
 

 

 

 

 

 

 

Sede Amministrativa: Università degli Studi di Padova 

 

 

Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari 

___________________________________________________________________ 

 

 

SCUOLA DI DOTTORATO DI RICERCA IN : Scienze Mediche, Cliniche e Sperimentali 

INDIRIZZO: Neuroscienze 

CICLO XXVIII 

 

 

 

 

MUSCLE MITOCHONDRIA DYSFUNCTIONS IN SPINAL AND 

BULBAR MUSCULAR ATROPHY 

 
 

 

 

Direttore della Scuola: Ch.mo Prof. Gaetano Thiene 

Coordinatore d’indirizzo: Ch.ma Prof.ssa Elena Pegoraro 

Supervisore: Ch.mo Dr. Gianni Sorarù 

 

 

 

 

             Dottoranda: Dott.ssa Doriana Borgia 



 



Abstract 

 
I 

 

Abstract 
Spinal and Bulbar Muscular Atrophy (SBMA), also known as Kennedy’s Disease, is an 

X-linked recessive disorder, affecting only males, characterized by loss of motor 

neurons in the spinal cord and brainstem. Patients may also show signs of androgen 

insensitivity, including gynaecomastia, reduced fertility, and testicular atrophy. The 

molecular basis of SBMA is the expansion of a trinucleotide CAG repeat in the first 

exon of the Androgen Receptor (AR) gene, that results in an elongated polyglutamine 

(polyQ) tract in the translated protein. Recent reports suggest a primary role of muscle 

in SBMA pathogenesis and the presence of mitochondrial alteration in SBMA neuronal 

cells, knock-in mice and  patients. The aim of this study was to investigate mutant AR 

effects on mitochondrial parameters in muscle tissue from 19 SBMA patients compared 

to sex and age-matched 18 control subjects. In SBMA muscle, AR protein levels were 

significantly increased in nuclei and significantly halved both in total lysate and in the 

cytosolic fraction as compared to controls. The altered distribution of AR in SBMA 

muscle tissue was associated with a 30-40% reduction of mitochondrial mass, measured 

as: mtDNA copy number, citrate synthase (CS) activity and dark blue area in muscle 

cross sections stained for NADH-DH. OXPHOS activity, normalised to CS, was 

normal. The reduced mitochondrial amount was correlated neither with atrophy and 

hypertrophy index nor with a decreased mitochondrial biogenesis. Rather, it was 

associated with an enhanced mitochondrial degradation through mitophagy, measured 

by biochemical and morphological assays. To explain mitophagy activation in SBMA 

muscle tissue, we evaluated mitochondria membranes composition through mass 

spectrometry. We found significant homogeneous decreased levels at 50% of all the 

cardiolipin molecular species in SBMA mitochondrial membranes, associated to a 

probably compensatory 1.5 and 2-fold increase in phosphatidyilethanolamine and 

phosphatidylserine amount, respectively. The reduced cardiolipin levels was related to a 

decreased expression levels of cardiolipin synthase gene, involved in the biosynthesis 

of immature cardiolipin. In conclusion, for the first time, we showed a cause-effect 

mechanism of nuclear accumulation of polyQ AR linked to a reduction of mitochondrial 

mass in the muscle from SBMA patients, associated to an alteration of the 

mitochondrial membranes structure. Future studies will be needed to elucidate the exact 
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mechanism behind these abnormalities. Given the central role of mitochondria in cell 

bioenergetics and apoptosis, improvement of mitochondrial function is worth 

considering as a possible therapeutic approach to SBMA. 
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Riassunto 

L’Atrofia Muscolare Spino-Bulbare (SBMA), anche nota come malattia di Kennedy, è 

un disordine X-linked recessivo, che colpisce solo i soggetti di sesso maschile, 

caratterizzato dalla perdita dei motoneuroni inferiori del midollo spinale e del tronco 

encefalico. I pazienti, inoltre, possono presentare segni di insensibilità agli androgeni 

come la ginecomastia, la ridotta fertilità e l’atrofia testicolare. Essa è dovuta 

all’espansione del tratto polimorfico CAG presente nel primo esone del gene codificante 

per il recettore degli androgeni (AR), che risulta in un tratto poliglutamminico più lungo 

nella proteina tradotta. Lavori recentemente pubblicati suggeriscono che il muscolo 

gioca un ruolo primario nella patogenesi della malattia di Kennedy e che ci sono 

alterazioni mitocondriali in cellule neuronali, topi knock-in e pazienti SBMA. Lo scopo 

di questo studio è stato quello di valutare l’effetto dell’espressione del recettore per gli 

androgeni mutato su alcuni parametri mitocondriali nel tessuto muscolare di 19 pazienti 

SBMA rispetto a 18 controlli di pari età e sesso. Nel muscolo SBMA, i livelli proteici di 

AR erano significativamente raddoppiati nei nuclei e significativamente dimezzati sia 

nel lisato totale che nella frazione citosolica rispetto ai controlli. L’alterata distribuzione 

del recettore per gli androgeni nel muscolo SBMA era associata ad una riduzione della 

massa mitocondriale di circa il 30-40%, misurata come: numero di copie di DNA 

mitocondriale, attività della citrato sintasi e area positiva all’attività dell’NADH-DH  

con un intenso segnale blu in sezioni trasversali di muscolo colorate per tale enzima. 

L’attività dei complessi della catena respiratoria, normalizzata per quella della citrato 

sintasi, è risultata normale. Questa riduzione della massa mitocondriale non è associata 

né ad una riduzione della biogenesi mitocondriale né agli elevati indici di atrofia ed 

ipertrofia, ma ad un’aumentata degradazione mitocondriale attraverso la mitofagia, 

misurata mediante analisi biochimiche e morfologiche. Per spiegare l’attivazione del 

processo mitofagico nel tessuto muscolare SBMA, abbiamo valutato la composizione 

lipidica delle membrane mitocondriali attraverso la spettrometria di massa. Abbiamo 

trovato un’omogenea riduzione del 50% di tutte le specie molecolari di cardiolipina 

nelle membrane mitocondriali SBMA, associata ad un aumento, probabilmente 

compensatorio, della quantità di fosfatidiletanolammina e fosfatidilserina, 

rispettivamente di 1.5 e 2 volte. La riduzione della quantità di cardiolipina era associata 
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ad una riduzione dei livelli di espressione del gene per la cardiolipina sintasi, coinvolto 

nella biosintesi della cardiolipina immatura. In conclusione, per la prima volta noi 

abbiamo mostrato un meccanismo causa-effetto di accumulo del recettore mutato nei 

nuclei del tessuto muscolare dei pazienti collegato ad una riduzione della massa 

mitocondriale, associata ad un’alterazione della struttura delle membrane mitocondriali. 

Successivi studi saranno necessari per spiegare l’esatto meccanismo alla base di queste 

anomalie. Dato il ruolo centrale dei mitocondri nella bioenergetica e nell’apoptosi, vale 

la pena considerare il miglioramento della funzione mitocondriale come un possibile 

approccio terapeutico per la malattia di Kennedy. 
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PARTE I: SBMA 

Spinal and Bulbar Muscular Atrophy (SBMA), also known as Kennedy’s Disease, was 

first recognized as a discrete syndrome by Dr. William Kennedy and his colleagues, 

who described a slowly progressive syndrome with muscle cramps in the 4th or 5th 

decade, progressing to generalized fasciculations and proximal muscle weakness, with 

bulbar involvement. The disease affects men only and is inherited in an X-linked 

recessive fashion (Kennedy et al., 1968). Affected males may show signs of androgen 

insensitivity, including gynaecomastia, reduced fertility, and testicular atrophy. The 

principal pathological manifestation of SBMA is the loss of motor neurons in the spinal 

cord and brainstem (Sobue et al. 1989). There is also a subclinical loss of sensory 

neurons in the dorsal root ganglia. The prevalence of this disease is estimated to be 1–2 

per 100.000, whereas a considerable number of patients may have been misdiagnosed as 

other neuromuscular diseases including amyotrophic lateral sclerosis (Fischbeck, 1997). 

The molecular basis of SBMA is the expansion of a trinucleotide CAG repeat in the first 

exon of the Androgen Receptor (AR) gene on the long arm of the X chromosome 

(Xq11-12) (La Spada et al. 1991).  The normal AR allele has 11–34 CAG repeats, 

whereas the expanded allele contains 38 to 66 (La Spada et al., 1992). In the translated 

protein, the CAG repeat codes for a polyglutamine (polyQ) tract, which is located in the 

N-terminal domain of the AR (starting from aa 58) (Fig. 1.1).  

 

 
 

Figure 1.1. Schematic diagram of the structure of the androgen receptor (AR) protein including the 

domain structure and location of the polyglutamine (polyQ) repeat region. The AR has four 

functional domains: the N-terminal or transactivation domain, the DNA-binding domain (DBD), the 

hinge region and the ligand-binding domain (LBD). The N-terminal domain contains three different 

repeat regions: a polyQ region, a polyproline region and a polyglycine region. It is an expansion of the 

polyQ region that forms the basis of Kennedy’s disease (Greenland and Zajac, 2004) (see section 1.4.2 for 

more details). 
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The identification of polyQ expansion in SBMA led to the discovery of a new class of 

neurodegenerative disorders. In fact, at least eight different polyQ-linked diseases, like 

Huntington’s disease, spinal-cerebellar ataxia 1, 2, 3 or Machado-Joseph disease, 6 and 

7, and dentatorubral and pallidoluysian atrophy, share a common molecular mechanism 

involving an expansion of a polyQ tract within different proteins (Piccioni et al., 2001). 

PolyQ diseases share several features. All of these diseases are neurodegenerative 

disorders with typically late onset, and all are inherited in an autosomal dominant 

fashion except SBMA, which is X-linked. There is a positive correlation between CAG 

repeat length and disease severity, and a negative correlation between repeat length and 

the age of disease onset (Doyu et al., 1992; Igarashi et al., 1992). Similar to other repeat 

expansion disorders, polyQ diseases show genetic anticipation, a phenomenon in which 

one generation shows a more severe phenotype and an earlier onset of disease compared 

with the previous generation, due to the fact that the repeat tends to expand when it is 

passed down from one generation to the next. Despite several common features shared 

by polyQ diseases, expansion of polyQ tracts in the different proteins causes 

degeneration only in specific neuronal subpopulations in each disease. This selective 

neuronal vulnerability results in clinically distinct disease phenotypes (Parodi and 

Pennuto, 2011). Expanded polyQ in AR selectively affects lower motor neuron function 

and maintenance. 

 

 

1.1. Clinical features 

The major symptoms of SBMA are weakness, atrophy, and fasciculations of bulbar, 

facial, and limb muscles, which are attributable to degeneration of lower motor neurons 

in the spinal cord and brainstem (Kennedy et al., 1968; Harding et al., 1982). The 

disease progresses slowly; in a recent clinical trial, muscle strength as measured by 

quantitative muscle assessment declined by 2% per year in the placebo group 

(Fernandez-Rhodes et al, 2011). The majority of individuals with SBMA have a normal 

life expectancy and do not die from direct complications of the disease. Affected 

individuals are at risk of choking on food and aspiration pneumonia because of 

weakness of the bulbar muscles (Kennedy et al, 1968; Atsuta et al, 2006). Involvement 

is usually predominant in proximal musculature, and is occasionally asymmetric. The 
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onset is usually between 30 and 60 years of age. In a study on 26 patients the most 

frequent initial manifestations were premature exhaustion (62%), gynecomastia (52%), 

muscle cramps (38%), tremor (26%), and myalgia (24%). Weakness or bulbar 

involvement was the initial manifestation in only 4% of the patients each (Sperfeld et 

al., 2002). The initial site of weakness is lower limbs in more than half of patients 

(Atsuta et al., 2006; Rhodes et al., 2009). Limb weakness may result in gait disturbance, 

falls, or difficulty climbing stairs (La Spada et al., 1999). Typically, affected individuals 

require a wheelchair 15–20 years after the onset of weakness (Atsuta et al., 2006; 

Chahin and Sorenson, 2009). The extraocular muscles are typically spared. 

Fasciculations are not apparent at rest, but become conspicuous upon voluntary muscle 

movement. These contraction fasciculations are especially noticeable in the face, neck, 

and tongue. Neuromuscular symptoms are often worsened by coldness and by fatigue 

after exercise.  

Since SBMA is X-chromosomal only males express the phenotype. X-chromosomal 

transmission also implies that affected men cannot pass the genetic trait on to their sons 

and that the risk to have a carrier as a daughter is 100%. 

Affection of the brainstem motor nuclei results in involvement of the bulbar muscles. 

Bilateral facial and masseter muscle weakness, poor uvula and soft palatal movements, 

and atrophy of the tongue with fasciculations are often encountered. Tongue atrophy is 

usually associated with difficulty in chewing, vocal cord paresis resulting in dysarthria 

(unclear enunciation) or dysphonia, and pharyngeal paresis leading to dysphagia. 

Dysphagia is usually not so severe that it interferes with nutrition (Harding et al., 1982). 

Speech has a nasal quality in most cases due to reduced velopharyngeal closure. 

Patients occasionally experience laryngospasm, a sudden sensation of dyspnea (Sperfeld 

et al., 2005). Swallowing dysfunction is found in 80% of the cases and is characterised 

by incomplete food bolus clearance through the pharynx (Warnecke et al., 2009). 

Muscle tone is usually hypotonic, and no pyramidal signs are detected. The deep tendon 

reflex is diminished or absent with no pathological reflex. Sensory involvement is 

largely restricted to a sense of vibration, which is affected distally in the legs (Sobue et 

al., 1989). Cerebellar symptoms are absent, while dysautonomia and mild cognitive 

impairment have been reported in a limited number of patients (Mirowska-Guzel et al., 

2009; Rocchi et al., 2011).  
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Patients occasionally demonstrate signs of androgen insensitivity such as gynecomastia, 

testicular atrophy, dyserection, and decreased fertility, some of which are detected 

before the onset of motor symptoms (Nagashima et al., 1988; Sperfeld et al., 2002; 

Battaglia et al., 2003). Endocrinological examinations frequently reveal partial androgen 

resistance with elevated serum testosterone levels (Dejager et al., 2002). Although less 

common, hyperlipidemia, liver dysfunction and glucose intolerance are also detected. 

Abdominal obesity is common, whereas male pattern baldness is rare in patients with 

SBMA (Sinclair et al., 2007). Serum creatine kinase levels are elevated in the majority 

of patients (Sorarù et al., 2008; Chahin and Sorenson, 2009; Rhodes et al., 2009).   

Muscle histopathology of SBMA patients is atypical for a motor neuron disease and 

shows both neurogenic and myopathic changes; there are groups of atrophic fibres with 

fibre type grouping as well as hypertrophic fibres, scattered basophilic fibres and central 

nuclei. Myogenic findings are consistent with the higher serum creatine kinase (CK) 

levels (Sorarù et al., 2008). Nerve biopsy may show moderate reduction of large 

myelinated fibers (Doyu et al., 1993). Scrotal skin biopsy may show the degree of 

nuclear accumulation of mutant AR and may be used to assess the efficacy of 

therapeutic trials (Banno et al., 2009). Nuclear accumulation of the pathogenic AR 

protein is observed in autopsied myocardium. Japanese physicians have recently 

reported an increased prevalence (11.8%) of Brugada-like ECG in their SBMA 

population; moreover 2 of their patients had a symptomatic Brugada syndrome and 

were affected by sudden death during follow-up (Araki et al., 2014). 

 

1.1.1. Female carriers 

Females are usually heterozygous carriers of mutant expanded AR and they are 

generally asymptomatic. In detail, in about 50% of the cases female carriers of the 

mutation do not present with clinical manifestations. The other half may present with 

fasciculations, minimal distal weakness, muscle cramps, or hyper-CK-emia later in life 

(Tomik et al., 2006; Adachi et al., 2007). Two sisters, homozygous for the CAG-

expansion, manifested with occasional muscle cramps, mild hand tremor, and 

occasional perioral fasciculations or twitches (Schmidt et al., 2002). The EMG may be 

normal or may show chronic denervation. Muscle biopsy in female carriers may show 

mild myopathic or neurogenic alterations (Sorarù et al., 2008).  
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The reason why female carriers are asymptomatic is not completely clear and the 

lyonization process seems to be not sufficient to explain it. In fact both X chromosome 

can be silenced, not only the one containing mutant AR (Paradas et al., 2008). Therefore 

it has been hypothesized that testosterone level could play a determinant role in the 

develop of the pathology. The binding between AR and its ligand is necessary to induce 

receptor translocation into the nucleus and begin the transcription of target genes. 

Having a lower amount of testosterone, females show a reduced activation of AR 

pathway in comparison with males, independently from the fact that AR is mutated or 

not and consequentially it is not sufficient to determine typical neurological features of 

SBMA. Animal studies support this hypothesis; indeed female AR-97Q mice treated 

with testosterone develop typical symptoms of SBMA (Katsuno et al., 2002). 

 

 

1.2. Diagnosis of Kennedy’s Disease 

Kennedy’s Disease is thought to be a largely under-diagnosed condition. Its under-

diagnosis results from a number of factors, including a lack of knowledge within the 

medical profession and similarities of presentation with other motor neuron 

degenerative disorders. The most common misdiagnosis for Kennedy’s disease is 

amyotrophic lateral sclerosis. Correct diagnosis is imperative for appropriate 

counselling of affected individuals and family members. Kennedy’s disease follows an 

X-linked mode of inheritance as the AR is located on the long arm of the X-

chromosome. Other polyQ expansion diseases are autosomal dominant. The genetic 

diagnosis of Kennedy’s disease is based on sizing of the CAG repeat region by 

amplification from genomic DNA using the technique of polymerase chain reaction 

(PCR). This is the standard technique for diagnosis of Kennedy’s disease in 

symptomatic individuals, or presymptomatic individuals with a known family history. 

Heterozygous female carriers are also identifiable. In order to decide who undergoes to 

genetic analysis, clinical features play a central role. Indeed the presence of muscular 

cramps, hypostenia and atrophy in the proximal muscles, and bulbar involvement, 

particularly in association with tongue and perioral fasciculations are quite suggestive of 

SBMA. One of the main problem with SBMA is that for a long period symptoms are 

unspecific, often resulting in an important delay in the diagnosis. Some non-neural 
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features can be fundamental, such as gynecomastia, that is pathognomonic and the 

reduced fertility, especially if they are concomitant with neuromuscular symptoms. 

Even some endocrinal findings, for instance glucose intolerance or dyslipidemia, in 

association with lower motor neuron abnormalities, can support the diagnosis of SBMA. 

It is also important to consider family history of the patient, in order to investigate 

whether other family members have suffered from the disease. 

Bulbar and spinal muscular atrophy is diagnosed upon the history, clinical neurologic 

examination, blood chemical investigations, nerve conduction studies, 

electromyography, evoked potentials, transcranial magnetic stimulation, and molecular 

genetic investigations. Nerve conduction velocities of motor and sensory nerves, 

compound muscle action potentials and sensory nerve action potentials may be reduced 

in SBMA, indicating an axonal degeneration in motor and sensory nerves. These 

abnormalities are usually more pronounced in the upper as compared with the lower 

limbs also confirmed by F-wave studies (Suzuki et al., 2008).  

At last plasma levels of Creatine Kinase (CK) can be estimated. Creatine-kinase (CK) is 

usually elevated only in clinically manifesting male mutation carriers. However, it has 

been reported that non-manifesting male mutation carriers presented with idiopathic 

hyper-CK-emia 10 years before onset of the clinical manifestations (Sorenson and 

Klein, 2007). 

In addition, biopsies from both muscle and scrotal tissue can be performed to assist in 

the diagnosis of SBMA. Muscle biopsy show both neuropathic and myopathic 

alterations. Indeed signs of neurogenic atrophy have been found: type I and II fibres 

aggregation, target fibres, atrophic fibres and subsarcolemmal nuclei clumping. On the 

other hand myopathic abnormalities are frequently present, such as a wide variability in 

fibres size (4-200μm), hugely hypertrophic fibres, spread basophilic fibres and necrotic 

fibres with vesicular nuclei. An increasing in connective tissue is usually detectable as 

well. Myopathic alterations are more incident in patients with a higher grade of 

disability in accordance with ADL scale or a late stage of disease (Sorarù et al., 2008). 

Scrotal skin biopsy may show the degree of nuclear accumulation of mutant AR, and 

may be used to assess the efficacy of therapeutic trials (Banno et al., 2009). 
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NMR in T1 measurement conducted on lower limb muscles highlights an increased 

signal. Moreover muscular atrophy can be detectable, showing a major involvement of 

flexor muscles (Hamano et al., 2004). 

 

 

1.3. Therapy 

Since a curative treatment for SBMA does not yet exist, only a palliative approach is 

possible. Severe preclinical studies have been shown to be beneficial, but the majority 

of them failed in the translation to clinical trials. 

 

 
 

Figure 1.2. Toxic pathways and therapeutic development for SBMA. Multiple mechanisms of polyQ 

AR toxicity include loss of  eurotrophic support, mitochondrial dysfunction, altered autophagy, protein 

aggregation, and transcriptional dysregulation. Therapeutic approaches to targeting polyQ AR toxicity 

include reduction of androgen availability through the use of antiandrogens; inhibition of polyQ AR 

mRNA transcription by RNAi and miRNA technology; trophic support with IGF-1 and VEGF; triptans; 

HDAC inhibition; overexpression of Hsps or treatment with agents to increase AR degradation by the 

UPS and autophagy; bicalutamine, melatonin, and B2 to target aggregation and inclusion formation; 

sodium butyrate and ASC-J9 to restore gene expression abnormalities; and antioxidants, such as Q10 and 

idebenone, to reduce oxidative stress (Rocchi and Pennuto, 2013). 
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1.3.1. Targeting PolyQ AR mRNA Transcripts 

Therapy designed to downregulate the expression of the disease protein may be 

effective. One strategy to reduce protein expression is post-transcriptional gene 

silencing based on the use of RNA interference (RNAi) technology. RNAi targeting the 

polyQ AR transcript has been shown to reduce the expression and toxicity of polyQ AR 

in mammalian and Drosophila cell models of SBMA (Caplen et al., 2002) (Fig. 1.2). 

Another approach to decrease the expression of polyQ AR was recently pursued in a 

transgenic mouse model of SBMA and was based on the use of microRNA technology 

(Miyazaki et al., 2012). In this case, an adeno-associated virus was used to deliver the 

microRNA miR-196a to motor neurons, where it reduced the stability of AR mRNA 

transcripts and attenuated disease manifestations in the transgenic SBMA mice (Fig. 

1.2). These observations indicate that approaches targeting mutant protein transcript 

levels are effective in reducing toxicity and may therefore represent a therapeutic 

avenue worth pursuing. 

Recently, Lieberman et al. developed antisense oligonucleotides that suppressed AR 

gene expression in the periphery but not the CNS in a mouse model of disease after 

subcutaneous administration. Suppression of polyQ AR in the periphery rescued deficits 

in muscle weight, fiber size, and grip strength, reversed changes in muscle gene 

expression, and extended the lifespan of mutant males. The therapeutic benefits 

documented here following peripheral administration of ASOs provide a compelling 

rationale for exploring treatments targeted to skeletal muscle in SBMA patients 

(Lieberman et al., 2014). 

 

1.3.2. Androgen Ablation Therapy 

The ligand-dependent nature of SBMA offers the unique opportunity to develop a 

therapy based on the reduction of androgens in the serum.  Testosterone levels in the 

serum are regulated by the hypothalamic–pituitary–testicular axis. The hypothalamus 

releases gonadotropin-releasing hormone (GnRH), which stimulates the anterior 

pituitary to release luteinizing hormone, which in turn stimulates secretion of 

testosterone from the testis. The hypothalamic–pituitary–testicular axis is regulated by 

negative feedback loops, and testosterone itself inhibits the hypothalamus and the 

anterior pituitary. Testosterone levels have been reported to be elevated in some SBMA 
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patients, suggesting that alterations in the hypothalamic–pituitary–testicular axis may 

contribute to SBMA pathogenesis (Dejager et al., 2002). Initially, assuming a loss of 

function of the mutated receptor that leads to the presence of signs of androgen 

insensitivity, it was thought to treat patients with testosterone. Testosterone had no 

negative effects on phenotypes in SBMA patients (Goldenberg and Bradley 1996; 

Neuschmid-Kaspar et al., 1996) or SBMA model mice (Chevalier-Larsen and Merry 

2011). Notably, treatment of SBMA patients with testosterone was beneficial only when 

combined with physical exercise (Goldenberg and Bradley 1996). Conversely, surgical 

(Katsuno et al., 2002 e Chevalier-Larsen et al., 2004)  or medical (Katsuno et al., 2003) 

castration has  been demonstrated to prevent or improve the strength of male transgenic 

mice harbouring the human androgen receptor gene with expanded CAG repeats. In 

addition, female mutant mice without motor signs developed weakness after 

testosterone treatment (Katsuno et al., 2002). These findings suggest that ligand-

dependent nuclear translocation of mutant AR and subsequent gain-of-toxic functions of 

these proteins in the nucleus play a key role in motor neuron dysfunction; therefore 

reduction of serum androgen levels may be therapeutically effective. Reduction of 

testosterone release can be achieved by treatment with gonadotropin-releasing hormone 

analogs, such as leuprorelin. Leuprorelin has been shown to inhibit nuclear 

accumulation of the polyglutamine-expanded AR, resulting in a marked improvement of 

neuromuscular phenotypes seen in the AR-97Q transgenic mice (Katsuno et al., 2003). 

Leuprorelin acts by preventing ligand-dependent nuclear translocation of the 

polyglutamine-expanded AR in the same way as castration (Fig. 1.2). In a phase 2 

clinical trial, 12 months treatment with leuprorelin significantly diminished the serum 

level of creatine kinase, and suppressed the nuclear accumulation of the polyglutamine-

expanded AR in the scrotal skin of patients. Of note is the observation that the 

frequency of AR-positive neurons in the anterior horn and brainstem of an autopsied 

patient, who received leuprorelin for 2 years, was less than in untreated SBMA patients 

(Banno et al., 2009). Nevertheless, no definite effects on motor functional scores or 6-

minute walk test were observed in a 48-week randomized placebo-controlled 

multicentric clinical trial of this drug, although there was the improvement of 

swallowing function in a subgroup of patients whose disease duration was less than 10 
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years as well as the decrease of AR accumulation in scrotal skin biopsies and serum 

levels of creatine kinase (Katsuno et al., 2010).  

Lack of positive results may be attributable to several factors: insensitiveness of the 

outcome measure utilized, antianabolic effects of leuprorelin, a relatively short 

observation period, and placebo-related improvement of motor function. The disease 

duration of the patients may also have influenced the effects of the androgen deprivation 

therapy. For these reasons, Yamamoto et al. evaluated the efficacy of medical castration 

maintained with leuprorelin on the muscle strength of SBMA patients over 3 years. It is 

noteworthy that most of the patients showed a 20–30% reduction in average leg strength 

despite the leuprorelin treatment for 3.5 years (Yamamoto et al., 2012). In conclusion, 

leuprorelin was not effective in this small long-term treatment trial in SBMA. 

Testosterone is converted to its more potent derivative dihydrotestosterone by the 

activity of 5-alpha-reductase (Poletti, 2004; Parodi and Pennuto, 2011). Motor neurons 

express high levels of 5-alpha-reductase, suggesting the possibility that conversion of 

testosterone to dihydrotestosterone (DHT) is responsible for selective motor neuron 

degeneration in SBMA. The activity of 5-alpha-reductase can be inhibited by 

dutasteride (Fig. 1.2). Dutasteride efficacy has recently been evaluated in a phase-II 

clinical trial (Fernandez-Rhodes et al. 2011). Dutasteride treatment didn't give 

significant improvement of muscle strength and quality of life. 

 

1.3.3. Heat Shock Proteins and UPS as Molecular Targets for Therapy 

Many components of the ubiquitin proteasome system and Hsps are known to co-

localize with polyglutamine-containing nuclear inclusions (NIs), implying that failure of 

cellular defence mechanisms underlies neurodegeneration in polyglutamine diseases 

(Bauer and Nukina, 2009). A therapeutic strategy consists in the manipulation of 

expression of molecular chaperones, such as Hsp90, Hsp70, and the co-chaperone 

Hsp40. There is increasing evidence that Hsps abrogate polyglutamine-mediate 

cytotoxicity by refolding and solubilizing the pathogenic proteins (Nagai et al., 2010). 

Overexpression of Hsp70, together with Hsp40, inhibits toxic accumulation of the 

polyglutamine-expanded AR and suppresses cell death in a cellular model of SBMA 

(Kobayashi et al., 2000). Hsp70 has also been shown to facilitate proteasomal 

degradation of the polyglutamine-expanded AR in another cell culture model of SBMA 
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(Bailey et al., 2002). Overexpression of the inducible form of human Hsp70 markedly 

ameliorates symptomatic and histopathological phenotypes in a transgenic mouse model 

of SBMA (Adachi et al., 2003). C-terminus of heat shock cognate protein 70-interacting 

protein (CHIP) also prevents nuclear accumulation of the polyglutamine-expanded AR 

and thereby ameliorates motor symptoms in a transgenic mouse model of SBMA 

(Adachi et al., 2007). Overexpression of the Hsp40 family members DnaJ-like-1 (HSJ1) 

HSJ1a and HSJ1b in cultured cells also reduced polyQ AR aggregation through 

increased protein ubiquitination and degradation by the UPS in vitro (Howarth et al., 

2007). Overexpression of Hsp105alpha has also been shown to reduce polyQ AR 

aggregation and neurotoxicity in cell models of SBMA (Ishihara et al., 2003).  

Hsps expression can be manipulated pharmacologically. Hsp90 exists in two different 

complexes in the cell. The first complex includes Hsp70 and Hop, which target Hsp90 

client proteins for degradation by the UPS; the other includes Cdc37 and p23, which 

stabilize the Hsp90 client protein. The Hsp90 inhibitor geldanamycin has been shown to 

reduce polyQ AR aggregation and promote degradation through a mechanism that 

involves inhibition of retrograde trafficking of polyQ AR (Thomas et al., 2006) (Fig. 

1.2). Oral administration of acyclic isoprenoid geranylgeranylacetone GGA in 

transgenic SBMA mice increased the expression of Hsp90, Hsp70, and Hsp105 and 

attenuated disease manifestations (Katsuno et al. 2005) (Fig. 1.2). Unfortunately, this 

compound is highly toxic and cannot be used for prolonged therapy in humans. The less 

toxic GGA derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) has been 

shown to induce mutant AR degradation and reduce motor neuron degeneration and 

death in SBMA cells and mice (Waza et al., 2005; Rusmini et al., 2011) (Fig. 1.2). 

Moreover, a more potent and water-soluble Hsp90 inhibitor named 17-

(dimethylaminoethylamino)-17 demethoxygeldanamycin (17-DMAG) has also been 

proven effective in SBMA mice (Tokui et al., 2009) (Fig. 1.2). Recently was tested in 

mouse a ‘smart-drug’, arimoclomol, that, in contrast to drugs previously tested in 

models of spinal and bulbar muscular atrophy, only enhances the heat shock response in 

cells already under stress and in which the heat shock response is already activated 

(Kalmar et al., 2008), significantly reducing the likelihood of non-specific side effects 

in otherwise unstressed cells, which have been observed following the use of direct 

activators of the heat shock response (Kalmar et al., 2008). Treatment of AR100Q mice 
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with an oral dose of arimoclomol significantly delayed disease progression (Malik et al., 

2013).  

A therapeutic strategy that leads to AR degradation via UPS, consist in using Genistein, 

that promotes the dephosphorylation of AR at serine 515 via p44/42 MAPK inhibition, 

disrupting the interaction between AR and ARA70, a coregulator, and promotes AR 

protein clearance through the ubiquitin–proteasome system (Qiang et al., 2013) (Fig. 

1.2). 

 

1.3.4. Autophagy-Mediated PolyQ AR Degradation 

Induction of autophagy, cellular machinery coping with abnormal protein toxicity, is 

also shown to mitigate the toxicity of the polyglutamine-expanded AR in cultured motor 

neurons (Montie et al., 2009). In the process of autophagy, degradation of proteins 

occurs through lysosomes. Autophagy activity is functionally and genetically linked to 

the UPS, as UPS impairment may lead to autophagy activation through a process that 

involves the activity of the histone deacetylase 6 (HDAC6). Importantly, 

overexpression of HDAC6 in the eye of SBMA flies reduced neurodegeneration, 

suggesting that HDAC6-mediated activation of autophagy plays a protective role in 

SBMA pathogenesis (Pandey et al. 2007). A functional link between the UPS and 

autophagy is also supported by the finding that the protective effect of 17-AAG is 

associated with increased polyQ AR degradation by autophagy in cultured cells 

(Rusmini et al. 2011). In support of the neuroprotective role of autophagy, was 

demonstrated that depletion of p62 significantly increased the levels of monomeric 

mutant AR and mutant AR protein complexes in an SBMA mouse model via the 

impairment of autophagic degradation. In addition, p62 overexpression improved 

SBMA mouse phenotypes by inducing cytoprotective inclusion formation. Thus, p62 

provides two different therapeutic targets in SBMA pathogenesis: (1) autophagy-

dependent degradation and (2) benevolent inclusion formation of the mutant AR (Doi et 

al., 2013). By contrast, inhibition of unfolded protein response, an endoplasmic 

reticulum stress response, exacerbates muscle pathology of SBMA via the activation of 

autophagy, suggesting that a fine tuning of protein quality controls system may be 

needed to mitigate the toxicity of polyglutamine-expanded AR. Genetic ablation of the 

autophagy-related gene Beclin-1 in this mouse model attenuated some aspects of disease 
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pathogenesis, highlighting the complexity of the autophagy pathway in the context of 

disease pathogenesis (Yu et al., 2011). Autophagy has been shown to be activated in the 

skeletal muscle of a knock-in mouse model of SBMA (Yu et al., 2011).  

Similar to Hsp activity, autophagy can also be pharmacologically manipulated. 

Activation of autophagy by rapamycin, an inhibitor of the autophagy regulator 

mechanistic target of rapamycin (mTOR), suppressed the neurodegenerative phenotype 

caused by polyQ AR in the eye of a Drosophila SBMA model (Pandey et al., 2007) 

(Fig. 1.2). Moreover, induction of autophagy by trehalose rescued primary SBMA 

motor neurons from polyQ AR-induced toxicity (Montie et al., 2009; Montie and Merry 

2009) (Fig. 1.2). Rapamycin toxicity limits its applicability for treatment of chronic 

disorders. Recently was examined the effects of paeoniflorin (PF) in cultured cells and 

the transgenic mouse model of SBMA. PF administration inhibited the nuclear 

accumulation of the mutant AR and significantly ameliorated the motor phenotype of 

the SBMA mouse model without detectable toxicity. Mutant AR was preferentially 

degraded over wild-type AR in the presence of PF in both cell culture and mouse 

models of SBMA. PF significantly induced nuclear factor-YA (NF-YA), resulting in the 

upregulation of the molecular chaperones CHIP and TFEB and consequent 

enhancement of the two major proteolysis systems, the molecular chaperone–UPS and 

the autophagy system. PF promoted the degradation of mutant AR to a greater extent 

than the induction of either the molecular chaperone–UPS or the autophagy system 

alone (Tohnai et al., 2014). Furthermore, the last year was tested the combinatory 

treatment with trehalose and bicalutamide in motoneurons, that results very efficient in 

the removal of insoluble species of AR with a very long polyQ (Q112) tract, which 

typically aggregates into the cell nuclei. Using the antiandrogen bicalutamide (casodex), 

which slows down AR activation and nuclear translocation, and the disaccharide 

trehalose, an autophagy activator, was found that the two compounds together reduced 

PolyQ AR insoluble forms with higher efficiency than that obtained with single 

treatments. The PolyQ AR clearance was mediated by trehalose-induced autophagy 

combined with the longer cytoplasmic retention of PolyQ AR bound to Bicalutamide 

(Giorgetti et al., 2015).  
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1.3.5. Allosteric Regulation of PolyQ AR Toxicity 

Ligand binding induces a conformational change that leads to intramolecular or 

intermolecular N-term/C-term interactions. The observation that mutations that prevent 

the N/C interaction reduce the toxicity of polyQ AR suggests that this ligand-induced 

conformational change is a potential therapeutic target (Nedelsky et al., 2010; Orr et al., 

2010). Flutamide is a non-steroidal anti-androgen known to reduce or prevent the N/C 

interaction, and is already used for prostate cancer treatment. In SBMA mice, flutamide 

had no effect on disease progression and manifestations (Katsuno et al., 2003). 

However, flutamide showed beneficial effects when administered at the prenatal stage 

in transgenic mice, suggesting a potential beneficial effect when administered in very 

early developmental stages (Johansen et al., 2010; Monks et al., 2007). Another anti-

androgen that reduces the AR N/C interaction is bicalutamide, which has recently been 

shown to reduce polyQ AR aggregation and prevent DHT-dependent toxicity in PC12 

cells expressing an AR with 112 glutamine residues and in primary motor neurons 

obtained from SBMA mice. The effect of these anti-androgens suggests that selective 

AR modulators (SARMs) with the ability to inhibit the AR N/C interaction may be 

effective in SBMA. Consistent with this idea, the two SARMs RTI-016 and RTI-051b 

that inhibit AR N/C interaction were shown to induce nuclear translocation of AR in the 

absence of aggregation and toxicity (Orr et al., 2010). Whether these SARMs will be 

effective in vivo is not yet known. 

 

1.3.6. Targeting PolyQ AR Aggregation and Nuclear Inclusion Formation 

Expansion of polyQ tracts leads to protein misfolding and deposition of mutant protein 

in the forms of microaggregates/oligomers and inclusions (Walcott and Merry 2002; 

Jochum et al, 2012). The finding that inclusion formation can be associated with 

protection, rather than toxicity, has provided the rationale for identification of 

compounds that promote inclusion formation (Arrasate et al., 2004). Recently, it has 

been shown that treatment of cell and fly models of SBMA with B2 results in increased 

accumulation of mutant AR into inclusions and reduced toxicity, further supporting the 

idea that accumulation of  polyQ expanded protein into inclusions is protective 

(Palazzolo et al., 2010) (Fig. 1.2). On the contrary, deposition of polyQ AR into micro-

aggregates correlates with toxicity in cell and mouse models of the disease. 



Introduction 

 
16 

 

Interestingly, by atomic force microscopy, polyQ AR aggregates have been 

characterized as oligomeric fibrils of 300–600 nm in length, different from the annular 

species formed by wild-type AR (Jochum et al., 2012). From a therapeutic point of 

view, melatonin has been shown to shift the deposition of polyQ AR from oligomeric 

fibrils to annular oligomers, highlighting another potential avenue for treatment of 

SBMA (Jochum et al., 2012). 

 

1.3.7. Regulation of Gene Expression 

Expression of polyQ AR alters gene transcription (Lieberman et al., 2002; Mo et al., 

2010; Nedelsky et al., 2010). Transcription dysregulation is a primary pathogenic 

process in polyQ diseases. Altered gene expression is a consequence not only of 

sequestration of transcription factors and co-regulators, but also of altered chromatin 

remodeling. One of the major modifications of chromatin involves histone acetylases, 

such as CREB-binding protein (CBP), which is associated with gene expression, and 

histone deacetylases (HDAC), which is associated  with gene silencing. PolyQ proteins 

has been shown to sequester CBP into inclusions and alter its activity and histone 

acetylation, defects that were rescued by overexpression of CBP (McCampbell et al., 

2000; Taylor et al., 2003). Since suppression of HDAC activity results in augmentation 

of histone acetylation and subsequent restoration of gene transcription, HDAC 

inhibitors have been considered to be of therapeutic benefit in polyglutamine diseases 

(Butler and Bates, 2006). Butyrate, the first HDAC inhibitor to be discovered, has been 

shown to ameliorate symptomatic and histopathological phenotypes of the AR-97Q 

transgenic mouse model through upregulation of histone acetylation in nervous tissues 

(Minamiyama et al., 2004) (Fig. 1.2). 

AR regulates gene expression through interaction with transcription cofactors, both co-

activators and co-repressors. Genetic evidence obtained in a fly model of SBMA 

indicates that the interaction of polyQ AR with some transcriptional coregulators is 

pathogenetic and reveals amplification of the native function of the protein as a critical 

determinant of disease pathogenesis (Nedelsky et al., 2010).  This evidence supports the 

idea that the gain of toxic function conferred by polyQ expansion to the mutant protein 

involves not only acquisition of a novel aberrant function, but also augmentation of 

normal protein function(s). This evidence implies an alternative approach to restore 
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normal gene expression, which consists in targeting the interaction of polyQ AR with 

co-regulators of transcription. Treatment of SBMA mice with the curcumin-related 

compound 5-hydroxy-1,7-bis(3,4-dimethoxyphenyl)-1,4,6-heptatrien-3-one (ASC-J9) 

disrupted the interaction between AR and its co-regulator ARA70 and improved disease 

symptoms by decreasing nuclear aggregation and increasing mutant AR clearance 

(Yang et al., 2007) (Fig. 1.2). Treatment of the mice with ASC-J9 did not alter the 

levels of testosterone in the serum of SBMA mice, thereby avoiding side effects on 

sexual activity and fertility.  

 

1.3.8. Mitochondrial Dysfunction 

Several findings suggest a role for mitochondrial dysfunction in SBMA pathogenesis. 

Cytochrome c oxidase subunit Vb interacts with wild-type and polyQ AR and is 

sequestered into polyQ AR-positive inclusions (Beauchemin et al., 2001). Alteration of 

mitochondrial distribution and membrane depolarization, together with elevated levels 

of reactive oxygen species, has been observed in cell models of SBMA (Piccioni et al., 

2002; Ranganathan et al., 2009). In addition, polyQ AR has been shown to repress the 

transcription of peroxisome proliferator-activated receptor gamma co-activator-1 

(PGC1α), a transcriptional co-activator that regulates mitochondrial biogenesis and 

respiration (Ranganathan et al., 2009). Moreover, polyQ AR can alter mitochondrial 

function by inducing Bax-dependent cytochrome c release and apoptosis in primary 

cortical neurons (Young et al. 2009).  Furthermore, alteration in the copy number of 

mitochondrial DNA in leucocytes of SBMA patients and carriers has been reported (Su 

et al., 2010). It is still debated whether mitochondrial dysfunction represents a 

consequence of cellular degeneration or if it plays a pathogenic role in SBMA. From a 

therapeutic perspective, antioxidants such as coenzyme Q10 and idebenone have been 

shown to reduce the levels of reactive oxygen species produced when polyQ AR is 

expressed in cultured cells (Ranganathan et al., 2009) (Fig. 1.2). However, it remains to 

be established whether this strategy is effective in animal models of the disease. 

 

1.3.9. Trophic Support to Motor Neurons and Peripheral Tissues 

Altered gene expression as well as disruption of axonal transport may contribute to 

polyQ disease pathogenesis by decreasing trophic support for neurons. Among the 
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genes that have been shown to be down-regulated in mouse models of SBMA are the 

vascular endothelial growth factor (VEGF), insulin-like growth factor 1 (IGF-1), glial 

cell line-derived neurotrophic factor (GDNF), transforming growth factor-beta and 

neurotrophin-4 (Katsuno et al., 2010; Sopher et al., 2004;Yu et al., 2006). Activation of 

VEGF and IGF-1 signaling has been shown to be beneficial in SBMA mouse models, 

indicating this as a novel therapeutic strategy to attenuate disease manifestations 

(Palazzolo et al., 2009; Sopher et al., 2004) (Fig. 1.2). Recently was demonstrated that 

arimoclomol significantly enhances the survival of motor neurons, upregulating the 

expression of VEGF with a significant amelioration in the disease phenotype of mice 

with SBMA (Malik et al., 2013). Interestingly, muscle-restricted overexpression of a 

muscle-specific isoform of IGF-1 (mIGF-1) in SBMA mice protects from the toxicity of 

polyQ AR via a mechanism that involves direct modification of the disease protein 

(Palazzolo et al., 2009). MIGF-1 activated Akt in the muscle of SBMA mice, which 

then in turn stimulated the phosphorylation of polyQ AR and its turnover through 

proteasome. Activation of the IGF-1/Akt signaling in muscle not only resulted in a 

remarkable amelioration of muscle, but also of spinal cord pathology together with 

amelioration of motor dysfunction and increased survival. These findings support the 

idea that muscle represents a critical tissue target of polyQ AR toxicity and highlight 

that intervention in muscle may be therapeutically relevant for SBMA. Clenbuterol is a 

b2-agonist known to have anabolic effects on skeletal muscle, including the activation 

of PI3K/Akt signaling. An open trial suggests that clenbuterol may improve motor 

function in patients with SBMA without relevant adverse events. As compared with 

baseline, there was a mean increase of approximately 12% in 6MWD at 3 months and 

continuing to 12 months of treatment. These results are particularly intriguing because 

the natural history of SBMA is characterized by an 11.3% rate of decrease in 6MWD 

per year, regardless of the initial walking capacity of patients (Querin at al., 2008). 

Further in vitro and in vivo studies need to confirm the beneficial role of clenbuterol as 

SBMA treatment. 
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1.4. Androgen Receptor 

1.4.1. The Androgen Receptor Gene 

The action of both testosterone and 5a-dihydrotestosterone is mediated by the 

intracellular androgen receptor. The androgen receptor is a member of the superfamily 

of nuclear receptors, which includes the steroid hormone receptors, thyroid hormone 

receptors and retinoic acid receptors (Beato et al., 1995).  The androgen receptor is 

encoded by a messenger RNA of approximately 11 kb. The AR gene is localized in the 

long arm of the X chromosome, in its pericentromeric region at Xq11-q12 (Marcelli et 

al., 1990). Males have a single copy of the AR gene, while females possess two copies 

of the gene; however, in females, one allele undergoes random X-inactivation. The open 

reading frame, like those of the majority of the members of the steroid receptor 

superfamily, is separated over eight exons, and has a length of 2730 bp, encoding a 

protein of 910 amino acids, which are organized in several well-defined regions: (1) an 

N-terminal transactivation region, coded by exon 1, poorly conserved among the steroid 

nuclear receptor superfamily members; (2) a highly conserved DNA-binding domain, 

coded by exons 2 and 3, where each exon codes for one zinc (Zn) finger; and (3) a less 

conserved C-terminal ligand binding domain, coded by exons 4–8 (Fig. 1.3).  

 

 
 

Figure 1.3. Scheme of AR gene and protein. The AR gene is composed of eight exons. The first exon 

encodes the amino-terminal domain, which contains three polyQ tracts (polyQ), a poly-proline tract 

(polyP) and a poly-glycine tract (polyG). The first polyQ tract (red) is expanded in SBMA. Exons 2 and 3 

encode the DNA-binding domain, which is formed by two zinc fingers, and the hinge region, which 

contains the PEST sequence and the nuclear localization signal (NLS). Exons 4 through 8 encode the 

ligand-binding domain (Parodi and Pennuto, 2011). 
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In the amino-terminal domain, the human androgen receptor contains several 

polyamino-acid sequences that are polymorphic and responsible for the variability in the 

size of AR (Poletti et al., 2005). Two of these are very long: a glutamine stretch (Q 

stretch) starting at amino acid residue 58 and a glycine stretch (G stretch), starting at 

position 448. The Q stretch is encoded by a CAG repeat, and the G stretch by a GGT/C 

repeat. The DNA binding domain of the androgen receptor reveals approximately 80% 

homology with those of the glucocorticoid receptor, mineralocorticoid receptor and 

progesterone receptor. Central in the structure of the DNA binding domain are the 

interactions of four cysteine residues with a zinc ion in each of the two zinc clusters. 

The three amino acid residues which are important for specific recognition of the 

androgen response element are glycine-568, serine-569 and valine-572. The ligand 

binding domain of the androgen receptor is confined to a carboxy-terminal fragment of 

approximately 250 amino acids. The amino acid sequence of this domain is completely 

conserved between the human, rat and mouse receptors, indicating that its structure is 

very important in androgen receptor function (Trapman and Brinkmann, 1996).  The 

promoter region of the AR gene is characterized by the absence of a canonic TATA box 

and CAAT box, but contains GC rich elements, a SP1 binding site, homopurine 

stretches, cAMP responsive elements and AP1 sites (Quigley et al., 1995). Two 

androgen responsive elements (ARE) have been identified in exons 4 and 5 of the AR 

gene (Grad et al., 2001); these selectively control the activation of the AR promoter, 

being responsible for androgen-mediated upregulation of AR messenger RNA in target 

cells. Two principal sites of transcription initiation (TIS I and TIS II) (Jenster et al., 

1995) separated by 11 nucleotides have been identified approximately 1100 bp 

upstream to the translation-start site (Faber et al., 1993). The primary transcript is 

characterized by an unusually long 5'-untranslated region (5'-UTR), containing a short 

open reading frame driven by the first AUG in the 5'-UTR and coding for a peptide of 

nine amino acids whose functional roles remain to be determined. The translation into 

the AR protein starts at the second AUG (Chlenski et al., 2001). 

 

1.4.2. The Androgen Receptor protein 

The AR is a ligand-activated transcription factor that, in its inactive form, is confined in 

a multiheteromeric inactive complex in the cell cytoplasm (Tyagi et al., 2000). The 
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inactive complex contains several chaperones (Hsp90 and Hsp70), that dissociate from 

the receptor after the binding to the ligands (T or DHT), via the C-terminal ligand 

binding domain; this process allows a conformational change induced by the ligand that 

unmasks the nuclear localization signals in the region between the DNA binding 

domain (DBD) and the ligand binding domain (LBD) (residues 608-624) (Claessens et 

al., 1989). It has been proposed that this variation of the tertiary structure is also due to 

post-translational modifications, like the phosphorylation of specific serines 

(Brinkmann et al., 2001). The dissociation from the accessory proteins allows the 

translocation of AR into the cell nuclei, its dimerization, and, through the DNA-binding 

domain, the interaction with specific enhancer sequences, known as androgen 

responsive elements (ARE), located up- or downstream of the core promoter region of 

androgen-responsive gene. At this stage, the transcriptional control by AR is modulated 

by complex interactions between the receptor and positive (coactivator) or negative 

(corepressor) factors (Poletti et al., 2005) (Fig. 1.4). 

 

 

 

Figure 1.4. Mechanism of androgen action. See text for explanation. (Poletti et al., 2005). 

 

Upon binding DNA, the AR undergoes DNA dependent dimerization mediated by its 

DBD (Dahlman-Wright et al., 1991). The DBD of all nuclear receptors is a highly 

conserved region arranged into three α-helices containing two cysteine-rich zinc finger-

like motifs and a C-terminal extension (CTE) (Glass et al., 1994).  The first zinc finger 



Introduction 

 
22 

 

contains a stretch of five amino acids called the P-box that directly interacts with the 

major groove of DNA, conferring responsibility for sequence recognition and DNA 

binding (Umesono et al., 1989). Within the second zinc finger resides a five-amino acid 

region called the D-box, which contains the major residues involved in DNA-dependent 

dimerization between receptor monomers (Dahlman-Wright et al., 1991; Umesono et 

al., 1989). In addition, residues in the CTE (amino acids 625–636) provide an additional 

dimer interface for the AR-DBD that acts in concert with amino acids in the second zinc 

finger to mediate specific and high-affinity DNA binding (Schoenmakers et al., 2000). 

Whereas the core DBD of nuclear receptors is a highly conserved region, sequence 

homology is reduced within the CTE, resulting in unique residues that may potentiate 

specificity. Another potential contributor to AR dimerization is the AR N/C interaction. 

The N/C interaction was first identified using the mammalian two-hybrid assay system 

as an androgen-dependent interaction between the AR-LBD and the AR-Nterm domain 

(NTD) that results in receptor stabilization (Langley et al., 1995). Upon androgen 

binding, the AR-LBD undergoes a conformational rearrangement that results in the 

formation of a highly conserved protein-protein interaction surface known as activation 

function 2 (AF-2). Androgens induce a ligand-dependent intermolecular interaction 

between AF-2 in the AR-LBD and 23FQNLF27 in the AR-NTD. AF-2 can also interact 

with 433WHTLF437 in the AR-NTD but with a much lower affinity than 23FQNLF27 

(He et al., 2000).  Physiologically, the N/C interaction stabilizes the AR by slowing the 

rate of ligand dissociation and preventing receptor degradation (Langley et al., 1995). 

The dimeric receptor binds to the AREs sequences, composed of two symmetric 6 bp 

separated by a 3-bp spacer and oriented as direct or inverted repeat 

(GGTACAnnnTGTTCT sequence). When the AR dimer binds ARE, the transcriptional 

activity depends on the formation of specific transcription initiation complexes and the 

recruitment of other nuclear factors, driven by transcriptional activator domains of the 

AR (AF-1, AF-2, and AF-5) (Poletti et al., 2005). The AR N-terminal presents two out 

of three main transactivation regions (AF, activating functions). AF-1, the main AF in 

the N-terminal, spans between amino acids 51 and 211 (encompassing the PolyGln 

tract). It becomes active only after AR binding to ligand; in fact the region is hindered 

by the interaction of the AR with the Hsps complex bound to the LBD. The second N-

terminal transactivation region AF-5 spans between residues 370 and 494. An inhibitory 
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domain (ID) is located upstream of the DNA-binding domain (DBD). The AF-2 is 

located in the C-terminus (Palazzolo et al., 2008). The AR-coactivators complex (a) 

recruits the general transcription factors to the TATA box and (b) exerts histone 

acetyltransferase activity destructuring the nucleosomes to allow RNA polymerase II to 

transcribe the genes (Spencer et al., 1997); these mechanisms act jointly and activate 

transcription of target genes.  

The abnormal size of the polyGln tract in SBMA alters the transcriptional behaviour of 

the AR, probably because of its close integration into the AR transactivation domain. In 

fact, the highly polymorphic PolyGln tract apparently might act as a protein–protein 

interaction domain, and may be involved in the control of AR mediated transcription. 

Thus, very similar PolyGln tracts have been found in other transcription factor. 

(Palazzolo et al., 2008). 

 

1.4.3. Androgen functions  

Because of AR is expressed ubiquitously, androgen effects are wide spread, but they are 

predominantly detectable in androgen target tissues, such as skeletal muscle, liver, skin, 

central nervous system (CNS), adrenal gland, epididymis and prostate, where the 

highest levels can be found (Keller et al., 1996). One of the major targets of androgen 

action in the CNS are the motoneurons of the spinal nucleus of the bulbocavernosus 

(SNB) system (Matsumoto et al., 1988), known as Onuf’s nucleus in humans. In this 

structure, androgens control the development and adult maintenance of SNB at different 

stages (Goldstain et al., 1992), by acting in two steps at time of birth (during sexual 

differentiation) and at the beginning of puberty, when androgens modulate the 

formation of synapses at neuromuscular junctions controlling the growth and maturation 

of SNB dendritic branches. In adulthood, androgens are involved in the maintenance of 

the size of motoneurons (Watson et al., 2001) and of their dendrites in SNB; moreover, 

androgens act also on the muscle fibers (Jordan et al., 2002), where have anabolic 

effects (Bhasin et al., 1997; Brodsky et al; 1996; Sinha-Hikim et al., 2004). It is known 

that androgen deprivation reduces the somatic size and the dendritic length of 

motoneurons, affecting also the number of chemical and electrical (gap junction) 

synapses; by contrast, androgen replacement therapy reverses these phenomena (Brooks 

et al., 1998). In addition, androgens promote the re-growth of several peripheral nerves 
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after resection, like the hypoglossal (Yu et al., 1989), facial, and sciatic (Kujawa et al., 

1993) nerves.  

The androgen receptor is a key molecule during development of male reproductive 

tissues. For example, the androgen receptor is essential for the maintenance of prostate 

structure and function. Orchiectomy or inhibition of androgen receptor activity by anti-

androgens leads to a rapid loss of the secretory epithelial cells (Trapman and 

Brinkmann, 1996). 

Mutations in the androgen receptor gene are found in several human diseases. Best 

documented so far are mutations which are the cause of androgen insensitivity. X-linked 

androgen insensitivity is associated with abnormalities in male sexual morphogenesis. 

These can range from genetic males with severe or mild defects in the development of 

the male phenotype (partial androgen insensitivity), to those with an apparent female 

phenotype (complete androgen insensitivity). Mutations can range from complete or 

partial deletion of the gene (which is a rare event) to point mutations or frame shift 

mutations in the open reading frame. Most point mutations are missense mutations that 

result in inhibition of ligand or DNA binding of the androgen receptor. Only a small 

number of mutations have been detected in the long N-terminal domain of the receptor; 

all of these are nonsense mutations or frame shifts, leading to the synthesis of a 

truncated protein (Trapman  and Brinkmann, 1996). None of these mutations leads to 

neurodegeneration as polyQ expansion. 

 

 

1.5. Pathogenesis 

1.5.1. AR function in SBMA: Loss or gain of function? 

The cause of SBMA is expansion of a trinucleotide CAG repeat, which encodes the 

polyglutamine tract, in the first exon of the AR gene (La Spada et al., 1991). The CAG 

repeat within the AR ranges in size from 9 to 34 in normal subjects, and from 38 to 62 in 

SBMA patients with a tissue-specific somatic mosaicism (La Spada et al., 1991; Tanaka 

et al., 1999). Multiple founder effects have been reported in Japan, Europe, and 

Australia (Tanaka et al., 1996; Lund et al., 2001). The expanded polyglutamine tract in 

AR has been implicated in the pathogenesis of SBMA in two different, but not mutually 
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exclusive, ways: (1) loss of normal AR function inducing neuronal degeneration, and 

(2) the polyglutamine-expanded AR acquiring toxic properties for motor neurons.  

Since AR possesses trophic effects on neuronal cells, one can assume that the loss of 

AR function may play a role in the pathogenesis of SBMA. For example, brain-derived 

neurotrophic factor signaling is regulated by AR in motor neurons (Verhovshek et al., 

2010). Also, the endocrine abnormalities observed in SBMA patients indicate that 

polyQ expansion leads to a partial loss of AR function. However, a pure loss of function 

mechanism is difficult to reconcile with the observation that mutations that completely 

abolish AR function result in androgen insensitivity syndrome with no signs of 

neurodegeneration. Rather, expansion of polyQ is thought to confer a toxic gain of 

function to the mutant protein. Although this loss of function of AR may contribute to 

the androgen insensitivity in SBMA, the pivotal cause of neurodegeneration in SBMA 

is thought to be a gain of toxic function of the polyglutamine-expanded AR. This 

hypothesis is supported by the observation that motor impairment has never been 

observed in severe testicular feminization (Tfm) patients lacking AR function or in AR 

knockout mice (Brinkmann, 2001). Moreover, a transgenic mouse model carrying an 

elongated CAG repeat driven by human AR promoter demonstrated motor impairment, 

suggesting that the expanded polyglutamine tract itself is sufficient to induce the 

pathogenic process of SBMA (Adachi et al., 2001). 

 

1.5.2. Nuclear accumulation of polyglutamine-expanded AR and 

cytoplasmic aggregates 

A pathologic hallmark of polyglutamine diseases is the presence of nuclear inclusions 

(NIs). In SBMA, NIs containing the pathogenic AR are found in the residual motor 

neurons in the brainstem and spinal cord as well as in non-neuronal tissues including 

prostate, testis, and skin (Li et al., 1998). These inclusions are detectable using 

antibodies recognizing a small portion of the N-terminus of the AR protein, but not by 

those against the C-terminus of the protein. This observation implies that the C-terminus 

of AR is truncated or masked upon formation of NIs. A full-length AR protein with 

expanded polyglutamine tract is cleaved by caspase-3, liberating a polyglutamine-

containing toxic fragment, and the susceptibility to cleavage is polyglutamine repeat 

length-dependent (Kobayashi et al., 1998). Thus, proteolytic cleavage is likely to 
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enhance the toxicity of the pathogenic AR protein. Although NIs are important 

histopathological findings, their role in the pathogenesis of polyQ diseases has been 

debated. Several studies indicate that NIs are likely formed as a result of cellular 

defence reactions coping with the pathogenic polyglutamine protein (Taylor et al., 

2003). On the other hand, nuclear localization or accumulation of the abnormal proteins 

has been considered to be decisive for inducing neuronal cell dysfunction and 

degeneration in polyQ diseases including SBMA (Klement et al., 1998). An 

immunohistochemical study on autopsied SBMA patients, using an anti-polyglutamine 

antibody, 1C2, demonstrated that diffuse nuclear accumulation of the polyglutamine-

expanded AR is more frequently observed than NIs in the anterior horn of the spinal 

cord (Adachi et al., 2005). The frequency of diffuse nuclear accumulation of the 

polyglutamine expanded AR in spinal motor neurons strongly correlates with the length 

of the CAG repeat in the AR gene (Adachi et al., 2005). No such correlation has been 

found between NIs occurrence and the CAG repeat length. Taken together, it appears 

that the polyglutamine-expanded AR principally accumulates within the nuclei of motor 

neurons in a diffusible form, leading to neuronal dysfunction and eventual cell death. 

Since the human AR is widely expressed in various organs, accumulation of the 

polyglutamine expanded AR protein is detected not only in the central nervous system, 

but also in non-neuronal tissues such as pancreas and scrotal skin (Li et al., 1998; Banno 

et al., 2006). Furthermore, inclusions containing mutant AR are positive for ubiquitin, 

supporting the hypothesis of a toxicity due to an abnormal response to the polyQ tract, 

that avoid degradation through the proteasome. Moreover several proteins are detectable 

in the inclusions, such as chaperones Hsp70, Hsp90, CREB Binding Protein (CBP) and 

other transcription factors. The loss of function of the proteins that are sequestered, 

could contribute to the disease pathogenesis (Poletti et al., 2004; Abel et al., 2001; 

Stenoien et al., 1999). 

Another important observation is the presence of cytoplasmic mutant AR aggregates in 

neural and non-neural tissues (Adachi et al., 2005). Proteins with long polyGln 

sequences have a propensity to aggregate into high molecular weight insoluble protein 

complexes. Several hypotheses have been put forward to explain the formation of 

intracellular aggregates.  Polyglutamine sequences can form stable p-pleated sheets 

('polar zippers') that enable protein-protein interaction. Given that the AR is a 
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transcription factor, and that glutamine-rich domains of other transcription factors are 

thought to be involved in the protein-protein interactions that are required for 

assembling a transcription complex, the expanded glutamine repeat might lead to 

aberrant transcriptional regulation of target genes that leads to motor-neuron death. 

Alternatively, expansion of the repeat could exaggerate a normal interaction that is 

unrelated to transcription or promote formation of a novel protein complex that is toxic 

to neurons. Also, the expanded glutamine repeat might be a better substrate for 

transglutaminase, a ubiquitous enzyme that crosslinks glutamine residues in proteins 

with primary amines (for example, lysine residues in other proteins). The isodipeptide 

linkages that are formed by this enzyme are difficult for cells to degrade and, thus, 

could accumulate over time, leading to disruption of normal cellular function. Neurons, 

as long-lived, post-mitotic cells, might be particularly sensitive to this process (Brooks 

and Fischbeck, 1995). Aggregates are cytotoxic. For instance, sensory neurons within 

the dorsal root ganglion often show AR aggregates in the cytoplasm, that appear to be 

associated with axonal degeneration of sensory nerves in SBMA (Suzuki et al., 2008), 

while the cytoplasmic deposits of AR in the pancreas likely correspond to diabetes. 

Most important, also the wild-type AR form aggregates. The pathogenic AR mutants 

formed oligomeric fibrils up to 300–600 nm in length. These were clearly different from 

annular oligomers 120–180 nm in diameter formed by the non-pathogenic receptors 

(Jochum et al., 2012). In a mouse model of SBMA, soluble oligomers are detectable 

prior to the onset of neuromuscular symptoms (Li et al., 2007), suggesting that they play 

a role in pathogenesis of the disease. The aggregate formation and pathology of SBMA 

is strictly dependent on the presence of the androgen receptor's physiological ligand 

dihydrotestosterone (DHT), confirming the ligand-dependent nature of SBMA (Jochum 

et al., 2012). 

 

1.5.3. Ligand-dependent toxicity of polyglutamine-expanded AR 

SBMA presents a unique feature, among PolyQ diseases, in that it is the only disorder in 

which a chemical compound (the AR ligands testosterone or DHT) is able to modify the 

protein localization, by favouring nuclear uptake, and aggregation (Poletti et al., 2004). 

This makes SBMA a ligand-dependent disorder, since the ligand-activated PolyQ AR 

exerts its effect by a toxic gain of function (Adachi et al., 2003; Katsuno et al., 2002; 
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Palazzolo et al., 2009) only after testosterone-induced conformational changes, which 

occur during the activation process of the receptor (Simeoni et al., 2000). In these 

conditions, the PolyQ AR accumulates into nuclear and cytoplasmic aggregates, both in 

neural and nonneural tissues (Adachi et al., 2005). Thus, the ligand-dependent 

intracellular trafficking of AR appears to play an important role in the pathogenesis of 

SBMA. In a transgenic mouse model of SBMA expressing the full-length human AR 

containing 97 CAGs (AR-97Q), neuromuscular symptoms are markedly pronounced 

and accelerated in the male mice, but either not observed or far less severe in the female 

counterparts (Katsuno et al., 2002). Androgen deprivation through surgical castration 

substantially improved the symptoms, histopathological findings, and nuclear 

accumulation of the polyglutamine-expanded AR in the male AR-97Q mice. In contrast, 

subcutaneous injection of testosterone causes significant aggravation of symptoms, 

histopathological features, and nuclear localization of the polyglutamine-expanded AR 

in the female AR-97Q mice. Since the nuclear translocation of AR is ligand-dependent, 

testosterone appears to show toxic effects by accelerating nuclear translocation of the 

polyglutamine-expanded AR. The ligand-dependent degeneration of motor neurons has 

also been reported in other animal models of SBMA (Takeyama et al., 2002; Yu et al., 

2006). It should be noted that testosterone deprivation by castration reverses motor 

dysfunction in transgenic mice of SBMA (Chevalier-Larsen et al., 2004; Katsuno et al., 

2006b). Lending support to the ligand-dependent hypothesis are the clinical 

observations that manifestation of symptoms is minimal even in the females 

homozygous for an expanded CAG repeat in the AR gene, and that testosterone 

administration may exacerbate neuromuscular symptoms of SBMA patients (Schmidt et 

al., 2002; Kinirons and Rouleau, 2008). Ligand binding results in the dissociation of the 

receptor from Hsps and translocation to the nucleus. To determine whether ligand 

converts polyQ AR into a toxic species because it brings the disease protein to the 

nucleus, several AR variants were generated with either mutations of the acetylation site 

KXKK, addition of a nuclear export signal, or deletion of the nuclear localization signal. 

These mutations block or reduce nuclear translocation without altering ligand binding. 

These AR variants suppress polyQ AR toxicity, indicating that nuclear translocation is a 

prerequisite for toxicity (Montie et al., 2009; Nedelsky et al., 2010; Takeyama et al., 

2002). However, polyQ AR fused to a nuclear localization signal localizes to the nucleus 
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in the absence of ligand, but fails to trigger neurodegeneration, indicating that nuclear 

translocation is necessary, but not sufficient for toxicity (Montie et al., 2009; Nedelsky 

et al., 2010). This observation implies that events beyond ligand-induced nuclear 

translocation are central to disease pathogenesis. 

 

1.5.4. Post-translational modification of AR 

AR is substantially modified, in response to hormone binding, by phosphorylation, 

sumoylation, and acetylation. These post-translational modification has been implicated 

in the neurotoxicity of the polyglutamine-expanded AR. Akt-induced phosphorylation 

of AR at serines 215 and 792 blocks ligand binding and thereby mitigates toxicity in 

cultured motor neurons (Palazzolo et al., 2007). On the other hand, the phosphorylation 

of AR at 514 is shown to activate caspase-3, which in turn increases the amount of N-

terminal fragment of AR via protein cleavage, resulting in the enhancement of the 

pathogenic AR toxicity in a cellular model of SBMA (LaFevre-Bernt and Ellerby, 

2003). In addition to phosphorylation, acetylation and sumoylation are also shown to 

modify the toxicity of the polyglutamine-expanded AR. Acetylation at lysines 

630/632/633 stabilizes the polyglutamine expanded AR and enhances its cytotoxicity 

(Montie et al., 2011). Sumoylation enhances the solubility of the polyglutamine 

expanded AR and inhibits the formation of insoluble aggregates and soluble oligomers 

in a manner that is independent of AR transcriptional activity (Mukherjee et al., 2009). 

 

1.5.5. Transcriptional dysregulation 

AR is a transcription factor that specifically regulates the expression of hormone-

responsive genes. Transcription dysregulation is central to polyQ disease pathogenesis. 

It has been reported that nuclear inclusions frequently sequester other important 

proteins, including transcriptional co-activators, such as CBP, interfering with normal 

cell processes. The expression of genes regulated through CBP-mediated transcription is 

decreased in mouse models of polyglutamine diseases (Sugars and Rubinsztein, 2003). 

CBP functions as histone acetyltransferase, regulating gene transcription and chromatin 

structure. It has been demonstrated that acetylation of nuclear histone H3 is significantly 

diminished in SBMA mice (Minamiyama et al., 2004). Additionally, dysfunction of 

CBP results in a decreased expression of vascular endothelial growth factor and type II 
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transforming growth factor-beta receptor that are required for neuronal survival 

(Sopher et al., 2004; Katsuno et al., 2010a).  Testosterone-dependant transcriptional 

dysregulation has also been studied using a Drosophila model of SBMA, in which the 

polyglutamine-expanded AR enhances an androgen-dependent association of AR with 

Retinoblastoma protein (Suzuki et al., 2009). This interaction appears to result in an 

aberrant E2F transactivation through the suppression of histone deacetylation. In HSA-

AR Tg mouse model, overexpressing wild-type AR exclusively in myocyte, have been 

described many transcriptional changes that occur early and late in motor dysfunction 

progression and, importantly, are androgen-dependent (Halievski et al., 2014).  

Increasing polyglutamine length can inhibit the interaction between AR and its 

coactivators, resulting in a partial loss of function (Irvine et al., 2000).  Also, the polyQ 

tract can exacerbate the interaction of AR and other protein that normally regulate the 

function of the receptor. For example, NLK interacts with mutant AR at the N-terminal 

region of the protein, and, interestingly, polyQ expansion results in a more robust 

interaction between NLK and mutant AR in comparison to wild-type AR. The binding 

of NLK to AR, and its subsequent phosphorylation at S81, strongly inhibit the AR N/C 

interaction, and yet paradoxically increase AR-mediated gene transcription, 

exacerbating the transcriptional activity of the receptor (Todd et al., 2015). 

 

1.5.6. Disruption of axonal transport 

Motor neurons possess extremely long axon along which molecular motors transport 

essential components such as organelles, vesicles, cytoskeletons, and signal molecules. 

This implies that axonal trafficking plays a fundamental role in maintenance of normal 

function of motor neurons. Obstruction of axonal transport has gained attention as a 

cause of neuronal dysfunction in a variety of neurodegenerative diseases including 

SBMA (Gunawardena and Goldstein, 2005). The polyglutamine-expanded AR activates 

c-Jun N-terminal kinase (JNK), leading to the inhibition of kinesin-1 microtubule-

binding activity and eventual disruption of anterograde axonal transport (Morfini et al., 

2006). It is noteworthy that JNK inhibitors reverse the suppression of neurite outgrowth 

by pathogenic AR in cultured cells (Morfini et al., 2006). Piccioni et al. also 

demonstrate that cytoplasmic inclusions of the polyglutamine-expanded AR, when 

formed in the axons, alter the distribution of kinesin and interfere with axonal transport 
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of organelles, such as mitochondria (Piccioni et al., 2002). Furthermore, in the AR-97Q 

transgenic mouse model of SBMA, the mRNA level of dynactin 1 is substantially 

reduced, leading to the disruption of retrograde axonal transport (Katsuno et al., 2006). 

The defects in retrograde labeling of motor neurons and the blockade of endosomal 

trafficking are also documented in a knock-in mouse model of SBMA carrying AR-

113Q (Kemp et al., 2011).  Additionally, the deficits of retrograde axonal transport are 

also observed in mice over-expressing wild-type AR in muscle that demonstrate motor 

axonal degeneration mimicking SBMA (Monks et al., 2007; Kemp et al., 2011).  

 

1.5.7. Mitochondrial dysfunction 

In SBMA, mitochondrial dysfunction results from various interactions of elongated 

poly-Q AR with mitochondria, mitochondrial proteins, nuclear or mitochondrial DNA, 

causing oxidative stress, decreased mitochondrial membrane potential, or activation of 

the mitochondrial caspase pathway. In cell and animal models of SBMA mutant AR 

causes mitochondrial dysfunction by indirect effects on the transcription of nuclear-

encoded mitochondrial genes or on mitochondrial proteins. It is now well established 

that poly-Q AR tracts are associated with lower levels of transcription of androgen-

responsive, nuclear-encoded genes, including those that directly or indirectly influence 

mitochondrial functions. Genes down-regulated in MN-1 AR-65Q cells were those for 

superoxide dismutase-I (SOD-1), SOD-2, catalase, NADH-dehydrogenase-I, and 

TFAM, which is also controlled by PGC-1, resulting in increased ROS levels. Also in 

AR113Q knock-in mice transcript levels of PGC-1 and SOD-2 were significantly 

decreased (Ranganathan et al., 2009).  

In an androgen-treated yeast two-hybrid system, COXVb colocalized to polyQ AR 

aggregates in a hormone-dependent manner providing a mechanism in which 

sequestration of mitochondrial proteins leads to mitochondrial dysfunction in SBMA 

(Beauchemin et al., 2001). There are also indications that mutant poly-Q AR results in 

decreased mitochondrial membrane potential (Ranganatan et al., 2009).   

In leukocytes derived from SBMA patients and carriers was found a reduction in 

mtDNA copy number, that inversely correletad with the CAG-repeat length  (Su et al., 

2010). Furthermore, in these patients and carriers was found an increased frequency of 

the deletion mtDNA4977.  
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In MN-1 and PC-12 cells expressing the mutant polyQ AR, ligand-dependent activation 

of the mitochondrial caspase pathway with increased levels of key proteins of the 

apoptosis cascade, such as Bax, caspase 9, or caspase 3, and increased cell death were 

observed (Ranganatan et al., 2009). These effects were driven by altered expression of 

the peroxisome proliferator-activated receptor-γ (PPAR-γ). In another study on primary 

cortical neurons from mice it was found that N-terminal fragments of expanded poly-Q 

ARs activate apoptosis via activation of the c-Jun N-terminal kinase (JNK) (Young et 

al., 2009). 

Presence of poly-Q AR also alters distribution of mitochondria within a cell. In 

transfected HeLa cells cytoplasmic AR48Q-aggregates sequestered mitochondria, 

HSPs, proteasome components, and steroid receptor co-activator (SRC-1), result in 

abnormal distribution of mitochondria within the cytoplasm and axons (Stenoien et al., 

1999). One reason why mitochondria become aberrantly distributed could be an 

increased energy need in the vicinity of poly-Q AR aggregates. In fact, in a study on 

NCS34 cells, mitochondria were localised to neuronal processes containing poly-Q AR 

aggregates (neuropil aggregates) contrary to other cytosolic aggregates, which occurred 

peri-nuclearly. In some cells neuropil aggregates and accumulation of mitochondria 

corresponded to axonal swelling (Piccioni et al., 2002).  

In a cell model of SBMA (MN-1 AR-65Q cells) the mitochondrial mass was reduced 

compared to MN-1 cells transfected with AR-20Q. Additionally, morphology of 

mitochondria was abnormal with cristae vesiculation, vacuolation, and fragmentation 

(Ranganatan et al., 2009).  

There is increasing evidence that SBMA has a primary myopathic component and that 

mitochondrial dysfunction plays a role in the development of this myopathy (Orsucci et 

al., 2014). Speculations have been raised suggesting that myopathy starts before motor 

neuron degeneration in SBMA. Evidence for a mitochondrial contribution to myopathy 

in SBMA comes from animal  and patients studies (Jordan et al., 2008). In two studies 

on AR-100Q transgenic mice muscle biopsy showed increased staining for NADH 

(Sopher et al., 2004; Monks et al., 2007). In a 55yo SBMA patient with exercise 

intolerance and hyper-CKemia, muscle biopsy showed mixed myopathic and 

neurogenic features together with “mitochondrial features”. Staining for oxidative 

enzymes revealed some COX-hypo-reactive fibers (Orsucci et al., 2014).   
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1.5.8. UPS and Autophagy in SBMA 

The PolyQ AR aggregates contain several chaperones, component of the ubiquitin–

proteasome system (UPS), as well as transcription factors (Hdj2, Hsc70, Hsp70, Hsp90, 

the steroid receptor coactivator 1 (SRC-1), and the CREB-binding protein (CBP)) (Abel 

et al., 2001; Adachi et al., 2001, 2007; Stenoien et al., 1999). The colocalization of 

mutant polyQ proteins with molecules involved in protein refolding and degradation 

suggests the possibility of an involvement or a sequestration of these molecules into the 

aggregates. Protein catabolism is an essential protective event for the clearance of 

mutant and misfolded proteins. The two major intracellular degradative systems are the 

UPS and the autophagy. The UPS is a specific and selective proteolytic system for 

short-lived proteins. UPS degradation involves two steps: (i) the conjugation of 

ubiquitin moieties to the substrate and (ii) the degradation of the poly-ubiquitinated 

proteins by the 26S proteasome complex, followed by the recycling of ubiquitin and the 

release of short peptides (Ciechanover and Brundin, 2003). Macroautophagy, normally 

referred to as autophagy, is a highly conserved degradative process that removes 

cytoplasmic long-lived proteins, organelles, and portion of cytoplasm sequestered by a 

double membrane vesicle or autophagosome. These structures ultimately fuse with 

lysosome (Xie and Klionsky, 2007). In the absence of hormone, when cytoplasmic 

PolyQ AR is maintained inactivated by chaperones (Hsp70, and Hsp90), the soluble, 

non aggregated PolyQ AR impaired the UPS (Rusmini et al., 2007). UPS impairment 

could be the result of the unactivated-AR recruitment; in fact, UPS is unable to 

efficiently degrade the elongated polyQ regions of the proteins (Holmberg et al., 2004). 

PolyQ AR cytotoxicity correlated with UPS impairment (Pandey et al., 2007). 

Testosterone binding to AR induces posttranslational modifications that generate 

conformational changes resulting in AR dissociation from Hsps chaperones (Palazzolo 

et al., 2009; Poletti et al., 2004; Poletti et al., 2005). The release of the chaperones might 

unmask the polyQ tract; thus, testosterone-activated AR acquires the capability to self-

aggregate (Rusmini et al., 2007). Surprisingly, the PolyQ AR activation correlated with 

proteasome desaturation (Rusmini et al., 2007).  In theory, by clearing the cells from 

misfolded proteins, the UPS should prevent the formation of nuclear aggregates, but the 

overload of misfolded substrates impairs UPS activity leading to PolyQ AR 

accumulation also in the nuclei. Ligand-mediated PolyQ AR activation resulted in 
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nuclear aggregation (Pandey et al., 2007). Interestingly, in SBMA cellular models, the 

PolyQ AR retention in the cytoplasm may prevent the nuclear translocation, promoting 

cytoplasmic aggregates formation. The cytoplasmic sequestration of PolyQ AR into 

aggregates prevented the appearance of the PolyQ AR neurotoxicity (Montie et al., 

2009; Montie and Merry, 2009; Rusmini et al., 2007).  The aggregate-prone proteins, 

like PolyQ AR, seem to be substrates which can be degraded by macroautophagy. The 

activation of macroautophagy can be visualized using as marker the microtubule 

associated protein 1 light chain 3 (LC3), which, when autophagy is activated, associates 

to autophagosome vesicles membranes in its LC3-II lipidated form (Mizushima and 

Kuma, 2008; Mizushima, 2010). Overexpression of polyQ AR leads to the accumulation 

of LC3 puncta (Rusmini et al., 2010) and the formation of electron dense autophagic 

vacuoles (AVs) (Taylor et al., 2003). In a fly model of SBMA, expressing polyQ AR in 

the eye leads to classic degenerative phenotype, accompanied with AVs and 

multivescicular-body accumulation (Pandey et al., 2007). Additionally, motor neurons 

of a transgenic mouse model expressing 100 CAG repeats (AR100) have increased 

numbers of AVs at post-symptomatic stages, suggesting alterations in the autophagy 

pathway are indeed features of SBMA.  Recently was uncovered a novel interaction 

between TFEB and polyQ AR. Dynamic measurements of autophagy markers revealed 

impairments in autophagic flux in SBMA cells, which correlated with marked deficits in 

TFEB target gene expression (Cortes et al., 2014). Importantly, Cortes et al. restored 

autophagy flux by overexpressing TFEB in patient-derived NPCs. Genetic ablation of 

autophagy in Drosophila exacerbates polyQ AR eye degeneration phenotypes (Pandey 

et al., 2007) and depletion of p62 in AR97Q transgenic mice significantly worsens 

motor and neurological  phenotypes (Doi et al., 2013). Conversely, pharmacological 

activation of autophagy through Rapamycin treatment suppresses polyQ AR eye 

degeneration, and this effect is dependent on functional autophagy and HDAC6 (Pandey 

et al., 2007). Like other aggregate prone proteins, cytosolic polyQ AR can be a substrate 

of autophagy (Montie et al., 2009). Although the nucleus has emerged as the principal 

site of polyQ disease pathogenesis, degradation of cytoplasmic polyQ AR oligomers 

would reduce nuclear polyQ AR available for aggregation and toxicity. Autophagy 

induction was detected in AR dNLS112Q cultured motor neurons, and inhibition of 

autophagy augmented testosterone-mediated toxicity in this model (Montie et al., 2009), 
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further suggesting that targeting of cytosolic polyQ AR for autophagy degradation could 

have important beneficial effects in SBMA.  

Recently, was demonstrated that skeletal muscle plays a primary role in SBMA 

pathogenesis, superseding motor neurons as the key site of polyQ AR toxicity (Cortes et 

al., 2014; Lieberman et al., 2014; Sorarù et al., 2008). Interestingly, while TFEB 

activity in SBMA motor neurons and patient derived NPCs was significantly reduced, 

analysis of quadriceps muscle samples from symptomatic 14 month-old AR100Q 

transgenic mice yielded an opposite and dramatic up-regulation of TFEB target genes 

(Cortes et al., 2014), consistent with studies in SBMA knock-in AR113Q mice (Chua et 

al., 2014). This suggests a muscle-specific process of supraphysiological induction of 

TFEB in diseased SBMA muscle cells. Since uncontrolled autophagy is thought to 

underlie muscle wasting in models of muscular dystrophy (Sandri et al., 2013), 

excessive activation of autophagy could also be responsible for SBMA skeletal muscle 

phenotypes. In agreement with this hypothesis, global reduction of autophagic activity 

by Beclin-1 haploinsufficiency in SBMA knock-in AR113Q mice increased skeletal 

muscle fiber size and significantly extended lifespan in this model (Yu et al., 2011). 

 

1.5.9. Non-cell autonomous toxicity: Muscle Matters in Kennedy’s Disease 

Traditionally, SBMA has been viewed as a cell-autonomous, primary motor neuron 

disease. Recently published reports challenge the traditional view of SBMA as a 

primary motor neuron disease. These studies establish muscle as a site of mutant AR 

toxicity and suggest targeting mutant protein expression in this tissue as an approach for 

treating the disorder. Several lines of evidence from previous studies support a primary 

contribution of skeletal muscle in the disease pathogenesis: (1) muscle biopsies of 

SBMA patients show features of both denervation and myofibers degeneration (Soraru` 

et al., 2008); (2) knockin mice expressing polyglutamine expanded AR develop early 

findings of myopathy with little or no motor neuron loss (Yu et al., 2006; Rocchi, 

Milioto et al., in revision); (3) muscle-specific overexpression of wildtype, non 

expanded AR in mice is sufficient to produce SBMA-like neuromuscular disease 

(Monks et al., 2007); (4) genetic overexpression of muscle-specific IGF-1 or peripheral 

IGF-1 administration has been shown to mitigate SBMA symptoms in transgenic mice 

(Palazzolo et al., 2009; Rinaldi et al., 2012); (5) expression of polyglutamine-expanded 
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AR in all tissues except skeletal muscle is sufficient to prevent disease manifestations in 

transgenic mice (Cortes et al., 2014). Furthermore, the effects of antisense 

oligonucleotides (ASOs) mediated suppression of AR gene in the periphery but not in 

the CNS after subcutaneous administration, were recently tested by Lieberman et al. in 

two mouse models: AR113Q knock-in mice that have a CAG repeat expansion in the 

endogenous mouse AR locus and the fxAR121Q mice described by Cortes et al. in 2014 

(see next section for more detail) (Lieberman et al., 2014). ASOs treatment rescued 

weight loss, muscle weakness, abnormal gene expression, and lethality in the mice, 

without altering testosterone levels. In conclusion, AR accumulation in motor neurons 

may not be sufficient for polyglutamine toxicity in SBMA models and targeting mutant 

AR in muscle can ameliorate the functional defects associated with SBMA. 

 

 

1.6. Animal models 

Numerous animal models of SBMA have been created to elucidate the molecular 

pathogenesis and develop therapeutic approaches. All of the available animal models of 

SBMA are transgenic mice with truncated or full-length human AR. Early mouse 

models of SBMA failed to show phenotypes. Transgenic mice were first created using 

the full-length AR containing 45 CAGs, which is equivalent to the repeat length 

observed in SBMA patients, driven by the interferon-inducible Mx promoter or the 

neuron-specific enolase (NSE) promoter (Bingham et al., 1995). Expression of mutant 

AR was found in mice with the inducible Mx promoter, but at a lower level than normal 

endogenous expression. The mice demonstrated neither phenotype nor repeat length 

instability. Another transgenic mouse model was created with yeast artificial 

chromosomes (YACs) carrying the AR gene in the context of flanking non-coding 

sequences (La Spada et al., 1998). This model failed to show the expression of mutant 

AR in RT-PCR or Western blot analysis. In order to enhance the toxicity of mutant AR, 

a transgenic mouse model was created with human AR containing 66 CAGs, which was 

longer than the longest repeat observed in SBMA patients, driven by the NSE promoter 

or the neurofilament light chain (NFL) promoter (Merry et al., 1996). Although 

expression levels of mutant AR were 2–5 times the endogenous AR levels, these mice 



Introduction 

 
37 

 

showed no neurologic symptoms, presumably because the CAG repeat was not long 

enough.  

In SBMA and other polyQ diseases, nuclear inclusions (NIs) are detected by antibodies 

against an N-terminal epitope, but not by antibodies against a C-terminal epitope (Li et 

al., 1998a, b). These findings suggest that truncated polyQ-containing proteins confer 

the toxicity in polyQ diseases. Additionally, in vitro translated full-length AR protein 

with an expanded polyQ tract is cleaved by caspase-3, liberating a polyQ-containing 

fragment, and the susceptibility to cleavage is polyQ repeat length-dependent 

(Kobayashi et al., 1998). For these reasons, was created a transgenic mouse model 

carrying 239 CAGs driven by the human AR promoter. These mice demonstrated motor 

impairment and revealed that the polyQ tract is sufficient to induce the pathogenic 

process of SBMA (Adachi et al., 2001). They exhibited small body size, weakness, 

truncal and limb incoordination, reduced activity and short lifespan. These phenotypes 

apparently developed within 4–8 weeks of birth, and gradually became severe at 8–16 

weeks. The most striking pathologic observation was widespread occurrence of NIs, 

which were distributed in the neuronal cell nuclei in the cerebrum, cerebellum, 

brainstem and spinal cord, but to a lesser extent or not at all in the basal ganglia. This 

pathologic distribution was limited by the promoter used, and was more widely spread 

than that of human SBMA. These NIs were positive for ubiquitin and colocalized with 

proteasome components. Despite abundant NIs, there was no evidence of active 

neuronal degeneration or reactive astrogliosis. Thus neuronal dysfunction, rather than 

neuronal degeneration, is likely to be the pathogenesis of this mouse model. Expression 

of the transgene assessed by RT-PCR was revealed in the cerebrum, cerebellum, spinal 

cord, pituitary, lung, eye and skin; its distribution was compatible to that of NIs as well 

as mouse AR distribution. The mice showed subtle meiotic instability of the CAG 

repeat, in agreement with SBMA. 

Simultaneously, another SBMA mouse model was created with truncated human AR 

containing 112 CAGs, driven by the neurofilament light chain (NFL) or prion protein 

promoter (Abel et al., 2001). The mice with the prion protein promoter showed non-

specific features such as tremor, seizure and loss of body weight, whereas those with the 

NFL promoter demonstrated motor impairment similar to SBMA patients, accompanied 

by upper motor deficits. Widely expressed mutant AR may account for these 
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neurological phenotypes, because the distribution of histopathological involvement, 

which depended on the expression level of the transgene, was more extensive than that 

of SBMA. Immunohistochemical analysis of AR expression revealed transgenic AR 

positive nuclear inclusions in isolated neurons in several restricted regions of the central 

nervous system including the brainstem and the cortex and at lower frequency in spinal 

cord motor neurons. NIs were ubiquitinated and contained several molecular 

chaperones. About half of the NIs were positive for CREB-binding protein 

(McCampbell et al., 2000). In spite of neurologic symptoms and NIs, neither neuronal 

loss nor neurogenic muscle atrophy was demonstrated in this model.  

Unlike the profound gender difference of phenotypes in SBMA patients, neither a 

transgenic (Tg) mouse model of SBMA expressing expanded AR with 239 CAGs 

(Adachi et al., 2001) nor another model carrying truncated AR with 112 CAGs (Abel et 

al., 2001) showed any remarkable phenotypic difference with gender, because the 

transgenes of these Tg mice did not contain the ligand-binding domain located in the C-

terminus of AR. For these reasons, were generated Tg mice expressing the full-length 

human AR containing 24 or 97 CAGs under the control of the cytomegalovirus enhancer 

and the chicken ß-actin promoter (Katsuno et al., 2002). This model recapitulated not 

only the neurologic disorder, but also the phenotypic difference with gender which is a 

specific feature of SBMA. Three out of five lines with 97 CAGs (AR-97Q) exhibited 

progressive motor impairment and no lines with 24 CAGs showed any manifested 

phenotypes. All symptomatic lines showed small body size, muscle atrophy, weakness, 

reduced activity and short lifespan; all of which were markedly pronounced and 

accelerated in the male AR-97Q mice, but either not observed or far less severe in the 

female AR-97Q mice regardless of the line. Early mortality of male mice, which is not 

common in SBMA, appears to be caused by cachexia. There was no significant 

difference in the expression of the transgene mRNA between the male and female AR-

97Q mice. These observations indicate that the testosterone level plays important roles 

in the sexual difference of phenotypes, especially in the post-transcriptional stage of the 

mutant AR. The male AR-97Q mice showed markedly more abundant diffuse nuclear 

staining and NIs than females. Muscle histology revealed significant grouped atrophy 

and small angulated fibers in the male AR-97Q mice as well as mild myopathic change. 

The female AR-97Q mice showed no neurogenic change model. Castrated male AR-
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97Q mice, which had a decreased testosterone level, showed significant improvement of 

symptoms, pathologic findings, and nuclear localization of the mutant AR compared 

with the sham-operated male AR-97Q mice. The life span was also significantly 

prolonged in the castrated male AR-97Q mice. Castration ameliorated muscle atrophy 

and body size reduction. In contrast to castration of the male mice, testosterone 

administered to the female AR-97Q mice caused significant exacerbation of symptoms, 

pathologic features, and nuclear localization of the mutant AR. These findings suggest 

that reduction of testosterone ameliorates phenotypic expression by preventing nuclear 

localization of the mutant AR, in addition castration may enhance the protective effects 

of heat shock proteins (HSPs), which are normally associated with AR and dissociate 

upon ligand binding. 

Another Tg mouse model carrying the full-length AR with 120 CAGs driven by the 

cytomegalovirus promoter showed slowly progressive motor impairment and 

neurogenic muscle atrophy (McManamny et al., 2002). The affected mice also 

displayed a progressive reduction in sperm production consistent with androgen 

insensitivities in SBMA patients. Although this model showed no neuronal inclusions 

throughout the nervous system, loss of motor neurons was demonstrated in the spinal 

cord. Notably, as expected, mild but evident sexual difference of phenotypes was 

observed. This finding supports the hypothesis that testosterone level is implicated in 

the phenotypic expression of SBMA. These studies indicate that the C-terminus of 

mutant AR is necessary to recapitulate the testosterone-dependent pathogenesis of 

SBMA in mouse models.  

Yu et al. (2006) developed a knock-in mouse model of Kennedy’s disease, using gene 

targeting. They exchanged 1340 bp of coding sequence from mouse AR exon 1 with 

human exon 1 and in the process inserted 21, 48, or 113 CAG repeats. Mice with the 

targeted insertion of 21 or 48 CAG repeats (AR21Q and AR48Q, respectively) were 

similar to WT while those with an insertion of 113 CAG repeats (AR113Q) showed the 

systemic manifestations of Kennedy’s disease. Expression of the targeted AR gene was 

under the control of the endogenous mouse regulatory elements, resulting in expression 

patterns that were similar to that of the WT allele. AR113Q mice exhibited testicular 

atrophy and decreased fertility, consistently with the mild androgen insensitivity in 

patients. Mutant males also exhibited androgen-dependent neuromuscular weakness. 
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Skeletal muscle pathology, including morphological changes in myofibers, preceded 

pathologic changes in spinal cord and showed evidence of both myopathic effects and 

neurogenic atrophy mediated by the expanded glutamine AR. AR and ubiquitin 

immunoreactive intranuclear inclusions was evident in males muscle by 3–5 months. In 

contrast, spinal cord pathology was detectable only in mutant males at 24 months. These 

data suggested that disease is initially characterized by myopathic effects in skeletal 

muscle combined with either functional denervation or distal axonopathy that is 

reflective of motor neuron dysfunction. Loss of lower motor neurons and spinal cord 

gliosis are late manifestations of this progressive disorder. Indeed, AR113Q hind-limb 

muscle expressed significantly lower levels of mRNAs encoding the neurotrophic 

factors NT-4 and GDNF, indicating that a loss of trophic support from the diseased 

muscle may hasten lower motor neuron dysfunction and degeneration, suggesting that 

muscle plays a primary role in SBMA pathogenesis. Testosterone-treated AR113Q 

females exhibit normal life span and developed small but statistically significant deficits 

in forelimb grip strength without altered body mass. These data suggest that, after 

testosterone treatment, AR113Q females develop androgen-dependent weakness but not 

exhibited the early death manifested by AR113Q males. AR113Q males unexpectedly 

died at 2–4 months, because of functional urinary tract obstruction (Yu et al., 2006). 

According to the consideration that muscle play a primary role in SBMA pathogenesis, 

Monk et al. developed a Tg mouse models of SBMA, that overexpress AR with a WT 

number of Q repeats solely in skeletal muscle using the human skeletal actin (HSA) 

promoter. This promoter does not appear to be expressed in other muscle types, 

including cardiac or smooth muscle (Monks et al., 2007). No transgene expression was 

detected in other tissues. The males that survive are characterized by a neuromuscular 

phenotype, with reduced body weight, altered posture, decreased spontaneous 

locomotion, weakness and motor dysfunction, typical of the SBMA phenotype of polyQ 

mice. Along with these motor deficits, males have marked myopathy and reduced motor 

axon number, although motoneurons number does not differ between WT and Tg males, 

suggestive of axonopathy without motoneurons loss. Because the transgene is muscle 

specific, this neuropathology is secondary to muscle pathology.  Indeed, castrating 

HSA-AR Tg males results in dramatic improvement of motor function. In further 

support of the androgen dependence of the HSA-AR phenotype, adult Tg females that 
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are treated with testosterone in the male range exhibit loss of body weight/muscle mass 

and motor dysfunction, similar to their male counterparts. This observation reinforces 

the notion that the transgene affects muscle primarily and that axon loss in males 

reflects more chronic, indirect, effects of androgen. The SBMA-like phenotype in males 

can be reversed upon cessation of testosterone treatment. 

Recently, also Cortes et al. explore the contribution of muscle to SBMA pathogenesis 

with a new conditional mouse model of SBMA, BAC fxAR121Q, which expresses a 

full-length human AR transgene with 121 CAG repeats under the control of the 

endogenous AR promoter. The first exon of the human AR transgene is flanked by loxP 

sites, which allows removal of the transcription start site by Cre recombinase enzyme. 

In the absence of Cre, fxAR121Q mice show mutant AR transgene expression 

comparable to endogenous mouse AR in mRNA, protein, and tissue distribution. Male 

mice develop progressive muscle weakness, weight loss, and reduced survival, similar 

to other transgenic SBMA mouse models. Introduction of Cre recombinase under the 

control of a ubiquitous promoter (CMV-Cre) in fxAR121Q mice completely abrogated 

mutant AR transgene expression in all tissues. Double transgenic fxAR121Q/CMV-Cre 

mice were indistinguishable from non transgenic littermates and never developed 

SBMA manifestations, demonstrating complete mitigation of mutant AR toxicity 

through Cre-mediated recombination events in this model. Next, Cortes et al.  

introduced tissue-specific Cre expression driven by a human skeletal actin (HSA-Cre) 

promoter. fxAR121Q/HSA-Cre mice showed selective suppression of the AR transgene 

in skeletal muscle. Although AR was still expressed in the spinal cord, and reduced 

motor neuron soma size and accumulation of mutant AR in nuclear inclusions were 

unchanged in these mice, muscle-specific abrogation of AR increased survival, 

suppressed weight loss and weakness, and increased the diameter of motor axons. This 

study demonstrates a primary role of skeletal muscle in SBMA pathogenesis in these 

mice and justifies AR gene silencing in muscle tissues as a potential disease-modifying 

strategy in patients (Cortes et al., 2014).  
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PARTE II: MITOCHONDRIA 

1.7. Mitochondria 

Mitochondria are the most specialized organelles with two membrane systems dividing 

the organelle in four compartments: the outer mitochondrial membrane (OMM), the 

intermembrane space (IMS), the inner mitochondrial membrane (IMM) and the matrix 

which are characterized by marker proteins and specific enzymes (Horvath and Daum, 

2013). The numerous invaginations of the inner membrane are called cristae. 

According to the endosymbiont hypothesis, mitochondria originated from the 

engulfment of aerobic eubacteria by a primordial  anaerobic eukaryote. As a result, the 

organelle has its own genetic system with several bacteria-like features including a 

compact circular DNA genome (mtDNA), a simple transcription system that produces 

multigenic RNA transcripts, and a translational apparatus with antibiotic sensitivities 

similar to prokaryotic cells (Scarpulla et al., 2012). Human mitochondrial DNA 

(mtDNA) is a double stranded circular molecule of 16,569 bp encoding 2 ribosomal 

RNAs, 22 transfer RNAs and 13 messenger RNAs for polypeptides that form part of the 

multisubunits complexes of the oxidative phosphorylation system (OXPHOS) (7 

subunits of complex I, 1 subunit of complex III, 3 subunits of complex IV and 2 

subunits of complex V). The mammalian mtDNA contains few non-coding sequences: 

the largest being the D-loop or displacement loop, which contains promoters and origins 

of replication. Protein-coding genes have no intronic regions. Alkaline gradient 

centrifugation experiments allowed the separation of the mtDNA double strands into a 

heavy (H-strand) and a light (L-strand) due to their differential content of guanosine and 

cytidine (Fig. 1.5).  
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Figure 1.5. Structure and expression of the human mitochondrial DNA. The 16,569 bp human 

mtDNA (panel A) showing 13 protein-coding genes as well as 2 rRNA- and 22 tRNA-coding genes. 

Genes coding for subunits of complex I (ND1—ND6), complex III (Cyt b), complex IV (COX I—COX 

III) and complex V (A8-A6) are shown by different colours. The inset on panel A illustrates one of the 

mechanisms proposed for mtDNA replication. It also shows a consensus model of polycistronic 

transcription, including the approximately binding sites for the mitochondrial RNA polymerase, the 

mitochondrial transcription factor TFAM, the RNA processing enzyme RNAse MRP and the transcription 

termination factor mTERF. The origins of replication for the H- and L-strands (OH and OL) are also 

shown. The structure of the regulatory D-loop region is shown in panel B, including the approximate 

position of the conserved sequence boxes believed to play a role in replication and RNA primer 
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processing. It also shows the location of the two hypervariable regions (HSV1 and HSV2) commonly 

used for evolutionary studies (Diaz and Moraes, 2008). 

 

The genetic code of mitochondria differs from the nuclear universal code. The 

mitochondrial (mt)TGA codon codes for tryptophan instead of stop, the mtAGA and 

mtAGG code for stop instead of arginine and the mtATA codes for methionine instead 

of isoleucine. The mtDNA is associated with several proteins packed in structures 

denominated nucleoids, which are also associated with the inner mitochondrial 

membrane. Several studies showed that yeast nucleoids include proteins that bind DNA 

and are associated with replication and transcription such as the mitochondrial 

transcription factor A (TFAM). TFAM seems to be present at relatively high levels, and 

by itself is able to organize the mtDNA in ‘‘nucleoid-like’’ structures (Diaz and Moraes, 

2008). 

The transcription and translation of the mitochondrial genome is dependent upon a host 

of nucleus-encoded gene products (Scarpulla et al., 2012). Only 1% of mitochondrial 

proteins are translated on mitochondrial ribosomes in the matrix, whereas the bulk of 

mitochondrial proteins is encoded by nuclear genes, translated on cytosolic ribosomes 

and imported into mitochondria (Horvath and Daum 2013). Mitochondrial DNA 

(mtDNA) transcription requires a single RNA polymerase (POLRMT), two stimulatory 

transcription factors (TFAM, TFB2M), and a termination factor (MTERF1). 

Transcription takes place bidirectionally from divergent promoters, within the D-loop 

regulatory region (Scarpulla et al., 2012).   

Mitochondria are capable of synthesizing some lipids on their own, but depend at the 

same time on the transfer and assembly of lipids mainly formed in the endoplasmic 

reticulum (ER). The continuous supply and exchange of lipids is required for 

maintaining mitochondrial membrane integrity and overall cellular function (Horvath 

and Daum, 2013). 

Mitochondria have further roles in cell maintenance and survival, including calcium 

signaling and storage, metabolite synthesis, and apoptosis. In addition, cellular 

homeostasis depends highly on the energy provided by mitochondria, the cellular power 

plants responsible for aerobic production of ATP by the mitochondrial electron 

transport chain (ETC) in a process called oxidative phosphorylation (OXPHOS) 

(Novak, 2012). The (ETC) comprises four large protein complexes, which along with 
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the F0F1 ATP synthase and mobile electron carriers (cytochrome c and coenzyme Q) 

constitute the machinery for converting metabolic energy into ATP. They are multi-

subunit enzymatic complexes, all located in the inner mitochondrial membrane 

(Paradies et al., 2013). The electron donors, NADH and FADH2, derived from the 

oxidation of acetyl-CoA, are utilized by the ETC of the mitochondrial inner membrane 

to establish an electrochemical proton gradient across the membrane. The resulting 

proton motive force, comprising both a voltage potential and a pH gradient, is used by 

the membrane-bound ATP synthase to drive the synthesis of ATP, or by uncoupling 

proteins to generate heat or for the active transport of ions and metabolites. The 

mitochondrial ETC efficiently delivers electron pairs to molecular oxygen, the terminal 

acceptor (Scarpulla et al., 2012). In detail, Complex I (NADH-ubiquinone 

oxidoreductase) catalyzes electron transfer from the NADH to ubiquinone. The redox 

reaction is coupled to proton translocation across the membrane, contributing to proton 

motive force. The activity of this enzyme complex is considered the rate limiting step 

for mitochondrial respiratory chain and, therefore, an important factor in the regulation 

of OXPHOS process. Complex I is also considered an important site of superoxide 

anion generation in mitochondria. Complex II (succinate dehydrogenase) serves as a 

link between the tricarboxylic acid cycle and the electron transport chain. This enzyme 

participates in oxidative phosphorylation but not in the proton-gradient during ATP 

synthesis. It  catalyzes the oxidation of succinate to fumarate with the reduction of 

ubiquinone to ubiquinol. Complex III (ubiquinol-cytochrome c oxido-reductase) is a 

central enzyme in oxidative phosphorylation which catalyzes electron transfer from 

membrane-localized ubiquinol to water-soluble cytochrome c. This redox reaction is 

coupled to the translocation of protons across the IMM. Complex IV (cytochrome c 

oxidase) receives an electron from four cytochrome c molecules, and transfers them to 

one oxygen molecule, converting molecular oxygen to two molecules of water. Finally, 

F0F1 ATP-synthase (complex V) uses the energy created by the proton electrochemical 

gradient to phosphorylate ADP to ATP (Paradies et al., 2013). Two alternative models 

of organization of the mitochondrial electron transport chain have been elaborated: the 

solid model or the random collision model. The random collision model proposes that 

Complexes I–IV do not interact physically and that electrons are transferred between 

them by coenzyme Q and cytochrome c, the solid model proposes that all complexes 



Introduction 

 
46 

 

super-assemble in the so-called respirasome and the substrate is channelled directly 

from one enzyme to the next (Enriquez and Lenaz, 2014). Several models of 

supercomplexes, involving components of the electron transport chain (complexes I, II, 

III and IV), and complex V and ADP/ATP carrier, have been proposed. By using blue 

native electrophoresis after mild solubilisation of mitochondria with digitonin, the 

existence of two supercomplexes composed by complexes I, III and IV with a 

stoichiometry of I1, III2, and IV4, and by complexes III and IV with a stoichiometry of 

III2 and IV4, was demonstrated (Paradies et al., 2013). Four major roles have been 

attributed to the supercomplexes organization of the ETC: (a) increased efficiency of 

electron flux, through substrate channeling or enhanced catalysis, (b) sequestration of 

reactive intermediates to prevent generation of ROS, (c) structural stabilization of 

individual respiratory complexes, and (d) structures in which Complex I is assembled 

and activated (Enriquez and Lenaz 2014). Recently, it was proposed that the 

respirasome is a dynamic assembly, the aggregation states of which can respond to 

variations in the demand for energy under different physiopathological conditions 

(Paradies et al., 2013) 

 

 

1.8. Mitochondrial biogenesis 

Normally, mitochondrial biogenesis is activated by changes that require increases in the 

rates of ATP utilization. Such events include thermogenesis, exercise, calorie 

restriction, hypoxia and several others (Piantadosi and Suliman, 2012). Mitochondrial 

biogenesis is very complex and requires numerous processes: besides synthesis of 

mtDNA encoded protein, biogenesis of new organellar structures includes synthesis and 

import of nuclear encoded proteins, assembly of the dual genetic origin derived proteins 

and mtDNA replication. Nuclear encoded mitochondrial proteins are synthesized in the 

cytoplasm and are then imported into mitochondria. mtDNA encoded proteins are 

synthesized within the organelle itself. mtDNA transcription generates 13 mRNA as 

well as 2 rRNAs and 22 tRNAs needed for the translation of mitochondrial mRNAs. 

The core machinery of mitochondrial gene expression consists of the mitochondrial 

transcription factor A (TFAM), the RNA polymerase γ (Polrmt) and the mitochondrial 

transcription factor B2 (TFB2). These factors form the crucial core and are sufficient for 
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mtDNA transcription. A second homologue of TFB2, namely TFB1, is involved in 

mitochondrial translation and regulates the methylation state of the mitochondrial 

ribosome. TFAM has an additional role in packaging of mtDNA and is necessary for 

mtDNA maintenance (Wenz et al., 2012). 

The regulation of mitochondrial biogenesis is governed by nuclear factors in a 

hierarchical structure. Several nuclear transcription factors regulate the expression of 

nuclear encoded mitochondrial proteins: the first identified transcription factors are 

nuclear respiratory factors 1 and 2 (NRF1 and NRF2), which control the expression of 

genes encoding for cytochrome c and cytochrome c oxidase subunits. NRF2 belongs to 

the family of GA binding proteins, which bind DNA sequences rich in guanine and 

adenine (GA). NRF1 governs the expression of nuclear OXPHOS genes as well as the 

expression of nuclear encoded factors involved in mitochondrial transcription, protein 

import and protein assembly, such as TFAM. Human NRF-2 was identified as a 

multisubunit transcriptional activator of the cytochrome oxidase subunit IV (COXIV) 

promoter (Scarpulla et al., 2012).  NRF2 binding sites have been also identified in 

several other mitochondrial genes including OXPHOS subunits, the mitochondrial 

protein import machinery and mitochondrial translation factors (Wenz et al., 2012). 

Several additional nuclear transcription factors have been linked to the expression of the 

respiratory apparatus, including YY1, MEF2 and c-myc. YY1 was first associated with 

the expression of cytochrome oxidase subunits Vb and VIIc, and subsequent analysis of 

723 human core promoters revealed a preponderance of YY1 sites in nuclear genes 

encoding ribosomal subunits and mitochondrial proteins.  Tissue-specific expression of 

at least some muscle-specific cytochrome oxidase subunits depends upon MEF2/Ebox 

recognition sites. NRF-1 regulates MEF2A in muscle. Finally, c-myc acts on the 

expression of particular NRF-1 target genes through a canonical NRF-1 binding site, 

resulting in the sensitization of cells to apoptosis (Morrish et al., 2003). 

Most nuclear receptors (NR) are involved in the regulation of mitochondrial genes. The 

first was the peroxisome proliferator-activated receptor a (PPARa). PPARa is now 

known to coordinately regulate nuclear genes encoding mitochondrial fatty acid 

oxidation (FAO) enzymes. The activation of PPARa and PPARb by lipid ligands 

provides a mechanism for transducing changes in cellular lipid metabolism to the 

transcriptional control of mitochondrial FAO, a key source of ATP production in heart 
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and muscle. A second family of NRs, the estrogen-related receptors or ERRs (ERRa, 

ERRb, and ERRg), have also been shown to regulate nuclear genes encoding 

mitochondrial proteins involved in FAO, in the TCA cycle, in the respiratory chain, and 

oxidative phosphorylation. In addition, ERRa can regulate the transcription of the 

PPARa gene. All three ERRs are expressed in mitochondrion-rich tissues such as heart 

and skeletal muscle (Narkar et al., 2011).  

Mitochondrial biogenesis is controlled also by a family of coactivators including PGC-

1α and PGC-1 β (peroxisome proliferator-activated receptor-γ coactivator-1α and β). 

PGC-1α interacts directly with transcriptional factors, recruits the histone acetyl 

transferase (HATs) and interacts with the transcriptional machinery. Different 

transcription factors, including PPARs, nuclear respiratory factors (NRFs), myocyte 

enhancing factors (MEFs), estrogen-related receptor (ERR), forkhead box (FoxOs) and 

yin-yang (YY1) are modulated by PGC1α (Romanello and Sandri, 2012). An important 

regulator of PGC-1α gene expression is the cAMP response element-binding protein 

(CREB), which activates PGC-1α in liver in response to glucagon. In brown adipose 

tissue, CREB induces PGC-1α expression in response to altered cytosolic calcium 

homeostasis and in response to cold temperature (Scarpulla et al., 2008). PGC1 family 

members are preferentially expressed in tissues with high-capacity mitochondrial 

function like heart, adipose tissue and slow-twitch skeletal muscle. PGC-1α co-

ordinately increases mitochondrial biogenesis as well as the uptake and utilization of 

substrates for energy production, being crucial in the maintenance of energy 

homeostasis. PGC-1α is a powerful coactivator of NRF-1and NRF-2 enhancing the 

expression of mitochondrial transcription factor A (TFAM), mitofusins and of different 

nuclear genes encoding mitochondrial proteins. Both TFAM and nuclear gene products 

are imported into mitochondria where they regulate the expression of mitochondrial 

proteins required for ATP synthesis (Olesen et al., 2010).  In skeletal muscle, there is 

compelling evidence that PGC-1α is a key regulator of multiple pathways coordinating 

tissue adaptation to exercise. Transgenic mice that expressed PGC-1α specifically in 

fast glycolytic muscles show a switch to oxidative metabolism, increased mitochondrial 

content and improvements in endurance exercise (Lin et al., 2002). During contraction, 

cytoplasmic calcium concentration transiently increases, as well as ROS production and 

ATP consumption. The alteration in calcium homeostasis activates calcium-sensitive 
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signaling such as calcium/calmodulin dependent protein kinases (CaMK) and 

calcineurin/NFAT pathways. On the other side ATP depletion modifies the AMP/ATP 

ratio, activating the energy sensor AMP-activated protein kinase (AMPK). Both the 

calcium-dependent pathways and AMPK modulate the activity and the expression of 

PGC-1α.  During aging, mitochondrial biogenesis, mitochondrial content and PGC-1α 

levels decrease. Importantly, maintaining PGC-1α high levels in aged muscles preserves 

mitochondrial function and content (Romanello and Sandri, 2012). Metabolic signaling 

through PGC-1a takes place, in part, through post-translational modifications. For 

example, PGC-1a is directly regulated by deacetylation (SIRT1) and phosphorylation 

(AMPK) in response to changes in nutrient or energy depletion. The SIRT1 and AMPK 

pathways can also cooperate in promoting calcium-dependent mitochondrial biogenesis 

in myocytes (Scarpulla et al., 2012).  

 

 

1.9.   Autophagy 

Autophagy (from Greek, meaning self-eating) is an evolutionarily conserved eukaryotic 

process that can be initiated in response to both external and intracellular factors, 

including amino acid starvation, endoplasmic reticulum (ER) stress, hypoxia, oxidative 

stress, pathogen infection, and organelle signaling, which are beneficial to cell survival 

under adverse conditions (Wang et al., 2015). It is a self-eating system, in which 

cellular components including organelles are entrapped into a double membrane 

structure called the autophagosome and then degraded by lysosomal hydrolases. In 

addition to its role in supplying amino acids in response to nutrient starvation, 

autophagy is involved in quality control to maintain cell health. Thus, inactivation of 

autophagy causes the formation of cytoplasmic protein inclusions, which comprise 

misfolded proteins and the accumulation of many degenerated organelles, resulting in 

liver injury, diabetes, myopathy and neurodegeneration (Komatsu and Ichimura, 2010). 

There are three types of autophagic pathways: macroautophagy, microautophagy and 

chaperone-mediated autophagy (CMA) (Mizushima and Kuma, 2008). Microautophagy 

is accompanied by membrane extensions of a vacuole as well as invagination of the 

vacuole, in which cytoplasmic components close to the vacuole are sequestered and 

then degraded. CMA targets specific cytosolic proteins, with a KFERQ amino-acid 
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motif, that are trapped by the heat shock cognate protein of 70 kDa (hsc70) and, through 

the interaction with lysosome-associated membrane protein type 2A (LAMP-2A), they 

are translocated into the lysosomal lumen for rapid degradation. Macroautophagy (here 

after referred to as autophagy) is the prototype of autophagy, in which isolation 

membranes⁄phagophores engulf a portion of the cytoplasm by double membrane 

vesicles, called autophagosomes, which deliver their contents to the lysosomes. Fusion 

of the autophagosome with the lysosome triggers the breakdown of the inner 

autophagosomal membrane followed by degradation of the contents (Komatsu and 

Ichimura, 2010) (Fig. 1.6). 

 

 

 

Figure 1.6. The process of macroautophagy in mammalian cells. A portion of cytoplasm, including 

organelles, is enclosed by a phagophore or isolation membrane to form an autophagosome. The outer 

membrane of the autophagosome subsequently fuses with the endosome and then the lysosome, and the 

internal material is degraded. In yeast, autophagosomes are generated from the PAS, which has not yet 

been identified in mammalian cells. The nomenclature for various autophagic structures is indicated 

(Mizushima, 2007). 

 

Thus, autophagy consists of several sequential steps: induction, autophagosome 

formation, degradation of the engulfed cytoplasm-derived materials and reuse of the 

monomeric units (Mizushima, 2007). The most typical trigger of autophagy is nutrient 

starvation. One candidate sensor of amino acid concentration is Beclin1. Beclin1 was 

originally identified as an interaction partner of Bcl-2, an anti-apoptotic protein. This 

Bcl-2–Beclin1 interaction is mediated through a BH3 domain in Beclin1 and is reduced 

upon starvation, freeing Beclin1 to activate autophagy. The starvation-induced 

dissociation of Beclin1 and Bcl-2 (or Bcl-XL) could be one manner in which nutrient 

starvation induces autophagy. After induction, cytoplasmic constituents, including 
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organelles, are sequestered by a unique membrane called the phagophore or isolation 

membrane, which is a very flat organelle like a Golgi cisterna. Complete sequestration 

by the elongating phagophore results in formation of the autophagosome, which is 

typically a double-membraned organelle (Mizushima, 2007). The autophagosome is a 

globular organelle with a diameter of approximately 1 µm and with volume of 0.5×10-18 

m3 (Komatsu and Ichimura, 2010). In the next step, autophagosomes fuse with 

endosomes to become amphisomes before fusion with lysosomes. The inner membrane 

of the autophagosome and the cytoplasm-derived materials contained in the 

autophagosome are then degraded by lysosomal hydrolases. These degrading structures 

are often called “autolysosomes” or “autophagolysosomes”. The definition of 

autophagosomes, amphisomes, and autolysosomes is based on their function, not on 

morphology. In such cases, the term “autophagic vacuoles” may be used because it 

covers all autophagic structures. The average half-life of AVs appears to be <10 min. 

Once macromolecules have been degraded in the lysosome/vacuole, monomeric units 

(for example, amino acids) are exported to the cytosol for reuse (Mizushima, 2007). 

Autophagy is precisely regulated by many different proteins. The autophagy-related 

gene (ATG) family provides the infrastructure for autophagy; until recently, 40 ATG 

genes had been identified, primarily through genetic studies in yeast. In mammals, 

autophagosome assembly requires activation of the ULK1 (UNC-51-like kinase 1) 

complex (including ULK1, ATG13, focal adhesion kinase family interacting protein of 

200 kDa and ATG101) and recruitment of the class III phosphoinositide3-kinase (PI3K) 

Vps34 complex (including Beclin-1, Atg14, Ambra1, Vps34 and Vps15) for producing 

phosphatidylinositol3-phosphate (PI3P). Formation of PI3P recruits the PI3P-binding 

proteins double FYVE domain-containing proteins (DFCP1) and WD-repeat protein 

interacting with phosphoinoside (WIPIs) to generate the omegasome and the isolation 

membrane (IM). Atg9 seems to shuttle between IM and cytosol and provides 

membranes needed for elongation of the IM. Atg12–Atg5–Atg16 L1 complex and LC3–

phosphatidylethanolamine (PE) conjugate are crucial for the elongation and closure of 

the IM. LC3 is first cleaved by a cysteine protease (Atg4/autophagin) to expose a C-

terminal glycine, generating LC3-II, after recruiting by the oligomeric protein complex 

containing Atg12-Atg5 and Atg16 to the pre-autophagosome membrane (Zeng et al., 

2006). LC3-II is localized in the inner and outer membranes of the isolation 
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membrane⁄phagophore and is essential for the membrane biogenesis and⁄or closure of 

the membrane. LC3-II localized on the outer membrane is efficiently re-cleaved by 

Atg4 after completion of autophagosome formation and recycled, whereas LC3-II 

present on the inner membrane is degraded together with other cellular constituents by 

lysosomal proteases (Komatsu and Ichimura, 2010). LC3 bind cargo receptors and 

promotes their entry into the autophagy cascade via interaction with the LC3-interacting 

regions (LIR) of the receptors (Wang et al., 2015). An LC3-interacting protein is p62. It 

is an ubiquitin-associated protein that localized to the autophagosome via LC3 

interaction and is constantly degraded by the autophagy–lysosome system. Ablation of 

autophagy leads to marked accumulation of p62, resulting in the formation of p62-

positive inclusions. p62 is a receptor for ubiquitinated proteins necessary for their 

degradation in the lysosomes. As a receptor, p62 contributes in autophagic degradation 

of various cargos such as Parkin-mediated ubiquitinated mitochondria, peroxisomes and 

microbes, that recognized with its ubiquitin associated domain (UBA). Thus, all 

inclusions in autophagy-deficient cells are positive for both ubiquitin and p62 (Komatsu 

and Ichimura, 2010).  

Beclin1 is a 60 kDa protein that has been implicated as an important regulator of 

macroautophagy. Beclin is an interacting partner for the mammalian class III PI3-kinase 

mVps34, important for macroautophagy in nutrient-starved cells, for normal lysosomal 

enzyme sorting and protein trafficking in the endocytic pathway. Beclin is required for 

the formation of LC3-II, thus it functions in the earliest steps required for 

autophagosome biogenesis. Since inhibitors of PI3-kinase have been reported to cause a 

reduction in LC3-II production, Zeng et al. believe that the attenuated production of 

LC3-II observed in starved or ceramide-treated Beclin1 knock down cells is related to 

an impaired ability of hVps34 to function in the autophagy pathway without Beclin1.  

They propose that a primary function of Beclin1 is to facilitate the interaction of 

hVps34 PI3-kinase with specific effectors on the pre-autophagosomal isolation 

membrane in response to pro-autophagic conditions or death signals (Zeng et al., 2006). 

In fact, recruitment of PI3K–Beclin1 complexes together with Atg12–Atg5 is an initial 

step in autophagosome formation (Tassa et al., 2003). 
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1.9.1. Lysosome biogenesis 

The lysosome is often described as a ‘‘cellular garbage’’ (Mizushima and Komatsu, 

2011). Lysosomes are acidic, membrane-bound organelles rich in hydrolytic enzymes. 

Lysosomes are responsible for the degradation of macromolecules derived from the 

extracellular space through endocytosis or phagocytosis, as well as from the cytoplasm 

through autophagy. One crucial role of the membrane limiting late endosomes and 

lysosomes is to separate the potent activities of lysosomal acid hydrolases from other 

cellular constituents. Protein components of the lysosomal membrane also mediate a 

number of essential functions of this compartment, including the acidification of the 

lysosomal lumen, transport of amino acids, fatty acids, and carbohydrates resulting from 

the hydrolytic degradation, as well as other nutrients generated by lysosomal hydrolases 

(Eskelinen et al., 2003). In addition, lysosomal membrane proteins may be involved in 

the interaction and fusion of the lysosomes with themselves as well as with other cell 

components, including endosomes, phagosomes and the plasma membrane (Fukuda, 

1991). Lysosome associated membrane protein-1 (LAMP-1) and LAMP-2 are estimated 

to contribute to about 50% of all proteins of the lysosome membrane. They are type I 

transmembrane proteins with a large luminal domain, one transmembrane domain and a 

C-terminal cytoplasmic tail. Despite their 37% amino acid sequence homology, LAMP-

1 and LAMP-2 are distinct proteins which most likely diverged relatively early in 

evolution as evidenced by their localisation on different chromosomes (Fukuda, 1991). 

The presence of LAMP molecules is one of the major definitions of the lysosomal 

compartment (Kornfeld and Mellman, 1989). Both LAMPs were originally thought to 

protect the lysosomal membrane against the action of the hydrolytic enzymes. LAMP-2 

undergoes alternative splicing which leads to the isoforms LAMP-2A, B, and C 

(Eskelinen et al., 2005). LAMP-2B is the principal isoform in skeletal muscle (Konecki 

et al., 1995). In the double LAMP1 and LAMP2 deficient cells the amount of early 

autophagic vacuoles was comparable to control cells, but the amount of late vacuoles 

was increased. This suggests that although initial maturation of autophagosomes 

including fusion with endosomes is functional, the final maturation step of the late 

autophagic vacuoles, probably including fusion with lysosomes, is retarded (Eskelinen 

et al., 2004). In these cells, mutual disruption of both LAMPs is associated with an 

increased accumulation of autophagic vacuoles and unesterified cholesterol, while 
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protein degradation rates are not affected. These results clearly show that the LAMP 

proteins fulfil functions far beyond the initially suggested roles in maintaining the 

structural integrity of the lysosomal compartment. 

 

 

1.10. Mitophagy 

Alongside the critical metabolic functions of mitochondria in fatty acid oxidation, the 

Krebs cycle, and oxidative phosphorylation, mitochondria can also potentially damage 

cells. Reactive oxygen species (ROS), in particular superoxide anion, hydrogen 

peroxide, and hydroxyl radical are toxic products of oxidative phosphorylation. ROS 

causes oxidative damage to mitochondrial lipids, DNA, and proteins, making 

mitochondria further prone to ROS production (Ashrafi and Schwarz, 2013). For these 

reasons, mitochondria homeostasis needs to be highly regulated. Elaborate mechanisms 

of mitochondrial quality control have evolved to maintain a functional mitochondrial 

network and avoid cell damage. The crucial role of these defence pathways for cellular 

homeostasis and survival is supported by the fact that mitochondrial dysfunction is 

related to aging, cancer and a wide range of neurological pathologies (Campello et al., 

2014). Autophagy has emerged as a key mechanism in this quality control, responsible 

of the elimination of superfluous or damaged mitochondria (Gomes and Scorrano, 

2013). Two types of macroautophagy have been identified to date. Nonselective 

autophagy occurs on nutrient deprivation to supply cells with essential metabolic 

building blocks and energy until nutrients can once again be obtained from the 

extracellular environment. By contrast, cargo-specific autophagy occurs under nutrient-

rich conditions to mediate the removal of superfluous or damaged organelles and 

protein aggregates that otherwise could be toxic. This can occur following changes in 

nutrient sources and during developmental processes. A well-studied type of cargo-

specific autophagy is mitophagy, which mediates the selective removal of mitochondria. 

Lemasters and colleagues coined the term “mitophagy” to describe the engulfment of 

mitochondria into vesicles that are coated with the autophagosome marker LC3, a 

process that can occur within 5 minutes (Youle and Narendra, 2011). Mitochondria are 

dynamic organelles that continuously fuse and fragment during cell life, appearing in 

situ as short round-shaped or elongated organelles, with a major axis that can reach 5 
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μm. On the other hand, autophagosomes are globular organelles with a diameter of 

approximately 1 μm, posing a sterical problem to mitochondrial engulfment by 

autophagosomes (Gomes and Scorrano, 2013). Indeed, it has been suggested that 

mitochondrial fragmentation (fission) precedes mitophagy, which divides elongated 

mitochondria into pieces of manageable size for encapsulation and also quality control 

segregation of damaged mitochondrial material for selective removal by mitophagy 

(Youle and Narendra, 2011). Mitochondrial permeability transition (MPT) has been 

proposed to be responsible for the mitophagy of depolarized mitochondria in 

mammalian cells (Lemasters et al., 2002). MPT is mediated by the permeability 

transition (PT) pore. Mitochondria become permeable to all solutes up to a molecular 

mass of about 1500 Da after the onset of MPT, which can lead to mitochondrial 

depolarization. When cultured hepatocytes were deprived of nutrition, depolarized 

mitochondria could be found to colocalized with acidic vesicles. Some of the 

mitochondria were enveloped by GFP-LC3-positive autophagosomes (Kim et al., 2007). 

The removal of damaged mitochondria through mitophagy is thus critical for 

maintaining proper cellular functions. Furthermore, mitophagy has been recently 

proposed to play critical roles in terminal differentiation of red blood cells, paternal 

mitochondrial degradation and hypoxia. Removal of mitochondria through autophagy 

requires three steps: fission, induction of general autophagy and priming specific 

mitochondria for selective autophagic recognition. Mitochondrial priming is mediated 

either by the Pink1-Parkin signaling pathway or the mitophagic receptors NIX and 

BNIP3 (Ding and Yin, 2012). 

 

1.10.1. The PINK1/Parkin Pathway of Mitophagy  

PINK1 encodes the PTEN-induced putative kinase, a serine/threonine kinase, whereas 

Parkin is an E3 ubiquitin ligase. The intracellular location of Parkin is regulated by 

mitochondrial function. Parkin normally resides in the cytosol but it translocates to 

mitochondria upon mitochondrial depolarization. Mitochondrial-localized Parkin 

promotes the colocalization of mitochondria with the autophagy marker LC3. 

Mitochondrial translocation of Parkin is dependent on PINK1 (Ding and Yin, 2012). 

PINK1 contains a mitochondrial targeting sequence allowing for its mitochondrial 

localization. In healthy mitochondria, PINK1 is constitutively imported, probably via 
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the TIM/TOM complex, to the inner membrane where it is cleaved by several proteases 

including the mitochondrial-processing protease (MPP) and the inner membrane 

presenilin-associated rhomboid-like protease PARL, and ultimately proteolytically 

degraded. Loss of mitochondrial membrane potential precludes import of PINK1 to the 

inner membrane, thereby stabilizing intact PINK1 on the mitochondrial outer membrane 

where it interact with TOM20 (Ashrafi and Schwarz, 2013). Therefore, the bioenergetic 

state of mitochondria can regulate PINK1 levels as well as the subsequent Parkin 

recruitment to the mitochondria. PINK1 directly phosphorylates Parkin on Thr175 and 

Thr217 at the linker region of Parkin, which promotes Parkin mitochondrial 

translocation (Ding and Yin, 2012). After recruitment, Parkin mediates selective 

engulfment of depolarized mitochondria by autophagosomes (Gomes and Scorrano, 

2013). Because Parkin has E3 ligase activity, it is not surprising to find that Parkin 

positive mitochondria are also positive for ubiquitin staining (Ding and Yin, 2012). 

Different Parkin isoforms have been described, but their specific roles and tissue 

distribution are still unknown (La Cognata et al., 2014; Scuderi et al., 2014). Parkin 

participates in ubiquitination of the mitochondrial fusion proteins MFN1 and MFN2, 

that being degraded in a proteasome and p97-dependent manner (Gomes and Scorrano, 

2013). Removal of mitofusins is necessary for proper mitophagy induction and selective 

removal of damaged mitochondria because mitochondria, that lack mitofusins, are not 

able to fuse with healthy mitochondria as a repair mechanism, called functional 

complementation. This programmed imbalance of mitochondrial morphology can thus 

function to isolate the pool of damaged mitochondria for subsequent selective 

autophagic sequestration and degradation. Furthermore, the mitochondrial outer 

membrane–localized VDAC1 (voltage dependent anion channel 1) is a Parkin target 

during mitophagy. In contrast to mitofusin ubiquitination, Parkin generates Lys 27 

polyubiquitin chains on VDAC1 whose role is not to recruit proteasome and degrade 

VDAC1, but instead to engage the autophagy machinery by attracting the autophagy 

receptor p62. Recognition of polyubiquitinated substrates by p62 occurs via the 

ubiquitin binding UBA domain on one side and the LIR (LC3-interacting region) motif, 

which binds LC3 proteins that are essential for autophagy initiation. This interaction 

thus generates the bridge between mitochondria and newly forming autophagosome 

(Fig. 1.7). However, the role and requirement for p62 in mitophagy are controversial. 
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Whereas p62 recruitment is shown to be necessary for PINK1/Parkin-induced 

mitophagy, the mitophagy can occur even in the absence of p62 at the mitochondria 

(Narendra et al., 2010), thanks to the presence of others ubiquitin-binding autophagic 

adaptors, such as NBR1 and optineurin (Novak, 2012). In addition, ubiquitinated 

mitochondria recruit not only p62 but also HDAC6, an ubiquitin-binding protein 

deacetylase that mediates transport of damaged mitochondria, facilitating their 

clustering at the perinuclear region for subsequent clearance (Gomes and Scorrano, 

2013).  

 

 
 

Figure 1.7.  Damage-induced mitophagy. Upon mitochondrial damage, mitochondria-localized PINK1 

recruits E3-ligase Parkin to mitochondria (1). PINK1-phosphorylated Parkin ubiquitinates mitofusins (2). 

Ubiquitinated mitofusins are then degraded by proteasome (4) that is recruited to mitochondria together 

with p97 (3). Mitofusin degradation blocks fusion events and mitophagy can be activated. At the same 

time, Parkin can polyubiquitinate VDAC1 creating K27-linked Ub-chains (5) that recruit p62 (6). Binding 

of p62 to VDAC1 on the mitochondria and ATG8/LC3/GABARAP on the developing autophagosome, 

results in mitochondrial sequestration and removal by autophagic machinery (Novak, 2012). 

 

Parkin is not the only E3 ubiquitin ligase found on mitochondria: MARCH5/ MITOL, 

or MULAN belong to the same family and are associated with the mitochondrial outer 

membrane, opening the interesting possibility that they might be involved in mitophagy. 

In addition, the cytoplasmic E3 ubiquitin ligase SMURF1 has also been found to be 

required for mitophagy (Ashrafi and Schwarz, 2013). In addition to the ubiquitination of 

mitochondrial proteins, in the vertebrate central nervous system, Parkin also interacts 

with Ambra1, a protein that promotes general autophagy by activating the class III 

phosphatidylinositol3-kinase complex. The Parkin-Ambra1 interaction is increased 

during prolonged mitochondrial depolarization. Ambra1 is recruited to perinuclear 

clusters of depolarized mitochondria in a Parkin-dependent manner, activates autophagy 
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around these mitochondria, and contributes to their selective autophagic clearance (Ding 

and Yin, 2012).  

 

1.10.2. Mitophagy in Erythrocyte Maturation, Hypoxia, and Embryogenesis 

Removal of mitochondria occurs during development of some specialized cells and is 

essential for correct organ or tissue development. Unlike PINK1/Parkin-mediated 

mitophagy, mitophagy induced during differentiation is not a quality control mechanism 

for degradation of unhealthy mitochondria, but a programmed complete or almost 

complete mechanism for elimination of the mitochondrial population. The best-studied 

differentiation-induced mitophagy is the removal of mitochondria in red blood cells. 

Mature erythrocytes of mammals do not contain any mitochondria, allowing them to 

maximize their oxygen-carrying capacity and to live longer in the circulation because of 

lower risk of damage induced by reactive oxygen species (ROS) produced by 

mitochondria (Novak, 2012). NIX (also named BNIP3L) is a mammalian mitophagy 

receptor important for selective removal of damaged mitochondria as well as complete 

removal of mitochondria during reticulocyte maturation (Novak and Dikic, 2011). NIX, 

as is homolog BNIP3, contains a Bcl-2 homology 3 (BH3) domain and acts as a 

proapoptotic mitochondrial protein. Both BNIP3 and NIX are inserted into the outer 

mitochondrial membrane through their C-terminal transmembrane domains, while their 

N-terminal domains are exposed to the cytoplasm (Ding and Yin, 2012).   It was shown 

that NIX directly interacts with LC3, through an LC3-interacting region (LIR) on the N-

terminal part of NIX, the tetrapeptide WxxL motif found in other receptors involved in 

autophagic cargo recognition (Novak, 2012). Thus, it is may be directly involved in the 

recruitment of the autophagy machinery to mitochondria (Ding and Yin, 2012). The 

function of NIX may not be restricted to erythrocyte maturation. NIX could also be 

involved in depolarization-induced mitophagy (Ashrafi and Schwarz, 2013). In muscle 

wasting disorders, where autophagy is implicated in the pathogenesis, BNIP3 and NIX 

are upregulated and the expression of either in skeletal muscle induces autophagosome 

formation. BNIP3 and NIX can trigger mitochondrial depolarization and cause 

mitophagy (Zhang and Ney, 2009). NIX and BNIP3, are also involved in hypoxia-

induced mitophagy. Removal of mitochondria during hypoxia is important to reduce 

ROS production and maintain oxygen homeostasis (Ashrafi and Schwarz, 2013). Under 
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hypoxia conditions, both BNIP3 and NIX are highly induced. Their expression levels 

are regulated by hypoxia inducible factor-1 (HIF-1) (Ding and Yin, 2012). BNIP3 and 

NIX, both BH3- only proteins, through binding to Bcl-2 and/or Bcl-xL disrupt the 

interaction between Bcl-2 or Bcl-XL and Beclin1, thus freeing Beclin1 to induce 

autophagy. Beclin1 activates the Atg6/PIK3-class III complex important for 

autophagosome membrane construction and is therefore essential for autophagy 

initiation (Novak, 2012) (Fig. 1.8).  

 

 
 

Figure 1.8. Development-induced mitophagy—role of mitochondrial receptors. Upon mitophagy induction, mitochondrial 

receptors Nix and Bnip3 recruit ATG8/LC3/GABARAP and mediate tethering of the nascent autophagosome to the target 

mitochondria (1). Dimerization of the receptors could enhance Nix and Bnip3 interaction with ATG8/LC3/GABARAP. 

Concurrently, Nix and Bnip3 interaction with Bcl-2/Bcl-XL releases Beclin1 (bound to Bcl-2/Bcl-XL to block autophagy). Free 

Beclin1 activates basic autophagic machinery to form autophagosomes (2) (Novak, 2012). 

 

Further, NIX initiates mitophagy by preparing mitochondria for recognition by the 

autophagic machinery. When mitochondria get depolarized, NIX influences 

translocation of the E3 ligase Parkin to mitochondria in order to ubiquitinate 

mitochondrial proteins and, thus, mark mitochondria for degradation by autophagy 

(Novak and Dikic, 2011). NIX is upsteam of both mitochondrial ‘‘priming’’ by 

Parkin/p62 and autophagy machinery recruitment, thus linking PINK1/Parkin-mediated 

mitophagy with hypoxia/NIX/BNIP3-mediated mitophagy (Novak, 2012). 

In addition to NIX and BNIP3, an outer mitochondrial membrane protein, FUNDC1, 

has recently been reported to have an essential role in hypoxia-induced mitophagy.  

FUNDC1 interacts with LC3 through the characteristic LIR motif YXXL. Under 

normoxia conditions, FUNDC1 is constantly phosphorylated by the Src kinase. Src can 

be inactivated under hypoxia conditions, leading to the dephosphorylation of FUNDC1, 

which has a higher affinity binding with LC3 than the phosphorylated form (Ding and 
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Yin, 2012). It is attractive to hypothesize that NIX, BNIP3, and FUNDC1 function in a 

coordinate manner during hypoxia with the consequence that FUNDC1 selectively 

targets mitochondria to autophagosomes formed through NIX- and BNIP3-mediated 

activation of Beclin1. FUNDC1 has also role in the elimination of paternal 

mitochondria from fertilized oocytes through mitophagy. In most eukaryotes, only 

maternal mitochondrial DNA is inherited, although sperms do contain mitochondria that 

are present in the oocyte immediately after fertilization. These paternal mitochondria are 

rapidly destroyed, although the evolutionary advantage this confers is unclear (Ashrafi 

and Schwarz, 2013).  

 

1.10.3. Mitochondrial dynamics 

Mitochondria are morphologically highly dynamic organelles, undergoing constant 

fission and fusion events. There are many intracellular and extracellular signals that 

regulate fusion and fission events, including oxidative stress, membrane potential, 

mtDNA quality and apoptosis (Novak, 2012). Fusion of isolated mitochondria induces 

the formation of an extended interconnected mitochondrial network. This change 

enables mitochondria to mix their contents within the network allowing for the re-

distribution of metabolites, proteins and mtDNA. Moreover, fusion into a network 

prevents the local accumulation of defective/abnormal mitochondria which is 

advantageous under conditions of high energy demand. Conversely, mitochondrial 

fission or fragmentation is a mechanism that segregates components of the 

mitochondrial network which are dysfunctional or damaged, allowing for their removal 

via mitophagy. Excessive fission generates isolated mitochondria which are not only 

less efficient in ATP production than fused ones but are dysfunctional, consuming 

cytosolic ATP to maintain their membrane potential. Hence, dynamic regulation of 

fission–fusion events adapts mitochondrial morphology to the bioenergetic 

requirements of the cell (Romanello and Sandri, 2012). The most-studied proteins 

involved in mitochondrial fusion are mitofusins (Mfn1 and Mfn2), outer mitochondrial 

membrane proteins that enable fusion through their cytoplasm-exposed GTPase domain, 

thus allowing tethering of the opposing mitochondrial membranes. Opa1 (optic atrophy 

1), instead, is responsible for the fusion of inner mitochondrial membranes (Novak, 

2012) (Fig. 1.9). It is anchored to the IMM by a transmembrane domain at the N-



Introduction 

 
61 

 

terminus but most of the protein is exposed to the intermembrane space (Romanello and 

Sandri, 2012). Mammalian OPA1 has eight isoforms that are generated by alternative 

splicing and alternative processing at two cleavage sites. OPA1 isoforms are 

constitutively cleaved by the intermembrane space AAA protease Yme1 to generate the 

short and long forms of OPA1 (S- and L-OPA1) under normal conditions. When cells 

were treated with CCCP, a mitochondria uncoupler that depolarizes mitochondria, L-

OPA1 was further cleaved by an inducible protease OMA1. This cleavage resulted in 

mitochondrial fragmentation (Ding and Yin, 2012).  

Fission is regulated by proteins including Drp1 (dynamin-related protein 1) and Fis1 

(fission protein 1) (Fig. 1.9). In contrast to mitofusins and Opa1, Drp1 is predominantly 

localized in cytoplasm. Only when recruited to the mitochondria does Drp1 associate 

with Fis1, its receptor, localized to the outer mitochondrial membrane to form a 

complex that allows the fission of mitochondria (Novak, 2012). It was shown that rise 

of cytosolic Ca2+, associated with mitochondrial depolarization, leads to Drp1 

dephosphorylation by calcineurin at serine 637 and concomitant translocation of Drp1 

to mitochondria, where it is stabilized by sumoylation and participates in fission. 

Conversely, protein kinase A (PKA) phosphorylates Drp1 at serine 637, restraining 

fission. Alternatively, Drp1 can be phosphorylated also at serine 637 by 

calcium/calmodulin-dependent protein kinase Ialpha (CAMKIα) or at serine 616 by 

cyclin-dependent kinase 1 (CDK1). However, when phosphorylated by these two 

kinases, Drp1 drives mitochondrial fission (Gomes and Scorrano, 2013). Other possible 

Drp1 receptors are: Mff (the OMM anchored mitochondrial fission factor), and human 

MIEF1/MiD51 (the OMM-bound mitochondrial elongation factor1/mitochondrial 

dynamics) with its variant MiD49 (Campello 2013). Accumulating evidence 

emphasizes the requirement of mitochondrial fragmentation prior to mitophagy. 

Conceptually, this is not surprising given that an organelle that is going to be engulfed 

and degraded by the autophagosome needs to fit into this forming structure. Considering 

that individual mitochondrial length averages 5 μm, and that autophagosomes display a 

diameter of around 1 μm, a role for mitochondria-shaping proteins in solving this 

sterical hindrance could have been anticipated. Inhibition of mitochondrial fission also 

impairs mitophagy, suggesting a role for the shape of the organelle in the process 

(Gomes and Scorrano, 2013). Furthermore, an entire mitochondrial network is sterically 
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far from being engulfed by autophagosomes during autophagy. Thus, mitochondria 

protect themselves from autophagic removal by blocking the fission machinery and 

promoting fusion (Campello et al., 2014). Gomes and Scorrano (2008) found that 

overexpression of Fis1 itself can induce general autophagy in HeLa cells. Moreover, a 

conserved mutation in Fis1 (hFis1 K148R) induced mitochondrial fission but was 

unable to induce mitochondrial dysfunction and did not induce autophagy (Gomes and 

Scorrano, 2008). These observations suggest that mitochondrial dysfunction, rather than 

mitochondrial fragmentation, is responsible for the induction of autophagy (Ding and 

Yin, 2012). Fragmentation per se does not seem to represent a signal to target 

mitochondria to the autophagosome. Often a fission event gives rise to uneven daughter 

mitochondria in respect to their membrane potential: one displays high Δψm, the other 

low Δψm and has a reduced probability to fuse. This population of fragmented 

mitochondria with decreased Δψm is removed by mitophagy. Blocking fission, 

however, impaired mitophagy, resulting in the accumulation of dysfunctional 

mitochondria. In conclusion, mitophagy requires efficient fission that helps segregating 

the bad organelles and prepares them to fit into the autophagosomes. However, fission 

per se is not the trigger of mitophagy, for which a concomitant dysfunction of the 

organelle, or other yet unclear signals, are required (Gomes and Scorrano, 2013).  
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Figure 1.9.  Mitochondrial fission and fusion. In yeast, mitochondria fission involves the action of 

Dmn1, that can self-assemble into polymeric spirals and is recruited into the mitochondrial membrane by 

Fis1 and Mdv1. Dmn1 polymers wrap around the organelle and constrict the membrane until fission 

occurs. In humans, Drp1 and hFis1 are the homologs of Dmn1 and Fis1 whereas no homolog of Mdv1 

has been found yet. Mitochondrial fusion involves the interaction of Fzo1/Ugo1 molecules located in the 

outer membrane of two mitochondria until outer membrane fuses, and then inner membrane fusion occurs 

through the interaction of Mgm1 molecules. In mammals, there are two homologs of Fzo1, the mitofusins 

1 and 2 (Mfn1 and Mfn2) whereas the homolog of Mgm1 is OPA1. MIM, mitochondrial inner membrane: 

MOM, mitochondrial outer membrane (Diaz and Moraes, 2008). 

 

 

1.11. Mitochondrial membranes 

Biological membranes are multifunctional cellular constituents not only protecting the 

cell from external sources but also assigning specific processes to certain compartments. 

The main building blocks of most membranes are phospholipids which provide a matrix 

for embedding proteins, sphingolipids and sterols. Lipids are not randomly distributed 

among biological membranes. Furthermore, they are highly specific and characteristic 

for each organelle influencing their shape, structure and function. Mitochondrial 

membrane from different cell types share the following specific characteristics: (i) 

phospholipid to protein and sterol to protein ratios are low compared to membranes of 
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other subcellular fractions; (ii) phosphatidylcholine (PC) and phosphatidylethanolamine 

(PE) are the major phospholipids which account for about 80% of total phospholipids; 

(iii) have high cardiolipin (CL) content in the range of 10–15%; (iv) sterols and 

sphingolipids are only found at low amounts. Mitochondria membranes from heart, 

brain, kidney, adrenal cortex and spleen additionally contain also PC and PE 

plasmalogens in the range of 5–30% of total phospholipids. Plasmalogens are a class of 

phospholipids carrying a vinyl ether bond in the sn-1 and an ester bond in the sn-2 

position of the glycerol backbone (Horvath and Daum, 2013). The majority of lipids are 

synthesized in the endoplasmic reticulum (ER) and transported to the mitochondria, but 

the synthesis of cardiolipin and phosphatidylethanolamine occurs in the inner 

membrane of mitochondria. The maintenance of the lipid complement of mitochondrial 

membranes therefore depends on lipid transfer from the ER. Consequently, extensive 

lipid transfer occurs between the ER and the mitochondrial OMM and between both 

mitochondrial membranes (Tatsuta et al., 2014). The OMM forms a smooth lipid rich 

surface of mitochondria envelope with high membrane fluidity. In contrast, the IMM is 

highly folded and exhibits an elevated protein level and lower lipid content compared to 

the OMM (Horvath and Daum, 2013). The lipid composition of the OMM and the IMM 

differs significantly. The mitochondria-specific diglycerophospholipid cardiolipin (CL), 

for instance, is enriched in the IMM but present at low concentrations in the OMM 

(Tatsuta et al., 2014). Also PE is enriched in the IMM of mammalian cells, on the 

contrary phosphatidylinositol (PI) is present at a large amount in the OMM. In 

mammalian cells, the OMM and IMM are in close contact to each other through 

junctions called contact sites (CS). These junctions were considered as possible sites of 

protein import as well as phospholipid translocation.  CS display an increased level of 

non-bilayer forming lipids such as PE and CL promoting hexagonal phase structures 

and therefore stabilizing the local arrangement of membrane junctions (Horvath and 

Daum, 2013).  

Mitochondria harbor a certain set of enzymes involved in lipid biosynthesis. The 

capacity of mitochondria to synthesize their own lipids is limited to CL, PE,  

phosphatidylglycerol (PG) and phosphoatidic acid (PA) (Horvath and Daum, 2013). 

Here, I will focus only on the biosynthesis and the role of CL. 
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1.11.1. Cardiolipin biosynthesis 

CL was first isolated and purified from beef heart in 1942. It is structurally unique: in 

contrast to the other membrane phospholipids, in which a single glycerol backbone is 

acylated to two fatty acid chains, CL contains two phosphatidyl groups (linked to a 

glycerol backbone) and four fatty acyl chains. Synthesis of CL occurs at the inner 

mitochondrial membrane (Houtkooper et al., 2006) (Fig. 1.10). 

 

 

 

Figure 1.10. Synthesis and remodeling of CL in yeast. CL synthesis begins with the conversion of 

CDPdiacylglycerol (CDP-DG) to phosphatidylglycerolphosphate (PGP) by PGP synthase (encoded by 

PGS1). PGP is dephosphorylated to phosphatidylgylcerol (PG) by GEP4- encoded PGP phosphatase. CL 

synthase (encoded by CRD1) converts PG to premature CL containing primarily saturated fatty acids 

(FA). CL is deacylated by CL deacylase (encoded by CLD1) to monolyso-CL (MLCL), which is 

reacylated by the TAZ1- encoded enzyme tafazzin to mature CL containing unsaturated fatty acids. The 

yeast gene names are depicted in green, while phospholipids and their intermediates are shown in red 

(Patil and Greenberg, 2013). 

 

The first step is catalyzed by phosphatidylglycerolphosphate (PGP) synthase (Pgs1), 

which converts CDPdiacylglycerol (DAG) and glycerol-3-phosphate (G-3-P) to PGP. 
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PGP is dephosphorylated to phosphatidylglycerol (PG) by PGP phosphatase (Gep4). 

The mammalian homologue of the yeast GEP4 gene was recently identified as protein 

tyrosine phosphatase localized in the mitochondrion (PTPMT1). CL synthase (CRLS1) 

catalyzes an irreversible condensation reaction in which the phosphatidyl group of 

CDP-DAG is linked to PG via cleavage of a high-energy anhydride bond to form CL 

(Patil and Greenberg, 2013). This conversion of PG into CL is so effective that 

mitochondrial membranes only contain trace amounts of PG (Houtkooper et al., 2006).  

CL synthase does not show strong preference for specific fatty acyl chains (Patil and 

Greenberg, 2013). Houtkooper et al., in 2006, first identified a human candidate 

gene/cDNA for cardiolipin synthase, C20orf155. The human CRLS1 gene is localized at 

chromosome 20p13-p12.3 and encodes a protein of 301 amino acids. The protein 

contains a C-terminal transmembrane segment and belongs to the CDP-alcohol 

phosphatidyltransferase class-I family. It contains also an N-terminal mitochondrial 

targeting sequence (Houtkooper et al., 2006).  

After biosynthesis, the newly synthesized immature CL undergoes deacylation by a CL-

specific deacylase (Cld1). Cld1 removes one saturated fatty acyl chain from CL to form 

monolysocardiolipin (MLCL) (Patil and Greenberg, 2013). CL remodeling critically 

depends on tafazzin, a phospholipid–lysophospholipid transacylase.  Tafazzin can 

catalyze both the removal and the re-attachment of fatty acids, which results in an 

exchange of acyl groups between CL and other phospholipids (Ren et al., 2014).  CL in 

the normal human heart is primarily tetralinoleoyl-CL (L4-CL). Two other enzymes in 

addition to tafazzin remodel CL in mammalian cells: MLCL acyltransferase-1 

(MLCLAT1), that shows specificity for linoleate, and acyl-CoA:lysoCL acyltransferase 

1 (ALCAT1), that incorporate long chain polyunsaturated fatty acyl chains such as 

docosahexaenoic acid (DHA) fatty acyl chains in CL, makes it more susceptible to 

oxidative damage by ROS, causing early peroxidation (Patil and Greenberg, 2013).   

 

1.11.2. Cardiolipin role 

Cardiolipin has been shown to interact with a number of inner mitochondrial membrane 

(IMM) proteins, enzymes and metabolite carriers. The list of proteins that bind 

cardiolipin with high affinity is long and includes, among others, the electron transport 

chain complexes involved in oxidative phosphorylation (OXPHOS), pyruvate carrier, 
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carnitine:acylcarnitine translocase and ADP/ATP carrier (AAC). CL is required for 

optimal activity of complex I, III, IV, and V (Fig. 1.11). It is not a passive component,  

but it is functionally required for normal electron transport and proton translocation 

activity of these enzymes. In fact, their removal from complex IV destabilizes its 

subunits interactions which are essential for its full activity. Removal of CL decreases 

electron-transport activity of Complex IV by around 50%. Moreover CL is essential for 

catalytic function of complex III, stabilizing the fully active conformation of this 

complex. CL molecule appears to stabilize the architecture of the proton conduction 

environment at this site and may be involved in proton uptake. Treatment of bovine 

heart submitochondrial particles with nonylacridine orange, a compound that interacts 

specifically with CL, resulted in a marked inactivation of complex I and exogenous 

added CL fully prevented this inactivation, while addition of other phospholipids such 

as PC and PE was ineffective. F0F1 ATP synthase has been shown to form dimers as 

well as higher oligomeric assemblies. It plays an essential role for cristae formation 

(Allen, 1995). CL is critical for the degree of oligomerization and the degree of order in 

these ATP synthase assemblies, which is likely to affect cristae morphology and energy 

efficiency (Acehan et al., 2011). It has been hypothesized that this CL effect could 

either result from direct interaction with the enzyme, or from physical constraints 

associated with membrane curvature. Due to its molecular shape, CL is known to 

partition into high-curvature membrane segments and to adopt a specific orientation 

with respect to the intrinsic curvature, due to its inherent anisotropy. Thus, CL and ATP 

synthase might act in concert to reduce the free energy imposed by membrane 

curvature, together stabilizing these high-curvature folds.  

CL seems to participate in the structural organization and stabilization of the respiratory 

chain complexes in high order structure of functional importance (Wenz et al., 2009; 

Claypool et al., 2008; Claypool, 2009) (Fig. 1.11).  About 200 CLs were estimated to be 

present in the purified bovine respirasome (I1III2IV1), and about 50 CLs in the III2IV2 

supercomplex from Saccharomyces cerevisiae. Thus, CL seems to be essential for 

supercomplexes formation in addition to its occurrence as in integral part of individual 

complexes.  

It is estimated that approximately 0.2–2% of the oxygen taken up by a cell is converted 

by mitochondria to ROS. Within mitochondria, the electron transport chain is 
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considered the main source of ROS. The two major sites of O2
2- production are complex 

I and complex III.  Cardiolipin molecules are particularly susceptible to ROS induced 

oxidation, either for their fatty acyl composition or for their proximity to the ROS 

generating centers.  Oxidative damage to CL may have deleterious effect on respiratory 

chain complex activity and mitochondrial function. ROS-induced CL oxidation may 

also affect OXPHOS supercomplexes formation and/or stabilization (Paradies et al., 

2013).   

What is unique about CL in contrast to other phospholipids can be traced back to a 

single structural feature, namely the bonding of two phosphatidyl moieties with a single 

glycerol group. This feature results in a small, relatively immobile head group, which in 

turn promotes negative curvature, cohesive effects between hydrocarbon chains, and 

electrostatic interactions. The reason why such properties are of particular importance to 

mitochondria may be related to the high protein density of cristae membranes, the need 

for extensive membrane folds, or the need for continuous fission and fusion, which 

requires non-bilayer lipid phases with high negative curvature (Fig. 1.11). Thus, the 

likely role of CL in mitochondria is (i) to support membrane dynamics and (ii) to 

stabilize the lateral organization of protein-rich membranes (Ren et al., 2014). CL is 

critical for fusion of the inner membrane via its interaction with the dynamin-related 

protein Opa1, a GTPase which mediates inner membrane fusion. Opa1 is found in long 

and short isoforms that are inactive when monomeric but exhibit GTPase activity as 

dimers and drive mitochondrial fusion. The dimerization is dependent on the presence 

of CL and the GTPase activity is enhanced on liposomes composed of lipids matching 

that of the mitochondrial inner membrane, again in a manner dependent on CL (DeVay 

et al., 2009; Ban et al., 2010).  

Cardiolipin is transferred from the inner membrane to the outer membrane by a specific 

protein machinery, thus facilitating processes such as apoptosis and mitochondrial 

fission. The most obvious role for CL in the fission pathway involves Drp1, the protein 

that directly mediates the fission process. CL has been shown to mediate both Drp1 

recruitment to membrane surfaces and to activate Drp1’s GTPase activity, similar to the 

role it undertakes for Opa1. Anyway, CL seems to predominantly function as a pro-

fusion lipid, since CL deficiency leads to fragmented mitochondria (Frohman, 2015).  
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CL has an important role for mitochondrial bioenergetic function; but in addition, recent 

studies are now revealing that CL has a much broader impact on mitochondrial 

physiology and pathophysiology. Cardiolipin has been implicated in the process of 

apoptosis in animal cells through its interaction with a variety of death-inducing 

proteins,  including cytochrome c (Cyt c) (Paradies et al., 2013) (Fig. 1.11). During 

apoptosis initiation, CL is the only phospholipid in mitochondria that undergoes 

peroxidation, catalyzed by a cardiolipin-specific peroxidase activity of CL-bound 

cytochrome c. Cytochrome c-catalyzed peroxidation of CL utilizes polyunsaturated 

molecular species, whereas saturated and monounsaturated CL molecules do not 

undergo peroxidation. In its native structure, cytochrome c functions as an electron 

shuttle between respiratory complexes III and IV in mitochondria. Upon binding of CL, 

cytochrome c undergoes a structural reconfiguration and transforms into a CL-specific 

peroxidase (Kagan et al., 2009). The structural reconfiguration of cytochrome c appears 

to involve both electrostatic interactions of one or more positively charged amino acid 

(lysine) residues with negatively charged phosphate groups of CL as well as 

hydrophobic interactions of one or more of CL’s fatty acid residues with nonpolar sites 

of the protein. The peroxidase function of cytochrome c requires its direct physical 

interaction with CL. Normally, CL is present primarily in the inner leaflet of the inner 

membrane, whereas cytochrome c is confined to the intermembrane space. Thus, 

binding of cytochrome c to CL depends on the availability of the latter in the outer 

leaflet of the inner membrane. Moreover, significant demand for high-affinity CL 

binding by other mitochondrial proteins such as mitochondrial respiratory complexes I, 

III, and IV, and ADP/ATP carriers, also limits access of cytochrome c to CL. It appears 

that mitochondrial injuries (metabolic or chemical) generate reactive oxygen species, 

such as superoxide radicals, which cause (through an as yet unknown mechanism) a 

significant amount of CL to flip to the outer leaflet facing the intermembrane space 

where cytochrome c is located. Upon binding of CL, cytochrome c is transformed into a 

CL-specific peroxidase, which catalyzes CL peroxidation in the presence of sufficient 

supply of H2O2, a product of superoxide dismutation. After, cardiolipin go to the outer 

leaflet of the OMM (Ren et al., 2014). A diverse set of apoptotic proteins such as t-Bid, 

Bax, Bak, and caspase-8 are recruited to the mitochondrial surface of cells undergoing 

apoptosis in a CL-dependent manner. Upon activation, caspase-8 migrates to the 
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mitochondrial outer membrane in regions where CL is present (Patil and Greenberg, 

2013). In a further step, caspase-8 cleaves Bid (a BH3-only protein) to a truncated form 

(tBid) which is directed to the OMM and induces Bax/Bak oligomerization thereby 

permeabilizing the membrane and releasing cytochrome c. Targeting of tBid to 

mitochondria occurs in a CL-dependent manner and plays a crucial role in apoptosis 

associated processes including cristae remodeling and mitochondrial fragmentation 

(Horvath and Daum, 2013).  

Recent studies revealed the physiological significance of the appearance of externalized 

CL as an “eat-me-signal” for the autophagic machinery resulting in targeted removal of 

damaged mitochondria (Chu et al., 2013) (Fig. 1.11). The mitophagy mechanisms 

include specific recognition of externalized CL by microtubule-associated protein 1 

light chain 3 (LC3), a component of the autophagic machinery which mediates both 

autophagosome formation and cargo recognition. RNAi knockdown of cardiolipin 

synthase or of phospholipid scramblase-3, which transports cardiolipin to the outer 

mitochondrial membrane, decreased the delivery of mitochondria to autophagosomes.  

LC3 contains cardiolipin-binding sites important for the engulfment of mitochondria by 

the autophagic system. Mutation of LC3 residues predicted as cardiolipin-interaction 

sites by computational modelling inhibited its participation in mitophagy. The unique 

structure of CL includes a compact, negative charged head group, whereas mammalian 

LC3 contains basic surface patches. Importantly, autophagic machinery recognizes CLs 

more effectively than its metabolites, including mono-and di-lyso-CLs as well as CL 

oxidation products. This implies that CL oxidation is not a requirement for mitophagic 

elimination of injured mitochondria (Chu et al., 2013). This seems to be contradictory to 

the accepted opinion that oxidative stress and lipid peroxidation are inherent to 

mitochondrial injury and mitophagy. Thus, although CL is found mostly in the inner 

membrane of normally functioning mitochondria, upon mitochondrial injury and 

depolarization, a significant portion of CL becomes exposed on the mitochondrial 

surface, where it serves as either pro-mitophagic or pro-apoptotic signals, depending on 

the extent of mitochondrial injury (Ren et al., 2014). 

Due to the role played by CL in mitochondrial bioenergetics as well as in apoptosis, 

mitophagy and mitochondria morphology, it is conceivable that CL abnormalities may 

have important implications in mitochondrial dysfunction and hence, in cellular 
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pathophysiology. Alterations in CL structure, content and acyl chain composition, 

associated with mitochondrial dysfunction, have been described in several 

pathophysiological conditions, such as hypo–hyperthyroid states, heart ischemia–

reperfusion,  nonalcoholic fatty liver disease, diabetes, Barth syndrome and aging 

(Paradies et al., 2013). 

 

 

 

Figure 1.11. Biological functions of cardiolipin. As the signature phospholipid of the mitochondrion, 

CL is intimately involved in a number of mitochondrial processes. (A) Anionic CL on the IMM can 

function as a proton trap by attracting (and providing) a local pool of protons that can be funnelled 

towards the ATP synthase. Moreover, CL is associated with every OXPHOS component and can promote 



Introduction 

 
72 

 

their assembly in to respiratory supercomplexes. Such supramolecular assemblies are thought to enhance 

electrontransfer and reduce ROS leakage from the electron transport chain. (B) CL associates with 

dynamin-related GTPases that are intimately involved in fusion and fission and (C) contributes to the 

assembly and function of IMM and OMM translocases vital for mitochondrial biogenesis. (D) Besides 

enhancing OXPHOS by stabilizing SCs, CL also promotes the assembly of ATPsynthase oligomers that 

provide a structural scaffold required for establishing the characteristics shape of mitochondrial cristae. 

(E) Externalization of CL on the surface of the mitochondrion is involved in signaling the execution of 

either mitophagy or apoptotic cell death (Lu and Claypool, 2015). 
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This study rests on the primary role of skeletal muscle dysfunction in SBMA 

pathogenesis and on the hypothesis that mitochondrial alterations may play a role in the 

development of SBMA myopathy.  

To verify if the muscle tissue of our SBMA patients presents mitochondrial 

abnormalities and how these abnormalities are related to the presence of polyQ 

expanded androgen receptor gene, we aimed to evaluate: 

 

1. transcript, protein levels and cellular distribution of polyglutammine-expanded 

androgen receptor. 

 

2. a set of mitochondrial parameters, included mitochondrial (i) activity, (ii) mass, (iii) 

biogenesis and (iv) degradation (mitophagy). 
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3.1. Tissue Samples 

We studied 19 SBMA patients followed at our Neuromuscular Clinic of the University 

of Padua (Table 2.1). The mean age at onset was 42.7 years (range 26 - 64 years) and 

the mean delay from first symptoms to time of biopsy was 11,2 years (range -6 – 49 

years). In all of them we recorded main clinical data including age at disease onset, age 

at biopsy and first clinical symptoms. At the time of biopsy patients underwent standard 

neurological examination and electrophysiological studies (EMG, nerve conduction 

studies and sensory evoked potentials). Genomic DNA was extracted from peripheral 

blood using standard protocol. PolyQ (CAG repeats) alleles were amplified by PCR as 

previously described (Querin et al., 2015). Repeats fragment sizing was performed on 

an ABI PRISM 3700 DNA Sequencer (Applied Biosystems, Foster City, CA). The 

specific length of CAG repeats was further verified via Sanger sequencing. Muscle 

biopsies were obtained with informed consent by open biopsy procedure with the 

resultant collection of 100-200 mg of muscle tissue. All biopsies were immediately 

frozen in liquid nitrogen for histopathology and biochemical analysis and stored at -

80°C until analysed. Muscle biopsies from 18 age- and sex-matched healthy subjects, 

free from neuromuscular diseases and with normal creatine kinase levels (Table 2.2) 

were used as controls. The mean age at biopsy for controls was 44,6 years (range 19 – 

79 years). 
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Table 2.1. Clinical data of SBMA patients. 

 

 

Table 2.2. Clinical data of  male controls.  
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3.2. Molecular analysis 

3.2.1. RT-PCR 

Total DNA was isolated from muscle tissue using DNeasy Blood & Tissue Kit 

(Qiagen). Quantitative polymerase chain reaction (qPCR) was performed in ABI 

PRISM 7000 light cycler, using Platinum quantitative PCR SuperMix-UDG with ROX 

(Invitrogen). The mtDNA copy number was estimated as described in Malena et al., 

(2009). Briefly a portion of the cytochrome c oxidase (COII) gene of mtDNA was 

amplified and compared to the amplification profile of a nuclear single copy gene, 

Amyloid Precursor Protein (APP). The relative level for each gene was calculated using 

the “½^Ct method”. In all experiments, each sample was analysed in triplicate. Probes 

were labelled with FAM and TAMRA. 

Total RNA was isolated from muscle biopsies using TRIzol Reagent (Life 

Technologies). First-Strand cDNA synthesis was performed using High-Capacity cDNA 

Reverse Transcription Kit (Life Technologies) and transcript levels were quantified by 

SYBER Green Real-Time PCR (Life Technologies) using the ABI PRISM 7000 

sequence detection system. 

Primer sequences are listed in the following table (Table 2.3):    
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Table 2.3. Primers used for RT-PCR analysis. 

 

 

3.3. Biochemical analysis 

3.3.1. Total muscle lysates 

Total muscle lysates were obtained by thirty 20 μm thick fresh-frozen sections of 

muscle biopsies, maintained on ice for 30 min with 200 μl of RIPA buffer (65 mM Tris, 

150 mM NaCl, 1 % NP-40, 0.25 % Na-DOC, 1 mM EDTA, pH 7.4) and 2μl of a 

cocktail of protease inhibitors (Sigma). The muscle lysate was centrifuged at 20000g for 

20 minutes at 4°C and the supernatant stored at –80°C until use. Protein concentration 

was determined by BCA assay (Pierce) (see section 2.3.5). 
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3.3.2. Nuclear and cytosolic fractions 

Nuclear and cytosolic fractions were obtained treating fifty 20 μm thick fresh-frozen 

sections of muscle biopsies with the NE−PER Nuclear and Cytoplasmic Extraction kit 

(Thermo Scientific), supplemented with protease inhibitor cocktail (Sigma). Briefly, the 

Kit contains three reagents: Cytoplasmic Extraction Reagent I (CER I), Cytoplasmic 

Extraction Reagent II (CER II) and Nuclear Extraction Reagent (NER). Addition of the 

first two reagents to muscle slices caused cell membrane disruption and release of 

cytoplasmic contents. After centrifugation at 13000 rpm for 5 minutes at 4°C, the 

cytoplasmic extract (supernatant) was transferred into a new tube and stored at –80°C 

until use, while intact nuclei (pellet) were suspended in the third reagent and centrifuged 

at 13000 rpm for 10 minutes at 4°C. Nuclear extract (supernatant) was transferred into a 

new tube and stored at –80°C until use. Protein concentration was determined by BCA 

assay (Pierce) (see section 2.3.5). 

 

3.3.3. Mitochondria isolation 

For mitochondria isolation, 50-100mg of muscle biopsies were washed and 

homogenized by 10 strokes using a Velp Scientifica homogenizer in Buffer A (20mM 

HEPES, 100mM KCl, 1mM EDTA, 2mM β-mercaptoethanol, 0.3% BSA) and then 

centrifuged at 800g for 10 min at 4°C. The supernatant (S1) was stored at 4°C and the 

pellet was again washed and homogenized in Buffer A and then centrifuged at 800g for 

10 min at 4°C, to increase the yield of mitochondria. The supernatants (S1+S2) were 

centrifuged at 10000g for 10 min at 4°C. The pellet containing the mitochondria were 

washed using MSEM buffer (220mM Mannitol, 70 mM sucrose, 1mM EDTA, 2mM β-

mercaptoethanol, 5mM MOPS), aliquoted in several tubes and centrifuged at 20000g 

for 10 min at 4°C. The pellets were stored at -80°C until use. 

 

3.3.4. Citrate synthase activity 

Citrate synthase (CS) activity was quantified as previously described (Spinazzi et al., 

2012). Briefly, mitochondria pellets (see section 3.3.3) were lysed using a 10 mM KP 

buffer pH 7. Then, mitochondrial membranes were breaking mechanically with a glass 

syringe and by thermal shock (liquid nitrogen – 37°C). CS catalyses the reaction 

between acetyl coenzyme A and oxaloacetic acid to form citric acid. The hydrolysis of 
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the thioester of acetyl CoA results in the formation of CoA with a thiol group (CoA-

SH). The thiol reacts with DTNB in the reaction mixture (200 mM Tris with 0,2% 

(vol/vol) Triton X-100, 1 mM DTNB, 10 mM Acetyl-coA and 10 mM Oxaloacetic acid) 

to form 5-thio-2-nitrobenzoic acid (TNB). This yellow product (TNB) is observed 

spectrophotometrically by measuring the increase in absorbance at 412 nm for 5 

minutes at 37°C.  Spectrophotometric assays were conducted using micro cuvettes for 

spectrophotometry with optimal transparency along the spectral range from 340 to 800 

nm. The mix of each reaction, with a final volume of 1 ml, was prepared directly into 

cuvettes and left for 5 minutes inside the spectrophotometer before starting the reaction 

with the addition of sample. The enzymatic activity of CS was calculated using the 

extinction coefficient of DTNB (ε412= 13.6 mmol-1 cm-1) and expressed in nmol min−1 

mg−1 of protein, through the following formula.  

 

2500, 4000 or 5000 activities of CS were loaded for the different analysis. Protein 

concentration was determined by Bradford assay (Sigma) (see section 2.3.5). 

 

3.3.5. Protein quantization 

Protein concentration was determined by BCA assay (Pierce) or Bradford assay 

(Sigma), supplemented with BSA (2µg/µl). In each case, bovine serum albumin (BSA) 

standard curve was assayed to determine sample protein concentrations.  

The BCA Protein Assay consists in two steps. In the first, peptides containing three or 

more amino acid residues form a colored chelate complex with cupric ions in an 

alkaline environment containing sodium potassium tartrate. In the second step, 

bicinchoninic acid (BCA) reacts with the reduced cuprous cation formed in step one. 

The intense purple-colored reaction product results from the chelation of two molecules 

of BCA with one cuprous ion. The BCA/copper complex is water-soluble and exhibits a 

strong linear absorbance at 562 nm with increasing protein concentrations. The kit 

contains two reagents (A and B): 1 ml of solution was prepared for each samples and 

standard (980µl of reagent A + 20µl of reagent B). After incubation at 37°C for 30 

minutes, spectrophotometric assay was performed, by using the same micro cuvettes for 

CS activity evaluation. Absorbance was measured at 562nm at 37°C. 
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For Bradford assay, ComassieR Brilliant Blue G-250 was diluted 1:5 and 1ml of this 

solution was used for each sample and standard. The assay is up to be read at the 

spectrophotometer after 5 minutes and is stable until 1 hour. Reacting with amino and 

carbossilic groups of proteins, its absorbance maximum shifts from 465 (red) to 595nm 

(blue) in acid solutions. 

From the standard BSA curve 1µg of proteins’ Optical Density (O.D.1µg) was obtained 

and protein concentration of each sample was calculated using the following equation:  

 
 

3.3.6. Western Blot analysis 

30 µg of protein from each sample was separated into 7.5 or 10 % Criterion precast gels 

(Bio-Rad Laboratories) and transferred onto a nitrocellulose membrane (Whatman). 

Membranes were blocked in 5 % (w/v) fat-free milk in 0.02 M Tris/HCl pH 7.5, 

137mM NaCl, and 0.1 % (v/v) Tween-20 for 1 h at room temperature. Membranes were 

then incubated overnight at 4 °C with the primary antibodies. After 1 h incubation with 

secondary HRP-conjugated antibodies, signals were visualized by chemiluminescence 

(GE HealthCare) and exposition to films (Kodak). Integrated optical density of each 

band was calculated with commercial software (Gel Pro Analyzer). 

The primary antibodies used were: anti-AR polyclonal (Santa Cruz, N-20, sc-816,  

1:1000), anti-actin monoclonal (Chemicon International, MAB1501, 1:20000), anti-

PARP-1 polyclonal (Santa Cruz, H-250, 1:2000), anti-β tubulin polyclonal (Santa Cruz, 

H-235, 1:1000), anti-LC3 monoclonal (Sigma, L7543, 1:1000), anti-Beclin-1 polyclonal 

(Cell Signaling, 3738, 1:1000), anti-BNIP3 polyclonal (Sigma, B7931, 1:1000), anti-

PINK1 monoclonal (Cell Signaling, D8G3, 1:1000), anti-TOM20 polyclonal (Santa 

Cruz, Sc-11415, 1:1000), anti-LAMP-1 monoclonal (DSHB, H4A3, 1:400), anti-

Ubiquitin monoclonal (Millipore, MAB1510, 1:1000), anti-p62 monoclonal (Sigma, 

041M4812 1:2000), anti-Parkin monoclonal (Santa Cruz, Sc-32282, 1:1000), anti-DLP1 

monoclonal (BD Biosciences, 611112, 1:1000), anti-Fis1 polyclonal (Alexis, ALX-210-

907, 1:1000), anti-COX IV polyclonal (Cell Signaling, #4844, 1:1000); anti-NRF1 

polyclonal (Rockland Immunochemicals, 200-401-869, 1:1000); anti-Mitofusin-1 

monoclonal (Abnova GmBH, H00055669-M04, 1:1000); anti-Mitofusin-2 polyclonal 

(Abnova GmBH, PAB7989; 1:1000); COXIV (Santa Cruz Biotechnology, CA, USA), 
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anti-ATPase polyclonal (home-made), generous gift of Prof. F. Dabbeni-Sala from 

University of Padua and . 

  

3.3.7. Blue Native PAGE 

For Blue Native PAGE (BN-PAGE) human muscle mitochondria were isolated as 

previously described. Mitochondrial pellets were suspended at 10g/µl on Native 

Buffer (Invitrogen) with 4% Digitonin (Sigma) during 1 hour on ice and centrifuged 20 

min 16,000 x g at 4°C. Surnatant was collected and 1% G250 sample buffer additive 

(Invitrogen) was added. 10g of mitochondrial membrane proteins were applied and run 

on a 3-12% Bis-Tris gel (Invitrogen) as described elsewhere (NativePAGE™ Novex® 

Bis-Tris Gel System manual).  

Visualization of antibody protein complexes was achieved by enhanced 

chemiluminescence (LiteAblot-Turbo, Euroclone) and the ChemiDocTM XRS+ System 

(Bio-Rad). Densitometry was performed with the Gel-Pro Analyzer software.  

The primary antibodies used were: anti-MTCO1 monoclonal (Abcam, ab14705, 

1:5000), anti-Complex I subunit NDUFB8 monoclonal (Molecular Probes, 459210, 

1:5000) and anti-GRP75 polyclonal (Santa Cruz, sc-13967, 1:5000). 

 

3.3.8. OXPHOS Activity 

For fresh muscle homogenate, 20-30mg of muscle biopsies were washed and 

homogenized by 15 strokes at 500 rpm using a Velp Scientifica homogenizer in Sucrose 

buffer 250 mM (0.121 g Tris, 0.15 g KCl and 0.038 g EGTA in a final volume of 50 ml; 

on the same day of the experiment 0,854 g of sucrose was added to 10 ml of this buffer) 

and then centrifuged at 600g for 10 min at 4°C. The supernatant was transferred into a 

new tube on ice for Respiratory Chain (RC) analysis. The enzymatic activities of 

Respiratory Chain complexes I–IV were assayed in duplicate or triplicate with a single-

wavelength, temperature-controlled spectrophotometer at 37°C for few minutes as 

described in Spinazzi et al. (2012). Spectrophotometric assays were conducted using the 

same micro cuvettes for CS activity (see section 3.3.4). Similarly, the mix of each 

reaction, with a final volume of 1 ml, was prepared directly into cuvettes and left for 5 

minutes inside the spectrophotometer before starting the reaction with the addition of 

sample. Total protein concentration was determined by Bradford assay (Biorad) (see 
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section 3.3.5). The enzymatic activities for each mitochondrial enzyme was calculated 

as nmol min−1 mg−1 of protein using different extinction coefficient depending on 

substrate/electron acceptors used in the reaction and also normalized to the activity of 

CS, a mitochondrial matrix enzyme, used as a marker of the abundance of mitochondria 

within a tissue/cell. For more details, see Table 2.4. 

 

 

 

Table 2.4. Conditions for spectrophotometric assays of respiratory chain enzymes and citrate 

synthase activities in tissues and cells (Spinazzi et al., 2012). 

 

3.3.9. Mitochondria Lipid Extraction 

Isolated mitochondria were obtained as described in section 3.3.3. 100 µl aliquots of 

mitochondria suspension (containing 10 µg of protein) were used for lipids extraction. 

Lipids were extracted according to the method of Bligh and Dyer (Bligh and Dyer, 

1959) substituting deuterated dichloromethane (DMC) for chloroform (Cequier-Sanchez 

et al., 2008). First, 320 μl of methanol (MeOH) was added to each 100 μl sample. 

Samples were then vortexed for 60 s. Next, 630 μl of DCM was added, the sample was 

again vortexed for 60 s and 200 μl of water was added to induce phase separation. The 

samples were then vortexed for 60 s and allowed to equilibrate at room temperature for 

10 min before centrifugation at 8000g for 10 min at 10 C. A total of 10 μl of the lower 
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lipid-rich DCM layer was then collected and diluted in 990 ul of  acetonitrile 

(ACN)/DCM/H2O (80:15:5 v/v/v)  before (Liquid Chromatography–Mass 

Spectrometry) LC-MS analysis. One microliter of sample (equivalent to 200 pg of 

proteins) was injected onto the nano LC-MS system. 

 

3.3.10. Nano Liquid Chromatography–Mass Spectrometry (LC–MS) 

Analysis 

The LC/MS analyses were run on an Agilent (Agilent, Santa Clara, CA, US) 6520 

accurate mass Quadrupole Time-of-Flight (Q-TOF) LC-MS system governed by 

Agilent MassHunter software (B.05.00 version). The LC system consists of a 1200 

series High Performance Liquid Chromatography (HPLC) system coupled on-line to 

MS through a Chip Cube Interface (Agilent Technologies, CA, USA). Each sample (1 

µL) was loaded onto a large capacity chip-column filled with 3 µm Merck ZIC-HILIC, 

integrating a 500 nl capacity trap-column, a 75 µm × 150 mm column, connection 

capillaries, and a nano-spray emitter. Solvent A was ACN/DCM/MET/H2O 

(60:10:10:20 v/v/v/v), containing 5 mM  ammonium formate, while solvent B was 

ACN/DCM/H2O (80:15:5 v/v/v) containing 5 mM  ammonium formate. Peptides were 

separated with a linear gradient of 0 – 100 % of solvent A in 30 min at a flow rate of 

0.35 µL min-1. The LC effluents were introduced into the Q-TOF spectrometer by 

Agilent Chip Cube Interface that operated in negative mode (Vap=1700V) with nitrogen 

as desolvating gas at 325 °C and 4.0L/min; fragmentor, skimmer, and octapole were set 

at 150, 65, and 750 V, respectively. The Q-TOF operates in MS mode at 2 GHz, extend 

dynamic range  with two reference ions (mass accuracy 5 ppm, resolution about 0.05 

Da). Mass spectra were acquired in a data dependent mode: MS/MS spectra of the 5 

most intense ions were acquired for each MS scan in the 140 – 1700 Da range. Scan 

speed was set to 3 MS spectra s-1 and 5 MS/MS spectra s-1.  

Lipids identification and quantification was performed, after conversion of the raw data 

in XML format, by the software LipidXplorer (Herzog et al., 2012). 

 

 

 

 



Material and Methods 
 

 
86 

 

3.4. Imaging 

3.4.1. Atrophy and Hypertrophy index 

Atrophy and Hypertrophy index (AI-HI) were measured in routine hematoxylin-eosin 

stained muscle sections of 8 controls and 11 SBMA patients (Olympus BX60), 

according to Dubowitz (Dubowitz and Sewry, 2006), by using ImageJ software. We 

have measured the minor diameter of each fiber (almost 50 for each muscle samples), 

because this is not altered by oblique sectioning or kinking of the fibers, both common 

occurrences in muscle biopsy. Considering that normal males have a minor diameter of 

40-80µm, Atrophy and Hypertrophy index were calculated giving different importance 

to fibers with mild or severe change in size (in males normal values AI: 0-150 ; HI: 0-

500), through the following equations: 

AI = (n° of fibers with a minor diameter <10µm)*4 + 

(n° of fibers with a minor diameter of 10-20µm)*3 + 

(n° of fibers with a minor diameter of 20-30µm)*2 + 

(n° of fibers with a minor diameter of 30-40µm)*1 
 

 

HI = (n° of fibers with a minor diameter of 80-90µm)*4 + 

(n° of fibers with a minor diameter of 90-100µm)*3 + 

(n° of fibers with a minor diameter of 100-110µm)*2 + 

(n° of fibers with a minor diameter >110µm)*1 

 

3.4.2. Histoenzymatic NADH-DH assay  

For the histoenzymatic NADH-DH mitochondrial assay, frozen 8 μm cryosections of 5 

controls and 6 SBMA patients were brought to room temperature and then incubated for 

40 min at 37°C with the NADH incubation mixture. The NADH solution consisted of  

25 ml of  0.2 M TRIS/HCl buffer pH 7.4, 25 ml of distilled water, 25 mg of nitro-blue 

tetrazolium (NBT) (Sigma N-6876) and 20 mg NADH (Sigma N-8129). Percentage of 

dark blue Area for field was calculated in NADH-DH stained sections (Olympus BX60) 

by using ImageJ software, measuring the number of pixel for field with a dark blue 

staining. The used procedure divided the image into objects and background by taking 

an initial threshold. Then the averages of the pixels at or below the threshold and pixels 

above were computed. The averages of those two values were computed, the threshold 
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is incremented and the process was repeated until the threshold is larger than the 

composite average. The used formula is:  

threshold = (average background + average objects)/2 

After, number of pixel for field with a value above threshold was measured. 

 

3.4.3. Immunofluorescence 

For immunofluorescence (IF), muscle 8 μm cryosections were collected on Superfrost 

slides, fixed with 4% paraformaldehyde (PFA), treated with 0.5% Triton-X-100, 

incubated in blocking solution (10% Fetal Bovine Serum in PBS) for 30 min and then 

incubated overnight at 4 °C with primary antibodies to rabbit LC3 (Cell Signaling, 
polyclonal, #2775, 1:200) and to mouse ATP5A (Abcam, monoclonal, ab110273, 

1:200) in 10% FBS+PBS. Each primary antibody was sequentially incubated at 4 °C in 

separately overnight sections. After incubation with the first primary antibody (LC3), 

the appropriate secondary fluorescent antibody (Alexa-Fluor-488, Invitrogen) was used 

for 1 h at room temperature. Next, muscle cryosections were washed in PBS, incubated 

again in blocking solution for 30 min and incubated overnight at 4 °C with ATP5A. The 

appropriate secondary fluorescent antibody (Alexa-Fluor-647, Invitrogen) was used for 

1 h at room temperature. Slides were mounted using Vectashield medium with DAPI 

stain (Vector) and examined on a confocal microscope (Leica TCS SP5). In the z-axis 

stacks acquired, each image was separated by 0.5 µm along the z-axis. By using Fiji 

program, the number of object-voxel was analysed in each green and red slide of the z-

stack. A voxels (volumetric pixel or, more precisely, volumetric picture element) is an 

element of volume that represents a value of signal intensity or colour in a three 

dimensional space, similarly to pixel that represents a data in two-dimensional images. 

Considering the autophagosome diameter about 1µm, were kept only the element-object 

with that size or greater, expressed in voxel. To evaluate the LC3-ATPase colocalization 

signal, we used the following formula, measuring the distance between two objects: 

�(�1 − �2)� + (�1 − �2)� + (�1 − �2)� and were considered colocalized objects 

only when the green (LC3-autophagosoma) was bigger than the red one (ATPase-

mitochondria).  
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3.5. Statistical analysis 

Data were expressed as mean values ± SE. Differences between groups were assessed 

using analysis of variance (Student’s t-test) and linear regression analysis. We 

considered a p-value <0.05 to be significant. 
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4.1. Normal polyQ AR transcript and abnormal protein levels 

and distribution in SBMA muscle tissue 

We determined for the first time expression, protein levels and distribution of 

polyglutamine-expanded androgen receptor (polyQ AR) in muscle samples of seven 

SBMA and seven age matched control subjects, by RT-PCR and WB. PolyQ AR 

protein levels were significantly decreased of 60% of control in SBMA total muscular 

lysates (Fig. 4.1A,B). The higher molecular weight of mutant polyQ AR validated the 

analyzed bands (Fig. 4.1A,B). The normal transcript levels of AR in SBMA muscle 

indicated that this reduction was not due to a lower expression of the polyQ AR gene, as 

shown in figure 4.1C. Next the cytosolic and nuclear fractions of the same muscle 

samples were separated (see material and methods, section 3.3.2) and immunoblotted 

against AR, the cytosolic marker β-tubulin and the nuclear marker poly (ADP-ribose) 

polymerase-1 (PARP-1, also designated PARP). In SBMA cytosolic fraction, polyQ AR 

protein levels were significantly reduced of 60% of controls, as found in total lysate. On 

the contrary, in SBMA nuclei we found a significant twofold accumulation of the 

mutated receptor (Fig. 4.1A,B); this result is in line with the reported PolyQ AR 

increase in nuclei of SBMA primary differentiated myotubes (Malena et al., 2013). 

Interesting this accumulation was inversely correlated with the age at biopsy of the 

patients (Fig. 4.1D). To validate these data, we quantified the purity of the nuclear 

extract by WB, evaluating the nuclear enrichment as ratio between PARP (nuclear 

marker) and β-tubulin (cytosolic marker) in total lysate, cytosolic and nuclear fractions 

from muscle samples of two SBMA subjects and one control. As shown in figure 4.2, 

this procedure yielded six-fold enrichment of nuclear fraction compare to total lysate 

and cytosol, indicating a good purification of nuclei. 
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Figure 4.1. Expression, protein levels and distribution of androgen receptor (AR) in muscle tissue 

from SBMA and control subjects. A, B Representative WB analysis of AR in muscle total lysate, 

cytosolic and nuclear fractions from muscle samples of seven SBMA patients and seven controls. β-actin, 

β-tubulin and PARP protein levels were used as loading control in total lysate, cytosolic and nuclear 

fractions, respectively. Values expressed as mean ± SE of at least three independent experiments. C, 

Normal AR expression. The values expressed as ratio between AR and housekeeping large ribosomal 

protein (RPLPO) mRNA. The data given as mean ± SE of two independent experiments of RT-PCR 

(carried out in triplicate). D, Significant inverse correlation between nuclear PolyQ AR protein levels and 

SBMA patient’s age at biopsy. Significance by Student t test: *p < 0.05, **p < 0.01. 
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Figure 4.2. Purity of nuclear extract. WB analysis of PARP (nuclear), and β-tubulin (cytosolic marker), 

in cytosolic fraction (cytosol), nuclear fraction (nuclei) and total lysate from two SBMA patients and one 

control muscle samples. Nuclear enrichment, evaluated as ratio between PARP and β-tubulin protein 

amount. Values expressed as mean ± SE. ***p < 0.001 by Student’s t test. 

 

 

4.2. Reduction of mitochondrial abundance in SBMA muscle 

tissue 

To investigate if the abnormal distribution of polyQ AR was associated to altered 

mitochondrial parameters, we firstly evaluated the mitochondrial mass by molecular, 

biochemical and morphological assays. Mitochondrial DNA (mtDNA) copy number, 

index of mitochondrial abundance, assayed by RT-PCR, resulted significantly reduced 

of about 40% in SBMA muscle tissue compare to controls (Fig. 4.3A). Next, activities 

of respiratory chain complexes (OXPHOS) were quantified with a single-wavelength, 

temperature-controlled spectrophotometer, following the reaction of the single enzymes 

at 37 °C for a few minutes. The enzymatic activities for each mitochondrial enzyme 

were expressed as nmol min−1 mg−1 of protein and then normalized to the activity of 

Citrate synthase (CS), a mitochondrial matrix enzyme, used as marker of the abundance 
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of mitochondria within a tissue/cell. Similar to mtDNA copy number data, CS and 

OXPHOS (data not shown) activities significantly decreased of 35% in SBMA muscle 

compare to control (Fig. 4.3B). However OXPHOS rates, when normalised to CS, were 

normal (Fig. 4.3E). All together these results indicated that SBMA muscle had a 

diminished amount of well-functioning mitochondria. The decreased mitochondrial 

mass in SBMA muscle was further corroborated by Nicotinamide adenine dinucleotide 

(NADH) staining in cryosections of muscle quadriceps femoris. Mitochondrial mass 

was assessed in images, captured by the microscope Olympus BX60, and expressed as 

percentage-of-Dark-Blue-(NADH positive)-Area-for-field by using ImageJ software 

(see material and methods, section 3.4.2). Consistent with the previous results, also 

imaging analysis demonstrated a significant reduction of the mitochondrial amount of 

48% in SBMA muscle compare to controls (Fig. 4.3C). Moreover, NADH 

histoenzymatic staining revealed an abnormal mitochondrial distribution in SBMA 

muscle. In fact the fibers were: (i) intensely stained only in the periphery and/or (ii) with 

the central area devoid of mitochondria and/or (iii) moth-eaten fibers. At difference, 

control fibers showed an homogeneous NADH staining (Fig. 4.3D). 

In conclusion in SBMA muscle three different analysis (molecular, biochemical and 

morphological) showed a decreased mitochondrial network, with normal OXPHOS 

activity.  
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Figure 4.3. Reduction of normal functional mitochondria in muscle tissue from SBMA patients. A, 

mtDNA copy number, determined by RT-PCR in muscle of 13 SBMA and 14 control subjects, was 

expressed as ratio of mitochondrial cytochrome c oxidase II gene (COII) amplification with nuclear 

amyloid precursor protein gene (APP). The data expressed as mean ± SE of three independent 

experiments (carried out in triplicate). The values were given as arbitrary units (a.u.). B, Citrate synthase 

(CS) activity, expressed as nmol min−1 mg−1 of protein, determined in 6 SBMA and 4 controls muscle. C, 

Mitochondrial mass expressed as percentage-of-Dark-Blue-Area in NADH stained muscle cross sections 

of 6 SBMA and 5 control subjects. D, Representative NADH staining in control and SBMA subjects. E, 

Activity of the Respiratory Chain complexes I–IV normalized to the CS activity. Scale bar 80 μm. *p < 

0.05, ***p < 0.001 by Student’s t test. 

 

 

4.3. Normal mitochondrial biogenesis in SBMA muscle tissue 

It is known that expression of polyQ AR leads to transcription dysregulations (Suzuki et 

al., 2009; Halievski et al., 2014; Irvine et al., 2000; Todd et al., 2015). Altered gene 

expression is a consequence of sequestration of transcription factors and co-regulators 

or altered chromatin remodeling (Sugars and Rubinsztein, 2003; Minamiyama et al., 
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2004; Sopher et al., 2004; Katsuno et al., 2010). To investigate if the reduction of 

mitochondrial mass was due to dysregulation of genes related to mitochondrial 

biogenesis and function, transcript levels of peroxisome proliferator-activated receptor-

gamma coactivator 1 alpha and 1 beta (PGC-1α and PGC1-β), transcription factor A 

mitochondrial (TFAM), estrogen-related receptor alpha (ERRα), nuclear respiratory 

factor 1 (NRF1), cytochrome c oxidase 4 (COX4), manganese-dependent superoxide 

dismutase (MnSOD) and mitofusin 1 and 2 (MFN1 and MNF2), were assessed by RT-

PCR. As shown in figure 4.4A, no altered expression levels were found in 14 SBMA 

muscle compare to 18 controls. PolyQ AR can also influence cellular homeostasis 

directly interacting and sequestering proteins, preventing them to carry out their 

functions (Beauchemin et al., 2001). For this reason, the protein amount of NRF1, 

COX4 and MFNs was evaluated and found unaffected by PolyQ AR in 13 SBMA 

muscle (Fig. 4.4B) compare to 14 controls.  

In conclusion, at difference of SBMA knock-in mice (Ranganathan et al., 2009), in 

SBMA muscle tissue the reduction of mitochondrial abundance, was not due to an 

impaired mitochondrial biogenesis.  
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Figure 4.4. Normal mitochondrial biogenesis in muscle tissue from SBMA patients. A,  RT-PCR 

analysis of the transcript levels and B, WB analysis of protein levels of genes involved in mitochondrial 

biogenesis, normalized to large ribosomal protein (RPLPO) and to β-tubulin, respectively, in  SBMA and 

control muscle tissues. Data expressed as mean ± SE of two independent experiments of RT-PCR (carried 

out in triplicate) and of three WB analysis ask to Prof. Aaron P. Russell of Deakin University. 

 

 

4.4. No correlation between Atrophy (AI) – Hypertrophy (HI) 

index and mtDNA copy number in SBMA muscle tissue. 

It is known in literature that muscle biopsies from SBMA patients show both signs of 

neurogenic atrophy, such as type I and II fibers aggregation, target fibers, atrophic fibers 

and subsarcolemmal nuclei clumping, and myopathic abnormalities, such as a wide 

variability in fibers size (4-200μm), hypertrophic fibers, spread basophilic fibers and 

necrotic fibers with central nuclei (Sorarù et al., 2008). We hypothesized that processes 

that lead to muscle atrophy and/or hypertrophy could be involved in the reduction of 
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mtDNA copy number. For these reason, we evaluated atrophy (AI) and hypertrophy 

(HI) index in cross sections of quadriceps femoris stained for hematoxylin and eosin 

(EE) from eleven SBMA patients and eight controls (Fig. 4.5A,B), as previously 

described (Dubowitz and Sewry, 2006). Figure 4.5A show the huge AI and HI found in 

most SBMA muscle biopsies (7/11), determined as described in material and methods, 

section 3.4.1. However, we did not find correlation between the reduction of mtDNA 

copy number and atrophy or hypertrophy values, suggesting that atrophic and/or 

hypertrophic processes are not involved in reduction of mitochondrial mass (Fig. 4.5C). 

 

 

 

Figure 4.5. Fiber size analysis and correlation with mtDNA copy number in SBMA muscle tissue. 

A, Histograms showing the values of Atrophy (AI) and Hypertrophy (HI) Index in eleven SBMA and 

eight control subjects. The values, quantified as described in material and methods section 3.4.1, are 

expressed as arbitrary units (a.u.). B, Representative images of hematoxylin-eosin stained cryosections of 

control and SBMA muscle tissue, showing the wide variability in SBMA muscle fiber size. Scale bar 40 

μm. C, No significant correlation between mtDNA copy number and AI, HI and AI/HI ratio, assessed in 

eleven SBMA muscle biopsies. 
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4.5. Increased autophagy in human SBMA muscle tissue 

Since the reduction of mitochondrial mass (Fig. 4.3) is neither due to an impaired 

mitochondrial biogenesis (Fig. 4.4), nor to atrophy-hypertrophy related processes (Fig. 

4.5), we asked if it was associated to an increased degradation of these organelles. In the 

cell, the removal of damaged or superfluous subcellular organelles can take place 

through autophagy (Gomes and Scorrano, 2013; Youle and Narendra, 2011) (see 

introduction, section 1.9, for details). For this reason, we evaluated the transcript and 

protein levels of genes involved in autophagic process (LC3, Beclin-1) and lysosomal 

biogenesis (LAMP1, LAMP2B) by RT-PCR and WB analysis, normalized respectively 

to large ribosomal protein (RPLPO) and β-actin. The expression levels of microtubule-

associated protein 1A/1B-light chain 3 (LC3) and Beclin-1 and lysosomal-associated 

membrane protein 1 and 2B (LAMP1 and LAMP2B) were normal (Fig. 4.6A) in 

respectively 20 and 6 SBMA muscle compare to 10 and 4 controls. On the contrary, the 

protein levels of the lipidated form of LC3 (LC3-II) and Beclin-1 were significantly 

increased respectively by 49% and 174% in the muscle tissue from 10 SBMA patients 

compare to 5 controls (Fig. 4.6B,C) and the protein levels of LAMP1 was significantly 

increased by 529% in the muscle tissue from 9 SBMA patients compare to 9 controls. 

To further confirm these data, we performed an immunohistochemical assay, by using 

antibody against LC3, to mark autophagosomes (Fig. 4.6D). Images were obtained by 

using a confocal microscope (Leica TCS SP5). The number of autophagosomes/fiber, 

expressed as puncta/fiber, was measured as number of positive green objects by using a 

dedicated software (program Fiji), as described in material and methods section 3.4.3. 

Consistently, we found that the number of autophagosomes/fiber was about 205% 

greater in the muscle tissue from 11 SBMA patients compare to 10 controls (Fig. 4.6E). 

This increase was not correlated with the number of CAG repeats present in the N-term 

domain of AR (Fig. 4.7A). Furthermore, no correlation was found with the age at 

biopsy of patients (Fig. 4.7B).  

In conclusion both the biochemical and morphological assays indicated an increased 

autophagic process in SBMA muscle tissue. 
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Figure 4.6. Increased autophagy in SBMA muscle tissue. A, RT-PCR analysis of the transcript levels 

and B, C WB analysis of the protein levels of genes involved in autophagy normalized respectively to 

RPLPO and β-actin. The data are expressed as mean ± SE of two independent experiments of RT-PCR 

(carried out in triplicate) and three WB analysis. D, Representative images of anti-LC3 immunostaining 

of control and SBMA muscle tissue. E, Immunofluorescence assay of muscle cryosections from eleven 

patients and ten controls was performed, by using antibody against LC3, to mark autophagosomes. The 

number of autophagosomes for fiber was measured as number of green object- for fiber (puncta/fiber) by 

using dedicated Fiji software. The data, expressed as mean ± SE of almost 50 fibers, were scored for each 

analyzed muscle sample. Scale bar 40 μm. *p < 0.05, **p < 0.01, ***p < 0.001 by Student’s t test. 
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Figure 4.7. No correlation between clinical features of SBMA patients and the increased number of 

autophagosomes found in the respective muscle. No correlation between autophagosomes’ number, 

expressed as LC3 puncta/fiber, in the muscle tissue from eleven SBMA patients and A the number of 

CAG repeats in their androgen receptor gene; B age at biopsy, expressed in years.  

 

 

4.6. Increased mitophagy in human SBMA muscle tissue 

Activation of the autophagic process in the muscle tissue of SBMA patients may be 

related to the previously observed reduction of mitochondrial mass. The removal of 

mitochondria in cells takes place through two types of autophagy: non selective and 

selective autophagy. Non selective autophagy occurs on nutrient deprivation to supply 

cells with essential metabolic building blocks and energy, until nutrients can once again 

be obtained from the extracellular environment. Selective-cargo-specific autophagy or 

mitophagy occurs under nutrient-rich conditions to mediate the removal of superfluous 

or damaged organelles that otherwise could be harmful and/or toxic. Mitophagy has a 



Results 

 
101 

 

mechanistically separate induction and regulation from non-selective autophagy.  PTEN 

Induced Putative Kinase 1 (PINK1), Parkin and BCL2/Adenovirus E1B 19kDa 

Interacting Protein 3 (BNIP3) are the major players of the mitophagic process (Ding and 

Yin, 2012; Ashrafi and Schwarz, 2013), together with the mitochondrial recruitment of 

the effector proteins LC3 and p62 (Gomes and Scorrano, 2013; Novak, 2012). 

Therefore, we wanted to test whether there was an increase of the mitophagic process in 

SBMA muscle, that could explain the mitochondrial reduction in SBMA muscle (Fig. 

4.3). With this aim in mind, we performed molecular, biochemical and morphological 

assays, focused to mitophagic parameters.  

Biochemically mitophagy was estimated by monitoring the recruitment of sequestosome 

1/p62 (SQSTM1/p62), PINK1, Parking, BNIP3 and ubiquitin on isolated mitochondria 

of five SBMA and five control muscle by WB analysis.  

We quantified the purity of the mitochondrial extract by WB, evaluating the 

mitochondrial enrichment as ratio between TOM20 (mitochondrial marker) and β-

tubulin (cytosolic marker) in total lysate and isolated mitochondria of two SBMA and 

two control muscle samples. As shown in figure 4.10, this procedure yielded eight-fold 

enrichment of mitochondrial fraction compare to total lysate, indicating a good 

purification of mitochondria.  

The mitochondrial protein levels of PINK1 (mtPINK), BNIP3 (mtBNIP3) and ubiquitin 

(mtUbiq) from 5 SBMA muscle were significantly increased respectively by 338%, 

187% and 200% compare to 5 control samples (Fig. 4.8B,C,D). These data were 

suggestive of an enhanced mitophagic process in SBMA muscle tissue. However, 

Parkin mitochondrial protein levels were not increased (Fig. 4.9B), suggesting the 

involvement of other E3 ligases, that target SBMA mitochondria to autophagosomes via 

ubiquitination (Ashrafi and Schwarz, 2013). Another possibility is the presence of 

Parkin muscle specific isoform(s), recognized by other specific antibodies (La Cognata 

et al., 2014; Scuderi et al., 2014).  Also p62 protein levels in isolated mitochondria from 

SBMA patients resulted similar to controls. These data may be due either to absence of 

blocks-impairments in SBMA autophagic flux or to the involvement of other adaptor 

proteins in the mitophagic process in muscle (Fig. 4.9B).  
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The expression levels of BNIP3, PINK1, Parkin and p62 were normal in 20 SBMA 

compare to 10 control muscle samples (Figs. 4.8A, 4.9A), indicating that their 

transcription was not influenced by  PolyQ AR. 

To further confirm the increased mitophagy observed by WB analysis, we performed an 

immunohistochemical assay on quadriceps femoris cryosections from eleven SBMA 

patients and ten controls, using antibody against LC3 (green), to mark autophagosomes, 

and antibody against ATPase (red), to mark mitochondria (Fig. 4.8E). This 

morphological method quantified mitophagy as number of autophagosomes that 

colocalized with mitochondria (yellow), measured with Fiji program and expressed as 

number of yellow puncta/fiber (see material and methods, section 3.4.3). In line with the 

WB data, we found that the autophagosomes-mitochondria colocalization was 

significantly 3,5 increased in SBMA muscle tissue compared to controls (Fig. 4.8F). 

These data confirmed that in SBMA but not in control muscle many mitochondria were 

trapped in autophagosomes and successively degraded through the autophagic 

machinery. Interesting, we had a visual impression of this phenomenon in some SBMA 

muscle fibers, where we observed area devoid of mitochondria and rich in autophagic 

vacuoles, indicating a mitophagic process that led to removal of mitochondria (Fig. 

4.8E). Increased mitophagy, in SBMA patients, was neither correlate with the number 

of CAG repeats present in the N-term domain of polyQ AR gene (Fig. 4.11A) nor with 

their age at biopsy (Fig. 4.11B). In summary both biochemical and morphological 

analysis confirmed an augmented mitophagy in SBMA muscle that explained the 

previously observed reduction of mitochondrial mass. Furthermore the activation of 

BNIP3 and PINK1 mediated mitophagy suggested the presence of latent mitochondrial 

alterations, able to recruit auto-mitophagic apparatus.  
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Figure 4.8. Increased mitophagy in SBMA muscle tissue. A, RT-PCR analysis of BNIP3 and PINK1 

transcript levels in 20 SBMA and 10 control muscle samples. Data, normalized to RPLPO, are expressed 

as mean ± SE of two independent RT-PCR experiments (carried out in triplicate). B, C, D WB analysis of 

BNIP3 (mtBNIP3), PINK1 (mtPINK1) and ubiquitin (mtUbiquitin) protein levels in muscle isolated 

mitochondria from 5 SBMA patients and 5 controls, normalized to CS activity. Data are expressed as 

mean ± SE of three independent WB experiments. Membranes were immunoblotted against TOM20 and 
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ATPase, as mitochondrial loading controls. E, Representative images of anti-LC3 (green) and anti-

ATPase (red) immunostaining of control and SBMA muscle tissue. Zoom: magnification of the marked 

areas. F, Number of colocalized autophagosome-mitochondria (yellow puncta), measured as number of 

yellow puncta/fiber in 11 SBMA and 10 controls. The data are expressed as mean ± SE. Almost 50 fibers 

were scored in each analyzed muscle sample. Scale bar 20 μm. *p < 0.05, **p < 0.01 by Student’s t test. 

 

 

 

 

 

 

Figure 4.9. p62 and Parkin expression and mitochondrial protein levels in SBMA and control 

muscle. A, RT-PCR analysis of p62 and Parkin transcript levels in 20 SBMA and 10 control muscle 

samples. Data, normalized to RPLPO, expressed as mean ± SE of two independent RT-PCR experiments 

(carried out in triplicate). B, WB analysis of p62 (mtp62) and Parkin (mtParkin) protein levels in muscle 

isolated mitochondria from 5 SBMA patients and 5 controls, normalized to CS activity. Data are 

expressed as mean ± SE of three WB independent experiments. Membranes were immunoblotted against 

TOM20 and ATPase, as mitochondrial loading controls 
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Figure 4.10. Purity of mitochondrial extract. Representative WB analysis of TOM20 (mitochondrial) 

and β-tubulin (cytosolic marker) in muscle total lysate and isolated mitochondria from two SBMA 

patients and two control samples. Mitochondrial purification, evaluated as ratio between TOM20 and β-

tubulin protein amount. The graph represents the mean ± SE. ***p < 0.001 by Student’s t test. 
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Figure 4.11.Absence of correlation between clinical features of SBMA patients and the increased 

mitophagy found in their respective muscle. A, Linear regression analysis between mitophagy, 

expressed as mitochondria-autophagosomes colocalization signal (puncta/fiber), and the number of CAG 

repeats in AR gene from the respective muscle tissue of eleven SBMA patients. B, Linear regression 

analysis between mitophagy, expressed as mitochondria-autophagosomes colocalization signal 

(puncta/fiber), and age at biopsy of eleven patients. 

 

 

4.7. Increased fission in the muscle tissue from SBMA patients 

Accumulating evidences emphasize the requirement of mitochondrial fragmentation 

(fission) prior to mitophagy (Gomes and Scorrano, 2013; Youle and Narendra, 2011). 

Fission divides elongated mitochondria into pieces of manageable size, that can be 

engulfed by autophagosomes and then degraded into lysosome. For this reason, we 

evaluated mRNA and protein content of the main actors of the mitochondrial 

fragmentation process: Drp1 and hFis1. The expression levels of both were normal in 
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the muscle from four SBMA patients compare to four controls (Fig. 4.12A). On the 

contrary, in respectively 9 and 5 SBMA muscle isolated mitochondria we found an 

increased protein amount of both Drp1 that hFis1 (37% and 72%, respectively), but only 

hFis1 values were significant higher (Fig. 4.12B) compare 9 and 4 controls. These data 

suggested an increase of fission events in the muscle of SBMA patients, in line with 

increased mitophagy, although further studies will be necessary to confirm these data. 

 

 

 

Figure 4.12. Increased fission in SBMA muscle tissue. A, RT-PCR analysis of Drp1 and hFIS1 

transcript levels in SBMA and control muscle. Data, normalized to RPLPO, are expressed as mean ± SE 

of two independent RT-PCR experiments (carried out in triplicate). B, C Representative WB analysis of 

Drp1 and hFis1 protein levels in isolated mitochondria from SBMA and control muscle, normalized to CS 

activity. Data are expressed as mean ± SE of three independent WB experiments. Membranes were 

immunoblotted against ATPase, as mitochondrial loading controls. *p < 0.05 by Student’s t test. 

 

 

4.8. Reduced biosynthesis and levels of cardiolipin in SBMA 

muscle tissue 

Previous results showed an increased mitophagy in the muscle from SBMA patients 

(Fig. 4.8), and suggested an underlying mitochondrial dysfunction, that could explain 

why mitochondria were degraded in muscle tissue, that normally needs a lot of energy 

for its normal function. For this reason, we evaluated the lipid composition of 

mitochondrial membranes by mass spectrometry in muscle isolated mitochondria from 

four SBMA patients and four controls. Interesting, we found that cardiolipin (CL) 

amount, the structural unique phospholipid of the inner mitochondrial membrane 

(IMM), was halved (52%) (Fig. 4.13A), in parallel with a significant increase of 
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phosphatidylethanolamine (PE) (149%) and of the PE- precursor- phosphatidylserine 

(PS) (204%) levels in SBMA muscle mitochondria compare to control (Fig. 4.13A). All 

together these data suggested a compensatory response to an underlying alteration in 

lipid mitochondrial homeostasis. However, in SBMA muscle the composition of CL 

was not altered (Fig. 4.13B), in fact there was an homogeneous reduction of all the CL 

molecular species and not of a single as observed in Barth Syndrome, characterized by 

the reduction of tetralinoleoyl-CL (L4-CL) (McKenzie et al., 2006). These data 

suggested an anomaly in the initial steps in CL synthesis. Cardiolipin synthase (CRLS1) 

is a key enzyme involved in the biosynthesis of immature CL (see introduction, section 

1.11.1, for more details) (Patil and Greenberg, 2013). CRLS1 catalyzes an irreversible 

condensation reaction in which the phosphatidyl group of CDP-diacylglycerol (CDP-

DAG) is linked to phosphatidylglycerol (PG). After this biosynthetic step, immature CL 

undergoes deacylation and remodeling, to generate the different molecular species with 

diverse acyl group composition. For these reasons, we hypothesized that the decreased 

levels of cardiolipin in SBMA mitochondrial membranes could be related to 

downregulation of CRLS1 gene.  Therefore, we evaluate expression levels of CRLS1 

gene by RT-PCR in muscle tissue from six control and five SBMA patients. CRLS1 

expression levels were decreased of 51% in SBMA muscle tissue compare to controls. 

This reduction explained the decreased CL levels in SBMA mitochondria (Fig. 4.13C). 

This result may represent the connection between the accumulation of polyQ AR in the 

nucleus of SBMA muscle and the elimination of mitochondria through the auto-

mitophagic machinery. 

It is known in literature that one of the most important role of cardiolipin is to stabilize 

some respiratory chain (RC) complexes (CI, CIII and CIV) and their super-assembling 

in the so called “Respirasome” (Paradies et al., 2013). So we thought that the CL 

reduction could create a mitochondrial damage through supercomplexes disassembling, 

although singularly the individual enzymes worked properly (Fig. 4.3E). For these 

reasons, we analyzed mitochondrial supercomplexes composition in isolated 

mitochondria from muscle of four controls and four SBMA patients by using a Blue 

Native PAGE (BN-PAGE) technique, based on a mild membrane solubilization with 

digitonin, that preserves the interactions between the RC complexes (see material and 

methods, section 3.3.7). However, we did not find any difference in the supercomplexes 
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amount between SBMA muscle and control (Fig. 4.13D). We can conclude that CL 

decreased levels affect muscle SBMA mitochondria without a valuable supercomplexes 

disassembling, probably for the concomitant compensatory increase of PE. In summary 

the present data reveal in SBMA muscle a novel relationship among PolyQ AR, 

mitophagy and reduced CL levels. 

 

 
 

Figure 4.13. Reduced cardiolipin level and biosynthesis in SBMA muscle tissue. A, Lipid 

composition of mitochondrial membranes by mass spectrometry in muscular isolated mitochondria from 

four SBMA patients and four controls. Cardiolipin (CL), phosphatidylethanolamine (PE), 

phosphatidylserine (PS), phosphatidylcholine (PC) and phosphatidylinositol (PI) amount were normalized 

to CS activity and expressed as mean ± SE of two independent experiment. B, Composition of the 

different CL species in control and SBMA muscle samples. C, Decreased transcript levels of cardiolipin 

synthase (CRLS1) normalized to RPLPO in the muscle tissue from five SBMA patients compare to six 

controls. The values expressed as mean ± SE of two independent experiments of RT-PCR (carried out in 

triplicate). D, Representative Blue Native PAGE (BN-PAGE) of mitochondrial supercomplexes in muscle 

isolated mitochondria from four controls and four SBMA patients. Mitochondrial supercomplexes were 

recognized with antibody against a subunit of Complex I (NDURFB8) and of Complex IV (COXI). 

Antibody against GRP75, a marker of mitochondrial matrix, used as loading control. *p < 0.05, **p < 

0.01 by Student’s t test. 
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Traditionally, SBMA has been viewed as a cell-autonomous, primary motor neuron 

disease. Recently published reports challenge the traditional view, suggesting a primary 

role of muscle in SBMA pathogenesis (Yu et al., 2006; Rocchi, Milioto et al., in 

revision; Sorarù et al., 2008; Monks et al., 2007; Palazzolo et al., 2009; Rinaldi et al., 

2012; Cortes et al., 2014). Androgen receptor (AR) is expressed in muscle tissue, where 

mediates the anabolic effects of androgens. In fact, administration of androgens to 

hypogonadal men resulted in increased muscle strength and size, together with 

enhanced lean body mass and performance (Bhasin et al., 1997; Brodsky et al; 1996; 

Sinha-Hikim et al., 2004). It was shown that there is a loss of androgens anabolic effects 

in SBMA primary myotubes, in a polyQ related manner (Malena et al., 2013). This 

process can be especially harmful in aging, when skeletal muscle undergoes to 

sarcopenia (Glass et al., 2010; Sakuma and Yamaguchi, 2010; Haehling et al., 2012). 

However, till now a direct measure of polyQ AR expression, amount and distribution in 

human SBMA muscle tissue was not available.  

 

 

5.1. Nuclear accumulation of PolyQ AR in  human SBMA 

muscle tissue 

In the present study, for the first time we showed that there was a significant reduction 

of the protein amount of AR in total lysate and cytosolic fraction of SBMA muscle 

tissue (Fig. 4.1 A,B). It is known that AR gene contains AREs and that AR can regulate 

its expression (Grad et al., 2001). So, we hypothesized that a loss of function of PolyQ 

AR may led to a decrease in its expression and consequently in its protein content. 

However, we found normal polyQ AR transcript levels in SBMA muscle samples (Fig. 

4.1C). Therefore, the cytosolic decrease of PolyQ AR could be probably due to a 

cellular defence carried out by the affected muscle tissue in order to eliminate the 

abnormal PolyQ AR proteins by ubiquitin proteasome system (UPS) or autophagic 

processes (Rusmini et al., 2007; Rusmini et al., 2010; Taylor et al., 2003; Pandey et al., 

2007; Yu et al., 2011). Consistently, a decreased cellular amount of polyQ AR protein 

was found in several cells and tissues, different from muscle (Nakamura et al., 1994; 

Warner et al., 1992; Danek et al., 1994; Matsuura et al., 1992). A post mortem study, 
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carried out by Nakamura et al. (1994), showed a decreased polyQ AR protein amount 

(by WB) and expression levels (by RT-PCR) in the spinal cord of one SBMA patient 

compared to ALS and lung cancer subjects. Both Warner et al. (1992) and Danek et al. 

(1994) also found decreased levels of polyQ AR expression in genital skin fibroblasts 

from SBMA patients. Similarly, Matsuura et al. (1992) were not able to demonstrate 

AR immunoreactivity in genital skin biopsies from SBMA patients. Since some of these 

studies showed decreased polyQ AR transcript levels, associated to reduced protein 

levels, it was suggested that SBMA could be considered a loss-of-function disease. 

More importantly were the increased levels of the monomeric polyQ AR soluble form 

in quadriceps femoris nuclei of our SBMA patients (Fig. 4.1A,B). This accumulation is 

inversely correlate with the age at biopsy of patients, probably due to the reduction in 

testosterone levels that occur in aging.  Nuclear localization and accumulation of the 

abnormal proteins were considered to be decisive for inducing neuronal cell dysfunction 

and degeneration in all the polyQ diseases, i.e. spinocelebellar ataxia (Klement et al., 

1998). Indeed, it was shown in several tissues and primary cells that one of the main 

pathophysiological processes of SBMA disease is the accumulation of polyQ AR in 

nuclei both in a diffusible form and/or in nuclear inclusions (NIs) (Adachi et al., 2005, 

Li et al., 1998; Banno et al., 2006; Malena et al., 2013). Consistently, increased nuclear 

polyQ AR levels were found in SBMA primary differentiated human myotubes, but not 

in proliferating primary myoblasts, indicating that the process of differentiation of 

SBMA myoblasts to myotubes is associated with an abnormal accumulation of polyQ 

AR (Malena et al., 2013). An immunohistochemical study on autopsies of SBMA 

patients showed that diffuse nuclear accumulation of the polyglutamine-expanded AR 

was more frequently observed than NIs in the anterior horn of the spinal cord and was 

correlated to the length of the CAG repeat in AR gene (Adachi et al., 2005). 

Furthermore, it was shown that NIs are likely formed as a result of cellular defence 

reactions coping with the pathogenic polyglutamine protein (Taylor et al., 2003).  

In conclusion, for the first time, we demonstrated accumulation of monomeric polyQ 

AR in skeletal muscle nuclei from SBMA patients, indicating muscle primary 

involvement in SBMA pathogenesis. 
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5.2. Decreased mitochondrial mass in human SBMA muscle 

tissue 

The myopathic component of SBMA can be mitochondrial. Accumulating evidences 

suggest that polyQ AR interferes with mitochondria either indirectly via the nucleus or 

cytoplasm or directly via the organelle (Ranganathan et al., 2009; Beauchemin et al., 

2001; Piccioni et al., 2002; Stenoien et al., 1999; Su et al., 2010; Orsucci et al., 2014). 

In the nucleus down-regulation of various nuclear-DNA-encoded mitochondrial 

proteins (e.g. PPAR-γ, SOD-I, SOD-II, catalase, NADH-dehydrogenase-I, TFAM) by 

expanded polyQ AR was observed (Ranganathan et al., 2009). In the cytoplasm co-

localization of polyQ AR with various mitochondrial proteins (e.g. COXVb) was 

reported (Beauchemin et al., 2001).  Direct affection of mitochondria with polyQ 

aggregates results in abnormal distribution of mitochondria (Piccioni et al., 2002; 

Stenoien et al., 1999), damage of mtDNA in form of mtDNA depletion or multiple 

mtDNA deletions (Su et al., 2010; Orsucci et al., 2014), ligand-dependent mitochondrial 

membrane depolarization, increase in ROS, or activation of the mitochondrial caspase 

pathway with increased levels of key proteins of the mitochondrial apoptosis cascade 

(Ranganathan et al., 2009). However, almost none of these studies were conducted in 

human tissues. The aim of this study was to investigate if many of these mitochondrial 

abnormalities were present in the muscle tissue from SBMA patients.  

In this study, we demonstrated, through three different methods, that in the muscle 

tissue from our SBMA patients the mitochondrial mass was reduced compare to 

controls (Fig. 4.3). Firstly, we found a 40% reduction in mtDNA copy number in 

SBMA muscle tissue (Fig. 4.3A). Similarly, in leukocytes derived from SBMA patients 

and carriers was found a reduction in mtDNA copy number, that inversely correlated 

with the CAG-repeat length (Su et al., 2010). In these patients and carriers was found 

also an increased frequency of mtDNA4977 deletion, the most common “aging-

deletion”, and a higher mtDNA ΔCT value, a biomarker of mtDNA oxidative stress. 

Furthermore, multiple mtDNA deletions were detected in the skeletal muscle of a 55yo 

SBMA patient with exercise intolerance and hyper-CKemia ranging from 1000 to 1400 

U/l (Orsucci et al., 2014). These data showed a link between polyQ AR and mtDNA 

damage and degradation.  
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The decreased mitochondrial amount was confirmed by the 40% reduction of Citrate 

synthase (CS) activity in total SBMA muscle homogenate (Fig. 4.3B), and by the 48% 

reduction of NADH positive area/field in SBMA muscle fibers (Fig. 4.3C,D). In 

addition, the histochemical NADH-DH staining revealed altered mitochondrial 

distribution and/or absence of oxidative enzyme activity in the central region of SBMA 

muscle fibers as previously reported in several morphological studies of muscle tissue 

from patients and knock-in mice (Orsucci et al., 2014; Sorarù et al., 2008; Harding et 

al., 1982; Sopher et al., 2004).  In a 55yo SBMA patient with exercise intolerance and 

hyper-CKemia, muscle biopsy staining for oxidative enzymes revealed some COX-

hypo-reactive fibers (Orsucci et al., 2014). In two studies of muscle specimens from 

SBMA patients and carriers stained for NADH-DH, lobulated fibers, moth-eaten fibers 

and fibers with a loss of oxidative enzyme activity in the central regions were observed 

(Sorarù et al., 2008; Harding et al., 1982), as well as in one study on AR-100Q 

transgenic mice (Sopher et al., 2004).  

OXPHOS activity was normal in SBMA muscle tissue if normalized to CS activity (Fig. 

4.3E). This means that in the quadriceps femoris of SBMA patients there were 

mitochondria that worked properly, but present in a reduced abundance compare to 

controls. 

We found normal expression and protein levels of NRF1, COX4 and MFNs (Fig. 

4.4A,B) and normal expression levels of PGC-1α, PGC-1β, TFAM and ERRα (Fig. 

4.4A). Most of these genes encode transcription factors, while others encode 

mitochondrial proteins. PGC-1α is a coactivator, as PGC-1β. It interacts directly with 

transcriptional factors, recruits the histone acetyl transferase (HATs) and interacts with 

the transcriptional machinery. The expression of all genes evaluated is modulated by 

PGC1α (Romanello and Sandri, 2012). TFAM is a mitochondrial transcription factor 

and therefore promotes the transcription of mitochondrial genome. Its expression is 

modulates also by PGC-1α. Thus, our results show that reduction of mitochondrial mass 

in SBMA muscle tissue is not due to reduced mitochondrial biogenesis, as observed in 

SBMA knock-in mice (Ranganathan et al., 2009).  

Subsequently, we hypothesized that muscle atrophy or hypertrophy processes could be 

implied in the mitochondrial mass reduction. The growth of skeletal muscle mass 

depends on protein and cell turnover, controlled by two different pathways (Sartorelli 
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and Fulco, 2004). Cellular turnover plays a major role during muscle development in 

embryo. Moreover, satellite cell incorporation into the growing fibers takes place during 

postnatal muscle growth (Moss and Leblond, 1971), concomitantly with increased 

protein synthesis. The activation of satellite cells is important for maintaining a constant 

size of each nuclear domain (quantity of cytoplasm/number of nuclei). Unlike young 

muscle, the contribution of cellular turnover to homeostasis of adult fibers is minor 

(Rehfeldt et al., 2007). In adult muscle, tissue growth take place by increasing protein 

synthesis and decreasing protein degradation. Whereas satellite cells are activated in 

compensatory hypertrophy (Schiaffino et al., 1976). On the contrary, atrophy is a 

decrease in cell size mainly caused by loss of organelles, cytoplasm, and proteins, 

through activation of UPS or autophagy (Sandri, 2008).  We evaluated for the first time 

the atrophy (AI) and hypertrophy (HI) index in hematoxylin and eosin stained cross 

sections of SBMA and control quadriceps femoris (Fig. 4.5A,B). Whereas both AI and 

HI were increased in most of SBMA muscle samples, any correlation was found 

between the reduction of mtDNA copy number with neither AI nor HI (Fig. 4.5C). 

These data indicate that AI and HI underlying processes could be not involved in the 

reduction of mitochondrial mass. 

 

 

5.3. Increased autophagy in human SBMA muscle tissue 

The process through with entire subcellular organelles are removed is called autophagy. 

It is a self-eating quality-control system, in which cellular components, including 

organelles, are entrapped into a double membrane structures, autophagosome, and then 

degraded by lysosomal hydrolases. We found that the expression levels of LC3 and 

Beclin-1, involved in autophagosomes biogenesis, and LAMP1 and LAMP2B, involved 

in lysosome biogenesis, were normal in SBMA muscle tissues compare to controls (Fig. 

4.6A). On the contrary, the protein amount of LC3-II, Beclin-1 and LAMP1 was 

significantly increased in SBMA muscle homogenate (Fig. 4.6B,C). Furthermore, we 

found an increased number of autophagosomes in muscle SBMA cryosections 

immunostained for LC3, expressed as puncta/fiber (Fig. 4.6D,E).  

All together, the data showed an enhanced autophagic process in SBMA muscle tissue 

in line with previously results (Chua et al., 2014; Cortes et al., 2014; Yu et al., 2011). 
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Indeed, recently analysis of quadriceps muscle samples from symptomatic 14 month-old 

AR100Q transgenic mice yielded a dramatic up-regulation of TFEB target genes 

(Cortes et al., 2014). TFEB is a transcription factor, which directs the expression of 

hundreds of autophagy- and lysosomal-related genes as part of the Coordinated 

Lysosomal Expression and Regulation (CLEAR) network (Settembre et al., 2011; 

Settembre and Ballabio, 2011; Palmieri et al., 2011). Consistently, in SBMA patients 

and knock-in AR113Q mice muscle were observed increased biochemical, 

morphological and molecular parameters of autophagy (Chua et al., 2014). Uncontrolled 

autophagy is thought to underlie muscle wasting; therefore the excessive activation of 

autophagy could also be responsible for SBMA skeletal muscle atrophic phenotype. In 

agreement with this hypothesis, global reduction of autophagic activity by Beclin-1 

haploinsufficiency in SBMA knock-in AR113Q mice increased skeletal muscle fiber 

size and significantly extended lifespan (Yu et al., 2011).  Furthermore, activation of the 

autophagic repressor Akt, by genetic and pharmacologic upregulation of isulin-like 

growth factor 1, mitigated SBMA muscle specific phenotype in mice (Palazzolo et al., 

2009). 

Paradoxically in motor neurons, contrarily to skeletal muscle, polyQ AR expression 

inhibits autophagy activation. Indeed, TFEB activity was significantly reduced both in 

SBMA motor neurons and patients derived neuronal progenitor cells (NPCs), with a 

consequent reduced autophagy. In addition, genetic ablation of autophagy in Drosophila 

exacerbates polyQ AR eye degeneration phenotypes (Pandey et al., 2007) and depletion 

of p62 in AR97Q transgenic mice significantly worsened motor and neurological 

phenotypes (Doi et al., 2013). Therefore pharmacological activation of autophagy in 

neuronal cells had beneficial effects, as shown in rapamycin (Pandey et al., 2007) and 

bicalutamide-trehalose treatments (Giorgetti et al., 2015). Indeed, rapamycin treatment 

suppressed polyQ AR-mediated eye degeneration in drosophila (Pandey et al., 2007); 

and trehalose-induced autophagy combined with the longer cytoplasmic retention of 

polyQ AR bound to Bicalutamide, enhanced polyQ AR clearance in motoneurons 

(Giorgetti et al., 2014). Thus, autophagy activation has important positive effects in 

SBMA motoneurons; at the opposite autophagy inhibition is beneficial in SBMA 

skeletal muscle.  
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The increased number of autophagosomes observed were unaffected by CAG repeat 

number in AR gene and by age at biopsy of SBMA patients (Fig. 4.7A,B), indicating 

that in our SBMA patients the autophagy induction is determined only by polyQ AR. 

 

 

5.4. Increased mitophagy in human SBMA muscle tissue 

This study for the first time reported increased mitophagy in SBMA muscle tissue by 

biochemical and morphological assays. In SBMA muscle isolated mitochondria was 

significantly increased the presence of PINK1, BNIP3 and ubiquitin protein levels 

compare to control samples (Fig. 4.8B,C,D). These data suggested activation of PINK1 

and BNIP3 mediated mitophagic pathways. In parallel, the transcript levels of BNIP3 

and PINK1 were normal in SBMA samples compare to controls (Fig. 4.8A). As 

specified in introduction (section 1.10.1), PINK1 is stabilized on the OMM (Ashrafi and 

Schwarz, 2013) by mitochondrial depolarization. Therefore, the bioenergetic state can 

regulate mitochondrial PINK1 levels and the subsequent mitochondrial Parkin 

recruitment (Ding and Yin, 2012). The E3 ligase Parkin mediates selective engulfment 

of depolarized mitochondria by autophagosomes through ubiquitination (Gomes and 

Scorrano, 2013). Ubiquitin binds to different autophagy receptors, such as p62, NBR1 

and optineurin (Novak, 2012), that in turn recruit the autophagic machinery through 

LC3 binding. The increased mtPINK1 and mtUbiquitin protein levels indicated a 

probable dysfunction-damage of SBMA mitochondria. The normal mtParkin and 

increased mtUbiquitin protein levels is difficult to explain. It could be due to the 

presence-involvement of other E3 ligases in the targeting of SBMA mitochondria 

(Ashrafi and Schwarz, 2013) or to different Parkin isoforms (La Cognata et al., 2014; 

Scuderi et al., 2014), not recognised by the used antibodies. Therefore other analysis 

will be necessary to clarify this point. We did not find increased protein levels of p62 in 

SBMA mitochondria. However, whereas p62 recruitment is shown to be necessary for 

PINK1/Parkin-induced mitophagy, the mitophagy can occur even in the absence of p62, 

as shown in mitochondria of MEF cells p62 knockout or p62 siRNA depleted (Narendra 

et al., 2010).  

Furthermore, we found increased mtBNIP3 protein levels. BNIP3 (BCL2 and 

adenovirus E1B 19 kDa-interacting protein 3) contains an LC3-interacting region (LIR) 
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in the N-terminal domain, through which directly interact with LC3 recruiting the 

autophagic machinery on damaged mitochondria (Ding and Yin, 2012). In muscle 

wasting disorders, where autophagy is implicated in the pathogenesis, BNIP3 is 

upregulated, and its expression in skeletal muscle induces autophagosomes formation 

(Zhang and Ney, 2009). BNIP3 is also involved in hypoxia-induced mitophagy. 

Removal of mitochondria during hypoxia is important to reduce ROS production and 

maintain oxygen homeostasis (Ashrafi and Schwarz, 2013). BNIP3, with its BH3 

domain, also can bind Bcl-2/Bcl-Xl disrupting the interaction between Bcl-2/Bcl-XL 

and Beclin-1, thus freeing Beclin-1 to induce autophagy (Novak, 2012).  

The increased mitophagy, observed by WB analysis, was confirmed by morphological 

analysis that showed many mitochondria trapped in autophagosomes (Fig. 4.8E,F). This 

increase of the autophagosomes-mitochondria colocalization signal was not correlate 

with the CAG repeat number in AR gene or with patient’s age at biopsy (Fig. 4.11A,B), 

indicating that in our SBMA patients the mitophagic induction is determined only by  

nuclear polyQ AR localization. 

Interesting, we observed that some mitochondria-free-area in SBMA muscle fibers were 

rich in autophagic vacuoles, indicating the presence of a residual mitophagic activity 

that previously removed mitochondria (Fig. 4.8E). These images corresponded to the 

negative-NADH-DH stained area observed by histoenzymatical assay (Fig. 4.3D).  

In conclusion, for the first time, we demonstrated in SBMA muscle an increased 

mitophagy, linked to reduced mitochondrial mass, probably related to a masked 

mitochondrial dysfunction.  

 

 

5.5. Mitochondrial dynamic in human SBMA muscle tissue.  

Removal of mitochondria through mitophagy requires three steps: mitochondria 

fragmentation (fission), induction of general autophagy and priming specific 

mitochondria for mitophagic recognition. Accumulating evidence emphasizes the 

requirement of fission prior to mitophagy (Gomes and Scorrano, 2013; Youle and 

Narendra, 2011). Mitochondrial dynamic is regulated by fusion and fission events. The 

most-studied proteins involved in mitochondrial fusion are mitofusins (MFN1 and 

MFN2), outer mitochondrial membrane proteins that enable fusion through their 
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cytoplasm-exposed GTPase domain, thus allowing tethering of the opposing 

mitochondrial membranes.  Fission is regulated by proteins including Drp1 (dynamin-

related protein 1) and Fis1 (fission protein 1). Drp1 is predominantly localized in 

cytoplasm. When recruited to mitochondria Drp1 associates with its receptors, such as 

Fis1, that localized to the outer mitochondrial membrane, to form a complex that allows 

the fission of mitochondria (Novak, 2012). 

In SBMA muscle compare to controls we found: i) normal expression and protein levels 

of MFNs (Fig. 4.4A,B); ii) normal Drp1 and hFis1 expression levels (Fig. 4.12A): 

interesting, hFis1 transcript levels were 150-fold increased compare to Drp1 both in 

SBMA and control muscle samples (Fig. 4.12A), suggesting a greater role of hFis1 in 

muscular mitochondrial dynamic; iii) increased Drp1 and hFis1 protein amount in 

SBMA muscle mitochondria.  Gomes and Scorrano (2008) found that overexpression of 

Fis1 itself can induce mitochondrial fragmentation and general autophagy in HeLa cells. 

Moreover, they show that mitochondrial dysfunction, rather than mitochondrial 

fragmentation, is responsible for the induction of autophagy (Ding and Yin, 2012).  

In conclusion, all together the mitophagic and dynamic data suggested an increased 

mitochondrial quality control in SBMA muscle. 

 

 

5.6. Reduced cardiolipin amount in muscle mitochondria from 

SBMA patients 

As previously discuss, induction of mitophagy may account for the decreased 

mitochondrial mass in our SBMA muscle samples (Figs. 4.8). However, activated 

mitophagy is probably related to a masked mitochondrial dysfunction. For this reason, 

we evaluated by mass spectrometry lipid composition of mitochondrial membranes in 

muscle isolated mitochondria from our SBMA patients and controls. Interesting, we 

found a significant reduction of cardiolipin (CL) amount and a probably compensatory 

increased levels of phosphatidylethanolamine (PE) and phosphatidylserine (PS) (Fig. 

4.13A). Importantly the composition and proportion of the different cardiolipin species 

is normal (Fig. 4.13B). In mammalian cells, there are two biosynthetic routes of PE 

formation: PS decarboxylation, that occur in mitochondria, and the CDP-ethanolamine 

pathways, that occur in cytosol and ER (Horvath and Daum, 2013). PE and 
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phosphatidylcholine (PC) are the most abundant lipid in mitochondrial membranes, 

accounting for 80% of total mitochondrial phospholipids (Horvath and Daum, 2013). 

Mitochondria have also high CL content. It is exclusively synthesized in mitochondria, 

accounts for 10-15% of total mitochondrial phospholipids and it is mainly located in the 

inner mitochondrial membrane (Horvath and Daum, 2013). CL was shown to stabilize 

and interact with a number of mitochondrial proteins, such as pyruvate carrier and 

carnitine:acylcarnitine translocase, necessary to provide cells of metabolites essential 

for the production of ATP, and ADP/ATP carrier (AAC). CL is also required for 

optimal activity of complex I, III, IV, and V of Respiratory Chain and for 

supercomplexes assembling (Paradies et al., 2013). Luévano-Martínez et al. showed that 

CL binds mitochondrial nucleoids and is necessary for the maintenance of mtDNA 

stability under stress conditions (Luévano-Martínez et al., 2015), suggesting a link 

between the reduced mtDNA copy number (Fig.4.3A) and decreased CL levels (Fig. 

4.13A). Furthermore, it was shown that CL is implicated in apoptosis, mitophagy and 

fusion processes (see introduction, section 1.11.2, for more details). Thus, a reduction of 

CL content in mitochondria could be extremely detrimental for the cellular homeostasis. 

Since we not found decreased levels of a single molecular specie of cardiolipin, we 

thought that probably there was an anomaly in initial steps in CL synthesis, included the 

cardiolipin synthase (CRLS1) reaction. CRLS1 is a key enzyme involved in the 

biosynthesis of immature CL. It catalyzes the irreversible condensation reaction in 

which the phosphatidyl group of Cytidine diphosphate diacylglycerol (CDP-DAG) is 

linked to phosphatidylglycerol (PG). After biosynthesis, immature CL undergoes 

deacylation and remodeling, to generate the different molecular species with diverse 

fatty acid composition. 

We evaluated CRLS1 mRNA levels by RT-PCR in SBMA muscle tissue and controls. 

The significant reduction of 51% of CRLS1 expression levels found in SBMA muscle 

samples compare to controls, may explain the decreased CL levels (Fig. 4.13C), 

suggesting polyQ AR involvement in CRLS1 regulation. Two different studies 

supported our data, showing that androgen exposure of human prostate cancer cells 

leads to CRLS1 upregulation (De Primo et al., 2002; Wang et al., 2006).  

We are not able to define if CRLS1 downregulation was due to loss or gain of PolyQ 

AR functions. The data from prostate cancer cells sustained a probable direct bound of 
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AR to CRLS1 gene promoter by ARE, therefore a loss of function of polyQ AR. 

However is not to exclude an indirect polyQ AR interference, due to the sequester of 

transcription factors or co-regulators involved in the expression of CRLS1 gene by NIs 

containing the mutant protein . The ARE presence in CRLS1 gene promoter may solve 

this point. 

It was shown that chronic denervation significantly decreases CL concentration in 

muscle (Wicks and Hood, 1991; Ostoji´c et al. 2012) and increases mRNA encoding 

both CRLS1 and CTP:PA-cytidylyltransferase-1 (Ostoji´c et al. 2012) biosynthesis 

enzymes of CL. This compensatory response during chronic muscle denervation differs 

from our results. Therefore we can conclude that the underlying mechanisms of CL 

reduction in SBMA muscle may be unrelated to denervation-induced muscle disuse. 

However in SBMA muscle tissue there were less mitochondria (Fig. 4.3 A,B,C,D), with 

normal OXPHOS activity (Fig. 4.3E), normal supercomplexes assembling (Fig. 4.13E) 

and an increased autophagosomes-mitochondria colocalization (Fig. 4.8E,F). Since in 

SBMA muscle tissue CRLS1 expression and cardiolipin synthesis were not completely 

suppressed, it is possible the coexistence of decreased functioning mitochondria, that 

fuse and redistribute their contents, and dysfunctional mitochondria, that are separated 

from the mitochondrial network and removed via mitophagy. Moreover, accordingly to 

the fact that muscle is a high energy required tissue, the increment in PE and PS amount 

could be a partial compensatory response of SBMA muscle cells to save mitochondrial 

from mitophagic degradation. Several studies support this idea (Joshi et al., 2012; Jiang 

et al., 2000; Trotter et al., 1993; Rietveld et al., 1993; Zhonget al., 2004; Gu et al., 

2004). It was shown that CL and PE have redundant functions and that each can 

compensate for the loss of the other. Depletion of CL or PE (in crd1 or psd1 mutants, 

respectively) results in similar phenotypes (Joshi et al., 2012; Jiang et al., 2000; Trotter 

et al., 1993). In the PE-lacking Escherichia coli strain AD93, CL levels are increased 

(Rietveld et al., 1993). Similar compensation is observed in yeast cells (Zhonget al., 

2004; Gu et al., 2004), in which PE levels increase in the CL deficient mutants crd1 and 

taz1.  Collectively, these studies indicate a specific requirement for mitochondrial PE in 

cells lacking CL to carry out shared essential function(s), such as OPA1 stabilization, a 

pro-fusion inner mitochondrial membrane protein (Joshi et al., 2012). In fact, in 

Saccharomyces cerevisiae CL lack does not lead to defects in the mitochondrial network 
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for the PE compensatory role in the maintenance of mitochondrial tubular morphology 

and fusion (Joshi et al., 2012). Consistently, cells, lacking of both CL and mitochondrial 

PE, had reduced levels of all Mgm1p (OPA1 in mammalians) isoforms and exhibited 

excessive mitochondrial fragmentation and defects in mitochondrial fusion (Joshi et al., 

2012).  

In conclusion, all together our data suggest that in muscle isolated mitochondria from 

SBMA patients the increased PE levels, in response to CL reduction, promote a 

temporary fusion of dysfunctional SBMA mitochondria, saving them from mitophagy. 

The PE compensative role may be insufficient in stress conditions, when dysfunctional 

mitochondria appear, with consequent activation of mitophagy and mitochondrial 

removal.
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Conclusions 
Our findings provided evidence of a mitochondrial component in SBMA myopathy. 

Molecular (mtDNA copy number) (Fig. 4.3A), biochemical (activity of citrate synthase) 

(Fig. 4.3B) and morphological (imaging of muscle cryosections stained for NADH-DH) 

(Fig. 4.3C,D) analysis in muscle tissue from SBMA patients showed decreased amount 

of well functioning mitochondria, with normal OXPHOS activity (Fig. 4.3E) and 

supercomplexes’ amount (Fig. 4.13D). The decreased mitochondrial mass was neither 

due to altered mitochondrial biogenesis (Fig. 4.4) nor to increased muscular atrophy and 

hypertrophy (Fig. 4.5). For the first time, we observed that mitophagy accounts for the 

enhanced removal of mitochondria (Fig. 4.8). Biochemical and morphological analysis 

indicated an increased autophagic process in SBMA muscle (Fig. 4.6), consistent with 

previous results, in parallel with an increased mitophagy. In SBMA muscle these 

alterations were associated with: 

1. nuclear accumulation of the monomeric soluble form of polyQ AR (Fig. 

4.1A,B); 

2. decreased polyQ AR protein levels in total muscle lysate and cytosolic fraction 

(Fig. 4.1 A,B); 

3. reduced expression levels of cardiolipin synthase, the only gene whose 

transcription was found altered in this study (Fig. 4.13C); 

4. significant reduction of cardiolipin amount in mitochondrial membranes, 

together with a probably compensatory significant increase of 

phosphatidylethanolamine levels (Fig. 4.13A).  

These data show nuclear accumulation of polyQ AR associated with reduction of 

mitochondrial mass, increased mitophagy and altered mitochondrial membrane lipid 

composition in the muscle from SBMA patients. Future studies will be needed to 

elucidate the exact mechanism behind these abnormalities. Anyway, our data indicated 

the mitochondrial involvement in SBMA pathogenesis. Not only in SBMA but also in 

other neurodegenerative disorders it has been shown that mitochondrial dysfunctions 

and oxidative stress are implicated in the pathophysiological mechanism of these 

disorders (Trushina et al., 2007; Di Filippo et al., 2010). Given the central role of 
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mitochondrial integrity in bioenergetics and cell death pathways, improvement of 

mitochondrial function is worth considering as a therapeutic approach to SBMA. 



References 

 
127 

 

References 

1. Abel, A., Walcott, J., Woods, J., Duda, J., Merry, D.E.., 2001. Expression of expanded 
repeat androgen receptor produces neurologic disease in transgenic mice. Hum Mol Genet 
10, 107-16. 

2. Adachi, H., Waza, M., Katsuno, M., Tanaka, F., Doyu, M., Sobue, G., 2007. Pathogenesis 
and molecular targeted therapy of spinal and bulbar muscular atrophy. Neuropathol Appl 
Neurobiol 33, 135-51 

3. Adachi, H., Waza, M., Tokui, K., Katsuno, M., Minamiyama, M., Tanaka, F., Doyu, M., 
Sobue, G., 2007. CHIP overexpression reduces mutant androgen receptor protein and 
ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model. 
J Neurosci. 27, 5115-26. 

4. Adachi, H., Katsuno, M., Minamiyama, M., Sang, C., Pagoulatos, G., Angelidis, C., 
Kusakabe, M., Yoshiki, A., Kobayashi, Y., Doyu, M., Sobue, G., 2003. Heat shock protein 
70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular 
atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor 
protein. J Neurosci. 23, 2203-11. 

5. Adachi, H., Katsuno, M., Minamiyama, M., Waza, M., Sang, C., Nakagomi, Y., Kobayashi, 
Y., Tanaka, F., Doyu, M., Inukai, A., Yoshida, M., Hashizume, Y., Sobue, G., 2005. 
Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA 
patients. Brain 128, 659-70. 

6. Adachi, H., Kume, A., Li, M., Nakagomi, Y., Niwa, H., Do, J., Sang, C., Kobayashi, Y., 
Doyu, M., Sobue, G., 2001. Transgenic mice with an expanded CAG repeat controlled by 
the human AR promoter show polyglutamine nuclear inclusions and neuronal dysfunction 
without neuronal cell death. Hum Mol Genet 10, 1039-48 

7. Acehan, D., Malhotra, A., Xu, Y., Ren, M., Stokes, D.L., Schlame, M., 2011. Cardiolipin 
affects the supramolecular organization of ATP synthase in mitochondria, Biophys. J. 100, 
2184–2192. 

8. Allen, R.D., 1995. Membrane tubulation and proton pumps, Protoplasma 189, 1–8. 
9. Araki, A., Katsuno, M., Suzuki, K., Banno, H., Suga, N., Hashizume, A., Mano, T., 

Hijikata, Y., Nakatsuji, H., Watanabe, H., Yamamoto, M., Makiyama, T., Ohno, S., 
Fukuyama, M., Morimoto, S., Horie, M., Sobue, G., 2014. Brugada syndrome in spinal and 
bulbar muscular atrophy. Neurology 82, 1813-21. 

10. Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R., Finkbeiner, S., 2004. Inclusion body 
formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 
805-10. 

11. Ashrafi, G., Schwarz, T.L., 2013. The pathways of mitophagy for quality control and 
clearance of mitochondria. Cell Death Differ 20, 31-42.  

12. Atsuta, N., Watanabe, H., Ito, M., Banno, H., Suzuki, K., Katsuno, M., Tanaka, F., 
Tamakoshi, A., Sobue, G., 2006. Natural history of spinal and bulbar muscular atrophy 
(SBMA): a study of 223 Japanese patients. Brain 129, 1446-55.  

13. Bailey, CK., Andriola, I.F., Kampinga, H.H., Merry, D.E., 2002. Molecular chaperones 
enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular 
model of spinal and bulbar muscular atrophy. Hum Mol Genet 11, 515-23.  

14. Ban, T., Heymann, J.A., Song, Z., Hinshaw, J.E., Chan, D.C., 2010. OPA1 disease alleles 
causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and 
membrane tubulation. Hum Mol Genet 19, 2113–2122 

15. Banno, H., Adachi, H., Katsuno, M., Suzuki, K., Atsuta, N., Watanabe, H., Tanaka, F., 
Doyu, M., Sobue G., 2006. Mutant androgen receptor accumulation in spinal and bulbar 
muscular atrophy scrotal skin: a pathogenic marker. Ann Neurol 59, 520-6. 



References 

 
128 

 

16. Banno, H., Katsuno, M., Suzuki, K., Takeuchi, Y., Kawashima, M., Suga, N., Takamori, 
M., Ito, M., Nakamura, T., Matsuo, K., Yamada, S., Oki, Y., Adachi, H., Minamiyama, M., 
Waza, M., Atsuta, N., Watanabe, H., Fujimoto, Y., Nakashima, T., Tanaka, F., Doyu, M., 
Sobue, G., 2009. Phase 2 trial of leuprorelin in patients with spinal and bulbar muscular 
atrophy. Annals of Neurology 65, 140–150. 

17. Battaglia, F., Le Galudec, V., Cossee, M., Tranchant, C., Warter, J.M., Echaniz-Laguna, A., 
2003. Kennedy’s disease initially manifesting as an endocrine disorder. Journal of Clinical 
Neuromuscular Disease 4, 165–167. 

18. Bauer, P.O., Nukina, N., 2009. The pathogenic mechanisms of polyglutamine diseases and 
current therapeutic strategies. Journal of Neurochemistry 110, 1737–1765. 

19. Beato, M., Herrlich, P., Schütz, G., 1995. Steroid hormone receptors: many actors in search 
of a plot. Cell 83, 851-7. 

20. Beauchemin, A.M., Gottlieb, B., Beitel, L.K., Elhaji, Y.A., Pinsky, L., Trifiro, M.A., 2001. 
Cytochrome c oxidase subunit Vb interacts with human androgen receptor: a potential 
mechanism for neurotoxicity in spinobulbar muscular atrophy. Brain Res Bull 56, 285-97. 

21. Bhasin, S., Storer, T.W., Berman, N., Yarasheski, K.E., Clevenger, B., Phillips, J., Lee, 
W.P., Bunnell, T.J., Casaburi, R., 1997. Testosterone replacement increases fat-free mass 
and muscle size in hypogonadal men. J Clin Endocrinol Metab 82, 407–413.  

22. Bligh, E.G., Dyer,W.J., 1959. Can J Biochem Physiol 37, 911–917. 
23. Brodsky, I.G., Balagopal, P., Nair, K.S., 1996. Effects of testosterone replacement on 

muscle mass and muscle protein synthesis in hypogonadal men–a clinical research center 
study. J Clin Endocrinol Metab 81, 3469–3475. 

24. Bingham, P.M., Scott, M.O., Wang, S., McPhaul, M.J., Wilson, E.M., Garbern, J.Y., Merry, 
D.E., Fischbeck, K.H., 1995. Stability of an expanded trinucleotide repeat in the androgen 
receptor gene in transgenic mice. Nat Genet 9, 191-6. 

25. Brinkmann, A.O., 2001. Lessons to be learned from the androgen receptor. European 
Journal of Dermatology 11, 301–303. 

26. Brooks, B.P., Fischbeck, K.H., 1995. Spinal and bulbar muscular atrophy: a trinucleotide-
repeat expansion neurodegenerative disease. Trends Neurosci 18, 459-61. 

27. Brooks, B.P., Merry, D.E., Paulson, H.L., Lieberman, A.P., Kolson, D.L., Fischbeck, K.H., 
1998. A cell culture model for androgen effects in motor neurons. J Neurochem 70, 1054-
60. 

28. Butler, R., Bates, G.P., 2006. Histone deacetylase inhibitors as therapeutics for 
polyglutamine disorders. Nature Reviews Neuroscience 7, 784–796. 

29. Campello, S., Strappazzon, F., Cecconi, F., 2014. Mitochondrial dismissal in mammals, 
from protein degradation to mitophagy. Biochim Biophys Acta 1837, 451-60.  

30. Caplen, N.J., Taylor, J.P., Statham, V.S., Tanaka, F., Fire, A., Morgan, R.A., 2002. Rescue 
of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA 
interference. Hum Mol Genet 11, 175-84. 

31. Cequier-Sanchez, E., Rodriguez, C., Ravelo, A.G., Zarate, R.J., 2008. Agric Food Chem 56, 
4297–4303. 

32. Chahin, N., Sorenson, E.J., 2009. Serum creatine kinase levels in spinobulbar muscular 
atrophy and amyotrophic lateral sclerosis. Muscle and Nerve 40, 126–129. 

33. Chevalier-Larsen, E.S., O’Brien, C.J., Wang, H., Jenkins, S.C., Holder, L., Lieberman, A.P., 
Merry, D.E., 2004. Castration restores function and neurofilament alterations of aged 
symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. 
Journal of Neuroscience 24, 4778–4786. 

34. Chevalier-Larsen, E.S., Merry, D.E., 2012. Testosterone treatment fails to accelerate disease 
in a transgenic mouse model of spinal and bulbar muscular atrophy. Dis Model Mech 5, 
141-5. 

35. Chlenski, A., Nakashiro, K., Ketels, K.V., Korovaitseva, G.I., Oyasu, R., 2001. Androgen 
receptor expression in androgen-independent prostate cancer cell lines. Prostate 47, 66-75. 



References 

 
129 

 

36. Chu, C.T., Ji, J., Dagda, R.K., Jiang, J.F., Tyurina, Y.Y., Kapralov, A.A., Tyurin, V.A., 
Yanamala, N., Shrivastava, I.H., Mohammadyani, D., Qiang Wang, K.Z., Zhu, J., Klein-
Seetharaman, J., Balasubramanian, K., Amoscato, A.A., Borisenko, G., Huang, Z., Gusdon, 
A.M., Cheikhi, A., Steer, E.K., Wang, R., Baty, C., Watkins, S., Bahar, I., Bayır, H., Kagan, 
V.E., 2013. Cardiolipin externalization to the outer mitochondrial membrane acts as an 
elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15, 1197-205. 

37. Chua, J.P., Reddy, S.L,. Merry, D.E., Adachi, H., Katsuno, M., Sobue, G., Robins, D.M., 
Lieberman A.P., 2014. Transcriptional activation of TFEB/ZKSCAN3 target genes 
underlies enhanced autophagy in spinobulbar muscular atrophy. Hum Mol Genet 23, 1376-
86. 

38. Ciechanover, A., Brundin, P., 2003. The ubiquitin proteasome system in neurodegenerative 
diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427-46. 

39. Claessens, F., Celis, L., Peeters, B., Heyns, W., Verhoeven, G., Rombauts, W., 1989. 
Functional characterization of an androgen response element in the first intron of the C3(1) 
gene of prostatic binding protein. Biochem Biophys Res Commun 164, 833-40. 

40. Claypool, S.M., Oktay, Y., Boontheung, P., Loo J.A., Koehler, C.M.,2008. Cardiolipin 
defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner 
membrane, J. Cell Biol 182, 937–950. 

41. Claypool, S.M., 2009. Cardiolipin, a critical determinant of mitochondrial carrier protein 
assembly and function. Biochim. Biophys. Acta 1788, 2059–2068. 

42. Cortes, C.J., Miranda, H.C., Frankowski, H., Batlevi, Y., Young, J.E., Le, A., Ivanov, N., 
Sopher, B.L., Carromeu, C., Muotri, A.R., Garden, G.A., La Spada, A.R., 2014. 
Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects 
in SBMA. Nat Neurosci 17, 1180-9. 

43. Cortes, C.J., Ling, S.C., Guo, L.T., Hung, G., Tsunemi, T., Ly, L., Tokunaga, S., Lopez, E., 
Sopher, B.L., Bennett, C.F., Shelton, G.D., Cleveland, D.W., La Spada, A.R., 2014. Muscle 
expression of mutant androgen receptor accounts for systemic and motor neuron disease 
phenotypes in spinal and bulbar muscular atrophy. Neuron 82, 295-307.  

44. Dahlman-Wright, K., Grandien, K., Nilsson, S., Gustafsson, J.A., Carlstedt-Duke, J., 1993. 
Protein-protein interactions between the DNA-binding domains of nuclear receptors: 
influence on DNA-binding. J Steroid Biochem Mol Biol 45, 239-50. 

45. Danek, A., Witt, T.N., Mann, K., Schweikert, H.U., Romalo, G., La Spada, A.R., 
Fischbeck, K.H., 1994. Decrease in androgen binding and effect of androgen treatment in a 
case of X-linked bulbospinal neuronopathy. Clin Investig 72 892-7. 

46. Dejager, S., Bry-Gauillard, H., Bruckert, E., Eymard, B., Salachas, F., LeGuern, E., 
Tardieu, S., Chadarevian, R., Giral, P., Turpin, G., 2002. A comprehensive endocrine 
description of Kennedy’s disease revealing androgen insensitivity linked to CAG repeat 
length. Journal of Clinical Endocrinology and Metabolism 87, 3893–3901. 

47. DePrimo, S.E., Diehn, M., Nelson, J.B., Reiter, R.E., Matese, J., Fero, M., Tibshirani, R., 
Brown, P.O., Brooks, J.D., 2002. Transcriptional programs activated by exposure of human 
prostate cancer cells to androgen. Genome Biol 3, RESEARCH0032. 

48. DeVay, R.M., Dominguez-Ramirez, L., Lackner, L.L., Hoppins, S., Stahlberg, H., Nunnari, 
J., 2009. Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial 
inner membrane fusion. J Cell Biol 186, 793–803 

49. Diaz, F., Moraes, C.T., 2008. Mitochondrial biogenesis and turnover. Cell Calcium 44, 24-
35. 

50. DiFiglia, M., Sapp, E., Chase, K.O., Davies, S.W., Bates, G.P., Vonsattel, J.P., Aronin, N., 
1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites 
in brain. Science 277, 1990-3. 

51. Di Filippo, M., Chiasserini, D., Tozzi, A., Picconi, B., Calabresi, P., 2010. Mitochondria 
and the link between neuroinflammation and neurodegeneration. J Alzheimers Dis 20 Suppl 
2:S369-79. 



References 

 
130 

 

52. Ding, W.X., Yin, X.M., 2012. Mitophagy: mechanisms, pathophysiological roles, and 
analysis. Biol Chem 393, 547-64.  

53. Doi, H., Adachi, H., Katsuno, M., Minamiyama, M., Matsumoto, S., Kondo, N., Miyazaki, 
Y., Iida, M., Tohnai, G., Qiang, Q., Tanaka, F., Yanagawa, T., Warabi, E., Ishii, T., Sobue, 
G., 2013. p62/SQSTM1 differentially removes the toxic mutant androgen receptor via 
autophagy and inclusion formation in a spinal and bulbar muscular atrophy mouse model. J 
Neurosci 33, 7710-27. 

54. Doyu, M., Sobue, G., Mukai, E., Kachi, T., Yasuda, T., Mitsuma, T., Takahashi, A., 1992. 
Severity of X-linked recessive bulbospinal neuronopathy correlates with size of the tandem 
CAG repeat in androgen receptor gene. Annals of Neurology 32, 707–710. 

55. Doyu M., Sobue, G., Mitsuma, T., Uchida, M., Iwase, T., Takahashi, A., 1993. Very late 
onset X-linked recessive bulbospinal neuronopathy: mild clinical features and a mild 
increase in the size of tandem CAG repeat in androgen receptor gene. J Neurol Neurosurg 
Psychiatry 56, 832-3. 

56. Dubowitz, V., Sewry, C. A., 2006. Muscle biopsy: A practical approach. Third edition. 
Saunders, Elsevier. 

57. Enriquez, J.A., Lenaz, G., 2014. Coenzyme q and the respiratory chain: coenzyme q pool 
and mitochondrial supercomplexes. Mol Syndromol 5, 119-40.  

58. Eskelinen, E.L., Tanaka, Y., Saftig, P., 2003. At the acidic edge: emerging functions for 
lysosomal membrane proteins. Trends Cell Biol 13, 137-45.  

59. Eskelinen, E.L., Cuervo, A.M., Taylor, M.R., Nishino, I., Blum, J.S., Dice, J.F., Sandoval, 
I.V., Lippincott-Schwartz, J., August, J.T., Saftig, P., 2005. Unifying nomenclature for the 
isoforms of the lysosomal membrane protein LAMP-2. Traffic 6, 1058-61. 

60. Eskelinen, E.L., Schmidt, C.K., Neu, S., Willenborg, M., Fuertes, G., Salvador, N., Tanaka, 
Y., Lüllmann-Rauch, R., Hartmann, D., Heeren, J., von Figura, K., Knecht, E., Saftig, P., 
2004. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 
double-deficient fibroblasts. Mol Biol Cell 15, 3132-45. 

61. Faber, P.W., van Rooij, H.C., Schipper, H.J., Brinkmann, A.O., Trapman, J., 1993. Two 
different, overlapping pathways of transcription initiation are active on the TATA-less 
human androgen receptor promoter. The role of Sp1. J Biol Chem 268, 9296-301. 

62. Fernandez-Rhodes, L.E., Kokkinis, A.D., White, M.J., Watts, C.A., Auh, S., Jeffries, N.O., 
Shrader, J.A., Lehky, T.J., Li, L., Ryder, J.E., Levy, E.W., Solomon, B.I., Harris-Love, 
M.O., La Pean, A., Schindler, A.B., Chen, C., Di Prospero, N.A., Fischbeck, K.H., 2011. 
Efficacy and safety of dutasteride in patients with spinal and bulbar muscular atrophy: a 
randomised placebo-controlled trial. The Lancet Neurology 10, 140–147. 

63. Finsterer, J., Mishra, A., Wakil, S., Pennuto, M., Soraru, G., 2015. Mitochondrial 
implications in bulbospinal muscular atrophy (Kennedy disease). Amyotroph Lateral Scler 
Frontotemporal Degener 1, 1-7. 

64. Fischbeck, K.H., 1997. Kennedy disease. Journal of Inherited Metabolic Disease 20, 152–
158. 

65. Frohman, M.A., 2015. Role of mitochondrial lipids in guiding fission and fusion. J Mol 
Med (Berl) 93, 263-9. 

66. Fukuda, M., 1991. Lysosomal membrane glycoproteins. Structure, biosynthesis, and 
intracellular trafficking. J Biol Chem 266, 21327-30.  

67. Giorgetti, E., Rusmini, P., Crippa, V., Cristofani, R., Boncoraglio, A., Cicardi, M.E., 
Galbiati, M., Poletti, A., 2015. Synergic prodegradative activity of Bicalutamide and 
trehalose on the mutant androgen receptor responsible for spinal and bulbar muscular 
atrophy. Hum Mol Genet 24, 64-75. 

68. Glass, D., Roubenoff, R., 2010. Recent advances in the biology and therapy of muscle 
wasting. Ann N Y Acad Sci 1211,25–36. 

69. Goldenberg, J.N., Bradley, W.G., 1996 Testosterone therapy and the pathogenesis of 
Kennedy's disease (X-linked bulbospinal muscular atrophy). J Neurol Sci 135, 158-61. 



References 

 
131 

 

70. Goldstein, L.A., Sengelaub, D.R., 1992. Timing and duration of dihydrotestosterone 
treatment affect the development of motoneuron number and morphology in a sexually 
dimorphic rat spinal nucleus. J Comp Neurol 326, 147-57. 

71. Gomes, L.C., Scorrano, L., 2013. Mitochondrial morphology in mitophagy and 
macroautophagy. Biochim Biophys Acta 1833, 205-12. 

72. Gomes, L.C., Scorrano, L., 2008. High levels of Fis1, a pro-fission mitochondrial protein, 
trigger autophagy. Biochim Biophys Acta. 1777, 860-6. 

73. Grad, J.M., Lyons, L.S., Robins, D.M., Burnstein, K.L., 2001. The androgen receptor (AR) 
amino-terminus imposes androgen-specific regulation of AR gene expression via an exonic 
enhancer. Endocrinology 142, 1107-16. 

74. Greenland, K.J., Zajac, J.D., 2004. Kennedy's disease: pathogenesis and clinical approaches. 
Intern Med J 34, 279-86. 

75. Gu, Z., Valianpour, F., Chen, S., Vaz, F.M., Hakkaart, G.A., Wanders, R.J., Greenberg, 
M.L., 2004. Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth 
syndrome. Mol Microbiol 51, 149-58. 

76. Gunawardena, S., Goldstein, L.S., 2005. Polyglutamine diseases and transport problems: 
deadly traffic jams on neuronal highways. Arch Neurol 62, 46-51. 

77. Haehling, S., Morley, J.E., Anker, S.D., 2012. From muscle wasting to sarcopenia and 
myopenia: update 2012. J Cachexia Sarcopenia Muscle. 3, 213–217.  

78. Halievski, K., Mo, K., Westwood, J.T., Monks, D.A., 2015. Transcriptional profile of 
muscle following acute induction of symptoms in a mouse model of Kennedy's 
disease/spinobulbar muscular atrophy. PLoS One 10, e0118120.  

79. Hamano, T., Mutoh, T., Hirayama, M., Kawamura, Y., Nagata, M., Fujiyama, J., Kuriyama, 
M., 2004. Muscle MRI findings of X-linked spinal and bulbar muscular atrophy. J Neurol 
Sci 222, 93-7. 

80. Harding, A.E., Thomas, P.K., Baraitser, M., Bradbury, P.G., Morgan-Hughes, J.A., 
Ponsford, J.R., 1982. X-linked recessive bulbospinal neuronopathy: a report of ten cases. 
Journal of Neurology, Neurosurgery and Psychiatry 45, 1012–1019. 

81. He, B., Kemppainen, J.A., Wilson, E.M., 2000. FXXLF and WXXLF sequences mediate 
the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J 
Biol Chem 275, 22986-94. 

82. Herzog, R., Schuhmann, K., Schwudke, D., Sampaio, J.L., Bornstein, S.R., Schroeder, M., 
Shevchenko, A., 2012. PLoS One 7, e29851. 

83. Holmberg, C.I., Staniszewski, K.E., Mensah, K.N., Matouschek, A., Morimoto, R.I., 2004. 
Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J. 
23, 4307-18. 

84. Horvath, S.E., Daum, G., 2013. Lipids of mitochondria. Prog Lipid Res 52, 590-614. 
85. Houtkooper, R.H., Akbari, H., van Lenthe, H., Kulik, W., Wanders, R.J., Frentzen, M., Vaz, 

F.M., 2006. Identification and characterization of human cardiolipin synthase. FEBS Lett 
580, 3059-64.  

86. Howarth, J.L., Kelly, S., Keasey, M.P., Glover, C.P., Lee, Y.B., Mitrophanous, K., Chapple, 
J.P., Gallo, J.M., Cheetham,, M.E., Uney, J.B., 2007. Hsp40 molecules that target to the 
ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine 
disease. Mol Ther 15, 1100-5. 

87. Igarashi, S., Tanno, Y., Onodera, O., Yamazaki, M., Sato, S., Ishikawa, A., Miyatani, N., 
Nagashima, M., Ishikawa, Y., Sahashi, K., 1992. Strong correlation between the number of 
CAG repeats in androgen receptor genes and the clinical onset of features of spinal and 
bulbar muscular atrophy. Neurology 42, 2300-2302 

88. Irvine, R.A., Ma, H., Yu, M.C., Ross, R.K., Stallcup, M.R., Coetzee, G.A., 2000. Inhibition 
of p160-mediated coactivation with increasing androgen receptor polyglutamine length. 
Hum Mol Genet 9, 267-74. 



References 

 
132 

 

89. Ishihara, K., Yamagishi, N., Saito, Y., Adachi, H., Kobayashi, Y., Sobue, G., Ohtsuka, K., 
Hatayama, T., 2003. Hsp105alpha suppresses the aggregation of truncated androgen 
receptor with expanded CAG repeats and cell toxicity. J Biol Chem 278, 25143-50. 

90. Jenster, G., van der Korput, H.A., Trapman, J., Brinkmann, A.O., 1995. Identification of 
two transcription activation units in the N-terminal domain of the human androgen receptor. 
Journal of Biological Chemistry 270, 7341–7346. 

91. Jiang, F., Ryan, M.T., Schlame, M., Zhao, M., Gu, Z., Klingenberg, M., Pfanner, N., 
Greenberg, M.L., 2000. Absence of cardiolipin in the crd1 null mutant results in decreased 
mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 275, 
22387-94. 

92. Jochum, T., Ritz, M.E., Schuster, C., Funderburk, S.F., Jehle, K., Schmitz, K., Brinkmann, 
F., Hirtz, M., Moss, D., Cato, A.C., 2012. Toxic and non-toxic aggregates from the SBMA 
and normal forms of androgen receptor have distinct oligomeric structures. Biochimica et 
Biophysica Acta 1822, 1070–1078. 

93. Johansen, J.A., Troxell-Smith, S.M., Yu, Z., Mo, K., Monks, D.A., Lieberman, A.P,. 
Breedlove, S.M., Jordan, C.L., 2010. Prenatal flutamide enhances survival in a myogenic 
mouse model of spinal bulbar muscular atrophy. Neurodegener Dis 8, 25-34. 

94. Johansen, J.A., Yu, Z., Mo, K., Monks, D.A., Lieberman, A.P., Breedlove, S.M., Jordan, 
C.L.,2009. Recovery of function in a myogenic mouse model of spinal bulbar muscular 
atrophy. Neurobiol Dis 34, 113-20. 

95. Jordan, C.L., Price, R.H. Jr, Handa, R.J., 2002. Androgen receptor messenger RNA and 
protein in adult rat sciatic nerve: implications for site of androgen action. J Neurosci Res 69, 
509-18. 

96. Joshi, A.S., Thompson, M.N., Fei, N., Hüttemann, M., Greenberg, M.L., 2012. Cardiolipin 
and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial 
fusion in Saccharomyces cerevisiae. J Biol Chem. 287, 17589-97.  

97. Kagan, V.E., Bayir, H.A., Belikova, N.A., Kapralov, O., Tyurina, Y.Y., Tyurin, V.A., et al., 
2009. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol 
Med 46, 1439–53. 

98. Katsuno, M., Adachi, H., Kume, A., Li, M., Nakagomi, Y., Niwa, H., Sang, C., Kobayashi, 
Y., Doyu, M., Sobue, G., 2002. Testosterone reduction prevents phenotypic expression in a 
transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 35, 843–854. 

99. Katsuno, M., Adachi, H., Doyu, M., Minamiyama, M., Sang, C., Kobayashi, Y., Inukai, A., 
Sobue, G., 2003. Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic 
mouse model of spinal and bulbar muscular atrophy. Nature Medicine 9, 768–773. 

100. Katsuno, M., Sang, C., Adachi, H., Minamiyama, M., Waza, M., Tanaka, F., Doyu, M., 
Sobue, G., 2005. Pharmacological induction of heat-shock proteins alleviates 
polyglutamine-mediated motor neuron disease. Proceedings of the National Academy of 
Sciences of the United States of America 102, 16801–16806. 

101. Katsuno, M., Adachi, H., Waza, M., Banno, H., Suzuki, K., Tanaka, F., Doyu, M., 
Sobue, G., 2006a. Pathogenesis, animal models and therapeutics in spinal and bulbar 
muscular atrophy (SBMA). Experimental Neurology 200, 8–18. 

102. Katsuno, M., Adachi, H., Minamiyama, M., Waza, M., Tokui, K., Banno, H., Suzuki, 
K., Onoda, Y., Tanaka, F., Doyu, M., Sobue, G., 2006b. Reversible disruption of dynactin 
1-mediated retrograde axonal transport in polyglutamine-induced motor neuron 
degeneration. Journal of Neuroscience 26, 12106–12117. 

103. Katsuno, M., Adachi, H., Minamiyama, M., Waza, M., Doi, H., Kondo, N., Mizoguchi, 
H., Nitta, A., Yamada, K., Banno, H., Suzuki, K., Tanaka, F., Sobue, G., 2010a. Disrupted 
transforming growth factor-beta signaling in spinal and bulbar muscular atrophy. Journal of 
Neuroscience 30, 5702–5712. 

104. Katsuno, M., Banno, H., Suzuki, K., Takeuchi, Y., Kawashima, M., Yabe, I., Sasaki, H., 
Aoki, M., Morita, M., Nakano, I., Kanai, K., Ito, S., Ishikawa, K., Mizusawa, H., 
Yamamoto, T., Tsuji, S., Hasegawa, K., Shimohata, T., Nishizawa, M., Miyajima, H., 



References 

 
133 

 

Kanda, F., Watanabe, Y., Nakashima, K., Tsujino, A., Yamashita, T., Uchino, M., 
Fujimoto, Y., Tanaka, F., Sobue, G., 2010b. Efficacy and safety of leuprorelin in patients 
with spinal and bulbar muscular atrophy (JASMITT study): a multicentre, randomised, 
double-blind, placebo-controlled trial. The Lancet Neurology 9, 875–884. 

105. Kalmar, B., Novoselov, S., Gray, A., Cheetham, M.E., Margulis, B., Greensmith, L., 
2008. Late stage treatment with arimoclomol delays disease progression and prevents 
protein aggregation in the SOD1 mouse model of ALS. J Neurochem 107, 339-50. 

106. Keller, E.T., Ershler, W.B., Chang, C., 1996. The androgen receptor: a mediator of 
diverse responses. Front Biosci 1:d59-71.  

107. Kemp, M.Q., Poort, J.L., Baqri, R.M., Lieberman, A.P., Breedlove, S.M., Miller, K.E., 
Jordan, C.L., 2011. Impaired motoneuronal retrograde transport in two models of SBMA 
implicates two sites of androgen action. Human Molecular Genetics 20, 4475–4490. 

108. Kennedy, W.R., Alter, M., Sung, J.H., 1968. Progressive proximal spinal and bulbar 
muscular atrophy of late onset. A sex-linked recessive trait. Neurology 18, 671–680. 

109. Kim, I., Rodriguez-Enriquez, S., Lemasters, J.J., 2007. Selective degradation of 
mitochondria by mitophagy. Arch Biochem Biophys 462, 245–253. 

110. Kinirons, P., Rouleau, G.A., 2008. Administration of testosterone results in reversible 
deterioration in Kennedy’s disease. Journal of Neurology, Neurosurgery and Psychiatry 79, 
106–107. 

111. Klement, I.A., Skinner, P.J., Kaytor, M.D., Yi, H., Hersch, S.M., Clark, H.B., Zoghbi, 
H.Y., Orr, H.T., 1998. Ataxin-1 nuclear localization and aggregation: role in in 
polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53. 

112. Kobayashi, Y., Kume, A., Li, M., Doyu, M., Hata, M., Ohtsuka, K., Sobue, G., 2000. 
Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured 
neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine 
tract. Journal of Biological Chemistry 275, 8772–8778. 

113. Kobayashi, Y., Miwa, S., Merry, D.E., Kume, A., Mei, L., Doyu, M., Sobue, G., 1998. 
Caspase-3 cleaves the expanded androgen receptor protein of spinal and bulbar muscular 
atrophy in a polyglutamine repeat length-dependent manner. Biochem Biophys Res 
Commun 252, 145-50. 

114. Komatsu, M., Ichimura, Y., 2010. Selective autophagy regulates various cellular 
functions. Genes Cells 15, 923-33. 

115. Konecki, D.S., Foetisch, K., Zimmer, K.P., Schlotter, M., Lichter-Konecki, U., 1995. 
An alternatively spliced form of the human lysosome-associated membrane protein-2 gene 
is expressed in a tissue-specific manner. Biochem Biophys Res Commun 215, 757-67. 

116. Kornfeld, S., Mellman, I., 1989. The biogenesis of lysosomes. Annu Rev Cell Biol 5, 
483-525.  

117. Kujawa, K.A., Jacob, J.M., Jones, K.J., 1993. Testosterone regulation of the 
regenerative properties of injured rat sciatic motor neurons. J Neurosci Res 35, 268-73. 

118. La Cognata, V., Iemmolo, R., D'Agata, V., Scuderi, S., Drago, F., Zappia, M., et al., 
2014. Increasing the Coding Potential of Genomes Through Alternative Splicing: The Case 
of PARK2 Gene. Current genomics 15, 203-16. 

119. LaFevre-Bernt, M.A., Ellerby, L.M., 2003. Kennedy’s disease. Phosphorylation of the 
polyglutamine-expanded form of androgen receptor regulates its cleavage by caspase-3 and 
enhances cell death. Journal of Biological Chemistry 278, 34918–34924. 

120. Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., 
Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P., 
Auwerx, J., 2006. Resveratrol improves mitochondrial function and protects against 
metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109-22. 

121. Langley, E., Zhou, Z.X., Wilson, E.M., 1995. Evidence for an anti-parallel orientation 
of the ligand-activated human androgen receptor dimer. J Biol Chem 270, 29983-90. 



References 

 
134 

 

122. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E., Fischbeck, K.H., 1991. 
Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 
352, 77–79. 

123. La Spada, A.R., Roling, D.B., Harding, A.E., Warner, C.L., Spiegel, R., Hausmanowa-
Petrusewicz, I., Yee, W.C., Fischbeck, K.H., 1992. Meiotic stability and genotype-
phenotype correlation of the trinucleotide repeat in X-linked spinal and bulbar muscular 
atrophy. Nature Genetics 2, 301-304. 

124. La Spada, A.R., Peterson, K.R., Meadows, S.A., McClain, M.E., Jeng, G., Chmelar, 
R.S., Haugen, H.A., Chen, K., Singer, M.J., Moore, D., Trask, B.J., Fischbeck, K.H., Clegg, 
C.H., McKnight, G.S., 1998. Androgen receptor YAC transgenic mice carrying CAG 45 
alleles show trinucleotide repeat instability. Hum Mol Genet 7, 959-67. 

125. La Spada, A., Spinal and Bulbar Muscular Atrophy, 1999. Source: GeneReviews® 
[Internet]. 

126. Lemasters, J.J., Qian, T., He, L., Kim, J.S., Elmore, S.P., Cascio, W.E., Brenner, D.A., 
2002. Role of mitochondrial inner membrane permeabilization in necrotic cell death, 
apoptosis, and autophagy. Antioxid Redox Signal 4, 769-81.  

127. Li, M., Chevalier-Larsen, E.S., Merry, D.E., Diamond, M.I., 2007. Soluble androgen 
receptor oligomers underlie pathology in a mouse model of spinobulbar muscular atrophy. 
Journal of Biological Chemistry 282, 3157–3164. 

128. Li, M., Miwa, S., Kobayashi, Y., Merry, D.E., Yamamoto, M., Tanaka, F., Doyu, M., 
Hashizume, Y., Fischbeck, K.H., Sobue, G., 1998a. Nuclear inclusions of the androgen 
receptor protein in spinal and bulbar muscular atrophy. Annals of Neurology 44, 249–254. 

129. Li, M., Nakagomi, Y., Kobayashi, Y., Merry, D.E., Tanaka, F., Doyu, M., Mitsuma, T., 
Hashizume, Y., Fischbeck, K.H., Sobue, G., 1998b. Nonneural nuclear inclusions of 
androgen receptor protein in spinal and bulbar muscular atrophy. American Journal of 
Pathology 153, 695–701. 

130. Lieberman, A.P., Yu, Z., Murray, S., Peralta, R., Low, A., Guo, S., Yu, X.X., Cortes, 
C.J., Bennett, C.F., Monia, B.P., La Spada, A.R., Hung, G., 2014. Peripheral androgen 
receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular 
atrophy. Cell Rep 7, 774-84. 

131. Lieberman, A.P., Harmison, G., Strand, A.D., Olson, J.M., Fischbeck, K.H.,2002. 
Altered transcriptional regulation in cells expressing the expanded polyglutamine androgen 
receptor. Hum Mol Genet 11, 1967-76. 

132. Lin, J., Wu, H., Tarr, P.T., Zhang, C.Y., Wu, Z., Boss, O., Michael, L.F., Puigserver, P., 
Isotani, E., Olson, E.N., Lowell, B.B., Bassel-Duby, R., Spiegelman, B.M., 2002. 
Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. 
Nature 418, 797-801. 

133. Lu, Y.W., Claypool, S.M., 2015. Disorders of phospholipid metabolism: an emerging 
class of mitochondrial disease due to defects in nuclear genes. Front Genet 6, 3. 

134. Luévano-Martínez, L.A., Forni, M.F., dos Santos, V.T., Souza-Pinto, N.C., 
Kowaltowski, A.J., 2015. Cardiolipin is a key determinant for mtDNA stability and 
segregation during mitochondrial stress. Biochim Biophys Acta 1847, 587-98. 

135. Lund, A., Udd, B., Juvonen, V., Andersen, P.M., Cederquist, K., Davis, M., Gellera, C., 
Kolmel, C., Ronnevi, L.O., Sperfeld, A.D., Sorensen, S.A., Tranebjaerg, L., Van 
Maldergem, L., Watanabe, M., Weber, M., Yeung, L., Savontaus, M.L., 2001. Multiple 
founder effects in spinal and bulbar muscular atrophy (SBMA, Kennedy disease) around the 
world. European Journal of Human Genetics 9, 431–436. 

136. McCampbell, A., Taylor, J.P., Taye, A.A., Robitschek, J., Li, M., Walcott, J., Merry, 
D., Chai, Y., Paulson, H., Sobue, G., Fischbeck, K.H., 2000. CREB-binding protein 
sequestration by expanded polyglutamine. Hum Mol Genet 9, 2197-202. 

137. McKenzie, M., Lazarou, M., Thorburn, D.R., Ryan, M.T., 2006. Mitochondrial 
respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 
361, 462-9. 



References 

 
135 

 

138. McManamny, P., Chy, H.S., Finkelstein, D.I., Craythorn, R.G., Crack, P.J., Kola, I., 
Cheema, S.S., Horne, M.K., Wreford, N.G., O'Bryan, M.K., De Kretser, D.M., Morrison, 
J.R., 2002. A mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 11, 
2103-11. 

139. Malena, A., Loro, E., Di Re, M., Holt, I.J., Vergani, L., 2009. Inhibition of 
mitochondrial fission favours mutant over wild-type mitochondrial DNA. Hum Mol Genet 
18, 3407-16. 

140. Malena, A., Pennuto, M., Tezze, C., Querin, G., D'Ascenzo, C., Silani, V., Cenacchi, 
G., Scaramozza, A., Romito, S., Morandi, L., Pegoraro, E., Russell, A.P., Sorarù, G., 
Vergani, L., 2013. Androgen-dependent impairment of myogenesis in spinal and bulbar 
muscular atrophy. Acta Neuropathol 126, 109-21. 

141. Malik, B., Nirmalananthan, N., Gray, A.L., La Spada, A.R., Hanna, M.G., Greensmith, 
L., 2013. Co-induction of the heat shock response ameliorates disease progression in a 
mouse model of human spinal and bulbar muscular atrophy: implications for therapy. Brain 
136, 926-43.  

142. Matsumoto, A., Micevych, P.E., Arnold, A.P., 1988. Androgen regulates synaptic input 
to motoneurons of the adult rat spinal cord. J Neurosci. 8, 4168-76. 

143. Matsuura, T., Demura, T., Aimoto, Y., Mizuno, T., Moriwaka, F., Tashiro, K., 1992. 
Androgen receptor abnormality in X-linked spinal and bulbar muscular atrophy. Neurology 
42, 1724-6. 

144. Merry, D. E., McCampbell, A., Taye, A. A., Winston, R. L., Fischbeck, K. H., 1996. 
Toward a mouse model for spinal and bulbar muscular atrophy: e¡ect of neuronal expression 
of androgen receptor in transgenic mice (abstract). Am. J. Hum. Genet. 59, A271. 

145. Minamiyama, M., Katsuno, M., Adachi, H., Waza, M., Sang, C., Kobayashi, Y., 
Tanaka, F., Doyu, M., Inukai, A., Sobue, G., 2004. Sodium butyrate ameliorates phenotypic 
expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Human 
Molecular Genetics 13, 1183–1192. 

146. Mirowska-Guzel, D., Seniow, J., Sulek, A., Lesniak, M., Czlonkowska, A., 2009. Are 
cognitive and behavioural deficits a part of the clinical picture in Kennedy’s disease? A case 
study. Neurocase 15, 332–337. 

147. Miyazaki, Y., Adachi, H., Katsuno, M., Minamiyama, M., Jiang, Y.M., Huang, Z., Doi, 
H., Matsumoto, S., Kondo, N., Iida, M., Tohnai, G., Tanaka, F., Muramatsu, S., Sobue, G., 
2012. Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of 
CELF2. Nat Med 18, 1136-41 

148. Mizushima, N., 2010. Autophagy. FEBS Lett 584, 1279. 
149. Mizushima, N., 2007. Autophagy: process and function. Genes Dev 21, 2861-73. 
150. Mizushima, N., Kuma, A., 2008. Autophagosomes in GFP-LC3 Transgenic Mice. 

Methods Mol Biol 445, 119-24.  
151. Mizushima, N., Komatsu, M., 2011. Autophagy: renovation of cells and tissues. Cell 

147, 728-41. 
152. Mo, K., Razak, Z., Rao, P., Yu, Z., Adachi, H., Katsuno, M., Sobue, G., Lieberman, 

A.P., Westwood, J.T., Monks, D.A., 2010. Microarray analysis of gene expression by 
skeletal muscle of three mouse models of kennedy disease/spinal bulbar muscular atrophy. 
PLoS One 5, e12922. 

153. Monks, D.A., Johansen, J.A., Mo, K., Rao, P., Eagleson, B., Yu, Z., Lieberman, A.P., 
Breedlove, S.M., Jordan, C.L., 2007. Overexpression of wild-type androgen receptor in 
muscle recapitulates polyglutamine disease. Proceedings of the National Academy of 
Sciences of the United States of America 104, 18259–18264. 

154. Montie, H.L., Cho, M.S., Holder, L., Liu, Y., Tsvetkov, A.S., Finkbeiner, S., Merry, 
D.E., 2009. Cytoplasmic retention of polyglutamine-expanded androgen receptor 
ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy. 
Human Molecular Genetics 18, 1937–1950. 



References 

 
136 

 

155. Montie, H.L., Pestell, R.G., Merry, D.E., 2011. SIRT1 modulates aggregation and 
toxicity through deacetylation of the androgen receptor in cell models of SBMA. Journal of 
Neuroscience 31, 17425–17436 

156. Morfini, G., Pigino, G., Szebenyi, G., You, Y., Pollema, S., Brady, S.T., 2006. JNK 
mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal 
transport. Nature Neuroscience 9, 907–916. 

157. Morrish, F., Giedt, C., Hockenbery, D., 2003. c-MYC apoptotic function is mediated by 
NRF-1 target genes. Genes Dev 17, 240-55. 

158. Moss, F.P., Leblond, C.P., 1971. Satellite cells as the source of nuclei in muscles of 
growing rats. Anat Rec 170, 421–435. 

159. Mukherjee, S., Thomas, M., Dadgar, N., Lieberman, A.P., Iniguez-Lluhi, J.A., 2009. 
Small ubiquitin-like modifier (SUMO) modification of the androgen receptor attenuates 
polyglutamine-mediated aggregation. Journal of Biological Chemistry 284, 21296–21306. 

160. Nagai, Y., Fujikake, N., Popiel, H.A., Wada, K., 2010. Induction of molecular 
chaperones as a therapeutic strategy for the polyglutamine diseases. Current Pharmaceutical 
Biotechnology 11, 188–197. 

161. Nagashima, T., Seko, K., Hirose, K., Mannen, T., Yoshimura, S., Arima, R., 
Nagashima, K., Morimatsu, Y., 1988. Familial bulbo-spinal muscular atrophy associated 
with testicular atrophy and sensory neuropathy (Kennedy-Alter-Sung syndrome). Autopsy 
case report of two brothers. Journal of the Neurological Sciences 87, 141–152. 

162. Nakamura, M., Mita, S., Murakami, T., Uchino, M., Watanabe, S., Tokunaga, M., 
Kumamoto, T., Ando, M., 1994. Exonic trinucleotide repeats and expression of androgen 
receptor gene in spinal cord from X-linked spinal and bulbar muscular atrophy. J Neurol Sci 
122, 74-9. 

163. Narendra, D., Kane, L.A., Hauser, D.N., Fearnley, I.M., Youle, R.J., 2010. 
p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; 
VDAC1 is dispensable for both. Autophagy 6, 1090-106. 

164. Narkar, V.A., Fan, W., Downes, M., Yu, R.T., Jonker, J.W., Alaynick, W.A., Banayo, 
E., Karunasiri, M.S., Lorca, S., Evans, R.M., 2011. Exercise and PGC-1α-independent 
synchronization of type I muscle metabolism and vasculature by ERRγ. Cell Metab 13, 283-
93. 

165. Nedelsky, N.B., Pennuto, M., Smith, R.B., Palazzolo, I., Moore, J., Nie, Z., Neale, G., 
Taylor, J.P., 2010. Native functions of the androgen receptor are essential to pathogenesis in 
a Drosophila model of spinobulbar muscular atrophy. Neuron 67, 936–952. 

166. Neuschmid-Kaspar, F., Gast, A., Peterziel, H., Schneikert, J., Muigg, A., Ransmayr, G., 
Klocker, H., Bartsch, G., Cato, A.C., 1996. CAG-repeat expansion in androgen receptor in 
Kennedy's disease is not a loss of function mutation. Mol Cell Endocrinol 117, 149-56. 

167. Novak, I., 2012. Mitophagy: a complex mechanism of mitochondrial removal. Antioxid 
Redox Signal 17, 794-802. 

168. Novak, I., Dikic, I., 2011. Autophagy receptors in developmental clearance of 
mitochondria. Autophagy 7, 301-3. 

169. Olesen, J., Kiilerich, K., Pilegaard, H., 2010. PGC-1alpha-mediated adaptations in 
skeletal muscle. Pflugers Arch 460, 153-62.  

170. Orr, C.R., Montie, H.L., Liu, Y., Bolzoni, E., Jenkins, S.C., Wilson, E.M., Joseph, J.D., 
McDonnell, D.P., Merry, D.E., 2010. An interdomain interaction of the androgen receptor is 
required for its aggregation and toxicity in spinal and bulbar muscular atrophy. Journal of 
Biological Chemistry 285, 35567–35577.  

171. Orsucci, D., Rocchi, A., Caldarazzo Ienco, E., Alì, G., LoGerfo, A., Petrozzi, L., 
Scarpelli, M., Filosto, M., Carlesi, C., Siciliano, G., Bonuccelli, U., Mancuso, M., 2014. 
Myopathic involvement and mitochondrial pathology in Kennedy disease and in other 
motor neuron diseases. Curr Mol Med. 14,598-602. 



References 

 
137 

 

172. Ostojic, O., O'Leary, M.F., Singh, K., Menzies, K.J., Vainshtein, A., Hood, D.A., 2012.  
The effects of chronic muscle use and disuse on cardiolipin metabolism. J Appl Physiol 
114, 444-52.  

173. Palazzolo, I., Burnett, B.G., Young, J.E., Brenne, P.L., La Spada, A.R., Fischbeck, 
K.H., Howell, B.W., Pennuto, M., 2007. Akt blocks ligand binding and protects against 
expanded polyglutamine androgen receptor toxicity. Human Molecular Genetics 16, 1593–
1603. 

174. Palazzolo, I., Gliozzi, A., Rusmini, P., Sau, D., Crippa, V., Simonini, F., Onesto, E., 
Bolzoni, E., Poletti, A., 2008. The role of the polyglutamine tract in androgen receptor. 
Journal of Steroid Biochemistry and Molecular Biology 108, 245–253. 

175. Palazzolo, I., Stack, C., Kong, L., Musaro, A., Adachi, H., Katsuno, M., Sobue, G., 
Taylor, J.P., Sumner, C.J., Fischbeck, K.H., Pennuto, M., 2009. Overexpression of IGF-1 in 
muscle attenuates disease in a mouse model of spinal and bulbar muscular atrophy. Neuron 
63, 316–328. 

176. Palmieri, M., Impey, S., Kang, H., di Ronza, A., Pelz, C., Sardiello, M., Ballabio, A., 
2011. Characterization of the CLEAR network reveals an integrated control of cellular 
clearance pathways. Hum Mol Genet 20, 3852-66.  

177. Pandey, U.B., Nie, Z., Batlevi, Y., McCray, B.A., Ritson, G.P., Nedelsky, N.B., 
Schwartz, S.L., DiProspero, N.A., Knight, M.A., Schuldiner, O., Padmanabhan, R., Hild, 
M., Berry, D.L., Garza, D., Hubbert, C.C., Yao, T.P., Baehrecke, E.H., Taylor, J.P., 2007. 
HDAC6 rescues neurodegeneration and provides an essential link between autophagy and 
the UPS. Nature 447, 859–863. 

178. Palazzolo, I., Nedelsky, N.B., Askew, C.E., Harmison, G.G., Kasantsev, A.G., Taylor, 
J.P., Fischbeck, K.H., Pennuto, M., 2010. B2 attenuates polyglutamine-expanded androgen 
receptor toxicity in cell and fly models of spinal and bulbar muscular atrophy. J Neurosci 
Res 88, 2207-16.  

179. Paradas, C., Solano, F., Carrillo, F., Fernández, C., Bautista, J., Pintado, E., Lucas, M., 
2008. Highly skewed inactivation of the wild-type X-chromosome in asymptomatic female 
carriers of spinal and bulbar muscular atrophy (Kennedy's disease). J Neurol 255, 853-7.  

180. Paradies, G., Paradies, V., De Benedictis, V., Ruggiero, F.M., Petrosillo, G., 2014. 
Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 18374, 
08-17. 

181. Parodi, S., Pennuto, M., 2011. Neurotoxic effects of androgens in spinal and bulbar 
muscular atrophy. Frontiers in Neuroendocrinology 32, 416–425. 

182. Patil, V.A., Greenberg, M.L., 2013. Cardiolipin-mediated cellular signaling. Adv Exp 
Med Biol 991, 195-213. 

183. Piantadosi, C.A., Suliman, H.B., 2012. Redox regulation of mitochondrial biogenesis. 
Free Radic Biol Med 53, 2043-53. 

184. Piccioni, F., Pinton, P., Simeoni, S., Pozzi, P., Fascio, U., Vismara, G., Martini, L., 
Rizzuto, R., Poletti, A., 2002. Androgen receptor with elongated polyglutamine tract forms 
aggregates that alter axonal trafficking and mitochondrial distribution in motor neuronal 
processes. FASEB Journal 16, 1418–1420. 

185. Piccioni, F., Simeoni, S., Andriola, I., Armatura, E., Bassanini, S., Pozzi, P., Poletti A., 
2001. Polyglutamine tract expansion of the androgen receptor in a motoneuronal model of 
spinal and bulbar muscular atrophy. Brain Res Bull 56, 215-20. 

186. Poletti, A., 2004. The polyglutamine tract of androgen receptor: from functions to 
dysfunctions in motor neurons. Frontiers in Neuroendocrinology 25, 1–26. 

187. Poletti, A., Negri-Cesi, P., Martini, L., 2005. Reflections on the diseases linked to 
mutations of the androgen receptor. Endocrine 28, 243-62.  

188. Qiang, Q., Adachi, H., Huang, Z., Jiang, Y.M., Katsuno, M., Minamiyama, M., Doi, H., 
Matsumoto, S., Kondo, N., Miyazaki, Y., Iida, M., Tohnai, G., Sobue, G., 2013. Genistein, 
a natural product derived from soybeans, ameliorates polyglutamine-mediated motor neuron 
disease. J Neurochem 126, 122-30. 



References 

 
138 

 

189. Querin, G., D'Ascenzo, C., Peterle, E., Ermani, M., Bello, L., Melacini, P., Morandi, L., 
Mazzini, L., Silani, V., Raimondi, M., Mandrioli, J., Romito, S., Angelini, C., Pegoraro, E., 
Sorarù, G., 2013. Pilot trial of clenbuterol in spinal and bulbar muscular atrophy. Neurology 
80, 2095-8. 

190. Quigley, C.A., De Bellis, A., Marschke, K.B., el-Awady, M.K., Wilson, E.M,. French, 
F.S., 1995. Androgen receptor defects: historical, clinical, and molecular perspectives. 
Endocr Rev 16, 271-321. 

191. Ranganathan, S., Harmison, G.G., Meyertholen, K., Pennuto, M., Burnett, B.G., 
Fischbeck, K.H., 2009. Mitochondrial abnormalities in spinal and bulbar muscular atrophy. 
Human Molecular Genetics 18, 27–42. 

192. Rehfeldt, C., Mantilla, C.B., Sieck, G.C., Hikida, R.S., Booth, F.W., Kadi, F., Bodine, 
S.C., Lowe, D.A., 2007. Satellite cell addition is/is not obligatory for skeletal muscle 
hypertrophy. J Appl Physiol 103, 1104–1106. 

193. Ren, M., Phoon, C.K., Schlame, M., 2014. Metabolism and function of mitochondrial 
cardiolipin. Prog Lipid Res 55, 1-16. 

194. Rhodes, L.E., Freeman, B.K., Auh, S., Kokkinis, A.D., La Pean, A., Chen, C., Lehky, 
T.J., Shrader, J.A., Levy, E.W., Harris-Love, M., Di Prospero, N.A., Fischbeck, K.H., 2009. 
Clinical features of spinal and bulbar muscular atrophy. Brain 132, 3242–3251. 

195. Rietveld, A.G., Killian, J.A., Dowhan, W., de Kruijff, B., 1993. Polymorphic regulation 
of membrane phospholipid composition in Escherichia coli. J Biol Chem. 268, 12427-33. 

196. Rinaldi, C., Bott, L.C., Chen, K.L., Harmison, G.G., Katsuno, M., Sobue, G., Pennuto, 
M., Fischbeck, K.H., 2012. Insulinlike growth factor (IGF)-1 administration ameliorates 
disease manifestations in a mouse model of spinal and bulbar muscular atrophy. Mol Med 
18, 1261-8.  

197. Rocchi, C., Greco, V., Urbani, A., Di Giorgio, A., Priori, M., Massa, R., Bernardi, G., 
Marfia, G.A., 2011. Subclinical autonomic dysfunction in spinobulbar muscular atrophy 
(Kennedy disease). Muscle and Nerve 44, 737–740. 

198. Rocchi, A., Pennuto, M., 2013. New routes to therapy for spinal and bulbar muscular 
atrophy. J Mol Neurosci 50, 514-23.  

199. Romanello, V., Sandri, M., 2013. Mitochondrial biogenesis and fragmentation as 
regulators of protein degradation in striated muscles. J Mol Cell Cardiol 55, 64-72.  

200. Rusmini, P., Simonini, F., Crippa, V., Bolzoni, E., Onesto, E., Cagnin, M., Sau, D., 
Ferri, N., Poletti, A., 2011. 17-AAG increases autophagic removal of mutant androgen 
receptor in spinal and bulbar muscular atrophy. Neurobiology of Disease 41, 83–95. 

201. Rusmini, P., Sau, D., Crippa, V., Palazzolo, I., Simonini, F., Onesto, E., Martini, L., 
Poletti, A., 2007. Aggregation and proteasome: the case of elongated polyglutamine 
aggregation in spinal and bulbar muscular atrophy. Neurobiol Aging 28, 1099-111.  

202. Rusmini, P., Bolzoni, E., Crippa, V., Onesto, E., Sau, D., Galbiati, M., Piccolella, M., 
Poletti, A., 2010. Proteasomal and autophagic degradative activities in spinal and bulbar 
muscular atrophy. Neurobiol Dis 40, 361-9.  

203. Sakuma, K., Yamaguchi, A., 2010. The functional role of calcineurin in hypertrophy, 
regeneration, and disorders of skeletal muscle. J Biomed Biotechnol  721219. 

204. Sandri, M., Coletto, L., Grumati, P., Bonaldo, P., 2013. Misregulation of autophagy and 
protein degradation systems in myopathies and muscular dystrophies. J Cell Sci 126, 5325-
33.  

205. Sandri, M., 2008. Signaling in Muscle Atrophy and Hypertrophy. PHYSIOLOGY 23, 
160–170. 

206. Sartorelli, V., Fulco, M., 2004. Molecular and cellular determinants of skeletal muscle 
atrophy and hypertrophy. Sci STKE 2004: re11. 

207. Scarpulla, R.C., Vega, R.B., Kelly, D.P., 2012. Transcriptional integration of 
mitochondrial biogenesis. Trends Endocrinol Metab 23, 459-66.  

208. Scarpulla, R.C., 2008. Transcriptional paradigms in mammalian mitochondrial 
biogenesis and function. Physiol Rev 88, 611-38. 



References 

 
139 

 

209. Schiaffin, S., Bormioli, S.P., Aloisi, M., 1976. The fate of newly formed satellite cells 
during compensatory muscle hypertrophy. Virchows Arch B Cell Pathol 21, 113–118. 

210. Schmidt, B.J., Greenberg, C.R., Allingham-Hawkins, D.J., Spriggs, E.L., 2002. 
Expression of X-linked bulbospinal muscular atrophy (Kennedy disease) in two 
homozygous women. Neurology 59, 770–772. 

211. Schoenmakers, E., Verrijdt, G., Peeters, B., Verhoeven, G., Rombauts, W., Claessens, 
F., 2000. Differences in DNA binding characteristics of the androgen and glucocorticoid 
receptors can determine hormone-specific responses. Biol Chem 275, 12290-7. 

212. Scuderi, S., La Cognata, V., Drago, F., Cavallaro, S., D'Agata, V., 2014. Alternative 
splicing generates different parkin protein isoforms: evidences in human, rat, and mouse 
brain. BioMed research international 2014:690796. 

213. Settembre, C., Ballabio, A., 2011. TFEB regulates autophagy: an integrated 
coordination of cellular degradation and recycling processes. Autophagy 7, 1379-81.  

214. Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., 
Erdin, S.U., Huynh ,T., Medina, D., Colella, P., Sardiello, M., Rubinsztein, D.C., Ballabio, 
A., 2011. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-33.  

215. Simeoni, S., Mancini, M.A., Stenoien, D.L., Marcelli, M., Weigel, N.L., Zanisi, M., 
Martini, L., Poletti, A., 2000. Motoneuronal cell death is not correlated with aggregate 
formation of androgen receptors containing an elongated polyglutamine tract. Human 
Molecular Genetics 9, 133–144. 

216. Sinclair, R., Greenland, K.J., Egmond, S., Hoedemaker, C., Chapman, A., Zajac, J.D., 
2007. Men with Kennedy disease have a reduced risk of androgenetic alopecia. British 
Journal of Dermatology 157, 290–294. 

217. Sinha-Hikim, I., Taylor, W.E., Gonzalez-Cadavid, N.F., Zheng, W., Bhasin, S. 2004. 
Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-
regulation by androgen treatment. J Clin Endocrinol Metab 89, 5245–5255. 

218. Sobue, G., Hashizume, Y., Mukai, E., Hirayama, M., Mitsuma, T., Takahashi, A., 1989. 
X-linked recessive bulbospinal neuronopathy. A clinicopathological study. Brain 112 (Pt 1), 
209–232. 

219. Sopher, B.L., Thomas Jr., P.S., LaFevre-Bernt, M.A., Holm, I.E., Wilke, S.A., Ware, 
C.B., Jin, L.W., Libby, R.T., Ellerby, L.M., La Spada, A.R., 2004. Androgen receptor YAC  
transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the 
motor neuron degeneration. Neuron 41, 687–699. 

220. Soraru, G., D’Ascenzo, C., Polo, A., Palmieri, A., Baggio, L., Vergani, L., Gellera, C., 
Moretto, G., Pegoraro, E., Angelini, C., 2008. Spinal and bulbar muscular atrophy: skeletal 
muscle pathology in male patients and heterozygous females. Journal of the Neurological 
Sciences 264, 100–105. 

221. Sorenson, E.J., Klein, C.J., 2007. Elevated creatine kinase and transaminases in 
asymptomatic SBMA. Amyotroph Lateral Scler 8, 62-4. 

222. Spencer, T.E., Jenster, G., Burcin, M.M., Allis, C.D., Zhou, J., Mizzen, C.A., McKenna, 
N.J., Onate, S.A., Tsai, S.Y., Tsai, M.J., O'Malley, B.W., 1997. Steroid receptor 
coactivator-1 is a histone acetyltransferase. Nature 389, 194-8. 

223. Sperfeld, A.D., Karitzky, J., Brummer, D., Schreiber, H., Haussler, J., Ludolph, A.C., 
Hanemann, C.O., 2002. X-linked bulbospinal neuronopathy: Kennedy disease. Archives of 
Neurology 59, 1921–1926. 

224. Sperfeld, A.D., Hanemann, C.O., Ludolph, A.C., Kassubek, J., 2005. Laryngospasm: an 
underdiagnosed symptom of X-linked spinobulbar muscular atrophy. Neurology 64, 753–
754. 

225. Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L., Angelini, C., 2012. Assessment of 
mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat 
protoc 7, 1235-46.  

226. Stenoien, D.L., Cummings, C.J., Adams, H.P., Mancini, M.G., Patel, K., DeMartino, 
G.N., Marcelli, M., Weigel, N.L., Mancini, M.A., 1999. Polyglutamine-expanded androgen 



References 

 
140 

 

receptors form aggregates that sequester heat shock proteins, proteasome components and 
SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 8, 731-41. 

227. Su, S., Jou, S., Cheng, W., Lin, T., Li, J., Huang, C., Lee, Y., Soong, B., Liu, C., 2010. 
Mitochondrial DNA damage in spinal and bulbar muscular atrophy patients and carriers. 
Clin Chim Acta 411, 626-30. 

228. Sugars, K.L., Rubinsztein, D.C., 2003. Transcriptional abnormalities in Huntington 
disease. Trends Genet 19, 233-8. 

229. Suzuki, E., Zhao, Y., Ito, S., Sawatsubashi, S., Murata, T., Furutani, T., Shirode, Y., 
Yamagata, K., Tanabe, M., Kimura, S., Ueda, T., Fujiyama, S., Lim, J., Matsukawa, H., 
Kouzmenko, A.P., Aigaki, T., Tabata, T., Takeyama, K., Kato, S., 2009. Aberrant E2F 
activation by polyglutamine expansion of androgen receptor in SBMA neurotoxicity. 
Proceedings of the National Academy of Sciences of the United States of America 106, 
3818–3822. 

230. Suzuki, K., Katsuno, M., Banno, H., Takeuchi, Y., Atsuta, N., Ito, M., Watanabe, H., 
Yamashita, F., Hori, N., Nakamura, T., Hirayama, M., Tanaka, F., Sobue, G., 2008. CAG 
repeat size correlates to electrophysiological motor and sensory phenotypes in SBMA. 
Brain 131, 229–239. 

231. Takeyama, K., Ito, S., Yamamoto, A., Tanimoto, H., Furutani, T., Kanuka, H., Miura, 
M., Tabata, T., Kato, S., 2002. Androgen-dependent neurodegeneration by polyglutamine- 
expanded human androgen receptor in Drosophila. Neuron 35, 855–864.  

232. Tanaka, F., Doyu, M., Ito, Y., Matsumoto, M., Mitsuma, T., Abe, K., Aoki, M., 
Itoyama, Y., Fischbeck, K.H., Sobue, G., 1996. Founder effect in spinal and bulbar 
muscular atrophy (SBMA). Human Molecular Genetics 5, 1253–1257. 

233. Tanaka, F., Reeves, M.F., Ito, Y., Matsumoto, M., Li, M., Miwa, S., Inukai, A., 
Yamamoto, M., Doyu, M., Yoshida, M., Hashizume, Y., Terao, S., Mitsuma, T., Sobue, G., 
1999. Tissue-specific somatic mosaicism in spinal and bulbar muscular atrophy is 
dependent on CAG-repeat length and androgen receptor–gene expression level. American 
Journal of Human Genetics 65, 966–973. 

234. Tassa, A., Roux, M.P., Attaix, D., Bechet, D.M., 2003. Class III phosphoinositide 3-
kinase--Beclin1 complex mediates the amino acid-dependent regulation of autophagy in 
C2C12 myotubes. Biochem J 376, 577-86. 

235. Tatsuta, T., Scharwey, M., Langer, T., 2014. Mitochondrial lipid trafficking. Trends 
Cell Biol 24, 44-52.  

236. Taylor, J.P., Tanaka, F., Robitschek, J., Sandoval, C.M., Taye, A., Markovic-Plese, S., 
Fischbeck, K.H., 2003. Aggresomes protect cells by enhancing the degradation oftoxic 
polyglutamine-containing protein. Human Molecular Genetics 12, 749–757. 

237. Thomas, P.S. Jr, Fraley, G.S., Damian, V., Woodke, L.B., Zapata, F., Sopher, B.L., 
Plymate, S.R., La Spada, A.R.., 2006. Loss of endogenous androgen receptor protein 
accelerates motor neuron degeneration and accentuates androgen insensitivity in a mouse 
model of X-linked spinal and bulbar muscular atrophy. Hum Mol Genet 15, 2225-38.  

238. Tilley, W.D., Wilson, C.M., Marcelli, M., McPhaul, M.J., 1990. Androgen receptor 
gene expression in human prostate carcinoma cell lines. Cancer Res 50, 5382-6. 

239. Todd, T.W., Kokubu, H., Miranda, H.C., Cortes, C.J., La Spada, A.R., Lim, J.., 2015. 
Nemo-like kinase is a novel regulator of spinal and bulbar muscular atrophy. Elife 4, 
e08493.  

240. Tohnai, G., Adachi, H., Katsuno, M., Doi, H., Matsumoto, S., Kondo, N., Miyazaki, Y., 
Iida, M., Nakatsuji, H., Qiang, Q., Ding, Y., Watanabe, H., Yamamoto, M., Ohtsuka, K., 
Sobue, G., 2014. Paeoniflorin eliminates a mutant AR via NF-YA-dependent proteolysis in 
spinal and bulbar muscular atrophy. Hum Mol Genet 23, 3552-65.  

241. Tomik, B., Partyka, D., Sułek, A., Kurek-Gryz, E.A., Banach, M., Ostrowska, M., 
Zaremba, J., Figlewicz, D.A., Szczudlik, A., 2006. A phenotypic-genetic study of a group of 
Polish patients with spinal and bulbar muscular atrophy. Amyotroph Lateral Scler. 7, 72-9. 



References 

 
141 

 

242. Tokui, K., Adachi, H., Waza, M., Katsuno, M., Minamiyama, M., Doi, H., Tanaka, K., 
Hamazaki, J., Murata, S., Tanaka, F., Sobue, G., 2009. 17-DMAG ameliorates 
polyglutamine-mediated motor neuron degeneration through well-preserved proteasome 
function in an SBMA model mouse. Human Molecular Genetics 18, 898–910. 

243. Trapman, J., Brinkmann, A.O., 1996. The androgen receptor in prostate cancer. Pathol 
Res Pract 192,752-60. 

244. Trotter, P.J., Pedretti, J., Voelker, D.R., 1993. Phosphatidylserine decarboxylase from 
Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null 
allele. J Biol Chem 268, 21416-24. 

245. Trushina, E., McMurray, C.T., 2007. Oxidative stress and mitochondrial dysfunction in 
neurodegenerative diseases. Neuroscience 145, 1233-48. 

246. Tyagi, R.K., Lavrovsky, Y., Ahn, S.C., Song, C.S., Chatterjee, B., Roy, A.K., 2000. 
Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-
activated androgen receptor in living cells. Mol Endocrinol 14, 1162-74. 

247. Umesono, K., Evans, R.M., 1989. Determinants of target gene specificity for 
steroid/thyroid hormone receptors. Cell 57, 1139-46. 

248. Verhovshek, T., Cai, Y., Osborne, M.C., Sengelaub, D.R., 2010. Androgen regulates 
brain-derived neurotrophic factor in spinal motoneurons and their target musculature. 
Endocrinology 151, 253–261. 

249. von Mikecz, A., 2009. PolyQ fibrillation in the cell nucleus: who's bad? Trends Cell 
Biol 19, 685-91. 

250. Walcott, J.L., Merry, D.E., 2002. Ligand promotes intranuclear inclusions in a novel 
cell model of spinal and bulbar muscular atrophy. J Biol Chem 27, 50855-9. 

251. Wang, D.W., Peng, Z.J., Ren, G.F., Wang, G.X., 2015. The different roles of selective 
autophagic protein degradation in mammalian cells. Oncotarget 6, 37098-116. 

252. Wang, G., Jones, S.J., Marra, M.A., Sadar, M.D., 2006. Identification of genes targeted 
by the androgen and PKA signaling pathways in prostate cancer cells. Oncogene 25, 7311-
23. 

253. Warnecke, T., Oelenberg, S., Teismann, I., Suntrup, S., Hamacher, C., Young, P., 
Ringelstein, EB., Dziewas, R., 2009. Dysphagia in X-linked bulbospinal muscular atrophy 
(Kennedy disease). Neuromuscul Disord 19, 704-8. 

254. Warner, C.L., Griffin, J.E., Wilson, J.D., Jacobs, L.D., Murray, K.R., Fischbeck, K.H., 
Dickoff, D., Griggs, R.C., 1992. X-linked spinomuscular atrophy: a kindred with associated 
abnormal androgen receptor binding. Neurology 42, 2181-4. 

255. Watson, N.V., Freeman, L.M., Breedlove, S.M., 2001. Neuronal size in the spinal 
nucleus of the bulbocavernosus: direct modulation by androgen in rats with mosaic 
androgen insensitivity. J Neurosci 21, 1062-6. 

256. Waza, M., Adachi, H., Katsuno, M., Minamiyama, M., Sang, C., Tanaka, F., Inukai, A., 
Doyu, M., Sobue, G., 2005. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-
mediated motor neuron degeneration. Nature Medicine 11, 1088–1095. 

257. Wenz, T., Hielscher, R., Hellwig, P., Schägger, H., Richers, H., Hunte, C., 2009. Role 
of phospholipids in respiratory cytochrome bc(1) complex catalysis and supercomplex 
formation, Biochim. Biophys. Acta 1787, 609–616. 

258. Wenz, T., 2013. Regulation of mitochondrial biogenesis and PGC-1α under cellular 
stress. Mitochondrion 13, 134-42. 

259. Wicks, K.L., Hood, D.A., 1991. Mitochondrial adaptations in denervated muscle: 
relationship to muscle performance. Am J Physiol 260, C841-50. 

260. Xie, Z., Klionsky, D.J., 2007. Autophagosome formation: core machinery and 
adaptations. Nat Cell Biol 9, 1102-9. 

261. Yamamoto, T., Yokota, K., Amao, R., Maeno, T., Haga, N., Taguri, M., Ohtsu, H., 
Ichikawa, Y., Goto, J., Tsuji, S., 2013. An open trial of long-term testosterone suppression 
in spinal and bulbar muscular atrophy. Muscle Nerve 47, 816-22.  



References 

 
142 

 

262. Yang, Z., Chang, Y.J., Yu, I.C., Yeh, S., Wu, C.C., Miyamoto, H., Merry, D.E., Sobue, 
G., Chen, L.M., Chang, S.S., Chang, C., 2007. ASC-J9 ameliorates spinal and bulbar 
muscular atrophy phenotype via degradation of androgen receptor. Nature Medicine 13, 
348–353. 

263. Youle, R.J., Narendra, D.P., 2011. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 
12, 9-14.  

264. cc, J.E., Garden, G.A., Martinez, R.A., Tanaka, F., Sandoval, C.M., Smith, A.C., 
Sopher, B.L., Lin, A., Fischbeck, K.H., Ellerby, L.M., Morrison, R.S., Taylor, J.P., La 
Spada, A.R., 2009. Polyglutamine-expanded androgen receptor truncation fragments 
activate a Bax-dependent apoptotic cascade mediated by DP5/Hrk. Journal of Neuroscience 
29, 1987–1997.  

265. Yu, Z., Dadgar, N., Albertelli, M., Gruis, K., Jordan, C., Robins, D.M., Lieberman, 
A.P., 2006. Androgen-dependent pathology demonstrates myopathic contribution to the 
Kennedy disease phenotype in a mouse knock-in model. Journal of Clinical Investigation 
116, 2663–2672. 

266. Yu, Z., Wang, A.M., Adachi, H., Katsuno, M., Sobue, G., Yue, Z., Robins, D.M., 
Lieberman, A.P., 2011. Macroautophagy is regulated by the UPR-mediator CHOP and 
accentuates the phenotype of SBMA mice. PLoS Genetics 7, e1002321. 

267. Yu, W.H., 1989. Administration of testosterone attenuates neuronal loss following 
axotomy in the brain-stem motor nuclei of female rats. J Neurosci 9, 3908-14. 

268. Zhang, J., Ney, P.A., 2009. Autophagy-dependent and -independent mechanisms of 
mitochondrial clearance during reticulocyte maturation. Autophagy 5, 1064-5.  

269. Zeng, X., Overmeyer, J.H., Maltese, W.A., 2006. Functional specificity of the 
mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and 
lysosomal enzyme trafficking. J Cell Sci 119, 259-70. 

270. Zhong, Q., Gohil, V.M., Ma, L., Greenberg, M.L., 2004.  Absence of cardiolipin results 
in temperature sensitivity, respiratory defects, and mitochondrial DNA instability 
independent of pet56. J Biol Chem 279, 32294-300. 

 
 
 



 

 
143 

 

 

 

 

 

 

Relazione sull’attività svolta nel triennio di 

dottorato 

 

 

 

 

 

 



 

 
144 

 

RELAZIONE SULL’ATTIVITÁ SVOLTA NEL TRIENNIO DI DOTTORATO 

 
DOTTORANDO: Dr.ssa DORIANA BORGIA - TUTOR: Dr. GIANNI SORARU’ 

Scuola di Dottorato in SCIENZE MEDICHE, CLINICHE E SPERIMENTALI 
Indirizzo NEUROSCIENZE 

 
Introduzione 
L’Atrofia Muscolare Spino-Bulbare (SBMA) è una malattia dei motoneuroni dovuta 
all’espansione del tratto CAG nel primo esone del gene per il recettore degli androgeni (AR). 
Recentemente sono stati riscontrati un interessamento primario del muscolo (Malena et al., Acta 
Neuropathol. 2013,126:109-21; Cortes et al., Neuron. 2014,82:295-307; Sorarù et al., J Neurol 
Sci. 2008, 264:100-105) e alterazioni mitocondriali in topi Knock-in e leucociti di pazienti 
SBMA (Ranganathan et al., HMG 2009,18:27-42; Su et al., Clin Chim Acta 2010,411:626-630).  
 

Scopo 
Lo scopo del mio studio è stato quello di valutare l’effetto di AR mutato su parametri 
mitocondriali nel tessuto muscolare di 19 pazienti SBMA e 18 controlli di pari età e sesso.  
 

Risultati 
1. Ho trovato una normale espressione di AR nel tessuto dei pazienti, associata a un 

accumulo significativo della proteina mutata nel nucleo degli stessi (2 volte superiore a 
quanto trovato nei controlli). L’incremento di AR nei nuclei dei pazienti è risultato 
essere inversamente correlato con la loro età alla biopsia in maniera significativa. 
Tuttavia i livelli proteici del recettore nel lisato totale e nella frazione citosolica sono 
risultati significativamente più bassi di circa il 60% nel tessuto muscolare dei pazienti 
rispetto ai controlli. Per validare i dati, ho quantificato la purezza dell’estratto nucleare, 
valutando l’arricchimento del marker nucleare PARP rispetto al marker citosolico β-
tubulina mediante Western Blot rispetto al citosol e al lisato totale. Ho trovato una 
quantità sei volte maggiore di PARP nella frazione nucleare (p<0.001). 

2. Ho osservato una riduzione significativa della massa mitocondriale nel tessuto dei 
pazienti, espressa come riduzione del numero di copie di mtDNA (40%) e del segnale 
positivo all’NADH deidrogenasi (50%) in sezioni trasversali di muscolo colorate 
istochimicamente, avvalorando i dati di altri collaboratori che avevano trovato in 
precedenza: un decremento dell’attività della citrato sintasi (40%), una normale attività 
dei complessi della catena respiratoria ed una normale espressione e presenza proteica 
di geni mitocondriali o coinvolti nella biogenesi dei mitocondri, quali NRF1, TFAM, 
COX4, MnSOD, MFN1, MFN2, PGC-1, PGC-1 e ERR. Ho, inoltre, confermato il 
normale funzionamento mitocondriale, mediante la quantizzazione dei supercomplessi 
mitocondriali con BN-PAGE e Western Blot, non riscontrando alcuna anomalia nel 
tessuto dei pazienti. Tali dati indicano che nel muscolo dei pazienti SBMA sono 
presenti meno mitocondri, che hanno una normale attività. Questa riduzione non è 
dovuta a una compromessa biogenesi mitocondriale.  

3. Ho valutato gli Indici di Atrofia e di Ipertrofia nel tessuto muscolare di pazienti SBMA 
e controlli. Ho trovato nel muscolo dei pazienti valori molto elevati di entrambi gli 
Indici, che però non correlavano con il numero di copie di mtDNA quantizzate 
mediante RT-PCR.  

4. Per spiegare la riduzione della massa mitocondriale, ho valutato il processo auto-
mitofagico. Ho trovato un aumento significativo dei livelli proteici di LC3-II (49%), 
Beclin-1 (174%) e LAMP1 (529%), coinvolte nell’autofagia, nel lisato totale del 
muscolo SBMA rispetto ai controlli e un incremento significativo della presenza 
proteica di BNIP3 (187%), PINK1 (338%) e ubiquitina (200%), coinvolte nel processo 
mitofagico, nei mitocondri isolati dal muscolo dei pazienti SBMA rispetto ai controlli. 
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L’espressione degli stessi geni, invece, è risultata essere non alterata. Per avvalorare i 
dati, ho quantificato la purezza dell’estratto mitocondriale, valutando l’arricchimento 
del marker mitocondriale TOM20 rispetto al marker citosolico β-tubulina mediante 
Western Blot rispetto al lisato totale. Ho trovato una quantità circa otto volte maggiore 
di TOM20 nella frazione mitocondriale (p<0.001). 

5. Ho confermato i dati Western Blot di auto-mitofagia mediante indagine morfometrica, 
ovvero eseguendo una doppia colorazione del tessuto muscolare di pazienti SBMA e 
controlli con Ab anti-LC3 (marcatura dei lisosomi) e Ab anti-ATPasi (marcatura dei 
mitocondri) ed osservando mediante imaging sia un incremento significativo del 
numero di vacuoli autofagici (2 volte) che un incremento significativo del segnale di 
colocalizzazione dei due anticorpi (3,5 volte) nel muscolo SBMA rispetto ai controlli. I 
dati ottenuti mediante immunofluorescenza, dunque, hanno confermato quelli ottenuti 
mediante WB e cioè l’associazione tra la riduzione della massa mitocondriale con 
l’incremento del processo auto-mitofagico. 

6. Ho misurato i livelli di espressione di Drp1 e hFis1, proteine coinvolte nella 
frammentazione del network mitocondriale, evento che precede la mitofagia, i quali 
sono risultati normali. Al contrario, sia nel lisato totale che nei mitocondri isolati ho 
trovato un aumento non significativo di Drp1 (37%) e un aumento significativo di hFis1 
(72%) nel muscolo dei pazienti rispetto ai controlli. 

7. Per chiarire il collegamento tra l’accumulo di AR nel nucleo dei pazienti e 
l’eliminazione dei mitocondri attraverso il macchinario auto-mitofagico, ho valutato la 
composizione lipidica delle membrane mitocondriali dei pazienti SBMA e controlli 
mediante spettrometria di massa. E’ stata trovata una riduzione significativa del 52% 
della quantità di cardiolipina, il principale fosfolipide strutturale della membrana 
mitocondriale interna, e un aumento forse compensatorio del 49% della 
fosfatidiletanolammina e del 104% della fosfatidilserina, mentre è risultata normale la 
composizione delle cardiolipine. Alla luce dei risultati di De Primo et al. (Genome Biol. 
2002; 3) e Wang et al. (Oncogene 2006; 25:7311-7323), nel muscolo dei pazienti 
SBMA ho valutato i livelli di espressione della cardiolipina sintasi (CRLS1), che sono 
risultati ridotti significativamente del 51% rispetto ai controlli. Questi dati sono in linea 
con quanto recentemente dimostrato da Halievski et al. su topi Tg femmine SBMA 
trattate con testosterone (PLoS One 2015, 10:e0118120), dati che riguardano la 
variazione dei livelli di espressione di proteine coinvolte nella biogenesi delle 
membrane dei mitocondri. 

 
Conclusioni 
Lo studio da me condotto ha dimostrato la riduzione della quantità di mitocondri nel tessuto 
muscolare dei pazienti SBMA, osservata mediante analisi molecolari (riduzione del numero di 
copie di mtDNA), biochimiche (attività della citrato sintasi) e morfologiche (imaging su 
colorazione istochimica NADH-DH del tessuto muscolare). Tale riduzione non è dovuta ad 
alterata biogenesi mitocondriale ma a un aumento della rimozione dei mitocondri mediante 
meccanismo auto-mitofagico. Queste alterazioni sono associate a un accumulo di poli-Q AR nel 
nucleo del tessuto muscolare SBMA e a una significativa riduzione dei livelli di espressione 
della cardiolipina sintasi e della quantità di cardiolipina nelle membrane mitocondriali, 
parzialmente compensata da un aumento della fosfatidiletanolammina. Questi dati mostrano per 
la prima volta un meccanismo causa-effetto di accumulo nucleare di poli-Q AR associato a una 
riduzione della massa mitocondriale nel muscolo di pazienti SBMA, probabilmente dovuta a 
un’alterazione della struttura della membrana mitocondriale.   
 
Collaborazioni 
In collaborazione con la dott.ssa M. Pennuto dell’Università di Trento, ho valutato nel muscolo 
scheletrico di topi knock-in (AR 113Q) affetti da SBMA e WT, trattati o meno con una dieta 
iperlipidica (Low Fat and High Fat diet), i seguenti parametri: 
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1. Numero di copie di DNA mitocondriale mediante RT-PCR: Ho quantizzato il numero di 
copie di mtDNA nel quadricipite di topi maschi WT e 113Q a 2, 3 e 6 mesi. Dai risultati 
è emerso che il numero di copie di mtDNA non varia nei topi 113Q di 2 mesi, mentre a 
3 mesi in alcuni si osserva un decremento e a 6 mesi tutti i topi SBMA hanno meno 
copie di mtDNA rispetto ai WT. In seguito, ho fatto lo stesso tipo di valutazione sul 
quadricipite e il gastrocnemio di 4 topi WT LF, 4 topi 113Q LF, 4 topi WT HF e 4 topi 
113Q HF, tutti maschi e a 6 mesi di vita. I dati ottenuti hanno confermato la riduzione 
significativa del numero di copie di mtDNA nel quadricipite dei topi 113Q a 6 mesi 
rispetto ai WT (50%). Interessante è il recupero significativo che ho osservato nei topi 
113Q alimentati con una dieta di grasso, infatti essi avevano una quantità di mtDNA 
simile ai WT. Nessuna differenza, invece, è emersa nel gastrocnemio dei topi 113Q, 
indicando quindi un interessamento muscolo specifico dell’AR mutato.  

2. Attività di enzimi glicolitici mediante analisi spettrofotometrica nei lisati totali: E’ stato 
ipotizzato che nel quadricipite dei topi 113Q ci fosse una compromissione della 
glicolisi, che quindi poteva giustificare il rescue che si osservava alimentando i topi con 
il grasso. Per questo motivo ho valutato l’attività enzimatica di 3 proteine coinvolte in 
tale via metabolica (fosfofruttochinasi, piruvato chinasi e lattato deidrogenasi) nel 
quadricipite di 5 topi WT LF, 4 topi 113Q LF, 5 topi WT HF e 4 topi 113Q HF. Dai 
risultati è emerso che l’attività della lattato deidrogenasi è ridotta in maniera 
significativa al 68% nel muscolo dei topi 113Q LF rispetto ai WT e non alterata negli 
altri. L’attività degli altri due enzimi, invece, è risultata essere invariata nei topi 113Q 
sia LF che HF rispetto ai WT.  

3. Esochinasi mediante WB nel lisato totale: i livelli proteici dell’esochinasi nei topi 
SBMA LF sono risultati significativamente ridotti del 66% rispetto ai controlli, con un 
parziale rescue significativo (80%) dei valori normali con dieta iperlipidica (HF). 

4. Esochinasi mediante WB nei mitocondri isolati: i livelli proteici dell’esochinasi nei topi 
SBMA LF sono risultati ridotti significativamente al 20% rispetto ai controlli, con un 
parziale rescue significativo (58%) dei valori normali con dieta iperlipidica. 

5. Quantità dei mitocondri come attività della citrato sintasi e analisi di imaging di sezioni 
di muscolo colorate istochimicamente per NADH-DH. L’attività della citrato sintasi, 
misurata mediante analisi spettrofotometrica nei lisati totali e normalizzata per mg di 
proteine mitocondriali, è risultata significativamente più alta nel muscolo dei topi 
SBMA LF e HF rispettivamente del 52% e 72% rispetto ai topi WT LF. La dieta 
iperlipidica non ha avuto alcun effetto sui topi WT HF. Tali dati suggeriscono un 
aumento della massa mitocondriale nel tessuto muscolare SBMA rispetto ai WT. Per 
confermare il dato, ho quantizzato il segnale positivo alla NADH deidrogenasi in 
sezioni trasversali di muscolo colorate istochimicamente. Tale segnale per campo è 
risultato aumentato significativamente al 547% e al 359% rispettivamente nel muscolo 
dei topi SBMA LF e HF rispetto ai WT LF, mentre nessuna differenza è stata trovata tra 
i due gruppi di topi WT. 

6. Attività OXPHOS mediante analisi spettrofotometrica dell’attività enzimatica nei lisati 
totali: l’attività dei complessi della catena respiratoria (CI, CII, CIII, CI+CIII, CII+CIII 
e CIV), normalizzata per mg di proteine mitocondriali, è risultata sempre più alta in 
maniera significativa nel muscolo dei topi SBMA LF e HF rispetto ai WT, mentre non 
c’era alcuna differenza tra i gruppi di topi WT. Se invece l’attività dei complessi viene 
normalizzata per attività della citrato sintasi, che è un indicatore dell’abbondanza 
mitocondriale in un tessuto, non si osserva alcuna differenza tra i quattro gruppi di 
campioni. Tali dati indicano che nel tessuto dei topi SBMA ci sono più mitocondri, con 
una normale attività OXPHOS. 

 
In collaborazione con la dott.ssa L. Vergani dell’Università degli studi di Padova, in cellule con 
una diversa percentuale di mutazione MELAS dell’mtDNA, cibridi di polmone (0%, 35%, 70% 
e 99% mutati) e cibridi di muscolo (0%, 70%, 80% e 99% mutati), ho valutato: 
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1. Geni coinvolti nel processo auto-mitofagico e nella dinamica mitocondriale mediante 
RT-PCR: ho valutato i livelli di espressione di LC3, Beclin-1, BNIP3, p62, PINK1 e 
Parkin per quanto riguarda il processo auto-mitofagico e di Drp1, hFis1, OPA1, MFN1 
e MFN2 per quanto concerne la dinamica mitocondriale. 

2. Proteine coinvolte nella dinamica mitocondriale e nella mitofagia mediante Western 
Blot su mitocondri isolati: ho valutato la presenza proteica di Drp1, hFis1, OPA1, 
MFN1 e MFN2, coinvolte nei processi di fusione e fissione mitocondriale, e di 
FUNDC1 e Bcl2, coinvolti nella mitofagia. 

I dati da me prodotti hanno aiutato i miei collaboratori ad arrivare alla conclusione che i cibridi 
di polmone (A549 adenocarcinoma polmonare) favoriscono l’mtDNA wild-type e i cibridi di 
muscolo (RD rabdomiosarcoma) favoriscono il DNA mitocondriale mutato. Difatti, tutti i dati 
ottenuti dimostrano che nei cibridi di polmone la mitofagia e la fissione aumentano con 
l’aumentare della quantità di DNA mitocondriale mutato, indicando che vi è una attiva 
rimozione dei mitocondri danneggiati. Interessante è notare che nei cibridi muscolari si verifica 
l’opposto: aumenta la fusione e la mitofagia diminuisce all’aumentare della percentuale di 
mutazione. Questi dati ci spiegano perché nei cibridi con background muscolare viene favorito 
il DNA mitocondriale mutato, e mostrano come possibile causa di questo comportamento la 
presenza di un alterato meccanismo di quality-control del network mitocondriale che è meno 
efficiente rispetto a quello dei cibridi con background polmonare. 
 
In collaborazione con il dott. B. Pantic dell’Università di Padova, in cellule muscolari primarie 
di controlli e pazienti con Distrofia Miotonica immortalizzate e non attraverso una triplice 
stabile trasfezione con geni per CD1, CDK4 e telomerasi, ho valutato: 

1. Numero di foci per nucleo, per valutare se la procedura di immortalizzazione consentiva 
il mantenimento delle caratteristiche di patogenicità. Non ho trovato differenze tra i due 
tipi di cellule di pazienti e nulla nei nuclei dei controlli. 

2. Livelli proteici di CD1 e CDK4 nel lisato totale delle cellule dei pazienti 
immortalizzate, per valutarne il mantenimento dei livelli di espressione nel tempo. Non 
ho osservato variazioni nel tempo. 

 
Tecniche di laboratorio acquisite: 
BIOLOGIA CELLULARE : 

1. Colture cellulari: cellule primarie di mioblasti umane di pazienti SBMA e controlli e 
cibridi di polmone e muscolo 

2. Sortaggio di cellule CD56 positive mediante FACS 
3. Differenziazione delle cellule con o senza  DHT e Sambutamolo Solfato o Clenbuterolo 
4. Trattamento cellule con clorochina e colorazione dei mitocondri con colorante vitale 

(mitotracker red)  
5. Estrazione cellule satelliti da biopsie muscolari fresche 

BIOLOGIA MOLECOLARE : 
1. Estrazione DNA da cellule e da tessuto muscolare 
2. Estrazione proteine da cellule e da tessuto muscolare 
3. Estrazione RNA da cellule e da tessuto muscolare mediante trizol 
4. Retrotrascrizione RNA in cDNA 
5. Quantizzazione mtDNA umano e murino mediante RT-PCR 
6. Quantizzazione dei geni coinvolti nell’autofagia, biogenesi lisosomiale, fissione e di AR 

mediante RT-PCR 
7. Isolamento mitocondri da tessuto muscolare e cellule 
8. Isolamento nuclei e citosol da tessuto muscolare 

BIOCHIMICA: 
1. WESTERN BLOT per analisi delle proteine coinvolte nell’autofagia e di AR e 

quantificazione mediante analisi densitometriche delle bande 



 

 
148 

 

2. Valutazione dell’attività enzimatica dei complessi della catena respiratoria e di enzimi 
glicolitici con spettrofotometro 

TECNICHE DI IMAGING : 
1. Immunofluorescenza di i) biopsie muscolari umane con Ab anti-ATPasi e Ab anti-LC3-

II e osservazione al microscopio confocale; ii) fibrioblasti umani di pazienti SBMA e 
controllo trattati o meno con clorochina: visualizzazione mitocondri con mitotracker red 
e autofagosomi con Ab anti-LC3-II 

2. Analisi di immagini mediante software dedicato (ImageJ) 
3. Quantizzazione dell’indice di fusione e del calibro dei miotubi dopo alcuni gg di 

differenziamento mediante software Image-Pro Plus 
4. Quantizzazione dell’Indice di Atrofia e di Ipertrofia con software dedicato 
Colorazione istochimica di tessuto muscolare per NADH-DH 

 

Pubblicazioni 

▪ A. Malena#, B. Pantic#, Doriana Borgia#, G. Sgarbi, G. Solaini, E. Perissinotto, I. J.Holt, 
A.Spinazzola, M. Sandri, A. Baracca, L.Vergani. “Mitochondrial quality control is cell-
type responsive to pathological mutant mitochondrial DNA”. Autophagy - in revisione 

▪ B. Pantic#, Doriana Borgia, S. Giunco, A. Malena, T. Kiyono, S. Salvatori, A. De Rossi, 
E. Giardina, F. Sangiuolo; E. Pegoraro, L. Vergani, A.Botta. “Primary human myoblasts 
immortalized by cyclin D1, CDK4 and telomerase are reliable and versatile cell models of 
muscle disease”. Sottomesso 

▪ A.Rocchi#, C. Milioto#, S.Parodi, A.Armirotti, Doriana Borgia, M. Pellegrini, A. Urciulo, 
S. Molon, V. Morbidoni, M. Marabita, V. Romanello, P.Gatto, B. Blaauw, P. Bonaldo, F. 
Sambataro, D. M. Robins, A. P. Lieberman, G. Sorarù, L.Vergani, M. Sandri, M. 
Pennuto.”Glycolytic-to-oxidative fiber-type switch and mTOR and PGC1α activation are 
early-onset features of SBMA muscle that can be modified by high-fat diet”. Acta 
Neuropathologica - in revisione 

▪ Doriana Borgia#, A. Malena, M. Spinazzi,  M.A. Desbats, V. Romanello, L.Salviati, G. 
Querin, E. Pegoraro, G. Sorarù, M.Sandri, A.P. Russel, G.Miotto, L. Vergani. 
“Mitochondrial parameters in spinal bulbar muscular atrophy muscle tissue”. In 
preparazione 

 

Partecipazione a congressi 
1. Borgia Doriana, Malena A., Spinazzi M., Bettio S., Querin G., Pegoraro  E., Sorarù G., 
Russel A.P., Vergani L. “Mitochondrial parameters in spinal bulbar muscular atrophy 
muscle tissue”. Secondo incontro di aggiornamento sulla malattia di Kennedy. Trento, 
18 Aprile 2015 

2. Borgia Doriana., Malena A., Spinazzi M., Bettio S., Querin G., Pegoraro  E., Sorarù 
G., Russel A.P., Vergani L. “Mitochondrial parameters in spinal bulbar muscular atrophy 
muscle tissue”.  
GIBB: Gruppo Italiano di Biomembrane e Bioenergetica. Padova, 20-22 Giugno 2013 

 

Attività seminariale 
1. Incontri di patologia neuromuscolare 
Padova, ogni mercoledì dal 13 marzo 2013 al 29 maggio 2013, Auletta del Dipartimento di 
Neuroscienze SNPSRR 
2. Riunione annuale GIBB (Gruppo Italiano di Biomembrane e Bioenergetica) 
Padova 20 – 22 giugno 2013 Aula Magna, Complesso Interdipartimentale Vallisneri 
3. SUMMER SCHOOL – IOV 
Padova, 23-27 Settembre 2013  Aula Magna – Sezione di Oncologia – Dipartimento di 
Scienze Chirurgiche, Oncologiche e Gastroenterologiche 
4. Incontro di aggiornamento sulla malattia di Kennedy 
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Padova 30 ottobre 2013  Aula Magna, Complesso Interdipartimentale Vallisneri 
5. NIMR-Padova Symposium on Mitochondrial DNA Segregation, Expression & 

Survival  
Londra 1-2 Aprile, NIMR (National Institute for Medical Research) 
6. Understanding Muscle Stem Cell Functional Decay During Physiological Aging 
Padova, Martedì 8 Aprile 2014, Aula Seminari del VIMM 
7. Stem Cells in Silence, Action and Cancer 
Padova, Mercoledì 7 Maggio 2014, Aula Seminari del VIMM 
8. Coenzyme Q biosynthesis from yeast to humans 
Padova, Giovedì 22 maggio 2014, Aula Magna della Clinica Neurologica 
9. L'organo adiposo e il sistema neuro-muscolare: implicazioni nutrizionali 
Padova, 28 maggio 2014, Aula Morgagni – Policlinico 
10. Terapia dell’Epilessia: la gestione del paziente che giunge in Pronto Soccorso 
Padova, Martedì 13 Gennaio 2015, Aula Magna della Clinica Neurologica 
11. II° INCONTRO DI AGGIORNAMENTO SULLA MALATTIA DI KENNEDY  
Trento, Sabato 18 Aprile 2015, Aula Magna (B107) del CIBIO (Centre for Integrative 
Biology), Università di Trento 
12. SPRING SCHOOL 
Bressanone, Venerdì-Sabato 29-30 Maggio 2015, Aula Magna della Casa della Gioventù, 
Università degli Studi di Padova 
13. Esercizio fisico, salute e malattia 
Padova, Giovedì 3 Dicembre 2015, Aula Seminari del VIMM 
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Università della Calabria – via Pietro Bucci – Arcavacata di Rende (CS) 

 
 

Ottobre 2010 – 04/10/2012 Laurea Magistrale in Biologia (classe LM-6) 
 

 

Università della Calabria – via Pietro Bucci – Arcavacata di Rende (CS) 

▪ Titolo della tesi: Regolazione da cationi dei sistemi di trasporto umani OCTN1 e 
OCTN2 
 

▪ Voto: 110/110 e lode 
 
 

Ottobre 2007 – 04/10/2010 Laurea Triennale in Scienze Biologiche (classe 12) 
 

 

Università della Calabria – via Pietro Bucci – Arcavacata di Rende (CS) 

▪ Titolo della tesi: Trattamento igienico-sanitario delle acque potabili 
 

▪ Voto: 109/110 

Lingua madre Italiano 

  

Altre lingue COMPRENSIONE  PARLATO  
PRODUZIONE 
SCRITTA  

Ascolto  Lettura  Interazione  Produzione orale   

Inglese  B2 B2 B2 B2 B2 

 Livelli: A1/A2: Utente base  -  B1/B2: Utente intermedio  -  C1/C2: Utente avanzato  
Quadro Comune Europeo di Riferimento delle Lingue 



 

 

 

 

 

 

Competenze comunicative ▪ Consolidata attitudine al lavoro di gruppo 

▪ Ottima capacità di comunicazione e di adattamento 

▪ Vasta esperienza nell’interazione con personale tecnico-scientifico di vario livello 

Competenze organizzative 
e gestionali 

▪ Vasta esperienza nelle gestione organizzativa di un laboratorio e nella 
pianificazione ed esecuzione di esperimenti 

Competenze professionali  BIOLOGIA CELLULARE: 

▪ Colture cellulari: cellule primarie di muscolo (mioblasti e fibroblasti) umani e murini
e di cibridi di muscolo (RD) e polmone (A549) 

▪ Sortaggio di cellule CD56 positive mediante FACS 

▪ Estrazione cellule satelliti da biopsie muscolari fresche 
 

BIOLOGIA MOLECOLARE: 

▪ Estrazione DNA/RNA/proteine da cellule e da tessuto muscolare 

▪ Retrotrascrizione RNA in cDNA 

▪ PCR e RT-PCR 

▪ Digestione enzimatica DNA  

▪ Elettroforesi su gel di agarosio DNA 
 

BIOCHIMICA: 

▪ Isolamento mitocondri da tessuto e cellule muscolari 

▪ Isolamento nuclei e citosol da tessuto muscolare 

▪ SDS-PAGE, WESTERN BLOT e quantificazione delle bande mediante analisi 
densitometriche (Gel-Pro Analyzer) 

▪ Valutazione dell’attività enzimatica dei complessi della catena respiratoria e di 
enzimi glicolitici con spettrofotometro 

▪ Purificazione di proteine ricombinanti over-espresse in E.Coli: cromatografia per 
affinità su colonne al nichel 

▪ Ricostituzione proteina purificata in liposomi 

▪ Valutazione attività di trasporto di proteine della membrana plasmatica ricostituite 
in liposomi con substrato radioattivo 

▪ Cromatografia su colonna per gel filtrazione o esclusione molecolare (resina 
Sephadex G-75)  

▪ Analisi aspetti funzionali e cinetici dell’attività di trasporto con software dedicato 
(Grafit 5.0) 

 
IMAGING: 

▪ Immunofluorescenza di biopsie e cellule muscolari e osservazione al microscopio 
confocale 

▪ Colorazione istochimica tessuto muscolare per NADH-DH 

▪ Analisi di immagini mediante software dedicato (ImageJ) 

▪ Quantizzazione dell’indice di fusione e del calibro dei miotubi dopo alcuni giorni di 
differenziamento mediante software Image-Pro Plus 

▪ Quantizzazione dell’Indice di Atrofia e di Ipertrofia di tessuto muscolare con 
software dedicato (ImageJ) 
 

Competenza digitale AUTOVALUTAZIONE 

Elaborazione 
delle 
informazioni 

Comunicazione 
Creazione 
di 
Contenuti 

Sicurezza 
Risoluzione 
di problemi 

 
Utente 
intermedio 

Utente intermedio 
Utente 
intermedio 

Utente 
intermedio 

Utente 
intermedio 



 

 

 

 

 

 

 

 Livelli: Utente base  -  Utente intermedio  -  Utente avanzato  
Competenze digitali - Scheda per l'autovalutazione  

 ▪ Ottima conoscenza dei programmi del pacchetto Microsoft Office (Word, Excel, 
PowerPoint) 

▪ Ottima capacità di utilizzo di motori di ricerca 

Altre competenze ▪ Titolo: Compimento inferiore di pianoforte, conseguito il 06/09/2006, presso Istituto 
Musicale Pareggiato P.I. Tchaikovsky - Nocera Terinese (CZ) 

▪ Titolo: Diploma di Teoria e Solfeggio, conseguito il 09/09/2004, presso 
Conservatorio di Musica Stanislao Giacomantonio – Cosenza (CS) 

Patente di guida B 

ULTERIORI INFORMAZIONI   

Pubblicazioni 

 
▪ A. Malena#, B. Pantic#, Doriana Borgia#, G. Sgarbi, G. Solaini, E. Perissinotto, I. 

J.Holt, A.Spinazzola, M. Sandri, A. Baracca, L.Vergani. “Mitochondrial quality 
control is cell-type responsive to pathological mutant mitochondrial DNA”. 
Autophagy - in revisione 

▪ B. Pantic#, Doriana Borgia, S. Giunco, A. Malena, T. Kiyono, S. Salvatori, A. De 
Rossi, E. Giardina, F. Sangiuolo; E. Pegoraro, L. Vergani, A.Botta. 
“Primary human myoblasts immortalized by cyclin D1, CDK4 and telomerase are 
reliable and versatile cell models of muscle disease”. Sottomesso 

▪ A.Rocchi
#
, C. Milioto

#
, S.Parodi, A.Armirotti, Doriana Borgia, M. Pellegrini, A. 

Urciulo, S. Molon, V. Morbidoni, M. Marabita, V. Romanello, P.Gatto, B. Blaauw, P. 
Bonaldo, F. Sambataro, D. M. Robins, A. P. Lieberman, G. Sorarù, L.Vergani, M. 
Sandri, M. Pennuto.”Glycolytic-to-oxidative fiber-type switch and mTOR and 
PGC1α activation are early-onset features of SBMA muscle that can be modified 
by high-fat diet”. Acta Neuropathologica - in revisione 

▪ Doriana Borgia
#
, A. Malena, M. Spinazzi,  M.A. Desbats, V. Romanello, 

L.Salviati, G. Querin, E. Pegoraro, G. Sorarù, M.Sandri, A.P. Russel, G.Miotto, L. 
Vergani. “Mitochondrial parameters in spinal bulbar muscular atrophy muscle 
tissue”. In preparazione  

 

Congressi 

 

 

▪ Borgia D., Malena A., Spinazzi M., Bettio S., Querin G., Pegoraro  E., Sorarù G., 
Russel A.P., Vergani L. “Mitochondrial parameters in spinal bulbar muscular 
atrophy muscle tissue”. Secondo incontro di aggiornamento sulla malattia di 
Kennedy. Trento, 18 Aprile 2015 

▪ Borgia D., Malena A., Spinazzi M., Bettio S., Querin G., Pegoraro  E., Sorarù G., 
Russel A.P., Vergani L. “Mitochondrial parameters in spinal bulbar muscular 
atrophy muscle tissue”. GIBB: Gruppo Italiano di Biomembrane e 
Bioenergetica. Padova, 20-22 Giugno 2013 


