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Fragte man einen wahrhaften Men schen, einen,  

der aus seinem eigenen Grundewirkt:  

«Warum wirkst du deine Werke?»,  

wenn er recht antwortete,  

würde er auch nur sagen: «Ich wirke, um zu 

wirken» 

 

Se si chiedesse a un vero uomo,  

ad uno che opera sul proprio terreno:  

«perché operi le tue opere?»,  

se egli rispondesse rettamente,  

direbbe solo «opero per operare» 

 

Eckhart 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 
Sono nato, casualmente, così come si accende casualmente una 

candela.  

Ho vissuto precariamente per almeno 76 anni, così come una 

candela accesa arde con un fuoco assai facile a spegnere.   

Morirò casualmente fra non molto, così come una candela si 

spegne casualmente quando un soffio porta via la sua fiamma o 

quando il lucignolo si annega nella cera fusa che ne circonda 

la base. 

Lo stesso mistero avvolge l’umanità intera, la quale possiede e 

trasmette di generazione in generazione la voglia di vivere 

costruendo, e sa tuttavia di essere apparsa senza plausibile 

ragione in un momento qualsiasi; di poter sparire senza 

ragione plausibile in un momento qualsiasi; e che certamente 

sparirà ad un certo momento. 

 

     A. Spinelli - Come ho tentato di diventare saggio  

 

  



 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ai miei genitori  
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Abstract 

 

At present energy demand is largely fulfilled by fossil fuels, and it is easy to suppose that also in 

next decades they will still provide a large fraction of the energy supply. Since oil reserves are 

finite and the cost for its  extraction will continuously raise, it is necessary to find alternatives 

source of energy. Renewable energy sources represent a good solution to the energy-problem and 

for this reason they are receiving a strong attention from industry and research centers. 

Photosynthetic organisms can represent a promising alternative to oil because they can be 

exploited for the production of different molecules exploitable as fuels such as ethanol, hydrogen 

and lipids. Fuels produced exploiting living organisms are called biofuels. Currently most of 

biofuel from photosynthetic organisms, is obtained by plant crops which present many 

limitations like the seasonality production and a low oil fraction that constitutes only 5% of the 

biomass. To overcome this limitation, an interesting alternative is the exploitation of 

photosynthetic microrganisms such as microalgae. 

Some algae species have, in fact, the ability of accumulating large amount of lipids within their 

cells which can be exploited as feedstock for the production of biodiesel. Microalgae is a wide 

group comprehending thousand of different algae species, so one fundamental step is the choice 

of a suitable organism. A suitable candidate should have a fast growth rate in a large range of 

light intensities and the ability to accumulate large amount of lipids. Although there is no ideal 

organism which will be suitable for all, we focused on the seawater alga Nannochloropsis gaditana. 

The general aim of this work is to investigate photosynthetic apparatus of Nannochloropsis gaditana 

in order optimize the light use efficiency in this microalga to increase the productivity. 

In fact, as wide describe in the second chapter, light provides the energy supporting algae 

metabolism and consequently lipids production. Then available radiation must be exploited with 

the highest possible efficiency to optimize productivity and make microalgae large scale 

cultivation energetically and economically sustainable. In this chapter the molecular and the 

factors influencing light use efficiency in algal biomass production bases were investigated. 

Moreover  exempla focused on how algae genetic engineering and control of light environment 

within photobioreactors can improve the productivity of large scale cultivation systems were 

given.  

In the third chapter photosynthetic apparatus of Nannochloropsis was studied. Nannochloropsis's 

photosynthetic apparatus is characterized by the presence of only chlorophyll a, with violaxanthin 

and vaucheriaxanthin esters as the most abundant carotenoids. The photosynthetic apparatus was 

analyzed by purifying the thylakoids and isolating the different pigment-binding complexes upon 

mild solubilization. The results from the biochemical and spectroscopic characterization showed 
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that the photosystem II antenna is loosely bound to the reaction center, whereas the association 

is stronger in photosystem I, with the antenna-reaction center super-complexes surviving 

purification. Such a supramolecular organization was found to be conserved in photosystem I 

from several other photosynthetic eukaryotes, even though these taxa are evolutionarily distant.  

Obtained result suggests the presence of a selective advantage for a stable antenna (called VCP, 

Violaxanthin Chlorophyll binding Protein) and core complex association in the case of PSI but 

not in the case of PSII. A possible explanation was done considering that PSII supercomplexes 

are involved in several regulatory mechanisms which require a flexible binding of the antenna 

complexes to the reaction center along with the possibility of modulating this association 

according to environmental stimuli. On the contrary PSI reaction center is known to be stable 

with regard to light stress and to undergo a very low turnover although the PSI antenna have also 

shown to experience some regulation, the present knowledge suggests that the mechanisms 

affecting PSI antennae are less extensive and do not require the continuous modulation of its 

interactions with PSI and are thus compatible with a stronger association with the reaction 

center. 

 

After having investigated photosynthetic apparatus of Nannochloropsis, in the fourth chapter, 

sequences and proteomic analysis on antenna protein were studied. A phylogenetic analysis of 

LHC sequences, identified in Nannochloropsis genome, allowed their classification into six different 

subgroups of antenna proteins. The preliminary proteomic analysis on different sucrose gradients 

fractions corresponding to antenna proteins, PSI and PSII fraction showed the existence of 

specific antenna proteins bound to PSI forming PSI-supercomplex. 

In fifth chapter we focused out attention on different strategies for the biotecnological 

optimization of Nannochloropsis strain. Despite the fact that Nannochloropsis is considered the model 

organism for the production of biofuels, tools for the genetic manipulation of this species are still 

under development and only recently a few genome sequences become available, making possible 

to design specific protocol for the biotechnological improvement of this microalga. In this 

chapter two different methods, homologous recombination transformation and random 

mutagenesis, were applied on Nannochloropsis to generate and isolate possible valuable mutants. 

Obtained results highlighted that Nannochloropsis is not able to perform homologous 

recombination with high efficiency and chemical mutagenesis, is now, a more valuable methods 

to manipulate Nannochloropsis strain. 

Photosynthesis is a complex phenomenon which is finely tuned according to environmental 

conditions which are far from being completely understood. This understanding is also seminal in 

the perspective of algae biofuels production in order to make genetic manipulation efforts more 

effective. One of the main target in this field is the xanthophyll cycle, a photoprotection 

mechanism which is activated under strong irradiation, present in most photosynthetic 
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eukaryotes including Nannochloropsis. In the sixth chapter was investigated a possible further level 

of regulation, depending from the redox state, of this cycle. The study was performed on A. 

thaliana VDE N-terminal domain enriched in cysteines, but as demonstrated in the chapter, 

residues analyzed are well conserved in all other species and thus all conclusions are most likely 

valid for Nannochloropsis protein as well. Results revealed that cysteines are fundamental for VDE 

enzymatic active and all of these residue, except one, are involved in disulfide bridge. Redox 

titration showed a steep dependence from redox potential of protein activity, drawing a scenario 

where redox regulation is not suitable for a fine tuning of VDE activity. 

 

In appendix 1 isolated Violaxanthin Chlorophyll binding Protein (VCP) was studied thanks to 

advanced EPR techniques in order to investigate the presence of the photoprotective mechanism 

based on triplet-triplet energy transfer (TTET). Results of the data showed a strong similarity in 

terms of triplet state populations between VCP, FCP from diatoms and LHC-II from higher 

plants. Even if these antenna proteins have differentiated sequences and binds different 

pigments, the results suggest that in all members of the LHC superfamily there is a core 

represented by two central carotenoids surrounded by five Chlorophyll a molecules. This 

conserved structural organization plays a fundamental photo-protective function in Chl triplets 

quenching.  
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Riassunto 

 

Attualmente la richiesta mondiale di energia viene in gran parte soddisfatta utilizzando 

combustibili fossili, primo tra tutti il petrolio. Nonostante sia facile supporre che anche nei 

prossimi decenni la produzione energetica derivante da fonti fossili sarà preponderante, già ora 

sono necessarie delle alternative: le riserve di petrolio sono limitate ed i costi di estrazione sono in 

continua crescita. Le fonti energetiche rinnovabili rappresentano una buona soluzione al 

problema energetico e per questo motivo stanno ricevendo una forte attenzione da parte 

dell'industria e dei centri di ricerca. Esistono diverse fonti di energia rinnovabile, tra queste gli 

organismi fotosintetici possono rappresentare un'alternativa promettente perché possono essere 

sfruttati per la produzione di diverse molecole utilizzabili come combustibili potendo generare 

etanolo, idrogeno e lipidi. I combustibili prodotti utilizzando organismi viventi sono chiamati 

biocarburanti e per la maggior parte sono ottenuti da coltivazioni di piante oleaginose come la 

soia, la palma e la colza. Queste coltivazioni tuttavia presentano anche molti lati negativi sia 

perché la loro produzione è esclusivamente stagionale sia perché il loro contenuto lipidico è pari 

al 5% della biomassa totale il che abbassa notevolmente la redditività di queste coltivazioni. È 

possibile superare queste limitazioni sfruttando altri tipi di microrganismi fotosintetici come 

microalghe. 

Alcune specie di alghe hanno, infatti , la capacità di accumulare grandi quantità di lipidi al loro 

interno e tali lipidi possono essere impiegati come materia prima per la produzione di biodiesel. 

Le microalghe sono gruppo molto vasto comprendente migliaia di differenti specie: la scelta 

dell’organismo adatto è un passo fondamentale. La microalga ideale dovrebbe essere capace di 

mantenere un elevato tasso di crescita sotto differenti intensità luminose ed avere la capacità di 

accumulare elevate quantità di lipidi. Parte di queste caratteristiche ideali sono state rilevate in 

Nannochloropsis gaditana, una microalga marina, diventata, non solo per il nostro gruppo di ricerca, 

l'organismo modello per il biodiesel. 

L'obiettivo generale di questo lavoro è indagare l'apparato fotosintetico di Nannochloropsis gaditana 

per ottimizzare l'efficienza nell'utilizzo della luce al fine di aumentare la produttività di lipidi.  

Infatti, come ampiamente descritto nel secondo capitolo, la luce fornisce l'energia a sostegno del 

metabolismo delle alghe e, di conseguenza, supporta anche la produzione di lipidi. Quindi 

l'energia luminosa disponibile deve essere sfruttata con la massima efficienza possibile per 

ottimizzare la produttività e rendere la coltivazione di microalghe su larga scala energeticamente 

ed economicamente sostenibile all’interno di fotobioreattori. In questo capitolo sono state 

studiate le basi molecolari e i fattori che influenzano l'efficienza della luce e il suo utilizzo per la 

produzione di biomassa. Vengono inoltre forniti esempi di come sia possibile migliorare la 
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produttività nei fotobioreattori lavorando in modo sinergico sia a livello biotecnologico, 

modificando geneticamente l'organismo, sia a livello ingegneristico con il miglioramento del 

design del fotobioreattore e con il controllo della luce all'interno dello stesso.  

Nel terzo capitolo, viene studiato in dettaglio l'apparato fotosintetico di Nannochloropsis, il quale 

risulta caratterizzato dalla presenza della sola clorofilla a, mentre violaxantina e 

vaucheriaxanthina-estere sono invece i carotenoidi più abbondanti. L'apparato fotosintetico è 

stato analizzato purificando i tilacoidi e isolando i diversi complessi attraverso una blanda 

solubilizzazione. I risultati della caratterizzazione biochimica e spettroscopica hanno dimostrato 

che le antenne (chiamate VCP, Violaxanthin Chlorophyll binding Protein) del fotosistema II 

(PSII) sono debolmente legate al centro di reazione, mentre questa associazione risulta più forte 

nel caso del fotosistema I (PSI), dove i supercomplessi centro di reazione-antenne non vengono 

intaccati dalla purificazione. Questo tipo di organizzazione del fotosistema I non è presente solo 

in Nannochloropsis, ma risulta essere conservata anche in diversi altri eucarioti fotosintetici, anche 

se questi taxa sono evolutivamente distanti. Il risultato ottenuto suggerisce una forte pressione 

evolutiva per la presenza di un'associazione stabile tra il complessi antenna e il centro di reazione 

nel caso di PSI ma non nel caso di PSII. Una possibile spiegazione viene data dal fatto che il PSII 

è coinvolto in diversi meccanismi regolatori che richiedono un legame flessibile tra complessi 

antenna e il centro di reazione, lasciando quindi la possibilità di modulare questa associazione 

secondo gli stimoli ambientali. Il centro di reazione del PSI, al contrario, si caratterizza per essere 

stabile per quanto riguarda lo stress da alta luce e subire un turnover molto basso. Nonostante sia 

stato dimostrato che anche il complesso antenna del PSI subisce delle forme di regolazione in 

presenza di stimoli ambientali molto forti, le attuali conoscenze suggeriscono che i meccanismi 

che incidono sui complessi antenna del PSI siano meno invasivi rispetto a quelli del PSII e non 

richiedano la continua modulazione della sua interazione con il centro di reazione del PSI e siano 

quindi compatibili con una forte associazione con il centro di reazione. 

Dopo aver indagato l'apparato fotosintetico di Nannochloropsis, nel quarto capitolo, sono state 

studiate le sequenze delle proteine antenna ed è stata fatta un'analisi del proteoma dei complessi 

antenna, del PSI e del PSII. L'analisi filogenetica delle sequenze antenna, identificate nel genoma 

di Nannochloropsis, ha permesso la loro classificazione in sei diversi sottogruppi. L' analisi 

preliminare del proteoma ha evidenziato l'esistenza di specifiche proteine antenna legate al PSI 

che formano i supercomplessi del PSI. 

Il quinto capitolo è dedicato alle diverse strategie impiegate per l'ottimizzazione biotecnologica di 

Nannochloropsis. Nonostante Nannochloropsis sia considerato l'organismo modello per la produzione 

di biocarburanti, i protocolli per la manipolazione genetica di questa specie sono ancora in via 

sviluppo e solo recentemente sono state rese note le sequenze del genoma, rendendo possibile 

progettare protocolli specifici per il miglioramento biotecnologico di questa microalga. In questo 

capitolo sono stati testati due metodi differenti, la ricombinazione omologa e la mutagenesi 
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chimica, su colture di Nannochloropsis per generare e isolare possibili mutanti. I risultati ottenuti 

hanno evidenziato che Nannochloropsis non è in grado di effettuare la ricombinazione omologa con 

alta efficienza e la mutagenesi chimica, rappresenta per ora il metodo più efficace per migliorare i 

ceppi di Nannochloropsis. 

La fotosintesi è un fenomeno complesso, finemente regolato sulla base delle condizioni 

ambientali e ben lungi dall'essere completamente compreso. Tale comprensione è però 

fondamentale nella prospettiva della produzione di biocarburanti da alghe al fine di rendere le 

strategie di manipolazione genetica più efficaci. Uno dei target principali in questo campo è il 

ciclo delle xantofille, un meccanismo di fotoprotezione che viene attivato in condizioni di forte 

illuminazione, presente nella maggior parte eucarioti foto sintetici, compresa Nannochloropsis. Nel 

sesto capitolo viene considerata l'ipotesi che questo meccanismo sia regolato in base allo stato 

redox. Lo studio è stato eseguito sul dominio N-terminale ricco in cisteine della VDE di A. 

thaliana; com'è dimostrato nel capitolo, i residui analizzati sono ben conservati in tutte le altre 

specie e quindi le conclusioni tratte sono molto probabilmente valide anche per la VDE di 

Nannochloropsis. I risultati hanno rivelato che le cisteine sono fondamentali per l'attività enzimatica 

della VDE e tutti questi residui, tranne uno, sono coinvolti in ponti disolfuro. La titolazione 

redox, inoltre, ha mostrato una forte dipendenza dell'attività dal potenziale redox, disegnando 

uno scenario in cui la regolamentazione redox non risulta particolarmente adatta per una fine 

regolazione dell'attività della VDE. 

Nell'appendice 1, le tecniche avanzate di EPR sono state impiegate al fine di indagare la presenza 

del meccanismo fotoprotettivo basato su triplet-triplet energy transfer (TTET) nelle antenne 

(VCP) di Nannochloropsis. I risultati ottenuti mostrano una forte somiglianza in termini di 

popolazione dello stato di tripletto tra VCP, FCP di diatomee e LHCII di piante superiori. 

Nonostante queste proteine antenna abbiano sequenze diverse e leghino pigmenti differenti, i 

risultati suggeriscono che in tutti i membri della superfamiglia LHC sussiste un core costituito da 

due carotenoidi, il quale è circondato da cinque molecole di clorofilla a. Questa organizzazione 

strutturale conservata gioca una particolare funzione fotoprotettiva fondamentale nel quenching 

dei tripletti di Chl. 
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1.1 Biodiesel: a new source of clean energy 

According to BP Energy Outlook, energy demand will increase by 60% (Ahmad A. L. et al. 2011) 

in the next twenty years and the largest fraction (65%) of this growth will be accounted by China 

and India (BP Energy Outlook; 2013). At present energy request is largely fulfilled by fossil fuels 

which now account for 86% of global production. It is probably that in next decades fossil fuels 

will still provide a large fraction of the energy supply but alternatives are necessary since oil 

reserves are finite and the cost for its extraction will continuously raise (Rodolfi L. et al. 2009 and 

Hannon M. et al. 2010). In addition to issues with supply, it is widely recognized that fossil fuels 

are the largest contributors of greenhouse gas emissions (GHG)(NRC-2010) due to large scale 

use of these fuels for transport, electricity and thermal energy generation. With the increase 

awareness that anthropogenic factors have a role climate change it has become important to 

develop abatement techniques and adopt policies to reduce emissions.  

Renewable energy sources represent a solution to both to the energy supply and reduction of 

greenhouse gas emissions, for this reason they are receiving a strong attention from industry and 

research centers. Renewable energy is generally defined as energy originating from resources 

which are continually replenished on a human timescale such as sunlight, wind and geothermal 

heat. It is clear that no one single renewable energy source can support all global energy demand, 

but it is necessary to exploit different sources which all cover a fraction of the global demand. 

Solar, wind and geothermal represent sources of clean energy are all already exploited on large 

scales with positive results. However, all these renewable sources produces electricity which only 

represents around 30% of global energy consumption. The remaining 70% is instead represented 

by liquid fuels for which production there are, at present, no viable renewable alternatives. Liquid 

fuels are particularly important for their use for transportation where the use of electricity either 

requires large investments in infrastructures or is inapplicable with present technology as in the 

aviation sector (Gouveia L. and Oliveira A. C. 2009). 

Photosynthetic organisms can represent a promising alternative in this direction since they can be 

exploited for the production of different molecules exploitable as fuels such as ethanol, hydrogen 

and lipids. Fuels, produced exploiting living organisms, are called biofuels and they represents a 

valuable alternative for replacing fossil fuels because they are renewable and they do not 

contribute to the liberation of CO2 in the atmosphere (Gouveia L. and Oliveira A. C. 2009). The 

term biofuels includes bioethanol, biohydrogen, biogas and biodiesel. The present work is 

focused on the latter and thus on the possibility of producing a fuel, biodiesel, from the 

transesterification of triacilglicerols. Biodiesel represents an environmentally friendly alternative 

to diesel fuel being non-toxic fuel, biodegradable and with lower emission of GHG upon 

combustion (Demirbas A., 2009) 
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At present crops like soy, palm, rapeseed and sunflower are used as a feedstock for biodiesel 

production but this approach shows several limitations. First of all the production is limited by 

seasonality since plants in temperate climates are not productive for a large fraction of the year. 

Also oil represents at most the 5% of the biomass in these crops (Chisti Y. 2008). Because of all 

these reasons the replacement of a significant fraction of fossil fuel by biodiesel, produced from 

plants, will require unrealistic areas of cultivation. It is also difficult to hypothesize a dramatic 

increase on yields for these species (Chisti Y. 2007, Jeong G. T. et al. 2004) since they have been 

intensively cultivated for a long time and already underwent genetic improvements and 

agricultural practices (Doebley J. F. et al. 2006). Another major issue is that all these crops are 

normally cultivated for food or feed production and their exploitation as a feedstock for biofuels 

will cause a undesired competition for cultivation areas and potable water and a consequent raise 

in prices (Singh A. et al. 2011). 

An interesting alternative to plants is the exploitation of other photosynthetic microrganisms 

such as microalgae which show several advantages respect to food crops (Hannon M. et al. 2010, 

Rodolfi L. et al. 2009). As reported in Malcata F. X. (2011) a great number of microalgae species 

are able to accumulate large amount of lipids within their cells, which can be extracted and trans-

esterified into biodiesel. In some species lipids content can go beyond 50% of total dry weight, 

thus a fraction at least ten times higher than any crop plant. 

 
Table 1.1 Typical ranges of lipid content and productivity of selected marine and freshwater microalga 
species. (Malcata F. X. 2011). 
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Furthermore plants have several tissues, like roots or stems, that are not photosynthetically active 

and thus act as energy sinks. On the contrary in microalgae the entire cell is photosynthetically 

active, so all the solar energy harvested by photosynthesis is used for biomass production. 

Microalgae cultivation can be also combined with bio-fixation of waste CO2 (Rodolfi L. et al. 

2009) reducing greenhouse gas emission (Lam K. M. and Lee T. K. 2012) and bioremediation of 

wastewaters to reduce their nitrogen and phosphorus content (Jiang L. L. et al. 2011, Sivakumar 

G. et al. 2012) cutting down in this way the production costs. Finally microalgae do not need to 

exploit arable land since they can be cultivated in land not suitable for agriculture. 

Summarizing the production of biodiesel from microalgae shows several potential point of 

strength. However, the high cost and inefficiencies of algae large scale cultivation systems 

prevents it from becoming a serious competitor for petroleum fuels at present. As petroleum fuel 

costs rise and supplies dwindle, biodiesel will become more attractive to both investors and 

consumers if also new more efficient systems for their cultivation are developed (Campbell M.N., 

2008) by improved design of photobioreactors and microalgae genetic engineering (Beer L. L. et 

al. 2009, Demirbas A. 2009, Radakovits R. et al. 2010).  

 

1.2 Nannochloropsis gaditana 

As discussed above, biodiesel from microalgae represents one promising possibility to reduce 

energetic dependence from fossil fuels, even if strong efforts are necessary to make these 

applications economically sustainable on the industrial scale. One fundamental step for these kind 

of applications is the choice of a suitable organism among the thousands of different algae 

species. A suitable candidate should have a fast growth rate in a large range of light intensities and 

the ability to accumulate large amount of lipids. Although there is no ideal organism which will 

be suitable for all conditions several groups, including ourselves, focused on the seawater alga 

Nannochloropsis gaditana and other species of the same genus (Rodolfi L. et al. 2009, Sforza E. et al. 

2010, Simionato D. et al. 2011, Radakovitz R. et al. 2012, Vieler A. et al. 2012). For this reason 

we use this species as model organism for this work, although several of the conclusions will be 

valid also if other species are investigated.  

N. gaditana belongs to the kingdom of Chromista (Cavalier-Smith T. 2004) which includes 

organisms presenting a chloroplast enveloped by four membranes, originated from a secondary 

endo-symbiotic event where an eukaryotic host cell engulfed a unicellular ancestor of a red alga  

(Archibald, J. M. and Keeling, P. J. 2002). Within the kingdom of Chromista, Nannochloropsis 

genus belongs to the infrakingdom of Heterokonta (Cavalier-Smith T. 1995), which includes all 

eukaryotic motile biflagellate cells having typically a forward directed flagellum (Fig. 1.1). The 

variety among Heterokonta is striking including both multicellular seadweeds and unicellular 
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algae present in fresh and marine water (diatoms, brown algae, chrysophite). Due to this large 

diversity this infrakingdom is divided into three phyla and Nannochloropsis genus belongs to the 

Ochrophyta, which includes mainly autotrophic organisms but also a few heterotrophs (Riisberg, 

I. et al. 2009). This phylum is further divided into the subphyla of Khakista (Cavalier-Smith T. 

and Chao E.E.Y., 2006) and Phaeista (Cavalier-Smith and Chao E.E.Y., 2006); the latter 

comprises seven classes including the Eustigmatophyceae where Nannochloropsis are found 

(Riisberg, I. et al. 2009). 

 

 
Fig. 1.1: rDNA phylogeny of heterokonts (Riisberg 2009). 



 

 
The name of this class derived from the 

which normally enables an oriented movement response with respect to the direction and 

intensity of incident light on the cell in flagellated algae (Kreimer G. 2009). Despite the name the 

presence of an eustigma in 

biological role of this eventual eustigma is also unclear (Lubiàn L. M., 1982, Santos L.

1995).  

Nannochloropsis genus includes six species, one growing in fresh water, while others are all found 

in marine environment. N. gaditana

most of the cell volume is occupied by the chloroplast (Lubian L. M. 1982, Simionato D. et al. 

2013). Nannochloropsis has a unique pigments content with only chlorophyll (Chl) 
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Fig.1.2 Nannochloropsis gaditana

Nannochloropsis is an autotrophic organisms that grows at pH value around 7.5

al. 2003) and salinities from 3.6 to 44 g/l. 

this parameter was estimated at 31 g/l (Hu H. and Gao K. 2006). It is able to utilize glycerol for 

mixotrophic growth (Sforza E. et al. 2012)
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The name of this class derived from the eustigma a particular vesicular structure in the cytoplasm 

which normally enables an oriented movement response with respect to the direction and 

n the cell in flagellated algae (Kreimer G. 2009). Despite the name the 

presence of an eustigma in Nannochloropsis is still debated. Also being not flagellated and the 
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in high light or in nutrient deprivation (Simionato D. et al. 2013).  

Nannochloropsis gaditana Culture Collection of Algae and Protozoa (www.ccap.ac.uk)
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acid with important activity in human health for prevention of several diseases (Sukenik, A. et al. 

1998).  

Currently Nannochloropsis is used in aquaculture for its a high nutritional value and a protein 

content (Rocha J.M.S. et al. 2003) but in recent years it started receiving an increased attention 

for biofuels production due to its very high content in lipids, in the form of triacylglycerides 

(TAG) which are the best substrate to produce biodiesel. In particular Nannochloropsis under 

abiotic stress such as nitrogen or phosphorous starvation and high light (Rodolfi L. et al. 2009, 

Damiani M. C. et al. 2010 Sukenik A. et al. 2009) was shown to increase lipid production. In 

several algal species it has been observed that under nutrient shortage, cells accumulate lipids but 

the stress also decrease biomass production (Rodolfi L. et al. 2009). Nannochloropsis in this sense 

appears to be peculiar since the induction of  lipid synthesis, during N-starvation, does not 

reduce biomass productivity, at least for the first few days (Rodolfi L. et al. 2009). Lipids 

produced, thus, are synthesized from newly fixed carbon thanks to a reorganization of 

photosynthetic apparatus and metabolism which allow Nannochloropsis to maintain a sufficient 

photosynthetic activity (Simionato D. et al. 2013). 
 

 

1.3 The importance of photosynthetic efficiency for biofuels production 

Nannochloropsis is a photosynthetic organism and thus light is the only source of energy supporting 

the entire metabolism. Both biomass and lipids production are thus strongly light-dependent. The 

efficiency for the use of this resource is thus seminal to determine the productivity. This is 

exemplified in fig. 1.3 where the area needed to produce a ton of biomass per year is represented 

depending on the energy conversion efficiency. 

 
Fig. 1.3: Estimation of area needed for alga production. The area occupied by an alga cultivation system 
producing 1 ton of dry biomass per year is shown in dependence of the light use efficiency. Light input is 
assumed as the one reaching Padova every year (Simionato et al. 2013) 
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As shown in Fig. 1.3 if efficiency conversion is very low, around 0.1% as for crop plants (Heaton 

E. A. et al. 2008) , then the area needed for the cultivation is huge. While large areas are normally 

cultivated with crops it should be underlined that algae cultivation systems are at present much 

more expensive and labor intensive. Therefore if the efficiency is too low and the area needed 

too high, then the algae cultivation would be energetically and economically unsustainable. 

However, microalgae in laboratory conditions can achieve photosynthetic efficiencies around 3% 

(Blankenship R. E. et al. 2011), if similar values can be approaches in large scale systems this 

would mean that the area needed is much smaller and then an industrial cultivation of algae can 

become competitive.  

These considerations clearly support the need to investigate the parameters influencing algae 

photosynthetic efficiency in order to approach the values measured in the lab in a large scale 

photobioreactor. This objective, if achieved, could drastically push the competitiveness of the 

technology. 

A further interesting consideration would be that the maximal theoretical efficiency of 

photosynthesis should be around 10-12% in the conversion of light into biomass (Melis A. 2009 

Hambourgher M. et al. 2008). The study of light use efficiency in algae is seminal for two 

objectives: first it can also contribute to move algae photosynthetic efficiency from the low value 

of the industrial scale to the 3% reached in a lab scale condition, and second, once the first goal is 

achieved, move algae photosynthetic efficiency to higher values in order to reduced the gap with 

maximum theoretical efficiency.  

In Stephenson P.G. et al. (2011) the causes responsible of the low performance in 

photobioreactors were identified as:  

- Light-saturation of photosynthesis: photosynthesis rate increases linearly with light intensity up to a 

saturation point. Once this is reached, antennae proteins continue to absorb light but the energy 

cannot be used for photochemistry. In these conditions energy excess can drive to generation of 

reactive oxygen species and inhibition of photosynthetic apparatus. The activation of a 

photoprotection process, safely dissipates this energy via heat and fluorescence and is helpful in 

preventing photodamage (Niyogi K.K. 2000) but energy dissipation still causes a strong reduction 

of cells light use efficiency. 

- Mass culture self-shading: when algae growth in thick layers in mass culture, cells on the surface are 

often light-saturated. These cells on the external layer absorbs most of the energy but use it with 

low efficiency. The rest of the culture is instead exposed to very low illumination reducing their 

productivity. The combination of a subpopulation of cell in a condition of photoinibition and 

other subpopolations in a light limited state can heavily limit energy conversion efficiency by as 

much as 95% (Melis A. 2009, Polle J.E. et al. 2003). 
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Other factors are instead responsible of the gap between the observed and theoretical efficiencies 

(Stephenson P.G. et al. 2011):   

- Excitation energy transfer: the primary photochemical reactions proceed from relatively low-energy, 

long wavelengths of light (680 nm PSII and 700 nm PSI), so much of the energy of shorter, high-

energy wavelengths of photons absorbed by the antennae is re-emitted as heat and fluorescence. 

The process of photosynthesis is therefore unable to utilize the additional energy of blue photons 

of light (approximately 75% greater than red photons), resulting in a loss of energy from incident 

solar light (Barber J. 2009). 

-Photorespiration: the enzyme RUBISCO, which is required for the carboxylation of ribulose-1,5-

bisphosphate (RuBP), has a low specific affinity for CO2 and can also catalyze an oxygenation 

reaction (Whitney S.M.et al. 2010) leading to light-dependent consumption of oxygen, ATP and 

NADPH in a process called photorespiration, which leads to a decrease photosynthesis efficiency 

due to consumption of ATP and the release of recently fixed carbon. 

- Respiration: as well as performing photosynthesis, all marine microalgae respire fixed carbon, a 

necessary life process. This consumption of fixed carbon is difficult to measure and is species 

specific, but can account for up to 30% of fixed carbon(Zhu X.G. et al. 2007). 

These negative factors can be overcome with the integration of both the engineering and the 

biological approach: in fact the development of an optimize photobioreactor (Zou N. et al. 2001 

Campbell M.N. 2008) with an optimized mixing, in order to guarantee the correct amount of 

light for every cell, has the same importance than the design of mutant strains of microalgae with 

an improving pigments composition that could be obtained with a manipulation of carotenoids 

pathway (Brenner M.P. et al. 2006) or the development of mutants with different light absorption 

capacity (Melis A. 2009), or the generation of microalgae with modified light independent 

reaction increasing RUBISCO catalytic rate or reducing its oxygen affinity (Andrew J.T. and 

Whitney S.M. 2003). 

It is thus possible imagine that, in the next years, the improvement of technologies on biofuels 

would be increase the biomass productivity through the photosynthesis reaction reaching the 

optimization of solar energy conversion. This probably represent the main goal to obtain a 

sustainable and economically advantageous biodiesel. 

This subject will be further discussed on chapter 2. 
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1.4 Oxygenic photosynthesis 

 

Oxygenic photosynthesis is the process supporting life on earth: photosynthetic organisms 

harvest solar light and convert it to ATP and NADPH which are used as energy sources to 

reduced inorganic carbon and produce carbohydrates and molecular oxygen as secondary 

product.  

The entire process is divided into two phases called respectively light and a dark phase. The light 

phase occurs first and solar light is used to oxidize water molecules and produce ATP and 

NADPH.  In the dark reaction ATP and NADPH, are exploited for CO2 fixation in the Calvin-

Benson cycle (Benson, A. A. and Calvin, M. 1950) where one glyceraldehyde 3‐phospate (GAP) 

is synthesized from three CO2, nine ATP and six NADPH. Ribulose 1,5-bisphospate (RuBP), the 

starting material for the cycle, is regenerated with the cost of one molecule of ATP to preserve 

the cyclic character of the process.  

Photosynthesis in eukaryotes is performed in a specific organelle called chloroplast characterized 

by two membranes (together called envelope). The presence of these membranes takes origin 

from a primary endosymbiotic event between a heterotrophic organism and a cyanobacterium. 

Some organisms, like heterokonts, show a chloroplast with four membranes due to their origin 

from a secondary endosymbiosis . 

The envelope divides a compartment called stroma where plastidial DNA, RNA, ribosome and 

enzymes with a role in the dark phase are located. Inside the stroma there are the thylakoids 

membranes forming a physically continuous three-dimensional network which surrounded the 

thylakoids lumen; while in plants electron microscopy shows thylakoids organized in stacked piles 

forming grana in Nannochloropsis this organization is not clearly defined as shown in Fig. 1.4 

(Simionato D. et al. 2013). Here thylakoids are formed by three overlapped membrane layers with 

no clear distinction between grana and stroma lamellae. In thylakoid membranes all protein 

complexes involved in light phase reaction of photosynthesis are found.  

. 
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Fig. 1.4 Transmission electron microscopy of Nannochloropsis cells. m, mitochondria; cl, chloroplast; 
adapted from Simionato et al. 2013 

 

 

1.4.1 Light phase 
 
The first step of light phase is the harvesting of solar energy by chlorophylls and carotenoids 

bound to light harvesting complexes (LHC). The light energy, once harvested, is transferred to 

the reaction center where it is exploited for a charge separation. Here two specific Chl a are able 

to use excitation energy to transfer one electron to a series of electron transfer processes, yielding 

in the formation of a proton gradient across the thylakoid membrane and the generation of free 

energy and reducing power in the form of ATP and NADPH + H+. The primary electron donor 

is water: Oxygen Evolving Complex (OEC) oxidized H2O and splitted into 1/2 O2+ 2H+.  

The entire process can be summarized with these equations: 

 

2 H2O + 2 NADP+ + 8 photons → O2  + 2 NADPH +  2H+ 

ADP + Pi  + energy  → ATP 

 

As described in Hill R. and Bendall F. 1960 two photosystems called PSI and PSII act in series 

following the Z scheme to provide the energy required for the production of NADPH. 
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While the primary charge separation creates an electrical potential, the difference in proton 

concentration between the stromal and the lumenal side of the membrane is developed by a two 

main process: the so called Q-cycle and the oxidation of water (Fig.1.5).  

In the latter 4 protons are released in the lumen for each O2 molecule produced, while during the 

Q-cycle, Cyt b6f catalyzes the transfer of electron from a reduced plastoquinone (PQH2) to 

plastocyanin, a soluble copper protein. The result of this cycle is the pumping of protons across 

the membrane; from the stromal compartment to the thylakoid lumen 3 H+ are translocated in 

the lumen for every 2 electrons transported to PSI. The formation of an electrochemical potential 

across the thylakoid membrane is exploited to synthesize ATP starting from ADP + Pi in a 

process called photosphororilation. The accumulation of proton in thylakoid lumen acts as a 

feedback control on light harvesting, as further discusses in paragraph 1.5 of this chapter. On the 

stromal side protons are involved in the reduction of NADP by an iron containing protein: the 

ferrodoxin. 

 
 

 
Fig. 1.5. Electron transport chain in thylakoids (Nield 1999). PSII and PSI photosystem II and I, PQ 
plastoquinone,  Cyt b6f cytochrome b6f complex, OEC oxygen evolving complex, PC plastocianin, FD 
ferredoxin, LHC light harvesting complex www.queenmaryphotosynthesis.org/nield 

 

It is worth to underlining that during the evolution, in relation to the different availabilities of Cu 

and Fe in the environment, plastocyanin was substituted with Cytc6 (Howe J. C. et al. 2006, Peers 

G. and Price N. M. 2006) in photosynthetic bacteria and eukaryotic algae where it is widely 

distributed among green, red, and brown (Sandmann G. et al., 1983; Kerfeld C.A. and Krogmann 

D.W. 1998). While plastocyanin seems absent in Nannochloropsis genome, the gene for Cytc6 was 

identified (Radakovits, R. et al. 2012, Corteggiani, Carpinelli E. et al. 2013); the presence of Cytc6 

instead of plastocyanin is probably due to the higher concentration of Fe than Cu on the coast 

(Peers G. and Price N. M., 2006, Boubunari T. et al. 2009), the typical habitat of Nannochloropsis. 



 

24 

 

1.4.2 Proteins complexes involved in the light phase of photosynthesis: reaction centers 

1.4.2.1 Photosystem II 

Photosystem II catalyzes the electron transfer from water to PQ. The complex contains four 

large membrane-intrinsic subunits (called PsbA–D), three membrane-extrinsic subunits and a 

large number of small subunits, most of which span the membrane once. PsbA (D1) and PsbD 

(D2) constitute the photochemical reaction center where the charge separation and primary 

electron transfer reactions take place, while PsbB (CP43) and PsbC (CP47) have a light-

harvesting function (Dekker J.P and van Grondelle 2000). 

 

1.4.2.2 Photosystem I 

PSI is the second photosystem in photosynthetic light reaction; is a light dependent plastocyanin-

ferrodoxin oxidoreductase. In higher plants the core is composed of  14 subunits (Jensen, P. E. et 

al. 2007), among these subunits 8 are conserved and found also in diatoms PSI (Grouneva I . et 

al. 2011). PsaA and PsaB bind the Chl a responsible for the charge separation while PsaC, D and 

E are involved in connection with plastocyanin or Cytc6 in the lumenal side of the membrane or 

with ferrodoxin in the stromal one. 

 
1.4.3 Proteins involved in the light phase of photosynthesis: light harvesting complex 

 

All photosynthetic eukaryotes share the presence of Light Harvesting Complex superfamily 

which is responsible of the first step of photosynthesis (Green B.R. and Durnford D.G., 1996). 

Recently Engelken J. et al. (2010) and coworkers demonstrated that LHC evolved from an 

internal gene duplication/unequal crossing-over of tandem genes copying in this way a putative 

carotenoid-binding motif together with the chlorophyll binding motif. The genes encoding for 

LHCs are nuclear, are translated in the cytosol, and their products are then post-translationally 

directed, thanks to a signal peptide at N-terminal, to the chloroplasts where they associate with 

pigments and insert into the thylakoid membrane (Koziol A.G. et al. 2007).  

LHCs possess three α -helical transmembrane regions (TMR), connected by stroma and lumen-

exposed loops (Fig. 1.6). Two of these helixes, A and B, are homologous and share a “generic 

LHC motif” constituted by an highly hydrophobic sequence that contains a glutamic acids 

involved in the chlorophylls (Chls) binding and in the stabilization of the folding through salt 

bridges with arginine in the other helix (Liu Z. et al. 2004, Bassi R. et al. 1999). This structure is 

conserved during the evolution and characterized LHCs among all photosynthetic eukaryotes 

(Green B.R and Pichersky E. 1994).  
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Fig 1.6 Structure of light harvesting protein. http://www.esr-group.org/conferences/Warwick/ 

 
Despite the fact that TMRs are conserved among photosynthetic organisms the specific binding 

site of pigments can be different thanks to the diverse pigment composition that LHCs members 

show; in fact LHCs comprehend several subfamilies that can be summarized by table 1.2. 

 

Table 1.2: The systematic nomenclature was established by Jansson et al. 1999. The subfamily termed Lhcz 
does not have systematic names and were identified by Koziol et al. 2007 and Gagne and Guertin 1992, 
respectively. The genes in Lhca, Lhcb and related clades recently identified by Koziol et al. 2007 form a 
monophyletic outgroup. Adapted from Hoffmann et al. 2010 

 
LHCA and LHCB include sequences only from the green lineage and contain the Chl a/b 

binding protein (CABs). LHCA and LHCB respectively indicate the antenna proteins bound to 

PSI and to PSII forming, respectiveley PSI and PSII supercomplex.  

FCP or LHCF indicates the antenna proteins binding fucoxanthin, a xanthophyll found as an 

accessory pigment in the chloroplasts of brown algae and most other heterokonts, which is 

Systematic name Other names/subclades Lineages 

LHCA  LHC I Plants 

LHCB  LHC II, CP24,CP26,  Plants 

LHCF  FCP, CAC  Haptophytes, heterokonts 

LHCR  LhcaR Rhodophytes 

- LhcZ Cryptophytes, haptophytes, heterokonts 

LHCSR LhcX 
Chlorarachniophytes, chlorophytes, fucoxanthin-

containing dinoflagellates, haptophytes, 
heterokonts 
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responsible of their peculiar brown or olive-green color (Koziol A.G. et al. 2007, Neilson J.A.D. 

and Dunford D.G. 2010).  

LHCR or LHCAR family comprehends antenna proteins found in red algae (Neilson J.A.D. and 

Dunford D.G. 2010 Pearson et al 2010 Koziol A.G et al. 2007) and in secondary endosymbiont 

originated like diatoms (Zhu S.H. and Green B.R. et al. 2008, Nymark M. et al. 2009); these 

antenna proteins bind Chl a/c, zeaxanthin and β-carotene (Wolfe G.R. et al. 1994). 

LHCZ is a group originally highlighted by Koziol A.G. et al. 2007 and is composed of members 

from the cryptomonads, haptophytes, and chlorarachniophytes. It was named in absence of any 

indication on function or localization of this class of proteins.  

LHCSR, also called LHCX in diatoms (Nymark M. et al. 2009), contains most of the stress-

induced chlorophyll binding proteins (CPBs). In this family are also present the Li818 proteins 

that have been recently functionally characterized in Chlamydomonas and in Physcomitrella, with a 

function in Non Photochemical Quenching (NPQ)(Peers G. et al. 2009, Alboresi A. et al. 2010). 

In Nannochloropsis the major antenna protein was identified as Violaxanthin Chlorophyll Binding 

protein (VCP) and characterized by  Sukenik  et  al.  1992,  and  2000: this protein binds only Chl 

a and violaxanthin. At present is not clear to which of the previously mentioned groups belongs 

VCP. 

 

In green lineage the separation between antenna bound to PSI and to PSII is well established and 

also the different role of these two groups of antennae. PSII is more sensitive to photoinibition 

requiring an efficient mechanisms of repair (Nath K. et al. 2013) and its antenna complexes, 

which play a dual role, both light harvesting and photoprotection (Horton P. and Ruban A. V. 

2005), have to be loosely bound to  PSII in order to allow a easily and fast reparation. Instead PSI 

is less susceptible to light stress and does not undergo to a mechanism of repair and only recently 

photoprotection capacity of its antennae complexes were investigated (Alboresi A. et al. 2009).  

Differentiation between PSI and PSII antennae is not a peculiar trait of higher plants: thanks to 

the improvement in proteomic analysis, it was shown that red algae like P. cruentum (Wolfe G.R. 

et al. 1994) and C. meriolae (Bush A. et al. 2010) and diatoms like C. meneghiniana (Veith T. et al. 

2009), T. pseudonana (Ikeda Y. et al. 2013) and P. tricornutum (Ikeda Y. et al. 2013, Lepetit B. et al. 

2010, Veith T. and Buchel C. 2007) have specific antenna bound to PSI.  
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1.5 Photoprotection mechanism 

 
Light is not constant in a natural environment, so from dawn to sunset photosynthetic organisms 

are exposed to continuous changes in irradiation conditions.  

At early morning or if a cloud passes in front of the sun, photosynthetic organisms can be found 

in limiting light where all absorbed energy must be exploited for photochemistry. On the 

contrary, in other moments, the irradiation can be in excess with respect to the amount of energy 

used by photochemistry. In these conditions the photon absorption causes an accumulation of 

excitation energy in the antennae protein in the form of singlet state excitation of Chl  molecules 

(1Chl*). These conditions can drive to the formation of triplet Chls (3Chl*) by intersystem crossing 

(Fig. 1.7). Chl triplets are stable enough to react with molecular oxygen O2 forming singlet 

oxygen (1O2
*) and other reactive oxygen species (ROS). These molecules are harmful since they 

can oxidize protein, lipids, pigment inside chloroplast causing photo-oxidative damage and 

eventually cell death. 

 

 
Fig. 1.7: 1Chl* singlet excited state has several ways to relax to the ground state. It can relax as fluorescence 
(1). Its excitation can be used for photosynthetic reactions (2), or it can de-excite by dissipating heat (3); By 
intersystem crossing, 1Chl* produces 3Chl* (4),which in turn is able to produce 1O2*, a very reactive oxygen 
species (Muller P. et al. 1992). 

 

Photosynthetic organisms evolved different photoprotection mechanism to avoid the formation 

of reactive oxygen species. For instance carotenoids, bound to photosystems, constitutively 

protect the photosynthetic apparatus from excess energy by scavenging Chl triplets and ROS 

eventually formed. Other photoprotection mechanisms are instead activated in response to 

exposition to strong irradiation: this response is highly complex and various components can be 

distinguished based on their activation time scales (Niyogi K. K., 2000).  
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The fastest one is called NPQ in which excess of light energy can be eliminated by thermal 

dissipation by de-excitation of 1Chl*. It is measured by quantifying light induced quenching of Chl 

fluorescence (Demmig-Adams, B. et al. 1995, Niyogi, K. K. 1999). NPQ is a complex 

phenomenon and involves several components: qE (Energy-dependent quenching) which is the 

fastest one, qI (as photoInibitory quenching) which relaxes in hours (Niyogi, K. K. 2000, Muller, 

P. et al. 2001).  

 

1.5.1 The Xanthophylls cycle 

Carotenoids are present in all living organisms and show a role protecting them from reactive 

oxidative stress: lutein and zeaxanthin can be found, for instance, also in the human eye, where 

they are involved in the protection of the retinal cells from light (Roberts, R. L. et al. 2009). For 

photosynthetic organisms such a protection is fundamental since pigments light harvesting are 

connected to the formation of excited states and ROS.  

Carotenoid composition is not constant and the exposition to strong irradiation leads to an 

alteration of chloroplast pigments, thanks to the activation of xanthophyll cycle. 

In this cycle the diepoxide xanthophyll violaxanthin is reversibly converted to the epoxide-free 

zeaxanthin under the action of the enzyme Violaxanthin De-Epoxidase (VDE). Anteraxanthin is 

the intermediate step of the reaction which is normally not accumulated in vivo. Ascorbate 

supplies the reducing power required for the reaction.  

 

 
Fig 1.8: The xanthophylls cycle (from Jahns P. et al. 2009) 

 

The xanthophylls cycle is one of the most important mechanisms to protect photosynthetic 

apparatus from high light: zeaxanthin increases the photoprotection capacity since it enhances 
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quenching of Chl excited states (both singlet and triplets) as well as acts as antioxidant for the 

scavenging of ROS in the membranes to avoid lipids peroxidation (Arnoux P. et al. 2009, Holt N. 

E. et al. 2005, Havaux M. and Niyogi K. K. 1999, Jahns P. et al. 2009). In low light conditions 

zeaxanthin is back converted to violaxanthin by a stromal enzyme, Zeaxanthin Epoxidase (ZE). 

Violaxanthin with respect to zeaxanthin increases light harvesting efficiency, an important ability 

when solar radiation is limiting. Regulation of the cycle is thus fundamental to dissipate energy 

only when this is in excess. 

All photosynthetic eukaryotes show the presence of this cycle, although with different features 

depending on the organism. Three different violaxanthin cycles have been described in literature: 

the violaxanthin cycle (in all plants and green algae) (Siefermann-Harms, D. 1985), the 

diadinoxanthin cycle (in diatoms) (Hager A. and Stransky H. 1970) and the lutein-epoxide cycle 

(García-Plazaola J.I et al. 2007). In Nannochloropsis evidences of a xanthophyll cycle were 

described in (Gentile M.P and Blanch H.W. et al 2001) and recently the genome annotation 

confirms the presence of both ZE and VDE, with the latter showing two isoforms (Corteggiani 

Carpinelli  E. et al. 2013). 

VDE is a soluble monomeric enzyme belonging to the multigenic protein family called lipocalins 

whose members show a conserved structural organization with an 8 strands β-barrel and often 

bind little hydrophobic molecules (Hieber A.D. et al. 2002). VDE has two other domains with an 

unclear homology to any other known protein, and with a particular amino acid composition: the 

N-terminal domains is enriched with cysteines while the C-terminal domain is glutamates 

enriched (Hieber A.D. et al. 2002, Bugos R.C. and Yamamoto H.Y. 1996). The VDE lipocalin 

domain structure was recently crystallized both at acidic and neutral pH (Arnoux P. et al. 2009), 

and the results show that VDE undergoes to a pH dependent conformational change associated 

with protein activation. Analysis on the structure at pH 5 suggest that VDE dimerizes when 

active and binds to the membrane (Arnoux, P. et al. 2009, Saga, G. et al. 2010), probably in a 

regions enriched in a particular lipid called MGDG which forms inverted hexagonal structures in 

water, structures required for VDE activity (Latowsky D. et al. 2004). The hypothesis of 

dimerization is also confirmed by Fufezan C. et al. (2012) who defined a model where four of the 

five potential residues, involved in the activation, form a cooperative effect (Pfündel E.E. and 

Dilley R.A.,1993) on the activation of the enzyme.   

The key role of VDE and ZE is demonstrated in different studies: Arabidopsis mutants npq1, 

depleted in VDE, shows increased light induced PSII damage and lipid peroxidation (Havaux, M. 

and Niyogi, K. K. 1999, Niyogi, K. K. et al. 1998); on the contrary Arabidopsis mutants npq2, 

depleted in ZE and with a constitutive high level of zeaxanthin, evidences a faster NPQ 

activation and a slower relaxation respect to the WT, also in low light condition. This leads to a 

reduced growth under dim light because a considerable fraction of energy is continuously 
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dissipated instead of being used to sustain growth (Dall'Osto, L. et al. 2005, Niyogi, K. K. et al. 

1998). 

These examples underline the importance of a precise regulation of the xanthophyll cycle, 

regulation that assumes a primary role in the case of an algae photobioreactor where the 

dissipation of energy and photodamage can affect considerably the productivity.  
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OPTIMIZATION OF LIGHT USE EFFICIENCY FOR BIOFUELS 

PRODUCTION IN ALGAE 

 

Diana Simionato, Stefania Basso, Giorgio M. Giacometti and Tomas Morosinotto 

 

Highlights 

• Algae have interesting potential for the production of biofuels. 

• Light use efficiency is one of the major factors influencing algae productivity. 

• Investigation of molecular bases influencing photochemical efficiency is seminal to 

optimize algae productivity. 

• Productivity can be improved by genetic engineering and optimization of 

photobioreactors operational parameters.  

 

Abstract 

 

A major challenge for next decades is development of competitive renewable energy sources, 

highly needed to compensate fossil fuels reserves and reduce greenhouse gas emissions. Among 

different possibilities, which are currently under investigation, there is the exploitation of 

unicellular algae for production of biofuels and biodiesel in particular. Some algae species have 

the ability of accumulating large amount of lipids within their cells which can be exploited as 

feedstock for the production of biodiesel. Strong research efforts are however still needed to 

fulfill this potential and optimize cultivation systems and biomass harvesting. 

Light provides the energy supporting algae growth and available radiation must be exploited with 

the highest possible efficiency to optimize productivity and make microalgae large scale 

cultivation energetically and economically sustainable. Investigation of the molecular bases 

influencing light use efficiency is thus seminal for the success of this biotechnology. In this work 

factors influencing light use efficiency in algal biomass production are reviewed, focusing on how 

algae genetic engineering and control of light environment within photobioreactors can improve 

the productivity of large scale cultivation systems. 
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Introduction 

The largest fraction of world energy demand is presently met by the combustion of coal, oil and 

natural gas. Such a massive exploitation of fossil fuels leads to the release of large amounts of 

carbon dioxide and other pollutants in the atmosphere with detrimental effects on the 

environment. Also, because of this massive consumption, global reserves will be depleted in the 

future. It is thus evident that there is a strong need of alternative, renewable and environmentally 

compatible sources of energy in order to sustain our present lifestyle [1]. Among different 

possibilities, photosynthetic organisms are receiving growing attention for their potential 

exploitation in the production of biofuels [2], [3], [4], [5] and [6]. These bio-derived compounds 

in fact represent one of the most promising sources of liquid fuels, which are extensively used for 

transportation and in some cases, such as for jets, are not replaceable by electricity with the 

present technology. 

In this direction, a major potential alternative to fossil fuels for transportation is biodiesel which 

can be produced from vegetal oil through a process of trans-esterification. Biodiesel production 

on a large scale, however, is at present strongly limited by the feedstock supply. Nowadays, most 
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biodiesel is produced from oils extracted from crops like soy and palm, which have a limited 

productivity and would demand unrealistic areas of cultivation in order to replace a substantial 

fraction of fossil fuels [7] and [8]. A further critical point is that crop plants are normally 

employed as food or feed and their exploitation for biodiesel will generate an undesirable 

competition for cultivation areas and fresh water [9]. 

One interesting alternative to crops is the exploitation of other photosynthetic organisms such as 

microalgae, which are capable of accumulating large amounts of lipids which can be extracted, 

processed and refined into transportation fuels [4] and [6]. Algae also have additional interesting 

features such as the ability to efficiently use CO2[4] and, at least for some species, fast growth rate 

[10], [11], [12], [13] and [14]. The production of biofuels can also be combined with the use of 

algal systems for wastewater treatment to reduce the carbon, nitrogen and phosphorus content in 

industrial, municipal and agriculture wastes [15] and [16]. Furthermore, microalgae-derived high 

added value molecules can be used in the cosmetic or food industry such as astaxanthin, β-

carotene, omega-3-fatty acids, vitamin E and other pigments [16], [17], [18] and [19]. 

While it is thus clear in the scientific community that algae are highly promising for biofuel 

production and other applications, intensive research efforts are still needed to exploit their 

potential in large scale cultivation systems [5], [6] and [20]. Many factors influence algae growth 

and productivity and deeper investigations are necessary to optimize operating parameters in 

large scale algae cultivation systems (photobioreactors, PBRs) and maximize their productivity 

(for a comprehensive review see [4] and [21]). One of the major factors affecting algae growth is 

light: as for all photosynthetic organisms, sunlight provides the energy supporting their 

metabolism and its efficient conversion into biomass has a major influence on productivity. The 

importance of this parameter is exemplified in Fig. 1, where the area needed to produce a ton of 

biomass per year is represented depending on the energy conversion efficiency. For values as low 

as 0.1%, the average value for most crop plants in field conditions [22], the requested area is very 

large, while this is drastically reduced if photosynthetic efficiency reaches 3%, a value 

experimentally obtained with algae in laboratory conditions [23]. Possible improvements could 

eventually further increase the biomass productivity, closing the gap with the maximal theoretical 

efficiency (77 ± 5 g dw m− 2 d− 1, corresponding to ≈ 12% efficiency [24]). 
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Fig. 2.1 Estimation of area needed for alga production. The area occupied by an alga cultivation system 
producing 1 ton of dry biomass per year is shown in dependence of the light use efficiency. Average 
radiation intensity was assumed to be 4541 MJ m− 2 y− 1 (data for Padova, Italy, according to Photovoltaic 
Geographical Information System, PVGIS Solar Irradiation Data, 2007, http://sunbird.jrc.it/pvgis/) and 
biomass energy content was assumed to be 20 kJ/g. 

 

It should be underlined that, while crop plants are routinely cultivated in large areas, algae are 

cultivated in photobioreactors or ponds which have high energetic and monetary cost for 

building and maintenance. Therefore any increase in the area occupied by the alga cultivation 

makes the process less sustainable from the energetic and economic point of view. Therefore, a 

high photosynthetic efficiency is indispensable for a viable algae large scale cultivation system, 

even more than for crop plants. For this reason a deeper understanding of the molecular bases of 

the light use efficiency for these organisms is seminal to optimize their cultivation on a large scale 

and will be the focus of the present work. 

Although it is unlikely that a single species will have all the optimal characteristics for biodiesel 

production in all conditions, the species belonging to the genus Nannochloropsis are receiving 

increasing attention for this kind of applications. In fact, they present several positive features 

such as good growth rates and the ability to accumulate large amounts of lipids, up to 60% of 

total dry weight [14], [25] and [26]. Recent availability of genome sequences and tools for their 

molecular modification is also contributing to make this species a model for the study of biofuel 

production from algae [27] and [28], complementing the studies on other model organisms such 

as the green alga Chlamydomonas reinhardtii which is better characterized but less efficient as lipids 

producer. For this reason, Nannochloropsis and Chlamydomonas will be used here as the main 

reference species, although major conclusions are most likely valid for other species as well. 

 



 

47 

 

Influence of light intensity on photosynthetic efficiency 

Algae grown in large scale cultivation systems, such as PBRs, are exposed to a complex light 

environment. First of all sunlight is not constant but its intensity continuously changes during the 

day and the seasons. Illumination intensity has an important influence on alga productivity, as 

shown in Fig. 2.2 for the case of Nannochloropsis salina: up to 150 µmol of photons m− 2 s− 1 an 

increase in illumination stimulates growth, showing that, in this range of intensities, available light 

is the limiting factor. Once this limit is surpassed, however, growth is not stimulated anymore by 

an increase in light intensity but, on the contrary, it has an inhibitory effect, causing reduction in 

duplication rate [29]. It is important to underline that, in the experiments reported here, 

Nannochloropsis cells were cultivated in a flat-bed PBR in order to expose all cells to the same 

irradiation, reducing as much as possible the cells' self-shading. Also, carbon dioxide and 

nutrients were provided in excess to highlight the influence of light regime on growth kinetics. 

 

Fig. 2.2. Influence of light intensity on algae growth. A) Nannochloropsis growth, quantified as the specific 
growth rate calculated during the exponential phase under constant illumination is shown in dependence 
from light intensity (black squares). Light energy available increases linearly with the illumination 
intensity, as represented by the dotted line. CO2 and nitrogen (as nitrate) were provided in excess to avoid 
growth limitation due to these nutrients and highlighting the influence of the light regime. B) cell 
concentration normalized to the light intensity, expressed as µE (µmol of photons) m− 2 s− 1. Data reported 
are from [29]. 
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Similar experiments, performed at atmospheric CO2 concentration, showed different results and 

light was limiting in a much smaller interval, only below 15 µmol of photons m− 2 s− 1[30]. In these 

conditions, irradiation between 15 and 150 µmol of photons m− 2 s− 1 has little influence on 

duplication rates suggesting that, in this case, growth is limited by CO2 supply (Fig. 2.2). The 

importance of this key substrate for algae growth is well established and in fact all large scale 

PBRs are normally designed to provide cells with additional CO2 supply. Actually, the ability of 

algae to exploit high carbon dioxide supplies represents a major advantage of these organisms 

and opens the possibility of cultivating algae in connection with industrial processes which 

produce large amounts of CO2. Such a combination, in fact, while providing a low cost CO2 

source for algae cultivation allows fixing part of it into biomass, thereby reducing emissions in the 

atmosphere. 

For the above mentioned reasons, the influence of light regime on algae performances in a large 

scale PBR should be studied under conditions where CO2 is in excess. When the effect of 

different light intensities is considered, it is important to underline that the amount of energy 

available grows linearly with the radiation intensity. Algae are highly efficient in harvesting light 

and even when exposed to a strong irradiation the culture still absorbs most of the available 

photons, meaning that the energy absorbed by the cells is also following a similar linear growth. 

Over 150 µE m− 2 s− 1, however, an increase in the light available to the cells does not correspond 

to faster growth, implying that cells absorb energy in excess which they cannot use for biomass 

accumulation. This difference can be visualized by normalizing the growth to light intensity 

which allows an estimation of light use efficiency of the cultures. As shown in the first part of the 

curve in Fig. 2.2B, up to 150 µmol of photons m− 2 s− 1 this value is roughly constant, suggesting 

that in this range cells use light with a similar efficiency. When light intensity is over the maximal 

growth value, however, light use efficiency rapidly decreases. As an example, a comparison of 

data from 120 vs. 250 µmol of photons m− 2 s− 1 shows that while growth rate is similar, light use 

efficiency in the latter is already ≈ 50% less [29]. While data shown are referred to a specific set 

of experiments, a similar trend is observed for Nannochloropsis grown in cultivation systems with 

different geometries [31] or for other algae species [32], [33], [34], [35] and [36], suggesting that the 

conclusions can be generalized. 

Data reported above clearly show that light intensities over the saturation limit cause a drastic 

decrease in light use efficiency. Even if cells are still able to maintain a significant growth also 

under very intense illumination [29] and [30], in these conditions cells are highly inefficient in 

converting light into biomass. It is worth underlining that, while from the biological point of view 

there is no harm in using inefficiently an abundant resource, from the perspective of an alga large 

scale cultivation system any decrease in light use efficiency has a detrimental effect on system 

productivity, as shown in Fig. 2.2. 
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In order to devise strategies to keep algae productivity under a wider range of illumination, it is 

important to understand the molecular mechanisms responsible for the drop in light use 

efficiency under strong illumination. In photosynthetic eukaryotes most light is absorbed by 

pigments bound a family of proteins called antenna or light harvesting complex (LHC, [37]). 

Absorbed energy in the form of electronic excitation is transferred between nearby pigments and 

is eventually trapped by the special chlorophyll a contained in the reaction centers (RC) of the 

photosystems (PS). Here, electronic excitation drives a charge separation with one electron being 

transferred from the excited Chl a (Chl a*) to a nearby acceptor molecule starting the electron 

transport chain which leads to ATP and NADPH synthesis. 

Although light is indispensable to support algae metabolism, it may also become dangerous when 

in excess [32] and [33]. Light absorption and charge separation, in fact, take place in the presence 

of molecular oxygen. Toxic amount of ROS is formed in the thylakoid membrane when the 

absorption of light by chlorophylls exceeds the photosynthetic apparatus capacity of using 

excitation energy for electron transport, and photochemical reactions are saturated [38]. In 

particular, the very reactive singlet oxygen (1O2) can easily be created by light within the PSII 

complex in the presence of a photosensitizer such as chlorophyll, which is the main pigment of 

the photosynthetic apparatus [33] and [38]. Then, under conditions of intense illumination, excess 

energy leads to the production first of an increased amount of triplet excited state chlorophyll 

(3Chl*) which in turn generates 1O2[39] that can easily oxidize and degrade pigments, proteins and 

lipids. 

This ROS production under strong illumination has been suggested to impair PSII efficiency by 

inducing the degradation of some components of this protein–pigment complex (see a recent 

review by [40]). In cells exposed to strong illumination, the Photosystem II protein subunit D1 is 

continuously degraded and re-synthesized [32], [41], [42] and [43]. Although the molecular 

mechanism of reparation in vivo is not completely clarified, the damaged D1 subunit appears to 

be first removed from a photoinactivated PSII center through the progressive action of FtsH 

proteases [44] and [45] which bind the N-terminus of damaged D1 to drive its removal from the 

Photosystem II and its subsequent complete degradation [46] and [47]. After the removal of 

damaged D1 a new copy of the polypeptide is synthesized and re-inserted in PSII [44]. This repair 

mechanism is found conserved in all organisms performing oxygenic photosynthesis, from 

cyanobacteria [44] to plants [48], indicating that it plays a fundamental role in protection from 

irreversible photoinhibition. It has been estimated that D1 turnover in cells under illumination is 

around 30 minutes [32], and considering the abundance of PSII complexes in alga cells this 

implies that a relevant part of energy is invested in resynthesizing this protein. Although these 

mechanisms are clearly important to ensure cells survival, in the context of alga biomass 

production such a massive turnover clearly impair the efficiency of light conversion into biomass 

[43]. 
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An additional strategy to cope with a strong illumination is the thermal dissipation of part of the 

energy absorbed by the antenna so as to balance the light capture to the photochemical reactions 

rate. Antenna complexes are responsible for most of the light harvesting, but they are also 

involved in this dissipation of excess excitation [49] and [50]. Energy absorbed by LHC, in fact, 

can be dissipated as heat before it reaches the RC reducing the amount of Chl excited states and 

consequently decreasing the probability of reactive oxygen species generation. This process is 

called Non Photochemical Quenching (NPQ) and it can dissipate as heat up to 80% of the total 

absorbed energy [33]. The NPQ is activated by strong light and it is present in all photosynthetic 

organisms starting from cyanobacteria to land plants, although the molecular mechanisms are 

variable in different organisms [50]. 

The fastest component of NPQ is activated a few seconds after exposition to strong illumination, 

when the accumulation of protons in the thylakoids lumen causes the protonation of PSBS in 

plants and LHCSR in algae [50], [51], [52], [53], [54], [55] and [56]. When protonated, these 

proteins drive NPQ activation and the consequent decrease in excited state lifetime in pigment-

binding subunits of the antenna system therefore reducing the possibility of generating high 

reactive singlet oxygen within PSII [57]. Carotenoids also play a major role in photoprotection 

and in all pigment–protein complexes of photosynthetic apparatus they are found close to 

chlorophylls, thus the sites for the potential production of triplet Chl and singlet oxygen. These 

carotenoid molecules act as quenchers for Chl excited states and also scavengers for reactive 

oxygen species eventually formed [58] and [59]. Carotenoids have different photo-protective 

abilities due to their specific chemical and structural properties, with zeaxanthin being particularly 

effective [58], [60] and [61]. After exposition to strong light, zeaxanthin is synthesized from 

violaxanthin thanks to the activity of the enzyme violaxanthin de-epoxidase (VDE). This enzyme, 

at neutral pH, is in its monomeric inactive form in the lumen but, in high light, when the pH of 

this compartment decreases, it dimerizes, associates to the thylakoid membrane and converts 

violaxanthin into zeaxanthin [62] and [63]. This conversion increases cells' ability to quench 1Chl*, 
3Chl* and 1O2[58] and [61]. 

A further mechanism contributing to photo-protection is ‘state transition’ which consists in the 

migration of LHCII, the PSII major antenna complex, from PSII (state 1) toward PSI (state 2) in 

order to equilibrate an imbalance of light excitation in the two photosystems. LHCII migration 

from PSII to PSI is activated upon phosphorylation when PSII is saturated and PQ pool is over-

reduced. This is a reversible phenomenon and LHCII can migrate back to PSII when the 

excitation energy balance between the two photosystems is restored [64]. Although state 

transitions are present in both green algae and plants, its physiological role seems to be more 

important in the former [64]. In fact, in Chlamydomonas, the ability of activating state transitions 

was shown to contribute to a better carbon assimilation and algal growth [65]. Also, it was 

recently demonstrated in Chlamydomonas that cells' exposure to high light induce a persistent state 
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2 which contributes to reducing PSII functional antenna size and consequently protects this 

photosystem from over-excitation and in particular decreases hydrogen peroxide formation [66]. 

All mentioned mechanisms allow cells to safely dissipate energy in excess, thereby reducing 

oxidative damage, so as to survive under intense illumination [51]. In the perspective of algae 

large scale cultivation, however, energy dissipation as heat still causes a reduction of light use 

efficiency and has therefore a negative effect on culture productivity. Energy dissipated for 

protection, as well that used to repair the photosynthetic apparatus, strongly reduces biomass 

productivity and should be minimized in a large scale cultivation system [24] and [42]. 

 

Increase of light use efficiency by algae genetic engineering 

An additional factor to be considered is that algae are cultivated in photobioreactors at high 

concentration and, because of the pigments present in the cells, the medium has a high optical 

density. As a consequence, light distribution in the systems is highly inhomogeneous [67], 

[68] and [69] with the surface-exposed cells absorbing most of the available light, leaving only a 

residual part of the radiation for cells underneath (Fig. 2.3). For this reason, external layers are 

easily exposed to excess light and, as discussed above, to maintain their photosynthetic activity 

they need to dissipate energy and repair photoinhibited complexes with poor light use efficiency 

[24], [70] and [71] (Fig. 2.3). At the same time, most of the cells in the culture are instead exposed 

to a weak illumination limiting their growth. If light is below the compensation point, cells might 

even have a negative productivity since respiration can be faster than photosynthesis. The 

relevance of this inhomogeneous light distribution on algae cultivation productivity is underlined 

by the observation that the overall efficiency of photobioreactors increases when the light path 

through the culture is shorter, reducing the inhomogeneity of light distribution [67], [72], 

[73] and [74]. Unfortunately, short light paths are difficult to be implemented in large-scale 

structures because of practical and economic reasons. 

 

 

Fig. 2.3. Model of the light distribution in a photobioreactor. An algae photobioreactor has high optical 
density because of the high pigment concentration in the cells. A first layer of cells is thus exposed to full 
illumination and absorbs a major fraction of the light energy available. These cells likely have a saturated 
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photosynthesis, leading to energy dissipation as heat and ROS production. As a consequence they not only 
absorb a large fraction of light available but they also use it with low efficiency. The rest of the biomass is 
left exposed to limiting light. 

 

One possibility to reduce this limitation and increase productivity in algae large scale outdoor 

cultivation systems is to genetically engineer these organisms and make them more suitable to 

grow in the light environment found in a photobioreactor. In a natural environment, cells need to 

harvest light efficiently to compete with others and have no evolutionary advantage in leaving 

radiation energy to underneath layers. On the contrary, in a photobioreactor each cell should 

ideally only harvest the amount of light it can efficiently use for photochemistry. Unfortunately 

even if algae are a very diverse group of organisms it is unlikely that species isolated from the 

environment can have all the ideal characteristics for large scale cultivation and therefore their 

genetic improvement will likely be fundamental to optimize productivity [27] and [75]. Wild type 

(WT) algae thus need to be “domesticated”, similarly to what happened for crops where multiple 

traits which would have a negative effect in a natural environment were artificially selected 

because, in cultivated crops, they provided a positive influence on productivity. 

One of the possible strategies under intense study to improve light distribution in a 

photobioreactor is to generate strains with a decreased photosystems antenna size [36]. As 

mentioned above, antennas (or LHC) are pigment binding proteins which harvest light and 

transfer energy to the reaction centers. These proteins are particularly important in a light limiting 

environment because they increase the cells' ability to efficiently harvest available radiation. They 

also bind most of the pigments in algae cells and therefore are the main responsible for the 

optical density of the culture. Algae cells normally have a large number of antenna proteins 

associated to both Photosystems I and II and, for instance for Chlamydomonas, it has been 

estimated that there are respectively 200–240 and 190–210 chlorophylls per reaction center [76], 

[77] and [78]. The presence of antenna proteins, however, is not necessary for electron transport 

reactions and their content can be reduced without affecting the photosystems' ability to perform 

photochemistry. It was estimated that the minimum number of Chl molecules is 37 for PSII and 

95 for PSI, since below these limits the assembly of the photosystem core complexes is affected, 

impairing their photochemical activity [79]. However, these figures suggest that it is possible to 

strongly reduce the number of antenna proteins associated to each photosystem, which should 

have a positive effect on productivity in a photobioreactor by reducing the amount of pigments 

in each cell and improving light distribution, thereby increasing the energy available for all cells. 

Also cells with a small Chl antenna size would reach photosynthesis saturation at higher light 

intensity [71] reducing the amount of energy lost by cells at the surface of the photobioreactor. 

However, as mentioned above, antenna proteins are not only involved in light harvesting but also 

play a fundamental role in the protection from high light. In fact, thermal dissipation of energy 

absorbed in excess (NPQ described above) requires antenna proteins to be activated and mutants 
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completely depleted of antenna proteins have been shown to be particularly sensitive to strong 

illumination. Thus, the desirable situation should not be a complete depletion of the antenna 

proteins but its selective reduction, which clearly requires a deeper knowledge of factor involved 

in photosystem biogenesis [80]. Following the domestication hypothesis, photosystems' antenna 

size must thus be re-optimized for photobioreactor conditions. 

Different C. reinhardtii strains with reduced antenna size have already been isolated and 

characterized in the past few years using insertional mutagenesis and RNAi approaches [76], [77], 

[81], [82], [83], [84] and [85]. tla1[77], tla2[76] and tla3[85] are DNA insertional transformants 

carrying mutations in genes involved in the modulation of expression of genes encoding for light 

harvesting complexes. As a consequence, these mutants have a truncated light harvesting 

chlorophyll antenna size and show a lower chlorophyll per cell content with respect to the 

corresponding WT strains. One interesting consequence of the truncated antenna size is the 

difference in the saturation of photosynthesis which occurs in tla1 mutant at about 2500 µmol of 

photons m− 2 s− 1 instead of 1000 µmol of photons m− 2 s− 1 measured for WT [76] and [85]. 

Mutants with reduced antenna size were also obtained by RNA interference, exploiting the 

similarity between different LHC proteins to ensure the simultaneous down regulation of 

multiple genes. One line developed with this approach, called StmLR3[82], presents reduced levels 

of both LHCI and LHCII mRNAs and proteins. StmLR3 shows a higher photosynthetic 

quantum yield and a reduced sensitivity to photo-inhibition which led to a faster cell growth 

under strong illumination. In fact, under illumination at 1000 µmol of photons m− 2 s− 1, Stm3LR3 

cultures reached peak density already after 26.5 h when WT cultures only were at 54% of their 

maximal cell densities. 

In conclusion, these works showed that the advantage of mutants with reduced antenna size is 

twofold. On one side, cells with truncated antenna, when exposed to strong irradiation, harvest 

light less efficiently, reducing the damage on the photosynthetic apparatus and the need to 

thermally dissipate absorbed energy. On the other side, light absorption by single cells in a mass 

culture is minimized allowing a better transmission in the culture thereby increasing overall 

photosynthesis and biomass accumulation. Both contributions yield into a higher productivity 

which for Tla1 at 1500 µmol of photons m− 2 s− 1 was estimated to be twice that of WT [77]. 

Although all present studies were performed with the model alga C. reinhardtii, it is expected that 

strains with a truncated antenna isolated for other species, more suitable for industrial 

applications, will yield similar advantages. 
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Light use efficiency increase through optimal alternation of dark/light 

cycles 

Considering data reported in Fig. 2.2, a possible solution to grow algae with a good light use 

efficiency would be to cultivate them under light intensity below the saturation limit. However, 

illumination under a full sunlight in summer is over 2000 µmol of photons m− 2 s− 1, suggesting 

that, for a large fraction of time, algae exposed to direct sunlight use energy with low efficiency, 

especially those located at the more external layers. However, this first layer of cells absorbs most 

of the available radiation and therefore this has a major negative effect for the overall 

productivity. 

An additional factor of complexity to be also considered is that cells in a photobioreactor are 

actively mixed and move between dark and fully exposed regions of the photobioreactor [69]. 

The kinetics of mixing cycles vary greatly according to cultivation systems and change between a 

millisecond time-scale in closed tubular reactors or optical fiber-based photobioreactors to longer 

times by several order of magnitude in open ponds [69]. These dark/light cycles can strongly 

affect algae photosynthetic efficiency depending on the frequency and intensity of light flashes 

[86], [87], [88], [89], [90] and [91]. An example of their influence is shown in Fig. 2.4 where the 

growth of N. salina cells is reported when exposed to square-wave light/dark cycles to simulate 

mixing [29]. All experiments were performed providing the same total amount of photons, 

corresponding to 120 µmol of photons m− 2 s− 1 of continuous illumination, to evidence 

differences in light use efficiency due to frequency and intensity of light pulses [29]. In some 

conditions, the growth rate corresponds to that of cells exposed to constant moderate light 

(120 µmol of photons m− 2 s− 1, Fig. 2.4A), suggesting that, in these conditions, cells were able to 

completely integrate the light absorption, exploiting intense light pulses as well as continuous 

illumination [92], [93] and [94]. It is important to stress that this result implies that cells not only 

were able to avoid photo-oxidation damage under saturating flashes, but they were also able to 

use energy from pulses with the same efficiency as dim continuous light, even if they were 8 

times over the saturation limit. Also, it is worth underlining that the intensity of the pulses was 

not affecting the results, at least in the range tested, since flashes of 350 and 1200 µmol of 

photons m− 2 s− 1 were exploited with the same efficiency. 
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Fig. 2.4. Effect of pulsed light in algae growth. A) influence of alternation of light pulses and dark time on 
Nannochloropsis cell growth (data from [29]). All conditions provide a total amount of light corresponding 
to 120 µE m− 2 s− 1 of continuous light. CO2 and nitrogen (as nitrate) were provided in excess to avoid 
growth limitation due to these nutrients and highlighting the influence of the light regime. B) Schematic 
representation of a chloroplast and main reactions of photosynthesis. Above the thylakoid membranes is 
shown together with the four protein super-complexes involved in the light phase of photosynthesis, PSII, 
Cytb6f, PSI and ATPase. Some electron transport reactions are also indicated, water oxidation, diffusion of 
PQ between PSII and Cytb6f, plastocyanin (PC) reduction and oxidation and NADP+ reduction. Below is 
a schematic representation of Calvin–Benson cycle which consumes the products of light phase, ATP and 
NADP+, regenerating the required substrates. 

 

The results with light flashes, however, were not always positive and in other cases growth was 

inhibited even if the integrated amount of photons provided was the same. The conditions 
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showing the best productivity (1200 µmol of photons m− 2 s− 1 — 10 Hz and 350 µmol of 

photons m− 2 s− 1 — 30 Hz) had in common the same length of the light pulse (Fig. 2.4), which 

thus appears to have a large influence on biomass productivity among the parameters considered 

here. The optimal duration of light pulses was found to be around 10 ms [29] while longer pulses 

were not efficiently exploited. Similar results have been described for other species of microalgae 

[89] and [95] and with the model green alga C. reinhardtii it was shown that the specific growth rate 

under flashing light increased with the rise in flash frequency. Algae grown at 1000 µmol of 

photons m− 2 s− 1 — 100 Hz, again with 10 ms flash duration, presented similar growth rate and 

final biomass yield as the algae exposed to continuous 100 µmol of photons m− 2 s− 1, confirming 

that the flash duration has a key influence on the light use efficiency [96] and [97]. These results 

suggest that a photobioreactor might well exploit with good efficiency even in highly intense light 

provided that mixing is optimized to that scope. 

The timescale of the optimal duration of the light flashes, around 10 ms, is consistent with the 

suggested PSII turnover rate in whole cells Malcata F.X. 2011 and Dubinsky Z. et al. 1986, 

meaning that after charge separation by the photosystems, 10–15 ms are needed before the 

photosystem is ready to receive another photon [69]. In Fig. 2.4 a scheme providing a possible 

explanation for these observations is shown. One of the major rate limiting steps for 

photosynthesis is the Calvin–Benson cycle, which consumes ATP and NADPH produced by the 

light phase of photosynthesis for carbon fixation. Its activity has a fundamental influence also on 

the light phase because it re-generates the indispensable substrates ADP, Pi, and NADP+. If light 

is too intense and Calvin–Benson cycle is not capable of fixing CO2 at a sufficient rate, these 

substrates become limiting for the light phase of photosynthesis which, as a consequence, is not 

able to use all available energy for photochemistry, leading to the above discussed radiation 

damage and activation of heat dissipation mechanisms. In the case of experiments with pulsed 

light shown in Fig. 2.4A the total amount of energy provided is lower than the saturation point 

(120 vs. 150 µE m− 2 s− 1) suggesting that the dark reactions should be able to use the energy with 

good efficiency and carbon fixation rate should not be limiting in these conditions. 

Another limiting step for photosynthesis is electron transport between PSII and PSI via Cytb6f 

which requires the diffusion of plastoquinone in the membrane. PSII final acceptor is a 

plastoquinone molecule bound to QB site, which is reduced in around 1 ms. Once plastoquinol is 

formed, however, it must diffuse into the membrane and donate electrons to Cytb6f and another 

plastoquinone molecule has to take its place in the QB site. This step is known to be a rate 

limiting step for the light phase of photosynthesis and in fact under intense illumination PSII is 

saturated at the level of PQ pool. Under light flashes plastoquinone is reduced but, if light is 

switched off fast enough, it allows the time for re-oxidation of electron transporters, thus 

preparing the reaction centers for the following pulse. If the light exposure is longer, instead, it 

increases the probability that a second photon reaches the reaction center when this is still in the 

oxidized state, thus leading to the generation of ROS and photo-damage. If the illumination is 
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short enough, instead, not only the damage is reduced but also, since energy is “stored” as 

reduced PQ, the electron transport can proceed efficiently. In these conditions, the 

plastoquinone pool can act as a buffer which temporarily stores electrons allowing the efficient 

use of even very short light flashes. 

These results suggest that very intense light can be harvested and exploited efficiently by cells 

growing in a photobioreactor, even if the total intensity is well beyond the saturation limit for 

that particular species. They also suggest that, provided that they are cultivated in optimal 

conditions, high photosynthetic efficiencies can be obtained also with algae growing in outdoor 

conditions exposed to very intense illuminations. However, for this to occur it is necessary that 

photobioreactor design is such that mixing is optimized and cells are exposed to short light 

pulses before moving back to the dark part of the photobioreactor. If this is possible, even very 

intense external light intensities could be harvested and used efficiently for photosynthesis. 

 

 

Acknowledgments 

This work was supported by FSE project from Regione Veneto, no. 2105/1/5/1739/2011 and ERC 

starting grant BIOLEAP no. 309485 to TM. 

  



 

58 

 

References 

 

[1] J.L. Hong Uncertainty propagation in life cycle assessment of biodiesel versus diesel: 

global warming and non-renewable energy Bioresource Technology, 113 (2012), pp. 3–7 

[2] Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, A. Darzins 

Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and 

advances The Plant Journal, 54 (2008), pp. 621–639 

[3] G.C. Dismukes, D. Carrieri, N. Bennette, G.M. Ananyev, M.C. Posewitz Aquatic 

phototrophs: efficient alternatives to land-based crops for biofuels Current Opinion in 

Biotechnology, 19 (2008), pp. 235–240 

[4] M. Hannon, J. Gimpel, M. Tran, B. Rasala, S. Mayfield Biofuels from algae: challenges and 

potential Biofuels, 1 (2010), pp. 763–784 

[5] F.X. Malcata Microalgae and biofuels: a promising partnership? Trends in 

Biotechnology, 29 (2011), pp. 542–549 

[6] Y. Chisti, J.Y. Yan Energy from algae: current status and future trends algal biofuels — 

a status report Applied Energy, 88 (2011), pp. 3277–3279 

[7] G.T. Jeong, D.H. Park, C.H. Kang, W.T. Lee, C.S. Sunwoo, C.H. Yoon, B.C. Choi, H.S. Kim, 

S.W. Kim, U.T. Lee Production of biodiesel fuel by transesterification of rapeseed oil 

Applied Biochemistry and Biotechnology, 113–116 (2004), pp. 747–758 

[8] Y. Chisti Biodiesel from microalgae Biotechnology Advances, 25 (2007), pp. 294–306 

[9] A. Singh, P.S. Nigam, J.D. Murphy Renewable fuels from algae: an answer to debatable 

land based fuels Bioresource Technology, 102 (2011), pp. 10–16 

[10] M.K. Lam, K.T. Lee Microalgae biofuels: a critical review of issues, problems and the 

way forward Biotechnology Advances, 30 (2012), pp. 673–690 

[11] L. Gouveia, A.C. Oliveira Microalgae as a raw material for biofuels production Journal 

of Industrial Microbiology and Biotechnology, 36 (2009), pp. 269–274 

[12] G. Breuer, P.P. Lamers, D.E. Martens, R.B. Draaisma, R.H. Wijffels The impact of 

nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae 

strains Bioresource Technology, 124 (2012), pp. 217–226 



 

59 

 

[13] C. Adams, V. Godfrey, B. Wahlen, L. Seefeldt, B. Bugbee Understanding precision 

nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green 

microalgae Bioresource Technology, 131C (2012), pp. 188–194 

[14] L. Rodolfi, Z.G. Chini, N. Bassi, G. Padovani, N. Biondi, G. Bonini, M.R. Tredici 

Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass 

cultivation in a low-cost photobioreactor Biotechnology and Bioengineering, 102 (2009), pp. 

100–112 

[15] L.L. Jiang, S.J. Luo, X.L. Fan, Z.M. Yang, R.B. Guo Biomass and lipid production of marine 

microalgae using municipal wastewater and high concentration of CO2 Applied Energy, 88 

(2011), pp. 3336–3341 

[16] G. Sivakumar, J.F. Xu, R.W. Thompson, Y. Yang, P. Randol-Smith, P.J. Weathers 

Integrated green algal technology for bioremediation and biofuel Bioresource Technology, 

107 (2012), pp.1-9 

[17] L.M. Lubian, O. Montero, I. Moreno-Garrido, I.E. Huertas, C. Sobrino, M. Gonzalez-del 

Valle, G. Pares Nannochloropsis (Eustigmatophyceae) as source of commercially valuable 

pigments Journal of Applied Phycology, 12 (2000), pp. 249–255 

[18] J.A. Del Campo, M. Garcia-Gonzalez, M.G. Guerrero Outdoor cultivation of microalgae 

for carotenoid production: current state and perspectives Applied Microbiology and 

Biotechnology, 74 (2007), pp. 1163–1174 

[19] A.C. Guedes, H.M. Amaro, F.X. Malcata Microalgae as sources of carotenoids Marine 

Drugs, 9 (2011), pp. 625–644 

[20] H.M. Amaro, A.C. Guedes, F.X. Malcata Advances and perspectives in using microalgae 

to produce biodiesel Applied Energy, 88 (2011), pp. 3402–3410 

[21] V.H. Work, S. D'Adamo, R. Radakovits, R.E. Jinkerson, M.C. Posewitz Improving 

photosynthesis and metabolic networks for the competitive production of phototroph-

derived biofuels Current Opinion in Biotechnology, 23 (3) (Jun. 2012), pp. 290–297 

[22] E.A. Heaton, R.B. Flavell, P.N. Mascia, S.R. Thomas, F.G. Dohleman, S.P. Long 

Herbaceous energy crop development: recent progress and future prospects Current 

Opinion in Biotechnology, 19 (2008), pp. 202–209 

[23] R.E. Blankenship, D.M. Tiede, J. Barber, G.W. Brudvig, G. Fleming, M. Ghirardi, M.R. 

Gunner, W. Junge, D.M. Kramer, A. Melis, T.A. Moore, C.C. Moser, D.G. Nocera, A.J. Nozik, 

D.R. Ort, W.W. Parson, R.C. Prince, R.T. Sayre Comparing photosynthetic and photovoltaic 

efficiencies and recognizing the potential for improvement Science, 332 (2011), pp. 805–809 



 

60 

 

[24] A. Melis Solar energy conversion efficiencies in photosynthesis: minimizing the 

chlorophyll antennae to maximize efficiency Plant Science, 177 (2009), pp. 272–280 

[25] S. Boussiba, A. Vonshak, Z. Cohen, Y. Avissar, A. Richmond Lipid and biomass 

production by the halotolerant microalga Nannochloropsis salina Biomass, 12 (1987), pp. 

37–47 

[26] P.A. Hodgson, R.J. Henderson, J.R. Sargent, J.W. Leftley Patterns of variation in the lipid 

class and fatty-acid composition of Nannochloropsis oculata (Eustigmatophyceae) 

during batch culture.1. The growth-cycle Journal of Applied Phycology, 3 (1991), pp. 169–

181 

[27] R. Radakovits, R.E. Jinkerson, S.I. Fuerstenberg, H. Tae, R.E. Settlage, J.L. Boore, M.C. 

Posewitz Draft genome sequence and genetic transformation of the oleaginous alga 

Nannochloropsis gaditana Nature Communications, 3 (2012), p. 686 

[28] O. Kilian, C.S. Benemann, K.K. Niyogi, B. Vick High-efficiency homologous 

recombination in the oil-producing alga Nannochloropsis sp. Proceedings of the National 

Academy of Sciences of the United States of America, 108 (2011), pp. 21265–21269 

[29] E. Sforza, D. Simionato, G.M. Giacometti, A. Bertucco, T. Morosinotto Adjusted light and 

dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors 

PLoS One, 7 (2012), p. e38975 

[30] D. Simionato, E. Sforza, C.E. Corteggiani, A. Bertucco, G.M. Giacometti, T. Morosinotto 

Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on 

lipids accumulation Bioresource Technology, 102 (2011), pp. 6026–6032 

[31] J. Van Wagenen, T.W. Miller, S. Hobbs, P. Hook, B. Crowe, M. Huesemann Effects of light 

and temperature on fatty acid production in Nannochloropsis salina Energies, 5 (2012), pp. 

731–740 

[32] J. Barber, B. Andersson Too much of a good thing: light can be bad for photosynthesis 

Trends in Biochemical Sciences, 17 (1992), pp. 61–66 

[33] Z. Li, S. Wakao, B.B. Fischer, K.K. Niyogi Sensing and responding to excess light 

Annual Review of Plant Biology, 60 (2009), pp. 239–260 

[34] H. Qiang, A. Richmond Productivity and photosynthetic efficiency of Spirulina 

platensis as affected by light intensity, algal density and rate of mixing in a flat plate 

photobioreactor Journal of Applied Phycology, 8 (1996), pp. 139–145 



 

61 

 

[35] K. Sakamoto, M. Baba, I. Suzuki, M.M. Watanabe, Y. Shiraiwa Optimization of light for 

growth, photosynthesis, and hydrocarbon production by the colonial microalga 

Botryococcus braunii BOT-22 Bioresource Technology, 110 (2012), pp. 474–479 

[36] A. Melis, J. Neidhardt, J.R. Benemann Dunaliella salina (Chlorophyta) with small 

chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use 

efficiencies than normally pigmented cells Journal of Applied Phycology, 10 (1998), pp. 515–

525 

[37] A.G. Koziol, T. Borza, K. Ishida, P. Keeling, R.W. Lee, D.G. Durnford Tracing the 

evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms Plant 

Physiology, 143 (2007), pp. 1802–1816 

[38] K. Asada The water–water cycle in chloroplasts: scavenging of active oxygens and 

dissipation of excess photons Annual Review of Plant Physiology and Plant Molecular Biology, 

50 (1999), pp. 601–639 

[39] S. Takahashi, M.R. Badger Photoprotection in plants: a new light on photosystem II 

damage Trends in Plant Science, 16 (2011), pp. 53–60 

[40] I. Vass Molecular mechanisms of photodamage in the Photosystem II complex 

Biochimica et Biophysica Acta, 1817 (2012), pp. 209–217 

[41] P.J. Nixon, F. Michoux, J. Yu, M. Boehm, J. Komenda Recent advances in understanding 

the assembly and repair of photosystem II Annals of Botany, 106 (2010), pp. 1–16 

[42] J.A. Raven The cost of photoinhibition Physiologia Plantarum, 142 (2011), pp. 87–104 

[43] I. Szabo, E. Bergantino, G.M. Giacometti Light and oxygenic photosynthesis: energy 

dissipation as a protection mechanism against photo-oxidation EMBO Reports, 6 (2005), 

pp. 629–634 

[44] P. Silva, E. Thompson, S. Bailey, O. Kruse, C.W. Mullineaux, C. Robinson, N.H. Mann, P.J. 

Nixon FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp. 

PCC 6803 The Plant Cell, 15 (2003), pp. 2152–2164 

[45] D.A. Campbell, E. Tyystjarvi Parameterization of photosystem II photoinactivation and 

repair Biochimica et Biophysica Acta, 1817 (2012), pp. 258–265 

[46] J. Komenda, R. Sobotka, P.J. Nixon Assembling and maintaining the Photosystem II 

complex in chloroplasts and cyanobacteria Current Opinion in Plant Biology, 15 (2012), pp. 

245–251 



 

62 

 

[47] M. Lindahl, C. Spetea, T. Hundal, A.B. Oppenheim, Z. Adam, B. Andersson The thylakoid 

FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein 

The Plant Cell, 12 (2000), pp. 419–431 

[48] S. Bailey, E. Thompson, P.J. Nixon, P. Horton, C.W. Mullineaux, C. Robinson, N.H. Mann 

A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II 

repair cycle in vivo Journal of Biological Chemistry, 277 (2002), pp. 2006–2011 

[49] M. Ballottari, J. Girardon, L. Dall'Osto, R. Bassi Evolution and functional properties of 

photosystem II light harvesting complexes in eukaryotes Biochimica et Biophysica Acta, 

1817 (2012), pp. 143–157 

[50] K.K. Niyogi, T.B. Truong Evolution of flexible non-photochemical quenching 

mechanisms that regulate light harvesting in oxygenic photosynthesis Current Opinion in 

Plant Biology, 16 (3) (Jun. 2013), pp. 307–314 

[51] G. Peers, T.B. Truong, E. Ostendorf, A. Busch, D. Elrad, A.R. Grossman, M. Hippler, K.K. 

Niyogi An ancient light-harvesting protein is critical for the regulation of algal 

photosynthesis Nature, 462 (2009), pp. 518–521 

[52] A. Alboresi, C. Gerotto, G.M. Giacometti, R. Bassi, T. Morosinotto Physcomitrella patens 

mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms 

upon land colonization Proceedings of the National Academy of Sciences of the United States 

of America, 107 (2010), pp. 11128–11133 

[53] G. Bonente, M. Ballottari, T.B. Truong, T. Morosinotto, T.K. Ahn, G.R. Fleming, K.K. 

Niyogi, R. Bassi Analysis of LhcSR3, a protein essential for feedback de-excitation in the 

green alga Chlamydomonas reinhardtii PLoS Biology, 9 (2011), p. e1000577 

[54] S.L. Mou, X.W. Zhang, N.H. Ye, M.T. Dong, C.W. Liang, Q. Liang, J.L. Miao, D. Xu, Z. 

Zheng Cloning and expression analysis of two different LhcSR genes involved in stress 

adaptation in an Antarctic microalga, Chlamydomonas sp. ICE-L Extremophiles, 16 

(2012), pp. 193–203 

[55] S. Cao, X. Zhang, D. Xu, X. Fan, S. Mou, Y. Wang, N. Ye, W. Wang A transthylakoid 

proton gradient and inhibitors induce a non-photochemical fluorescence quenching in 

unicellular algae Nannochloropsis sp. FEBS Letters, 587 (2013), pp. 1310–1315 

[56] C. Gerotto, T. Morosinotto Evolution of photoprotection mechanisms upon land 

colonization: evidences of PSBS dependent NPQ in late streptophyta algae Physiologia 

Plantarum (May 10 2013) http://dx.doi.org/10.1111/ppl.12070 (in press) 



 

63 

 

[57] G. Bonente, B.D. Howes, S. Caffarri, G. Smulevich, R. Bassi Interactions between the 

photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro Journal of 

Biological Chemistry, 283 (2008), pp. 8434–8445 

[58] I. Baroli, A.D. Do, T. Yamane, K.K. Niyogi Zeaxanthin accumulation in the absence of 

a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative 

stress The Plant Cell, 15 (2003), pp. 992–1008 

[59] C. Triantaphylides, M. Havaux Singlet oxygen in plants: production, detoxification and 

signaling Trends in Plant Science, 14 (2009), pp. 219–228 

[60] M. Eskling, P.-O. Arvidsson, H.-E. Akerlund The xanthophyll cycle, its regulation and 

components Physiologia Plantarum, 100 (1997), pp. 806–816 

[61] J.P. Connelly, M.G. Müller, R. Bassi, R. Croce, A.R. Holzwarth Femtosecond transient 

absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting 

complex II of photosystem II Biochemistry, 36 (2) (Jan. 14 1997), pp. 281–287 

[62] P. Arnoux, T. Morosinotto, G. Saga, R. Bassi, D. Pignol A structural basis for the pH-

dependent xanthophyll cycle in Arabidopsis thaliana The Plant Cell, 21 (2009), pp. 2036–

2044 

[63] C. Fufezan, D. Simionato, T. Morosinotto Identification of key residues for pH 

dependent activation of violaxanthin de-epoxidase from Arabidopsis thaliana PLoS One, 7 

(2012), p. e35669 

[64] F.A. Wollman State transitions reveal the dynamics and flexibility of the 

photosynthetic apparatus EMBO Journal, 20 (2001), pp. 3623–3630 

[65] P. Cardol, J. Alric, J. Girard-Bascou, F. Franck, F.A. Wollman, G. Finazzi Impaired 

respiration discloses the physiological significance of state transitions in 

Chlamydomonas Proceedings of the National Academy of Sciences of the United States of 

America, 106 (2009), pp. 15979–15984 

[66] G. Allorent, R. Tokutsu, T. Roach, G. Peers, P. Cardol, J. Girard-Bascou, D. Seigneurin-

Berny, D. Petroutsos, M. Kuntz, C. Breyton, F. Franck, F.A. Wollman, K.K. Niyogi, A. Krieger-

Liszkay, J. Minagawa, G. Finazzi A dual strategy to cope with high light in Chlamydomonas 

reinhardtii The Plant Cell, 25 (2013), pp. 545–557 

[67] N. Zou, A. Richmond Light-path length and population density in photoacclimation 

of Nannochloropsis sp. (Eustigmatophyceae) Journal of Applied Phycology, 12 (2000), pp. 

349–354 



 

64 

 

[68] A.M. Kunjapur, R.B. Eldridge Photobioreactor design for commercial biofuel 

production from microalgae Industrial and Engineering Chemistry Research, 49 (2010), pp. 

3516–3526 

[69] A.P. Carvalho, S.O. Silva, J.M. Baptista, F.X. Malcata Light requirements in microalgal 

photobioreactors: an overview of biophotonic aspects Applied Microbiology and 

Biotechnology, 89 (2011), pp. 1275–1288 

[70] A. Melis Photosystem-II damage and repair cycle in chloroplasts: what modulates the 

rate of photodamage ? Trends in Plant Science, 4 (1999), pp. 130–135 

[71] Y. Nakajima, R. Ueda Improvement of microalgal photosynthetic productivity by 

reducing the content of light harvesting pigment Journal of Applied Phycology, 11 (1999), 

pp. 195–201 

[72] A. Richmond, Z. Cheng-Wu, Y. Zarmi Efficient use of strong light for high 

photosynthetic productivity: interrelationships between the optical path, the optimal 

population density and cell-growth inhibition Biomolecular Engineering, 20 (2003), pp. 229–

236 

[73] C. Posten, G. Schaub Microalgae and terrestrial biomass as source for fuels—a process 

view Journal of Biotechnology, 142 (2009), pp. 64–69 

[74] C.Y. Chen, K.L. Yeh, R. Aisyah, D.J. Lee, J.S. Chang Cultivation, photobioreactor design 

and harvesting of microalgae for biodiesel production: a critical review Bioresource 

Technology, 102 (2011), pp. 71–81 

[75] R.E. Jinkerson, R. Radakovits, M.C. Posewitz Genomic insights from the oleaginous 

model alga Nannochloropsis gaditana Bioengineered, 4 (2013), pp. 37–43 

[76] H. Kirst, J.G. Garcia-Cerdan, A. Zurbriggen, A. Melis Assembly of the light-harvesting 

chlorophyll antenna in the green alga Chlamydomonas reinhardtii requires expression of 

the TLA2-CpFTSY gene Plant Physiology, 158 (2012), pp. 930–945 

[77] J.E. Polle, S.D. Kanakagiri, A. Melis tla1, a DNA insertional transformant of the green 

alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna 

size Planta, 217 (2003), pp. 49–59 

[78] A. Melis Spectroscopic methods in photosynthesis: photosystem stoichiometry and 

chlorophyll antenna size Philos. Trans. R. Soc. Lond. B, 323 (1989), pp. 397–409 

[79] R.E. Glick, A. Melis Minimum photosynthetic unit size in system I and system II of 

barley chloroplasts Biochimica et Biophysica Acta, 934 (1988), pp. 151–155 



 

65 

 

[80] C. Formighieri, F. Franck, R. Bassi Regulation of the pigment optical density of an algal 

cell: filling the gap between photosynthetic productivity in the laboratory and in mass 

culture Journal of Biotechnology, 162 (2012), pp. 115–123 

[81] J.H. Mussgnug, L. Wobbe, I. Elles, C. Claus, M. Hamilton, A. Fink, U. Kahmann, A. 

Kapazoglou, C.W. Mullineaux, M. Hippler, J. Nickelsen, P.J. Nixon, O. Kruse NAB1 is an RNA 

binding protein involved in the light-regulated differential expression of the light-

harvesting antenna of Chlamydomonas reinhardtii The Plant Cell, 17 (2005), pp. 3409–3421 

[82] J.H. Mussgnug, S. Thomas-Hall, J. Rupprecht, A. Foo, V. Klassen, A. McDowall, P.M. 

Schenk, O. Kruse, B. Hankamer Engineering photosynthetic light capture: impacts on 

improved solar energy to biomass conversion Plant Biotechnology Journal, 5 (2007), pp. 802–

814 

[83] S.D. Tetali, M. Mitra, A. Melis Development of the light-harvesting chlorophyll antenna 

in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene Planta, 

225 (2007), pp. 813–829 

[84] G. Bonente, C. Formighieri, M. Mantelli, C. Catalanotti, G. Giuliano, T. Morosinotto, R. 

Bassi Mutagenesis and phenotypic selection as a strategy toward domestication of 

Chlamydomonas reinhardtii strains for improved performance in photobioreactors 

Photosynthesis Research, 108 (2–3) (Sep. 2011), pp. 107–120 

[85] H. Kirst, J.G. Garcia-Cerdan, A. Zurbriggen, T. Ruehle, A. Melis Truncated photosystem 

chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon 

deletion of the TLA3-CpSRP43 gene Plant Physiology, 160 (2012), pp. 2251–2260 

[86] S. Xue, Z. Su, W. Cong Growth of Spirulina platensis enhanced under intermittent 

illumination Journal of Biotechnology, 151 (2011), pp. 271–277 

[87] J.M. Gordon, J.E. Polle Ultrahigh bioproductivity from algae Applied Microbiology and 

Biotechnology, 76 (2007), pp. 969–975 

[88] J.N. Phillips, J. Myers Growth rate of Chlorella in flashing light Plant Physiology, 29 

(1954), pp. 152–161 

[89] H.C. Matthijs, H. Balke, U.M. van Hes, B.M. Kroon, L.R. Mur, R.A. Binot Application of 

light-emitting diodes in bioreactors: flashing light effects and energy economy in algal 

culture (Chlorella pyrenoidosa) Biotechnology and Bioengineering, 50 (1996), pp. 98–107 

[90] Z.H. Kim, S.H. Kim, H.S. Lee, C.G. Lee Enhanced production of astaxanthin by 

flashing light using Haematococcus pluvialis Enzyme and Microbial Technology, 39 (2006), 

pp. 414–419 



 

66 

 

[91] K.H. Park, C.-G. Lee Effectiveness of flashing light for increasing photosynthetic 

efficiency of microalgal cultures over a critical cell density Biotechnology and Bioprocess 

Engineering, 6 (2001), pp. 189–193 

[92] F.C. Rubio, F.G. Camacho, J.M. Sevilla, Y. Chisti, E.M. Grima A mechanistic model of 

photosynthesis in microalgae Biotechnology and Bioengineering, 81 (2003), pp. 459–473 

[93] K.L. Terry Photosynthesis in modulated light: quantitative dependence of 

photosynthetic enhancement on flashing rate Biotechnology and Bioengineering, 28 (1986), 

pp. 988–995 

[94] K.H. Park, C.-G. Lee Optimization of algal photobioreactors using flashing lights 

Biotechnology and Bioprocess Engineering, 5 (2000), pp. 186–190 

[95] L. Nedbal, V. Tichy, F.H. Xiong, J.U. Grobbelaar Microscopic green algae and 

cyanobacteria in high-frequency intermittent light Journal of Applied Phycology, 8 (1996), 

pp. 325–333 

[96] C. Vejrazka, M. Janssen, M. Streefland, R.H. Wijffels Photosynthetic efficiency of 

Chlamydomonas reinhardtii in attenuated, flashing light Biotechnology and Bioengineering, 

109 (2012), pp. 2567–2574 

[97] C. Vejrazka, M. Janssen, M. Streefland, R.H. Wijffels Photosynthetic efficiency of 

Chlamydomonas reinhardtii in flashing light Biotechnology and Bioengineering, 108 (12) 

(Dec. 2011), pp. 2905–2913 

[98] Z. Dubinsky, P.G. Falkowski, K. Wyman Light harvesting and utilization by 

phytoplankton Plant & Cell Physiology, 27 (1986), pp. 1335–1349 

 

 

  



 

67 

 

 

 

 

 

 

CHAPTER 3 

 

CHARACTERIZATION OF THE PHOTOSYNTHETIC APPARATUS 

OF THE EUSTIGMATOPHYCEAN NANNOCHLOROPSIS 

GADITANA: EVIDENCE OF CONVERGENT EVOLUTION IN THE 

SUPRAMOLECULAR ORGANIZATION OF PHOTOSYSTEM I. 

 

Stefania Basso, Diana Simionato, Caterina Gerotto, Anna Segalla, Giorgio M. Giacometti 

and Tomas Morosinotto 

 

Department of Biology - University of Padova 

 

 

This chapter has been published in Biochimica et Biophysica Acta (BBA) - Bioenergetics 

Volume 1837, Issue 2, February 2014, Pages 306–314 

 

 

 

 

 



 

68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

69 

 

CHARACTERIZATION OF THE PHOTOSYNTHETIC APPARATUS 

OF THE EUSTIGMATOPHYCEAN NANNOCHLOROPSIS 

GADITANA: EVIDENCE OF CONVERGENT EVOLUTION IN THE 

SUPRAMOLECULAR ORGANIZATION OF PHOTOSYSTEM I. 

 

Stefania Basso§, Diana Simionato§, Caterina Gerotto, Anna Segalla, Giorgio M. Giacometti and 

Tomas Morosinotto 

 

From Dipartimento di Biologia - Università di Padova 

 

§These authors contributed equally to this work 

 

 

Abstract 

 

Nannochloropsis gaditana belongs to Eustigmatophyceae, a class of eukaryotic algae resulting from a 

secondary endosymbiotic event. Species of this class have been poorly characterized thus far but 

are now raising increasing interest in the scientific community because of their possible 

application in biofuel production. 

Nannochloropsis species have a peculiar photosynthetic apparatus characterized by the presence of 

only chlorophyll a, with violaxanthin and vaucheriaxanthin esters as the most abundant 

carotenoids. In this study, the photosynthetic apparatus of this species was analyzed by purifying 

the thylakoids and isolating the different pigment-binding complexes upon mild solubilization. 

The results from the biochemical and spectroscopic characterization showed that the 

Photosystem II antenna is loosely bound to the reaction center, whereas the association is 

stronger in Photosystem I, with the antenna-reaction center super-complexes surviving 

purification. Such a supramolecular organization was found to be conserved in photosystem I 

from several other photosynthetic eukaryotes, even though these taxa are evolutionarily distant. 

A hypothesis on the possible selective advantage of different associations of the antenna 

complexes of photosystems I and II is discussed. 
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Introduction 

Organisms that perform oxygenic photosynthesis are capable of converting light into chemical 

energy due to the activity of photosystem (PS1) I and PS II, two multi-protein supercomplexes 

located in the thylakoid membrane. In eukaryotes, both photosystems are composed of two 

moieties: (i) a core complex responsible for charge separation and electron transfer reactions and 

(ii) an antenna system with a role in light harvesting. The core complexes of both PSI and PSII 

are highly conserved among oxygenic photosynthetic organisms as a result of their common 

origin from an endosymbiosis event and strong selective pressure [1-3]. Conversely, antenna 

proteins show greater variability among different groups of organisms, possibly correlating with 

their colonization of different environments. In photosynthetic eukaryotes, the antenna system is 

mainly composed of membrane proteins belonging to the multigenic LHC (light-harvesting 

complex) family, which has diverged into different groups, such as the chlorophyll a/b-binding 

proteins found in Viridiplantae (LHCA/LHCB), fucoxanthin chlorophyll a/c-binding protein 

(called FCP or LHCF) in diatoms, LHCR in red algae/diatoms, and LHCSR/LHCX in diatoms 

and green algae [3-6]. All of these proteins share the same evolutionary origin and have a 

common structural organization, with three membrane-spanning regions connected by stroma- 

and lumen-exposed loops [6]. In the case of green algae and plants, it is well established that two 

distinct groups of proteins, LHCA and LHCB, are specifically associated with the two 

photosystems, PSI and PSII, respectively [7]. Some antenna proteins are also believed to be 

specifically associated with PSI or PSII in diatoms and red algae [4,8-14].  

In addition to light harvesting, the different members of the multigenic family of LHC proteins 

are also involved in protection against excess illumination [5,15-18]. Indeed, LHC proteins are 

reportedly involved in several regulatory mechanisms in photosynthetic eukaryotes, including 

photosynthetic acclimation [19], state transition and heat dissipation of excess energy [20-21]. 

Considering this diversity in the function of antenna proteins, their investigation in different 

organisms should provide valuable information on their properties, roles, and adaptation to 

different ecological niches. 

Nannochloropsis gaditana is a microalga belonging to the Eustigmatophyceae class within 

Heterokonta, which also includes diatoms and brown algae [22,23]. This group of algae originated 

from a secondary endosymbiotic event in which a eukaryotic host cell engulfed a red alga [1]. In 

the last few years, species belonging to the Nannochloropsis genus have gained increasing interest 

for their possible exploitation for biodiesel production due to their rapid growth rate and ability 

                                                           
1The abbreviations used are as follows: α(β)-DM, n-dodecyl-α(β)-D-maltopyranoside; Chl, chlorophyll; FCP, 
fucoxanthin chlorophyll-binding protein; LHC, light-harvesting complex; LHCA (B), light-harvesting complex of 
photosystem I (II) in plants and green algae; LHCR, red algal/cryptomonad LHCs; LHCF, fucoxanthin-LHCs; 
LHCSR, light-harvesting complex stress related; PSI (II), photosystem I (II); VCP violaxanthin–Chl a-binding 
protein.  
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to accumulate a large amount of lipids [24-27]. However, despite this growing attention, little 

molecular information is available on the photosynthetic apparatus of Nannochloropsis or other 

related species. Nannochloropsis species are known to have a unique property among Heterokonta 

of presenting only Chl a and lacking Chls b and c or any other accessory Chl [28-30], though, in 

the case of N. gaditana, a member of the LHC family was identified and named violaxanthin–Chl 

a-binding protein (VCP) because of its high violaxanthin content [31-33]. The carotenoid 

composition in Nannochloropsis is also atypical, with violaxanthin and vaucheriaxanthin esters as 

the most abundant species [34]. Therefore, the photosynthetic apparatus of these algae presents 

distinct features with respect to other Heterokonta, and its characterization can contribute to a 

better understanding of LHC variability in different photosynthetic organisms.  

Accordingly, the aim of this work was to isolate and characterize the pigment-protein complexes 

comprising the N. gaditana photosynthetic apparatus. The results show a different association of 

antenna proteins to photosystems I and II, with the former stably associated with the core 

complex and the interaction being easily disrupted upon detergent treatment in the latter. A 

comparison with other photosynthetic eukaryotes showed that this stronger association of the 

PSI antenna with its reaction center is conserved and is likely a result of convergent evolution. 

 

 

Materials and Methods  

 

Cell growth 

 Nannochloropsis gaditana from the Culture Collection of Algae and Protozoa (CCAP), strain 849/5, 

was grown in sterile F/2 medium [35] using 32 g/l sea salts (Sigma-Aldrich), 40 mM TRIS-HCl 

(pH 8), and Guillard’s (F/2) marine water enrichment solution (Sigma-Aldrich). The cells were 

grown with 100 µmoles of photons m-2s-1 (µE) of illumination and air enriched with 5% CO2. 

The temperature was set at 22 ± 1°C. 

Thylakoid isolation 

 After testing the different methods available in the literature, the isolation of thylakoid 

membranes was performed as follows. Cells in the exponential growth phase were harvested by 

10 minutes of centrifugation at 4 °C with a Beckman Allegra 250 at 4000 x g, washed twice in B1 

buffer (0.4 M NaCl, 2 mM MgCl2, and 20 mM Tricine-KOH [pH 7.8]), and then split into 2-ml 

safe-lock capped tubes covering at a maximum ¼ of the tube. After centrifugation, a volume of 

glass beads (diameter of 150-212 µm) equal to the volume of the pellet and 150 µl of B1 with 

0.5% milk powder and 1 mM PMSF, 1 mM DNP-ε-amino-n-caproic acid, and 1 mM 
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benzamidine were added, and cells were then disrupted using a Mini Bead Beater (Biospec 

Products) for 20 seconds at 3500 RPM. Immediately after rupture, 1 ml of B1 with 0.5% milk 

powder, 1 mM PMSF, 1 mM DNP-ε-amino-n-caproic acid, and 1 mM benzamidine was added to 

each tube, and the pellet was resuspended. The unbroken cells were then separated by a 

centrifugation step (2500 x g, 15 minutes, 4°C), and the supernatant was collected. The 

supernatant containing the broken cells and thus the thylakoids was centrifuged at 15000 x g for 

20 min, and the pellet was washed twice with B2 buffer (0.15 M NaCl, 5 mM MgCl2, and 20 mM 

Tricine-KOH [pH 7.8]). The thylakoids were resuspendend in B4 buffer (0.4 M sorbitol, 15 mM 

NaCl, 5 mM MgCl2 and 10 mM HEPES-KOH [pH 7.5]), immediately frozen in liquid nitrogen 

and stored at -80°C until use. All steps were performed at 4°C and in dim light. The total 

pigments were extracted with 80% acetone, and the chlorophyll concentration of the samples was 

determined spectrophotometrically using specific extinction coefficients [36] and the acetone 

spectra fitting previously described [37], which were modified to account for the unusual pigment 

content. 

Thylakoid solubilization and sucrose gradients.  

Thylakoid membranes corresponding to 500 µg of Chl were washed with 50 mM EDTA and 

then solubilized for 20 minutes on ice in 1 ml of final 0.4% α-DM or 1% β-DM and 10 mM 

HEPES (pH 7.5) after vortexing for 1 min. The solubilized samples were centrifuged at 15000 x 

g for 20 min to eliminate any unsolubilized material, and the supernatant with the photosynthetic 

complexes was then fractionated by ultracentrifugation in a 0.1–1 M sucrose gradient containing 

0.06% α-DM and 10 mM HEPES (pH 7.5) (280000 x g, 18 hours, 4°C). The green fractions of 

the sucrose gradient were then harvested with a syringe. 

Spectroscopy 

Absorption spectra were determined between 350 and 750 nm using a Cary Series 100 UV-VIS 

spectrophotometer (Agilent Technologies). The antenna absorption spectra were fitted with the 

spectra of the individual pigments in the protein matrix, as previously described for Chl red 

absorption [38] and for the Soret absorption region [39]. The 77 K fluorescence spectra between 

650 and 800 nm were recorded in a buffer containing 60% w/v glycerol, 10 mM HEPES (pH 

7.5), and 0.06% α-DM with an excitation at 440 nm (Luminescence Spectrometer LS 50, Perkin 

Elmer). 

Pigment analysis 

 The chlorophyll and total carotenoids were extracted from the gradient fractions using 80% 

acetone, and the pigment content was determined by fitting the acetone spectra from 350 to 750 

nm [37]; the content of individual carotenoids was determined using HPLC (Beckman System 

Gold), as described [40]. The peaks of each sample were identified through the retention time 
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and absorption spectrum [41]. The vaucheriaxanthin retention factor was estimated by correcting 

that of violaxanthin for their different absorption at 440 nm.  

Electrophoresis and western blotting  

A 12% SDS–PAGE analysis for both the sucrose gradient fractions and thylakoids extracts was 

performed using a TRIS–glycine buffer system, as described [42]. The samples were solubilized 

for 20 minutes at RT in 10% glycerol, 45 mM TRIS (pH 6.8), 0.03 M dithiothreitol, and 3% SDS. 

After solubilization, the samples were centrifuged for 15 minutes at 15000 x g, and the 

supernatant was loaded onto the gel. The gels were silver stained as previously described [43,44]. 

Western blot analyses were performed after transferring the proteins to nitrocellulose (Bio Trace, 

Pall Corporation). An anti-PsaA antibody (raised against the Chlamydomonas reinhardtii protein) was 

purchased from Agrisera. The antibody against D2 was generated by immunizing New Zealand 

rabbits with the spinach protein, whereas the recombinant protein was used for the antibody 

against VCP, which was obtained by cloning the cDNA (GenBank: U71602.1) into pETite N-

HIS (Lucigen-Expresso T7 Cloning and Expression System), expressing the protein in Escherichia 

coli BL21 (DE3, Invitrogen), and purifying as inclusion bodies. Non-denaturing Deriphat-PAGE 

was performed as described in [45] by loading 3 µg of Chl relative to sucrose gradient green 

bands of PSI-LHC purified from N. gaditana, C. reinhardtii, and Physcomitrella patens. 

Sequence analysis  

The protein sequences and nomenclature of the light-harvesting protein from Phaeodactylum 

tricornutum and Thalassiosira pseudonana and Lhcx from C. reinhardtii were reported elsewhere 

[5], as were those from Arabidopsis thaliana and P. patens [45]. The light-harvesting protein 

sequences from N. gaditana [46] were retrieved from www.nannochloropsis.org. The sequences 

were aligned using the ClustalW algorithm in Bioedit 7.1.3.0. The phylogenetic trees were 

generated using Neighbor Joining and UPGMA, with 100 iterations, in CLC Sequence Viewer 

6.9. 
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Results 

Isolation of pigment-binding complexes from Nannochloropsis gaditana. 

The first requirement for characterizing pigment-binding protein complexes from Nannochloropsis 

gaditana is the ability to isolate intact thylakoid membranes. The different protocols for algal 

thylakoids purification available in the literature were tested, and additional modifications were 

necessary to ensure the absence of residual intact cells or debris in the thylakoids preparation, 

which can impair efficient detergent solubilization. After isolation, the thylakoids were solubilized 

with mild detergents to further isolate the pigment-binding complexes in a state as close as 

possible to their native state in the membrane. Starting from the different methods described in 

the literature, multiple detergent and solubilization conditions were tested to select a combination 

(0.4% α-DM with 0.5 mg/ml Chl a) that yielded good solubilization using the smallest possible 

amount of detergent to ensure minimal alteration of the protein properties.  

After solubilization, the different pigment-binding complexes were separated by 

ultracentrifugation in a sucrose gradient. Five different fractions were separated with distinct 

migration rates in the sucrose gradient (fractions F1-5 in Figure 3.1A), with a sixth fraction 

collected as the pellet at the bottom of the tube. The sucrose gradient protein migration was 

compared to other species for which a good characterization of the photosynthetic apparatus was 

available: one diatom, Phaeodactylum tricornutum, and one plant, Physcomitrella patens (Figure 3.1A). 

The comparison allowed for a tentative identification of F1 as a free pigment, F2-F3 as 

monomeric-oligomeric antenna (LHC, hereafter called VCP) complexes, F4 as the PSII core 

complex, and F5 as a PSI supercomplex (PSI-LHC). 
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FIGURE 3.1. Isolation of pigment binding proteins from Nannochloropsis gaditana by sucrose gradient 
ultracentrifugation. A) Nannochloropsis sucrose gradient after mild solubilization with 0.4 % α-DM. Five 
distinct bands are distinguishable (F1-F5) while a sixth is present at the bottom of the tube (F6). Mobility 
of sucrose gradients after solubilization is compared with other species, a diatom (Phaeodactylum 
tricornutum) and a plant (Physcomitrella patens). Bands identification is reported according to mobility, 
western blotting and spectroscopic analysis. A similar sucrose gradient after 1% β-DM solubilization is also 
shown, which caused the appearance of a lighter PSI band (PSI-LHC*). B) western blotting analysis of 
bands protein composition using antibodies against subunits of the Photosystem I and II core complexes, 
PsaA D2 and VCP respectively. In order to assess the protein distribution in the gradient, equal volume of 
the bands (40 µl for PsaA and D2, 20 µl for VCP) was loaded for each band.  

As shown by the sucrose gradient migration, the latter supercomplexes have an apparently larger 

size with respect to the PSI-LHC complexes of plants and diatoms. This result was confirmed by 

non-denaturing electrophoresis in which PSI-LHC from Nannochloropsis (F5) showed a migration 

similar to the Chlamydomonas complex, with a clearly larger size than that purified from plants 

(Figure 3.S1). This finding suggests that the number of antenna subunits associated with PSI in 

Nannochloropsis is closer to the nine of Chlamydomonas that the four of plants [47,48]. 
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The identification of the sucrose gradient fractions was corroborated by other biochemical and 

spectroscopic evidence. An anti-VCP antibody showed a clear cross-reacting band at 

approximately 22 kDa in F2 and F3, consistent with the Coomassie-stained SDS–PAGE (Figure 

3.2A), which showed a major band at this size, confirming the identification of F2 and F3 as 

antenna fractions. Interestingly, antibodies against LHC proteins from diatoms, green algae, or 

plants failed to recognize any band, likely because of the sequence variability among the different 

species. In contrast, antibodies against the core complex subunits of PSII (D2) and PSI (PsaA) 

were successful in identifying photosystem reaction center bands, even though they were 

produced using the plant/green algae isoforms, likely because of the conservation of these 

protein complexes among eukaryotes [49]. Western blotting showed that the PSII core subunits 

are indeed found only in F4, whereas the PSI core is present in both F5 and F6; thus, according 

to the results (Figure 3.1B), the latter contains PSI but not PSII particles. PSI from plants has 

previously been shown to form artificial detergent-induced aggregates upon α-DM solubilization 

[50], and our results may reflect a similar phenomenon. Nonetheless, it is possible that this 

fraction contains residual membrane particles that were not completely solubilized but enriched 

in PSI and depleted of PSII.  

With the aim of eliminating these PSI aggregates, sucrose gradients were repeated after a stronger 

solubilization with 1% β-DM (Figure 3.1A). In this case, the pellet disappeared, and most PSI-

LHC was found as a new fraction (PSI-LHC*) composed of smaller particles with lower mobility 

in sucrose gradients. The stronger solubilization also caused a dissociation of antenna oligomers, 

and all of the antenna proteins migrated in a single, thicker band.  

SDS–PAGE of the PSI-LHC particles (from both solubilization) did not show any band with 

apparent weight of 22 kDa, as was the case for the monomeric/oligomeric VCP bands (Figure 

3.2B). Bands attributable to the antenna proteins in the PSI particles were instead found at a 

lower apparent MW, approximately 20 kDa, similar to those observed in PSI from diatoms [9-11] 

(Figure 3.2B). 
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FIGURE 3.2. Analysis of sucrose bands polypeptide composition. A) SDS-PAGE of Nannochloropsis 
thylakoids and antenna bands from α and β-DM gradients (F3 and F2 respectively). 4 and 2 Chl µg were 
loaded for thylakoids and LHC bands respectively. B) SDS-PAGE of PSI bands, comparing PSI from 
Nannochloropsis purified either form α and β-DM gradients and PSI from a diatom (P. tricornutum). 2 and 
4 µg of Chl were loaded for PSI bands and thylakoids respectively. 

 

Biochemical and spectroscopic characterization of different complexes 

Absorption spectra of different sucrose gradient fractions can provide further information on 

purified pigment-binding complexes. As shown in Figure 3.3A, fraction F1 exhibited a maximum 

in the Qy region at 670 nm, which is typical for free Chl a in a detergent solution, supporting the 

identification of this band as free pigments liberated by the thylakoid solubilization. However, the 

Chl maximum in the monomeric and oligomeric antennas (F2 and F3) was at 675 nm, indicating 

that Chls are coordinated to a protein and therefore in a different electronic environment. Both 

the F2 and F3 bands show identical spectra, suggesting that oligomerization exerts little influence 

on pigment coordination. Band F4, identified by western blotting and migration in the sucrose 

gradient as consisting of PSII core complexes, showed spectra very similar to the analogous band 

from plants or diatoms (Figure 3.S2), in agreement with the strong conservation of this complex 

among different photosynthetic organisms. Bands F5 and F6, identified as the PSI-LHC 
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supercomplexes, showed the presence of a typical red-shifted absorption over 700 nm (Figure 

3.3B); the spectra of these two bands are very similar, supporting the identification of F6 as PSI-

LHC aggregates or PSI-enriched membrane particles.  

 

FIGURE 3.3. Absorption spectra of sucrose gradient bands. A) Free pigments (F1, black), monomeric and 
oligomeric antennas (F2, red and F3, blue). F1 has a maximum in the Qy region at 670, typical for free Chl 
a in a detergent solution, Chls maximum in monomeric and oligomeric antennas is at 675 nm. B) PSII core 
complex (F4, black), PSI-LHC (F5, red and F6, blue). PSI-LHC present a typical absorption over 700nm. 
C) comparison between PSI-LHC (black) and PSI-LHC* (from β-DM gradient, red). PSI-LHC* has a 
reduced xanthophyll contribution in the absorption spectra, indicating a smaller amount of antenna 
proteins associated with PSI. All spectra are normalized to the Chl a maximum in the red part of the 
absorption spectra.  

 

The presence of antenna complexes in the different sucrose fractions of Nannochloropsis is not as 

easily detectable by the absorption spectra as it is in plants and diatoms for which they are 

marked by the signal of such accessory pigments as Chl b or c. However, the comparison of the 

F2 and F4 spectra with that of the PSII core complex (Figure 3.S2) shows that the antenna 

complexes display large signals from carotenoids in the 470-510 nm range. In the case of PSI-

LHC* (fraction F5), an intermediate signal was observed in the same 470-510 nm range, 
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suggesting an association of PSI with the antenna complexes (Figure 3.3A and B), in agreement 

with its identification. In Figure 3.3C, the comparison between PSI-LHC purified with α- and β-

DM solubilization reveals a reduced xanthophyll contribution in the absorption spectra of PSI-

LHC*, indicating a lower amount of antenna proteins in the latter.  

 

FIGURE 3.S2. Comparison of PSII core absorption spectra from different species. A) Sucrose gradient 
band corresponding to PSII core complex from Nannochloropsis gaditana, Physcomitrella patens and 
Phaeodactylum tricornutum respectively in black, red and blue. B) Comparison of absorption spectra of 
bands named F2, F4 and F5 containing respectively monomeric antennas, PSII core and PSI-LHC. 

 

Nannochloropsis has a peculiar carotenoid composition, with violaxanthin, β-carotene, and 

vaucheriaxanthin as the major pigments (Table 3.1). The xanthophylls violaxanthin and 

vaucheriaxanthin were found to be associated with the antenna complexes (F2-F3), whereas β-

carotene was strongly enriched in the PSII core. In contrast, PSI-LHC presents substantial 

amounts of both xanthophylls and β-carotene, confirming the presence of antenna complexes 

associated with the PSI core. PSI-LHC* purified with β-DMs still shows the presence of both 

xanthophylls and β-carotene, though the relative content of xanthophylls is lower, confirming 
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that a stronger detergent solubilization induces the dissociation of some antenna proteins from 

the supercomplex.  

 

 

Fractions Name Violaxanthin Vaucheriaxanthin Anteraxanthin Zeaxanthin β-car 
Chl / 
Car 

F1 α-DM 
Free 

Pigments 
48.4 ± 5.8 19.8 ± 4.9 6.5 ± 2.2 7.7 ± 3.6 

5.6 ± 
2.3 

1.1 ± 
0.1 

F2 α-DM 
Monomeric 

antenna 
28.1 ± 2.5 18.8 ± 2.5 4.2 ± 1.4 5.0 ± 2.2 < 1 

1.8 ± 
0.1 

F3 α-DM 
Oligomeric 
antenna 

29.3 ± 3.8 18.2 ± 2.5 4.3 ± 1.4 4.9 ± 2.3 <1 
1.7 ± 
0.2 

F4 α-DM 
PSII Core 
complex 

5.1 ± 1.2 1.2 ± 0.5 < 1 1.4 ± 0.5 
12.8 ± 

2.2 
4.7 ± 
0.7 

F5 α-DM PSI-LHC 14.2 ± 2.3 3.2 ± 0.9 2.8 ± 0.7 3.5 ± 1.5 
10.8 ± 

0.9 
2.9 ± 
0.1 

F6 α- 
DM 

PSI-LHC 14.2 ± 3.5 2.6 ± 0.3 2.8 ± 0.8 4.2 ± 1.8 
11.1 ± 

1.6 
2.9 ± 
0.3 

F5 β-DM 
PSI-

LHC* 
7.2 ± 2.2 1.4 ± 0.6 < 1 1.3 ± 0.7 

12.5 ± 
2.1 

4.3 ± 
0.7 

 

Table 1. Pigment data of sucrose gradient fractions. Bands content in the different carotenoids is reported 
expressed as mol/100 Chls. Values are reported as mean ± Standard Deviation, (n > 4 for α-DM samples 
and 3 for β-DM 

 

Fluorescence spectra at 77 K are a valuable tool to highlight the presence of red-shifted Chls, 

which are typical of photosystem I. Indeed, Chls emitting at 720 nm were found in bands F5-F6, 

also confirming the presence of red-shifted forms in photosystem I of N. gaditana. However, PSI 

fluorescence in this species was not as red shifted as in higher plants, being more similar to what 

is observed in other algae, such as Chlamydomonas [47,51], also showing that this property can be 

variable between different organisms. No red-shifted Chls were found in the isolated LHCs (F2, 

F3), which showed a narrow emission peak at 683 nm, suggesting the presence of predominantly 

PSII antennas. It is worth emphasizing that a broad emission spectra was observed for PSI-LHC, 

with a clear contribution at approximately 675 nm. At low temperature, such an emission is only 

expected if some chlorophylls are unable to efficiently transfer excitation to the reaction center 

and red forms. The most likely explanation is that some antenna proteins were disconnected 

from PSI during the purification and therefore were impaired with regard to efficient transfer 

energy to the reaction center, as has also been observed in Chlamydomonas [47].  

It is interesting to observe the same spectra from the β-DM solubilization (Figure 3.4B): the PSI-

LHC* samples still showed a red-shifted emission, though the ratio between the peaks at 720 and 

680 was decreased, with less red-shifted forms. Furthermore, we observed an alteration of the 
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fluorescence in the free antenna fraction (F2, Figure 3.4C), with an emerging red-shifted 

contribution at approximately 690 nm, suggesting some antenna disconnection from PSI-LHC by 

the stronger solubilization. Both these observations clearly indicate that some red-shifted 

chlorophylls are found associated with PSI antenna complexes in Nannochloropsis. 

 
FIGURE 3.4. Fluorescence LT spectra. A) Comparison of 77 K Fluorescence spectra of monomeric and 
trimeric antennas (F2, solid, F3, dotted) and PSI-LHC (F5, dashed). Fluorescence at 720 nm, due to red 
shifted Chl is detected only in PSI-LHC. B) Spectra of PSI-LHC solubilized with α-DM (dashed) and β-
DM (PSI-LHC*, solid), both show a fluorescence peak at 720 nm due to Red- shifted Chl. C) Spectra of 
monomeric antennas after α-DM and β-DM solubilization (F2, respectively in solid and dashed). 
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Discussion 

 

Algae are a very diverse group of organisms, and their photosynthetic apparatus shows variable 

protein and pigment compositions. Exploration of this diversity provides valuable information 

on the structure and function of these pigment-binding complexes and on how their properties 

have adapted to different environmental niches. In the case of Nannochloropsis and other species 

with a potential application in biofuel production, a detailed characterization of the 

photosynthetic apparatus is also seminal for genetic engineering efforts aimed at optimizing the 

productivity of algal photobioreactors. In fact, the manipulation of the antenna complex content 

has been shown to improve the light-use efficiency of cultures, making these proteins a major 

target for genetic improvement efforts [52,53].  

 

Antenna complexes with violaxanthin as a major carotenoid 

According to the recently sequenced genome of Nannochloropsis oceanica, the antenna complexes of 

Nannochloropsis species belong to the LHCF, LHCR, and LHCSR/LHCX groups, similar to those 

found in diatoms ([54], Figure 3.S3). A notable difference with diatoms and any other known 

heterokonta, however, is that the Nannochloropsis antenna has the unusual property of binding 

only Chl a, with no accessory Chls.  
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FIGURE 3.S3. Phylogenetic tree of LHC proteins from different photosynthetic eukaryotes. Phylogenetic 
tree of LHC proteins identified in Nannochloropsis gaditana compared with other light harvesting groups 
LHCSR/LHCX, LHCR, LHCF, LHCA and LHCB from selected photosynthetic eukaryotes. Ath, 
Arabidopsis thaliana; Cre, Chlamydomonas reinhardtii; Ppa, Physcomitrella paten; Tps, Thalassiosira 
pseudonana; Ptr, Phaeodactylum tricornutum, Gch, Gracilaria changii; Ngad, Nannochloropsis gaditana. 
In significant nodes bootstrap values calculated using respectively NJ and UPGMA algorithms are 
reported. 

 

Each Chl molecule within an antenna complex has different absorption properties depending on 

its binding site and specific electronic environment. The pigment-protein complex spectrum can 

thus be described as the sum of contributions from several Chl molecules with slightly different 

absorption bands, as described for the plant proteins [38,55]. The absorption spectrum of 

Nannochloropsis VCP was reconstructed using a similar procedure, and a good fitting was found 
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using the sum of four major forms, with maxima between 668 and 682 nm (Figure 3.5A). Chls 

bound to plant antenna complexes have similar absorption peaks, as demonstrated by site-

directed mutagenesis [56,57]. This finding suggests that, although the polypeptide sequences of 

antenna polypeptides are differentiated between different photosynthetic groups, the electronic 

environment of most Chls is similar in the Nannochloropsis and plant proteins. 

The Nannochloropsis antenna complexes also display an unusual carotenoid composition, with 

violaxanthin as the major carotenoid. Violaxanthin is widespread in different organisms from 

diatoms to plants, but this xanthophyll always represents a minor component with respect to 

other carotenoids, such as fucoxanthin or lutein, and its presence as a major carotenoid is thus 

unusual. It is also worth mentioning the detection of a significant amount of antheraxanthin and 

zeaxanthin bound to both the PSI and PSII antennas, consistent with the presence of an active 

xanthophyll cycle in this species [58], which was likely activated even in the relatively dim growth 

light employed in our study. 

An even more atypical feature is the abundance of the xanthophyll vaucheriaxanthin in the form 

of 19’ deca/octanoate esters [59-61]. Although LHCs are known to possess a large flexibility in 

accommodating different carotenoid molecules [62], the presence of the extra aliphatic chain of 

vaucheriaxanthin raises the question about how this carotenoid can be accommodated into an 

antenna complex. The analysis of the absorption spectra in the Soret region and their 

reconstruction as the sum of contributions from the individual pigments can provide information 

on their electronic environments and association with proteins (Figure 3.5B, [38,39]). Although 

multiple solutions can be found to describe each absorption spectrum, any good fitting requires 

the presence of at least two different carotenoid spectral forms, one with a peak at approximately 

480 nm and another at 495-503 nm. However, no accurate description of the shape of the 

spectrum could be achieved without employing absorption forms at these wavelengths, 

suggesting that carotenoids with distinct electronic environments are found in Nannochloropsis 

antennas. For plant antenna complexes, for which more information is available due to structural 

data and extensive mutational analyses, the carotenoid absorption wavelength has been correlated 

with the binding to different sites: those found buried in the protein structure (sites L1-L2, also 

called 620-621, [63]) absorb in the 490-500 range [64], whereas those bound to more external 

sites (V1, N1) are more exposed to the solvent and have a less red-shifted absorption at 

approximately 485 nm [65,66]. Although it is not possible to speculate in detail on the possible 

conservation of carotenoid-binding sites between Nannochloropsis and plants antenna complexes 

based on the present knowledge, the spectral analysis suggests the presence of some binding sites 

buried in the structure and others external and exposed to the solvent. The latter would be the 

most likely candidates for binding vaucheriaxanthin esters because of the increased possibility of 

accommodating the extra chain. 
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FIGURE 3.5. Analysis of LHC complexes absorption spectra from N. gaditana. A) Distribution of Chl 
spectral forms in Qy region of the spectrum. In order to describe the absorption spectrum four major Chl 
forms absorbing at 668, 672, 676.5 and 682 nm were employed together with two minor forms at 662 and 686 
nm. Original spectrum is shown in black and fitting result in pink. B) fitting of the Soret region spectrum 
using Chl a and different carotenoid forms (violaxanthin vaucheriaxanthin, zeaxanthin). Among different 
solutions the one more consistent with relative ration of different carotenoids according to HPLC analyses 
was retained. Two different spectral forms for violaxanthin were employed together with one for 
vaucheriaxanthin and zeaxanthin. Original spectrum is shown in black and fitting result in pink. Analyses 
were performed as described in [39,40]. 

 

PSII and PSI supramolecular organization in Nannochloropsis 

 

PSII in Nannochloropsis is easily dissociated from its antenna moiety upon detergent solubilization. 

Furthermore, no PSII core protein was detected in the heavier bands of the sucrose gradient, 

even when further reducing the detergent concentration or using other mild detergents, such as 

digitonin. Such a labile association between PSII and its antenna has been commonly observed in 

several other photosynthetic eukaryotes, both plants and algae, even if in some cases PSII-LHC 

super-complexes have been successfully purified [65,67,68].  
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In Nannochloropsis, the isolated PSII antenna complexes are found both as monomers and 

oligomers, most likely also trimers, as the sucrose gradient migration was similar to those of 

trimeric LHCB from plants (Figures 3.1-2). Monomers and oligomers have remarkably similar 

features, with indistinguishable absorption, fluorescence emission, and pigment composition, as 

in diatoms [10,69]. Conversely, subtle but detectable differences between monomeric and 

trimeric antenna complexes are found in plants [70]. 

Different from PSII, PSI-LHC is found as a stable supercomplex between the core complex and 

antenna proteins (Figure 3.1). This was shown by the sucrose gradient migration and SDS–

PAGE analysis and confirmed by the presence of a large amount of xanthophylls in the PSI-LHC 

fractions, consistent with the presence of antenna polypeptides in the complex (Table 3.1). This 

finding was also confirmed by examining the PSI-LHC band by non-denaturing gel 

electrophoresis, whereby Nannochloropsis PSI showed a size comparable to that from 

Chlamydomonas, which is known to contain up to nine antenna subunits and is significantly larger 

than that from plants, with only four subunits (Figure 3. S1)[47,48].  

 
Figure S1. Comparison of PSI-LHC from different species. PSI-LHC complexes purified form Nannochloropsis 
gaditana (Ng), Chlamydomonas reinhardtii (Cr), Physcomitrella patens (Pp) was compared using non 
denaturing electrophoresis (Deriphat-PAGE). During separation some antennas are dissociated from 
Nannochloropsis and Chlamydomonas complexes. 

 

PSI-LHC* isolated upon stronger β-DM solubilization showed slower migration in the sucrose 

gradient and a reduced xanthophyll content, consistent with the partial dissociation of the 

antenna complexes. Interestingly, SDS–PAGE showed that the antenna complexes associated 

with PSI have an apparent molecular weight of approximately 20 kDa (Figure 3.2B), distinct from 

the PSII antenna complexes in which the major band is larger (Figure 2A). This difference clearly 
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suggests that a distinct set of LHC proteins is preferentially associated with PSI and PSII in 

Nannochloropsis gaditana. 

 

Convergent evolution in PSII and PSII supramolecular organization. 

The presented characterization of the N. gaditana photosynthetic apparatus shows that PSI forms 

a stable association with its antenna subunits, whereas PSII-LHC supercomplexes were not 

detectable. Although PSII-LHC supercomplexes have been isolated from different species, in all 

cases described to date, the antenna interaction with the core complex appears to be more easily 

dissociated than in PSI [71-73]. This diverse organization of PSI and PSII is found to be 

conserved in many different photosynthetic eukaryotes, such as plants, green algae, diatoms, and 

red algae [8,10,51]. Additionally, this difference between the two photosystem appears to be 

correlated with different antenna proteins specifically associated with either PSI or PSII. In green 

algae and plants, two groups of antennas, called LHCA and LHCB, are well known to be 

associated to PSI and PSII, respectively. The presence of antenna complexes specifically 

associated with PSI and PSII has also been suggested for diatoms and red algae [14] and is likely 

also present in Nannochloropsis, as demonstrated by the bands of different molecular weight 

identified in the PSII and PSI fractions (Figure 3.2). The above-mentioned strong association 

between the antenna and PSI is thus achieved by the presence of specialized LHC proteins 

having specific interactions with the core complex.  

It is however interesting to verify whether these specialized LHC subunits are conserved in 

photosynthetic eukaryotes. The phylogenetic tree shown in Figure S3 shows the distribution of 

different LHC proteins from plants, green algae, diatoms, red algae, and Nannochloropsis. As 

illustrated, LHCA proteins were found in all Viridiplantae (green algae and plants) but were not 

conserved in red algae, diatoms, or even Nannochloropsis [54]. Conversely, LHCR subunits, which 

are suggested to be associated with PSI in diatoms and red algae [8,9], were not found in plants 

or green algae. Consistently, the LHCA/LHCB proteins have a common ancestor that diverged 

from the LHCF/LHCR found in red algae, diatoms, and Nannochloropsis prior to their 

differentiation as PSI and PSII antenna complexes [5]. This finding suggests that the specific 

association of some antennae with PSI evolved after the separation of the green and red lineages 

and appeared independently in the two phylogenetic groups.  

Thus, the observed conserved organization of the PSI supercomplex is not the result of the 

conservation of specific subunits but rather the results of “convergent” evolution, which in all 

groups selected for PSI antenna subunits to be more strongly associated with the reaction center 

relative to those interacting with PSII. This result suggests the presence of a selective advantage 

for a stable antenna and core complex association in the case of PSI but not in the case of PSII. 

A possible explanation can be found by considering how the PSII supercomplexes are involved 
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in several regulatory mechanisms. In fact, the number of antenna complexes associated with PSII 

reaction center is known to change in response to illumination conditions [19]. PSII is also 

known to undergo continuous repair, the mechanism of which requires a multistep process 

involving the reversible phosphorylation of the PSII core proteins in the granum stacks, PSII 

monomerization, migration to the granum margins, and partial disassembly to allow the 

degradation of damaged D1 and the insertion a new copy [74]. Lastly, non-photochemical 

quenching has recently been proposed to regulate heat dissipation by modulating the dissociation 

of antenna complexes from the reaction center [75]. For all of these mechanisms to be effective, 

a flexible binding of the antenna complexes to the reaction center is required, along with the 

possibility of modulating this association according to environmental stimuli. The presence of a 

strong and stable association of antennae with the PSII reaction center would likely hinder the 

possibility of the antenna to participate to these important regulations. In contrast, the PSI 

reaction center is known to be stable with regard to light stress and to undergo a very low 

turnover [76,77]. The PSI supercomplex was also proposed to have limited regulation of its 

antenna size and pigmentation under different light conditions, as observed in plants, 

Chlamydomonas reinhardtii, and the diatom Cyclotella meneghiniana [78]. Although the PSI antenna has 

also been shown to experience some regulation, for instance, in the case of iron deficiency [79], 

the present knowledge suggests that the mechanisms affecting PSI antennae are less extensive 

and do not require the continuous modulation of its interactions with PSI and are thus 

compatible with a stronger association with the reaction center.  
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SEQUENCE AND PROTEOMIC ANALYSIS OF ANTENNA 
PROTEINS IN NANNOCHLOROPSIS GADITANA1 

 

 

Abstract 

In the previous chapter we described the photosystems supramolecular organization in N. 

gaditana which was further investigated here. On one side a phylogenetic analysis of LHC 

sequences, identified in Nannochloropsis genome, allowed their classification into different isoforms 

and comparison with other species, providing new information on antenna complexes from 

heterokonta. Also we performed a proteomic analysis on different sucrose gradients fractions 

corresponding to antenna protein, PSI and PSII fractions clarified their protein composition, 

identifying some antenna complexes associated with PSI and others to PSII. 

 

Introduction 

Photosynthetic organisms exploit solar light to drive oxygenic photosynthesis: the first step of the 

process is the light harvesting which is performed by proteins belonging to a multigenic family 

called Light Harvesting Complexes (LHC). LHC are encoded in the nucleus by a multigene 

family and targeted to the chloroplast thanks to transit peptide at N-terminal recognized by the 

import apparatus (Stengel A. et al. 2007). After the transit peptide is cleaved, the apoprotein is 

assembled with chlorophyll and carotenoids and inserted into the thylakoid membranes (Hoober  

J.K. et al. 2007). 

LHCs are characterized by the presence of three membrane-spanning α-helices regions (TM) 

connected by both stroma and lumen-exposed loops. A and B helices show a clear similarity and 

Green B.R. and Pichersky E. in 1994 attributed this to a common origin from an internal 

duplication. These regions present the characteristic LHC motif (ExxxxRxAM) where the Glu 

(E) from one helix forms a salt bridge with the Arg (R) of the other (Kühlbrandt W. et al.1994, 

Engelken J. et al. 2010) stabilizing the central two helices.  

Antenna proteins can be divided into different subfamilies with a likely different function. They 

thus represent an excellent example of how the duplication and divergence led to the functional 

                                                           
1 Stefania Bassoa, Susan Hawatb, Martin Scholzb, Michael Hipplerb, Caterina Gerottoa, and Tomas 
Morosinotto1 contributed to the data reported in this work. 
a. Department of Biology - University of Padova 
b. Institut für Biologie und Biotechnologie der Pflanzen (IBBP) - Westfälische Wilhelms Universität 
Münster  
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specialization of groups of antenna proteins vital for acclimating to dynamic environments 

(Ganeteg U. et al. 2004), as reported in Table 1.2., Chapter 1.  

Recently Nannochloropsis gaditana photosynthetic apparatus has been characterized (Basso S. et al. 

2014) showing a photosystems supramolecular organization conserved with respect to several 

other photosynthetic eukaryotes, even if evolutionarily distant. In all organisms characterized so 

far, in fact, antenna proteins are loosely associated to photosystem II (PSII), while they are 

strongly bound to photosystem I (PSI). In the case of N. gaditana, the major PSII antenna 

complex have been named Violaxanthin-Chlorophyll protein (VCP) due to presence of 

violaxanthin as the main carotenoid. This complex also binds smaller amounts of 

vaucheriaxanthin in the form of 19’ deca/octanoate esters (Britton G. et al. 2004, Hager A. and 

Stransky H. 1970, Mangoni O. et al. 2011). VCP is a member of LHC superfamily as FCPs and 

LHCA/B, although the pigment binding properties are different, with FCP binding Chl a, Chl c, 

and fucoxanthin, and LHCA/B binding Chl a, Chl b, and various xanthophylls. The VCP 

fractions has a major 22-KDa principal polypeptide component and according to sequence 

analysis it shows similarity with LHCF from diatoms (Sukenik A. et al. 1992, Basso S. et al. 2014). 

In this work thanks sequences encoding for antenna proteins were identified in Nannochloropsis 

genome (Corteggiani Carpinelli E. et al. 2013) and classified into six different groups: LHCX, 

LHCF, LHCF-like, LHC-like, LHCR and LHCR-like. Proteomic analyses showed that some of 

these antennas are specifically associated with PSI or PSII. 

 

Materials and Methods 

Cells growth  

Nannochloropsis gaditana from CCAP, strain 849/5, was grown in sterile F/2 medium (Guillard 
R.R.L. and Ryther J.H., 1962), using sea salts 32 g/l from Sigma Aldrich, 40 mM TRIS/HCl pH 
8, Sigma Aldrich Guillard’s (F/2) marine water enrichment solution. Cells were grown with 100 
µmoles photons m-2s-1 (µE) of illumination and mixed with air enriched with 5% CO2. 
Temperature was set at 22±1°C. 

Thylakoids isolation  

Thylakoids were extracted according to Basso et al. 2014. Briefly cells in exponential growth 

phase were harvested by centrifugation (4000 g, 10 minutes, 4° C), washed twice in B1 buffer (0.4 

M NaCl, 2 mM MgCl2, 20 mM Tricine /KOH pH 7.8) and then splitted into 2 ml safe lock cap 

tubes. A volume of glass beads (diameter 150-212 µm) equal to the volume of the pellet was 

added and cells then disrupted with a Mini Bead Beater (Biospec Products) for 20 seconds at 

3500 RPM. Immediately after rupture, 1 ml of B1 with 0.5% milk powder, 1mM PMSF, 1mM 

DNP-ε-amino-n-caproic acid and 1mM Benzamidine was added in each tube and the pellet 
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resuspended. Unbroken cells were then separated by a centrifugation step (2500g, 15 min, 4°C) 

and the supernatant collected. The supernatant was centrifuged at 15000 g for 20 min and the 

pellet washed twice with B2 buffer (0.15 M NaCl, 5 mM MgCl2, 20 mM Tricine /KOH pH 7.8). 

Finally thylakoids were resuspendend in B4 buffer (0.4 M Sorbitol, 15 mM NaCl, 5 mM MgCl2, 

10 mM Hepes/KOH pH 7.5) and immediately frozen in liquid nitrogen and stored at -80°C until 

use. All steps were performed at 4°C and in dim light. The total pigments were extracted with 

80% acetone and the chlorophyll concentration of the samples was determined 

spectrophotometrically using specific extinction coefficients (Porra R.J. et al. 1989) and the 

acetone spectra fitting as in (Croce R. et al. 2002), modified to account the peculiar pigment 

content. 

Thylakoids solubilization and sucrose gradients.  

Thylakoid membranes corresponding to 500 µg of Chl were washed with 50 mM EDTA and 

then solubilized 20 minutes in ice in 1 ml of final 0.4% α–DM (n-dodecyl-α-D-maltopyranoside) 

or 1% β-DM, 10 mM HEPES pH 7.5 after vortexing for 1 min. The solubilized samples were 

centrifuged at 15000 g for 20 min to eliminate unsolubilized material and the supernatant with 

the photosynthetic complexes was then fractionated by ultracentrifugation in a 0.1–1M sucrose 

gradient containing 0.06% α-DM and 10mM HEPES, pH 7.5 (280000 g, 18 hours at 4 °C). The 

green fractions of the sucrose gradient were then harvested with a syringe. 

Protein composition 

N. gaditana protein composition was determined by SDS-PAGE using a precast 12% 

polyacrylamide SDS gel (C.B.S. Scientific) and stained with Coomassie Brilliant Blue or by silver 

stain. Apparent molecular weights were estimated by co-electrophoresis of a low molecular 

weight protein standard (Fermentas). 

Mass Spectrometry analysis (MS) 

In-gel tryptic digestion was performed as described in (Shevchenko A. et al. 2007), with minor 

modification with acetonitrile as the organic phase. The MS measurements were performed as 

described by Terashima et al. (2010) using an Ultimate 3000 nanoflow HPLC system (Dionex) 

coupled with an LTQ Orbitrap XL mass spectrometer (Thermo Finnigan) device for 

autosampling, column switching and nano-HPLC. 

For the identification of peptides, OMSSA (version 2.1.4) (Geer L. Y. et al. 2004). A new 

database was created downloading N. gaditana sequences from 

www.nannochloropsis.org/page/ftp to assign the peptides resulting from MS analysis to N. 

gaditana protein. 
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Phylogenetic analysis 

Phaeodactylum tricornutum, Thalassiosira pseudonana, Ostreococcus tauris, Cyclotella cryptica, Chlamydomonas 

reinhardtii, Mesostigma viride, Physcomitrella patens, Arabidopsis thaliana, Gracilaria changii genome 

databases were accessed online via the National Center for Biotechnology Information (NCBI) 

portal using TBLASTN and BLASTP. Additional data were collected from 

http://bioinformatics.psb.ugent.be/genomes/view/Ectocarpus-siliculosus for Ectocarpus silicolosus 

genome, Department of Energy Joint Genome Institute (JGI) for Emiliania huxley sequences. 

Nannochloropsis gaditana antennas sequences were retrieved from www.nannochloropsis.org 

(Corteggiani Carpinelli E. et al. 2013) using TBLASTN, and reference sequences representing the 

major clades in our phylogeny. Nannochloropsis sequences were named in the order they were 

found. All hits (e-value < 12) were submitted to InterProScan (Punta M. et al. 2012) using default 

parameters, and considered only if the PFAM00504/IPR022796 motif was detected.  

Signal peptides were identified using ChloroP 1.1. Alignment analysis were performed using T-

coffee (Di Tommaso P. et al. 2011, Notredame C. et al. 2000) and manually modified with 

Bioedit 7.1.3.0.  

Bootstrap values (100 replicates) for the Neighbor-joining and UMPGA analyses were obtained 

in CLC Sequence Viewer 6.8.  

 

Results and Discussion 

Protein sequence analysis 

Nannochloropsis antenna sequences were retrieved from www.nannochloropsis.org (Corteggiani 

Carpinelli E. et al. 2013) using a blast search with different LHC from different organisms. 

Retrieved sequences were then compared with others from different eukaryotes, including all 

Heterokonta with a sequenced genome: E. huxley, E. silicolosus, G. changii  P. tricornutum, T. 

pseudonana, C.criptica, G.changii,  M. viride, C. reinhardtii, P.patens, A.thaliana, O. tauri. For the 

alignment N-terminal peptide and residues after A-helix were cutted. 
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Fig 4.1 Phylogenetic tree of the LHCs identified in Nannochloropsis gaditana. Bootstrap values (100 

replicates) for Neighbor-joining and UMPGA are reported in significant nodes. LHCA/B from C. 

reinhardtii, P.patens, A.thaliana O. tauris, were used as outgroup. 

Phylogenetic tree presented in Figure 4.1 allows identifying six groups of antenna complexes with 

a significant statistical support. One is represented by plants and green algae antenna, as expected 

since they represent an outgroup. Looking to Heterokonta specific sequences, instead, one first 

observation is that the node including all LHCF sequences from diatoms, E. silicolosus, E. huxley, 

also includes Naga3, that corresponds to the VCP, characterized by Sukenik A. et al (1992). Six 

additional sequences from N. gaditana also cluster with this group, but the support is not very 

high (42/62) suggesting some difference is present. For this reason this group of antennas were 

tentatively named called LHCF-like. Their difference is supported by the observation of a 

putative Chl 614 binding site in all LHCF-like but not in LHCF (see below figure 4.2). The 

following group is instead very well supported and includes LHCX from diatoms and LHCSR 

from green algae. These are all stress-related LHC which has been shown to play a fundamental 
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role in NPQ (Peers G. et al. 2009, Alboresi A. et al. 2010). This clustering of sequences from 

evolutionary distant organisms suggests that these proteins all share a conserved function, which 

is thus likely for all genes included in this group. The group also includes two N. gaditana 

sequences, Naga1 and Naga5, which thefore likely plays a role in Nannochloropsis photoprotection. 

The remaining sequences are named LHCR and LHCR-like as named in red algae (Koziol A.G. 

et al. 2007). Similarly to what was observed in Dittami S. et al. 2010 and Hoffman G. et al. 2011, 

they are clustered into four different subgroups. The first two groups are named LHCR, and 

include sequences from P. tricornutum, T. pseudonana, E. silicolosus, E. huxley, G. changii as well as 

three proteins from N. gaditana, Naga7, Naga8 and Naga20. The third and fourth group, include 

proteins from P. tricornutum, T. pseudonana and four from N. gaditana: Naga10 and Naga14, 

Naga16, Naga19. These were called LHCR-like because they do not form a unique cluster with 

LHCSR. Also in previous works LHCR did not form a unique cluster, suggesting that all these 

genes called LHCR might not have a common evolutionary origin (Dittami S. et al. 2010 and 

Hoffman G. et al. 2011). 

In addition to the five groups previously illustrated, blast search retrieved four additional LHC-

like sequences (Naga 6, Naga 15, Naga 21, Naga22), reported in table 4.1, which however did not 

cluster with Heterokonta LHC and were thus excluded from the tree in figure 4.1.  

Name Gene ID LHC type Name Gene ID LHC type 

Naga1 Naga_100173g12 X-Type Naga13 Naga_100005g99 F-like-type 

Naga2 Naga_100027g19 F-like-type Naga14 Naga_100018g45 R-like-type 

Naga3 Naga_100012g50 F-type Naga15 Naga_101227g1 LHC-like 

Naga4 Naga_100004g86 F-like-type Naga16 Naga_100002g18 R-like-type 

Naga5 Naga_100056g42 X-Type Naga17 Naga_100013g28 F-like-type 

Naga6 Naga_101036g3 Lhc-like Naga18 Naga_100157g5 F-like-type 

Naga7 Naga_100434g4 R-type Naga19 Naga_100168g13 R-like-type 

Naga8 Naga_100092g17 R-type Naga20 Naga_100017g83 R-type 

Naga9 Naga_100017g59 F-like-type Naga21 Naga_100056g15 Lhc-like 

Naga10 Naga_100641g3 R-like-type Naga22 Naga_100030g5 ELIP. 

Naga12 Naga_100168g14 F-like-type    

Table 4.1 Summary of the LHC-types found in Nannochloropsis gaditana genome. 

 

LHC superfamily comprehends not only three helix Light Harvesting proteins, but also LHC-like 

(Lil) proteins and the subunit S of photosystem II (PsbS) which is present and expressed only in 

green lineage (Alboresi A. et al. 2010, Gerotto C. and Morosinotto T. 2013). Among the Lil 

family six different classes of Lil genes have been identified in Arabidopsis (Jansson, 1999; Heddad 

and Adamska, 2000; Andersson et al., 2003), encoding for six different proteins: the three-helix 
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early light-inducible proteins (ELIPs), two one-helix proteins (OHP1 and OHP2), and two types 

of stress-induced proteins SEP1 and SEP2, and the double helix protein LIL3. Naga22 can be 

identified as an ELIP proteins, while for the other LHC-like proteins it was not possible to derive 

a specific connection with any other Lil. ELIP proteins are transient inducted and they can be 

triggered by different physiological conditions, such as light stress, dehydrative processes or 

morphogenesis (Adamska I. 2001). ELIPs contain two chlorophyll binding motifs located in the 

first and the third TM helices (Adamska I. 2001).  

 

Conserved site of Chlorophyll bound on Nannochloropsis 

Nannochloropsis antennae, as all LHC complexes, show a significant similarity on TM helices. 

These regions also include the residues coordinating most of the Chl bound to these proteins. 

Since these proteins function is played thanks to their ability to coordinate pigments the 

conservation of their binding sites bears a strong functional meaning. Comparing the sequences 

with the one from LHCII from Spinacia olearia, where all Chl binding sites have been identified 

thanks to the 3D structure (Liu Z. et al. 2004), it was possible to assess the presence of eventual 

conserved chlorophyll binding site also in Nannochloropsis LHCs. As reported in figure 4.2 five 

conserved residues involved in the binding of five Chl a molecules (a602, a603, a610, a612 and 

a613) are found conserved in all LHC from Nannochloropsis, while residue possibly involved in the 

binding of Chl a614 is found in LHCX and LHCF-like sequences but not in LHCR and LHCF. 

Residues coordinating Chl b in LHCII are instead not as well conserved, with the likely exception 

of b606. Chl b molecules are coordinated especially near the C helix, and this observation is 

consistent with a lower degree of similarity in this part of the protein between different LHC 

(Tomitani A. et al. 1999). Bassi R. et al. 1999 and Engelken J. et al. 2010 report that the sequences 

FDPLGL (or similar), found approximately 15 amino acid positions before the Chlorophyll 

binding motif in both, A and B TM helices, can be likely involved in carotenoids binding. This 

sequence is found also in Nannochloropsis proteins sequences suggesting the presence of two 

carotenoids in correspondence with helices A and B, named L1 and L2 in plants LHC (Basso S. 

et al. 2014). 
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Fig. 4.2: Polypeptide sequence alignment of the LHC genes from N. gaditana (Naga) with Lhcb from S. 

olearia (Liu et al. 2004). For Nannochloropsis sequences only one member for each group has been 

reported (Naga1 is an LhcX, Naga3 is a LHCF, Naga4 is a LHCF-like, Naga14 is an LHCR-like Naga20 is 

an LHCR) but the residues found conserved are also present in the others. Conserved LHC-residues 

(bold). Residues are colour-coded: Chl a side chain ligand (green), Chl a backbone ligand via water (blue); 

Arg in salt bridge to Glu residue in the other helix (red). Residues conserved in the VCP family (*) are 

partially conserved (.), conservatively substituted (:). 

 

Proteomic analysis 

To further investigate N. gaditana antenna system with mass spectrometry, thylakoid membranes 

from Nannochloropsis gaditana were solubilized with α or β-DM and separated in six bands by 

sucrose gradient ultracentrifugation (Fig. 4.3, and Chapter 3). Spectroscopic and Western Blot 

analysis as described in Basso S. et al. 2014 (Chapter 3) led to identify the presence of free 

pigments, light harvesting complexes in monomeric form, then in the oligomeric one, PSII core 
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and PSI-LHC (Fig. 4.3). PSI purified from β-DM gradients showed a reduced number of antenna 

complexes associated and for this reason named PSI*-LHC. 

 

 

Fig 4.3: Ultracentrifugation sucrose gradient of Nannochloropsis gaditana thylakoids after solubilization 
with 0.4% α-DM on the left, and after solubilization with 1% β-DM on the right.  

Proteomic analysis were performed loading on a SDS-PAGE monomeric and oligomeric, PSII 

core, PSI-LHC solubilized with α-DM and PSI*-LHC solubilized with β-DM. Each sample was 

loaded twice, and cutted into 30 bands, and performed tryptic digestion.  



 

Fig. 4.4 SDS-PAGE F2 and F3 and F4 solubilized with α
gradient. Each sample was charged twice, 5 µg per lane. After run gel was stained with Coomassie, than 
cutted in 30 bands and tryptic digestion was performed.

Presently, proteomic analysis on PSI

data regards this fraction could not be illustrated here.

It is worth underlining that here 5µg of protein of each fraction
sucrose gradient, however, different fractions are obtained in different yield, as sho
4.2. PSII core fraction yield, as example, is more than 10 times less than the one of oligomeric 
LHC. This means that proteins identified here will be over
presence in the thylakoids membranes.

Monomeric 
LHC 

Oligomeric 

22±2.6 µg 52±3.8 µg
 

Table 4.2. Amount of protein extract for each fraction after a centrifugation sucrose gradient with 500 ug 

Chl a as starting material. 

MS results showed the presence of several different proteins in the different fraction, as expected 
since the purification is very simple, and thylakoids isolated from starting material are not strictly 
isolated from other cellular components. Only proteins identifie
photosynthetic apparatus, however, were analyzed in detail and divided into five different 
categories: Light Harvesting Protein, Light Harvesting Protein
II, and Cytochrome and ATPase. It is important
before running the analysis and therefore data should only be considered as semi
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PAGE F2 and F3 and F4 solubilized with α-DM and F5 solubilized with β
gradient. Each sample was charged twice, 5 µg per lane. After run gel was stained with Coomassie, than 
cutted in 30 bands and tryptic digestion was performed. 

Presently, proteomic analysis on PSI-LHC solubilized with α-DM fraction are still

data regards this fraction could not be illustrated here. 

It is worth underlining that here 5µg of protein of each fraction were loaded. Starting from a 
sucrose gradient, however, different fractions are obtained in different yield, as sho
4.2. PSII core fraction yield, as example, is more than 10 times less than the one of oligomeric 
LHC. This means that proteins identified here will be over-represented with respect to their 
presence in the thylakoids membranes. 

Oligomeric 
LHC 

PSII core 
PSI*LHC 

β-DM 
PSI-LHC

α-DM 

52±3.8 µg 3.7±0.9µg 6.5±0.8 µg 4.6±0.85 µg

Table 4.2. Amount of protein extract for each fraction after a centrifugation sucrose gradient with 500 ug 

showed the presence of several different proteins in the different fraction, as expected 
since the purification is very simple, and thylakoids isolated from starting material are not strictly 
isolated from other cellular components. Only proteins identifies as components of the 
photosynthetic apparatus, however, were analyzed in detail and divided into five different 
categories: Light Harvesting Protein, Light Harvesting Protein-Like, Photosystem I, Photosystem 
II, and Cytochrome and ATPase. It is important to underline that samples were not marked 
before running the analysis and therefore data should only be considered as semi

 

DM and F5 solubilized with β-DM from sucrose 
gradient. Each sample was charged twice, 5 µg per lane. After run gel was stained with Coomassie, than 

DM fraction are still in progress, so 

were loaded. Starting from a 
sucrose gradient, however, different fractions are obtained in different yield, as shown in table 
4.2. PSII core fraction yield, as example, is more than 10 times less than the one of oligomeric 

represented with respect to their 

LHC 
 

4.6±0.85 µg 

Table 4.2. Amount of protein extract for each fraction after a centrifugation sucrose gradient with 500 ug 

showed the presence of several different proteins in the different fraction, as expected 
since the purification is very simple, and thylakoids isolated from starting material are not strictly 

s as components of the 
photosynthetic apparatus, however, were analyzed in detail and divided into five different 

Like, Photosystem I, Photosystem 
to underline that samples were not marked 

before running the analysis and therefore data should only be considered as semi-quantitative. 
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Monomeric and Oligomeric LHC 

These two fractions are enriched in Light-Harvesting protein, but we found also an important 

amount of proteins belonging to PSII core, like D1 and D2 indicating a partial disassembling of 

this complex during solubilization. As expected, and found also in other organisms, in these 

fractions there is also a substantial amount of cytochromes and ATPase subunits which, however, 

are not pigment binding proteins. 

 

 Fig.4.5 Overview of monomeric and oligomeric antenna spectral count from MS-analysis. All spectral 

counts for proteins belonging to one of the complexes were summed. The spectral count describes the sum 

of all MS/MS spectra found for peptides identifying the particular protein. The numbers indicate the 

percentage of the total number of spectra.  

 

 

Fig.4.6 Overview of monomeric and oligomeric antenna spectral count from MS-analysis considering only 
LHC and LHC-like.  
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LHCF M-LHC % O-LHC % 

Naga3 1679 24.71 3043 35.12 

LHCF-like M-LHC % O-LHC % 

Naga 2 73 1.07 88 1.02 

Naga 4 184 2.71 215 2.48 

Naga9 6 0.09 296 3.42 

Naga12 182 2.68 140 1.62 

Naga13 71 1.05 61 0.7 

Naga17 294 4.33 313 3.61 

Naga 18 128 1.88 95 1.1 

     
LHCX M-LHC % O-LHC % 

Naga 1 1455 21.42 1559 17.99 

Naga 5 55 0.81 53 0.61 

     
LHCR M-LHC % O-LHC % 

Naga 7 109 1.6 119 1.37 

Naga 8 122 1.8 213 2.46 

Naga 20 158 2.33 255 2.94 

LHCR-like M-LHC % O-LHC % 

Naga 10 99 1.46 102 1.18 

Naga 14 798 11.75 792 9.14 

Naga 16 266 3.92 274 3.16 

Naga19 717 10.55 638 7.36 

LHC-like M-LHC % O-LHC % 

Naga6 97 1.43 163 1.88 
Naga15 2 0.03 0.00 
Naga21 60 0.88 107 1.23 

Naga 22-Elip 239 3.52 138 1.59 

TOT 6794 100 8664 100 
 

Table 4.3 Table with spectral count from each single LHC in monomeric (M-LHC) and oligomeric (O-

LHC) antenna fractions. 

Focusing our attention on LHC, in the antenna fractions the major part of the protein is 

represented by LHCF, with Naga3, the VCP characterized by Sukenik 1992 and 2000, 

representing the most abundant LHC both in the oligomeric than monomeric form. It is worth 
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nothing the presence of Naga1, one of the two LHCX isoforms, as the second most abundant 

protein. Also two LHCRs-like, Naga 14 and Naga19 are present in significant amounts in these 

fractions. The technique is very sensitive and trace amounts of all LHCs were identified although 

their content is minor. 

 

Photosystem II 

In Photosystem II core fraction almost 38% of identified peptides can be attributed to proteins 

belonging to PSII, with contaminations from PSI and antennas. Among PSII proteins we are able 

to recognized the core complex proteins like D1 (PsbA), CP47 (PsbB), CP43 (PsbC), D2 (psbD), 

PsbE (cytochrome b559 alpha chain) and 10 kDa phosphoprotein PsbH 

(Naga_1Chloroplast103.1) subunit, PsbF (Naga_1Chloroplast118.1). In this solubilization we 

isolated PSII with the Oxygen Evolving Complex (OEC), composed by the protein PsbO 

(Naga_100313g2) PsbQ (Naga_100273), PsbU (Naga_100076g3), and PsbV 

(Naga_1Chloroplast55.1). The presence of OEC subunits suggests us that PSII core isolated with 

this protocol is intact. PsbZ (Naga_100005g25) was also identified, this small subunit of PSII has 

a role in the regulation of electron transfer activity through the two photosystems (Bishop C.L., 

et al. 2007), and in C. reinhardtii and in tobacco PsbZ is implicated in the interaction with the 

peripheral antenna complexes (Swiatek M. et al. 2001). 

 

  

 

Fig 4.7 Overview of PSII total spectral count, and Table 4.4 with the spectral count of identified proteins 
belongs to PSII. 
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37.91%
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PSII Core Total Spectral count

Cytochrome and ATPase LHC

PSII PSI

LHC-like

PSII core Gene 
Spectral 
Count 

D1(PsbA) Naga_1Chloroplast27.1 624 

CP47 (PsbB) Naga_1Chloroplast9.1 3318 

CP43 (PsbC) Naga_1Chloroplast17.1 640 

D2 (PsbD) Naga_1Chloroplast28.1 731 

PsbE Naga_1Chloroplast97.1 647 

PsbF Naga_1Chloroplast118.1 65 

PsbG Naga_100003g108 14 

PsbH Naga_1Chloroplast103.1 149 

PsbO Naga_100313g2 11 

PsbQ Naga_100273g6 20 

PsbU Naga_100076g3 9 

PsbV  Naga_1Chloroplast55.1 11 

PsbZ Naga_100005g25 13 
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A. thaliana PSII Subunit Nannochloropsis gaditana PSII subunit 

 
Present in genome and in 

proteomic analysis 
Present in genome only Not found in genome 

PsbA Naga_1Chloroplast27 
  

PsbB Naga_1Chloroplast9 
  

PsbC Naga_1Chloroplast17 
  

PsbD Naga_1Chloroplast28 
  

PsbE Naga_1Chloroplast97 
  

PsbF Naga_1Chloroplast118.1 
  

PsbG Naga_100003g108 
  

PsbH Naga_1Chloroplast103 
  

PsbI 
 

Naga_1Chloroplast125 
 

PsbJ 
 

Naga_1Chloroplast127 
 

PsbK 
 

Naga_1Chloroplast117 
 

PsbL - 
 

PsbL 
PsbM - 

 
PsbM 

PsbN 
 

Naga_1Chloroplast114 
 

PsbO Naga_100313g2 
  

PsbP 
 

Naga_100119g18, 
Naga_100306g3, 
Naga_100005g50 

 

PsbQ Naga_100273g6 
  

PsbR - 
 

PsbR 
PsbS - 

 
PsbS 

PsbT 
 

Naga_1Chloroplast123 
 

PsbU Naga_100076g3 
  

PsbV Naga_1Chloroplast55 
  

PsbW - 
 

PsbW 
PsbX 

 
Naga_1Chloroplast119 

 
PsbY 

 
Naga_1Chloroplast126 

 
PsbZ Naga_100005g25 

  
Table 4.5 Comparison between A. thaliana PSII subunit and N.gaditana PSII subunit, see the text below 
for further details. 

 

Comparing N. gaditana PSII with the A. thaliana one (Table 4.5), it is possible to observe that the 

reaction center, the minimal set of subunits required to oxidize water as experimentally 

determined (Mulo P. et al. 2009) is detected in both organisms, even if they are evolutionary 

distant. 

Concerning low molecular subunits, it is interesting to note the presence of three isoforms of 

PsbP, a nuclear encoded subunit, found in N. gaditana genome: this is not surprising because both 

A. thaliana (Yi X et al. 2007) and Nicotiana benthaminiana (Perez-Bueno M.L. et al. 2011) present 
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more than one nuclear encoded isoform of PsbP; all of which are involved in the stability and are 

fundamental for the optimal activity of the PSII (Ishihara S. et al. 2005 and Perez-Bueno M.L. et 

al. 2011). PsbP loosely interacts with intrinsic proteins of PSII, and for this reason it is easily lost 

during solubilization for spectrometry mass analysis  within PSII fraction (Suzuki T. et al. 2005, 

Caffarri S. et al. 2009).  

On the contrary there are significant differences between other additional low molecular 

subunits. In fact N. gaditana lacks the following subunits: PsbL, PsbM, PsbR, PsbS and PsbW. 

The absence of PsbS was expected, due to the fact that this protein, involved in photoprotection 

mechanisms, evolved during plants land colonization (Alboresi A. et al. 2010, Gerotto C. and 

Morosinotto T. 2013). PsbR is an important link in the PSII core complex for stable assembly of 

the oxygen-evolving complex protein PsbP (Suorsa M. et al. 2006). It has been suggested that 

PsbL (Luo H and Eaton-Rye J.J., 2008), PsbM (Boehm M. et al. 2012) PsbW (Shi et al. 2000) 

stabilizes the PSII dimer, but all these subunits are typically found in higher plant and in green 

algae (Shi L.X and Schröder W.P. 2004), so in N.gaditana other proteins could be involved in this 

function. 

 

Photosystem I-LHC solubilized with β-DM 

This fraction is well characterized by the major presence of PSI core proteins,  represent 39% of 

the total. There is a trace of PSII, 10%, due to the contamination of D2, D1 CP43 and CP47. 

The following plastid encoded proteins were identified as N. gaditana PSI: PsaA, PsaB, PsaC, and 

the PSI ferredoxin-binding subunit PsaD, PsaE, PsaF and PsaL. From literature it is known that, 

in higher plants, the core of PSI is composed of  14 subunits (Jensen, P. E. et al. 2007), among 

these subunits 8 are conserved and found also in diatoms PSI (Grouneva I. et al. 2011) and in 

Nannochloropsis (see Table 4.7). PsaA and PsaB bind the Chl a responsible for the charge 

separation while PsaC, D and E are involved in connection with Cytc6 in the lumenal side of the 

membrane or with ferrodoxin in the stromal one. 
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Fig 4.8 Overview of PSI*-LHCβ-DM total spectral count, a table 4.6 with the spectral count of identified 
proteins belongs to PSI.  

 

A. thaliana PSI 
Subunit 

Nannochloropsis gaditana PSI subunit 

 
Present in genome and in proteomic 

analysis 
Present in genome only Not found in genome 

PsaA Naga_1Chloroplast5 
  

PsaB Naga_1Chloroplast6 
  

PsaC Naga_1Chloroplast98 
  

PsaD Naga_1Chloroplast66 
  

PsaE Naga_1Chloroplast104 
  

PsaF Naga_1Chloroplast48 
  

PsaG 
  

PsaG 

PsaH 
  

PsaH 

PsaI 
  

PsaI 

PsaJ 
 

Naga_1Chloroplast116 
 

PsaK 
  

PsaK 

PsaL Naga_1Chloroplast52 
  

PsaN 
  

PsaN 

PsaO 
  

PsaO 
Table 4.7 Comparison between A. thaliana PSI subunit and N.gaditana PSI subunit, see the text below for 
further details. 

 

Compared to Arabidopsis PSI (Jensen et al. 2006) (Table 4.7), N. gaditana lack homologues of the 

subunits PsaG, PsaH, PsaI, PsaK, PsaN and O (Corteggiani Carpinelli E. et al. 2013, Radakovitz 

22.40%

20.49%

10.35%

38.90%

7.85%

PSI*-LHC(β-DM)
Total spectral count

Citochrome and ATPase LHC

PSII PSI

LHC-like

PSI Gene 
Spectral 
count 

PsaA Naga_1Chloroplast5.1 437 

PsaB Naga_1Chloroplast6.1 355 

PsaC Naga_1Chloroplast98.1 7 

PsaD Naga_1Chloroplast66. 937 

PsaE Naga_1Chloroplast104.1 135 

PsaF Naga_1Chloroplast48.1 117 

PsaL Naga_1Chloroplast52.1 440 



 

115 

 

R. et al. 2012, Weil L. 2013), which, with the exception of  PsaI and PsaK, are present exclusively 

in plant and green algae (Vanselow C. et al. 2009). 

The subunits F and N represent the likely docking site for plastocyanin, here it is present only 

PsaF. The lack of PsaN could explain the difference in the soluble electron carrier between N. 

gaditana, which shows the presence of Cytc6 instead of plastocyanin (Corteggiani Carpinelli E. 

2013, see Chapter 1 for further details), and higher plants, where plastocyanin is found, as 

explained for Galdieria sulphuraria (Vanselow C. et al. 2009) and for diatoms (Grouneva I. et al. 

2011).  

In contrast to plants and green algae, where several of the small subunits (PsaF, PsaJ, PsaI, PsaK 

and PsaL) are encoded by the nucleus, the subunits detected in the genome PsaJ and PsaL are 

encoded by the chloroplasts in N. gaditana. 

It is interesting to observed also the composition of LHC in this fraction: LHCF and LHCF-like 

represent 19% of the total, while the remaining is equally divided between LHCR, LHC-like and 

LHCR and LHCR-like.  

 

Fig 4.9 Overview of LHC composition in PSI*-LHC-β-DM fraction.  

5.33%

13.74%

14.97%

12.06%

26.19%

27.71%

PSI*-LHC(β-DM) spectral count

LHCF LHCF-like LHCR

LHCR-like LHCX LHC-like
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LHCF PSI*-LHC % LHCR PSI*-LHC % 

Naga3 95 5.328099 Naga 7 118 6.618059 

LHCF Like PSI*-LHC % Naga 8 130 7.291082 

Naga 2 18 1.009534 Naga 20 19 1.06562 

Naga 4 28 1.570387 LHCR-like PSI*-LHC % 

Naga9 31 1.738643 Naga 10 6 0.336511 

Naga12 12 0.673023 Naga 14 63 3.533371 

Naga17 45 2.523836 Naga 16 16 0.897364 

Naga 18 19 1.06562 Naga19 130 7.291082 

Naga 13 92 5.159843       

      LHC-like PSI*-LHC % 

LHCX PSI*-LHC % Naga 6 0.336511 

Naga 1 454 25.4627 Naga 15 - - 

Naga 5 13 0.729108 Naga 21 289 16.20864 

      Naga22 199 11.16096 

TOT 1783 100 
Table 4.8 Table with spectral count in PSI-LHCβ-DM fraction. 

Analyzing the relative amount of the single protein of PSI*-LHC fraction, as reported in Table 

4.8 Naga1, belonging to LHCX, Naga22 and Naga21, belonging to LHC-like, Naga7 and Naga8 

belonging to LHCR, and Naga19 are the most abundant proteins detected in this fraction. 

Naga7 and Naga8 increase their relative amount in PSI*-LHC respect to monomeric and 

oligomeric antenna fractions. So they can be the LHC strongly bound with PSI and involved in 

its supercomplexes, but a confirmation of this hypothesis could arrive only from the proteomic 

analysis of PSI-LHC solubilized with α-DM. 

Moving our attention on Naga1, it also increases its amount in this fraction: also in P. tricornutum 

(Grouneva I. et al. 2011 and Lepetit B. et al. 2010) an LHCX, Lhcx1, was detected within PSI 

fraction. LHCXs are involved in photoprotective mechanisms and in NPQ and show an 

homology with Li818 in Chlamydomonas (Savard F. et al. 1996 Richard C. et al. 2000).  

It is also interesting the increase of the LHC-like, in fact this subgroups reach almost 28% of 

total antenna spectral count, with Naga 21 and Naga 22 as the most abundant proteins. As 

previously reported Naga22  is part of ELIPs protein: this 24kDa protein, is similar to ELIP PSI-

associated (gi-219110739) found in P. tricornutum (Grouneva I. et al. 2011). Studies on A. thaliana 

indicates that OHP2, Lil family's member, is steadily located in PSI, even in low-light conditions 

and its level increased in response to light stress in a light intensity-dependent manner 

(Andersson U. et al. 2003). The accumulation of OHP2 in response to light stress in PSI indicates 

that this photosystem is able to undergo on a dynamic rearrangement of its organization, which 

possibly takes place in the antenna system. While PSII has a high turnover, especially of D1 

protein in case of photodamages, the photoinhibition of PSI is far more dangerous for the 
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chloroplast because the recovery from photoinhibition, in A. thaliana, is not complete even after 

1 week (Hihara Y. and Sonoike K., 2001), then the accumulation of OHP2 in PSI exposed to 

photoinhibitory light might represent one of the strategies to prevent or lower light stress-

induced damage(Montané M.H. and Kloppstech K., 2000; Adamska I. 2001). Similarly the 

presence of an ELIP specific bound to PSI, together with the detection of an LHCX, in 

N.gaditana, could throw a new light on the photoprotection mechanisms of organism in PSI. 

 

Concluding remarks 

In N. gaditana can be found six different groups of light harvesting complexes: LHCF, LHCF-

like, LHCR, LHCR-like and LHCX. The PSI-specific antenna core of N. gaditana seems to be 

composed by two LHCR, Naga7 and Naga8 but further information will be obtained from 

proteomic analysis of PSI solubilized with α-DM.  

It was also found an ELIP specific bound to the PSI. This first analysis raises the possibility to 

deeper investigate the photoprotection mechanisms involving PSI. It is also known that PSI, 

respect to PSII is more stable and does not need to a flexible antenna system (Sonoike K. 2011), 

and its specific antenna play a role on photoprotection (Alboresi A. et al. 2009) so the presence 

of ELIP and Naga1, an LHCX, could be investigate to detected the mechanisms, against high 

light, present PSI in N. gaditana. 
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BIOTECNOLOGICAL OPTIMIZATION OF  

NANNOCHLOROPSIS GADITANA1 

 

Abstract 

In previous chapters the importance of an optimization of light use efficiency to improve the 

algae productivity has been underlined. As also discussed earlier, we decided to use Nannochloropsis 

as model organism for the production of biofuels thanks to its capacity to accumulate and high 

amount of lipids and to maintain a high growth rate under a large range of light intensities. 

Unfortunately tools for the genetic manipulation of this species are still under development and 

only recently a few genome sequences become available, making possible to design tools for the 

biotechnological improvement of this microalga. In this chapter two different methods, 

homologous recombination transformation and random mutagenesis, were applied on 

Nannochloropsis to generate and isolate possible valuable mutants. 

 

Introduction 

The improvement of algae photosynthetic productivity in a large scale cultivation system is an 

objective requiring a multidisciplinary approach, bringing together a better understanding of the 

molecular mechanisms influencing light use efficiency in algae with the development of improved 

growing systems. Several complementary strategies should be investigated to reach a productivity 

sufficient to make algae large scale cultivation economically and energetically sustainable. As 

described in Sforza et al. (2012), for instance, an optimized alternation of light/dark cycles has 

good potential to increase photosynthetic efficiency. In fact, flashes of intense light can be 

exploited efficiently for photochemistry since they produce reduced electron transporters that 

can be processed during the following dark period. These data suggest that the optimization of 

the mixing rates, creating an appropriate alternation of light and dark phases within a 

photobioreactor, can greatly improve photosynthetic efficiency of the whole culture (Zou N. and 

Richmond, 2000; Richmond R. et al., 2003; Chen C.Y. et al., 2011). The improvements in 

photobioreactor design should go in parallel with genetic engineering approaches which can also 

contribute to increase light use efficiency. This was the scope of this chapter where two methods 

to obtained optimized strain have been applied to Nannochloropsis gaditana.  

The first one is the exploitation of homologous recombination (HR) and is based on the work of 

Kilian O. et al. 2011,that showed  good transformation efficiencies in Nannochloropsis W2J3B 

strain. We thus tried to use this approach to generate a Nannochloropsis strain Knock-Out (KO) 

for the VDE. This protein, as previously described (see Chapter 1 and 2 and Chapter 6 for a 
                                                           
1 Stefania Bassoa, Giorgio Perina, Anna Segallaa, Matthew C. Posewitzb, and Tomas Morosinottoa 
contributed to the data reported in this work. 
a. Department of Biology - University of Padova 
b. Department of Department of Chemistry and Geochemistry - Colorado School of Mines 
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detailed investigation of this enzyme), is a protein involved in the xanthophyll cycle, a 

photoprotection mechanism active in condition of high light. Xanthophyll cycle however, 

requires several minutes to be activated and tens of minutes to be de-activated. In the perspective 

of cultivating algae in mixed photobioreactors where illumination changes have a frequency of 

seconds or even less, this mechanisms is likely not effective in protecting from excess 

illumination and could on the contrary be detrimental when cells are in the dark part of the 

photobioreactor. At least in well mixed photobioreactors thus a VDE KO strain could potentially 

present an increased productivity. 

The second method employed is chemical mutagenesis, aiming to generate Nannochloropsis gaditana 

mutants with altered photosynthetic apparatus regulation through a random mutagenesis with 

Ethyl methane sulfonate (EMS). EMS is a well-known powerful mutagen, causing a high 

frequency of nucleotide substitutions, as detected in different plant genomes (Talebi A.B. et al., 

2012; Doan T.T.Y and Obbard J.P, 2012). In the past years, EMS has been used to induce the 

over-production of metabolites in microalgae, including astaxanthin, carotenoids and 

eicosapentaenoic acid (EPA), an important polyunsaturated fatty acid (PUFA) for the prevention  

of several human diseases (Doan T.T.Y and Obbard J.P., 2012). In our case one additional 

advantage is that strains generated by chemical mutagenesis will be testable in outdoor 

photobioreactors without the necessity of fulfilling the demanding procedures required to 

cultivate transgenic organisms outdoors.  

 

Materials and Methods 

Design of a plasmid for homologous recombination 

Four primers were designed to cloned VDE (Naga_100016g50 Corteggiani Carpinelli E. et al. 

2013) flanking regions into the pPhaT1-UEP plasmids (Radakovitz R. et al. 2012). Upstream 

region, which size was 1500 bp each, was inserted into pPhaT1-UEP using the restriction site for 

BamHI/SpfI present in MCS while downstream region was cloned after the removing of the 

sequences between HpaI/BspLU11I restriction site. Prior transformation plasmid pPhaT1-UEP-

VDE was linearized with NdeI. 

VDE UPSTREAM REGION 
 

Primer For (UPfor) TCAGGGATCCCGTTCCCTCAGGGATATTG 

Primer Rev (UPrev) ACTATACCTGCAGGTTGAACCAGAAACCCGGC 

VDE DOWNSTREAM REGION 
 

Primer For (DWfor) TCAGGTTAACATCTCGGAGTTTGAGGGGCG 
Primer Rev (DWrev) ATGACACATGTCCAGAGCCCAAACCCAAGGA 
 

Microalgae growth 

Nannochloropsis gaditana from CCAP, strain 849/5, was grown in sterile F/2 medium (Guillard 

R.R.L. and Ryther J.H., 1962), using sea salts 32 g/L from Sigma Aldrich, 40 mM TRIS/HCl pH 
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8, Sigma Aldrich Guillard’s (F/2) marine water enrichment solution. Cells were grown in 

Erlenmeyer flasks with 100µmoles photons m-2 s-1 (µE) of illumination and agitation at 100 rpm. 

Temperature was set at 22±1°C. Cultures were then treated with an antibiotic cocktail of 

Ampicillin (100 µg/mL), Streptomycin sulphate (100 µg/mL) and Kanamycin sulfate (100 

µg/mL) (Sigma Aldrich) for 48 h to obtain axenic cultures. 

Transformation of Nannochloropsis 

Transformation protocol described in (Radakovitz R. et al. 2012) with minor modification was 

used. From a culture in exponential growth phase 5x10-8cells were harvested for each 

transformation experiment. Cells were washed four times with 375 mM iced sorbitol before 

resuspension in 100 µl with 375 mM sorbitol containing 5 µg  DNA plasmid linearized with 

NdeI. Electroporation was done using an ECM630 BTX electroporator (Harvard Apparatus, 

Inc., Holliston, MA) set at 500 Ω, 50 µF and 1200 V using a 1 mm cuvette, resulting in a single 

17-20 ms pulse. After electroporation cells were resuspended in F/2 medium and kept overnight 

on a shaker at room temperature in low light (30 µmol m–2s–1). After 24 hours 5x107 cells, for 

each plate, were plated on F/2 selection plates containing 3.5 µg/ml zeocin. Resistant colonies 

were detected after 4-5 weeks and picked after 7-8 weeks.  

Screening of mutants 

Picked colonies were mixed in 10 µl of H2O sterile mQ and incubated for 15 min at 99° then for 

15 min on ice to promote the lysis of the cells. 5µl were used as a template for PCR. In the first 

screening zeocine resistant cassette is amplified and from colonies which present Zeocine 

resistant cassette DNA was extracted with Chelex 100 (Biorad). The correct integration, for these 

colonies, was checked with the design of an internal primer and an external one for both flaking 

region of resistant cassette. 

EMS mutagenesis and mortality determination  

The microalgae suspension in the late exponential growth phase at 2 x107 cells/mL were 

mutagenized using 70 mM EMS (Ethyl Methane Sulfonate) for 1 h in darkness at room 

temperature with mild agitation. Following incubation, treated cells were centrifuged at 5000 g 

for 8 min to separate cell pellets which were then washed four times with sterile F/2 medium to 

remove excess EMS. After EMS treatment, cells were then re-suspended in sterile F/2 medium 

and plated on agar F/2 plates. A number of cells such as to allow a sufficient separation between 

the growing colonies was plated. Plates were cultured at 22 ± 1 °C, under illumination at 20 

µmoles photons m−2 s−1, until the algae colonies were emerged. To establish the percentage of 

mortality induced by the EMS treatment, the number of colonies obtained following EMS 

treatment was compared to the number of colonies obtained following the treatment with water 

(control procedure). In the mortality determination procedure the same initial number of cells 

was plated in F/2 agar plate, both for EMS treated cells and for those water treated. 

Mutants selection and screening 



Twenty days after EMS treatment, the obtained colonies were visually selected for altered 

coloration, an indication of altered photosynthetic apparatus. After this first retention, colonies 

were analysed by in vivo fluorescence based screening which allowed to identify the ones affected 

in regulation of photosynthetic apparatus. Fluorescence kinetic curves w

video-imaging apparatus: FluorCam FC 800 (Photon Systems Instruments) (saturating light was 

set at 400 µmoles photons m−2 s−

wild type (WT) were retained for further analys

 

Results and Discussion 

Homologous recombination on Nannochloropsis gaditana

Plasmid for HR in Nannochloropsis was developed using the pPhaT1

Radakovitz and coworkers (2012). As reported in Fig. 5.1, 1500bp upstream and downstream of 

VDE sequence were amplified from Nannochloropsis genome and cloned into this plasmid. The 

correct insertions were confirmed by DNA sequencing.

Fig 5.1 Schematic representation of the developed plasmid linearized with NdeI. BamHI/SpfI lead the 

insertion of upstream region, while HpaI/BspLU11I permit the insertion of the downstream region.

 

Transformation was conducted as in Radakovits R. et al 2012. From a 

culture in exponential growth phase 5x10

iced sorbitol. with 5 µg of linearized plasmid. 

and kept overnight in low light (30 µmol m

plates. Resistant colonies were detect

of the zeocin resistance cassette was verified with a colony PCR. The PCR product was of 371 

bp. More than 95 % of the resistant colonies presents the predicted band suggesting that the 

transformation was successful in inserting the heterologous DNA in 
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Twenty days after EMS treatment, the obtained colonies were visually selected for altered 

indication of altered photosynthetic apparatus. After this first retention, colonies 

were analysed by in vivo fluorescence based screening which allowed to identify the ones affected 

in regulation of photosynthetic apparatus. Fluorescence kinetic curves were recorded with a 

imaging apparatus: FluorCam FC 800 (Photon Systems Instruments) (saturating light was 
−1). Colonies showing significant differences with respect to the 

wild type (WT) were retained for further analysis.  

Homologous recombination on Nannochloropsis gaditana 

Plasmid for HR in Nannochloropsis was developed using the pPhaT1-UEP developed by 

Radakovitz and coworkers (2012). As reported in Fig. 5.1, 1500bp upstream and downstream of 

VDE sequence were amplified from Nannochloropsis genome and cloned into this plasmid. The 

correct insertions were confirmed by DNA sequencing. 

Fig 5.1 Schematic representation of the developed plasmid linearized with NdeI. BamHI/SpfI lead the 

upstream region, while HpaI/BspLU11I permit the insertion of the downstream region.

Transformation was conducted as in Radakovits R. et al 2012. From a Nannochloropsis gaditana

culture in exponential growth phase 5x108 cell were pelletted and washed four times with 375mM 

iced sorbitol. with 5 µg of linearized plasmid. After electroporation cells were resuspended in F/2 

and kept overnight in low light (30 µmol m–2s–1), the day after  cells were plated on F/2 selection 

plates. Resistant colonies were detected after 5-6 weeks and picked after 7-8 weeks. The presence 

of the zeocin resistance cassette was verified with a colony PCR. The PCR product was of 371 

bp. More than 95 % of the resistant colonies presents the predicted band suggesting that the 

tion was successful in inserting the heterologous DNA in Nannochloropsis

Twenty days after EMS treatment, the obtained colonies were visually selected for altered 

indication of altered photosynthetic apparatus. After this first retention, colonies 

were analysed by in vivo fluorescence based screening which allowed to identify the ones affected 

ere recorded with a 

imaging apparatus: FluorCam FC 800 (Photon Systems Instruments) (saturating light was 

). Colonies showing significant differences with respect to the 

UEP developed by 

Radakovitz and coworkers (2012). As reported in Fig. 5.1, 1500bp upstream and downstream of 

VDE sequence were amplified from Nannochloropsis genome and cloned into this plasmid. The 

Fig 5.1 Schematic representation of the developed plasmid linearized with NdeI. BamHI/SpfI lead the 

upstream region, while HpaI/BspLU11I permit the insertion of the downstream region. 

Nannochloropsis gaditana 

times with 375mM 

After electroporation cells were resuspended in F/2 

), the day after  cells were plated on F/2 selection 

8 weeks. The presence 

of the zeocin resistance cassette was verified with a colony PCR. The PCR product was of 371 

bp. More than 95 % of the resistant colonies presents the predicted band suggesting that the 

Nannochloropsis cells. 
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Fig 5.2 PCR colony. PCR confirms the presence of the resistance cassette in some mutants. 

 

These positive colonies were duplicated in plates without the selective agent and after 2 weeks 

these colonies were again transferred to a solid media with zeocin, in order to select only the 

colonies with a stable DNA integration. Survival rate of this process was over 90%, suggesting 

that in N. gaditana  integration of external DNA occurred with high efficiency. 

 

Fig 5.3 Schematic representation of the screening methods to verify the correct integration of resistance 
cassette. 

 

To control if the resistance cassette was correctly introduced in N. gaditana genome, we design 

four plasmids FOR1/REV1 and FOR2/REV2 to verify the correct integration on the genome of 

the resistance cassette (Fig. 5.2). Despite several tests in different conditions up to now we did 

not observed any positive result. This does not exclude the possibility that Nannochloropsis gaditana 

is capable of performing homologous recombination but it shows that this species, unlike 

Nannochloropsis sp. W2J3B, is not able to perform homologous recombination with high efficiency. 

 

Chemical mutagenesis on Nannochloropsis gaditana 

A Nannochloropsis gaditana culture in the late exponential growth phase was the starting material to 

perform EMS treatment. Conditions were set to induce a 90% cells mortality and thus ensure a 

high mutation rate. Following exposure to EMS, surviving cells were cultured in F/2 medium for 

20 days prior to isolation of target mutants. 7x103 EMS treated colonies were visually analysed to 

select around 150 strains (2 %) with an apparent altered pigmentation (Figure 5.3).  

WT 1 2 3 4 5 6 

1000 bp 

500 bp 

200 bp 



Selected strains were thus re-cultured in F/2 agar plates and subjected to a further screening by 

measuring in vivo chlorophyll (Chl) fluorescence, to select those mutants with altered 

photosynthetic apparatus composition and regulation. Fluorescence measurements are an useful 

tool to gain indirect information on photosynthetic efficiency and in fact these analysis have 

become one of the most powerful and widely used techniques to invest

apparatus and its regulatory mechanisms.

We here exploited in vivo fluorescence to test photosynthetic functionality of the selected mutants 

to identify mutants affected in photosynthetic apparatus. We employed a PAM

instruments Czech Republic) apparatus to measure simultaneously multiple colonies on agar 

plates. One parameter monitored was the fluorescence of dark

normalized for the area of the colony yields of Fo/Area parameter and thus provides 

estimation of the Chl content of the colony. 

Differences in this parameter are present when a colony has a reduced Chl content per cell, as 

expected for a mutant strain with altered photosynthetic apparatus. For this reason, all colonies 

with a significant alteration in this parameter were retained as potentially interesting mutants. 

Fig. 5.3: In (a) is presented a F/2 agar plate surface, showing the 
EMS exposure. In the black square is shown a selected mutant co
with respect to the other ones grown on the same agar plate. In (b) is displayed a F/2 agar plate, showing 
five mutants; it is clearly evident the difference in the color gradation of the selected mutants, in relat
the WT. Note that all spots were inoculated with similar cellular concentration (quantified by OD

 

It is important to underline, however, that differences in these parameters can emerge also if the 

colony contains less cells and thus also if t

reasons independent from the photosynthetic apparatus. To reduce the number of false positives, 

it was important to inoculate different strains as homogenously as possible (Figure 5.3b). 
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cultured in F/2 agar plates and subjected to a further screening by 

chlorophyll (Chl) fluorescence, to select those mutants with altered 

photosynthetic apparatus composition and regulation. Fluorescence measurements are an useful 

tool to gain indirect information on photosynthetic efficiency and in fact these analysis have 

become one of the most powerful and widely used techniques to investigate photosynthetic 

apparatus and its regulatory mechanisms. 

fluorescence to test photosynthetic functionality of the selected mutants 

to identify mutants affected in photosynthetic apparatus. We employed a PAM

uments Czech Republic) apparatus to measure simultaneously multiple colonies on agar 

plates. One parameter monitored was the fluorescence of dark-adapted cells (Fo) which, 

normalized for the area of the colony yields of Fo/Area parameter and thus provides 

estimation of the Chl content of the colony.  

Differences in this parameter are present when a colony has a reduced Chl content per cell, as 

expected for a mutant strain with altered photosynthetic apparatus. For this reason, all colonies 

cant alteration in this parameter were retained as potentially interesting mutants. 

Fig. 5.3: In (a) is presented a F/2 agar plate surface, showing the N. gaditana colonies, grown following 
EMS exposure. In the black square is shown a selected mutant colony, thanks to its pale color gradation, 
with respect to the other ones grown on the same agar plate. In (b) is displayed a F/2 agar plate, showing 
five mutants; it is clearly evident the difference in the color gradation of the selected mutants, in relat
the WT. Note that all spots were inoculated with similar cellular concentration (quantified by OD

It is important to underline, however, that differences in these parameters can emerge also if the 

colony contains less cells and thus also if the mutation affects growth rate for a number of 

reasons independent from the photosynthetic apparatus. To reduce the number of false positives, 

it was important to inoculate different strains as homogenously as possible (Figure 5.3b). 

cultured in F/2 agar plates and subjected to a further screening by 

chlorophyll (Chl) fluorescence, to select those mutants with altered 

photosynthetic apparatus composition and regulation. Fluorescence measurements are an useful 

tool to gain indirect information on photosynthetic efficiency and in fact these analysis have 

igate photosynthetic 

fluorescence to test photosynthetic functionality of the selected mutants 

to identify mutants affected in photosynthetic apparatus. We employed a PAM-imaging (PSI 

uments Czech Republic) apparatus to measure simultaneously multiple colonies on agar 

adapted cells (Fo) which, 

normalized for the area of the colony yields of Fo/Area parameter and thus provides an 

Differences in this parameter are present when a colony has a reduced Chl content per cell, as 

expected for a mutant strain with altered photosynthetic apparatus. For this reason, all colonies 

cant alteration in this parameter were retained as potentially interesting mutants.  

 

colonies, grown following 
lony, thanks to its pale color gradation, 

with respect to the other ones grown on the same agar plate. In (b) is displayed a F/2 agar plate, showing 
five mutants; it is clearly evident the difference in the color gradation of the selected mutants, in relation to 
the WT. Note that all spots were inoculated with similar cellular concentration (quantified by OD750).  

It is important to underline, however, that differences in these parameters can emerge also if the 

he mutation affects growth rate for a number of 

reasons independent from the photosynthetic apparatus. To reduce the number of false positives, 

it was important to inoculate different strains as homogenously as possible (Figure 5.3b).  
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Additional video-imaging measurements were further used to select bona fide mutants. For 

instance mutants affected in the antenna system are expected to have a higher saturation point of 

photosynthesis because of their reduced light harvesting ability. Saturation of photosynthesis can 

be monitored by measuring the quantum yield of Photosystem II (ΦPSII), that estimates the 

proportion of the light absorbed, exploited for photochemistry (Maxwell K. and Johnson G.N., 

2000). When cells are exposed to strong illumination, this value decreases because photosystems 

are oxidized and thus in a “closed” state, not available for photochemistry. The decrease in this 

parameter can be exploited as an indication of the photosynthesis saturation in light adapted cells 

and we expect mutants impaired in light harvesting to have higher values of this parameter with 

respect to the WT. We found that some mutants with a reduced Fo/Area also showed a 

decreased saturation of photosynthesis, thus suggesting that these are genuine antenna mutants. 

Twelve mutants, showing these characteristics, were identified and are currently under further 

investigation to verify their effective reduction of Chl content per cell, as well the detailed 

alteration in photosynthetic apparatus. 

 

Concluding remarks 

N. gaditana has emerged as model organisms for biofuels production, but genomic information 

about its capacity to accumulate high amount of lipids has just started to be available and 

represents just a starting point for further investigations.  

The aim of this work is to develop different tools for Nannochloropsis's manipulation with the goal 

to find mutants which are not impaired in the basic reactions of photosynthesis but where 

photosynthetic apparatus composition and regulation are altered and allow a better exploitation 

of light in all the photobioreactor volume. 

Today for Nannochloropsis the highest-transformation efficiency is reached with the 

electroporation at elevated electric field strengths, with endogenous promoter driving the 

selection-marker expression and linearized plasmids (Radakovits R. et al. 2012, Vieler A. et al. 

2012, Kilian O. et al. 2011). Our data on homologous recombination seems to be in contrast with 

the results obtained by Kilian O. et al. 2011, where the HR occurs with a frequencies of 94% 

(Kilian O. et al. 2011).  

It is worth to underline that HR is not common in algae and indeed many eukaryotes, prefer the 

non-homologous end-joining (NHEJ) to repair the double strand break (Apt KE et al. 1996). 

Despite the fact that HR is a more accurate method of repair, however it requires the presence of 

an intact sister chromatid, a requite not always available in case of strand break. During NHEJ, 

the two broken ends of DNA are simply pieced together, sometimes after limited processing of 

the DNA ends, resulting in quick, but error-prone, repair. The NHEJ process is driven by two 

proteins Ku70/Ku80, two proteins  evolutionarily conserved from bacteria to human, that form 

an heterodimer binding to the end of double strand break and promoting the repair process 

(Lodish K. et al.  2000). In Nannochloropsis is present only Ku70 protein (Jinkerson R.E.  et al. 
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2012), so lacking one of the proteins involved in NHEJ, it is possible to suppose that 

Nannochloropsis is more prone to HR process than the NHEJ one; maybe a difference in the gene 

regulation of Ku70 in Nannochloropsis W2J3B strain, respect to N. gaditana could explain the high 

rates obtained in HR to one strain respect to the other. In Neurospora crassa it was demonstrated 

that the elimination of Ku70 or Ku80 improve greatly the frequency of HR (Nynomiya Y. et al. 

1999), so in the future a deletion in Ku70 N. gaditana gene could be taking in account to develop 

a particularly efficient strain in HR. 

But presently HR in N. gaditana is not a valuable tool to manipulate and improve this algae, so for 

us it was important to investigate a method completely different: the chemical mutagenesis 

approach. This technique shows some advantages respect to the HR: it could be easily applied to 

different organisms modifying the concentration of the chemical agent and it is easily to obtain a 

relatively high density of random mutations (Heinikoff S. and Comai L., 2003) that are heritable 

in the next generation, and moreover the mutant obtained with this protocol can be easily tested 

on outdoor photobioreactor. The main disadvantage of this kind of mutation is the detection-

approach: looking for phenotypes which may have a positive effect on photosynthetic 

performances of this alga growing in a large scale system help us to improve a simple methods to 

isolate the mutants. In this work we screened a Nannochloropsis gaditana random mutants 

collection, obtained following treatment with Ethyl methane sulfonate (EMS). The rationale of 

this effort is that WT algae isolated in nature have regulatory mechanisms of photosynthesis 

which are optimized to survive and thrive in their natural environment. Instead, in order to 

achieve an optimal productivity in the new artificial environment of photobioreactors there is 

thus the need to select improved strains. 

For instance, the mutants with a reduced chlorophyll content per cell should reduce self-shading 

and then increase homogeneity in light distribution with a beneficial effect on productivity. In 

this work we managed to select mutants presenting potentially interesting photosynthetic 

properties which can indeed provide an higher productivity on a large scale. 
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PROTEIN REDOX REGULATION IN THE LUMEN:  

THE CASE OF VIOLAXANTHIN DE-EPOXIDASE 
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PROTEIN REDOX REGULATION IN THE LUMEN: THE CASE OF  

VIOLAXANTHIN DE-EPOXIDASE1 

 

 

Abstract 

Light influences the regulation of many chloroplast metabolic processes in photosynthetic 

organisms. One mechanism to achieve this regulation is the light dependent modulation of 

cysteines redox state. Several chloroplast stroma enzymes are in fact well known to be oxidized in 

the dark while upon illumination disulphide bridges are reduced and thus broken. This change in 

oxidation state is correlated with the light availability and results in  the modulation of their 

activity.. The presence of such a redox regulation in thylakoidal lumen proteins have been 

recently suggested but never demonstrated up to now. If this regulation is present, however, the 

redox regulation state in the lumen would be the opposite with respect to the stroma and thus 

oxidizing under illumination and reducing in the dark.  

In this work the role of cysteines residues was investigated in Arabidopsis thaliana Violaxanthin 

De-Epoxidase (VDE), a lumenal enzyme involved in the xanthophyll cycle, able to convert the 

carotenoid violaxanthin into zeaxanthin in condition of high light. VDE presents 13 cysteins with 

11 of them concentrated in the N-terminal domain which thus represents a possible site for 

redox regulation. In this work, 13 mutants each missing one of the cysteines were produced with 

site directed mutagenesis. In all cases, but one, the mutation  led to a drastic reduction of 

enzymatic activity, demonstrating the importance of these residues for protein activity. These 12 

cysteines are also shown to be likely involved in the formation of six disulphide bridges in the 

active form of the protein. 

  

Introduction 

As reported in the previous chapters, photosynthesis is a complex phenomenon finely tuned 

according to environmental conditions which is far from being completely understood. As 

discussed earlier, this understanding is also seminal in the perspective of algae biofuels 

production in order to make genetic manipulation efforts more effective.  

One of the main target in this field is the xanthophyll cycle, a photoprotection mechanism which 

is activated under strong irradiation (Bugos R. C. et al. 1999), present in most photosynthetic 

                                                           
1 Stefania Bassoa, Diana Simionatoa, Tobia Lanaa, Francesco Marzottoa, Mirko Zaffagninib and Tomas 
Morosinottoa contributed to the data reported in this work. 
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eukaryotes including Nannochloropsis (Gentile M.P. and Blanch H.W. 1992). As discussed in 

Chapters 1 and 2, a better understanding of its regulation is fundamental for genetic 

improvement of algae photosynthetic efficiency . Zeaxanthin synthesis is activated under strong 

illumination and the enzyme responsible of this reaction is called violaxanthin de-epoxidase 

(VDE). VDE activity is well known to depend from a decrease in lumenal pH occurring under 

strong illumination. In this chapter a possible further level of regulation, depending from the 

redox state, was investigated. The study was performed on A. thaliana VDE because this protein 

was already available in our laboratory together with reliable protocols for protein expression and 

activity tests. As showed below, however, cysteines residues analyzed are well conserved in many 

other species of plants and algae, thus all conclusions are most likely valid for Nannochloropsis 

protein as well. 

As mentioned above VDE is a key enzyme in regulation of photosynthesis. VDE is well known 

to have a pH dependent regulation and, when photosynthesis is saturated, a high concentration 

of H+ in the lumen leads to its activation and zeaxanthin synthesis (Pfündel E.E. and Dilley R.A.  

1993). This enzyme undergoes to a conformational change (Arnoux P. et al. 2009), and associates 

with thylakoid membranes, where violaxanthin is found (Hager A. and Holochener K., 1994, 

Morosinotto T. et al. 2002). It belongs to the lipocalins family protein, whose members shared a 

conserved structural organization with an 8 strands β-barrel and often bind hydrophobic 

molecules (Hieber A. D. et al. 2002).  It is formed by three domains. 

  

 

Fig. 6.1 Schematic domain organization of VDE (Arnoux P. et al. 2009) 

 

The structure of the lipocalin domain has been recently resolved from crystals grown at acidic 

and neutral pH (Arnoux et al. 2009), showing the pH dependent conformation changes related to 

VDE activation. The analysis on the structure at pH 5 suggests that active VDE is a dimer, where 

both violaxanthin epoxide rings can accommodate and react at once. The reducing power 

necessary for the reaction is provided by ascorbate whose binding site was identified by Saga G. 

et al. (2010). A recent work (Fufezan C. et al. 2012) demonstrated that four protonable residues 

play a fundamental role in inducing the first step of activation and starting the pH dependent 

conformational change.  

The other two domains were named after their peculiar amino acid composition as Glutamate-

rich and Cys-rich domains (Hieber A. D. et al. 2002, Bugos R. C. et al. 1996).  
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Fig. 6.2 VDE activity in different combinations of domains. N-terminal domain and part of C-terminal 
domain, called F, are seminal for activity and membrane binding. For further details see Hieber et al. 2002 

As reported in figure 6.2, even if the lipocalin domain includes the active site, the other two 

domains are nevertheless fundamental for enzymatic activity and the protein binding to 

thylakoids.  

 

Chloroplast is the cellular organelle where photosynthesis takes place. Light, however, not only 

provides the energy to support photosynthesis but also plays a seminal influence on the 

regulation of chloroplast metabolisms. One key regulation involves the light-dependent 

modulation of chloroplast enzymes redox state which leads to different activation states 

(Buchanan B. 1980). As shown in figure 6.3, light drives to the reduction of ferredoxin (Fd), 

which is responsible of electron transport between PSI and NADPH (Figure 1.5). Ferredoxin, 

however, can also reduce thioredoxin (Trx), thanks to the activity of ferredoxin-thioredoxin 

reductase (FTR) (Buchanan B. 2005a).  

 

Fig 6.3. Ferrodoxin-Thioredoxin system in the chloroplast. In the light condition Fd is reduced and using 
FTR, reduced Fd can reduce Trx. Thioredoxin, through thiol/disulfide exchange, then activates 
carbohydrate synthesis enzymes. As a result, light uses FTR to activate carbohydrate biosynthesis. From 
Buchanan et al. 2005a 

Thioredoxin is a disulphide protein, capable to interact with several chloroplast enzymes and 

reduce their disulphide bonds. Depending on their redox state these target enzymes assume a 

different active/inactive state which thus ultimately depends on the available light. Buchanan B. 

B.(1991) demonstrated that this system controls enzymes involved in the dark phase of 

photosynthesis allowing plants to balance carbohydrate synthesis and degradation according to 

the light availability and photosynthesis rate: in fact in dark condition Fd remains oxidized as Trx 
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and the enzymes of the Calvin-Benson cycle. These enzymes, in the oxidized form, are inactive 

and as a consequence CO2 fixation is inhibited, allowing for carbohydrate breakdown. When cells 

are illuminated, instead, Fd is actively reduced and it drives to the reduction of Trx and Calvin-

Benson enzymes, leading to their activation and triggering of CO2 fixation. 

This redox regulation has been well established for several enzymes in the chloroplast stroma, 

where Calvin cycle takes place. On the contrary it is not clear if a light dependent redox 

regulation also affects thylakoid lumen proteins. Historically considered only a compartment 

where oxygen evolution is performed, proteomic analysis throw a new light on thylakoidal lumen, 

discovering that it contains numerous enzymes associated with the light reactions (Gupta R. et al., 

2002a and b; Peltier J. B. et al., 2002; Schubert M. et al., 2002; Spetea C. et al., 2004). The 

function of most of them is still unknown but studies like Karamoko M. et al. (2011), Hall M. et 

al. (2010), Gopalan G. et al. (2004) and Kieselbach T. (2013) evidenced how these proteins play a 

fundamental role in the assembly, function and maintenance of photosynthetic apparatus.  

While disulfide bridges reduction in stromal targets activates several enzymes (Buchanan B.B. et 

al. 2005 and Balmer Y., Meyer Y. et al., 2009, fig 6.3), it seems that several lumenal proteins are 

active in their oxidized state, presenting disulfide bridges (Gopalan G. et al. 2004 Buchanan B.B. 

and Luan S. 2005).  In order to verify if a redox regulation indeed is affecting lumenal proteins 

one fundamental piece of information missing is the understanding of how the flow of reducing 

equivalents are able to move from the stromal compartment to lumen and which enzymes are 

involved. Recently Motohashi K. and Hisabori T. (2010) have postulated the existence of a 

special Trx, called Trx-m, which could play function in the transfer of reducing equivalent across 

the thylakoid membrane. However, this protein has never been identified and at present it is not 

clear how it could receive electrons from Fd which is found on the stromal side of PSI 

(Karamoko M. et al.  2013). Also since Fd is reduced in illuminated leaves it is difficult to 

understand how reducing equivalents could be transferred to the lumen in the dark. Karamoko 

and coworkers (2010) identified in A. thaliana Lumen Thiol Oxidoreductase1 (LTO1) an enzyme 

able to form disulfide bonds in the thylakoid lumen. This protein presents a thioredoxin-like 

domain which interacts with PsbO, a lumenal PSII subunit known to be disulfide bonded, and a 

recombinant form of the molecule can introduce a disulfide bond in PsbO in vitro. In 2013 Lu Y. 

demonstrated that LTO1 have a broad range of substrates in the lumen. Among the various 

lumenal Trx target, it is important to underline the presence of the two D1-processing proteases, 

and the VDE indicating that Trx interactions are involved in the assembly of PSII and 

photoprotection.  

In this study we investigate the possible influence of redox state on VDE, analyzing the role of 

the 13 Cysteines found in A. thaliana VDE. Some of these residues most likely influence VDE 

activity as shown by the fact that DTT is a strong inhibitor (Yamamoto H. Y. and Kamite L. 

1972). Their role and the role of redox potential in VDE regulation, however, have never been 

investigated in detail. We show here that all these cysteines but one have a fundamental role in 

VDE activity and are involved in multiple disulphur bridges in the active protein. 



141 

 

Materials and Methods 

Vde expression and purification 

The construct expressing mature WT A. thaliana VDE cloned in pQE60 was kindly provided by 

Prof. Yamamoto (Hieber A.D. et al. 2002). Site-specific mutants of cysteines were produced 

using the QuickChange site-directed mutagenesis kit (Stratagene) with cysteine substituted by 

alanine. WT and mutants of VDE were expressed in Origami B strain (Prinz W. A. et al. 1997) of 

Escherichia coli coltured in LuriaBertani (LB) medium (Tryptone  10g (Sigma Aldrich) Yeast 

Extract 5g (Sigma Aldrich) NaCl10g (Sigma Aldrich)) with a 600-nm absorbance of 0.6 were 

induced with 1 mM isopropyl-D-1-thiogalactopyr-anoside (IPTG) for 3 h at 37 °C in continuous 

mixing. Cells were there then centrifuged at 4000 g and 4 °C for 10 min, then resuspended in 

25mM Tris-HCl pH 8, 250 mM NaCl, and lysed by sonication.  

VDE was then purified on a nickel affinity column (Sigma-Aldrich). Fraction eluted with 100 

mM imidazole was stored at -80 °C. 

 

Vde activity test, HPLC 

The activity of purified VDE was determined by monitoring the change in the absorbance at 502 

nm as previously described (Yamamoto H. Y. 1985; Bugos R.C.  et al., 1999). The enzyme assay 

contained 1% BSA, 1.5 µM Violaxanthin (purified from spinach by HPLC), 9µM MGDG (Lipid 

Products), 60 mM Ascorbate (Sigma-Aldrich), and 60mM Citrate (Sigma-Aldrich), pH 5. In the 

case of mutants, the protein amount required for the activity test comparable to the wild type was 

quantified by SDS-page (Laemmli U. K., 1970) and Western blotting. The presence or  the 

absence of Zeaxanthin production in the mutants were confirmed by HPLC (Havaux M. et al., 

2007). Carotenoids were extracted with 100 % diethyl-ether and 125mM NaCl. The organic 

phase containing the carotenoids was collected, dried 2 hours in a SpeedVac, and resuspended in 

80% acetone for HPLC analysis (Farber A. et al., 1997). 

Determination of the redox potential of VDE 

Redox titration was performed monitoring the change in absorbance at 502 nm as in Vde activity 

test. VDE was incubate 2 hours at 25° C with 20mM at various dithiol (DL-Dithiothreitol)-

disulfide(trans-4,5-Dihydroxy-1,2-dithiane) ratios of DTT (Sigma-Aldrich), in 50mM Tris pH 8, 

1mM EDTA. Control experiments were performed under the same conditions but in the absence 

of dithiol-disulfide ratios of DTT. Redox titration results were fit with Boltzmann equation 

(OriginPro8). 

Non reducing (redox) SDS-page and Western Blot 

Purified VDE was treated with 100mM TCEP (Tris-(2-Carboxyethyl)phosphine-Hydrochloride 

Invitrogen) or 100 mM H202 (Sigma-Aldrich), to fully reduce or oxidize the protein, in 100mM 

Hepes pH 7 and incubated for 90 min at room temperature. Samples were then alkylated with 20 
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mM AMS (4-Acetamido-4'-Maleimidylstilbene-2,2'-Disulfonic Acid, Disodium Salt, Invitrogen) 

and incubated for 90 min at room temperature. Samples were run on 10% acrylammide non 

reducing SDS-PAGE, and then transferred to nitrocellulose membranes (Pall Corporation). VDE 

was detected with home-made antibody raised against A. thaliana protein. 

 

Results and Discussion 

 

Cysteines are strongly conserved in VDE 

N-terminal region of VDE protein sequences from different species was compared to identify 

conserved features in the Cys-rich domain. As shown in the figure 6.4, 10 out of the 11 cysteines 

present in this domain (two additional cysteines are found in the lipocalin domain, Fig. 6.5) are 

conserved in all organisms presenting a xanthophyll cycle (Fig. 6.4). Cys07 is the only exception, 

being conserved only in higher plants sequences.  

It is worth underlining that this domain does not show a high degree of overall conservation: out 

of a total of 80 residues, only 23 (29%) are identical. On the contrary over 90% of cysteines are 

conserved , suggesting the presence of a strong selective pressure for the conservation of these 

residues and therefore a strong relevance for function of this part of the protein.  



Fig. 6.4 VDE N-terminal domain alignment. Plants: At(Arabidopsis thaliana), Vv(Vitis vinifera), Ca(Coffea 
arabica), Ls(Lactuca sativa), Os(Oryza sativa), Zm(Zea mais), Nt(Nicotiana tabacum), Sl(Solanum 
lycopersicum), Ta(Triticum aestivum), Pp(Physcomitrella patens); and algae: Ng(Nannochloropsis 
gaditana), Tp(Thalassiosira pseudonana), Pt(Phaeodactylum tricornutum), Ch(Chlorella sp), 
Ol(Ostreococcus lucimarinus), Ot(Ostreococcus tauri). Conserved cysteines (C118 and C249 are 
highlighted with red rectangles)

 

In the lipocalin domain are found the two additional  cysteines, Cys118 and Cys249, as shown in 

fig. 6.5 they are also conserved both in higher plant and algae.
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In the lipocalin domain are found the two additional  cysteines, Cys118 and Cys249, as shown in 



Fig. 6.5 VDE partial lipocalin domain alignment (from 
252). Plants: At(Arabidopsis thaliana), Vv(
sativa), Zm(Zea mais), Nt(Nicotiana tabacum
Pp(Physcomitrella patens); and algae: Ng(
Pt(Phaeodactylum tricornutum), Ch(Chlorella sp
Conserved cysteines (C118 and C249) are highlighted with r

 

 

The crystal structures of the lipocalin domain clearly showed that C118 is forming a disulfide 

bridge with C249 in both structures at pH 5 and 7 (Fig. 6.6).
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Fig. 6.5 VDE partial lipocalin domain alignment (from amino-acid 81 to 140, and from amino
thaliana), Vv(Vitis vinifera), Ca(Coffea arabica), Ls(Lactuca sativa
Nicotiana tabacum), Sl(Solanum lycopersicum), Ta(Triticum aestivum

); and algae: Ng(Nannochloropsis gaditana), Tp(Thalassiosira pseudonana
Chlorella sp), Ol(Ostreococcus lucimarinus), Ot(Ostreococcus tauri

Conserved cysteines (C118 and C249) are highlighted with red rectangles. 

The crystal structures of the lipocalin domain clearly showed that C118 is forming a disulfide 

bridge with C249 in both structures at pH 5 and 7 (Fig. 6.6). 

 

acid 81 to 140, and from amino-acid 200 to 
Lactuca sativa), Os(Oryza 

Triticum aestivum), 
Thalassiosira pseudonana), 

Ostreococcus tauri). 

The crystal structures of the lipocalin domain clearly showed that C118 is forming a disulfide 



Fig.6.6 C118 and C249 are involved in a disulfide bridge. Here two monomers of 

and green. 

 

Cysteines are fundamental for VDE activity

In order to verify the importance of these residues for VDE activity, all Cysteines were mutated 

with an Alanine, a non polar amminoacid with a 

Residue

Table 6.1 Cysteines belonging to N

 

All mutant proteins were expressed in E. coli Origami cells and purified by affinity 

chromatography. Western blot technique was used to quantif

expression levels was found to be similar for WT and all mutants. Since a strong alteration in 

protein folding would cause a reduction in purification yield, this suggest that mutations did not 

alter significantly protein folding.

Fig. 6.7 Western blot quantification for VDE WT and VDE Mutants for Cysteines. In the sample a similar 
amount of protein was charged.

 

Enzymatic activity of all mutants were afterwards determined. Mutant C07A was the only one 

showing an activity close to the WT. All other mutations instead caused a drastic reduction of 
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Fig.6.6 C118 and C249 are involved in a disulfide bridge. Here two monomers of VDE are indicated in cyan 

Cysteines are fundamental for VDE activity 

In order to verify the importance of these residues for VDE activity, all Cysteines were mutated 

with an Alanine, a non polar amminoacid with a steric hindrance similar to Cys

Residue Mutation Residue Mutation 

Cys07 Ala Cys46 Ala 
Cys09 Ala Cys50 Ala 
Cys14 Ala Cys65 Ala 
Cys21 Ala Cys72 Ala 
Cys27 Ala Cys118 Ala 
Cys33 Ala Cys249 Ala 
Cys37 Ala 

  
 

Table 6.1 Cysteines belonging to N-terminal domain mutated in Alanine. 

All mutant proteins were expressed in E. coli Origami cells and purified by affinity 

chromatography. Western blot technique was used to quantify purified enzymes and the 

expression levels was found to be similar for WT and all mutants. Since a strong alteration in 

protein folding would cause a reduction in purification yield, this suggest that mutations did not 

alter significantly protein folding. 

Fig. 6.7 Western blot quantification for VDE WT and VDE Mutants for Cysteines. In the sample a similar 
amount of protein was charged. 

Enzymatic activity of all mutants were afterwards determined. Mutant C07A was the only one 

showing an activity close to the WT. All other mutations instead caused a drastic reduction of 

VDE are indicated in cyan 

In order to verify the importance of these residues for VDE activity, all Cysteines were mutated 

similar to Cystein. 

All mutant proteins were expressed in E. coli Origami cells and purified by affinity 

purified enzymes and the 

expression levels was found to be similar for WT and all mutants. Since a strong alteration in 

protein folding would cause a reduction in purification yield, this suggest that mutations did not 

 

Fig. 6.7 Western blot quantification for VDE WT and VDE Mutants for Cysteines. In the sample a similar 

Enzymatic activity of all mutants were afterwards determined. Mutant C07A was the only one 

showing an activity close to the WT. All other mutations instead caused a drastic reduction of 
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VDE activity. C50A and C65A showed a strong reduction with an activity between 1 and 3% of 

the WT.  

With the spectrophotometric assay we were not able to detect significant conversion of 

violaxanthin into zeaxanthin. Since sensitivity of the test is limited (≈1 % of WT) in order to be 

able to detect smaller activities, we decided to prolonged the reaction and tested the eventual 

zeaxanthin production by HPLC, a more sensitive method. This alternative approach confirmed 

previous results for C07A, C50A and C65A but also showed the presence of small but detectable 

zeaxanthin formation in C09A, C21A, C37A and C72A. In the case of C14A, C27A C33A C46A, 

C118A and C249A instead there was no zeaxanthin formation also increasing the time for the 

reaction, suggesting these mutants were completely  inactive (Table 6.2). 

 

Table. 6.2 VDE mutants activity shown as a percentage respect to WT, after HPLC analysis 

 

These results support the idea that Cys residues have a seminal function for VDE enzymatic activity, an 

observation consistent with the high sensitivity to DTT showed by this enzyme (Yamamoto H. Y. and 

Kamite L. 1972). The only exception is C07 which has a limited influence, consistently with its presence 

only in higher plants sequences.  

 

All conserved cysteines are involved in disulphide bridges 

Mutational analysis revealed the importance of the cysteine residues for VDE activity. In order to 

better understand their role it is fundamental to clarify their redox state in the active protein. This 

was addressed using a method proposed by Wakabayashi  K.I. and  King  S.M. (2006) in which 

different oxidation states of the protein were detected using labeling with AMS. This molecule is 

able to bind covalently to free thiols, increasing the protein weight by 440Da for each free thiol 

(Fig. 6.8). The number of free cysteines can thus be estimated from the increase in molecular 

weight. For this purpose, the purified protein was incubated with AMS in the purification buffer 

or in the presence of either a reducing (TCEP) or oxidant (H2O2) agent. After incubation the 

samples were analyzed by non reducing SDS-PAGE and Western Blot (Fig. 6.9) to detect 

eventual changes in VDE molecular weight. TCEP was used instead of DTT as reducing agent 

because  the former does not react with maleimide group of AMS.  

Residue Cys07 Cys09 Cys14 Cys21 Cys27 Cys33 Cys37 

Mutation A A A A A A A 

Activity % WT 85.2 ± 16 < 1 % nd < 1 % Nd Nd < 1 % 

Residue Cys46 Cys50 Cys65 Cys72 Cys118 Cys249 

Mutation A A A A A A 

Activity % WT Nd 3.1 ± 2.5 1.15 ± 1 < 1 % Nd Nd 



Fig. 6.8 Scheme detailing the  AMS  method  to  distinguish  oxidized  and  reduced dithiols. The 
maleimide group of AMS reacts only with reduced thiols and, thus, a protein with a reduced vicinal dithiol 
will incorporate two AMS moieties (9

 

As shown in Fig. 6.9, the samples treated with TCEP and AMS migrate slower compared to the 

untreated samples or the oxidized ones. This could be explained by the fact that in these samples 

there are several free thiols that can react with AMS leading to an increase in the molecular 

weight. It is interesting to note that on the contrary control and the oxidized samples do not 

show any detectable differences in the molecular weight, suggesting that there are no addi

disulfide bridges formed due to the oxidation. The number of free cysteines binding AMS in the 

control and oxidized samples thus remain

have similar weight as the control without AMS labelling

cysteines in control is very low, likely one. All these results are well consistent with the hypothesis 

that all cysteines except one are involved in disulphide bridges in the native protein. 

Fig. 6.9. Non reducing SDS-PAGE and Western blot o
AMS. Ctr indicates the control (WT untreated), AMS indicates WT incubated with AMS, while H
and TCEP/AMS represent the samples mixed first with the oxidant and reducing agent res
then treated with AMS. 

 

A rapid change in redox potential led to a rapid inactivation of VDE activity

Analysis with TCEP and AMS revealed that VDE is completely oxidized in its native form. In 

order to better investigate this characteristic w
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Fig. 6.8 Scheme detailing the  AMS  method  to  distinguish  oxidized  and  reduced dithiols. The 
maleimide group of AMS reacts only with reduced thiols and, thus, a protein with a reduced vicinal dithiol 
will incorporate two AMS moieties (980 D). Adapted from Wakabayashi K.I. 2006. 
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untreated samples or the oxidized ones. This could be explained by the fact that in these samples 

thiols that can react with AMS leading to an increase in the molecular 

weight. It is interesting to note that on the contrary control and the oxidized samples do not 

show any detectable differences in the molecular weight, suggesting that there are no addi
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control and oxidized samples thus remains the same. Finally it is worth underline that both bands 
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and TCEP/AMS represent the samples mixed first with the oxidant and reducing agent res

A rapid change in redox potential led to a rapid inactivation of VDE activity 

Analysis with TCEP and AMS revealed that VDE is completely oxidized in its native form. In 
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thiols that can react with AMS leading to an increase in the molecular 

weight. It is interesting to note that on the contrary control and the oxidized samples do not 

show any detectable differences in the molecular weight, suggesting that there are no additional 

disulfide bridges formed due to the oxidation. The number of free cysteines binding AMS in the 

is worth underline that both bands 

suggesting that the number of free 

cysteines in control is very low, likely one. All these results are well consistent with the hypothesis 

that all cysteines except one are involved in disulphide bridges in the native protein.  

 

VDE treated with TCEP or H202 and then with 
AMS. Ctr indicates the control (WT untreated), AMS indicates WT incubated with AMS, while H202/AMS 
and TCEP/AMS represent the samples mixed first with the oxidant and reducing agent respectively and 

Analysis with TCEP and AMS revealed that VDE is completely oxidized in its native form. In 

e made a redox titration of VDE, testing its activity 



after incubation at different redox potentials. As shown in figure 6.10 VDE displays a sharp 

dependence from redox potential showing inactivation at lower potentials, with an inflection 

point at -320 ± 3 mV.  

  

Fig. 6.10. Redox titration of VDE. VDE was incubate
disulfid ratios of DTT. Completely oxidized enzyme share
the protein mixed with different dithiol/disulphide ratios was calculated respect to the completely oxidized 
enzyme (100% of activity respect to control).

 

Concluding remarks 

 

This study involved the enzyme responsible for the zeaxanthin synthesis in the xanthophyll cycle: 

the Violaxanthin De-Epoxidase. Zeaxanthin plays a role of crucial importance protecting the 

photosynthetic apparatus from damages caused by high light, acting as a scavenger of ROS and 

promoting the dissipation of the light as heat (Demming Adams B. et al. 1996, Havaux M. et al. 

2007). Zeaxanthin production must be finely regulated to allow a correct balance between 

photoprotection at high irradiation and the necessity of photosynthetic or

energy, with the maximum efficiency, when light conditions are limiting. While the pH dependent 

regulation of the VDE, involving an important conformational change, was largely investigated 

(Arnoux P. et al. 2009, Saga G. et al. 20

have been less studied.  

In this work we focused our attention on the N

if a second regulatory mechanisms based on the change in the redox state is poss

enzyme. The works by Karamoko M. et al. (2010), Gopalan G. et al. (2004) and Buchanan B.B. 

(2005) suggested a possible redox regulation in thylakoidal lumen differing from the one active in 

the stroma. While in the stroma light causes a cyste

in the lumen (Fig 6.11) illumination could cause the oxidation of thiol groups. This kind of 
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10, Fufezan C. et al. 2012), other possible mechanisms 
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in the lumen (Fig 6.11) illumination could cause the oxidation of thiol groups. This kind of 



control could also be light dependent because combines the light absorbed by the photosystems, 

which allows the electron transport chain flow and the reduction of the thioredoxins, and the 

CO2 fixation into the organic compound such as lipids, proteins, carbohydrates which depends 

on the reducing power and free energy coming from light phase of photosynthesis.

 
Fig. 6.11 schematic mechanism of redox regulation in thylakoidal lumen. Adapted from Gopalan 2004
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photosynthesis. In this condition, proton concentration in the lumen gradually increases and as a 

consequence it is possible to activate VDE. If light is not in excess this is not beneficial for plants 

because solar energy, which should be use to perform photosynthesis, could be dissipated as heat 

by the activation of xantophylls cycle and not exploited to produce chemical energy. During the 

night,  photosynthesis is not performed, and VDE is found in a condition of inactivation due to 

reduction state of the lumen. If VDE could be activated by oxidation due to molecular oxygen 

produced by photosynthesis, this means that VDE could be activated  only when light intensities 

are higher thus when a sufficient concentration of molecular oxygen has been produced, avoiding 

a premature activation of energy dissipation and ensuring better regulation of photoprotection 

mechanisms and a better exploitation of solar energy.  
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Abstract 

 

Violaxanthin-Chlorophyll-Protein (VCP) is the major Light-Harvesting Complex (LHC) of the 

Heterokonta Nannochloropsis gaditana binding only Chlorophyll a, violaxanthin and 

vaucheriaxanthin, in the form of 19’ deca/octanoate esters.  Photosynthetic apparatus of algae 

belonging to this group, have been poorly characterized in the past, but there is now an 

increasing interest also because of their possible biotechnological application in biofuel 

production.  

In this work, isolated VCP proteins have been studied by means of advanced EPR techniques in 

order to investigate the presence of the photoprotective mechanism based on triplet-triplet 

energy transfer (TTET). Optically Detected Magnetic Resonance (ODMR) has been used to 

identify the triplet states populated by photoexcitation, and describe the optical properties of the 

chromophores carrying the triplet states. Time-resolved EPR (TR-EPR) has been employed to 

get insight into the TTET mechanism and reveal the structural features of the pigment sites 

involved in photoprotection. The analysis of the data shows a strong similarity in terms of triplet 

state populations between VCP, FCP from diatoms and LHC-II from higher plants. Even if 

these antenna proteins have differentiated sequences and binds different pigments, the results 

suggest that in all members of the LHC superfamily there is a core represented by two central 

carotenoids surrounded by five Chlorophyll a molecules with  a conserved structural organization 

and a fundamental photo-protective function in Chl triplets quenching.  
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Abbreviations 

 

1 Chl*: singlet Chl excited molecules   

1O2: singlet oxygen   

3Chl: Chl triplets  

Car, Carotenoid;    

Chl, Chlorophyll;   

Cyt, Cytochrome;   

DTT, dithiotreitol;   

Fdx, ferredoxin;   

FNR, Ferredoxin NADP +  reductase;   

FTR: ferredoxin-thioredoxin reductase 

HR, homologous recombination;   

KO, knock‐out;   

LHC, Light harvesting complex;   

LHCA, antenna polypeptides of Photosystem I;   

LHCB antenna polypeptides of Photosystem II;   

LHCF, FCP fucoxanthin chlorophyll a/c-binding protein 

LHCR: LHC in red algae/diatoms, 

LHCSR,LHCX Lhc‐like protein Stress Related (previously called Li818) 

Lil: LHC-like proteins,  

NHEJ, Non‐Homologous End Joining;   

NPQ, Non Photochemical Quenching;   

PC, plastocyanin;   

PCR, polymerase chain reaction;   

PQ/PQH 2 , plastoquinone/plastoquinol;   
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PSBS photosystem II subunit S;   

PSII (PSI): photosystem II (I);   

ROS, Reactive oxygen species;   

RT, room temperature;   

RuBisCO, ribulosio 1,5biphosphate carbossilase‐oxygenase;  SDS, sodium‐dodecyl‐sulphate;   

Trx: Thioredoxin reductase 

VDE, Violaxanthin de‐epoxidase;   

WT, wild type.   

ZE, Zeaxanthin epoxidase  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


