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Summary 

Metabolomics is defined as the systematic analysis of hundreds or thousands of small 

metabolites present in a living system. It has emerge as an important field of study along with 

other, already established ‘omics’ sciences, i.e., genomics, proteomics and transcriptomics. 

Metabolomics is well established in the field of medicine, drug toxicity and disease diagnosis. 

Among the existing analytical techniques, NMR is a fast, reproducible and non-destructive 

technique to construct an informative snapshot of the metabolites under certain conditions. NMR 

data give metabolic signature information of the samples when it is combined with data 

preprocessing and chemometric tools, such as multivariate statistical techniques. NMR-based 

metabolomics is still expanding in the field of the food chemistry. In this context, this Ph.D. 

thesis is focused on two major aspects, which show applications of NMR-based metabolomics in 

food chemistry. 

1. Many nutraceutical products possess powerful antioxidant activity as demonstrated in many 

chemical in vitro tests and in several in vivo trials. Nevertheless, the mechanism of their activity 

is not completely studied in detail. Due to their poor bioavailability and fast metabolism, studies 

on the in vivo antioxidant effects are still needed. We performed longitudinal experiments on 

Sprague Dawley (SD) rats using two commonly available nutraceutical antioxidant products, 

namely, Curcumin (chapter 2) and Resveratrol (chapter 3). The effects of different doses of 

orally administered standardized antioxidant extracts in healthy rats were investigated by 

untargeted metabolomic analysis based on LC-MS and NMR spectrometry. The experiments 

were carried out over different periods of time for different antioxidants. Changes in the urinary 

metabolome were evaluated by monitoring the 24-hour urine composition by 1H-NMR and 

HPLC-MS. The two different approaches were able to detect variations in the urinary levels of 

antioxidant markers, leading to the observation of different metabolites thus proving the 

complementarity of these two analytical techniques for metabolomic purposes. Analytical tools 

such as MS and NMR spectroscopy in combination with chemometrics can profile the impact of 

time, stress, nutritional status, and environmental perturbations on hundreds of metabolites 

simultaneously. This results in complex, massive data sets that must be analyzed through a 

careful statistical protocol. Our strategy included data preprocessing, data analysis and validation 

of statistical models. After several data processing steps, principal component analysis (PCA) 



 

III 

and partial least-squares (PLS) were used to identify urine biomarkers. The PLS models were 

validated by permutation tests and critically important variables were validated through 

univariate analysis. 

2. The second part of this thesis (chapters 4 and 5) describe the use of NMR-based metabolomics 

as a fast, convenient, and effective tool for origin discrimination and biomarker discovery in food 

analysis. Traditionally, the determination of the floral origin of honey is made from 

palynological analysis. The method is based on the identification of pollen by microscopic 

inspection. However, melissopalynological analysis needs expertise and also it is not a very 

reliable technique for the discrimination of botanical origin of some types of honey. Also, honey 

regulation in the EU (Codex Alimentarius Commission 2001; European Commission 2002) 

emphasizes that the botanical and geographical origins of the product must be printed on the 

label in order to avoid the fraud such as adulteration with industrial sugar, selling product under 

false name or mixing the honey of different floral origin. Therefore, there is need to establish a 

method to discriminate honey from different origin. The aim of this work was to develop an 

NMR-based metabolomic approach that used multivariate statistical analysis to discriminate the 

botanical (chapter 4) and entomological (chapter 5) origin of different types of honey. 

Multivariate statistical analysis helped us to identify the most relevant signals to differentiate 

honey botanically and entomologically. The obtained data sets were useful in the search of 

markers responsible for the discrimination of different honey samples from different botanical 

species and produced by different bee species. 
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Sommario 

La metabolomica è definita come l'analisi sistematica di centinaia o migliaia di piccoli metaboliti 

presenti in un sistema vivente. È emerso come un importante campo di studio insieme ad altre, 

già affermate scienze "omiche", vale a dire, genomica, proteomica e trascrittomica. La 

metabolomica è ben consolidata nel campo della medicina, nello studio della tossicità di farmaci 

e nella diagnostica. Tra le tecniche analitiche esistenti, NMR è veloce, riproducibile e non 

distruttiva, utile per fornire una fotografia informativa sui metaboliti in determinate condizioni. 

Dati NMR forniscono informazioni metaboliche che caratterizzano i campioni quando  

combinati con una pre-elaborazione dei dati e con strumenti chemiometrici, come le tecniche di 

statistica multivariata. La metabolomica basata sull’NMR è ancora in espansione nel campo della 

chimica degli alimenti. In questo contesto, questa tesi di Dottorato si concentra su due aspetti 

principali, che mostrano applicazioni della metabolomica basata sull’NMR in chimica degli 

alimenti. 

1. Molti prodotti nutraceutici possiedono potente attività antiossidante, come dimostrato in molti 

test chimici in vitro e in diverse prove in vivo. Tuttavia, il meccanismo della loro attività non è 

completamente studiato in dettaglio. A causa della loro scarsa biodisponibilità e metabolismo 

veloce, sono ancora necessari studi in vivo sugli effetti antiossidanti. Abbiamo condotto 

esperimenti longitudinali su ratti Sprague Dawley (SD) utilizzando due prodotti antiossidanti 

nutraceutici comunemente disponibili, vale a dire, curcumina (capitolo 2) e resveratrolo (capitolo 

3). Gli effetti di diverse dosi di estratti antiossidanti standardizzati somministrati per via orale nei 

ratti sani sono stati studiati mediante analisi metabolomica non mirata (untargeted) basata su LC-

MS e spettrometria NMR. Gli esperimenti sono stati eseguiti lungo diversi periodi di tempo per 

diversi antiossidanti. Le variazioni del metaboloma urinario sono state valutate attraverso il 

monitoraggio della composizione delle urine di 24 ore usando 1H-NMR e HPLC-MS. I due 

differenti approcci sono stati in grado di rilevare le variazioni dei livelli urinari di marcatori 

antiossidanti, portando all’osservazione di diversi metaboliti e dimostrando così la 

complementarità di queste due tecniche analitiche per scopi metabolomici. Strumenti di analisi 

come la spettroscopia NMR e MS in combinazione con chemiometria possono delineare 

l'impatto del tempo, dello stress, dello stato nutrizionale, e di perturbazioni ambientali su 

centinaia di metaboliti contemporaneamente. Ciò comporta complessi enormi set di dati che 
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devono essere analizzati mediante un protocollo statistico accurato. La nostra strategia ha 

compreso una pre-elaborazione dei dati, l’analisi dei dati e la validazione dei modelli statistici. 

Dopo varie fasi di elaborazione di dati, l’analisi delle componenti principali (PCA) e l’analisi dei 

minimi quadrati parziali (PLS) sono state utilizzate per identificare i biomarcatori urinari. I 

modelli PLS sono stati convalidati dai test di permutazione e le variabili di importanza critica 

sono stati convalidati attraverso analisi univariata. 

2. La seconda parte di questa tesi (capitoli 4 e 5) descrivono l'uso di metabolomica basata su 

NMR come strumento veloce, conveniente ed efficace per la discriminazione di origine e la 

scoperta di biomarcatori in analisi degli alimenti. Tradizionalmente, la determinazione 

dell'origine floreale del miele è  condotta mediante analisi palinologica. Il metodo si basa sulla 

individuazione di polline mediante ispezione microscopica. Tuttavia, l'analisi 

melissopalinologica richiede perizia ed inoltre non è una tecnica molto affidabile per la 

discriminazione di origine botanica di alcuni titpi di miele. Inoltre, la regolamentazione del miele 

nell'Unione Europea (Codex Alimentarius 2001; Commissione Europea 2002) sottolinea che le 

origini botaniche e geografiche del prodotto devono essere stampate sull'etichetta, per evitare 

frodi, come l'adulterazione con zucchero industriale, vendita di prodotti sotto falso nome o 

aggiunte di miele di diversa origine floreale. Pertanto, vi è la necessità di stabilire un metodo per 

distinguere miele di diverse origini. Lo scopo di questo lavoro è stato quello di sviluppare un 

approccio metabolomico basato sull’NMR che ha utilizzato l'analisi statistica multivariata per 

discriminare l'origine botanica (capitolo 4) ed entomologica (capitolo 5) di diversi tipi di miele. 

statistica multivariata ci ha aiutato ad identificare i segnali più importanti per differenziare il 

miele sia dal punto di vista botanico che entomologico. I set di dati ottenuti sono stati utili nella 

ricerca di marcatori responsabili della discriminazione dei diversi campioni di miele di diverse 

specie botaniche e prodotti da diverse specie di api. 
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Outline of the thesis 

This PhD thesis is divided into five chapters. 

Chapter 1 discusses the concepts and terms used in the field of metabolomics. Also, it 

emphasizes the basic principles of NMR and its application in food metabolomics with some 

literature examples. Finally, the chapter ends with the definition and role of chemometrics in 

metabolomics and some specific aspects of chemometrics in NMR-based metabolomics. 

Chapter 2 deals with the application of NMR-based metabolomics to assess the in vivo effect of 

nutraceuticals containing antioxidants on rat urine. Specifically, curcumin was used in a high 

dose in a longitudinal experiment in which urine was collected over a seven week period. An 

untargeted MS and NMR-based metabolomic approach was used to identify markers of oxidative 

stress in rat urine. 

Chapter 3 shows the continuation of our study on the extract of Polygonum cuspidatum, a source 

of resveratrol, an antioxidant also found in red wines or in other foods of the Mediterranean diet. 

The aim of the work was to analyze the in vivo effect of resveratrol on rat urine, again using 

NMR and Mass spectrometry-based metabolomics. 

Chapter 4 covers the application of NMR-based metabolomics in the field of food quality 

assurance; specifically, we used honey as a food matrix. The aim of the work was to use NMR as 

an analytical tool to differentiate citrus honey from clementine honey, two products deriving 

from very similar plants. 

Chapter 5 describes the role of NMR-based metabolomics in combination of chemometrics to 

discriminate the entomological origin of Equador honey. It also dicusses the authentication of 

genuine honey and its differentiation from fake honey with a simple liquid-liquid chloroform 

extraction. 

Chapter 6 briefly summarizes the finding of the research describes in this thesis.  
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Chapter 1: General Introduction 

1.1 Metabolomics in Systems Biology 

Cellular metabolites are the final outcome of the response of biological systems to genetic 

changes, stress or other environmental influence. The study of their concentration is therefore 

central to understand biological systems and to characterize different physiological and 

pathological conditions [1]. In the last twenty years, the technological progress in the field of 

biological sciences made it possible to analyze complete sets of genes (genomics), mRNA 

(transcriptomics), proteins (proteomics) and metabolites (metabolomics) rather than to study 

single genes, single mRNA, single proteins or single metabolites in a living system. While other 

“omics” sciences are very well established, metabolomics is still in its growing stages. The 

detailed investigations of the entire ‘‘omics cascade’’, from genomics to transcriptomics to 

proteomics to metabolomics will play a vital role in the field of systems biology [2, 8]. Figure 

1.1 shows how the process of information is successfully passed on from genes to metabolites in 

a living system. [1, 2] 

 

Figure 1.1: The “omics” cascade  

1.2 Metabolomics 

Metabolomics is the endpoint of the ‘‘omics cascade’’ as shown in the Figure 1.1 and is the 

closest to the phenotype, which gives metabolomics the advantage to serve as a direct signature 

of biochemical activity and earned it the description of “the apogee of omics” [3]. The term 

metabolome was first used by Oliver [2] as the set of low-molecular-mass compounds 

synthesized by an organism. A few years later, the term metabolomics was introduced by Fiehn 

in 2001 as “the identification and quantification of every single metabolite presents in a 
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biological system” [4]. Before this in 1999s, the term metabonomics was used by J. K. Nicholson 

and colleagues as follows: “the quantitative measurement of the time related multi-parametric 

metabolic response of living systems to pathophysiological stimuli or genetic modification” [5].  

There has been some conflict over the exact differences between the two terms, metabolomics 

and metabonomics. This difference is mainly philosophical, rather than technical; although there 

are some differences in concept, in practice, the analytical and modeling procedures are the same 

and the two terms are often used interchangeably [6]. The term metabolomics will be used in this 

thesis throughout to cover in vivo study of anti-oxidants compounds in rat urine and honey origin 

discrimination. 

Metabolomics attempts to systematically identify and quantifies metabolites from biological 

samples. The small molecules characterize the end result of complexity of biological processes in 

a given cell, tissue or organ and thus form attractive candidates to understand disease phenotypes 

as shown in Figure 1.2. Metabolites represent a diverse group of low-molecular weight 

structures including lipids, amino acids, peptides, nucleic acids and organic acids, which makes 

comprehensive analysis a difficult analytical challenge [7]. 

 

Figure 1.2: Complexity of Metabolome. 

Metabolomics has been growing rapidly since its inception in the late 2000’s (Figure 1.3) and the 

increasing number of papers published in the field of metabolomics makes it an emerging tool to 

study changes in phenotype under different biological conditions.  
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Figure 1.3: PubMed search result of the number of publications with “metabolomics” as a key 

word.  

1.3 Approaches in Metabolites Analysis 

Currently, four complementary approaches are used for metabolomic investigations: Metabolic 

profiling, Metabolic fingerprinting, Metabolite target analysis and Metabolomics [1, 8]. A 

summary of metabolomics-related definitions are depicted in Figure 1.4.  

Fiehn [1] gave the first detailed definition of metabolomics and its subsections: (1) Metabolite 

target analysis, aims at quantitative analysis of substrate and/or product metabolites of a target 

protein; (2) metabolic profiling, aims to quantify a pre-defined set of metabolites belonging to a 

class of compounds or members of particular pathways or a linked group of metabolites; (3) 

metabolomics, attempts an unbiased overview of whole-cell metabolic patterns. For a more rapid 

analysis, (4) metabolic fingerprinting can be used, which reduces the analytical effort to the 

analysis of these intra-cellular metabolites with biochemical relevance [8, 9]. 



4 

 

 

Figure 1.4: Different approaches used in metabolomics. 

1.4 Analytical Platforms Used in Metabolomics 

Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites 

in biological samples. These numerous analytes have diverse physical-chemical properties and 

occur at different abundance. Consequently, comprehensive metabolomic investigations are 

primarily a challenge for analytical chemistry [9]. From the beginning, a variety of different 

analytical platforms have been used for metabolomics. Among them are thin-layer 

chromatography (TLC) [10], infrared spectroscopy (IR) [92], near infrared (NIR) [93], gas 

chromatography (GC) [12], nuclear magnetic resonance (NMR) [13, 14], high-performance 

liquid chromatography (HPLC) [14], mass spectrometry (MS) by direct-infusion [15] or coupled 

to chromatographic techniques, such as GC [16, 17], capillary electrophoresis (CE) [18] and 

liquid chromatography [19-20]. Among these different analytical techniques and tools used 

within metabolomics, Mass Spectrometry (MS) and NMR spectroscopy are the most popular and 

can profile the impact of time, stress, nutritional status, and environmental perturbation on 

hundreds of metabolites simultaneously resulting in massive, complex data sets [8, 21-22]. 

Figure 1.5 shows a typical metabolomic workflow for an untargeted metabolomic study. This 
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strategy starts with the processing of the spectral data to generate the sample metabolic 

information. Different analytical techniques, such as NMR or MS, can be used to acquire the 

data. The main focus of this thesis is NMR-based metabolomics and its applications in food 

chemistry, as described in detail in the next section. Once the complete set of metabolomic 

features has been produced, multivariate data analysis methods are applied to investigate the 

general structure of the metabolomic data and how the different metabolic features are related 

with the phenotypic data associated with the samples. Finally, significant metabolites observed 

are identified with the help of online databases and their biological interpretation in biological 

system discussed [23]. 

 

Figure 1.5: Analytical workflow in metabolomics and different steps involved. [23] 

1.5 Nuclear Magnetic Spectroscopy 

NMR, with the help of other complementary spectroscopic techniques, such as Infrared (IR), 

Ultraviolet (UV) and MS, is generally used to determine an organic compound’s unique 

structure. In this section,   1H-NMR spectroscopy will be briefly described.  

Many atomic nuclei have a property called spin. Nuclei that possess either odd mass or odd 

atomic number or both have a quantized spin angular momentum and a magnetic moment. The 

magnetic moment (µ) is directly proportional to the angular momentum (P): µ =γP, where γ, the 

gyromagnetic ratio, is a constant for each nucleus. Each nucleus with spin has a nuclear spin 

quantum number, I, which determines the allowed spin states. For each nucleus, I is a physical 
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constant, and there are 2I+1 allowed spin states with integral differences ranging from +I to –I. 

Nuclei with I = 0 cannot be seen in NMR. In the absence of an external applied magnetic field, 

the nuclear spins are oriented in random directions as shown in Figure 1.6(A). As a result the 

samples do not have any macroscopic magnetization. When an external magnetic field (B0) is 

applied, the nuclei align themselves either with or against the field of the external magnet, as in 

Figure 1.6(B). [24]. 

 

Figure 1.6 (A-B): (A) Nuclei in the absence of a magnetic field, the individual nuclear magnetic 

moments; (B) In the presence of an applied magnetic field, the nuclear magnetic moments are 

aligned with the applied field. 

For I = ½ nuclei, two spin states are possible: one at lower energy, called , and one at higher 

energy, called  (Figure 1.7). The nuclear magnetic resonance phenomenon takes place when 

nuclei aligned with an applied magnetic field absorb energy and change state according to the 

direction of the applied magnetic field. 

 

Figure 1.7: The spin state of the proton in the absence and in the presence of magnetic field. 
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The magnitude of the energy difference between the two spin states depends on the applied 

magnetic field. As shown by the Figure 1.7, the greater the strength of the applied magnetic 

field, the larger the energy difference. Therefore, the magnitude of the energy level separation is 

directly proportional to the applied magnetic field B0 and to the particular nucleus involved, 

according to its γ. The energy difference between the two states is equal to ΔE = γ (h/2π) B0 [25]. 

The difference in spin population between the  and the  state determines the magnitude of a 

bulk magnetization vector created by the alignment of nuclear spins along the B0 magnetic field 

(Figure 1.8). 

. 

Figure 1.8: Macroscopic magnetization resulting from the sum of individual nuclear magnetic 

moments. 

Application of an orthogonal energy pulse in the form of radio frequency (RF) imposes a torque 

on the bulk magnetisation vector in a direction that is perpendicular to the direction of the field 

(the ’motor rule’) which rotates the vector from the z-axis toward the x-y plane (Figure 1.9).The 

bulk vector will precess (rotate) about the central Z axis, defined by the direction of the B0 

magnetic field, at a frequency that depends not only on the strength of the applied magnetic field 

and that nucleus’ specific gyromagnetic ratio, γ, but also on the neighborhood and chemical 

environment of the nucleus under observation. The magnitude of these bulk magnetization 

vectors represents the number of nuclei under the influence of the magnetic field. The frequency 

of precession is called the Larmor frequency (ω0) and is defined as ω0 = γB0. 
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Figure 1.9. An RF pulse applies a torque to the bulk magnetization vector and drives it toward 

the x-y plane from equilibrium [26]. 

After the radiofrequency (RF) field is switched off, the system will return to equilibrium. 

Consequently, the readable magnetization in the xy plane decays to zero in a certain time during 

which a signal is recorded by the spectrometer in the form of a free induction decay (FID). 

During an NMR experiment, the signal is measured in the time domain, i.e., as a function of 

time, and, then, Fourier transformed to obtain the spectrum in the frequency domain. Thereby, 

the FIDs from active NMR nuclei in a sample, which superimpose in the time domain, are sorted 

out according to their Larmor frequency by the Fourier transformation [26]. Figure 1.10 A 

schematic diagram of the main components of an NMR spectrometer. 

 
Figure 1.10: A schematic diagram of the main components of an NMR spectrometer. 
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1.6 NMR-based Metabolomics 

Different techniques have their own strengths and weakness, resulting in different coverage of 

metabolomics.  Therefore, suitable choice of instrumentation is important to address specific 

questions in metabolomic analysis. The selection of proper instrumentation depends on the 

availability of these analytical platforms and on the possibility to combine different techniques to 

obtain a comprehensive metabolic profile. NMR is a powerful spectroscopic method, 

traditionally used as a very important tool in chemistry for structure verification, elucidation and 

purity analysis [27]. Sensitivity of NMR has always been a concern compared to MS, which has 

also developed better protocols for separating the components in a complex mixtures. 

Nonetheless, NMR spectra can be recorded and quantified more easily. The spectral complexity 

of the MS fragments can complicate the quantification process of ions or metabolites, and MS 

can identify only a small fraction of the metabolome. NMR is a robust and reliable technique for 

metabolomic applications, in which high reproducibility is paramount [28-29]. It allows the 

detection of a wide range of structurally diverse metabolites simultaneously, providing a 

metabolic ‘snapshot’ at a particular time point [30]. NMR spectroscopy is therefore a powerful 

complementary technique for the identification and quantitative analysis of metabolites either in 

vivo or in tissue extracts and biological fluids [28]. The sensitivity issue of NMR has decreased 

recently with advancement in NMR spectrometer hardware such as used of cryoprobes, cold-

probes or by using high field instruments, i.e., 800 MHz. Using high field instruments enhances 

both the sensitivity and resolution, but cost of the instrumentation is still an issue [31].  

In 2013, Wishart and colleagues introduced the Human Metabolome Database (HMDB) using 6 

different analytical platforms: NMR; GC-MS; DFI/LC-MS/MS; HPLC/UV; HPLC/FD and ICP-

MS. Today, the HMDB is the largest and most comprehensive, organism-specific metabolomics 

database [32]. It provides information on the composition of human biological fluids, along with 

custom-derived spectral libraries and targeted assays. In the case of urine, 445 distinct 

metabolites were identified and 378 quantified distinct metabolites. NMR spectroscopy was able 

to identify and quantify 209 compounds, as depicted in Figure 1.11, which shows that 1H-NMR 

has the potential to detect and identify a large number of compounds; as such, it is emerging as a 

leading technique in the area of metabolomic studies [12-13, 21-22]. 
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Figure 1.11: Venn diagram showing the broad range of NMR in comparison to other analytical 

techniques used in urine metabolomics [32]. 

Compared with MS, NMR spectroscopy yields relatively low-sensitivity measurements, with 

limits of detection on the order of 10 μM or a few nmol at high fields using new cryoprobes. 

Nevertheless, NMR has several prominent advantages over MS; for instance, biofluids can be 

analyzed without or with minimal sample preparation; also, NMR is highly quantitative and 

reproducible. Moreover, NMR is fast, convenient, and effective in discriminating between 

groups of related samples and it identifies the most important regions of the spectrum for further 

analysis [28]. These properties are especially important when metabolomic data are analyzed by 

multivariate statistical methods [33]. Compared with other techniques, NMR-based 

metabolomics is becoming a useful tool in the study of body fluids and has a strong potential to 

be particularly useful for the noninvasive diagnosis of different diseases [21], different types of 

cancer [34], diabetes [35], inborn error metabolism [36], kidney disorders [37] and also in early 

diagnosis of disease [22].   

There are two different approaches used in NMR-based metabolomics, depending on the aim and 

the information required from the experiment. In cases when the interest is limited to certain 

defined set of metabolites, the approach of choice is usually known as “targeted metabolomics”; 

in other instances, it may be of interest to examine as many metabolites as possible by using an 

“untargeted” approach [3]. 
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1.6.1 NMR-based Targeted Metabolomics 

Targeted metabolomic approaches are usually initiated by a specific biochemical theory or 

hypothesis that encourages the investigation of a particular pathway [3]. The aim of NMR-based 

targeted metabolomics is to quantitate several selected metabolites, typically few to hundreds of 

known compounds. This involves the ability to differentiate the targeted analytes from other 

intrusive compounds, which may be achieved based on chemical shift in an NMR spectrum [38]. 

Conventionally, quantitative analysis by NMR has been restricted to relatively simple mixtures 

with minimal peak overlap. In this context, 1D 1H-NMR is a natural choice, because its peaks 

scale linearly with concentration and its analytical precision is usually independent of the 

chemical properties of target molecules [20]. 1H-NMR provides spectroscopic fingerprints in 

which the spectral intensity distribution is determined by the relative concentrations of solutes, 

and in some cases by their intermolecular interactions. This approach is generally useful, for 

example, for pharmacokinetic studies of drug metabolism as well as for the study of the activity 

of specific enzymes under the influence of therapeutics or subject of genetic modification [40]. 

The same experimental and statistical standards apply to a targeted metabolomics approach as to 

any quantitative biological analysis. In order to obtain meaningful results, multiple biological 

replicates must be analyzed and subjected to appropriate statistical tests to establish the 

significant changes in metabolite concentrations between groups [41].  

1.6.2 NMR-based Untargeted Metabolomics 

The untargeted approach in metabolomics is the comprehensive analysis of all the measurable 

metabolite in a biological sample, including unknown chemicals. Due to its comprehensive 

nature, untargeted metabolomics must be coupled to advanced chemometric techniques, such as 

multivariate analysis, to reduce the large datasets generated into a smaller set of manageable 

variables [41]. The nature of many compounds of interest in untargeted metabolomics is 

unknown, hence several solvents and extraction methods should be applied and compared 

between the groups of samples [42]. The aim of the untargeted metabolomics is to measure the 

many metabolites as possible from biological sample in unbiased fashion. This unbiased 

approach make it global in scope and sometime is also known as global metabolite profiling [3]. 

Chapters 2 and 3 of this thesis are examples of untargeted metabolomic approaches; thus, more 

detail will be discussed later in chapters 2 and 3. 
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1.6.3 NMR-based Metabolomics in Food Chemistry 

Today, the need to ascertain and certify the quality of food is increasing because of increasing 

demand from industry and consumers. To improve and monitor the quality of our food, new 

tools and methods need to be developed. Metabolomics is a new technology with the potential to 

become one such tool of major value in this field. Phytochemicals cover a large proportion of the 

food metabolome. Some of the popular phytochemicals, such as lycopene in tomatoes, 

isoflavones in soy, proanthocyanidins in cranberries and polyphenols in fruits or in nutraceutical 

products, are responsible not only for the organoleptic properties, such as flavors and aromas of 

the plants, but also for their health properties [43-45]. Specifically, phytochemicals are rarely 

absorbed and excreted in their ingested forms; rather, they are extensively metabolized in the 

body. Therefore, only a limited portion of the theoretical 200,000 structures of phytochemicals 

have been characterized, suggesting that many remain to be discovered [44]. Metabolomic tools 

have become the method of choice and are being applied to the analysis of food components, the 

identification of their metabolites in body fluids and biological tissues, the evaluation of their 

bioavailability and metabolism, the role of gut microflora, and the physiological response to a 

particular diet regimen, food, or nutraceutical product [46-47]. The metabolic compositions of 

various biofluids reflect their diverse biological purposes and the functional integrity of the 

organs that are communicating with them, and eventually with the physiological status of the 

whole organism. NMR-based metabolomics has been employed extensively for multivariate 

metabolic profiling of cells, tissues and biological fluids [48-49]. Biofluids such as urine are very 

complex matrices containing a large number of potential biomarkers that can report on changes 

of endogenous metabolites in response to xenobiotic exposure [49-50]. Urine is a very popular 

biofluid for metabolomic investigations due to non-invasive collection, the complex metabolic 

nature of the fluid, and the ability to collect multiple samples over a period of time. The 

detection of metabolites and the information gained by tracing metabolic fluxes provides 

information regarding an organism’s physiological response following an environmental insult or 

the pathophysiology of a disease [51-52]. 

Based on the metabolomics approach, 1H-NMR screening has rapidly expanded in recent years 

in the area of food quality control i.e. food processing, quality, and safety. Advances in 
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compound extraction, separation, detection, identification, and data analysis enabled 

metabolomic reliable platform in the field of food sciences [45, 94]. NMR based metabolomic 

techniques assess the impact of food quality control in a reproducible manner for example 

adulteration of oranges juices with grape-fruit make it difficult for consumer to assess even via 

taste or aroma whether the juices are adulterated or not. Analysis of this kind of juice blending 

with HPLC-MS analysis is lengthy and labor process whereas, NMR-based metabolomic take 

less than half time as compare to chromatographic approach [53].  

The quality or origin of food matrices is mostly determined by its biochemical composition, i.e., 

its biochemical, metabolic profile [55]. Recently, NMR-based metabolomics coupled with 

chemometric analysis has been applied to obtain metabolic profiles of various kinds of food 

including honey [56-57], olive oil [58-59], meat [55, 60] salmon [61], milk [62], wine [63, 64], 

apple [65], mango [66], Italian sweet cherries [67], wheat [68],  and other plants [69-70]. Despite 

the considerable amount of reviews and articles published in the field of food metabolomic, 

applications of metabolomics in food and nutrition research are still scarce. The main 

contribution of this thesis is to show the application of NMR-based metabolomics in food 

chemistry. The next section of the thesis will briefly introduce the role and application of 

chemometrics in metabolomics. 

1.7 Chemometrics in Metabolomics 

Chemometrics was first introduced by Svante Wold in 1972. Further progress was made by 

Isenhour and Jurs when they published the first pattern recognition article in 1972. However, 

first real article on chemometrics was published by Kowalski, Massart and Wold [71]. 

Chemometrics is rather new, but it has a huge impact on the spectroscopic field as we know it 

today, to such an extent that chemometric software is currently integrated with laboratory and 

process instrumentation as a standard. Chemometrics is still developing and the definition may 

have to be modified or improvised from time to time in order to include all new developments 

[72]. In the 1980s, John demonstrated the use of chemometrics (multivariate data analysis) in 

combination with NMR spectroscopy. Later on, further advancement and potential was put 

forward by Nicholson and his group in the field of NMR-based metabolomics [5, 74].  

The overwhelming size and complexity of the ‘omics’ technologies has driven biology toward 

the adoption of chemometric methods. Extensive use of chemometrics in NMR-based 
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metabolomics first became computationally practical with the introduction of data-reduction 

methods such as the integration of spectral variables (preprocessing of data) into a limited 

number of regions, a technique that both reduces the computational time required to calculate 

models, and helps soften the effect of shifting resonances in NMR [74]. Therefore, it is necessary 

to perform some data reduction or preprocessing of any large data prior to transport the data for 

Multivariate data analysis (MDA). A typical workflow of chemometric analysis of NMR-based 

metabolomic data is shown in Figure 1.12. 

 

Figure 1.12: A typical chemometric workflow in an NMR-based metabolomic approach. 

1.7.1 Data Preprocessing 

Pre-treatment of raw spectral data is critical for generating reliable, interpretable models using 

multivariate analysis techniques. Data preprocessing is an intermediate step between raw spectra 

and data analysis. The main objective of data preprocessing is to transform the data in such a 

way that the samples in the dataset are more comparable in order to ease and improve data 

analysis. For NMR spectra, preprocessing usually involves: baseline correction, alignment, 

binning, normalization and scaling. Several reviews discuss the procedures involved for 
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preprocessing of metabolomics datasets, and efforts have been made to standardize the processes 

[75].  

1.7.1.1 Baseline Correction 

Generally, the first step of data preprocessing is the baseline removal. Baseline distortions in 1D 

NMR spectra are mostly due to the corruption of the first few data points in the FID (free 

induction decay). These corrupted data points add low frequency modulations in the Fourier-

transformed spectrum, giving rise to a distorted baseline [76]. Correction of these distortions is a 

necessary step in NMR spectra data processing because they offset the intensity values and result 

in inaccuracy in peak assignment and quantification. In turn, this affect not only the statistical 

analysis but also the quantification of the metabolites. These distortions can be corrected in many 

different ways; usually, an automated baseline correction is applied. In this thesis, all the NMR 

spectra were processed with manual baseline correction, performed with the ACD/LAB NMR 

software. In urine metabolomics, the entire region between 0.2-10.0 ppm is frequently used to 

see the effects of endogenous metabolites belonging to different classes. Although solvent 

suppression techniques are used to reduce the signal of water, the residual water signal might 

interfere with data analysis. For this reason, the region of the spectrum between 4.7 ppm and 5.0 

ppm is excluded from further data processing. 

1.7.1.2 Alignment 

Chemical and physical parameters such as ionic strength, concentration of some earth alkali, pH, 

and overall dilution of the urine influence the chemical shift of the 1H-NMR spectra, although 

not all the peaks are affected to the same extent. The resulting chemical shift variations, as large 

as 0.1 ppm, generate misalignments of homogeneous peaks, artifacts and misinterpretations [77]. 

One of the most annoying problems with NMR profiles, from a multivariate data analysis point 

of view, is the presence of peak shifts among different spectra. Therefore, an essential step in 

preprocessing should be careful adjustment of the peaks shifts, i.e., alignment. Usually, NMR 

spectra are first aligned by spectral referencing. This simple, global method for peak alignment 

sets the internal reference signal of each spectrum to 0.0 for TSP (as an internal standard) or 7.27 

ppm (CD3Cl) for the residual non-deuterated solvent. Nonetheless, this global method is not 

sufficient to overcome the problem of alignment [78]. Various methods have been reported so far 

[79] for the alignment of NMR spectra. In chapter 2 of this thesis, we used the Cluster-based 
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Peak Alignment (CluPA), a recent method for aligning NMR spectra, proposed by Vu et al [80]. 

The algorithm builds a hierarchical cluster tree from peaks of reference and target spectra and it 

aligns two spectra using this tree [80]. Although algorithms used for peak alignment might solve 

one problem, they can alter peak areas. Therefore, it is necessary to analyze unaligned spectra for 

the absolute biomarker quantification [81]. A representative example of an aligned 1H-NMR 

spectrum is given in Figure 1.13.  

 

Figure 1.13: Example of peak position variation: unaligned 1H-NMR citric acid peaks (Upper 

panel) and profiles processed by CluPA (lower panel). 

1.7.1.3 Binning 

In order to reduce the data dimensionality, binning (also called bucketing) is commonly used. 

The binning procedure helps in filtering noisy spectra, masks elusive chemical shift differences, 

and it also hides potentially significant changes of low-intensity peaks nearby strong signals. 

Among the many types of spectral binning available, the most commonly used one is an 

equidistant binning of 0.04 ppm: every spectrum is divided into evenly spaced integral regions 

with spectral width of 0.04 ppm [83]. This equal size binning suffers from lack of flexibility of 

the boundaries. For instance, if a peak is split between two bins, this may significantly influence 

the data analysis. In order to avoid peaks being split by the boundaries of bins, methods which 
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are based on non-equidistant spacing have been proposed, e.g., adaptive-intelligent binning, 

Gaussian binning, adaptive binning using wavelet transform and dynamic adaptive binning [81]. 

1.7.1.4 Scaling and Normalization 

Another important preprocessing step for NMR spectra of metabolomic studies is scaling and 

normalization. However, it should be noted that normalization and scaling operations offer 

different purposes and in fact, in usual practice it is also possible to use a combination of 

normalization and scaling methods [83]. The normalization steps are performed to account for 

variations of the overall concentrations of samples caused by different dilutions. Particularly for 

urine, unintended variations of the overall concentrations of samples are very distinctive. The 

dilution of human and animal urine can arise from food deprivation or drug effects and can 

exceed a factor of 10 [85]. Being the biological collection of waste material, urines reflect large 

variability in metabolite concentrations within control subjects. Therefore, data normalization 

and scaling between variables is typically applied to remove unwanted systematic variations 

meanwhile retaining the interesting biological information. Other inter-sample variations, such as 

different relaxation times or variations in RF pulse calibration, can be corrected by 

normalization. Normalization also involves measurement of urinary volumes and animal weights 

as a study proceeds. [82, 85]. A number of methods for normalizing metabolite profiles has been 

reported and every method is based on certain assumptions as to the nature of the data [83]. 

Some of the most common normalizations methods are: (1) Integral normalization; the simplest 

form of normalization, also called constant-sum normalization, whereby each spectrum is 

normalized such that its global integral is 1. While this accounts for variable dilutions each 

sample may possess, it can cover truly biologically relevant changes and obscure interpretation 

of loadings [75]; (2) probabilistic quotient/median fold-change [84]; (3) a reference feature 

present in all samples at a constant level. Normalization may be accomplished internally by 

computational means using internal standards (e.g., TSP) [86] (4) The use of Creatinine peak for 

normalization is also a common practice in urine metabolomics under the assumption that it 

scales well with muscle mass [95].  

The variation in metabolite levels is often linked to concentration in such a way that higher 

concentration metabolites have higher variation. This variation has a strong impact on the 

multivariate statistical analysis. Therefore, it is essential to scale metabolite intensities before 
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analysis to prevent selection of the most abundant metabolites as significant contributors. A 

number of scaling methods are commonly used, namely, mean centering, autoscaling, Pareto 

scaling, range scaling [81].  

Mean centering is used to adjust the differences between high- and low-concentration 

metabolites by converting all values to vary around zero instead of around the mean of the 

metabolite level. Mean centering is commonly used in combination with other scaling methods. 

In case of autoscaling, all metabolites are subjected to unit variance and therefore the data is 

analyzed based on the correlations instead of covariances. Autoscaling is sensitive to noisy data, 

and noisy variables tend to be overvalued. Pareto scaling is widely used in metabolomics since it 

is an intermediate option. It uses the square root of the standard deviation as the scaling factor 

instead of the standard deviation. This scaling method is sensitive to large changes in the data but 

keeps closer to the real data. Range scaling uses the difference between the minimal and the 

maximal concentration of each metabolite which makes all metabolites in the data equally 

important. However, it is important to keep in mind that range scaling is sensitive to outliers 

because only two values are used to calculate the range. [75, 81-82]  

1.7.2 Multivariate Statistical Analysis 

The first step in Multivariate statistical analysis (MVA) is to perform an unsupervised analysis, 

which occurs without prior knowledge of neither the nature nor the group membership of the 

samples. This is often performed using principal component analysis (PCA) [87]. Data have to 

be preprocessed or “cleaned” before this exploratory treatment. 

1.7.2.1 Principal Component Analysis: 

PCA is the most common statistical analysis tool in metabolomics [73], invented by Pearson in 

1901 [88] and later on rediscovered by Wold [89]. Hotelling further developed PCA to its 

present shape [87]. PCA is a multivariate analysis based on projection methods used for 

dimension reduction of data. It is an unsupervised technique and is used in chemometrics as 

workhorse to extract and display the systematic variations in the data. A PCA model provides a 

summary, or overview, of all observations or the samples in the data table. PCA converts the 

multidimensional data space into a low dimensional model plane that approximates all rows 

(e.g., objects or observations) in X, that is, the group of points. This technique expresses most of 
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the variance within a data set using a smaller number of factors, called Principal Components 

(PCs) (tpT) as depicted in Figure 1.14. The first PCA model component (t1p1
T) describes the 

largest variation in the swarm of points. The second component models the second largest 

variation and so on. Each PC is a linear combination of the original variables; thus, each 

successive PC explains the maximum amount of variance, which was not accounted for the 

previous PCs. Each PC is orthogonal to the other PCs and therefore exhibits different 

information. The variation in spectral data is described by a few PCs, compared to the number of 

original variables. Moreover, it enables to find trends, groupings, and extend outliers in the data 

[73, 81, 89]. Mathematically, PCA can be written as follows:  

X =TPT + E = t1p1
T + t2p2

T +……… E 

Where X is the data matrix representing samples and variables decomposed into a score matrix 

(T) and a transposed loading matrix (PT). The E matrix represents the residuals, the part of the 

data not ‘explained’ by the PC model [89]. There are two important matrices obtained from the 

PCA model, known as score and loading plot (Figure 1.14).  

 

Figure 1.14: A representation of a Principal Component Analysis Model showing the reduction 

of data into score and loading plot [73]. 

In a score plot, each point represents a single spectrum. It provides a summary of all spectra and 

shows how they are related to each other. If the observations are close to each other, it means 
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they are similar whereas, observation far from each other are dissimilar. The loadings describe 

the way in which the old variables are linearly combined to generate new variables (PCs) and 

indicate which variables have the greatest contribution in transforming to the new variables. 

Thus, any spectral clustering observed in the score plot is interpreted by examination of the 

loadings. This is a powerful tool for understanding the underlying patterns in the data [73, 81]. 

1.7.2.2 Partial Least Square (PLS) Analysis 

Unlike PCA, PLS is a supervised method, commonly used in metabolomics. Metabonomic 

studies typically include sets of controls and treated samples. In these situations, a more focused 

evaluation and analysis of the data is possible. The basic principle is similar to PCA, but in PLS, 

a second piece of information is used, namely, the labeled set of class identities. In addition to an 

X-matrix of observations (e.g., spectra/samples) and variables (bins) that is used in PCA, a Y-

matrix is created that consists of the same observations but the variables are classes, e.g., treated 

or controls [90]. This enables the establishment of a linear model that can predict Y from the 

measured spectra in X. Observations belonging to the class have a value of one and observations 

not belonging to the class have a value of zero. Like PCA, PLS regression generates a linear 

model of the data, but where PCA models the principal variations in the data itself, PLS derives a 

model that describes the correlation between the X variables and a feature (Y variable) of interest 

[73]. 

PLS can also be used in discriminant analysis, that is, PLS-DA. The Y matrix then contains 

qualitative values, for example, class belonging, gender, and treatment of the samples. OPLS 

can, analogously to PLS-DA, be used for discrimination (OPLS-DA) [91]. In Figure 1.15, the 

advantages with OPLS-DA compared to PLS-DA are described. The between-class variation and 

the within-class variation are separated by OPLS-DA but not by PLS-DA, and this facilitates the 

OPLS-DA model interpretation [73].  
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Figure 1.15: A geometrical illustration of the difference between the PLS-DA and OPLS-DA 

models. In the left panel, the PLS components cannot separate the between-class variation from 

the within-class variation [73]. 
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Chapter 2. New findings on the in vivo antioxidant activity of Curcuma longa 

extract by an integrated 1H NMR and HPLC–MS metabolomic approach. 

This chapter is taken from the following article:  Stefano Dall’Acqua, Matteo Stocchero, Irene 

Boschiero, Mariano Schiavon, Samuel Golob, Jalal Uddin, Dario Voinovich, Stefano Mammi, Elisabetta 

Schievano ‘New findings on the in vivo antioxidant activity of Curcuma longa extract by an 

integrated 1H NMR and HPLC-MS metabolomic approach’, published in Fitoterapia 2016, 109, 

125-131. 

 

2.1 Abstract 

Curcuminoids possess powerful antioxidant activity as demonstrated in many chemical in vitro 

tests and in several in vivo trials. Nevertheless, the mechanism of this activity is not completely 

elucidated and studies on the in vivo antioxidant effects are still needed. Metabolomics may be 

used as an attractive approach for such studies and in this paper, we describe the effects of oral 

administration of a Curcuma longa L. extract (150 mg/kg of total curcuminoids) to 12 healthy 

rats with particular attention to urinary markers of oxidative stress. The experiment was carried 

out over 33 days and changes in the 24-h urine samples metabolome were evaluated by 1H NMR 

and HPLC–MS. Both techniques produced similar representations for the collected samples 

confirming our previous study. Modifications of the urinary metabolome lead to the observation 

of different variables proving the complementarity of 1H NMR and HPLC–MS for metabolomic 

purposes. The urinary levels of allantoin, m-tyrosine, 8-hydroxy-2′-deoxyguanosine, and 

nitrotyrosine were decreased in the treated group thus supporting an in vivo antioxidant effect of 

the oral administration of Curcuma extract to healthy rats. On the other hand, urinary TMAO 

levels were higher in the treated compared to the control group suggesting a role of curcumin 

supplementation on microbiota or on TMAO urinary excretion. Furthermore, the urinary levels 

of the sulphur containing compounds taurine and cystine were also changed suggesting a role for 

such constituents in the biochemical pathways involved in Curcuma extract bioactivity and 

indicating the need for further investigation on the complex role of antioxidant curcumin effects. 
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2.2 Introduction 

Food supplements and nutraceuticals are largely used for health promoting purposes mainly 

ascribed to the antioxidant properties of the phytochemicals contained in these products. 

Nevertheless, it is well accepted that the antioxidant activity is poorly related to the radical 

scavenging properties that can be demonstrated with in vitro chemical assays. Furthermore, 

studies related to the real in vivo antioxidant activities of these chemicals as well as to their 

effects on healthy subjects are still missing. In general, the study of in vivo antioxidant activity is 

difficult due to the complex multiple targets of purified natural products or extracts possessing 

this effect [1, 2]. Current studies of antioxidant phytochemicals are generally focused on specific 

compounds and their effects are evaluated on a limited number of markers [1].  

Curcuma longa L. is extensively used in Ayurveda, Unani, Siddha, and Chinese medicine for the 

management of various diseases. This spice is highly regarded for its numerous biological 

activities especially related to antioxidant, anti-inflammatory and cancer preventive properties 

[3–11]. The effects of C. longa are ascribed to the presence of diarylheptanoid compounds 

known as curcuminoids (namely curcumin, demethoxycurcumin, and bisdemethoxycurcumin), 

which are considered the main active principles of the plant, although their bioavailability is poor 

because of scarce absorption, rapid metabolism and systemic elimination [12, 13]. Extremely 

low serum levels of curcumin after oral administration were observed [12], making it difficult to 

explain its antioxidant properties on the basis of simple radical scavenging action. Nevertheless, 

extensive scientific research over the past decade [6, 14–17] has shown that this compound is 

able to modulate multiple cellular targets and hence that it possesses preventive and therapeutic 

value against a wide variety of diseases thus showing the need for new approaches in the study 

of this natural product. Previous studies in rats have shown the ability of curcumin to upregulate 

the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for 

phase 2 antioxidant and detoxification genes expression, indicating that this compound increases 

the total superoxide dismutase and glutathione peroxidase activities [18,19]. 

Metabolomics can offer new opportunities in this research area since it allows the observation of 

changes in particular bio-fluids caused by the overall effect of a natural product on different 

biochemical pathways. Urinary biomarkers of oxidative status present a great opportunity to 

study redox balance because specimen collection is non-invasive [20] and long-term observation 
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experiments are possible. Therefore, studies using urinary metabolome analysis are attractive 

especially for the evaluation of antioxidants in healthy subjects or in healthy in vivo models.  

In a previous study, we used a metabolomic approach to study the changes of the urinary 

metabolic profile after the administration of C. longa extract in rats. Compared to the control 

group, the treated animals were characterized by decreased levels of allantoin, a urinary 

biomarker of oxidative stress [21].  

As a continuation of our previous study, we evaluated the effect of oral daily administration of 

standardized Curcuma longa L. extract (corresponding to 150 mg/kg of total curcuminoids) to 12 

healthy rats by untargeted metabolomics. Treatment was carried out over 33 days and changes in 

the urinary metabolome were evaluated by monitoring the 24-h urine composition by 1H NMR 

and HPLC–MS. Urinary collections at 42 days (after stopping the treatment at day 33) were also 

analysed. We attempted to use the combined potential of NMR and MS in a unified metabolomic 

approach as a powerful tool to assess the modification of urine composition caused by curcumin 

supplementation in a healthy animal model. Both techniques produced similar representations for 

the collected samples confirming our previous study using similar methodology. The two 

different approaches were able to detect variations in the urinary metabolome, leading to the 

observation of different variables thus proving the complementarity of these two analytical 

techniques for metabolomic purposes. 

2.3 Experimental 

2.3.1 Materials 

Curcumin standard, methanol, acetonitrile, formic acid, hydrochloric acid, deuterated water, 

methanol, glutathione (GSH), sulphosalicylic acid (SSA), γ-glutamyl-glutamic acid (γ-Glu-Glu), 

ethylenediaminetetracetic acid (EDTA), and N-ethylmaleimide (NEM) were obtained from 

Sigma-Aldrich(Milan, Italy). Curcumin glucuronide was synthesized in our laboratory using a 

previously published protocol [22]. C. longa L. dried extract was purchased from a local market; 

the total curcuminoid content was measured as previously described [21,23] as 94%; specifically, 

71.0%, curcumin, 20.5% demethoxycurcumin, and 2.5% bisdemethoxycurcumin were 

determined using HPLC–MS and HPLC-DAD measurements [21]. 
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2.3.2 Animals and Urine Collection 

All experimental protocols involving animals were reviewed and approved by the Ethical 

Committee for animal experiments of the University of Padua (CEASA, protocol number 

49571). The study involved 12 Sprague–Dawley rats: 6 males and 6 females, 8 ± 1 weeks of age, 

at the beginning of the experiments; male animals weighted 78.0 ± 2.3 g and female animals 79.5 

± 4.0 g. They were caged in a temperature- and photoperiod-controlled (12-h light/dark cycle) 

room with rodent maintenance diet and water ad libitum. Rats were randomly divided into a 

control (three males and three females) and a curcumin-treated group (three males and three 

females). No differences were observed between the two groups at the beginning of the 

experiment, based on HPLC–MS and NMR preliminary data. Six hundred milligrammes of C. 

longa extract were suspended in 12 mL of water. The treated group received a daily dose of 160 

mg/kg of C. longa extract (corresponding to 150 mg/kg total curcuminoids or 112 mg/kg of 

curcumin) orally by gavage for 33 days. An equal dose of water was given to the control group. 

At day 0, 6, 15, 22, 28, 33 and 42 (10 days after the end of the treatment), the animals were 

housed individually in metabolic cages for the collection of the 24-h urine outputs. The collected 

samples were stored at −80 °C until 1H NMR and HPLC–MS analysis. 

2.3.3 HPLC–MS Urine Analysis 

The UPLC-HRMS analysis was conducted by the group of Prof. Stefano Dall’Acqua at the 

Department of Pharmaceutical Sciences, University of Padova.  To obtain a metabolic profiling 

of urine, an HPLC–MS full scan method was used. A Varian MS 500 equipped with a prostar 

430 autosampler and binary chromatograph 212 series (Varian, Palo Alto, USA), was used as 

HPLC–MS system. An Agilent (Milan, Italy) Eclipse XDB C-8 column (2.1 × 150 mm 3.5 μm) 

was used as stationary phase. The mobile phase was composed of solvent A (acetonitrile with 

0.5% acetic acid) and solvent B (water with 2% formic acid). Linear gradients of A and B were 

used, as follows: 0 min, 10% A; 20 min, 85% A; 21 min, 100% A, 21.30 min, 10% A; 27 min, 

10% A. The flow rate was 200 μL/min and the injection volume was 10 μL. The mass range 

explored was 50–1000 m/z. MS were recorded both in positive standard mode and in turbo 

depending data scanning (tdds) mode that allows the elucidation of the fragmentation patterns of 

the detected ions. Collected urine samples were centrifuged (13,000 g for 10 min) and directly 

injected in the HPLC. Each HPLC–MS data set was processed with MZmine 2.9 software [24]; 
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from the raw data files, we obtained a data set composed of 102 variables. Median Fold Change 

normalization was applied to take into account the effects of sample dilution. Data were log-

transformed and mean centred. 

2.3.4 1H–NMR Urine Analysis 

Aliquots of 700 μL of urine at pH 2.50 ± 0.05 were centrifuged at 13,000 rpm for 10 min and 

mixed with 70 μL of 2 mM 3-(trimethylsilyl)propionate-2,2,3,3,-d4 (TSP) in D2O solution. 1H 

NMR spectra were recorded at room temperature using a Bruker (Rheinstetten, Germany) 

Avance DMX 600 spectrometer. One-dimensional spectra were acquired using the 

NOESYGPPR1D pulse sequence. Parameters used were: 64 scans, 32 k data points, spectral 

width of 8389.26 Hz, 2 s relaxation delay, 50 ms mixing time, 1.95 s acquisition time. Prior to 

Fourier transformation, the FIDs were zero-filled to 64 k points and an exponential line 

broadening factor of 0.3 Hz was applied. All spectra were manually corrected for phase and 

baseline distortions using ACD/NMR Workbook software (Advanced Chemistry Development, 

Inc. Toronto, Ontario, Canada) and were referenced to the CH3 resonance of creatinine at 3.13 

ppm. Spectra were aligned using the CluPA algorithm (VU T.N., Laukens K., Valkenborg D. 

(2012) speaq: an R-package for NMR spectrum alignment and quantitation. R package version 

1.1.). The spectral region between 4.7 and 5.0 ppm was removed prior to statistical data analysis 

to avoid variability due to the residual water signal. Data were reduced to 470 bins by intelligent 

bucketing; the obtained data set was normalized by Total Sum Normalization and mean 

centering and Pareto scaling were applied. 

2.3.5 Blood Sample, Glutathione and Curcumin Quantification 

Whole blood samples were collected at day 34 and stored in heparinised tubes at −20 °C until 

analysis. GSH was measured using a previously described method [25]. Briefly, a 20 mM GSH 

stock solution in water was used to prepare calibration curves. The precipitating solution was 

prepared by mixing 150 μL of a solution containing NEM, EDTA and γ-Glu-Glu (in 

water/methanol, 85/15 (v/v)) with 50 μL of SSA; the final concentrations in the precipitating 

solution were 20 mM, 2 mM, 250 μM and 2% (w/v) for NEM, EDTA, γ-Glu-Glu and SSA, 

respectively. Curcumin was measured using a previously published method using SPE extraction 

[23]. 
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2.3.6 Statistical Data Analysis 

Multivariate data analysis based on projection methods was applied for statistical data analysis. 

Specifically, exploratory data analysis was performed by principal component analysis (PCA) 

while a new projection to latent structures (PLS)-based method was applied to study the changes 

in the urinary metabolome during the experiment. While PCA is a well-known technique used in 

multivariate data analysis [26], the PLS-based approach applied to model the data collected 

during our longitudinal study was recently published by our group [21]. Projection to latent 

structures by partial least squares regression (PLS) [27] is an effective and robust regression 

technique used to investigate the relationships existing between two blocks of data, usually 

called X- and Y-block. In metabolomics applications, PLS often produces a large number of 

latent components with the result to compromise a clear interpretation of the model. For this 

reason, we elaborated a post-transformation method, called post-transformation of PLS2, able to 

decompose the structured variation of the X-block discovered by PLS into two main blocks 

corresponding to the variations correlated (the so called parallel or predictive block) and 

orthogonal to the Y-block by a suitable rotation of the weights of the PLS model. Post-

transformation of PLS2 is a three step approach. In the first step, a PLS regression model is built 

on the data; in the second step, the weight matrix of the model is rotated while in the third step a 

regression model is rebuilt by using the same framework of the PLS algorithm but the new 

weight matrix to project the data. The relationships between the X-block and the Y-block can be 

investigated by exploring only the parallel part of the model by using suitable correlation loading 

plots. As a result, the model obtained by post-transformation of PLS2 maintains the same power 

in prediction and regression coefficients of the unrotated PLS model but can be easily interpreted 

because the number of components useful to interpret the model is usually reduced. Post-

transformation of PLS2 can be applied to model longitudinal studies by considering the 

experimental data and the design matrix as X- and Y-block, respectively. In our study, we 

supposed an interaction model to define the design matrix. The significance of the terms time, 

treatment and time× treatment included in the model was evaluated by permutation tests. 

To avoid over-fitting and prove the robustness of the obtained models, we performed N-fold full 

cross-validation with different values of N (N=6, 7, 8) and a permutation test on the response 

(500 random permutations) according to good practice for model validation. Data set comparison 

was performed by Bidirectional Orthogonal Projections to Latent Structures (O2PLS) [28]. PCA 
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and PLS models were built using SIMCA 13 (Umetrics, Umea, Sweden) while the platform R 

3.0.2 (R Foundation for Statistical Computing) was used to perform t-test and Mann–Whitney 

test, to post-transform the PLS model (user-written R function) and to build the O2PLS model 

(user-written R function). 

2.4 Results 

2.4.1 Animal Weight and Urinary Output 

No differences in the treated vs control group were observed in animal weight and 24-h urinary 

output during the experiment. The differences between the two groups were not statistically 

significant according to t-test and Mann-Whitney test (both p-values were >0.10). Data are 

summarized in Table 2.1. 

 Body weight (g) Urine volume (mL) 

Day Control Treated Control Treated 

0 78.8 ± 3.7 78.8 ± 3.1 6.3 ± 4.0 7.0 ± 2.4 

6 110.0 ± 5.0 107.6 ± 7.3 10.7 ± 3.0 15.3 ± 6.5 

15 190.3 ± 20.4 180.8 ± 20.8 12.7 ± 2.2 15.7 ± 5.3 

22 230.8 ± 38.1 217.0 ± 39.6 13.8 ± 2.0 16.5 ± 2.7 

28 254.8 ± 44.8 236.8 ± 45.1 11.2 ± 1.8 11.8 ± 2.1 

33 278.5 ± 60.8 262.8 ± 55.0 11.5 ± 1.5 10.6 ± 1.2 

42 300.3 ± 68.7 290.3 ± 64.0 10.0 ± 2.9 10.3 ± 3.1 

Table 2.1. Variations of body weight and 24-hour urine output of the rats during the course of 

the experiment. 

2.4.2 Data Analysis of the 1H NMR and HPLC–MS Data Sets 

Exploratory data analysis on the two data sets did not show the presence of outliers in the data. 

PCA models of the urines collected on day 0 did not show differences between rats belonging to 

the control or the treated group. 
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As a first step of our data modelling strategy, the two data sets were compared to investigate the 

common information shared by NMR and HPLC–MS. To this end, we scaled both data sets to 

unit variance and applied O2PLS (Fig. 2.1). The obtained model showed a joint overlapping 

variation described by 3 latent components (R2 = 0.59 for NMR and R2=0.45 for HPLC–MS), a 

unique systematic variation for NMR having 4 latent components (R2=0.19) and a unique 

systematic variation of 4 latent components for HPLC–MS (R2=0.29). As a consequence, we can 

conclude that a large part of the systematic variation of the two data sets contains the same 

information while only a small part is unique and non-overlapping in the two data sets. Figure 

2.1 shows the score scatter plot for the first and the second latent components describing the joint 

co-variation of the two data sets: the common information can be qualitatively interpreted in 

terms of the effects of time evolution and curcumin supplementation. This first model considers 

only the correlation structure existing between the NMR and the HPLC–MS data sets, and 

ignores the chemical identity of the variables used. For this reason, we cannot consider the two 

data sets as equivalent as will be proven with the following models. 
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Figure 2.1. Score scatter plot describing the joint systematic variation explained by the first and 

the second latent component of the O2PLS model; different symbols and colours were used to 

allow the interpretation of the observed patterns in terms of time evolution and treatment effect. 

C = control; T = treated; the numbers refer to the day of urine collection. 
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In the second part of our data modelling strategy, post-transformed PLS2 models of the data 

related to urine samples collected from day 6 to day 33 proved that the interaction term time × 

treatment was not significant at the level of 95% and that a simple linear model can be used for 

the design matrix. Both the model obtained for the 1H NMR data set and that obtained for the 

HPLC–MS data set clearly showed the effects of time and treatment on the metabolic profile of 

the urine as it can be observed in the score scatter plots of Figure 2.2 and 2.3. The model for the 

1H NMR data set had A = 2 + 4 components, R2 = 0.74 and Q2 = 0.52 for treatment and R2 = 

0.77 and Q2 = 0.70 for time while the model for the HPLC–MS data set had A = 2 + 2 

components, R2 = 0.73 and Q2 = 0.44 for treatment and R2 = 0.85 and Q2 = 0.64 for time. 
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Figure 2.2. 1H-NMR data set: score scatter plot for the post-transformed PLS2 model; the time 

evolution of the composition of the collected urines is described by the horizontal axis (tp[1]) 

while the vertical axis (tp[2]) represents the effects of the different treatment. C = control; T = 

treated; the numbers refer to the day of urine collection. 

By analyzing the correlation loading plots of the obtained models, it was possible to find 

variables characterizing the time evolution of the samples and the effects of curcumin 

administration on the rat urine metabolome. 



 

41 

Days 15, 28 and 33 were selected as key points of the experiment to check the presence of 

significant modifications of control vs. treated groups in the metabolites highlighted by our 

analysis. 
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Figure 2.3. HPLC-MS data set: score scatter plot for the post-transformed PLS2 model; the time 

evolution of the urinary metabolome can be observed along the horizontal axis (tp[1]) while the 

effects of the treatment are included in tp[2] (vertical axis). C = control; T = treated; the numbers 

refer to the day of urine collection. 

Considering the 1H NMR data, resonances associated with the discrimination between control 

and treated groups were observed in the range of deshielded protons (8.17–8.50 ppm), but it was 

not possible to assign any known metabolite to those signals (Figure 2.4). Tentative assignments 

were deduced on the basis of spectral data for bins as reported in Table 2.2. Hippuric acid, 2-

oxoglutarate and trimethylamine N-oxide (TMAO) levels were higher in the treated group 

compared to the control. On the other hand, the urinary marker of oxidative stress, 8-hydroxy-2′-

deoxyguanosine (8-OHdG), was higher in the control group. The correlation loading plot 

obtained for the model of the HPLC–MS data set highlighted significant differences in a set of 

variables that were chemically identified and are related to oxidative stress. Specifically, our 

untargeted approach confirmed the metabolites found in our previous targeted approach [21].  
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Figure 2.4. Representative 600 MHz 1H NMR spectra of urine after oral administration of 

curcumin in rats. (a) Aliphatic region (0.0–4.5 ppm). (b) Aromatic region (5.0–9.5 ppm). The 

vertical scale in the aromatic region was magnified four times compared with that in the aliphatic 

region. 

Indeed, four urinary markers of the oxidative status of the animals, i.e., allantoin, m-tyrosine, 3- 

nitrotyrosine, and 8-OHdG, were identified in the urine on the basis of their m/z value and 

fragmentation patterns compared to those registered in the Human Metabolome Database and 

Mass Bank Database. Furthermore, urinary levels of two sulphur containing compounds, namely 

taurine and cystine were modified during the experiment. In Table 2.3, the calculated reduction 

of these metabolites as average measured data of treated vs. control animals on days 15, 28 and 

33 are reported. Allantoin, 3-nitrotyrosine, m-tyrosine, and 8-OHdG levels were significantly 

decreased in the treated compared to the control group starting from day 6 of urine collection, 

and also at the end of the treatment (Table 2.3). Surprisingly, on day 28 the average m-tyrosine 

levels were higher (+13%) in the treated group. 
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ppm Assignment day 15 day 28 day 33 

8.50-8.17 not assigned >C* >C# >C* 

7.57-7.55 hippuric acid >T# >T* >T# 

4.30 Creatinine >C# >C* >C* 

3.95 8-OHdG >C# >C* >C* 

3.32 not assigned >T* >T# >T# 

3.23-3.22 TMAO >T* >T* >T# 

3.19 2-oxoglutarate >T* >T# >T* 

2.81 Citrate >C# >T* >T* 

1.81-1.79 hydroxybutyrate >C* >C* >C# 

Table 2.2. Comparison of selected bins observed in the NMR data set; differences between 

treated and control group are reported in terms of increase or decrease of the NMR integral. *p-

value <0.10 for both t-test and Mann-Whitney test; #difference in the mean values, but not 

significant at the level of 90% for both t-test and Mann-Whitney test. 

On day 33, allantoin, m-tyrosine, and 8-OHdG reductions in the treated group compared to 

controls were significant (p-value b 0.10 for both t-test and Mann–Whitney test). Significant (p-

value b 0.10 for both t-test and Mann–Whitney test) changes were also observed for taurine 

(−24%) and cystine (−40%) in the treated group compared to controls (Table 2.3). The levels of 

these metabolites were measured also 10 days after the administration of Curcuma extract 

stopped (day 42). At this point (day 42) no significant differences in urinary composition were 

observed between treated and control groups showing that the observed changes were reversible 

with the interruption of curcumin extract administration. 

Assignment day 15 day 28 day 33 

allantoin -31.0* -16.0# -34.0* 

3-nitrotyrosine -23.0# -18.0# -27.0# 

m-tyrosine -0.2# +13.0# -20.0* 

8-OHdG -0.7# -19.0# -28.0* 

taurine -4.4# -26.0* -24.0* 

cystine -24.0# -29.0* -40.0* 
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Table 2.3. Oxidative stress urinary markers reduction in the treated group as a percentage of the 

value of the control group; *p-value <0.10 for both t-test and Mann-Whitney test, #difference in 

the mean values, but not significant at the level of 90% for both t-test and Mann-Whitney test. 

2.4.3 Whole Blood Glutathione (GSH) and Curcumin Levels  

Blood samples were collected at the end of the treatment (day 34) and GSH and curcumin levels 

were measured. We did not find any difference between the average concentration of whole 

blood GSH in the control and the treated group on day 34. Curcumin, curcumin glucuronide and 

curcumin sulphate were not detectable in either the treated or control groups. 

2.5 Discussion 

Food supplements and nutraceuticals with claimed antioxidant properties are enjoying a growing 

diffusion because of their health-promoting effects. Polyphenols are a large group of 

phytochemicals that present strong chemical antioxidant properties. Their health benefits are 

often claimed based on their antioxidant properties in vitro, but evidence for in vivo antioxidant 

effects is still limited since no validated in vivo biomarkers have been identified and no long-

term studies are available [1, 29–31]. Metabolomics offers new opportunities for the evaluation 

of in vivo antioxidant properties of complex mixtures such as natural products [32–34]. The 

study of urinary metabolome and urinary biomarkers of oxidative stress is attractive because 

sample collection is simple and non-invasive [20] and may lead to the observation of modified 

levels of metabolites that can be considered as a starting points for depicting new mechanisms of 

in vivo antioxidant activity. In this paper, we report significant changes in the urinary 

metabolome of healthy rats, orally treated with curcumin, compared to controls in data sets 

obtained both by NMR and HPLC–MS. These results confirm our previous findings obtained 

using a different experiment design: a lower dose of curcumin extract (80 mg/kg) was 

administered, and a targeted HPLC–MS approach was used, by selecting 25 metabolites in the 

urine chromatogram [21]. In the present work, we identified a larger number of metabolites that 

are related to curcumin supplementation in healthy rats. 

The metabolic changes revealed by NMR data are related to phenolic compound metabolism. 

Previously published papers reported increase in urinary hippuric acid levels after administration 

of fruit and polyphenol rich foods [35]. Other authors reported that the oral administration of the 
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flavonoid quercetin to rats, in an NMR-based metabolomic study, resulted in an increase in 

choline, creatinine, dimethylglycine, hippurate, taurine, and TMAO and in the reduction in 

acetate, alanine, and lactate [36]. These authors considered the general changes of such 

compounds as modification in osmolyte levels thus suggesting that these data may indicate 

improved glomerular or general renal function and correlated their observation in kidney 

osmolyte activity to the potential beneficial effects of quercetin on kidney function and 

hypertension [36]. Our data showed a higher level of creatinine and taurine in the control group. 

It is difficult to correlate the decreased urinary creatinine levels in the treated group with any 

biological meaning. On the contrary, the reduced urinary taurine levels, confirmed our previous 

observations [21] and other published papers that reported lowered taurine brain concentrations 

in curcumin-treated rats [37]. Taurine has been previously reported to decline in a number of 

tissues with advancing age and also in rats, the urinary levels were significantly reduced with 

ageing [38]. On the other hand, increased urinary taurine levels have been indicated as a specific 

marker of liver toxicity [37, 38]. Cystine levels were also significantly reduced on day 33, but 

this metabolite can also derive from cysteine modification during 24-h urine collection so that it 

is difficult to assess its meaning in this bio-fluid. 

TMAO is an oxidation product of trimethylamine (TMA), and both these compounds are 

products of choline metabolism. The methylamine pathway is a typical example of microbial–

mammalian co-metabolism and is well known that intestinal microbiota plays a role in the 

catabolism of choline in humans and rodents [39]. Dietary choline is converted in TMA by gut 

microbiota and TMA is mainly oxidized to TMAO [39-41]; thus, an increase of such metabolite 

may be related to the influence of the oral curcumin treatment on intestinal microbiota. There is 

strong interest in the evaluation of TMAO plasmatic or urinary levels due to various physio-

pathological functions that have been proposed for this compound. In fact, recent animal studies 

have shown a link between intestinal microbial metabolism of the choline moiety in dietary 

phosphatidylcholine and coronary diseases through the production of TMAO, considered as a 

proatherogenic compound. In humans, the production of TMAO from dietary 

phosphatidylcholine is dependent on metabolism by the intestinal microbiota. Furthermore, 

ingestion of different types of foods, such as eggs or fish, may influence TMAO plasma levels 

[41–43]. Other authors reported the ability of oral broad-spectrum antibiotics to temporarily 

suppress the production of TMAO suggesting that intestinal microorganisms participate in 
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phosphatidylcholine metabolism to form circulating and urinary TMAO [41, 44]. Increased 

plasma TMAO levels are associated with an increased risk of incidence of major adverse 

cardiovascular events [41, 44]. The role of TMAO appears to be complex but our data indicate 

that curcumin oral administration modifies the microbiota or influences the urinary excretion of 

this compound thus leading to changed urinary levels in the treated group. This result suggests a 

role of the intestinal microbial population in the mechanism of action of curcuminoids. Recently, 

the ability of curcumin supplementation to modulate colonic microbiota during colitis and colon 

cancer prevention was studied showing an increase in microbial diversity and restoration of 

colonic microbial composition to that observed in healthy WT animals compared to mouse 

model of IBD-associated colon cancer [45]. 

Urinary levels of some markers of oxidative stress were significantly reduced because of the 

treatment, as demonstrated by HPLC–MS results. Allantoin is considered a urinary marker of 

oxidative stress, because it is the predominant product of non-enzymatic oxidation of uric acid 

by many types of free radicals, and it is considered a valid biomarker of oxidative state 

especially in humans [20]. 

m-Tyrosine is considered a promising biomarker for oxidative damage to proteins [46]. The 

highly reactive hydroxyl radical oxidizes phenylalanine residues to o-tyrosine and m-tyrosine 

and increased levels of these metabolites are correlated to an increased ROS production from 

normal metabolic processes or from exposure to exogenous factors. Also reactive nitrogen 

species react readily with tyrosine and protein-associated tyrosine to form free 3-nitrotyrosine 

and protein associated 3-nitrotyrosine, respectively [47]. Urinary 3-nitrotyrosine is a potential 

biomarker that may reflect the enhanced generation of reactive nitrogen species and it has been 

proposed as a biomarker to detect changes in oxidative stress and to evaluate the efficacy of 

therapeutic interventions aimed at reducing oxidative stress [48]. 

Urinary 8-OHdG is considered a biomarker of generalized cellular oxidative stress because it is 

one of the predominant products of oxidized DNA repair [49]. Because it is fairly water-soluble, 

it will be excreted into the urine without being further metabolized and it is considered a stable 

end product of non-enzymatic DNA oxidation [20]. Therefore, increased urinary levels of 8-

OHdG could be correlated to an increase of oxidative DNA damage [20]. Our experiment 

showed significant reduction of some of these urinary markers of oxidative stress after 33 days 
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of treatment (see Table 2.3), suggesting an in vivo antioxidant effect of curcumin 

supplementation in the healthy rat. 

To have a further parameter related to the oxidative state of the animals at the end of the 

treatment, blood samples were collected on day 34 and GSH levels were measured. The average 

blood GSH levels showed no difference (t-test p-value b 0.01) between the control and the 

treated group. Other authors reported similar results in a study that evaluated the effect of 

curcumin and one analogue [bis-1,7- (2-hydroxy-phenyl)-hepta-1,6-diene-3,5-dione] (BDMC-A) 

on carbon tetrachloride-induced hepatotoxicity in rats. Control and curcumin treated groups 

presented the same GSH values, while significant increase in plasma GSH levels was observed 

in the animals group treated with CCl4 and curcumin compared with the CCl4 treated ones [50]. 

However, a previous study reported a role for curcumin against GSH depletion-mediated 

mitochondrial dysfunction in vitro and in vivo [51]. Another study reported a significant effect of 

curcumin on GSH biosynthesis in alveolar epithelial cells [52]. Other researchers have 

considered that some of the most important effects of curcumin, such as the anticarcinogenic, 

antimutagenic, antioxidant and cytoprotective activities can be explained by its inhibitory effect 

on glutathione S-transferase (GST) [15]. The capacity of curcumin to protect rats from 

adriamicin (ADR) nephrotoxicity was demonstrated [53]. Curcumin protected against ADR-

induced renal injury by suppressing oxidative stress and increasing kidney glutathione content 

and glutathione peroxidase activity; nevertheless, in the same paper, kidney GSH levels of 

animals treated either with saline or curcumin were similar showing that curcumin treatment 

does not increase kidney GSH levels but can restore ADR induced GSH depletion. Our results 

indicate that curcumin supplementation does not increase blood GSH levels in healthy subject. 

Considering this result the low plasma concentration of curcumin due to its poor absorption, 

must be underlined. Previous studies have reported that, due to poor bio-availability, only traces 

of curcumin are detected in plasma after oral administration [12]. Also our data showed no 

detectable curcumin and curcumin conjugated metabolites in blood 24 h after the last 

administration (day 34) indicating rapid elimination of the compound from the bloodstream, in 

agreement with previously published results that reported the curcumin plasma peak 40 min after 

oral administration of 500 mg/kg in rats [54]. A large amount of orally administered curcumin, 

due to poor absorption, is present at the intestinal level so that the intestinal mucosa is exposed to 

higher concentrations of curcumin and for this reason, interactions of curcumin with GSH and 
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GST are likely to be more significant in intestinal epithelial cells rather than in plasma [55]. In 

our healthy animal model, curcumin supplementation is not likely to play a prominent role to 

change GSH levels in plasma. 

2.6 Conclusions 

In this work we used both 1H NMR and HPLC–MS techniques to study the modification of 

urinary composition in rats treated with C. longa extract correlated with in vivo antioxidant 

activity. Multivariate analysis on 1H NMR and HPLC–MS data produced similar representations 

for the collected samples. The two different approaches were able to detect variations in the 

urinary metabolome, leading to the observation of different components, showing the 

complementarity of these two analytical techniques for metabolomic purposes. The results of the 

present study are in agreement with our previously published data obtained with a lower 

curcumin dose and using a targeted 1H NMR and HPLC–MS approach [21]. The evaluation of 

the effects of Curcuma extract on urinary composition in healthy rats by a metabolomic approach 

led us to observe evidence for an in vivo antioxidant effect caused by a significant reduction in 

the amount of urinary biomarkers of oxidative stress such as allantoin, m-tyrosine, 8-OHdG. A 

tendency to the reduction of 3-nitrotyrosine was also observed. Our metabolomics-based study 

supports an in vivo antioxidant effect of the oral administration of C. longa extract to healthy 

rats. The observation that urinary TMAO levels are increased in the treated compared to the 

control group may be related to the influence of curcumin supplementation on microbiota, as 

recently indicated by other research groups, or on the urinary excretion of this metabolite. 

Urinary levels of taurine and cystine, sulphur containing compounds, were also changed 

suggesting a role for such constituents in the biochemical pathways involved in C. longa extract 

bioactivity and indicating the need for further investigation on curcumin effects. The 

undetectable plasmatic levels of curcumin and its conjugates confirmed its rapid elimination 

from the bloodstream after oral administration indicating that the contribution to the whole 

antioxidant activity by a direct radical scavenging action is negligible. The unchanged plasmatic 

GSH amount in treated and control group indicates that curcumin supplementation in the health 

subject does not increase this endogenous antioxidant's levels. 
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Chapter 3: Metabolic effects of Polygonum cuspidatum supplementation on 

urinary composition of healthy rats: a longitudinal study. 

3.1 Introduction 

Resveratrol (3,5,4’-trihydroxystilbene), is a simple polyphenolic compound that in the past 

twenty years has received widespread attention due to its supposed beneficial health effects. It is 

found in grapes, berries and peanuts [1] and in various plants, such as in Vitis vinifera and in 

Polygonum cuspidatum (Japanese knotweed). In traditional Chinese and Japanese medicine, P. 

cuspidatum has been used to treat several diseases such as hyperlipidemia, inflammation, 

infections and cancer [2]. P. cuspidatum is considered one of the best sources of resveratrol 

because it is a world-diffused invasive plant and it contains higher amounts of this compound 

than other plants or fruits [3]. This plant is also used as dried extract in the formulation of food 

supplements and herbal medicines, because of its content in resveratrol. 

Numerous resveratrol derivatives, such as piceid (resveratrol-3-O-β-glucoside) and other 

glucopyranoside-conjugates [2] have been detected in many botanical sources, but until now, 

only few studies have focused on their possible biological effects. 

Scientific interest in resveratrol has grown starting from the late 1990s, when it was first 

demonstrated to prevent carcinogenesis in mice [4]. Since then, its potential health promoting 

effects have been studied through numerous in vitro and in vivo experiments. A large number of 

pharmacological targets were discovered and numerous health benefits and disease-preventing 

activities, such as chemopreventive [5] and anti-inflammatory [6] ones, were related to 

resveratrol administration in animal models. Furthermore, many papers have considered 

resveratrol as a possible treatment or a preventing-agent with usefulness in cancer, 

cardiovascular disease, ischaemic injuries, as well as a possible enhancer of stress resistance. 

Finally, some papers considered this compound for its effects on the lifespan extension of 

various organisms from yeast to vertebrates [7-8]. Because of its antioxidant properties and its 

caloric restriction mimetic role [8], a prevention role in many age-related and metabolic diseases 

has been attributed to resveratrol, most importantly in obesity-related disorders such as diabetes 

and cardiovascular diseases [9-10]. 
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The mechanism by which resveratrol exerts such a range of beneficial effects is not yet clear. 

There are numerous papers describing in vitro and potential in vivo resveratrol effects, but doubts 

on its effectiveness are present because of its low bioavailability. Resveratrol is absorbed by the 

intestine but it is rapidly metabolized both in the intestinal lumen and in the liver in more 

hydrophilic derivatives that are then excreted in the urine as glucuronides and sulfates. 

Moreover, gut microbiota transform resveratrol in dihydroresveratrol by reducing the molecule's 

double bond and also this metabolite is absorbed by the intestine and further metabolized and 

conjugated [11]. Despite extremely low bioavailability and rapid clearance from the circulation, 

the evidence of health promoting effects of resveratrol in the prevention or delay of 

cardiovascular, metabolic and inflammation related diseases is growing [10]. 

One explanation can be that resveratrol may exert such different biological activities through 

multiple targets and multiple molecular mechanisms. Since several biochemical pathways are 

potentially affected, metabolomic approaches can provide unexplored information in the study of 

the bioactivity of natural products. The combined use of NMR and mass spectrometry coupled to 

liquid chromatography is a fast, effective and convenient tool to elucidate the alterations in 

metabolic pathways in biological fluids under different physiological conditions. Although mass 

spectrometry offers better sensitivity and better developed protocols, the use of NMR for the 

metabolic profiling of cells, tissues and biological fluids has grown extensively in the recent 

years [12]. 

The analysis of urinary metabolic changes can provide information on the effects of food 

supplements or health promoting products on healthy subjects or animal models. Specimen 

collection is non-invasive and long-term experiments can be easily conducted; some urinary 

biomarkers of oxidative stress can be measured offering the opportunity to evaluate the redox 

status of the considered organism [13]. Sample preparation is more straightforward in the case of 

urine than with other biological fluids (plasma for example) because of lower sample complexity 

and lower protein/peptide content [14]. Finally, urine samples the metabolic end-products from 

the organism destined for excretion; therefore, compared to blood, it is prone to higher biological 

variations [14]. Thus, the entire urine metabolome can be described by an untargeted approach 

and the subtle differences between control and treated groups can be highlighted by multivariate 

data analysis methods. 
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Food supplements and so called “nutraceutical” products are used by people with the aim to 

maintain or improve their state of health; nevertheless, scarce information is available in the 

published literature about the effects of these products on healthy animal models or subjects. In 

the case of resveratrol, many studies are available on its activity on pathological animal models, 

such as cancerous or diabetic rats or animals fed with a high-fat-diet [15-18], but no published 

papers deal with urine metabolomics of healthy animal models supplemented with P. cuspidatum 

extract.  

In the proceeding of metabolomics-based works on natural products performed by Dall’Acqua 

and collaborators [19-20], with the aim to evaluate the possible effects of P. cuspidatum on a 

healthy animal model, we supplemented rats with a P. cuspidatum extract (100 mg/kg containing 

20% of resveratrol) for 49 days. The variations of urinary composition were studied using 1H-

NMR, UPLC-HRMS and multivariate statistical analysis. Specific attention was devoted to two 

oxidative stress urinary biomarkers, namely allantoin and 8-hydroxydeoxyguanosine (8-OHdG). 

3.2 Experimental 

3.2.1 Materials 

P. cuspidatum extract was purchased from a local market. The resveratrol content was measured 

by HPLC-DAD and HPLC-MS analysis and the amount found was 20.0 ± 0.1% w/w. Allantoin, 

8-OHdG and resveratrol standards were purchased from Sigma Aldrich. HPLC-grade acetonitrile 

and formic acid were purchased from Sigma Aldrich. Deionized water used in HPLC and UPLC 

analysis was filtered through a Milli-Q system equipped with a 0.22 μm cut-off filter (Millipore). 

3.2.2 Experimental Design 

A longitudinal design was implemented to evaluate the effects of P. cuspidatum supplementation 

on the metabolite content of the urine collected during 49 days of treatment of 2 groups of rats. 

The treated group received, orally by gavage, a daily dose of 100 mg/kg of P. cuspidatum extract 

suspended in water while an equal dose of water was given to the control group. Rat urine 

samples were collected at day 0, 7, 14, 21, 28, 35 and 49 during the experiment and they were 

subjected to UPLC-HRMS and 1H-NMR analysis. The P. cuspidatum dose (100 mg/kg) was 

selected on the basis of the resveratrol content (20.0 ± 0.1% w/w corresponding to 20 mg/kg 

resveratrol), and considering previous published studies on rats showing both efficacy [21-23] 
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and safety of such oral dose [21]. 

All animal procedures were approved and conformed to the directives of the Ethical Committee 

for animal experiments of the University of Padova (CEASA). Six male and six female Sprague-

Dawley rats, 6 ±2 weeks of age and weighing 108.0 ± 24.4 g, where used for the study. Animals 

were fed standard laboratory diets and water ad libitum and were maintained in a temperature- 

and photoperiod- controlled room (12-h light/dark cycle). Rats were divided randomly in a P. 

cuspidatum treated group (three males and three females) and a control group (three males and 

three females). No differences were observed between control and treated groups at the 

beginning of the experiment on the basis of a preliminary metabolomics investigation.  

Rats were housed individually in metabolic cages for the collection of the 24-h urine outputs. 

Urine samples were then stored at -80 °C to avoid chemical degradation. 

3.2.3 UPLC-HRMS Urine Analysis 

The UPLC-HRMS analysis was conducted by the group of Prof. Stefano Dall’Acqua at the 

Department of Pharmaceutical Sciences, University of Padova.  To obtain a metabolic profile of 

urine, a UPLC-HRMS full-scan method was used. An Agilent 1290 Infinity UPLC system 

equipped with a Waters Xevo G2 Q-TOF mass spectrometer was employed. The detector was 

equipped with an electrospray (ESI) ionisation source and was operating in positive resolution 

mode. The sampling cone voltage was adjusted at 40 V, the source offset at 80 V. The capillary 

voltage was adjusted to 1500 V. The nebulizer gas used was N2 at a flow rate of 800 L/h. The 

desolvation temperature was 450 °C. The mass accuracy and reproducibility were maintained by 

infusing lockmass (leucine–enkephalin, m/z 556.2771) thorough Lockspray at a flow rate of 20 

μL/min. Centroided data were collected for each sample in the mass range 50 – 1200 Da, and the 

m/z value of all acquired spectra was automatically corrected during acquisition based on 

lockmass. An Agilent XDB C-8 column (2.1 mm x 150 mm, 3.5 μm) was used as stationary 

phase. The mobile phase was composed of solvent A (acetonitrile with 0.1% formic acid) and 

solvent B (water with 0.1% formic acid). Linear gradients of solvents A and B were used, as 

follows: 0 min, 8% A; 14 min, 48% A; 16 min, 100% A; 17 min, 100% A; 17.5 min, 8% A; 24 

min, 8% A. The flow rate was 200 μL/min and the injection volume was 1 μL. 

Collected urine samples were centrifuged at 13.000 rpm for 3 minutes prior to analysis and 
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directly injected in the UPLC. 

Centroided and integrated chromatographic mass data were processed by MarkerLynx 

Applications Manager Version 4.1 (Waters) to generate a multivariate data matrix. An 

appropriate method for data deconvolution, alignment and peak detection was created and the 

data were subsequently elaborated by the software. The parameters used were retention-time 

range 2.00–17.00 min, mass range 100–650 Da, mass tolerance 0.01 Da, noise elimination level 

was set to 10.00, minimum intensity was set to 15% of base peak intensity, maximum masses per 

RT was set to 6 and, finally, RT tolerance was set at 0.01 min. Isotopic peaks were excluded from 

analysis. A list of the ion intensities of each peak detected was generated, using retention time 

and the m/z data pairs as the identifier for each ion. The resulting three-dimensional matrix 

contains arbitrarily assigned peak index (retention time-m/z pairs), sample names (observations), 

and ion intensity information (variables). After the exclusion of the variables having more than 

30% of missing data in both groups under investigation and log-transformation, the obtained data 

set composed of 483 time x mass variables was normalized by Median Fold Change 

normalization and mean centred. 

3.2.4 1H-NMR Urine Analysis 

Sample preparation was performed as described elsewhere [24], with minor modifications. 

Frozen urine samples were thawed in a fuming hood for 30 min and then 1 mL urine was 

transferred into a 1.5 mL eppendorf vial. The pH value was adjusted to 1.2 ≤ pH ≤ 2 by adding 3 

M HCl (120 ± 80 µL) and the sample was centrifuged at 13,000 rpm for 10 min. To 700 µL of 

supernatant, 70 µL of 2 mM sodium 3-trimethylsilylpropionate-2,2,3,3,-d4 (TSP) in D2O were 

added. Finally, 700 µL were transferred into an NMR tube and the pH was monitored by 

inspection of the chemical shift of the citrate signal and sometimes adjusted by adding 5 µL of 1 

M NaOH or HCl. 2D-experiments were performed on a urine sample three times more 

concentrated, obtained by pooling several samples and partially evaporating the solvent.  

All 1H-NMR spectra were acquired on a Bruker Avance DMX600 MHz spectrometer equipped 

with a 5 mm TXI xyz gradient inverse probe at room temperature. The probe was tuned, matched 

and shimmed manually for each sample. The NOESYGPPR1D pulse sequence was used to 

acquire one-dimensional 1H-NMR spectra. Parameters used were: 64 scans; 32k data points; 

spectral width, 8389.26 Hz; relaxation delay, 2 s; mixing time, 50 ms; acquisition time, 1.95 s. 
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1H-1H NOESY spectra were recorded with the NOESYGPPRTP pulse sequence, with a spectral 

window of 13 ppm in both dimensions, 2048×512 data points, 1.2 s relaxation delay, 0.6 s 

mixing time, and 256 scans.  

Prior to Fourier transformation, the FIDs were zero-filled to 64K points and an exponential line 

broadening factor of 0.3 Hz was applied. All spectra were processed using ACD/NMR Manager 

12.01 (Advanced Chemistry Development Inc.). Spectra were referenced to 0.0 ppm using the 

resonance of TSP and manually corrected for phase and baseline distortions. Intelligent 

bucketing was applied to the region between 0.6 ppm and 9.5 ppm excluding the regions where 

resveratrol derivatives (6.24-7.50 ppm, 5.10-5.22 ppm, 4.10-4.26 ppm, 3.56-3.96 ppm, 2.74-2.82 

ppm) and water (4.70-4.95 ppm) resonate. Total sum normalization was applied to compensate 

for differences in overall concentration between individual urine samples. The obtained data set 

composed of 229 variables was mean centred and Pareto scaled. 

3.2.5 Statistical Data Analysis 

Data modelling was performed by applying multivariate techniques based on projection. 

Specifically, Principal Component Analysis (PCA) was used for exploratory data analysis and for 

highlighting the presence of outliers while Projection to Latent Structures by partial least squares 

regression (PLS) was applied to investigate the relationships between the metabolic content of 

the urines collected during the experiment and the time of treatment and type of diet. To perform 

an efficacy data modelling able to extract the whole information contained into the collected 

data, a design matrix supporting an interaction model including time, treatment and time x 

treatment effects, was explicitly considered. The measured variables and the design matrix were 

used as X-block and Y-block, respectively, in the PLS regression. Following good practice for 

model validation, N-fold full cross-validation with different values of N (N = 6, 7, 8) and 

permutation test on the responses (1000 random permutations) were performed, in order to avoid 

over-fitting and prove the robustness of the obtained models. The significance of the effects 

included in the design matrix was estimated by permutation test. The number of components of 

the PLS models was estimated on the basis of the first maximum of Q2 calculated by 7-fold full 

cross-validation (Q2
7-fold CV) under the constraint to pass the permutation test on the responses. To 

better interpret the obtained model, a new method for rotating the PLS model, called post-
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transformation of PLS2 (ptPLS2), was applied [25]. The main advantage to use the post-

transformation of the PLS model is the possibility to obtain a new model where the structured 

variation of the X-block discovered by PLS is decomposed into two blocks, corresponding to the 

variations correlated (predictive part of the model) and orthogonal (non-predictive part) to the Y-

block. The post-transformed model maintains the same power in prediction of the PLS model but 

simplifies model interpretation because the dimension of the predictive latent space is usually 

lower than that of the whole latent space discovered by PLS. 

Recently, stability selection was introduced in metabolomics to avoid false discoveries due to 

overtraining [26]. The central idea of stability selection is that real differences or effects should 

be present consistently, and therefore should be found even under perturbation of the data by 

subsampling or bootstrapping. In our study, we performed stability selection by Monte-Carlo 

subsampling using PLS VIP-based as regression technique [27] for identifying putative markers. 

Specifically, 200 random subsamples were extracted by Monte Carlo sampling of the collected 

urine samples (with prior probability of 0.70), and then PLS VIP-based applied to each 

subsample, obtaining a set of 200 regression models. Within this set of PLS VIP-based models, 

variables related to the effects of time and/or treatment were identified as the most frequently 

selected variables. The advantage to use PLS VIP-based is that the VIP selection is able to 

extract a reduced subset of variables for each subsample and the most frequently used variables 

can be selected by calculating the median of the VIP for each variable in all sub models 

excluding the variables having median equal to zero. The threshold of the VIP score to use in 

variable selection within PLS VIP-based was estimated by maximizing the Q2
7-fold CV. As a result, 

a small number of metabolites changing during the experiment was extracted and the behaviour 

of each single metabolite was studied by linear mixed-effects model for longitudinal studies [28]. 

In this step of our data analysis, the covariance structure was modelled by considering a first-

order autoregressive structure with homogenous variances. 

PCA was performed using SIMCA 13 (Umetrics, Umea, Sweden) while the platform R 3.0.2 (R 

Foundation for Statistical Computing) was used for statistical data analysis on single variable, to 

build the ptPLS2 model and to perform Monte-Carlo stability selection. 

The results of the levels of oxidative stress urinary markers are expressed as means ± Standard 

Error of the Mean (SEM). Statistical evaluation and p calculation were obtained using GraphPad 
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Prism 5 software (San Diego California). 

3.2.6 Urinary Allantoin and 8-Hydroxydeoxyguanosine Quantification 

Allantoin and 8-OHdG were quantified in urine samples from both treated and control rats using 

HPLC-MS/MS methods. A Varian 212 HPLC system equipped with a Varian MS 500 IT detector 

was used for HPLC-ion trap mass spectrometry. A Phenomenex Kinetex EVO C-18 column (3 

mm x 100 mm, 5 μm) was used as stationary phase. The detector was equipped with an ESI 

source and was operating in positive resolution mode. For allantoin quantification, the operating 

parameters used were as follows: nebulizing gas, nitrogen; nebulizing pressure, 35.0 psi; needle 

voltage, 4500 V; capillary voltage, 600.0 V; drying gas temperature, 350 °C; drying gas pressure, 

10.0 psi. The mobile phase was composed of solvent A (acetonitrile with 0.1% formic acid) and 

solvent B (water with 0.1% formic acid). Linear gradients of A and B were used, as follows: 0 

min, 15% A; 7 min, 100% A; 7.06 min, 15% A; 10 min, 15% A. The flow rate was 200 μL/min 

and the injection volume was 10 μL. An MSn experiment was performed, monitoring the 

fragmentation of allantoin precursor ion ([M+H]+, m/z 159) in the product ion mass range 65-169 

Da. Allantoin was finally quantified on the basis of its major fragment (m/z 116) using a standard 

titration curve obtained by eluting 0.3 - 1 μg/mL allantoin solutions in water (y = 97216x + 

51629; R2 = 0.9833). LOD and LOQ were 0.1 and 0.5 ng/mL, respectively.  

For 8-OHdG quantification, the operating parameters used were as follows: nebulizing gas, 

nitrogen; nebulizing pressure, 20.0 psi; needle voltage, 4500 V; capillary voltage, 600.0 V; 

drying gas temperature, 280 °C; drying gas pressure, 15.0 psi. The mobile phase was composed 

of solvent A (acetonitrile with 0.5% formic acid) and solvent B (water with 0.1% formic acid). 

Linear gradients of A and B were used, as follows: 0 min, 10% A; 1 min, 10% A; 10 min, 60% A; 

12 min, 10% A; 16 min, 10% A. The flow rate was 200 μL/min and the injection volume was 10 

μL. An MSn experiment was performed, monitoring the fragmentation of 8-OHdG precursor ion 

([M+H]+, m/z 284) in the product ion mass range 155-175 Da. 8-OHdG was finally quantified on 

the basis of its major fragment (m/z 168) using a standard titration curve obtained by eluting 3 - 

100 ng/mL 8-OHdG solutions in water (y = 48.853x + 1002.5; R2 = 0.9981). LOD and LOQ 

were 1 and 5 ng/mL, respectively.  
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3.3 Results 

3.3.1 Animal Weight and Urinary Output 

No significant differences were observed either in body weight or in 24-h urine volume in the 

treated vs control group during the experiment. Data reported in Table 3.1 show body weights 

and urinary volumes during the experiment. 

 Body weight (g) Urine volume (mL) 

Day Control Treated Control Treated 

0 108.5± 107.5± 5.5±0.7 6.4±1.4 

7 162.8± 164.8± 9.3±2.8 11.4±4.6 

14 205.8± 208.6± 12.3±3.7 10.1±1.8 

21 250.3± 248.0± 12.2±2.3 13.5±3.1 

28 283.8± 287.7± 10.8±1.4 13.4±1.8 

35 309.0± 303.5± 13.8±3.8 12.7±1.9 

49 332.0± 340.3± 15.8±8.0 12.9±1.9 

 

Table 3.1. Variations of body weight and 24-h urine volume of control and treated rats during the 

course of the experiment. 

 

3.3.2 UPLC-HRMS Measurements on 24-h Collected Urines 

Twenty four hour urine samples collected during the experiment were analysed by UPLC 

coupled with ESI-QTOF-MS to obtain urinary metabolite profiles of both treated and control 

animals. Exemplificative chromatograms are reported in Figure 3.1. Exploratory data analysis 

by PCA revealed no presence of outliers while PLS-DA did not detect differences in the 

metabolite content of the urines at day 0 between the two groups of rats. 
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Figure 3.1. Typical base peak intensity (BPI) chromatograms obtained from UPLC-HRMS 

analysis of rat urines from both treated (upper panel) and control rats (lower panel). 

  

As a first step of data analysis, we searched for expected metabolites directly related to the 

resveratrol metabolism in the treated group. We found resveratrol phase II metabolites, namely 

resveratrol-glucuronide (m/z 405.1180 and the fragment at m/z 229.0866), resveratrol-sulfate 

(m/z 309.1314 and the fragment at m/z 229.0866) and dihydroresveratrol glucuronide (m/z 

407.1344 and the fragment at m/z 231.1022), a metabolite derived from the action of gut 

microbiota and a phase II metabolic processing in the liver [29] (Table 3.2). No significant traces 

of un-metabolized resveratrol was detected in rat urines. 

 

Molecular identity Retention time (min) m/z value Adduct ion type 

Resveratrol-glucuronide 8.19 405.1180 [M+H]+ 

Resveratrol-sulfate 8.83 309.1314 [M+H]+ 

Dihydroresveratrol-glucuronide 8.38 407.1344 [M+H]+ 

Table 3.2. Identified resveratrol metabolites obtained by the analysis of UPLC-HRMS data of 

treated animals. The reported m/z values are from experimental data. 
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After the exclusion of the time x mass variables directly related to the metabolism of resveratrol, 

data modelling was performed by ptPLS2. The obtained model highlighted a clear effect of both 

time and treatment on the urine composition. The interaction term time x treatment was 

insignificant (Q2
7-fold CV = 0.003, p-value = 0.29). The model showed 2 parallel and 3 orthogonal 

components. Specifically, the model showed R2 = 0.89 and Q2
7-fold CV = 0.76 (p-value<0.001) 

for time while for the treatment resulted R2 = 0.89 and Q2
7-fold CV = 0.68 (p-value<0.001). 

Figure 3.2 reports the score scatter plot of the model, where it is possible to observe that the 

evolution of the urine composition during the experiment can be explained by considering two 

main effects, one related to the time passing and one related to the dietary intervention. 

 

 

Figure 3.2. Score scatter plot of the ptPLS2 model for UPLC-HRMS data. The plot shows 

modifications of the urine composition both due to treatment and to aging. Symbols of different  

shapes represent metabolic changes in urine along time. 

By Monte-Carlo stability selection, a reduced set of 34 measured variables was detected as 

relevant in the explanation of the effects of time and treatment in the metabolite content of the 

collected urines. Chemical characterization of the selected time x mass variables was tentatively 

performed by comparing the exact m/z value and fragmentation patterns with web-available 

databases (Human Metabolome Database, Metlin Database, Mass Bank Database) and 

interpreting their MSe spectra. 

A linear mixed-effects model considering first-order autoregressive structure with homogenous 

variances was applied to quantify the effects of time and treatment on the selected variables. As a 
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result, hypoxanthine, indole-3-carboxylic acid, 6-hydroxymelatonin, tetrahydrocortisol, 17-beta-

methylestra-1,3,5(10)-trien-3-ol, sebacic acid, 3-oxo-5beta-chol-6-en-24-oic acid, 11-

dehydrocorticosterone and 19-hydroxytestosterone predominantly contributed to the observed 

urinary metabolite differences due to P. cuspidatum extract supplementation as summarized in 

Table 3.3 while the most significant variables related to aging are reported in Table 3.4. 

Retention Time 

(min) 
HR m/z value Identification 

Treated vs. 

Control 

2.26 137.0460 Hypoxanthine ↓ 

6.92 162.0554 Indole-3-carboxylic acid ↓ 

8.58 249.1242 6-Hydroxymelatonin  ↑ 

11.17 271.2060 17-beta-methylestra-1,3,5(10)-trien-3-ol ↓ 

11.17 733.4891 Tetrahydrocortisol ([2M+H]+) ↓ 

11.34 225.1102 Sebacic acid ([M+Na]+) ↓ 

12.77 355.2634 
3-oxo-5beta-chol-6-en-24-oic acid ([M+H-

H2O]+) 
↑ 

12.80 345.2064 11-Dehydrocorticosterone ↓ 

13.17 305.2116 19-Hydroxytestosterone ↓ 

Table 3.3. Significant variables (p-value<0.01) related to treatment for UPLC-HRMS data set. 

Variations of the metabolites are reported as increase (↑) or decrease (↓) in treated compared to 

control rats. 

Retention Time 

(min) 
HR m/z value Identification 

7.06 242.1757 (±)-Hexanoylcarnitine ([M+H-H2O]+) 

5.80 260.1501 Unknown 

13.34 335.2376 Unknown 

13.39 410.2693 Unknown 

8.85 409.1832 Unknown 

4.45 318.1555 Isoleucyl-Triptophan ([M+H]+) 

13.50 448.3060 Unknown 

10.53 435.1285 Unknown 

13.17 359.1929 Unknown 

4.65 372.2385 Unknown 

3.08 413.1239 Unknown 

13.50 488.2987 Glycocholic acid ([M+Na]+) 

Table 3.4.  Significant variables related to rat aging, obtained from the ptPLS-DA VIP-based 

model for UPLC-HRMS data.  
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3.3.3  1H-NMR Measurements on 24-h Collected Urines 

In the 1D spectra (Figure 3.3) of treated rats, the resonances of resveratrol derivatives are 

evident. The NOESY spectrum confirms the presence of resveratrol-glucuronide and 

dihydroresveratrol glucuronide as shown in Figure 3.4. 
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Figure 3.3: Representative urine 1H-NMR spectra of a control rat and of a rat treated with P. 

cuspidatum. In the aromatic region (6.20 – 7.40 ppm), the presence of resveratrol derivatives in 

the treated (red) spectrum is evident. 

 

Figure 3.4. Portion of a NOESY spectrum in which NOE correlations between resveratrol (RES) 
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or dihydroreveratrol (DHR) aromatic protons with protons from glucuronic acid are shown. 

Pattern recognition was performed by PCA in order to highlight outliers or differences in the 

metabolite content of the urines collected at the beginning of the experiment. No outliers were 

detected or differences at day 0 related to the groups under investigation. Data modelling 

performed by ptPLS2 highlighted a clear effect of both time and treatment on the urine 

composition. The interaction term time x treatment was insignificant (Q2
7-fold CV = -0.02, p-value 

= 0.14). The model showed 2 parallel and 1 orthogonal components, R2 = 0.87 and Q2
7-fold CV = 

0.81 (p-value<0.001) for time and R2 = 0.60 and Q2
7-fold CV = 0.28 (p-value<0.001) for treatment. 

Figure 3.5 reports the score scatter plot of the model. It is possible to observe that two main 

effects, one related to the time passing and one related to the dietary intervention, to determine 

the evolution of the urine composition during the experiment.  

 

 

Figure 3.5. Score scatter plot of the ptPLS2 model for 1H-NMR data set. The plot shows 

modifications of the urine composition both due to treatment and to aging. Symbols of different 

shapes represent metabolic changing in urines along time. 

Monte-Carlo stability selection allowed us to select a reduced set of 21 bins. Table 3.5 reports 

the assignment of the selected bins related to the treatment effect while Table 3.6 that of the bins 

explaining the aging effect. 

Some metabolites were identified with the help of an online database (HMDB), literature [30] 
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and 2D-NMR spectroscopy. The metabolites affected by the treatment are 3-hydroxybutryate (3-

HB), glutamate, glycine, glucose, formate and two unassigned metabolites (Table 3.4). 

Dicarboxylic acid, lactate, acetate, succinate, 2-oxogluturate (2-OG), citrate, dimethyl glycine 

(DMG), creatinine, taurine and allantoin significantly change over the time period (Table 3.5). 

Interestingly, hippurate and betaine changed significantly both with time and treatment. Figure 

3.6 shows a typical 1HNMR spectrum in which metabolites responsible from time and treatment 

are highlighted. 

 

 

 

Figure 3.6. Typical 1D 1H-NMR spectrum of rat urine with enlargements of the aliphatic (0.6 – 

4.5 ppm, above panel) and aromatic (5.5 – 9.5 ppm, lower panel) regions. The resonances 

according to the time (red), treatment (black) and both (blue) effects are indicated. 
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Bin  Chemical shift (ppm) Metabolite 
Treated vs. 

Control 

[1.22- 1.28] 1.23 (d) 3-HB ↑ 

[2.46- 2.51] 2.48 (m) Glutamate ↓ 

[3.20- 3.24] 3.22 (s) Betaine ↓ 

[3.30- 3.34] 3.32 (s) U1 ↑ 

[3.52- 3.56] 3.56 (s) Glycine ↑ 

[4.00-4.04] 4.02 (m) U2 ↑ 

[5.22- 5.26] 5.25 (d) Glucose ↑ 

[8.25- 8.29] 8.26 (s) Formate ↑ 

[8.75- 8.79] 8.76 (t) Hippurate ↑ 

Table 3.5 Significant variables (p-value<0.05) related to treatment effect for the 1H-NMR data 

set. 

Bin Chemical shift (ppm) Metabolite Time effect 

[1.40-1.44] 1.42 (d) Lactate ↑ 

[2.07-2.11] 2.10 (s) Acetate ↑ 

[2.27-2.31] 2.28 (brs) Dicarboxylic acid ↓ 

[2.65-2.69] 2.68 (s) Succinate ↓ 

[2.69-2.73] 2.71 (t) 2-Oxogluturate ↓ 

[2.82-2.86] 2.86 (d) Citrate ↓ 

[2.94-2.97] 2.95 (s) Dimethyl glycine ↑ 

[3.11-3.14] 3.13 (s) Creatinine ↑ 

[3.20-3.24] 3.22 (s) Betaine ↑ 

[3.25-3.30] 3.28 (t)/ 3.29 (s) Taurine/TMAO ↑ 

[3.41-3.46] 3.44 (t) Taurine ↑ 

[8.75- 8.79] 8.76 (t) Hippurate ↓ 

Table 3.6.  Significant variables (p-value<0.01) related to rat aging for the 1H-NMR data set. 

3.3.4 Allantoin and 8-OHdG Quantification in Urine Samples 

Because of the reported antioxidant activity of resveratrol, we decided to measure the urinary 

levels of two well-known oxidative stress biomarkers by HPLC-MS/MS, namely allantoin and 8-

OHdG as shown in Figure 3.7. The total amounts of each biomarker in the collected urines were 

assessed monitoring the major fragments of allantoin and 8-OHdG at the beginning and at the 

end of the experiment (day 49) by MS/MS method ([M+H]+ at m/z 159/116 and [M+H]+ at m/z 

284/168 respectively). Data are summarised in Table 3.7. The content of 8-OHdG in the urines 

weakly decreases for the treated rats (t-test p-value = 0.05) while it does not change for the 
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control rats (t-test p-value = 0.47). At the beginning of the experiment, urinary 8-OHdG 

concentration was 10.83 ± 0.54 ng/mL for the treated rats and it weakly decreased to 8.64 ± 0.92 

ng/mL at the 49th day of treatment. Allantoin concentration significantly decreased for both 

control and treated rats (t-test p-value = 0.02 and test p-value<0.001, respectively). Specifically, 

for control rats the allantoin concentration decreased from 1.75 ± 0.08 µg/mL to 1.01 ± 0.18 

µg/mL while for treated rats from 1.54 ± 0.06 µg/mL to 0.41 ± 0.05 µg/mL. We can conclude 

that the reduction of the concentration of these two markers was more relevant for treated rats 

than control rats suggesting a reduction of oxidative stress in the treated group. 
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Figure 3.7. Urinary variations of 8-OHdG and allantoin from the beginning of the experiment to 

the end. Results obtained from rats supplemented with P. cuspidatum extract are compared to 

results obtained from the control group. Values are represented as means ± SEM. p-values 

calculated in unpaired t test. p< 0.05 (*), p < 0.001 (***). 
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8-OHdG Day 0 Day 49 t-test p-value 

Control 9.54 ± 0.49 ng/mL 10.35 ± 1.05 ng/mL 0.47 

Treated 10.83 ± 0.54 ng/mL 8.64 ± 0.92 ng/mL 0.05* 

Allantoin Day 0 Day 49 t-test p-value 

Control 1.75 ± 0.08 g/mL 1.01 ± 0.18 µg/mL 0.02* 

Treated 1.54 ± 0.06 µg/mL 0.41 ± 0.05 µg/mL <0.0001*** 

Table 3.7. Urinary variations of 8-OHdG and allantoin from the beginning of the experiment to 

the end. Results obtained from rats supplemented with P. cuspidatum extract (treated) are 

compared to results obtained from the control group (control). Values are represented as means ± 

SEM. p-values calculated in unpaired t test. p < 0.05 (*), p < 0.001 (***). 

 

3.4 Discussion 

P. cuspidatum extract (100 mg/kg) containing 20% of resveratrol was administered to rats to 

study the effect of this natural product in a healthy animal model through the observation of 

metabolic urinary changes. The underlying physiological changes responsible for these results 

are currently under examination. Below, a partial analysis is presented. 

Urines from treated animals showed decreased levels of hypoxantine and indole-3-carboxylic 

acid (ICA). Hypoxanthine is normally detected in urines and blood, but increased levels could be 

related to oxidative stress [31-32]. Also increased urinary levels of indole-3-carboxylic acid 

(ICA), a tryptophan metabolite normally detected in urines [33], can be related to oxidative stress 

and were reported in diet-induced hyperlipidemic rats [34]. 

Thus, our results suggest that P. cuspidatum extract supplementation in healthy rats reduces 

oxidative stress. This observation was confirmed by specific measurement of two urinary 

markers of oxidative stress. Allantoin is formed from the stepwise degradation of uric acid due to 

the reaction with oxidative species [35]. Allantoin is present also in urine of healthy subjects and 

its level is increased with increasing oxidative stress in the body [36]. 8-OHdG is a product of 

mitochondrial and nuclear DNA oxidative damage formed by the 8-hydroxylation of the guanine 

base by reactive oxygen species [37]. The oxidized nucleoside is enzymatically cleaved from the 
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DNA chains, is released in the bloodstream, and is eventually eliminated in the urines [37]. This 

biomarker is present in urines from healthy subjects, and variations of its urinary levels suggest 

alterations of the oxidative status. Thus, the observed reduction of both these metabolites in 

treated groups support an in vivo antioxidant effect of P. cuspidatum supplementation. 

The treated group showed increased levels of urinary 6-hydroxymelatonin, a hydroxylated 

hepatic metabolite of melatonin, mainly excreted in urine. Previous studies reported that 

melatonin and its metabolites exert both immunomodulatory and antioxidant activities [38-39]. 

Its meaning in the P. cuspidatum mode of action need to be deeply investigated. 

Different metabolites were identified as steroid derivatives. Among all, amounts of 

tetrahydrocortisol, 17-beta-methylestra-1,3,5(10)-trien-3-ol, 11-dehydrocorticosterone and 19-

hydroxytestosterone, a metabolite derived from androgen and estrogen metabolism [40], were 

detected in  lower amount in treated rat urines. A biliary acid derivative was also identified, (3-

oxo-5beta-chol-6-en-24-oic acid), and its urinary amount was increased in the treated group. 

Tetrahydrocortisol is a urinary metabolite of cortisol [41] and its urinary levels can be increased 

by ACTH administration [42]. This preliminary observation can suggest a role for P. cuspidatum 

extract as stimulant of corticosurrenal hormones thus being related to anti-stress or 

“adaptogenic” activity as Ginseng or similar herbal products [43]. The role of resveratrol on 

cortisol biosynthesis was previously investigated in vitro showing that the compound is able to 

stimulate cortisol biosynthesis by activating SIRT-dependent deacetylation of P450scc [44]. The 

change in sterol and corticosterol levels may be related to some of the health promoting effects 

of resveratrol, but these are the data first indicating a role of this natural compound on the levels 

of these physiological metabolites, and this aspect needs deeper investigations. 

Sebacic acid is a medium chain dicarboxylic acid normally detected in urines. It is involved in 

lipid and carbohydrates metabolism. MS data show that P. cuspidatum supplementation 

decreased its urinary amounts, suggesting a role on energy metabolism in rats. The 1H-NMR data 

show a significant decrease of a dicarboxylic acid (possibly sebacic or suberic acid) only with 

time. Dicarboxylic acids such as suberic acid are mainly metabolized in the liver by the ω-

oxidation pathway; thus, their increase in urine can indicate an influence of aging and of the 

treatment on liver function. Specifically, the decrease of the urinary levels of such compounds 

may indicate a decreased fatty acid ω-oxidation. Previously published studies reported that 

variations in urinary excretion of dicarboxylic acids and urinary dicarboxylic aciduria are related 
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to defective fatty acid metabolism [45]. Oddly, our previously published study on curcumin 

indicated lower levels of dicarboxylic acid in the control group [19]. These results are globally 

not completely consistent and require further analysis. 

Hippuric acid was found to be higher in P. cuspidatum treated rats as compared to the control rats 

and it also decreased with time. Hippuric acid is a normal component of urine and is typically 

increased with increased consumption of phenolic compounds (tea, wine, fruit juices) [46-47]. 

The increased urinary excretion of hippurate suggests alterations in gut microflora induced by P. 

cuspidatum because urinary hippuric acid excretion was not detected in volunteers without colon 

[53]. 

 

3.5 Conclusions 

Nutraceuticals and supplements containing herbal remedies are mainly used by healthy subjects 

as disease preventive or health maintaining purposes. Nevertheless, scientific investigations on 

the effects of such natural products on healthy subjects are largely missing. P. cuspidatum is a 

natural source of resveratrol, a stilbenoid claimed to be a powerful antioxidant used as food 

supplement or nutraceutical in hyperlipidaemia, inflammation, and age related diseases. In this 

study, using both 1H-NMR and UPLC-MS measurements, we performed a longitudinal study to 

assess the urinary metabolomic changes induced by 49 days supplementation of P. cuspidatum to 

healthy rats. This approach may offer a new view of the possible mode of action of herbal 

remedy supplementation containing resveratrol.  Our data showed that resveratrol is subject to 

extensive metabolism and urinary excretion that can be detected both with MS and 1H-NMR 

techniques. No oxidized resveratrol or oxidised resveratrol metabolites were detected suggesting 

a negligible role of its “direct” antioxidant activity. Resveratrol induced changes in the 

endogenous urinary profile, and the levels of urinary markers of oxidative stress confirmed the in 

vivo antioxidant effect of this supplement. We detected changes that could be ascribed to 

treatment or to aging. The many changes observed await a complete interpretation in terms of 

modification of biochemical pathways. 
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Chapter 4: An NMR based metabolomics approach to seek reliable markers 

to distinguish between Citrus and Clementine Italian honey with chemometric 

analysis. 

4.1 Aims of the work 

NMR-based metabolomics is a fast, convenient, and effective tool for origin discrimination and 

biomarker discovery in food analysis. Traditionally, the determination of the floral origin of 

honey is made from palynological analysis. The method is based on the identification of pollen 

by microscopic inspection. However, melissopalynological analysis needs expertise and also it is 

not very reliable for several botanical origins. The aim of this project was to develop an NMR-

based metabolomic approach that used multivariate statistical analysis to discriminate the 

botanical origin of different types of honey. Multivariate statistical analysis helped us to identify 

the most relevant signals to differentiate honey botanically. The obtained data sets were useful in 

the search of markers responsible for the discrimination of two types of citrus honey.  

4.2 Introduction 

Honey has a long history of human consumption; it is taken as medicine, eaten as food, or 

incorporated as an additive in a variety of foods and beverages. Honey is mainly composed of a 

complex mixture of carbohydrates and other minor substances, such as organic acids, amino 

acids, proteins, minerals, vitamins, and lipids. In almost all honey types, fructose predominates, 

glucose being the second main sugar. These two account for nearly 85–95% of the honey 

carbohydrates. Di- or oligo-saccharides constitute the remaining carbohydrates, except for traces 

of polysaccharides. Honey also contains volatile substances which are responsible for the 

characteristic flavor [1]. A number of tools and methods can be used to ensure that a given honey 

belongs to a botanical variety that complies with the label. The most often used method is pollen 

analysis (melissopalynology) [2]. By studying the pollen in a sample of honey, it is possible to 

gain evidence of the genus of the plants that the bees visited. Generally, melissopalynology is 

used to combat fraud and inaccurate labelling of honey. However, melissopalynology is not an 

easy technique because it requires very experienced analysts and it is very time consuming. 

According to some authors, melissopalynology is valid only for the determination of 

geographical origin of honey while it is less valid to determine its botanical origin [3]. Because 

http://en.wikipedia.org/wiki/Genus
http://en.wikipedia.org/wiki/Honey_bee
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of the high price of certain honey types, adulteration with materials of low cost and nutritional 

value or mislabeling regarding the botanical origin sometimes occurs. Nonetheless, the 

discrimination between different types of honey is important for honeys that possess discrete 

aroma and taste and special nutritional properties which make them preferable for consumers.  

Honey made primarily from the nectar of one type of flower is called monofloral honey, whereas 

honey made from many types of flowers is called polyfloral honey. Theoretically, a monofloral 

honey can be produced from every plant that produces nectar. However, in practice, monofloral 

honeys are not so easy to produce. Thus, their price is, in most cases, higher than polyfloral ones, 

especially for certain types of monofloral honeys. Also, monofloral honey typically has a higher 

value in the marketplace due to its distinctive flavor. The need to find reliable marker 

compounds to discriminate between monofloral honeys is necessary [4]. Marker compounds can 

not only characterize a certain type of honey, but they can also show adulteration in honey [5]. 

Several analytical platforms such as gas chromatography/mass spectrometry (GC/MS) [6], 

nuclear magnetic resonance spectroscopy (NMR) [7], infrared spectroscopy (IR) [8] have been 

used for the chemical analyses of honeys and their classification. 

4.2.1 Citrus Honey 

Citrus honeys are considered to be among the best monofloral honeys. They are highly 

appreciated by consumers because of their distinctive and pleasant flavor and aroma and they 

usually sell at a premium [9]. They are obtained from cultivated Citrus species (botanical family 

of Rutaceae), mostly orange but also, to a lesser extent, lemon, tangerine, grapefruit, lime, 

clementine, etc. Citrus honey is produced in several Mediterranean countries [10].  In Italy, it is 

very important due to its high economical value; citrus honey is one of the most important and 

valuable honey production in Calabria and it is one of the few Italian honeys which is exported. 

This production, however, suffers the competition from similar products coming from other areas 

of the world, especially Spain, but also Mexico, Israel, the United States, and Brazil. Citrus 

honey is commonly commercialized without distinction between the different citrus species 

(Citrus sinensis L., Citrus deliciosa Ten., Citrus limon L., etc.) or at best as orange blossom 

honey. However, some honeys from botanical varieties of the citrus genus, such as Clementine, 

have excellent individual properties and could be commercialized independently and not just as 

citrus honey. Like other monofloral honeys, the botanical classification of Citrus reticulata must 
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be carried out by identification and quantification of the percentage of pollen by microscopic 

examination. The problem is that pollen analysis is considered of little value for the citrus genus 

as it is one of the several types of honey whose pollen is considered to be “under-represented” 

[11]. In other words, the amount of pollen present in citrus honey on occasions is lower than the 

quantity expected considering organoleptic characteristics such as flavor. This is because anther 

maturity does not always coincide with maximum secretion of nectar. Therefore, due to the 

difficulties in proving the botanical source of citrus honey using pollen analysis, the 

classification is based on the identification of specific chemical components present in different 

types of citrus honey, such as antioxidants or aromatic fractions [12]. Few reports indicate the 

presence of methyl anthranilate (MA) as a marker of citrus honeys in analyses of Spanish and 

Mediterranean citrus honeys [13]. However, this compound may also be present in honeys of 

other origins [14]. Other compounds, including hotrienol and the isomers of lilac aldehyde and 

-4-dimethyl-3-cyclohexen-1-acetaldehyde, have been proposed for differentiating citrus honeys 

[15]. Moreover, a report concludes that MA content cannot be used as a discriminating parameter 

for Citrus honey, and should be used only as a further descriptive element. Among the 

monofloral samples, the MA content was lower in those produced in Italy than in the countries, 

and mostly below the 2 mg/kg limit that some European laboratories require to accept Citrus 

honey [16]. It is therefore of great importance to improve the extraction techniques used so far, 

as well as to develop new ones to enable the analysis of honey non-volatiles to become a routine 

procedure. In this regard, the purpose of this study was also to establish an extraction method 

apart from the already reported ones [17, 18] to characterize and enhance the MA content 

measured in Italian citrus honey. We were not able to identify the MA in the chloroform 

extraction and therefore we directly extracted citrus honey in CDCl3 rather than first dissolve it in 

water. 

4.2.2 European Commission Legislation 

Honey regulation in the EU (Codex Alimentarius Commission 2001; European Commission 

2002) states that the botanical and geographical origins of the product must be printed on the 

label. The control of commercially sold honey therefore requires the determination of parameters 

that unambiguously establish the origin as part of the overall quality of honey. Honey fraud 

involves adding either industrial sugar syrups or mixing several floral origins, and selling the 
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product under a false name. The Commission of the EU is encouraging the development of 

harmonized analytical methods to permit the verification of compliance with the quality 

specifications for the different honeys. 

4.3 Methods and Materials 

4.3.1 Chemicals 

CDCl3 (99.96%-d, H2O 0.005% Euriso-Top, Gif sur Yvette, France), D2O (99.9%-d,) were 

purchased from Sigma Aldrich (Milan, Italy). 

4.3.2 Honey Samples 

Eighty two samples of citrus honey were obtained from an exhibition called “GD” (golden drop) 

an annual exhibition in Italy where honey producers from all over Italy exhibit honeys from 

different botanical and geographical origin. We particularly acknowledge Lucia Piana for 

providing these samples after verification of their botanical origins in most of the cases by 

melissopalynlogic analysis. Details of the honey samples is given in Table 4.1. 

S. No. Honey type Botanical origin No. Of samples 

1 Citrus C. sinensis 31 

2 Clementine C. reticulate 51 

Table 4.1: Details of citrus honey samples used in this study. 

4.3.3 Sample Preparation: 

4.3.3.1 Direct CDCl3 Extraction of Honey 

Six g of honey are dissolved in a Teflon tube with 1.5 mL of D2O and 1.5 mL of CDCl3 and 

mechanically stirred for 15 min. The resultant solution is centrifuged for 15 min at 10,000 rpm 

and 4 °C. After centrifugation, the lower CDCl3 phase (600 µL) is collected and transferred into 

an NMR tube for analysis.  

4.3.3.2 Direct D2O Extraction of Honey 

One hundred ± 0.03 mg of citrus honey are dissolved in 600 µL of D2O and mechanically stirred 

until complete dissolution to obtain a homogenous mixture; the pH of the resulting solution is 
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then adjusted in the range of 2-3 by adding 8 µL of 1 M HCl. Finally, 600 µL of honey solution 

is transferred into an NMR tube for analysis. 

4.3.4 1H-NMR Spectroscopy 

For CDCl3 extraction spectra were recorded on a Bruker Avance 600DMX instrument, operating 

at 599.99 MHz for 1H and equipped with a 5 mm TXI xyz gradient inverse probe. The 1D 

spectra were acquired using a modified double pulsed field gradient spin echoes (DPFGSE) 

sequence [17]. The typical acquisition parameters of this experiment were as follows: 

temperature, 298 K; recycle time, 2 s; spectral window, 6000 Hz; number of scans, 256; data 

points, 32K; receiver gain, 8K. The parameters for the 1D spectra obtained with the standard 

single-pulse sequence were as follows: temperature, 298 K; recycle time, 2 s; spectral window, 

6000 Hz; number of scans, 1024; data points, 32K; receiver gain, 256. In the case of D2O 

extraction, all the parameter were same except that 8K data points were acquired and the number 

of scans was used 512. 

Data for CDCl3 extraction samples were processed using the ACD software (ACD/Specmanager 

7.00 software, Advanced Chemistry Development Inc., 90 Adelaide Street West, Toronto, 

Ontario, Canada M5H 3V9). Fourier transformation was performed after zero-filling the FID 

data to 128K points and after apodization using a decreasing exponential with line broadening of 

0.5 Hz. The spectra were phased and baseline-corrected using the ACD manual routine, and the 

1H NMR chemical shifts were referenced to the residual CHCl3 signal at 7.27 ppm. Each 1H 

spectrum was segmented into identical intervals (“buckets”) of 0.04 ppm, and the signal intensity 

in each interval was integrated. The spectra were normalized to the total sum of integral covering 

the δ interval 13-2.16 and excluding the δ region 7.26-7.28, which contains the residual solvent 

peak. The resulting normalized integrals composed the data matrix that was submitted to 

multivariate analysis. 

For D2O extraction, spectra were processed using the ACD software (ACD/Specmanager 7.00 

software, Advanced Chemistry Development Inc., 90 Adelaide Street West, Toronto, Ontario, 

Canada M5H 3V9). Fourier transformation was performed using interactive FT after zero-filling 

the FID data from 8K to 32K points and after apodization using a Sq. cosine function. The 

spectra were phased and baseline-corrected using the ACD manual routine; we used the signal of 

Tyrosine at 6.80 ppm as a reference. Each 1H spectrum was segmented by using intelligent 
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bucketing and the signal intensity in each interval was integrated. The spectra were normalized 

to the total sum of integral covering the δ interval 6-9 ppm and excluding the δ region 3-6 and 9-

13 ppm which contains the sugars and empty region (without any important peak), respectively. 

The resulting normalized integrals composed the data matrix that was submitted to multivariate 

analysis. 

4.3.5 Statistical Analysis: 

Principal component analysis (PCA) and (Ortho partial least square discriminate analysis) 

OPLSDA using “mean centering” as data pretreatment was performed using the software 

SIMCA-P13 (Umetrics, Umea, Sweden). Data were visualized by plotting either the PC scores, 

where each point in the score plot represents an individual sample, or the loading plot, which 

permits us to identify the spectral regions with the greatest influence on the separation and 

clustering of the samples and, therefore, to deduce which compounds are responsible for such 

clustering (markers). 

4.4 Results and Discussion 

4.4.1 D2O extraction of honey: 

Figure 4.1A shows a typical 1H-NMR spectrum of citrus honey dissolved in deuterated water, 

showing the dominant resonances of fructose and glucose, honey’s main components. These 

sugars signals are not relevant for our study. Therefore, we exclude the aliphatic and sugar 

region from our consideration and emphasize the aromatic region (6-9 ppm). Figure 4.1B shows 

the expansion of the aromatic region of only one citrus honey magnified 6 times compared to the 

original spectrum. Figure 4.2 shows the aromatic region of all the 82 spectra of clementine and 

citrus honey. Several signals in the NMR spectra differ in intensity. To specify differences and 

similarities, multivariate data analysis was used. 
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Figure 4.1: (A) Complete 1H NMR spectrum of a citrus honey sample dissolved in D2O. 

Expansion of the aromatic region (B). 
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Figure 4.2: Tile plot of all spectra of citrus honeys: region between 6 and 9 ppm of clementine 

(black) and citrus (red) honeys. 



 

87 

As a first step, an unsupervised approach by means of PCA was applied to overview the data, to 

find out outlier and pattern of data set (Figure 4.3). The plots of the first two PCs of all the PCAs 

showed low sensitivity and selectivity and also show poor separation of the two groups.  

 

Figure 4.3: PCA score plot derived from the aromatic region of 1H NMR spectra of honey 

dissolved in deuterated water. The plot shows the poor discrimination between clementine (red) 

and citrus honeys (green).  

This result prompted us to perform a supervised technique, i.e., OPLS-DA. The score plot of the 

OPLS-DA model obtained, reported in Figure 4.4A, shows good separation of honey samples 

into clementine (red) and citrus (blue) honey, with R2 X = 79.5%, R2 Y=39.2% and Q2 = 54.5%. 

On the basis of the Hotelling’s T2 test at the confidence level of 95%, we identified five strong 

outliers, which were excluded from the dataset. In Figure 4.4B, the S-plot allowed us to specify 

the variables (chemical shifts), which are responsible for the observed clustering and hence led 

us to the identification of markers responsible for the two different origins. The marker 

compounds were identified, using literature [19] and online free NMR metabolomics databases 

such as HMDB (http://www.hmdb.ca/) and SDBS (http://sdbs.db.aist.go.jp/sdbs/cgi-

bin/cre_index.cgi). According to the S-plot, phenylacetic acid and tyrosine are strong 

discriminants for citrus honey while formic acid is less discriminating for clementine honey, 

although it is consistently more intense in clementine than in citrus honey. Chemical structures 

http://www.hmdb.ca/
http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi
http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi
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and chemical shifts are given in Table 4.2. Since we used Pareto scaling, the discrimination is 

based on consistently different intensity of the same signal in the two types of honey. Figure 4.5, 

shows two NMR spectra of orange and clementine honeys in comparison. To the best of our 

knowledge, it is the first time that Tyrosine, Phenylacetic acid and Formic acid were reported in 

citrus honey. Tyrosine and Formic acid have been reported as markers for Polish buckwheat 

honey and Polish heather honey shows phenylacetic acid as a marker [19]. 

 

Figure 4.4A: OPLS-DA score plot derived from the aromatic region of 1H NMR spectra of 

honey dissolved in deuterated water. The plot shows the clear discrimination between clementine 

(red) and citrus honeys (blue).  

 

Figure 4.4B: S-Plot showing the important resonances for the distinction of the two honey types. 
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Figure 4.5: Aromatic region (6-9 ppm) of the 1H-NMR spectra of clementine (red) and citrus 

(blue) honeys in D2O. 

Name Structure Position 1H Chemical shift 

Phenylacetic 

acid 

 

4 

3,5 

2,6 

7 

7.37 ppm 

7.27 ppm 

7.30 ppm 

3.37 ppm 

(overlapped by 

sugar region) 

Formic acid 

 

2a 8.12 ppm 

Tyrosine 

 

2,6 

3,5 

8,9 

6.80 ppm 

7.10 ppm 

Overlapped with 

carbohydrate region 

 

Table 4.2: Assignment of marker compounds with their structure. 
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Model validation was performed following good practice, N-fold full cross-validation with value 

of N (N = 10) and permutation test on the responses (100 random permutations), in order to 

avoid over-fitting and prove the robustness of the obtained models. Figure 4.6 represents the 

obtained model by permutation tests based on prediction accuracy. The p-value based on 

permutation is p < 0.01 (0/100). The number of components of the PLSDA models was 

estimated on the basis of the first maximum of Q2 calculated by 10-fold full cross-validation 

under the constraint to pass the permutation test on the responses. 

  

Figure 4.6: PLS-DA model validation by permutation tests based on prediction accuracy. The p 

value based on permutation is p < 0.01 (0/100). 

4.4.2 CDCl3 Extraction of Honey 

Methyl anthranilate (MA) is widely accepted as a marker compound of citrus honey [17, 20-21]. 

In work conducted previously in our lab, we did not find MA using the chloroform extraction 

method previously developed [17], so we decided to perform a direct extraction of honey in 

deuterated chloroform to analyze the chloroform layer directly without evaporation. However, 

we were not able to see MA in these samples either. Sesta et al. [20] concluded that the MA 

content cannot be used as a discriminating parameter for Citrus honey, and should be used only 

as a further descriptive element. Among the monofloral samples, the MA content was lower in 

those produced in Italy than in other countries, and mostly below the 2 mg/kg limit that some 

European laboratories require to accept Citrus honey [20]. The NMR spectra acquired with direct 
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CDCl3 extraction showed better resolution and signal to noise ratio in comparison with the 

spectra obtained using previously established methods [17, 18]. Figure 4.7 shows all the NMR 

spectra of citrus honey acquired by direct CDCl3 extraction.  
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Figure 4.7: Tile plot of all spectra of citrus honeys extracted directly in CDCl3: Full length 

spectra between 2.6 and 13 ppm of clementine (red) and citrus (black) honey honeys. 

Figure 4.8 represents the loading plot of the OPLS-DA model of all the honey samples using 

UV scaling. The first two PC’s on the basis of Hotelling’s T2 95% revealed clear separation of 

two types of honey, even better than the one obtained in D2O. The model diagnostics were 

summarized by the fit goodness, R2 (84.9%) and the prediction goodness parameter Q2 (77.7%). 

 

Figure 4.8: OPLS-DA loading plot derived from the 1H NMR spectra of CDCl3 extracts of 

honeys. The plot shows the clear discrimination between clementine (red) and citrus honeys 

(blue).  
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Figure 4.9: S-plot showing the important resonances for the distinction of the two honey types. 

 

 

Figure 4.10: Comparison of citrus (blue) and clementine (red) 1H NMR spectra.  

a) Whole NMR spectra. b) Expansion of the spectral region 5.8-3.0 ppm. 
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These resonance can be recognized as caffeine and 8-dihydroxylinalool from already reported 

work [17]; two resonances, assigned to an unknown compound which are present in the 

clementine samples. A single representative spectrum from each type of citrus honey is shown in 

Figure 4.10. All the marker resonances for citrus honey extracted in deuterated chloroform are 

presented in Table 4.3. 

Name Structure Position 1H Chemical Shift 

8-hydroxylinalool 

 

 

1 

3 

4 

5 

7 

8a 

8b 

2` 

6` 

4.00 

5.43 

2.08 

1.61 

5.93 

5.09 

5.24 

1.68 

1.30 

Caffeine 

 

8 

10 

11 

12 

7.55 

3.42 

3.61 

4.01 

Unknown - - 4.88 & 3.76 

 

Table 4.3: Assignment of the marker compounds extracted in CDCl3. 

4.5 Conclusions 

In total, we analyzed 82 samples for each extraction method adopted for citrus honey. Herein, we 

only discussed the results obtained from direct dissolution in D2O and from direct CDCl3 

extraction. The results from chloroform (CHCl3) extraction have already been reported from our 

lab [17-18] and were not described here. Among possible multivariate statistical tools, the 
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hierarchical OPLS-DA demonstrated high efficiency in NMR data analysis in terms of 

classification capability, as already demonstrated [17]. Using our new method of direct CDCl3 

extraction, we achieved better signal to noise ratio and also discovered a new marker 

(Unknown). According to our knowledge, this is the first attempt to discriminate clementine and 

citrus honeys. Our D2O extraction strategy revealed phenylacetic acid and tyrosine as marker 

compounds in citrus honey whereas higher amounts of formic acid characterized clementine 

honey. We did not find MA into either honey types studied; however, high amounts of 

phenylacetic acid and tyrosine distinguish citrus honey from clementine honey. NMR-based 

metabolomics gave a descriptive view of two types of honey belonging to the same botanical 

species.  
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Chapter 5. Determination of auuthenticity and entomological origin of 

Ecuadorian honey by NMR 

5.1 Aim of the work 

Increasing production of stingless-bee honey and the prospect of broader marker for natural and 

organic products indicate the need to establish parameters to determine the entomological origin 

and authenticity of honey. In this context, we received from Dr. Patricia Vit 83 Ecuadorian 

commercial honeys from four different entomological origins, i.e., Apis mellifera, Geotrigona, 

Melipona and Scaptotrigona, plus eight false or adulterated honey samples. A simple extraction 

in chloroform followed by acquisition of a 1H-NMR spectrum of each honey sample yields a 

database amenable to chemometric analysis. In a first approach, NMR results were used to 

distinguish between the genuine Apis mellifera honey and false honey. In a second step, the 

NMR spectra were analyzed with a chemometric approach to distinguish the entomological 

origin of honey produced by Apis mellifera and pot-honey produced by the genera Geotrigona, 

Melipona, and Scaptotrigona. The important compounds for the authentication of the honey 

determined with the chemometric approach were identified with the aid of online databases and 

2D NMR spectroscopy. 

5.2 Introduction 

Honey has a great importance in both ancient and modern civilizations with many functional 

applications. Apart from being simply used as a sweetener, honey is widely known both as food 

with significant nutritional properties and as a natural product with valuable therapeutic 

applications, topically or orally administered [1]. Stingless bees, sometimes called stingless 

honey bees or simply meliponines, are a large group of bees (about 500 species), comprising the 

tribe Meliponini [2]. However, stingless bee honeys are better known and mainly used in South 

America, Africa and Australia, while honeys derived from A. mellifera are mainly produced and 

distributed in Europe and Asia [1]. Beekeeping with honey bees belonging to the genus Apis is 

more widespread than meliponiculture – beekeeping with stingless bees (e.g., Melipona spp.) – 

which is a well-known tradition in tropical countries. Both groups of bees belong to the family 

Apidae, order Hymenoptera. They are differentiated at the subfamily level, Apinae for honey 

bees and Meliponinae for stingless bees. The main structural differences between honey bees and 
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stingless bees is nest construction: stingless bees construct horizontal combs made of cerumen (a 

mixture of propolis and beeswax) for their nests, and honey pots instead of honeycombs for 

storing honey [3-4]. Stingless bee honey is completely different from that produced by the bees 

of the genus Apis and it reaches higher prices in the market compared with traditional honey. 

Nevertheless, standards have not been created for pot-honey [5]. The Codex Alimentarius 

Commission international honey standards for honey are designed only for Apis mellifera [6]. To 

authenticate the entomological origin, chemical makers such as fructose, glucose and maltose 

have been used in a multivariate analysis [7], physical-chemical parameters [8], sensory Free 

Choice Profile (FCP) [9], NMR and chemometrics [10], flavonoid C-glycosides [11] and O-

glycosyl flavones [12], and more recently electrophoretic patterns because different species of 

stingless bees produce honey with distinctive protein bands [2].  

Pot-honey price can reach up to 1,100% that of Apis mellifera honey. This great difference is a 

motivation to declare a false entomological origin, causing an Economically Motivated 

Adulteration (EMA), to be added to the four types of EMAs causing vulnerabilities in the US 

honey market: 1. Dilution with syrups, 2. Feeding sugar to bees during nectar offer, 3. Masking 

countries of origin, and 4. Antibiotic residues after excessive veterinary doses [13]. Therefore, it 

is of great importance to develop a method to certify the entomological origin of honey and to 

create a rapid method to avoid adulteration of the pot honey. 

5.3 Method and Materials 

5.3.1 Honey Samples 

Eighty three commercial honeys from Ecuador were purchased in markets or received from local 

stingless bee keepers. The entomological origin were declared by the beekeeper. 

5.3.2 Sample Preparation: 

Precisely weighed amounts (6.00 ± 0.01 g) of honey were placed in Teflon tubes and dissolved 

in 15 mL of deionized water; the pH of each sample was maintained between 2 and 3 using small 

volumes of HCl. Fifteen mL of CHCl3 were added and the mixture was mechanically stirred for 

15 min and then centrifuged at 10,000 rpm for 15 min at 4 °C. The lower chloroform phase was 

collected in a glass vial and the solvent was evaporated under a gentle stream of nitrogen. The 

solid residue was reconstituted in 600 μL of CDCl3 and placed in an NMR tube for the analysis. 
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5.3.3 1H-NMR Spectroscopy 

Spectra were recorded on a Bruker Avance 600DMX instrument, operating at 599.99 MHz for 

1H and equipped with a 5 mm TXI xyz gradient inverse probe. The 1D spectra were acquired 

using a modified double pulsed field gradient spin echoes (DPFGSE) sequence. The typical 

acquisition parameters were as follows: temperature, 298 K; recycle time, 2 s; spectral window, 

6000 Hz; number of scans, 256; data points, 32K; receiver gain, 8K. 

5.3.4 1H-NMR Data Reduction and Processing 

ACD software (ACD/Specmanager 7.00 software, Advanced Chemistry Development Inc., 90 

Adelaide Street West, Toronto, Ontario, Canada M5H 3V9) was used for data reduction and 

processing. Fourier transformation was performed after zero-filling the FID data to 128K points 

and after apodization using a decreasing exponential with line broadening of 0.5 Hz. The spectra 

were phased and baseline-corrected using the ACD manual routine, and the 1H-NMR chemical 

shifts were referenced to the residual CHCl3 signal at 7.27 ppm. Each 1H spectrum was 

segmented into intelligent bucketing, and the signal intensity in each interval was integrated. The 

spectra were normalized to the total sum of integrals covering the δ interval 9.45-2.16 and 

excluding the δ region 7.26-7.28, which contains the residual solvent peak. The resulting 

normalized integrals composed the data matrix that was submitted to multivariate analysis. 

5.3.5 Statistical Analysis 

Principal component analysis (PCA) and partial least square-discriminate analysis (PLS-DA) 

were conducted using the software SIMCA-P10 (Umetrics, Umea, Sweden). Data were mean 

centered and Pareto scaled. Data are visualized by plotting either the PC scores, where each point 

in the scores plot represents an individual sample, or the loadings plot, which permits us to 

identify the spectral regions with the greatest influence on the separation and clustering of the 

samples. 

5.4 Results and Discussion 

5.4.1 Authentication of Apis mellifera Honey Hamples: 

For the authentication of genuine honey, the study was carried out on 24 genuine Apis mellifera 

honey and 8 false honey samples. Figure 5.1 (A-B) shows the spectra of a false honey in 

comparison with genuine Apis mellifera honey. There is appreciable difference between the two 
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spectra. The genuine Apis mellifera honey complex spectrum derives from the biodiversity and 

complexity of plants and bees. Compounds distinguishing genuine Apis mellifera and false 

honey (Fig. 5.1) were identified with the help of our previously published report [14] and 

standard 2D NMR experiments. These compounds are listed in Table 5.1 
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Figure 5.1: (A) Complete 1H-NMR spectrum of a false honey sample in chloroform (red) and of 

an authentic Apis Mellifera sample (black). (B) Expansion of the aromatic region (4.5-9.2 ppm). 

Figure 5.2 A shows 1H-NMR spectra of 8 false (AMF) honeys in CDCl3, whereas Figure 5.2 B 

shows the main compounds that characterize them:  5-Hydroxymethyl furfural (5-HMF), 2-

Hydroxyacetyl-furan (2-HAF), Benzoic acid, and Sorbic acid. 5-HMF is also present in genuine 
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honey, but its amount is much higher in false honey. Benzoic and Sorbic acid were also present 

in 2 samples as preservatives.  

The Presence of 5-HMF in honey is unavoidable since low amounts of this compound naturally 

occur in fresh sugar containing food, such as honey and milk [15]. The content of 5-HMF 

depends on the temperature of the beehives, and it can increase at higher temperatures, becoming 

dangerous also for the health of the honey bee [16]. Moreover, its amount also depends on 

storage time and pH; therefore, it is normal practice to use the 5-HMF content as an indicator of 

adulteration and quality [15]. Both the Codex Alimentarius Commission (Alinorm 01/25, 2000) 

and the European Union (Directive 110/2001) established that its concentration usually should 

not exceed 40 mg/kg (80 mg/kg for tropical honeys) [17]. The presence of 2-HAF along with 5-

HMF is an indication of adulteration since both compounds are products of caramelization 

reactions. 

Preservatives are added into food deliberately with the purpose to save nutritional value and to 

increase the shelf life. Benzoic and Sorbic acid are two commonly used preservatives in the food 

industry and possesses the anti-microbial property to inhibit yeast and mold growth as well as to 

prevent the attack of bacteria [18]. Although widespread use of these preservative is common, 

still they have an adverse effect on human and animal health, such as metabolic acidosis, 

convulsions and hypernoea at high doses [19]. All the Apis mellifera genuine samples were 

characterize by the presence of an insoluble ether compound; Diacylglyceryl ether. Figure 5.3 

shows the structure of the marker of Apis mellifera genuine honey. All the resonances were 

assigned and identified with the help of previous work published by our group [14]. In that work, 

a metabolomic approach was used to discriminate honey belonging to different botanical origins 

but produced by Apis mellifera. Interestingly, this type of molecule has been found only in the 

muscles and liver of a giant squid and certain species of sharks. Diacylglyceryl ethers are 

fundamental molecules for these species as a short-term energy resource, and they may also be 

important in imparting buoyancy regulation [14]. 
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Figure 5.2: (A) Complete 1H NMR spectrum of 8 false honey samples in chloroform. (B) 

Expansion of the aromatic region (4.5-9.2 ppm). 

Honey samples Compound Chemical shifts (δ) 

False Honey 5-Hydroxymethyl furfural 4.76 (s); 6.56 (d); 7.25 (d); 

9.64 (s) 

2-Hydroxyacetyl-furan 4.77 (s); 6.63 (dd); 7.34 (d); 

7.66 (d);  

Sorbic acid 1.90 (d); 5.81 (d); 6.24 (m); 

7.36 (d) 



 

103 

Benzoic acid 7.52 (t); 7.65 (t); 8.15 (d) 

Genuine Apis Mellifera honey Diacylglycerylether 0.91 (t); 1.3 (m); 1.56 (m); 

1.64 (m); 2.04 (br);   3.45 

(m); 3.56 (dd); 4.18 (dd); 

4.35 (dd); 5.21 (m); 5.36 (m) 

Table 5.1: 1H-NMR data of identified compounds in false and genuine honey in CDCl3. 

 

 

 

 

 

Figure 5.3: Diacylglyceryl ether, a marker of Apis mellifera genuine honey.  

5.4.2 Authentication of Honey with Chemometric Analysis. 

Hierarchical Cluster Analysis (Figure 5.4) was applied to classify the samples based on spectral 

differences. In data mining and statistics, hierarchical clustering is a method which seeks to build 

a hierarchy of clusters. In general, the merges and splits are determined in a greedy manner. The 

results of hierarchical clustering are usually presented in a dendrogram or a heatmap. For the 

determination of spectral differentiation among studied groups, cluster analysis was performed 

via MetaboAnalyst (http://mirror.metaboanalyst.ca/). Total sum normalization was used for each 

spectrum in the range of 2.16- 9.50 ppm. Spectral distances were calculated between pairs of 

spectra as Pearson’s correlation coefficients and Euclidean distance was used to calculate the 

sample similarities and to indicate the complete linkage clustering by Ward’s algorithm.  

Use of chemometrics together with classical methods for the classification of different honey 

samples has been proposed in previous researches. PCA-like techniques can be preferred 

primarily for the determination of general relationship among data [20]. However, to group 

similar data gathered from different samples, cluster analysis must be performed [21]. Similar 

samples incline to be classified in the same cluster and the level of difference between the 

http://mirror.metaboanalyst.ca/
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clusters is indicated with heterogeneity values. Ward’s algorithm was previously reported to give 

one of the best predictions, among the different methods used in cluster analysis [20, 22]. 

 

Figure 5.4: Clustering dendrogram showing differences between Apis mellifera in red and false 

honey in green (distance measure using Euclidean, and clustering algorithm using Ward). 

The dendrogram shows clearly two clusters which represent the inter-sample similarity of 

genuine honey and dissimilarity with false honey. Hierarchical Cluster Analysis also provides 

the heatmap shown in Figure 5.5 where the top 10 important variables that discriminate false vs. 

genuine honey are indicated. A heat map is a graphical representation of data where the 

individual values contained in a matrix are represented as colors. 
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Figure 5.5: Clustering result shown as heatmap (distance measure using Euclidean, and 

clustering algorithm using Ward). 

The right hand side of the heatmap show the scale of the intensity of a particular variable in a 

particular sample. These features were selected on the basis of the VIP score plot (top 10). These 

variables represent the resonances of the Diacylglyceryl ether (from bees wax), a marker for the 

genuine when compared to the false honey. The heatmap shows absence (green color) of this 

compound in fake honey as also evident from the NMR spectrum of false honey (Figure 5.1). 

Table 2 summarizes the classification rate of the two honey types used for the authentication of 

genuine and false honey: the model classifies the honey samples with 100% accuracy. 

Classes Apis mellifera (AM)  False honey (F) Class. Error 

Apis mellifera (AM) 24 0 0.00 

False honey (F) 0 8 0.00 

Table 5.2: Classification of hierarchical clustering analysis model. 

5.4.3 Chemometric Approach for Entomological Origin Discrimination 

For the analysis of entomological origin of honey, we used 83 commercial honey samples 

belonging to four different entomological origin, namely Apis mellifera (25), Geotrigona (16), 

Mellipona (18), and Scaptotrigona (24). By using principal component analysis (PCA) and 

supervised techniques (projection to latent structures by partial least squares-discriminant 
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analysis, PLS-DA), a classification model according to entomological origin was obtained, with 

high predictability power. 

In the first step, we applied the PCA analysis to the four different types of honey samples; the 

scores plot is shown in Figure 5.6. Three outliers were detected using PCA analysis, which were 

eliminated from further analysis. 

 

Figure 5.6: PCA scores plot of all samples: Apis mellifera (red), Scaptotrigona (black), 

Melipona (blue) and Geotrigona (green).  

The PCA scores plot shows good separation between Geotrigona and Melipona groups, but there 

is not much difference between Scaptotrigona and Apis mellifera. Next, PLSDA was applied to 

visualize the subtle differences between the four groups; the scores plot is shown in Figure 5.7. 

A clear differentiation of samples according to the entomological origin was achieved. The 

model diagnostics were summarized for three components by the fit goodness, R2X (0.664), R2Y 

(0.929) and the prediction goodness parameter, Q2 (0.854). These values are considered good for 

a valid model. 
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Figure 5.7: PLSDA score plot of all samples: Apis mellifera (black), Scaptotrigona (green), 

Melipona (blue) and Geotrigona (G). 

The next step is to determine which resonances differentiate the four groups; therefore, we used a 

one-vs-all strategy through a PLSDA model where each class of honey was compared with the 

other honeys considered together as one class. Figure 5.8 (a-d) shows the scores plot of each 

entomological origin honey versus all as one class with their corresponding loadings plot to 

visualize the resonances important to differentiate between them.  
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Figure 5.8: PLSDA scores plot of 4 honey types (left) and corresponding loadings plot (right). 

(a) Apis mellifera vs all; (b) Melipona vs all; (c) Scaptotrigona vs all; (d) Geotrigona vs all. 

 

Figure 5.9: Clustering result showing differences between four observations: Apis mellifera, 

Scaptotrigona, Geotrigona and Melipona as a dendrogram (distance measured using Euclidean, 

and clustering algorithm using Ward). 
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The discrimination among the four different honey types was supported with cluster analysis 

(dendogram) after PCA and PLSDA analysis. The dendrogram in Figure 5.9 shows two main 

clusters (top to bottom). Three entomological classes of honey, namely Apis mellifera, 

Scaptotrigona and Geotrigona are merged into one big cluster whereas all Melipona honey 

samples are merged into one cluster. The two sub-cluster are merged into one big cluster through 

two nodes (bottom to top). These two sub-clusters are divided into 4 individual clusters as four 

unique observations represent each entomological origin. Two samples of Melipona honey, 

coded as HP73 and HP37 and indicated with arrows, are clustered along with Geotrigona and 

Scaptotrigona, respectively. Three samples of Apis mellifera, coded as HP64, HP57 and HP59 

are also merged with Scaptotrigona and Geotrigona, respectively. Out of these five samples, the 

ones coded as HP64, HP37 and HP57 were declared as adulterated samples using a classical 

approach physical-chemical and melissopalynological analysis (performed by Dr. Patricia Vit, 

sample provider). The other two honey samples coded as HP73 and HP59 are misclassified. 

 

5.5 Conclusions 

As a continuation of our work focused on the origin discrimination of Italian honey with a 

chemometric approach by NMR spectrometry, we received 91 samples from Ecuador, 83 

genuine honey and 8 false honey. In Ecuadorian markets, is it possible to find false honeys, 

composed entirely of inexpensive syrups or with a very little amount of genuine honey. 

Therefore, a method is needed which can be used as an alternative to classical ones to 

authenticate the honey and also to be used for entomological origin determination.  

A chemometric analysis of 1H-NMR data can discriminate between genuine and false honey. We 

found 5-Hydroxymethyl furfural, 2-Hydroxyacetyl-furan as main indicators of false honey. 

Moreover, Sorbic acid and Benzoic acid were not present in all false honey, but could be used as 

descriptors of false honey. We found a diacylglyceryl ether as the marker of genuine honey. The 

present study also demonstrates that a metabolomic approach based on 1H-NMR and associated 

with PLS-DA and cluster analysis is a very suitable tool to distinguish the entomological origin 

of honeys. The PLS-DA analysis further identified resonances belonging to different compounds 

responsible for the discrimination of entomological origin. The proposed method of chloroform 
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extraction requires very little sample preparation, is fast, reproducible, allows one to obtain a 

fingerprint of different classes of compounds at the same time, and is more objective than 

melissopalynological analysis. To the best of our knowledge, there is no report published on the 

use of NMR-based metabolomics to discriminate the entomological origin. We are aware of one 

recently published method based on electrophoresis to discriminate the stingless bee species 

from Mexico [2]. The initial findings in this work would be very helpful in the future to identify 

the unknown resonances to establish the entomological origin of Ecuador honey. 
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Chapter 6. General Conclusions 

The research that I have conducted at University of Padova over the course of three years was 

divided into two main topics under the common theme of “NMR-based metabolomics” in food 

chemistry: 1) The in vivo effects of nutraceutical products containing antioxidants on rat urine 

were evaluated using both NMR and MS; 2) An NMR-based metabolomic approach was applied 

to the discrimination of honey of different origins.  

The role of NMR-based metabolomics in food sciences has been expanding in the last decade 

after it was successfully applied to diseases, toxicology and in the medicinal area. The 

information available in the field of food chemistry is still scarce, therefore its potential and 

capability need to be explored. Recently, NMR-based metabolomics started to gain appreciable 

popularity in food stuff where it can be applied to food authentication. There is no argument for 

the low sensitivity of NMR as compared to MS; still, NMR is a method of choice for 

metabolomic studies because of its reproducibility and quantitative and non-destructive nature. 

Beside food authentication studies, i.e., origin discrimination of food matrices, NMR-based 

metabolomics recently also established itself in the assessment of phytochemical products and 

their metabolism in human and animal urine. Urine is a very convenient biological fluid to study 

because of the ease and non-invasive nature of multiple collections. Also, it is a biological waste 

which possesses important information of the living organism under study. The combination of 

NMR spectroscopy with data reduction techniques such as chemometrics to convert large 

datasets into valuable information have become a powerful tool in metabolomic studies, as we 

also prove in this thesis.  

In the first two chapters, we used both 1H-NMR and HPLC–MS techniques to study the 

modification of urinary composition in rats treated with C. longa L. and P. cuspidatum extracts 

and tried to correlate these changes with in vivo antioxidant activity. Multivariate analysis on 1H 

NMR and HPLC–MS data produced similar but not identical representations of the collected 

samples. Both approaches were able to detect variations in the urinary metabolome, leading to 

the observation of different components, showing the complementarity of these two analytical 

techniques for metabolomic purposes.  
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The evaluation of the effects of Curcuma extract (Chapter 2) on urinary composition in healthy 

rats by a metabolomic approach led us to observe evidence for an in vivo antioxidant effect 

caused by a significant reduction in the amount of urinary biomarkers of oxidative stress, such as 

allantoin, m-tyrosine, 8-OHdG. A tendency to the reduction of 3-nitrotyrosine was also observed. 

Our study supports an in vivo antioxidant effect of the oral administration of C. longa extract to 

healthy rats. The observation that urinary TMAO levels are increased in the treated compared to 

the control group may be related to the influence of curcumin supplementation on microbiota, as 

recently indicated by other research groups, or on the urinary excretion of this metabolite. 

Urinary levels of taurine and cystine, sulphur containing compounds, were also changed 

suggesting a role for such constituents in the biochemical pathways involved in C. longa extract 

bioactivity and indicating the need for further investigation on curcumin effects.  

In the third chapter, again both 1H-NMR and UPLC-MS measurements were performed in a 

longitudinal study to assess the urinary metabolome changes induced by 49 days 

supplementation of P. cuspidatum to healthy rats. There were significant metabolic effects that 

could be ascribed to treatment or to aging. Our data showed that resveratrol from P. cuspidatum 

induced changes in the endogenous urinary profile, confirming the bioactivity of this antioxidant. 

The measurement of oxidative stress urinary markers, i.e., allantoin and 8-OHdG confirmed the 

in vivo antioxidant effect of this P. cuspidatum. Cortisol derivatives were increased in the treated 

group suggesting a stimulating activity of this extract on steroid metabolism that need further 

investigations in future. Nevertheless, the analysis highlights the potential of NMR and MS 

based metabolomic analysis as a tool for in vivo investigations and the possibility that integrated 

metabolomic studies of other biofluids (i.e., plasma) and tissues could provide a clearer 

metabolic picture in the future with the same antioxidants. 

In chapters 4 and 5, we successfully used an NMR-based metabolomic approach in the origin 

discrimination of Italian and Ecuador honey with different botanical and entomological origins, 

respectively. 

Specifically, two methods were adopted for 82 citrus honey samples (in chapter 2) to distinguish 

clementine from citrus honeys. A simple, direct CDCl3 extraction method was developed that 

results in a better signal-to-ratio as compared to our old reported method with CHCl3 liquid-

liquid extraction. This new method requires less time in sample preparation and maintains all the 
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necessary information in the 1H-NMR spectra. To the best of our knowledge, this is the first 

attempt to discriminate clementine from citrus honeys. Our D2O extraction strategy revealed 

phenylacetic acid and tyrosine as marker compounds in citrus honey whereas higher amounts of 

formic acid characterized clementine honey. In the case of the CDCl3 extraction, 8-

hydroxylinalool and caffeine were found to be higher in the citrus honey whereas, clementine 

honey was characterized by the resonances of a yet unknown compound. 

In chapter 5, a chemometric approach was used in combination with NMR spectrometry to 

discriminate the entomological origin of different honey samples from Ecuador. The study 

included also the distinction of false honey from genuine honey. In total, we received 91 

samples, out of which 8 were false and 83 were genuine honeys produced by different bee 

species. Not surprisingly, we found 5-hydroxymethyl furfural and 2-hydroxyacetyl-furan as main 

indicators of false honey. Sorbic acid and benzoic acid were not present in all false honey, but 

could be used as descriptors of false honey. We found a diacylglyceryl ether as the marker of 

genuine honey. This study also demonstrated that a metabolomic approach based on 1H-NMR 

and associated with PLS-DA and cluster analysis is a very suitable tool to distinguish the 

entomological origin of honeys. The multivariate statistical analysis also revealed yet unknown 

markers of different entomological origins. These preliminary results will be further pursued in 

the future to identify the resonances responsible for discrimination of different honeys.  

In general, in chapter 4 and 5 we proposed that a 1H-NMR-based metabolomic approach for 

origin discrimination of honey could be used as an alternative to the classical method of origin 

assessment through melissopalynological analysis and physical-chemical methods. The proposed 

method of chloroform extraction requires very little sample preparation, is fast, reproducible, 

allows one to obtain a fingerprint of different classes of compounds at the same time, and is more 

objective than melissopalynological analysis. 

 

 

 

 


