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Summary

Part I - Background and Aims

Diabetes is a chronic disease characterized by impairments both in the secretion/action the

insulin hormone. As discussed in Chapter 1, insulin acts on the metabolism of glucose, since it

enhances glucose uptake by the tissues and suppresses hepatic glucose production. Diabetes is

treated with a combination of insulin infusions, drugs and physical exercise. Unfortunately,

diabetes therapy is quite difficult to tune individually, and in diabetics glycemia (glucose

concentration in blood, BG) often exceeds the normal range (70-180 mg/dl). Conditions of

hypoglycemia (BG<70 mg/dl) and hyperglycemia (BG>180 mg/dl) are threatening for the

patient in the short and long term, respectively. Severe hypoglycemia causes a suffering of

the tissues, and in particular of the brain (because glucose is their most important nutrition

factor), and may lead to coma. Hyperglycemia induces complicances such as retinopathies,

nephropathies and various cardiovascular diseases. For these reasons, it is important to

achieve tight control of the glycemia. Glycemia can be monitored in diabetic patients mainly

though 2 strategies. The first is based on few measurements a day performed via fingerpricks

(self monitoring blood glucose, SMBG). The second is based on the recently developed contin-

uous glucose monitoring (CGM) devices, which allow collecting a CGM measurement every

1-5 minutes, hence allowing to track the physiological glucose dynamics with finer detail.

In order to achieve a good therapy it is crucial to be able to alert the patient promptly

in order to allow time to the therapeutic actions (sugar ingestion, insulin administration) to

be effective. Moreover, it is important to characterize the individual features of the patient
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by analyzing the so-called glucose variability.

As discussed in Chapter 2, several indexes and transformation of the glucose scale may

be used to characterize glucose variability. Along with several indexed based on statistical

analysis of the glucose time-series, it has been suggested by Kovatchev (31) that the study of

glucose concentration time-series should take into account that the glycemic range is asym-

metric and that the distribution of glucose concentration values is skewed within the range.

Kovatchev proposed a punctual transformation of the glucose scale (static risk, SR), assign-

ing to each glucose level a specific risk value. Most indexes available in the literature for the

analysis of glycemic time-series were developed based on SMBG measurements.Today, the

availability of CGM signals opens the possibility to embed glucose dynamics information in

the analysis of glucose time-series. In this thesis the concept of clinical risk and of glucose

variability will be developed explicitly embedding the trend of the glucose signal in a new

”Dynamic” Risk Function, which will be used as basis for online generation of alerts, and for

the definition of new variability indexes. Such indexes will be then included in a multivariate

analysis for the parsimonoius description of glucose variability.

Part II - Conceptual Design and Implementation

In this thesis the Kovatchev’s risk function (Static Risk) will be further developed to be

adapted and improved exploiting the natural information brought by CGM signals. In fact,

these time-series are sampled more frequently, and allow an estimate of the first time deriva-

tive of the glucose signal. In Chapter 3, a Dynamic Risk (DR) function will be defined, which

explicitly modulates the risk function through the information of the first-time derivative. In

particular, the DR function will be structured in such a way that the actual SR associated

with the glucose level is amplified or damped according to the time-derivative: if the glucose

signal is heading toward a critical region (hypo or hyperglycemia) the risk is increased, while

it is reduced if the glycemia is recovering to safety values. As far as the algorithms for the

DR implementation are concerned, in Chapter 4, particular care will be put in the strategy

to evaluate the first time derivative, since the measurement noise, always present in the CGM

signals, tends to be amplified by the derivative. In this work this task will be carried out by

a method based on regularized deconvolution which is suitable for online application, e.g. to

be used in algorithms for the generation of hypo and hyperglycemic alerts.
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Part III - Application of DR for Hypo/Hyperglycemic Alert

Generation

DR is intrinsically predictive, allowing anticipating threshold crossings and hence alerting the

patient with relative temporal gain to take adequate therapeutic actions. To show this, in

Chapter 5the DR function will be applied both on simulated and on real CGM data collected

by several type of sensors. Results on simulated and real data show that hypoglycemic events

can be anticipated of 12 to 18 minutes by simply evaluating the DR of the glycemic time-

series. Moreover, in Chapter 6 a hypo alert generation strategy based on the combination of

a short-term prediction of the CGM signal via Kalman Filter and DR will allow anticipating

the event of more than 20 minutes with relatively small number of false hypo/hyperglycemic

alerts.

Part IV - Application of DR for the (Parsimonious) Description

of Glucose Variability

Dozens of indexed evaluated from CGM/SMBG time series have been proposed to character-

ize and assess glucose variability. None of them explicitly exploit the continuous feature of

CGM signals, in fact, none explicitly includes the information of time-derivative as a variabil-

ity factor. Based on the Dynamic Risk Space (DRS), a phase plot where glucose trajectories

(glucose value vs time-derivative) can be effectively shown to evaluate glucose variability and

control, several new indexes will be developed in Chapter 7 to analyze potentially useful

features of glucose signals.

Then, starting from the tens of indexes proposed in the literature and those developed in

the present thesis, a multivariate technique, the Sparse Principal Component Analysis will

be applied in Chapter 8 to a set of 48 indexes evaluated on a dataset of 60 CGM signals, in

order to understand which is the best combination for the description of glucose variability.

SPCA indicates that 5 components are relevant for the analysis of the dataset variance and

that indexes explicitly considering information about the first time derivative are relevant for

the description of glucose variability.

In summary, the utility of the DR function developed in this thesis is twofold:

• It allows assessing a measure of dynamic risk (function of both level and trend of the

glucose signal) and results to be predictive of threshold crossings
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• It allows defining new indexes for the assessment of glucose variability and quality of

control which result to be complementary to indexes available in the literature.
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Background and Aims
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1
Monitoring & Therapy of Diabetes

1.1 Pathophysiology of Diabetes

In human beings, glucose represents the basic nutrition factor for the muscles and the only en-

ergy source for the brain. Glucose reaches the blood stream via several mechanisms (released

by the intestine after a meal, or produced by the liver and, in small part, by the kidneys in

fasting conditions) and is then absorbed by tissues either via hormone-mediate mechanisms

(e.g. by the muscles) or via non-mediated transportation (e.g. by the brain). In particular,

the metabolism of glucose in the healthy people is mainly controlled by insulin, an hormone

secreted by the islets of Langerhans in the pancreatic beta-cells, which lowers glucose con-

centration in blood after a meal by facilitating the uptake of glucose by the muscles and by

suppressing the hepatic production of glucose by the liver. If the glycaemia decreases and

sufficient nutrients delivery to the tissues is not guaranteed, counter-regulatory hormones

such as glucagon are secreted and stimulate the conversion of glycogen to glucose, allowing

to keep the concentration of glucose in the safety range (39).

Diabetes is a chronic disease, characterized by the inability of the body to control the concen-

tration of glucose (glycaemia) in blood. In particular, deficiency in the secretion and action

of insulin represents the main cause of impaired glucose control. Although impairments in

the glycaemic control may be referred to with the generic definition of Diabetes, such impair-

ments can have very different genesis, two major pathologies are usually considered: Type 1

and Type 2 diabetes (T1D and T2D respectively).

1. Type 1 Diabetes also known as Insulin Dependent Diabetes Mellitus (IDDM or,

formerly juvenile diabetes) is usually associated with autoimmune processes which de-

7



1. MONITORING & THERAPY OF DIABETES

stroy the pancreatic beta-cells, although in some cases (10%) no evidence is present

to confirm autoimmune attacks. Patients with T1D usually show the first symptoms

in the childhood/adolescence; major symptoms are the polyuria (frequent urination),

polydipsia (increased thirst), and weight loss.

2. Type 2 Diabetes also known as Non Insulin Dependent Diabetes Mellitus (NIDDM)

usually affects elderly patients. It represents the 90% of the prevalence in the diabetic

population. It is usually caused by a resistance to insulin action at a peripheral level,

which results in augmented secretion. The combination of hyperglycemia (due to the

resistance and the decreased uptake of glucose in the periphery) and the altered secre-

tion causes a stressed the pancreas which eventually deteriorates until it is unable to

secrete insulin.

Diabetes is taking on epidemic proportions with over 346 millions individuals affected by

this disease worldwide (1 out of 20 adults, 90% of whom have Type-2 diabetes). By 2030,

the number of diabetics is expected to double (66).

Tight control of the glycaemic level is of crucial importance, since conditions of hypogly-

caemia (blood glucose concentration, BG<70mg/dl ) and hyperglycaemia (BG>180 mg/dl)

are life threatening. In particular, in condition of hypoglycaemia energy supply to the brain

is not guaranteed and in the very short-term (minutes) symptoms like shivering, cold feeling

and headache may occur. If the counter-regulation is not sufficient, coma may eventually oc-

cur when the glycaemia falls below the severe hypoglycaemia (SH) threshold (around 35-40

mg/dl). Prolonged exposure to high glucose concentration is also dangerous for patients in

the long term, since it is the cause of complications such as nephropathies, cardiovascular

diseases and retinopathies.

In the diabetic patient, the glycaemic level often exceeds the normality range since the ac-

tion/secretion of insulin is lacking or missing. The conventional therapy for T1D and T2D

is different. In T1D exogenous injections of insulin are needed to compensate for missing

secretion from the pancreas. Before each meal, the patient decides the insulin bolus to be

injected to allow the tissues to uptake the glucose that will reach the bloodstream. Such

bolus is defined according to tables designed by the physician and tuned on the patient’s

history. Moreover, either slow-acting insulin or a continuous infusion of insulin are infused

to mimic the so called insulin basal rate, which allows the body to continuously absorb the

glucose which is produced mostly by the liver. For some details in insulin delivery including

8



1.2 Technologies for Glucose Monitoring in Diabetic Patients

references to research on the artificial pancreas, we refer the reader to Appendix A. In T2D,

the therapy consists in exercise and diet. In some T2D subjects, after years of overproduction

of insulin, the pancreas may cease to secrete insulin and exogenous insulin infusions become

necessary (48).

Insulin dosing is a very difficult task, and often patients are not able to maintain their glu-

cose concentration ”in target” because of insulin under/overdosing. It is very important to

keep the glycaemic concentration in blood monitored in order to effectively tune the insulin

bolus and basal rate. Patient with diabetes are thus required to monitor their blood glucose

levels frequently, as explained by the following section, where Self Monitoring Blood Glucose

(SMBG) and the new Continuous Glucose Monitoring (CGM) will be described.

1.2 Technologies for Glucose Monitoring in Diabetic Patients

The most established and used technique to monitor the glycaemia, is the used of the so

called Self Monitoring Blood Glucose, or SMBGs. Devices for the Self Monitoring of glucose

have become available in the early seventies, and have now become a pocket tool that any

diabetic uses daily.

1.2.1 Self Monitoring Blood Glucose (SMBG)

Figure 1.1: Commercially available SMBG devices. From left to right: LifeScan One Touch R©

Ultra R©2, Accu-Chek R© Aviva, and iBGstar TMmarketed by sanofi-aventis.

The term SMBG refers to measurements of capillary blood glucose taken via a finger

pricks. SMBGs are point-in-time measurements, which provide accurate information (35)

about the glucose concentration in blood. The measurement is usually performed with a

glucometer; examples of commercially available devices are shown in Fig 1.1. While the first

two are standalone devices (LifeScan One Touch R© Ultra R©2 (36) and Accu-Chek R© Aviva (51))

and only need to be fed with a measurement strips, the third device (iBGstar TMmarketed by

9



1. MONITORING & THERAPY OF DIABETES

sanofi-aventis (53)) can be connected to an Apple iPhone to register all the information that

a patient needs, and can be interfaced with pieces of software that run on the smartphone.

The measurements provided by the glucometers are sufficiently accurate to assess the glycemia

in a specific moment, but unfortunately, the sampling procedure cannot be repeated more

than 5-6 times a day. Indeed, the finger prick is painful for the patient, who needs to collect

a drop of blood from the fingertips at each measurement. Few SMBGs give a glimpse on

what the punctual glycaemia is, but do not allow capturing the glucose dynamics, which

are much more complex. In order to overcome these limitations, the so-called Continuous

Glucose Monitoring CGM devices were developed at the beginning of the 21st century.

1.2.2 Continuous Glucose Monitoring (CGM)

The need for continuous measurements of the glycaemia can be easily understood by analyzing

Figure 1.2, where few SMBGs (red stars) are plotted against the continuous glucose (blue

line) measured for two days with a CGM device. The richer information of the CGM device

allows to highlight, for example, the hypoglycaemic event at minutes 1600 and 2800.
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Figure 1.2: Comparison between SMBG (red stars) and CGM (blue line) measured for 2 days.
Data are taken from a larger dataset collected in the 7th FP EU project DIAdvisior (1). The
patient wears an Abbott Freestyle Navigator Sensor that, for this specific study, had a sampling
rate of 10 minutes

Moreover, CGM can enable the possibility of developing sophisticated closed-loop control

techniques to optimize insulin delivery in T1D patients (see e.g. (11), (10) and (28) for three

recent reviews) or simpler glucose prediction techniques to be applied in real-time to prevent

the occurrence of hypo and hyperglycaemic episodes (see (60) for a review on applications of
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1.2 Technologies for Glucose Monitoring in Diabetic Patients

CGM). The greater amount of information provided by CGM also offers a completely new

perspective to the analysis of the physiology and of the behavior of diabetic patients, allowing

to better define the differences between subjects and the different reactions within the same

subject to different stimuli.

At the present time, CGM devices can provide a glycaemic measurement every 1-10 minutes

for up to 7 days. From a technological point of view it is possible to divide CGM devices in

minimally or non-invasive.

1.2.2.1 Minimally Invasive CGM based on the Glucose-Oxidase Principle

Minimally invasive CGM devices measure the glycaemic level in the interstitial fluid instead

of the blood compartment, as done instead by SMBG (which require direct pinching of the

capillaries).

At present time the most used commercial CGM devices, also displayed in Figure 1.3,

are:

• DexCom Seven Plus TM(Dexcom Inc., San Diego, CA), FDA approved (14), sampling

rate 5 minutes;

• Medtronic Minimed Paradigm R© Real-time Revel TMSystem (Medtronic Inc., Northridge,

CA), FDA approved (38), sampling rate 5 minutes;

• Medtronic Guardian R© Real-time System, (Medtronic Inc., Northridge, CA), FDA ap-

proved (38), sampling rate 5 minutes;

• Abbott FreeStyle Navigator TM(Abbott Laboratories, Alameda, CA), FDA approved

(2), sampling time 1 minute;

• Menarini Glucoday (Menarini Diagnostic, Florence, Italy, sampling time 3 minutes).

As shown in Figure 1.3, CGM devices typically consist on two components: a wear-

able device, composed by a sensor placed on a micro-needle inserted in the sub-cutis and a

transmitter, which usually communicates wireless with the storage component and a pocket

device, which receives the data from the transmitter and allows memorizing and displaying

the collected data.

Other subcutaneous continuous sensors are based on microdialysis systems, which use a

fine, hollow microdialysis fibre placed subcutaneously. The probe is perfused with isotonic
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1. MONITORING & THERAPY OF DIABETES

fluid, from an external pool, while interstitial glucose freely diffuses into the fibre, to be then

pumped out of the body to a glucose-oxidase sensor. A device exploiting this principle is the

Menarini GlucoDay, produced by Menarini Diagnostics, Florence, Italy.

The crucial component is obviously the sensor, which, for all the above devices, is based on

the glucose-oxydase enzyme reactions or on microdialysis structures. In presence of glycose

the gluco-oxydase enzyme produces hydrogen peroxide, which is then converted in oxygen

and protons with generation of current. The reaction is the following

glucose +O2
glucose oxidase−−−−−−−−−−−−→ H2O2 + gluconic acid

H2O2
∼700mV−−−−−→ O2 + 2H+ + 2e−

(1.1)

In particular the enzyme is placed at the top of a needle and protected by a membrane

which is permeable to glucose. An ammeter detects the current generated by the oxidation

of hydrogen peroxide at the working electrode. The measured electrical current is then

translated into the glucose scale by an operation called calibration. In particular, given some

SMBG reference, the current signal is corrected to match the glucose value.

Figure 1.3: Some commercial CGM devices: the Minimed Paradigm R© Real-Time Revel
TMSystem (upper left), the Abbott FreeStyle Navigator TM(upper right), the DexCom Seven
Plus TM

(bottom left) and the Menarini Glucoday (bottom right).

In this thesis, data collected with the DexCom Seven Plus, the Abbott Freestyle Navigator
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1.2 Technologies for Glucose Monitoring in Diabetic Patients

and the Menarini Glucoday will be used.

1.2.2.2 Other Techniques for CGM

As alternative to subcutaneous sensors based on the glucose-oxydase enzyme, other systems

and prototypes have been proposed for CGM monitoring. We cite some of them for sake of

completeness.

• Iontophoresis and Sonophoresis.

These techniques require the to stimulate of the skin from outside with different tools,

in order to extract glucose from the skin for its direct measure. The first method

is based on the exctraction of glucose associated with the application of an electrical

potential, causing the migration of ions from beneath the skin. In particular, sodium

and chloride are pulled towards the cathode and anode respectively. The ion flow also

causes neutral molecules like glucose to migrate across the skin along with the water

hydrating the ions. Glucose is then detected with the enzymatic reaction reported in

Eq. 1.1. The GlucoWatch G2 Biographer (Cygnus Inc., Redwood City, CA; not on

the market anymore because it caused skin irritation in users), is an example of device

which used the reverse iontophoresis. Sonophoresis uses low-frequency ultrasounds to

create an array of microscopic holes on human skin, which increase its permeability,

allowing glucose to trespass the skin to be directly measured. The SonoPrep (Echo

Therapeutics Inc., Philadelphia, PA (15)) is a device which exploits this technology.

• Micropores and Microneedles Techniques.

For example, micropores techniques perforate the stratum corneum without perforating

the full thickness of the skin with the aid of pulsed laser or local heat. Interstitial fluid

is then collected applying vacuum and a direct measure of glucose is obtained.

• Noninvasive CGM The needle inserted in the sub-cutis represents a nuisance for the

patient, as well as the application of a current for the direct extraction of glucose from

the blood stream for direct measurement. Therefore research is active in developing

tools for the non-invasive detection of signals correlated with the glycaemia. Among the

physical principles exploited for this scope, we can list optical techniques, e.g. based

on absorption phenomena (Near InfraRed Spectroscopy, Mid InfraRed Spectroscopy),

on scattering (Raman Spectroscopy, Occlusion Spectroscopy), on Optical Coherence

13



1. MONITORING & THERAPY OF DIABETES

Tomography, on Fluorescence Technologies; Photoacoustic Spectroscopy; Impedance

Spectroscopy; Electromagnetic Sensing; Thermal Emission Spectroscopy.

A general idea is to combine several of these techniques to obtain signals which are correlated

to the concentration of glucose in blood (multisensor concept). Although non-invasive CGM

are of course very attractive from a user’s point of view, they do not offer the same accuracy

of subcutaneous sensors yet. In particular they are difficult to calibrate, and they are not yet

usable to extract reliable information on glucose dynamics (62).

In this thesis, only subcutaneous minimally invasive CGM will be considered, hence the

acronym CGM will be always referred to these kind of devices.

1.3 Use of Glucose Concentration time-series

Diabetic patients who monitor themselves via SMBGs and CGM can gather a lot of informa-

tion regarding their pathology. In particular, patients can exploit such information in several

ways, e.g. tune the insulin boluses or to check if corrections are needed.

From the research point of view, SMBG series some insight on glucose dynamics. In

fact extensive datasets of glucose monitoring via SMBGs are available and can be used, for

example to study the differences among patients or to study the long term variations of

glucose signals, see e.g. (61), where the relationships between glucose levels monitored via

SMBGs and long term complications in diabetes are studied.

The advent of CGM devices offers an even richer insight in glucose dynamics, allowing

expanding the use of monitoring signals for example for richer analysis of glucose variability

in a specific subject. Also, the continuous nature of CGM makes them crucial for the op-

timization of insulin dosing (control) possibly with automatic delivery (artificial pancreas)

and for the development of alert generation tools. In the next Chapter, we will reviews the

most used algorithms and indexes proposed to assess glucose variability in diabetic patients.

We will also discuss some margin of improvements which motivated the development of the

present thesis.
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2
Glucose Variability and Quality of Glucose Control: State of Art

and Aim of the Thesis

2.1 Glucose Variability and its possible Physiological Role

Several aspects and characteristics of diabetes are enclosed in the concept of glucose vari-

ability, from the amplitude of the glucose range reached by a patient, to the repeatability

in different meals or days of a specific glycemic pattern. Glycemic variability is one of the

possible factors in the etiology of complications from diabetes. In a recent review article

(30), an analysis on the possible relationships between glycemic variability and complications

in diabetes is reported. Glucose variability has been considered as a risk factor for several

issues in diabetes. In particular, as described below, many studies investigate the correlation

between glycemic variability and major processes in the degeneration of tissues in diabetes.

• Formation of Reactive Oxygen Species. In an article by Brownlee (5) the author

explains that all complications of diabetes could ultimately be explained by overpro-

duction of the reactive free radical molecule, superoxide, generated in response to hy-

perglycaemia acting on cellular mitochondria. In (41) and (7) two example of studies

that support the correlation between glucose variability and the oxidative stress are de-

scribed. In (63) such hypothesis is not supported. Notice that the groups use different

tools to measure the oxidative stress.

• Increase in the Glycated Hemoglobin (HbA1c) . Glucose variability may also be

responsible for increase in HbA1c increase from normal to diabetic levels. While some

groups report a major influence due to postprandial hyperglycemia, and only a mild
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effect of basal hyperglycemia, on HbA1c concentration (at levels lower than 8-9%) (40),

other groups found a correlation between HbA1c levels with glucose mean, no matter

how this mean is reached (13) .

• Microvascular Disease. The major study investigating on the relationships between

glucose varability and diabetes complication is the so called Diabetes Control and Com-

plications Trial Research Group (DCCT ) study (61). This study involved 1441 diabetics

patients who were studied for approximatively 10 years. Although controversial, the

study showed that HbA1c levels, considered to be only dependent on glucose mean, is

only responsible for part of the complications. In particular the study hypothesized

that big excursions in glycemic levels are more responsible for the development of com-

plications than the average glucose level. It is still controversial which component plays

a major role, since usually patients that experience big excursions are also those which

have a higher glucose mean.

• Macrovascular Risk. The major role in complications involving the big vessels seems

to be played by post-prandial hyperglycaemia. In particular, post prandial hypergly-

caemia has been shown to be predictive of future cardiovascular events, even in non

diabetics (4). Post prandial hyperglycaemia seems to be correlated with carotid intimal

thickness (17). Other studies report a major role of the mean glucose rather than of

glucose excursion (44).

The effective role of glucose variability is still controversial. There is no consensus on the

influence of this feature of glucose dynamics on complication of diabetes. Also, there is no

consensus on the best way of measuring and assessing glucose variability. In the next section,

we will give a brief overview on the possible metrics used for such assessment.

2.2 Literature Methods to Measure Glucose Variability

A review on metrics commonly used in clinical practice for the evaluation of variability

and control can be found in (52), where measures of glucose variability were divided in

4 families: i) methods based on standard deviations and related methods, ii) methods to

detect excursions, iii) methods based on day-to-day variability and iv) methods based on

variability during relatively short segments of the glucose time series.
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2.2 Literature Methods to Measure Glucose Variability

2.2.1 Basic Statistical Indexes (mean and SD measures)

Statistical indexes are often used to describe the feature of glycemic signals. Clinicians use

these tools because they are simple and give a rough idea of the efficiency of the therapy and

some microscopic indication to tune the insulin dosing. Used metrics, with rules to compute

them, are:

• MeanT (Mean Total): Evaluates the average of all available glucose values, where T

stands for Total.

• SDT (Standard Deviation Total) : Evaluate SD of all days and all times of day, where

T stands for Total..

• CV (Coefficient of Variation) : Evaluate the SD and mean on the total signal (all data),

then evaluate the ratio between the two as 100 ∗ SDT
meanT

• SDw (Standard Deviation within days) : Evaluate SD for all measurements in each 24-h

day and then average the SD values

• SDhh:mm (Standard Deviation between time points) : Evaluate the average glucose for

any time of day for all days, then calculate SD of this average profile versus time.

• SDws h(Standard Deviation within series) : Evaluate SD for any desired segment of the

glucose series (e.g. intervals of 1 hour) at any possivle time, then averaged.

• SDdm(Standard Deviation daily means) : Evaluate the mean glucose for each day, then

calculate SD of these means

• SDb hh:mm (Standard Deviation between days within time points) Evaluate SD of glu-

cose values for any specified time of day, then average these SDs

• SDb hh:mm // dm (Standard Deviation between days within time points, corrected for

changes in daily means): same as above, but using the deviation of each observation

from the mean for the same day

• SDI (Standard Deviation of Interaction) Two-way ANOVA with replication.

• IQR (Inter-Quartile Range Measures) % of values falling between a specified range (e.g.

the 10 th, 25th, 50th, 75th, 90th percentiles)
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2.2.2 Variability Measures from Glycemic Excursions

The most used index to evaluate the glycemic excursion is the MAGE (55), defined as

MAGE =

∑ne
i=1 ∆g(i)

ne
(2.1)

where

• ne: number of excursion of amplitude greater that 1 SD

• ∆g(i) ith glucose excursions grater than the SDT of the whole monitoring.

The MAGE index is highly correlated with SD, so it is sometimes used as a substitute for

SD (52). Moreover, the choice of the index parameters is made by the investigator, making

it hard to compare results obtained on different datasets from different researchers. Also

consider excursions happening on a change of day are not considered, and, most important,

there is not a clear definition for the definition of what should be considered an excursion.

2.2.3 Day-to-Day Variability

A popular tool used to quantify the variability on two consecutive days is the Mean of Daily

Differences (MODD), defined by Service and Nelson in (54), defined as

MODD =

∑s
i=1 gi+sgi
s

(2.2)

where

• s: is the number of samples collected in one day

• gi: is the ith glucose sample of the first day

• gi+s: is the sample corresponding to the ith sample on the next day

The peculiarity of MODD is that it was originally defined from standardized conditions,

i.e. the patient was monitored for m days (typically 2) in the same conditions with invasive

sampling of blood drawn at the same time of day to allow a comparison between the m days.

The advent of CGM devices renders the use of MODD easier, since it is possible to compare

several days monitored with frequent measurements. It can be shown that the information

provided by MODD is similar to that carried by SD (52).
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2.2.4 Short-Term Variability

An index called Continuous Overlapping Net Glycemic Action (CONGA), proposed by Nathan

et al. in (42), evaluates a within day variability. In practice, SD is evaluated for a time-serie

composed by the differences between the glycemic value and the glycemic value collected m

hours later. Parameter m can be chosen by the investigator.

2.3 Concept of glucose control quality and literature indexes

Control of glucose means keeping the glycemic levels within safety regions. Safety range can

be define in a very restrictive way, i.e. 80 < BG < 140 mg/dl, although most researchers and

clinicians allow a less tight definition of the hypo and hyperglycaemic threshold, by defining

the euglicemic range as 70 < BG < 180 mg/dl. In this thesis, when referring to hypo and

hyperglycemic threshold we will consider the second definition. The quality of glucose control

is high if a patient is able to correctly tune the carbohydrate ingestion and insulin dosing in

such a way that the glycemic range stays within the safety zone with few counteractions and

corrections.

The most used parameter for the evaluation of quality of glucose control is the relative

time spent by the subject in different regions of the whole glycemic scale (3). For the clinician

it is important to understand the percentage of time spent on target relative to the whole

monitoring session, but also to distinguish cases where the percentage out of target is spent

above or below the target zone. Of course a subject who spends most time in hyperglycemia

needs to refine the therapy with a more intensive insulin dosing, while a subject who tends

to stay in hypoglycemia for prolonged time probably needs to reduce the insulin dosing. The

used indexes are hence

• Time in target: % time of the whole monitoring spent between 70 and 180 mg/dl

• Time in hypoglycemia: % time of the whole monitoring spent below 70 mg/dl

• Time in hyperglycemia: % time of the whole monitoring spent above 180 mg/dl

The main drawback of these indexes is that there is no differentiation between severe and

mild episodes. Moreover if we consider to spend 20 minutes at 40 mg/dl (hypoglycemia) or

at 210 mg/dl, the criticality of the two episodes is very different from a clinical perspective,

since the first is a severe hypoglycemic episode, while the second is a mild hyperglycemic
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Figure 2.1: Glucose profile presenting an hypo and an hyperglycemic episode. The length of the
episodes is prolonged in both cases, but the patient reaches a level of 60 mg/dl in hypo (10 mg/dl
under the hypoglycemic threshold) and of 240 mg/dl in hyper (60 mg/dl above the hyperglycemic
threshold). The first episode is more critical from a clinical perspective than the second despite
the smaller distance from the threshold.

event. The percentage in target does not differentiate among these conditions. For example

consider Figure 2.1. Here a glucose signal captured with the Abbott Freestyle Navigator

is reported along with the hypoglycemic and hyperglycemic thresholds (in green, at 70 and

180 mg/dl respectively). The patient experiences a prolonged hypoglycemia at 60 mg/dl (10

mg/dl below the hypoglycemic threshold) from minute 300 to minute 460, and a prolonged

hyperglycemia reaching a glucose level of 240 mg/dl (60 mg/dl above the hyperglycemic

threshold) between minute 680 and minute 780. Although the hyperglycemic event seems

more threatening from a numeric point of view, the prolonged hypoglycemia is clinically more

severe. In statistical analysis it could be useful to explicitly highlight such clinical difference.

This problem will be extensively described in Section 2.4.

Other indexes, based on combinations of mean and standard deviation of the glucose

signal have been used to quantify the quality of glucose control. In particular, considering a

glucose time-series gn one can evaluate the J index, proposed by Wójcicki in (64):

J = 0.001× (mean(g) + SD(g))2 (2.3)

This index aims at combining in a single number the information of mean and standard

deviation of the signal.
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Glycemic Scale

2.4 Variability and Control Literature Indexes based on Trans-

formations of the Glycemic Scale

All the statistical and empirical indexes derived in the above section do not consider that

when dealing with glucose time-series, in particular when the aim is the tuning of the therapy,

it is of crucial importance to consider two main characteristics of the glycemic scale:

1. The glucose scale is not symmetric. In fact the hypo range (20 − 70mg/dl) is much

narrower than the hyper range (180− 600mg/dl). As a result, the numerical center of

the scale (around 300 mg/dl) is very far from the ”clinical center” (the desired target

is around 110 mg/dl).

2. The distribution of glucose values is skewed in this scale. To better understand this

concept, consider Fig. 2.2, which shows the glucose values (left) and first time derivative

(right) distribution for 56 T1D and T2D patients monitored with the Abbott Freestyle

Navigator for 1 week under the 7th FP EU project DIAdvisor, during the first phase

protocol ”Data Acquisition Trial” (1). From the left panel, it is clear that patients

spend much more time above the clinical center (around 110 mg/dl). When performing

simple statistical analysis on this kind of distribution, it is clear how few, possibly

severe, hypoglycemic episodes can be easily outmatched by the greater amount of data

referring to (usually mild) hyperglycaemic episodes. Moreover, the threat for the patient

increases much faster in the hypo region than in the hyper range.
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Figure 2.2: Distribution of glucose values (left panel) and First time derivatives (right panel)
evaluated on a dataset of 56 Freestyle Navigator signals. Average length of the signals is 1 week.
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From a clinical point of view, e.g. to evaluate the quality of control, it is important

to accurately emphasize dangerous episodes which could be overlooked by straightforward

application of tools like those proposed on the previous section.

Several functions have been proposed to transform the glucose scale in order to equally

weight the hypo and hyperglycemic range. In sections 2.4.1 and 2.4.2 we list some of these

functions, which include the so-called risk function, proposed by Kovatchev et al. in (31)which

will be used in this thesis as a basis to further develop the concept of clinical risk described

in Chapter 3.

2.4.1 The Kovatchev’s Risk Function to Symmetrize the Glycemic Scale

A popular transformation of the glucose scale was proposed for the first time by Kovatchev

and colleagues in (31). The proposed function, called Risk Function, was developed with the

aim of symmetrizing the glucose range in order to provide a new scale such that

1. The range is centered around zero, which correspond to the clinical centre, rather than

the numerical centre of the scale

2. The scale is symmetric around zero (expansion of the hypo range and compression of

the hyper range)

Such a scale assigns equal weight to hypo and hyper episodes in terms of risks, i.e. a

single episode of severe hypo will possibly weight more than several hours spent in moderate

hyperglycemia.

Before defining the so-called risk function, the following symmetrization function

f(g, α, β) = γ · [(ln(g)α)− β] (2.4)

defined for g in the range [20-600] mg/dl, is introduced. Parameter γ allows the restriction

of the minimal and maximal risk (−
√

10 and
√

10) at 20 and 600 mg/dl respectively. In order

to obtain a symmetric scale, following constraints are imposed for the definition of parameters

α and β:


(ln(600))α − β = −[(ln(20))α − β]
(ln(180))α − β = −[(ln(70))α − β]

γ[(ln(600))α − β] = −γ[(ln(20))α − β] =
√

10

(2.5)
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Figure 2.3: Symmetrization function by Kovatchev et al. (31) The glucose values on the x axis
are matched to risk values on the y axis. Dashed lines represent the match of clinically critical
values, i.e. the hypo and hyper threshold crossings.

Solving the system of Eq. 2.5, a single equation in the parameter α must be solved.

Imposing α ≥ 0, the three parameters are set to α = 1.084, β = 5.381 and γ = 1.509,

assuming that glucose is expressed in mg/dl. Fig. 2.3 shows the mapping of glucose values

into the simmetrized scale. Notice that the clinical centre (112.5 mg/dl) is mapped to zero-

risk. The increase of risk is more rapid in hypo with respect to hyper.

From the symmetrization function, the proper risk function, plotted in Fig. 2.4 is defined

as:

r(g) = 10 · f(g)2 (2.6)

Notice that the function has a minimum at the clinical centre (112.5 mg/dl), which

correspond to the desired target (no risk) and is maxed (r = 100) at 20 and 600 mg/dl. Also

notice that the risk increases faster in hypo than in hyper.

From function 2.6 two functions can be defined:
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Figure 2.4: The Risk function of glucose by Kovatchev et al (31).

rl(g) =

{
r(g) if f(g) < 0
0 otherwise

rh(g) =

{
r(g) if f(g) > 0
0 otherwise

(2.7)

which are used to compute the so called Low Blood Glucose Index (LBGI) and High

Blood Glucose Index (HBGI) :

LBGI =
1

n

n∑
i=1

rl(gi) (2.8)

HBGI =
1

n

n∑
i=1

rh(gi) (2.9)

LBGI is a quantity that increases when new samples are collected in the hypo region. The

increase is faster with more severe hypos. HBGI has the same role with the hyper region.

The practical use of these index was suggested by Kovatchev in (32) and (33); the LBGI and

HBGI have been proven, respectively, to be predictive of severe hypoglycemia and of HbA1c

concentration respectively.
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2.4.2 Other Transformations of the Glucose Scale proposed in the Litera-

ture

2.4.2.1 The MR function

A different transformation of the glucose scale, the so-called MR function, was proposed by

Wójcicki in (65)

MR = 1000× | log(g/R)|3 (2.10)

where R is a parameter that can be tuned by the investigator. This function performs a

logarithmic transformation of the glucose scale, but is not able to correctly symmetrize the

glycemic scale.

2.4.2.2 Index of Glycemic Control (ICG)

This transformation, defined by Rodbard in (52) represents a penalty function asymmetric

with respect to the normoglycemic value of 112.5 mg/dl. It is very flexible thanks to the

possibility of changing several parameters. The ICG is defined as

ICG = HypoIndex+HyperIndex (2.11)

where

HypoIndex =

∑N
i=1(LLTR− g(i))b

N × d
(2.12)

HyperIndex =

∑N
i=1(g(i)− ULTR)a

N × c
(2.13)

with ULTR (Upper Limit of Target Range) usually set to 140 mg/dl, LLTR (Lower Limit

of Target Range) usually set to 80 mg/dl, parameters c and d set to 30, a ∼ 1.1 and b ∼ 1.5.

The parameters of this function can be tuned to almost match other risk function. N is the

number of observed glucose values.

2.4.2.3 Glycemic Risk Assessment Diabetes Equation (GRADE)

Another transformation was proposed to symmetrize the glycemic scale by Hill et al. (27)

and is defined by:
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GRADE =

∑N
i=1min[50, 42.5×

{
log10(log10(

gi
18) + 0.16)2

}
]

N
(2.14)

This equation was obtained by fitting some risk scores assigned by expert clinicians to

specific glucose levels.

2.4.2.4 Comparison of Transformation Functions

Figure 2.5, taken from (52) shows the transformation functions listed in Sections 2.4.1 and

2.4.2 on a semi-logarithmic scale. All the functions are based on similar concepts, and perform

a transformation based on different weights of the hypo and hyper range. In this thesis we

chose to consider Kovatchev’s formulation of risk, since it is a popular tool with a specific

mathematical definition that suits the development we need.

Figure 2.5: Penalty functions for the transformation of glucose scale M100: black; IGC1 (a=1.1,
b=2.0): pink; HBGI e LBGI: blue; GRADE: green IGC2 (a=1.35, b=1.9): red; IGC3 (a=1.05,
b=1.9): orange.(LLTR=80, ULTR=140, c=d=30) (taken from (52))
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2.5 Limitations of Literature Measures of Glucose Variability

and Control

The understanding of the role of glycemic variability on complications of diabetes is still an

open field. Also, the definitions of glucose control sometimes give a partial vision of the global

condition of the patient. There are some technical and practical issues in the analysis of the

studies which investigate the correlations between glucose variability and complications:

1. First of all the definition of Glycemic Variability itself is not always clear. Dozens

of indexes are used for the definition, and each study uses different metrics, possibly

looking at only part of the whole truth of the signals.

2. Most of the used indexes were developed for SMBG references, and are intrinsically

static. This means that applying such indexes to the CGM signals will provide partial

summary of the whole information provided by CGM. It is important to study the effect

of excursion more deeply. This can be done exploiting the information of glucose rate

of change provided by CGM.

3. The clinical perspective is sometimes blurred in the simple analysis of basic statistical

indexes. In particular, it is important to consider the specific characteristics of the

glycaemic scale in order to have a precise idea of the so called risk, as will be deeply

investigated in the next chapters.

2.6 Aim of the Thesis

As described in Section 2.5 the powerful information provided by CGM devices is not exten-

sively exploited. In particular in the assessment and analysis of glucose variability, and of the

clinical risk for the patient, the first time derivative of the signal is never explicitly included.

The aim of this thesis is twofold:

1. To further develop the concept of clinical risk to explicitly include the time derivative

as a threat factor for the patient. This task will be tackled in Chapters 3 and 4, where

a formal derivation of a new ”Dynamic Risk” (DR) function will be presented along

with theoretical solutions to online implementation issues.

2. To provide two applications of the DR function, in particular
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2. GLUCOSE VARIABILITY AND QUALITY OF GLUCOSE CONTROL:
STATE OF ART AND AIM OF THE THESIS

• The use of DR as alert generator for the prevention of hypo/hyperglycaemic events

(Chapters 5 and 6)

• The development of variability and control metrics which directly include first

time-derivative based indexes (Chapter 7). The importance of such indexes in the

description of Glucose Variability and Control will be formalized by the use of a

multivariate technique, the Sparse Principal Component Analysis (Chapter 8)

Simulated and Real Data will be used in this thesis. In particular, simulated CGM

signal are obtained via smoothing of frequently sampled plasma glucose time-series available

on the web (21). Real datasets consist in signals collected with different sensors (Abbott

Freestyle Navigator, Menarini Glucoday, Dexcom Seven Plus) collected in several projects

which involved our research group in the recent past (7th FP EU project DIAdvisor, JDRF

Artificial Pancreas project).
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3
The Dynamic Risk Function

3.1 Assessment of Clinical Risk in Diabetic Patients: Role of

the Glucose Trend

The availability of CGM sensors opens the possibility to embed glucose dynamics information

in the evaluation of risk measures. Consider the example reported in Fig. 3.1, which displays

a simulated continuous glucose profile for 1000 min. The picture highlights four particular

points, labeled as A1, A2, B1, B1 together with a portion of the tangent line to the glucose

profile in these points. In addition, the circle labeled as C highlights an hypo-threshold

crossing event. Notably, A1 and A2 correspond to a glucose concentration just below the hypo

threshold (65 mg/dl) but with different derivatives (-2 mg/dl/min for A1 and +2 mg/dl/min

for A2), while B1 and B2 are both placed exactly on the hyper threshold (180 mg/dl with

derivatives of +2 mg/dl/min and +4 mg/dl/min respectively). The Kovatchev’s function

(31), (33), (9), points A1 and A2 would be associated to the same risk value, and so would

B1 and B2.

However, by considering the continuous glucose profile of Fig. 3.1, one easily realizes

that the clinical risk associated to points A1 and A2 should be different. In fact, the A1

situation is more dangerous for the patient than A2, since in the first case the glycemia is

heading deeper in the hypo region, while in the second case a recovering from the hypo region

towards the normoglycemic range is happening. Similarly, B2 situation is more dangerous

than B1, since the glycemic signal is approaching the hyperglycemic region faster. The above

examples make it clear that the trend in the glycemia, which became available thanks to

CGM sensors, should be considered in the risk measure.
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Figure 3.1: Simulated noise-free continuous glucose profile (continuous line) with hypo/hyper
thresholds (horizontal lines). Four points (dots) are indicated: A1 and A2 (65 mg/dl, decreasing
and increasing trend respectively), B1 and B2 (180 mg/dl, rate of change of +2mg/dl/min and
+4mg/dl/min respectively) with the correspondent tangent (thin line). Circle C highlights an
hypoglycemic threshold crossing event.

In this paper, starting from the original risk function proposed in (31) when only sparse

SMBG data could be collected, we will define a new ”dynamic risk” (DR) measure, dependent

on both level and trend of actual glucose 3.2. In this chapter, a conceptual design will be

presented using ideal noise free signals. When dealing with real-life signals, the computation

of glucose trends in the definition of DR, stable and computationally efficient algorithms will

be developed to preperly assess trends from CGM data in presence of noise, in both off-line

and online situations (Sections 4.2).

3.2 Conceptual Development (Rationale and Requisites) of

the Dynamic Risk (DR)

For the definition of the DR function we will exploit the two functions rl and rh of Eq. 2.7:

rl(g) =

{
r(g) if f(g) < 0
0 otherwise

rh(g) =

{
r(g) if f(g) > 0
0 otherwise

(3.1)

From these definitions, we obtain a new function, the so-called static risk (SR) :
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3.2 Conceptual Development (Rationale and Requisites) of the Dynamic Risk
(DR)

SR(g) = rh(g)− rl(g) (3.2)

As shown in Fig. 3.2 SR (black line), coincides with the standard risk function r(g) of

Eq. 2.6 (red dashed line), for glucose values above 112.5 mg/dl while it is a flipped version of

r(g) around the x-axis when the glucose value is below 112.5 mg/dl. SR(g) is hence negative

for values below the clinical center, and positive otherwise.
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Figure 3.2: Functions r(g) of Eq. 2.6 (dashed red line) and SR(g) of Eq. 3.2 (black line)

The specification of the function we aim to build are easily formalized. The function DR

will be a function of the actual glucose level and of the actual glucose trend, described via

the first time derivative of the glucose signal itself.

DR

(
g,
dg

dt

)
(3.3)

The dependengy of g and consequently of DR from the time is not explicitly shown for

simplicity. We require that in static conditions, i.e. when the derivative is zero and the

glucose signal is stable, the dynamic risk equals the static risk SR, i.e.:
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3. THE DYNAMIC RISK FUNCTION

DR(g, 0) = SR(g) (3.4)

Finally, we require that the following ”dynamic constraints” are satisfied:

{
|DR(g, dgdt )| > r(g) if dg

dt · SR(g) ≥ 0

|DR(g, dgdt )| < r(g) if dg
dt · SR(g) < 0

(3.5)

Eqs. 3.5 formally state that:

1. In case of glucose below the clinical centre, i.e. SR ≤ 0, and

• negative slope, i.e. glucose entering the hypo zone, the risk is amplified (with

respect to the measure given by r(g))

• positive slope, i.e. glucose exiting the hypo zone, the risk is damped ((with respect

to the measure given by r(g))

2. In case of glucose above 112.5 mg/dl, i.e. SR > 0, and

• positive slope, i.e. entering the hyper zone, the risk is amplified (with respect to

the measure given by r(g))

• negative slope, i.e. exiting the hyper zone, the risk is damped (with respect to the

measure given by r(g))

In the Section 3.3, possible structures for DR is described.

3.3 Mathematical definition of DR

The general model chosen for DR, is a function such that SR(g) is multiplied by an ampli-

fier/damper function which increases or decreases the risk accordingly to the constraints of

Eq. 3.5.

DR

(
g,
dg

dt

)
= SR(g) · F

(
dg

dt

)
(3.6)

Several possibilities are open for the choice of function F (dgdt ) in Eq. 3.6.
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3.3 Mathematical definition of DR

3.3.1 Amplifier/Damper: the Exponential Structure

A first possible structure for the DR function is the following:

DR

(
g,
dg

dt

)
=

{
SR(g) · ex if SR(g) ≤ 0
SR(g) · e−x if SR(g) < 0

(3.7)

Where x is a function of t which can be computed using either dg
dt (Section 3.3.1.1) or dr

dt

(Section 3.3.1.2) It is quite easy to show that this structure is compliant with the constraints

formalized in Eq. 3.5 . Moreover it holds:

• When g is constant, x = 0 and DR = SR.

• When x→ 0, ex → 0. If the derivative sign is opposed to the actual sign of SR, DR will

act as a damper. For instamce, consider a rapid recovery from hypo to normoglycemic

values. In this case x is very large and positive and DR results to equal SR (negative)

multiplied by a positive value. The DR becomes less negative but will not become

positive. In other words this means that there will never be a positive DR risk of hyper

if the glycemic value is still under the target of 112.5 mg/dl.

Fig. 3.3 shows a conceptual example of the behavior of DR and SR referring to the same

signal already displayed in Fig. 3.1. The glucose signal is reported in the upper panel, along

with the hypoglycemic and hyperglycemic thresholds. In the lower panel SR function (gray

line) is displayed with DR (dashed black line), comuted with x in Eq. 3.7 defined as in

Section 3.3.1.2. Points A1, A2, B1 and B2 are reported on the upper panel, and are linked to

their transformations according to SR (SR(A1) = SR(A2), SR(B1) = SR(B2)) and to DR

(DR(A1), DR(A2), DR(B1) and DR(B2)). Notice that:

• A1 and A2 are mapped to the same risk value by SR though, as explained before, the

clinical perception of risk is different. This difference is well evidenced by DR, since

DR(A1) > DR(A2)

• B1 and B2 are mapped to the same risk value by SR, while DR assigns higher risk to

the faster approach to hyperglycemia, i.e. DR(B2) > DR(B1).

• DR has the peculiar feature of being intrinsically predictive of threshold crossings. In

particular, notice how around point C DR crosses the threshold 10 minutes before SR

around point C. This characteristic will be used later in the present thesis both for
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Figure 3.3: Top panel: Same simulated noise free glucose profile of Fig.3.1. Bottom panel:
SR (gray) and DR (dashed black). DR and SR of the highlighted conditions on the top panel
are shown as black dots in the bottom panel. The circle highlights the anticipation in threshold
crossing of DR with respect to SR in event C. The horizontal lines represent the threshold crossings
transformed in the risk scale
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3.3 Mathematical definition of DR

the definition of different structures Section 5.3.2, and for the generation of alerts in

Capters 5 and 6.

The conceptual example reported in this section is interesting since it allows understanding

the potential in DR. Some specifications need to be further defined, in particular, the choice

of the derivative term x in Eq. 3.7. Two choices are possible:

1. To use the first time derivative of the glucose signal g

2. To use the first time derivative of the static risk signal r(g)

Details are discussed below.

3.3.1.1 Derivative term given by dg
dt

The first option for the definition of DR is to consider the following formula:

DR(g,
dg

dt
) =

{
SR(g) · e

dg
dt if SR(g) ≤ 0

SR(g) · e−
dg
dt if SR(g) < 0

(3.8)

where dg
dt is the time derivative of the CGM signal, which can be estimated, for example,

via finite differences. This formulation is simple, but has a major drawback, since it is a

symmetric function in the glucose domain, it results to be asymmetric in the risk space. This

means that considering the same time derivative for two ”symmetrized” glycemic values (e.g.

60 mg/dl and 210 mg/dl), the amplification would not be equal in the two regions, but it

would be greater in the hyper zone. This is due to the fact that, considering equal initial

value and rate, the symmetric space where the risk is evaluated is not aware of the time

interval necessary for the glycemic value to reach the hypo/hyperglycemic thresholds.

3.3.1.2 Derivative term given by dr
dt

The second option to define DR, uses the first time derivative of the static risk function

r(g) as a penalty for the amplification/reduction of the risk. The proposed structure is the

following:

DR(g,
dg

dt
) =

{
SR(g) · e

dr
dt if SR(g) > 0

SR(g) · e−
dr
dt if SR(g) < 0

(3.9)

where, by simple calculation on the formula 2.6, it holds:
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3. THE DYNAMIC RISK FUNCTION

dr

dt
=
dr

dg
· dg
dt

=

{
10γ2 · [(ln(g))2α−1 − β(ln(g))α−1] · 2α1

g

}
· dg
dt

(3.10)
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Figure 3.4: The derivative of risk with respect to glucose.

Notice how this amplification/damping term is composed by the first time derivative of

the glucose signal in time (possibly the CGM signal), pre-multiplied by a term which is the

analytical derivative of the risk function with respect to glucose. The derivative of risk with

respect to glucose is displayed in Fig. 3.4. This term allows a greater amplification of the

glucose time-derivative (dgdt ) in the hypo region, and a damping in the hyper region. In this

way, the weight of the derivative is equally important in hypo and hyper, according with

the whole concept of risk. To conclude with an example, consider a situation of hypo with

negative time derivative (e.g. -2 mg/dl) and a condition of hyper with positive trend (e.g.

+2 mg/dl) starting from the clinical center of 112 mg/dl, as shown in Fig. 3.5, top panel.

The first condition is more risky, since SR increases in magnitude much faster in the hypo

region, and we would like to formalize the different clinical risk due to the derivative associated

to the specific glucose value. In fact, considering the same rate of change in absolute value,

the time needed to get to a severe hypo from the clinical centre is much shorter than the time

needed to get to a severe hyper, as shown in Fig. 3.5. The time needed to reach the thresholds

is higher for the simulation at positive rate. In the lower panel, we show different behaviors

for the two options (derivative of risk, black, and derivative of glucose, blue). Notice how

the first solution offers a balanced gain in hyper and hypo, while the second leads to a much

earlier alert in the hyper region despite the minor criticality of the condition. The use of
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-2mg/dl (top panel) and relative risk functions: SR (red), DR (time derivative used dg
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DR (time derivative used dr
dt , black)

the time derivative of SR, instead of using the simple definition of rate of change of glucose,

allows us to obtain a symmetric behavior of the function in terms of clinical criticality.

The final basic structure of DR can then be summarized in

DR(g,
dg

dt
) =

{
SR(g) · eµ

dr
dt if SR(g) > 0

SR(g) · e−µ
dr
dt if SR(g) < 0

(3.11)

Notice that in the second factor of the right handside of Eq. 3.11 we have added a

parameter µ at the exponential. This parameter, positive, does not change the behavior of

the function in practice, but serves as a tuner for the ”aggressiveness” of the risk function:

the higher µ, the higher the relative weight of the role of time-derivative with respect to the

role of the glucose level itself. The role of µ will be investigated more deeply in Chapter 5.

3.3.2 Amplifier/Damper Hyperbolic Tangent Structure

An alternative structure exploits the hyperbolic tangent and is defined as:

DR(g,
dg

dt
) =

{
SR(g) ·

[
δ · tanh

(
αdrdt + γ

)
+ β

]
if SR > 0

SR(g) ·
[
δ · tanh

(
−αdrdt + γ

)
+ β

]
if SR < 0

(3.12)
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3. THE DYNAMIC RISK FUNCTION

where α, β, γ and δ are parameters whose role will be described in detail in Chapter 5.

The behavior of the function is very similar to that of the exponential structure used in 3.3.1,

with 4 unknown parameters to set. A comparison between the two proposed structures is

shown in Figure 3.6. The picture shows the amplification factor as a function of the first time

derivative for SR ≥ 0. In case of discordance between derivative and SR, the amplification

factor is in fact a damping factor (left part of the graph). If SR and the derivative have the

same sign and the glycaemia is heading deeper into a dangerous zone, the right part of the

graph is used, amplifying the absolute value of the risk. While the exponential structure of

Eq.3.9 is unbounded in the amplification region (red line), the tanh of Eq. 3.12 structure

allows setting the maximum possible amplification of risk (blue line). Moreover, it is possible

to easily set the parameters in order to have a maximum damping different from zero.
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Figure 3.6: Amplification/damping factor as a function of dr/dt. the damping factor (left part
of the graph) is used whenever the product of SR with dr/dt (or dg/dt) is negative, i.e. heading
back to euglycemia. This factor then multiplies SR itself lowering its absolute value. Viceversa
for the right part of the graph, which is the amplifier used to magnify the risk whenever the
product of SR and the risk time derivative is positive (SR and time derivative have the same sign,
meaning that the patient is heading deeper into threatening zones).

Notice that any function of dr/dg with this structure can fit Eq. 3.6 and can be used just

like we will use Eq. 3.12 or 3.11. Therefore, the use of one structure or the other depends on
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3.4 The Concept of Dynamic Risk Space (DRS)

the characteristics of DR that we want to highlight.

3.4 The Concept of Dynamic Risk Space (DRS)

So far we have explored the mathematical definition of the dynamic risk. It is interesting

to plot this function in a 3-dimensional graph showing how glucose levels and trend play in

the definition of risk. Figure 3.7 shows DR evaluated via Eq.3.9 with µ = 1 as a function

of g and dg
dt . The region of hypoglycemic levels and negative time derivative are associated

to negative values of risk; vice-versa, hyper regions with positive glucose time derivative are

associated to positive risk values. The increase in risk is greater (in magnitude) in the hypo

with respect to the hyper region. Also if we cut the graph at zero time-derivative we obtain

the function SR as shown in Figure 3.2.

Figure 3.7: Three dimensional plot of dynamic risk as a function of g and dg
dt . Negative values

correspond to hypoglycemia risk, while positive values are associated to hyperglycemic risk.

If we compress the function of Eq. 3.9 above on a bidimensional plot, we can consider
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3. THE DYNAMIC RISK FUNCTION

a Dynamic Risk Space (DRS) as a weighted phase plot where glucose trajectories can be

displayed to extract interesting features of the patient’s behavior. The DRS will be used in

Chapter 7 to extract indexes for the evaluation of glucose variability. Figure 3.8 represents

the absolute value of the DR as a function of glucose and its time derivative. The space is

obtained using the exponential structure of Eq. 3.11, with the time derivative of risk of Eq-

3.10 and µ = 1.
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Figure 3.8: Two dimensional plot of dynamic risk as a function of glucose level and time
derivative. Red corresponds to higher risk values, while blue represents the safety range.

3.5 Conclusion

In this Chapter the mathematical description of the DR and DRS was presented. This

conceptual definition was presented in the ideal case of noise-free signals, to describe how the

role of time derivative can be explicitly included in the clinical risk concept. In the following

chapters, algorithmic issues will be presented in order to allow the online implementation of

DR in real-life condition of noisy signals.
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Algorithms for DR Implementation

4.1 Problem Formulation

Recalling again for the sake of reading the formula for the computation of the first time

derivative of SR (Eq.3.10)

dr

dt
=
dr

dg
· dg
dt

=

{
10γ2 · [(ln(g))2α−1 − β(ln(g))α−1] · 2α1

g

}
· dg
dt

(4.1)

the practical implementation of the DR function as it is defined in Eq.3.11

DR(g,
dg

dt
) =

{
SR(g) · eµ

dr
dt if SR(g) > 0

SR(g) · e−µ
dr
dt if SR(g) < 0

(4.2)

requires both CGM signal and its first time derivative.

The estimation of the first time derivative dr
dt via finite differences is often not satisfactory

and the resulting signal is noisy, since differentiation acts on the signal like a high-pass filter

amplifying high frequency measurement noise. In fact, the measured CGM signal y(t) can

be modelled as

y(t) = u(t) + v(t) (4.3)

where, at time t, u(t) is the real unknown glycaemic level and v(t) is measurement noise, that

we can assume to be a random white noise process with zero mean and unknown variance,

possibly varying with time. Several literature approaches can be used to obtain a smooth

version of the signal u(t), for instance Moving Average filters (25). Such filters are not

adaptive, i.e. their parameters remain the same throughout the monitoring and cannot track

changes in the Signal-to-Noise Ratio(SNR) of the CGM signal. Moreover such filters do not
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4. ALGORITHMS FOR DR IMPLEMENTATION

efficiently exploit available a priori statistical information in both regularity of the signal and

on measurement noise. This is why, in this thesis, we will calculate smoothed versions of

glucose (risk) and (their) time derivatives by a Bayesian approach extensively described in

(56) and (26) and, for sake of thesis completeness, summarized in Appendix B. Notably,

algorithms are also suited to online applications, as will be shown in Section 4.2.4.

4.2 Computation of DR

The computation of DR requires the online estimation of a smoothed version of the CGM

signal and of its derivative from noisy measures. As shown below, this can be done with two

different strategies:

• Obtain a smoothed version of the CGM signal and then evaluate the first time derivative

via first order finite differences.

• Consider the problem of estimating the time-derivative as a deconvolution problem.

The smoothed glucose signal is obtained as a by-product of the algorithm.

4.2.1 Smoothing followed by Finite Differences

Considering y to be the measured CGM signal, and u the real glucose profile that we need

to estimate and v is the superimposed noise, related by the generic model y = Gu+ v, where

G = In. The vector u can be estimated by the state-of-art technique to perform Bayesian

estimation briefly described in Appendix B (by using the regularization criterion ML1 and

m = 2).

4.2.2 Simultaneous Smoothing and Finite Differences Calculation by De-

convolution

A different approach considers two time-continuous signals z(t) and u(t) such that u(t) = ż(t).

For a generic time instant t0 it holds:

z(t) = z(t0) +

∫ t

t0

u(τ)dτ (4.4)

Assuming, for simplicity t0 = 0 and z0 = 0
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4.2 Computation of DR

z(t) =

∫ t

0
g(t− τ)u(τ)dτ = g(t)⊗ u(t) (4.5)

where

g(t) = 1(t) =

{
0 if t < 0
1 if t > 0

(4.6)

The problem can be discretized by integrating g(t) over the time intervals where u(t) is

assumed to be constant. The model of data is y = Gu+ v where G is the following.

G =


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 · · · · · · · · · 1

 (4.7)

In this way, the integral Equation 4.4 has been discretized and put in a matrix form which

fits the deconvolution approach extensively explained in (12) and summarized in Appendix B.

Following these state-of-art algorithms for the solution of the problem and for the definition

of the optimal regularization parameters, one can obtain a smooth estimate of the first time-

derivative (û) and of the data (Gû).

4.2.3 Numerical Implementation

4.2.3.1 Efficient determination of the Regularization Parameter

In the smoothing/deconvolution algorithms, it is necessary to solve Eq. B.8, where the inver-

sion of matrix (GTB−1G + γoF TF )−1 requires O(N3) operations. This computation needs

to be solved several times until a parameter γ is found to satisfy the chosen convergence

criterion. The whole procedure is hence computationally inefficient. It is possible to diago-

nalize the problem, imposing a basis change in order to invert only a diagonal matrix. This

is extensively documented (12) and summarized in Appendix B.

4.2.4 Offline vs Online Implementation

In order to apply the algorithm online, it is necessary to perform the deconvolution on a

sliding window of the n past samples. We recall that if we consider to use the consistency

criterion summarized in the Appendix B, the noise variances σ2 and λ2 are estimated from the
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4. ALGORITHMS FOR DR IMPLEMENTATION

chosen portion of data. It is hence important to choose the appropriate length of the sliding

window: too many samples will not allow a good tracking of possible variations, for example,

of σ2. On the other hand, short windows do not allow to correctly capture the dynamics of the

signal. For sampling time of 1 minute, a good compromise is keeping about two hours of past

data (results in this thesis will be shown for this choice of the parameter). Therefore n=120 if

the sampling time is 1 minute. Every time that a new glucose value sample is returned by the

sensor, only the last sample of the deconvoluted profile (time derivative) and reconvoluted

curve (smoothed glucose) will be saved for DR calculation. When the next sample becomes

available the process is repeated with a new window which discards the oldest samples and

adds the newest to the collection.
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Figure 4.1: Online estimation of the smoothed CGM profile and time derivative. Left panel
shows the original CGM and the portion of data available at time t (yellow box), while right
panels show the results of deconvolution.

Figure 4.1 better explains this concept. The true, noise free signal (blue) is displayed with

its noisy version (red). Highlighted in yellow is the portion of data that is chosen at time t,

which is 120 samples long. Online, samples on the right of the yellow box are considered to

be unavailable. On the right are displayed the profiles obtained by deconvolving the portion
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4.2 Computation of DR

of data in the yellow box. The top panel shows the smoothed CGM signal (black), along

with the true and noisy CGM (blue and red respectively) while in the lower panel the true

derivative (computed from noise free profiles, blue) is shown along with the time derivative

obtained via finite differences (red) and deconvolution (black). Only the last samples (i.e.

the 120th) of the two curves are saved to be the smoothed CGM and its time derivative at

time t. At time t+ 1 the windows shifts to the right and the process is iterated.

An important feature in smoothing, is that the uncertainty on the last component of the

estimate vector usually greater than the errors on other samples. This can be appreciated in

Figure 4.2, where the smoothed version of CGM and its derivative obtained via deconvolution

are shown with their confidence intervals.
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Figure 4.2: Results of deconvolution applied to the CGM signal on the upper-left panel. True
CGM is displayed in blue with its noisy realization (red). The reconstructed CGM via deconvo-
lution is shown in black. On the upper-right panel, the true time derivative (blue) is shown with
its estimate provided by finite time-differences (red) and deconvolution (black). Lower panels:
confidence intervals of the estimate of the smoothed CGM and of the time derivatives obtained
via deconvolution.

This feature may be detrimental in our application online, since the estimate of time

derivative on the last points will be more uncertain than in the rest of the winsow, propoa-
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4. ALGORITHMS FOR DR IMPLEMENTATION

gating the uncertainty on DR. In order to reduce this effect, it is possible to force the de-

convolution algorithm to consider data in the last portion of the window to have greater

uncertainty, and hence to rely more on the trend (estimated based on reliable data of the

first portion of the window). This can be done by using a matrix B in the equations of

Appendix B which is different from the identity, for example:

∆ =



1 0 · · · · · · · · · · · · 0

0
. . . 0 · · · · · · · · · 0

... 0 1 0 · · · · · · 0

...
... 0 2 0 · · · 0

...
...

... 0
. . .

...
...

...
...

...
...

...
. . .

...
0 · · · · · · 0 0 0 10


(4.8)

The matrix of Eq. 4.8 considers the last 10 points to have greater uncertainty than the

former data points. In particular the variance grows linearly on the last 10 points giving

progressively less trust to the data and more on the trend when approaching the edge of

the sliding window. Although this technique introduces a small delay in the estimate of the

derivative, it also allows to recover a much smoother signal, which can be used to compute

DR.

It is worthwhile to show some results to understand the role of the algorithm for the

online estimation of time derivative.

Figures 4.3 shows a simulated signal where white random noise of variance σ = 4mg2/dl2

was added to simulate measurement noise (top). The middle panels represent show the time

derivative computed from the noise-free signal (black line) and with two different algorithms:

upper-middle panel displays in gray the first time derivative obtained via finite differences,

while the mid-lower panel displays the results obtained with the deconvolution algorithm. In

the bottom panel SR and DRexp (µ = 2.2) are shown.

Figure 4.4 is the same as Figure 4.3, where the noise signal added to the glycemic profile

is a white random process of variance σ = 16mg2/dl2. Finally, in the lower panel, the DR of

the noisy profile is shown against the static risk of the noise-free glucose profile. Notice that

while SR crosses the threshold exactly when the original CGM profile does, DR anticipates

such crossings. It is clear from these figures how the deconvolution approach to the estimation
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Figure 4.3: Top panel: reconstructed CGM profile (gray line) and simulated noisy profile (black
line). Variance of the Gaussian noise added to the signals was σ = 4mg2/dl2. Middle panels: first
time-derivative calculated from the noise free signal (black line) and estimated from the noisy
signal via finite differences (upper middle, gray line) and regularization (lower middle, gray line).
Bottom panel: SR (gray line) vs DRexp (black line)

of the time derivative allows reconstructing a very smooth signal also in real time without

adding a considerable amount of delay.

4.3 Conclusions

We presented an approach for the computation of the first time derivative of CGM signals

which allows obtaining a reliable estimate of the first time derivative in signals affected by

measurement noise. In Chapters 5 and 6 all computations are performed simulating an online

conditions, and in presence of noise, the first time derivative of the glucose signals is always
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Figure 4.4: Top panel: reconstructed CGM profile (gray line) and simulated noisy profile (black
line). Variance of the Gaussian noise added to the signals was σ = 16mg2/dl2. Middle panels:
first time-derivative calculated from the noise free signal (black line) and estimated from the noisy
signal via finite differences (upper middle, gray line) and regularization (lower middle, gray line).
Bottom panel: SR (gray line) vs DRexp (black line).

computed exploiting the deconvolution-based approach described in this chapter.
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Part III

Use of Dynamic Risk for

Hypo/Hyperglycemic Alert

Generation
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5
Application of DR for the prevention of hypo/hyperglcemic

events

5.1 Prevention of Hypo/Hyperglycemic Events

Therapeutic actions, such as injection of insulin correction boluses to revert a condition of

hyperglycemia or carbohydrates intake to treat hypoglycemia, cannot avoid exposure of the

patients to events that can be threatening, either in the long or short term. In fact, insulin

requires about an hour to be effective and to induce appreciable decrease in glucose concen-

tration. Also, carbohydrates take time to reach the blood stream in order to compensate the

effects of hypoglycaemia. In this framework, generating an alert ahead of the time could give

the patient enough time for the therapeutic actions to be effective in avoiding the threats of

the event itself. As anticipated in Chapter 3 (see in particular in figure 3.3), the Dynamic

Risk DR can be use to predict the hypo and hyperglycemia threshold crossings ahead of time.

In this Chapter we analyze the ability of DR in its online implementation (Section 4.2.4) of

generating hypoglycemic alerts.

5.1.1 Generation of Hypo/Hyperglycemic Alerts in CGM Devices and

Current Academic Research

The real-time detection/prevention of hypo/hyperglycemic events is a natural online applica-

tion of CGM. Some of the minimally invasive CGM devices currently available in the market

are provided with a visual/acoustic alert generator system that warns the patient when hy-

poglycemic or hyperglycemic thresholds are crossed. Often, this type of alert is based on the

current glycemic value measured by the sensor (60). The FreeStyle Navigator (2) and the
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MiniMed Paradigm Real-Time (38) also embed hypo/hyper alert generators based on the

projection of current glucose level made by exploiting and trend.

Academic research is active in the development of methods able to generate alerts ahead

of time. A detailed review can be found in (60). As suggested in (59) and (60), evaluation

of alert generation must take into account the ability of anticipating threshold crossings by

simoultaneously minimizing (or keeping as low as possible) the number of false alerts (i.e.

alerts raised by the algorithm not followed by a real crossing of the hypo/hyperglycemic

threshold).

Briefly, in Choleau et al. (8), for instance, an hypoalert is generated when the future

glycemic concentration, obtained on the basis of first-order linear extrapolation of the last

two/three glucose samples, is forecasted to cross the hypoglycemic threshold within 20 min.

Sparacino et al. (58), demonstrated that simple prediction algorithms based on model with a

reduced number of parameters, i.e. either first-order polynomial or first-order auto-regressive

(AR(1)) models, with time-varying parameters identified by least squares (LS) using a fixed

forgetting factor, are suitable for predicting glycemia ahead in time with a sufficient accuracy,

with a PH of 30 and 45 min. Eren-Oruklu et al. (16) developed prediction algorithms based

on AR(3) and ARMA(3,1) models, with time-varying parameters identified by LS, using a for-

getting factor µ which could be modulated according to the glucose trend. Reifman et al.(50)

proposed a predictor based on an AR(10) model, with time-invariant and subject-invariant

parameters identified by regularized LS. Similarly, Gani et al. (20) developed a prediction

strategy based on an AR(30) model with time-invariant parameters identified by regularized

LS on pre-filtered data. Finan et al. (19) proposed a predictor based on an ARX(3) model

with exogenous inputs given by ingested carbohydrates and insulin medications, both with

time-invariant and time-variant parameters. Palerm and Bequette (43), after having posed

the problem in a state-space setting, used the Kalman filtering methodology to predict glucose

level after a given PH, using a double integrated random walk as prior for glucose dynamics.

Recently, NN models have been the subject of some investigations for glucose prediction.

Pérez-Gand́ıa et al. (47) developed a feedforward NN for glucose prediction, trained and

tested with 3 different PHs, i.e. 15, 30, and 45 min. More recently, Pappada et al. (46), (45)

proposed a NN approach to predict glycemia with a PH of 75 min. Finally, a preliminary

study carried out on a limited dataset consisting of only one patient was developed by Eskaf

et al. in 2009 Inputs of their NN model include the first-order differences of the glycemic

time series, and information on meals, insulin and physical exercise, extracted directly from
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the blood glucose time-series, by modeling the glycemic level as a dynamic system. Another

paper by Zecchin et al. (67) exploits Neural Networks incorporating a model informed with

the timing and amount of meals.

5.1.2 Use of DR to generate Short-term Hypo/Hyper Alerts

The idea is to assess if and how a CGM device may take benefit from an algorithm which

generates preventive hypoglycemic and hyperglycemic alerts based on the concept of current

clinical risk associated to the glycemic value and its trend.

5.2 Dataset

5.2.1 Simulated Dataset

As a first step, DR was applied to simulated data, in order to tune the parameters of the

function. The simulated Data Set consists of 10 frequently sampled Blood Glucose profiles (5

minutes sampling rate) available on the internet (21) were considered. The BG profiles were

filtered via a smoothing algorithm and almost continuous glucose profiles were obtained (1

minute sampling rate). DR and a combination of DR with a state of art prediction algorithm

will be applied on these profiles both with and without superimposed noise. Anticipation

in threshold crossings and false alerts generated will be compared for the different alert

generation tools.

5.2.2 Real Dataset

DR was then applied to real data, obtained with four different CGM sensors.

1. Abbott Freestyle Navigator (collected within the project DIAdvisor) Dataset 1: 10

glucose profiles, sampling time 10 minutes, average length of the signals 4297 ± 49

minutes. Number of Hypo episodes: 14, Number of Hyper episodes 72.

2. Abbott Freestyle Navigator (data taken from a previously published dataset (34))

Dataset 2: 10 glucose profiles, sampling time 1 minute, average length of the signals

1884 ± 362 minutes. Number of Hypo episodes: 8, Number of Hyper episodes 36.
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3. Dexcom Seven Plus Dataset (data provided by DexCom Inc., in the framework of a

development agreement with the Department of Information Engineering of the Uni-

versity of Padova) 1: 10 glucose profiles, sampling time 5 minutes, average length of the

signals 9876 ± 172 minutes. Number of Hypo episodes: 106, Number of Hyper episodes

208.

4. Menarini Glucoday (data provided by Menarini Diagnostics, in the framework of a

past research collaboration with the Department of Information Engineering of the

University of Padova): 10 glucose profiles, sampling time 3 minutes, average length

of the signals 2703 ± 303 minutes. Number of Hypo episodes: 45, Number of Hyper

episodes 73.

The analysis performed on the real data set were similar to those performed on the simulated

dataset: alerts were generated with different tools (DR computed via exponential/hyperbolic

tangent functions, state-of-the art prediction techniques) and results were compared in terms

of temporal gain and number of false alerts generated.

5.3 Set-up of DR Parameters on Simulated Data

This section reports the results obtained on simulated data.

5.3.1 Tuning of parameter µ

When considering the first definition of the DR, i.e. Eq. 3.11, we needed to define what

value the parameter µ should have. Figure 5.1 shows three different DR profiles (based on

the same glycemic profile) evaluated for three different values of µ (continuous, dashed and

dotted gray lines are evaluated with µ = 1, µ = 2.2 and µ = 4, respectively). The higher the

value of µ, the greater the amplification and damping relative to the same profile. Greater

amplification of risk results in greater time gain in the threshold crossing at time ' 360 min,

but, on the other hand, it increases the risk of generating false alerts. Overestimating the

risk may lead to announcing a threshold crossings when in fact, the condition of the patient is

still safe. Empirically, we tuned µ to the value of 2.2, since it allowed obtaining a reasonable

time gain of circa 10 minutes with a relatively small number of false alerts (Results in Section

5.4).
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Figure 5.1: Role of µ: SR (thick solid line) vs DR for a noise-free glucose profile, where DR is
calculated with µ=1, µ=2.2 and µ=4 (black solid, dashed and dotted line).

5.3.2 Assessment of Exponential-based vs. Hyperbolic Tangent-based Struc-

ture

The DR function defined as in 3.11 shows some interesting features. Being based on the

exponential function it is really simple, and very rapid in changing. The conceptual example

shown in Figure 3.3 demonstrates the ability of this structure to anticipate threshold crossings.

This structure has nonetheless some problems. Figure 5.2 reports an example of simulated

CGM profile (top panel) showing a prolonged condition of severe hypo. The signal presents

a mild recovery, then a stationary period in hypo, to finally recover completely. The lower

panels display SR (red) and DR (green). Notice how during the mild recovery between min

700 and min 750, DR is an attenuated version of SR, i.e. the risk is lowered and closer to

zero. The damping is so strong that DR actually returns within the safety region. Unluckily,

when the patient falls again a little bit deeper in hypo (minutes 800-900), DR raises a ”false

alert”. Notice that this is a different false alert with respect to normal threshold crossings,

since it starts from a clinically wrong decrease in risk.

To circumvent this problem, the hyperbolic-tangent-based structure of Eq. 3.12 was used.

In particular, this structure is more flexible since it allows very easily to define two important

57



5. APPLICATION OF DR FOR THE PREVENTION OF
HYPO/HYPERGLCEMIC EVENTS

300 400 500 600 700 800 900 1000 1100
0

50

100

150

200

250

glucose

time (min)

g
lu

c
o
s
e
 (

m
g
/d

l)

 

 

300 400 500 600 700 800 900 1000 1100
−50

−40

−30

−20

−10

0

10

time (min)

Static Risk vs Dynamic Risk

 

 

SR
DR

exp
 

Figure 5.2: Example of failure of DRexp. The damping when the subjects id heading back to
euglycemia is too strong, and DR (lower panel, green) returns in safety zone very early. The
derivative of the glucose signals on the way back to safety then decreases, and this results in a
false positive alarm (evidenced in the circle).

features:

1. Controlled maximal damping when heading back to euglycaemia. In particular, recall

Section 3.3.1. Here, the behavior of the exponential was explained when the time-

derivative was in condition of very fast recovery to the euglycemic region, and it was

clarified how in this case the damping reduced the DR to be exactly zero. Parameter

β can be set to force the limit to when x→ −∞ to be equal, for example to 0.5. This

means that when dg/dt and SR have different sign, and the derivative is very high in

module, SR will be reduced in magnitude no more than by its half.

2. Possibility of saturating the magnification of risk. In the exponential function, the am-

plification grows indefinitely with the time derivative. From a conceptual point of view

this is correct, but from a practical point of view, it may be useful to assign a refer-

ence maximal possible amplification to the highest expected time derivative value with

physiological meaning. In fact, knowing that variations greater than 4 or 5 mg/dl/min

are not physiologically plausible and hence need to be considered spurious oscillations,
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5.3 Set-up of DR Parameters on Simulated Data

it make sense at least to set a higher limit to amplification. Parameter δ can be set to

force also a maximum amplification of risk.

In this thesis we will refer to the exponential-based and hyperbolic tangent-based struc-

tures as DRexp and DRtanh respectively.

5.3.2.1 Parameter Choice for the DRtanh Structure

As shown from Eq. 3.12, the structure based on the hyperbolic tangent has 4 parameters

that need to be set:

1. Parameter γ: assuming that β and δ have been fixed, γ is set in order to fulfill the

constraint that at zero time-derivative, i.e. in stationary conditions, DR equals SR. This

means that for dr/dt = 0 the amplification factor needs to be equal to 1 (independent

of α). In particular, gamma is set as:

δ tanh(γ) + β = 1 (5.1)

i.e.,

γ = tanh−1
(

1− β
δ

)
(5.2)

2. Parameter β. This parameter influences the maximum damping of DR. When dg/dt

and SR have different sign (suppose SR > 0, and dr
dt < 0), and the derivative is very

high in module the amplification factor (f) will have the form of

f = [δ lim
x→−∞

tanh(x+ γ) + β] = −δ + β (5.3)

this means that, for example to have a damping to the 75% of the risk we need to set

β = δ + 0.75

3. Parameter δ. This parameter influences the maximum amplification. In particular

notice that if dr/dt and SR have the same sign (suppose SR > 0, and dr
dt > 0), and the

derivative is very high in module the amplification factor will have the form of

f = [δ lim
x→∞

tanh(x+ γ) + β] = δ + β (5.4)
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if we set β = δ− y where with y we define the maximum damping (0.75 in the example

above), and, for example, we want a maximum amplification of h = 10 times the risk,

we have δ+ (δ+ y) = h, hence δ = (h− y)/2. In all the discussion in the thesis we will

refer to the maximum amplification parameter h as, in fact, δ. This means that when

we state that parameter δ is set to 10, we mean in fact that h = 10, i.e. the maximum

amplification is 10.

4. Parameter α. This parameter defines the rapidity of risk amplification for different time

derivative values. For this parameter there are no constrains, but higher α result in

faster amplification and higher ”contrast” in a smaller range of derivative values. The

role of α for DRtanh is similar to the role of µ in DRexp.
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Figure 5.3: Example of profiles generated using the two presented DR structures (DRexp and
DRtanh, red and blue respectively) vs SR (black). Notice that DRtanh allows obtaining the same
time gain as DRexp but offers a slower return to the euglycemic range. This allows avoiding, for
example, the false alert generated by DRexp at minute 255.

The parameters were set in order to have a limit in the damping equal to 0.75, i.e. the risk

cannot be decreased more than 25%. Maximum amplification is usually set to 10, although

in Chapter 6 also other values will be used in simulation environment. Parameter γ is fixed

once β and δ are defined. In this Chapter no optimization is shown for α and a fixed value

of 2 is used unless differently specified. In Chapter 6 simulations will be run to investigate
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the role of parameter α when using DR as an alert generator, and values between 0.5 and 5

were tested.

Figure 5.3 shows two examples of DR evaluated with DRexp and DRtanh structures. In

the circles, critical episodes are highlighted. In particular in the bottom panel it is evident

how DRexp (red) causes the generation of a false alert, while the more conservative damping

introduced by DRtanh allows preventing the generation of such alarm.

5.4 Criteria for assessing Results on Simulated Data

Only results on hypoglycemic threshold crossings will be presented in this thesis, although

the same analogous could be shown for hyperglycemic threshold crossings.

The temporal gain in threshold crossing is evaluated as the time difference between the cross-

ing of the predictive signal at 70 mg/dl and the subsequent crossing of the static risk, which

we recall, crosses the threshold simultaneously with the CGM signal. This allows comparing

the condition of no prediction (alert raised when hypoglycaemia has already occurred) and

the preventive alert generated by the algorithms.

A false alarm is an episode where an alert is raised by the predictive algorithm (i.e. the

predicted profile crosses the 70 mg/dl threshold or the risk function falls below the static

risk value corresponding to 70 mg/dl) while the glucose signal doesn’t actually fall below 70

mg/dl. A snooze time of 20 or 45 minutes is set which prevents the generation of alerts right

after the first alert. This makes sense in real life, where after the first alarm the patient is

supposed to take actions to recover from the hypoglycemia.

5.5 Results on Simulated Data

5.5.1 Noise-free Simulated Data

Temporal gains and false positives were evaluated for the 10 simulated noise-free profiles.

Figure 5.4 shows the histogram distribution (left) of time gain and false positives for DRexp

(µ = 2.2) (top panels) and DRtanh (α = 3 and δ = 10) (bottom panels). In this case the

snooze time is 45 minutes, relatively long, meaning that no alerts are raised 45 minutes after

the first occurance. Notice how the median gain in threshold crossing is equal to 11 minutes

for both structures, but DRtanh results in lower mean and median number of false alerts in
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case of noise free signals. This example proves the superiority of DRtanh with respect to

DRexp in this application.
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Figure 5.4: Distribution of Temporal Gain and False alerts for DRexp, µ = 2.2 (top panels) and
DRtanh, α = 3, δ = 10 (lower panels) for noise-free signals. Snooze Time was set to 45 minutes

Figure 5.5 shows the distribution of time gain and false positives for DRexp (µ = 2.2)

and DRtanh (α = 3 and δ = 10) when the snooze time is relatively short, i.e. 20 minutes.

Also considering a shorter snooze time, DRtanh performs better than DRexp in terms of false

positives, adding only one alarm in 5 out of 10 subjects, and adding no false alerts at all in the

other 5. On the other hand, 7 out of 10 subjects experience one false alert with DRexp. Also

while the median is the same for the two structures, DRtanh shows a slightly higher mean in

temporal gain, which is a nice feature. A summary of the time gains in terms of mean and

median and the number of false positive for the two structures on noisy data, considering

again two possible implementation with snooze times of 20 and 45 minutes is shown in table

5.1.

The Table highlights that both structures allow obtaining a median temporal gain of 11

minutes, with DRtanh showing a lower median number of false alerts with both snooze time

settings (20 or 45 minutes).
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Figure 5.5: Distribution of Temporal Gain and False alerts for DRexp, µ = 2.2 (top panels) and
DRtanh, α = 3, δ = 10 (lower panels) for noise free signals. Snooze Time was set to 20 minutes

Structure Snooze Gain FP
mean median mean median

Noise free
EXP 20 10.92 11 0.7 1

TANH 20 11.05 11 0.5 0.5

EXP 45 11.18 11 0.6 1
TANH 45 11.31 11 0.4 0

Table 5.1: Performance of DRexp and DRtanh in terms of temporal gain in anticipation of
threshold crossing and false alerts generated for noise-free profiles. Results are summarized with
the mean and median of the distribution of temporal gains and # of false positives for two different
snooze-times.

5.5.2 Noisy Simulated Data

DRexp and DRtanh were computed for all the 10 noisy profiles. Figure 5.6 shows the distribu-

tion of time gain and false positives for DRexp (µ = 2.2) and DRtanh (α = 3 and δ = 10) for

simulated signals with zero-mean white noise with variance σ2 = 4. In this case the snooze

time is 45 minutes. With a long snooze time, DRexp and DRtanh perform similarly in terms

of median and mean time gain, the second being slightly more reactive than the first. Median

of false positives is, in this case, comparable for the two structures.
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Figure 5.6: Distribution of Temporal Gain and False alerts for DRexp, µ = 2.2 (top panels) and
DRtanh, α = 3, δ = 10 (lower panels) for signals with noise variance σ2 = 4. Snooze Time was
set to 45 minutes

Figure 5.7 shows the distribution of time gain and false positives for DRexp (µ = 2.2) and

DRtanh (α = 3 and δ = 10) for the same signals but with a snooze time of 20 minutes. With

a shorter snooze time, DRtanh provides a slightly higher time gain than DRexp with 0.5 less

FA median per subject.

Finally, we summarize in table 5.2 the time gains in terms of mean and median and the

number of false positive for the two structures on noisy data, considering again two possible

implementation with snooze times of 20 and 45 minutes.

Structure Snooze Gain FP
mean median mean median

Noisy σ2 = 4mg2/dl2

EXP 20 11.26 11 3.6 4
TANH 20 12.15 12 3.4 3.5

EXP 45 11.18 11 2 2
TANH 45 13.31 12 1.9 2

Table 5.2: Performance of DRexp and DRtanh in terms of temporal gain in anticipation of
threshold crossing and false alerts generated for noise-free profiles. Results are summarized with
the mean and median of the distribution of temporal gains and # of false positives for two different
snooze-times.
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Figure 5.7: Distribution of Temporal Gain and False alerts for DRexp, µ = 2.2 (top panels) and
DRtanh, α = 3, δ = 10 (lower panels) for signals with noise variance σ2 = 4. Snooze Time was
set to 20 minutes

Also on noisy data, DRexp and DRtanh allow anticipating the threshold crossing of median

11 and 12 minutes, the latter being a safer algorithm with less false positive alerts than the

first with a short snooze time.

5.6 Results on Real Data

Figures 5.8, 5.12, 5.14 and 5.16 show the results obtained on a representative signal from the

datasets Abbott (1 minute samplig rate), Diadvisor (10 minutes sampling rate), Dexcom (5

minutes sampling rate) and Menarini (3 minutes sampling rate). The upper panels show the

original signal (red), a filtered version of the signal obtained via offline Butterworth filter

(blue - forward/backward filter) used as comparison, and the reconstructed glucose signal

(black) obtained online via deconvolution. Lower panels show the static risk function of

the filtered glucose (red), DRexp and DRtanh of the reconstructed glucose (green and black

respectively). The filtered glucose and its static risk are only used as an offline comparison

and are thought as a noise free version of the glycemia and its risk. We consider a true

threshold crossing every crossing of these profiles in their respective domains. Figures 5.9,

5.13, 5.15 and 5.17 show the distributions of time gains (left panels, in minutes, considering
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a snooze time of 45 minutes) and false alerts (right) for the hypoglycemic threshold crossing

at 70 mg/dl. Histograms on top panels refer to the use of DRexp, while lower panels refer to

DRtanh.

Both methods allow to achieve a temporal gain around 10 minutes on real data, with DRtanh

performing slightly better in terms of stability of the signal (qualitatively) and of false alerts

raised. We considered a snooze time of 45 minutes to mimic real life, where a patient is likely

to snooze the sensor after the first alarm in order to take the necessary therapeutic actions.

The algorithm is able to work with different sensors, and at different sampling times. Different

sensors have different SNR, so possibly different snooze times can be set along with different

parameters of DR. So far, the tuning has been done by inspection, but future work might

address the need of adapting to different SNR the parameters. More frequent sampling

rate allows to better appreciate the threshold crossing gain and allow a realistic first-time

derivative estimate, provided that noise is correctly dealt with.

5.7 Conclusions

DR can be used to generate alerts ahead of time thanks to its intrinsic ability to anticipate

threshold crossings with a certain accuracy. The alert generated indicates that the actual time

derivative and glucose levels might resolve in an hypo/hyper soon if no therapeutic actions are

taken. The generation of alerts is hence clinically interesting, since it also considers explicitly

the role of the trend and translates it into a risk score. In the next chapter, a refinement of

the use of DR as an alert generator will be presented.
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Figure 5.8: Represenatative Subject for the dataset Abbott (1 minute sampling rate). Upper
panel: original signal (red), filtered version (Butterworth filter) (blue), reconstructed glucose
signal (black) obtained via deconvolution. Lower panel: static risk function of the filtered glucose
(red), DRexp and DRtanh of the reconstructed glucose (green and black respectively).
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Figure 5.9: Distribution of time gains in minutes (left) and false positive (right) for the 10
subjects of the Abbott Dataset. (Sampling time 10 minutes, snooze 45 minutes. Parameters:
µ = 2.2 (DRexp); δ = 10, α = 2 (DRtanh); )
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Figure 5.10: Represenatative Subject for the dataset Diadvisor (10 minutes sampling rate).
Upper panel: original signal (red), filtered version (Butterworth filter) (blue), reconstructed glu-
cose signal (black) obtained via deconvolution. Lower panel: static risk function of the filtered
glucose (red), DRexp and DRtanh of the reconstructed glucose (green and black respectively).
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Figure 5.11: Distribution of time gains in minutes (left) and false positive (right) for the 10
subjects of the Diadvisor Dataset. (Sampling time 1 minutes, snooze 45 minutes. Parameters:
µ = 2.2 (DRexp); δ = 10, α = 2 (DRtanh); )
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Figure 5.12: Represenatative Subject for the dataset Diadvisor (10 minutes sampling rate).
Upper panel: original signal (red), filtered version (Butterworth filter) (blue), reconstructed glu-
cose signal (black) obtained via deconvolution. Lower panel: static risk function of the filtered
glucose (red), DRexp and DRtanh of the reconstructed glucose (green and black respectively).
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Figure 5.13: Distribution of time gains in minutes (left) and false positive (right) for the 10
subjects of the Diadvisor Dataset. (Sampling time 1 minutes, snooze 45 minutes. Parameters:
µ = 2.2 (DRexp); δ = 10, α = 2 (DRtanh); )
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Figure 5.14: Represenatative Subject for the dataset Dexcom (5 minutes sampling rate). Upper
panel: original signal (red), filtered version (Butterworth filter) (blue), reconstructed glucose
signal (black) obtained via deconvolution. Lower panel: static risk function of the filtered glucose
(red), DRexp and DRtanh of the reconstructed glucose (green and black respectively).
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Figure 5.15: Distribution of time gains in minutes (left) and false positive (right) for the 10
subjects of the Dexcom Dataset. (Sampling time 5 minutes, snooze 45 minutes. Parameters:
µ = 2.2 (DRexp); δ = 10, α = 2 (DRtanh))

70



5.7 Conclusions

500 1000 1500 2000
0

50

100

150

200

250

CGM

time (min)

g
lu

c
o
s
e
 (

m
g
/d

l)

 

 

noisy

filtered

estimated

500 1000 1500 2000
−30

−20

−10

0

10

20

30

time (min)

Static Risk vs Dynamic Risk

 

 

static estimated
dynamic

exp
 estimated

dynamic
tanh

 estimated

Figure 5.16: Represenatative Subject for the dataset Menarini (3 minutes sampling rate). Upper
panel: original signal (red), filtered version (Butterworth filter) (blue), reconstructed glucose
signal (black) obtained via deconvolution. Lower panel: static risk function of the filtered glucose
(red), DRexp and DRtanh of the reconstructed glucose (green and black respectively).
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Figure 5.17: Distribution of time gains in minutes (left) and false positive (right) for the 10
subjects of the Menarini Dataset. (Sampling time 3 minutes, snooze 45 minutes. Parameters:
µ = 2.2 (DRexp); δ = 10, α = 2 (DRtanh); )
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6
Prevention of hypo/hyperglycemic events through on-line

calculation of DR: further improvement by use in combination

with Kalman Filter

In this Chapter we propose to use the DR function combined with a short-term prediction

based on the Kalman Filter. This will further increase the anticipation in hypo/hyper thresh-

old crossings to 20, or more, minutes.

6.1 DR combined with Kalman Filter based Prediction

The algorithm used to obtain a short-term prediction of glucose is presented in Appendix

C. It is a development of a denoising algorithm (57) which implements a Kalman Filter

coupled with a Bayesian smoothing criterion to estimate the unknown filter parameters. In

this section we discuss the possibility of combining the prediction performed via Kalman

Filter with DR. In particular, we apply DR with the implementation based on the tanh

function to the predicted profile obtained via KF. Different PH and parameters will be tested

in simulation to tune the best combination of prediction and risk amplification.

6.1.1 Alert Generation

For each signal, three alarm generation tools were considered:

1. Short-term prediction per se: for this algorithm the only parameter which can be set by

the user if the Prediction Horizon. We refer to profiles obtained via simple prediction as

SRp, i.e. static risk of the Short-Term Predicted Glucose, since we know that whenever

the predicted signal crosses the threshold, its SR will also cross the threshold.
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2. Dynamic Risk per se: in this case, parameters α and δ will be set. This signal will be

referred to as DR, i.e. the Dynamic Risk of the (Original) Glucose Profile.

3. Combination of Short-term prediction and DR evaluation: in this case we considered

several combinations of the parameters of the single algorithms. Signals obtained with

this combination will be referred to as DRp, i.e. the Dynamic Risk of the Short-Term

Predicted Glucose profile.

4. All the above signals will be compared to SR, i.e. the static risk of the original glucose

profile which, we recall, crosses the threshold exactly at the same moment as the original

glucose profile.

6.2 Criteria for Assessing the Results

The evaluation of the algorithms will be performed for hypoglycemic threshold crossings. The

temporal gain in threshold crossing is evaluated as the time difference between the crossing of

the predictive signal at 70 mg/dl and the subsequent crossing of the static risk, which crosses

the threshold simultaneously with the CGM signal. This allows comparing the condition of

no prediction (alert raised when hypoglycaemia has already occurred) and the preventive

alert generated by the algorithms.

The number of false positives will also be evaluated. We consider a false alarm an episode

where an alert is raised by the predictive algorithm (i.e. the predicted profile crosses the

70 mg/dl threshold or the risk function falls below the static risk value corresponding to 70

mg/dl) while the CGM will not actually fall below 70 mg/dl. Moreover a snooze time of 45

minutes is set which prevents the generation of alerts right after the first alert.

6.3 Simulation Study

6.3.1 Data Generation

We consider 10 simulated signals of Section 5.2. Two simulations were run. First we used the

noise-free signals and tested the method in optimal conditions. Then we added zero-mean

white noise with different variance σ2. The signals were undersampled to a 5 minutes rate

grid, to simulate, for example, the performances on a device like the Dexcom Seven Plus. The

average length of the signals is 5653.5 ± 60.2 min. The total number of true hypoglycemic
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events is 86, and the number of alerts raised by the noise-free simulated profiles alone is, in

fact, 86.

Simulations were run for every possible combination of parameters where

• PH = {5, 10, 15, 20} minutes

• δ set to have maximum amplification of {1, 2, 3, 4, 5, 10, · · · , 60}

• α = 0.6, 0.8, 1, · · · , 5.4

for a total number of 1600 combinations of parameters.

6.3.2 Results on Noise Free Signals

The performance of the prediction algorithm based on KF alone is independent of the value

of α and δ and is useful to understand what is the starting point to develop the combined

algorithm KF plus DR.

Figures 6.1 shows a representative simulated noise free glucose profile vs the predictions

obtained via KF with PH= 5, 10, 15, 20 and 25 minutes. Notice that greater PH result in

less stable and more oscillating predictions.
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Figure 6.1: Example of simulated glucose (black) vs predicted glucose via Kalman Filter with
PH=5, 10, 15, 20, 25 minutes.

Table 6.1 shows the temporal gain obtained on noise free profiles by using the KF predic-

tive algorithm alone.

The role of DR alone as an alert generator has been shown previously in this chapter. In

this particular setting, we used the structure based on the tanh function, which depends on

four parameters:
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Noise-Free Data
PH Gain (mean) Gain (median) FP(mean) FP(median)

5 7.15 5 0.9 1
10 12.26 10 1.7 1.5
15 16.57 15 2.6 3
20 19.59 20 3.5 3.5
25 22.15 20 4.1 4

Table 6.1: Performance of the short-term prediction algorithm alone in terms of temporal gain
in anticipation of threshold crossing and false alerts generated for noise free profiles. Results
are summarized with the mean and median of the distribution of temporal gains and # of false
positives for different prediction horizions (PH).

• α, determines the effective amplification.

• β determines the maximum damping. It was arbitrarily set in order to have maximum

damping of 75% since this allows to have a smooth recovery to the zero risk zone when

heading back to euglycemia.

• γ as shown before can be computed once the other parameters are set.

• δ defines when a saturation of the risk will occur. δ was set in order to have maximum

amplification of 10. In this chatpter, δ set to 10 means that δ was set in order to obtain

maximum amplification factor equals to ten.

The role of α can be appreciated in Figure 6.2, where SR for a representative simulated

noise free glucose profile, against DRtanh evaluated for parameter α equal to 1.5, 2 and 2.5.

Greater α result in greater time gain.

2500 2550 2600 2650 2700 2750 2800 2850 2900
−15

−10

−5

0

5

10

15

Time (min)

R
is

k

 

 

SR

DR (alpha=1.5)

DR (alpha=2)

DR (alpha=2.5)

INCREASING
ALPHA

Figure 6.2: Example of SR (black) vs DRtanh for α=1.5, 2, 2.5.
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The role of the maximum amplification is investigated in figure 6.3 where the mean tem-

poral gain and number of false alerts is shown for the simulated noise free profiles elaborated

with DR alone for different values of α. Different values for the amplification factor were con-

sidered from 1 to 60. Basically, higher δ results in higher temporal gain, though the increase

in the gain itself seems to be mainly driven by the value of α. In particular, for amplification

factors ≥ 10 the family of curves collapses and the only increase in temporal gain is given

by the choice of α. For this reason, in the following discussion, the maximum amplification

factor will be always considered fixed and equal to 10, and the tuning of the DR component

will be mainly focused in setting the best α. Only for the summary we will look for the best

combinations of parameters where a different δ could provide slightly better performances.
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Figure 6.3: Family of curves describing the temporal gain and number of false alerts generated
by DR alone as a function of α. Each curve represents the DR evaluated for a different value of
δ. Notice that no significant increase is due to a specific choice of δ and the choice of α seems
most crucial.

The combination of DR and the prediction algorithm based on KF can combine the nice

features of the two tools. Fig 6.4 shows an example of profile obtained with combination of

DRG (α = 2, max amplification = 10) and KF (PH=10 min). In particular, in the upper

panel, a portion of the original glucose signal (blue) is displayed along with the prediction

obtained via KF with PH equal to 10 minutes (red). The green lines represent the 70 and

180 mg/dl thresholds. In the lower panel we report all the predictions transformed in the

risk space. SR (blue) represents the static risk of the original glucose profile, and crosses the

green thresholds exactly at the same time as the original signal crosses the original thresholds.
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Figure 6.4: Example on simulated, noise-free signals. Top panel: Original and predicted glu-
cose (KF with PH=10). Lower panel: SR (of the original glucose), DR (of original glucose,
implemented with DRtanh), DRp (of the predicted glucose).

SRp (black) is the static risk of the predicted profile, and crosses the thresholds at the same

time as the predicted glucose profile crosses the original thresholds. The DR profile (DR,

red) is the dynamic risk of the original glucose signal. The magenta profile (DRp) is the

dynamic risk of the predicted profile. This profile anticipates the threshold crossings with

much higher than the KF predicted and the DR profiles alone. In this section we will also

compare the combination of DR and KF (PH=10) with the simple use of KF with longer PH

(e.g. 20 minutes).

Different PH in the evaluation of KF result in different performances of the combined

algorithm DRKF. Figure 6.5 we report the mean temporal gains and the mean number of

false positive alerts obtained with the combination of KF with PH = {5, 10, 15, 20} (blue,

red, black and magenta profiles respectively) with DR as a function of parameter α (δ = 10).

Qualitative analysis of Figure 6.5 indicates that higher α values result in high temporal

gain and, as one would expect, higher number of false alerts. In order to better understand

the relative role of DR and the predictive part of the algorithm, we first observe, from Figure

6.6, the distribution of temporal gains and of false alerts generated by DR alone (yellow), by

prediction alone (salmon) and by the combination of the two (pink). For this plot, maximum

amplification, α and PH are set to 10, 2.2 and 10(min) respectively. The distributions

are skewed, and the median of threshold crossings could be a better measurement to assess
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Figure 6.5: Mean Gain and # of FP for Noise free profiles: Combination of KF with
PH = {5, 10, 15, 20} (blue, red, black and magenta profiles respectively) with DR as a func-
tion of parameter α (δ = 10)
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Figure 6.6: Distribution of time gains of the hypoglycemic alerts (left) and distribution of
number of false alerts generated per patient (right). Results are shown for DR alone (top),
Prediction alone (middle), combination of DR and KF (bottom). δ, α and PH are set to 10, 2.2
and 10(min), respectively.
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the performances of the three tools. The combination of KF and DR allows shifting the

distribution to the right, i.e. the average anticipation is increased.
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Figure 6.7: Median Gain and # of FP for Noise free profiles: Combination of KF with
PH = {5, 10, 15, 20} (blue, red, black and magenta profiles respectively) with DR as a func-
tion of parameter α (δ = 10)

Figure 6.7 reports the median gain and number of false alerts for different α and PH.
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Figure 6.8: Distribution of time gains of the hypoglycemic alerts (left) and distribution of
number of false alerts generated per patient (right). Results are shown for prediction alone
with PH=20 (top), combination of DR and KF with δ, α and PH equal 10, 2.2 and 10(min),
respectively (bottom).
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It is interesting to better understand the relative role of the predictive part of the algo-

rithm and of the DR. Figure 6.8 shows in the top panels the distribution of temporal gains

obtained with a mid-term prediction (PH=20 minutes, KF alone) and in the lower panels

the results obtained with the combination of DR with a short term prediction with PH=10

minutes. Notice that the combined effect of DR and KF yields better results than a longer

PH by itself: despite the same median anticipation (20 minutes) in threshold crossings, the

combined algorithm results in a lower number of false alerts both in mean and median.

6.3.3 Results on Noisy Signals

The same tests of section 6.3.2 were run on simulated signals, with addition of white zero-

mean gaussian noise with variance 4mg2/dl2 and 16mg2/dl2. Figure 6.9 shows the same

portion of data of Figure 6.4, where noise has been added. From the estimated profiles, no

significant degradation of the performances of the combined algorithm seems visible with

respect to the noise-free condition.
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Figure 6.9: Example on simulated noisy signals (σ2 = 16). Top panel: Original and predicted
glucose (KF with PH=10). Lower panel: SR (of the original glucose), DR (of original glucose,
implemented with DRtanh), DRp (of the predicted glucose).

Table 6.2 shows the mean and median temporal gain and number of false alerts for the

KF prediction algorithm alone for different PH. Results are comparable with the noise-free

condition in terms of temporal gain. This is probably due also to the fact that the snooze

time allows to raise an alert at the first threshold crossing and then silences all other alerts for
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45 minutes. Notice that this is a very favorable condition. Indeed if two threshold crossings

of the predicted profile were present before a true crossing of the reference, in absence of

snooze time the first would be treated as a false alert, and only the second would be treated

as a true alert (with shorter gain).

In any case, the number of false alerts is increased, as expected, for noisy profiles.

Noisy Data (σ2 = 16)
PH Gain (mean) Gain (median) FP(mean) FP(median)

5 11.3 5 1.3 1.5
10 15 10 2.2 2
15 18.95 15 3 3
20 22.35 20 4.1 3.5
25 23.90 20 4.9 4.5

Table 6.2: Performance of the short-term prediction algorithm alone in terms of temporal gain
in anticipation of threshold crossing and false alerts generated for noisy profiles. Results are
summarized with the mean and median of the distribution of temporal gains and # of false
positives for different prediction horizions (PH).

Also for simulated noisy signals we summarize in Figures 6.10 and 6.11 the mean and

median temporal gains as a function of the only parameter α. Different prediction horizons

are displayed in different colors: PH = {5, 10, 15, 20} (blue, red, black and magenta profiles

respectively).
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Figure 6.10: Mean Gain and # of FP for Noisy profiles: Combination of KF with PH =
{5, 10, 15, 20} (blue, red, black and magenta profiles respectively) with DR as a function of pa-
rameter α (δ = 10)
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Figure 6.11: Median Gain and # of FP for Noisy profiles: Combination of KF with PH =
{5, 10, 15, 20} (blue, red, black and magenta profiles respectively) with DR as a function of pa-
rameter α (δ = 10)
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Figure 6.12: Performances with different noise levels: σ2 = 0mg2/dl2 (full dots), σ2 = 4mg2/dl2

(white dots) and σ2 = 16mg2/dl2 (white squares). Left panel displays the mean temporal gain
in the threshold crossings. Right panel shows the mean number of false alerts generated by the
combination of Short Term Prediction (PH=10 min) and DR (δ = 10) when α varies.

In order to better investigate the role of noise in the evaluation of the algorithm, consider

Figure 6.12, where the mean temporal gains and number of false alerts are shown for a PH =

10 minutes and δ = 10; different level of noise are represented as follows: σ2 = 0mg2/dl2 (full

dots), σ2 = 4mg2/dl2 (white dots) and σ2 = 16mg2/dl2 (white squares).
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6.3.4 Lessons from Simulated Data

Simulations demonstrate that the combined use of DR on predicted profiles obtained, for

example, with KF iterating the predictive step to 10 minutes, is an efficient tool to generate

alerts. Table 6.3 summarizes some performances obtained by the three algorithms for a

comparison in case of noise-free data. The main interesting features of the new combined

algorithm can be summarized by stating that:

• DRKF performs better than the single algorithms used as standalone tools (if param-

eters are not adjusted), since the amplification of prediction allows increasing the time

gain. This results of course in a higher number of False Alerts.

• Considering a fixed time gain of 20 minutes circa, DRKF allows lowering the mean

and median number of false alerts with respect mid-term prediction by KF (PH=20)

minutes (compare lines 2 and 5 of Table 6.3).

• Allowing a higher median in the number of false alerts, specific combinations of param-

eters result in a temporal gain 5 minutes higher than the standard mid-term prediction.

Algorithm Gain FP
mean median mean median

Noise free
KF (PH=10) 12.26 10 1.7 1.5
KF (PH=20) 19.59 20 3.5 3.5

DR (α = 2.4, δ = 20) 14.6 10 2.5 2
DR (α = 5, δ = 10) 17.2 15 2.7 2.5

DRKF (α = 2.2, δ = 35, PH=10) 21.92 15 2.7 3
DRKF (α = 5, δ = 10 PH=10) 25.17 25 3.7 4

Table 6.3: Performance of the three algorithms in terms of temporal gain in anticipation of
threshold crossing and false alerts generated for noisy profiles. Results are summarized with the
mean and median of the distribution of temporal gains and # of false positives.

Results obtained with this new technique are promising. Different short-term predictors

could also be used, especially if are able to provide a relatively stable (non oscillating) pre-

diction. Future work will be focused on evaluating possible different prediction strategies and

on an ad-hoc tuning of the DR parameters for the specific predictor.
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6.4 Real Data Study

6.4.1 Data

The combined algorithm of short term prediction via Kalman filter associated with DRtanh

was applied to 10 real CGM signals collected with the Dexcom Seven Plus sensor on diabetic

subjects. Patients were following their therapies in their normal life. Average length of the

monitorings was 9362± 739 minutes.

6.4.2 Results

Alert generation was assessed with the same criteria seen in the previous Sections, with snooze

time set at 45 minutes. Parameters for DRtanh were δ =10, and α =2.5 and Figure 6.13

displays the results on a representative subject: top panel shows the original vs predicted

glucose via KF (blue circles and red line respectively) whereas the lower panel shows the

computed risk signals (SR, SRp, DR and DRp in blue, black red and magenta respectively).
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Figure 6.13: Top panel: representative glucose profile (blue circles) and predicted glucose
via KF (red line). Bottom panels: Static Risk of the original and predicted glucose (blue and
black respectively) and Dynamic Risk of the original and predicted glucose (red and magenta
respectively).

Figure 6.14 shows the histograms with distribution of time gains (left panels) and false

positives (right panels) for the three algorithms: DR alone (top), KF alone (middle) and

the combination of the two (bottom). The anticipation in threshold crossings provided by
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the three predictive risk signals is good, with the combined algorithm being better than the

other two. On average, DR alone achieves a mean temporal gain of 13.34 minutes (median

10 minutes) with mean number of false alerts of 2.9 (median 3). Results for SRp in terms

of temporal gain show a mean of 12.80 minutes (median 10 minutes) with 3.5 average false

positives per day (median 3.5). Comparison of the two standalone tools on real data highlights

a slight better performance of DR with respect to KF both in terms of temporal gain and

of false alerts. The combination of the two algorithms results in a relatively high temporal

gain (19,36 minutes on average, with median value of 15 minutes). Although the number of

false positives seems rather high, it is important to recall that the real signals considered for

this analysis are long (around week on average), so we can see that on average only one false

alert per day is raised.
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Figure 6.14: Distribution of time gains of the hypoglycemic alerts (left) and distribution of
number of false alerts generated per patient (right). Results are shown for DR alone with (top),
Prediction alone (middle), combination of DR and KF (bottom). Maximum amplification, α and
PH are set to 10, 2.2 and 10(min), respectively.
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6.5 Conclusions

The Dynamic Risk can be employed for the generation of preventive alerts. The possible use

of DR as a generator of alerts per se has been published in (24), while preliminary results on

the combination of DR with short-term prediction have been published in (23). The results

shown in this Chapter were obtained by exploiting a rather simple algorithm for the short-

term prediction of glucose. Any other predictive algorithm can be used in combination with

DR. In fact, DR can be simply computed from any glucose signal, and only enhances the

anticipation of threshold crossings in case of high first time derivative. Future work will be

focused on the combination of DR with other prediction algorithms and on more extensive

comparison of the performances of the different techniques. Moreover, a provisional US Patent

has been filed concerning the possible use of DR for the generation of hypo and hyperglycemic

alerts and the use of a DRS based color map to highlight the monitors of CGM devices when

the patient is approaching a risky condition (22).
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7
Possible use of DR in the assessment of Glucose Variability and

definition of new indexes

In Chapter 2 the concepts of glucose variability and glucose control were introduced along

with some of the most used metrics that are employed to quantify them. The main observation

that emerged is the fact that none of the proposed indexes explicitly considers the glucose time

derivative. This is probably due to the fact that CGM devices, which allow the estimation of

the time-derivative thanks to their almost continuous nature, have only become available in

the last decade. In this chapter we report some examples (sometimes conceptual) to highlight

the importance of quantifying the glucose rate of change in the evaluation of the efficiency of

glucose therapy. Moreover we will introduce some indexes developed on the Dynamic Risk

Space (DRS) introduced in 3.4 to describe the glucose signals from the risk space perspective.

7.1 Added Value of the Time-Derivative in assessing Glucose

Variability

7.1.1 Simulated Data (Conceptual Examples)

Figure 7.1 shows three sinusoids, S1, S2 and S3, with same frequency, same mean, and

different amplitude (and thus different standard deviation). If, conceptually, we pretend that

S1, S2 and S3 represent glucose, we note, all the sinusoids can be built to stay perfectly ”in

target”. In this condition, all the indexes based only on mean, percentage in target, risk

scores (Eq. 2.4, 2.6 in Chapter 2), cannot distinguish between the three signals. Nonetheless,

it could be important to do so, since greater amplitude in the sinusoid (blue signal, S2) is

a condition similar to unstable glycemia, and hence implies a higher difficulty in tuning the
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therapy. In this case, standard deviation measures (such as those defined in 2.2.1) in this

case succeed in characterizing these signals. Also, combined indexes of mean and standard

deviation like J (Eq. 2.3), CV and MR (Eqs. 2.10) could be useful in this condition.
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Figure 7.1: Example of three signals S1, S2 and S3 with same mean, same % in target very
similar risk scores. SD in this case is able to distinguish between the 3 signals.

An example of signals where standard deviation measures fail in characterizing different

glucose behaviors is illustrated in Fig. 7.2 where three sinusoids with same amplitude/SD,

same frequency, and different mean are shown. In this case, SD-based measures fail in

characterizing these behaviors, while mean and mean-SD combination based indexes are able

to distinguish between the three signals. It is important to notice that SD is not able to

distinguish between the red signal (high hypo risk) and the black signal (high hyper risk).
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Figure 7.2: Example of three conceptual glucose signals S1, S2 and S3 with same SD but
different means.

Figure 7.3 shows another example of three sinusoids with the same % in target and same

frequency. The red and black signals have small amplitude (SD) with different means (the

first is shifted towards hypo, the second towards hyperglycemia). The blue signal has greater

amplitude and the risk of falling to hypo as the red one and the same risk of hyper as the black

one. In this case the use of the maximum and minimum of the time-series (max and min )

to characterize the signals would be suboptimal, since the signals cannot be distinguished by

the use of only one of these two metrics.

92



7.1 Added Value of the Time-Derivative in assessing Glucose Variability

0 500 1000 1500
60

80

100

120

140

160

180

 

 

S1

S2

S3

Figure 7.3: Example of three conceptual glucose signals S1, S2 and S3 with same % in target,
same SD (black and red), same minimum (blue and red) and same maximum (blue and black).

Finally, we report in Figure 7.3 an insightful example, with three sinusoids with same

mean, same max and min, same amplitude but different frequency. In this case, mean, SD,

combinations of mean and SD, Time in target, max, min would fail in distinguishing the

three sinusoids. Moreover a slight difference between penalty scores can be evaluated due

to the different time spent at different levels (the distribution of glucose values is broader

for the signal at low frequency, and more spiky for the faster signal). If these were true

glycaemic signals, we could assume that the slower signal (blue sinusoid) represents a subject

which is more easily controlled, since there are no abrupt changes in the signal, while the red

signal is symptomatic of a glycaemia that is frequently corrected and very oscillating. This

can be due to patient’s characteristics, or to a very aggressive therapy which needs frequent

corrections for preventing both hypos and hypers. This is of course a conceptual example,

but can highlight the benefit that one would have by explicitly including the information of

the time derivative in the variability and control analysis. This could be achieved by defining

new indexes from DR, as done below in Section 7.2.
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Figure 7.4: Example of three conceptual glucose signals S1, S2 and S3 with the same % in target,
same mean, same SD but different frequency and hence different distribution of time derivatives.
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7.1.2 Examples from Real Data

Just as shown for the conceptual examples of section 7.1.1, real glucose signals monitored with

the CGM devices have different characteristics in terms of variability and control. Figures 7.6

and 7.5 show two representative glucose profiles (monitored for three days with the Abbott

Freestyle Navigator device (1)). The behavior of the two subjects is comparable in terms

of mean and amplitude of oscillations, but in the first case (Fig. 7.6) the patient #1 has

relatively fast glucose excursions and, possibly, more corrective actions, while in the second

case glucose in patient #2 is oscillating less rapidly. Indexes based on DR may help the

differentiation between Subject #1 and Subject #2.
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Figure 7.5: Glucose profile (three days of monitoring, Abbott Freestyle Navigator) of a repre-
sentative subject.
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Figure 7.6: Glucose profile (three days of monitoring, Abbott Freestyle Navigator) of a repre-
sentative subject.

By considering another pair of representative subjects, monitored via frequently sampled

blood glucose (5 minutes rate (21), comparable to a CGM profile) and displayed in Figure

7.7 (top panels), it is interesting to see how glucose trajectories can be displayed in the DRS.
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DRS (lower panels), where the color scale has been changed in order to have safety regions

displayed in green and dangerous regions displayed in red.
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Figure 7.7: Two representative glucose profiles (top panels) in the Dynamic Risk Space (lower
panels).

The left panels refer to a very well controlled patient (#1), while the panels on the right

refer to a patient (#2) who often experiences hypo and hyperglycemic events. From the upper

panels the difference between the two subjects is visible, although it does not appear to be

substantial. On the other hand, if one analyses the trajectories of these signals in the DRS

it is apparent how in the first case the trajectory is compact within the safety zone. Time

derivative range is narrow, with few excursions with time derivative higher than ±2mg/dl. In

the second case (right panels), the trajectory is spread on the DRS both through the glucose

axis and on the time-derivative axis.

The display of glucose trajectories in the DRS gives an immediate idea of the tightness

of glucose control of a specific patient (particularly efficient when adding the colored scale

of Fig. 7.7). It is also interesting to add value to this kind of analysis by developing new

indexes able to capture the characteristics of the trajectories in the DRS. In this thesis we

95



7. POSSIBLE USE OF DR IN THE ASSESSMENT OF GLUCOSE
VARIABILITY AND DEFINITION OF NEW INDEXES

show some possible indexes developed to capture such features. Being this a new approach

to the analysis of glucose signals, several other strategies may be employed to characterize

glucose variability from the DRS. We will focus on some general techniques that have been

previously used in other biomedical engineering fields. For example, some ideas have been

used in the posturography analysis, where the trajectory of the barycenter of a standing

person (stabilogram) is tracked and analyzed from measures of pressure, see (49) for details.

7.2 New DR-based Indexes

In this section we will introduce two classes of indexes that may be used for the charac-

terization of the signals in the DRS. The first class is a family of geometric measures that

characterize the trajectory path and its barycenter, possibly weighted by the DR value of

each point. The second class refers to frequency measures of the signals.

7.2.1 Geometric Measures

The first measures that we can derive on the trajectories are their barycenter and the mean

distances of their points from it. In the following formulae, we will consider x and y to be

the axis relative to the glucose level (g) and time derivative (dg/dt) respectively, while N will

represent the total number of points in the trajectory.

• RD(Resultant Distance): represents the time series of the distances of the points of

the trajectories from its barycenter:

RD(n) = (x(n)2 + y(n)2)1/2 for n = 1 . . . N (7.1)

where

x(n) = (xo(n)− x) (7.2)

x =
1

N

N∑
n=1

xo(n) (7.3)

y(n) = (yo(n)− y) (7.4)

y =
1

N

N∑
n=1

yo(n) (7.5)
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In Eq. 7.2, xo(n) is the time-serie of the distances of each point from the center (origin)

while x(n) is the time-series of the distances from the barycenter of the data along the

x axis (similarly for yo(n) and y(n) along the y-axis).

• MDIST (Mean Distance): It is the mean value of the RD time-series and it repre-

sents the average distance of the points of the trajectories from the barycenter of the

trajectory itself.

MDIST =
1

N

N∑
n=1

RD(n) (7.6)

• RDIST (Root Mean Squared Distance): It is the root mean squared value of the

RD time-series and it represents the average distance of the points of the trajectories

from the barycenter.

RDIST =

[
1

N

N∑
n=1

RD(n)2

]1/2
(7.7)

• RDISTx (Root Mean Squared Distance along x (or y) axis) : it represents

the root mean squared distance of the distribution of x coordinate of the points in the

trajectory from the x-coordinate of the barycenter.

RDISTx = sx =

[
1

N

N∑
n=1

x(n)2

]1/2
(7.8)

• SP (Sway path): total length of the trajectory, approximated by the sum of the

distances of two consecutive points.

SP =
N−1∑
n=1

[
(x(n+ 1)− x(n))2 + (y(n+ 1)− y(n))2

]1/2
(7.9)

• SPx (Sway Path along x (or y) axis)

SPx =
N−1∑
n=1

|(x(n+ 1)− x(n))| (7.10)

97



7. POSSIBLE USE OF DR IN THE ASSESSMENT OF GLUCOSE
VARIABILITY AND DEFINITION OF NEW INDEXES

7.2.2 Ellipse-based Measures

The trajectories of glucose signal in the DRS often resemble an ellipse. In particular it is

possible to define the 95% confidence ellipse as described in (49) for the trajectories of the

barycenter of standing people. This confidence ellipse represents the curve containing with

probability 95% the points of a bidimensional distribution, given in our specific condition by

the couples of points (g and dg
dt ). An example of such an ellipse is shown in Figure 7.8. In this

graph, the DRS is reported with the glucose trajectory (black) displayed in the lower panel of

the figure. The signal is one representative subject from the simulated dataset described in

5.2. In the upper panel, the blue ellipse comprises the area where 95% of the glucose values is

expected to fall for this specific subject, while the blue whiskers represent the hypoglycemic

and hyperglycemic centers, i.e. the center of distributions of values in hypoglycemia and

hyperglycemia respectively.

The following indexes can be defined by using the 95% confidence ellipse:

AREA-CE Area of the ellipse that with probability of 95% includes the trajectory of

the distances from the barycenter, assuming that the distances are normally distributed.

The 95% confidence ellipse is the 95% bivariate confidence ellipse, which is expected to

enclose approximatively 95% of the points of the trajectory. Assuming that the number of

points in the trajectory is large (i.e. (n − 1)/(n − 2) ≈ 1), the major a radius and minor b

radius of the 95% confidence ellipse can be computed as follows,

a = [F.05[2,n−2](σ
2
x + σ2y +D)]1/2

b = [F.05[2,n−2](σ
2
x + σ2y −D)]1/2

(7.11)

In Eq.7.11, σx and σy are the standard deviations along the x and y axis and σxy is their

covariance:

σxy =
1

N

N∑
n=1

x(n)y(n) (7.12)

Moreover, F is the F statistic at 95% confidence level for a bivariate distribution with n

data points. For a large sample size it holds:

F.05[2,∞] ∼ 3 if n points >120 (7.13)

D is defined as:
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Figure 7.8: A representative glucose profile (lower panel panels) in the Dynamic Risk Space
(upper panels). In blue, the 95% confidence ellipse is highlighted.

D = [(σ2x + σ2y)− 4(σ2xσ
2
y − σ2xy)] (7.14)

Finally, the area of the ellipse can be evaluated as:

Area = πab = 2πF.5[2,n−2][σ
2
xσ

2
y − σ2xy]1/2 (7.15)

AREA-CC is the area of the circle that with probability of 95% includes the trajectory

of the distances from the barycenter, assuming that the distances are normally distributed:
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AREACC = π(MDIST + z0.5σRD)2 (7.16)

where z0.5, the statistic at the 95% confidence level is 1.645 and σRD is the standard

deviation of the y time-series:

σRD = (RDIST 2 +MDIST 2)1/2 (7.17)

It is possible to weight the barycenter of the trajectory, in order to center the ellipse

according to the DR. In particular, one way to exploit the DR in this condition is using the

following values for the coordinates of the center of the ellipse:

xw =
∑n

i=1 g(i)DR(i)
n

yw =
∑n

i=1 dg(i)DR(i)
n

(7.18)

7.2.3 Frequency Analysis Measures

Another way to include information about the dynamics of the signals is to consider the

frequency analysis. This kind of analysis is complementary to the time-domain analysis and

helps highlighting specific features of the signals. Frequency analysis allows to implicitly take

the time-derivative into account, since it provides information on the rapidity of the signals.

In this thesis we considered specific measures on the glucose signal spectra obtained via Fast

Fourier Transform (FFT). Denoting by G(m) the power spectrum of the glycemic signal, we

will compute following indexed:

• TP (Total Power): Area under the curve G(m):

TP =
N∑
m=1

G(m) (7.19)

• f50 (50% power frequency): Frequency under which is enclosed 50% of the power

of the spectrum (median frequency):

f50 = α∆f (7.20)

where α is the smallest integer for which

∑α
m=1G(m) ≥ 0.5 · TP (7.21)
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Similarly one can find f95 which is the frequency below which 95% of the total power

is found.

To better understand and quantify the importance of time-derivative when assessing the

signals behavior, Table 7.1 reports some of the indexes evaluated on CGM signals of the

two representative subjects of Figures 7.5 and 7.6. Notice how the subjects present similar

mean, SD and similar percentage of time spent in each region (hypo/hyper/euglycemia).

Nonetheless the behavior assessed considering the whole 7-days monitoring highlights that

the first patients presents faster oscillations than the second. This is summarized in the

DR-based indexes reported in the shaded rows of the Table.

Index Subj # 1 Subj # 2
SDT 50.00 45.62
CV 34.42 30.27

MeanT 145.27 150.70
Mr 12.19 12.32
J 38.13 38.54

igc 1.96 1.58
ADRR 43.92 35.48

GRADE 6.67 7.84
MAGE 79.89 77.89
% hypo 1.93 0.87
% hyper 15.97 20.05

% eu 82.10 79.08
min 50.00 65.00
max 285.00 272.00
RMS 9.22 8.34
path 1003.61 621.32

pathdg 54.46 27.82
Area EC 106.02 58.72

Table 7.1: Computed values for some of the proposed indexes evaluated on the two representative
Subjects of Figures 7.5 and 7.6. The shaded rows highlight the indexes which are able to clearly
highlight the different behavior of the two patients (rapidly vs slowly oscillating signals).

7.3 Next Steps

In this Chapter we introduced new DR-based indexes on the glucose profile which also consider

the time-derivative of the signal. It is important to understand the role of such indexes with

respect to the other indexes already introduced in Chapter 2 and taken from the literature.
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In Chapter 8 the problem of selecting indexes or combination of indexes for the description

of a specific dataset will be introduced.
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8
Multivariate Analysis of Glucose variability Indexes via

SparsePCA and Parsimonious Description

Several indexes can be used to describe different features of glucose signals. Some of them are

available form the literature (Chapter 2), while some others have been defined in this thesis

from the DR function (Chapter 7). Tables 8.1, 8.2 and 8.3 summarize those indexes divided in

three classes, i.e. glucose variability, glucose control and DRS. Obviously it is expected that

these indexes are, in part, correlated and redundant. It is therefore important to understand

how many of them are indeed necessary to describe the features of glucose behavior in a given

subject. In this Chapter we demonstrate that considering the time-derivative as a potential

variability factor is important from a statistical point of view and that DR-based indexes add

valuable information in describing and characterizing glucose behavior in different patients.

8.1 Problem Statement

Assume having a dataset of n glucose signals relative to n different subjects. For each signal

evaluate m indexes and summarize such information in matrix X (n × m). We want to

describe the variability of this set of indexes evaluated on the dataset, with fewer indexes p,

(p < m)or combination of indexes. At the same time we want to find the most parsimonius

combination of the p indexes able to capture the maximum possible variance of the m original

indexes.

The PCA is a popular tool used to achieve the goal of understanding the real dimension-

ality of a dataset . This tool has been deeply studied and is consolidated in the statistical

practice, so, for sake of brevity, an introduction to PCA is reported in Appendix D.
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Glucose Variability

SD/MEAN

Mean Average of all available Glucose values

SDT SD of all data from all days and all times of day

SDw Evaluate SD for all measurements in each 24-h day,
then average these values

SDhh:mm Evaluate the average glucose profile by averaging the
glucose value of the same time of day for all available
days. Then evaluate SD of the average profile

SDwsh SD for a fixed number of consecutive glucose values
(e.g. 1 hours) evaluated at all possible times of day
and then averaged

SDdm Evaluate mean glucose for all days, then evaluate the
SD of these values

SDbhh:mm Evaluate the SD of glucose values for any specified
time of day, then average these values

SDbhh:mm//dm As above, considering deviations from the mean for
the same day

SDI Obtained using two-way analysis of variance with
replication

CV 100 ∗ SDT
meanT

MR mean(1000 · | log10(Glucose/100)|3)

Excursions MAGE Average Amplitude of upstrokes or downstrokes with
magnitude greater that 1SD

Day-to-Day
MODD Mean difference between glucose values obtained at

the same time of day on two consecutive days under
standardized conditions

MODDd Mean of differences in glucose between each value and
the value exactly d× 24 hours later

Short-Term CONGA

Table 8.1: Literature Indexes for the definition of Glucose Variability

8.2 PCA as a Regression Problem

In order to be able to move further from the standard PCA approach, it is important to pose

the PCA problem as a regression problem. This will be helpful to define new strategies for

the definition of a new base with useful features for the reduction of the dimension of the
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Glucose Control

Target
% in target 70(80)-140(180) mg/dl

% above target ≥140(or 180/200/250) mg/dl

% below target ≤70(or 50/80) mg/dl

SD/MEAN
J .001× (meanT + SDT )2

MAGE As defined in Table

SDT As defined in Table

Transformation
of glucose scale

ICG Sum of Hyperglycaemia and Hypoglycaemia Index
Hyper Index Weighted average of hyperglycaemic values
Hypo Index Weighted average of hypoglycaemic values

ADRR Average Daily Risk Range average sum of HBGI for
maximum glucose and LBGI for minimum glucose for
each day

LBGI Low Blood Glucose Index - Average of Kovatchev’s
risk values in hypo

HBGI High Blood Glucose Index - Average of Kovatchev’s
risk values in hyper

GRADE Average of transformed glucose values using Hill’s
transformation

Table 8.2: Literature Indexes for the definition of Glucose Control

DR and Frequency-based Indexes

Areas
Ellipse Area Weighted average of hyperglycaemic values
Circle Area Weighted average of hypoglycaemic values

Trajectory path
Sway Path Total length of the path of the trajectory in the DRS

Glucose path Length of the path of the trajectory along the x-axis
in the DRS

Derivative Path Length of the path of the trajectory along the y-axis
in the DRS

Distance Measures
MDIST Average distance of the points of the trajectory from

its barycenter
RDIST Root mean squared distance of the points of the tra-

jectory from its barycenter along x or y axis
Barycenter Weighted or non weighted coordinates of the barycen-

ter of the trajectory

Table 8.3: Indexes based on the Dynamic Risk Space
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original problem (68).

Considering the SVD computation of PCA, we know that in

X = UΣV T (8.1)

matrix U represents the principal components of X, and V represents the loadings matrix.

Simple manipulations of Eq 8.1 yield the following relation:

XV = UΣ (8.2)

Denoting UΣ = Y and V = B, we can consider the PCA problem as a regression problem.

In fact, principal components are linear combination of the m variables whose realizations

are reported in X, and the vectors yi of matrix Y can be written as

yi = Xβ (8.3)

where β are the column vectors of B. For each PC pi, it is possible to evaluate the

loadings β that allow the transformation from X to Y . The problem of the estimation of β

can be tackled in different ways, that will be explained in the following sections.

The easiest way to compute the loadings β, given matrix Y is to performa the linear

regression of Eq. 8.4:

β̂ = min
β
||yi −Xβ||2 (8.4)

PCA as a regression problem indicates a major drawback. While it is possible to cut

some of the components that do not carry information, it is true that the chosen principal

components are linear combinations of all the vectors (indexes) of the original basis. This

means that we can describe a dataset by combining the original indexes (m) with proper

loadings. It is sometimes desirable not only to achieve the dimensionality reduction, but

also to reduce the size of explicitly used variables. In the specific problem of dimensionality

reduction for glucose variability, this means that only certain indexes contribute in the linear

combination that define the principal components with coefficients different from zero. In

order to solve this problem, several approaches have been tested, which consider the PCA

as a regression problem and make use of regularization techniques to solve the optimization

problem. In the following section, two regularization operators are briefly presented.
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8.2.1 Regularized Regression Problem

The Least Absolute Shrinkage and Selection Operator (LASSO) is an algorithm for the smart

solution of regression problems. In particular, the minimization of the cost function in the

regression problem is handled adding a regularization term to the function that needs to be

minimized. Briefly, instead of simply minimizing the Residual Sum of Squares

RSS(β) =

N∑
i=1

(yi − ŷi)2 (8.5)

one can decide to minimize a different function, which includes a term F (β)

L(β) = RSS(β) + F (β) (8.6)

and the estimated coefficient vectors becomes

β̂REG = arg min
β

(RSS(β) + F (β)) (8.7)

The result is that some coefficients (associated to less informative variables) shrink to

zero. In particular, the regularization term in the LASSO consists in the sum of coefficients

absolute values:

β̂LASSO = arg min
β

∣∣∣∣∣∣
∣∣∣∣∣∣Y −

p∑
j=1

Xjβj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ λ

p∑
j=1

|βj |

 (8.8)

where λ ≥ 0 is a complexity parameter that controls the amount of shrinkage and hence

the number of coefficients that will be put to zero.

Another possible optimization is the so called ridge-estimate:

β̂RIDGE = arg min
β

∣∣∣∣∣∣
∣∣∣∣∣∣Y −

p∑
j=1

Xjβj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ λ

p∑
j=1

||βj ||2
 (8.9)

which will be used in the following sections for a different exact derivation of PCA.

A similar behavior is given by the use of the (naive) Elastic Net operator (68), which

achieves similar results by shrinking some of the coefficients to zero by exploiting a different

minimization function which includes a quadratic term of the coefficients.
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β̂EN = arg min
β

∣∣∣∣∣∣
∣∣∣∣∣∣Y −

p∑
j=1

Xjβj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ λ2

p∑
j=1

||βj ||2 + λ1

p∑
j=1

|βj |

 (8.10)

8.2.2 LASSO and Elastic Net for PCA

Considering the problem of shrinking some of the coefficient (related to less informative vari-

ables) to zero, one can think of exploiting the two above presented operators in the regression

step of PCA. Some strategies propose to force to zero all variables whose contribution (coeffi-

cient) to the linear combination is smaller than a certain threshold. This approach has been

proven to be misleading (6). Alternative solutions to straightforward PCA were proposed.

For example, McCabe (37) proposed a method to find a subset of principal variables. Notice

that in both LASSO and Elastic Net, sparse coefficients are a direct consequence of the L1

penalty, not depending on the squared error loss function. Joliffe and Uddin proposed a

methodology called the ScotLASS (29), which directly puts the L1 constraint in PCA to get

sparse loadings. The major problem in this algorithm is the choice of the parameter which

defines when the coefficients will be shrink to zero. In the following section a brief review of

the so-called Sparse Principal Component Analysis proposed by Zou et al. (68) is presented.

8.3 Sparse Principal Component Analysis

A new method, called Sparse Principal Component Analysis was introduced by Zou et al in

(68) in 2004. The method was developed in order to obtain a tool such that

1. without any sparsity constraint, the method reduces to PCA

2. it can be computed efficiently

3. it should avoid mis-identifying important variables.

The method uses the LASSO or Elastic Net regression of Section8.2.1 to produce modified

principal components with sparse loadings. The first exploratory example shown in (68) is a

two steps approach, which first requires to perform a regular PCA and then use a regression

step to find sparse loadings. The regression step is the following:

β̂ = arg min
β
||Yi −Xβ||2 + λ1|β| (8.11)
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where Yi is the ith PC and the cost function is, in this case, the same as Eq 8.10, i.e.

regularized using the Elastic Net approach.

Notice that different algorithms may be employed to obtain sparse loadings, the two-steps

approach being the simplest one. Since to our experience the regularization approach has

never been tested on glucose variability data, this will be the approach that we will use in

the discussion of the results. Further studies will focus on testing different algorithms.

We report here an example of different,self-contained regression-type approach presented

in (68). Denoting with Xi the ith row vector of X, for any λ > 0 it can be proved that

(α̂, β̂) = arg min
α,β

n∑
i=1

∣∣Xi − αβTX1

∣∣2 + λ|β|2 (8.12)

subject to |α|2 = 1 (8.13)

subject to then β̂ ∝ Vi (recall that XV̂i is the ith approximated principal component).

In (68) the procedure is shown to generalize Eq. 8.12 to all the principal component. The

interesting feature of this step is that it proves that exact PCA can be obtained while relaxing

the restriction β = α and adding a ridge penalty term (see Eq.8.9) to the simple regression

procedure. To obtain sparse loadings, the LASSO penalty is added into the generalization of

Eq. 8.12, and the following optimization problem is considered:

(α̂, β̂) = arg min
α,β

n∑
i=1

||Xi − αβTXi||2 + λ
k∑
j=1

||βj||2 + λ
k∑
j=1

λ1,j |βj | (8.14)

subject to ααT = Ik. Eq. 8.14 is called the SPCA criterion. In its general formulation,

the same λ is used for all the k components, while different λ1,j are allowed for penalizing the

loadings of different principal components. This formulation of PCA with sparse loadings is

more flexible than the ScotLASS and can be implemented with efficient algorithms.

8.4 Dataset and Indexes Evaluated

Sixty CGM signals collected with the Abbott Freestyle Navigator (10 minutes sampling) in

the framework of the DIAdvisor project (1) were used for this study. CGM was recorded for 7

days (3 in hospital, plus 4 at home) in diabetics subjects in three clinical centers (Department

of Clinical and Experimental Medicine at University Padova, the Centre Hospitalier Univer-

sitaire at Montpellier and the Institut Klinick a Experimentln Medicny in Prague). While in

109



8. MULTIVARIATE ANALYSIS OF GLUCOSE VARIABILITY INDEXES
VIA SPARSEPCA AND PARSIMONIOUS DESCRIPTION

hospital, subjects received 3 controlled meals per day and mostly rested during the day in

the hospital. At home, patients lived their normal life. Sensors were calibrated accordingly

with manufacturer’s instructions.

On the 60 CGM signals, 26 literature indexes for the evaluation of glucose variability and

control were computed. Also, 22 new DRS-based indexes were calculated. The detailed List

of Indexes evaluated is reported in Tables 8.1, 8.2 and 8.1.

Since the analysis is retrospective the signals, originally sampled at a 10 minutes sampling

rate were undertaken a bayesian smoothing procedure with a 1 minute spread virtual grid

with the same algorithm presented in Appendix B.

8.5 Preliminary Analysis: Standard PCA

PCA was performed on matrix X, which is an n×m (60× 48) matrix having on each of the

60 rows the 48 indexes evaluated on the ith subject. From the PCA we obtain two matrixes:

• β (m×m): matrix of the coefficients, i.e. the rotation matrix

• Z (n × m): the score matrix, representing the data matrix rotated along the new

direction of the Principal Components. It is obtained by pre-multiplying X by B.

Matrix β has on the ith column the coefficients for the linear combination of the indexes which

allows to obtain the ith principal component. It can be used to evaluate the relative weight

of the different indexes in the specific principal component. The values σi are related to the

variance of the dataset, and the less informative ones (on the lower right part of matrix Σ,

associated to the right columns of matrix U of Eq 8.2) can be forced to zero. At this point,

one may reconstruct the so called scores (matrix Z) and evaluate its variance. If we use all the

principal components, the transformation is a simple rotation and the variance of the scores

will remain unchanged. if we use less principal components to reconstruct the data, the Z

matrix will be able to explain only part of the total variance in the original dataset, since

the information carried by the less informative principal component has been lost. Table 8.4

shows a summary of the variances explained by using the first k principal components (first

column). In particular, the second column reports the absolute variance of the kth component,

the third column reports the % of variability explained by each principal component, while

the last column shows the cumulative variance obtained by using the first k PC (results are

shown for the first 20 components out of 48). The shaded area shoes the results for the
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5 most significative components. The total variance explained by truncating the principal

components matrix U to the 5th column is 87.94 % of the total variance evaluated on the

original matrix X.

# of principal components Variance %Variability %Cumulative

1 27.3775 57.0365 57.0365
2 7.9991 16.6647 73.7013
3 2.9303 6.1047 79.8060
4 2.3521 4.9002 84.7062
5 1.5498 3.2287 87.9349
6 1.3584 2.8299 90.7649
7 1.0310 2.1479 92.9127
8 0.7577 1.5786 94.4913
9 0.7018 1.4622 95.9535
10 0.3243 0.6757 96.6292
11 0.2980 0.6209 97.2502
12 0.2613 0.5444 97.7945
13 0.1982 0.4129 98.2075
14 0.1805 0.3760 98.5835
15 0.1360 0.2833 98.8667
16 0.1009 0.2101 99.0769
17 0.0719 0.1497 99.2266
18 0.0628 0.1309 99.3575
19 0.0560 0.1167 99.4742
20 0.0494 0.1029 99.5771

Table 8.4: Cumulative variances explained by the first 20 principal components. The shaded
area highlights the first 5 components, which, together allow explaining 87.9% of the total variance
in the dataset.

In this thesis we consider 5 principal components, meaning that with 5 linear combinations

of the original indexes, a sufficient (87%) variance of the original dataset is represented. Notice

that, so far, these linear combinations may assign non-zero coefficient to each index. This

means that one should first evaluate all possible indexes to combine them in 5 components that

describe the specific subject. In this framework, a summary of the estimated coefficients is

shown in Table 8.5.Each one of the 5 principal components is evaluated by linearly multiplying

the coefficients in columns 2 to 6 with the computed index. For simplicity, only the first and

last eight rows (indexes loadings) are shown in this Table.

From Table 8.5 the difficulty in the interpretation of PCA results is clear. The 5 principal

components, which are basically 5 coefficients which determine the position of a certain
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Index PC1 PC2 PC3 PC4 PC5

1 -0.1583 -0.1465 0.1934 -0.0704 -0.0299
2 -0.1495 -0.1434 0.1300 -0.0778 0.0850
3 -0.1319 -0.0671 0.1582 0.0252 -0.2435
4 -0.1123 -0.0930 0.0393 -0.0655 0.2750
5 -0.1481 -0.1224 0.1814 -0.0221 -0.1942
6 -0.1413 -0.1064 0.1856 -0.0050 -0.2641
7 -0.0380 -0.2867 0.2656 -0.0148 -0.0256
8 -0.1778 0.1163 -0.0389 -0.0603 0.0209

. . . . . . . . . . . . . . . . . .
41 0.1353 -0.1207 -0.1162 -0.0921 -0.0564
42 0.1092 -0.1442 -0.3315 -0.0071 -0.0610
43 0.1351 -0.1338 -0.2542 0.0143 -0.1268
44 0.0729 -0.1524 -0.3179 -0.2057 -0.0212
45 -0.0863 -0.2644 -0.2308 0.0163 0.0020
46 -0.1769 0.0443 -0.0602 0.1192 -0.0092
47 -0.1803 0.0995 -0.0348 -0.0471 0.0290
48 -0.1801 0.1065 -0.0444 -0.0321 0.0151

Table 8.5: Coefficients evaluated via standard PCA. Notice that all coefficients are non-zero,
even if some contribute only for a very minimal part to the total variance.

subject defined through the indexes evaluated on his/her CGM signal, on a 5 dimensional

space, are the combination of all the 48 indexes. No indication is given on which are the

dominant indexes or combination of indexes that determine the position of the subject in the

new space with reduced-dimensionality.

8.6 Analysis via Sparse PCA

As anticipated, the Sparse PCA approach can be utilized in order to have an easier interpre-

tation of the dimensionality reduction performed by the PCA approach. Here we apply the

two-steps SPCA (PCA plus LASSO regression to obtain sparse loadings) exploiting following

parameters:

1. The number of principal components used was set to 5 as explained in Section 8.5.

2. The number of loadings allowed to be different from zero in the LASSO was set to 5

as well. The choice was made by analyzing the cumulative variance explained by two-

steps SPCA with 5 principal components, allowing 1 to 48 indexes to be different from
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8.6 Analysis via Sparse PCA

zero for each component. With only 5 non-zero coefficients for each PC, we are able to

explain about 70% of the variance explained by the full 5-PC analysis (all coefficients

different from zero).

A portion of the resulting loading matrix is reported in Table 8.6. Notice how many

loadings are shrink to zero by the SPCA algorithm.

Index PC1 PC2 PC3 PC4 PC5

. . . . . . . . . . . . . . . . . .
3 0 0 0 0 -0.0861
4 0 0 0 0 0.1686

. . . . . . . . . . . . . . . . . .
6 0 0 0 0 -0.0098
7 0 -0.2919 0.4558 0 0

. . . . . . . . . . . . . . . . . .
10 -0.3916 0 0 0 0
11 0 0 0 0.6453 0
. . . . . . . . . . . . . . . . . .
15 0 0 0 0.1910 0
. . . . . . . . . . . . . . . . . .
18 0 0.1094 0 0 0
19 0 0.2661 0 0 0
. . . . . . . . . . . . . . . . . .
23 -0.2361 0 0 0 0
. . . . . . . . . . . . . . . . . .
29 -0.0018 0 0 0 0
30 0 -0.1687 -0.2240 0 0
. . . . . . . . . . . . . . . . . .
32 0 0 -0.2946 0 0
33 -0.2066 0 0 0 0
34 -0.0600 0 0 0 0
. . . . . . . . . . . . . . . . . .
36 0 0 0 -0.0702 0.4542
. . . . . . . . . . . . . . . . . .
38 0 0 0 0 0.1133
39 0 0 0 -0.1470 0
. . . . . . . . . . . . . . . . . .
42 0 0 -0.2774 0 0
. . . . . . . . . . . . . . . . . .
44 0 0 -0.0260 -0.0169 0
45 0 -0.3019 0 0 0
. . . . . . . . . . . . . . . . . .

Table 8.6: Loadings obtained via two-steps SPCA. Notice that many coefficients are forced to
zero, meaning that relative index will not contribute in the evaluation of the specific Principal
Component.

8.6.1 Selected Variables

Forcing sparsity in the SPCA algorithm, results, of course, in a certain loss of information.

The more the zero-loadings, the higher the reduction in explained variance. This is the major
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drawback in the use of this method, which, nonetheless, results in a greater readability of the

loading matrix. In particular, we summarize in Table 8.7 the chosen indexes for each principal

component, i.e. those indexes whose coefficient is not shrink to zero by the regularization in

the regression step of PCA.

PC1 PC2 PC3 PC4 PC5

J CV CV IGC SDdm

90thpercentile Min PathdG % Hypo SDhhmm

Pathr 10thpercentile Sway Area Cy ellipse SDbhhmm // dm

Acircle pathdG f50% dr Assex Cy ellipse

Aellipse Pdr f95% dr f95% dr Cy weighted ellipse

Table 8.7: Selected Variables for each Principal Component

Table 8.7 allows making some quite thick statements about the analysis of the glucose

signals. In particular, the first thing to be noticed is that the information about the time

derivative adds relevant information when considered along with simple glucose level mea-

surements. This can be seen by noticing that many time-derivative related indexes (e.g. the

path of the time derivative, the weighted or non-weighted y-coordinate of the ellipse, the

area of the ellipse) are picked in the generation of the sparse loadings. This is interesting,

although quite obvious, since if no information was added by the time-derivative, these in-

dexes would be ignored by the SPCA. Of course we are adding information to the dataset,

but the important thing is that with the time-derivative we are adding relevant information

in terms of dataset variability.

Also Table 8.7 shows how different kind of information is clustered in different components:

PC1 carries information on the range spanned by the glucose signal in particular with respect

to hyper excursions. PC2 is informative on the rapidity of the signal (path of the derivative

and total power of the risk spectrum) with attention to the hypo excursions. PC3 again

includes information on the derivative path and spectral informations (related to the rapidity

of the signal). Finally, PC4 and PC5 collect other ”average” indexes, such as the information

of the coordinate location of the ellipse in the DR Space.

8.7 Classification via SPCA

The 60 CGM signals analyzed in the previous section were screened by an expert clinician

at the Department of Clinical and Experimental Medicine at the University of Padova. The
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8.7 Classification via SPCA

clinician was asked to classify the 60 subjects accordingly to the CGM signals. Two different

levels of classifications were defined. In a first level, the subjects were classified roughly in

two classes, well and poorly controlled. The second level is more detailed and gives a score

from 1 to 5 to the signal from very bad to optimal control.

The clinician was asked to observe the signals and was not informed with mean, SD or

any other index score evaluated on the trace. The clinician had access to information of

the beginning/end of the night. The main parameters in the evaluation was the qualitative

estimation of the time spent in hyper, in hypo and the severity of each episode.

8.7.1 Results (Two Control Classes)

When considering the first classification (two classes) the dataset comprises:

• Good Control: 30 patients

• Poor Control: 30 patients

Sparse PCA was evaluated on the dataset, and the first two components were considered

for a qualitative analysis in a two dimensional space (this is due to simplicity, although future

studies will comprise statistical analysis considering more principal components if needed).

Figures 8.1 and 8.2 represent the normalized values of S-PC1 and S-PC2 selected indexes in

the 60 subjects.
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Figure 8.1: Boxplot of SPC1 and SPC2 in the two classes

Figure 8.3 displays a standard boxplot representing the values of the first and second

S-PC (left and right panels respectively) for the two control classes of subjects.
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Figure 8.2: Boxplot of SPC1 and SPC2 in the two classes
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Figure 8.3: Boxplot of SPC1 and SPC2 values evaluated on the 60 subjects divided accordingly
to the 2 control classes as defined by the expert clinician. Left boxes represent

Notice that the values of principal components in the two control classes are quite dif-

ferent for the first principal component, and the paired t-test performed to assess statistical

significance of such difference results positive (p< e−7). No significant difference was found

in the value of the second S-PC in the two control classes (p=0.16).

Figure 8.4 represents the 60 subjects in the bidimensional space defined by the first two

sparse principal components. The two classes result to be nicely separated in this space

with well-controlled patients located on the upper-right part of the plane, and the poorly

controlled patients located in the lower left part.
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Figure 8.4: Scatterplot representing the position of the 60 subjects in the bidimensional space
defined by the first two principal components. Subjects are clustered accordingly with their
control class (good control in blue, poor control in red) as defined by an expert clinician.

8.7.2 Results (Five Control Classes)

When considering the second classification (five classes) the dataset comprises:

• Class 1 (very poor control): 15 patients

• Class 2 (poor control): 15 patients

• Class 3 (average control): 14 patients

• Class 4 (good control): 10 patients

• Class 5 (excellent control): 6 patients

Figure 8.5 displays a standard boxplot representing the values of the first and second

sparse principal components (left and right panels respectively) for the five control classes of

subjects.

A standard two-ways ANOVA was performed in order to understand if the two PC are

significantly different among the control classes. The test results positive for PC1 and PC2,
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Figure 8.5: Boxplot of SPC1 and SPC2 values evaluated on the 60 subjects divided accordingly
to the five control classes as defined by the expert clinician.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

PC1

P
C

2

Distribution of different control classes

 

 

1

2

3

4

5

Figure 8.6: Scatterplot representing the position of the 60 subjects in the bidimensional space
defined by the first two PCs. Subjects are clustered accordingly with their control class (scores
from 1 to 5) as defined by an expert clinician.

meaning that indeed both components are different in the different control classes (p< e−8

and p< 0.02, respectively). Figure 8.6 represents the 60 subjects in a bidimensional space
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8.8 Conclusion

defined by the first two principal components.

The exploratory results shown in this section demonstrate that the use of dimensional-

ity reduction techniques such as the two-steps SPCA can be a useful tool to discriminate

among well-controlled and poorly controlled subjects. This approach seems promising for

the understanding of glucose variability and control.

8.8 Conclusion

Although it seems quite obvious that the information of time-derivative adds value to the

analysis of glucose signals, this proof-of-concept study helps the understanding of the relative

importance of this information from a statistical point of view. Further studies will be focused

on the analysis of clinical application of these concepts. In this Chapter we have shown a

new approach to the analysis of glycemic variability and control. The major novelties are

the explicit inclusion of indexes based on the DR and on the evaluation of the first-time

derivative of signals in the analysis, and the quantitative, statistically meaningful framework

of the Sparse Principal Component Analysis to study these data. Although this is just an

exploratory study, and further studies may be done to fully understand the potential in

this approach, it is nonetheless worth it underling that preliminary results indicate that the

explicit use of DR based indexes adds value in the analysis of CMG data. Great benefit

would come from a study on the long term complications of diabetes, where the monitoring

is performed with continuous sensors rather than with SMBGs.
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9
Conclusions

The analysis of glucose time-series is very complex. Information about the patient health

status can be inferred provided that proper analysis is performed. Historically, several inter-

esting analysis have been performed on SMBG time-series, which provide sparse information

about the glycemic level (3-4 measurements per day) hence ignoring wide fluctuations in the

glycemic signal which can be dangerous in the short and in the long term.

The advent of sensors for the continuous monitoring of the glycemia, allows enhancing

the analysis tools and consequently the knowledge and treatment of diabetes. In particular,

the concept of clinical risk, proposed by Kovatchev et al. (31) and based on SMBG readings,

can be re-interpreted in order to fully exploit the continuous information of CGM.

In this thesis, starting from a literature formulation of the concept of risk, we developed

a new DR function which amplifies the clinical risk whenever the diabetic patient is receding

from the safety region (Chapter 3). This function requires the time-derivative of the glucose

signal to be evaluated; this computation is particularly challenging, since the derivation

operation amplifies measurement noise. In Chapter 4 algorithmic solutions to this problem

were proposed based on a deconvolution process.

DR has been shown to be potentially interesting for the generation of hypo/hyperglycemic

alerts, both as a standalone tool (Chapter 5) and in combination with literature short-term

prediction algorithms (Chapter 6). Simulated and real data were used for the assessment

of the new technique. Simulations include noisy and noise-free signals that were analyzed

separately. Real data were collected with three different continuous glucose sensors (Abbott

Freestyle Navigator, Dexcom Seven Plus and Menarini Glucoday). Computation of DR allows

generating alerts with 10 to 18 minutes ahead of time on real datasets, and up to 25 minutes
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when combined with a KF based predictor, with a moderate number of false alerts generated

each day. A provisional US patent has been recently deposited, which describes the possibility

of exploiting DR based algorithms for the generation of alerts. Moreover, the patent describes

the possibility of alerting a patient of an incoming risk of hypo/hyperglycemia through visual

alerts by highlighting the monitor of CGM devices based on the DRS color map (22).

In this thesis we have also proven how retrospective analysis may greatly benefit from

the exploitation of the continuous nature of CGM and the DR concept. In Chapters 7 and

8, conceptual examples of the importance of the information of time derivative. Measures

derived from DR, that consider the time-derivative as a variability factor, have been developed

by analyzing trajectories of glucose in the DRS. Sparse PCA approach was employed for the

analysis of a dataset of 48 indexes evaluated on 60 patients monitored for 7 days with a

continuous glucose sensor. Dimensionality reduction proved that the indexes based on the

DRS are statistically relevant for the characterization of glycemic signals. The Sparse PCA

approach allowed determining that glucose variability should not be assessed by means of

only one aspect of the glucose signal, but should be a more comprehensive analysis, possibly

including DR-based metrics.

Further studies will focus on refining the use of DR for the two proposed applications

of alert generation and of indexes development for the description of glucose variability. In

particular, comparison with other literature strategies for the generation of alerts will be

necessary to better understand the applicability of the method in commercially available

devices. Moreover, formal strategies for the tuning of the parameters may be developed.

As far as the dimensionality reduction problem is concerned, future work will focus on the

refinement of the SPCA algorithm used to compute the principal components, and on the

assessment of the correlation of these components with short and long term complications of

diabetes. Other studies will focus on the exploitation of the DRS to tune the therapy of the

patients, for example via analysis of single-meal trajectories and personal features of patients

in the DRS.
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A
Some additional Details on Diabetes Therapy

Accurate monitoring of the glycaemia is of fundamental importance for diabetes control.

Also, the delivery techniques of insulin and insulin analogues is at least as important as the

accurate information on the variable to be controlled (the glycaemia). T1 diabetics need to

inject themselves with insulin after each meal to prevent hyperglycaemia and to assure the

uptake of glucose by the target tissues.

A.1 Conventional and Innovative Therapy

In the conventional therapy, patients tune the infusions based on few SMBGs measurements

per day, or based on the retrospective analysis of CGM signals. Different kinds of insulin

are available on the market, from slow acting insulins (e.g. Glargine, Detemir), to mid-term

acting insulins (e.g. human NPH) to rapid and ultra rapid acting insulins (e.g. Lispro,

marketed by Ely-Lilly as Humalog, and Aspart, marketed for example by Novo Nordisk as

NovoRapid). There are two main insulin delivery techniques which require the injection in the

body through a needle: the multi-injective (MI) therapy and the infusion via a Continuous

Subcutaneous Insulin Pump (Continuous Subcutaneous Insulin Infusion, CSII). In the MI

therapy the patient usually performs a bolus of slow acting insulin which should mimic the

basal insulin secretion, plus fast acting insulin boluses at meal time to regulate the glycaemic

increase due to the food ingestion. In the CSII therapy, a subcutaneous needle is inserted in

the abdomen and a pump delivers insulin microboluses every 5 to 15 minutes. This allows

having an almost continuous provisioning of insulin to the body. At meal time, the patient

can deliver a larger bolus through the same needle, so the carbohydrates can be rapidly
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absorbed by the tissues. Insulin pumps are only used in combination with ultrarapid insulins

(aspart and lispro). Several studies report a better therapy efficiency patient treated with

insulin pumps with respect to the conventional MI therapy.

A.2 Artificial Pancreas

In the recent past, researchers have been focusing on the problem of optimal tuning of the

insulin delivery. In particular, the advent of Continuous glucose monitoring devices and

of pumps able to continuously infuse insulin in the body, allowed to tackle the problem of

”closing the loop”. Automatic controllers are being developed exploiting the information of

CGM to tune the optimal insulin bolus/basal rate or, in general, dose, to be fed continuously

through the pump. Several issues are still open in this field, from the structure of the

controller itself (Model Predictive Controllers, Proportional Integrative Derivative structures,

bi-hormonal controllers), to open problems with CGM accuracy (calibration, poor SNR)

to possible system failure detection (both in pump and CGM). The interested reader is

referred to (10), and (11) for two recent review on the achievements and open problems in

the technologies for diabetes.
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B
Brief Review of the Bayesian Approach to Smoothing and

Deconvolution

Consider the following general linear model:

y = Gu+ v (B.1)

where y and v are n-dimensional vectors, u is an N -dimensional vector, and G is an n×N
matrix. In a Bayesian framework, the estimate of u given y and the model B.1, can be tackled

as a minimum error variance estimate. The solution to this problem coincides with that of

determining the vector û which minimizes the expected value of the quadratic norm of the

estimate error:

E
[
‖u− û‖2

]
. (B.2)

Restricting the search into the class of linear estimators, it can be demonstrated that,

if u and v are uncorrelated, have zero mean and known covariance matrixes Σu and Σv

respectively, the best linear estimate of u given y is the solution of the following optimization

problem:

min
û

(y −Gû)TΣ−1v (y −Gû) + ûTΣ−1u û, (B.3)

Notably, the argument of the minimization problem is made of two terms:

• (y − Gû)TΣ−1v (y − Gû): it represents the adherence of the model to the data, i.e. it

accounts for the posterior information yielded by the data
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• ûTΣ−1u û: it represents the adherence of the unknown vector u to the prior information

available on u itself.

Eq. B.3 has a closed form solution given by:

û = (GTΣ−1v G+ Σ−1u )−1GTΣ−1v y (B.4)

In order to solve the minimization problem, it is necessary to have a second-order a priori

statistical description of vectors u and v. For example, for specific problems, one can assume

following models for the statistical a priori knowledge.

• Second order statistical description of vector v: covariance matrix of vector v described

as

Σv = σ2B (B.5)

with B known matrix and σ2 scaling factor, unknown.

• Second order statistical description of vector u: for biological signals, the prior infor-

mation of the signal to be estimated are qualitative, i.e. the signal is assumed to be

smooth and regular. Formally, this can be described considering the components of

vector u(t) to be the realization of a stochastic process that is modeled by a cascade of

m integrators driven by stationary white noise with zero mean and variance (unknown)

λ2 with prior covariance matrix:

Σu = λ2(F TF )−1 with F = ∆m (B.6)

where m represents the penalty index of the m-th order detivatives of u(t) and ∆ is the

lower-triangular Toeplitz matrix:

∆ =



1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
. . .

. . .
...

...
...

...
... −1 1 0

0 · · · · · · 0 −1 1


(B.7)

higher values of m allow to have a smoother reconstruction of the signal u(t).
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Assuming to have a statistical description of the covariances matrixes as defined in Eq.

B.5 and B.6, Eq. B.3 can be rewritten as:

û = (GTB−1G+ γoF TF )−1GTB−1y (B.8)

The ratio γo = σ2/λ2 determines the best trade-off between the adherence to the prior

and the data. Higher γo define an estimator which relies mostly on the prior, while lower γo

values are associated to estimators which mostly rely on the data. The Bayesian framework

allows to optimally weight the relative importance of a prior and of the data, since the

statistical knowledge on their variance is explicitly considered in the computation of the

estimate. Considering the problem defined in Eq. B.2 and its closed form solution of Eq.

B.8, two quantities can be defined:

• Weighted residuals sum of squares, WRSS

WRSS = (y −Gû)TB−1(y −Gû) (B.9)

• Weighted estimates sum of squares, WESS

WESS = ûTF TFû (B.10)

In a stochastic framework, WRSS and WESS are random variables, whose realizations depend

on the value of γ, since û depends on γ. It can be shown that for the optimal value γo following

properties hold:

E [WESS(γo)] = λ2 · q(γo) (B.11)

E [WRSS(γo)] = σ2{n− q(γo)} (B.12)

where

γo = trace[B−1/2G(GTB−1G+ γoF TF )−1GTB−1/2] (B.13)

with B−1/2 is a square matrix such that B−1 = B−1/2B−1/2. The properties defined in

Eqs. B.12 and B.11 some consistency criteria con be defined for the choice of the best γ in
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conditions where σ2, λ2 or both are unknown. In particular:

Consistency Criterion 1 : If λ2 is unknown and σ2 is known, choose γ such that the

following condition is matched:

WESS(γ) = λ2 · q(γo) with λ2 = σ2γ (B.14)

Consistency Criterion 2 If σ2 is unknown and λ2 is known, choose γ such that the

following condition is matched:

WRSS(γ) = σ2{n− q(γo)} with σ2 = λ2γ (B.15)

Consistency Criterion 3 : When both σ2 and λ2 are unknown, choose γ such that the

following condition is matched:

WRSS(γ)

n− q(γ)
= γ · WESS(γ)

q(γ)
(B.16)

then, when γ is determined from B.16, compute the posterior estimate of σ2 from B.9 as

σ̂2 =
WRSS

n− q(γ)
(B.17)

A final remark. In a Bayesian framework it is possible to compute the confidence interval

of the estimate. In particular, if only gaussian variables are involved, the covariance matrix

of the estimate error defined as ũ = u− û is

Σũ = Σu − ΣuyΣ
−1
y Σyu (B.18)

which becomes (demonstration not shown)

Σũ = (GTΣ−1v G+ Σ−1u )−1 (B.19)

with the model of measurement of Eq. B.1. For a more detailed description of this topic, the

reader is referred to (12).
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B.1 Numerical Implementation

The inversion of matrix (GTB−1G + γoF TF )−1, which is required for the solution of the

deconvolution problem, is computationally time-consuming, since it requires O(N3) opera-

tions. Moreover, this inversion needs to be done several time in the iterative procedure for

the consistent choice of the regularization parameter γ. Here we report the procedure which

can be used to diagonalize the problem in order to obtain a computationally efficient solution.

Given matrixes G, F and B:

• define matrix H = B−1/2GF−1, n×N

• perform the Singular Value Decomposition (SVD) of H, defining the unitary matrixes

U and V such that UTU = In and V TV = IN and D composed by a diagonal matrix

of diamension n and a zero padding matrix of N − n columns.

• define the new coordinates ξ = UTB−1/2y, η = V TFu and ε = UTB−1/2v; Eq. B.1 can

be rewritten as:

ξ = Dη + ε (B.20)

where cov(ε) = σ2In and cov(η) = λ2IN

• the regularized estimate of ˆη(γ) can be obtained as

η̂i =

{
di

d2i+γ
ξi for i = 1, · · · , n

0 for i = n+ 1, · · · , N
(B.21)

in O(n) computations using following regularization quantities:

q(γ) =

n∑
i=1

d2i
d2i + γ

(B.22)

WESS(γ) =

n∑
i=1

(
diξi
d2i + γ

)2

(B.23)

WRSS(γ) =

n∑
i=1

(
γξi

d2i + γ

)2

(B.24)
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• once the optimal γ has been computed, the input of the system can be obtained as

û = F−1V η̂ in O(nN).

The only operation which is computationally difficult is the evaluation of the SVD, which

can be done in O(N3). It is important to notice, that this operation is done only once for

every estimate.
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C
Some Details on Prediction via Kalman Filtering

Here we give a brief review of an online technique tusable to obtain a predicted profile in the

short-term. The method is a development of a denoising algorithm (57). by Facchinetti et

al. (18), which implements a Kalman filter coupled with a Bayesian smoothing criterion to

estimate the unknown filter parameters. Briefly, let y(t) be the glucose profile of Eq. 4.3.

We recall that y(t) = u(t) + v(t), with u(t) representing the true glucose profile and v(t)

representing the noise component, assumed to be zero-mean gaussian noise with variance σ2

varying in time. In order to put the estimation problem in a suitable form to be put in a

Kalman Filter form, we define the following model of the signal u(t):

u(t) = 2u(t− 1)− u(t− 1) + w(t) (C.1)

where w(t) is a zero-mean Gaussian noise, with variance λ2. One can estimate u(t) putting

the equation in state-space form. If we allow x1(t) = u(t) and x2(t) = u(t− 1) we have:

[
x1(t+ 1)
x2(t+ 1)

]
=

[
2 −1
1 0

] [
x1(t)
x2(t)

]
+

[
1
0

]
w(t) (C.2)

y(t) = [ 1 0 ]

[
x1(t)
x2(t)

]
+ v(t) (C.3)

Equation C.2 and C.3 are the process update and the measurement equations used by the

Kalman filter to estimate x̂(t|t) which is the linear minimum variance estimate of the state

vector that can be obtained from measurement y(t) at time t.

The prediction via KF can be obtained considering the predictive step alone:
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C. SOME DETAILS ON PREDICTION VIA KALMAN FILTERING

x̂(t+ 1|t) = Fx̂(t|t) (C.4)

where F is the state transition matrix and x̂(t + 1|t) is the state estimate based only on

the measurements collected until time t. By iterating the predictive step one can obtain the

prediction n steps ahead, at the time t+ PH

x̂(t+ PH|t) = FPH x̂(t|t) (C.5)

A detailed description of the algorithm can be found in (18).
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D
Basic Aspects of Principal Component Analysis

Principal Component Analysis (PCA) is a non-parametric multi-variate method for extracting

relevant information from datasets difficult to interpret. In particular, PCA is a simple tool

used to reduce the correlation of a set of p variables (collected in a matrix X). The correlation

within the data collected in the matrix X can be expressed by the (mxm) covariance matrix

CX :

CX =
1

n− 1
XTX (D.1)

The diagonal terms of CX are the variance of particular measurements types while the

off-diagonal terms are the covariance between measurements types. Thus, in order to reduce

the correlation of the data collected in X, we are seeking a linear transformation defined by

a matrix P :

Y = XP (D.2)

such that the covariance matrix CY of the matrix Y is diagonal. In particular, PCA finds

the matrix P to re-express the data with the constraints that all basis vector p1, · · · , pm are

orthonormal. The matrix P is thus called orthogonal and has the properties that PP T = I.

The matrix P can be obtained in two closely related way:

1. by exploiting the eigenvector decomposition of the covariance matrix or

2. by resorting to the Singular Values Decomposition (SVD) of the original data matrix

X.
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D. BASIC ASPECTS OF PRINCIPAL COMPONENT ANALYSIS

By considering point 1, we preliminary recall that a symmetric matrix A can be diagonalized

by an orthogonal matrix of its eigenvectors E, such that A = EDET , and where D is diagonal.

It is easy to show that the covariance matrix of Y can be rewritten as CY = 1
n−1PX

TXP T

by substituting D.2 in D.1. If we now select the P matrix to be a matrix of eigenvectors of

CX (thus holding PP T = I) and perform some easy steps we obtain that CY = D. In this

way we have diagonalized the covariance matrix of the new set of variables and have assured

that these new variables are not correlated anymore (since the off-diagonal elements of CY

are zero).

A second possibility to find a linear transformation that reduces the correlation in the X

matrix finding a new set of uncorrelated variables is by exploiting the so called SVD which

factorizes X as:

X = UΣV T (D.3)

In D.3, V is the matrix collecting the set of orthonormal eigenvectors (with associated

eigenvalues λi) for the symmetric matrix XTX, Σ is the diagonal matrix collecting the so

called singular values σi =
√
λi and U is the orthonormal matrix collecting the vectors

ui = 1/σiXvi. By a simple manipulation ,D.3 can be rewritten as XV = UΣ and it is easy

to see that the change of basis that we are seeking is given by V .

The interesting feature of PCA is that the principal components are sorted in decreasing

importance in terms of explained variance. In particular:

1. Principal components sequentially capture the maximum variability among the X ma-

trix, guaranteeing minimal information loss

2. Principal components are uncorrelated, so one component can be addressed without

need to refer to others.

This means that the smaller components are easily identified and may be forced to zero.

In this way only some of the components of the new basis are used to describe the data,

cutting those which do not add crucial information in terms of variance of the data. One of

the possible criteria to decide how many informative principal components need to be kept

to allow a good reconstruction of the total variability is considering a number of principal

components which explains 80-90% of the total variance.
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[65] J.M. Wójcicki. J-index. a new proposition of the assessment of current glucose control

in diabetic patients. Horm. Metab. Res, 27:41–42, 1995.

[66] World Health Organization. http://www.who.int/diabetes/en/.

[67] C. Zecchin, A. Facchinetti, G. Sparacino, G. De Nicolao, and C. Cobelli. Neural network

incorporating meal information improves accuracy of short-time prediction of glucose

concentration. IEEE TMBE, In Second Revision .

[68] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Jcgs, 15:

262–286, 2006.

141



Acknowledgements

I would like to thank my mentor and advisor, Professor Giovanni Sparacino, for

the precious help and guidance that he has offered me in the last four years.

Thank you for the patience, the support and for the trust you always gave me.

All my colleagues and friends PhD students and post-docs at University of Padova.

Two special acknowledgments: the first to Dr. Andrea Facchinetti, my travel-

mate, for the wonderful working experiences we shared (and for waiting for me

every time I was held by immigration during our trips) and the second to Dr.

Chiara Dalla Man, for the great scientific insights that she always shares so gen-

erously with her trainees (and for making the EU project meetings even fun). It

was a pleasure and a honor to work with you. Thanks to Michele Schiavon and

Mattia Zanon for the constructive work done together on the Dynamic Risk (and

for making fun of me whenever I grumble).

Thank you to all those friends who crossed my path during these three years,

helping me focusing also on life outside academia: to Selena and Tiziana, my

angel-devil friends, to all my friends at Salsa de Calle, for reminding me that

dancing is freedom and pure joy.

A special thanks of course to my family: Andrea (”Santa Pazienza”) and my

parents (and, well, ok you too Carlo). You gave me trust and support in so many

different ways, and each little part of it helped me growing into a better person.


