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Abstract

The present study is the result of a collaboration with a private company that operates

in the food supplements field (Labomar Srl, Istrana - Italy) within a particular doctorate

category called “Apprendistato di alta formazione e ricerca”. The main purpose of the

research project has been the design and characterization of a formulation platform able

to deliver lipophilic active molecules both by oral and topical administration. Dealing

with a company mainly operating in the food supplements market, food grade excipi-

ents have been the first to be chosen: glycerin, medium chain fatty acids (MCFA) and

sucrose esters (SEs).

In the first part of the study the design of experiments has been used as a mathematical

approach for the development of a set of formulations. Subsequently formulations have

been characterized through dynamic light scattering, rheology measurements (including

sweep test), differential scanning calorimetry (DSC) analysis and transmission electron

microscopy (TEM). The developed formulations have been able to form emulsions with

a droplet size up to 280 nm after dispersion in water and a direct relation between su-

crose monopalmitate (SMP) concentration and viscosity has been found. It has been

observed that the combination of SEs, water, glycerine and MCFA in specific ratios

is able to form both classical emulsions and transparent gel-emulsion, also referred as

high internal phase ratio emulsions (HIPREs), exhibiting a liquid crystalline molecular

organization. On the basis of results, two formulations named F01 and F03 have been

selected in order to develop oral and topic dosage forms.

Formulation F03 is a HIPREs containing the 75% of oil phase, it is characterized by

high viscosity and small droplet size. It has been selected for the development of two

oral dosage forms: a water-soluble powder and a medicated jelly. In order to evaluate

the ability of these formulations to increase the water solubility of lipophilic molecules

resveratrol and coenzime Q10 have been loaded as model molecules. The dissolution

performances of the oral formulations have been assessed. Release profiles show an

increase in actives solubility: compared to bulk powder, resveratrol release has been

increased two times by the jelly formulation, and three times by the powder formulation

(adsorbed-HIPREs), reaching a rapid onset. Coenzime Q10 is practically water-insoluble

while the jelly formulation is able to release 20% of the total CoQ10, as long as the

adsorbed-HIPREs reach 40%.

The last part of the study deals with the development and the characterization of topical

dosage forms. First of all, two of the initial formulations has been selected (F01 and

F03) and appropriate excipients have been added to improve spreadability and release

of actives: ethoxy diglycol and polyethylene glycol 400 have been used as solubilizers,
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while glyceryl stearate and xanthan gum have been used as thickeners. Secondly, for-

mulations have been characterized through optical and TEM microscope analysis, DSC

and rheology measurements. Finally, the formulations have been loaded with resveratrol

as model molecule and release and in-vitro absorption tests have been carried out. Re-

sults have been shown that the majority of the formulations follow a first-order kinetic

release. Resveratrol release and absorption could be modified by modulating rheology

of the formulations and the physical state of the active molecule; in particular, the max-

imum resveratrol absorption has been registered with formulation labelled as AF201,

containing ethoxy diglycol as solubilizer and glyceryl stearate as thickener.

In conclusion, the information and the results obtained from this study should facilitate

the rational design and fabrication of lipid-based delivery systems for lipophilic food

and cosmetic actives. The initial aim to produce a formulation platform capable to de-

livery lipophilic active molecules by oral and topical administration has been achieved.

Once the administration route and the active molecule have been chosen, an affordable

and effective formulation could be provided and adapted to nutraceutical, cosmetic and

pharmaceutical industry as well.
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Riassunto

Il presente studio è il risultato della collaborazione con un’azienda produttrice di inte-

gratori alimentari (Labomar srl, Istrana) e si inserisce in un particolare tipo di dottorato

definito “Apprendistato di alta formazione e ricerca”. Lo scopo principale del progetto

è lo sviluppo e la caratterizzazione di una piattaforma formulativa capace di veicolare

principi attivi lipofili sia per via orale che topica. Trattandosi di un’azienda operante

principalmente nel mercato degli integratori alimentari gli eccipienti scelti nella fase in-

iziale sono di grado alimentare: glicerina, acidi grassi a media catena (MCFA) e esteri

del saccarosio.

La prima parte dello studio riguarda lo sviluppo di una serie di formulazioni mediante

l’utilizzo del design of experiment e la loro caratterizzazione mediante l’uso di tecniche

quali dynamic light scattering, misure reologiche, scansione calorimetrica differenziale

(DSC) e microscopia a trasmissione elettronica (TEM). Le formulazioni iniziali una

volta disperse in acqua sono in grado di creare emulsioni fini; la fase interna arriva ad

avere un diametro di 280 nm ed è stata verificata una relazione diretta fra viscosità e

concentrazione di saccarosio monopalmitato (SMP) nella formulazione. Si è scoperto

inoltre che la combinazione di SMP, acqua, glicerina e MCFA in specifici rapporti può

dare luogo alla formazione sia di classiche emulsioni che di emulsioni-gel, spesso chiamate

high internal phase ratio emulsions (HIPREs) caratterizzate da una struttura interna a

cristalli liquidi.

La formulazione F03 è un HIPREs contenente il 75% di fase oleosa ed è caratterizzata

da elevata viscosità. É stata scelta come base per lo sviluppo di due forme orali: una

polvere idrosolubile e una gelatina medicata. Per valutare la capacità di queste for-

mulazioni di aumentare la solubilità in ambiente acquoso di molecole lipofile entrambe

sono state caricate con due molecole modello (resveratrolo e coenzima Q10). In seguito

è stato valutato il rilascio in-vitro delle due molecole modello. I profili di rilascio dalle

formulazioni orali indicano un sostaziale aumento della solubilità degli attivi: la gelatina

raddoppia la solubilità del resveratrolo (rispetto alla sostanza tal quale) mentre la for-

mulazione in polvere (HIPREs-adsorbito) riesce a triplicarla in circa dieci minuti. Il

coenzima Q10 tal quale è praticamente insolubile in acqua, la gelatina riesce a rilasciarne

in soluzione circa il 20% (sul totale caricato), mentre l’HIPREs-adsorbito arriva al 40%.

L’ultima parte dello studio riguarda lo sviluppo e la caratterizzazione di formulazioni

topiche. Sono state selezionate due tra le formulazioni iniziali (F01 e F03) e vi sono stati

aggiunti eccipienti per migliorare la spalmabilità e il rilascio degli attivi: etossi diglicole

e polietilene glicole 400 sono stati usati come solventi mentre gliceril stearato e gomma

di xantano come viscosizzanti. Dopo caratterizzazione mediante microscopia ottica e
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TEM, DSC e misure reologiche le formulazioni sono state caricate con resveratrolo come

molecola modello per verificarne il rilascio e l’assorbimento mediante test in-vitro. É

stato verificato che il rilascio dalla maggior parte delle formulazioni testate segue una ci-

netica di primo ordine. Il rilascio e l’assorbimento di resveratrolo può essere modificato

modulando le caratteristiche reologiche della formulazione e lo stato fisico dell’attivo;

in particolare il massimo valore di assorbimento è stato registrato con la formulazione

AF201, contenente etossi diglicole e gliceril stearato.

In conclusione, le informazioni e i risultati ottenuti con questo studio possono facilitare

lo sviluppo e la produzione di formulazioni per la veicolazione di attivi lipofili alimentari

e cosmetici. L’obiettivo iniziale di sviluppare una piattaforma formulativa capace di

veicolare molecole lipofile sia per via orale che topica è stato raggiunto. Una volta scelta

la via di somministrazione e la molecola di interesse sarà possibile sviluppare una formu-

lazione efficiente e dai costi contenuti, utilizzabile dall’industria alimentare, cosmetica e

farmaceutica.
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Chapter 1

Introduction

1.1 Aim and general premises

The whole doctorate course was funded by a private company: Labomar Srl (Istrana, TV

- Italy) within a particular doctorate category called “Apprendistato di alta formazione

e ricerca”. Labomar is a research, development and manufacturing enterprise, devoted

to innovation in food supplements, medical devices and cosmetics. Hence, the research

project was oriented on the design and characterization of a formulation platform able

to satisfy the company targets. Since Labomar is mainly a food supplements enterprise

it was peremptory to use only food grade raw materials and to realize samples with a

good taste, at least for what concerns oral dosage forms. The economic aspect was also

essential, both regarding raw materials and production processes, in order to contain

costs and to be competitive on the market. Prior and during the development of the

formulation platform, aim of this work, the major terms and restrictions which were

taken into account are:

� using food grade excipients (at least for what concern oral dosage forms)

� maintain low cost of raw materials and of production processes

� achieve easy scale-up of the production process

� obtain formulation flexibility, in order to deliver different active molecules in dif-

ferent dosage forms and route of administration
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Table 1.1: Recommended HLB values for different pharmaceutical applications.

Application HLB

Emulsification Low to high (3-15)

Solubilization High (10-15)

Controlled/sustained release Low to high (3-15)

Absorption/penetration enhancement High (especially with C12-C14 fatty acids)

Lubrication Low to medium (3-8)

Disintegration High (10-15)

1.2 Sucrose Esters

1.2.1 Structure and Properties

Sucrose esters (SEs) are non-ionic surface active agents consisting of sucrose as hy-

drophilic group and a maximum of eight fatty acids per molecule as lipophilic groups.

The most common fatty acids used in SEs are lauric, myristic, palmitic, stearic, oleic,

behenic and erucic acids. Changing the nature or the number of the fatty acid groups, a

wide range of hydrophilic-lipophilic balance (HLB) values can be obtained [1]. Most of

the SEs are manufactured in different grades, allowing their use in food, cosmetics and

pharmaceuticals. The commercial SEs are mixtures with various esterification degrees.

SEs with high monoesters contents are more hydrophilic, whereas a high esterification

degree results in liphophilic SEs. SEs with different hydrophilicities can be used in differ-

ent fields of pharmaceutical technology, e.g. for emulsification, solubilization, dissolution

modification, absorption enhancement or lubrication as reported in Table 1.1. Depend-

ing on the composition, SEs exist as solids, waxy materials or liquids. SEs, and especially

those with higher HLB values, can form gels in an aqueous environment. Depending

upon their degree of esterification, SEs melt at low temperatures, usually between 45

and 65�. The lipophilic SEs have characteristic melting points, while SEs with higher

HLB values merely soften during heating. They can be heaten up to 180�without

harmful effects on their properties [2].

(a) Sucrose mono-palmitate and regioisomers. (b) Sucrose di-palmitate and regioisomers.

Figure 1.1: Sucrose mono-palmitate (a) and di-palmitate (b) structure.
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Table 1.2: Applicability of SEs as emulsifiers in various formulation systems.

Formulation Reference

Emulsions, suspensions Akoh (1992), Yokoi et al. (2005)

Microemulsions Thevenin et al. (1996), Bolzinger et al. (1999),
Garti et al. (1999), Fanun (2008)

Vescicles Mollee et al (2000), Honeywell-Nguyen et al. (2003)

Microspheres, microparticles Miyazaki et al. (2006), Youan et al. (2004)

Nanoparticles, nanosuspensions Zimmermann and Müller (2003),
Lippacher et al. (2004)

1.2.2 Pharmaceutical and food applications of SEs

1.2.2.1 Emulsification and stabilization

SEs are widely used as food additives (E473) [3], and have also been noted as good

emulsifying and stabilizing agents in the pharmaceutical field, for example Klang et al. [4]

developed sucrose stearate based nanoemulsions. Table 1.2 summarizes the possible

applicability of SEs as emulsifiers and stabilizers in conventional and advanced drug

delivery systems.

1.2.2.2 Bioavailability modification

SEs are usually used to increase the release of poorly water-soluble drugs, for example

sucrose distearate was used to improve solubility of canrenone [5], but was also used to

achieve sustained and/or controlled release [6]. Besides the modification of drug disso-

lution, other properties of SEs result in interactions with biological barriers, and their

effects on absorption and penetration are therefore widely investigated.

Oral absorption enhancement

Studies have demonstrated that sucrose laurate is able to enhance the absorption of

cyclosporine A in an ex vivo experiment involving the use of normal gut epithelial tissue

and Peyer’s patch tissue of guinea pigs and in particular drug absorption is higher than

those obtained with the commercial oral solution. In this study four hydrophilic SEs

were compared with other enhancers, such as ethanol, oleic acid and ethoxy diglycol.

Among the SEs tested, only sucrose laurate (L-1695 - 1,5%) was able to increase the

passage of the drug through the buccal and palatal mucosae [6].

The effects of SEs are also investigated in cell culture models. The effect of some food

emulsifiers, including SEs, on P-glycoprotein drug efflux pump was studied using human

3
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intestinal Caco-2 cells. Results have shown that the accumulation of daunomycin, a

P-glycoprotein substrate, was markedly enhanced by SEs. Authors concluded that this

effect was not due to P-glycoprotein inhibition but rather to the increased daunomcin

permeability of the cell membranes that was induced by the emulsifiers. In the eval-

uation of the potential use of SEs as oral absorption enhancers [1], water-soluble SEs

(L-1695 sucrose laurate, M-1695 sucrose myristate and P-1695 sucrose palmitate) were

tested for toxicity and paracellular permeability with the Caco-2 cell line model. In

agreement with other previous findings, L-1695 at a concentration of 200µg/ml signif-

icantly reduced the transepithelial electrical resistance and increased the paracellular

transport of the marker molecule fluorescein in Caco-2 cell layers without changing the

immunostaining of thight junctions, indicating its possible use as oral absorption en-

hancer.

Skin permeability enhancement

The skin permeation behaviour of SEs is evaluated mostly in solution dosage forms,

microemulsion systems and recently in transdermal therapeutic systems (TTS patches).

For example, Lerk and Sucker [7] reported that sucrose laurate has intermediate skin

permeability-enhancing properties and proposed that this SE is a suitable, non-irritating

excipient for the dermal formulation of poorly water soluble drugs such as cyclosporine

A. An enhancement in rabbit percutaneous absorption of estradiol was also observed

using a sucrose laurate hydrogel [8].

The effects of SEs on the permeability of the human stratum corneum and on the per-

cutaneous penetration of various active principles were investigated by Ayala-Bravo et

al. [9]. They compared the effect of two hydrophilic SEs on the stratum corneum prop-

erties: sucrose oleate O-1570 (HLB 15) and sucrose laurate L-1695 (HLB 16) dispersed

in water or in ethoxydiglycol. Results have been show that the combination of SEs and

ethoxydiglycol can temporarily alter the stratum corneum barrier properties, promot-

ing the permeation. Okamoto et al. [10] examined the effects of different SEs on the

transdermal permeation of lidocaine and ketoprofen. They found that sucrose laurate

with a HLB value of 16 increased the permeation of ionized lidocaine from an aqueous

vehicle. On the other hand, sucrose laurate with an HLB value of 5, which was not

reported earlier as an absorption enhancer, increased the permeation of lidocaine and

ketoprofen from propylene glycol. Transdermal therapeutical systems containing meto-

prolol and different SEs (S-370, S-970, S-1670, M-1695, and L-1695) were prepared and

investigated by Csòka et al. [11]; the results revealed that all SEs tested enhance drug

release. In particular SEs with shorter fatty acid chain and higher HLB value increased

ten fold the amount of drug released.

Csizmazia et al. have compared the effect of sucrose laurate (S-1670) and ethoxydiglycol
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on ibuprofen penetration [12]. They concluded that SEs can increase the skin penetration

and permeation of ibuprofen efficiently, and ethoxydiglycol leads to ibuprofen accumu-

lation in the stratum corneum, thereby ensuring sustained drug release. These authors

have also investigated the effect of sucrose laurate on ibuprofen permeation. Hydro-

gel with and without sucrose laurate have been tested using a special bilayer stratum

corneum structure. Results have shown that sucrose laurate based gel did not cause

greater alterations in the stratum corneum structure than the ibuprofen gel without

sucrose laurate. It has been proven that SEs act as an effective hydratation enhancer

and increases the penetration of ibuprofen through the skin.

1.2.3 Regulatory and toxicological status of sucrose esters

SEs are approved as food additives (E473) and are widely used in the food industry. In

1992, the Scientific Committee for Food estabilished an acceptable daily intake (ADI)

of 0-20 mg/kg bw/day for SEs of fatty acids and sucroglycerides derived from palm oil,

lard and tallow fatty acids. In 2004, in the light of new studies the European Food

Safety Authority (EFSA) re-examined the safety of these food additives and established

an ADI of 40 mg/kg bw/day for SEs of fatty acids.

Since SEs are often used in various food products, their absorption, distribution and

metabolism have been thoroughly evaluated [13–15], the results showed that the SEs

are hydrolysed to sucrose and fatty acids prior to intestinal absorption and the extent

of the hydrolysis depending on the degree of esterification of the SEs. SEs having the

higher fatty acids, such as the octa- and hepta-esters, are not absorbed by humans and

are excreted unchanged, while those having the lower fatty acids are partially hydrolysed

and absorbed as sucrose and individual fatty acids.

The tolerability of SEs has been confirmed in animal tests. The oral toxicity and carcino-

genicity of sucrose stearate (S-570) were evaluated by Takeda and Flood [16]. Results

have demonstrated that there are no SEs-related effects on survival, tumor incidence

and other findings.

SEs based on palmitic, stearic or lauric acids are registered in the Japanese Standards

of Cosmetics Ingredients, most of the SEs are also registered in Cosmetics Directive of

the European Union, and they can therefore be used in cosmetics and personal care

products marketed in Europe. In the pharmaceutical field, SEs are employed as emulsi-

fiers, solubilizers, bioavailability/permeation enhancers and SEs with medium/low HLB

values can be also used as lubricant.
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1.3 Supramolecular aggreagates structures

The supramolecular aggregation of molecules resulting in a 3-D structure formation can

be described as an aggregation phenomenon, in particular it can be associated to a mi-

cellization process. In the micellisation process, molecular geometry plays an important

role because it affects the packing ability of the amphiphiles molecules. The main struc-

tures are spherical micelles, vesicles, bilayers, or inverted micelles (see Fig. 1.3). Two

opposing forces control the self-association process: hydrocarbon-water interactions that

promote aggregation (pulling surfactant molecules out of the aqueous environment), and

head group interactions that work in the opposite sense. These two contributions can

be considered as an attractive interfacial tension term due to hydrocarbon tails and a

repulsion term depending on the nature of the hydrophilic group (see Fig. 1.2) More

recently, this basic idea was reviewed and quantified by Mitchell and Ninham [17] and

Israelachvili [18], resulting in the concept that aggregation of surfactants is controlled by

a balanced molecular geometry. In brief, the geometric treatment separates the overall

free energy of association into three critical geometric terms:

� the minimum interfacial area occupied by the head group, ao;

� the volume of the hydrophobic tail(s), v;

� the maximum extended chain length of the tail in the micelle core, lc.

Formation of a spherical micelle requires that lc is equal or less than the micelle core

radius, Rmic. For spherical micelles, the aggregation number, N , can be expressed either

as the ratio of micellar core volume (Vmic) and the volume of the hydrophobic tail (v):

N =
Vmic
v

=
4
3πR

3
mic

v

Figure 1.2: Relation between interaction free energy µ0
N and surface head area a.
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Table 1.3: Expected aggregate characteristics in relation to surfactant critical packing
parameter.

Pp Surfactant type Expected aggregate
structure

<0,33 Single-chain surfactants with large
head groups

Spherical or ellipsoidal mi-
celles

0,33 - 0,5 Single-chain surfactants with small
head groups, or ionics in the pres-
ence of large amounts of electrolyte

Large cylindrical or rod-
shaped micelles

0,5 - 1,0 Double-chain surfactants with
large head groups and flexible
chains

Vesicles and flexible bilay-
ers structures

1,0 Double-chain surfactants with
small head groups or rigid, immo-
bile chains

Planar extended bilayers

>1,0 Double-chain surfactants with
small head groups, very large and
bulky hydrophobic groups

Reversed or inverted mi-
celles

or as the ratio between the micellar area, Amic, and the cross-sectional area, ao

N =
Amic
ao

=
4πR2

mic

ao

Equating the two previous:
v

aoRmic
=

1

3

Since lc cannot exceed Rmic for a spherical micelle:

v

aolc
≤ 1

3

More generally, this defines a critical packing parameter, Pp, as the ratio of volume to

surface area:

Pp =
v

aolc

The parameter v varies with the number of hydrophobic groups, chain unsaturation,

chain branching and chain penetration by other compatible hydrophobic groups, while

ao is mainly governed by electrostatic interactions and head group hydration. Pp is a

useful parameter since it allows the prediction of aggregate shape and size. The predicted

aggregation characteristics of surfactants cover a wide range of geometric possibilities,

and the main types are presented in Table 1.3.
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1.4 Emulsion and microemulsion formation and stability

A simple way for describing emulsion and microemulsion formation is to consider a

subdivision of the dispersed phase into very small droplets. Then the configurational

entropy change, ∆Sconf , can be approximately expressed as [19]:

∆Sconf = −nkb[lnφ+
(1− φ)

φ
ln (1− φ)] (1.1)

where n is the number of the droplet of dispersed phase, kb is the Boltzmann constant

and φ is the dispersed phase volume fraction. The associated free energy change can be

expressed as a sum of the free energy for creating new area of interface, ∆Aγ12, and the

configurational entropy in the form [20]:

∆Gform = ∆Aγ12 − T∆Sconf (1.2)

where ∆A is the change in interfacial area A (equal to 4πr2 per droplet of radius r) and

γ12 is the interfacial tension between phases 1 and 2 (e.g., oil and water) at temperature

T (Kelvin).

Figure 1.3: Changes in the critical packing parameters (Pp) of amphiphilic molecules
give rise to different aggregation structures.
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The combination of Eq.(1.1) and (1.2) gives an expression for obtaining the maximum

interfacial tension between phases 1 and 2. During emulsification, the droplet number

increases and ∆Sconf is positive. If the surfactant reduces the interfacial tension to a

sufficiently low value, the energy term in (1.2) (∆Aγ12) will be relatively small and pos-

itive, allowing a negative (and hence favourable) free energy change, and thus resulting

in spontaneous emulsification.

In surfactant-free oil-water systems, γo/w is of the order of 50 mN/m, and during emul-

sion and microemulsion formation the increase in interfacial area, ∆A, is very large,

typically a factor of 104 to 105. Therefore in the absence of surfactant, the second term

in Eq.(1.2) becomes very high, and in order to fulfill the condition ∆A12 ≤ T∆Sconf ,

the interfacial tension should be very low (approximately 0,01 mN/m). Some surfactants

(double chain ionics [21] and some non-ionics [22]) can produce extremely low interfacial

tensions (typically 10−2 to 10−4 mN/m) but in most cases, such low values cannot be

achieved by a single surfactant since the CMC is reached before a low value of γo/w is

attained. An effective way to further decrease γw/o is to include a second surface-active

species (either a surfactant or medium-chain alcohol), acting as a co-surfactant. This

can be explained in terms of the Gibbs equation extended to multicomponent systems.

It relates the interfacial tension to the surfactant film composition and the chemical

potential, µ, of each component of the system, as:

dγo/w = −
∑
i

(Γidµi) ≈ −
∑
i

(ΓiRTd lnCi) (1.3)

where Ci is the molar concentration of component i in the mixture, and Γi the surface

excess. Assuming that surfactants and co-surfactants, with concentration Cs and Cco

respectively, are the only adsorbed components (i.e.,Γwater = Γoil = 0), the previous

equation becomes:

dγo/w = −ΓsRTd lnCS − ΓcoRTd lnCco (1.4)

and its integration gives:

γo/w = γoo/w −
∫ Cs

0
ΓsRTd lnCs −

∫ Cco

0
ΓcoRTd lnCco (1.5)

The equation above shows that γoo/w is lowered by two terms, both from the surfactant

and co-surfactant so their effects are additive. It should be mentioned, however, that

the two molecules should be adsorbed simultaneously and should not interact with each

9
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other (otherwise they lower their respective activities), i.e., have completely different

chemical nature, so that mixed micellization does not occur.

Predicting emulsion and microemulsion type

A well-known classification of emulsion and microemulsions was proposed by Winsor [23]

who identified four general types of phase equilibria:

� Winsor I: the surfactant is preferentially soluble in water and an oil-in-water

(o/w) emulsion and microemulsions is formed. The surfactant-rich water phase

coexists with the oil phase where surfactant is only present as monomers at low

concentration

� Winsor II: the surfactant is mainly in the oil phase and a water-in-oil (w/o)

emulsion or microemulsions is formed. The surfactant-rich oil phase coexists with

the surfactant-poor aqueous phase

� Winsor III: three-phase system, where a surfactant-rich middle-phase coexists

with both an excess water and oil surfactant-poor phases (middle-phase emulsion

and microemulsion)

� Winsor IV: a single-phase (isotropic) micellar solution, that forms upon addition

of a sufficient amount of amphiphile (surfactant plus alcohol).

Depending on surfactant type and sample environment, type I, II, III or IV winsor phase

equilibria is formed, the dominant type being related to the molecular arrangement at

the interface (see below). Phase transitions are brought about by increasing either

electrolyte concentration (in the case of ionic surfactants) or temperature (for non-

ionics). Various investigators have focused on interactions in an adsorbed interfacial

film to explain the direction and extent of interfacial curvature. The first theory was

proposed by Bancroft [24] and Clowes [25] who considered the adsorbed film in emulsion

systems to be duplex in nature, with an inner and an outer interfacial tension acting

independently. The interface would then curve such that the inner surface was one

of higher tension. Bancroft’s rule was stated as “that phase will be external in which

the emulsifier is most soluble”; i.e., oil-soluble emulsifiers will form w/o emulsions and

water-soluble emulsifiers will form o/w emulsions.

In order to take into account the influence of amphiphiles and solvents at the interfacial

curvature, Winsor [23] had proposed the R-ratio parameter. The primary concept is to

relate the energies of interaction between the amphiphile layer and the oil and water

10
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regions. Therefore, this R-ratio compares the tendency for an amphiphile to disperse

into oil, to its tendency to dissolve in water. If one phase is favoured, the interfacial

region tends to take on a definite curvature. In micellar or microemulsion solutions,

three distinct (single or multicomponent) regions can be recognized: an aqueous region,

W, an oil or organic region, O, and an amphiphilic region, C. As shown in figure 1.4 ,

it is useful to consider the interfacial zone as having a definite composition, separating

essentially bulk-phase water from bulk-phase oil.

Cohesive interaction energies therefore exist within the surfactant (C) layer, and these

determine interfacial film stability. They are depicted schematically in Fig. 1.4: the

cohesive energy between molecules x and y is defined as Axy , and is positive whenever

interaction between molecules is attractive. Axy is depicted as the cohesive energy

per unit area between surfactant, oil and water molecules residing in the anisotropic

interfacial C layer. For surfactant-oil and surfactant-water interactions Axy can be

considered to be composed of two additive contributions:

Axy = ALxy +AHxy (1.6)

where ALxy quantifies interaction between non-polar portions of the two molecules (typ-

ically London dispersion forces) and AHxy represents polar interactions, especially hy-

drogen bonding or Coulombic interactions. Thus, for surfactant-oil and surfactant-water

interactions, cohesive energies to be considered are:

Aco = ALco +AHco (1.7)

Acw = ALcw +AHcw (1.8)

A

A

A

A

A

A

WW

HH

H CW

A H CO

LL

L CO

OO

A L CW

OIL PHASE [O]

SURFACTANT LAYER [C]

WATER PHASE  [W]

Figure 1.4: Interaction energies in the interfacial region of an oil-surfactant-water sys-
tem. Adapted from [26]
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AHco and ALcw are generally very small values and can be ignored.

Other cohesive energies are those arising from the following interactions:

� water-water, Aww

� oil-oil, Aoo

� hydrophobic-hydrophobic chains (L) of surfactant molecules, ALL

� hydrophilic-hydrophilic chains (H) of surfactant molecules, AHH

The cohesive energy Aco evidently promotes miscibility of the surfactant molecules with

the oil region, and Acw with water. On the other hand, Aoo and ALL oppose miscibility

with oil, while Aww and AHH oppose miscibility with water. Therefore, interfacial

stability is ensured if the difference in solvent interactions in C with oil and water bulk

phases is sufficiently small. Too large a difference, thus, too strong affinity of C for one

phase or the other, would drive to a phase separation. Winsor expressed qualitatively

this variation in dispersing tendency by:

R =
Aco
Acw

(1.9)

To account for the structure of the oil, and the interactions between surfactant molecules,

an extended version of the original R-ratio was proposed [27]:

R =
Aco −Aoo −ALL
Acw −Aww −AHH

(1.10)

In brief, Winsor’s primary concept is that this R-ratio of cohesive energies, stemming

from interaction of the interfacial layer with oil, divided by energies resulting from in-

teractions with water, determines the preferred interfacial curvature. Thus, if R >1,

the interface tends to increase its area of contact with oil while decreasing its area of

contact with water. Thus oil tends to become the continuous phase and the correspond-

ing characteristic system is type II (Winsor II). Similarly, a balanced interfacial layer is

represented by R=1.

1.5 High internal phase ratio emulsions (HIPREs)

Highly concentrated emulsions are an interesting class of emulsions characterized by

an internal phase volume fraction (Φ) exceeding 0,74, the critical value of the most

12
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compact arrangement of uniform, undistorted spherical droplets [28, 29]. Consequently,

their structure consists of deformed polyhedral and/or polydisperse droplets separated

by a thin film of continuous phase, a structure resembling gas-liquid foams. They are

high-internal-phase emulsions (HIPREs) which are also referred to in the literature as gel

emulsions [30–32], hydrocarbon gels, biliquid foams, etc. The internal or dispersed phase

of highly concentrated emulsions can be either polar or non-polar and, as ordinary emul-

sions, they are classified in two categories: water-in-oil (W/O) and oil-in-water (O/W).

However, they can be classified according to other criteria such as the microstructure of

the continuous phase or the interaction forces between droplets. Phase behavior studies

have shown [30, 33, 34] that highly concentrated emulsions separate into two phases:

one phase is a submicellar surfactant solution in water (or a surfactant solution in oil)

and the other phase can be either a microemulsion [30, 34] or a cubic liquid crystalline

phase [31]. The stability of highly concentrated emulsions is greatly affected, as in

conventional emulsions, by the nature of the components, the volume fraction of the

dispersed phase, the oil surfactant weight ratio, presence of additives, and temperature

[35]. The time taken for phase separation, which may vary from minutes to years, can be

significantly retarded by appropriate selection of the different composition variables and

temperature. One characteristic property of highly concentrated emulsions is their high

viscosity as compared to that of the constituent phases. They are non-Newtonian fluids

characterized by a yield stress below which they show a solid-like behavior [29, 36, 37].

Determination of the rheological properties by means of dynamic (oscillatory) measure-

ments showed that they have a viscoelastic response that can be fitted to a Maxwell

liquid element: an elastic modulus produced by interfacial area increase and a viscous

modulus produced by the loss caused by slippage of droplets against droplets. The val-

ues of relaxation time were found to be proportional to the continuous phase viscosity

and inversely proportional to the continuous phase volume fraction [38]. The character-

istic properties of highly concentrated emulsions are of particular interest for theoretical

studies and for applications. They are widely used as formulations in cosmetics, foods,

and pharmaceuticals.

1.5.1 Stability

HIPREs are kinetically stable systems, which break into two liquid phases with time.

The time taken for separation which may vary from minutes to years and it can be

significantly retarded by the appropriate selection of composition variables and temper-

ature. The changes in structure of the continuous phase strongly affect the gel emulsion

stability. As described above, a change in microemulsion structure from bicontinuous to

W/O type was observed with an increase in the oil/surfactant ratio [32].

13
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1.5.2 Oil in water (O/W) gel emulsion formation

The mechanism of O/W gel emulsion (HIPREs) formation was determined by Ozawa

and colleagues [39] by studying the phase behavior of HIPREs as function of temperature

and following the emulsification process conductimetrically. It was found that during

the emulsification process liquid crystal structures and microemulsion often coexist and

it was observed that the faster the cooling rate of the gel emulsion, the smaller the

droplets and narrower the size distribution. This was attributed to the fact that at a

temperature lower than the single-phase microemulsion, there is an extremely unstable

emulsion region. If the cooling rate is fast, the system passes this region in a short time

and the coalescence of oil droplets is very slow.

1.6 Liquid crystalline systems (LCS)

The liquid crystalline state combines properties of both liquid and solid states. The

liquid state is associated with the ability to flow, whereas solids have an ordered, crys-

talline structure. Crystalline solids exhibit short as well as long-range order in context

of both position and orientation of the molecules. Liquids are amorphous in general

but may show short-range order in context of position and/or orientation. Liquid crys-

tals show at least orientational long-range order and may show short-range order where

the positional long-range order has disappeared. Accordingly, liquid crystalline phases

represent intermediate states, also called mesophases. A prerequisite for the forma-

tion of liquid crystalline phases is an anisometric molecular shape which is generally

associated with a marked anisotropy of the polarizability. Molecules that can form

mesophases are called mesogens. Depending on the molecular shape, rod-like mesogens

form calamitic mesophases, whereas disk-like mesogens form discotic mesophases. Rod-

shaped molecules are often drug excipients (e.g., surfactants). Even drug compounds,

such as salts of organic acids or bases, with anisometric molecular shape fulfill the re-

quirements for the formation of calamitic mesophases.

1.6.1 Formation

Starting with the crystalline state, the mesophase is reached by increasing the tem-

perature or by adding a solvent. Accordingly, a differentiation can be made between

thermotropic and lyotropic liquid crystals, respectively.

Thermotropic Liquid Crystals are formed by the action of heat on certain solids and

occur as a phase of matter between a solid and a liquid, they are of no interest for our

purposes so their argumentation is not reported here.

14



Introduction 15

Lyotropic liquid crystals differ from thermotropic liquid crystals. They are formed by

mesogens which are not the molecules themselves but their hydrates or solvates as well

as associates of hydrated or solvated molecules. In the presence of water or a mixture

of water and an organic solvent as the most important solvents for drug molecules, the

degree of hydration or solvation, respectively, depends on the amphiphilic properties of

a drug molecule. Hydration of the mostly rod-shaped molecule -and the same holds

for solvation- results in different geometries, cone or cylinder (see Sec. 1.3). Cylinders

arrange in layers, resulting in a lamellar phase with alternating polar and non-polar

layers. Water and aqueous solutions can be included in the polar layers, resulting in

an increase of the layer thickness. Analogously, lipophilic molecules can be included in

the non-polar layers. In addition to the increased layer thickness of the lamellar phase,

lateral inclusion between molecules is also possible, this produces an increase in the sol-

vent concentration, and thus a change from a rod shape to a cone shape of the solvated

molecules, leading to a phase change. A range of lyotropic mesophases are possible,

depending on the mesogen concentration, the lipophilic or hydrophilic characteristics of

the solvent, and the molecule itself [40]. Polar amphiphilic lipids that possess a very low

aqueous solubility often self-assemble into lyotropic LCS in the presence of an excess

of water [41]. Depending upon the nature of the lipid, the presence of additives, and

solution conditions the structures formed often include the lamellar, reversed hexagonal

and reverse bicontinuous cubic phase. The two or three-dimensional liquid crystalline

structure consists of discrete lipidic hydrophobic and aqueous hydrophilic domains and

imparts a high viscosity to these materials. Sustained release of amphiphilic, hydrophilic

and lipophilic drugs under diffusion control can be achieved from the liquid crystalline

matrix [42–44].

It is known that the LCS can provide appropriated response for prolonged time, im-

proving drug efficacy and reducing side effects. These systems can be administered by

different routes including ocular, oral, intraperitoneal, intramuscular, subcutaneous and

cutaneous. The development of new drug carrier systems based in the LCS structure has

been a promising approach to increase and control the drug skin penetration [45]. Liquid

crystalline phases are mixtures having the mechanical properties of a liquid (often very

viscous) and optical characteristics of a crystal (optical anisotropy). Liquid crystalline

systems are thermodynamically stable, thermotropic and lyotropic systems that can be

stored for long periods without alterations [46, 47]. Lyotropic liquid crystalline phases

can be used as topical drug delivery systems because the high ability of drug solubiliza-

tion, thermodynamic stability and high similarity with the intercellular lipid membranes

of the skin and they also present a wide range of rheological properties. Swarbrick and

Siverly investigated the topical application of vehicles containing LCS and established
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Table 1.4: Application of lipid formulations in various BCS category drugs

BCS class Issues

Class I Enzymatic degradation, gut wall efflux

Class II Solubilization and bioavailability

Class III Enzymatic degradation, gut wall efflux and bioavailability

Class IV Solubilization, enzymatic degradation, gut wall efflux and bioavailability

that the percutaneous absorption of lipophilic drug model decreases significantly when

the proportion of liquid crystalline phases increases above 5–10% [48].

1.7 Lipid formulations

Lipid formulations for oral administration of drugs generally consist of a drug dissolved

in a blend of two or more excipients, which may be triglyceride oils, partial glycerides,

surfactants or co-surfactants. The primary mechanism of action which leads to improved

bioavailability is usually avoidance, or partial avoidance, of the slow dissolution process

which limits the bioavailability of hydrophobic drugs from solid dosage forms. Ideally

the formulation allows the drug to remain in a dissolved state throughout its transit

through the gastrointestinal tract. The availability of the drug for absorption can be

enhanced by presentation of the drug as a solubilizate within a colloidal dispersion.

This objective can be achieved by formulation of the drug in a self-emulsifying system

or alternatively by taking advantage of the natural process of triglyceride digestion. In

practice lipid formulations range from pure oils, at one extreme, to blends which contain

a substantial proportion of hydrophilic surfactants or cosolvents. Active molecules that

may find advantage in being vehicled within lipid formulations can be identified by the

Lipinski’s rule of five [49]. In the discovery setting, the rule of five predicts that poor

absorption or poor permeation is more likely when in the active molecule there are

more than five H-bond donors, more than ten H-bond acceptors, the molecular weight

is higher than 500 Da and the calculated logP is lower than 5. Use of lipid formulations

can be extended to all four categories of biopharmaceutical classification system (BCS)

class drugs [50]. These systems can help in solving the under-mentioned problems of all

the categories of BCS class drugs, as depicted in Table 1.4.

The Lipid Formulation Classification System was introduced as a working model in

2000 [51], and an extra type of formulation was added in 2006. The main purpose of the

Lipid Formulation Classification System is to enable in-vivo studies to be interpreted

more readily and, subsequently, to facilitate the identification of the most appropriate
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Table 1.5: The Lipid Formulation Classification System: characteristic features, pros
and cons of the four essential types of lipid formulations

Type Excipients Properties Pros Cons

I Oils without
surfactants (e.g.
tri- di- and
monoglycerides)

Nondispersing,
requires digestion

GRAS status;
simple

poor solvent
capacity unless
drug is highly
lipophilic

II Oils and water-
insoluble surfac-
tants

SEDDS formed
without water
soluble compo-
nents

Unlikely to lose
solvent capacity
on dispersion

Turbid o/w dis-
persion (particle
size 0,25-2µm)

III Oils, surfactants
and cosolvents
(both water-
insoluble and
water-soluble
excipients)

SEDDS/SMEDDS
formed with
water-soluble
components

Clear or almost
clear dispersion;
drug absorption
without digestion

Possible loss of
solvent capacity
on dispersion;
less easily di-
gested

IV Water-soluble
surfactants and
cosolvents (no
oils)

Formulation dis-
perses typically
to form a micellar
solution

Formulation has
good solvent ca-
pacity for many
drugs

Likely loss of sol-
vent capacity on
dispersion; might
not be digestible

formulations for specific drugs (i.e. with reference to their physicochemical proper-

ties) [52] . Table 1.51 indicates the fundamental differences between types I, II, III and

IV formulations [54].

1.7.1 Self-emulsifying drug delivery systems (SEDDS)

Among the different lipid formulations, in recent years much attention has been focused

on self-emulsifying drug delivery systems (SEDDS). The clinical usefulness of the SEDDS

is evident from the commercially available formulations containing cyclosporin A, riton-

avir and saquinavir. SEDDS are mixtures of drug, oils, surfactants and/or co-solvents

which form fine oil-in-water emulsions upon dilution with aqueous medium or in vivo

administration. The digestive motility of the stomach and intestine provides the agi-

tation necessary for the self-emulsification process. The small oil droplets produced by

self-emulsification provide a large interfacial area for pancreatic lipase and promote rapid

1adapted from [53]
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release of the drug. The surfactants are also able to improve drug bioavailability by vari-

ous mechanisms including improved drug dissolution, increased intestinal epithelial per-

meability, increased tight junction permeability and decreased P-glycoprotein-mediated

efflux.

1.8 Sucrose esters and complex aggregate systems

In view of the fact that most basic studies on microemulsions, emulsion gels (HIPREs)

and liquid crystalline systems have been conducted with standard surfactants, such as

polyoxyethylene-type nonionic surfactants, alkyl sulfates, quaternary ammonium salts

and dialkyl sulfosuccinate that are not permitted in food systems for health restrictions

it is important to search for new surfactants to prepare such aggregate systems. Food-

grade surfactants are limited in their number and structure. Among the hydrophobic

surfactants one can find mono- and diglycerides of fatty acids; sorbitan esters, polyg-

lycerol esters, such as polyglycerol polyricinoleate (PGPR) and sucrose ester (sucrose

polystearate). Among the hydrophilic surfactants, the selection is somewhat larger,

and emulsifiers such as ethoxylated sorbitan esters, polyglycerol esters, sodium stearoyl

lactylate and sucrose esters, are food-grade compounds. Sucrose esters are manufactured

and used mostly in Japan and only recently other countries registered sucrose esters as

food-grade permitted emulsifiers. Sucrose esters exists in a large variety of HLB values,

the monosubstituted (sucrose monostearate, monooleate, monolaurate, etc.) have high

HLB values and will dissolve in water, while the sucrose poly-fatty acid esters are hy-

drophobic, with low HLB values and will mostly be oil soluble. It is therefore expected of

the surfactant monolayer curvature at the oil-water interfaces that the sucrose polyesters

will form W/O emulsions while the sucrose monoesters will form the O/W emulsions. It

is quite surprising that the use of sucrose esters, for the formation of complex aggregate

systems, is very limited, and practically no systematic studies have been carried out.

The main reason for this, is that commercial sucrose esters are complex mixtures of

different fatty acids with very complicated isomeric compounds (the fatty acid react in

different positions), and the final product can be mono-, di-, or polyesterified and their

mixtures.

Several authors [55–57] reported that sucrose esters are not able to form microemulsions

without co-surfactants. Co-surfactants used in microemulsion studies are very often

represented by short chain alcohols [58], their main functions are to reduce interfacial

tension positioning at the oil-water interface and act also as co-solubilizers. Unfortu-

nately the only alcohol admitted in high quantity by food regulations is ethyl alcohol.

Ethyl alcohol does not suit our formulative expectations, because of its toxicity it is not

well accepted by the market, also, alcoholic products represents only a very little part
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of the nutraceutical market, then the use of alcohol was not taken into account.

1.9 Dissolution and release modeling fundamentals

Regardless the administration route, key factor for the success and reliability of a what-

ever formulation is drug bioavailability, defined as the rate and extent to which the

active drug is absorbed from a pharmaceutical form and becomes available at the site of

drug action. Although metabolism and physiological factors highly affect drug absorp-

tion by living tissues, bioavailability strongly depends on drug permeability through cell

membranes and drug solubilization in physiological fluids. Indeed, especially for what

concerns oral formulations, if solubilization is the first absorption step, permeation is the

second one as drug must dissolve in the physiological fluids and then it must cross cel-

lular membranes. Drugs with improved water solubility can be administered in a lower

concentrated dose, with a reduction of local and systemic side-effects; this is crucial for

drugs with important side-effect such as antibiotics, antifungals, or antivirals. Moreover,

improved dissolution means higher onset of action that is particularly valuable for drugs

intended to work immediately as required in pain, antianxiety, or antiemetic manage-

ment.

Because qualitative and quantitative changes in a formulation may alter drug release and

in vivo performance, developing tools that facilitate product development by reducing

the necessity of bio-studies is always desirable. In this regard, the use of in-vitro drug

dissolution data to predict in-vivo bio-performance can be considered as the rational

development of controlled release formulations. Model dependent methods are based on

different mathematical functions, which describe the dissolution profile. Once a suit-

able function has been selected, the dissolution profiles are evaluated depending on the

derived model parameters. The fundamental principle for evaluation of the kinetics of

drug release was offered by Noyes and Whitney [59] in 1897 as the equation:

dM
dt

= KS(Cs − Ct) (1.11)

where M, is the mass transferred with respect to time, t, by dissolution from the solid

particle of instantaneous surface, S, under the effect of the prevailing concentration driv-

ing force (Cs − Ct), where Ct is the concentration at time t and Cs is the equilibrium

solubility of the solute at the experimental temperature. The rate of dissolution dM/dt

is the amount dissolved per unit area per unit time and for most solids can be expressed

in units of g · cm−2 · s−1. When Ct is less than 15% of the saturated solubility Cs, Ct

has a negligible influence on the dissolution rate of the solid. Under such circumstances,
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the dissolution of the solid is said to be occurring under ”sink” conditions. In general,

the surface area, S is not constant except when the quantity of material present exceeds

the saturation solubility, or initially, when only small quantities of drug have dissolved.

There are number of kinetic models, which described the overall release of drug from the

dosage forms. Because qualitative and quantitative changes in a formulation may alter

drug release and in-vivo performance, developing tools that facilitate product develop-

ment by reducing the necessity of bio-studies is always desirable. In this regard, the use

of in-vitro drug dissolution data to predict in-vivo bio-performance can be considered as

the rational development of controlled release formulations.

1.10 Model molecules

1.10.1 Ubidecarenon

Coenzyme Q10 (Co Q10; ubidecarenon; ubiquinol-10 and/or ubiquinone-10) plays the es-

sential role of electron carrier and proton translocator during cellular respiration and

ATP production and protects numerous cellular membranes and plasma lipoproteins

against free radical-induced damage. CoQ10 is primarily obtained from meat, poultry,

fish, and rapeseed oil [60, 61]. In recent years, the use of CoQ10 as a nutritional sup-

plement has attracted much attention. Numerous CoQ10 products are available on the

market, including tablets (chewable and non-chewable), powder-filled capsules, and soft

gels containing an oil suspension [62]. CoQ10, a yellow colored crystalline powder with

a melting point of 48� is practically insoluble in water and poorly absorbed from the

gastrointestinal tract. The slow absorption of CoQ10 (Tmax 5-10 h) and the very low

oral bioavailability of CoQ10 in these products is due of its high molecular weight and

poor water solubility (see Fig. 1.5). In the past few years, there has been an extensive

effort to improve the oral bioavailability of CoQ10 in nutritional supplements. Various

formulations for improvement of the oral bioavailability of CoQ10 have been investigated,

including molecular complexes [63, 64], emulsions [65, 66], and liposomal systems [67].

Figure 1.5: Structure of CoQ10
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1.10.2 Resveratrol

Resveratrol (3,5,4’-trihydroxystilbene) is a non-flavonoid polyphenolic compound abun-

dant in grapes, peanuts and other foods that are commonly consumed as part of human

diet. The compound was first isolated from the root of Polygonum cuspidatum, a plant

used in traditional Chinese and Japanese medicine [68]. Starting in the 1990’s and con-

tinuing to date, scientific studies have reported that resveratrol has a broad range of

desirable biological actions, including cardioprotection [69, 70], cancer prevention [71]

and prolongation of lifespan in several species [72, 73]. The biological properties of

resveratrol are attributed to its ability to inhibit the oxidation of human low-density

lipoprotein, while its suppression of cyclooxygenase- 2 and inducible nitric oxide syn-

thase activities also contribute to its anti-inflammatory and antioxidant effects [74, 75].

Furthermore, the chemopreventive effect of resveratrol is thought to be due to inhibition

of quinone reductase-2 activity, which in turn up-regulates the expression of cellular

antioxidant and detoxification enzymes to improve cellular resistance to oxidative stress

[76]. Resveratrol also increases the activity of SIRT (a member of the sirtuin family of

nicotinamide adenine dinucleotide-dependent deacetylases), resulting in improved cellu-

lar stress resistance and longevity [77]. Resveratrol can also regulate the expression of

hormone dependent genes such as the onco-suppressor BRCA1 in breast cells, due to its

structural similarity to diethylstilbestrol [78].

Topical application of resveratrol to SKH-1 hairless mice prior to UV-B irradiation sig-

nificantly inhibited UV-B-induced skin edema and caused a significant decrease in UV-B

mediated generation of hydrogen peroxide and infiltration of leukocytes [79]. In another

study, pretreatment of normal human epidermal keratinocytes (NHEK) with resveratrol

inhibited UV-B-mediated activation of NF-JB pathway. Studies have demonstrated that

resveratrol imparts its protective effect against multiple UV-B exposure via modulations

in the cki-cyclin-cdk network and MAPK pathway [80]. In long-term studies, topical

application of resveratrol (both pre- and post-exposure to UVB) has been shown to re-

sult in a significant inhibition in tumor incidence and delay in the onset of tumorigenesis

[81]. Other studies demonstrates that topical application of resveratrol protects human

skin from the effects of sun damage by decreasing the formation of sunburn cells [82, 83].

There was improvement in the moisture of the skin and its elasticity, an amelioration

of skin roughness and depth of wrinkles, combined with a reduction of age-spots color

intensity [84]. The presence of specific resveratrol receptor sites in human skin suggests

that this polyphenolic compound may be useful to prevent skin disorders associated with

aging [85]. The anti-acneic property of resveratrol in volunteers with acne vulgaris has

also been reported [86].
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Figure 1.6: Chemical structures of trans-3,4’,5-trihydroxystilbene:
cis-(Z)-resveratrol, (left) and trans-(E)-resveratrol, (right).
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Chapter 2

Development of the Formulation

Platform

The aim of the work described in this chapter is the development of a platform for-

mulation based on sucrose esters, medium chain fatty acids, water and glycerin. To

rationalize and reduce the number of the tests the Design of Experiments technique is

initially used.

2.1 Introduction to Design of Experiments

A process can be represented as a combination of operations which transform inputs (e.g.

raw materials) in outputs (e.g. finished product). It may be influenced by controllable

and measurable factors (e.g. temperature, concentration and pH), and non-controllable

factors (e.g. impurities), both able to affect the characteristics of the experimental re-

sponse. Thus, the knowledge of these factors permits to control the process and the final

product characteristics.

In order to determine the amount of oil, surfactant and aqueous phase producing stable

emulsions, Design of Experiments (DoE) was used. The DoE considers the experiment as

a system composed of independent variables (experimental factors) and dependent vari-

ables (experimental responses). DoE measures and analyzes the effects of the changes

in the parameters affecting the system properties (experimental responses). The term

“experimental factor” identifies a parameter supposed to influence the phenomenon con-

sidered and whose variation causes a more or less intense variation of the experimental

responses, i.e. data obtained experimentally. The experimental factors can be quali-

tative or quantitative and the alternatives in which they occur are defined levels that
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identify the experimental domain, or the area of interest of the study. In the development

of the DoE it is necessary to:

� recognize and state the contest

� select the variables and their levels

� choose the experimental responses

� choose the experimental plan (DoE)

� perform the experiments

� point out data statistical analysis

In order to obtain an equation expressing the influence of the experimental factors

on the response, it is necessary to postulate a mathematical model suitable for the

description of the studied phenomenon. The main model used for the study of many

systems is a polynomial model of the first, second, or third degree [87]. The number

of the model coefficients increases by increasing the degree of the polynomial and, after

the third degree, the number of experiments to be carried out becomes extremely high.

However, a polynomial of second or third degree generally are sufficient to represent a

phenomenon [88]. Once chosen the mathematical model, it is necessary to define the

experiments to be performed in order to calculate the model coefficients and to evaluate

the effect of the variables on the experimental response. A set of experiments can be

represented by means of the experimental matrices, or “tables” constituted by N lines,

corresponding to N experiments, and k columns, corresponding to k variables studied.

The variables are the parameters that will potentially affect the characteristics of the

system and they may be qualitative (e.g. the type of excipient) or quantitative (e.g. the

pH value). In order to assess the interaction between the variables and the responses,

variables must be made comparable to each other by transforming them into codified or

normalized variables, according to the equation:

xi =
Ui − U0

i

∆Ui
(2.1)

where xi is the value of the normalized variable, Ui is the value of the natural variable,

U0
i is the value of the natural variable in the middle of the experimental domain, ∆Ui

is the range of the natural variable. Experimental matrices are constructed in terms of

normalized values and their choice depends on the postulated model. The experimental

plan, which describes the experiments to be performed, is obtained by transforming the

normalized values in experimental values. Once performed the experiments and obtained

the experimental responses, it is possible to calculate the coefficients of the postulated
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model [88].

Study of mixtures

In many product development areas, the application of experiments involving mixtures

or blends is quite common. Generally, in mixture studies the interest is in developing

better or innovative formulations with optimum characteristics (responses) able to satisfy

determined requirements [89]. In the case of mixtures, the variables are quantitative and

continuous and they show two important properties:

� they are dependent and their sum equal to 1 or 100% of the mixture composition

� they are dimensionless

Shape and size of the experimental domain depend on the number of formulation vari-

ables considered in the study. For k variables, a k − 1 dimensions domain will be

obtained. When k = 3 the experimental domain is represented by an equilateral trian-

gle, whose vertices correspond to the pure components, the sides to the binary mixtures

and the interior points to the ternary mixtures (Fig. 2.1). It is also possible to limit

the experimental domain by introducing quantitative constraints and relational limits

between variables. Once defined the experimental domain, a mathematical model, able

to describe the system, must be postulated and a matrix suitable to calculate the model

coefficients must be chosen.

The ability of the model to describe the system and to predict the experimental response

is assessed by calculating R2 and R2
A coefficients and by performing some additional ex-

periments (test points). The choice of the test points is fundamental in order to have

correct information about the quality of the predictive capacity of the model [90]. These

Figure 2.1: Representation of experimental domain for 3 factors mixtures without con-
straint.
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points should be placed where the variance of the measured value is higher. If at the

test points the experimental values are very similar to those estimated by using the

model, it can be concluded that the mathematical model is appropriate to describe the

system and to predict the experimental responses. Otherwise, if the difference between

experimental and calculated values is too high, this means that probably coefficients

have not been estimated with sufficient accuracy and the model does not fit well the

system. In this case a model of higher degree must be chosen to describe the complexity

of the system and a higher number of experiments must be performed in order to have

a more accurate measure of the coefficients.

If the model provides a good fitting of data it will be possible to create the isoresponse

surfaces describing the variation of the response as a function of the mixture composi-

tion (Fig. 2.2). The isoresponse surface could be used to choose the mixture having the

desired response. For systems including several experimental responses, the overlap of

the isoresponse surfaces, allows to identify an area of “optimum”, which contains the

mixture composition able to give the best experimental responses [89].

2.2 Materials

All materials used were of food grade: medium chain triglycerides (Basf S.p.a. - Lud-

wigshafen, Germany); sucrose mono-palmitate (Mitsubishi Kagaku Co. - Tokyo, Japan);

ubidecarenone (LCM S.p.a. - Milan, Italy); resveratrol (Giellepi S.p.a. - Milan, Italy).

(a) (b)

Figure 2.2: Examples of two-dimensional (a) and three-dimensional (b) isoresponse
surfaces.
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2.3 Methods

2.3.1 Emulsification procedure

Since one of the main purposes of the study was to easily transfer the laboratory pro-

duction process to an industrial scale it was essential to minimize the number of steps

and to avoid unnecessary procedures. For example in a laboratory scale heating a water

solution to 50 or 60� is not such an important issue, but if referred to an industrial

mixer (e.g. 1000 L) an increase of 10�will cause the consuming of 1, 16× 104 W/h1 as

well as time consuming (depending on the heating and cooling system). Consequently

the emulsification procedure has been set up on the basis of some preliminary trials and

in particular it consists in two main steps:

1. mix and dispersion of sucrose esters in a water/glycerin solution, at 50�under

gentle stirring (≈ 200 rpm)

2. pouring the oil phase (previously heated to 50�) into the dispersion of sucrose

esters under mild stirring (≈ 400 rpm)

Once the emulsion was created, the resulting system was then cooled to room tempera-

ture.

2.3.2 Droplet size and electrokinetic potential determination

The effect of the components ratio on the particle size and particle size distribution

was tested. Particle sizes were determined by dynamic laser light scattering instrument

(Nano-ZS, Malvern Instruments, Worcestershire, UK) equipped with a 4 mW helium/-

neon laser at a wavelength output of 633 nm. The particle size data is reported as the

average mean diameter. To avoid multiple scattering effects, samples were diluted from

3× to 50× in water obtaining a viscosity and a turbidity that permits an optimal reading.

Samples were placed in a capillary test tube that was loaded into the instrument op-

erating with predefined parameters. Samples were equilibrated for 1 min at 25� inside

the instrument before dynamic light backscattering (detection angle = 173°) data were

collected. The average particle diameter was calculated by the instrument using the

Stokes-Einstein equation, assuming the emulsion droplets to be spherical.

Zeta potential was calculated by determining the Electrophoretic Mobility and then

applying the Henry equation. The electrophoretic mobility is obtained by performing

1Indicative calculation according to ∆E = m · cs · ∆T where m is the mass, cs is water specific heat,
and ∆T is the temperature variation.
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an electrophoresis experiment on the sample and measuring the velocity of the parti-

cles using Laser Doppler Velocimetry (LDV). The measurements were done at least in

triplicate.

2.3.3 Rheology measurements

Rheology is the study of deformation and flow of materials under external forces. Some

equations and the units of these parameters are:

τ =
F

A
(2.2)

where: τ is shear stress (Pa = kg ·m−1 · s−2) and A is area (m2). The viscosity can be

defined as the ratio between shear stress and shear rate:

η =
τ

γ
(2.3)

where: η is viscosity and γ is shear rate (s−1). Since the unit of shear stress is Pa and

the unit of deformation is s−1, the unit of viscosity is Pa · s.
Rheology measurements were performed with a thermostated rotational rheometer (Thermo

Scientific - HAAKE 550, Palo Alto, USA) composed by:

� thermocontroller HAAKE F3

� heat exchanger HAAKE CH

� Rotovisco RV20

� Rheocontroller RC20

� Stator M5

� Rotor SV-II

Because only Newtonian fluids have a measurable viscosity, which is independent of shear

rate, semisolid pharmaceutical dosage forms that are non-Newtonian products exhibit an

apparent viscosity. For semi-solids that show thixotropic properties and/or irreversible

changes in viscosity after shearing, as in this case, specific attention was given to sample

preparation procedures to minimize variability in the measurement of apparent viscosity

caused by variable shear stress (e.g. mixing speed and temperature, filling operation,

and sample handling). The removable sample holder of the Haake viscometer was filled

with the sample, and then inserted into a thermostated water jacket mounted on the

viscometer. A small sample adapter (SV-2P spindle), was used to measure the viscosity
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of the preparations. The temperature of the sample was kept at 25� and then repeated

measures were taken at 55�. The sample was allowed to settle for 5 min prior to start-

ing measurement. To permit a comparison between different formulations all the tests

were performed varying shear rate (γ) from 0 to 50.000 s−1 in 2,5 min and from 50.000

to 0 s−1 in 2,5 min) and registering shear stress (τ) and viscosity (η). To obtain an easy

comparison of data, maximum shear stress value of every formulation was taken into

account.

Dynamic frequency sweep tests were carried out at 37�, at 1,0 Pa in the limit of the

linear viscoelastic region with a reomether Haake Rheo-Stress RS150 equipped with a

parallel plates device (HPP20 profiled with diameter 35 mm). From these measurements,

storage modulus (G’) and loss modulus (G”) were determined for frequencies between

0,01 and 100 Hz and a constant shear stress of 5 Pa. Rheology is able to determine the

crystallographic structure of the lipid crystalline phases and dynamic processes occur-

ring during relaxation of liquid crystalline phases, which are directly affecting diffusion

properties in heterogeneous phases [91].

2.3.4 Differential scanning calorimetry (DSC)

The thermal behavior of the formulations and their components was determined through

DSC investigation using Mettler Toledo DSC 1, STARe System (Mettler Toledo GmbH

Analytical, Giessen,Germany), weighing 8-13 mg of samples on a microbalance, in stan-

dard 40µl aluminum pans, immediately sealed by a press. An empty pan was used as a

reference. Samples were scanned starting from 25 to 55� at a heating rate of 5�/min.

The fusion temperatures of the components and the total heat transferred in any of

the observed thermal processes was determined. The DSC results are also useful to

identify the liquid crystalline phases and the possible transitions occurring during the

storage [92].

2.3.5 Electron microscopy analysis

Morphological and structural examination of selected formulations was carried out using

transmission electron microscopy (TEM) Tecnai 12, FEI. After sample dilution with

distilled water (1:200) and mixing by slightly shaking, one drop of sample was deposited

on copper grids covered with a layer of Formvar standing for 4 min. After, the excess

was removed by absorbing on a filter paper. The grids were later stained with one drop

of 2% uranyl acetate solution and allowed to dry for 5 min before examination under the

electron microscope.
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2.3.6 Stability tests

Long term stability

Stability were examined according to ICH guidelines. The formulations were stored

under ambient conditions for 12 months, and the system was examined periodically

after 1, 3, and 6 months by visual inspection, centrifuge test and rheological evaluation.

Centrifugation stress testing

Stability studies is time consuming process, so accelerated stability test is preferred.

Previously thermally tested formulations are placed in centrifuge test tubes and then

in the centrifuge basket at a well-balanced equilibrium position at ambient temperature

conditions. Formulations were centrifuged at 5.000 and 10.000 rpm for 30 min were

applied in order to assess the physical instabilities like phase separation, phase inversion,

aggregation, creaming and cracking.

Freeze-thaw cycles

To assess any change in stability, formulations were subjected to three freeze-thaw cycles

consisting into storage at 25� for 24 h and followed by 24 h at -5� the cycle is repeated

three times and change is noted.

2.4 Results

2.4.1 Design of Experiments

Lipophilic molecules generally present poor oral bioavailability due to their low water

solubility. A formulation strategy to increase their solubility and thus their availability

is represented by the lipid formulations. Lipid formulations are mixtures of the active

and oil which may contain also surfactants, co-surfactants and solvents consequently

emulsions belong to lipid formulations. The aim of this research project is to produce

an oil-in-water emulsion able to delivery lipophilic molecules that can be use as platform

to develop both oral and topic formulations.

The development of the platform formulation involves three main steps:

1. selection of the excipients

2. design and development of the formulation

3. characterization of the formulation

During the selection of the excipients it is necessary to take into account different pa-

rameters, in particular:
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Table 2.1: Solubility of the active molecules in MCFA

Active Solubility (mg/ml)

Ubidecarenon 52, 5± 0, 81

Resveratrol 0, 82± 0, 10

� they must be food grade

� they must have low costs

� they must have good taste

The company has also required the use of medium chain fatty acid (C8-C10) as oil phase.

In order to meet all the parameters in this research it was evaluated the possibility

to develop a platform employing medium chain fatty acid (MCFA) as oil phase and

sucrose esters as surfactant using two lipophilic antioxidants as model active molecules

(ubidecarenon and resveratrol). Among the different sucrose esters it was selected the

sucrose monopalmitate because it presents the best dispersion in water and because it

has the best organoleptic features.

Solubility of the active molecules in the selected oil phase was evaluated and results are

reported in Table 2.1.

A mixture composed of water and glycerin (1:2, w/w) was chosen as aqueous phase

because it provides the best dispersion of the sucrose esters. Preliminary trials have

highlighted the presence of quantitative and relational constraints resumed in Tables

2.2 and 2.3. In order to describe the system a synergic polynomial mathematical model

for three variables (Eq. 2.4) was postulated and two experimental responses, median

diameter and zeta potential, were chosen:

Y i = b0 + b1x1 + b2x2 + b3x3 + b(1−2)x1x2 + b(1−3)x1x3 + b(2−3)x2x3 (2.4)

Experiments useful to estimate the mathematical coefficients were designed by the Nem-

rodw software (Nemwrod®, Marseille, France). In order to reduce the number of ex-

periments the exchange algorithm was used and a matrix consisting of 18 experiments

(Table 2.4 and Fig. 2.3) was selected.

2.4.2 Pseudo-ternary phase diagrams

The phase behavior of the four-components (sucrose ester:triglyceride:water:glycerin)

systems is described on a pseudo-ternary phase diagram in which the weight ratio of two

components (water and glycerin) was fixed. Considering the quantitative constraints and
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Table 2.2: Applied constraints during the design of the experimental domain.

Component Lower limit (%) Upper limit (%)

Sucrose ester 2 15

Water phase 15 1

Oil phase 40 80

Table 2.3: Fixed ratios between components.

Components Ratio

Water/glycerin 0,5

Water phase/SEs >1,5

Oil phase/SEs >5; <30

the relation limits reported above (Sec. 2.4.1) it is possible to define the experimental

domain reported in Fig.2.3.

Sucrose monopalmitate (SMP) alone is not able to form microemulsions that cover most

of the possible oil, water and surfactant compositions. It has a fairly high critical pack-

ing parameter around 0,2-0,45 [93, 94] and this value is further increased if the oil phase

penetrates into the alkyl chains of the SMP molecule. In order to produce microemul-

sions over a wide range of compositions, it is necessary to reduce this parameter by the

use of cosurfactants, generally short chain alcohols [21], but, as seen in Sec. 1.8 alcohols

are not suitable for food industry purposes. The molecule with more chemical affinity

with short chain alcohols and also admitted by food regulations and well tolerated by

Figure 2.3: Pseudo-ternary diagram of the experimental domain, every dot represents
a formulation which composition was derived from the matrix resulting

from the DoE.
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the market is glycerin. Glycerin acts reducing the packing parameter of the SMP either

by making the aqueous phase less hydrophilic, and/or by incorporating itself into the

interfacial film. In addition, a cosurfactant can also act increasing the fluidity of the

surfactant film, conferring a sufficient flexibility to take up the different curvatures re-

quired to form microemulsions. In general an elastic or flexible surfactant film promotes

the formation of microemulsion, whereas a lamellar phase is formed with a more rigid

film [95].

There was a clear separation between transparent formulations, hereafter referred to as

“emulsion-gel” (Eg) and milky formulations, defined as “emulsions” (E). The three for-

mulations that lead to isotropic transparent lamellar phases are highlighted in Table 2.4

and the two separated domains are depicted in Fig. 2.4. Out of the two domains (Eg and

E) formulations are unstable, oil and water phases separate under accelerate stability

tests (see Sec. 2.3.6).

At the beginning of the study it was thought that the isotropic transparent formula-

tions were microemulsions because of their aspect and the little energy required for the

emulsification process and because of the great stability showed. Through further study

it was clear that it was not formed any microemulsion, primarily because of the non-

Newtonian behavior. It was impossible to obtain a flexible surfactant film to ensure

the formation of microemulsion, it was instead obtained concentrated gel-emulsions (see

Sec. 1.5) containing 60-75% of oil phase, with a transparent aspect and a very good

stability, composed of densely packed oil droplets and lamellar liquid crystalline zones.

Figure 2.4: The Eg zone represents the transparent emulsion-gel phase domain whereas
E zone represents the milky emulsion domain.

33



Development of the formulation platform 34

Table 2.4: Evaluated formulations, the highlighted lines are the formulations that lead
to transparent emulsion gels.

Formulation Oil (%) SMP (%) Water (%) Glycerin (%)

1 40,0 2,0 19,3 38,7

3 75,0 10,0 5,0 10,0

4 40,0 8,0 17,3 34,7

5 66,7 13,3 6,7 13,3

6 60,0 2,0 12,7 25,3

7 80,0 2,7 5,8 11,5

15 63,1 6,1 10,3 20,5

16 80,0 4,0 5,3 10,7

17 54,2 10,8 11,6 23,4

18 40,5 4,5 18,3 36,7

19 60,0 10,0 25,0 5,0

20 51,5 4,1 14,8 29,6

21 71,5 5,6 7,6 15,3

22 69,0 8,1 7,6 15,3

23 51,5 7,1 13,8 27,6

24 64,9 9,7 8,5 16,9

25 61,5 4,1 11,7 22,7

26 71,5 4,4 8,0 16,1

2.4.3 Droplet size and electrokinetic potential analysis

It is worth noting that all the formulations have a viscosity too high to perform directly

the scattering analysis, so it was necessary a dilution prior the measurement (see Sec.

2.3.2). The dilution of the formulations had a dramatic change on the internal structure,

particularly, transparent lamellar phase become milky emulsions. So it is important to

evaluate the droplet size and the ζ potential data only for comparison between formu-

lations.

As reported in Table 2.5 the median diameters (D50) of the formulations are between

0,28 and 9,15 µm with a PDI between 0,31 and 0,61. The PDI values indicate that the

droplet size distribution are moderately polydisperse, but always < 0,7 (values greater

than 0,7 indicate that the sample has a very broad size distribution and is probably not

suitable for the DLS technique).

The magnitude of the zeta potential indicates the degree of electrostatic repulsion be-

tween adjacent, similarly charged particles in a dispersion. For particles that are small

enough, a high zeta potential (e.g.>±30 mV) will confer stability. When the potential

is small (e.g.<±10 mV), attractive forces may exceed this repulsion and the dispersion

34



Development of the formulation platform 35

Table 2.5: D50 with relative PDI and ζ values.

Formulation D50 (µm) PDI ζ (mV )

1 9,15 0,61 -51,0

3 0,28 0,48 -28,6

4 4,42 0,51 -36,2

5 0,47 0,54 -32,7

6 0,56 0,41 -47,6

7 2,61 0,39 -47,1

15 3,41 0,31 -44,2

16 3,91 0,55 -34,0

17 3,12 0,47 -37,5

18 5,23 0,46 -23,4

19 6,23 0,33 -41,2

20 4,48 0,45 -31,2

21 3,02 0,42 -55,6

22 1,35 0,34 -48,1

23 2,88 0,40 -57,1

24 0,67 0,55 -32,4

25 6,56 0,58 -21,8

26 0,48 0,36 -55,3

may break and flocculate [96, 97]. The formulations tested demonstrate to have a nega-

tive ζ potential between ≈ -20 and -60 mV therefore indicating a good stability against

flocculation and agglomeration of droplets.

The D50 data show a glaring correlation between droplet size and SMP concentration

as depicted in Fig. 2.5-a, in fact, increasing the concentration of surfactant the median

diameter decreases as a consequence of the availability of amphiphilic molecules that

can cover a lager area and thus a greater number of smaller droplets. Another notice-

able relation showed in Fig. 2.5-b is the one between D50 and water phase concentration,

increasing the concentration of water and glycerin also the droplet dimension increases,

this is quite surprisingly because it would be expected a decrease in D50 in relation to a

smaller oil concentration.

Although there is no unanimous opinion about the optimal droplet dimensions for a

better oral absorption [98–100], it is generally accepted the idea that droplet dimensions

<0,5µm lead to a good compromise [101–103] between technological issues and absorp-

tion features. Thus, for the oral release and further characterization studies the two

formulations presenting the lower D50 were selected: formulation n°3 and formulation

n°26, therefore called F03 and F26.
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2.4.4 Transmission electron microscopy

Although the two selected high HIPREs (F03 and F26) show the same clear and transpar-

ent appearance, they exhibit different internal structures. Representative TEM images

of F03, depicted in Fig. 2.6 a-b, show the typical foam-like structure, often found in lit-

erature when approaching to HIPREs: densely packed oil droplets surrounded by a thin

film of surfactant (SPM) and water phase. F3 has an internal phase volume fraction, Φ,

of 0,75, that is just above the critical value of the most compact arrangement of uniform,

undeformed spherical droplets of 0,74. In fact the droplet morphology is quite irregular

and the dimensions have a high polydispersity.

The internal structure of F26, shown in Fig. 2.7 a-b, is quite different, although foam-like

zones were found (data not shown), a bicontinuous lamellar-structured (Lα) zone was

detected, indicating a liquid crystal organization of the oil phase synergistically with

the other components of the formulation. It can be assumed that the capryc/caprylic

blend composing the oil phase behave like an amphiphilic molecule and together with

sucrose monopalmitate (see the molecular structures in Fig. 2.9) create a supramolecular

organization as depicted in Fig. 2.8. It is a quite unexpected result, because in literature

are present numerous articles reporting the capability of glycerol monooleate to form

liquid crystals but no data are reported about MCFA and SMP liquid crystals.

TEM analysis performed on HIPREs formulations after the dilution (Fig. 2.6 c-d and

2.7 c-d) have demonstrated that during the dilution the initial typical structure of

HIPREs is lost and replaced by a classical droplet emulsion structure, besides the ob-

served droplet sizes are consistent with DLS measurements.
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Figure 2.5: After water dilution of formulations, droplet dimension seems to be mainly
related with concentrations of surfactantant (SMP) and water phase.
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2.4.5 Rheology

Controlled-rate viscosity tests were carried out on the formulations at 25� and repeated

at 55� to investigate if the physical state of SMP can affect the rheology. As reported in

Table 2.6 and in Fig. 2.10 2 at 25� viscosity has a wide range, from 0,2 to 35 KPa·s and

is directly related with SMP concentration, in fact SMP is the only solid state compo-

nent at 25� and it has thickening property. To validate the thickening capacity of SMP

measures were repeated at higher temperature than the melting temperature of SMP

(42-48�), at 55� in fact the viscosity range is significantly lower, ranging from 0,02

to 0,35 KPa·s. Below its melting temperature SMP behave like a thickening agent, its

alkyl chains are rigid and prevent fluid movement of the oil and water phases. Above its

melting temperature SMP’s alkyl chains lose rigidity and behave like a fluid, weakening

the thickening ability, regardless of the relative quantity.

Thanks to a temporary collaboration with the University of Trieste3 it was possible to

perform some frequency sweep experiments. Frequency sweeps were recorded to study

2To provide a clean-cut comparison between formulations flow and viscosity curves were build per-
forming controlled-rate tests and the maximum viscosity value was taken into account.

3Prof. Grassi, Chemical Engineering Department

(a) HIPREs F3 (b) HIPREs F3

(c) HIPREs F3 after water
dilution

(d) HIPREs F3 after water
dilution

Figure 2.6: TEM images of HIPREs F03, before (a, b) and after water dilution (c, d).
The magnification is illustrated by the scale bars.
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the emulsion gel strengths of the dispersions. In rheological terms, for a gel the storage

(G’) and the loss (G”) modulus are frequency-independent and G’>G”. Gels can usually

be classified into two categories [104]: weak gels, where the moduli (G’ and G”) depend

slightly on the frequency; and strong gels, where the moduli are relatively independent

of frequency. Under increased deformation or continuous flow conditions, strong gels

breaks into small gel regions rather than flow, while the weak gel network breaks down

into smaller flow units and may flow homogeneously [104, 105]. Frequency sweep tests

were carried out in the linear viscoelastic region to examine the frequency dependences

of the storage and the loss moduli.

(a) HIPREs F26 (b) HIPREs F26

(c) HIPREs F26 after water
dilution

(d) HIPREs F26 after water
dilution

Figure 2.7: TEM images of HIPREs F26, before (a, b) and after water dilution (c, d).
The magnification is illustrated by the scale bars.

Figure 2.8: Possible disposition of sucrose monopalmitate (SMP) and medium chain
fatty acid (MCFA) at the interface.
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Table 2.6: Maximum viscosity values registered at 25 and 55°C.

Formulation Viscosity 25� (KPa·s) Viscosity 55� (KPa·s)

1 1,10 0,05

3 32,12 0,61

4 0,31 0,12

5 30,04 0,58

6 6,34 0,07

7 20,55 0,21

15 24,71 0,15

16 17,02 0,11

17 28,30 0,06

18 14,15 0,12

19 0,16 0,13

20 8,05 0,02

21 18,20 0,17

22 22,55 0,13

23 0,21 0,08

24 29,21 0,23

25 9,17 0,09

26 21,65 0,29

F03 was selected as formulation to be tested, in Fig. 2.11 G’ and G” of the selected

formulation is compared with G’ and G” of the only water phase (AF). F03 display

gel characteristics, because the storage moduli are higher than the loss moduli at all

frequencies, while AF G’ tend to reach G”, indicating a solution-like behaviour. These

results indicate that F03 gel-emulsion have more elastic behaviour (higher G’ values)

and better gel characteristics (lower slopes of the curves). The frequency dependence

can be studied via the slopes of the logG’ and logG” versus log f curves. The lower the

slope, the stronger the gel structure. If only the slope is regarded, the moduli show a

Figure 2.9: Molecular structures of the amphiphilic molecules involved.
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slight dependence on the frequency, which indicates that F03 has a strong gel structure.

2.4.6 Differential scanning calorimetry (DSC)

Thermograms of all formulation components actives and final formulations were regis-

tered. Results show that no significant interactions between actives and formulation

excipients were detected. Thermogram of SMP is reported in Fig. 2.12-a, it shows an

endothermic fusion peak between 42 and 47�while the melting range reported in lit-

erature is between 47 and 54�. Thermograms of the formulations report a shift of the
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Figure 2.10: Maximum viscosity values registered at 25� (a) and at 55� (b) related
to SMP concentration.

Figure 2.11: Storage (G’) and loss (G”) modulus of formulation n°3 (F03) and its water
phase (AF).
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SMP melting to lower temperatures in two different modality: emulsions show a sin-

gle peak shifted to 39-40�, F01 and F17 are reported as an example in Fig. 2.12-b,

while HIPREs (F06, F26 and F23) show a double peak at respectively 37-38� and 39-

40� (Fig. 2.12-c). In both cases the lowering of the melting endothermic peak is due

to the increase in surface area exposed to heat treatment and because of an increase in

SMP alkyl chain movement freedom. It is reasonable to conclude that the formation of

lamellar structures affect the surfactant’s tail degree of freedom, which is pronounced as

an early endothermic event.

2.5 Stability studies

All the 18 formulations were subjected to stability test. During freeze-thaw cycles no

physical variations were noticed, long term and accelerated stability results are reported

in Tab. 2.7. For editorial reasons only two formulation are reported in this section, the

full list of stability reports is available in appendix A. However, all the formulations were

compliant to initial conditions during 6 months of accelerated stability (40�±2� /
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Figure 2.12: DSC thermograms of SMP (a), emulsions (b), and HIPREs (c).
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75%± 5% R.U.) and during 24 months of long term storage (25�±2� / 60%± 5%

R.U.).

2.6 Discussion

In the present study innovative SEs-based formulations were investigated and charac-

terized. The main purpose was to develop a formulation platform suitable both for

food, cosmetic and medical devices industry able to deliver lipophilic molecules. An

optimization with an experimental design allowed the systematic evaluation of the ra-

tios between phases and surfactant, resulting in 18 experimental runs. Formulations

were characterized by several methods, including dynamic light scattering. Results have

highlighted the formulation ability to form emulsion having a droplet size up to 280 nm

after dispersion in water. Classical rheology measurements showed the direct relation

between sucrose monopalmitate and viscosity and thus the possibility to reach a wide

range of consistency by simply varying its concentration while sweep test described the

gel-like internal structure. It was found that the combination of SEs, water, glycerine

and medium chain fatty acids (MCFA) is able to form both classical emulsions and

transparent gel-emulsion, also referred as high internal phase ratio emulsions (HIPREs)

exhibiting a liquid crystalline molecular organization as showed by differential scanning

calorimetry analysis and transmission electron microscopy.
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Chapter 3

Development of Oral Dosage

Forms

Oral administration of drugs is the most convenient and, therefore, the most common

route for active molecules administration. The formulations obtained with the method

described in Sec. 2.3.1 do not completely satisfy the initially stated aims (see Sec. 1.1).

The two main issues were:

� unpleasant taste: the high concentration of SEs produces an unpleasant bitter

taste

� difficulties in primary packaging: the high viscosity of the selected formula-

tions does not permit an easy and fast pouring from bulk to package.

To overcome those problems two alternative dosage forms were taken into account:

� adsorbed-HIPREs

� medicated jellies

HIPREs F03 was chosen as starting formulation because of its high oil phase ratio, ca-

pable to solubilize the highest amount of active molecules respect to other formulations.

F03 was then used to prepare adsorbed-HIPREs and medicated jellies.
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3.1 Introduction

3.1.1 Buccal absorption

Theoretically, drug absorption can occur throughout the entire alimentary canal. How-

ever, the mucosal surface area of each segment, coupled with the time the drug remains

in contact with the mucosal surface, dictate the degree of absorption from any segment

of the gastrointestinal tract. Very limited drug absorption takes place within the mouth

after oral administration because the surface area is small and the residence time is very

short. Nevertheless highly lipophilic molecules can be readily absorbed from the mouth

when placed sublingually. Sublingual administration of the drug means placement of the

drug under the tongue and drug reaches directly the blood stream through the ventral

surface of the tongue and floor of the mouth. The drug solutes are rapidly absorbed into

the reticulated vein which lies underneath the oral mucosa, and transported through

the facial veins, internal jugular vein, and brachiocephalic vein and then drained in to

systemic circulation. The main mechanism for the absorption of the drug in to oral

mucosa is via passive diffusion into the lipoidal membrane [106]. The absorption of the

drug through the sublingual route is 3 to 10 times greater than oral route and is only

surpassed by hypodermic injection. For these formulations, the small volume of saliva

is usually sufficient to result in disintegration/dissolution in the oral cavity. In terms of

permeability, the sublingual area is more permeable than the buccal (cheek) area, which

in turn is more permeable than the palatal (roof of the mouth) area. The differences

in permeability are generally based on the relative thickness, blood supply, and degree

of keratinization of these membranes. In addition to the differences in the permeability

of the various mucous membranes, the extent of drug delivery is also affected by the

physico-chemical properties of the drug to be delivered [107, 108].

Factors affecting the sublingual absorption are [109]:

� Drug lipophilicity: in order to achieve the passive permeation through the

sublingual mucosae and obtain complete absorption the drug molecule must be

lipophilic

� Solubility in salivary secretion: however to achieve sublingual absorption the

drug should be also soluble in aqueous buccal fluids.

� pH and pKa: the mean pH of the saliva is 6,0, this pH favors the absorption of

unionized drugs. Also, the absorption of the drugs through the oral mucosa occurs

if the pKa is greater than 2 for an acid and less than 10 for a base.
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� Thickness of oral epithelium: the thickness of sublingual epithelium is 100-200

µm which is thinner than buccal thickness, consequently the absorption of drugs

is faster.

� Oil/water partition coefficient: compounds with favorable oil-to-water par-

tition coefficients are readily absorbed through the oral mucosa. An oil-water

partition coefficient range of 40-2000 is considered optimal for the drugs to achieve

sublingual absorption.

3.1.2 Gastric and small intestine absorption

After oral administration, most drugs quickly pass the mouth and the esophagus and

reach the stomach that is primarily design to digest food. Its small surface area indi-

cates that nutrient absorption is limited, although some drug absorption can occur in

the stomach depending on the extent of ionization and on the degree of lipid solubility.

For most orally administered drugs, the major site for absorption is the small intestine.

The small intestine is designed to absorb nutrients, as evidenced by their enormous sur-

face area. Because of the large surface area, the small intestine is the primary site for

absorption of lipid soluble drugs while water soluble molecules are not readily absorbed.

This might appear counterintuitive because absorption of weak acids and weak bases

appears to occur in the small intestines independent of the environmental pH and drug

pKa. For weak acids and weak bases that are ionized in the small intestines, only the

uncharged molecules passively diffuse across the intestinal membranes. The rapid ab-

sorption of the uncharged molecules drives the charged molecules into the uncharged

form, which is then quickly absorbed. Consequently, for drugs that are absorbed after

oral administration, the small intestine constitutes the major site for absorption [110].

3.2 Materials and Methods

3.2.1 Materials

All materials used were of food grade: citric acid, glicerin and gelatin (Acef S.p.a. -

Fiorenzuola d’Arda, Italy); granular sorbitol (Faravelli S.p.a - Milano, Italy); sucralose

and silicon dioxide (Giellepi S.p.A - Seregno, Italy).
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Table 3.1: Excipients used in adsorbed-HIPREs and relative functions, quantities are
related to 1 g of original HIPREs F03.

Excipient Quantity (g) E number Function

Granular sorbitol 6,00 E420 reduce micellar dispersion time

Silicon dioxide 0,10 E551 anticaking agent

Citric acid 0,30 E330 taste modification

Flavor 0,05 - taste modification

Sucralose 0,01 E955 sweetener

3.2.2 Adsorbed-HIPREs preparation

The manufacturing of adsorbed-HIPREs consists in mixing the previously described se-

lected HIPREs (F03) with an adequate amount of a solid water-soluble carrier. F03 was

mixed with the solid excipients listed in Table 3.1. The main carrier used is sorbitol,

however other granular powder could have been used (maltitol, xylitol, sucrose, destrose,

etc.). The essential features that the solid carrier must have are: high water solubility,

to facilitate the dispersion, and optimal particle size to facilitate the flow of the bulk

during manifacturing. The finished product is a free-flowing powder (see Fig. 3.1), easily

manageable by industrial manufacturing equipment.

The classical self-emulsifying drug delivery system (SEDDS) definition imply a formula-

tion composed of surfactant/s and oil (optional). SEDDS are able to create an emulsion

by simply dispersion in aqueous environment. Often, to create a solid dosage form,

SEDDS are adsorbed on a solid carrier to create “solid-SEDDS”. The formulations de-

scribed here contain also a certain percentage of water so it was chosen to refer to

them as “adsorbed-HIPREs” but it is worth noting the great similarity with classical

solid-SEDDS. In fact, as classical solid-SEDDS, also for the adsorbed-HIPREs the first

purpose is to provide a solid formulation able to increase bioavailability of lipophilic

molecules by generating an emulsion when in contact with water (including saliva and

gastric fluid).

3.2.3 Jellies preparation

The manufacturing of jellies is carried out mixing the initial HIPREs (F03) with a

dispersion of gelatin, previously prepared hydrating the gelatin in 75�water. The

quantities of the used excipients are reported in Table 3.2. The finished products are

chewable soft jellies (see Fig. 3.1).
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Table 3.2: Excipients used in jelly preparation and relative function, quantities are
related to 1 g of HIPREs F03.

Excipient Quantity (g) E number Function

Water 0,90 - rheological modification

Gelatin 0,10 E411 rheological modification

Citric acid 0,10 E330 taste modification

Flavor 0,05 - taste modification

Sucralose 0,01 E955 sweetener

3.2.4 Droplet size and electrokinetic potential determination

To assess the capability of adsorbed-emulsions and jellies to recreate a fine emulsion once

dispersed in aqueous environment, small quantities of samples (≈ 0,2 g) were mixed with

magnetic stirrer in 50 ml of phosphate buffer and analyzed in triplicate with the same

procedure and instruments described in Sec. 2.3.2.

3.2.5 Dissolution studies

Actives release from the formulations was measured using a dissolution test apparatus

of reduced capacity (50 mL) to simulate the buccal dissolution volume. Actually, a rel-

atively small volume of the dissolution medium was urgently needed to to represent the

salivary volume in a typical adult [111, 112], then dissolution tests were performed in

non-sink conditions.

Dissolution tests were performed using a paddle stirrer (Arc Quiet, ALC International

- Cologno Monzese, Italy) at 50 rpm and phosphate buffer pH 6,8 [113] as dissolution

(a) (b)

Figure 3.1: Examples of the two finished products: medicated jelly (a) and adsorbed-
emulsion (b).
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medium. Temperature of the dissolution medium was kept at 37 ± 0, 5�with a ther-

mostated bath. During the release studies 1 ml of dissolution medium sample was re-

moved and filtered. Samples were filtered and analyzed by HPLC method, as described

Sec. 3.2.6. The assays were performed simultaneously at least on 3 replicates for each

formulation. Dissolution tests were performed on the original HIPREs (F03), on the

modified formulations (adsorbed-HIPREs an jelly) and on the active molecules bulk-

powder in order to assess the solubility enhancement.

3.2.6 Analytical methods

3.2.6.1 Ubidecarenon

Quantitative determination of ubidecarenon is performed with HPLC method, using a

Shimadzu liquid chromatograph (Japan) equipped with a XDB-C8 column (5µm, 150mm×
4, 6mm, Agilent) and a LC-6A model pump, the detector was a SPD-6, both provided

by Shimadzu. The chromatographic conditions were described by Nazzal et. al [114]:

� 20µl loop

� isocratic mobile phase composition (1 L):

– 6,8 g sodium acetate trihydrate

– 695 ml metanol

– 275 ml n-exane

– 150 ml anhydrous acetic acid

– 150 ml n-propanol

� 1,5 ml/min flux rate of mobile phase

� 275 nm detection wavelength

With these chromatographic conditions, ubichinon retention time was 5,6 min while

ubichinol retention time was approximately 4,2 min. A chromatogram example is re-

ported in Fig. 3.2.

3.2.6.2 Resveratrol

Quantitative determination of resveratrol is performed with the same equipment used

for ubidecarenon. Chromatographic conditions were the ones described by Careri et. al

[115]:
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� 20 µl loop

� isocratic mobile phase composition (1 L):

– 693 ml water

– 7 ml formic acid

– 220 ml acetonitrile

– 80 ml 2-propanol

� 0,5 ml/min flux rate of mobile phase

� 306 nm detection wavelength

With these chromatographic conditions, trans-resveratrol retention time was approxi-

mately 12,4 min, however the run was extended to evaluate also the cis-resveratrol peak

at 21 min. A chromatogram example is reported in Fig. 3.3.

3.3 Results

3.3.1 Droplet size and electrokinetic potential determination

DLS measurements reported in Table 3.3 show that the HIPREs modification both in

adsorbed-HIPREs and in jelly does not affect significantly the D50 and the ζ potential

Figure 3.2: Example of a chromatogram of an ethanolic solution of ubidecarenon, ob-
tained with the reported conditions.

Figure 3.3: Example of a chromatogram of an ethanolic solution of resveratrol, ob-
tained with the reported conditions.
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after reconstitution in water, indicating the suitability of those dosage forms respect to

the initial HIPREs.

Table 3.3: D50 with relative PDI and ζ values.

Formulation D50 (µm) PDI ζ (mV )

F03 0,28 0,48 -28,6

adsorbed-HIPREs 0,34 0,52 -33,6

jelly 0,39 0,55 -21,8

3.3.2 Dissolution studies

The dissolution of a solid in a solvent is a rather complex process determined by a multi-

plicity of physicochemical properties of solute and solvent. Indeed, it can be considered

as a consecutive process driven by energy changes. The first step consists of the contact

of the solvent with the solid surface (wetting), which leads to the production of a solid-

liquid interface starting from solid-vapor one. The breakdown of molecular bonds of the

solid (fusion) and passage of molecules to the solid-liquid interface (solvation) are the

second and third steps, respectively. The final step implies the transfer of the solvated

molecules from the interfacial region into the bulk solution (diffusion). Obviously, for

performing each step, energy is required and the total energy required for solid dissolu-

tion is the sum of the energies relative to the four mentioned steps [116].

One of the main objectives of the study was to increase the bioavailability of lipophilic

actives, generally poorly water soluble molecules and hence not suitable for oral delivery.

Traditionally, dissolution testing has fulfilled two principal functions: as an instrument

to control quality, dissolution is a sensitive, reproducible and straightforward test that

can be used to effectively monitor batch-to-batch variability and ensure bioequivalence

once bioavailability has been established [117]. In some circumstances, in-vitro dissolu-

tion tests can be used as a surrogate indicator of the likely in-vivo dissolution profile

and, therefore, as a tool to predict the extent of absorption where dissolution is limit-

ing [118]. The principal determinants of the dissolution rate of a poorly water-soluble

compound, however, are the degree of wetting and extent of drug solubility in the in-

testinal contents. The use of simple aqueous media to assess the dissolution profile of

poorly water-soluble drugs is often limited by the low intrinsic aqueous solubility of

the drug (and, therefore, difficulty in maintaining sink conditions1). As suggested by

various authors [113, 120, 121] it was therefore chosen to operate in non-sink conditions

using a small dissolution volume and avoiding the use of surfactants in order to have a

1In the European Pharmacopeia [119], sink conditions are defined as a volume of dissolution medium
that is at least three to ten times the saturation volume. It refers to a dissolution process according to
Noyes-Whitney equation [59].
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better discrimination of dissolution profiles between different formulations. Moreover,

the addition of surfactants to the dissolution medium could affect the formation of the

emulsion from the developed solid formulations after dispersion in water. Operating in

non-sink conditions it was not possible to fit the experimental data to different order

kinetic equations.

As stated before, dissolution tests were performed on the original HIPREs (F03), on the

modified formulations (adsorbed-HIPREs and jelly) and on the active molecules bulk-

powder in order to assess the solubility enhancement.

3.3.2.1 Ubidecarenon release

In Fig. 3.4 are depicted the release profiles of the formulations containing Ubidecarenon

(CoQ10), as expected bulk powder has no solubility in aqueous dissolution medium,

in fact, CoQ10 is not detected. CoQ10 is slowly released from the jelly formulation, it

reaches 208, 93 ± 48, 21µg and thus enhance solubility until 4, 17µg/ml corresponding

to 20, 06 ± 7, 34 % of the total CoQ10 in 120 min. The adsorbed-HIPREs reaches its

maximum release of 241, 81± 37, 22µg within the first 5 minutes with a final solubility

of 4, 84µg/ml corresponding to 35, 03 ± 6, 51 % of the total CoQ10. The HIPREs for-

mulation has the best performance since it is capable to release 712, 45± 35, 52µg with

a final solubility of 14, 25µg/ml corresponding to 65, 31 ± 5, 96 % of the total CoQ10

contained in the formulation.

(a) Release curves expressed as quantity of CoQ10

released.
(b) Release curves expressed as percentage on the
total amount of CoQ10.

Figure 3.4: In-vitro release of ubidecarenon from the studied formulations. Error bars
are calculated on three repetitions.
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3.3.2.2 Resveratrol release

Resveratrol is released in greater quantities, the bulk powder reach a final value of

943, 45±142, 11µg with a final solubility of 18, 87µg/ml. The HIPREs formulation con-

stantly release resveratrol until 1387, 20±21, 42µg with a final solubility of 27, 74µg/ml

corresponding to 68, 37 ± 7, 55 % of the total resveratrol. The jelly formulation has a

very similar profile, it reach 1619, 46 ± 40, 78µg with a final solubility of 32, 39µg/ml

corresponding to 75, 68±12, 96 %. The fastest and higher release values are registered by

the absorbed-HIPREs, in 20 minutes it reach 1670, 50± 23, 33µg with a final solubility

of 33, 4µg/ml corresponding to 99, 87± 12, 32 % of the total resveratrol contained.

3.4 Discussion

After the formulation and characterization of a SEs-based delivery platform, oral dosage

forms were formulated and their release performances were assessed. To increase bioavail-

ability and compliance, and to overcome manufacturing issues, two dosage forms were

evaluated, consisting in adsorbed-HIPREs and medicated jellies. HIPREs, labelled as F3

was chosen as formulation to be processed for the creation of the two solid dosage forms.

Both of them were loaded with two model molecules, widely used in nutraceutical field:

resveratrol and CoQ10. The process which starting from F3 leads to adsorbed-HIPREs

and medicated jellies does not affect the D50 of the droplets after water dilution, as

showed by DLS measurements. Respect to bulk powder resveratrol release was in-

creased two times by jelly formulation, and three times by adsorbed-HIPREs reaching

a rapid onset. CoQ10 is practically water insoluble while the jelly formulation is able

(a) Release curves expressed as quantity of resver-
atrol released.

(b) Release curves expressed as percentage on the
total amount of resveratrol.

Figure 3.5: In-vitro release of resveratrol from the studied formulations. Error bars
are calculated on three repetitions.
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to release 20% of the total CoQ10, as long as the adsorbed-HIPREs almost double this

value. Surprisingly the initial formulation F3 releases up to 60% of the total CoQ10.
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Chapter 4

Development of Topical Dosage

Forms

Some of the active molecules usually delivered by oral route in the food supplement

field can be exploited in topical delivery to treat local skin disorders and to prevent skin

aging and oxidative damage. Therefore it was evaluated the use of sucrose esters for the

topical delivery of active molecules usually employed in food supplement.

The main purpose was to use a single formulation platform (based on sucrose esters) to

develop different dosage forms (oral and topical) to reach every market chance, shorten-

ing the product development time and take a marketing advantage using food excipients

as guarantee of eco-sustainability and bio-tolerability.

The aim of this part of the study is to use the previously developed formulation plat-

form to create topical formulations. In particular, to produce formulations having good

spreadability and compliance, the formulations F01 and F03 (see Sec. 2) will be mixed

with different thickeners and solubilizers and their technological and release properties

will be evaluated.

4.1 Introduction

4.1.1 Skin structure

Skin is the largest organ of our body, which acts as a protective barrier against the entry

of foreign material and possible invasion of pathogens. The skin also prevents the loss of

excessive endogenous material such as water [122]. In addition, the skin serves to reduce

the damaging impact of solar UV radiation [123]. The structure of human skin is por-

trayed in Fig. 4.1. The skin is about 0,5 mm thick and is made up of two distinct layers,
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the inner dermis and the overlaying epidermis. The dermis that forms the bulk of the

skin (1–2 mm thick) is made up of connective tissue elements. Dermis is highly vascular

and filled with pilosebaceous units, sweat glands, adipose cells, mast cells, and infiltrat-

ing leukocytes [124]. The epidermis is avascular in nature, consisting of several types

of cell (corneocytes, melanocytes, Langerhans cells, and Merkel cells) and a variety of

catabolic enzymes (esterases, phosphatases, proteases, nucleotidases, and lipases). The

stratified epidermis is about 100-150 mm thick and comprises four distinct layers, namely

the stratum basale, stratum spinosum, stratum granulosum, and stratum corneum. The

stratum corneum is the outermost layer of skin that forms the main barrier for diffusion

of the permeants through the skin. Stratum corneum consists of 18-21 layers of flat,

roughly hexagonal cells called corneocytes that are constantly shed and renewed [124].

These keratin-rich dead cells, are interspersed within crystalline lamellar lipid matrix to

assume a “bricks and mortar” arrangement. The extracellular lipid contributes 10% of

the dry weight of this layer, while 90% is the intracellular keratin. The barrier function

of the skin can be attributed to the lamellar lipids that are synthesized in the granu-

lar layer and subsequently organized into the extracellular lipid bilayer domains of the

stratum corneum. The barrier function of the skin depends on the specific ratios of

various lipids present, in particular, some studies reveal that relatively polar lipids play

a critical role in maintaining the barrier integrity of the stratum corneum [124]. The

epidermis is made up of keratinocytes at various stages of differentiation. Lipid catabolic

enzymes, namely acid lipase, phospholipase, sphingomyelinase, and steroid sulfatase, are

distributed throughout the epidermis, though mainly found in the stratum granulosum

and stratum corneum [124]. The phospholipid content decreases while the sphingolipid

and cholesterol content gradually increases as the cells differentiate during their migra-

tion to the surface.

Dermis and hypodermis

The dermis is rich in blood vessels, lymphatic vessels, and nerve endings. An exten-

sive capillary network connects to the systemic circulation with substantial horizontal

branching from the arterioles and venules in the papillary dermis. These in turn form

plexus and supply capillaries to the hair follicles and the glands. The lymphatic ves-

sels serve to drain the excess extracellular fluid and clear the antigenic materials. The

dermis is filled with scattered fibroblasts, macrophages, leukocytes, and mast cells, in

addition to the hair follicles, sebaceous glands, and sweat glands. On average, about 10

hair follicles, 15 sebaceous glands, 12 nerves, 100 sweat glands, 360 cm of nerves, and

three blood vessels are present in one square centimeter of skin [125]. The hypodermis

constitutes the deepest layer of the skin, and consists of the subcutaneous tissue filled

with fat cells, fibroblasts, and macrophages.
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4.1.2 Topical vs. Transdermal Delivery

4.1.2.1 Topical delivery

Topical drug delivery is the term used for localized treatment of dermatological condition

where the medication is not targeted for systemic delivery [126]; examples include the

treatment of dermatological diseases like eczema or psoriasis by topical application.

Examples of drugs delivered topically include corticosteroids, antifungals, antivirals,

antibiotics, antiseptics, local anesthetics, and antineoplastics. Topical agents that act by

physical action would include protectives, adsorbents, emollients, and cleansing agents,

whereas the astringents, irritants, rubefacients, and keratolytic agents are the ones which

act by chemical means. Conventional topical drug delivery systems include semisolid

dosage forms and liquid dosage forms. The semisolid dosage forms include ointments,

creams, gels, or pastes, while the liquid dosage forms include emulsions, suspensions,

and solutions [127]. Ointments usually contain less than 20% of water and more than

50% hydrocarbons, waxes, or polyols as vehicles. Ointments are used as carrier or

delivery systems for active molecules but they also act as skin protective and emollient.

Creams are bi-phase semisolid dosage forms usually containing more than 20% of water

or volatile components and typically less than 50% of hydrocarbons, waxes, or polyols

[126]. Gel are semisolid dosage form that contain a gelling agent to provide stiffness to

the dispersion. Gels can be water based (hydrogels) or organic solvent based (oleogels).

A paste can be defined as a semisolid dosage form, containing a large proportion of

solids (20–50%) finely dispersed into a suitable vehicle. A lotion may be in the form of

a solution or a suspension or an emulsion. Typically these formulations are intended to

be applied to the intact skin, generally without any friction.

Figure 4.1: Anatomy of skin. Transverse section of skin showing different strata and
the associated regions in the skin.
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4.1.2.2 Transdermal delivery

Transdermal delivery is the term that is confined to a situation in which the drug diffuses

through different layers of the skin reaching systemic circulation to elicit the therapeutic

response [122]. An example would be the management of hypertension using a trans-

dermal clonidine patch. In a broader sense transdermal delivery also includes local

anesthetic patches in which the drug is intended to diffuse regionally in the skin to

elicit the pharmacological action only in the treated area of the skin. Often, delivery

of local anesthesia has been classified under topical drug delivery [128]. Transdermal

drug delivery systems also termed as “patches” are self-contained discrete dosage forms

designed to deliver a therapeutically effective amount of drug through intact skin. Most

commercially available transdermal drug delivery systems are of three different types,

namely reservoir systems, matrix systems with rate-controlling membrane, and matrix

systems without rate-controlling membrane. The reservoir system is made up of three

major components, namely the drug reservoir, the rate-controlling membrane, and the

adhesive. The drug present in the reservoir, along with the other excipients, must per-

meate through the rate-controlling membrane before reaching the skin. The adhesive

that holds the system placed on the skin can completely cover the drug release area or

only the perimeter around the non-adhering drug release surface. In the matrix type,

the drug may be embedded in an adhesive matrix. A rate controlling membrane may

be present between the drug-loaded matrix and the adhesive or sometimes the matrix

itself can control the rate of release of the actives from the system. Some drugs deliv-

ered successfully in transdermal drug delivery systems are scopolamine, nitroglycerine,

nicotine, clonidine, fantanyl, estradiol, testosterone, lidocaine, and oxybutinin [129]. Re-

cent additions to this list include lidocaine-tetracaine, selegiline, methyl phenidate, and

rotigotine. However, the future focus is production of transdermal systems capable of

delivering peptides and proteins including insulin, growth hormone, and vaccine across

the skin.

4.1.3 Percutaneous Absorption Pathways

The lipid-rich and structurally complex intercellular region of stratum corneum plays an

important role in the percutaneous absorption [130]. The stratum corneum is known to

be selectively permeable and allows relatively lipophilic molecules to diffuse to the lower

skin layers [122]. The transport of such molecules across the stratum corneum barrier

is mainly by passive diffusion [131]. The permeation rate through the stratum corneum

has been represented by a simple equation 4.1 [125]:
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dm

dt
=
DC0K

h
(4.1)

where dm is the amount of the diffusant passed through the membrane in time dt,

C0 is the drug concentration in the donor solution, K is the partition coefficient of

the diffusant between the membrane and the solution, D is the diffusion coefficient

of the diffusant in the membrane, and h is the membrane thickness. Considering the

tortuous intercellular pathway between the corneocytes, the diffusional path length for

the permeants is much longer than the thickness of the stratum corneum and is estimated

to be ∼500µm [123]. The other potential routes of entry for the permeants from the skin

surface to the subepidermal tissues are through the hair follicles with their associated

sebaceous glands and via the sweat ducts or through the stratum corneum between these

appendages [125]. These follicles passing from the skin surface through the epidermis and

reaching the dermis or even the underlying subcutaneous region are the most important

appendages of human skin.

4.2 Materials and Methods

4.2.1 Materials

Glycerin, Medium chain triglycerides (Delios®) were purchased by BASF Corp. (Lud-

wigshafen, Germany); glyceryl stearate (Cutina® MD) was purchased from Henkel

Chimica S.p.A. (Lomazzo, Italy); ethoxydiglycol (Transcutol®) were a gift form Gatte-

fosse (Saint-Priest, France); Polyethylene glycol 400 (PEG-400) was obtained by Croda

(Mortara, Italy) and xanthan gum (XG) was purchased by ACEF (Fiorenzuola D’Arda,

Italy).

4.2.2 Topical formulations preparation

Preparation methods and materials used for the old formulations F01 and F03, have

been described in Sec. 2.3.1. In this section are described the preparation methods of

the modified formulations for topical application. The detailed compositions are reported

in Table 4.1 and summarized in Fig. 4.2.

Preparation methods

Where expected, glyceryl stearate is melted in oily phase before the emulsification

(OPC01 and AF201). In formulations containing solubilizers (AF201 and APG01),
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Table 4.1: Composition of the tested formulations.

F01 F03 OPC01 AF201 APG01
% % % % %

Water 19,3 5,0 55,0 43,0 51,0
Glycerin 37,7 9,5 9,5 6,0 10,0
MCFA 40,5 75,0 20,0 10,0 20,0
Sucrose monopalmitate 2,0 10,0 3,0 2,5 3,0
Resveratrol 0,5 0,5 0,5 0,5 0,5
Glyceryl stearate 0 0 12 18,0 0
Ethoxydiglicol 0 0 0 20,0 0
Peg-400 0 0 0 0 15,0
Xanthan gum 0 0 0 0 0,5

resveratrol is solubilized in ethoxydiglycol HP or PEG-400 using a magnetic stirrer and

the solution is then added to water phase before the emulsification. Where expected,

xanthan gum is dispersed in half of the amount of water present in the formulation

under gently stirring. The resulting thick gel was then mixed to the water phase before

emulsification process (APG01).

Formulations containing glyceryl stearate: OPC01, AF201

To obtain the desired viscosity and spreadability glyceryl stearate is added to the formu-

lation because of its ability to form a mesotropic structure in the oily phase. It also acts

as a lubricant on the skin’s surface, which gives the skin a soft and smooth appearance

and it slows the loss of water from the skin by forming a barrier on the skin’s surface.

Figure 4.2: Composition of the studied formulations: oily phase is composed by MCFA,
water phase is composed by water and glycerin, surfactant+solubilizers
phase is composed by sucrose ester and ethoxydiglycol, peg-400, glyceril

stearate and xanthan gum (where expected).
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1. Water phase, composed by water, glycerine and surfactant (SMP), was gently

stirred and heated at approximately 60� in water bath

2. Glyceryl stearate was melted in the oily phase (composed by MCFA) at approx-

imately 60� in water bath. Immediately before the emulsification, resveratrol is

added to this phase.

3. Under continuous stirring, oily phase was poured into water phase and the resulting

emulsion/microemulsion was cooled at room temperature.

Formulations containig solubilizers: AF201, APG01

The two tested solubilizers, ethoxydiglicol and PEG-400 were used to solubilize resver-

atrol with magnetic stirrer and then added to the water phase previous emulsification

with the oily phase as described above.

Formulations containing gelling agents: APG01

Xanthan gum was used as thickener of the water phase. It was hydrated in approximately

half the water expected in the formulation. To speed up the hydration process water

was heated at 70� and under gently stirring the polymer was added. The resulting

thick gel was then mixed to the water phase before emulsification process, as described

above.

4.2.3 Rheology

Flow and viscosity curves were acquired with the same instruments and in the same

conditions described in Sec. 2.3.3.

4.2.4 Differential scanning calorimetry (DSC)

The thermal behavior of the formulation components was determined through DSC

investigation using Mettler Toledo DSC 1, STARe System (Mettler Toledo GmbH Ana-

lytical, Giessen,Germany), weighing 8-13 mg of samples on a microbalance, in standard

40µl aluminum pans, immediately sealed by a press. An empty pan was used as a refer-

ence. Samples were scanned starting from room temperature to 300� at a heating rate

of 5�/min. The melting temperatures of the components and the total heat transferred

in any of the observed thermal processes was determined.
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4.2.5 Microscopy

Optical microscopy

Placebo and verum formulations were analyzed with an optical microscope (Eclipse Ti-

S, Nikon) equipped with a digital camera (Ds-FI1, Nikon) in order to investigate the

formulations internal structure. Images were acquired and elaborated with an imaging

software (Nis-Elements, Nikon), a 40x objective was used, resulting in a final magnifi-

cation of 520x. Samples were spread on a microscope slide and covered. The optical

microscope analysis was used to assess the presence of undissolved resveratrol in the

formulations non-containing solubilizing agents and to verify the influence of the wa-

ter/ethanol solution, used to simulate human sweat as receptor fluid, on the internal

structure of the formulations: samples were analyzed before and after the release stud-

ies and the pictures were compared.

Transmission electron microscopy

Samples were spread on the observation grid and treated with an uranile acetate 1% solu-

tion for two minutes, then allowed to get dry and analyzed with an electron transmission

microscope (Tecnai 12, FEI).

4.2.6 In-vitro release studies

According to FDA guidance SUPAC-SS (May 1997) ”In vitro release is one of several

standard methods which can be used to characterize performance characteristics of a

finished topical dosage form, release is theoretically proportional to the square root of

time when the formulation in question is in control of the release process because the

release is from a receding boundary. In vitro release method for topical dosage forms

is based on an open chamber diffusion cell system such as a Franz cell system, fitted

usually with a synthetic membrane. The test product is placed on the upper side of

the membrane in the open donor chamber of the diffusion cell and a sampling fluid is

placed on the other side of the membrane in a receptor cell. Diffusion of drug from

the topical product to and across the membrane is monitored by assay of sequentially

collected samples of the receptor fluid ... Aliquots removed from the receptor phase are

analyzed for drug content by high pressure liquid chromatography (HPLC). A plot of

the amount of drug released per unit area (µg/cm2) against the square root of time

yields a straight line, the slope of which represents the release rate. This release rate

measure is formulation-specific and can be also used to monitor product quality” [132].
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In order to investigate the release of resveratrol from the formulations a modified Franz

cell has been used. The apparatus (Fig. 4.3) is composed by a lower plate (c) containing

the sample in a reservoir (d) and a upper plate (a) which function is to clamp the

polymeric membrane (b) and allow exchanges between the donor chamber and reception

chamber.

b

a

c

d

Figure 4.3: Modified Franz cell: once assembled is submerged in a thermostated vessel
containing the receptor medium.

The clean pre-weighed sample holder was completely filled with the sample serving as

the donor phase. The excess sample was removed from the surface using the edge of a

spatula to obtain an even and smooth surface area. This was weighed again to deter-

mine the exact amount of sample employed in the experiment (usually around 2 g). A

45 mm cellulose acetate membrane (Visking Tubing, London, UK), soaked in dissolution

medium for 20 h, was positioned on the surface of the samples1. Once assembled, the

cell is placed in a dissolution test apparatus (Sotax A7 smart - Sotax), see Fig. 4.4.

Vessels containing 900 of the receptor medium (kept at 33±0,5�) were left under con-

tinuous stirring at 100 rpm. Samples of 1 ml were withdrawn and replaced with fresh

medium. Samples were directly analyzed by HPLC method, as described in Sec. 3.2.6.

The assay was performed simultaneously on 3 replicates for each formulation.

With topical dosage forms containing sparingly soluble drugs, the use of a hydro-alcoholic

medium as a receptor phase is essential to increase drug solubility for detection and to

maintain sink conditions2. When employing a hydro-alcoholic medium as a receptor

phase, a challenge arises from the possibility of back diffusion of alcohol through the

synthetic membrane and alteration of the integrity of the cream preparation. Suitable

studies can detect or refute this occurrence, for example, in our case the microscopic

1About the membrane FDA suggests:”Appropriate inert and commercially available synthetic mem-
branes such as polysulfone, cellulose acetate/nitrate mixed ester, or Polytetrafluoroethylene 70µm mem-
brane of appropriate size to fit the diffusion cell diameter” [132].

2Appropriate receptor medium such as aqueous buffer for water soluble drugs or a hydro-alcoholic
medium for sparingly water soluble drugs or another medium with proper justification.[132]
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Table 4.2: Composition of the receptor medium used: simulated human sweat + alco-
hol.

% (p/p)

H2O 89,4776
Ethanol 10
CaCl2 0,0022
NaCl 0,2920
MgSO4 0,0240
KH2PO4 0,2042

examination of the cream before and after the in-vitro release experiment showed no dif-

ference. Thus, the concentration of ethanol had a negligible effect on cream integrity. A

hydro-alcoholic solution, described in Table 4.2 was used as receptor medium, salts com-

position simulate the sweat stratus normally covering the skin, the alcohol percentage

was used to increase resveratrol solubility as described in Table 4.3.

Figure 4.4: Schematic representation of the vessel used as receptor chamber, the ”disk
assembly” is represented by 4.3. Reproduced from [133]

Table 4.3: Solubility of resveratrol in different medium.

Medium Solubility [mg/ml]

Water 0,0300
Phosphate buffer 0,0570
SHS (simulated human sweat) 0,0006
SHS + 10% ethanol 0,0820
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4.2.7 In-vitro simulated absorption

To evaluate the in-vitro absorption the procedure for the release test described in Section

4.2.6 was used, but in this case the membrane was formed of two different coupled mem-

branes, according to Realdon et al. [134–137]: the cellulose acetate membrane (Visking)

soaked in release medium for 24 h as previously described was bonded with a cellu-

lose mixed ester membrane (Millipore HAWP09000 type, 45 mm diameter) soaked by

immersion for 24 h in isopropyl miristate [138, 139], then wiped between two disks of

filterpaper. The membranes were made to adhere by using a rubber roller. The coupled

membrane was placed with the cellulose membrane in contact with the cream sample.

The resulting artificial membrane was composed of two layers:

� a hydrophilic barrier, simulating the stratum corneum

� a lipid barrier, simulating the hydrophobic compounds filling the stratum corneum

and the underlying derma.

4.2.8 Analysis of release data

When operating with “infinite dose” conditions the release process across an artificial

membrane occurs similar to the skin permeation except for the steady-state period, that

can be described with Fick’s first law [140]:

dQ

dt
= Kp(CD − CR) (4.2)

where Q (µg/cm2) is the cumulative amount permeated through a unit of membrane

surface, KP (cm h-1) is the permeability coefficient, and CD and CR (µm /cm3) are the

substance concentrations in the donor and receptor chambers. Generally, an artificial

membrane, compared with the skin, does not represent such significant barrier. There-

fore, the lag times are usually very small and can be neglected. If the release rates are

very high at the beginning of the experiment, the apparent steady-state period is very

short and the application of the Fick’s first law is limited. The further drug release

profile from topical formulations can be described using several kinetic models:

� Zero-order model

It takes place at a constant rate independent of the existing concentration or initial

concentration, generally it can be applied to dosage forms that do not disaggregate
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and release the drug slowly, it can be represented by the equation:

Q0 −Qt = K0t (4.3)

where Qt is the amount of drug dissolved in time t, Q0 is the initial amount of

drug in the solution and K0 is the zero order release constant expressed in units

of concentration/ time. To study the release kinetics, data obtained from in vitro

drug release studies were plotted as cumulative amount of drug released versus

time.

� Higuchi’s model [141]

This model is based on the hypotheses that (1) initial drug concentration in the

matrix is much higher than drug solubility; (2) drug diffusion takes place only in

one dimension (edge effect must be negligible); (3) drug particles are much smaller

than system thickness; (4) matrix swelling and dissolution are negligible; (5) drug

diffusivity is constant; and (6) perfect sink conditions are always attained in the

release environment.
Q

C0
= 2

√
Dvt

π
(4.4)

where Dv is the diffusion coefficient within the vehicle (cm2/s). By plotting the

cumulative released amount, normalized with initial concentration (Q/C0) against

the square root of time, the slope of linear regression (KH) is determined as follows,

so that Dv value can be calculated:

KH = 2

√
Dv

π
(4.5)

The data obtained were plotted as cumulative percentage drug release versus

square root of time

� First order model

Drug release is proportional to drug concentration in the donor compartment.

Release rate increases linearly with increase in drug concentration and can be

expressed by the equation:

logC = logC0 −
Kt

2, 303
(4.6)

where C0 is the initial concentration of drug, k is the first order rate constant, and

t is the time. The data obtained are plotted as log cumulative of drug remaining

vs. time which would yield a straight line with a slope of -K/2,303.
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4.3 Results

In order to develop topic formulations having good spreadability and compliance, formu-

lation platforms F01 and F03 were mixed with water and different thickeners to obtain

hydrophilic creams. The two selected thickeners are: glyceryl stearate and xanthan

gum. In particular glyceryl stearate was selected due to its ability to form a mesotropic

structure in the oily phase and to act a lubricant on the skin’s surface, which gives the

skin a soft and smooth appearance. It is also able to reduce the loss of water from the

skin by forming a barrier on the skin’s surface. Xanthan gum was selected in order to

produce a cream with soft appearance and light feeling and thus a good compliance. In

order to investigate the effect of the presence of a solubilizer on resveratrol availability

and to increase the amount of the active in solution, a solubilizer was introduced in the

formulation. In particular, the solubilizers were selected on the basis of resveratrol sol-

ubility. Among the different solubilizers tested, ethoxydiglycol and PEG 400 are those

that provide to the greater solubilization (Fig. 4.5).

4.3.1 Thermal analysis

Differential scanning calorimetry (DSC) has been widely used for studying the thermal

behaviors of multi-component emulsions and microemulsions, which give an insight into

the states of water and microstructure transition. DSC curves are showed in Fig. 4.6.

The DSC thermogram of pure resveratrol showed an endothermic peak at 265�, corre-

sponding to the melting point of the active. The SEs used (SMP) has an endothermic

peak at 52�that can not be observed in the original formulations F01 and F03. In the

Figure 4.5: Solubility of resveratrol in different oils (o) and solubilizers (s).
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other formulations the presence of glyceryl stearate (melting point 58-59,� ) or xan-

than gum (melting point ≈150,� ) produce interactions altering the melting points of

the formulation components. The endothermic peaks in the range of approximately

50-100� corresponding to the melting of SMP and the others excipients listed in the

graphs. OPC01 show also a peak at approximately 100� corresponding to the evap-

oration of bulk water, which was confirmed by the partial weight loss of the samples

over the predefined temperature ranges, detected on the TGA thermograms (data not

shown).

4.3.2 Rheology

The main purpose of rheological studies carried out on formulations was to understand

the influence of thickeners and solubilizers introduced in the initial formulations F01 and

F03. Flow and viscosity curves were build performing controlled-rate tests: shear rate3

3Is the rate of change of deformation through an element of a fluid due to an imposed deformation
of stress.

(a) Thermograms of the original formulations, F01
and F03.

(b) OPC01 thermogram show a peak at
≈ 100� indicating free bulk water evapora-
tion

(c) AF201 thermogram (d) APG01 thermogram

Figure 4.6: DSC curves of the formulations, compared to the pure raw materials.
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was imposed and shear stress4 registered in order to evaluate the thixotropic and/or

pseudoplastic behavior.

Pseudoplasticity: some materials do not have a yield stress5, nevertheless they behave

non-linear, these are considered pseudoplastic. They flow instantaneously upon appli-

cation of stress but also display shear thinning behavior.

Thixotropy: for many fluid materials, viscosity is mostly independent of time, and is

only a function of the shear rate and the temperature. For structured fluids viscosity

does not reach a steady value for some time upon application of stress, or shear rate.

Steady state is dependent on the stabilization of internal structures that can be bro-

ken down by shearing, and require time to rebuild. A steady state plateau in viscosity

is reached if an equilibrium has been established between structure breakdown and re-

building. Upon ceasing the shear rate which caused the breakdown, the material reforms

its internal network, and the viscosity recovers. Thixotropic materials present different

behavior: in most cases when the shear rate is decreased the shear stress presents a

hysteresis loop. The area within the hysteresis loop represents the energy consumed in

structure breakdown.

An intuitive way to compare viscosity of the formulations is to consider the shear stress

or viscosity maximum values, as reported in Table 4.4.

Hence formulations can be sorted in three viscosity levels:

1. High viscosity - F03

2. Medium viscosity - AF201 and OPC01

3. Low viscosity - F01 and APG01

4Shear stress is the force per unit area imposed on a element of fluid.
5Yield stress is the minimum shear stress required to initiate flow in a fluid.

(a) F03 flow curve (b) F03 viscosity curve

Figure 4.7: F03 rheology.
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Table 4.4: Maximum viscosity and shear stress values obtained.

Shear stress Viscosity
τ [Pa] η [Pa · s]

F03 1, 17× 106 1, 79× 106

AF201 5, 14× 105 5, 05× 105

OPC01 1, 74× 105 1, 72× 105

F01 6, 29× 104 1, 57× 103

APG01 1, 38× 104 2, 19× 103

A more accurate analysis that underline rheological behavior of formulation F03, is re-

ported in Fig. 4.7, in particular Fig. 4.7(a) shows a broad thixotropic loop suggesting

a time-dependent change in viscosity. The quick loss of viscosity describes how for-

mulation’s internal structure is almost immediately lost, then there is a shear-thinning

behavior until the shear-rate begin to decrease. During the decreasing shear rate phase

viscosity is only gained when shear rate is near zero. It’s worth noting that in F03 there

aren’t thickening agents, thus the high viscosity level is due to the micro structure cre-

ated by the high amount of oil droplets and by the presence of surfactant. As reported

by the microscopical analysis (section 4.3.3) the main internal structure is a micro-drops

domain, it’s likely that in absence of a external force (as shear rate) the micro-drops

pack together, resulting in a high viscosity semi-solid. In presence of low shear rate

the drops slip one on the other and decreasing dramatically shear stress and viscosity.

Once the initial packed-structure is lost the only way to gain the starting viscosity is to

remove the external force, allowing the micro drops to pack again.

Formulations AF201 and OPC01 show very similar rehological behaviour, both are in-

cluded in the medium viscosity category and have a very similar flow and viscosity

profile as shown in Fig. 4.8. After an initial decrease, shear stress remain stable for the

(a) AF201 and OPC01 flow curve (b) AF201 and OPC01 viscosity curves

Figure 4.8: AF201 and OPC01 rheology.
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entire growing phase and slowly reduce while returning to the initial state, creating an

hysteresis loop (Fig. 4.8(a)). As in the previous case, an internal micro-structure pro-

ducing a viscous formulation is present. However, in this case, the hysteresis loop is

small due to the presence of glyceryl stearate able to form a lamellar micro-structure.

Consequently in this case viscosity is given both from sucrose ester and glyceryl stearate.

Formulations APG01 and F01 are the least viscous of the tested formulations, both

exhibit a rheological behavior more similar to a newtonian fluid in respect to the previous

formulations, as depicted in 4.9. The concentration of sucrose ester is probably not

sufficient to form the gel-emulsion structure found in F03, and not even the xanthan

gum concentration is high enough to behave like a pseudoplastic or thixotropic fluid.

4.3.3 Microscopy

Verum formulations were first evaluated with an optical microscope (see section 4.2.5),

results are depicted in Fig. 4.10. Resveratrol crystals are clearly visible in those for-

mulations not containing solubilizers: OPC01, F01 and F03; whilst they cannot be

recognized in formulations containing ethoxydiglycol and PEG-400, respectively AF201

and APG01. Analysis of formulations without resveratrol confirmed the hypothesis that

in formulations not containing solubilizers resveratrol is also present in solid form, since

none of the analyzed formulations showed crystals, as depicted in Fig. 4.11.

Despite the different compositions AF201 and F03 show a very similar structure when

evaluated through optical microscopy, with a dense pattern in which is difficult to discern

oily phase from water phase. However when evaluated through transmission electron

microscopy (see Fig. 4.12) AF201 and F03 display a different appearance, AF201 has

(a) APG01 and F01 flow curve (b) APG01 and F01 viscosity curves

Figure 4.9: APG01 and F01 rheology.
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a flakes structure with layers standing one on the other (probably created by the in-

teractions of ethoxydiglycol and glyceryl stearate whereas F03 has a more predictable

structure showing a packed droplets pattern, typical of emulsions, where the oily phase is

represented by the white part of the image and the water phase is the black outline. For

formulations APG01, OPC01 and F01 there are also significant differences between what

pointed out by the optical microscopy analysis and what showed by the electron trans-

mission electron microscopy: optical microscopy show a very similar appearance, typical

emulsion structure where can be recognized with spherical shaped drops representing oily

phase surrounded by water phase, drops width seem to be similar. Electron microscopy

highlights great differences between those formulations, APG01 has a filamentary struc-

ture, probably due to the presence of xanthan gum polymeric chains; OPC01 show a

flake pattern, similar to AF201, probably because of the glyceryl stearate creating a

lamellar structure; F01 has a drops pattern similar to F03 but the presence of a higher

water phase and a lower surfactant concentration lead to larger oil drops.

OPC01 APG01 

OF302 OF101 

AF201 

Figure 4.10: Optical microscopy images of verum formulations show how resveratrol
is non entirely dissolved in formulations not containing solubilizers as

OPC01, F01 and F03. Final magnification is 520 x.

4.3.4 In-vitro release and absorption

The various resveratrol formulations were tested using the previously mentioned syn-

thetic membranes using a solution of simulated human sweat and ethanol as the receptor

medium. To provide a complete evaluation of release and absorption phenomena the

cumulative amounts of resveratrol released and permeated over a period of 24 h were

expressed as µg/cm2 and as percentage and were plotted against the time.
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4.3.4.1 Release

Release profiles are reported in Fig. 4.13. Formulations containing solubilizers have the

greater release values, indeed APG01 (containing PEG-400) reach 1020,34± 1, 84µg/cm2,

corresponding to 96% of the resveratrol content, and AF201 (containing ethoxydigly-

col) reach 969,11± 8, 18µg/cm2 (corresponding to 96% of the total resveratrol amount).

One of the possible explanations for such behavior was offered by optical microscopical

analysis (see Sec. 4.3.3). In formulations containing solubilizers resveratrol is free to dif-

fuse through the membrane, without the dissolution limiting step affecting formulations

containing dispersed resveratrol.

F01 and F03 show similar release profiles reaching respectively 657,87± 0,14 and 527,16±
4,84µg/cm2 (corresponding to approximately 50% of the total amount of resveratrol).

OPC01 APG01 

OF302 OF101 

AF201 

Figure 4.11: Optical microscopy images of placebo formulations. Magnification 520 x.

OPC01 AF201 APG01 

OF302 OF101 

Figure 4.12: Transmission electron microscopy highlights differences between formula-
tions that cannot be evaluated with optical microscopy.
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F01 show a slightly higher release value respect to F03, probably due to its lower vis-

cosity which leads to a higher diffusion rate of the resveratrol particles through the

formulation.

OPC01 release the lower amount of resveratrol, 290,93± 2,88µg/cm2 (about 25% of the

total amount). Despite its viscosity is comparable to AF201 viscosity, the amount of

resveratrol released is considerably lower, this is probably due to the combined effect of

the presence of glyceryl stearate, and to the absence of ethoxydiglycol. Glyceryl stearate

indeed acts as a thickening agent and emulsifier arranging at the water/oil interface and

slowing the diffusion of resveratrol from oil to water and thus its dissolution rate, at the

same time ethoxydiglycol plays a key role as solubilizer an its absence prevents a fast

and complete release of resveratrol.

4.3.4.2 Absorption

Absorption profiles are reported in Fig. 4.14. AF201 is the formulation that provides

the higher absorption, reaching 933,45± 92,06µg/cm2 after 24 hours (corresponding

to 79% of the total resveratrol contained), APG01 values are much lower reaching

644,69± 4,70µg/cm2 (equal to 61%). The absorption differences between AF201 and

APG01, not observed in release studies, are probably due to the different lipophilicity of

the solubilizers used: ethoxydiglycol, used in AF201, is a mild lipophilic substance since

it has a log P of 0,9 while PEG-400 (polyethylene glycol), used in APG01, is strongly hy-

drophilic considering its Log P of -4,8. The higher lipophilicity of ethoxydiglycol provide

a higher resveratrol permeation rate through the isopropyl myristate soaked membrane,

acting as an effective permeation enhancer.

(a) Release curves expressed as µg/cm2. (b) Release curves expressed as percentage of the
total amount of resveratrol.

Figure 4.13: In-vitro release of resveratrol from the five studied formulations, release
data are expressed against time to evaluate zero order model. Error bars

are calculated on three repetitions.

76



Topical Delivery 77

F01, F03 and OPC01 absorption profiles are similar to those seen in the release studies:

F01 reach 436,21± 31,73µg/cm2 after 24 hours (equal to 39%), F03 allow to permeate

369,38± 12,26µg/cm2 (equal to 36%) and OPC01 not exceed 248± 12,67µg/cm2 (equal

to 21%).

4.3.4.3 Kinetics

The release profiles were also evaluated by fitting the experimental data to different

order kinetic equations. Data linear regression analysis was performed using zero-order,

first-order and Higuchi equations (Fig. 4.13-4.16). The Pearson correlation coefficient

values (r) and the relative release and absorption rates are listed in Table 4.5 and 4.6.

Quite surprisingly the majority of the formulations showed release and permeation pro-

files following first-order kinetic, in fact, the release and the permeation of resveratrol

from AF201, F01 and F03 is concentration-dependent and it follow the Noyes-Whitney’s

equation [59] that can be re-arranged as dMt
dt = k(M0 −Mt) where M0 is resveratrol

amount at t = 0 and consequently M0 −Mt represents the resveratrol amount that has

to be released yet and decreases with time. As the concentration of resveratrol in the

formulations decreases, also the release rate proportionally decrease generating a burst

effect in the first hours, this means that the rate-limiting step of the overall process is

not diffusion through the slab or the membrane crossing but dissolution in the receptor

medium.

Only formulation AF201 shows a zero-order release kinetic both in release and absorp-

tion simulation. Release and absorption rates are constant during time and follow the

general equation dMt
dt = k, the formulation behave like a ordinary reservoir system, where

(a) Absorption curves expressed as µg/cm2. (b) Absorption curves expressed as percentage of
the total amount of resveratrol.

Figure 4.14: In-vitro absorption of resveratrol from the five studied formulations, ab-
sorption data are expressed against time to evaluate zero order model.

Error bars are calculated on three repetitions.
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Table 4.5: Correlation coefficients (r2) and relative release rates (K) of the three math-
ematical models taken into account, applied to release profiles.

Release Zero order Higuchi First order
r2 K0 (s-1) r2 KH(s-1/2) r2 K1 (s-1)

AF201 0,8712 35,622 0,9798 215,65 0,9993 0,2577
APG01 0,9923 38,923 0,9781 222,89 0,9697 0,3102
F01 0,9874 25,856 0,9857 153,17 0,9997 0,0822
F03 0,9827 21,527 0,9896 123,31 0,9967 0,0557
OPC01 0,9740 11,637 0,9946 67,130 0,9856 0,0280

the rate-limiting step is the membrane crossing that occur at constant rate, determining

a constant rate release, independent of resveratrol concentration.

OPC01 follow the first-order kinetic in absorption studies (as described above) but fits

better with the Higuchi equation in release experiments. In this case release rate is

inversely proportional to square root of time: dMt
dt = k√

t
. According to Fick’s law, the

prevailing process in this case is the diffusion of resveratrol through the slab: as the

receptor medium spread through the formulation dissolving the resveratrol a receding

boundary is created. Since only dissolved molecules can diffuse through the membrane

and the interface between solid resveratrol and dissolved resveratrol moves like a front

toward the inside, the diffusion pathway length increases with time.

4.4 Discussion

Topical dosage forms loaded with resveratrol were successfully developed starting from

F10 and F03. Glyceryl stearate and xanthan gum were tested to obtain desired rhe-

ological features, ethoxydiglycol and polyethylene glycol 400 were used to solubilize

(a) Release curves are expressed as percentage of
the total amount of resveratrol vs. square root of
time to evaluate Higuchi model.

(b) Release curves are expressed as ln of the differ-
ence between total resveratrol (Rtot) and released
resveratrol (Rr) to evaluate first order model.

Figure 4.15
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Table 4.6: Correlation coefficients (r2) and relative release rates (K) of the three math-
ematical models taken into account, applied to absorption profiles.

Absorption Zero order Higuchi First order
r2 K0 (s-1) r2 KH(s-1/2) r2 K1 (s-1)

AF201 0,9860 39,588 0,9901 226,09 0,9984 0,0702
APG01 0,9987 25,872 0,9728 146,50 0,9912 0,0386
F01 0,9884 17,616 0,9789 100,27 0,9985 0,0204
F03 0,9978 15,738 0,9729 88,563 0,9999 0,0193
OPC01 0,9878 10,302 0,9896 58,760 0,9933 0,0099

resveratrol. Optical and TEM microscope analysis have highlighted how solubilizers

and thickeners influence the physical state of resveratrol and the whole internal struc-

ture. By modulating rheology and physical state of the active molecule we were able to

control its release and absorption. When fast release is required the use of solubilizers

is recommended, e.g. formulation AF201 is capable to release 100% of its resveratrol

content during 24 hours with a relevant burst effect, typical of first-order release kinetics.

When a slower and constant release rate is required a zero-order kinetic is recommended

(e.g. formulation APG01). When the use of irritating excipients must be avoided and

an emollient effect is desirable (e.g. the application on psoriasis wounded skin) a formu-

lation like F01 and F03 can be a brilliant solution.

(a) Absorption curves are expressed as percentage
of the total amount of resveratrol vs. square root
of time to evaluate Higuchi model.

(b) Absorption curves are expressed as ln of the dif-
ference between total resveratrol (Rtot) and perme-
ated resveratrol (Rp) to evaluate first order model.

Figure 4.16
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General Conclusions

This study investigated the association of commonly used medium chain fatty acids

with sucrose monopalmitate, water and glycerin to form both classical emulsions and

transparent gel-emulsions for the delivery of lipophilic active molecules. Although in the

last 15 years several studies about the use of sucrose esters in food industry have been

reported, none of them mentioned their capability to form gel-emulsions (also called

high internal phase ratio emulsions, HIPREs). The physical and mechanical properties

and the internal structure of the new formulations was assessed by several analytical

techniques such as DSC, TEM, DLS and rheology measurements. All the emulsion for-

mulated have proved to be stable at the ICH conditions tested, in particular HIPREs

showed great stability features, surely useful in food supplements and cosmetics appli-

cations.

Two oral dosage forms were developed starting from one of the previously described

HIPREs: adsorbed-HIPREs and medicated jellies. Resveratrol and ubidecarenon were

selected as model molecules to evaluate the release performances. For both actives it

was registered a significant increase in solubility using HIPREs, adsorbed-HIPREs and

medicated jellies respect to bulk powder. In particular resveratrol showed to be espe-

cially suitable for this kind of formulations since its complete solubility when formulated

in the adsorbed-HIPREs dosage form.

Also topical application of resveratrol was investigated, two HIPREs formulations were

selected and modified by adding ethoxydiglycol and PEG-400 as solubilizers and glyceryl

stearate and xanthan gum as thickeners. The obtained formulations were characterized

with the techniques described above and in addition in-vitro release and absorption tests

were performed. Release and absorption data were fitted with three mathematical mod-

els, showing close relations between the release profiles and the excipients chosen. It

was proven that the physical state of the active molecule and the lipophilicity of the

solubilizer are the main factor affecting the release, indeed when resveratrol is dissolved
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in ethoxydiglycol, it is released and adsorbed in higher amount respect to other formu-

lations tested.

One of the main focuses of this study was to establish the factors that influence the for-

mation and stability of lipid-based formulations produced using sucrose monopalmitate

as surfactant and medium chain fatty acids as oil phase. The information obtained from

this study should facilitate the rational design and fabrication of lipid-based delivery sys-

tems for lipophilic food and cosmetic actives. The initial aim to produce a formulation

platform capable to delivery lipophilic active molecules by oral and topical adminis-

tration was achieved. Once chosen the administration route and the active molecule,

an affordable and effective formulation can be provided and adapted to nutraceutical,

cosmetic and pharmaceutical industry as well.
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