sensing, Communication and Networking (SECON) workshop on Edge

Computing for Cyber Physical Systems (CyberEdge), Boston, MA, USA, June 2019,

[Online]. Available: arXiv:1906.05008.

5.1 Introduction

With the growing concern on the considerable energy drained by computing platforms

(e.g., micro or large data centers), research efforts are targeting means towards greening

them in order to achieve higher EE. On one hand, the integration of EH into the edge

(or computing) system [2][23] is foreseen as a way of minimizing the carbon footprint

and the dependence on the power grid. On the other hand, server virtualization is

emerging as the prominent approach to consolidate multiple enterprise applications

from multiple platforms to a single server, with an objective to save energy. In addition,

the provisioning of computing resources based on demand is made possible. This allows

operators to maintain the desired QoS while achieving higher EE. Despite of this,

little understanding has been obtained about the potential overheads related to energy

consumption within the virtualized platform [113]. Therefore, understanding the MEC

server’s energy cost or processes is of great importance towards the development of

energy management procedures.

The energy drained (in the MEC server) is due to the computing-plus-communication

processes and it is associated with (i) the running VMs [18][19] and (ii) the communi-
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cation within the server’s virtual network [20]. It is observed in the literature that most

of the existing energy saving studies have involved the scaling up/down the number

of computing nodes/servers or VMs [66][67][68][69], enabling VM migration to under

utilized servers [70] and shortening the access time to physical resources [71]. Hence,

the proposed energy models (a summary of the proposed models is found in [113])

and the overall operational expenditure of the computing node is usually related to the

computation process (i.e., the running VMs), overlooking the communication processes

within the server.

The communication-related energy cost has been considered in the following works:

energy consumption within a server that transmit wireless to mobile clients [68] and

rate adaptation within vehicular network connecting wireless to Fog nodes (nodes

with virtualized computing platforms) [67]. The works considered only the intra-

communications energy cost within the computing platforms. Also, the works of [21]

and [22] considers the communication-related energy consumption within a MN in-

frastructure, i.e., within a computing node (router) where the transmission drivers are

switched on/off towards energy savings. It is worth observing that both works, [21][22],

are not along the direction of MEC, but they propose the tuning of the transmission

drivers as one of the ES strategies within the MN infrastructure.

Thus, energy savings within the MEC server can be jointly achieved by launching

an optimal number of VMs for computing, and transmission drivers coupled with the

location-aware traffic routing for real-time data transfers. In addition, a significant

amount of power is consumed even when the server is idle [19][114] (with no data

transfer activities), with data links active. This opens an opportunity for tuning even

the Network Interface Card (NIC) so that the energy drained is always zero when there

is no data transfer.

In this chapter, to identify and quantify the server’s energy consumption due to the

computing-plus-communications processes, we focus on the virtualized MEC server

and propose an online algorithm for managing the MEC server. This work differs

from the work done in Chapter 3 and 4 as the MEC server is placed in proximity to

a BS cluster, and not one co-located for each BS. Moreover, here we focus on the

integration of communication-related energy consumption by considering the tuning

of the transmission drivers, which is a novel concept within the MEC paradigm. The

proposed optimization strategy is able to reduce the energy consumption under the

guidance of the online resource controller and the energy management procedures.
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5.1.1 Related work

For several years, great effort has been devoted to study energy savings in computing

environments with the aim of minimizing the energy consumption. Procedures for the

dynamic on/off switching of servers/VMs have been proposed as a way of minimizing

energy consumption in computing platforms. A novel post-decision state based learn-

ing algorithm for server provisioning at the network edge is presented in [66]. This

work incorporates renewable energy. Then, in [67], an iterative algorithm obtains the

number of VMs to be provisioned within a node that transmit to clients wireless. The

work of [68] consider a vehicular scenario where vehicles connect wireless to Fog nodes

and then develop an adaptive scheduler, which computes on-the-fly the solutions of

both the resource reconfiguration and consolidation problems. For this purpose, the

primal-dual algorithm is used. In addition, in [69], an automated server provisioning

system that aims to meet workload demand while minimizing energy consumption in

data centers is presented. Here, the optimization problem is approximated through

a linear programming formulation and solved using an efficient fast polynomial-time

method. To handle energy in cloud platforms, the work of [70] present an autonomic

and energy-aware mechanisms for self-managing the resources. A modified best fit

decreasing (BFD) algorithm is used for the dynamic consolidation of VM resource par-

titions. Then, the works of [22] and [21] tries to address the communication-related

energy cost by employing heuristics and traffic matrix decomposition techniques.

5.1.2 Objective and Contributions

The main contributions of this chapter are as follows:

• we consider a scenario, where MEC and EH are combined into a single system

located close to a BS cluster, towards energy self-sustainability in MNs. The

EH-MEC system is equipped with solar panels for EH and an EB for energy

storage.

• We consider a computing-plus-communication energy model within the MEC

paradigm, formulating a constrained optimization problem. Due to the non-linear

behavior of the rate-vs-power relationship, the optimization problem is non-convex.

To solve it, we convexify the function by using GP [115] and then employing the

CVXOPT toolbox1 and approximations.

1M. Andersen and J. Dahl. CVXOPT: Python Software for Convex Programming, 2019. [Online].
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Figure 5.1: Virtualized computing system powered by hybrid energy sources: on-grid

power and green energy. The electromechanical switch (SW) is for aggregating the

energy sources to fulfill the energy required to power the computing platform.

• We forecast the short-term future server workload and harvested energy, by using

a LSTM neural network [25], to enable foresighted optimization.

• Lastly, we develop an online controller-based algorithm called Automated Re-

source Controller for Energy-aware Server (ARCES) for the MEC server man-

agement based on LLC theory [28] and energy management procedures. The

main goal is to minimize the overall energy consumption, under hard per-task

delay constraints (i.e., QoS), through the joint consideration of VM soft-scaling

and the tuning of transmission drivers coupled with the location-aware traffic

routing. To the best of our knowledge, this is a novel concept within the MEC

paradigm. ARCES considers future server workloads, onsite green stored energy,

and target BS (based on the Location Service (LS) [116]), and then enable ES

procedures.

5.2 System Model

As a major deployment of MEC [12], the considered network scenario is illustrated in

Fig. 5.1. It consists of a cache-enabled, TCP/IP offload-enabled (partial computation

at the network adapter), virtualized MEC server hosting M VMs and it is assumed

Available: https://cvxopt.org/
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to be deployed at an aggregation point [2][12], i.e., a point in proximity to a group of

BSs interconnected to the MEC server for computation offloading. The MEC node is

assumed to be equipped with higher computational and storage resources compared

to the end-user device. The server clients are assumed to be mobile users moving

in groups and they are represented by the Reference Point Group Mobility Model

(RPGM [117]). Their current locations are known through the LS API [116], in the

MEC platform, which is a service that supports UE’s location retrieval mechanism,

and then passing the information to the authorized applications within the server. The

computing site is empowered with EH capabilities through a solar panel and an EB

that enables energy storage. Energy supply from the power grid is also available for

backup. The EM is an entity responsible for selecting the appropriate energy source

and for monitoring the energy level of the EB. The virtualized Access Control Router

(ACR) of Fig. 5.1 acts as an access gateway, responsible for routing, and it is locally

hosted as an application. Moreover, we consider a discrete-time model, whereby time

is discretized as t = 1, 2, . . . , and each time slot t has a fixed duration τ . The list of

the symbols that are used in this chapter is reported in Table 5.1.

5.2.1 Server Workload and Energy Consumption

For many MN services, the workload demand exhibits a diurnal behavior, thus it suffices

to forecast the short-term server workload (using historical datasets [2][69]) and then

enable dynamic resource management within the server. In this work, anonymized real

server workload traces2 obtained from [118] are used due to the difficulties in obtaining

relevant open source datasets containing computing requests. A trace file consist of

the file size, session duration, total number of packets and average transmission rate,

over one day. In our numerical results, we use the total number of packets, denoted

by Lin(t) ([bits]), to represent the buffered (or admitted) computation workload at the

input buffer at time slot t (see red curve in Fig. 5.2). In addition, we assume that the

upper-bounded input/output (I/O) queue’s of Fig. 5.1 are loss-free and they implement

the First-In First-Out (FIFO) service discipline, thus Lin(t) = Lout(t), where Lout(t) is

the amount of the aggregate computation result stored at the output buffer.

The total energy consumption ([J]) for the virtualized computing platform is for-

2For the purpose of emulating the MEC server workload we make use of server related traces as

they involve the computing and communication processes within the server.
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Table 5.1: Notation: list of symbols used in the analysis.

Symbol Description

Input Parameters

M maximum number of VM hosted on the server

Lin(t) buffered computation workload at time slot t

Lout(t) aggregate computation result at time slot t

fmax maximum processing rate for VM m.

θdyn,m(t) the dynamic energy component of VM m

θidle,m(t) idle energy consumed by VM m

θmax,m(t) VM m maximum energy drained at max. rate

λmax maximum allocated load per VM

θTOE
idle (t) energy drained by the NIC with no data transfer

Y maximum number of optical drivers

Bmax maximum energy buffer capacity

Bup, Blow upper and lower energy buffer thresholds

Variables

θMEC(t) total MEC energy at time slot t

θCOMP(t) the energy drained due to computation processes

θCOMM(t) MEC server’s intra-communications energy cost

fm(t) instantaneous processing rate

θCPU(t) energy drained by active VMs at time slot t

M(t) number of VMs to be active in time slot t

θSC(t) energy drained due to VM switching at time slot t

θTOE(t) TCP/IP offload induced energy at the NIC

αm(t) load dependent factor

λm(t) workload allotted to VM m at time slot t

θTOE
max (t) maximum energy drained by the NIC at time slot t

θVLAN(t) energy drained due to the VMs communication links

θWCOM(t) energy drained by optical drivers time slot t

Y (t) number of laser (optical) drivers at time slot t

B(t) energy buffer level in time slot t

H(t) harvested energy profile in time slot t

E(t) purchased grid energy in time slot t
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Figure 5.2: Example traces for server workloads and harvested solar energy.

mulated as follows, inspired by [68] and the virtualization knowledge from [20]:

θMEC(t) = θCOMP(t) + θCOMM(t) , (5.1)

where θCOMP(t) is the energy drained due to computation and θCOMM(t) due to intra-

communications processes in the MEC server at time slot t.

Computing energy: It is defined as: θCOMP(t) = θCPU(t) + θSC(t) + θTOE(t), where

θCPU(t) is the energy drained due to the running VMs, w.r.t CPU utilization, and

θSC(t) is the energy drained due to VM switching the processing rates fm(t) ∈ [0, fmax].

fmax [(bit/s)] is the maximum processing rate for VM m. θTOE(t) is the energy induced

by the TCP/IP offload on the network interface card (NIC, e.g., TCP/IP checksum

offload). In practice, the VMs are instantiated on top of the CPU cores and each VM

processes the currently allotted task by managing its own local virtualized computing

resources, thus we model the processing rates to be between f0 = 0 (represents zero

speed of the VM, e.g., deep sleep or shutdown) and fmax. Here, we assume that

real-time processing of computation workloads is performed in parallel over the VMs

interconnected by a power-limited and rate-adaptive switched VLAN.

Considering that θCPU(t) is related to the number of VMs running in time slot t,

named M(t) ≤ M , and on the CPU frequency that is allotted to each VM, θCPU(t) is

obtained using the linear relationship between the CPU utilization contributed by VM
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m, and the energy drained is:

θCPU(t) =
∑M(t)

m=1 θidle,m(t) + θdyn,m(t), (5.2)

where θidle,m(t) represents the static energy drained by VM m in the idle state, and

the quantity θdyn,m(t) = αm(t)(θmax,m(t) − θidle,m(t)) represents the dynamic energy

component of VM m, where αm(t) = (fm(t)/fmax)
2 [28] is a load dependent factor and

θmax,m(t) is the maximum energy that VM m can drain.

Next, we remark that the VM switching cost θSC(t) depends on the frequency

reconfiguration, i.e., the transition from f1(t) (current processing rate for VM m) to

f2(t) (the next processing rate), as an example. In short, the energy cost depends on

the absolute processing rate gap, |f2(t)− f1(t)|. Thus, θSC(t) is defined as [68]:

θSC(t) =
∑M(t)

m=1 κe(f2(t)− f1(t))
2, (5.3)

where κe is the the per-VM reconfiguration cost caused by a unit-size frequency switch-

ing. Typically, κe is limited to a few hundreds of mJ per (MHz)2.

At this regard, we put forward the following: at the beginning of time slot t, the

online resource controller adaptively allocates the available virtual resources and thus

determines the VMs demanded, M(t), the workload allotted to VM m, denoted by

λm(t), and fm(t) for VM m that will yield the desired or expected processing time,

χm(t) = λm(t)/fm(t). Note that Lin(t) =
∑M(t)

m=1 λm(t). Moreover, in practical applica-

tion scenarios, the maximum per-VM computation load to be computed is generally

limited up to an assigned value, named λmax. Lastly, the VM provisioning and workload

allocation is discussed in Section 5.4, and fm(t)
∆
= λm(t)/∆.

Along the same lines of computation, advancement in TCP/IP Offload Engine

(TOE) technology enables partial computation in the server’s NIC [119], i.e., some

TCP/IP processing (e.g., checksum computation) is offloaded to a specialized hard-

ware on the network adapter, relieving the host CPU from the overhead of processing

TCP/IP. Thus, θTOE(t) is obtained by using the fact that it is data volume dependent

and then determined using the workload volume received. Due to the lack of an existing

TOE energy model, we rely on the performance measure for the Broadcom (Fibre) 10

Gbps NIC [119], which is considered here as an example of a TCP/IP offload-capable

device. Then, θTOE(t) is obtained as:

θTOE(t) = ζ(t) θTOE
idle (t) + θTOE

max (t), (5.4)

where θTOE
idle (t) > 0 is the energy drained by the TOE when powered, with all links

connected without any data transfer. This motivates the idea of tuning even the NIC

84



so that the energy drained is always zero when there is no data transfer. For this, we

have ζ(t) = (0, 1) as the NIC switching status indicator (1 for active state and 0 for

idle state). θTOE
max (t) =

Lin(t)
η

is the maximum energy drained by the TOE. η is a fixed

value measured in [Gbit/J].

Communication energy: The communication-related energy consumption within

the virtualized MEC server is defined as: θCOMM(t) = θVLAN(t) + θWCOM(t), where

θVLAN(t) is the energy drained due to the communication links (to-and-from each VM),

and θWCOM(t) is the energy drained due to the number of transmission (optical) drivers

used for the data transfer to target BS(s).

The energy cost due to communication within the VLAN is obtained by using the

Shannon-Hartley exponential analysis. Here, we assume that each VM m communi-

cates with the resource controller through a dedicated reliable link, that operates at

the transmission rate of rm(t) [(bit/s)]. Thus, the energy needed for sustaining the

two-way mth link is defined as, inspired by [120]:

θVLAN(t) = 2
∑M(t)

m=1 Pm(rm(t))(λm(t)/rm(t)), (5.5)

where Pm(rm(t)) = Γm(2
rm(t)/Wm − 1) is the power drained by the mth communication

link and Γm =
Wm×N

(m)
0

gm
. N (m)

0 (W/Hz) is the noise spectral power density, Wm is the

bandwidth, and gm is the (non-negative) gain of the mth link. In practical application

scenarios, the maximum per-slot communication rate within the intra-VLAN is gen-

erally limited up to an assigned value rmax. Thus, the following hard constraint must

hold:
∑M(t)

m=1 rm(t) ≤ rmax.

Before proceeding, we consider the two-way per-task execution delay ([s]). We have

the m = {1, . . . ,M(t)} link connection delays, each denoted by Ωm(t) = λm(t)/rm(t),

and χm(t) ≤ ∆, where ∆ is the maximum per-slot and per-VM processing time ([s]).

At this regard, we note that ∆ is also the server’s response time, i.e., the maximum time

allowed for processing the total computation load and it is fixed in advance regardless

of the task size allocated to VM m. Since parallel real-time processing is assumed

in this work, the overall communication equates to 2Ωm(t) + ∆. Therefore, the hard

per-task delay constraint on the computation time is: max{2Ωm(t)}+∆ ≤ τmax, where

τmax is the maximum tolerable delay, which is fixed in advance.

Finally, θWCOM(t) depends on the number of laser (optical) drivers, named Y (t) ≤ Y

(Y is the total number of them), that are required for transferring ℓy(t) ∈ Lout(t) in

time slot t (ℓy(t) is the downlink traffic volume ([bits] of the driver at slot t). Lout(t)
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is accumulated over a fixed period of time to form a batch at the output buffer. At

this regard, we note that a large number of drivers yield large transmission speed while

at the same time resulting into high energy consumption [21]. Therefore, the energy

consumption can be minimized by launching an optimal number of drivers for the data

transfer. Moreover, for every mobile client who offloaded their task into the MEC server

associated with the radio nodes, i.e. BSs, its location and the computation result is

known through the UE subscription procedure (i.e., through the LS), thus enabling

the location-aware traffic routing and obtaining Y (t).

The energy drained during the data transmission process consists of the following:

a constant energy for utilizing each fast tunable driver denoted by Oopt,y(t) ([J/s]),

the target transmission rate r0 [bits/s] and Lout(t). Thus, the energy is, inspired

by [22][121]:

θWCOM(t) =
∑Y (t)

y=1
Oopt,y(t) ly(t)

r0
, (5.6)

where the parameter Y (t) is obtained using the total number of target BSs as Y (t) =
⌈

1
α
· (ω(t)+1

ω(t)
)2
⌉

(see [22]), where ω(t) =
√

Υ
σNBS(t)

. α ∈ (0, 1] is a controllable factor that

determines the delay constraint of optical networks, σ ([ms]) is the reconfiguration cost

for tuning the transceivers, NBS(t) is an integer value representing the total number of

target BSs at time slot t, and Υ is the number of time slots at which the computed

workload is accumulated at the output buffer. α, σ, and Υ are fixed values. Lout(t) is

equally distributed over the Y (t) drivers.

5.2.2 Energy Patterns and Storage

The energy buffer of Fig. 5.1 is characterized by its maximum energy storage capacity

Bmax, and power charging/discharging and leaking losses are not assumed. At each

time slot t, the EM provides the energy level report to the MEC server, through the

pull mode procedure (e.g., FTP [30]), thus the EB level B(t) is known, enabling the

provision of the required computation and communication resources, i.e., the VMs and

laser drivers.

In this work, the amount of harvested energy H(t) in time slot t is obtained from

open-source solar traces within a solar panel farm located in Armenia [102] (see green

curve in Fig. 5.2), where the dataset time scale matches our time slot duration (1min).

The dataset is the result of daily environmental records for a place assumed to be free

from surrounding obstructions (e.g., buildings, shades). In our numerical results, H(t)

is obtained by picking one day data from the dataset and then scaling the solar energy
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to fit the EB capacity Bmax of 490 kJ. Thus, the available EB level B(t + 1) at the

beginning of time slot t+ 1 is calculated as follows:

B(t+ 1) = B(t) +H(t)− θMEC(t) + E(t), (5.7)

where B(t) is the energy level in the battery at the beginning of time slot t, θMEC(t) is

the energy consumption of the computing platform over time slot t, see Eq. (5.1), and

E(t) ≥ 0 is the amount of energy purchased from the power grid. We remark that B(t)

is updated at the beginning of time slot t whereas H(t) and θMEC(t) are only known

at the end of it.

For decision making by the resource controller, the received EB level reports are

compared with the following thresholds: Blow and Bup, respectively termed the lower

and the upper energy threshold with 0 < Blow < Bup < Bmax. Bup corresponds to the

desired energy buffer level and Blow is the lowest EB level that the MEC server should

ever reach. The suitable energy source at each time slot t is selected based on the

forecast expectations, i.e., the expected harvested energy Ĥ(t). If Ĥ(t) is enough to

reach Bup, no energy purchase is needed. Otherwise, the remaining amount up to Bup,

i.e., E(t) = Bup − B(t) is bought from the electrical grid. Our optimization framework

in the next section makes sure that B(t) never falls below Blow and guarantees that

Bup is reached at every time slot.

5.3 Problem Formulation

In this section, we formulate an optimization problem and it is defined in subsec-

tion 5.3.1.

5.3.1 Optimization Problem

Reliable server management procedures are an essential requirement when powering an

edge system with green energy. This ensures that the mobile users and telecommuni-

cation operators do not experience any service outages. To guarantee this, on per time

slot basis, in this work the online controller adaptively schedules the communication

and computing resources, at the same time receiving the energy level report from the

EM. The goal is to minimize the overall resulting communication-plus-computing en-

ergy, i.e., the energy consumption related to the MEC server’s VMs and transmission

drivers. To achieve this, for t = 1, . . . , T , where T is the optimization horizon, we
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define the optimization problem as:

P1 : min
E

∑T
t=1 θMEC(t) (5.8)

subject to:

C1 : d ≤M(t) ≤M,

C2 : Blow ≤ B(t) ≤ Bmax,

C3 : 0 ≤ fm(t) ≤ fmax,

C4 : 0 ≤ λm(t) ≤ λmax,

C5 : χm(t) ≤ ∆,

C6 :
∑M(t)

m=1 rm(t) ≤ rmax,

C7 : max{2Ωm(t)}+∆ ≤ τmax,

where E
∆
= {M(t), {αm(t)}, {Pm(t)}, {λm(t)}, ζ(t), Y (t)} is the set of objective variables

to be configured at slot t in the MEC server, for the computing-plus-communication

processes. Regarding the constraints, C1 forces the required number of VMs, M(t),

to be always greater than or equal to a minimum number d ≥ 1: the target of this

is to be always able to handle mission critical communications. C2 makes sure that

the EB level is always above or equal to a preset threshold Blow, to guarantee en-

ergy self-sustainability over time. C3 and C4, bound the maximum processing rate

and workloads of each running VM m. Constraint C5 represents a hard-limit on the

corresponding per-slot and per-VM processing time. Furthermore, C6 bounds the ag-

gregate communication rate sustainable by the VLAN to rmax and C7 forces the server

to process the offloaded tasks within the set value τmax.

From P1, we note that θMEC(t) consists of a non-convex component, i.e., Eq. (5.5),

while the others are convex and non-decreasing. Then, Eq. (5.5) can be convexified

into a convex function using GP concept [115], by introducing alternative variables and

approximations. In this, we introduce fixed parameters (i.e., µm, νm) and approxima-

tions. Dropping the index t for convenience, we let rm = 2λm/(τmax −∆). We obtain

Pm(rm) in terms of λm, by rearranging the Shannon-Hartley expression and substitut-

ing the value of rm, as: P̂m(rm) =
((2λm/(τmax−∆))−νm Wm) ln 2

µmWm
+ln(N

(m)
0 )−ln gm. From the

Shannon-Hartley expression, we simply observed the presence of the log-sum-exp func-

tion as it has been proven to be convex in [85] and recall that Pm(rm) = exp(P̂m(rm)).

To solve P1, we leverage the use of LLC [28], GP [115], and heuristics, obtaining

the feasible system control inputs ψ(t) = (M(t), {αm(t)}, {Pm(t)}, {λm(t)}, ζ(t), Y (t)),

that yield the best system behavior within T .
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5.4 Resource Controller Design and Server Manage-

ment

In this subsection, a server workload and energy harvesting forecasting method, and

an online resource management algorithm are proposed to solve the previously stated

problem P1. In subsection 5.4.1, we discuss the LSTM neural network used to predict

the short-term future server workloads and harvested energy, then in subsection 5.4.2,

we solve P1 by using LLC principles, GP theory, and heuristics, and lastly, in subsec-

tion 5.4.3 we put forward the ARCES algorithm.

5.4.1 Server Workload and Energy Prediction

In order to estimate the system workload over the prediction horizon T , we perform

time series prediction, i.e., we obtain T = 3 estimates of L̂(t + 1) and Ĥ(t + 1), by

using an LSTM network developed in Python using TensorFlow deep learning libraries

(Keras, Sequential, Dense, LSTM), with a hidden layer of 4 LSTM neurons, and an

output layer that makes a single value prediction. The dataset is split as 67% for

training and 33% for testing. As for the performance measure of the model, we use the

RMSE. In this work, prediction steps similar to Table 3.2 are adopted, and Fig. 5.3

shows the prediction results that will be discussed in subsection 5.5.2.

5.4.2 Edge System Dynamics

We denote the system state vector at time t by u(t) = (M(t), Y (t), B(t)), which con-

tains the number of active VMs, M(t), transmission drivers, Y (t), and the EB level,

B(t). The input vector ψ(t) = (M(t), {αm(t)}, {Pm(t)}, {λm(t)}, ζ(t), Y (t)) drives the

MEC server behavior (handles the joint VM soft-scaling and the tuning of transmis-

sion drivers) at time t. Note that {P ∗
m(t)} is obtained with CVXOPT, and {λ∗m(t)} is

obtained by following remark 1.

The system behavior is described by the discrete-time state-space equation, adopt-

ing the LLC principles [27][28]:

u(t+ 1) = φ(u(t), ψ(t)) , (5.9)

where φ(·) is a behavioral model that captures the relationship between (u(t), ψ(t)),

and the next state u(t + 1). Note that this relationship accounts for the amount of

energy drained θMEC(t), that harvested H(t) and that purchased from the electrical
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grid E(t), which together lead to the next buffer level B(t+1) through Eq. (5.7). The

online resource management algorithm, ARCES, finds the best control action vector

that yields the desired energy savings within the computing environment. Specifically,

for each time slot t, problem Eq. (5.8) is solved, obtaining control actions for the

prediction horizon T . The control action that is applied at time t is ψ∗(t), which

is the first one in the retrieved control sequence. This control amounts to setting

the number of instantiated VMs, M∗(t) (along with their obtained {α∗
m(t)}, {P

∗
m(t)},

{λ∗m(t)} values), NIC status to either active or not, ζ∗(t) ∈ (0, 1), and the optimal

transmission drivers, Y ∗(t). The entire process is repeated every time slot t when the

controller can adjust the behavior given the new state information.

Since the actual values for the system input cannot be measured until the next time

instant when the controller adjusts the system behavior, the corresponding system state

for t+ 1 can only be estimated as:

û(t+ 1) = φ(u(t), ψ(t)) . (5.10)

For these estimations we use the forecast values of load L̂in(t) and harvested energy

Ĥ(t), from the LSTM forecasting module.

Remark 1 (VM provisioning and load distribution): a remark on the provi-

sioned VMs at slot t, M(t), is in order. The number of active VMs depends on the

forecasted server workload, L̂in(t + 1), and each VM can compute an amount of up

to λmax (considering that virtualization technologies specify the minimum and maxi-

mum amount of resources that can be allocated per VM [122]). Then, the projected

number of VMs that shall be active in slot t to serve the forecasted server workloads

is hereby obtained as: M(t) =
⌈

(L̂in(t+ 1)/λmax)
⌉

, where
⌈

·
⌉

returns the nearest up-

per integer. We heuristically split the workload among VMs by allocating a workload

λm(t) = λmax to the first M(t) − 1 VMs, m = 1, . . . ,M(t) − 1, and the remaining

workload λm(t) = L̂in(t + 1) − (M(t) − 1)λmax to the last one. This load distribution

is motivated by the shares feature [122] that is inherent in virtualization technolo-

gies. This enables the resource scheduler to efficiently distribute resources amongst

contending VMs, thus guaranteeing the completion of the computation process within

the expected time.
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Algorithm 3: ARCES Pseudocode

Input: u(t) (current state)

Output: ψ∗(t) (control input vector)

01: Parameter initialization

S(t) = {u(t)}

02: for (n within the prediction horizon of depth T ) do

- L̂in(t+ n):= forecast the workload

- Ĥ(t+ n):= forecast the energy

- S(t+ n) = ∅

03: for (each u(t) in S(t+ n)) do

- generate all reachable states û(t+ n)

- S(t+ n) = S(t+ n) ∪ {û(t+ n)}

04: for (each û(t+ n) in S(t+ n)) do

- calculate the corresponding θMEC(û(t+ n))

end for

end for

end for

05: - obtain a sequence of reachable states yielding

minimum energy cost

06: ψ∗(t) := control leading from u(t) to ûmin

07: Return ψ∗(t)

5.4.3 The ARCES Algorithm

In order to obtain the best control action that will adjust the computing system be-

havior at time t, with negligible computational overhead, the controller explores the

prediction horizon of comprising discrete states and comes up with the feasibility ac-

tion set, and from it the control input that yields the minimum energy cost is selected

as ψ∗(t) = (M∗(t), {α∗
m(t)}, {P

∗
m(t)}, {λ

∗
m(t)}, ζ

∗(t), Y ∗(t)).
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The algorithm pseudocode is outlined in Algorithm 3 and it follows the technique

from [28]. Starting from the initial state, the controller constructs, in a breadth-first

fashion, a tree comprising all possible future states up to the prediction depth T .

The algorithm proceeds as follows: A search set S consisting of the current system

state is initialized (line 01), and it is accumulated as the algorithm traverse through

the tree (line 03), accounting for predictions, accumulated workloads at the output

buffer, past outputs and controls. The set of states reached at every prediction depth

t + n is referred to as S(t + n) (line 02). Given u(t), we first estimate the workload

L̂in(t+n) and harvested energy Ĥ(t+n) (line 02), and generate the next set of reachable

control actions by applying the input workload and energy harvested (line 03). The

energy cost function corresponding to each generated state û(t+ n) is then computed

(line 04). Once the prediction horizon is explored, a sequence of reachable states

yielding minimum energy consumption is obtained (line 05). The control action ψ∗(t)

corresponding to û(t + n) (the first state in this sequence) is provided as input to the

system while the rest are discarded (line 06). The process is repeated at the beginning

of each time slot t.

5.5 Performance Evaluation

This section present some selected numerical results of the ARCES algorithm for real

server workloads. The parameters that were used for the simulations are listed in

Table 5.2.

5.5.1 Simulation Setup

As one of the MEC deployment scenarios, we assume that the MEC server is placed at

an aggregation point where BSs in proximity can offload their computation workload

following the random real-valued arrival process. Our time slot duration τ is set to

1min and the time horizon is set to T = 3 time slots.

5.5.2 Numerical Results

In Fig. 5.3, we show real and predicted values for the server workloads (Server) and

harvested energy (Solar) over time. We track the one-step predictive mean value at each

step of the online forecasting routine. The obtained average prediction error (RMSE)

for the server workloads and harvested energy processes, both normalized in [0,1] for
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Table 5.2: System Parameters.

Parameter Value

Max. number of VMs, M 10

Min. number of VMs, d 1

Time slot duration, τ 1min

Idle state energy for VM m, θidle,m(t) 10 J

Max. energy for VM m, θmax,m(t) 60 J

per-VM reconfiguration cost, κe 0.005 J/(MHz)2

TOE in idle state, θTOE
idle (t) 13.1J

Max. allowed processing time, ∆ 0.8 s

Processing rate set, {fm(t)} {0, 50, 70, 90, 105}

Bandwidth, Wm 1MHz

Max. number of drivers, Y 6

Max. tolerable delay, τmax 2 s

Noise spectral density, N (m)
0 -174 dBm/Hz

Max. VM m load, γmax 5 Mbit

Driver energy, Oopt,y(t) 1 J/s

Target transmission rate, r0 1 Mbps

Energy storage capacity, βmax 490 kJ

Lower energy threshold, βlow 30% of βmax

Upper energy threshold, βup 70% of βmax

T ∈ {1, 2, 3}, are Lin(t) = {0.017, 0.019, 0.021} and H(t) = {0.038, 0.039, 0.039}. Note

that the predictions for Lin(t) are more accurate than those of H(t) (confirmed by

comparing the average RMSE), due to differences in the used dataset granularity.

However, the measured accuracy is deemed good enough for the proposed optimization

Our online server management algorithm (ARCES) is benchmarked with another

one, named Iterative-based Resource Scheduler (IRS), which is inspired by the iterative
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Figure 5.3: Forecast mean value for L(t) and H(t).

approach from [68]. In IRS, the optimum computing-plus-communication parameters

are obtained in an iterative manner: at the end of each cycle, convergence conditions

are used to determine if the found solution is acceptable or the optimization process

should continue. The observed conditions are as follows: (i) to ensure that the total

load Lin(t) has been fully allocated with accuracy
∑M(t)

m=1 λm(t)−Lin(t)

Lin(t)
≤ ǫ, with ǫ = 0.01;

(ii) to verify if the selected working rate fm(t) is able to cope with the input load Lin(t),

guaranteeing that the computation processing time is within the server’s response time

limit ∆, i.e., Lin(t) ≤ fm(t)∆ . The average energy savings obtained by ARCES are
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shown in Fig. 5.4. The average results for ARCES (κe = 0.005,Γm = 0.5mW, η = 1.4

Gbit/J) show energy savings of 69%, while IRS achieves 56% on average, in both cases

with respect to the case where no energy management procedures are applied; i.e., the

MEC server provisions the computing resources for maximum expected computation

workload (maximum value of θMEC(t), with M = 10, ∀t). As expected, the highest

energy savings peak is observed at 9 h as the aggregate computation requests/workload

was at its lowest with an expected increase in the computation workload and harvested

solar energy in the near future. The effectiveness of the joint VM soft-scaling and

tuning of transmission drivers, coupled with foresighted optimization is observed in

the obtained numerical results.

In Fig. 5.5, we show the effects of the per-VM reconfiguration cost on θMEC(t) at

κe = {0.001, 0.005} (Γm = 0.5mW, η = 1.4 Gbit/J), taking into account the perfor-

mance of ARCES when compared with IRS for M(t) = 1, . . . ,M . It can be observed

that θMEC(t) increases with large κe only for small values of M(t), and as M(t) in-

creases the energy consumption decreases for large κe. Moreover, ARCES leads to an

energy consumption reduction with respect IRS from 25% to 7% (case of κe = 0.005)

and from 7% to 5% (case of κe = 0.001). When ARCES is compared with the case

where no energy management is applied (maximum value of θMEC(t), with M = 10,

∀t), the obtained energy reduction ranges from 45% to 31% (case of κe = 0.005) and

from 25% to 21% (case of κe = 0.001). These numerical results confirm that jointly au-

toscaling the available computing-plus-communication resources within the computing

platform provides remarkable energy savings. These results conforms to our expecta-

tions from [120].

5.6 Conclusion

In this summary, we have envisioned a hybrid-powered MEC server placed in proximity

to a BS cluster for handling the offloaded computation workload. Moreover, the use

of green energy promotes energy self-sustainability within the network. We have con-

sidered a computing-plus-communication energy model, within the MEC paradigm,

and then have put forward a combination of a traffic engineering- and MEC Loca-

tion Service-based online server management algorithm with EH capabilities, called

Automated Resource Controller for Energy-aware Server (ARCES), for autoscaling

and reconfiguring the computing-plus-communication resources. The main goal is to

minimize the overall energy consumption, under hard per-task delay constraints (i.e.,
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QoS). ARCES jointly performs (i) a short-term server demand and harvested solar

energy forecasting, (ii) VM soft-scaling, workload and processing rate allocation and

lastly, (iii) switching on/off of transmission drivers (i.e., fast tunable lasers) coupled

with the location-aware traffic scheduling. Numerical results, obtained with real-world

energy and server workload traces, demonstrate that the proposed algorithm (ARCES)

achieves energy savings of 69%, on average, with an energy consumption ranging from

31%-45% at high per-VM reconfiguration cost and from 21%-25% at low per-VM re-

configuration cost, with respect to the case where no energy management techniques

are applied.
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Chapter 6

Conclusions

6.1 Summary

This final chapter draws the conclusion of the entire dissertation. The common thread

which connects all the chapters is certainly the strong emphasis on the use of green

energy for purposes of energy self-sustainability, forecasting and foresighted optimiza-

tion, together with BS sleep mode, VM soft-scaling, tuning of transmission drivers,

for making ES decisions in a forward-looking fashion. In addition, the use of online

algorithms is adopted and we have used some of the common mathematical tools.

The aim of the thesis was to put forward research on dynamic resource manage-

ment procedures for purposes of energy savings and QoS guarantee, within the MEC

paradigm. Towards this, different MEC deployment scenarios suggested by ETSI and

mobile operators were considered as our system model examples. To improve energy

savings and guarantee QoS, the LSTM neural network is used for forecasting the traffic

load and harvested energy, and control-theoretic techniques, together with heuristics,

are used for obtaining the best system control input, per time instance. The obtained

numerical results uncover the capabilities of MN traffic load and energy traces to-

wards the development of traffic-oriented edge network management solutions where

the combination of forecasting and foresighted optimization help in obtaining the con-

trol actions that drives the system towards the desired system behavior.

In Chapter 3, the integration of MEC and EH BS for computing and communication

services provision in remote/rural areas is pursued. Here, an off-grid BS empowered

with computation capabilities is considered and its is fully powered by green energy

(solar and wind). For data communication from the remote site to the remote cloud,

the system uses a microwave backhaul. Towards energy savings and QoS guarantee,

we dynamically provision computing and communication resources using an online
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LLC-based algorithm that use the forecasted traffic load and harvested energy as input.

Chapter 4 was devoted to the development of a robust distributed algorithm for

managing a group of EH BSs empowered with computation capabilities. Towards

this goal, we consider a hybrid edge computing architecture where computing servers

are co-located with each BS, and a centralized controller (placed at a point within

range to a set of BSs) is utilized to manage them, deciding upon the allocation of

their computing and transmission resources. To manage the communication sites, the

controller partitions the BSs into clusters based on their location; then, for each cluster

it performs online supervisory control by forecasting the traffic load and the harvested

energy using a LSTM neural network, then employ foresighted optimization towards

obtaining the control inputs that will drive the edge system towards the desired system

behavior, per time instance.

Finally, in Chapter 5, we addressed the shortcomings of the MEC server energy con-

sumption model and then presented a traffic engineering- and MEC Location Service-

based online server management algorithm with EH capabilities. The computing plat-

form is energized by solar (main supply) and power grid (back up). To improve energy

savings, we provisioned the computing and communication resources, i.e., VMs and

transmission drivers, using the forecasted server workload and harvested energy, and

clients current location information. The online algorithm uses the LLC principles and

heuristics towards obtaining the desired edge system control inputs, per time instance.

6.2 Future Research Directions

As this is a relatively new research area, there are many possible future research direc-

tions and they are outlined as follows.

Container-based virtualization within a MEC server: The thesis is based

on the use of VMs within computing platforms. However, due to the ascendency

of containers and the enormous effort that open-source communities have made to

continually improve their management frameworks over the years, the consideration of

containers as computing resources needs to be considered. In addition, their energy

consumption needs to be quantified. The use of containers in virtualized computing

platforms will reduce the energy drained as they produce lower overheads than VMs.

The combination of container-based virtualization and green-based load balancing is

an open problem that needs to investigated towards energy savings.

Green-based traffic load balancing: As EH technologies advance, powering the
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edge apparatuses with green energy (e.g., solar and/or wind) is a promising solution to

save on-grid power due to their location, reliability, carbon footprint and cost. To fully

utilize the harvested energy, it is desirable to incorporate the green energy utilization

as a performance metric in traffic load balancing strategies, instead of using the traffic

load (e.g., network impact). With green-based traffic loading, MNs may enable BSs

with sufficient green energy to serve more traffic while reducing the traffic loads of BSs

consuming on-grid power. This problem is still open as the obtained energy savings

can be compared with the work done in Chapter 4.

Alternative forecasting methods: The research work found in this thesis make

use of the LSTM neural network for forecasting the traffic load and harvested energy.

To observe its performance the RMSE is used. Since forecasting requires accurate

predictions, therefore, there is a need for another forecasting method, e.g., CNN for

multi-step time series forecasting, in order to determine the most accurate method.

This problem is still open as CNN is mostly used for handling image recognition.

Distributed control for densely-deployed EH BSs: In Chapter 4, we have

considered an environment where a centralized entity, an edge controller, that manages

a group of BSs empowered with computation capabilities. Even though the energy

minimization problem was solved in a distribute manner, there exists a gap where

we consider BSs that cooperates using distributed algorithms (no centralized entity).

Here, the BSs act as multi-agents that interact with each other over an information

exchange network.

Computation peer offloading for energy-constraint edge system: The re-

search presented in this thesis assumed the ability compute the offloaded workload

within a single BS site (BS co-located with MEC server). In order to handle uneven

computation workloads in the network when some of the BS sites are on sleep mode,

cooperation among BSs via workload peer offloading can be exploited to avoid com-

putational delays at overloaded BSs, as computing resources are always limited. This

problem is still open for investigation using the scenario of Chapter 4 and 5 in order

to maximize the long-term system wide performance (i.e., minimizing latency) while

taking into account the available energy in the EB.

Content caching: Concerning the work of Chapter 5, we have assumed the com-

puting platform is cache-enabled and neglecting the energy cost contributed by this

process. This requires special attention in order to have a complete computing-plus-

communication energy cost within a cache-enabled MEC server. Thus, the energy

consumption problem within the server needs to be further investigated.
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