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RIASSUNTO 

 
 I virus zoonotici, cioè in grado di infettare l’uomo e alcune specie animali, hanno un impatto 

significativo e costituiscono una costante, potenziale minaccia sia per la salute pubblica umana che per 

quella animale. Ecosistemi dagli equilibri modificati, una crescente urbanizzazione e connessioni facilitate 

hanno influenzato sempre piu' il rapporto tra patogeni e specie ospiti affini. Negli ultimi anni la fonte della 

maggior parte dei virus potenzialmente pericolosi e in grado di causare malattie emergenti sembra derivi da 

ospiti di origine animale; si tratta prevalentemente di virus a RNA che, grazie alla possibilità di moltiplicarsi in 

breve tempo all'interno di una popolazione ampia ed all'alto tasso di mutazione, permettono una rapida 

evoluzione, un'elevata variabilità genetica e la selezione di nuove varianti. Un adeguato e costante 

programma di sorveglianza, la condivisione di conoscenze e una collaborazione tra diverse competenze 

professionali sono fondamentali e necessarie per seguire l'evoluzione virale e per formulare politiche di 

sanità pubblica efficienti (Howard e Fletcher, 2012). 

  L' Influenza virus di tipo A è considerato uno dei virus a RNA più importanti, tanto per il suo 

potenziale ruolo zoonotico nell'interfaccia animale-umano, quanto per la salute globale e l'impatto 

economico. Quasi ogni anno epidemie di influenza provocano morbilità e mortalità nell'uomo e talvolta gli 

stessi virus possono essere associati a pandemie.  

Il serbatoio naturale dei virus influenzali di tipo A è rappresentato dagli uccelli, sia selvatici che domestici 

(influenza aviaria) (http://www.cdc.gov/flu/about/viruses/transmission.htm); in particolare gli uccelli selvatici 

sembrano costituire la fonte dell'influenza A virus tutte le altre specie animali. Diverse tecniche sono 

disponibili per studiare i virus e caratterizzarli geneticamente al fine di capirne il loro comportamento, le 

dinamiche evolutive, il loro rapporto con l'ospite e la loro origine e per sviluppare profilassi e terapie 

adeguate creando un valido supporto durante la fasi di sorveglianza e diagnosi di un'eventuale epidemia . 

Nell'ambito del mio dottorato è stato utilizzato un approccio integrato, sia genomico che strutturale, 

per studiare l'evoluzione dell'influenza aviaria; particolare interesse è stato rivolto allo studio 

dell'emoagglutinina virale, la principale glicoproteina di superficie, appartenente ai sottotipi H5, H7 e H9 (i 

principali sottotipi “aviari” responsabili di infezione nell’uomo).  

Le analisi mediante Next Generation Sequencing (NGS) hanno favorito lo studio e la 

caratterizzazione della complessità nella popolazione virale, consentendo di monitorare finemente 

l'evoluzione delle varianti geneticamente correlate presenti all'interno della popolazione virale tramite 

l'identificazione delle mutazioni a bassa frequenza. Per confrontare ed analizzare i dati genetici, l'approccio 

filogenetico si è rivelato un utile strumento per l'analisi dell'evoluzione virale; è stato usato per spiegare 

l'epidemiologia molecolare, la trasmissione e l'evoluzione virale. Al fine di ottenere una visione più completa 

in termini di 'evoluzione funzionale', l'analisi filogenetica è stata integrata con le informazioni provenienti dal 

confronto strutturale. L'approccio strutturale, considerando lo spazio tridimensionale dell’emoagglutinina, ha 

dimostrato di poter essere uno strumento utile per evidenziare eventuali somiglianze e per ispezionare e 

valutare quei motivi il cui ruolo non può essere correttamente interpretato utilizzando le sole sequenze 

primarie. Infatti, nelle sequenze primarie il peso delle mutazioni non tiene conto dell'effetto sul fold o sulle 

proprietà di superficie, mentre nelle strutture tridimensionali, quanto ciascuna mutazione sia in grado di 

influenzare le caratteristiche strutturali e le interazioni, è direttamente rilevabile. Questo approccio ha inoltre 
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portato un ulteriore contributo all'analisi filogenetica. In particolare lo studio si è concentrato sull'analisi delle 

dinamiche evolutive e delle strategie adattative dei sottotipi H7N1 ed H7N3 dell'influenza aviaria circolanti 

nel Nord Italia per periodi di tempo analoghi e in condizioni epidemiologiche simili. Inoltre è stato utilizzato il 

deep sequencing per studiare le dinamiche evolutive e di trasmissione intra- e inter-ospiti del virus aviario 

sottotipo H7N7 che colpì alcuni allevamenti italiani nel 2013. L'analisi NGS è stata utilizzata per 

caratterizzare la complessità della popolazione virale in due gruppi di animali sperimentalmente infetti con lo 

stesso virus ad alta patogenicità (HPAI) H5N1 ed immunizzati con distinti vaccini. E' stato inoltre eseguito un 

ampio confronto strutturale su domini e sub-regioni dell'emoagglutinina di diversi sottotipi del virus 

dell'influenza, con particolare interesse per i diversi clades di HPAI H5N1 circolanti in Egitto (ove l’influenza 

aviaria è endemica nei volatili), per indagare eventuali variazioni dominio-specifiche. I virus influenzali del 

sottotipo H9 sono stati analizzati da un punto di vista sia filogenetico che strutturale, per rilevare 

caratteristiche tipo specifiche e verificare se la variazione delle proprietà di superficie possa essere un 

marcatore di 'evoluzione funzionale' dei determinanti di superficie virali, come dimostrato nel sottotipo H5N1. 

Questo lavoro suggerisce che il confronto e l'integrazione tra analisi genomica, filogenetica e strutturale può 

aiutare a capire l' 'evoluzione funzionale' del virus dell'influenza aviaria di tipo A. 
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ABSTRACT 

 
 Viral zoonotic agents have a significant impact both on human and veterinary public health. 

Ecosystems changes, increasing urbanization and easy connection have influenced the balance between 

pathogen and related host species. In recent years most threatening viruses, originated from animal hosts 

causing emerging diseases; most of them are RNA viruses that thanks to a large population sizes, high 

mutation rate and short generation time allow rapid evolution, genetic variability and the selection of new 

variants. A constant and adequate surveillance program and the sharing of different professional expertise 

are necessaries to follow viral evolution and to formulate efficient public health policy (Howard and Fletcher, 

2012). 

Influenza A virus is considered one of the most challenging RNA viruses for its zoonotic potential  role in the 

animal-human interface, for global health and economic impact; almost every year influenza epidemics 

cause morbidity and mortality in the human and is also associated with influenza virus pandemics. 

Both wild and domestic birds are considered the primary natural reservoir of influenza A virus and in 

particular wild birds are thought to be the source of influenza A viruses in all other animals 

(http://www.cdc.gov/flu/about/viruses/transmission.htm). Different techniques are available to genetically 

characterize and study viruses in order to understand their behavior, the evolutionary dynamics, the host-

virus interactions and their origin; the aim is to develop a valid support with appropriate treatments during the 

phases of surveillance and diagnosis of possible epidemics. 

During my PhD it was used an integrated approach, both genomic and structural, to study the 

evolution of avian influenza A virus in particular focusing on the hemagglutinin, the major surface 

glycoprotein, belonging to the H5, H7 and H9 (the major "avian" subtypes responsible for human infection). 

Next-generation sequencing (NGS) was used to investigate and characterize the complexity of the 

viral population to detect low-frequency mutations and to follow the evolution of the genetically related 

variants present in a viral population. To compare and inspect genetic data, phylogenetic approach has 

shown to be a useful tools in the analysis of viral evolution. It has been used to explain the molecular 

epidemiology, transmission and viral evolution. In order to obtain a more complete view of the ‘functional 

evolution’, phylogenetic analyses based on sequence comparison and resulting in trees, was integrated 

taking into account information from structural comparison. Three-dimensional structural approach have 

shown to be a useful tool to display similarities and to inspect motifs that cannot be discovered analyzing 

primary sequences alone. Indeed, in the primary sequences the introduction of a mutation does not take into 

account the effect on the protein folding or on the surface properties, while in the three-dimensional 

structures, since each mutation is able to influence the structural characteristics and interactions, is directly 

detectable. This approach has also brought a further contribution to the phylogenetic analysis. In particular 

the study has focused on the evolutionary dynamics and the adaptive strategies of avian influenza H7N1 and 

H7N3 subtypes that circulated in Northern Italy for similar periods of time under similar epidemiological 

conditions. Within and between host population dynamics of Avian HPAI H7N7 viruses, that affected Italy 

during 2013, were investigated using next generation technology. NGS analysis was used to characterize 

viral population complexity into two groups of animals challenged with the same virus H5N1 HPAIvirus but 

vaccinated with vaccine conferring different protection levels. An extensive comparison of structural domains 

and sub-regions was performed on the hemagglutinin of different subtypes of influenza A virus, with 
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particular interest to different clades of HPAI H5N1 circulating in Egypt (where bird flu is endemic in poultry ), 

to investigate any domain-specific changes.  

Influenza A viruses belonging to H9 subtype were inspected from a phylogenetic and a structural 

point of view to infer type-specific characteristic and confirm if surface properties could be associated to 

'functional evolution' of viral surface determinants as seen in H5N1 subtype. This work suggests that 

integrating genomic, phylogenetic, and structural comparison can help in understanding the 'functional 

evolution' of avian influenza A virus.  
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PREFACE, OUTLINE AND LIST OF MANUSCRIPTS INCLUDED IN THIS THESIS 

 
 During my PhD, both genomic and structural approaches to the viral genome and the hemagglutinin 

(HA) protein have been followed to shed light on - and infer trends in - the evolution and circulation of 

influenza A viruses. Structural analysis were mainly carried out at the Molecular Biology and Bioinformatics 

research laboratory, Department of Biology, University of Padua, whereas the genomic and bioinformatics 

studies were performed at the Research & Innovation Department, Division of Biomedical Science, Istituto 

Zooprofilattico Sperimentale delle Venezie, Padova, Italy. 

 

The thesis work is presented as follows: an introduction section (with its own references) briefly 

outlines the characteristic of the influenza A virus and the multiple approaches used to study its evolutionary 

dynamics, then a short section presents the overall aims of the thesis. Results from each workpackage are 

presented and discussed as chapters each corresponding to a manuscript, either already published, 

submitted or going to be submitted for publication. Based on such outline, discussion of results is presented 

within each individual chapter/article. An aggregate reference list is not presented to avoid redundancy with 

the reference lists already included in the five manuscripts. Then, a final section presents concluding 

remarks for the overall thesis work and results, including ongoing research and open perspectives.  

 

For readers convenience, the list of manuscripts included in this thesis is presented hereafter 

together with short summary of each chapter/article: 

 

 
CHAPTER 1 

 
manuscript: Fusaro A, Tassoni L, Hughes J, Milani A, Salviato A, Schivo A, Murcia PR, Bonfanti L, Cattoli 

G, Monne I. Evolutionary trajectories of two distinct avian influenza epidemics: Parallelisms and divergences. 

Infect Genet Evol. 2015 Aug;34:457-66. doi: 10.1016/j.meegid.2015.05.020 

 

summary: this work describes the comparison of two distinct avian influenza epidemics caused by the H7N1 

and H7N3 subtypes that circulated under similar epidemiological conditions. The aim was to study the 

evolutionary dynamics and the adaptive strategies of distinct avian influenza lineages in response to 

environmental and host factors, considering the same domestic species reared in the same densely 

populated poultry area for similar periods of time. The two strains appear to have experienced largely 

divergent evolution: the H7N1 viruses evolved into a highly pathogenic form, while those from H7N3 subtype 

did not. A detailed molecular and evolutionary analysis revealed several common features: (i) the 

independent acquisition of some identical mutations, (ii) the evolution and persistence of two sole genetic 

groups with similar genetic characteristics; (iii) a comparable pattern of amino acid variability of the HA 

proteins during the low pathogenic epidemics; and (iv) similar rates of nucleotide substitutions. These 

findings suggest that the evolutionary trajectories of viruses with originally the same pathogenicity circulating 

in analogous epidemiological conditions may be similar. In addition, the Next Generation Sequencing (NGS) 
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analysis revealed parallel mutations already present at the beginning of the two epidemics, suggesting that 

their fixation may have occurred with different mechanisms, dependent on the fitness gain provided by each 

mutation. This highlighted the difficulties in predicting the acquisition of mutations possibly correlated to 

changes in virus virulence. 

 

 

CHAPTER 2 
 

manuscript: Fusaro A, Tassoni L, Milani A, Hughes J, Salviato A, Murcia PR, Massi P, Bonfanti L, 

Marangon S, Cattoli G, Monne I. Ultra-Deep Sequencing Data Reveal Unexpected Inter-farm Transmission 

Dynamics During a Highly Pathogenic Avian Influenza Epidemic. Submitted to Journal of Virology 

 

summary: this work focuses on the study within and between host population dynamics of the highly 

pathogenic avian influenza H7N7 epidemic, which hadaffected five industrial holdings and a backyard in Italy 

in 2013. NGS technology was performed on clinical samples to inspect the virus population diversity, the 

evolution of virus pathogenicity and the pathways of viral inter-farm transmission. This study revealed 

several viral introductions from multiple sources, genetic heterogeneity of the viruses and a co-circulation of 

two viral strains with a different amino acid insertion length in the cleavage site of the index case. This work 

has demonstrated the importance to support epidemiological investigations with genetic data during the 

control activities so that the transmission dynamics of the viruses and the within and between farms genetic 

diversity of the viral population during an outbreak may be assessed. 

 

 

CHAPTER 3 

 

manuscript: Milani A, Fusaro A, Bonfante F, Tassoni L, Salviato A, Mancin M, Mastrorilli E, Hussein A, 

Hassan M, Cattoli G, Monne I. Vaccine immune pressure influences viral population complexity of avian 

influenza virus during infection. Going to be submitted by February 2016 

 

summary: this work describes the NGS analyses performed to evaluate the viral population complexity on 

two groups of animals challenged with the same highly pathogenic avian influenza (HPAI) H5N1 virus but 

vaccinated with vaccines conferring different protection levels. Previous studies have shown that a 

suboptimal and/or inadequate vaccine protection with a consequent moderate immune pressure can favour 

viral spreading and production of heterogenic viral populations in infected animals. Thanks to NGS 

technologies and assuming that each viral population consists of a mixture of genetically related variants, we 

managed to characterize viral population diversity, to detect low-frequency mutations and follow their 

evolution. The results obtained from our preliminary study gave us an overview of the depth of viral genetic 

diversity, subject to a different immune pressure, that classical methods cannot provide. 
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CHAPTER 4  

 

manuscript: Righetto I, Milani A, Cattoli G, Filippini F. Comparative structural analysis of haemagglutinin 

proteins from type A influenza viruses: conserved and variable features. BMC Bioinformatics. 2014 Dec 

10;15:363. doi: 10.1186/s12859-014-0363-5.  

 

summary: in this work extensive structural comparison of influenza virus HAs, their domains and subregions 

was performed to investigate type and/or domain-specific variation. We found that structural closeness and 

primary sequence similarity are not always tightly related; moreover, type-specific features could be inferred 

when comparing surface properties of HA subregions, monomers and trimers, in terms of electrostatics and 

hydropathy. Focusing on H5N1, we found that variation at the receptor binding domain (RBD) surface related 

to branching of still circulating clades from those ones that are no longer circulating. This work suggests that 

integrating phylogenetic and serological analyses by an extensive structural comparison can help us 

understand the 'functional evolution' of viral surface determinants. In particular, variation in electrostatic and 

hydropathy patches can provide molecular evolution markers: intriguingly, surface charge redistribution 

characterizing the HA receptor binding domain (RBD) from circulating H5N1 clades 2 and 7 might have 

contributed to antigenic escape, hence to their evolutionary success and spreading.  

 

 

CHAPTER 5 

manuscript: Milani A^, Heidari A^, Fusaro A, Righetto R, Cattoli G, Monne I, Filippini F. Phylogenetic, 

phylogeographic and structural bioinformatic approach to the evolution and spreading of H9N2 avian 

influenza virus. Going to be submitted by February 2016 
^A.M. and A.H. contributed equally to this work 

 

summary: in this work, genetic diversity of H9N2 subtype was assessed through large-scale phylogenetic 

analysis, providing a novel classification scheme of H9N2 classes and clades that is based on both 

phylogenetic topology and evolutionary distances. Starting from this dataset, viruses representative for each 

clade were selected to infer type-specific structural features and to confirm whether surface properties could 

be associated to 'functional evolution' and spreading of H9N2, as observed for H5N1. In particular, variation 

in the electrostatic properties of HA1 and RBD subregions confirmed evidence from the previous work on 

H5N1 and unveiled possible fingerprints of the H9N2 evolution. Furthermore, we investigated and compared 

surface properties of H7 HA proteins belonging to HPAI and LPAI viruses to highlight specific features 

ascribable to pathogenicity.  
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INTRODUCTION 
 

 Influenza is a global public health disease, caused by RNA viruses belonging to Orthomyxoviridae 

family; antigenic differences in their nucleoprotein (NP) and matrix protein (M1) allow influenza viruses to be 

classified as types A, B, C or D (Webster et al., 1992; Ducatez et al., 2015). Influenza viruses are 

characterized by their capability to be highly adaptable, evade the host immune response and infect new 

host species (Vandegrift et al., 2010); these properties are the result of an error-prone RNA-dependent RNA 

polymerase, a lack of error correction during replication and a segmented genome.  

 Influenza type A virus is one of the most important from an epidemiological point of view and it has 

been involved in recent pandemics and severe epidemics. It is considered one of the most challenging 

viruses which poses a threat both for human and animal health. Wild birds, like Charadriiformes and 

Anseriformes, have long been considered a source of influenza A virus capable to infect domestic avian 

and/or mammal hosts (Webster et al., 1992), furthermore, recent studies in bats have suggested the 

possible existence of additional reservoir species (Tong et al., 2012; Tong et al., 2013). Influenza A virus is 

further subtyped considering the antigenic properties of the surface glycoprotein hemagglutinin (HA) and 

neuraminidase (NA). To date, 16 HA (H1-H16) and 9 NA (N1-N9) subtypes (Fouchier et al., 2005) have been 

found in wild aquatic birds and only two subtypes (H17N10 and H18N11) have been described in bats (Tong 

et al.,2013). H5, H7 and H9 influenza A virus subtypes circulating and isolated in avian species have 

aroused most interest for their role in the human - animal interface; in particular, H5N1, H7N2, H7N3, H7N7 

and H9N2 viral subtypes have infected humans even thought a human-to-human host transmission has yet 

to occurr. 

 The Avian influenza A virus devastatingly impacted on the poultry industry worldwide, mainly from 

the late 1990s; the H5N1 panzootic virus, the H7N1 epidemic in Italy (1999-2001), the H7N7 epidemic in the 

Netherlands (2003) and the H7N3 in Canada (2004) caused huge losses for the poultry industry and aroused 

serious human health concerns, given the capacity of the viruses to cross the species barrier.  

 Direct control strategies (i.e. movement restrictions, culling of infected or possibly infected birds) 

and vaccination are considered the most important tools for the eradication or the containment of the virus in 

animals. Constant surveillance in the animal reservoirs to monitor viral circulation, evolution and host 

adaptation becomes pivotal in the study of potential pandemics viruses, such as influenza A virus.  

 

 

ETIOLOGY, VIRUS GENOME AND PROTEINS 
 

 Influenza A viruses are pleomorphic enveloped single stranded negative sense RNA viruses; they 

can assume spherical/ovoid (80-120 nm diameters) or filamentous shapes (80-120 nm diameters up to 2000 

nm in length). Their genome consists of 8 segments (from 0.9 to 2.3 Kb) coding for both structural and non-

structural proteins (fig. 1) 
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Fig. 1. Graphical representation of spherical shape  of influenza A virus and its genome. The ssRNA(-) genome is 

encapsidated by nucleoprotein, it consists of 8 segments with a size range between 890 and 2341 nt and codes for 12-

14 proteins (depending on strains). From ViralZone, SIB Swiss Institute of Bioinformatic (http://viralzone.expasy.org/).  

 

Each gene segment is associated to the ribonucleoprotein complex (vRNP) formed by the 

nucleoproteins (NP) and the polymerase complex (PA, PB1 and PB2), which is responsible for viral 

replication and transcription. The complex is then immersed in a protein matrix, consisting of the M1 protein, 

which is covered by a lipid envelope (the viral membrane) where the transmembrane proteins are inserted: 

hemagglutinin (HA) and neuraminidase (NA) and the M2 protein. Viral proteins can be divided into three 

main categories: 

 

• internal: M1, PB1, PB1-F2, PB1-N40, PB2, PA, PA-X, PA-N155, PA-N182, NP 

• non-structural: NS1, NS2, N40 

• surface: HA, NA, M2, M42 
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Internal proteins 

The M1 protein is a polypeptide of about 28 kDa, abundantly present in the virion, which constitutes 

the inner viral membrane protein below the lipid bilayer; the layer formed by the M1 represents a bridge 

between the internal components and the virus surface proteins. It is associated to the RNP and the NS2; 

probably it interacts with the plasma membrane with HA, NA, and M2 proteins, playing an important role in 

the budding of virus particles from the host cell. During acidification, through the work done by the M2 ion 

channel, M1 proteins are separated from the vRPN complex (PA, PB1, PB2, NP), which is then transported 

into the nucleus of the host cell via a nuclear localization signal present in the nucleoprotein (NP). It also 

seems that during the late stages of viral replication proteins, the newly synthesized M1 proteins inhibit 

further viral RNA transcription. It is also the only component sufficient for the formation of vesicles, because 

it has all the structural information necessary for viral self-assembly, and the morphology, the interaction with 

the cell membrane and the process of budding; it could also be involved, along with the NS2, in the export of 

viral RNA from the nucleus (Gomez-Puertas, 2000). 

 The nucleoprotein (NP) and the polymerase proteins (PA, PB1, PB2) are associated to the genome 

and are involved in the replication and transcription of the viral RNA. The nucleoprotein consists of about 500 

amino acids (56 kDa), the most abundant of which is the arginine, a positively charged aa; the length of viral 

RNA complexed to each NP molecule was estimated to be in the order of 20 nucleotides. Their basic 

characteristics are to encapsulate the viral genome for the transcription, replication and packaging and to 

mediate the transport of newly synthesized viral RNPs from the cytoplasm to the nucleus. NP protein 

interacts with vRNA, 2 subunits of the vRNA dependent RNA polymerase, the matrix proteins and also with 

several cellular proteins such as actin, some components of the import/export of the core and with a viral 

RNA helicase (Portela and Digard, 2002). 

 The PB1, PB2, PA polymerase proteins have a weight of about 80-90 KDa, form a complex which 

has an RNA dependent RNA polymerase activity and is located in a small amount into the virion (about 50 

units per viral particle). PB2 (polymerase basic 2) is a cap-binding protein essential for the synthesis of 

mRNA (Plotch et al., 1979); at the beginning of the transcript it recognizes and binds the cap to the 5 'RNA 

end of the host, and it is partially involved in cap snatching so that it can be used as a primer for the viral 

RNA synthesis. 

 PB1 (polymerase basic 1) is the main component of the polymerase complex; it is responsible for 

the catalysis reaction indispensable for the beginning and the elongation of the newly synthesized viral RNA; 

it is involved in stretching viral mRNA and vRNA and is localized in the nucleus of infected cells (Samji et al., 

2009) The same genetic segment encodes also for PB1-F2 and N40 proteins. PB1-F2 is transcribed starting 

from an alternative open reading frame (ORF) and is involved in the apoptosis induction (Zamarin et al., 

2005); the function of N40 remains unclear (Wise et al, 2009). 

 The PA (polymerase acidic) protein is involved in viral replication and its expression in infected cells 

is probably associated to the proteolytic activity. It is involved in the transcription, replication and transport 

into the nucleus. PA-X is translated from the same genetic segment of PA thanks to a ribosomal frameshift; it 

is shorter than PA. PA-X is used to repress gene expression of the cell and its loss causes increased 

apoptosis and inflammation (Jagger et al., 2012). The newly identified proteins, PA-N155 and PA-N182, are 

N-terminally truncated forms of PA; these proteins  were detected in cells infected with various influenza A 
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viruses isolated from different host species and seems to possess important functions in the replication cycle 

of influenza A virus (Muramoto et al. 2013).  

 

Non structural proteins 

The colinear transcript of viral genetic segment 8 encodes for the NS1 protein (about 26 kDa) while 

the spliced mRNA for the protein NS2 (11 kDa). 

 NS1 is a poly (A) binding protein expressed in huge quantities both in the cytoplasm and the nucleus 

of infected cells, but has not been detected in the mature virus particle. In the nucleus it appears to inhibit 

various processing stages, such as cellular mRNA polyadenylation, splicing and transport mechanisms of 

RNA; in the cytoplasm it appears to increase the rate of viral mRNA translation. Its main functions are export 

inhibition of the RNA from the nucleus, block of dsRNA counteracting the production of IFN-beta by the host 

cell and splicing inhibition of pre-mRNA (Lu et al., 1994; Qiu and Krug, 1994). 

 NS2 is also called nuclear export protein (NEP) because it carries the newly synthesized RNPs from 

the nucleus to the cytoplasm, essential prerequisite for viral budding (Robb et al., 2010). This protein 

probably has a nuclear localization signal. It has been demonstrated that proteins NS2 and M1 interact in 

vitro: probably the RNP nuclear export of the molecules is facilitated by the association of these proteins. 

 

Surface proteins 

 The membrane of influenza A virus contains a transmembrane protein, the M2; which forms a 

proton channel of 97 amino acids and consists of an extracellular N-terminal portion, a transmembrane 

segment and a C-terminal intracellular part. It is essential for viral replication and its main function is to 

equilibrate the pH during virus entry into the host cell. After the viral infection and before the membrane 

fusion, the M2 channel is activated by the low pH endosome, protons pass through the viral envelope and 

the interior of the virus starts to acidify. This step triggers membrane fusion, release of uncoated RNPS into 

the cytosol and later into the nucleus, where mRNA and vRNA are synthesized. M2 carries out another 

function by preventing the Golgi pH to decrease too much and therefore avoiding the potential 

conformational changing of the hemagglutinin during its transport to the viral envelope (Pielak and Chou , 

2010). Mutations to obtain an alternative  splicing or the introduction of a stop codons allowed the generation 

of defective highly attenuated M2 viruses. This novel M2-related protein, M42, showed differences in its cell 

localizationmostly accumulated in the Golgi apparatus (Wise et al., 2012). 

 The surface glycoproteins are the antigens mostly involved in the induction of a protective humoral 

and cell mediated immune response; they are the most abundant viral proteins for diagnostics and vaccine 

prophylaxis. After the identification of antigenic differences among the surface proteins, it was possible to 

classify 16 subtypes of hemagglutinin and 9 of neuraminidase. Up to now all possible combinations of HA 

and NA have been isolated from several avian species and only two subtypes (H17N10 and H18N11) 

described in bats (Tong et al.,2013): this indicates the extreme antigenic variability characteristic of these 

viruses.  

 The neuraminidase (NA), an integral membrane glycoprotein is a homotetramer of 220 kDa 

consisting of a head, which is an enzymatically active domain, and a tail which allows to anchor the protein 

to the membrane (Hausmann et al., 1997). Its main functions are i) the hydrolysis of sialic acid on the cellular 

receptor for the hemagglutinin, which allows the release of the virus from the cell surface, and ii) the removal 
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of sialic acid residues from the viral particles to prevent aggregation. The inhibitors developed for this 

enzymatic protein are the main antiviral drugs. In the absence of this enzyme the virus remains attached to 

the cellular receptors, thus inhibiting the spread of the virus progenies in the host tissues. Therefore, 

antibodies directed against the neuraminidase protein do not prevent infection but reduce the spread of the 

virus in tissues.  

 The hemagglutinin (HA) is the most abundant antigenic glycoprotein of the viral surface encoded by 

the fourth viral segment of the influenza A genome. It is a type I membrane glycoprotein responsible for the 

binding of the virus to the receptors present in the host cell surface, for virus internalization and fusion with 

the endosomal host membrane. In the viral particles, each mature HA is a homotrimer which projects onto  

the viral envelope to form a rod-shaped structure; in infected cells, this protein is synthesized as a precursor 

polypeptide, called HA0, which must be cleaved into two subunits (HA1 and HA2, of 36 and 27 kDa, 

respectively) by host trypsin-like proteases (Copeland et al., 1986). After the proteolitic cleavage of the 

precursor, the two subunits are covalently linked to each other by a disulfide bond, whereas each trimer is 

associated to the others by non covalent bonds (Klenk et al., 1975). This processing is necessary for the 

virus infectivity because it activates the fusion of HA and it is a determinant of pathogenicity (Hamilton et al., 

2012). The cleavage site is a prominent surface loop near a cavity in HA0 (Chen et al., 1998); the results of 

the cleavage process is a structural rearrangement in which the fusion peptide, formed by nonpolar N-

terminus amino acids of HA2,is relocated into the interior of the trimer and buries ionizable residues involved 

in the acidification-induced conformational changes in the endosome. At the membrane-distal tip of each 

HA1 we find  the receptor binding domain (RBD), formed by the 130-loop, 190-helix, and 220-loop and four 

highly conserved sites (Weis et al., 1988, Martín et al., 1998); it forms the sialic acid binding pocket and 

contains most of the antigenic regions recognized by neutralizing Abs.The stem-like structure HA2 has a 

membrane fusion activity. The 2 loops and the helix all contain amino acids that interact either with sialic 

acids or with internal sugars of the glycan chain associated with glycoproteins and glycolipids on the surface 

of epithelial cells; the base of the site contains several highly conserved residues that form an extensive 

hydrogen bond network . The three-dimensional structure of few HA subtypes has been resolved  and 

characterized with respect to the localization and structure of their antigenic sites. In the H3 subtype five 

antigenic sites (A, B, C, D, E) have been mapped (Wiley et al., 1991), and the same structure was used to 

map antigenic sites on the H1 and H2. The H1N1 subtype shows five antigenic immunodominant antigenic 

sites (Sa, Sb, Ca1, Ca2, Cb) comparable to the H3N2 virus (Caton et al.,1982). When the 3D structures of 

H5 and H9 HA were resolved, the H5 HA molecule was antigenically mapped. For H5 structure, the 

localization of two antigenic sites has been described. Site 1 includes residues 140 to 145 in HA1 (H3 

numbering ), which corresponds to antigenic sites A of H3 and Ca2 of H1. Site 2 comprises one site on 

residues 156 and 157 in HA1, corresponding to site B in the H3 subtype, and one from residue 129 to 133 in 

HA1 that corresponds to site Sa in the H1 subtype (Peng et al., 2014). Changes in the HA and NA antigenic 

combinations of a virus (antigenic shift) may derive from the genomics segmentation. When the same cell is 

co-infected by distinct viral subtypes, the viral progeny may originate from a reassortment of parental genes 

from different viruses. 
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Infection and replication  

The influenza A virus,  takes advantage of the host cell machinery in almost all the phases of its 

replication. Influenza A virus attachment and entry starts with the binding of viral hemagglutinin to the N-

acetylneuraminic (sialic) acid present on the host cellular surface. After binding to the host cell, the virus is 

internalized through the endosomal pathway; the acidification of the vesicle causes a conformational change 

of the hemagglutinin, which exposes the N-terminal hydrophobic domain of the HA2 chain (site of fusion) and 

causes its interaction with the endosomal membrane. The viral envelope and the endosomal membrane are 

then merged and the viral nucleocapsid is released into the cytoplasm of the host cell. 

 The virus is rapidly internalized into clathrin coated vesicles and begins endocytic internalization; 

starting from the early endosomes (located under the plasma membrane) to the later ones (close to the Golgi 

apparatus and the nucleus) the pH decreases to a value of about 5.5. At this pH value, the process of viral 

fusion is activated instead of being transferred from the endosomes to lysosomes, where it would be 

degraded : the virus escapes by virtue of the properties of the hemagglutinin. The HA glycoprotein 

undergoes a conformational change to form α supercoiled helices and exposes the hydrophobic fusion 

peptide HA2 that inserts into the endosomal membrane. The endosome acidification has another crucial 

function in the entry of the virus into the cell: the M2 ionic channel present in the viral envelope allows the 

viral components, located inside the virus (M1 and vRNPs), to be exposed to the low pH of the endosome. 

This latter is a necessary prerequisite for breaking the interactions between M1-vRNP and removes the coat 

proteins from the virus. Ribonucleoproteins (RNPs), once released into the cytoplasm, are transported into 

the nucleus of the host cell (through the nuclear pore complex) thanks to the presence of a localization 

signal.  

 In the host cell nucleus, the viral RNP is used as a template by the RNA polymerase complex (PB1, 

PB2, PA) to produce two different types of single-stranded positive RNA segments: cRNA (complementary 

RNA) used by RNA polymerase to produce more copies of vRNA (viral RNA) and mRNA (messenger RNA). 

The synthesis of viral RNA always starts at the 5' end of the new molecule of viral RNA and proceeds in the 

5'-3' direction up  to the 3 'end. There is no mechanism for error correction during RNA synthesis and error 

frequencies are similar to those of DNA transcription (1 error every 104 nt synthesized). Although both in 

cellular and viral mRNA cap structures at the 5' end (necessary for the ribosome attack) and poly (A) tail at 

the 3' end (necessary as they protect the mRNA from degradation by cytoplasmic ribonuclease) are 

present,the acquisition mechanisms of these sequences are different. The cap structures at the 5' end of 

cellular mRNA are synthesized de novo by cellular enzymes (Shuman, S. 1995), while the cap structures at 

the 5' end of influenza viruses are obtained from the fragmentation of cellular pre-mRNA during viral mRNA 

synthesis. An endonuclease intrinsic to the viral polymerase cuts the cellular capped pre-mRNA to produce 

fragments of 10-13 nt with a capped 5' end which are used as primers by viral RNA polymerase for the viral 

mRNA synthesis (this procedure is required because the viral RNA polymerase doesn't have a catalytic 

activity to produce capped primers). The poly(A) tail at the 3' end of the viral mRNA is synthesized by viral 

polymerase. 

 In Influenza virus infected cells, the nuclear export of cellular mRNAs is blocked; the cellular pre-

mRNA and mRNA are degraded in the nucleus. This nuclear export block is selective: all viral mRNAs are 

efficiently exported; as a consequence, these newly synthesized mRNAs prevail in reaching  the translation 

machine into the cytoplasm of infected cells, thus helping to permanently stop the gene expression of the 
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host cell and selectively synthesize viral proteins. The nuclear export of the viral mRNA uses the host cell 

machinery but it is selective: it is controlled by a viral non-structural protein (NS1) (Gary R. Whittaker, 2001) 

that inhibits the expression of mRNA synthesized after the cell infection. Furthermore, the pre-mRNA and 

mRNA retained in the cell nucleus are available to the cap dependent viral endonuclease for the production 

of the capped RNA primers required for viral mRNA synthesis. Viral mRNAs, after being transported into the 

cytoplasm, are translated to produce the corresponding proteins. Membrane proteins (HA, NA and M2) are 

transported across the RER and the Golgi apparatus to the plasma membrane. When nucleocapsid and viral 

coat proteins reach the plasma membrane, they form a bud whose coating contains coating proteins 

immersed in the lipids bilayer of the host cell. Subsequently the bud separates and virus particles are 

released outside the cell. During viral budding the host proteins present in the plasma membrane are 

excluded from the final viral particle. The viral proteins possessing a nuclear localization signal are 

transported into the nucleus (PB1, PB2, PA, NP, M1, NS1 and NS2). (Gary R. Whittaker 2001; Palese, 

Garcia-Sastre 1999). 

 

Regulation of gene expression in virus infected cells 

The influenza virus infection can be divided into an early and a late gene expression; specific vRNA, 

viral mRNA and viral proteins are synthesized during the early phase of synthesis. After a first transcription, 

an RNA template is synthesized starting from a parental vRNA. Subsequently specific RNA templates are 

selectively transcribed in vRNA; in particular, RNA molecules encoding for protein NS and NP are a priority, 

while the RNA synthesis of matrix proteins (M) is delayed. The NP protein is synthesized in this first phase 

probably because it is necessary for the synthesis of vRNA and RNA templates; the NS1 protein is required 

for the functions previously described. The synthesis of the M1 protein is delayed because this protein 

permanently interrupts the viral RNA transcription in the corresponding mRNA and it is also involved in the 

transport of nucleocapsids containing vRNA from the nucleus to the cytoplasm. The rate of synthesis of a 

particular vRNA is correlated with the rate of synthesis of the corresponding mRNA and of the corresponding 

protein. During the final phase, the relation between vRNA and mRNA viral synthesis and related proteins 

changes drastically. In this stage the synthesis of all viral mRNA reaches its highest rate; also the pattern of 

the proteins  synthesized during the first phase differs from the second one, where M1 and HA (Lamb, Krug 

2001) are the two most synthesized proteins 

 
 

EVOLUTION 
 

Antigenic drift and shift 

 As for all RNA viruses, the evolutionary dynamics of influenza A virus are complex and are the 

results of the combination of high mutation rate, rapid replication and infection of large population size. Two 

are the mechanisms that allow influenza viruses to rapidly evolve and adapt: the high mutation rate and the 

reassortment of the segmented genome. 

The lack of a proofreading mechanism during viral replication results in a high mutation rate that provides the 

opportunity to change; many changes may be deleterious and can be lost during the selection process so as 

to maintain the fittest virus in a population. The error-prone RNA polymerases produce complex populations 
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of genetically related but non-identical variants called quasi-species, which interact and cooperatively 

contribute to characterize the whole population, and are subjected to a continuous genetic variation, 

competition among variants, and selection in a given environment (Domingo et al., 2012). This mechanism 

can provide a broad range of viral subpopulations able to adapt to the action of multiple factors; in each viral 

population minority variants are always present  and can be selected out of the majority population as a 

consequence of a given environmental pressure . As an example, subpopulations of viruses already 

resistant to antiviral drugs, previously used for the treatment of influenza infections, have been found in 

circulating avian influenza viruses belonging to the H5 subtype (Wainright et al., 1991). From a practical 

point of view, the consensus sequence obtained with Sanger sequencing corresponds to the most 

represented nucleotide at each genomic position; consensus sequence may or may not exist in the 

population. The genome characterization of a viral population is a great challenge; recent next generation 

technologies have allowed deep sequencing and investigation of the genetic composition, even if sometimes 

the identification of true variants from sequencing error is still a real problem. The eight genetic segments 

have a similar mutation rate, although HA and NA genes seem to have more changes because of  positive 

selection. When unpredictable point mutations cause minor gradual variations in the two main surface 

glycoproteins, neuraminidase and hemagglutinin, new virus strains with differerent antigenic properties may 

be produced. This results in a decreased power of antibody binding that will reduce any possible acquired 

immunity of the host and facilitate the spread of the epidemic. Antibody pressure against the hemagglutinin 

in previously immunized or vaccinated hosts is considered one of the major selective factors (Plotkin and 

Dushoff, 2003). Five antigenic regions have been identified on the globular head of the human H3 protein 

close to the receptor binding site; antibodies against these antigenic sites can have a neutralizing effect 

blocking the access to the receptor binding site and preventing the virus from binding to host receptors and 

infect host cells (Webster and Laver, 1980). Amino acid changes are tolerated in these regions and when 

they occur, neutralizing epitopes may be modified so that this viral escape mutant may be able to escape the 

host’s immune response, with increased replication possibilities and transmission. The antibodies to the HA 

molecule mainly belong to the IgG and IgA classes; they are able to neutralize the viral infectivity and are the 

major causes for resistance to infection (which means that they constitute the basis of vaccination against 

viral strains). The response of Ig to the hemagglutinin is subtype specific, but the accumulation of point 

mutations (antigenic drift) allows infectious viruses to escape from antibody-mediated destruction. 

Vaccination stimulates the production of neutralizing antibodies and  is presently considered the most 

effective prophylactic measure against influenza virus; several studies have shown that Ab binding in 

proximity to the receptor-binding domain can block virus attachment to the sialic receptors on host cells. 

 Viral recombination during evolution is another aspect to take into consideration due to its abilityo 

generate new strains, which may have new acquired properties and enhanced virulence (Andino and 

Domingo, 2015). Influenza A viruses have a segmented genome that allows gene rearrangement during 

infection; the new recombinant viruses may be characterized by high infectivity and virulence when 

transmitted between individuals of the same species and are also able to cause pandemics. A drastic 

reassortment of sections of the viral segmented genome is referred to as antigenic shift. As a matter of fact, 

a consequence of reassortment could be the production of novel influenza A virus subtypes, containing 

some genes from strains that normally infect birds and some others from strains which normally infect 

humans: thismay cause influenza pandemics in humans, as observed in the case of the 1957 and 1968 
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outbreaks (Clancy et al., 2008). Today the World Health Organization (WHO) has included H5, H7 and H9 

avian influenza subtypes as those with the greatest pandemic potential. The spread of HPAI and LPAI 

viruses of the H5, H7 or H9 subtypes amongst birds and sporadic infections in humans continue to pose a 

threat to public health (Lin et al., 2000).  

 

Avian influenza and pathotypes 

 Avian influenza viruses can be classified into two groups based on their difference in virulence: low 

pathogenic (LPAI) or highly pathogenic (HPAI) form. To date, only H5 and H7 subtypes of influenza A 

viruses have shown to be able to evolve from a LPAI to a HPAI form after the introduction into poultry from 

the wild bird reservoir; however, there are rare examples of other viruses that could technically be 

considered HPAI. LPAI viruses in poultry can be asymptomatic or cause mucosal infections, with mild to 

severe respiratory diseases, water and feed decrease and drops in egg production; usually they do not result 

in high mortality of the infected hosts. In poultry and domestic birds, HPAI viruses usually cause systemic 

infections and are associated with severe disease and high mortality; these viruses do not usually cause 

illness or death in wild birds. The two pathotypes posses a different ability to cause disease in intravenously 

inoculated experimentally infected young chickens. From a molecular point of view, H5 and H7 highly 

pathogenic viruses contain a polybasic sequence at the cleavage site allowing intracellular cleavage by 

ubiquitous, subtilisin-like serine endoproteases, such as furin (Garten et al., 2008), which causesa systemic 

infection. Low pathogenic influenza viruses cause an anatomically localized infection in the hosts as a 

consequence of the restricted range of extracellular trypsin-like proteases, which can recognize and cleave 

the cleavage site where the linker consists of a single R/K. 

 The released fusion peptide obtained by the cleavage of the HA glycoprotein is mandatory for the 

initiation of viral infection. The low pathogenicity H5 subtype usually hasa well conserved hemagglutinin 

cleavage site, even though some exceptions are allowed, in position 321-330 with the amino acid sequence: 

. ..QRETR/GLFG . . .; the cleavage point is situated between the R (arginine) and G (glycine). In most low 

pathogenicity isolates of the H7 subtype the protein cleavage site consists of a 11 amino acids conserved 

region with the sequence ...PEXPKXR/GLFG... where X can be a neutral or a basic amino acid (Perdue et 

al., 1997). In bird hosts, the proteases able to cleave the hemagglutinin of the LPAI subtype are mainly 

situated in the respiratory and intestinal tracts, but enzymes involved in cleavage have not been fully 

identified. Mutations and/or insertions of amino acids within the cleavage sites ,resulting in an increased 

number of basic amino acids (R and/or K), allow the recognition and cleavage by widely distributed furin-like 

or subtilisin-like endoproteases (Garten et al., 1981; Horimoto and Kawaoka, 1995) . This is the reason why 

highly pathogenic viruses are able to replicate in a wider range of host tissues with broader replication 

possibilities.  

 Up to now four are the mechanisms by which AI viruses acquire basic amino acids at the cleavage 

site: single nucleotide changes, accumulated nucleotide insertion; tandem duplications of stretches of 

purines and RNA/RNA recombination events.  

Single Site Mutations can occur naturally in RNA viruses, without affecting viral fitness and becoming fixed in 

the population; an example is the H5N2 outbreak that affected the U.S. poultry industry in 1983, resulting in 

the culling of 17 million birds and the loss of $63 milllion. (Kawaoka and Webster, 1985; Webster et al., 

1986) 
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Accumulated nucleotide insertions can result in a functional codon when three successive nucleotide are 

added; the HPAI outbreak in turkeys in Ontario in 1966 and several H7 turkey virus isolates in England 

before 1963 had probably originated from this mechanism. Another example assessing the ability of LPAI to 

evolve into HPAI form are the two H7 avian outbreaks that affected Northern Italy between 1999 and 2001. 

The addition of 12 nucleotides resulted in a longer cleavage site with multiple basic amino acids, although it 

still remains unclear how such an insertion had occurred and in what way the RNA/RNA recombination event 

happened. Epidemiological information, phylogenetic analysis, and deep sequencing approaches revealed 

the evolution of LPAI to HPAI pathotype and a common ancestor among strains (Monne et al., 2014). 

 An example of tandem duplications of stretches of purines at the cleavage site is the Mexican 

outbreak of avian influenza in 1994-1995, where in a few weeks viruses evolved into the HPAI pathotype 

(Garcia et al., 1996). Molecular analysis at the cleavage site of isolated samples showed one site mutation 

and successive tandem duplications of the sequence AAAGAA, resulting in 6 amino acid insertion (R-K-R-K-

R-K). In many cases, H5 and H7 subtypes with multiple basic amino acid insertions at the cleavage site of 

highly pathogenic strains may be the result of tandem duplication events (Perdue et al., 1997).  

 Another example is the characterization of an HPAI H7 subtype isolated from seal showingan 

insertion of 60 nucleotide at the cleavage site, probably originated from the nucleoprotein gene of the same 

strain. The outbreak of H7N3 that affected poultry in Chile in May 2002, demonstrated the lengthening with 

30-nucleotide inserts of the hemagglutinin cleavage site by the recombination with the nucleoprotein RNA of 

the same virus, which lead to the evolution of the LPAI pathotype into a HPAI one. The same scenario 

happened in an H7N3 AI outbreak in British Columbia: an insertion of 21 nucleotide at the protein cleavage 

site, probably from the M gene, resulted in a highly pathogenic strain. 

Because of the risk of a H5 or H7 virus of low pathogenicity becoming highly pathogenic by mutation, 

these subtypes and all high pathogenicity viruses from birds are notifiable to the Office International des 

Epizooties (OIE). H7 LPAI virus usually causes mild respiratory disease and a production decrease in 

infected poultry; its evolution into a HPAI form results in the generation of a virus able to cause severe 

disease and death in the poultry population. 

(http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.03.04_AI.pdf). 

Despite not possessing a multi-basic cleavage site and their inability to  cause systemic infections, 

some viruses belonging to the H10 subtypes have characteristics of HPAI pathotype. When these viruses 

are administered intravenously into poultry, they cause the death of the host by impairing the function of the 

kidney (Swayne and Alexander, 1994). In a previously study (Bonfante et al., 2014) a nephritic H10N1 avian 

influenza virus was genetically and phenotipically characterized; it did not display multiple basic amino acids 

at the cleavage site although it did show  an intravenous pathogenicity index (IVIP) of 1.9. Furthermore, 

when administered by a natural route (intranasal), this H10N1 virus could cause mortality. 

 

 

HOST SPECIFICITY 
 

 To date, the factors determining the viral to host restriction are probably associated to several 

molecular determinants within the viral genome that involve either the viral genes encoding for surface 

glycoproteins (HA and NA) or genes encoding for internal proteins such as the NP and the PB2 genes. 
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 Hemagglutinin membrane glycoprotein plays a critical role in influenza A virus infection (Gamblin et 

al. 2010). Binding preference of viruses to host cells is considered to be one of the most relevant 

determinant that prevents crossing the species barrier and influence viral tropism. Sialic acids (SA) are 

present on the surface of many cell types and animal species; in general, carbon-2 of the terminal sialic acid 

is bound to the carbon-3 or carbon-6 of an adjacent galactose, which allows the formation of an α -2,3 or 

α2,6-linkages configuration. The hemagglutinin of avian and equine influenza viruses usually has a binding 

preference for α2,3 linked sialic acid; human isolates exhibit α2,6 linkage whereas viruses from swine bind to 

both. More recently it has been demonstrated that the human epithelial cells of the lower respiratory tract 

harbour SA with both α2,6 and α -2,3 linkages; furthermore, the finding of α -2,3 linked SA in the human 

airway epithelium can explain the ability of viruses of avian origin to infect and replicate in humans, although 

not sufficiently enough to inducean efficient human to human virus transmission (Matrosovich et al., 1999; 

Matrosovich et al., 2004). Neuraminidase is also involved in the interaction with host receptors; in particular, 

neuraminidase of avian origin prefers to hydrolyze the α-2,3 linked SA rather than the α-2,6. The equilibrium 

between the two main surface glycoproteins HA and NA must be balanced to allow a perfect enzymatic 

activity and a functional viral replication (Wagner et al., 2002).  

Occasionally, infection of humans and other mammals by avian influenza viruses may occur (Capua and 

Alexander, 2008), which proves that the species barrier is not insurmountable. Some avian or swine 

influenza A virus subtypes (e.g. swine H1, swine H3, H5, H6, H7, H9 and H10) have occasionally infected 

humans, without however establishing in humans. In 1997 in Hong Kong the first detection event of an H5N1 

avian influenza virus able to infect humans causing serious disease was reported. Six years later, in the 

same location, an H5N1 HPAI virus of avian origin infected humans again (two cases were reported) (Peiris 

et al., 2004). Subsequently, the same subtype started to circulate in the avian population of South East 

China and in wild and domestic birds throughout Asia, Europe and Africa. The number of human cases 

infected by HPAI H5N1 influenza A virus steadily increased over the years, mainly due to a direct or indirect 

contact with infected poultry (de Graaf and Fouchier, 2014). Although human-to-human transmission of avian 

influenza viruses has not been established yet, monitoring the evolution of circulating viruses is an issue of 

great importance. Occasionally, viruses of the H7 subtype can also cross the species barrier. Subtypes 

H7N2, H7N3 and H7N7 were indeed detected in humans, where they mainly caused mild symptoms such as 

conjunctivitis. On the contrary, a more severe illness associated to severe pulmonary and acute respiratory 

symptoms and caused by the H7N9 avian influenza virus infection was reported in China (Gao HN et al., 

2013; Gao R et al.,2013). Previous studies have shown that the H7N9 subtype is probably the result of 

several reassortment events involving H9N2 and subtypes H7 and N9, all of avian origin (Lam et al., 2013). 

The avian H9 influenza virus subtype can also infect humans and cause a mild influenza-like illness (Butt et 

al., 2010). 

 

 

DIAGNOSTIC METHODS FOR AI 
 

Diagnosis of AI virus infection requires laboratory testing,  such as virus isolation in embryonated 

chicken eggs or the detection of viral nucleic acid, viral protein, or antibodies against AI virus. Diagnostic 

tests can identify any type of influenza A viruses or can be subtype specific; in the latter case the main 
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targets are the H5, H7 and H9 hemagglutinin subtypes for their potential of being highly pathogenic in 

domestic poultry. The application of molecular methods, such as RT-PCR and Real-time RT-PCR, has 

become an important tool for the rapid detection and typing of AI viruses. Advantages are their high 

sensitivity and high specificity, as well as their ability to analyse a wide range of sample type, to process 

inactivated viruses and to rapidly providing results. Further characterization may be required; these may 

include the chicken pathogenicity test to assess virulence, sequencing the hemagglutinin cleavage site to 

differentiate LP from HP pathotypes, whole genome sequencing and phylogenetic analysis. Currently there 

exist manuals, such as the the OIE Terrestrial Animal Health Code (Terrestrial Code), which provide a 

detailed definition on the HPAI of the H5 and H7 subtypes; furthermore, there are reviews and texts available 

from the OIE, FAO and WHO describing methods, recommendations and laboratory procedures for 

diagnosis and detection of avian influenza (OIE, 2004, 

http://www.oie.int/fileadmin/Home/fr/Health_standards/tahm/2.03.04_AI.pdf; WHO, 2007, 

http://www.who.int/influenza/resources/documents/RecAIlabtestsAug07.pdf; FAO, 2004, 

http://www.fao.org/docs/eims/upload/200354/hpai_manual.pdf) 

 

 
CONTROL STRATEGIES 
 

Strategies developed to control avian influenza must take into consideration several factors, i.e.virus 

circulation in the country, pathogenicity, subtype, species of birds at risk or infected, type of ecosystem, 

availability of appropriate financial resources, veterinary medical infrastructure. The presence of LPAI viruses 

in wild aquatic birds seems to be part of ecosystems worldwide, thus the control of LPAI should be 

addressed to prevent the virus introduction from wild bird to domestic hosts. The major sources of bird-to-

human infection are caused by the direct handling of infected animals with HPAI viruses, or else by indirect 

contact with contaminated environments through the respiratory and gastrointestinal tract or the conjunctiva.  

International organization, such as the WHO, the OIE and the FAO have shared their competences with a 

network of expertise and have made great efforts to establish and provide guidelines to face and combat 

H5N1 epidemics (www.offlu.net). To date, the evolution from a LPAI to an HPAI phenotype has interested 

only H5 and H7 influenza A viruses; it is important for LPAI viruses to be managed in an appropriate manner 

and for official veterinary services to adopt suitable measures (Capua and Alexander, 2006). Biosecurity is 

the first,most important and efficient step to limit and prevent a further spread of the disease into the 

domestic poultry (Capua and Alexander, 2006). Biosecurity involves some basic steps aimed at improving  

physical barriers and/or working activities, with particular attention to all the possible preventative measures 

which should be implemented to to avoid or limit viral introduction and spread in susceptible avian species. 

Bioexclusion measures are employed to prevent direct or indirect contactto contrast first introduction, and if 

necessary they may be reinforced, as in the case of an outbreak.  Particular attention must be addressed to 

preventive measures: personnel in direct contact whith the animals must wear appropriate personal 

protective equipment (PPE), change clothes, keep clean and disinfect the contaminated areas; furthermore, 

it is important to clean and disinfect materials and vehicles entering or leaving infected farms.Restriction on 

movement and isolation of the infected or exposed birds culling of infected animals, disposal of carcases, 
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eggs and any contaminated material are the measures presently implemented (Capua and Alexander, 

2009). A capillary and efficient activity of veterinary services, the work carried out by diagnostic laboratories, 

restriction policies, biosecurity, and stamping out policies are only some of the the valid tools which have 

contributed to cope against the influenza threat (Capua and Cattoli, 2013).  

 

 

VACCINATION 
 

Vaccination and depopulation are important tools that can be used to control influenza viruses; 

depopulation measures are used when an epidemics of HPAI influenza virus occurs in poultry, whereas 

vaccination is a preventative approach. Up to now there have been two different types of available vaccines: 

inactivated and live recombinant ones. Inactivated vaccines contain a killed field isolate or a virus obtained 

by reverse genetics techniques. To date, live recombinant vaccines are vector-based vaccines expressing 

the major virus protecting-antigen, the hemagglutinin protein (HA) of avian influenza viruses. It is essential 

forvaccines to be cross-protective in order to reduce clinical signs, mortalityand viral replication and to 

increase the resistance to challenge with infectious virus. Furthermore, vaccination should be properly 

adopted within a well defined control strategy. Countries like China, Vietnam, Pakistan, Indonesia, 

Bangladesh and Egypt have already applied or are currently performing poultry vaccination campaigns 

against H5N1 viruses, which have become enzootic in these areas (Webster et al., 2006).  

 
 

GENETICS AND BIOINFORMATICS APPROACHES TO STUDY VIRAL EVOLUTION 
 

 Different techniques are available to genetically characterize and study viruses. One of the most 

widely used method is the classical Sanger sequencing, which  allows to generate a consensus sequence 

starting from an amplified target (a specific gene or the whole genome). The limitations of this method 

include the information given by the consensus sequence, which is a summary of the most abundant 

variants present in the heterogenic viral population but unable to detect the low abundant ones, the so-called 

minority variants. Until recent years the only available method to isolate and amplify minority variants was 

the biological clone, which was howevertime consuming, at times inefficient and expensive (Vignuzzi et al. 

2006). Next-generation sequencing (NGS) has revolutionized research byperforming parallel sequencing 

massively, during which process millions of DNA fragments from single or multiple samples are sequenced 

simultaneously. Results are high speed, throughput and have alow cost per sequenced base, in addition, 

NGS also offers the possibility to complete analyses in a few weeksrather than in years, as it would happen 

by using the first generation sequencing. The advantages of this technology is the possibility to obtain DNA 

sequences by amplifying fragments, without therefore the need of cloning and sequencing entire genomes 

extremely rapidly. This approach is used to investigate and characterize the complexity of the viral 

population to detect low-frequency mutations and to follow the evolution of the genetically related variants 

present in a viral population. The phylogenetic approach has proved to be a useful tool to compare and 

inspect genetic data in  viral evolution analyses. It has been used to explore the molecular epidemiology, 

transmission and evolution of different viruses such as HIV, SARS, CoV and, more recently, the evolving 
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epidemiology of both avian and human influenza viruses. Advances of phylogenetic methods have led to  the 

identification of recombinant and reassorted viruses, their origin and the spread dynamics within a specific 

population, geographical region, period of time and hosts (Lam et al. 2010). In order to obtain a more 

complete view of the ‘functional evolution’, phylogenetic analyses based on sequence comparison and 

resulting in trees might be integrated taking into account information from structural comparison. A three-

dimensional structural approach could be useful to display similarities and to inspect motifs that cannot be 

discovered by analyzing sequences alone and help to infer phylogeny data(Ravantti et al. 2013). During my 

PhD, genomic and structural approaches have been used to study the hemagglutinin (HA) protein during the 

evolution of the influenza A virus; in particular, I focused the attention on H5, H7 and H9 avian influenza virus 

A subtypes.  

 

 

SEQUENCING 
 

Automated Sanger sequencing  

Sanger sequencing was developed by Edward Sanger in 1975 (Sanger et al. 1977) and was 

considered the gold standard nucleic acid sequencing method and the most widely used until the more 

recentdeep sequencing approach. In Sanger sequencing oligonucleotide primers anneal to a target 

denatured DNA molecule and later a DNA polymerase starts the extension step by incorporating nucleotide 

triphosphates. A mixture of deoxynucleotide triphosphates (dNTPs) and chain-terminating dideoxynucleotide 

triphosphates (ddNTPs), lacking the hydroxyl group on the 3’ carbon, is used. Without the 3’ OH, no more 

nucleotides can be added and DNA polymerase irreversibly stops the incorporation of nucleotide in the new 

chain. The newly synthesized DNA chains will turn out to be a mixture of lengths as a result of randomly 

incorporated ddNTPs. Each dideoxynucleotide is labelled with a dye with a different emission spectra; all 

four dye-labelled terminators when excited by an argon ion laser at 488nm produce a peak emission that 

could be distinguished by the detector; thus, the sequencing reaction can be carried out in a single reaction 

tube and prepared for loading once the reaction reagents have been filtered out. The capillary system is set 

up a) to deliver a new polymer to the capillary, b) to load the sequencing reaction into it, c) to apply a 

constant electrical current through the capillary and d) to have the resolved fragments migrate past an optical 

window where a laser excites the dye terminator. A detector collects the fluorescence emission wavelengths, 

and software would interpret the emission wavelengths as nucleotides (França et al. 2002). 

 

Next generation sequencing 

NGS technologies can be grouped into two different categories: second generation sequencing, 

where a DNA synthesis chemistry is used as in the traditional Sanger's sequencing, and third generation 

sequencing (single molecule sequencing), which does not require amplification of the template molecules 

prior sequencing reaction. NGS technologies involve a biological side, which includes template preparation 

and sequencing procedures, as well as  bioinformatics tools to process and analyze post sequencing data 

output. The key steps are the same as those implemented in the different Second-generation sequencing 

(SGS) technologies currently available: preparation and amplification of template DNA, anchoring of 

templates on a support, sequencing, imaging, base calling, quality control and analysis of the output data.  
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During pre-sequencing steps, NGS libraries are prepared by fragmenting the DNA (or cDNA) sample using 

physical, chemical or enzymatic methods, and ligating primers adaptors (synthetic oligonucleotides of a 

known sequence) onto the ends of the DNA fragments. Once constructed, libraries are clonally amplified for 

sequencing; after the sequencing reaction is performed, billions of reads are generated. In the post-

sequencing bioinformatics analysis sequence images are processed to generate base sequences, and 

converted to readable files (fastq); sequences are mapped on a reference sequence, variants identified and 

and annotated (Buermans et al. 2014). 

 

Illumina technology 

In Illumina technology all the enzymatic processes, bridge amplification for polony generation, 

sequencing and imaging steps take place in a flow cell. Miseq is a second generation sequencing platform 

based on sequencing-by-synthesis (SBS) reaction; RNA and DNA samples must be in sufficient quantity and 

of high-quality to obtain excellent sequencing results. 

During the first step, DNA is fragmented using an enzymatic (or mechanic) method and index-adapters are 

ligated to the fragments obtained; these oligos are necessary, both to capture the template DNA in the solid 

surface and as primers for subsequent amplification. After size selection, purification step and quantity 

normalization, libraries are ready to be processed into the Illumina platform. Bridge amplification occurs after 

the single-stranded sequences anchor to a flow-cell pre-coated with two different types of oligos, randomly 

distributed, complementary to the adapters; the amplification by PCR bridge is needed to make the signal 

strong enough to be captured by the CCD Camera. Optimal cluster density on the flow-cell is approximately 

800–1000 K clusters per mm2 for an Illumina Miseq V2 (250x2) whereas 1000-1400 K for Illumina Miseq V3 

(300x2); yield are influenced by library concentration and molecules length. After amplified molecules have 

been generated, thanks to successive rounds of PCR, a sequencing-by-synthesis process follows the 

linearization of DNA molecules within each cluster; polonies generated on the flow cell are read one 

nucleotide at a time in repetitive cycles. The sequencing can be single-end if only one end is involved, or 

paired-end where both ends are involved. The advantages of the paired ends are a more accurate alignment 

to the reference sequence, an improvement during assembly in de novo sequencing and of help to resolve 

repeats. Starting from the primer, a DNA polymerase begins its activity by incorporating fluorescently 

labelled dNTPs into the growing DNA chain; the results will be a new chain complementary to the template. 

All four different fluorescent-labelled nucleotides (A, C, T, G), containing a 3' reversible terminator, are 

simultaneously added and the nucleotides are incorporated base-by-base. A laser is used to excite the 

incorporated labelled dNTPs which  generate fluorescence at four wavelengths, and a high-resolution image 

is recorded and used to determine which cluster has incorporated the nucleotide; subsequently, the 

fluorophore along with the 3' reversible terminator is chemically removed allowing the next round of 

sequencing to occur. Intensities of light signals from the sequencing reactions are converted to bases, and 

quality score assigned to each base as a measure of the probability of an error in the call. Ideally, all bases 

within a cluster will be extended in phase. However, it may happens that a small portion of molecules does 

not extend properly and falls either behind (phasing) or advance a base (pre-phasing); considering that these 

type of errors will accumulate after many cycles, the result is a quality decrease at each end of the reads 

(Buermans et al. 2014). 
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PHYLOGENETIC ANALYSIS 
 The study of molecular evolution is based on comparative methods and normally uses the 

phylogeny approach to determine and analyze evolutionary relationships between organisms. Output results 

are shown by a phylogenetic tree, a graph made of nodes and branches displaying and representing a 

hypothesis on evolutionary events. The nodes represent the taxonomic unit, a group of individuals that are 

distinguished from others by their molecular characteristics, while the branches define the relationship in 

terms of evolutionary descent between individual taxa. The length of the branches in a phylogenetic tree is 

proportional to the difference between the gene sequences of contiguous species. Trees are classified as 

rooted and unrooted; a rooted tree has a particular node (the root), which is the common ancestor of all the 

nodes represented in the tree, and the branches of the tree are oriented in function of time. Only rooted trees 

allow to determine the direction of an evolutionary process. An unrooted tree describes exclusively the 

evolutionary relationships between taxa, without providing any information about the evolutionary process as 

a function of time; in this case it is only possible to know how much a species is distant from another one in 

terms of evolution. Different mathematical models can be used to build a phylogenetic tree; the currently 

used ones can be divided into four types: methods based on distance matrix, maximum parsimony, 

maximum likelihood and Bayesian (Harrison and Langdale 2006; O'Halloran D. 2014).  

 Methods based on the distances are heuristic and take into consideration the evolutionary 

distances between species and mostly similar group sequences; the distance is calculated by the number of 

mutations needed to switch from one species to another. The distance approaches do not allow to analyse 

which are the characters involved in a particular grouping. Among the methods that use the matrix of 

distances, the most widely used are the UPGMA (Unweighted Pairs Group Method with Arithmetic mean) 

and the Neighbor-Joining (NJ). In the first method it is assumed that the evolutionary rates are almost 

constant in the different evolutionary lines; looking at the distance matrix, the taxa with higher degree of 

similarity are taken into consideration. These taxa are linked together in the tree and are regarded as single 

new taxa; the matrix is rebuilt and will contain one element less. The process continues iteratively until we 

are left with  only two taxa linked to one another.; the midpoint between these two indicates the root of the 

tree. The Neighbour Joining (NJ) calculates the distances between all possible pairs of sequences, and the 

tree is built considering the relationships between these distances. The algorithm at the basis of this method 

has the task of identifying the tree without root that minimizes the sum of the lengths of the various branches. 

 The maximum parsimony methods assume that shared characters among different sequences 

result from common ancestors. As it is impossible to know the ancestral sequences and if we consider each 

mutation a mere assumption, we realize that this method tries to make as fewer assumptions as possible. 

The advantages of the method are the absence of other assumptions in addition to the maximum parsimony. 

The tree building therefore requires the construction of the possible topologies and the calculation of the 

minimum number of substitutions for each topology. From this calculation positions that do not show those 

substitutions and replacements that appear only once are obviously excluded. The method of maximum 

parsimony (MP), despite being sufficiently satisfactory, has a high computational cost. The method of 

Maximum Parsimony assumes that the best tree corresponds to that requiring the least number of 

substitutions to explain the initial data; it is necessary that an algorithm determines which among all the 

generated trees has the least number of developing steps.  
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 Maximum Likelihood (ML) is a statistical method that computes the probability for a given tree to fit 

into specific dataset, given a specified model of sequence evolution (Harrison and Langdale 2006). Most of 

the models assume that the evolution of different sites and different branches are independent; unfortunately 

this method is extremely expensive from a computational point of view and is not usable for a number of 

higher taxa, but allows anyway to test statistically different hypotheses.  

 The Bayesian Inference (BI) method is based on the posterior probability, that is the probability 

that is estimated on a model of a priori expectations, knowing something in most of the data (Huelsenbeck 

JP, Ronquist F., 2001). 

 

 

STRUCTURAL APPROACH 
 

Proteins are essential components of an organism and possess extremely diversified 

functions:catalytic, structural, transport and storage, immunological and regulative.  

Solved structure available in Protein Data Bank (PDB), sequences present in the NCBI sequence databases 

(http://www.ncbi.nlm.nih.gov/) and the knowledge obtained from in-vitro biochemical studies are all important 

elements that help us study proteins and their involvement in biological process. Methods based on 

sequence homology are essential for protein identification and classification; comparison among protein 

sequences can be used to highlight evolutionary relations of proteins, and sequence similarity can be 

considered a measure of evolutionary distance among organisms. Proteins with similar sequences starting 

from the same ancestor have evolved, which implies  that proteins could carry out the same functions. It is 

important to highlight that the relation between sequence and protein functions is not biunique: proteins with 

similar sequences have similar structures but this does not necessarily imply that proteins with a different 

sequence always have different structures. On the contrary, it seems that evolution uses the same structures 

to obtain different functions. Changes on protein structure are the most conserved; protein evolution usually 

happens in ways that do not modify the folding of protein structure. During evolution most conserved regions 

are localized inside the protein structure formed by the core and the secondary structure elements, whereas 

the most evident differences usually appear in regions close to the protein surface, such as the loop regions, 

where the physical-chemical properties of amino acid side chains frequently change (Illergård et al. 2009). 

Protein structure prediction starting from amino acid sequences is one of the biggest challenges in 

bioinformatics and computational biology. Nowadays the most successful computational methods for protein 

structure prediction rely on a comparative approach called homology modelling, which predicts the 3D 

structure of a target protein sequence, based on a template (resolved protein structure) (Fiser et al., 2010). 

The method consists of five steps: availability of 3D structure of a protein related to the target sequence, 

identification and choice of the best structure that will be used as template, amino acid sequence alignment 

between target and template proteins, building and model evaluation (Fiser et al., 2010). First of all it is 

important to verify if resolved proteins similar to the target protein are present in Protein Data Bank and how 

many there are; it is possible to do so by using BLAST software (Altschul S.F. et al., 1990). Numerous 

algorithms allow to measure the identity or similarity between two sequences in a manner sufficiently 

accurate to evaluate whether a protein can be the right candidate to be a template to outline an homology 

modelling approach. It happens that the alignment with the higher identity does not always correspond to the 
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one that gives the best structural superimposition among proteins. This is why the alignment is obtained 

using not only the amino acid sequences of the two proteins, but also the structure of the protein template, 

the prediction of the secondary structure and sometimes a structural superimposition of resolved proteins 

homolog to the template. The structure of the template can be used to verify if insertions or deletions fall into 

secondary structure elements or on the surface, whereas the superimposition is used to identify which 

regions are more structurally conserved in the family and those that probably will be conserved in the protein 

target too. So the quality of the model obtained will depend on the degree of similarity among target-template 

sequences and quality of the alignment. 

 Homology modelling cannot be used if a fitting protein template structure is not available or if the 

sequence similarity between protein and template is not high enough. In this case another approach could 

be followed using the ab initio method that does not use structures already resolved. Considering the limited 

number of possible protein folding in nature, the three dimensional structure is more conserved than the 

amino acid sequence and so it will be possible to identify homology on structures starting from homology in 

sequences. Homology modelling allows to build 3D structures starting from a single sequence template, but 

the higher the number of structurally similar sequences available more accurate the analysis will be. In 

comparative modelling most errors arise during the choice of the best fitting model and in the alignment 

between target and query sequences. The homology modelling approach has proved to be reliable only if 

sequence homology between the resolved protein structure and protein to be model is more than 50% 

(Chothia C. and Lesk AM, 1986). If sequence identity is not higher than 30%, the homology modelling 

approach is not feasible because we are in the so called midnight zone (Rost et al., 1997), but it is 

suggested to use other approaches, such as ab initio or fold recognition methods. Homology modelling is 

based on the observation that proteins having a good level of sequence similarity show a good level of 

structure similarity; so there is a relation between the similarity of two protein sequences and the similarity 

between the corresponding three dimensional structures. Proteins with a sequence similarity higher than 

30% usually maintain a similar structure, allowing to use homology modelling approach. For the purpose of 

this work, it was possible to use a homology modelling approach, considering that the sequence similarity of 

the proteins we took into consideration are in the range between 70%-98%. There are several computer 

programs and web servers that automate the homology modeling process; in this thesis SwissModel server 

(http://swissmodel.expasy.org/workspace/) was used to perform an automated modelling pipeline. For a 

quality evaluation of each model four parameters were considered: QMEANscore, Z-score, Dfire enerty and 

Ramachandran plot. (Arnold et al., 2006; Kiefer et al., 2009; Schwede et al., 2003; Guex et al., 1997; Peitsch 

et al., 1995).  

 

Swiss Model 
 Swiss model is a server dedicated to the automated modelling of proteins using an homology 

modelling approach and can be used to look for template via tools like PSI BLAST; it is used for the first step 

in building of models and for their final validation. For models that have a good homology template it is 

possible to use the Automatic Mode; the user can check all the steps: identify functional domains, secondary 

structures and disorderly regions; the alignment can be refined manually and it is possible to evaluate the 

quality of the model. Multiple analyses are done to enable the user to obtain the greatest quantity of data 

byprecisely estimating the quality of the model obtained (Arnold et al., 2005). To evaluate the potential 
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energy of the obtained model many tools are used (i.e., ANOLEA, GROMOS, QMEAN, DFire and Z-

SCORE). ANOLEA is used to evaluate the quality of the model packaging and to identify regions with high 

energy and steric clashes (Melo and Feytmans, 1998). GROMOS considers the energy of each amino acid 

singularly (Gunsteren et al., 1996), whereas the entire energy of the model is evaluated by QMEAN and 

DFire tools. QMEAN is a scoring function that combines six different parameters, each one with a range 

value between 0 and 1. The measure of the quality for each model is given by QMEAN Z-SCORE; models 

with a low quality shows a low Z-SCORE (Benkert et al., 2009;Zhou et a., 2002). 

 

Electrostatic potential 

The weak interactions play an important role because they stabilize the three dimensional structure 

of a protein and are involved in the interactions with other molecules. In a protein the contribution given by 

Van der Waals interactions, hydrogen bonds, electrostatic and hydrophobic interactions are essential to 

achieve the final three-dimensional structure of a protein. In a macromolecule there are many charged amino 

acids: some positive and others negative; charges are involved in the recognition enzyme-substrate or 

protein-protein via the formation of specific salt bridges. The Coulomb law is useful to calculate the potential 

around a protein; moreover, both the charges distribution on the protein and their distance allow to calculate 

the electrostatic potential. A more accurate measurement is obtained through the Poisson-Boltzmann 

equation, which  takes into consideration two dielectrics constants: one of the water with a high value (80) 

and another one of the protein with a low value (3-4). 

In a protein,20%-30% of the total amino acids is given by charged amino acids present mainly on its 

surface; they must interact with water and other molecules to make the protein soluble. In general, the HA1 

subunit of hemagglutinin is positively charged (Arinaminpathy and Grenfell, 2010); positive and negative 

charges situated near or within the receptor binding pocket seem to influence the affinity to host receptors 

which are negatively charged and enhance or reduce the avidity to cell membrane(Hensley et al., 2009). In 

hemagglutinin glycoprotein it seems that the net-charge of HA1 domain could evolve to compensate for the 

effect of the gain and loss of NGS, probably through changing the avidity; moreover, it seems that the net-

charge variation in HA1 has a compensatory effect on the NA activity for keeping the HA-NA balance 

(Kobayashi et al. 2012). 

It is possible to calculate the protein electrostatic potential by using software available on line; APBS 

and PDB2PQR are among the most widely used free software packages. This web service has been 

developed to provide users with the necessary amount of computational capabilities 

(http://www.poissonboltzmann.org/) and to allow working on portable computing platforms (Unni et al., 2011). 

To compare electrostatic interaction properties of proteins, the webPIPSA service has proved to be a valid 

tool whichallows to classify proteins according to their interaction properties. (Richter et al., 2008; Blomberg 

et al., 1999; Wade et al. 2001; Gabdouille et al., 2007). For the similarity analysis it is necessary to upload a 

set of related protein structures in PDB format. After calculatingthe protein electrostatic potentials, the server 

proceeds with the calculation of similarity indices based on the electrostatic properties for all pairs of 

proteins; similarity indices obtained are then converted to electrostatic 'distances'. The electrostatic potential 
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distance matrix is represented as a heat map, displayed in color coded form and as epogram in a tree 

format. 
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AIMS OF THE THESIS  
 

Relevance and impact of the Influenza A virus with respect to public health and poultry industry has 

been highlighted in the introduction section; however, it can be shortly reminded here that this zoonotic agent 

is responsible for infectious and contagious diseases in humans and animals resulting in serious and 

sometimes huge economic losses worldwide. Therefore, in addition representing a topic of interest to basic 

and health science, the study of the AI viruses also concerns with biotechnological strategies to improve 

vaccination strategies and surveillance as well as to infer evolutionary trends. The evolutionary dynamics of 

influenza A virus, like other RNA viruses, are complex in that depending on the combination of high mutation 

rates, rapid replication and infection of large population size. The resulting viral populations are formed by a 

mixture of quasi-species variants genetically related but non-identical, which interact and cooperatively 

contribute to characterize the whole population, and are subjected to a continuous genetic variation, 

competition, and selection by environmental pressure. Main characteristics of this etiologic agent are a 

marked genetic and antigenic variation resulting in the ability of viral genomes to tolerate the introduction of 

mutations or recombinations, which facilitate the timely emergence of new variants against which the 

traditional vaccines are ineffective. Nowadays, the development of effective vaccines, able to confer 

improved cross protection and to reduce the risk of emergence of viral mutants, is probably the most 

effective strategy to control the spread of these viruses.  

A specific objective of this study is to combine and integrate genomic, phylogenetic and structural 

approaches to understanding both the genetic variability and functional evolutionary dynamics of avian 

influenza A virus. In fact, while genomic mutation is indeed the source for variation, structural analyses allow 

for properly "weighting" the effect of mutations, as mutations at DNA level altogether contribute to genetic 

diversity, but they quite differently contribute to "functional" variation, depending on they are either silent 

mutations (no variation in the protein product), roughly compatible mutations (changes to quite similar 

residues) or mutations resulting in dramatic effects on protein fold and/or interaction surface features. Deep 

sequencing technologies can be of help to investigate and characterize the viral population complexity, to 

reveal low-frequency mutations and to follow the genetic evolution of the quasi-species variants present in a 

viral population. Current enhancement of next-generation techniques allows to obtain a large number of 

sequences and thus to improve robustness of the phylogenetic investigations. Phylogenetic analysis is a 

standard and essential tool to compare molecular sequences of viruses in several environments and under 

multiple selection pressures, as well as to study their genetic relationships and their evolutionary dynamics. 

In the AI virus system, the hemagglutinin protein, which modulates the antigenicity, can be responsible for 

antigenic drift; in order to unveil major determinants in modulation, the recognition of epitopes conserved 

among different variants is thus to be studied. Given that protein structures are more conserved than 

corresponding coding sequences and that an increasing number of solved 3D structures are available for 

proteins we are interested in, it is possible to obtain structural model to perform wide comparisons.  
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Evolutionary trajectories of two distinct avian influenza epidemics: Parallelisms and 

divergences 
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a b s t r a c t

Influenza A virus can quickly acquire genetic mutations that may be associated with increased virulence,
host switching or antigenic changes. To provide new insights into the evolutionary dynamics and the
adaptive strategies of distinct avian influenza lineages in response to environmental and host factors,
we compared two distinct avian influenza epidemics caused by the H7N1 and H7N3 subtypes that circu-
lated under similar epidemiological conditions, including the same domestic species reared in the same
densely populated poultry area for similar periods of time.

The two strains appear to have experienced largely divergent evolution: the H7N1 viruses evolved into
a highly pathogenic form, while the H7N3 did not. However, a more detailed molecular and evolutionary
analysis revealed several common features: (i) the independent acquisition of 32 identical mutations
throughout the entire genome; (ii) the evolution and persistence of two sole genetic groups with similar
genetic characteristics; (iii) a comparable pattern of amino acid variability of the HA proteins during the
low pathogenic epidemics; and (iv) similar rates of nucleotide substitutions. These findings suggest that
the evolutionary trajectories of viruses with the same virulence level circulating in analogous epidemio-
logical conditions may be similar. In addition, our deep sequencing analysis of 15 samples revealed that
17 of the 32 parallel mutations were already present at the beginning of the two epidemics, suggesting
that fixation of these mutations may occur with different mechanisms, which may depend on the fitness
gain provided by each mutation. This highlighted the difficulties in predicting the acquisition of muta-
tions that can be correlated to viral adaptation to specific epidemiological conditions or to changes in
virus virulence.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Since the 90s, outbreaks caused by avian influenza virus of the
H7 subtype have been frequently reported in domestic poultry
throughout the world, causing not only important damage to the
poultry industry, but also a great concern for human health, as
demonstrated by the recent H7N9 epidemic in China (Chen et al.,
2013). Once in poultry, this subtype can evolve into a highly patho-
genic form. While the low pathogenic avian influenza (LPAI) virus
causes only a mild, primarily respiratory disease in the infected
domestic fowl along with production drops, the highly pathogenic
avian influenza virus (HPAI) produces an extremely serious disease
that can devastate the poultry population.

As shown in previous studies (Campitelli et al., 2004;
Lebarbenchon and Stallknecht, 2011), the H7 viruses collected
from poultry are genetically related to the viruses from wild birds,
suggesting relative frequent interspecies transmissions. Similarly,
the distribution of the HPAI H7 strains throughout the phyloge-
netic trees indicates the evolution of multiple independent highly
pathogenic forms from the low pathogenic progenitors (Röhm
et al., 1995; Lebarbenchon and Stallknecht, 2011; Abdelwhab
et al., 2014).

Following the transmission from wild to domestic birds the
virus can experience an accelerated fixation of beneficial mutations
to adapt to new species and new environmental conditions.
Sequence adaptations to land-based avian species, such as the
acquisition of new additional glycosylation sites near the hemag-
glutinin (HA) receptor binding site (RBS), deletions at the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.meegid.2015.05.020&domain=pdf
http://dx.doi.org/10.1016/j.meegid.2015.05.020
mailto:afusaro@izsvenezie.it
http://dx.doi.org/10.1016/j.meegid.2015.05.020
http://www.sciencedirect.com/science/journal/15671348
http://www.elsevier.com/locate/meegid
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neuraminidase (NA) stalk region or the C-terminal truncation of
the non-structural protein 1 (NS1) have been observed in H7 field
outbreaks in poultry (Banks et al., 2001; Campitelli et al., 2004;
Iqbal et al., 2009; Dundon et al., 2006; Spackman et al., 2003;
Bataille et al., 2011) as well as in experimental studies
(Giannecchini et al., 2010).

Besides selective pressure applied to the virus by the host, many
other changes of ecological conditions can drive the evolutionary
dynamics of avian influenza viruses. Vaccination, for example,
can determine an increase in the rate of mutations in the antigenic
sites of the surface glycoproteins (Beato et al., 2014; Cattoli et al.,
2011a,b). However, since epidemiological conditions can be differ-
ent from one epidemic to the next, their influence on virus evolu-
tion can be difficult to establish. This paper aims to provide new
insights into the evolutionary dynamics of different viruses experi-
encing similar host and ecological selective pressures.

Between 1999 and 2004 the densely poultry populated area of
Northern Italy experienced two distinct H7 epidemics: one in
1999–2001 caused by an H7N1 virus, the other in 2002–2004 orig-
inated by an H7N3 virus. The H7N1 epidemic (1999–2001) was
caused by a LPAI strain, which mutated into a highly pathogenic
form after circulating in the industrial poultry population for
approximately 9 months (from the end of March to December
1999) and causing 199 outbreaks. The HPAI strain provoked the
death or culling of over 16 million poultry, as well as substantial
economic losses to the industry before its eradication in April
2000. Four months later, the LPAI H7N1 re-emerged, affecting
other 78 flocks. To reduce the economic impact of this second wave
of LPAI viruses, a DIVA (Differentiating Infected from Vaccinated
Animals) vaccination campaign was initiated in November 2000
(Capua and Marangon, 2007; Mulatti et al., 2010). The second epi-
demic started in October 2002 and was caused by an H7N3 LPAI
strain, which, according to previous phylogenetic analyses, was
probably introduced from the wild bird reservoir into the domestic
poultry (Campitelli et al., 2004). To contain the rapid spread of the
infection, from January 2003 a DIVA vaccination campaign was car-
ried out in layers, capons and meat turkeys. The virus managed to
circulate for 1 year (until October 2003) and to infect a total of 388
poultry holdings. Similarly to the H7N1 strain, the LPAI H7N3 sub-
type re-emerged 1 year later, in September 2004. However, thanks
to the ongoing vaccination program, this time it caused only 28
new outbreaks (Capua and Marangon, 2007).

Using a Bayesian phylogenetic approach, in our previous study
(Monne et al., 2014) we compared the evolutionary dynamics of
the H7N1 HPAI viruses with those of low pathogenicity collected
during the 1999–2001 epidemic and provided evidence of the ori-
gin of the HPAI strain from the LPAI viruses. Starting from these
results, here we compared the evolutionary trajectories of two dis-
tinct naturally occurring epidemics (the 1999–2001 H7N1 and the
2002–2004 H7N3), which had affected the same domestic species
(mainly turkeys and chickens) reared in the same geographic area
(Veneto, Lombardia and Emilia Romagna regions) for similar peri-
ods of time (about 2 years).
2. Materials and methods

2.1. Viruses included in this study

In this study, we generated the complete genome sequences of
35 H7N3 avian influenza A viruses collected from poultry in
Northern Italy from October 2002 to December 2004. In addition,
we sequenced the partial genomes of five samples from which
whole genome sequences could not be obtained. Sequences of 37
H7N3 viruses from the 2002–2004 epidemic publicly available in
34
the Influenza Virus Resource at GenBank were also included in
the analysis.

These data were compared to the HA sequences of 144 samples
and to the complete genome of 109 isolates collected during the
1999–2001 LPAI/HPAI H7N1 epidemic, sequenced and analyzed
in our previous study (Monne et al., 2014).

Epidemiological information (collection date and province of
collection) for all the H7N3 viruses included in this study is avail-
able in the Supplementary material (Table S1).

2.2. Sanger sequencing

Viral RNA was extracted from the infected allantoic fluid of
specific-pathogen-free fowls’ eggs using the Nucleospin RNA kit
(Macherey–Nagel, Duren, Germany) and reverse transcribed with
the SuperScript III Reverse Transcriptase kit (Invitrogen, Carlsbad,
CA). PCR amplifications were performed by using specific primers
(sequences are available on request). Amplicons were subse-
quently purified with ExoSAP-IT (USB Corporation, Cleveland,
OH) and sequenced using the BigDye Terminator v3.1 cycle
sequencing kit (Applied Biosystems, Foster City, CA). The products
of the sequencing reactions were cleaned-up using the PERFORMA
DTR Ultra 96-Well kit (Edge BioSystems, Gaithersburg, MD) and
analyzed on a 16-capillary ABI PRISM 3130xl genetic analyzer
(Applied Biosystems, Foster City, CA).

2.3. Library preparation, Illumina sequencing and data analysis

To assess virus population diversity, next-generation sequenc-
ing (NGS) was performed on all the H7N3 clinical samples available
in our repository (eight tracheas and one pool of organs). These
nine samples were collected during the first 3 months of the epi-
demic. Unfortunately, no clinical samples collected after January
2003 were available. Full sample details are described in
Table S1. These newly generated sequences were analyzed
together with the NGS data generated by Monne et al. (2014) for
six LPAI H7N1 clinical samples.

Viral RNA was extracted directly from the infected clinical sam-
ples using the Nucleospin RNA kit (Macherey–Nagel, Duren,
Germany) and processed as described by Monne et al. (2014). In
summary, the complete influenza A genomes were amplified with
the SuperScript III One-Step RT-PCR system with Platinum�Taq
High Fidelity (Invitrogen, Carlsbad, CA) (Zhou et al., 2009).
Sequencing libraries were obtained using Nextera DNA XT
Sample preparation kit (Illumina). Finally the indexed libraries
were pooled in equimolar concentrations and sequenced in multi-
plex for 250 bp paired-end on Illumina MiSeq, according to the
manufacturer’s instructions.

Raw sequence reads were inspected using FASTQC to assess the
quality of data. Fastq files were cleaned with PRINSEQ and Trim
Galore to remove low quality bases at the 50 and 30-end of each
read and to exclude reads with a Phred quality score below 30
and shorter than 80 nucleotides. Reads were aligned to
A/turkey/Italy/8535/2002 (H7N3) reference sequences using
Stampy (Lunter and Goodson, 2011). The BAM alignment files were
parsed using the diversiTools program (http://josephhughes.
github.io/btctools/) to determine the average base-calling error
probability and to identify the frequency of polymorphisms at each
site relative to the reference used for the alignment. Only polymor-
phisms with a frequency above 2% were considered.

2.4. Phylogenetic and molecular analyses

Sequences of the HA gene and the gene segments coding for the
six internal proteins of the H7N1 and H7N3 viruses were aligned
and compared with the most related sequences available in
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GenBank. GISAID or GenBank accession numbers of all the Italian
H7 sequences analyzed here are reported in Table S1 of the
Supplementary material.

The likelihood mapping analysis available in the TREE PUZZLE
program (Schmidt et al., 2003) was adopted to visualize the phylo-
genetic content of the eight datasets. In particular, we investigated
the phylogenetic signals for (a) all codon positions, (b) first codon
position, (c) second codon position, (d) third codon position, (e)
first and second codon positions of the alignments. Since the
results obtained for the three codon positions showed the highest
percentage of resolved quartets, the following analyses were per-
formed using all the alignment positions.

Since the NA gene segment of the H7N1 and H7N3 viruses
belong to two different subtypes, we focused our analyses on the
remaining segments (segments 1–5, 7 and 8).

To characterize the presence of recombination in the Italian H7
viruses, the seven gene segments were analyzed for recombination
by using two different software packages. We employed the RDP
(Martin and Rybicki, 2000), GENECONV (Padidam et al., 1999),
3Seq (Boni et al., 2007), MaxChi (Maynard Smith, 1992) and
BootScan methods implemented in the RDP3 program version
3.44 (Martin et al., 2010). We also used the Single Breakpoint
Recombination and Genetic Algorithm Recombination Detection
(GARD) methods (Kosakovsky Pond, 2006) within the HyPhy pack-
age (Pond and Frost, 2005) or on the Datamonkey server (Delport
et al., 2010). None of these methods showed evidence of recombi-
nation. In addition, to exclude the presence of reassortant viruses,
the concatenated gene segments were analyzed using the statisti-
cal methods RDP, GENECONV, 3Seq, MazChi and BootScan avail-
able in the RDP3.44 package.

Maximum likelihood (ML) phylogenetic trees were constructed
using the best-fit general time-reversible (GTR) model of nucleo-
tide substitution with gamma-distributed rate variation among
sites (with four rate categories, C4) and a heuristic SPR
branch-swapping search (Guindon and Gascuel, 2003) available
in the PhyML program version 3.0. To assess the robustness of indi-
vidual nodes of the phylogeny, one hundred bootstrap replicates
were performed. Topologies of phylogenetic trees were confirmed
using the ML method available in the RAXML program (Stamatakis,
2006a), incorporating the GTR model of nucleotide substitution
with the CAT model of rate heterogeneity among sites (data not
shown) (Stamatakis, 2006b). Phylogenetic trees were visualized
with the program FigTree v1.4 (http://tree.bio.ed.ac.uk/soft-
ware/figtree/).

The history of the character evolution along the branches of the
phylogenies was graphically visualized using the parsimony algo-
rithm available in the Mesquite program (Maddison and
Maddison, 2014). All the residue numbering reported throughout
the text and in the figures will be according to the mature H7 pro-
tein. Negative numbers will correspond to the positions located in
the signal peptide.

The parallel mutations identified in the HA protein were mapped
on the three-dimensional structure of A/turkey/Italy/214845/2002
(H7N3) obtained from Protein Databank (PDB ID: 4BSG) (Xiong
et al., 2013).

We explored the possible adaptive role to domestic birds of the
parallel mutations identified in the HA protein. To this aim, the
sequences of all H7 viruses of avian origin available in GenBank
were downloaded and grouped according to the domestic (chicken,
guinea fowl, turkey, quail and ostrich) or wild status (Anseriformes,
Charadriiformes, Columbiformes, Passeriformes, Psittaciformes) of the
host, for a total of 1143 sequences (723 from wild and 420 from
domestic birds). All the sequences, for which the host origin was
not clearly defined, were excluded from the analysis. For each posi-
tion the relative frequency of every amino acid was calculated for
both viruses from domestic and wild birds and compared. In
35
addition, the entropy difference between the two groups was cal-
culated using the Entropy-Two tool available at http://www.hiv.
lanl.gov/content/sequence/ENTROPY/entropy.html.

To determine the change in the amino acid variability over time,
samples were grouped according to the month of collection and
the within group mean p-distance was calculated for the HA pro-
tein of each group containing at least three sequences using the
program MEGA 5 (Tamura et al., 2011).

2.5. Analysis of selection pressures

Gene- and site-specific selection pressures for all segments of
the Italian H7N1 and H7N3 viruses were measured as the ratio of
nonsynonymous (dN) to synonymous (dS) nucleotide substitutions
per site. In all cases, dN/dS ratios were estimated using the
fixed-effects likelihood (FEL) and Fast Unconstrained Bayesian
AppRoximation (FUBAR) methods (Pond and Frost, 2005; Murrell
et al., 2013) available at the Datamonkey online version of the
Hy-Phy package (Delport et al., 2010). All analyses utilized the
GTR model of nucleotide substitution and ML phylogenetic trees.

2.6. Evolutionary dynamics

For each gene segment of the H7N3 viruses, rates of nucleotide
substitution per site per year (subs/site/year) of the sampled data
were estimated using the Bayesian Markov chain Monte Carlo
(MCMC) approach available in the BEAST program, version 1.7.5
(Drummond and Rambaut, 2007). For each analysis, we employed
a relaxed (uncorrelated lognormal) molecular clock, a flexible
Bayesian skyline coalescent tree prior (10 piece-wise constant
groups), a HKY85 + C4 model of nucleotide substitution and the
SRD06 codon position model with two data partitions of codon
positions (1st + 2nd positions, 3rd position) with base frequencies
unlinked across all codon positions. Default prior distributions were
used for all the parameters, except for the nucleotide substitution
rate prior, for which a gamma distribution (initial value 0.001,
shape 0.001, scale 1000) was set. In all cases, statistical uncertainty
is reflected in values of the 95% highest probability density (HPD)
for each parameter estimate. For each analysis chain lengths were
run for sufficient time to achieve convergence as assessed using
Tracer v1.5 program (Drummond and Rambaut, 2007).
3. Results

3.1. Parallel evolution of the H7N1 and H7N3 viruses

Our maximum likelihood (ML) phylogenetic analyses of the
seven gene segments (segments 1–5, 7 and 8) of 181 (109 H7N1
and 72 H7N3) H7 viruses representative of the 1999–2001 and
2002–2004 Italian epidemics (Figs. 1 and S1–S6 in the
Supplemental material) indicate that the two subtypes fall within
two well-supported monophyletic clades, defined by both high
bootstrap values (>80%) and long branch length, as exemplified
by the HA phylogeny (Fig. 1 – H7N1 clade in blue and H7N3 clade
in green). This finding indicates that these clades (H7N1 and H7N3)
are likely to represent two separate introductions of the virus into
the northern Italian regions. As observed in our previous study
(Monne et al., 2014), the H7N1 HPAI viruses (marked in yellow
in Fig. 1) form a separate cluster within the H7N1 clade in all the
phylogenies and are characterized by 19 unique amino acid
changes acquired across the entire genome.

The phylogenetic tree inferred for the HA gene for a total of 144
H7N1 and 77 H7N3 viruses identifies in both clades two main groups
of LPAI viruses, namely H7N1 LPAI-I and H7N3 LPAI-I (marked in
gray in Fig. 1). The H7N1 LPAI-I group is characterized by a total of
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Fig. 1. ML phylogenetic tree of the HA gene segment of Italian H7 avian influenza viruses. Genetic groups are colored as follows: blue for H7N1 viruses collected during the
1999–2001 Italian epidemic, green for the H7N3 viruses collected during the 2002–2004 Italian epidemic. The HP H7N1 viruses are marked in yellow, while gray represents
the two LPAI-I groups identified during the H7N1 and H7N3 epidemics. The numbers at nodes represent bootstrap values (>70%), while branch lengths are scaled according to
the numbers of nucleotide substitutions per site. Sequences obtained using the NGS platform are marked in red. Parallel mutations are highlighted in yellow. The tree is mid-
point rooted for clarity only. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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16 amino acid signatures (Monne et al., 2014) and is defined by high
bootstrap values (>70%) and long branches in the HA, PB2, PA, NS
phylogenies (Fig. 1 and Supplementary Figs. S1, S3 and S6), while
the H7N3 LPAI-I viruses form a distinct cluster with high bootstrap
supports (>87%) only in the HA and PA phylogenies (Fig. 1 and
Supplementary Fig. S3) and showed only three amino acid signa-
tures, all located in the HA gene (A151T, Q201H and G177V).

Interestingly, these LPAI-I groups are characterized by several
common features: (a) emerged 7 months after the first outbreak,
(b) persisted until the end of the epidemic, and (c) contain an addi-
tional glycosylation site at position 149–151 of the HA gene.
36
This parallel evolution of the H7N1 and H7N3 epidemics can be
observed in many other aspects, which go beyond the emergence
of the LPAI-I groups. We identified a total of 32 identical amino
acid substitutions across the viral genomes, which were indepen-
dently acquired by both subtypes during their evolution. Thirteen
(41%) of these mutations are positioned within the HA protein
(mutations highlighted in yellow in Fig. 1; Table 1) and 9 of them
(positions 47, 84, 95, 112, 125, 128, 133, 151, 177) localize on the
trimer surface (Fig. 2). In particular, three of these amino acid
changes are located within antigenic sites, six are positively
selected sites and two create new additional glycosylation sites



Table 1
Characteristics of the 13 amino acid changes of the HA protein acquired indepen-
dently by both H7N1 and H7N3 viruses (parallel mutations). Positive selec-
tion = mutations located in sites under positive selection; HPAI = mutations
characteristic of the HPAI H7N1 viruses; antigenic site = mutations positioned in
antigenic sites; AGS = additional glycosylation site.

Site Positive selection HPAI Antigenic site AGS

F-11L
p

R47K
p

S84N
E95G
T112A

p

A125T
p p

A128T
p p

A128S
p

G133E
pb

A151T
p pc p

G177V
p pd

V293I
D67Na

TOT 7 2 3 2

a Position in the HA2.
b (Stevens et al., 2006; Bush et al., 1999)(position 142 in H3 numbering.)
c (Kaverin et al., 2007; Li et al., 2009)(position 160 in H3 numbering.)
d (Bush et al., 1999)(position 186 in H3 numbering.)

E95G

A151T

A125T

A128T/S
G133E

S84N

T112A

R47K
V293I

G177V

Fig. 2. A/turkey/Italy/214845/2002 (H7N3) HA1 monomer. Positions of the parallel
mutations in the HA1 monomer are shown in red; the 130 and 220 loops and the
190 helix are colored in yellow, green and blue respectively (image drawn with
UCSF Chimera software). The positions 125 and 128 are part of the 130 loop; the
mutations E95G and V293I are buried in the trimer; the mutation F-11L is not
included in the three-dimensional structure. The protein model was obtained from
the Protein Data Bank (PDB identification 4BSG, Xiong et al., 2013). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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(Table 1). Some of these parallel mutations caused significant
changes in the chemical properties of the involved amino acids;
noteworthy 5 mutations determine the loss (T112A) or the acqui-
sition (A125T, A128T, A128S, A151T) of a hydroxyl group, poten-
tially involved in hydrogen bonds, which could stabilize the
structure of the HA conformation. One mutation, G133E,
37
determines the acquisition of a negative charge, while E95G causes
a loss of a negative charge.

The other 19 parallel substitutions are distributed across the
internal proteins. In particular, three are situated in the PA
(V127I, R213K, K609R), two in the PA-X (G213S, R221Q), five in
the PB2 (R62K, D195N, R508K, M570I and D740N), four in the PB1
(A14V, T39A, I667V, K586R), two in the NS1 (M/I79V, S228P), one
in the NP (K77R) and two in the M1 protein (R134K, G228R).
Moreover, one H7N3 virus and 10 H7N1 samples possessed a trun-
cated PB1-F2 protein of respectively 8 and 11 amino acids.

Most of these parallel mutations (26/32) occurred along the
internal branches of the phylogenies. Of note are the A151T,
G177V, G133E substitutions in the HA protein, which were
acquired during the evolution of both H7N1 LPAI-I and H7N3
LPAI-I groups (Fig. 1). These three mutations were located close
to the RBS and within the corresponding H3 antigenic sites, sug-
gesting a possible role in escaping the immune response (Fig. 2).
In particular, the position 177 is situated between the 190 helix
and the 220 loop, while the site 133 localize near the 130 loop.

On the other hand, five parallel mutations – A128S in the HA
gene (Fig. 1), G213S and K609R in the PA, G213S in the PA-X and
M/I79V in the NS1 – are specific to single individuals and are not
transmitted, at least at the consensus level, to other individuals
included in this study. In addition, 11 of the 32 parallel mutations
(F-11L, R47K, S84N, A125T, A128T, A128S, A151T, G177V in the HA,
R221Q in the PA-X and D195N, D740N in the PB2) were fixed along
multiple branches of the tree, suggesting that these positions were
subjected to positive selection. This has been confirmed also by our
analysis of selection pressure described below.

To investigate the frequency of the occurrence of the parallel
substitutions which became fixed at a population level, we com-
pared the number of amino acid variants between one of the first
isolated samples from each epidemic, which fall near the root of
each lineage (A/turkey/Italy/1555/1999 (H7N1) and
(A/turkey/Italy/7159/2002 (H7N3)), and the most recent isolates
of the H7N1 and H7N3 epidemics, which lied on the external
branches of the trees (A/turkey/Italy/1351/2001 (H7N1) and
A/turkey/Italy/4479/2004 (H7N3)). Comparison of the PB2, PB1,
PB1-F2, PA, PA-X, HA, NP, M1 and M2 proteins revealed a total of
47 amino acid differences between the 1999 and 2001 H7N1
viruses, 28% (13/47) of which were parallel substitutions, and 35
mutations between the 2002 and 2004 H7N3 samples, 20% (7/35)
of which were parallel. The NA and NS gene segments, which
respectively belong to different subtypes and alleles, were
excluded from these calculations. Interestingly, limiting the com-
parison to the only HA protein, the percentage of parallel substitu-
tions on the total number of amino acid changes increased to 56%
for the H7N1 and 44% for the H7N3 viruses.

In addition, we assessed the amino acid differences between the
HA protein of the two most recent isolates of both epidemics
(A/turkey/Italy/1351/2001 (H7N1) and A/turkey/Italy/4479/2004
(H7N3)). Parallel amino acid replacements were observed at 7
(33%) of 21 positions showing variations.

3.2. Intra-host genetic variability

To better understand the mechanism behind the acquisition of
the parallel mutations we used an ultra-deep sequencing
approach. Specifically, we examined whether the 32 parallel muta-
tions were present at low level in viruses collected during the first
wave of the two epidemics. Unfortunately, the likelihood to detect
subpopulations containing the parallel mutations that emerged in
later stages of the epidemic was reduced due to the lack of avail-
able H7N3 samples after the first 3 months of the epidemic.

The complete genomes of eight H7N3 samples and the HA, NP,
M, NS of A/turkey/Italy/9289/02 were sequenced. These data were



Table 2
Amino acid sites under putative positive selection (PSS, positive selected sites)
detected using different models (FUBAR and FEL) and mean dN/dS ratio for each gene.

Gene dN/dS (95% CI) FUBAR FEL

PSS Post. prob PSS p-Value

HA 0.33 (0.29–0.38) 47 0.96 47 0.04
125 0.99 125 0.02
128 0.99 128 0.01
151 0.98 151 0.04
177 0.90

PB2 0.13 (0.11–0.15) 398 0.92
PB1 0.10 (0.08–0.12) – – – –
PA 0.15 (0.12–0.18) – – – –
NP 0.06 (0.04–0.08) – – – –
M1 0.22 (0.15–0.29) – – – –
M2 0.81 (0.49–1.13) – – – –
NS1 0.27 (0.23–0.32) – – – –
NS2 0.25 (0.19–0.32) – – – –
PB1-F2 5.07 (3.30–6.84) 23 0.96
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analyzed together with the reads obtained in our previous study
for six LPAI H7N1 clinical samples (Monne et al., 2014). The mean
depth of coverage ranged from 1909 reads for sample
A/turkey/Italy/1744/99 to 13762 reads for A/turkey/Italy/4/03
(Table S1). In particular, the depth of coverage of the polymerase
genes (PB2, PB1 and PA) was lower than for the other five segments
(ranging approximately between 20 and 6000 reads).

We assessed the genetic variability within each viral population
for the 32 sites where parallel mutations between the H7N1 and the
H7N3 viruses were identified. We detected eleven sites where the
parallel substitutions have already become the prevalent viral pop-
ulation in at least one sample, with a frequency ranging from 51.6%
to 100% (Fig. 3). In addition, we identified six sites showing parallel
mutations with a frequency from 2% to 35.4% (minority variants). In
particular, three substitutions (A128T and A128S of the HA1 and
D67N of the HA2 protein) were observed both as minority and fixed
variants in different samples of the same subtype (Fig. 3).
30 0.99
37 0.93
38 0.90
43 0.90
54 0.97
66 0.97
69 0.90
82 0.98
3.3. Positively selected sites in the H7N1 and H7N3 viruses

We identified in the HA gene five sites under positive selection
with the FUBAR method (posterior probabilities P0.9), four of which
were also detected with the FEL method (p-value <0.05, Table 2). As
expected, all these sites (positions 47, 125, 128, 151 and 177) coin-
cide with the positions of the parallel mutations detected in multiple
branches of the HA phylogeny. Interestingly, two of them (151 and
177) are located in the H3-corresponding B antigenic site (Kaverin
et al., 2007; Li et al., 2009; Bush et al., 1999). Moreover, mutation
at position 151 introduces a potential additional glycosylation site,
which may have a strong antigenic effect. Analyses of selection pres-
sure on the remaining gene segments identify one positively
selected site in the PB2 and nine in the PB1-F2 protein only with
the FUBAR method (Table 2). The latter protein is the only one show-
ing evidence of diversifying selection (dN/dS = 5.07), although this is
Fig. 3. Heat-map of the percentage of reads showing the parallel mutations in the H7N1
highlighted with a grayscale according to the frequency of the mutation (white <2%, bla
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likely to be an artefact due to its encoding in an overlapping reading
frame (Holmes et al., 2006).

3.4. Frequency of the parallel mutations in the H7 viruses from wild
and domestic birds

To explore whether the parallel mutations identified in the HA
protein of the Italian H7 viruses may be associated with molecular
adaptation to domestic hosts, we analyzed the relative frequency
of each amino acid in the H7 viruses collected from poultry and
and H7N3 viruses. Only mutations with a frequency higher than 2% are reported and
ck 100%).



Table 3
Amino acid frequencies in the parallel sites of the HA protein in H7 viruses collected from wild and domestic hosts. AA = amino acid of the progenitor viruses of the H7 Italian
epidemics; sub = amino acid substitution acquired independently by both subtypes (H7N1 and H7N3) during the two Italian epidemics (parallel mutations).

Protein Pos Parallel mutations H7 from wild birds H7 from domestic birds

AA Sub % AA % Sub % Other AA % AA % Sub % Other AA

HA1 �11 F L 66.8 32.7 0.6 81.8 15.9 2.3
47 R K 93.6 6.1 0.3 92.1 6.0 1.9
84 S N 41.4 11.8 46.9 22.1 16.9 61.0
95 E G 96.7 3.0 0.3 96.4 3.6 0.0

112 T A 42.2 4.3 53.5 19.3 18.6 62.1
125 A T 95.4 1.5 3.0 77.9 12.1 10.0
128 A T 97.9 1.5 0.6 91.9 1.2 6.9
128 A S 97.9 0.4 1.7 91.9 6.9 1.2
133 G E 98.6 0.8 0.6 98.6 0.7 0.7
151 A T 98.5 0.4 1.1 93.8 4.8 1.4
177 G V 93.8 2.5 3.7 46.0 12.4 41.7
293 V I 99.0 0.7 0.3 94.0 5.0 1.0

HA2 67 D N 99.0 0.8 0.1 95.2 4.8 0.0
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Fig. 4. Pattern of amino acid variability. The graph represents the trend of the p-distance among the amino acid sequences of the HA gene of the H7N3 (gray) and H7N1
(black) viruses collected during the same month.
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wild birds available in GenBank. The amino acid changes acquired
independently by both subtypes appear to be at low frequency in
both H7 viruses from wild and domestic birds. However, most of
them (8 out 13) seem to be acquired more often in viruses circulat-
ing in poultry and show a significantly higher entropy (p-value
<0.05) compared to sequences of viruses from wild birds. This is
particularly evident for positions 84, 112, 125 and 177, where
the frequency of the mutated amino acids is higher (5–14%) in
the viruses from domestic animals (Table 3).

3.5. Comparison of the dynamics of the amino acid sequence
variability through time

To further explore the pattern of amino acid sequence variabil-
ity of the HA protein during the H7N1 and H7N3 epidemics and the
possible effect of bottleneck events, we grouped the viruses
according to the month of collection and calculated the p-distances
within each group containing at least three sequences (Fig. 4).
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Surprisingly, the LPAI viruses belonging to the two subtypes show
a similar pattern of genetic variability, with a rapid increase in the
genetic diversity during the first 10 months of each epidemic (cor-
responding to the first epidemic wave for both the LPAI H7N1 and
H7N3) with a steeper increase for H7N1, followed by a drastic
reduction of the amino acid variability, that reached the lowest
value in both epidemics about 1 year after the last outbreak of
the first wave (March 1999–December 1999 for the H7N1,
October 2002–October 2003 for the H7N3). For the H7N3 epidemic,
this date (September 2004) corresponds to the re-occurrence, after
almost a year with no reported cases, of the infection caused by
viruses of the H7N3 LPAI-I group, thus explaining this low amino
acid variability. Similarly, all the LPAI H7N1 viruses that
re-emerged in August 2000, approximately 8 months after the last
H7N1 LPAI outbreak, belong to the H7N1-LPAI-I group. However,
during the H7N1 epidemic the re-emerged viruses collected
between August and September 2000 showed an intermediate
variability, which progressively decreased reaching the lowest



Table 4
Estimated rates of nucleotide substitution for the H7N1 and H7N3 viruses collected
during the two Italian epidemics.

Gene Genetic group Evolutionary rates (sub/site/year) Comments

Mean (�10�3) 95% HPD (�10�3)

HA H7N1 10.15 8.5–11.9 Monne et al.
H7N3 8.46 6.46–10.65 This study

NA H7N1 9.86 8.01–11.79 Monne et al.
H7N3 3.78 2.56–5.23 This study

PA H7N1 5.84 4.79–6.91 Monne et al.
H7N3 4.65 3.17–6.19 This study

M H7N1 7.21 5.02–9.51 Monne et al.
H7N3 4.61 2.94–6.4 This study

PB1 H7N1 5.57 4.54–6.68 Monne et al.
H7N3 4.56 3.24–5.99 This study

PB2 H7N1 6.81 5.54–8.04 Monne et al.
H7N3 5.08 2.78–7.76 This study

NP H7N1 5.42 3.81–7.15 Monne et al.
H7N3 5.65 3.71–7.62 This study

NS H7N1 7.72 5.76–9.91 Monne et al.
H7N3 4.59 3.01–6.35 This study
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value in December 2000, 12 months after the last LPAI outbreak of
the first wave (Fig. 4).
3.6. Comparison of the rate of nucleotide substitution of the two
epidemics

To further confirm the similar evolutionary dynamics of the H7
viruses collected during the 1999–2001 and 2002–2004 epidemics,
we also compared the evolutionary rates of the eight gene seg-
ments of the H7N1 (Monne et al., 2014) and H7N3 viruses, both
inferred using a Bayesian coalescent approach (Drummond and
Rambaut, 2007). Of note, the evolutionary rate appears to be very
similar between the two subtypes for most of the eight gene seg-
ments (7 out 8). Both viruses show high nucleotide evolutionary
rate for the HA glycoprotein: mean rate of 10.15 � 10�3 substitu-
tions per site per year (sub/site/year) (95% HPD, 8.5–11.9 � 10�3)
for the H7N1 viruses, and 8.46 � 10�3 sub/site/year (95% HPD,
6.46–10.65 � 10�3) for the H7N3 viruses (Table 4). In contrast, dif-
ferent evolutionary rates have been observed for the NA genes
belonging to the two different subtypes (N1 and N3), with the
N1 subtype evolving faster (mean rate of 9.86 sub/site/year, 95%
HPD, 8.01–11.79 � 10�3 sub/site/year) than the N3 (mean rate of
3.78 sub/site/year, 95% HPD, 2.56–5.23 � 10�3 sub/site/year)
(Table 4).
4. Discussion

Evolutionary rates of influenza A viruses allow them to quickly
acquire genetic mutations that may be associated with increased
virulence, host switching or antigenic changes. Here we compared
and contrasted the evolutionary trajectories of two avian influenza
strains circulating in similar epidemiological conditions, providing
a better understanding of the adaptive solutions of avian influenza
viruses during naturally occurring epidemics.

The phylogenetic analyses of the avian influenza viruses col-
lected during the 1999–2001 H7N1 and 2002–2004 H7N3 Italian
epidemics support the occurrence of the independent introduction
of these two subtypes in the Italian poultry population, which form
two separate lineages. Despite circulating under similar epidemio-
logical conditions, at first glance they appear to have experienced
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largely divergent evolution, given that the H7N1 viruses evolved
into a highly pathogenic form, while the H7N3 did not.

However, a deeper insight into the evolution of these two
strains has revealed many similarities, as detailed below.

4.1. Emergence of parallel mutations

During the two epidemics, both subtypes have independently
acquired 32 identical amino acid mutations throughout the entire
genome, 13 of them (40%) found in the HA segment. It is worth
mentioning that three mutations located within the antigenic sites
of the HA protein (G133E, A151T and G177V) are of particular
interest: having been acquired and subsequently maintained until
the end of the epidemics by both subtypes suggest that those anti-
genic changes could be advantageous for the virus. Of note, the
three mutations had been previously described as associated to
the antigenic drift of the Italian H7N3 viruses (Beato et al., 2014),
as a consequence of the vaccination program implemented since
January 2003. Interestingly, these mutations were also present in
all the H7N1 viruses collected after vaccination was introduced
in November 2000, 4 months before the eradication of the H7N1
infection and, in particular, two of them (G133E and G177V) had
risen only after the implementation of this control strategy,
although the role of vaccination on the emergence of these substi-
tutions cannot be assessed. Additionally, the order in which these
beneficial mutations were fixed in the viral population was similar.
In particular, substitution A151T, which introduces a potential
additional glycosylation site, emerged earlier and seemed to be
independent from the use of vaccination, given that the H7N1
viruses acquired it before vaccine implementation. However, the
use of a 1999 H7N1 LPAI virus as a vaccine strain during the
H7N3 vaccination campaign might have favoured the evolution
of mutants harboring substitutions at the globular head of the
HA1 protein in the H7N3 viruses, similar to the ones acquired by
the H7N1 strain.

The high percentage (56% for the H7N1 and 44% for the H7N3)
of parallel substitutions on the total number of amino acid
changes of the HA protein, which became fixed during the viral
evolution, suggests that they may not be caused only by the
stochastic forces of mutation, but instead may support the
hypothesis that selection on the HA has resulted in parallel evolu-
tion of independent lineages circulating in similar environmental
conditions. Further studies would be necessary to better charac-
terize the specific role of this set of parallel mutations, although
some of them may be related to the adaptation of the virus to
the poultry population. The highest frequency of eight mutations
of the HA gene in the H7 sequences obtained from viruses circu-
lating in poultry rather than in wild birds may support this
hypothesis. In particular, the acquisition of two potential addi-
tional glycosylation sites at position 123–125 and 149–151 in
our samples is a typical change observed during adaptation of
aquatic bird viruses to the domestic population (Giannecchini
et al., 2010; Aamir et al., 2009; Lebarbenchon and Stallknecht,
2011; Bataille et al., 2011).

Our deep sequencing analysis revealed that 14 of the 32 parallel
mutations were already present in at least one of the 15 analyzed
samples collected at the beginning of the two epidemics. In partic-
ular, three of them were identified as minority variants (frequency
<50%), eight as fixed variants (frequency >50%) and three showed a
variable frequency ranging from 2% to 99.9%. This finding suggests
that there may be additional benefits to the virus population by
maintaining these variants. The final acquisition through reassort-
ment and/or fixation of these mutations may occur with different
mechanisms – i.e. bottleneck events, positive selection, random
genetic drift or antigenic drift – which may depend on the
increased replication capacity, pathogenicity or adaptive
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advantage to specific selection pressures (i.e. vaccination) provided
by each mutation or a combination of these.

4.2. Similarities between the LPAI-I groups

The HA phylogeny showed that only two LPAI genetic groups
(H7N1 LPAI-I and H7N3 LPAI-I) persisted until the end of the two
epidemics, probably due to their higher reproductive success.
These clusters showed similar characteristics: they were detected
7 months after the first outbreak and possessed a potential addi-
tional glycosylation site (AGS) in the HA protein.

4.3. Similar pattern of amino acid variability

The change in the heterogeneity of HA proteins during the epi-
demic is comparable, indicating that the evolution of the HA fol-
lows a similar pattern for both viruses. In particular, the rapid
increase in the amino acid variability during the first epidemic
wave suggests a fast increase in the population size, which had
consequently led to the emergence of multiple competing variants
successively depleted by bottleneck events, which caused the sur-
vival of the sole LPAI-I group in both epidemics, which may have
circulated undetected for months in a restricted population.
Moreover, the amino acid distance among the viruses collected
from each epidemic ranged from 0% to 1.8% for both the H7N1
and the H7N3 viruses, suggesting that the two strains accrued sim-
ilar amino acid variability.

4.4. Similar evolutionary rates

Except for the NA gene, which belongs to different subtypes, the
remaining seven segments displayed similar rates of nucleotide
substitutions, thus suggesting that these two strains have a similar
predisposition to acquire mutations.

4.5. Divergences of viral evolution

This parallel evolution may be observed only with viruses with
similar virulence. Indeed, our study suggests that the stochastic
appearance of amino acid substitutions affecting the virus viru-
lence may completely change the direction of viral evolution, as
observed during the H7N1 epidemic. According to Galvani (2003)
virulence may arise as a consequence of within-host competition
among variants or as a strategy to maximize the transmission rate,
although the host survival and, hence, the persistence of the virus
in the host will be reduced. This may also explain why the H7N3
viruses did not manage to evolve into a highly pathogenic form.
Indeed, this theory suggests a trade-off between the rate of trans-
mission, which increases with the virulence, and the persistence of
the virus in the host (Galvani, 2003). According to this idea, vacci-
nation during the H7N3 epidemic may have reduced the opportu-
nities of the virus to be transmitted, thus selecting the virus with a
lower virulence but a higher capacity to persist in the host.
Moreover, at the time of the H7N1 epidemic, the LPAI strains were
not subject to compulsory control policy, while during the H7N3
epidemic control measures were immediately adopted in accor-
dance with the legislative decree 28 September 2000 of the
Italian Ministry of Health. This may have further contributed to
reduce the probability of the H7N3 virus to evolve into a more vir-
ulent strain.

5. Conclusions

The unprecedented opportunity offered by the H7N1 and the
H7N3 datasets to explore the evolutionary strategies of distinct
41
epidemics, which occurred in similar circumstances, has shown
how different strains may adopt similar evolutionary strategies
within the constraints of similar ecological conditions. Although
they are capable of acquiring a large amount of different mutations
during their evolution, the few changes that provide the highest
fitness advantage in a specific environment have the highest prob-
ability of reaching fixation independently of the genetic lineages.
However, this study has also highlighted the difficulties in predict-
ing either the acquisition of specific mutations or changes in the
virus virulence, which depend on several ecological factors and
strain characteristics. This underlies the need to constantly imple-
ment sustainable surveillance programmes in poultry to promptly
identify viruses with the potential to acquire highly pathogenic
properties and to control their spread in a timely manner.
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ABSTRACT 

Next Generation Sequencing technology is now being increasingly applied to study the within and 

between host population dynamics of viruses. However, information on avian influenza virus evolution and 

transmission during a naturally occurring epidemic is still limited. Here, we use deep sequencing data 

obtained from clinical samples collected from five industrial holdings and a backyard farm infected during the 

2013 highly pathogenic avian influenza (HPAI) H7N7 epidemic in Italy to unravel i) the epidemic virus 

population diversity, ii) the evolution of virus pathogenicity, and iii) the pathways of viral transmission 

between different holdings and sheds. We show a high level of genetic diversity of the HPAI H7N7 viruses 

within a single farm as a consequence of separate bottlenecks and founder effects. In particular, we 

identified the co-circulation in the index case of two viral strains showing a different insertion at the 

Hemagglutinin cleavage site, as well as nine nucleotide differences at the consensus level and 92 minority 

variants. To assess inter-farm transmission, we combined epidemiological and genetic data and identified 

the index case as the major source of the virus, suggesting the occurrence of multiple routes of spread of 

different viral haplotypes from the index farm to the other industrial holdings, probably at different time points 

and with different transmission modes. Our results revealed inter-farm transmission dynamics that the 

epidemiological data alone could not unravel and demonstrated that delay in the disease detection and 

stamping out was the major cause of the emergence and the spread of the HPAI strain.  

 

 

IMPORTANCE 

The within and between host evolutionary dynamics of a highly pathogenic avian influenza (HPAI) strain 

during a naturally occurring epidemic is currently poorly understood. Here, we perform for the first time an in-

depth sequence analysis of all the samples collected during a HPAI epidemic and demonstrate the 

importance to complement outbreak investigations with genetic data to reconstruct the transmission 

dynamics of the viruses and to evaluate the within and between farms genetic diversity of the viral 

population. We show that the evolutionary transition from the low pathogenic to the highly pathogenic form 

occurred within the first infected flock where we identified haplotypes with hemagglutinin cleavage site of 

different lengths. We also identify the index case as the major source of virus, indicating that prompt 

application of depopulation measures is essential to limit virus spread to other farms.  

 
 

INTRODUCTION 

Today, Next Generation Sequencing (NGS) techniques allow the investigation of viral population 

dynamics at any level (from within host to the epidemiological scale) with high resolution. In addition, NGS, 

can be used to identify low frequency variants which may be selected for and transmitted to other hosts. 

Avian influenza viruses (AIVs) exist in the host as populations of genetically related variants (1). The rate at 

which genetic diversity is generated within the host, the competitive replication ability of each variant, and the 

occurrence of genetic drift and of bottleneck events are some of the processes that drive virus evolution.  

NGS has been applied on avian influenza virus to i) characterize the emergence of mutations in the viral 

subpopulations associated to an increased virulence (2, 3) or to adaptation to new hosts, (4, 5) ii) to study 
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genetic bottlenecks upon transmission events (6, 7); iii) to investigate the dynamics of virus evolution during 

outbreaks in poultry (8) ; and iv) to identify co-infection with different subtypes (9). However, application of 

high throughput sequencing for the exploration of avian influenza virus evolution and transmission during a 

naturally occurring epidemic is still limited, making the interpretation of genomic data collected from 

outbreaks far from straightforward.  

Between August 14th and September 3rd of 2013, thirteen years after the last highly pathogenic avian 

influenza (HPAI) outbreak, Italy experienced a new avian influenza epidemic caused by a HPAI virus of the 

H7N7 subtype, which infected five industrial poultry holdings, four of which belonged to a large vertically 

integrated layer company, and one backyard flock (10). Detailed information on these outbreaks has been 

provided in a previous study (10). The epidemiological investigation indicated that the contact between free-

range hens and wild waterfowl in the first affected holding may have favoured the introduction of a low 

pathogenic avian influenza (LPAI) virus, which rapidly mutated into a HP form within the infected sheds (10) 

through the acquisition of multiple basic amino acids at the hemagglutinin (HA) cleavage site, which is 

considered as being the major molecular determinant of an HPAI virus (11). 

Here we used NGS to unravel the virus population diversity and the evolution of virus pathogenicity within 

the affected poultry farms. We also determined the transmission pathways of the H7N7 virus between 

different holdings and sheds during the course of the epidemic by combining deep sequencing and 

epidemiological data. 

 

 

MATERIALS AND METHODS 

 

Viruses 
Fourteen positive clinical samples (organs and swabs) were collected between August 13th and 

September 3rd 2013 from each infected shed of the five industrial farms and a backyard flock, counting for all 

the cases detected during the epidemic. Epidemiological information, including collection date, sample type 

(swabs, organs), farm and shed of origin, number of birds present in each farm at the time of the forfeiture 

and depopulation date, is available in Table 1. 

 

Generation of viral sequence data 
Total RNA was purified from the 14 infected clinical samples using the Nucleospin RNA kit (Macherey–

Nagel, Duren, Germany). Complete influenza A virus genomes were amplified with the SuperScript III One-

Step RT-PCR system with Platinum Taq High Fidelity (Invitrogen, Carlsbad, CA) using one pair of primers 

complementary to the conserved elements of the influenza A virus promoter as described in (12). PCR 

products were visualized on a 0.7% agarose gel. Sequencing libraries were obtained using Nextera DNA XT 

Sample preparation kit (Illumina) following the manufacturer’s instructions and quantified using the Qubit 

dsDNA High Sensitivity kit (Invitrogen, USA). The average fragment length was determined using the Agilent 

High Sensitivity Bioanalyzer Kit. Finally the indexed libraries were pooled in equimolar concentrations and 

sequenced in multiplex for 250 bp paired-end on Illumina MiSeq, according to the manufacturer’s 

instructions. 
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Quality trimming, assembly and SNP detection 

Illumina MiSeq reads were inspected using FASTQC to assess the quality of data. Fastq files were 

cleaned with PRINSEQ and Trim Galore to remove low quality bases at the 5’ and 3’end of each read and to 

exclude reads with a Phred quality score below 30 and shorter than 80 nucleotides. The filtered, trimmed 

reads were aligned to the eight gene segments of A/chicken/Italy/13VIR4727-11/2013, for which the 

consensus genome were previously obtained using Sanger method (data not shown), using BWA-MEM, an 

accurate aligner for paired-end reads longer than 70 (http://arxiv.org/abs/1303.3997v2). The BAM alignment 

files were parsed using the diversiTools program (http://josephhughes.github.io/btctools/) to determine the 

average base-calling error probability and to identify the frequency of polymorphisms at each site relative to 

the reference used for the alignment. In order to minimize artefacts introduced through RT-PCR and 

sequencing errors, for all the analysis conducted throughout this study we considered only polymorphisms 

with a frequency above 2% identified in positions with a minimum coverage of 500. This choice was based 

on the comparison of data obtained from two technical replicates of three samples (4541-8, 4541-9, 4541-

34), sequenced on two different Illumina sequencing machines (MiSeq), starting from two separate libraries 

obtained from the same extracted RNA. This threshold should guarantee the exclusion of 99.6% of the errors 

from our deep sequencing data (S1 Fig).  

For each replicate, only the assembled genome with the highest coverage was used in the following 

analyses.  

 

Genetic distance, entropy and transmission tree 

We computed the genetic distance between the complete genome of all pairs of individuals (S1 and S2) 

using the following formula: , 

where fAiS1, fCiS1, fTiS1, fGiS1 are the frequencies of nucleotide A, C, T and G at position i in the two samples 

and N is the length of the sequence. This matrix was used to compute a neighbour-joining phylogenetic tree 

using the web server T-REX (13). In addition, we combined the distance matrix and the collection dates to 

reconstruct the transmission tree of the H7N7 during the Italian outbreak, using SeqTrack (14), a graph-

based approach particularly suitable to infer maximum parsimony genealogies of viruses in densely sampled 

disease outbreak. The adegenet (15) and igraph packages (16) for the R software were used to perform the 

analysis and to draw the network. 

To measure the complexity of the viral populations within a sample, we calculated the Shannon entropy of 

each sample using the following equation: 

 
where  is the frequency of the nucleotide A, T, G or C at position i and N is the total length of the genome. 

Only nucleotides with a frequency above the 2% threshold identified in positions with a minimum coverage of 

500 were included in this calculation. 
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Phylogenetic analyses 

Consensus sequences of the complete genome of the 14 samples were aligned using MAFFT v. 7 (17) 

and compared with the most related sequences available in GenBank and in GISAID. Maximum likelihood 

(ML) phylogenetic trees were obtained for each gene segment using the best-fit general time reversible 

(GTR) model of nucleotide substitution with gamma-distributed rate variation among sites (with four rate 

categories, Γ4) available in RAxML-MPI v.8.1.7 (18). To assess the robustness of individual nodes of the 

phylogeny, one hundred bootstrap replicates were performed. Phylogenetic trees were visualized with the 

program FigTree v1.4 (http://tree.bio.ed.ac.uk/software/figtree/). 

The eight gene segments of the influenza virus genome were manually concatenated and the alignment 

was used to construct a phylogenetic network using the Median Joining method implemented in the program 

NETWORK 4.5 (http://www.fluxus-engineering.com) (19). This method uses a parsimony approach to 

reconstruct the relationships between highly similar sequences, and allows the creation of “median vectors”, 

which represents unsampled sequences, that are used to connect the existing genotypes in the most 

parsimonius way. The parameter epsilon was set to 10 and the transition to transversion ratio to 3:1. 

 

Nucleotide sequence accession numbers 

MiSeq sequences were submitted to the NCBI Sequence Read Archive (SRA, 

http://www.ncbi.nlm.nih.gov/Traces/sra/) under accession numbers SRR3036850, SRR3036852, 

SRR3036854, SRR3036856, SRR3036860, SRR3036864, SRR3036910, SRR3036911, SRR3036914, 

SRR3036916, SRR3036917, SRR3036919, SRR3036920, SRR3036945. Consensus sequences of the 14 

H7N7 viruses were submitted to GISAID under accession numbers EPI677984 to EPI678095. 

 

 

RESULTS 

 

Phylogenetic analysis of consensus sequences 

To investigate influenza virus variation during the HPAI H7N7 epidemic, we sequenced the eight genomic 

segments for all the clinical samples received from each infected farm. The highest number of positive 

samples (8) was submitted from the three infected sheds (shed 2, 4 and 5) of the index case, while only one 

sample per infected shed was received from the remaining five outbreak sites, for a total of one or two 

samples per farm. Farms are labelled from 1 to 6, according to the collection date of the samples. Details of 

location, date of sample collection, farm characteristics, sample type and mean depth of coverage are 

reported in Table 1.  

Our maximum likelihood phylogenetic analyses of the consensus sequences show that the fourteen HPAI 

H7N7 viruses form a distinct genetic group, defined by high bootstrap values (>96%) and long branches in all 

the eight phylogenies, suggesting the occurrence of a single viral introduction (Fig 1 and S1 to S7 Figs). In 

the HA and NA phylogenetic trees, they cluster with H7 viruses collected in Europe between 2009 and 2014. 

In particular, the HA gene segment of the Italian samples show the highest similarity (99.1-99.3%) with an 

LPAI H7N7 virus collected from a wild bird in Italy in 2014, for which only the HA sequence is available (Fig 

1), while the NA gene segment display the highest identity (99-99.1%) with an H7N7 virus collected from 
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chicken in Netherlands (S1 Fig). In the phylogenies of the internal gene segments the Italian samples group 

with viruses of different subtypes circulating mainly among wild birds in Eurasian countries (S2 to S7 Figs). 

 

High genetic variability of the first infected flock 

Surprisingly, molecular analysis of the eight viruses collected from the index case shows the co-

circulation of two highly pathogenic strains with a different insertion at the HA cleavage site compared to a 

H7 LP virus. Specifically, sequences of the two viruses from shed 5 (4541-9 and 4541-34) show an insertion 

of 6 nucleotides, while the remaining samples identified in sheds 2 and 4 possess a longer cleavage site with 

a nine nucleotide insertion.  

To better understand the evolution of the pathogenicity of the H7N7 viruses within the first infected flock, 

we focused our analysis on the deep sequencing data of the HA cleavage site. The sequencing coverage in 

this genetic region ranges from 4445 for the sample 4541-7 to 23511 for the sample 4541-34. We did not 

identify any reads showing the cleavage site typical of a LPAI strain. 99.9% of the reads of the two samples 

from shed 5 (named for clarity V+6) posses a cleavage site with an insertion of six nucleotides, with only a 

few reads containing an insertion of three, five and nine nucleotides (Table 2). While, 99.7% to 99.9% of the 

reads of viruses from shed 2 (named V+9) have an insertion of nine nucleotides, with only a few minority 

variants showing an insertion of six, seven or eight nucleotides (Table 2). On the other hand, in one of the 

samples from shed 4 (4541-33) we identified a mixed population with both type of cleavage sites displaying 

an insertion of nine (95.7%) and six (4.1%) nucleotides. 

Similarly to the samples from shed 2, the majority (from 99.9% to 100%) of the viral population of the 

subsequent outbreaks possesses the longer cleavage site, suggesting that this variant (V+9) may have a 

higher fitness advantage. 

Besides the cleavage site, the samples V+9 collected from shed 2 and 4 of the first infected farm can be 

distinguished from the two samples from shed 5 by nine nucleotide signatures, which resulted in three amino 

acid changes (PA Q116R, PA C631G, NS1 R118K). These signatures are maintained in all samples 

identified in the subsequent outbreaks, suggesting that only viruses from sheds 2 and 4 of the index case 

were transmitted to the other five farms (Fig 2). In addition, we identified one non-synonymous mutation at 

position 130 of the M2 gene, responsible of the amino acid substitution D44N, which is shared between the 

V+6 viruses and the samples 4527-11 from shed 2 of farm 1, 4603 from farm 2, 4678 from farm 3 and 5091 

from farm 5 (Fig 2). However, whether this mutation emerged by chance in the shed 2 virus of the index case 

and was then transmitted to the other outbreaks or whether it was acquired by the V+9 samples through a 

reassortment event cannot be assessed. 

To determine whether the shed 5 viruses (V+6) were the progenitors of the variant V+9, we examined the 

presence of the nine signature mutations as minority variants in the analysed samples. None of the 

mutations typical of the V+9 viruses were already present in shed 5 viruses (V+6) with a frequency higher 

than 2% (the frequency threshold used in this study, see the Materials and Methods section for details). 

Similarly, none of the mutations characteristic of V+6 was identified in the subpopulations of the V+9 

samples, except for the virus from shed 4 of the index case (4541-33), which, besides the shorter cleavage 

site, possessed subpopulations containing all the mutations distinctive of V+6 variant, with a frequency 

ranging from 3% to 9%, confirming the presence of a mixed population (V+6 and V+9) (Fig 3). 
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Genetic diversity of H7N7 viruses 

Overall, we observed mutations at 185 sites (excluding the HA cleavage site) distributed among the eight 

gene segments, of which 111 are non-synonymous and 74 synonymous. Specifically, a total of 35 

consensus-level nucleotide substitutions are recovered along the entire genome, defining 11 different 

genomes, five of which identified within the first infected farm (Fig 2). The PB2 gene, with a total of ten 

nucleotide variants (8 synonymous and 2 non-synonymous), is the most polymorphic segment at the 

consensus level. Notably, 13 out of 35 mutations distributed along twelve proteins (HA, NA, PB2, PB1, PB1-

F2, PA, PA-X, NP, M1, M2, NS1 and NS2) are non-synonymous, with the PA protein showing the highest 

number of amino acid variations (4) (Fig 2). 

Besides these consensus-level variant sites, our deep sequencing analysis identifies 209 minority 

variants in 151 sites (97 non-synonymous and 54 synonymous) with a frequency ranging from 2% to 49.8% 

(Fig 3). The virus collected from shed 4 of the index case (4541-33), which displayed a mixed population of 

V+6 and V+9, and the sample 4603 collected from farm 2, comprise the highest number of minority variants 

(respectively, 40 and 41). On the contrary, we did not detect any subpopulations in the samples 4541-34 and 

4541-9. No correlation between the number of variants and the type of samples used for the analysis (pool, 

organs or swab) was observed.  

We measured the complexity of the viral population of each sample using Shannon entropy (represented 

by the size of the circles in Fig 4). In the first infected flock, entropy measures fluctuate considerably: the 

lowest values are observed for viruses from the shed 5 (V+6), suggesting that these samples (4541-9 and 

4541-34) had recently experienced a narrow bottleneck and had not recovered from the loss of complexity. 

Conversely, viruses from shed 2 show intermediate values of entropy, while samples 4541-33 from shed 4 of 

the index case and 4603 from farm 2 displayed the highest entropy level, consistent with the high genetic 

diversity observed across their genomes. This finding suggests that a viral strain can evolve independently 

within separate sheds, going through bottlenecks of different intensity. 

 

Minority variants transmitted between sheds and farms 

Focusing our analysis of the first infected flock, we observed that only a few mutations were shared at a 

shed and farm level, while the majority of the minor changes were unique to individual samples. Specifically, 

at the shed level we detected 44 minority changes in viruses from shed 2, of which 22 are found in individual 

samples and not shared with others, and 48 in viruses from shed 4, of which 37 are identified in single 

samples. Similarly, at the farm scale we counted 92 mutations, of which 12 are shared between 2-4 samples, 

while 59 minority variants were identified in single individuals (Fig 3). 

Interestingly, five of these variants change markedly in frequency within the first infected farm becoming 

the majority viral population (fixed variants, highlighted with black arrows in Fig 3) and three of them were 

also transmitted or independently acquired by viruses collected from the other premises. Interestingly, four of 

these are non-synonymous mutations and cause changes at the protein level (NS M119T, M2 D44N, PA 

V100I, PB2 K574R). 

We detected only seven minority variants (HA 1351A, M 942G, M 955G, PA 1251 G, PA 1748A, PB2 

981G and NA 390A) transmitted between two or three farms. Interestingly, five of them result in amino acid 
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mutations (HA D451N, M2 D85G, PA R583Q, PB2 G327G, NA M130I), suggesting that most of the 

transmitted variants are associated with changes in viral fitness. 

 

Transmission dynamics of the H7N7 virus 

To assess the inter-farm transmission, a Median Joining phylogenetic network was inferred using the 

concatenated consensus sequences of the eight gene segments of the 14 analysed viruses (Fig 5). Within 

the first infected farm we identified five sequence genotypes (grey circles): one within shed 5, two within 

shed 2, and two in shed 4. Viruses from sheds 2 and 4 appear to be at the origin of the infection to the other 

farms, although one or two median vectors (red circles), which represent the lost ancestral sequences, 

separate them from viruses of the other holdings, except for the sample 5051-3 from farm 6, which appears 

to be a direct descendant of shed 2 viruses. Sequences from farms 2 to 6 grouped within two main clusters 

which shared a common ancestor (c1 and c2): c1 includes viruses collected from farms 2 (4603), 3 (4778) 

and 5 (5091), while c2 contains virus sequences from farms 4 (4774) and 6 (5051-1). Sequences within 

these two clusters are separated by 6 to 10 nucleotide differences, whereas 9-13 differences are observed 

between viruses of the two clusters. Therefore, the high number of mutations and median vectors identified 

between the analysed samples makes the relationship between sequences hard to determine. Our deep 

sequencing data may contribute to better understand this relationship. To this aim, first we inferred a 

neighbour-joining phylogenetic tree based on the distance matrix calculated from our NGS data, which 

confirmed the clustering identified by our network analysis (Fig 3). Then we used the distance matrix and the 

collection dates to reconstruct a transmission tree using the graph-based algorithm SeqTrack. This 

approach, which considers the sampled viruses as a fraction of the genealogy, is particularly suitable to infer 

the transmission pathway during disease outbreaks, where one strain can be the ancestor of another strain 

(Fig 4).  

Despite 21 days passing from the first to the last outbreak, the inferred genealogy suggests that all but 

one of the outbreaks descend directly from shed 2 (V+9) of the index case. The only exception is 

represented by the virus (5091) collected from the backyard farm on September 2 (farm 5), which appears to 

have been infected directly by farm 3.  

However, based on the number of shared mutations between the analysed sequences, we may speculate 

further scenarios. For example, sample 4603 from farm 2 shared two fixed mutations with samples 4678 

(farm 3) and 5091 (farm 5) (group c2 of the network analysis), thus a transmission event from farm 2 to farm 

3 cannot be excluded. Similarly, viruses 4774 and 5051-1 share 3 unique minority variants and 1 unique 

fixed mutation, making a transmission event between these two farms highly plausible. In addition, samples 

4774 and 5051-1 share 1 fixed mutations and 3 minority variants (group c1 of the network analysis), and in 

turn they share 2 fixed mutations with the sample 5051-3. Although viruses 5051-1 and 5051-3 were 

collected from two different sheds of farm 6, we observed a relatively high nucleotide distance between 

them. Specifically, they show 7 and 14 nucleotide differences at the population and subpopulation level, 

respectively, although all the consensus level mutations were present as minority variants in the other 

sample (Fig 3). Thus, the occurrence of two separate introductions in farm 6 from the index case and/or farm 

4 cannot be excluded. 

51



 

Overall, these analyses indicate that shed 2 of the index case is the major source of the virus. An early 

strain (c1) appears to have spread from the first infected flock to farm 2 (19 August) and 3 (21 August) and 

then from farm 3 to the backyard farm 5 (2 September). Since farms 2 and 3 belong to different companies 

(circle colour in Fig 4) and are located 50 Km apart (map in Fig 5), it is more plausible that viruses with 

similar genetic characteristics were transmitted from the index case to both holdings. A later spread with a 

slightly different strain (c2) may have occurred from the first infected flock to farm 4 (27 August) and 6 (3 

September). These two farms are located in the same area, with a distance of 3 Km, and belong to the same 

layer company as the first infected holding, thus an exchange of virus between them cannot be ruled out.  

 

 

DISCUSSION 

Acquisition of a virulent phenotype by H7 avian influenza viruses may have devastating consequences to 

the poultry industry and in some instance can create major human health issues, including the risk of 

generating a new pandemic strain (20). Despite the identification of multiple basic amino acids at the HA 

cleavage site as one of the most important molecular markers of virus pathogenicity, the mechanisms 

underlying the emergence, spread and evolution of HPAI during an epidemic are poorly understood and 

limited to few studies (3, 21). Here we performed for the first time a deep sequencing analysis of all the 

samples collected during a HPAI epidemic to evaluate the transmission dynamics and the within and 

between farms genetic diversity of the viral population.  

We showed that the fourteen H7N7 Italian samples collected from six different farms form a cluster 

distinct to other Eurasian sequences for all the eight gene segments, suggesting the occurrence in the 

poultry population of a single viral introduction. The high similarity of the HA gene segment with a virus 

collected from a wild bird in Italy and the contact between free-range hens and wild waterfowl in the first 

infected farm (10), indicates that the LPAI progenitor strain may have been introduced from the wild bird 

population into the first infected holding, where it rapidly mutated into a HP form.  

Despite our phylogenies suggesting a single viral introduction, we observed a high genetic variability of 

H7N7 between the different sheds of the first infected flock. In particular, at the consensus level, viruses 

collected from shed 5 possessed a shorter HA cleavage site and nine nucleotide differences compared to 

the viruses from sheds 2. This number of nucleotide substitutions is not compatible with the occurrence of 

different introductions, when usually a higher number of mutations are observed (22), but it can be explained 

by i) a rapid evolution of the virus following some bottleneck events, ii) independent evolution of the same 

virus within two separate sheds, or iii) the establishment of the infection starting from two different seeding 

variants of the same progenitor viral population. Nevertheless, our analysis of the mutation spectra of viral 

populations suggests that the two variants arose as a consequence of a founder event or a narrow 

population bottleneck. Indeed, the haplotype V+6, circulating in shed 5, was not identified in the viral 

subpopulations of shed 2 and similarly haplotype V+9, identified in shed 2, was not detected as a minority 

population in shed 5 animals. In addition, at the HA cleavage site of viruses from sheds 2 (V+9) and 5 (V+6) 

we identified only a total of 16 and 3 reads with an insertion respectively of six and nine nucleotides.  

Entropy values obtained for the two viruses from shed 5 further supports this hypothesis. Samples 

founded by few viral particles should have low entropy, since the strong bottleneck drastically reduce the 
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diversity of the viral population. On the other hand, samples that experienced relatively loose bottlenecks 

should display higher entropy. Therefore, the low entropy values of the viruses from shed 5 indicate that they 

had recently experienced a narrow bottleneck. Conversely, viruses from shed 2 show intermediate entropy 

values, suggesting that i) they were founded by a larger seeding population, ii) they experienced a high-level 

of replication, or that iii) they had circulated within the shed for a longer period of time. This last option is 

supported by the identification of H7-specific antibodies in animals from this shed, but not in animals from 

sheds 4 and 5 (10), while the second hypothesis may be supported by the high number of dead birds found 

in shed 2 compared to the other sheds, considering the virulence of the two variants were equal (intravenous 

pathogenicity index of 3 for both variants, data not shown). 

Surely, sequences of early viruses, might have helped us to provide a better characterization of the 

evolution of this strain within the index case. Indeed, the identification of H7-specific antibodies in animals 

from shed 2 and from the outer sheds 1 and 7, where no viruses were isolated (10), indicates that the virus 

had been circulating undetected within the farm before its identification, likely with a low pathogenic 

phenotype. 

Our analysis of the transmission dynamics indicates that only one of the two variants (V+9), probably the 

one with the highest fitness advantage, was transmitted from the index case to the other farms. Four out of 

the six infected farms (farms 1, 2, 4, 6) belong to one large vertically integrated layer company (Fig 4), 

therefore virus dissemination might have occurred through shared equipment, human-mediated mechanical 

transport, and also through infected workers, as H7N7 virus was diagnosed for three humans involved in the 

control of the epidemic (23). The low number of shared mutations between farms (seven) suggests that the 

transmission depended on the dissemination of a few viral particles.  However, the high frequency threshold 

(2%) used in this study to identify the minority variants and the scarce number of analysed samples for each 

farm need to be taken into consideration.  

In the farms for which it was possible to sequence more than one sample (eight for farm 1 and two for 

farm 6), we identified the co-circulation in the same premise of different related variants and the possible 

occurrence of multiple introductions in the same holdings (ie. farm 6), which can be detected only through 

the sequencing of a larger number of samples. Moreover, the high number of median vectors identified 

between the analysed samples in our phylogenetic network reveals missing ancestral sequences from our 

analyses, which might have been detected with increased sampling. As a consequence, increasing the 

number of viruses sampled from each farm and also from the environment could increase the resolution of 

our inter-farm transmission dynamic.  

We identify farm 1 as the major source for the spread of the virus to the other four industrial holdings, 

while the rural farm (farm 5) appears to have received the virus from the turkey farm (farm 3). Interestingly, 

this finding allowed the National authorities to demonstrate the occurrence of uncontrolled movements of 

birds from the infected turkey flock (farm 3), underlining the importance of genetic data to complement the 

outbreak investigation. Despite 21 days elapsing from the index case (August 13) to the last outbreak 

(September 3), the late depopulation date of the first infected flock (August 27) and the ability of the avian 

virus to persist in the environment (24), might explain the virus spread between these two holdings (1 and 6).  

In addition, results of our analysis of the transmission dynamics suggests that, despite farm 2 being located 

in close proximity to farms 4 and 6, transmission links are absent between these two premises. On the 
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contrary, the virus sampled from this farm appears to be more related to the virus from farms 1 and 3, 

located, respectively, 38 km and 36 km from farm 2.   

This finding suggests that multiple introductions of different viral haplotypes occurred from farm 1 to the 

other farms, probably at different time points and with different transmission modes, ie. neighbourhood 

spread (i.e. farm 1 and 3), human-mediated transport among farms of the same company (ie. farm 1 and 2 

or farm 1 and 4). These different means of viral diffusion have been observed also during other HPAI 

epidemics (21, 25) suggesting that long distance transmission events may play an important role for the virus 

dissemination into new areas. 

Overall this study shows that analysis of deep sequencing data can complement epidemiological 

investigations, providing important insights and revealing unexpected dynamics on the inter-farm 

transmission network. Specifically, we demonstrated that the delay in the disease detection and stamping 

out in the index case might have been the major cause of the emergence and the spread of the HPAI strain. 

Epidemiological investigations did not recognize the central role of the first infected flock in the diffusion of 

the virus to most of the farms, and suggested an epidemiological link between farms 2, 5 and 6, which has 

not been confirmed by our data. In addition the epidemiological data alone was not sufficient to trace back 

the source of the virus detected in the rural farm (farm 5), which we demonstrated to be linked to the turkey 

farm (farm 3). 

Moreover, we show that a farm can harbour a high level of heterogeneity, potentially caused either by 

separate bottlenecks and founder effects in the different sheds, or by multiple viral introductions from 

different sources. Hence, the importance during the control activities to collect and analyse several samples 

from each infected farm to provide a complete picture of the evolutionary process during an avian influenza 

epidemic. 
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Table 2. Number of reads showing an insertion from 0 to 9 nucleotides at the HA cleavage site of the eight 

samples collected from three different sheds of the index case 

 

SHED 5 SHED 4 SHED 2 
N. nt insertion 

4541-34 4541-9 4541-8 4541-33 4527-11 4527-12 4541-7 4541-32 
0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 
3 0 1 0 0 0 0 0 0 
4 0 0 0 1 0 0 0 0 
5 0 1 0 0 0 0 0 0 
6 23509 14861 0 591 11 0 1 4 
7 0 0 4 18 5 3 5 27 
8 0 0 0 0 1 0 0 5 
9 2 1 16587 13700 6660 13725 4439 22929 
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Fig 3. Heat-map of the nucleotide frequency. Samples, coloured according to the farm of collection, are in
column and positions showing nucleotide differences among the complete genomes of the 14 samples are in
rows. The colour scale represents the nucleotide frequency according to the scale bar at the top of the
figure. Black dots represent positions for which deep sequencing data were not available (coverage <500).
Black arrows indicate the variants that change markedly in frequency within the first infected farm becoming
the majority viral population. The dendrogram above the heatmap represents the neighbour-joining tree
obtained from the distance matrix calculated from the deep sequencing data.
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Fig 4. Transmission tree obtained from deep sequencing data. Each circle represents an individual
sample. The size of the circles is proportional to the mean entropy value. The vertical axis represents the
time of collection of each sample (samples in the same row belong to the same farm) and the numbers within
the circle correspond to the farm number (1 to 6). Circle colours are assigned accordingly to the owner of the
farm: farm 1, 2, 4 and 6 (green) belong to the same layer company, while the turkey farm 3 (purple) and the
backyard farm (violet) belong to two different owners. Connecting arrows correspond to the results obtained
from SeqTrack, while dashed lines are alternative hypotheses of transmission events formulated based on
the number of shared mutations. Numbers over the lines are the genetic distance calculated from the deep
sequencing data between the samples. Coloured area represents genetic groups identified based on the
number of shared mutations and the results of both the neighbour-joining phylogenetic tree (Fig 3) and the
network analysis (Fig 5).
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Fig 5. Median-joining phylogenetic network. A) The network was constructed from the consensus
sequences of the eight concatenated gene segments. Each unique sequence genotype is represented by a
circle sized relatively to its frequency in the dataset. Numbers next to the circles correspond to the samples
showing that particular genotype, while the number within the circle represents the shed where the genotype
was identified. Genotypes are coloured according to farm. Branches represent the shortest trees and black
circles represent the number of nucleotide mutations that separate each node. Median vectors are shown as
red circles. The violet and yellow shading represent the two identified genetic groups C1 and C2. B) The map
shows the geographic position of the six infected farms.
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Abstract 

 Vaccines are useful tools to control influenza A virus infection in poultry, but they need to be 

periodically reformulated to guarantee appropriate protection from infection and to avoid extensive viral 

circulation and replication, which could favour the emergence of new variants. In this study, an ultra-deep 

sequencing approach was used to inspect, characterize and follow the evolution of the viral population in 

infected vaccinated animals. High resolution hemagglutinin sequence data of H5N1 highly pathogenic avian 

influenza virus in chickens infected with two vaccines conferring different protection levels were analysed to 

examine the fine-scale genetic changes of viral populations. Our preliminary results suggested that the 

evolution of the viral population, as well as the abundance and minority variants heterogeneity could be 

influenced by the immune pressure conferred by vaccination. 

 

Introduction 

 Influenza A virus is a zoonotic agent with a significant impact on both public health and poultry 

industry. Vaccination is a useful tool used worldwide to support intervention strategies, such as stamping out 

and biosecurity policies, in order to keep the infection under control and prevent the diffusion of avian 

influenza viruses in poultry (Lee and Suarez, 2005). However, as demonstrated in previous studies the use 

of a vaccine strain antigenically different from the circulating viruses or application of inadequate vaccine 

protocols may favour the antigenic drift and cause vaccination failure (Lee et al., 2004; Cattoli et al., 2011; 

Swayne DE 2012). A more extensive knowledge of the mechanisms underlying intra-host evolution of avian 

influenza viruses circulating in vaccinated poultry populations could be of help to formulate and adopt more 

adequate vaccine strategies. 

Previous studies conducted in partially immune pigs indicated that the variability in immune response may 

influence the overall diversity of swine influenza virus during infection (Diaz et al., 2015) and showed that the 

hemagglutinin gene displayed nucleotide mutations at the very beginning of viral infection (Diaz et al., 2013, 

Murcia et al., 2012). However, to date there is no information on the intra-host evolution of HPAI avian 

influenza viruses circulating in vaccinated poultry populations. The surface glycoprotein, hemagglutinin (HA) 

is involved in the induction of a protective humoral and cell mediated immune response, and represent one 

of the major antigenic determinants of type A influenza viruses. In poultry, antigenic drift is driven primarily by 

multiple amino acid substitutions within major antigenic sites.  

In this preliminary study, we analysed swabs sampled from vaccinated and challenged chickens with 

different levels of clinical and virological protection. Next-generation sequencing was performed to compare 

nucleotide and amino acid diversity at the level of the hemagglutinin among groups. 

 

Material and methods 

 A deep sequencing analysis on the HA gene segment was performed on samples collected in a 

previous challenge study that aimed at assessing the protective efficacy of two avian influenza vaccines, 

against a HPAI H5N1 virus. Briefly, two groups of ten Specific Pathogen Free (SPF) day-old chicks were 

vaccinated twice at a 10-day interval by the sub-cutaneous route, using two distinct influenza inactivated 

vaccines (here named A and B). The birds were challenged with 106 50% Embryo Infectious Dose (EID50) 

HPAI H5N1 A/chicken/Egypt/4453-7/2011 virus (clade 2.2.1) (WHO/OIE/FAO H5N1 Evolution Working 
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(2012)) 21 days from boosting. Antibody responses were assessed by means of hemagglutinin inhibition test 

(HI) ten days from priming, on the day of boosting and 2 weeks after the challenge. Tracheal swabs (TS) 

were collected on days 2, 4, 6, 8 and 10 post challenge (p.c.) to evaluate viral shedding by quantitative real-

time RT-PCR (qRRT-PCR) and calculate the EID50 equivalents.  

 The Egyptian HPAI H5N1 virus used for the challenge, as well as all TS positive by qRRT-PCR (six 

samples from group A and fourteen samples from group B), were processed as described below. Total RNA 

was isolated from tracheal swabs using Nucleospin RNA kit (Macherey-Nagel, Duren, Germany). Viral RNA 

encoding the HA gene segment was retro-transcribed and amplified using SuperScript III one-step reverse 

transcription-PCR (RT-PCR) system with PlatinumTaq High Fidelity (Invitrogen, Carlsbad, CA) using H5 

specific primers. Sequencing libraries were prepared using Nextera XT DNA Sample preparation kit 

(Illumina) and processed as described by Monne et al. (2014) on Illumina Miseq desktop sequencer.  

FASTQC software was used to inspect quality score of raw sequence files and post processing data coming 

from the high-throughput sequencing pipelines. Fastq files were cleaned with Trimmomatic (Bolger et al. 

2014), using a 4-base-pair sliding-window algorithm with a quality score cut-off of 20; only reads longer than 

80 nucleotides were considered and mapped to the hemagglutinin H5 reference sequence using bwa-mem 

(Li et al., 2010; Li H., 2013). The BAM alignment files obtained were parsed using the diversiTools program 

(http://josephhuges.github.io/btctools/) to determine the average base-calling error probability and to identify 

the frequency of single nucleotide polymorphisms (SNP). A 500x coverage and a 1.0% frequency were the 

minimum threshold parameters chosen according to the data obtained from deep-sequenced plasmid DNA 

internal control. A statistical strand bias test (Holm-Bonferroni), implemented in the LoFreq software (Wilm et 

al. 2012) was used to confirm diversiTools SNP results. Shannon entropy (SE) was calculated  to measure 

the complexity of viral populations in each sample belonging to group A and B, using the following formula: 

 

where  is the frequency of the nucleotide A, T, G or C at position i and N is the total length of the 

hemagglutinin gene. 

The Wilcoxon Mann–Whitney rank-sum test was used to verify whether the distribution of EID50, Entropy 

and polymorphism were identical in both groups. 

Amino acid changes situated near or within previously identified antigenic sites (Kaverin et al.,2007; Kaverin 

et al., 2002) and to the receptor binding site (Kovácová et al., 2002; Cattoli et al., 2011) were mapped on an 

hemagglutinin structure obtained by homology modelling using the Swissmodel server 

(http://swissmodel.expasy.org/) (Bordoli et al., 2009); UCSF Chimera (Pettersen et al., 2004) v.1.10.2 

software was used for viewing. 

 

Results  

 None of the two vaccines conferred either full clinical or virological protection. Nevertheless, all of 

the birds that received vaccine A survived the challenge, whereas vaccine B prevented death in only 70% of 

the birds (Tab. 1). Moreover, the vaccines differed in terms of suppression of viral shedding, as at each time 

p.i. fewer birds in group A shed viral RNA from the trachea (p<0.10), and the amount of shed virus was 

significantly lower than in group B on day 2 p.i. (p=0.072) (Tab. 1, Fig. 1). Ten days from priming, animals in 
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both groups showed no detectable levels of HI antibodies against the challenge virus. After boosting, birds in 

group A recorded a 2,6 log2 HI geometric mean titre (GMT), whereas in group B all birds resulted either 

negative or recorded HI titres of 1 log2 (GMT of 0,2). After the challenge, seroconversion, expressed as an 

HI GMT increase equal to or higher than 2 log2, was observed in all of the survived birds in group B (GMT of 

2,2), as opposed to 50% of the animals in group A (HI GMT of 3,0 log2).  

Sufficient RNA for deep sequencing analysis was recovered from TS only on days 2 and 4 p.c. Data were 

obtained for a total of twenty-one positive samples, specifically: a) the challenge virus (4453/11), b) six 

samples belonging to group A, five of which at 2 days p.c. (34A2, 35A2, 37A2, 47A2, 59A2) and one at 4 

days p.c. (34A4), and c) fourteen samples belonging to group B, nine of which at 2 days p.c. (72B2, 73B2, 

75B2, 79B2, 80B2, 81B2, 83B2, 86B2, 88B2) and five at 4 days p.c. (73B4, 79B4, 81B4, 86B4, 88B4). Each 

sample was identified as follows: the first two digits refer to the animal identification code, the alphabetic 

characters (A or B) identify the group and the last digit indicates the number of days p.c.  

To characterize the complexity of the viral population of the 20 clinical samples from the vaccinated birds, 

the per-site Shannon entropy was calculated, considering the frequencies of nucleotide substitutions across 

the hemagglutinin gene. The entropy measures fluctuated considerably: the samples with the lowest values 

belonged to group A (0 and 0.000130), while the ones with the highest values (0.00076 and 0.00085) 

belonged to group B.  

The analysis of the nucleotide sequence diversity of the hemagglutinin gene showed several synonymous 

and non-synonymous polymorphisms distributed on the HA gene of all samples. However, a comparison 

between the two groups revealed a great variability in the number of polymorphisms among samples. Five 

out of six samples belonging to group A showed from one to six minority variants per sample (tab.2), 

randomly distributed across eleven nucleotide positions, with a frequency ranging from 1.05% to 6.88%. 

Only two of the identified polymorphic sites (929 and 1071) were shared among two or more samples. 

Differently, group B displayed a higher number of polymorphisms (tab. 3), from three to thirteen per sample, 

distributed in sixty-three positions and showing a frequency ranging from 1.01% to 68.70%.  Six of these 

polymorphisms (residues 258, 470, 929, 1032, 1071 and 1379) were acquired independently by two or more 

samples. The positions which displayed the highest frequency values (2.38% to 32.74%) were position 258, 

shared among 3 out of 14 samples, and position 1032 (1.25% to 68.70%), revealed to be the one shared by 

the largest number of samples (6 out of 14) belonging to group B. Among the synonymous minority variants 

identified, only positions 1071 was shared between group A and B with frequency values slightly higher in 

samples belonging to group A (tab.2 and tab.3).  

The minority variants identified at position 1032 of the HA gene of six samples of group B was already 

present in the challenge strain, like polymorphisms in position 164 and 1395 displayed separately in only two 

samples of this group; all the other variants appear to have emerged only after the viral introduction in the 

host. None of the polymorphism already present within the HA gene of the challenge virus were later 

identified among samples belonging to group A. 

We performed a non parametric Wilcoxon Mann–Whitney test to evaluate whether the EID50 equivalents, 

the entropy values and the number of polymorphisms of the samples from the two groups were significantly 

different. The samples collected at 4 days p.c. were only six, five from group B and one from group A, 

therefore they were excluded from the statistical comparison. The test indicated that the distribution of values 
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of EID50, entropy and polymorphism were different in the two vaccination groups, with group B showing the 

highest values of EID50, entropy and number of polymorphisms (fig 1).  

Non-synonymous substitutions represented respectively 56% and 64% of the total polymorphisms in group A 

and B and were randomly distributed across the HA gene. Amino acid positions in the HA protein refer to H5 

numbering; challenge virus A/chicken/Egypt/4453-7/2011 used in this study displayed a deletion in position 

129. Among samples belonging to group A, seven nucleotide positions, across the whole HA gene, showed 

non-synonymous minority variants with a frequency ranging from 1.05% to 6.88%. Only one non-

synonymous mutation, leading to amino acid substitution H295L was in common in 3 out of 6 samples. None 

of the six samples belonging to group A showed non- synonymous minority variants located at the globular 

head of the HA1 protein near or within the three secondary structural elements of the receptor binding 

domain (RBD), formed by the 130-loop, 190-helix, and 220-loop, and/or in antigenic sites previously 

identified. Compared to group A, group B showed a higher number of nucleotide positions (forty-nine) 

involved in non-synonymous minority variants randomly distributed across the hemagglutinin gene. The 

minority variants shared among two or more samples were identified at six nucleotide positions, three of 

which, 470, 941 and 1379 led to non synonymous polymorphism ( frequency values are shown in table 3. 

Interestingly, non synonymous SNPs at positions 1018 and 1019 led to the mutations R325K and R325G 

situated in the cleavage site of the hemagglutinin proteins in two samples, respectively at 2 and 4 days p.c. 2 

out of fourteen (2/14) samples displayed a common non synonymous mutation at nucleotide position 941 

that lead to amino acid mutation H295L, as previously found in group A. Six out of nine samples (6/9) at 2 

days p.c. and one out of five samples (1/5) at 4 days p.c. displayed from one to two non-synonymous 

polymorphisms within the receptor binding cavity (from 130 to 225 amino acid position), where also antigenic 

sites A, B and partially D are present, for a total of eleven minority variants. Four mutations near or within 

antigenic site A were found randomly in three samples at 2 days p.c. and in one sample at 4 days p.c.; in 

particular, C135F, and S141F mutations determined a change of the physical chemical properties, whereas 

minority variant S142Yand S142F , identified separately in two samples, displayed not-charged and polar 

properties for both amino acids. Minority variant Y157C close to antigenic site B was detected in one sample 

at 2 days p.c.; however, on day 4 p.c the same sample did not show the same minority variant. Non-

synonymous mutations observed within the RBD were C135F, I213V and K218E. In particular, C135F was 

positioned within the 130 loop, whereas, S141F and S142Y/F were close to this secondary structural 

domain. I213V and A214D appeared near the 220 loop, whereas K218E was close to antigenic site D 

situated in the 220 loop. One sample belonging to group B displayed minority variant S141F previously 

shown to be involved in antigenic drift of Egyptian H5N1 HPAI viruses (Cattoli et al., 2011). 

 

Discussion  

 For many influenza subtypes, such as HPAI H5N1 virus, vaccination programmes are currently 

underway in attempt to control and eradicate these diseases. However, influenza A viruses evolve rapidly in 

response to selection pressures generated through vaccine protection, and the emergence of virus strains 

for which existing vaccines are not well matched and offer little protection continuously challenges the 

effectiveness of vaccines in the field. Deep sequencing technologies are used to investigate and 

characterize the complexity of the viral population, to detect low-frequency mutations and to follow the 
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evolution of the genetically related variants present in a viral population. Samples collected in the framework 

of a previous experimental study aiming at assessing the protection efficacy of two distinct vaccines against 

HPAI H5N1 virus, offered the unique opportunity to compare viral population diversity in two distinct immune 

status background. In particular, the two experimental challenge groups (A and B) allowed to mimic different 

level of immunity and than to explore how viruses evolve within hosts that have received only partial 

vaccination with influenza inactivated vaccines. The HI test conducted on sera collected prior to challenge 

indicated that the HA protein of vaccine A seemed to be antigenically similar to the HA of the viral challenge 

strain, whereas HA protein of vaccine B seemed antigenically different from the viral challenge strain. All of 

the birds that received vaccine A survived the challenge, whereas vaccine B prevented death in only 70% of 

the birds. Results obtained applying an ultra-deep sequencing approach to samples collected from A and B 

experimental groups suggest that a suboptimal level of antibody protection may be considered a factor 

involved in the generation of a viral population with the highest genetic heterogeneity. We identified a total of 

16 polymorphisms (56% non-synonymous) in group A and of 76 polymorphisms (64% non-synonymous) in 

group B. Interestingly, two samples belonging to group B displayed minority variants R325G and R325K 

situated within the cleavage site in the hemagglutinin protein; a previous study carried out on Egyptian 

(HPAI) H5N1 viruses, showed that position 325 significantly reduced pathogenicity without altering the 

transmission efficiency (Yoon et al., 2013).  Eleven out of forty-nine (12/49) non-synonymous polymorphisms 

identified in the group B fall within or close to a previously identified receptor binding cavity; seven of them 

were near or within antigenic sites A, B and partially D, whereas none of the samples belonging to group A 

showed non-synonymous minority variants in the same area. As previously shown (Cattoli et al. 2011), 

reverse genetics mutants on the hemagglutinin of a H5N1 highly pathogenic avian virus demonstrated that 

five amino acid positions (74, 140, 141, 144, and 162) could be involved in the antigenic drift observed in the 

HPAI H5N1 field strain circulating in Egypt in 2008. Interestingly, one sample belonging to group B displayed 

the minority variants S141F. These observations suggest that a suboptimal immune protection may induce 

an increase of the complexity in the viral population and promote the selection of minority variants, some of 

which could be involved in antigenic drift. Our study highlights that viral evolution and appearance of amino 

acid mutations within interesting antigenic sites can be observed from the early stages of infection. None of 

the samples at 4 days p.c. showed a fixation of non-synonymous substitutions; this could be due to a bias 

during the sampling, or to the deep sequencing procedure that needs an improvement, or simply the reason 

could be ascribed to the unknown time required for minority variant fixation. Considering that our sample size 

was rather limited, this preliminary study should be further confirmed by making an assessment on a greater 

number of samples, and samples collected in a wider range of time should be selected, as well. Further 

studies on the whole influenza A virus genome could provide us with an overview on the effect of suboptimal 

vaccine protection in the evolution of viral populations. The higher entropy and number of polymorphisms 

were associated with two concomitant features of group B. In fact, not only more birds in this group shed 

viral RNA by the tracheal route, but they were also found to shed a higher amount of virus compared to birds 

in group A. Moreover the humoral immunity in group B proved to match the challenge virus in a less efficient 

way then the one elicited by the A vaccine. The combination of a higher viral replication and a different 

immune pressure might be held responsible for increased viral diversity and favoured an increase in the 

number of non-synonymous minority variants. 
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Conclusions 

 Deep sequencing analysis proved to be a valid tool to explore and characterize differences among 

heterogenic viral populations present in vaccinated animals during infection; furthermore, it highlighted the 

presence of minority variants at the very beginning of the infectious phase, which could not be revealed by 

using the classical sequencing method. In addition, this work highlights the need to further explore the 

results that can be generated applying NGS approach to other experimental models and influenza subtypes 

to confirm, as it seems from these data, that it could be a suitable method to understand the mechanisms 

that underpin how viruses escape vaccine protection and have early indication of threats to the effectiveness 

of vaccine control programmes. 
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Tab.2. SNP identified in samples belonging to group A; frequency values are in percentage 
 

CDS POLYM 34A2 35A2 37A2 47A2 59A2 34A4 

229 L61F 1,34      

238 N64D 1,54      

489 SIL      1,13 

929 H295L  1,05 1,24   1,32 

1071 SIL 2,37 1,87 3,55   2,77 

1190 V382A   1,12    

1222 F393L    6,88   

1236 SIL      2,01 

1400 V452A      2,72 

1625 L527P      2,35 

1701 SIL  1,37     
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Tab.3. SNP identified in samples belonging to group B; frequency values are in percentage 
 
CDS POLYM 72B2 73B2 75B2 79B2 80B2 81B2 83B2 86B2 88B2 73B4 79B4 81B4 86B4 88B4 

15 SIL            1,70   

17 -L6P              3,02 

20 -L7P         1,41      

149 E34G          7,93     

153 SIL              2,86 

160 N38D      1,52         

164 G39E       38,84        

213 SIL          1,59     

258 SIL  2,38       16,68     32,74 

268 SIL              2,72 

357 H103Q  2,30             

410 S122F             3,49  

411 SIL  1,44             

414 W123*  1,49             

449 C135F  2,28             

458 SIL 1,25              

467 S141F         1,01      

470 S142Y/F  1,65           3,88  

492 W149*           1,75    

497 T151I    4,46           

515 Y157C     2,99          

536 Y164C        5,35       

555 D170E      5,29         

585 SIL             2,89  

682 I213V         1,50      

686 A214D    3,77           

697 K218E             1,05  

804 SIL            1,74   

828 SIL     1,39          

848 E268G       3,56        

880 Q279K        3,92       

929 H295L 1,04      1,27        

931 P296S    5,16           

979 V312I  1,30             

985 A314T           1,98    

1015 E324K       2,66        

1018 R325G            1,44   

1019 R325K  1,33             

1032 SIL  1,58 68,70  54,45     6,74 1,25   15,16 

1048 A335T  1,27             

1071 SIL 2,01  1,46    1,66     1,76   

1107 SIL           1,20    

1119 N358D  1,40             

1150 E369K    10,51           

1163 K373R           1,02    

1199 I385T        2,26       

1264 I407L           1,29    

1290 E415D  1,42             

1327 L428F  2,13             

1349 E435G   2,92            

1364 F440S            2,71   

1365 SIL           1,84    

1379 V445A    5,67  1,54         

1394 D450G       3,96        

1395 SIL          6,62     

1416 SIL           1,12    

1429 E462K           1,61    

1504 Y487H      1,22         

1517 Q491L    2,50           

1522 S493P 2,53              

1575 SIL             2,67  

1598 S518*           1,05    

1628 A528V         1,25      

 

77



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

78



 
 
 

CHAPTER 4 
 

 

 

 

 

Comparative structural analysis of haemagglutinin proteins from type A influenza 
viruses: conserved and variable features 

 

Righetto I, Milani A, Cattoli G, Filippini F. 

 

BMC Bioinformatics. 2014 Dec 10;15:363. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

79



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80



Righetto et al. BMC Bioinformatics 2014, 15:363
http://www.biomedcentral.com/1471-2105/15/363
RESEARCH ARTICLE Open Access
Comparative structural analysis of haemagglutinin
proteins from type A influenza viruses: conserved
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Abstract

Background: Genome variation is very high in influenza A viruses. However, viral evolution and spreading is
strongly influenced by immunogenic features and capacity to bind host cells, depending in turn on the two major
capsidic proteins. Therefore, such viruses are classified based on haemagglutinin and neuraminidase types, e.g.
H5N1. Current analyses of viral evolution are based on serological and primary sequence comparison; however,
comparative structural analysis of capsidic proteins can provide functional insights on surface regions possibly
crucial to antigenicity and cell binding.

Results: We performed extensive structural comparison of influenza virus haemagglutinins and of their domains
and subregions to investigate type- and/or domain-specific variation. We found that structural closeness and primary
sequence similarity are not always tightly related; moreover, type-specific features could be inferred when comparing
surface properties of haemagglutinin subregions, monomers and trimers, in terms of electrostatics and hydropathy.
Focusing on H5N1, we found that variation at the receptor binding domain surface intriguingly relates to branching of
still circulating clades from those ones that are no longer circulating.

Conclusions: Evidence from this work suggests that integrating phylogenetic and serological analyses by extensive
structural comparison can help in understanding the ‘functional evolution’ of viral surface determinants. In particular,
variation in electrostatic and hydropathy patches can provide molecular evolution markers: intriguing surface charge
redistribution characterizing the haemagglutinin receptor binding domains from circulating H5N1 clades 2 and 7
might have contributed to antigenic escape hence to their evolutionary success and spreading.

Keywords: Haemagglutinin, Avian influenza virus, Viral evolution, H5N1, Antigenic drift, Receptor binding domain,
Homology modeling, Isopotential contour, Hydropathy analysis
Background
Influenza caused by influenza A viruses occurs in both
birds and mammals. In humans, influenza A viruses infect
hundreds of millions individuals, causing a high number
of deaths per year. Indeed, influenza A outbreaks occurred
in 1918, 1957 and 1968 resulted in death for ~100 million
people worldwide [1]. However, seasonal epidemic out-
breaks cause estimated 250.000 to 500.000 yearly deaths
worldwide [2] (data from the World Health Organization
(WHO) [3] and from the Center for Disease Control and
prevention [4]). The largest reservoir of all subtypes of
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1Molecular Biology and Bioinformatics Unit (MOLBINFO), Department of
Biology, University of Padua, via U. Bassi 58/B, 35131 Padova, Italy
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influenza A is found in wild water avian species and some
viruses can infect different hosts [5,6]. Classification of
influenza type A virus subtypes is based on antigenic
and genetic differences in the two surface spike pro-
teins: haemagglutinin (HA) and neuraminidase. For in-
stance, H5N1 viruses combine the haemagglutinin of
the H5 subtype with neuraminidase of the N1 subtype.
A wide interest for haemagglutinin depends on evidence
that this protein (i) is crucial to the attachment and pene-
tration into the host cell, (ii) represents the main viral sur-
face antigen, and (iii) is a major player in the stimulation of
the neutralizing antibody response [7]. Haemagglutinin is
synthesized as a precursor and then processed by cellular
proteases to yield mature polypeptide subregions. In order
to provide unambiguos information, hereafter acronyms
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:francesco.filippini@unipd.it
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Righetto et al. BMC Bioinformatics 2014, 15:363 Page 2 of 17
http://www.biomedcentral.com/1471-2105/15/363
for haemagglutinin are the followings: ‘HA’ for haem-
agglutinin in general; HA0 for the precursor; HA1 and
HA2 for the two subregions and ‘H’ followed by pro-
gressive numbering (H1 to H16) for each haemagglu-
tinin subtype. Influenza virus haemagglutinin is a type I
transmembrane glycoprotein that is exposed at the viral
surface as a homotrimer. Trimerization is possible once
proteolytic cleavage of the unfolded HA0 precursor oc-
curs hence allows for folding of monomers, each consist-
ing of two mature chains: HA1 and HA2 [7]. Structurally,
each monomer consists of a globular ‘head’ (part of chain
HA1) and of a ‘stem’ region (contributed by both chains
HA1 and HA2). The head includes a receptor-binding
domain (RBD) and a vestigial esterase domain (VED),
whereas the stem is structured as a mainly α helical, coiled
coil region. Functionally, the RBD mediates docking to the
host cell by binding sialic acids as cell entry receptors,
whereas the stem domain mediates both tethering and
membrane fusion once conformational change is oc-
curred, caused by pH decreasing along the endosomal
route. For several years, classification of HA from influ-
enza viruses was mainly based upon serological and/or
phylogenetic analysis [8]. However, structural genomics
projects are providing the scientific community with an
increasing number of structural templates, while contem-
porary reverse genetics, immunogenomics investigations
and improved sequencing technologies are producing a
high number of mutant sequences. Changes in serological
specificity depend on variation of epitopes recognized by
the specific antibody rather than on the extent of se-
quence divergence, meaning i.e. that (i) two proteins with
highly similar sequences may show quite different proper-
ties when considering recognition of specific epitopes and
(ii) two proteins may share antigenic properties even when
having highly divergent sequences, if epitopes involved in
the specific recognition were conserved. Variation of some
protein properties sometimes may depend only on ‘local
and limited changes’, e.g. mutation of a few - or even only
one – residue(s) within linear or conformational motifs. In
fact, even when local variation in sequence is seemingly
poorly evident, it may result in ‘locally dramatic’ changes
in accessible surface area, electrostatic potential, hydrop-
athy or hydrophilicity features that can deeply change
motif functionality. It is common knowledge that variation
in surface features of a protein can modulate ‘recognition’
interactions of the protein itself. Since variation often de-
pends on mutation of a number of residues and changes
in side chains can vary multiple biochemical features, it
is difficult or even nonsense trying to establish a priori
which specific property (among e.g. surface area and
shape, electrostatics or hydrophobicity) should be more
relevant than others in modulating recognition interac-
tions. In fact, changes in each specific property can re-
sult in such modulation, and this can be independent
82
on variation of other features, or modulation can result
from the aggregate or synergistic effect of multiple fea-
ture changes. So far, several sequence-based studies on
variation could provide valuable phylogenetic evidence;
however, such studies are of minor help in inferring
variation at protein regions including amino acids that
are far each other in the primary sequence and quite
close within the 3D protein structure (conformational
epitopes). In practice, while sequence-based investiga-
tion can be good in highlighting very evident changes
at individual positions of a protein chain, in general
they fail in highlighting meaningful ‘group variation’, i.e.
in identifying - especially when the overall variation is
relevant and spread - relationship of specific multiple
changes to variation in conformational epitopes hence in
interactions they mediate.
Once solved structures are available, presence of one

or more structural templates allows for shifting to ‘con-
formational epitope based’ studies on variation and, in
particular, to investigating on surface region variation.
Stressing relevance of local surface variation is particu-
larly important when considering special constraints ad-
dressing viruses evolution: keeping basic properties in
simplified but complex pathogenic systems while simul-
taneously varying - as much as possible - all variable epi-
topes, in order to escape the immune responses of their
hosts. Therefore, viral genome evolution runs along two
parallel tracks, both of which, like in railways, must be
followed: (i) mutations in sites crucial to protein ma-
chinery mediating basic functions (e.g. in motifs relevant
to host recognition or cell entrance) are not allowed be-
cause they strongly impair viral fitness, and at the same
time, (ii) hyper-variability is needed to escape recogni-
tion by neutralizing antibodies (‘antigenic drift’, [7]).
Given that surface viral proteins do not interact only
with antibodies (as their original function is to contact
the host), in addition to determining antigenic drift, vari-
ation can also influence pathogenicity (because e.g. of
modified interaction with cell receptors in different tis-
sues and organ districts) or host specificity. Influenza vi-
ruses do not escape such a two-tracks rule, hence while
global structure conservation ensures basic functions,
limited or even subtle changes in local structural fea-
tures may modulate interactions of the viral proteins
with the host molecules/cells and thus mechanisms
underlying antigenic drift, pathogenicity shifts and host
specificity change. Phylogenetically and serologically, hae-
magglutinins are divided into either two supergroups or
four groups: Group 1 (H1, 2, 5, 6, 11, 13 and 16); Group 2
(H8, 9 and 12); Group 3 (H3, 4 and 14) and Group 4 (H7,
10 and 15). The two supergroups consist of Groups 1 + 2
and 3 + 4, respectively [9,10]. Thanks to the availability of
thousands of viral genomes/gene sequences and of several
specific antibodies/vaccines, a large number of sequence-
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based/phylogenetic and serological analyses of avian flu
viruses have been performed and published so far. This
notwithstanding, mechanisms in viral evolution are still
elusive, as genome/proteome-wide analyses on sequence
variation or antigenic features are able to only partially un-
veil a number of relevant changes, because of the overall
mutational noise. Therefore, structural ‘zoom in’ is needed
to integrate such analyses by identifying ‘meaningful’
variation. This prompted us to take advantage from
availability of structural templates to perform structural
comparison among different HA subtypes, in order to
identify subtype- and subregion-specific feature vari-
ation suggestive for possible involvement in antigenic
recognition, or pathogenicity and host specificity. Last
but not least, evidence from structural comparison can
check relationship among serological, phylogenetic and
structural closeness.
We started our analyses using six currently available

solved HA structures; then, in order to investigate struc-
tural variation possibly underlying H5N1 clades evolu-
tion and spreading, we also created clade models by
homology modeling. The six HA structures solved so
far: H1 [11], H2 [12], H3 [13], H5 [14], H7 [9], H9 [15],
all concern mature proteins, consisting of the two HA1
and HA2 parts of haemagglutinin. Solved structure of
H16 [16] was not considered for this analysis because it
corresponds to the HA0 precursor. Comparative analysis
of structural features unveiled that some discrepancy
may occur with respect to a generally observed agree-
ment between sequence and structural closeness, be-
cause of subregion local variation. Structural analysis
was performed by comparison of secondary structure
topology and surface analysis, in terms of both electro-
static and hydropathy analysis.

Results and discussion
Comparison among solved HA structures
Prior to creating models, preliminary analysis of the six
available HA structures was performed in order to
evaluate intra- and inter-group structural variation by
superposition of all structure pairs and computation of
their Root Mean Square Deviation (RMSD). Indeed, the
RMSD of two superposed structures indicates their
‘structural divergence’ from one another. As both se-
quence mutation and conformational variation inflate
the RMSD, values up to 2 Ångstrom indicate structural
similarity [17]. Structural superposition of each possible
combination of two different HA molecules (hereafter re-
ferred to as ‘pairs’) and RMSD computing were performed
using Chimera 1.8.1 software [18]. Pair-wise method was
chosen to calculate RMSD because all superpositions only
compared pairs in order to properly relate a structural
closeness index for a pair to identity/similarity values
(commonly reported as an index to state closeness) from
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the corresponding aligned sequences. Fold comparison
method based on sequence fragmentation and order-
independent resorting was not considered because order-
dependent global alignment is an established standard for
comparing highly similar sequences in structural biology
and the alignment of sequence blocks for phylogenetic
analyses is also order-dependent.
In addition to superposing structures of HA mono-

mers, also corresponding structures of their Receptor
Binding domains (RBDs) were superposed. Results are
summarized in Table 1. Evidence that RMSD values for
monomer pairs are lower than those ones for corre-
sponding HA1 or RBD regions is not surprising, because
RBDs are major determinants in antigenic variation [9].
Moreover, HA2 ‘stem’ region of the monomer is structur-
ally less variable than HA1 [19], hence its contribution re-
sults in decreasing the overall monomer RMSD value.
RMSD values for HA1 pairs are higher than correspond-
ing RBDs because of unstructured regions connecting
RBDs to stems. Group 1 is - at least to date - the only HA
group in which multiple structures (in particular, H1, H2
and H5) are solved. Structural comparison within this
group highlights some intriguing evidence. When com-
paring monomers amino acid sequences, H5 results to
be closer to H2 than to H1, independently on identity
(roughly 73% vs. 63%) or similarity (approximately 86%
vs. 81%) is considered. Such relationship is confirmed
for both HA1 and RBD sequences, as shown by identity
and similarity values in Table 1. However, when com-
paring structures, H5 is closer to H1 than H2, as in all
comparisons, H5:H1 superposition RMSD values are
lower than H5:H2 ones. Commonly, % identity is taken
into account as an index for relationship among pro-
teins [20]. However, from a structural point of view,
‘type’ of mutations occurred - rather than the overall
sequence divergence - is very important: a few muta-
tions (or even a single one) to some specific residues in
‘critical’ regions can result in dramatic structural
changes. Structural fold and architecture can be highly
conserved even among proteins and protein domains
showing no sequence homology because of either long
evolutionary divergence or even convergent evolution
[21]. At the same time, within such families, fold can
be disrupted (resulting in loss of function and disease)
by single or few specific mutation(s), which indeed re-
sult in keeping 99% or higher sequence identity values
[22,23]. In the structural comparison of H5 to haemag-
glutinins from different groups (represented by H9, H3
and H7) further interesting points emerge. In the
monomer comparison, % identity approximately ranges
from 41 to 49%. The same 8% difference in % identity is
retrieved in % similarity (ranging from 64 to 72%). How-
ever, RMSD for corresponding monomer pairs keep quite
similar values, i.e. they are not impaired by lower %



Table 1 Structural and sequence closeness among pairs
of haemagglutinin proteins with solved structures

RBD

H2 H5 H9 H3 H7

H1
r:1.343 r:0.918 r:1.249 r:2.292 r:2.784

i:55.4 s:78.4 i:52.0 s:78.3 i:45.7 s:69.7 i:38.0 s:61.1 i:37.2 s:63.7

H2
r:1.130 r:1.636 r:2.083 r:1.772

i:65.6 s:83.7 i:41.4 s:66.8 i:36.8 s:57.3 i:33.5 s:60.7

H5
r:1.498 r:2.241 r:3.085

i:41.4 s:66.4 i:37.3 s:61.4 i:38.4 s:67.4

H9
r:1.983 r:2.069

i:36.9 s:60.4 i:33.9 s:58.4

H3
r:1.429

i:35.0 s:63.6

HA1

H2 H5 H9 H3 H7

H1
r:1.476 r:1.065 r:1.563 r:2.548 r:2.941

i:56.7 s:78.7 i:56.6 s:79.2 i:46.4 s:69.4 i:37.1 s:62.9 i:36.1 s:63.3

H2
r:1.527 r:2.087 r:3.253 r:3.025

i:67.7 s:83.3 i:43.5 s:65.3 i:35.3 s:58.3 i:34.5 s:60.6

H5
r:1.680 r:3.043 r:2.755

i:43.5 s:67.0 i:37.2 s:61.9 i:36.9 s:66.7

H9
r:2.320 r:3.672

i:35.8 s:60.9 i:33.5 s:59.8

H3
r:1.631

i:37.8 s:64.0

Monomer

H2 H5 H9 H3 H7

H1
r:1.180 r:0.98 r:1.350 r:1.710 r:1.780

i:64.2 s:82.9 i:62.8 s:81.5 i:50.4 s:71.3 i:40.0 s:61.6 i:42.4 s:67.1

H2
r:1.100 r:1.450 r:1.760 r:1.730

i:73.0 s:85.7 i:49.0 s:69.6 i:37.6 s:59.6 i:40.6 s:66.5

H5
r:1.686 r:1.680 r:1.620

i:48.7 s:72.0 i:40.2 s:63.9 i:42.3 s:69.9

H9
r:1.760 r:1.850

i:37.9 s:61.7 i:40.8 s:66.1

H3
r:1.250

i:44.0 s:66.2

Within each cell, the upper value is RMSD (r) for the superposed pair and lower
values (in %) are identity (i) and similarity (s) for corresponding, aligned amino
acid sequences.
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identity or similarity values. This is not surprising,
because - as shown by aforementioned example (and by
many others in literature) - very ancient divergence or
convergence can result in fold conservation among pro-
teins without significant sequence similarity. Structural
differences become clearly evident when comparison fo-
cuses on HA1 and RBD regions: H5 is quite closer to
84
H9 than H3 and H7 (roughly doubled RMSD) and in
this instance substantial agreement between structural
and sequence divergence is found. Once again, a ration-
ale for this is found when considering common proper-
ties of protein domains. Different subregions of the
same protein are involved in different interactions and
pathways. Therefore, molecular evolution can locally
change subregion structures to modulate specific inter-
actions and pathways, without affecting those ones me-
diated from other subregions of the same protein. In
practice, only when structural variation analysis is per-
formed at both overall and local level (i.e. focusing on
individual domains and/or domain motifs), it is possible
to boost subsequent experimental work. In fact, sub-
region analysis allows for shedding light on specific mo-
lecular properties that are likely to underlie different
functions of the protein. In conclusion, agreement between
sequence homology and structural closeness which is gen-
erally observed [20] has not to be strictly interpreted as ‘a
rule’ to be followed. Values from Table 1 show that, in
most instances, such an agreement is found. However, in
several examples and depending on local variation, super-
impositions between pairs with quite comparable % iden-
tity and similarity may show very different RMSD values
and vice versa.

Comparative analysis of secondary structure elements
Available structures were superposed and then tiled
using UCSF Chimera 1.8.1 to keep the same orientation
and to avoid visual superposition. This way, variation of
secondary structure elements among individual struc-
tures can be clearly distinguished and viewed. In order
to exclude any artifact from modeling, only the six avail-
able solved structures were compared. In terms of sec-
ondary structure, three subregions can be distinguished
within the HA2 stem [see Additional file 1, panel A]: an
α subregion and two β subregions (being either proximal
or distal to the VED). The former consists of α helices
A-C-D and the B loop (that upon fusion becomes B
helix [1]). No meaningful variation - in terms of second-
ary structure - is found in the α subregion of the stem,
because structural changes only concern the B loop [see
Additional file 1, panel B], which indeed is unfolded in
the pre-fusion state. The B loop coordinates depend on
crystallization conditions and in particular on pH [14].
The VED-proximal and distal β subregions are recog-
nized by respectively antibodies CR6261 and CR8020
[24]. The VED-proximal β subregion shows a varying
number (zero, two or four) of β strands [see Additional
file 1, panel C] and such variation is not relevant to anti-
body recognition specificity. For instance, a four-strands
structure is shared between H5 (recognized by CR6261)
and H3 (not recognized); moreover, a two-strands
structure is shared between H2 (recognized) and H7
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(not recognized). Secondary structure variation is evi-
dent also in the distal β subregion [see Additional file 1,
panel D], but once again it does not relate to antibody
recognition: e.g., CR8020 recognizes subregion from H7
but not corresponding one from H5. Given that subre-
gions recognized by each antibody are clearly different
(CR6261 recognizes H1, H2, H5 and H9 independently
on they are showing either zero, two or four β strands)
such a preliminary analysis demonstrates that second-
ary structure variation as viewed by cartoon representa-
tion is not indicative for epitope variation. Secondary
structure variation in the globular RBD-VED region is
poorly evident, according to the aforementioned ‘two-
tracks’ rule: mutations altering the overall backbone/
fold of the RBD would impair binding to host cells hence
conservation (track 1) is needed to keep such basic func-
tion. However, local variation (track 2) is needed to modu-
late surface features hence interactions. Therefore, we did
not further investigate secondary structure variation and
moved instead to surface analysis, considering both most
relevant features: (i) electrostatic charge distribution and
(ii) hydropathy/hydrophilicity patches.

Comparative analysis of electrostatic potentials
In order to perform analyses taking into account the influ-
ence of ionic strength (I), the spatial distribution of the
electrostatic potential was calculated at both I = 0 mM
(Coulombic interactions unscreened by counter-ions) and
I = 150 mM (physiological), assuming +1/-1 charges for
the counter-ions. Prior to electrostatic potential calcula-
tions, partial charges and van der Waals radii were
assigned with PDB2PQR [25,26]; then, linear Poisson-
Boltzmann (PB) equation calculations were carried out by
using Adaptive PB Solver (APBS) [27] through Opal web
service (see Methods). The spatial distribution of the elec-
trostatic potential was determined for each HA subregion,
monomers and trimers, comparing the six available HA
structures to identify possible HA-specific signatures. In
particular, we focused on the role of charge distribution as
visualized by isopotential contours within the tertiary
structure and on classifying conservation and divergence
among the different HAs. In order to evaluate electrostatic
distance (ED) also in a quantitative way, clustering of the
spatial distributions of the electrostatic potentials was ob-
tained by WebPIPSA (Protein Interaction Property Simi-
larity Analysis; [28], having the use of Hodgkin and Carbo
similarity index (SI) [29] (see Methods). The Carbo SI is
sensitive to the shape of the potential being considered
but not the magnitude, whereas the Hodgkin SI is sensi-
tive to both shape and magnitude. Therefore, WebPIPSA
results obtained using the Hodgkin SI are shown in
Figures 1, 2, 3, 4 and 5, and evidence from analyses
performed using the Carbo SI is cited to confirm par-
ameter independent data.
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Stem subregions
The electrostatic patches at ionic strength I = 0 mM
clearly show for all six stems preferential side disposition
(Figure 1, top left), as observed for SNAREs [30]. In par-
ticular, density of negative potential (red) at the 0° side is
higher than at the 180° side; positive potential (blue)
shows a reverse distribution, highest density being at the
180° side. At physiological ionic strength (Figure 1, top
right), preferential distribution of the positive potential
(180° side) is more evident, whereas higher density in
negative potential (0° side) is less evident, because most
Coulombic interactions are masked by counter-ions.
When considering individual stem variation, net charge
roughly doubles from the −8 e value of H1 and H9 to −15 e
of H7. However, similar net charge does not necessarily
correspond to similar distribution (along the stem) of the
potential, that can preferentially locate at either the
VED-distal stem subregion (left side in figure) or at the
VED-proximal one (right side). This is the case for H1
and H9 stem, sharing net charge −8 e, and showing
(more evident at I = 0 mM) preferential VED-distal and
VED-proximal negative potential, respectively. Such
preferential VED-distal location of the negative poten-
tial shown by H1 is conserved also in the other two
stems from Group 1, in spite of their different net
charge (−10 e). Positive potential is more homoge-
neously distributed along all stems. Heat maps and cor-
responding density plots (Figure 1, bottom) depict the
overall similarity among HA stem electrostatic profiles.
Comparison between the density plots at I = 0 mM and
I = 150 mM highlights a general increase in distance, i.e. a
peak shift from middle ED (green region) to high ED
(cyan/blue region). When comparing Group 1 stems to
those from other groups it can be noticed that - at both
ionic concentrations - H3 is slightly closer to Group 1
than H7, while H9 is far apart. However, H9 distance is
not homogeneous with respect to the three Group 1
stems, as it is closer to H2 than to H1 and H5. Indeed, H9
stem is also quite far from H7 because it shows the high-
est overall distance, with respect to other stem structures.
When using WebPIPSA, the distance matrix of the
electrostatic potential can also be displayed as a tree re-
ferred to as ‘epogram’ (electrostatic potential diagram).
Epograms [see Additional file 2] further highlight at
both ionic concentrations that: (i) H9 stem shows
unique electrostatic features (i.e., the highest ED with
respect to other stems) and (ii) H7 is closer to H3 than
to other stems. This clustering is confirmed when using
Carbo SI. The highest electrostatic distance shown by
H9 might depend on its mammalian (swine) rather than
avian origin. Therefore, structural models were obtained by
homology modeling for avian H9 (A/Chicken/Jiangsu/H9/
2010(H9N2), UniProtKb AC: G8IKB3) and horse H3 (A/
Equine/Mongolia/56/2011(H3N8); UniProtKb AC: J9TJ60),



Figure 1 Isopotential contours (top), heat maps (middle) and density plots (bottom) of HA stems. Electrostatic features are shown at
I = 0 mM (left panel, yellow) and I = 150 mM (right panel, green). Electrostatic potentials (blue for positive and red for negative) are presented in
two orientations (0° and 180°). Isopotential contours are plotted at ±3kBT/e. In heat maps, red, warm and cold colors correspond to identity, low
and high Electrostatic Distances (ED), respectively. The number of hits (pairs of compared structures) is plotted and referred to as ‘Density’.
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using as structural templates 1JSD (H9) and 1MQL
(H3), respectively and investigated using WebPIPSA.
Comparison of epograms alternatively including either the
avian H9 model or the swine template showed conservation
of the highest distance observed for H9: at I = 0 mM,
swine/avian epogram clustering was congruent; at I =
150 mM, avian H9 sorted with H3 and H7; this notwith-
standing, highest distance of H9 from other HAs was any-
way kept [see Additional file 3]. Concerning equine H3, it
sorted like avian H3 at both I = 0 mM and I = 150 mM
(congruent epograms see Additional file 3). In conclusion,
electrostatic distance is not significantly influenced by tax-
onomy hence segregation depends on HA-specific features.

RBD subregions
As with the stem subregion, charge separation onto the
RBD surface is more evident at I = 0 mM. Group 1
86
RBDs have an overall slightly negative (H1 and H2) or
neutral (H5) net charge, which is positive (up to +3e in
H3) in other groups. At large, the RBD net charge is
less negative than stems (Figure 2, top). Side disposition
in RBDs is not ‘side preferential’ as for stems, and no
meaningful difference is observed when comparing the
0° and 180° views. However, preferential local distribu-
tion is clearly apparent also for RBDs, when a roughly
orthogonal axis is considered: negative charges are
densely distributed at the VED-proximal region (left
side in figure), whereas charge of the VED-distal region
(right side) is more positive. This is particularly evident
for Group 1 RBDs at I = 0 mM. At physiological ionic
strength, such preferential distribution is less evident,
in particular for H3, where differently charged patches are
interspersed. Peaks at the blue/purple regions in density
plots (Figure 2, bottom) depict high electrostatic distances



Figure 2 Isopotential contours (top), heat maps (middle) and density plots (bottom) of HA RBDs. See Figure 1 caption for color code and
definitions. Isopotential contours are plotted at ±1kBT/e.
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at both ionic strengths. Surprisingly - and independently
on using either Hodgkin or Carbo SI - at I = 150 mM, the
electrostatic potential of the H5 RBD is closer to H9 and
H7 than to RBDs from H2, in spite H5 and H2 belong to
the same Group. Splitting of Group 1 is confirmed by epo-
gram [see Additional file 2] at I = 150 mM: H5 and H1
create a new cluster with H7 and H9.

HA1 subregions
Once the electrostatic analysis is repeated for the whole
HA1 region, including the VED and F’ subregions in
addition to the RBD [14], the most evident difference is
an overall shift towards net positive charge (see upper
panels in Figures 2 and 3), according to the presence of
basic patches in F’ subregions [2,6]. Comparison of density
plots (RBD vs. HA1) shows that peaks similarly locate at
the high distance blue/purple regions (see lower panels in
Figures 2 and 3) but, at I = 150 mM, Group 1 no longer
87
splits, as H1, H2 and H5 form a cluster including H9.
Resembling RBD distances, it also occurs with HA1
that members from Group 1 (H1 and H5) can be closer
to an outgroup (H9) than to a member of the same group
(H2) (see at I = 150 mM both heat map in Figure 3 and
epogram in Additional file 2). This parameter independent
evidence further highlights the relevance of counter-ions
to shape the final electrostatic profile, as well as the pos-
sible disagreement between classic clustering (based on
phylogenetic and serologic data) and electrostatics of the
RBDs.

Monomers
The net charge is negative for all monomers, ranging -4e
to -11e (Figure 4, top). Evidence that the net charge is
quite negative for all stems (−8e to -15e) while being
close to 0 for RBDs (−1e to +3e), stresses the total
charge balancing by local basic patches in VED and F’



Figure 3 Isopotential contours (top), heat maps (middle) and density plots (bottom) of HA1 subregions. See Figure 1 caption for details.
Isopotential contours are plotted at ±2kBT/e.
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subregions. Once again, peculiar electrostatic features
are evident (and SI independent) for H9, characterized
by the less negative net charge and forming its own
branch at both I = 0 mM and I = 150 mM (heat maps in
Figure 4, bottom, and epograms in Additional file 2).
Disagreement with serological and phylogenetic data is
less evident when performing electrostatic analysis with
entire monomer structures, as shown by clustering of
Group 1 members in Figure 4 and Additional file 2.

Trimers
Once the entire haemagglutinin functional unit is ana-
lyzed, disagreement with serological and phylogenetic
clustering is highlighted again by Group 1 splitting; in
particular (and independently on which SI is used) at I =
0 mM, H1 sorts separately from H2 and H5 (see Figure 5,
trimer heat maps and Additional file 2, trimer epo-
grams). Such splitting is also observed at I = 150 mM, as
88
H5 and H1 sort with H9 and H7, whereas H2 sorts out
with H3. Comparison of net charges from monomers and
corresponding trimers unveils striking doubling vs. triplica-
tion mechanisms: trimer net charge values for H1 and H3
is roughly three-fold with respect to corresponding mono-
mers, or even more (−37e vs. -11e) for H5. Instead, trimer
values are only roughly twofold increased for H2, H7 and
H9. Therefore, different orientations of monomers within
corresponding trimers results in significant modulation of
the trimer surface electrostatic charge and this in turn can
be quite relevant to HA interactions. Different HA cluster-
ing at I = 0 mM and I = 150 mM may highlight the im-
portance of ionic screening of coulombic interactions
[31,32]. As a final remark, based on absence of net charge-
based clustering in any executed electrostatic analyses, the
spatial distribution of electrostatic potential is suggested to
be more suitable than net charge alone for eventual use as
a further ‘signature’ for protein/domain function.



Figure 4 Isopotential contours (top), heat maps (middle) and density plots (bottom) of HA monomers. See Figure 1 caption for details.
Isopotential contours are plotted at ±2kBT/e.
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Hydrophobicity analysis
Search for HA-specific motifs/signatures can be inte-
grated by hydropathy analysis. Both electrostatics and
hydrophobicity are key determinants in surface proper-
ties hence in regulating protein interactions. In particu-
lar, hydrophobic patches located at the protein surface
create unstable areas. The identification of well-defined
patches rather than a ‘patchwork surface’ of hydrophobic
and hydrophilic areas can thus shed light on molecular
evolution of haemagglutinin. Stem, RBD and HA1 pro-
files were obtained and compared using ProtScale [33]
and Protein Hydrophobicity Plots [34]. Profiles from the
stem subregions did not unveil any clearly meaningful
difference and thus are not shown here.

RBD subregions
Figure 6 shows GRand AVerage hYdrophobicity (GRAVY)
indexes, Kyte-Doolittle plots and 0° +180° surface
89
hydropathy views for the RBDs from the six available
HA structures. Similar to total electrostatic charges,
GRAVY indexes are reported here for completeness of
information; however, they are not suitable for use as
evolutionary or functional fingerprint. In fact, variation
of GRAVY values amongst the six RBDs does not cor-
respond to high conservation and fine tuning of their
surface patches as depicted in 0° and 180° views. How-
ever, comparison of Kyte-Doolittle plots could infer
variation at specific positions. Plots in Figure 6 always
start by residue 1 because the default numbering sys-
tem from the software refers to analyzed sequence
fragments (RBDs in this case); therefore, for Reader’s
convenience, hereafter we report both real numbers
(referring to complete protein sequences) and software
output numbers (between parentheses). Within Group 1,
the highest intra-group hydrophilicity is shown by H1 po-
sitions Arg223 (160) of the 220-loop and by H2 at



Figure 5 Isopotential contours (top), heat maps (middle) and density plots (bottom) of HA trimers. See Figure 1 caption for details.
Isopotential contours are plotted at ±3kBT/e.
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positions Asn80, Ser136 and Glu202 (17, 73 and 139).
At position 112 (49), H1 is significantly more hydro-
phobic (Ile) than H2 and H5 (Asn). Inter-group compari-
son highlights in H3 three hydrophilic peaks centered
on residues Asp191, Thr208 and Gln227 (114, 135 and
154), as well as increased hydrophobicity of H7 in sub-
region 105–155 (50–100). Comparative analysis of sur-
face patches unveiled possible HA-specific fingerprints.
Within Group 1, variation concerns both the VED and
RBD subregions. Such variation is even more evident
when extending comparison to H9, H3 and H7. Hydro-
phobic patches (light and dark orange) are variable in
terms of position and area. Comparison of 0° views high-
lights a large orange surface encompassing the VED-RBD
border, specific to H9. Moreover, H5 and H7 show at the
VED subregion a hydrophilic (violet) surface (green ovals)
that in other HAs includes at least one small orange patch.
90
Comparison of 0° views shows that H2 and H3 share three
hydrophobic spots in an RBD subregion (blue circles)
where other HAs can lack one, two or even all such spots.
Further variation can be observed, and in general it seems
to concern ‘position-shifting’ rather than significant differ-
ence in the total ratio of hydrophilic/hydrophobic sur-
faces. Therefore, combined variation in both electrostatic
and hydropathy features is likely to fine tune local inter-
action properties of the different HA RBDs.
HA1 subregions
Apart from differences already observed in the RBD sub-
region, no further meaningful variation was found among
HA1 hydropathy profiles. The only relevant evidence con-
cerns the hydrophilicity peak at position 297 in H3 haem-
agglutinin (not shown).



Figure 6 Hydrophobicity analysis of the RBD subregions from the six available HA structures. GRAVY Index, Kyte-Doolittle plots and
surface hydrophobic (orange) and hydrophilic (violet) patches (as both 0° and 180° views) are depicted.
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Structural modeling of H5N1 clades and electrostatic
features comparison
Electrostatic features can vary among different types of
haemagglutinins (see above). This prompted us to fur-
ther investigate on differential electrostatic features as a
possible fingerprint for monitoring viral evolution, i.e. as
a tool to distinguish among circulating/spreading and
extinguished H5N1 clades. Table 2 resumes relevant data
concerning the ten clades used for this analysis; their
geographical spread is shown in Figure 7. Spreading of
no longer circulating clades (0, 3, 4, 5, 6, 8 and 9) is re-
stricted to the eastern part of China and to Vietnam (see
Figure 7, zoom in map); noticeably, all such clades share
one or more outbreak areas with the most ancient clade
(clade 0, black spots). Among circulating clades, clade 7
was also found in western China and clade 1 also spread
towards India and Indochina countries (Thailand, Laos,
91
Cambodia and Malaysia). The widest spreading concerns
circulating clade 2 (red dots in the upper map of Figure 7),
having reached Japan and Korea, Mongolia, Russia, several
countries from Middle-East and Europe (including UK) as
well as a number of African countries from the Northern
hemisphere. So far, spreading of H5N1 viruses neither
concerns Americas nor any country from the Southern
hemisphere (Oceania and sub-equatorial Africa).
Based on a very high, average % identity (over 90%) of

the clade target sequences with the available structural
H5 template (PDB: 3S11), structural models for clades 0
to 9 were obtained by homology. Given that distribution
of surface charge is strongly influenced by the orienta-
tion of side chains, models refinement was performed
using a number of tools based on different algorithms:
SCWRL [35,36], ModRefiner [37] and SCit [38]. Then,
QMEAN server was used to check model quality;



Table 2 H5N1 clades

Clade Year Strain name Genomic Ac Protein Ac

0 1996-2002 A/Goose/Guangdong/1/1996 AF144305.1 AAD51927.1

1 (c) 2002-2003 A/Quail/Shantou/3054/2002 CY028946.1 ACA47648.1

2 (c) 2005 A/Bar-headed Gooze/Qinghai/75/2005 DQ095619.1 AAZ16276.1

3 2000-2001 A/Duck/Hong Kong/2986.1/2000 AY059481.1 AAL31387.1

4
2002-2003

A/Duck/Shantou/700/2002 CY028943.1 ACA47615.1
2005-2006

5
2000-2003

A/Duck/Zhejiang/52/2000 AY585377.1 AAT12042.1
2004

6 2002-2004 A/Duck/Hubei/wg/2002 DQ997094.1 ABI94747.1

7 (c)
2002-2004 A/Chicken/Shanxi/2/2006

DQ914814.3 ABK34764.2
2005-2006

8 2001-2004 A/Chicken/Hong Kong/61.9/2002 AY575876.1 AAT39076.1

9 2003-2005 A/Duck/Guangxi/50/2001 AY585375.1 AAT12040.1

Periods (years) of circulation, strain names (based on year and location of identification) and accession numbers (for both genomic and protein data) are reported
for each clade. Circulating clades are marked by (c).
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QMEAN is a scoring function that measures multiple
geometrical aspects of protein structure, ranging 0 to 1
with higher values indicating more reliable models [39].
QMEAN scores for each refined or not refined model
(mQMEAN) and the average QMEAN score for each ten
clades model series (aQMEAN) was calculated. Models
refined by SCWRL showed the highest aQMEAN (0.734),
with highest mQMEAN for clades 0, 1, 2, 3 and 5.
However, quality was similarly good when models were
not refined (aQMEAN: 0.724; highest mQMEAN for
clades 6 and 7) or refined by ModRefiner (aQMEAN:
0.720; highest mQMEAN for clades 4, 8 and 9), con-
firming once again reliability and robustness of the
SWISS-MODEL homology modeling method [40]. SCit re-
fined models showed the lowest average quality (aQMEAN:
0.702). Therefore, electrostatic analyses were performed
thrice, using the ten clades models: (i) refined by SCWRL,
(ii) refined by ModRefiner and (iii) not refined.
Preliminary comparison at trimer and monomer level

showed meaningful variation only at the VED-RBD sub-
region. In fact, direct comparison of stems did not allow
for inferring any clade-specific signature as all clades were
found to share - at both I = 0 mM and I = 150 mM - the
typical isocontour of the H5 stem (see Figure 1, top).
Moreover, apart from electrostatic differences in the VED-
RBD subregion, no further meaningful variation was ob-
served among HA1 isocontours. This prompted us to
‘zooming in’ variation analysis at the RBD subregion level.
Figure 8 illustrates local charge variation in RBD iso-

contours among H5N1 clades. Even though variation is
more evident at I = 0 mM, meaningful difference is kept
hence highlighted at physiological ionic strength. It is
noteworthy that, independently on models are refined or
not and on algorithm used for refinement, the same
92
relevant local changes in RBD isopotential contours are
found (see Figure 8, panels A to C). Early clades evolu-
tion is characterized by a charge shift event at the 220-
loop: in the most ancient clade (clade 0), the side chain
of amino acid 228 shows either negative (Glu: 50/89 and
Asp: 1/89 sequences) or positive (Lys: 38/89 sequences)
charge. The positive charge is ‘fixed’ in the most recent,
and still circulating clades 2 (Lys: 308/310, Glu or Asp: 0/
310 sequences) and 7 (Lys: 25/26; Glu: 1/26 sequences)
(see Figure 8 and Table 3). Further loss of a negative resi-
due (Asp) concerns the VED isocontour at the 110-helix
region. Table 3 shows that in clade 0, position 110 is nega-
tively charged (Glu or Asp: 67/89 sequences) or polar,
non-charged (Asn: 22/89 sequences). This negative
charge is almost completely lost in clade 2 (Asp: 3/310,
Glu: 0/310), while being retained (Asp: 26/26) in clade 7;
however, this latter clade shows ongoing loss of the nega-
tive charge at position 104 (Asp: 15/26; Gly: 11/26), that is
positively charged in 100% of clade 0 and clade 2 se-
quences (Figure 8 and Table 3). In clades 2 and 7, such
‘denegativization’ of the VED isocontour is somehow
counterbalanced by negativization (or depositivization) at
the properly receptorial part of the RBD. In clade 2, this
depends on Asn140Asp mutation (in 307/310 sequences)
while in clade 7 both depositivization (Arg178Val in 8/26
sequences) and negativization (Ala200Glu in 12/26 se-
quences) mutations are observed (Figure 8 and Table 3).
Intriguingly, when considering aforementioned replace-
ments altogether, evolution of H5N1 still circulating
clades seems having been characterized by an isocon-
tour rearrangement based on a VED-to-RBD flow of
negative charges; this process is ‘partial’ hence seem-
ingly in progress in clade 7 (mutation arose in the clade
and it is present, at least so far, in less than 50%



Figure 7 Geographical spread of H5N1 clades. Outbreak areas for each clade are color coded as follows: 0, black; 1, yellow; 2, red; 3, violet;
4, dark green; 5, dark blue; 6, light green; 7, orange; 8, brown; 9, cyan.
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sequences) whereas it is complete and ‘fixed’ (99% se-
quences) in clade 2. Given that comparison of the six
different HA structures identified HA-specific variation
in both electrostatic and hydropathy features, and that
specific electrostatic signatures of the RBD could also
be associated to the ten H5N1 clades, clades analysis
was integrated by comparison of the RBD surface hy-
dropathy profiles (Figure 9). As for electrostatic ana-
lysis, the most ancient clade (clade 0) is the reference
for tracking hydropathy profile variation along clades
evolution. As previously explained, hereafter both real
protein sequence numbering and (between parentheses)
software output numbering is reported for Reader’s
convenience. Clade 3 shows no substantial difference
with respect to clade 0, at least in terms of hydropathy
93
plots. Instead, clade 4 shows increased hydrophilicity at
position Asn211 (148). Clade 1 shows increased hydro-
phobicity around position Ser140 (77). Replacement at
position 124 of a polar residue in clade 0 by Ile in all other
clades results in increased hydrophobicity. Intriguingly,
the hydropathy profile of clade 7 resembles the one of H3
haemagglutinin, including its aforementioned three hydro-
philicity peaks. Please note that the apparent disagreement
among positions of the three H3 peaks in Figure 6 and
those from Clade 7 in Figure 9 is not confirmed in real
numbering, as plot shift is determined by ten extra resi-
dues present in the really N-terminal region of H3. Apart
from difference illustrated so far for the RBD, no further
meaningful variation was observed when comparing other
HA1 subregions or the stem profiles (not shown).



Figure 8 Isopotential contours of the RBD subregions from H5N1 clades 0 to 9. See Figure 1 caption for color code and definitions.
Isopotential contours are plotted at ±1kBT/e. Specific mutations discussed in the text are highlighted. Positively charged residues are written in
blue and negatively charged ones in red. Panels: models refined using SCWRL (A), ModRefiner (B) or not refined (C).
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Conclusions
Evidence from this work shows that sequence homology
is often, but not always, related to structural similarity
and vice versa. In fact, in some instances, protein do-
mains with less related sequences can show intriguing
structural closeness. Therefore, in order to obtain a
more complete view of the ‘functional evolution’, phylo-
genetic analyses based on sequence comparison and
resulting in trees, might be integrated taking into ac-
count information from structural comparison. Dissimi-
larity in secondary structure elements does not always
Table 3 Mutations in H5N1 clades 0, 2 and 7

Clade Sequences Position

104 110

0 89 Asp = 89 Asp = 64

Asn = 22

Glu = 1

2.2 310 Asp = 310 Asn = 302

Lys = 4

Asp = 3

Ser = 1

7 26 Asp = 15 Asp = 26

Gly = 11

For each clade, the number of analyzed available sequence is shown. For each posi
corresponding number of sequences showing that residue is shown.

94
result in different antigenic properties. Sometimes, sec-
ondary structure is not prominent to the molecule anti-
genicity. Indeed, electrostatic features are crucial to
interactions and in fact electrostatic profiles of the RBD
subregion varies amongst different HAs. On the other
hand, stems, HA1, monomers and trimers topology ap-
pears to be variable. As shown by H9 and H3 modeled
structures, electrostatic profiles seem to depend on HA
type rather than organism source. Hydrophobicity analysis
reveals that local, ‘spot’ variation especially concerns the
RBD subregion. No flow of hydrophobicity/hydrophilicity
140 178 200 228

Asn = 86 Arg = 89 Ala = 89 Glu = 50

Asp = 3 Lys = 38

Asp = 1

Asp = 307 Arg = 284 Ala = 307 Lys = 308

Asn = 2 Ile = 26 Gly = 3 Asn = 1

Gly = 1 Gln = 1

Asn = 24 Arg = 16 Ala = 14 Lys = 25

Asp = 2 Val = 8 Glu = 12 Glu = 1

Gly = 2

tion (numbering refers to clade 0 sequence), the type of present residues and



Figure 9 Hydrophobicity analysis of the RBD subregions from H5N1 clades 0 to 9. See Figure 6 caption for color code and definitions.
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is observed as for charge flow in the electrostatic analysis.
In H5N1 clades comparison, from an electrostatic point of
view, meaningful variation concerns only the VED-RBD
subregion. Intriguingly, a charge flow specifically concerns
still circulating clades 2 and 7, where ‘denegativization’ of
the VED isocontour is counterbalanced by negativization
in the RBD. It is noteworthy (and a ‘positive mark’ for ro-
bustness of the observation) that the same specific differ-
ences are found when comparing refined or not refined
clade models or models refined using different algorithmic
strategies (as SCWRL is rotamer library-based [35,36]
while ModRefiner is based on two-step atomic-level energy
95
minimization [37]). Given that local charge concentration
is typical for antigenic epitopes, it is tempting to speculate
that charge redistribution in such clades might have con-
tributed to antigenic escape hence to their evolutionary
success and spreading. Indeed, such an hypothesis is in
agreement with evidence that charge redistribution on the
RBD characterizes the two clades (2 and 7) which were
able to spread over the largest geographical distribution
and that, in particular, such redistribution is fixed in se-
quences from clade 2, which is the world most spread
clade. It is noteworthy that also variation in hydrophobic
patches is especially observed in the RBD subregion.
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Methods
Structural templates and target sequences
The following structures from the Protein Data Bank
(PDB) were used as templates for modeling: H1, PDB
1RUZ, from viral strain A/South Carolina/1/1918(H1N1);
H2, PDB 2WR5, from Asian pandemic influenza virus of
1957; H3, PDB 1MQL, from viral strain A/duck/Ukraine/
1963 (H3N8); H5, PDB 3S11, from viral strain A/Goose/
Guangdong/1/1996 (H5N1); H7, PDB 1TI8, from viral
strain A/turkey/Italy/214845/2002(H7N3); H9, PDB 1JSD,
from viral strain A/swine/Hong Kong/9/98(H9N2).
UniProtKb accession codes (AC) of target sequences
modeled by H.M. and corresponding viral strains (VS) are
the followings: H4, AC F2NZ53, VS A/duck/Guangxi/912/
2008(H4N2); H6, AC H8PBW2, VS A/duck/Fujian/6159/
2007(H6N6); H8, AC D4NQL7, VS A/northern pintail/
Alaska/44420-106/2008(H8); H10, AC P12581, VS A/
Chicken/Germany/n/1949 (H10N7); H11, AC D5LPX8, VS
A/turkey/Almaty/535/2004(H11N9); H12, AC E6XYK2, VS
A/mallard/Interior Alaska/9BM1907R1/2009(H12); H13,
AC P13101, VS A/Gull/Astrakhan/227/1984 (H13N6);
H14, AC P26136, VS A/Mallard/Astrakhan/263/1982
(H14N5); H15, AC Q82565, VS A/duck/Australia/341/
1983(H15N8); H16, AC Q5DL23, VS A/black-headed
gull/Sweden/3/99(H16N3). Given that original UniProtKb
sequences indeed correspond to H0 precursors, sequence
fragments missing in mature chains were manually re-
moved to avoid improper structural alignment.
Structural superpositions, Homology Modeling, model
refinement and quality check
Structural superpositions were performed and viewed
using UCSF Chimera [18] v. 1.8.1 (free download from
[41]). Target protein sequences were modeled on best
available structure templates using SWISS-MODEL [40].
Then, model structures were refined using SCWRL [35,36],
ModRefiner [37] or SCit [38]. Model quality was checked
via QMEAN server [39].
Electrostatic surface analysis
Isopotential contours were calculated using UCSF Chimera
1.8.1: the software utility allows for connecting - through
Opal web server - to the Adaptive Poisson-Boltzmann
Solver (APBS) server [42]. Isopotential contours were
then plotted at ±3kBT/e, ±2kBT/e and ±1kBT/e (RBDs).
PDB2PQR was used to assign partial charges and van
der Waals radii according to the PARSE force field [43].
Interior εp = 2 and εs = 78.5 were chosen for respectively
the protein and the solvent [30,44,45], T = 298.15 K. Probe
radius for dielectric surface and ion accessibility surface
were set to be r = 1.4 Å and r = 2.0 Å, respectively. Elec-
trostatic distance was calculated using the Hodgkin index
and the Carbo index at the WebPIPSA server [46]. Rigid-
96
body superposition was performed and electrostatic po-
tential was computed using Chimera 1.8.1.

Hydropathy analysis
Hydropathy analysis was performed using the Kyte-Doolittle
scale implemented in Protein Hydrophobicity Plots [34] and
in ProtScale at the ExPASy server [47,48]. In order to high-
light hydrophilic regions likely exposed on the surface, a
seven amino acids window was chosen; regions with score >0
are hydrophobic [33]. Hydrophobic/hydrophilic patches
were plotted onto structures through Chimera 1.8.1.
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Additional file 1: Two-pages figure relating HA stem secondary
superstructures to immunogenic epitopes.

Additional file 2: Multi-page figure reporting epograms for each
analyzed HA subregions (stem, RBD, HA1) and for HA monomers
and trimers.

Additional file 3: Reports comparison amongst epograms for stem
subregions obtained performing the WebPIPSA analyses with
solved PDB structures or replacing either H9 or H3 templates by
modeled structures.
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ABSTRACT 

Influenza A virus is a zoonotic agent with a significant impact both on public health and poultry industry and 

avian influenza H9N2 virus provided the first record of switch to human host. Therefore, surveillance and 

characterization are needed by the scientific community and public health systems and so far this was 

mainly based on intensive serological characterization and phylogenetic analyses aimed to infer evolutionary 

trends. In order to aid molecular epidemiologic assessment and support public health interventions, as well 

as to properly relate investigations worldwide thanks to shared nomenclature and robust guidelines, we 

developed a method for the clade nomenclature of all AI H9N2 hemagglutinin subtypes, based on the 

evolutionary dynamics of a large and non redudant viral strain dataset. This was combined to a 

phylogeographic analysis providing further information on the spatiotemporal evolution, correlation and 

spreading of H9N2 viruses from the beginning to current trends. 

We found that H9N2 viruses can be clustered in five classes based on congruence of phylogenetic and 

phylogeographic data with structural comparison evidence. Structural analyses can properly depict structural 

closeness among proteins or protein domains and provide functional insights on surface regions possibly 

crucial to antigenicity and cell binding. Recent successful inference of surface feature fingerprints for H5N1 

evolution prompted us to assess whether such fingerprints are peculiar to H5N1, or electrostatic variation 

could be associated to the evolution and spreading of other avian influenza viruses, e.g. the newly defined 

classes and clades from the H9N2 subtype. 

Finally, surface feature fingerprints could be inferred that relate class and clade specific variation in 

electrostatic charges and isocontour to well-known hemagglutinin sites involved in modulation of immune 

escape and host specificity. Results from this work suggest the integration of up-to-date phylogenetic and 

phylogeographic analyses with sequence-based and structural investigation of surface features as a front-

end strategy for inferring trends and relevant mechanisms in influenza virus evolution. 

 

BACKGROUND/INTRODUCTION 

 

Influenza A virus is a zoonotic agent with a significant impact both on public health and poultry industry. Wild 

water avian species represent the largest reservoir for influenza A virus subtypes that - in addition to birds - 

can infect mammalian hosts, such as e.g. humans and swine. This is suggestive for setting up a coordinated 

global surveillance network (Butler, 2012) as well as for studying viral evolution. Indeed, improving the 

capacity to monitoring viral genetic changes to predict 'evolutionary trends' can be crucial to boost 

surveillance, especially when considering those viral clades for which is reported - or likely to occur - avian to 

mammals/humans host switch (Al-Tawfiq et al., 2014). In addition to viral strains with well known potential to 

jump the host-species barrier (Nelson and Vincent, 2015), further risk for human and animal health depends 

on the emergence of novel reassortant viruses, especially in those regions where multiple strains and clades 

are known to co-circulate (Su et al., 2015). Avian influenza (AI) viruses from the H5N1 subtype are unique in 

their ecological success, showing extremely broad host range and geographical spreading (Guan and Smith, 

2013). Therefore, based on intensive experimental characterization and phylogenetic analyses just for H5N1 

clades and subclades a standard nomenclature was published (WHO/OIE/FAO H5N1 Evolution Working 

Group, 2008; Guan and Smith, 2013) and it is actually adopted by the scientific community. General concern 

for pandemic risk decreased after the peak of the H5N1 virus, but indeed novel reassorted subtypes (e.g., 
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H7N9, H9N2, H10N8) jumped in recent years the host-species barrier and thus surveillance and 

characterization are needed by the scientific community and public health systems (Trombetta et al., 2015). 

In particular, the isolation of H9N2 virus from two Hong Kong children provided the first record of switch to 

human host (Peiris et al., 1999); then, these viruses could occasionally be transmitted from poultry to 

humans and other mammals (Lin et al., 2000; Butt et al., 2005; Sang et al., 2015). Recently, infection with 

the novel H10N8 virus in humans raised concerns about its pandemic potential worldwide (Hu et al., 2015). 

Even though host jump and pandemic influenza phenomena raised much attention to AI viruses because of 

their potential impact on human health, studying virus variation related to either low to high-pathogenicity 

shift or to antigenic drift is needed as well, as it is quite relevant to animal health and of special impact on 

poultry industry and vaccine efficacy. In fact, outbreaks of high pathogenic AI (HPAI) can result in killing 

hundreds millions poultry and wild birds in tens of countries (Swayne, 2012). This makes proper vaccination 

strategies (at least in poultry animals) crucial to prevent wide mortality and in turn viral variation potentially 

resulting in antigenic drift becomes a factor to be monitored in that associated to risk of impairing vaccine 

efficacy.  

Evolution and spread of low pathogenic AI (LPAI) and HPAI viruses, belonging to H5, H7 and H9 subtypes, 

amongst birds and their sporadic infection in humans continues to represent a great concern for public health 

(Lin et al., 2000). Therefore, these avian subtypes are included as top pandemic agents in the list from the 

World Health Organization (WHO). To date, only H5 and H7 subtypes of influenza A viruses were reported to 

evolve from a lpai to hpai form after their introduction into poultry from the wild bird reservoir (Alexander 

2007). Both H5 and H7 viruses are notifiable to the Office International des Epizooties (OIE) because of the 

risk of LPAI becoming HPAI by mutation. H7 LPAI virus usually causes mild respiratory disease and a 

production decrease in infected poultry; its evolution into a HPAI form results in the generation of a virus able 

to cause severe disease and death in the poultry population 

(http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.03.04_AI.pdf).  

One example assessing the ability of LPAI to evolve into HPAI form is the H7 avian outbreaks that affected 

Northern Italy between 1999 and 2001. Epidemiological information sustained by phylogenetic analysis, and 

deep sequencing approaches helped to reveal that HPAI strains evolved from the LPAI viruses and that both 

lineages shared a common ancestor (Monne et al., 2014). 

Current AI vaccines are based upon the elicitation of a neutralizing antibody (Ab) response against the major 

epitope regions of the viral surface glycoprotein, hemagglutinin (HA). However, mutations in immune-

dominant regions on the HA structure may result in antigenic drift allowing the virus to escape Ab 

neutralization (Velkov et al., 2013). Indeed, antigenic and genetic differences in HA and the other surface 

spike protein neuraminidase (NA) provide a rationale for classification of influenza type A virus subtypes: for 

instance, H9N2 viruses combine the H9 subtype HA with N2 subtype NA. Haemagglutinin plays a central 

role in influenza A virus evolution because it is crucial to the attachment and penetration into the host cell 

and - as the main viral surface antigen - it is also a major player in the stimulation of the neutralizing Ab 

response (Velkov et al., 2013).  

In this work, genetic diversity of H9N2 subtype was assessed through large-scale phylogenetic analysis; this 

resulted in a novel and updated classification scheme based on the phylogenetic topology and evolutionary 

distances following the same WHO standards for virus classification as for H5N1. Classic, sequence based 

phylogenetic analyses can be integrated by structural bioinformatic investigations that more properly depict 
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structural closeness among proteins or protein domains. Indeed, we previously inferred molecular 

fingerprints for H5N1 evolution, as intriguing surface charge redistribution at the surface of the receptor 

binding domain (RBD) subregion of HA was found to relate to branching of still circulating clades 2 and 7 

with respect to those ones that are no longer circulating (Righetto et al., 2014). This prompted us to assess 

whether such fingerprints are peculiar to H5N1, or electrostatic variation could be associated to the evolution 

and spreading of other AI viruses, e.g. the newly defined clades and subclades from the H9N2 subtype.  

 

RESULTS 

 

Phylogenetic analysis and novel classification scheme for AI H9N2 HA 

Since the established classification system for AI virus subtypes is based on antigenic and genetic 

differences in the two surface spike proteins, we assessed the genetic diversity of the HA gene to develop a 

unified nomenclature and classification system for AI H9 subtype genetic groups. However, given that in the 

different classification there is a stronger correlation between the phylogenetic topology and the evolutionary 

distances within and between genetic groups, we used the genetic correlation as the base to develop 

objective criteria to classify strains and create a definitive unified nomenclature. The classification criteria 

were determined based on the phylogenetic topology and on specific evolutionary distances that reflect the 

diversity of the AI H9N2 subtype. In order to get robust validation for phylogenetic analyses, the evolutionary 

history of 1669 AI H9N2 strains was inferred for HA nucleotide sequences ≥ 1500 bp using three different 

algorithms: neighbor-joining (NJ), maximum likelihood (ML) and Bayesian; when the evolutionary history was 

inferred from a smaller dataset alignment (360 strains), this confirmed consistency of the proposed 

classification. 

Figure 1 shows the nucleotide phylogenetic tree with the proposed grouping, while the full tree is depicted in 

Supplementary figure S1: the AI H9N2 strains clearly separate into five different monophyletic groups 

hereafter referred to as class A, B, C, D, and E. Within such classes, twenty-seven clades - identified by 

numbers - are separated based on inter-clade average distance ≥5% and intra-clade average distance <5% 

(Table 1) and separation for each identified clade is confirmed by C-value ≥ 1 (Table 2). Classes and clades 

were assigned when at least three isolates with different epidemiological history formed a distinct taxonomic 

group with bootstrap value at the defining node ≥60%. Clades separation based on distance value cut off 

was confirmed using two different calculation algorithms (see methods). 

Fixed guidelines for classification are resumed in Table 3; circulation data and representative H9 subtype 

viruses used for different analyses performed in this work are listed in Supplementary table S1 to facilitate 

the interpretation of relationship to the proposed numbering system. 

When comparing intra-class nucleotide distance values, class A shows the highest genetic heterogeneity 

with a value up to 18.3%, whereas this value is around 10-11% in classes B and C. Class D just contains 

three strains isolated in Malaysia and class E only a few strains isolated mostly in the USA. Therefore, 

separate clades were not defined for these two classes. Few different strains that are no longer circulating 

and do not group within any identified class are considered as ancestral. Such topology distribution and 

grouping was fully confirmed when performing phylogenetic analysis with corresponding protein sequences 

(not shown).  
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Phylogeographic analysis for AI H9N2 HA 

In order to determine the worldwide dissemination of AI H9N2, the sequences of the HA gene were grouped 

into eigth geographic areas, namely: (i) North America, (ii) Europe, (iii) Oceania, (iv) China, (v) Meaddle 

East, (vi) South, (vii) South east and (viii) East Asia. The final dataset included 357 viruses that could be 

used for in-depth special analysis. Through Posterior distribution under the Bayesian framework, we 

reconstructed genealogical trees with time-scale and inferred ancestral locations of each branch using 

sequences’ sampling collection dates and locations. The time-scaled phylogeographic maximum clade 

credibility (MCC) trees of HAs implemented in BEAST (see methods) and the root state posterior probability 

are illustrated in Figure 2 (phylogeography tree) and Figure 3 (phylogeography map), in which the most 

probable location of each branch is assigned different colours and the calibrating time-scale. Numbers at 

branch points in Figure 2 are reported where state probabilities with values ≥ 0.55 correspond to the most 

relevant events (i.e. to area-area transitions rather than to intra-areal ones). Such transition events are 

graphically depicted as arrows (with class-coded colors) in Figure 3 map. For graphical reasons (saving 

space to fit the one page format), names of the 357 individual viral strains are not reported in Figure 2; 

however, the same tree with all virus names is presented in Supplementary figure S2. 

Our phylogeographic results suggest that the American strains are ancestral for all H9 subtypes. Those ones 

introduced in China then were spreading worldwide. In particular, American Class A strains reached China 

first and Chinese clades moved in turn to Europe, southeast/east Asia and Australia by migratory birds. 

Class B (mostly present in poultry), after introduction and circulation  in Middle East moved to south Asia. 

Class C can also be referred to as China class because it evolved and expanded mostly in China; however, 

different viruses of class C were introduced and circulated in east and south Asia. Class D formed a 

separate class in southeast Asia, while class E evolved by back migration events of Chinese viruses to North 

America. The overall spatiotemporal representation of phylogeographic evolution and worldwide spreading of 

the H9 subtypes is presented in Supplementary visual animation S1. 

 

Clustering by electrostatic features for AI H9N2: heat maps and epograms 

A recent bioinformatic work has shown that the integration of sequence and structural analyses for HA (and 

especially its RBD) can shed more light on the evolution and spreading of AI H5N1 viruses by unveiling 

surface patches as possible evolutionary fingerprints (Righetto et al., 2014). Therefore, when considering 

findings emerged from comparative HA1 and RBD analysis, we decided to check whether variation in 

electrostatic features of H9N2 would relate to phylogenetic data, as observed for H5N1 (Righetto et al., 

2014). 

Representative strains for each clade of the five H9N2 classes identified in our phylogenetic analysis are 

summarized in Supplementary table S1. In order to quantitatively evaluate the electrostatic distance, 

clustering of the spatial distributions of the electrostatic potentials was obtained by WebPIPSA (Protein 

Interaction Property Similarity Analysis) (Richter et al., 2008). Figure 4 depicts the heat map and density plot 

for the RBD subregion of HAs from such representative strains. High electrostatic distance (dark blue, violet 

or magenta colors, see density plots) clearly separates classes A, D and E (typical of wild birds) from B and 

C (common to poultry birds), whereas the electrostatic distance between B and C is lower, as highlighted by 

prevalence of the light blue color. Therefore, clustering of H9N2 classes by electrostatic features shows 

substantial agreement to phylogenetic grouping, apart from a few exceptions: for instance, in terms of 
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electrostatic distance, B3 and B4 are closer to C2 (light blue) than to B2 strains. It can be noticed that B3 

and B4 clades used for this analysis were both isolated from the same host bird (quail). In addition to heat 

maps and corresponding density plots, the distance matrices of the electrostatic potentials were also 

displayed as trees referred to as ‘epograms’ (electrostatic potential diagrams). The epogram for RBD 

confirms grouping of the A wild bird cluster as well as homogeneity of class C and B2 clades; moreover, 

once again B3 sorts with C clades rather than with B ones (Figure 5). Both heat map and epogram for HA1 

subregion (not shown) confirmed clustering from the RBD analysis.  

 

Variation in charge distribution among AI H9N2 classes and strains 

In depth analysis of the distribution of charged residues, of their variation in number and position and of 

isocontours from the different HA subregions, further confirmed that variation especially concerns the RBD 

subregion and suggested possible electrostatic fingerprints are associated to different H9N2 classes.  

Class-associated 'charge redistribution' is found to occur at RBD positions 135, 146 and 162: the net charge 

for these three positions is zero in all classes (as the sum of two opposite charges and a non charged 

residue), but the charge distribution pattern shared by the 'wild bird' classes A, D and E is different from the 

pattern conserved in viruses from the 'poultry' classes B and C. In fact, distribution at 135-146-162 is neutral-

positive-negative in A-D-E, and negative-neutral-positive in B-C (Table 4). In particular, at position 135, 

almost all viruses from class A share a non charged residue (167/177 strains) with prevalence (127/177) of 

Asn, which is 100% conserved (16/16) in classes D-E; mutation to charged residue (N135D) only concerns 

10/177 viruses from clades A5.3, A5.4 and A5.5. Instead, negativization at position 135 is most often 

observed in both classes B (311/364) and C (1011/1102), with prevalence of Asp/Glu over other amino acids 

in almost all B-C clades. A compensatory mechanism is observed for exceptions, i.e. for those clades that do 

not share a negative charge at position 135. For example, clade C1 lacks the negative charge of classes B-C 

and shares instead (31/31 sampled viruses) N135 with classes A-D-E; however, this is compensated as C1 

is also the only B-C clade missing a positive charge at position 131. Similarly, B3 (showing prevalence of 

Gl35) is also the only B-C clade with a negative charge (Glu) instead of a non charged residue at position 

180. Therefore, compensatory mutations in the RBD seem to keep class-specific fingerprints and net charge, 

while progressively 'sliding' positions of charged residues over RBD sites in the viral population. Residue 146 

is His in 169/177 viruses from class A and in all D-E strains, while prevalence of Gln is observed in all clades 

from class B (363/364) and C (1075/1102). The only exception in class A is clade A.5.2, showing Q146 (like 

B-C) instead of H146 (common to A-D-E). However - like for example above - a counterbalancing unique 

mutation is observed: depositivization at position 146 of A.5.2 is compensated by peculiar denegativization at 

position 162 (E162N). In most (114/177) class A viruses and in all D-E strains, residue 162 is Glu except for 

clade A5.5, showing mutation E162W in 51/51 viruses. Intriguingly, the lost negative charge is rescued at the 

contiguous N-terminal position 161 by the equally conserved (51/51) and peculiar mutation N161D, 

suggesting the negative charge at position 162 (or 161) as a landmark for A-D-E viruses. Instead, in viral 

strains from classes B-C the major residues are Arg and Gln, with prevalence of the former over the latter in 

all clades but B2.4 and C2.2, where reverse prevalence is observed. Therefore, ongoing positivization of 

position 162 seems to be a landmark as well for viruses circulating in poultry. Altogether, counterbalancing 

mutation pairs observed at positions 131-135, 135-180, 146-162 and 161-162 seem to support the 

compensatory mechanism suggested above for mantaining the overall net charge of the RBD while sliding 
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charges over the RBD itself, i.e. for keeping class specific landmarks along with contemporary creation of 

novel fingerprints.  

A second and different kind of variation in electrostatic features is observed at positions 180 and 186 of the 

RBD (Table 4). In all H9N2 classes, the net charge for this amino acid pair is zero. However, in A-D-E 

viruses this results from the sum of opposite charges (+1 -1 = 0), while in B-C viruses, it depends on 

replacement of both charged residues by neutral ones (0 + 0 = 0). Therefore in this case - differently from 

previous examples of charge redistribution - manteinance of the net charge is associated to a decrease in 

the percentage of charged residues in the RBD.  

 

Class and sub-class specific variation in electrostatic and hydrophobicity features 

Table 4 also reports intriguing variation at the contiguous positions 216 and 217. Clades from classes A-D-E 

share at position 216 a highly conserved (176/177 strains) polar residue (Gln), while polar to hydrophobic 

transition is clearly apparent in classes B and C. In particular, the 'original' Gln is replaced in the most of 

strains (1256/1466) by the hydrophobic residue Leu, showing prevalence in all clades (from classes B-C) but 

'B' (the ancestral one without numbering) and C2. However, Gln is still present in 202/1466 B-C strains and 

the most represented residue in clades 'B' and C2. In the next position (217), sub-class variation is observed: 

only B.2.x viruses share a hydrophobic residue (Ile), while Gln is common to all other clades in classes A-B-

C-D-E. When inspecting in more detail distribution of residues among individual clades and strains, the 

picture is meaningfully different from position 216. In addition to classes A-D-E (176/177 strains), the 

'original' Gln is highly conserved also in class C (900/1102 strains) and in C1 the major residue is anyway a 

polar one (Thr, in 30/31 strains). Instead, a complex picture is displayed in class B: Gln is still 100% 

conserved in clades B, B1.1, B1.2 and B3, whereas polar to hydrophobic transition is ongoing in clade B4 (4 

hydrophobic strains out of 7) and fully fixed (100% of strains) in the whole B.2.x subgroup. Such specific 

variation in sub-class B.2.x is only apparently restricted to hydrophobic patches, as 'charge sliding' is 

observed between positions 165 and 198. In particular,  all H9 clades but B2.x share a 100% negatively 

charged residue at position 198, which is replaced in B2.x by a polar amino acid (mostly, Asn). Such a 

peculiar (with respect to other H9 viruses) denegativization is however compensated in B.2.x by an equally 

peculiar acquisition of a negative charge at position 165, where Asp is 100% conserved. 

 

Residues involved in changes at the H9N2 RBD are surface exposed 

The RBD from the solved structure of the H9 HA was viewed to highlight the nine amino acid positions 

involved in class or sub-class specific variation: as shown in Figure 6, all such positions are exposed at the 

RBD surface. The RBD subregions (130-loop, 190-helix and 220-loop) mediating SA binding are highlighted 

in yellow. The three residues 135, 146 and 162 involved in class specific 'charge redistribution' are 

highlighted in orange; in particular, 146 is close to 190-helix, 135 is part of 130-loop and 162 is surface 

exposed as well. Position pair 180-186 (mediating 'charge loss' in the A-D-E to B-C transition) is highlighted 

in purple and is part of 190-helix. Concerning the four positions involved in class and sub-class variation 

(highlighted in green), positions 216 and 217 are part of 220-loop, while 165 and 198 protrude at the other 

'side'. Finally, positions 131 and 161 involved in compensatory variation (see Table 4) were also confirmed to 

be surface exposed (not shown).  
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Given that surface location is confirmed for all aforementioned positions, variation in H9N2 among different 

classes, subclasses and clades can be viewed and analyzed in more depth by comparison of the 

electrostatic isocontours, which were determined as previously reported (Righetto et al., 2014; see also the 

methods section). Prior to starting electrostatic analysis, whe checked the quality of models because shaping 

of the isopotential contour can be influenced by the orientation of side chains. However, model refinement 

proved to be unnecessary because of the very high average sequence identity (around 90%) of the H9N2 

target sequences to the H9 template, as previously observed with H5N1 models (Righetto et al., 2014). 

Figure 7 shows the isopotential contours from two viral strain that are well representative for electrostatic 

fingerprints from 'wild bird' viruses (classes A-D-E) and 'poultry' viruses (classes B-C). In fact, both strain 

A.1_AtkCA66 and C.2.3_AckHe07 match in all positions patterns in Table 4 typical for classes A-D-E or 

classes B-C, respectively. At position 162, the two strains clearly show the opposite charges; concerning 

position 135, the expected contours are found again, as A.1_AtkCA66 shows no charge while in 

C.2.3_AckHe07 a negative protrusion is found in the corresponding area. However, not always expectations 

are respected and comparison of the 180-186 amino acid pair clearly shows that the loss of both charged 

residue in the A-D-E to B-C transition does not just result in 'neutralization' of the corresponding surface 

area. In fact, in spite of the expected red(Glu)-to-neutral(Val) shift, position 180 shows in C.2.3_AckHe07 a 

seeming positivization (increased blue area), possibly because of the enlargement of electrostatic clouds 

from neighboring occurs.  

For completeness of information, the isopotential contours of the RBDs from all representative strains used 

for creating the heat map and epogram in figures 4 and 5 are presented in Supplementary Figure S3. 

 

DISCUSSION AND CONCLUSIONS 

 

Haemagglutinin has the role of main viral surface antigen in the stimulation of the neutralizing antibody 

response (Velkov et al., 2013) and for many years, classification of viral HA has been based upon 

serological and phylogenetic analyses (Stanekova and Vareckova, 2010). However, comparative structural 

analysis of HA can provide functional insights on surface regions possibly crucial to antigenicity and binding 

to the host cells. In fact, recent work on H5N1 demonstrated that electrostatic and hydrophobicity variation at 

the RBD surface relates to both evolution and spreading of viral clades and is able to provide fingerprints 

and infer trends to complement phylogeny and functional analyses (Righetto et al., 2014). Intriguingly, when 

comparing RBD regions, H5 is structurally quite closer to H9 than H3 and H7, and when RBD electrostatic 

potential is considered, H5 is even closer to H9 (member of a different phylogenetic HA group) than to H2 

(member with H5 of the same phylogenetic group) (Righetto et al., 2014). Therefore, the possibility that 

similar mechanisms might underlie H5 and H9 evolution and spreading further prompted us to investigate on 

H9 evolution and on surface features of the H9 HA.  

We developed a method for the HA clade nomenclature of all AI H9N2 subtypes, based on the evolutionary 

dynamics of a large and non redudant viral strain dataset. Clade assignments were made by following 

several criteria (Table 3), collectively used to rationally name groups by clade numbering. Based on 

phylogenetic topology, five different genetic classes could be distinguished, which so far consist of twenty-

five clades according to the different molecular analyses and fixed criteria. Once further clades arise along 

evolution of H9N2 viruses, such a nomenclature is ready to be expanded (by enlarged numbering) based on 

107



already fixed criteria. Circulation and evolution of the H9N2 HA gene show a remarkable similarity to the H5 

subtype and notable difference from the typical evolution of H3. The evolution of the human influenza viruses 

since 1968 is characterized by a limited diversity among circulating strains. This lack of diversity is likely the 

consequence of rapid extinction after the emergence of new clades and lineages. As expected, the 

evolutionary tree of human influenza HA genes has extended trunks and extremely short branches; 

conversely, AI H9N2 strains show extended branches as these viruses continue to co-circulate in different 

regions and host species and this allows the clades for further evolving and differentiating. Therefore, a 

standard nomenclature system for H9N2 classification is needed now in order (i) to provide a rationale for 

the AI H9N2 evolution, and (ii) to properly relate investigations worldwide thanks to robust guidelines. 

Moreover, while AI virus was a useful organism to study due to its rapid mutation rate and the wealth of 

surveillance data available, we are not limited to influenza. We believe that the rapid and accurate annotation 

of clades will aid molecular epidemiologic assessment and support public health interventions. Last but not 

least, shared nomenclature criteria can boost correlation analyses and favour proper naming of newly 

identified strains along epidemiological analyses.  

As a fundamental component of modern biogeography (Riddle, 2009) and an approach of great impact on 

the most basic of biological questions, phylogeography is actually a hot research field boosting studies 

aimed at clarifying evolutionary dynamics in most life sciences disciplines (Turchetto-Zolet et al., 2013; 

Brown et al., 2014;  Ni et al., 2014; Gräf  et al., 2015; Pyron, 2015; Zhang et al., 2015; Maixner et al., 2016; 

Stacy et al., 2016) including analysis of influenza viruses (Lu et al., 2014; Bedford et al., 2015; Hill et al., 

2015; Pollett et al., 2015; Tian et al., 2015). In addition to the classification scheme and as a complement to 

it, phylogeographic data can provide further information on the spatiotemporal evolution, correlation and 

spreading of AI H9N2 viruses from the beginning to current trends. 

Relationship among variation in electrostatic features, viral evolution and clades spreading observed for 

H9N2 in this work confirms and further strengthen previous observations on H5N1 AI viruses, in which the 

evolution of circulating clades is accompanied by 'charge redistribution' at the RBD (Righetto et al., 2014). 

Moreover, most of changes occuring at the RBD in H9N2 viruses seems to concern sites known to play a 

special role in RBD interactions, immune escape and host specificity. In particular, three RBD subregions 

mediate binding to the sialic acid (SA) moieties from the host cell and they are major antigenic determinants 

hence involved in immune escape/antigenic drift: 130-loop (H3 residues 135-138), 9 -helix (H3 residues 190-

198) and 220-loop (H3 residues 221-228) (Wilson et al., 1981; Kobayashi et al., 2012). For Readers' 

convenience, in addition to H9 and H3 numbering systems, Table 4 also shows HA mature chain 

numberings for subtypes H1, H5, and H7, all five numberings being based on the most recently published 

table of correspondence (Burke and Smith, 2014).  

As described in the results section, changes at positions 162 and 217 of H9N2 HA result in either class or 

sub-class specific variation of charge or hydrophobicity features of the RBD. In particular, position 162 is 

involved - together with positions 135 and 146 - in class specific 'charge redistribution' and, when 

denegativization occurs at position 162 in two clades from class A, this is compensated by either 

depositivization of residue 146 (in A5.2) or negativization of residue 161 (in A5.5). Sub-class specific, polar 

to hydrophobic transition occurs instead at residue 217. The involvement in immune escape of mutations at 

both positions 162 and 217 in H9N2 has been recently reported (Peacock et al., 2016). Indeed, as part of the 

220-loop, position 217 is also likely involved in increased virus binding to α2-6 SA and thus in improved 
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affinity to the human host; for instancet, residue 224 in H1N1 (217 in H9) mediates hydrogen bond 

interactions with α2,6-SA (Chutinimitkul et al., 2010). Evidence on the involvement of this RBD position in the 

modulation of host range is also based on previous studies on H5N1 (Gambaryan et al., 2005). Position 227 

(H3 numbering) is located between amino acids 226 and 228, both being part of the 220-loop and playing a 

key role in receptor specificity and host range restriction of influenza A viruses (Vines et al., 1998). In this 

work, class-specific variation in H9N2 position 216 (226 in H3) is observed (Table 4). Positions 180-186 in 

H9N2 (where the conserved dual opposite charges pair in classes A-D-E shifts to a non-charged pair in 

classes B-C, see previous sections) both belong to the 190-helix of the RBD involved in binding to SA 

moieties from the host cell (Wilson et al., 1981; Kobayashi et al., 2012). Contemporary loss of the two 

opposite charges is somehow 'compensatory' in that saving the original net charge of the RBD. It is 

noteworthy that in influenza A viruses, amino acid substitutions increasing (charge+) and decreasing 

(charge-) the charge of the SA binding RBD region can modulate binding avidity and affinity, and thus 

contemporary charge+ and charge- compensatory substitutions are often observed and likely to compensate 

gain and loss effects and to ensure the HA-NA charge balance is kept (Kobayashi et al., 2012). However, in 

A-D-E to B-C class transition, compensation only keeps the net charge, while the overall loss of two charged 

residues from the RBD in B-C class viruses occurs. This in turn is likely to favour immune escape, because 

of both the location of the two residues and the well-known role of charged amino acids in modulating protein 

antigenicity and immunogenicity. In fact, it is well known and an established evidence that both positively and 

negatively charged residues improve the antigenic recognition (up to several folds, depending on their 

number in the antigenic site) by creating further salt bridges with the recognizing antibody complementary 

surface (Young CR, 1984; Farber et al., 2007).  

As shown in Table 4, charge variation also occurs at position 146 (involved with 135 and 162 in 'charge 

redistribution' on the RBD, see results), which is exposed at the RBD surface close to 190-helix (Figure 6). 

Based on the aforementioned role of 190-helix in binding SA moieties from host cells, changes like the 

observed depositivization at position 146 are likely to influence binding affinity and specificity. Considering 

that chickens possess both α-2′3′ and α -2′6′ SA receptors (Gambaryan et al., 2002), it is tempting to 

speculate that such a changes could be linked to host adaptation and species specificity (Perez et al., 2003). 

In addition to represent a valuable complement to integrate phylogenetic and serological studies, structural 

analyses are also of great help to improve sequence-based, functional comparison. Sequence comparison 

was able to infer class  and sub-class specific fingerprints presented in Table 4 as sequence patterns; 

however, only once sequence analysis was complemented by the structural approach, a real-estate picture 

of the system emerged. Comparison of the electrostatic isocontours showed that identified mutations cannot 

be considered as just isolated 'point changes'. In fact, surface features - that are pivotal players in regulating 

molecular interactions e.g. immune escape and host specificity - are modulated by the direct change of any 

mutated residue, as well as by the effects that such a mutation may exert on the local equilibrium in the 

surrounding area (salt bridges or repulsions, hydrophobicity changes, decreased or increased charge density 

etc.), as shown by the unexpected variations observed in charge clouds.  

In conclusion, although much further work is needed to clarify in details the complex network of equilibria that 

can be altered by specific mutations, evidence from this study supports the integration of up-to-date 

phylogenetic and phylogeographic analyses with sequence-based and structural investigation of surface 

features as a front-end strategy for inferring trends and relevant mechanisms in influenza virus evolution. 
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METHODS  

 

Phylogenetic analyses 

HA gene nucleotide sequences of H9N2 subtype were retrieved from the Global Initiative on Sharing Avian 

Influenza Data (GISAID) EpiFlu database (http://www.gisaid.org). Nucleotide sequences of at least 1500 bp 

length were selected. Multiple sequence alignment of HA sequences was performed with MAFFT version 7 

(http://mafft.cbrc.jp/alignment/server). Redudant isolates with 100% sequence similarity (i.e., redundant 

sequences) were identified and removed, giving a final HA dataset and alignment of 1669 sequences that 

was subjected to phylogenetic trees reconstruction. The NJ, ML and Bayesian methods were used to 

construct three different phylogenetic trees for comparison. Analysis of the best-fit substitution model was 

performed using MEGA5 (Tamura et al., 2011), and the goodness-of-fit of each model was measured by 

Bayesian Information Criterion and corrected Akaine Information Criterion (AICc). The General Time 

Reversible (GTR) model with a discrete gamma distribution (+Γ) allowing for invariant sites (+I) was selected 

based on AICc and used in all data analyses. MEGA5 was also used to perform phylogenetic analysis and 

the evolutionary history was inferred by both NJ and ML methods (Tamura and Kumar, 2002), with standard 

errors being calculated based on 1000 bootstrap replicates. 

Furthermore, PhyML (version 2.4.4) (Guindon et al., 2003) was used to create ML trees. The GTR + Γ + I 

model of nucleotide substitution was used for the analysis, with an estimated gamma shape parameter. 

Robustness of the groups was assessed using the bootstrap approach with 100 replicatest. Bayesian 

phylogenetic tree was inferred using MrBayes software (Ronquist and Huelsenbeck, 2003) and applied to 

generate the dendrograms as well as to assess statistical supports for the branches from the trees 

generated by the original dataset. For ease of display, and also to ensure that the clade topology would be 

maintained when fewer isolates are used, a small representative dataset of 360 H9N2 HA sequences was 

created and analyzed by the same aforementioned phylogenetic models. Phylogenetic trees were visualized 

using FigTree version 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/). 

The largest HA gene dataset alignment (n = 1669; length ≥ 1500 bp) used for the phylogenetic 

reconstruction, was also used to infer evolutionary distances (within and between groups) by pair-wise 

analysis. The number of base substitutions per site was calculated by two different methods. The simplest 

one (uncorrected pairwise distance) was performed by averaging all sequence pairs between groups, while 

the second method followed the Maximum Composite Likelihood model. Variation rate among sites was 

modelled with a Γ distribution value = 9.4 (calculated by preliminary estimation from our dataset) and the 

differences in the composition bias among sequences were considered in the evolutionary comparisons. The 

C-value ratio used in the H9N2 clades partitioning - i.e. the ratio of the average pairwise distance between a 

particular taxon and its closest neighboring group divided by the average pairwise distance within that 

selected clade - was used to confirm the clades partitioning. 

 

Bayesian phylogeography reconstruction 

Time-scaled phylogenies of H9N2 HA were inferred by Bayesian Markov chain Monte Carlo (MCMC) method 

implemented in BEAST v1.8.0 (Drummond et al., 2005) using the SRD06 codon position model and the 

uncorrelated log-normal relaxed clock model under a Bayesian skyline coalescent tree prior to the MCMC 

simulations (Jin et al., 2014). Bayesian skyline plot with a Piecewise constant model was used to elucidate 
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the population dynamics of H9N2 viruses. Spatial location reconstruction and viral migration were estimated 

using the discrete Bayesian phylogeographic method that utilised a continuous time Markov Chain over 

discrete sampling locations, and applied a Bayesian stochastic search variable selection model (Lemey et 

al., 2009).  

For our data set we performed four independent runs for 300 million generations with sampling every 30000 

steps. Convergence and effective sampling size of estimates were assessed by visual inspection using 

Tracer v1.6 (http://beast.bio.ed.ac.uk/Tracer). Multiple chains were then combined after a 10% burn-in using 

LogCombiner v1.8.0 included in the BEAST package. The maximum clade credibility (MCC) trees with 

temporal and spatial annotation were summarized with a 10% burn-in removed using TreeAnnotator v1.8.0 

in the BEAST package and presentation figures were generated using FigTree v1.4.2 

(http://tree.bio.ed.ac.uk/software/figtree/). 

We also conducted Bayes factor (BF) tests to provide statistical support for transmission routes between 

different geographic locations using SPREAD v1.0.6 with cutoff BF = 3 (Bielejec et al., 2011). BF values 

represent the difference between the posterior and prior probabilities that the rates between two locations 

are non-zero. Thus, routes with high BF have large odds that a migration exists between two locations. 

To animate viral dispersal over the time, we converted annotated MCC trees into a keyhole markup 

language file using SPREAD v1.0.6, which can be visualized by Google Earth (http://earth.google.com) 

website platform. 

 

Structural Modeling and surface analysis 

Structural models for HA1 and RBD regions of target HA proteins were obtained by homology modelling as 

reported (Righetto et al., 2014) on best available structure templates using SWISS-MODEL (Bordoli et al., 

2009). In particular, as a template for H9N2 HAs the currently available solved HA structure PDB 1JSH 

belonging to A/swine/Hong Kong/9/98 (H9N2) was used. Refinement of model structures was performed 

using three independent methods as reported (Righetto et al., 2014) and model quality was checked via 

QMEAN server (Benkert et al., 2009). 

Protein structures were viewed using UCSF Chimera (Pettersen et al., 2004) v. 1.10.2 (free download from 

http://www.cgl.ucsf.edu/chimera/). 

Comparative analysis of electrostatic potentials was performed as reported (Righetto et al., 2014), simulating 

physiological conditions, i.e. the spatial distribution of the electrostatic potential was calculated at ionic 

strength (I) = 150 mM, assuming +1/-1 charges for the counter-ions. Isopotential contours were calculated 

using UCSF Chimera, which allows for connecting - through Opal web server - to the Adaptive Poisson-

Boltzmann Solver server (http://www.poissonboltzmann.org/apbs). PDB2PQR was used to assign partial 

charges and van der Waals radii according to the PARSE force field (Sitkoff et al., 1994). Electrostatic 

distance was calculated using the Carbo index at the WebPIPSA server (http://pipsa.eml.org/pipsa). Rigid-

body superposition was performed and electrostatic potential was computed using UCSF Chimera 1.10.2.  

For more details please see the methods section from Righetto et al., 2014. 
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LIST OF ABBREVIATIONS 

Ab, antibody 

AC, accession code 

AI, Avian influenza 

AICc, corrected Akaine Information Criterion 

BF, Bayes factor 

ED, electrostatic distance 

Epogram, electrostatic potential diagram 

GTR, General Time Reversible 

GISAID, Global Initiative on Sharing Avian Influenza Data 

HA, Haemagglutinin 

High pathogenic Avian influenza (HPAI) 

I, ionic strength 

Low pathogenic Avian influenza (LPAI) 

MCC, maximum clade credibility 

MCMC, Markov Chain Monte Carlo 

ML, maximum-likelihood 

NA, Neuraminidase 

NJ, neighbor-joining 

OIE, Office International des Epizooties 

PDB, Protein Data Bank 

PIPSA, Protein Interaction Property Similarity Analysis 

RBD, receptor-binding domain 

SA; Sialic acid 

WHO, World Health Organization 

 

COMPETING INTERESTS 

The authors declare that they have no competing interests. 

 

AUTHORS' CONTRIBUTIONS 

AM, AH, FF and GC conceived the study. FF oversaw the study. AM and AH performed most of analyses; 

AF and IR provided other authors with help in data interpretation. AM, AH and FF wrote the paper with inputs 

from AF, IM and GC. All authors read and approved the final manuscript. 

 

AUTHORS INFORMATION 

AM is a staff graduate technician at the IZSVe and a molecular biotechnologist,  she is currently ending last 

year of her PhD course; AH is currently ending last year of his PhD course (phylogenetics) as well. AF is 

PhD and staff graduate technician at the IZSVe. IR is a PhD student and a bioinformatician; IM is PhD and 

Head of the Innovative Diagnostic Laboratory at the IZSVe. GC is the Head of Research and Development 

Department, Division of Biomedical Science, OIE/FAO and National Reference Laboratory for Newcastle 

Disease and Avian Influenza, IZSVe; FF is PhD and Associate Professor of Molecular Biology and 

112



Bioinformatics, and the PI of the MOLBINFO Unit at the Department of Biology, University of Padua. 

 

ACKNOWLEDGEMENTS 

This work was supported by basic funding (‘ex 60%’) from the Italian Ministry for University and Research 

(MIUR) to FF. 

 

REFERENCES 

- Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine. 2007;25(30):5637-44. 

- Al-Tawfiq JA, Zumla A, Gautret P, Gray GC, Hui DS, Al-Rabeeah AA, Memish ZA. Surveillance for 

emerging respiratory viruses. Lancet Infect Dis. 2014;14(10):992-1000. 

- Bedford T, Riley S, Barr IG, Broor S, Chadha M, Cox NJ, Daniels RS, Gunasekaran CP, Hurt AC, Kelso A, 

Klimov A, Lewis NS, Li X, McCauley JW, Odagiri  T, Potdar V, Rambaut A, Shu Y, Skepner E, Smith DJ, 

Suchard MA, Tashiro M, Wang D, Xu X, Lemey P, Russell CA. Global circulation patterns of seasonal 

influenza viruses vary with antigenic drift. Nature 2015; 523(7559):217-20. 

- Benkert P, Künzli M, Schwede T. QMEAN server for protein model quality estimation. Nucleic Acids Res. 

2009 Jul;37(Web Server issue):W510-4. 

- Bielejec F, Rambaut A, Suchard MA, Lemey P. SPREAD: spatial phylogenetic reconstruction of 

evolutionary dynamics. Bioinformatics. 2011;27(20):2910-2. 

- Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T: Protein structure homology modeling using 

SWISS-MODEL workspace. Nat Protoc 2009; 4(1):1-13. 

- Brown MV, Ostrowski M, Grzymski JJ, Lauro FM. A trait based perspective on the biogeography of 

common and abundant marine bacterioplankton clades. Mar Genomics. 2014;15:17-28. 

- Burke DF, Smith DJ. A recommended numbering scheme for influenza A HA subtypes. PLoS One. 

2014;9(11):e112302. 

- Butler D. Flu surveillance lacking. Nature. 2012 Mar 28;483(7391):520-2. doi:10.1038/483520a. 

- Butt KM, Smith GJ, Chen H, Zhang LJ, Leung YH, Xu KM, Lim W, Webster RG, Yuen KY, Peiris JS, Guan 

Y. Human infection with an avian H9N2 influenza A virus inHong Kong in 2003. J Clin Microbiol. 

2005;43(11):5760-7. 

- Carugo O, Pongor S: A normalized root mean square distance for comparing protein three dimensional 

structures. Protein Sci 2001;10:1470-1473. 

- Chutinimitkul S, Herfst S, Steel J, Lowen AC, Ye J, van Riel D, Schrauwen EJ, Bestebroer TM, Koel B, 

Burke DF, Sutherland-Cash KH, Whittleston CS, Russell CA, Wales DJ, Smith DJ, Jonges M, Meijer A, 

Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Garcìa-Sastre A, Perez DR, Fouchier RA. 

Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus  

affects receptor binding. J Virol. 2010;84(22):11802-13. 

- Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population 

dynamics from molecular sequences. Mol Biol Evol. 2005;22(5):1185-92. 

- Farber DL, Sleasman JW, Virella G. Immune response: Antigens, Lymphocytes and Accessory Cells. 

Medical Immunology, Sixth Edition, 2007; Chapter 4:35-54. 

- Gambaryan, A., R. Webster, and M. Matrosovich. Differences between influenza virus receptors on target 

cells of duck and chicken. Arch. Virol. 2002;147:1197-1208. 

113



- Gambaryan A, Tuzikov A, Pazynina G, Bovin N, Balish A, Klimov A. Evolution of the receptor binding 

phenotype of influenza A (H5) viruses. Virology. 2006;344(2):432-8. 

- Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A: Protein Identification 

and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook Edited by Walker JM. 

Humana Press 2005:571-607. 

- Gräf  T, Vrancken B, Maletich Junqueira D, de Medeiros RM, Suchard MA, Lemey P, Esteves de Matos 

Almeida S, Pinto AR. Contribution of Epidemiological Predictors in Unraveling the Phylogeographic History 

of HIV-1 Subtype C in Brazil. J Virol. 2015;89(24):12341-8. 

- Guan Y, Smith GJ. The emergence and diversification of panzootic H5N1 influenza viruses. Virus Res. 

2013;178(1):35-43. 

- Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum 

likelihood. Syst Biol. 2003;52(5):696-704. 

- Hill SC, Lee YJ, Song BM, Kang HM, Lee EK, Hanna A, Gilbert M, Brown IH, Pybus OG. Wild waterfowl 

migration and domestic duck density shape the epidemiology of  highly pathogenic H5N8 influenza in the 

Republic of Korea. Infect Genet Evol. 2015;34:267-77. 

- Hu M, Li X, Ni X, Wu J, Gao R, Xia W, Wang D, He F, Chen S, Liu Y, Guo S, Li H, Shu Y, Bethel JW, Liu 

M, Moore JB, Chen H. Coexistence of Avian Influenza Virus H10 and H9 Subtypes among Chickens in Live 

Poultry Markets during an Outbreak of Infection with a Novel H10N8 Virus in Humans in Nanchang, China. 

Jpn  J Infect Dis. 2015;68(5):364-9.  

- Jin Y, Yu D, Ren H, Yin Z, Huang Z, Hu M, Li B, Zhou W, Yue J, Liang L. Phylogeography of Avian 

influenza A H9N2 in China. BMC Genomics. 2014;15:1110. 

- Kobayashi Y, Suzuki Y. Compensatory evolution of net-charge in influenza A virus hemagglutinin. PLoS 

One. 2012;7(7):e40422. 

- Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylogeography finds its roots. PLoS Comput 

Biol. 2009;5(9):e1000520. 

- Lin YP, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, Subbarao K, Guan Y, Krauss S, Shortridge K, 

Webster R, Cox N, Hay A. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship 

between H9N2 and H5N1 human isolates. Proc Natl Acad Sci U S A. 2000;97(17):9654-8. 

- Lu L, Lycett SJ, Leigh Brown AJ. Determining the phylogenetic and phylogeographic origin of highly 

pathogenic avian influenza (H7N3) in Mexico. PLoS One. 2014;9(9):e107330. 

- Maixner F, Krause-Kyora B, Turaev D, Herbig A, Hoopmann MR, Hallows JL, Kusebauch U, Vigl EE, 

Malfertheiner P, Megraud F, O'Sullivan N, Cipollini G, Coia V, Samadelli M, Engstrand L, Linz B, Moritz RL, 

Grimm R, Krause J, Nebel A, Moodley Y, Rattei T, Zink A. The 5300-year-old Helicobacter pylori genome of 

the  Iceman. Science. 2016;351(6269):162-5. 

- Monne I, Fusaro A, Nelson MI, Bonfanti L, Mulatti P, Hughes J, Murcia PR, Schivo A, Valastro V, Moreno 

A, Holmes EC, Cattoli G. Emergence of a highly pathogenic avian influenza virus from a low-pathogenic 

progenitor. J Virol. 2014;88(8):4375-88.  

- Nelson MI, Vincent AL. Reverse zoonosis of influenza to swine: new perspectives on the human-animal 

interface. Trends Microbiol. 2015;23(3):142-53. 

- Ni G, Li Q, Kong L, Yu H. Comparative phylogeography in marginal seas of the northwestern Pacific. Mol 

Ecol. 2014;23(3):534-48. 

114



- Peacock T, Reddy K, James J, Adamiak B, Barclay W, Shelton H, Iqbal M. Antigenic mapping of an H9N2 

avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape. Sci 

Rep. 2016;6:18745. 

- Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF. Human infection with 

influenza H9N2. Lancet. 1999;354(9182):916-7. 

- Perez DR, Lim W, Seiler JP, Yi G, Peiris M, Shortridge KF, Webster RG. Role of quail in the interspecies 

transmission of H9 influenza A viruses: molecular changes on HA that correspond to adaptation from ducks 

to chickens. J Virol. 2003;77(5):3148-56. 

- Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera--a 

visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605-1612. 

- Pollett S, Nelson MI, Kasper M, Tinoco Y, Simons M, Romero C, Silva M, Lin X,  Halpin RA, Fedorova N, 

Stockwell TB, Wentworth D, Holmes EC, Bausch DG. Phylogeography of Influenza A(H3N2) Virus in Peru, 

2010-2012. Emerg Infect Dis. 2015;21(8):1330-8. 

- Pyron RA. Post-molecular systematics and the future of phylogenetics. Trends Ecol Evol. 2015;30(7):384-

9. 

- Richter S, Wenzel A, Stein M, Gabdoulline RR, Wade R. WebPIPSA: a web server for the comparison of 

protein interaction properties. Nucleic Acid Res 2008;36(Web Server Issue):W276-W280. 

- Riddle BR. What is modern biogeography without phylogeography? J. Biogeogr 2009;36:1-2. 

- Righetto I, Milani A, Cattoli G, Filippini F. Comparative structural analysis of haemagglutinin proteins from 

type A influenza viruses: conserved and variable features. BMC Bioinformatics. 2014;15:363. 

- Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. 

Bioinformatics. 2003;19(12):1572-4. 

- Sang X, Wang A, Ding J, Kong H, Gao X, Li L, Chai T, Li Y, Zhang K, Wang C, Wan Z, Huang G, Wang T, 

Feng N, Zheng X, Wang H, Zhao Y, Yang S, Qian J, Hu G, Gao Y, Xia X. Adaptation of H9N2 AIV in guinea 

pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets. Sci 

Rep. 2015;5:15928. 

- Sitkoff D, Sharp K, Honig B: Accurate calculation of hydration free energies using macroscopic solvent 

models. J Phys Chem 1994;98:1978-1988. 

- Stacy A, McNally L, Darch SE, Brown SP, Whiteley M. The biogeography of polymicrobial infection. Nat 

Rev Microbiol. 2016;14(2):93-105. 

- Stanekova Z and Vareckova E: Conserved epitopes of influenza A virus inducing protective immunity and 

their prospects for universal vaccine development. Virol J. 2010;7:351. 

- Su S, Bi Y, Wong G, Gray GC, Gao GF, Li S. Epidemiology, Evolution, and Recent Outbreaks of Avian 

Influenza Virus in China. J Virol. 2015;89(17):8671-6. 

- Swayne DE. Impact of vaccines and vaccination on global control of avian influenza. Avian Dis. 2012;56(4 

Suppl):818-28. 

- Tamura K, Kumar S. Evolutionary distance estimation under heterogeneous substitution pattern among 

lineages. Mol Biol Evol. 2002;19(10):1727-36. 

- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics 

analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 

2011;28(10):2731-9. 

115



- Tian H, Zhou S, Dong L, Van Boeckel TP, Cui Y, Newman SH, Takekawa JY, Prosser DJ, Xiao X, Wu Y, 

Cazelles B, Huang S, Yang R, Grenfell BT, Xu B. Avian influenza H5N1 viral and bird migration networks in 

Asia. Proc Natl Acad Sci U S A. 2015;112(1):172-7. 

- Trombetta C, Piccirella S, Perini D, Kistner O, Montomoli E. Emerging Influenza Strains in the Last Two 

Decades: A Threat of a New Pandemic? Vaccines (Basel). 2015;3(1):172-85. 

- Turchetto-Zolet AC, Pinheiro F, Salgueiro F, Palma-Silva C. Phylogeographical  patterns shed light on 

evolutionary process in South America. Mol Ecol. 2013;22(5):1193-213. 

- Velkov T, Ong C, Baker MA, Kim H, Li J, Nation RL, Huang JX, Cooper MA, Rockman S. The antigenic 

architecture of the hemagglutinin of influenza H5N1 viruses. Mol Immunol. 2013;56(4):705-19. 

- Vines A, Wells K, Matrosovich M, Castrucci MR, Ito T, Kawaoka Y. The role of influenza A virus 

hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. J Virol. 

1998;72(9):7626-31. 

- Wilson IA, Skehel JJ, Wiley DC. Structure of the haemagglutinin membrane glycoprotein of influenza virus 

at 3 A resolution. Nature. 1981;289(5796):366-73. 

- WHO/OIE/FAO H5N1 Evolution Working Group. Toward a unified nomenclature system for highly 

pathogenic avian influenza virus (H5N1). Emerg Infect Dis. 2008;14(7):e1. 

- Young CR. Structural requirements for Immunogenicity and Antigenicity. in: Molecular Immunology - A 

Textbook. CRC Press, Atassi, Van Oss, Absolom eds. 1984;1-14. 

- Zhang L, Li H, Li S, Zhang A, Kou F, Xun H, Wang P, Wang Y, Song F, Cui J, Cui J, Gouge DH, Cai W. 

Phylogeographic structure of cotton pest Adelphocoris suturalis (Hemiptera: Miridae): strong subdivision in 

China inferred from mtDNA and rDNA ITS markers. Sci Rep. 2015;5:14009. 

 

 

116



  
cl

ad
es

 
C

.2
.3

 
C

.2
.2

 
C

.2
.1

 
C

.2
 

C
.1

 
B

.2
.7

 
B

.2
.6

 
B

.2
.5

 
B

.2
.4

 
B

.2
.3

 
B

.2
.2

 
B

.2
.1

 
B

.1
.1

 
B

.1
.2

 
B

.4
 

B
.3

 
A

.1
 

A
.2

 
A

.3
 

A
.4

 
A

.5
.1

 
A

.5
.2

 
A

.5
.3

 
A

.5
.4

 
A

.5
.5

 
D

. 
E

. 

C
.2

.3
 

* 
  

[ 0
,5

 ] 
[ 0

,4
 ] 

[ 0
,6

 ] 
[ 0

,7
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,8

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 

C
.2

.2
 

8,
3 

* 
[ 0

,5
 ] 

[ 0
,4

 ] 
[ 0

,6
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,7
 ] 

[ 0
,8

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,6
 ] 

C
.2

.1
 

8,
4 

10
 

* 
[ 0

,4
 ] 

[ 0
,6

 ] 
[ 0

,7
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,7

 ] 
[ 0

,6
 ] 

[ 0
,8

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 

C
.2

 
6,

7 
8,

3 
7,

7 
* 

[ 0
,5

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,5

 ] 
[ 0

,5
 ] 

[ 0
,5

 ] 
[ 0

,5
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,6
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,6

 ] 

C
.1

 
9,

9 
10

,9
 

10
,4

 
7,

5 
* 

[ 0
,7

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

B
.2

.7
 

14
,2

 
14

,9
 

14
,9

 
12

,9
 

12
,9

 
* 

[ 0
,4

 ] 
[ 0

,5
 ] 

[ 0
,5

 ] 
[ 0

,5
 ] 

[ 0
,5

 ] 
[ 0

,5
 ] 

[ 0
,5

 ] 
[ 0

,5
 ] 

[ 0
,6

 ] 
[ 0

,5
 ] 

[ 0
,8

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 

B
.2

.6
 

14
,2

 
15

 
14

,3
 

12
,8

 
13

 
7,

5 
* 

[ 0
,4

 ] 
[ 0

,4
 ] 

[ 0
,5

 ] 
[ 0

,5
 ] 

[ 0
,4

 ] 
[ 0

,5
 ] 

[ 0
,5

 ] 
[ 0

,6
 ] 

[ 0
,5

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

B
.2

.5
 

13
,2

 
14

,1
 

14
,3

 
12

 
12

,6
 

7,
2 

7,
3 

* 
[ 0

,5
 ] 

[ 0
,5

 ] 
[ 0

,5
 ] 

[ 0
,4

 ] 
[ 0

,5
 ] 

[ 0
,5

 ] 
[ 0

,5
 ] 

[ 0
,5

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

B
.2

.4
 

14
,7

 
15

,1
 

15
,2

 
13

,4
 

13
,7

 
9,

2 
8,

8 
8,

5 
* 

[ 0
,5

 ] 
[ 0

,4
 ] 

[ 0
,4

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,5

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

[ 0
,6

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

B
.2

.3
 

13
,6

 
14

,6
 

14
,9

 
12

,5
 

13
,1

 
8 

8 
7,

1 
8,

2 
* 

[ 0
,5

 ] 
[ 0

,4
 ] 

[ 0
,5

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,5
 ] 

[ 0
,8

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 

B
.2

.2
 

13
,8

 
14

,9
 

15
 

12
,8

 
13

,5
 

8,
9 

8,
8 

8,
4 

9,
5 

8,
4 

* 
[ 0

,4
 ] 

[ 0
,5

 ] 
[ 0

,5
 ] 

[ 0
,6

 ] 
[ 0

,5
 ] 

[ 0
,8

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 

B
.2

.1
 

13
,1

 
13

,9
 

13
,7

 
11

,4
 

11
,7

 
7,

2 
7 

6,
6 

7,
5 

6,
9 

7,
9 

* 
[ 0

,5
 ] 

[ 0
,5

 ] 
[ 0

,5
 ] 

[ 0
,5

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

B
.1

.1
 

11
,1

 
12

,1
 

12
,5

 
9,

8 
9,

8 
9,

2 
9,

2 
8,

9 
9,

7 
8,

9 
9,

5 
7,

9 
* 

[ 0
,3

 ] 
[ 0

,4
 ] 

[ 0
,4

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,6
 ] 

[ 0
,7

 ] 
[ 0

,6
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

B
.1

.2
 

11
,6

 
12

,2
 

12
,4

 
9,

9 
10

,2
 

9,
8 

9,
9 

9,
5 

10
,2

 
9,

7 
10

,1
 

8,
5 

5,
4 

* 
[ 0

,5
 ] 

[ 0
,4

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

B
.4

 
11

,3
 

12
,4

 
12

,3
 

9,
9 

10
,2

 
9,

1 
9,

1 
8,

4 
9,

6 
8,

9 
9,

5 
7,

6 
5,

4 
6,

1 
* 

[ 0
,5

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

[ 0
,8

 ] 
[ 0

,8
 ] 

B
.3

 
11

,5
 

12
,5

 
12

,6
 

10
 

10
,2

 
9,

8 
9,

7 
9,

3 
10

,3
 

9,
7 

10
,2

 
8,

3 
5,

8 
6,

1 
6,

1 
* 

[ 0
,8

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,8

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 

A
.1

 
17

,1
 

18
,5

 
19

,7
 

17
,6

 
18

,4
 

19
,4

 
19

 
18

,9
 

20
,1

 
19

,3
 

19
,1

 
18

,8
 

17
,3

 
18

 
18

,1
 

17
,9

 
* 

[ 0
,8

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

A
.2

 
18

,1
 

19
 

19
,2

 
17

,9
 

17
,7

 
19

,4
 

19
,6

 
19

,5
 

20
,2

 
19

,4
 

19
,3

 
18

,6
 

18
 

18
,5

 
18

,2
 

18
,5

 
16

,8
 

* 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,8
 ] 

[ 0
,7

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,8
 ] 

[ 0
,8

 ] 
[ 0

,7
 ] 

A
.3

 
15

,3
 

16
,1

 
15

,4
 

14
,1

 
14

 
16

,9
 

16
,9

 
16

,1
 

17
,2

 
16

,6
 

17
 

15
,9

 
14

,8
 

14
,7

 
14

,8
 

14
,7

 
15

,8
 

15
,5

 
* 

[ 0
,5

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,6
 ] 

A
.4

 
14

 
15

,2
 

15
 

13
,1

 
13

 
15

,8
 

15
,9

 
15

,1
 

15
,8

 
15

,2
 

15
,7

 
14

,2
 

13
,3

 
13

,5
 

13
,5

 
13

,2
 

15
,3

 
14

,7
 

9,
4 

* 
[ 0

,5
 ] 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,6

 ] 
[ 0

,7
 ] 

[ 0
,7

 ] 
[ 0

,6
 ] 

A
.5

.1
 

16
,1

 
16

,7
 

16
,6

 
15

,4
 

15
,7

 
17

,3
 

17
,4

 
16

,6
 

17
,2

 
16

,8
 

17
 

16
 

15
,4

 
15

 
15

,3
 

15
,4

 
17

,2
 

16
 

12
,5

 
10

,1
 

* 
[ 0

,6
 ] 

[ 0
,5

 ] 
[ 0

,5
 ] 

[ 0
,6

 ] 
[ 0

,7
 ] 

[ 0
,6

 ] 

A
.5

.2
 

17
,1

 
17

,5
 

16
,8

 
15

,5
 

15
,4

 
17

,6
 

17
,3

 
17

,3
 

18
 

17
,5

 
17

,7
 

17
 

16
,1

 
15

,9
 

16
,2

 
16

,2
 

16
,8

 
16

,5
 

13
,4

 
11

,7
 

11
,9

 
* 

[ 0
,6

 ] 
[ 0

,6
 ] 

[ 0
,7

 ] 
[ 0

,8
 ] 

[ 0
,6

 ] 

A
.5

.3
 

16
,6

 
17

 
16

,5
 

15
,4

 
15

,4
 

17
,2

 
17

 
16

,4
 

17
,4

 
17

,1
 

16
,9

 
16

,2
 

15
,3

 
15

,1
 

15
,6

 
15

,4
 

16
,4

 
15

,8
 

11
,5

 
10

,3
 

10
,1

 
11

,1
 

* 
[ 0

,4
 ] 

[ 0
,6

 ] 
[ 0

,7
 ] 

[ 0
,6

 ] 

A
.5

.4
 

15
,6

 
16

,1
 

15
,4

 
14

,7
 

14
,6

 
16

,7
 

16
,8

 
16

,3
 

17
,1

 
16

,6
 

16
,7

 
15

,7
 

14
,9

 
14

,8
 

15
,1

 
14

,7
 

16
 

15
,4

 
10

,5
 

9 
8,

6 
9,

9 
6,

9 
* 

[ 0
,6

 ] 
[ 0

,7
 ] 

[ 0
,6

 ] 

A
.5

.5
 

17
,2

 
17

,8
 

17
,3

 
16

,3
 

16
,8

 
18

,6
 

18
,4

 
17

,9
 

18
,7

 
18

 
18

,8
 

17
,5

 
16

,7
 

16
,7

 
16

,9
 

16
,6

 
18

,3
 

18
,1

 
14

,2
 

12
,5

 
12

,5
 

13
,9

 
11

,9
 

11
 

* 
[ 0

,8
 ] 

[ 0
,7

 ] 

D
. 

15
,2

 
16

,1
 

16
,2

 
14

,6
 

14
,9

 
17

,1
 

17
 

16
,4

 
16

,4
 

16
,2

 
16

,6
 

15
,7

 
14

 
14

,2
 

14
,3

 
14

,5
 

18
,4

 
17

 
13

,5
 

11
,6

 
14

,3
 

15
,4

 
14

,2
 

13
,5

 
16

,6
 

* 
[ 0

,7
 ] 

E
. 

14
,4

 
15

,2
 

15
,4

 
13

,7
 

13
,6

 
16

 
16

 
15

,5
 

16
,2

 
15

,5
 

15
,6

 
14

,7
 

13
,6

 
13

,6
 

13
,8

 
13

,6
 

16
,5

 
15

,2
 

11
,6

 
10

,3
 

12
,5

 
13

,6
 

12
,5

 
11

,6
 

15
 

11
,6

 
* 

Ta
bl

e 
1:

 E
st

im
at

es
 o

f e
vo

lu
tio

na
ry

 d
is

ta
nc

es
 b

et
w

ee
n 

H
9N

2 
id

en
tif

ie
d 

cl
ad

es
.  

Ev
ol

ut
io

na
ry

 d
is

ta
nc

es
 (

ca
lc

ul
at

ed
 b

y 
p-

di
st

an
ce

) 
be

tw
ee

n 
id

en
tif

ie
d 

cl
ad

es
 w

er
e 

ca
lc

ul
at

ed
 u

si
ng

 1
66

9 
nu

cl
eo

tid
e 

H
A 

se
qu

en
ce

s 
≥  

15
00

 b
p 

in
 le

ng
ht

. M
ax

/m
in

 e
vo

lu
tio

na
ry

 d
is

ta
nc

e 
va

lu
es

 w
ith

in
 c

la
ss

es
 A

, B
 a

nd
 C

 a
re

 h
ig

hl
ig

ht
ed

 in
 r

es
pe

ct
iv

el
y 

 
re

d 
an

d 
bl

ue
 c

ol
or

s.
 V

al
ue

s 
be

tw
ee

n 
br

ac
ke

ts
 a

re
 s

ta
nd

ar
d 

er
ro

rs
, o

bt
ai

ne
d 

by
 a

 b
oo

ts
tra

p 
pr

oc
ed

ur
e 

(5
00

 re
pl

ic
at

es
). 

117



clades APD Within Closest clade APD between clade & 
closest clade  

C-
Value 

C.2.3 2,5 [0,3] C.2 6,7 2,7 
C.2.2 4,1 [0,2] C.2.3 8,3 2,0 
C.2.1 3,3 [0,2] C.2 7,7 2,3 
C.2 4,7 [0,2] C.2.3 6,7 1,4 
C.1 1,2 [0,1] C.2 7,5 6,3 

B.2.7 3,8 [0,2] B.2.5 7,2 1,9 
B.2.6 4,6 [0,3] B.2.1 7,3 1,6 
B.2.5 3,4 [0,2] B.2.1 6,6 1,9 
B.2.4 4,9 [0,3] B.2.1 7,5 1,5 
B.2.3 2,7 [0,2] B.2 7,1 2,6 
B.2.2 4,4 [0,2] B.2.1 7,9 1,8 
B.2.1 2,7 [0,2] B.2.1 7,6 2,8 
B.1.1 3,3 [0,2] B.4 5,4 1,6 
B.1.2 2,7 [0,2] B.4 5,4 2,0 
B.4 1,6 [0,2] B.1.1 5,4 3,4 
B.3 3,4 [0,2] B.1.1 5,8 1,7 
A.1 1,2 [0,2] A.4 15,3 12,8 
A.2 2,6 [0,3] A.4 14,7 5,7 
A.3 4,5 [0,3] A.4 9,4 2,1 
A.4 3,4 [0,3] A.5.4 9 2,6 

A.5.1 3,8 [0,3] A.5.4 8,6 2,3 
A.5.2 4 [0,4] A.5.4 9,9 2,5 
A.5.3 3,8 [0,2] A.5.4 6,9 1,8 
A.5.4 3,4 [0,2] A.5.3 6,9 2,0 
A.5.5 4,5 [0,3] A.5.4 11 2,4 

D. 0,8 [0,2] A.4 12 15,0 
E. 2,8 [0,2] A.4 10,4 3,7 

 
Table 2. Estimates of average pairwise distance and C-value within each identified H9N2 clade. The 
average pairwise distance was calculated using 1669 HA nucleotide sequences (≥ 1500 bp). Values 
between brackets are standard errors, obtained by a bootstrap procedure (500 replicates). The C-value is 
the ratio of distance between clade and its closest clade to the distance within clade. 
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Criteria used for a class and clade designation 

1 The nomenclature was established based on a non redudant dataset of 1669 HA 
sequences from H9 viruses with sequence lenght ≥ 1500 bp. 

2 Classes were assigned based on phylogenetic topology distribution and confirmed by 
three different methods: Maximum Likelihood, NJ, Byesian. 

3 Clades were assigned based on both phylogenetic topology distribution and evolutionary 
distances between different taxonomic branches. Clades separation was confirmed using 
the three aforementioned methods (see point 2). 

4 New classes and clades were designated only when at least three independent isolates 
without a direct epidemiologic link (i.e. distinct outbreaks) were available. 

5 Bootstrap values at the classes and clades defining node should be ≥60%. 

6 Distinct clades should have ≥5% average distances between other clades. Distinct 
clades should have <5% average distances within the clade. 

7 Cut-off value 5% with C value ≥ 1 was fixed to assign new clades in each class. 

 
Table 3. H9N2 AI viruses, class and clade identification criteria. Text in the table cells is self-explaining 
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HA subtype 
numbering HA (mature chain) position number 

H9Nx 131 135 146 161 162 165 180 186 198 216 217 
H7Nx 127 134 145 162 163 166 181 187 199 217 218 
H5Nx 133 141 152 167 168 171 186 192 204 222 223 
H3Nx 137 145 156 171 172 175 190 196 208 226 227 
H1Nx 134 142 153 168 169 172 187 193 205 223 224 

Clade Strains Fully / most conserved amino acid for each clade  
A.1 4 R N H N E N E K D Q Q 
A.2 3 K N H T E N E K D Q Q 
A.3 33 K N H N E N E K D Q Q 
A.4 8 K N H N E N E K D Q Q 

A.5.1 15 A N H N E N E K D Q Q 
A.5.2 3 A N Q N N S E K D Q Q 
A.5.3 48 K N H N E N E K D Q Q 
A.5.4 12 R N H N E N E E D Q Q 
A.5.5 51 K G H D W N E K D Q Q 

D 3 K N H N E S E K D Q Q 
E 13 K N H N E S E K D Q Q 
B 3 K D Q N R S A V D Q Q 

B.1.1 30 K D Q N R S A I D L Q 
B.1.2 44 K D Q N R S A I D L Q 
B.3 7 R G Q N R S E I D L Q 
B.4 7 K D Q N R S A T D L Q 

B.2.1 33 K D Q N R D A T N L I 
B.2.2 36 K D Q N R D A T N L I 
B.2.3 9 K N Q N R D A T N L I 
B.2.4 7 K D Q N Q D A T N L I 
B.2.5 31 K D Q N R D A T N L I 
B.2.6 33 K E Q N R D T T N L I 
B.2.7 124 K D Q N R D A T N L I 
C.1 31 N N Q N R S V T D L T 
C.2 224 K D Q N R N T T D Q Q 

C.2.1 150 K D Q N R N A T D L Q 
C.2.2 694 K D Q N Q N T T D L Q 
C.2.3 3 K D Q N R N V T D L Q 

 

Table 4. Class and sub-class specific variation at the RBD in H9N2 viruses. The number of strain 
sequences and the most represented residue for each amino acid position (columns) are reported for each 
clade (rows). Negatively charged, positively charged and hydrophobic residues are highlighted by red, blue 
or yellow background, respectively. Position numbering for four HA subtypes is reported. 
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Figure 1. Maximum-likelihood 
short alignment tree with 360 
H9N2 isolates constructed by 
PhyML. The different class and 
clades are color coded. Estimates 
of the statistical significance of 
phylogenies were calculated by 
performing 100 bootstrap 
replicates. Numbers in the tree 
nodes represent the bootstrap 
support (≥60). 
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Figure 2. Maximum clade credibility (MCC) phylogenies inferred for the HA gene sequences of 357 
viruses of AI H9 subtype. Branches are coloured according to the most probable ancestor location (in 
terms of geographic area) of their descendent nodes. Timeline at the bottom indicates the years before the 
most recent sampling time. Numbers are reported at branch points where state probabilities with values ≥ 
0.55 correspond to geographic area transition events.  
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Figure 4. Heat map and density plot for the RBD subregion from representative H9N2 strains. The 
electrostatic distance formula is reported. In both density plot and heat map, warm to cold color shift 
corresponds to increasing electrostatic distance. 
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Figure 5. Electrostatic potential diagram (epogram) for the RBD subregion from representative H9N2 
strains. The electrostatic distance formula is reported. The two main clusters are 3/4 bordered by red lines. 
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Figure 6. Location at the RBD surface of residues involved in class and sub-class specific variation 
in H9N2. Both 0° view (left image) and 180° view (right image) are shown. The three regions (130-loop, 190-
helix and 220-loop) that mediate binding to the sialic acid (SA) moieties from the host cell (Wilson et al., 
1981; Kobayashi et al., 2012) are highlighted in yellow. Color coding for amino acid positions is the following: 
135, 146 and 162: orange; 180 and 186: purple; 165, 198, 216 and 217: green.  
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Figure 7: Comparison of representative profiles for the isopotential RBD contour in H9N2. Four 90° 
stepwise rotation view are presented for each representative RBD electrostatic isocontour. Names of 
the specific H9N2 virus strains are reported. Arrows for specific residues are color-coded according to 
Figure 6. 
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CONCLUDING REMARKS  
 

The integration of genomic and bioinformatic analysis used during my PhD proved successful as an 

approach to explore and shed light on the complexity of the avian hemagglutinin evolution. Influenza A 

viruses, like other RNA viruses, possesses inherent characteristics, such as a rapid replication, high 

evolutionary rates, and the ability to infect a wide range of hosts, which altogether favour the formation of a 

heterogeneous population of variants, genetically related but not identical. Variables of different nature, such 

as the external environment, host adaptation, the use of vaccines and various other external forces, can 

exert a constant and selective pressure on the virus populations influencing their evolution, favouring the 

presence of minority variants and potentially the selection of new viruses with changed genetic and antigenic 

properties. The contribution given by deep sequencing, phylogeny and structural analysis allowed to obtain a 

complete overview on the viral evolution. 

 During my PhD study I focused my work on the application, improvement and refinement of new 

protocols in pre and post steps related to deep sequencing analysis, application of bioinformatic tools to 

clean raw data output files, to assemble reads and to investigate the heterogeneity viral populations and 

minority composition variants of each sample so as to infer information from data generated and application 

of structural analysis to implement phylogenetic and genomic result. Furthermore the consensus sequences 

generated by both Sanger and Next Generation Sequencing were investigated using phylogenetic analysis 

to study their genetic relationships and their evolutionary dynamics. The integrated use of the different 

approaches applied and specifically set up to study avian influenza viruses allowed to obtain interesting 

results helpful to investigate the acquisition of virulence determinants or host specificity, the detection of 

minority variants thus providing a better understanding to the influenza virus evolutionary dynamics.  
 Three Italian epidemics related to H7 subtype have been object of study. Chapter 1 describes the 

comparison between H7N1 and H7N3 avian influenza epidemics having interested Northern Italy during 

1999-2001 and 2002-2004, respectively. Instead, chapter 2 focuses on virus population heterogeneity and 

virus pathogenicity evolution on clinical samples, collected during the HPAI H7N7 epidemic that interested 

five Italian industrial holdings and a backyard during the summer of 2013. Chapter 3 inspects the abundance 

of minority variants and the evolutionary effect on the viral population under the influence of vaccine immune 

pressure; samples analyzed in this study were obtained from an experimental study aiming at assessing the 

protection efficacy of two distinct vaccines against HPAI H5N1 virus. As illustrated in chapter 3, viral 

population heterogeneity and analysis of immune pressure on the viral evolution have been studied on H5 

subtypes related to the avian host. As the experimental challenge, the avian host was immunized with 

vaccines conferring different levels of protection and then infected by an HPAI H5N1 virus to compare 

protection potentials. Given that antigenic recognition, immune escape and host specificity largely depend on 

variation in interaction/binding sites, comparative structural analyses performed in my thesis aimed at 

highlighting conserved and variable features amongst hemagglutinin proteins from different type A influenza 

viruses (Chapters 4 and 5). A special attention was addressed to H9N2 and HPAI H5N1 subtypes to find and 

display surface differences on the hemagglutinin protein possibly underying functional evolution. Sanger 

sequencing, deep sequencing and phylogenetic approaches revealed to be valid tools to study the 

evolutionary dynamics and the adaptive strategies of these two distinct avian influenza lineages and to 

highlight many similarities. In chapter 5  strains of avian influenza A virus belonging to H9N2 subtype were 
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analysed using phylogenetic and structural approaches. The first approach has allowed to obtain a  novel 

classification scheme considering both phylogenetic topology and evolutionary distances; whereas the 

structural analysis on selected representative viruses for each clade allowed to inspect and confirm whether 

surface properties could be linked to ‘functional evolution’ and host adaptation of H9N2 subtype as already 

seen for HPAI H5N1 viruses. 

 The next generation sequencing (NGS) has shown to be a powerful and useful tool to study and 

characterize the complexity of the viral population, allowing to detect low frequency mutations both during 

the early stages of viral infection and the viral evolution itself by detecting quasi-species variants in avian 

samples. Despite it expensive cost, deep sequencing analysis allowed to process a huge amount of samples 

simultaneously providing the generation of an high amount of data in short time that with the classic Sanger 

sequencing would not be possible. 

 As described in Chapters 1, 2 and 5, the phylogenetic approach to avian influenza subtypes H7 and 

H9 proved to be an important tool to explain the molecular epidemiology as well as to shed light on viral 

transmission, evolutionary dynamics and adaptive strategies. Such phylogenetics approach was properly 

integrated by the structural one. Particularly in chapters 4 and 5, structural analysis successfully 

implemented phylogenetic data by inspecting hemagglutinin regions and sub-regions hence highlighting 

similarities among virus classes and clades that would be undetectable when only considering the primary 

sequences or the phylogenetic trees.  

 This study especially focused on the evolution of hemagglutinin from subtypes H5, H7 and H9, and 

stressed the importance of implementing genomic and structural approaches to analyze both genetic 

variability and functional evolution of avian influenza A virus. When using primary nucleotide or amino acid 

sequences, it is only possible to compare amount and kind of mutations, while structural analyses also allow 

to infer ‘functional evolution’ by 'weigthing' impact of amino acid substitutions, insertions or deletions on the 

3D space of a protein.  

Molecular characterization of the influenza A viruses analyzed in this thesis highlighted the 

heterogeneity of the HA sequences in all analysed subtypes (H5, H7 and H9). This study suggests that 

careful surveillance of genetic changes in the HA gene and protein during epidemics is needed as it may 

provide early information on the strains evolution, as well as useful epidemiologic inference. 

Last but not least, this work provided a better and implemented understanding on the virus evolution, 

as well as essential information suggesting further studies to confirm the genetic and evolutionary 

characteristics of hemagglutinin influenza a viruses. Techniques like reverse genetics analysis could be used 

to test the results obtained with in silico work. 

 
 

130



REFERENCES 

 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 

5;215(3):403-10. PubMed PMID: 2231712. 

 

Andino R, Domingo E. Viral quasispecies. Virology. 2015 May;479-480:46-51. doi: 

10.1016/j.virol.2015.03.022. Epub 2015 Mar 29. Review. PubMed PMID: 25824477.  

 

Arinaminpathy N, Grenfell B. Dynamics of glycoprotein charge in the evolutionary history of human influenza. 

PLoS One. 2010 Dec 30;5(12):e15674. doi: 10.1371/journal.pone.0015674. PubMed PMID: 21209885; 

PubMed Central PMCID: PMC3012697. 

 

Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for 

protein structure homology modelling. Bioinformatics. 2006 Jan 15;22(2):195-201. Epub 2005 Nov 13. 

PubMed PMID: 16301204. 

 

Arnold K., Bordoli L., Kopp J., and Schwede T. (2006). The SWISS-MODEL Workspace: A web-based 

environment for protein structure homology modelling. Bioinformatics, 22,195-201. 

 

Benkert P, Künzli M, Schwede T. QMEAN server for protein model quality estimation. Nucleic Acids Res. 

2009 Jul;37(Web Server issue):W510-4. doi: 10.1093/nar/gkp322. Epub 2009 May 8. PubMed PMID: 

19429685; PubMed Central PMCID: PMC2703985. 

 

Blomberg N, Gabdoulline RR, Nilges M, and Wade RC. Classification of protein sequences by homology 

modeling and quantitative analysis of electrostatic similarity. Proteins: Str., Function and Genetics 1999, 37: 

379-387.  

 

Buermans HP, den Dunnen JT. Next generation sequencing technology: Advances and applications. 

Biochim Biophys Acta. 2014 Oct;1842(10):1932-1941. doi: 10.1016/j.bbadis.2014.06.015.  

 

Butt AM, Siddique S, Idrees M, Tong Y. Avian influenza A (H9N2): computational molecular analysis and 

phylogenetic characterization of viral surface proteins isolated between 1997 and 2009 from the human 

population. Virol J. 2010 Nov 15;7:319. doi: 10.1186/1743-422X-7 

 

Capua I, Alexander DJ. Avian influenza vaccines and vaccination in birds. Vaccine. 2008 Sep 12;26 Suppl 

4:D70-3. Review. PubMed PMID: 19230164. 

 

Capua I, Alexander DJ. Ecology, epidemiology and human health implications of avian influenza viruses: 

why do we need to share genetic data? Zoonoses Public Health. 2008;55(1):2-15. doi: 10.1111/j.1863-

2378.2007.01081.x. Review. PubMed PMID: 18201321. 

 

131



Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC. Structure of the hemagglutinin precursor 

cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell. 1998 

Oct 30;95(3):409-17. PubMed PMID: 9814710. 

 

Chothia C, Lesk AM. The relation between the divergence of sequence and structure in proteins. EMBO J. 

1986 Apr;5(4):823-6. PubMed PMID: 3709526; PubMed Central PMCID: PMC1166865. 

 

Copeland CS, Doms RW, Bolzau EM, Webster RG, Helenius A. Assembly of influenza hemagglutinin trimers 

and its role in intracellular transport. J Cell Biol. 1986 Oct;103(4):1179-91. PubMed PMID: 2429970; PubMed 

Central PMCID: PMC2114319. 

 

Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012 Jun;76(2):159-

216. doi: 10.1128/MMBR.05023-11. 

 

Ducatez MF, Pelletier C, Meyer G. Influenza D virus in cattle, France,2011-2014. Emerg Infect Dis. 2015 

Feb;21(2):368-71. doi: 10.3201/eid2102.141449. PubMed PMID: 25628038; PubMed Central PMCID: 

PMC4313661. 

 

Fiser A. Template-based protein structure modeling. Methods Mol Biol. 2010;673:73-94. doi: 10.1007/978-1-

60761-842-3_6. Review. PubMed PMID: 20835794; PubMed Central PMCID: PMC4108304. 

 

Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, 

Osterhaus AD. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from 

black-headed gulls. J Virol. 2005 Mar;79(5):2814-22. PubMed PMID: 15709000; PubMed Central PMCID: 

PMC548452. 

 

França LT, Carrilho E, Kist TB. A review of DNA sequencing techniques. Q Rev Biophys. 2002 

May;35(2):169-200. Review. PubMed PMID: 12197303. 

 

Gabdoulline RR, Stein M, Wade RC. qPIPSA: Relating enzymatic kinetic parameters and interaction fields 

BMC Bioinformatics 2007, 8: 373 

 

Garten W., Klenk H.-D. Cleavage Activation of the Influenza Virus Hemagglutinin and Its Role in 

Pathogenesis. In: Klenk H.-D., Matrosovich M.N., Stech J., editors. Avian Influenza. Karger; Basel, 

Switzerland: 2008. 

 

Gómez-Puertas P, Albo C, Pérez-Pastrana E, Vivo A, Portela A. Influenza virus matrix protein is the major 

driving force in virus budding. J Virol. 2000 Dec;74(24):11538-47. PubMed PMID: 11090151; PubMed 

Central PMCID: PMC112434. 

 

132



Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for 

comparative protein modelling. Electrophoresis 18: 2714-2723. 

 

Gunsteren, Wilfred F.Van. Biomolecular Simulations: The GROMOS96 Manual and User Guide. 1996 

Hall, B.G. (2001) Phylogenetic Trees Made Easy: A How-to Manual for Molecular Biologists. Sunderland 

Massachusetts: Sinauer Associates. 

 

Hamilton BS, Whittaker GR, Daniel S. Influenza virus-mediated membrane fusion: determinants of 

hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses. 2012 

Jul;4(7):1144-68. doi: 10.3390/v4071144. Epub 2012 Jul 24. Review. PubMed PMID: 22852045; PubMed 

Central PMCID: PMC3407899. 

 

Harrison CJ, Langdale JA. A step by step guide to phylogeny reconstruction. Plant J. 2006 Feb;45(4):561-

72. PubMed PMID: 16441349. 

 

Hausmann J, Kretzschmar E, Garten W, Klenk HD. Biosynthesis, intracellular transport and enzymatic 

activity of an avian influenza A virus neuraminidase: role of unpaired cysteines and individual 

oligosaccharides. J Gen Virol. 1997 Dec;78 ( Pt 12):3233-45. PubMed PMID: 9400974. 

 

Hensley SE, Das SR, Bailey AL, Schmidt LM, Hickman HD, Jayaraman A, Viswanathan K, Raman R, 

Sasisekharan R, Bennink JR, Yewdell JW. Hemagglutinin receptor binding avidity drives influenza A virus 

antigenic drift. Science. 2009 Oct 30;326(5953):734-6. doi: 10.1126/science.1178258. PubMed PMID: 

19900932; PubMed Central PMCID: PMC2784927. 

 

Howard CR, Fletcher NF. Emerging virus diseases: can we ever expect the unexpected? Emerg Microbes 

Infect. 2012 Dec;1(12):e46. doi: 10.1038/emi.2012.47.  

 

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001 

Aug;17(8):754-5. PubMed PMID: 11524383. 

 

Illergård K, Ardell DH, Elofsson A. Structure is three to ten times more conserved than sequence--a study of 

structural response in protein cores. Proteins. 2009 Nov 15;77(3):499-508. doi: 10.1002/prot.22458. PubMed 

PMID: 19507241. 

 

Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, Dunfee RL, Schwartzman LM, Ozinsky A, 

Bell GL, Dalton RM, Lo A, Efstathiou S, Atkins JF, Firth AE, Taubenberger JK, Digard P. An overlapping 

protein-coding region in influenza A virus segment 3 modulates the host response. Science. 2012 Jul 

13;337(6091):199-204. doi: 10.1126/science.1222213. Epub 2012 Jun 28. PubMed PMID: 22745253; 

PubMed Central PMCID: PMC3552242. 

 

133



Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009). The SWISS-MODEL Repository and associated 

resources. Nucleic Acids Research. 37, D387-D392. 

 

Klenk HD, Rott R, Orlich M, Blödorn J. Activation of influenza A viruses by trypsin treatment. Virology. 1975 

Dec;68(2):426-39. PubMed PMID: 173078. 

 

Kobayashi Y, Suzuki Y. Compensatory evolution of net-charge in influenza A virus hemagglutinin. PLoS 

One. 2012;7(7):e40422. doi:10.1371/journal.pone.0040422. Epub 2012 Jul 12. PubMed PMID: 22808159; 

PubMed Central PMCID: PMC3395715. 

 

Lam TT, Hon CC, Tang JW. Use of phylogenetics in the molecular epidemiology and evolutionary studies of 

viral infections. Crit Rev Clin Lab Sci. 2010 Jan-Feb;47(1):5-49. doi: 10.3109/10408361003633318. Review. 

PubMed PMID: 20367503. 

 

LaRussa P. Pandemic novel 2009 H1N1 influenza: what have we learned? Semin Respir Crit Care Med. 

2011 Aug;32(4):393-9. doi: 10.1055/s-0031-1283279. Epub 2011 Aug 19. Review. PubMed PMID: 

21858744. 

 

Lu Y, Qian XY, Krug RM. The influenza virus NS1 protein: a novel inhibitor of pre-mRNA splicing. Genes 

Dev. 1994 Aug 1;8(15):1817-28. PubMed PMID: 7958859. Qiu Y, Krug RM. The influenza virus NS1 protein 

is a poly(A)-binding protein that inhibits nuclear export of mRNAs containing poly(A). J Virol. 1994 

Apr;68(4):2425-32. PubMed PMID: 7908060; PubMed Central PMCID: PMC236720. 

 

Martín J, Wharton SA, Lin YP, Takemoto DK, Skehel JJ, Wiley DC, Steinhauer DA. Studies of the binding 

properties of influenza hemagglutinin receptor-site mutants. Virology. 1998 Feb 1;241(1):101-11. PubMed 

PMID: 9454721. 

 

Matrosovich, M., N. Zhou, Y. Kawaoka, and R. Webster. 1999. The surface glycoproteins of H5 influenza 

viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. Journal of 

Virology 73(2):1146–1155 

 

Matrosovich, M.N., T.Y. Matrosovich, T. Gray, N.A. Roberts, and H.D. Klenk. 2004. Human and avian 

influenza viruses target different cell types in cultures of human airway epithelium. Proceedings of the 

National Academy of Sciences U S A 101(13):4620–4624 

 

Melo F, Feytmans E. Assessing protein structures with a non-local atomic interaction energy. J Mol Biol. 

1998 Apr 17;277(5):1141-52. PubMed PMID: 9571028. 

 

Muramoto Y, Noda T, Kawakami E, Akkina R, Kawaoka Y. Identification of novel influenza A virus proteins 

translated from PA mRNA. J Virol. 2013 Mar;87(5):2455-62. doi: 10.1128/JVI.02656-12. Epub 2012 Dec 12. 

PubMed PMID: 23236060; PubMed Central PMCID: PMC3571384. 

134



O'Halloran D. A practical guide to phylogenetics for nonexperts. J Vis Exp. 2014 Feb 5;(84):e50975.  

 

Peitsch, M. C. (1995) Protein modeling by E-mail Bio/Technology 13: 658-660. 

 

Plotch SJ, Bouloy M, Krug RM. Transfer of 5'-terminal cap of globin mRNA to influenza viral complementary 

RNA during transcription in vitro. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1618-22. PubMed PMID: 

287003; PubMed Central PMCID: PMC383441. 

 

Plotkin, J.B., and J. Dushoff. 2003. Codon bias and frequency-dependent selection on the hemagglutinin 

epitopes of infl uenza A virus. Proceedings of the National Academy of Sciences U S A 100:7152–7157 

 

Portela A, Digard P. The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus 

replication. J Gen Virol. 2002 Apr;83(Pt 4):723-34. PubMed PMID: 11907320. 

 

Ravantti J, Bamford D, Stuart DI. Automatic comparison and classification of protein structures. J Struct Biol. 

2013 Jul;183(1):47-56. doi: 10.1016/j.jsb.2013.05.007. Epub 2013 May 21. PubMed PMID: 23707633. 

 

Richter S, Wenzel A, Stein M, Gabdoulline RR, Wade RC. webPIPSA: a web server for the comparison of 

protein interaction properties. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W276-80. doi: 

10.1093/nar/gkn181. Epub 2008 Apr 17. PubMed PMID: 18420653; PubMed Central PMCID: PMC2447742. 

 

Robb NC, Jackson D, Vreede FT, Fodor E. Splicing of influenza A virus NS1 mRNA is independent of the 

viral NS1 protein. J Gen Virol. 2010 Sep;91(Pt 9):2331-40. doi: 10.1099/vir.0.022004-0. Epub 2010 Jun 2. 

PubMed PMID: 20519456. 

 

Rost B, Schneider R, Sander C. Protein fold recognition by prediction-based threading. J Mol Biol. 

1997;270:471–480. doi: 10.1006/jmbi.1997.1101. 

 

Rost B. Twilight zone of protein sequence alignments. Protein Eng. 1999 Feb;12(2):85-94. PubMed PMID: 

10195279. 

 

Samji T. Influenza A: understanding the viral life cycle. Yale J Biol Med. 2009 Dec;82(4):153-9. Review. 

PubMed PMID: 20027280; PubMed Central PMCID: PMC2794490. 

 

Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. 

natn. Acad. Sci. USA 74, 5463–5467. 

 

Schwede T, Kopp J, Guex N, and Peitsch MC (2003) SWISS-MODEL: an automated protein homology-

modeling server. Nucleic Acids Research 31: 3381-3385. 

 

135



Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S, Ellison JA, Davis CT, York IA, 

Turmelle AS, Moran D, Rogers S, Shi M, Tao Y, Weil MR, Tang K, Rowe LA, Sammons S, Xu X, Frace M, 

Lindblade KA, Cox NJ, Anderson LJ, Rupprecht CE, Donis RO. A distinct lineage of influenza A virus from 

bats. Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4269-74. doi: 10.1073/pnas.1116200109. Epub 2012 

Feb 27. PubMed PMID: 22371588; PubMed Central PMCID: PMC3306675. 

 

Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, 

Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ,Gilbert AT, Chang J, Guo Z, Davis CT, Paulson 

JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO. New world bats harbor diverse influenza A 

viruses. PLoS Pathog. 2013;9(10):e1003657. doi: 10.1371/journal.ppat.1003657. Epub 2013 Oct 10. 

PubMed PMID: 24130481; PubMed Central PMCID: PMC3794996. 

 

Unni S, Huang Y, Hanson RM, Tobias M, Krishnan S, Li WW, Nielsen JE, Baker NA. Web servers and 

services for electrostatics calculations with APBS and PDB2PQR. J Comput Chem. 2011 May;32(7):1488-

91. doi: 10.1002/jcc.21720. Epub 2011 Feb 1. PubMed PMID: 21425296; PubMed Central PMCID: 

PMC3062090. 

 

Vandegrift KJ, Sokolow SH, Daszak P, Kilpatrick AM. Ecology of avian influenza viruses in a changing world. 

Ann N Y Acad Sci. 2010 May;1195:113-28. doi: 10.1111/j.1749-6632.2010.05451.x. Review. PubMed PMID: 

20536820; PubMed Central PMCID: PMC2981064 

 

Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. Quasispecies diversity determines pathogenesis 

through cooperative interactions in a viral population. Nature. 2006 Jan 19;439(7074):344-8. Epub 2005 Dec 

4. PubMed PMID: 16327776; PubMed Central PMCID: PMC1569948. 

 

Wade RC, Gabdoulline RR and De Rienzo F. Protein Interaction Property Similarity Analysis. Intl. J. Quant. 

Chem. 2001, 83: 122-127.  

 

Wainright, P.O., M.L. Perdue, M. Brugh, and C.W. Beard. 1991. Amantadine resistance among 

hemagglutinin subtype 5 strains of avian influenza virus. Avian Diseases 35:31–39. 

 

Wagner, R., M. Matrosovich, and H. D. Klenk. 2002. Functional balance between haemagglutinin and 

neuraminidase in influenza virus infections. Rev. Med. Virol. 12:159–166. 

 

Webster, R.G., and W.G. Laver. 1980. Determination of the number of nonoverlapping antigenic areas on 

Hong Kong (H3N2) influenza virus hemagglutinin with monoclonal antibodies and the selection of variants 

with potential epidemiological significance. Virology 104:139–148. 

 

Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A 

viruses. Microbiol Rev. 1992 Mar;56(1):152-79. Review. PubMed PMID: 1579108; PubMed Central PMCID: 

PMC372859. 

136



 

Webster R, Peiris M, Chen H, et al. H5N1 outbreaks and enzootic influenza. Emerg. Infect. Dis.2006; 12:3–

8. [PubMed: 16494709] 

 

Weis W, Brown JH, Cusack S, Paulson JC, Skehel JJ, Wiley DC. Structure of the influenza virus 

haemagglutinin complexed with its receptor, sialic acid. Nature. 1988 Jun 2;333(6172):426-31. PubMed 

PMID: 3374584. 

 

Wise HM, Foeglein A, Sun J, Dalton RM, Patel S, Howard W, Anderson EC, Barclay WS, Digard P. A 

complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 

2 mRNA. J Virol. 2009 Aug;83(16):8021-31. doi: 10.1128/JVI.00826-09. Epub 2009 Jun 3. PubMed PMID: 

19494001; PubMed Central PMCID: PMC2715786. 

 

Zamarin D, García-Sastre A, Xiao X, Wang R, Palese P. Influenza virus PB1-F2 protein induces cell death 

through mitochondrial ANT3 and VDAC1. PLoS Pathog. 2005 Sep;1(1):e4. Epub 2005 Sep 30. PubMed 

PMID: 16201016; PubMed Central PMCID: PMC1238739. 

 

Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of 

mean force for structure selection and stability prediction. Protein Sci. 2002 Nov;11(11):2714-26. Erratum in: 

Protein Sci. 2003 Sep;12(9):2121. PubMed PMID: 12381853; PubMed Central PMCID: PMC2373736. 

 

 

 

 

 

 

 

 

 

 

137



 

138



 
 
 
 
 
 
 
 

SUPPLEMENTARY MATERIAL CHAPTER 1 

139



 

140



Ta
b

le
 S

1.
 L

is
t o

f s
am

pl
es

 in
cl

u
de

d
 in

 t
he

 a
n

a
ly

si
s.

 F
or

 e
a

ch
 s

a
m

p
le

s 
th

e 
a

va
ila

b
le

 s
e

q
ue

n
ce

s 
a

re
 in

d
ic

at
e

d
; t

he
 n

u
m

b
e

r 
of

 m
a

pp
e

d 
re

a
ds

 a
nd

 th
e

 H
A

 
co

ve
ra

ge
 a

re
 s

h
ow

e
d

 fo
r 

th
o

se
 s

a
m

p
le

s 
se

q
ue

n
ce

d
 u

si
n

g
 N

G
S

.

V
ir

u
s

C
o

ll
ec

ti
o

n
d

a
te

P
ro

vi
n

c
e

R
e

g
io

n
A

v
ai

la
b

le
 s

eq
u

en
c

es
C

o
m

m
e

n
ts

M
a

p
p

e
d

re
a

d
s

H
A

 m
e

an
co

ve
ra

g
e

A
/tu

rk
e

y/
It

al
y/

7
15

9/
2

00
2

16
/1

0
/2

0
02

B
S

Lo
m

b
ar

di
a

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I2

4
32

76
; E

P
I5

43
95

4-
E

P
I5

4
39

60
)

 
 

A
/tu

rk
e

y/
It

al
y/

7
65

3/
2

00
2

29
/1

0
/2

0
02

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I2

4
32

77
; E

P
I5

43
96

1-
E

P
I5

4
39

67
)

 
 

A
/tu

rk
e

y/
It

al
y/

8
30

7/
2

00
2

07
/1

1
/2

0
02

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I1

5
49

67
; E

P
I5

44
02

3-
E

P
I5

4
40

29
)

 
 

A
/c

h
ic

ke
n/

Ita
ly

/8
09

3/
20

02
09

/1
1

/2
0

02
V

R
V

e
ne

to
C

o
m

p
le

te
 g

en
om

e
T

h
is

 s
tu

dy
 (

E
P

I1
5

49
66

; E
P

I5
43

98
2-

E
P

I5
4

39
88

)
51

9
35

2
50

2
0

A
/tu

rk
e

y/
It

al
y/

8
65

1/
2

00
2

20
/1

1
/2

0
02

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I1

5
49

69
; E

P
I5

44
03

0-
E

P
I5

4
40

36
)

 
 

A
/tu

rk
e

y/
It

al
y/

8
83

4/
2

00
2

25
/1

1
/2

0
02

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I1

5
49

70
; E

P
I5

44
03

7-
E

P
I5

4
40

43
)

 
 

A
/tu

rk
e

y/
It

al
y/

9
10

2/
2

00
2

02
/1

2
/2

0
02

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I1

5
49

71
; E

P
I5

44
04

4-
E

P
I5

4
40

50
)

 
 

A
/tu

rk
e

y/
It

al
y/

9
31

4/
2

00
2

09
/1

2
/2

0
02

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I1

5
49

72
; E

P
I5

44
05

1-
E

P
I5

4
40

57
)

 
 

A
/tu

rk
e

y/
It

al
y/

9
36

9/
2

00
2

10
/1

2
/2

0
02

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I1

5
49

73
; E

P
I5

44
05

8-
E

P
I5

4
40

64
)

45
0

87
6

13
7

3

A
/tu

rk
e

y/
It

al
y/

9
37

4/
2

00
2

11
/1

2
/2

0
02

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I1

5
49

74
; E

P
I5

43
96

8-
E

P
I5

4
39

74
)

 
 

A
/g

ui
ne

af
ow

l/I
ta

ly
/1

6
13

/2
0

03
12

/0
3

/2
0

03
P

D
V

e
ne

to
A

ll 
ge

ne
s 

ex
ce

pt
 N

P
T

h
is

 s
tu

dy
 (

E
P

I1
5

49
59

; E
P

I5
43

98
9-

E
P

I5
4

39
94

)
 

 

A
/c

h
ic

ke
n/

Ita
ly

/2
24

0/
20

03
16

/0
4

/2
0

03
V

R
V

e
ne

to
C

o
m

p
le

te
 g

en
om

e
T

h
is

 s
tu

dy
 (

E
P

I1
5

49
60

; E
P

I5
43

97
5-

E
P

I5
4

39
81

)
 

 

A
/tu

rk
e

y/
It

al
y/

2
96

3/
2

00
3

23
/0

5
/2

0
03

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I2

4
32

79
; E

P
I5

43
94

0-
E

P
I5

4
39

46
)

 
 

A
/tu

rk
e

y/
It

al
y/

2
85

6/
2

00
3

26
/0

5
/2

0
03

M
N

Lo
m

b
ar

di
a

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I5

4
39

96
-E

P
I5

44
00

2)
 

 

A
/tu

rk
e

y/
It

al
y/

4
03

6/
2

00
3

17
/0

7
/2

0
03

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I1

5
49

63
; E

P
I5

44
01

6-
E

P
I5

4
40

22
)

 
 

A
/tu

rk
e

y/
It

al
y/

3
39

9/
2

00
4

22
/0

9
/2

0
04

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I1

5
49

61
; E

P
I5

44
00

3-
E

P
I5

4
40

09
)

 
 

A
/tu

rk
e

y/
It

al
y/

3
43

9/
2

00
4

22
/0

9
/2

0
04

V
R

V
e

ne
to

A
ll 

ge
ne

s 
ex

ce
pt

 M
T

h
is

 s
tu

dy
 (

E
P

I1
5

49
62

; E
P

I5
44

01
0-

E
P

I5
4

40
15

)
 

 

A
/tu

rk
e

y/
It

al
y/

4
19

9/
2

00
4

05
/1

1
/2

0
04

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I2

4
32

80
; E

P
I5

43
94

7-
E

P
I5

4
39

53
)

 
 

A
/tu

rk
e

y/
It

al
y/

7
22

2/
2

00
2

18
/1

0
/2

0
02

B
S

Lo
m

b
ar

di
a

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I5

4
38

53
-E

P
I5

43
85

9)
 

 

A
/tu

rk
e

y/
It

al
y/

7
77

3/
2

00
2

31
/1

0
/2

0
02

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I5

4
38

61
-E

P
I5

43
86

7)
86

8
28

7
48

5
5

A
/tu

rk
e

y/
It

al
y/

8
30

3/
2

00
2

13
/1

1
/2

0
02

V
I

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I5

4
38

69
-E

P
I5

43
87

5)
52

3
30

1
22

8

A
/o

st
ric

h
/It

a
ly

/8
8

56
/2

00
2

26
/1

1
/2

0
02

B
G

Lo
m

b
ar

di
a

N
P,

 H
A

, M
, N

S
, N

A
T

h
is

 s
tu

dy
 (

E
P

I5
4

37
92

-E
P

I5
43

79
5)

 
 

A
/tu

rk
e

y/
It

al
y/

0
2v

ir
92

8
9/

20
02

05
/1

2
/2

0
02

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I5

4
39

33
-E

P
I5

43
93

9)
32

0
55

6
51

4
83

A
/g

ui
ne

af
ow

l/I
ta

ly
/9

3
60

/2
0

02
11

/1
2

/2
0

02
B

S
Lo

m
b

ar
di

a
C

o
m

p
le

te
 g

en
om

e
T

h
is

 s
tu

dy
 (

E
P

I5
4

39
17

-E
P

I5
43

92
3)

 
 

141



V
ir

u
s

C
o

ll
ec

ti
o

n
d

a
te

P
ro

vi
n

c
e

R
e

g
io

n
A

v
ai

la
b

le
 s

eq
u

en
c

es
C

o
m

m
e

n
ts

M
a

p
p

e
d

re
a

d
s

H
A

 m
e

an
co

ve
ra

g
e

A
/tu

rk
e

y/
It

al
y/

9
44

1/
2

00
2

12
/1

2
/2

0
02

B
O

E
m

ili
a 

R
o

m
a

gn
a

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I5

4
38

77
-E

P
I5

43
88

3)
 

 

A
/tu

rk
e

y/
It

al
y/

9
50

4/
2

00
2

17
/1

2
/2

0
02

P
D

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I5

4
38

85
-E

P
I5

43
89

1)
 

 

A
/g

ui
ne

af
ow

l/I
ta

ly
/9

5
65

/2
0

02
19

/1
2

/2
0

02
V

R
V

e
ne

to
C

o
m

p
le

te
 g

en
om

e
T

h
is

 s
tu

dy
 (

E
P

I5
4

39
25

-E
P

I5
43

93
1)

46
6

52
7

14
2

8

A
/tu

rk
e

y/
It

al
y/

9
61

1/
2

00
2

20
/1

2
/2

0
02

P
D

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I5

4
38

93
-E

P
I5

43
89

9)
54

3
22

1
26

0
9

A
/tu

rk
e

y/
It

al
y/

9
69

2/
2

00
2

24
/1

2
/2

0
02

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I5

4
39

01
-E

P
I5

43
90

7)
 

 

A
/tu

rk
e

y/
It

al
y/

4
/2

0
03

03
/0

1
/2

0
03

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I5

4
38

29
-E

P
I5

43
83

5)
71

12
24

49
7

4

A
/tu

rk
e

y/
It

al
y/

1
7/

2
00

3
07

/0
1

/2
0

03
P

D
V

e
ne

to
C

o
m

p
le

te
 g

en
om

e
T

h
is

 s
tu

dy
 (

E
P

I5
4

38
05

-E
P

I5
43

81
1)

51
9

97
3

15
1

6

A
/c

h
ic

ke
n/

Ita
ly

/1
45

/2
00

3
09

/0
1

/2
0

03
P

D
V

e
ne

to
C

o
m

p
le

te
 g

en
om

e
T

h
is

 s
tu

dy
 (

E
P

I5
4

37
70

-E
P

I5
43

77
6)

 
 

A
/tu

rk
e

y/
It

al
y/

1
95

/2
0

03
09

/0
1

/2
0

03
V

R
V

e
ne

to
C

o
m

p
le

te
 g

en
om

e
T

h
is

 s
tu

dy
 (

E
P

I5
4

37
97

-E
P

I5
43

80
3)

 
 

A
/tu

rk
e

y/
It

al
y/

3
87

/2
0

03
17

/0
1

/2
0

03
V

R
V

e
ne

to
C

o
m

p
le

te
 g

en
om

e
T

h
is

 s
tu

dy
 (

E
P

I5
4

38
21

-E
P

I5
43

82
7)

 
 

A
/c

h
ic

ke
n/

Ita
ly

/6
03

/2
00

3
24

/0
1

/2
0

03
B

S
Lo

m
b

ar
di

a
C

o
m

p
le

te
 g

en
om

e
T

h
is

 s
tu

dy
 (

E
P

I5
4

37
84

-E
P

I5
43

79
0)

 
 

A
/tu

rk
e

y/
It

al
y/

9
92

/2
0

03
11

/0
2

/2
0

03
P

D
V

e
ne

to
C

o
m

p
le

te
 g

en
om

e
T

h
is

 s
tu

dy
 (

E
P

I5
4

39
09

-E
P

I5
43

91
5)

 
 

A
/tu

rk
e

y/
It

al
y/

2
96

4/
2

00
3

27
/0

5
/2

0
03

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I5

4
38

13
-E

P
I5

43
81

9)
 

 

A
/tu

rk
e

y/
It

al
y/

4
31

0/
2

00
3

28
/0

7
/2

0
03

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I5

4
38

37
-E

P
I5

43
84

3)
 

 

A
/c

h
ic

ke
n/

Ita
ly

/4
91

7/
20

03
28

/0
8

/2
0

03
V

R
V

e
ne

to
P

B
1

, H
A

, 
N

P,
 N

A
, 

N
S

, M
 

T
h

is
 s

tu
dy

 (
E

P
I5

4
37

78
-E

P
I5

43
78

2)
 

 

A
/tu

rk
e

y/
It

al
y/

5
12

5/
2

00
3

09
/0

9
/2

0
03

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

is
 s

tu
dy

 (
E

P
I5

4
38

45
-E

P
I5

43
85

1)
 

 

A
/tu

rk
e

y/
It

al
y/

4
04

2/
2

00
4

27
/1

0
/2

0
04

V
R

V
e

ne
to

H
A

T
h

is
 s

tu
dy

 (
E

P
I1

5
49

64
)

 
 

A
/tu

rk
e

y/
It

al
y/

2
14

84
5/

2
00

2
15

/1
0

/2
0

02
na

na
C

o
m

p
le

te
 g

en
om

e
C

a
m

p
ite

lli
 e

t 
al

. 
20

04
 

 

A
/tu

rk
e

y/
It

al
y/

2
20

15
8/

2
00

2
15

/1
0

/2
0

02
na

na
C

o
m

p
le

te
 g

en
om

e
C

a
m

p
ite

lli
 e

t 
al

. 
20

04
 

 

A
/tu

rk
e

y/
It

al
y/

8
00

0/
2

00
2

06
/1

1
/2

0
02

M
N

Lo
m

b
ar

di
a

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

8
53

4/
2

00
2

13
/1

1
/2

0
02

M
N

Lo
m

b
ar

di
a

C
o

m
p

le
te

 g
en

om
e 

 
T

h
e 

N
IA

ID
 In

flu
e

nz
a

 G
e

no
m

e
 S

eq
u

en
ci

ng
P

ro
je

ct
 

 

A
/tu

rk
e

y/
It

al
y/

8
53

5/
2

00
2

13
/1

1
/2

0
02

B
S

Lo
m

b
ar

di
a

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

8
45

8/
2

00
2

14
/1

1
/2

0
02

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

8
91

2/
2

00
2

26
/1

1
/2

0
02

V
I

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/c

h
ic

ke
n/

Ita
ly

/2
70

63
8/

02
15

/1
2

/2
0

02
na

na
H

A
C

a
m

p
ite

lli
 e

t 
al

. 
20

08
 

 

A
/G

u
in

e
af

o
w

l/I
ta

ly
/2

66
18

4/
02

15
/1

2
/2

0
02

na
na

H
A

C
a

m
p

ite
lli

 e
t 

al
. 

20
08

 
 

142



V
ir

u
s

C
o

ll
ec

ti
o

n
d

a
te

P
ro

vi
n

c
e

R
e

g
io

n
A

v
ai

la
b

le
 s

eq
u

en
c

es
C

o
m

m
e

n
ts

M
a

p
p

e
d

re
a

d
s

H
A

 m
e

an
co

ve
ra

g
e

A
/tu

rk
e

y/
It

al
y/

9
73

9/
2

00
2

23
/1

2
/2

0
02

B
S

Lo
m

b
ar

di
a

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

9
74

2/
2

00
2

23
/1

2
/2

0
02

B
S

Lo
m

b
ar

di
a

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

9
73

7/
2

00
2

30
/1

2
/2

0
02

M
N

Lo
m

b
ar

di
a

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

2
51

/2
0

03
14

/0
1

/2
0

03
B

S
Lo

m
b

ar
di

a
C

o
m

p
le

te
 g

en
om

e
T

h
e 

N
IA

ID
 In

flu
e

nz
a

 G
e

no
m

e
 S

eq
u

en
ci

ng
P

ro
je

ct
 

 

A
/c

h
ic

ke
n/

Ita
ly

/6
82

/2
00

3
21

/0
1

/2
0

03
P

D
V

e
ne

to
C

o
m

p
le

te
 g

en
om

e
T

h
e 

N
IA

ID
 In

flu
e

nz
a

 G
e

no
m

e
 S

eq
u

en
ci

ng
P

ro
je

ct
 

 

A
/tu

rk
e

y/
It

al
y/

1
01

0/
2

00
3

10
/0

2
/2

0
03

M
N

Lo
m

b
ar

di
a

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

6
88

19
/0

3
15

/0
3

/2
0

03
na

na
C

o
m

p
le

te
 g

en
om

e
C

a
m

p
ite

lli
 e

t 
al

. 
20

08
 

 

A
/tu

rk
e

y/
It

al
y/

2
04

3/
2

00
3

24
/0

3
/2

0
03

B
G

Lo
m

b
ar

di
a

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

9
75

00
/0

3
15

/0
4

/2
0

03
na

na
A

ll 
ge

ne
s 

ex
ce

pt
 P

B
1

C
a

m
p

ite
lli

 e
t 

al
. 

20
08

 
 

A
/tu

rk
e

y/
It

al
y/

1
21

96
4/

0
3

15
/0

5
/2

0
03

na
na

C
o

m
p

le
te

 g
en

om
e

C
a

m
p

ite
lli

 e
t 

al
. 

20
08

 
 

A
/tu

rk
e

y/
It

al
y/

2
68

4/
2

00
3

15
/0

5
/2

0
03

C
R

Lo
m

b
ar

di
a

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

2
68

5/
2

00
3

15
/0

5
/2

0
03

B
S

Lo
m

b
ar

di
a

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

2
96

2/
2

00
3

04
/0

6
/2

0
03

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

C
a

pu
a 

e
t a

l.,
 2

01
3

 
 

A
/tu

rk
e

y/
It

al
y/

2
98

7/
2

00
3

04
/0

6
/2

0
03

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

3
62

0/
2

00
3

01
/0

7
/2

0
03

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/d

uc
k/

It
al

y/
4

60
9/

2
00

3(
H

7N
2

)
06

/0
8

/2
0

03
M

N
Lo

m
b

ar
di

a
C

o
m

p
le

te
 g

en
om

e
T

h
e 

N
IA

ID
 In

flu
e

nz
a

 G
e

no
m

e
 S

eq
u

en
ci

ng
P

ro
je

ct
 

 

A
/q

ua
il/

It
al

y/
4

61
0/

2
00

3(
H

7N
2

)
06

/0
8

/2
0

03
B

G
Lo

m
b

ar
di

a
C

o
m

p
le

te
 g

en
om

e
T

h
e 

N
IA

ID
 In

flu
e

nz
a

 G
e

no
m

e
 S

eq
u

en
ci

ng
P

ro
je

ct
 

 

A
/tu

rk
e

y/
It

al
y/

4
60

8/
2

00
3

08
/0

8
/2

0
03

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/c

h
ic

ke
n/

Ita
ly

/4
61

6/
20

03
11

/0
8

/2
0

03
N

O
P

ie
m

on
te

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

3
33

7/
2

00
4

20
/0

9
/2

0
04

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/q

ua
il/

It
al

y/
3

34
7/

2
00

4
21

/0
9

/2
0

04
V

R
V

e
ne

to
C

o
m

p
le

te
 g

en
om

e
T

h
e 

N
IA

ID
 In

flu
e

nz
a

 G
e

no
m

e
 S

eq
u

en
ci

ng
P

ro
je

ct
 

 

A
/tu

rk
e

y/
It

al
y/

3
47

7/
2

00
4

29
/0

9
/2

0
04

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

3
80

7/
2

00
4

13
/1

0
/2

0
04

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

3
82

9/
2

00
4

13
/1

0
/2

0
04

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

143



V
ir

u
s

C
o

ll
ec

ti
o

n
d

a
te

P
ro

vi
n

c
e

R
e

g
io

n
A

v
ai

la
b

le
 s

eq
u

en
c

es
C

o
m

m
e

n
ts

M
a

p
p

e
d

re
a

d
s

H
A

 m
e

an
co

ve
ra

g
e

A
/tu

rk
e

y/
It

al
y/

4
13

0/
2

00
4

02
/1

1
/2

0
04

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

4
37

2/
2

00
4

18
/1

1
/2

0
04

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

A
/tu

rk
e

y/
It

al
y/

4
47

9/
2

00
4

23
/1

1
/2

0
04

V
R

V
e

ne
to

C
o

m
p

le
te

 g
en

om
e

T
h

e 
N

IA
ID

 In
flu

e
nz

a
 G

e
no

m
e

 S
eq

u
en

ci
ng

P
ro

je
ct

 
 

144



 

Su
pp

le
m

en
ta

re
 F

ig
.S

1:
 M

L 
ph

yl
og

en
et

ic
 tr

ee
 o

f t
he

 P
B2

 
ge

ne
 

se
gm

en
t 

of
 

Ita
lia

n 
H

7 
av

ia
n 

in
flu

en
za

 
vi

ru
se

s.
 

G
en

et
ic

 g
ro

up
s 

ar
e 

co
lo

re
d 

ac
co

rd
in

g 
to

 F
ig

. 
1 

co
lo

r 
sc

he
m

e.
 

Th
e 

nu
m

be
rs

 
at

 
no

de
s 

re
pr

es
en

t 
bo

ot
st

ra
p 

va
lu

es
 

(>
70

%
), 

w
hi

le
 

br
an

ch
 

le
ng

th
s 

ar
e 

sc
al

ed
 

ac
co

rd
in

g 
to

 th
e 

nu
m

be
rs

 o
f n

uc
le

ot
id

e 
su

bs
tit

ut
io

ns
 p

er
 

si
te

. 
Th

e 
tre

e 
is

 m
id

-p
oi

nt
 r

oo
te

d 
fo

r 
cl

ar
ity

 o
nl

y.
 P

ar
al

le
l 

m
ut

at
io

ns
 a

re
 h

ig
hl

ig
ht

ed
 in

 y
el

lo
w

. 

145



Su
pp

le
m

en
ta

ry
 F

ig
. 

S2
: 

M
L 

ph
yl

og
en

et
ic

 t
re

e 
of

 t
he

 P
B1

 g
en

e 
se

gm
en

t 
of

 I
ta

lia
n 

H
7 

av
ia

n 
in

flu
en

za
 v

iru
se

s.
 G

en
et

ic
 g

ro
up

s 
ar

e 
co

lo
re

d 
ac

co
rd

in
g 

to
 F

ig
. 1

 c
ol

or
 s

ch
em

e.
 T

he
 n

um
be

rs
 a

t 
no

de
s 

re
pr

es
en

t 
bo

ot
st

ra
p 

va
lu

es
 (

>7
0%

), 
w

hi
le

 b
ra

nc
h 

le
ng

th
s 

ar
e 

sc
al

ed
 a

cc
or

di
ng

 t
o 

th
e 

nu
m

be
rs

 o
f n

uc
le

ot
id

e 
su

bs
tit

ut
io

ns
 p

er
 s

ite
. T

he
 tr

ee
 is

 m
id

-p
oi

nt
 ro

ot
ed

 fo
r c

la
rit

y 
on

ly
. P

ar
al

le
l 

m
ut

at
io

ns
 a

re
 h

ig
hl

ig
ht

ed
 in

 y
el

lo
w

. 

146



 

Su
pp

le
m

en
ta

ry
 F

ig
. 

S3
: 

M
L 

ph
yl

og
en

et
ic

 t
re

e 
of

 t
he

 P
A 

ge
ne

 s
eg

m
en

t 
of

 I
ta

lia
n 

H
7 

av
ia

n 
in

flu
en

za
 v

iru
se

s.
 G

en
et

ic
 g

ro
up

s 
ar

e 
co

lo
re

d 
ac

co
rd

in
g 

to
 F

ig
. 1

 c
ol

or
 s

ch
em

e.
 T

he
 n

um
be

rs
 a

t 
no

de
s 

re
pr

es
en

t 
bo

ot
st

ra
p 

va
lu

es
 (

>7
0%

), 
w

hi
le

 b
ra

nc
h 

le
ng

th
s 

ar
e 

sc
al

ed
 a

cc
or

di
ng

 t
o 

th
e 

nu
m

be
rs

 o
f n

uc
le

ot
id

e 
su

bs
tit

ut
io

ns
 p

er
 s

ite
. T

he
 tr

ee
 is

 m
id

-p
oi

nt
 ro

ot
ed

 fo
r c

la
rit

y 
on

ly
. P

ar
al

le
l 

m
ut

at
io

ns
 a

re
 h

ig
hl

ig
ht

ed
 i

n 
ye

llo
w

. 
Th

e 
m

ut
at

io
ns

 m
ap

pi
ng

 o
n 

P
A 

ar
e 

in
 b

la
ck

 w
hi

le
 t

he
 

m
ut

at
io

ns
 o

n 
P

A-
X

 a
re

 c
ol

or
ed

 in
 re

d.
 

147



 

Su
pp

le
m

en
ta

ry
 F

ig
. 

S4
: 

M
L 

ph
yl

og
en

et
ic

 t
re

e 
of

 t
he

 N
P 

ge
ne

 s
eg

m
en

t 
of

 I
ta

lia
n 

H
7 

av
ia

n 
in

flu
en

za
 v

iru
se

s.
 G

en
et

ic
 g

ro
up

s 
ar

e 
co

lo
re

d 
ac

co
rd

in
g 

to
 F

ig
. 1

 c
ol

or
 s

ch
em

e.
 T

he
 n

um
be

rs
 a

t 
no

de
s 

re
pr

es
en

t 
bo

ot
st

ra
p 

va
lu

es
 (

>7
0%

), 
w

hi
le

 b
ra

nc
h 

le
ng

th
s 

ar
e 

sc
al

ed
 a

cc
or

di
ng

 t
o 

th
e 

nu
m

be
rs

 o
f n

uc
le

ot
id

e 
su

bs
tit

ut
io

ns
 p

er
 s

ite
. T

he
 tr

ee
 is

 m
id

-p
oi

nt
 ro

ot
ed

 fo
r c

la
rit

y 
on

ly
. P

ar
al

le
l 

m
ut

at
io

ns
 a

re
 h

ig
hl

ig
ht

ed
 in

 y
el

lo
w

. 

148



 

Su
pp

le
m

en
ta

re
 F

ig
.S

5:
 M

L 
ph

yl
og

en
et

ic
 t

re
e 

of
 t

he
 M

 
ge

ne
 

se
gm

en
t 

of
 

Ita
lia

n 
H

7 
av

ia
n 

in
flu

en
za

 
vi

ru
se

s.
 

G
en

et
ic

 g
ro

up
s 

ar
e 

co
lo

re
d 

ac
co

rd
in

g 
to

 F
ig

. 
1 

co
lo

r 
sc

he
m

e.
 

Th
e 

nu
m

be
rs

 
at

 
no

de
s 

re
pr

es
en

t 
bo

ot
st

ra
p 

va
lu

es
 

(>
70

%
), 

w
hi

le
 

br
an

ch
 

le
ng

th
s 

ar
e 

sc
al

ed
 

ac
co

rd
in

g 
to

 th
e 

nu
m

be
rs

 o
f n

uc
le

ot
id

e 
su

bs
tit

ut
io

ns
 p

er
 

si
te

. 
Th

e 
tre

e 
is

 m
id

-p
oi

nt
 r

oo
te

d 
fo

r 
cl

ar
ity

 o
nl

y.
 P

ar
al

le
l 

m
ut

at
io

ns
 

ar
e 

hi
gh

lig
ht

ed
 

in
 

ye
llo

w
. 

Th
e 

m
ut

at
io

ns
 

m
ap

pi
ng

 o
n 

M
1 

ar
e 

in
 b

la
ck

 w
hi

le
 t

he
 m

ut
at

io
ns

 o
n 

M
2 

ar
e 

co
lo

re
d 

in
 re

d.
 

149



 

Su
pp

le
m

en
ta

ry
 F

ig
. 

S6
: 

M
L 

ph
yl

og
en

et
ic

 t
re

e 
of

 t
he

 N
S

 g
en

e 
se

gm
en

t 
of

 I
ta

lia
n 

H
7 

av
ia

n 
in

flu
en

za
 v

iru
se

s.
 G

en
et

ic
 g

ro
up

s 
ar

e 
co

lo
re

d 
ac

co
rd

in
g 

to
 F

ig
. 1

 c
ol

or
 s

ch
em

e.
 T

he
 n

um
be

rs
 a

t 
no

de
s 

re
pr

es
en

t 
bo

ot
st

ra
p 

va
lu

es
 (

>7
0%

), 
w

hi
le

 b
ra

nc
h 

le
ng

th
s 

ar
e 

sc
al

ed
 a

cc
or

di
ng

 t
o 

th
e 

nu
m

be
rs

 o
f n

uc
le

ot
id

e 
su

bs
tit

ut
io

ns
 p

er
 s

ite
. T

he
 tr

ee
 is

 m
id

-p
oi

nt
 ro

ot
ed

 fo
r c

la
rit

y 
on

ly
. P

ar
al

le
l 

m
ut

at
io

ns
 a

re
 h

ig
hl

ig
ht

ed
 in

 y
el

lo
w

. 

150



 
 
 
 
 
 
 
 

SUPPLEMENTARY MATERIAL CHAPTER 2 

151



 

152



 

0 

20 

40 

60 

80 

100
Distrib utio n of nucleoti de frequency dif ferences  

4541-8

4541-9

4541-34

 

0,00 

0,25 

0,50 

>2% 

P
e

rc
e

nt
a

ge
 o

f p
os

iti
on

Range of frequency dif ferences

S1 Fig. Distribution of nucleotide frequency differences between three technical replicates. . For each
genome position with a coverage >500 the frequency differences between the four bases (A, C, T and G)
were obtained from the comparison of the replicates of the threes samples: 4541-8 in yellow, 4541-9 in
violet, 4541-34 in blue. The y-axis represents the percentage of nucleotide positions where the highest
frequency differences fall within the ranges 0-0.1%, 0.1-0.25%, 0.25-0.5%, 0.5-1%, 1-2% and >2% (x-axis).
Frequency differences higher than 2% were observed in only 0.3%-0.4% of all the analysed positions (11501
to 13308) for all the replicates. Thus a 2% threshold allows the exclusion of 99.6% of the possible errors.
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S2 Fig. ML phylogenetic tree of the NA gene segment of H7 avian influenza viruses. HPAI H7N7
viruses collected during Italian epidemic are coloured according to the farm of collection: grey for farm 1,
purple for farm 2, light blue for farm 3, yellow for farm 4, green for farm 5 and orange for farm 6. The
numbers at nodes represent bootstrap values (>70%), while branch lengths are scaled according to the
numbers of nucleotide substitutions per site. The tree is mid-point rooted for clarity only.

154



S3 Fig. ML phylogenetic tree of the PB2 gene segment of H7 avian influenza viruses. HPAI H7N7
viruses collected during Italian epidemic are coloured according to the farm of collection: grey for farm 1,
purple for farm 2, light blue for farm 3, yellow for farm 4, green for farm 5 and orange for farm 6. The
numbers at nodes represent bootstrap values (>70%), while branch lengths are scaled according to the
numbers of nucleotide substitutions per site. The tree is mid-point rooted for clarity only.
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S4 Fig. ML phylogenetic tree of the PB1 gene segment of H7 avian influenza viruses. HPAI H7N7
viruses collected during Italian epidemic are coloured according to the farm of collection: grey for farm 1,
purple for farm 2, light blue for farm 3, yellow for farm 4, green for farm 5 and orange for farm 6. The
numbers at nodes represent bootstrap values (>70%), while branch lengths are scaled according to the
numbers of nucleotide substitutions per site. The tree is mid-point rooted for clarity only.
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S5 Fig. ML phylogenetic tree of the PA gene segment of H7 avian influenza viruses. HPAI H7N7
viruses collected during Italian epidemic are coloured according to the farm of collection: grey for farm 1,
purple for farm 2, light blue for farm 3, yellow for farm 4, green for farm 5 and orange for farm 6. The
numbers at nodes represent bootstrap values (>70%), while branch lengths are scaled according to the
numbers of nucleotide substitutions per site. The tree is mid-point rooted for clarity only.
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S6 Fig. ML phylogenetic tree of the NP gene segment of H7 avian influenza viruses.  HPAI H7N7
viruses collected during Italian epidemic are coloured according to the farm of collection: grey for farm 1,
purple for farm 2, light blue for farm 3, yellow for farm 4, green for farm 5 and orange for farm 6. The
numbers at nodes represent bootstrap values (>70%), while branch lengths are scaled according to the
numbers of nucleotide substitutions per site. The tree is mid-point rooted for clarity only.
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S7 Fig. ML phylogenetic tree of the M gene segment of H7 avian influenza viruses. HPAI H7N7 viruses
collected during Italian epidemic are coloured according to the farm of collection: grey for farm 1, purple for
farm 2, light blue for farm 3, yellow for farm 4, green for farm 5 and orange for farm 6. The numbers at nodes
represent bootstrap values (>70%), while branch lengths are scaled according to the numbers of nucleotide
substitutions per site. The tree is mid-point rooted for clarity only.
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S8 Fig. ML phylogenetic tree of the NS gene segment of H7 avian influenza viruses. HPAI H7N7
viruses collected during Italian epidemic are coloured according to the farm of collection: grey for farm 1,
purple for farm 2, light blue for farm 3, yellow for farm 4, green for farm 5 and orange for farm 6. The
numbers at nodes represent bootstrap values (>70%), while branch lengths are scaled according to the
numbers of nucleotide substitutions per site. The tree is mid-point rooted for clarity only.
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B

H9                H3              H7

H1                H2               H5
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Alpha ACD

A
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D

C

H1                   H2                    H5

 H9                   H3                    H7

H1                   H2                    H5

 H9                   H3                    H7

HA2 stem epitopes. Panel A: surface (left) and cartoon (right) representations of H5 trimers.
Color code: RBD and VED, gray; A helix, red; C-D helices, green; fusion peptide, magenta;
VED-proximal β region, blue; VED-distal β region, pale blue. Epitopes recognised by antibodies
CR6261 and CR8020 are highlighted in yellow and orange, respectively. Panel B: comparison of
the A-C-D α helices and B loop regions from the six available HA structures. Panels C and D
focus, within the six available structures, on VED-proximal and VED-distal β regions,
respectively.
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Epograms for the HA stem subregion. Epograms at I = 0 mM and I = 150 mM are shown. The horizontal
axis of the epogram represents ED values.
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Epograms for the HA RBD subregion. Epograms at I = 0 mM and I = 150 mM are shown. The horizontal
axis of the epogram represents ED values.

166



H5

H7

H1

H9

H2

H3

I = 0 mM

I = 150 mM

H2

H5

H7

H1

H3
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Epograms for the HA1 subregion. Epograms at I = 0 mM and I = 150 mM are shown. The horizontal axis of
the epogram represents ED values.
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Epograms for the HA monomers. Epograms at I = 0 mM and I = 150 mM are shown. The horizontal axis of
the epogram represents ED values.
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Epograms for the HA trimers. Epograms at I = 0 mM and I = 150 mM are shown. The horizontal axis of the
epogram represents ED values.
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Epograms at I = 0 mM for the HA stem subregion. Modeled structures have yellow background. The
horizontal axis of the epogram represents ED values.
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Epograms at I = 150 mM for the HA stem subregion. Modeled structures have yellow background. The
horizontal axis of the epogram represents ED values.
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Figure S1: Maximum-likelihood trees of 
1669 H9N2 isolates constructed by PhyML. 
The different classes and clades are color 
coded. Estimates of the statistical significance 
of phylogenies were calculated by performing 
100 bootstrap replicates. Numbers in the tree 
nodes represent the bootstrap support (≥60). 
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Figure S2. Maximum clade credibility 
(MCC) phylogenies inferred for the HA 
gene sequences of 357 viruses of AI H9 
subtype. Branches are coloured according 
to the most probable ancestor location (in 
terms of geographic area) of their 
descendent nodes. Timeline at the bottom 
indicates the years before the most recent 
sampling time. Virus name information is 
reported in details. 
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Figure S3. Isopotential contours of the 
RBD from representative H9N2 virus 
strains. Four 90° stepwise rotation views 
are presented for each representative 
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