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Abstract

Bayesian demography developments, global trends for substituting traditional cen-

suses with cheaper methods able to use available information, and new technologies

require investigating and providing new models to answer new requirements. In Italy

in particular, during the last years Istat worked for launching in October 2018 the

“permanent census of population and housing”. After a first discussion on censuses,

changes recommended by organisations such as the UN and the European Union to

the National Statistical Institutes, and on new demographic models for population size

estimation, the model proposed by Bryant and Graham (2013) is analysed. The model

allows for integration of different data sources, for demographic series estimation, and it

is very flexible and complex at the same time. Applications of this model to the Italian

population are performed, highlighting its advantages and limits. Data for the period

considered (2006-2015) and metadata come from Istat. Data are not always consistent,

confirming the need of statistical methods able to integrate sources and reconstruct de-

mographic series. As expected, census data and migration flows estimation caused most

of the problems. The method still needs further experimentations, therefore applications

aim to compare results when varying initial assumptions and to identify their pros and

cons rather than provide actual results on the Italian population. Eventually a model

extension, along with the first results of its application, is proposed using the Conway-

Maxwell Poisson distribution (Conway and Maxwell, 1962), a flexible two parameters

version of the Poisson distribution.





Sommario

Con i recenti sviluppi della demografia Bayesiana, la tendenza globale a sostituire i

tradizionali censimenti della popolazione con metodi più economici, capaci di sfruttare

la grande quantità di informazioni disponibile e le nuove tecnologie, si rende necessario

esaminare e fornire nuovi metodi in grado di rispondere a queste nuove esigenze. In

Italia in particolare, negli ultimi anni l’Istat ha lavorato per il lancio ad ottobre 2018

del “censimento permanente della popolazione e delle abitazioni”. Dopo una prima di-

scussione sui censimenti, i cambiamenti raccomandati agli Istituti nazionali di statistica

da organizzazioni internazionali come l’ONU e dall’Unione Europea, e gli sviluppi dei

modelli demografici per la stima della popolazione, si approfondisce il metodo proposto

da (Bryant and Graham, 2013). Il modello consente l’integrazione di varie fonti per la

stima delle serie demografiche e si caratterizza per notevole flessibilità unita ad un’ele-

vata complessità. Di questo modello si presentano varie applicazioni alla popolazione

italiana con lo scopo evidenziarne vantaggi e limiti. I dati per il periodo di riferimento

(2006-2015) e i metadati provengono direttamente dall’Istat. I dati non sempre sono

coerenti tra loro, confermando la necessità di servirsi di metodi statistici per integrare

fonti e ricostruire le serie demografiche. In linea con quanto previsto, l’inclusione dei

dati censuari e la stima dei flussi migratori si sono rivelati particolarmente problematici.

Il metodo è ancora in fase di sperimentazione, perciò le applicazioni si propongono di

confrontare i risultati al variare delle assunzioni e di evidenziarne pro e contro piuttosto

che fornire risultati quantitativi sulla popolazione italiana. Infine si propone un’esten-

sione del modello con l’uso della distribuzione di Conway-Maxwell Poisson (Conway and

Maxwell, 1962), dotata di elevata flessibilità, e se ne presentano i primi risultati.





“The Lord says: Look at the new thing I am going to do.

It is already happening. Don’t you see it? I will make

a road in the desert and rivers in the dry land.”

Isaiah 43:19

“Defenceless under the night

Our world in stupor lies;

Yet, dotted everywhere,

Ironic points of light

Flash out wherever the Just

Exchange their messages:

May I, composed like them

Of Eros and of dust,

Beleaguered by the same

Negation and despair,

Show an affirming flame.”

September 1, 1939

W. H. Auden

To my points of light
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Introduction

Overview

During the last decades Bayesian methods have been applied to population size esti-

mation mainly addressing problems of population projection and reconstruction, poor

data coverage and missing data, and data source integration. After a review on the

main developed methods and progress in official statistics, the thesis focuses on the

model proposed by Bryant and Graham (2013), studying its strengths and limitations

and applying the method to Italian data to estimate the Italian population.

The area of Bayesian demography is currently growing fast as its framework suits well

to the uncertainty underlying population estimation and forecasting problems. Tradi-

tional demographic models mostly oversimplify the complexity of demographic phenom-

ena such as the dynamic nature of real demographic systems, bias due to integration of

sources with different levels of completeness and reliability, and ”uncertainty arising from

incomplete knowledge of historical trends or causal mechanisms, or from random vari-

ation in disaggregated counts.” (Bijak and Bryant, 2016). Demography has long been

considered as a subject mostly relying on deterministic data, especially when talking

about official statistics and census data which, in theory, should have the best coverage

given the wide access to information and public offices cooperation all over the country.

The notion of uncertainty related to demographic quantities is rather new or, more

precisely, it has been explicitly introduced and included in demographic studies only

recently.

Reasons for joining probabilistic statements to demographic data comes from different

factors. First of all, data problems like bias, under- or over-coverage and sparseness are

more and more evident and are increasingly addressed by the scientific community. It

is important to consistently deal with such issues and to explicitly point out what is

their impact on the results. Secondly, data sources and their accessibility are increasing

and the ability to combine, integrate and organise them has become a key point. A

third aspect concerns outputs typically given in demographic estimations and forecasts

3



4 Overview

from official sources. Their interpretation and the underlying hypotheses are not always

clear and can be questionable. For example, UN projections used to assume convergence

of mortality, fertility and migration but this assumption is itself not certain and this

was not taken into account in projections (World Population Prospectus data.un.org).

The UN have now changed their approach and use Bayesian methods. Eventually, a

priori information not directly coming from data (e.g. expert opinions) could help the

inference process if included in the model, especially when data are sparse, incomplete or

biased. The Bayesian framework is therefore particularly appropriate to deal with these

issues as it allows for inclusion of prior information and provides uncertainty estimates.

The main critique to methods typically used by organisations making projections on

population, like United Nations or National statistical institutes (NSIs), is that they

provide results for different scenarios but the probability of each scenario is not always

clear and projections do not clearly reflect the corresponding uncertainty. Furthermore,

the quality of data used for projections or estimations is only indirectly accounted for

(Daponte et al. (1997), Abel et al. (2010)). Non-Bayesian examples of progress in this

sense can be found in Lee and Carter (1992) where confidence intervals are added to

projections; stochastic approaches of Lee and Tuljapurkar (1994), Tuljapurkar and Lee

(1997) , Tuljapurkar and Boe (1999), where some quantities are considered as known,

ignoring confidence intervals; or in Pflaumer (1988) where the importance of prior knowl-

edge in choosing the demographic distribution is stated even if not incorporated in the

model.

Bayesian methods naturally account for uncertainty and give probabilistic results;

they also incorporate prior information and several data sources. Examples of popu-

lation reconstructions and projections are Raftery et al. (2012); Rendall et al. (2009);

Wheldon et al. (2012, 2016).

The method proposed in Bryant and Graham (2013) and discussed more in details

in Bryant and Zhang (2018) makes possible to analyse the population according to

structural parameters as region, sex, age and year, along with the possibility to add

covariates or other dimensions. It also applies both to single demographic series (like

births, deaths or migration counts) and to the whole demographic account.

The demographic account is defined as a “complete description of the demographic

stocks and flows of interest, subject to accounting identities that relate stocks to flows”

(Bryant and Graham, 2013) and it is a tool initially used in economics. Classical dis-

cussions on population accounting models are the Nobel Memorial Lecture 1984: “The

Accounts of Society” reported in Stone (1986) and Rees (1979) where a simple account

model is firstly introduced, followed by related issues, limitations and assumptions, along

data.un.org
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with alternatives and improvements. A case study on regions of East Anglia, the South

East, the Rest of Britain and the Rest of the World is also included.

The demographic account model proposed by Bryant and Graham (2013, 2015) is

a complex population size estimation model. Taking advantages on the reliability and

abundance of data in New Zealand, they use multiple data sources and combine admin-

istrative data and official statistics to estimate the population of six different regions in

the country.

The demographic account used as example is a four-dimensional array where dimensions

are age, region, sex and time. Bryant and Graham divide their model in two parts: the

“system model” and the “data model”. The first one is based on the demographic ac-

count itself treating as sub-models counts of population, births, deaths, internal and

external in and out migration; it is meant to catch regularities in the demographic se-

ries, and, potentially, to link them to external characteristics (covariates). Parameters

of each sub-model are assumed a priori independent. The data model explains the rela-

tionship between the datasets and the demographic account and is chosen according to

data accuracy; tasks previously accomplished by experts, such as data accuracy evalu-

ation or systematic biases, are embedded in the model as a priori information; missing

data do not represent an issue as “the model predicts the contents of each dataset from

the contents of the demographic account and the corresponding data model” (Bijak and

Bryant, 2016). Model complexity comes from (i) the diversity of data sources used; (ii)

the application of a probabilistic model to both data sources for coverage errors and to

counts themselves; (iii) the high adaptability to the specific data despite the common

form of the model (a hierarchical Poisson-Log-normal model); (iv) the constraints re-

quired for demographic account consistency. An R package (demest) for Bryant and

Graham (2013) demographic account model has been implemented but is still under

revision and, according to the Authors, it still needs one or two years of testing and

tuning before being ready for a broad use.

Main contributions of the thesis

The Italian NSI (Istat) showed interest in Bryant and Graham (2013) method and

started investigating it (Toti et al., 2017). The model satisfies the requirements for

population size estimation aiming to implement the project of “permanent census of

population and housing” Istat has been planning during the last years. Therefore, with

the support of an Istat research group, the thesis provides an application of Bryant

and Graham (2013) method to Italian data. The model is very flexible and adapts to
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different data sources. The application to the Italian case adds to and extends the two

examples of demographic account estimation presented in Bryant and Zhang (2018) for

New Zealand and China. These two latter applications mainly differ for data quality,

if New Zealand has very high standards because of its relatively small population and

the control on immigration, in China registers show major internal contradictions that

heavily affect the estimation (Bryant and Zhang, 2018). In Italy, Istat keeps high data

quality standards according to international organisation recommendations. Main prob-

lems affecting data quality are restrictions from privacy laws and migration estimation.

Privacy is a delicate topic, on the one hand European and Italian Institutions constantly

work to control, enhance and safeguard citizens’ rights; on the other hand this laws affect

and limit not only illicit procedures but also official statistics tasks. Application to the

Italian data allowed to extensively test the model and highlighted both its advantages

and limitations. Moreover, the necessity to satisfy the population balance equations

showed some Italian data inconsistencies. In this sense, the thesis contributed to the

study of the model and potentially to the implementation of permanent census. The

results obtained show trend and main dimensions driving the Italian population change

during the period 2006-2015 and they also give an idea of the coverage of data sources.

An extension of the model is also proposed so that the model can account for het-

erogeneity of the observed population. The Poisson distribution is a natural choice for

counting people as it is discrete and has good properties but it assumes equi-dispersion

of data, implying from a demographic point of view that the population modelled is

homogeneous. To overcome this assumption, the Conway-Maxwell Poisson (CMP) dis-

tribution has been introduced as a possible data model. This distribution had a “revival”

in Shmueli et al. (2005) after it was initially proposed in Conway and Maxwell (1962).

The CMP distribution allows for modelling both under-dispersion and over-dispersion.

In one hand the extension adds flexibility to the model and gives a measure of population

data homogeneity, on the other hand this extension further complicates the Bryant and

Graham (2013) model due to higher number of parameter to estimate when considering

the CMP.

Chapter 1 discusses censuses origin and methods, new requirements and recommen-

dations, the challenges National statistical institutes (NSIs) have to face and how they

are changing. A focus on Istat is also presented. Eventually a review on Bayesian meth-

ods applied to demography is included. Chapter 2 introduces, explains, comments and

proposes possible developments for the model initially proposed by Bryant and Gra-

ham (2013). Chapter 3 contains applications to Italian data, comments and results for



Introduction 7

single demographic series and for the demographic account estimation. Chapter 4 in-

troduces the CMP distribution, its inclusion in the demographic account model (DAM)

and problems linked to it, and first results from the application to birth and death

counts. Discussion and future directions of research form the Conclusion chapter.





Chapter 1

Bayesian demography and Official

Statistics challenges

1.1 Bayesian statistics applied to demography 1

The first application of Bayesian statistics to demography dates back to the end of

the XVIII century when Laplace (1781) applied Bayesian inference to estimate sex ratios

at birth in Paris and London, not log after the publication of Bayes theorem (Bayes,

1763). After its introduction, Bayesian statistics and, consequently, its applications

to demography have hardly been used until technology and new theory (e.g. Markov

Chains Monte Carlo methods) allowed to overcome computational and theoretical issues

related to Bayesian techniques. The interest in Bayesian demography rose again in the

late 1990s (Daponte et al., 1997) and it is growing fast, especially after the UN adopted

a Bayesian probabilistic approach for its projections (Gerland et al., 2014).

The Bayesian and the classical (frequentist) approaches present differences from many

points of view. First of all, from a philosophical perspective, the definition of probabil-

ity changes. Bayesians relate probability to subjective beliefs whether for Frequentists

an event’s probability is the limit of its relative frequency in a large number of trials.

Bayesian theory is based on Bayes theorem whereas classical inference is mainly based

on the likelihood; the outcome of classical statistics is a point estimate with standard er-

ror, whereas in Bayesian statistics a whole probability distribution is available increasing

the amount of information available, e.g. multiple modes, probability mass concentra-

tion, and, in general, all quantities derivable from a full probability distribution; the

interpretation of credible intervals in Bayesian statistics is different from classical con-

fidence intervals. Considering the usual 95% interval, when considering a 95% credible

1This introductory section is widely based on Bijak and Bryant (2016)
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intervals it is correct to say that the interval contains the true value with a probability

of 95%; with confidence intervals this interpretation is not right. In classical statis-

tics the 95% “refers to the proportion of hypothetical confidence intervals that would

contain the true value if the study were replicated many times” (Bijak and Bryant,

2016). Typical of Bayesian statistics is the use of prior distributions meant to embed

a priori information not contained in the data. Prior distributions can be informative,

weakly informative or even non-informative depending on the data and the approach.

When there are little data, or they are sparse, it is common to use informative priors

as very little information is contained in the data. If data provide a satisfying level

of information usually a weakly informative prior is used mostly providing qualitative

information about data as trend or neighbouring similarities (as following age groups,

similar incomes or neighbouring regions). When the prior is non-informative, the whole

analysis is mostly likelihood driven and Bayesian results are very similar to Frequentist

ones. Very important for the model presented in chapter 2 (Bryant and Graham, 2013)

and often used in Bayesian models are the hierarchical priors, i.e. prior parameters

are given hyper-prior distributions with hyper-prior parameters. Equivalent Frequentist

versions of Bayesian hierarchical models are multilevel models or random effects models.

Nevertheless, the Bayesian framework seems to be a natural way to approach problems

hierarchically as parameters are treated as random variables and always have their own

probability distributions whereas they are point estimates in the classical framework.

Hierarchical models are introduced in section 2.1.1.

The main critic Frequentists have towards the Bayesian method is the subjectivity

introduced in the model through the prior distribution. The prior is chosen by the user

according to prior beliefs on the data and it can influence results.

From a Bayesian point of view the prior is a transparent way to introduce a priori

choices that are unavoidable in any statistics. Also using the classical approach, there

are choice that can be considered as subjective, e.g. the choice of error distributions or

what method to use to deal with missing values. Moreover, models are often robust to

the prior choice and the influence of the prior decreases as the amount and the quality

of data increase. The prior distribution allows for an explicit introduction of additional

information in the model, if available. The level of informativeness can be chosen and

robustness to this choice can be tested.

Many of the typical aspects of Bayesian statistics are suitable for application to de-

mography. The availability of a whole probability distribution instead of a single point

estimate and the suitability of the Bayesian framework for hierarchical modelling is use-

ful for demographic phenomena as these type of model are popular both in demography
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and ecology. With hierarchical modelling complex phenomena as social ones can be de-

scribed, it is possible to include information at individual level, group level or population

level and account for all of them in the same model. In many cases, and particularly in

demography, the influence of prior distributions can be tuned. On the one hand it can

be reduced either by the choice of the distribution itself or letting its influence on the

posterior calculation naturally fading increasing data information and quantity. This

last option is a viable choice in demography as population studies typically rely on em-

pirical data and, especially since census-based information are available, this abundance

of data can be used to reduce the impact of the prior. On the other hand, it is not rare

in demography to use either different sources, or a priori knowledge or to “borrow” data

from different populations than the one analysed to improve the model. This is possible

as there are demographic processes presenting similarities across different populations

and because demographers have knowledge that, despite not being available from the

data, can be included in the prior and help the estimation process when data are sparse

or poor. Also, with Bayesian methods, uncertainty measures are provided along with

the parameter estimations, turning typical deterministic projections into probabilistic

ones. The inclusions of uncertainty in social sciences is of major interest as source of

uncertainty are multiple and models have to account for it in order to provide a more

complete picture of reality and not be limited only to qualitative indications of reliability

but to rely on quantitative ones.

Bijak and Bryant (2016) also highlight the advantages Bayesian statistics can obtain

from demographical applications. Demography has a “strong empirical orientation”

(Bijak and Bryant, 2016), its applications have important political consequences in

terms of social and economic policies, and it has developed methods and solutions that

might be used for other fields. For Bayesian statistics, it represents a good opportunity

for new applications, and Bayesians can take advantage of these peculiarities and develop

new methods starting from demographical models.

The exchange of knowledge and methods between Bayesian statistics and demogra-

phy benefits both fields and provides new challenges and opportunities. Application of

Bayesian methods to demography provides new tools to support traditional demographic

methods allowing for constant updating and incorporation of different information (prior

beliefs, expert opinions, quantitative and qualitative data). Bayesian methods role is

not to compete with older methods but rather to support and complement them.

Bijak and Bryant (2016) point out three main areas of application of Bayesian method

to demography and provide examples for each of them: (i) forecasting, (ii) limited data;

(iii) structured and complex models. In the following section a review of models for
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population estimation or reconstruction is presented particularly focusing on studies

related to official statistics.

1.2 A review of population estimation through Bayesian

methods

Application of Bayesian methods to demography is a convenient partnership for both

areas. Demographers can quantify via probability distribution the uncertainty of their

results, combine different data sources, and have a suitable tool to deal with multilevel

analysis. Especially Bayesian hierarchical models allow for information exchange on

unknown quantities across regions, “based on the assumption that these quantities are

drawn from a common probability distribution” (Alkema et al., 2015). For Bayesian

statisticians, demography is a subject providing a good opportunity to test Bayesian

methods and also a policy relevant area of application; demographic models can also

enrich the Bayesian landscape and be a starting point for new developments (Bijak

and Bryant, 2016). In addition to these reasons pointed out in the last section, the

application of Bayesian methods to statistics has been a solution to a critique to the

usual way of making projections. One of the main critiques to methods typically used by

organisations making projection on population and for population size estimation (e.g.

United Nations or Census offices) is that they make assumptions and give projections

according to scenarios that do not clearly reflect uncertainty, and they only indirectly

take into account the quality of data they use (Daponte et al., 1997; Abel et al., 2010).

Non-Bayesian examples of progress in this sense can be found in Lee and Carter (1992)

where confidence intervals are added to the projections; in stochastic approaches (Lee

and Tuljapurkar, 1994; Tuljapurkar and Lee, 1997; Tuljapurkar and Boe, 1999), where

still some estimated quantities are considered as known, ignoring confidence intervals; in

Pflaumer (1988) where the importance of prior knowledge in choosing the demographic

distribution is stated even if not incorporated in the model. The advantage of Bayesian

methods is that they naturally account for uncertainty, give probabilistic results and

incorporate prior information. Applications of Bayesian methods to official statistics

and population reconstruction or projections are diverse and literature is growing fast.

In official statistics it has been easier to introduce Bayesian methods in Small area

Estimation (SAE) than to use them for census adjustments, as both scientific (Freed-

man and Navidi, 1986) and political communities appear to be reluctant to this change

Fienberg (2011). For examples and theories of small area estimation the book from Rao

(2003) provide an overview whereas Ballin et al. (2005) and Trevisani and Torelli (2004)
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focus more on Bayesian hierarchical formulation. Bias problems for missing data impu-

tation are addressed in King and P. (2001). Authors combine and extend the Markov

chain Monte Carlo model composition (Madigan and York, 1997) applying the method to

incomplete data and coming from different sources also optimising the best data source

combination. Dellaportas and J. (1999) instead propose hierarchical log-linear model

using reversible jump Markov chain Monte Carlo simulation techniques, discussing the

prior specification and presenting ad hoc loss functions approaches to select the appro-

priate data sources. Comparing frequentist and Bayesian approach applied in presence

of multiple and incomplete data sources, simulation methods based on the Bayesian

approach seem to perform better when the number of source becomes high, i.e. when

estimator for missing cells are not “highly sensitive to the choice of model” (King and

P., 2001), and to obtain good model-average estimates. Frequentist approaches for as-

sessing the accuracy of register-based household statistics is presented in Zhang (2011)

using a unit-error theory with application to Norwegian registers whereas Yildiz and

Smith (2015) developed a model to correct the over-coverage of the Patient Register

of UK and Wales with more accurate auxiliary data sources when census data are not

available.

One of the first time a Bayesian approach has been used in demography was in

Daponte et al. (1997) to project and reconstruct the Iraqi Kurdish population from

1977 to 1990. In the article Authors point out how with Bayesian analysis it is possible

to explicitly include personal beliefs or uncertainty about parameters, to get proba-

bilistic results. The task was particularly hard since data on Kurdish minority where

severely under-reported and biased due to social, political and geographical problems of

the area. With a cohort-component method they adjust the last census data available

and use it as baseline populations. Then they assume levels and patterns of fertility,

mortality and net migration for the projection period. Opinions, judgements, experi-

ence, outlooks and data quality assessments are also included in the process. Another

historical reconstruction with Bayesian method is the one in Bertino and Sonnino (2003)

whereas Bryant and Graham (2013) estimate New Zealand regional population.

An important approach adopted by the UN is the one firstly proposed in Wheldon

et al. (2010) and then applied to different cases in Wheldon et al. (2012, 2013, 2015,

2016). This method simultaneously estimates population counts, vital rates and net

international migration at the country level, by age, together with uncertainty. One of

the first applications was on female population, then Wheldon et al. (2013) reconstruct

both sex populations for India, Thailand and Laos studying the sex-ratios at birth and

the sex-ratios of mortality. From data quality and availability point of view, these are
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challenging countries, good for experimenting Bayesian methods performance. A com-

parison among results from countries with three different data quality is presented in

Wheldon et al. (2016). Authors reconstruct female population from Laos, Sri Lanka

and New Zealand, with Laos having the poorest data quality and New Zealand the

best. Wheldon et al. (2016) integrate the two main model categories in demographic

literature of population reconstruction: (1) the cohort component method of popula-

tion projection (CCMPP) (Lewis (1942), Leslie (1945), Leslie (1948)), a deterministic

method typically used for reconstruction of distant past population and population dy-

namics after extreme crises; (2) Bayesian hierarchical modelling allowing for uncertainty

of measurement errors. Moreover, despite being similar to Daponte et al. (1997), this

approach does not assume any specific age pattern through the period of reconstruction,

and it overcomes the requirement of regular census data of Wheldon et al. (2013). Prior

distributions embed information and expert opinions available for the countries of inter-

est and treat bias and variance in measurement errors separately. This method requires

at least two data sources, e.g. baseline population estimates based on bias-adjusted cen-

sus counts, and fertility and mortality estimates from surveys. Results from the three

different countries have uncertainty levels inversely proportional to the quality of data.

Wheldon et al. (2013) also implemented an R package for population reconstruction

popReconstruct.

1.3 Changes in demography and Official statistics

During the last years both demography and official statistics are facing a period of

change. Considering demography, paradigms, topics, approaches are changing so that

the nature itself of the subject has been questioned (Billari, 2015). From a mainly

descriptive subject demography is now more about population studies increasing the

importance of statistical methods. The way to name demographical studies (demogra-

phy, population studies, political arithmetic), what components of population change

is more prominent (fertility, mortality, migration), what kind of analysis is more used

(cohort analysis, cross-sectional analysis, longitudinal analysis, event history, biograph-

ical analysis, multilevel analysis) has changed and evolved over time (Bijak et al., 2014).

A controversial and deep change is the shift from a macro and descriptive approach to

a micro and dynamic (or “life-course”) approach based on agent-based models (Ret-

taroli, 2011; Billari, 2015), and suspected to cause demography abandoning its “core”

(Lee, 2001) by some, and considered a “seminal idea”, already adopted in other sci-

ences like economics, by others (discussion in Billari (2015)). Also, Bijak and Bryant
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(2016) highlight how traditional demographic models often oversimplify the complexity

of demographic phenomena such as the dynamic nature of real demographic systems,

bias due to integration of sources with different levels of completeness and reliability,

and ”uncertainty arising from incomplete knowledge of historical trends or causal mech-

anisms, or from random variation in disaggregated counts.” Bijak and Bryant (2016).

Dealing with uncertainty, the change of perspective, and the increasing technology give

statistical models a prominent place in demography, and Bayesian methods, that typi-

cally perform well in high uncertain situations, have started being studied and applied

also to demography. The notion of uncertainty related to demographic quantities is

rather new, or better, it has been explicitly introduced and included in demographic

studies only recently. Reasons for interpreting and providing results in a probabilistic

way come from different factors: first of all problems with data such as bias, under- or

over-coverage and sparseness need to be addressed properly, techniques accounting for

these characteristics and explicitly pointing out what impact they have on results are

required. Secondly, data sources and their accessibility are increasing, and the ability

to combine, integrate and organise them is a key point for efficient and reliable offi-

cial statistics and research in general. A third aspect concerns outputs typically given

in demographic estimations and forecasts from official sources. For instance, UN pro-

jections used to hypothesise convergence of mortality, fertility and migration but this

assumption is itself not certain and this was not taken into account in projections (World

Population Prospectus data.un.org). Also, the habit to make projections according to

scenarios (typically low, medium and high) without probabilistic statements was not

always clear, and therefore, made results questionable. The UN have now switched to

probabilistic projections (Gerland et al., 2014). Eventually, knowledge and information

not directly coming from data (e.g. expert opinions) could help the inference process

especially when data are sparse, incomplete or biased. The Bayesian framework is par-

ticularly appropriate to deal with these issues as it allows for prior information inclusion

and provides uncertainty estimates.

Changes in demography have affected Official statistics which is closely related to it.

On its side, Official statistics is also experiencing a period of deep transformations. New

technology, new requirements, new data source and higher data quantity, globalisation

are only few of the driving force of the changes National Statistical Institutes (NSIs)

have undertaken. NSIs are facing new challenges and, in many cases, they have started

modernisation and industrialisation processes. Commissions and groups of research have

been established in international organisations to study current situations, propose new

solutions and standards, and harmonise definitions and procedures as far as possible.
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Examples of these groups are: the UNECE High-Level Group of Modernisation of Offi-

cial Statistics (HLG-MOS) with all their committees and activities (Generic Statistical

Business Process Model (GSBPM), the Generic Statistical Information Model (GSIM),

and the Common Statistical Production Architecture (CSPA), Generic Activity Model

for Statistical Organizations (GAMSO), the sets of Generic Statistical Data Editing

Models (GSDEMs) and the Big Data project). Complementary initiatives within the

European Statistical System (ESS) are, for instance, the recommended practices for

editing and imputation in cross-sectional business surveys (EDIMBUS manual), the

European Statistics Code of Practice with the related Quality Assurance Framework of

the ESS (ESS QAF), the Euro-SDMX Metadata Structure (ESMS) for the dissemina-

tion of reference metadata, and the Validation and Transformation Language (VTL) as

a standard language to express data editing validation rules, to name a few (Salgado,

2016).

With technology NSIs are now able to perform better and faster. These changes

require new methods, ways of proceeding, suitable knowledge and tools (software, ac-

cessing data, internal and external communication and organisation), and a substantial

revision of organisations processes and structures. NSIs have started adapting to the

new requirements and in many European countries novelty have been introduced already

during the 2011 census round. In addition to “formal” innovations concerning the num-

ber of institutions and/or commissions and new rules, also substantial changes occurred

in the procedures and in the theoretical framework used. If, on the one hand, NSIs

might be slow adapting to new solutions due to bureaucracy, regulation and country-

specific issues, on the other hand, other organisations and research institutes can drive

innovation faster. For example, the UN switched to probabilistic population projections

for all countries in July 2014 using a Bayesian framework (Alkema et al., 2015).

1.4 Censuses: history and methods

A key task of NSIs and, more generally, a fundamental point of Official statistics and

a precious demographic data source is the census. Following changes in demography

and Official statistics, also census is undergoing a lot of changes in many countries.

Census is “a count for official purposes, especially one to count the number of peo-

ple living in a country and to collect information about them” (http://dictionary.

cambridge.org). There are evidences of censuses since the dawn of civilisation (Egyp-

tians, Mesopotamian societies, Chinese, Romans are only few examples). Reasons for

conducting an enumeration of population are diverse and changed over time, they go

http://dictionary.cambridge.org
http://dictionary.cambridge.org
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from military and fiscal to welfare or descriptive reasons. As the importance and the

requirements of censuses have increased over time, the limitations of the traditional way

of conducting censuses have arisen more and more clearly. A review of these limitations

as well as alternatives and issues can be found in Coleman (2013).

Traditionally it is said that the first modern census date back to the XVII century

even though it is difficult to be precise about what was the first modern census (Egidi

and Ferruzza, 2009). Nowadays it is possible to identify five essential characteristics of a

census: (i) the individual enumeration, i.e. separate recording of personal characteristics

allowing for cross-classification; (ii) simultaneity, so that information are all collected at

the same time or adjustments are made to the data to have the same reference period;

(iii) universality, as the census is meant to enumerate every person/household/housing

residing and/or present in the country; (iv) small area data, i.e. to produce data related

to the smallest geographic area; (v) defined periodicity, each country decide its own

but general recommendations are for at least a census every ten years (UNECE report,

2006).

Census regulations and recommendations come from different institutions and there

are different levels. The most general organisation, encompassing 193 countries is the

United Nations Organisation. UN give general recommendations, individuates the main

issues, possible and needed innovation and provides reports about countries. Then, in

Europe, the European Commission regulates some aspects for member countries and,

eventually, each country has its own laws and rules for conducting censuses.

The main phases of censuses are: (a) involvement of stakeholders, (b) preparatory

work (including legislation, testing and outsourcing), (c) enumeration, (d) data process-

ing, (e) quality assurance of data prior to its dissemination, (f) dissemination of the

results, (g) evaluation of the coverage and data quality, and (h) analysis of the results.

In each phase, needs and constraints of who conducts the census must be taken into

account. On the one hand, National Statistical Institutes (NSIs) would like to have

detailed, reliable and accurate data with previous censuses; on the other hand, a census

should respect people’s privacy, not be too long or ask sensitive or complex questions,

it should adapt to changes in the society and avoid inconveniences or ambiguous goals.

More formally, “a topic should NOT be included in a census if: (a) it is sensitive or

potentially intrusive, or requires lengthy explanations or instructions to collect; (b) it

imposes an excessive burden on the population, or seeks information not readily known;

(c) its inclusion is likely to have a detrimental impact on coverage or the quality of the

information collected; (d) it enquires about opinions or attitudes; or (e) it is likely to

present major coding problems or extensive processing or significantly add to the overall
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cost of the census. In addition to these factors, the census should be considered as an

exercise carried out purely for statistical purposes, and should not, therefore, be used

to collect data that will deliberately promote political or sectarian groups, or sponsor

particular causes” (UNECE report, 2006). One of the main UN commission for census

recommendations is the United Nations Economic Commission for Europe (UNECE),

set up in 1947. “UNECE’s major aim is to promote pan-European economic integration.

UNECE includes 56 member States in Europe, North America and Asia. However, all

interested United Nations member States may participate in the work of UNECE”. UN-

ECE mission is to “focus on raising UNECE countries’ capacity in official statistics by

helping national statistical offices and other stakeholders to coordinate their work and

fill statistical gaps. Our work aims to address the increasing demand for high quality and

comparable data among countries.” (https://www.unece.org/stats/stats_h.html).

In general, but in particular in the UNECE region, there are three main ways to conduct

census:

1. the traditional methods of full enumeration, conducted either once in a regular

basis, or a rolling census where information is collected by a continuous cumulative

survey covering the whole country over an extended period (rather than on a

particular day or short period of enumeration). Traditional censuses give a specific

and detailed picture of a country’s population but it is also an elaborate, complex

and costly activity. Because it can be carried out only once in a while, collected

data go through a long revision process before being released, and, therefore, data

can never be considered up-to-date. Furthermore, cooperation from the whole

population is necessary to have reliable data and it has not always been the case for

different reasons (mainly religious, racial, and political). Traditional census can be

carried out either with interviews or with questionnaires, depending on the literacy

of the population, and on countries resources (economic and technological).

2. administrative and register-based census, possibly supported by sample surveys

for selected variables. This system is more and more popular and it is replac-

ing traditional censuses. Transition though is a long process because it requires

reliable and up-to-date registers and the ability to correctly link people/units in

different registers and combine them (e.g. people to household, dwelling, buildings

and places; employer to employee). Mainly Nordic countries (Denmark, Finland,

Iceland, Norway and Sweden) and few others like Austria, Belgium, Slovenia and

Turkey use this system. It reduces costs and allows for increased frequency of

outputs, but information is limited to what administrative registers provide which

https://www.unece.org/stats/stats_h.html
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Type of census Number of countries

Traditional censuses 35

Combination between register-based
censuses and traditional censuses

3 (Czech Republic, Latvia, Lithuania)

Combination between register-based
censuses and sampling surveys

6 (Spain, Germany, The Netherlands,
Poland, Switzerland, Israel)

Register-based censuses
9 (Austria, Belgium, Denmark, Finland,
Iceland, Norway, Slovenia, Sweden,
Turkey)

Appropriate surveys with rotating
samples (continuous censuses)

1 (France)

Table 1.1: Type of censuses in 2011 for UNECE region countries (INE Spain, 2011).

is supposed to have administrative and not statistical purpose. Moreover, differ-

ences in contents limit comparability with other countries and it is less flexible

than a traditional census questionnaire that can be adapted each time according

to current necessities.

3. combined approach: data come from administrative registers and, for other vari-

ables not contained in registers, data are collected by full enumeration or by sam-

ple. This method violates the principle stating that census information is used

only for statistical purposes and assumes NSIs have access to administrative data

and are able to collect required information and link it to registers. This option is

less costly than the traditional census and it is perceived as much less intrusive.

Table 1.1 “shows the type of Census that, according to a survey conducted by the United

Nations in June 2009, it was planned to conduct in 2011 by the 50 Member States of the

UNECE, and an additional 4 countries (Australia, Japan, Mexico and Kosovo)” (INE

Spain, 2011)

Regardless countries’ census choice, the UN advice countries to “take into account a

wide range of issues such as: (a) users needs, (b) quality of the data, (c) completeness

of the count, (d) data protection and security, (e) comparability of the results between

countries and over time, (f) burden on the respondents, (g) timeliness of outputs, (h)

costs, (i) political and legislative implications, and (j) public understanding and ac-

ceptance” (UNECE report, 2006) in addition to confidentiality requirements. UN also

monitor what technological innovations might have a good impact on efficiency, quality

and costs, give directions on data collection and processing, and define quality standards

for relevance, accuracy, timeliness, accessibility, interpretability and coherence.
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In Europe, the European Statistical System (ESS) and Eurostat coordinate and work

on Census programmes giving main guidelines, collecting and comparing results at Eu-

ropean level. After the 2021 European Census round, the next is scheduled for 2031

embedded in the world-wide UN Census round. In addition to international recommen-

dation, two important topics the European Union is focusing on are migration and the

change on the geographical boundaries used for data collection. During the last years,

European and national political institutions are particularly interested in migration,

mobility, migrant populations and, more generally, in collecting migration related infor-

mation and investigating dynamics of the phenomenon which has become a major topic

of research. Another European countries main goal is to implement grid-based data

collection method rather than the usual administrative based one. In this way data col-

lection would be always geographically consistent avoiding inconvenience deriving from

administrative boundary changes.

1.4.1 The case of Istat and the “permanent census”

The Italian NSI, Istat, is adapting to the new requirements and directions of inter-

national and European institutions. Changes in such big institutions require time and

cooperation but there are visible progresses and results, especially during the last few

years.

Since the first Italian population census in 1861, it is possible to individuate dif-

ferences and novelties in each round, but in 2011 for the 15th census, Istat has deeply

changed its procedures in order to satisfy the increasing need of better longitudinal and

spatio-temporal data, to release census information with higher frequency than once

every ten years, to decrease the cost for conducting censuses 3, and to start integrat-

ing different sources. Innovations of the 2011 census concern, for instance: the use of

administrative and territorial data, even though just as a support to other data; some

activities have been carried out through the web; there was the introduction of sampling

techniques; a Post Enumeration Survey (PES) was conducted according to European

Commission Regulation n. 1151/2010; new registers and systems to harmonised munic-

ipalities; surveys, usually considered independently of one another, have been looked at

in an integrated way in order to get more precise and richer information.

The idea of a system where institutions communicate and work together to integrate

different sources of information is not new. In the 1960s, Professor De Finetti wrote

32011 census had an overall cost of 604 million, including personnel costs, http://ec.europa.eu/
eurostat/cache/metadata/EN/cens_11r_esmscs_it.htm

http://ec.europa.eu/eurostat/cache/metadata/EN/cens_11r_esmscs_it.htm
http://ec.europa.eu/eurostat/cache/metadata/EN/cens_11r_esmscs_it.htm
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Figure 1.1: A “futuristic” blackboard, Prof. De Finetti drew and signed it in
1962 during a seminar at the Demographic Institute of the University of Rome. It
represents the information flow of different kind of data among public and private
institutions. Information flows regard: marital status in red (SC = stato civile),
residence and address in yellow (RI = residenza e indirizzo), official data in blue (DU
= dati ufficiali) and informational data in green (DI =dati informativi).

about how to improve and extend official statistics production through a network link-

ing many institutions, both public and private, and draw the (still) “futuristic” system

showed in figure 1.1. In his essay De Finetti, B. (1965) proposes a system at national

and possibly European level, where a unique code associated to each person would be

used everywhere allowing all information to be linked to the right person, and where

institutions public and private communicate and cooperate creating an efficient and

integrated system. He also highlights obstacles and problems for such a transforma-

tion, and procedures to implement for such a system to work (updating, storing data,

communication among institutions).

If the idea proposed in De Finetti, B. (1965) is still “futuristic”, it is true that

Istat and many NSIs are taking steps towards an always more integrated system. In

particular, since the 2011 census, Istat has been working to eventually switch from a

traditional census to a “permanent census”. Permanent census is regulated at European

level since 2008 (CE n. 73/2008) with three other regulations released in 2017 for

its practical implementation. As Istat explains, permanent census does “not involve

all citizens, enterprises and institutions, but parts of them from time to time, that is

representative samples. However, the data disseminated to the Country will be census

data, and therefore referable to the entire field of the survey.” (https://www.istat.

https://www.istat.it/en/permanent-censuses
https://www.istat.it/en/permanent-censuses
https://www.istat.it/en/permanent-censuses
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it/en/permanent-censuses). Hence, with permanent census, it is possible to provide

census data every year at a much lower cost. Istat will integrate survey results and

data from registers belonging to the Integrated System of Registers (Sistema Integrato

di Registri, SIR). In 2017 there have been experimental surveys, and the actual project

starts in October 2018. Figure 1.2, produced by Istat, summarises characteristics of

permanent census:

• Objectives: (i) Yearly information, at October every year (ii) integration of exist-

ing administrative sources with surveys, (iii) production of longitudinal data, (iv)

data by territorial grid different from administrative one, (v) less public inconve-

nience, (vi) reduced cost.

• Integration of sources: (i) Administrative data, (ii) surveys, (iii) big data.

• Integrated System of Registers including: (i) Places, (ii) People, (iii) Economic

units, (iv) Activities.

• Sample surveys: (i) surveys by area to correct coverage errors involving 2800

municipalities every year, (ii) surveys from administrative lists for information,

(iii) System of social surveys (Sistema delle Indagini Sociali, SICIS) for daily life

aspects, workforce, life conditions, households expenses.

• Surveys help registers update.

Permanent census is a complex and new project whose first part is planned for the

four years 2018-2021, ending when the next census round was planned. For such an

important change research is essential to provide suitable tools able to analyse and

integrate data, and to suggest potential adjustments, corrections and procedures to

improve this new official statistics framework.

https://www.istat.it/en/permanent-censuses
https://www.istat.it/en/permanent-censuses
https://www.istat.it/en/permanent-censuses
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Figure 1.2: Istat permanent census representation with its objectives, sources,
registers, sample surveys and periodicity. Source https://www.istat.it/it/

censimenti-permanenti.

https://www.istat.it/it/censimenti-permanenti
https://www.istat.it/it/censimenti-permanenti




Chapter 2

Demographic Account Model

2.1 Preliminary concepts

The model described in this chapter has been firstly introduced by Bryant and Gra-

ham (2013). According to the classification proposed in Bijak and Bryant (2016), it

is one of the “highly structured and complex models” in Bayesian demography. Be-

fore introducing the model itself, the next 2 subsections provide a short descriptions of

the main elements the model combines for estimating the population size: hierarchical

models and demographic account. As the concept of Bayesian demography implies,

also in this model the two arguments are one typical of Bayesian statistical modelling

(hierarchical models) and the other of demography (demographic account).

2.1.1 Hierarchical models

When parameters describing a statistical model present some similarities or are some-

how connected this information should be included in the model. Hierarchical models

are a useful way to perform this task and Bayesian framework naturally suits their struc-

ture. The basic structure of any hierarchical model includes the data model y ∼ f(y|θ)
conditioned on on parameters in the vector θ which has itself a distribution conditioned

on additional parameters called hyper-parameters g1(θ|λ). Hyper-parameters can also

have their distribution λ ∼ g2(λ), be considered as known, estimated through frequen-

tist methods and then treated as known (empirical Bayes). This structure based on

layers is flexible and presents many strengths. The structure just presented shows why

hierarchical model fit well in the Bayesian framework. A parallel between hierarchical

models structure and the typical Bayesian models one is immediate. The part modelling

data y ∼ f(y|θ) corresponds to the likelihood, whereas the parameter model g1(θ|λ) is

25
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the prior distribution used in the Bayesian framework which can have hyper-priors de-

pending on the structure. Then the resulting distribution is the posterior.

Hierarchical models can usually fit complex structure where other models fail. Espe-

cially with large datasets, non-hierarchical models risk either to include too few parame-

ters, maybe ignoring important features, or to consider too many parameters, ending up

over-fitting the data. Instead, because of their structure, hierarchical models can han-

dle complicated problems. Combining common and simple model for the data, priors

and hyper-priors, it is possible to obtain a complex posterior which would be difficult

to model and work with directly. This also bring computational advantages. Also the

reverse process is possible, i.e. starting from a complex posterior a decompose it in

different parts. These models are called hidden Markov models, hidden mixtures or

deconvolution.

Hierarchical models are usually robust to model misspecification, i.e. usually similar

results are obtained with different priors and, especially if priors are relatively flat,

results are often close to those obtained with empirical Bayes analysis. This property

represents an advantage as it allows to concentrate less on the exact prior or hyper-prior

specification, which can be left flat non-informative. Lehman and Casella (1998) write

that “hierarchical models allow easier modelling of prior with flatter tails which can lead

to Bayes estimators with more desirable frequentist properties”. And also “ordering in

the hierarchy allows to order the importance of the parameters and to incorporate some

of our uncertainty about the prior specification”.

A key concept for hierarchical model is the concept of exchangeability. Real-valued

random variables Y1, ..., Yn are said to be finitely exchangeable if (Y1, ..., Yn)
D
= (Yi1 , . . . , Yin)

1 for any permutation (i1, i2, . . . , in) of (1, 2, . . . , n), 1 < n <∞. If Y1, Y2, ... is an infinite

sequence then it is called infinitely exchangeable if every finite subset of it is finitely

exchangeable. An important theoretical contribution is De Finetti’s representation the-

orem. It proves that if observations are judged to be exchangeable, then they must

indeed be a random sample from some model and there must exist a prior probability

distribution over the parameter of the model (Bernardo, 1996).

1D= represents equality in distribution.
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Theorem 2.1. A set of binary variables Y1, Y2, ... is infinitely exchangeable if and only

if there is a random variable Θ : Ω→ [0, 1], with distribution F (θ) on [0, 1], such that:

P (Y1 = y1, . . . , Yn = yn) =

∫ 1

0

θ
∑
yi(1− θ)n−

∑
yidF (θ)

=

∫ 1

0

θ
∑
xi(1− θ)n−

∑
xi f(θ)︸︷︷︸

prior

dθ
(2.1)

And Yn = 1
n

∑
Y i → Θ almost surely as n → ∞, for the strong law of large numbers.

So if a sequence of observations is judged to be exchangeable, then, any finite subset of

them is a random sample of some model f(yi|θ), and there exists a prior distribution

describing the initial information about the parameter.

A more general version of equation 2.1 exists for real random variables. And Davison

(2003) explains how “that certain quantities are exchangeable implies that they may be

represented as a random sample conditional on a variable that itself has a distribution.

This provides the basis of a case in favour of Bayesian inference, because it implies that

the conditional density Pr(Yn+1|Y1, ..., Yn) for a future variable Yn+1 given the outcomes

of Y1, ..., Yn, may be represented as a ratio of two integrals of form” of equation 2.1, “and

this is formally equivalent to Bayesian prediction using a prior density on Θ”. And con-

tinues highlighting that “the essence of hierarchical modelling is to treat not data but

particular sets of parameters as exchangeable. For if our model contains parameters

Θ1, ...,Θn and if we believe a priori that these are to be treated completely symmetri-

cally, then they are exchangeable and may be thought of as a random sample from a

distribution that is itself unknown” (Davison, 2003). Depending on the characteristics

of the random variables, the sample can be fully, partially or conditionally exchange-

able, and, whereas random variables independence always implies exchangeability, the

contrary is not always true. A set of exchangeable random variables might not be inde-

pendent. The differences in the exchangeability properties of random samples reflect on

the structure of hierarchical models and on the pooling options, i.e. on how differences

between parameters are considered and how they are grouped. Usually in hierarchical

models parameters are considered as partially exchangeable, i.e. parameters are grouped

and each group has its own sub-model whose properties need to be estimated. With

partial exchangeability, in each group variables are considered exchangeable and have

a common prior distribution. There are therefore as many prior as groups. Grouping

parameters according to certain characteristics and assigning a different distribution to

each group is called partial pooling. Partial pooling is a compromise between “complete

pooling, in which differences between groups are ignored, and no pooling, in which data
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from different sources are analysed separately” (Gelman and Hill, 2007). Sometimes

random variables Y1, ...Yn are not exchangeable on their own, but providing additional

information X1, ..., Xn it is possible to obtain a joint model for (Yi, Xi) or a conditional

model for Yi|Xi, i = 1, ..., n, where the couples (Yi, Xi) are still exchangeable. In real

applications exchangeability almost never holds, considering variables as exchangeable

is rather a simplification to model ignorance about random variables, as when assuming

a sample from a common population is independent and identically distributed. As

argued in Gelman (2006) “the valid concern is not about exchangeability, but about

encoding relevant knowledge as explanatory variables where possible”. Assuming ex-

changeability at the beginning of the analysis corresponds to admitting ignorance about

the random variables characteristics, additional information can then be incorporated

in the model only as the analysis goes on. In hierarchical models, the prior belief of

parameters exchangeability influences the choice of the prior distribution. A sensible

way of proceeding is to start with simple priors and then test sensitivity to prior changes

and check the fitted model with the predictive distribution.

As briefly described, the properties and structure of hierarchical models are con-

venient for modelling demographical data in a Bayesian framework. The information

available from demographical data is usually enough to group data according to available

characteristics, e.g. age, sex and region, which naturally leads to a hierarchical structure

as the one proposed by Bryant and Graham (2013) for population size estimation and

described in the next sections.

2.1.2 The demographic account

In a population study, one of the first points to clarify is the demographic system the

study focuses on. A demographic system describes how a population grows and changes

by defining:

1. the membership criteria: what is common to all the people belonging to the

population;

2. classification system: from the population as a whole it is necessary to individuate

sub-populations, i.e. to give a structure to the population by identifying charac-

teristics of interest that help the study. These characteristics can be attributes as

age, sex, region of residence, education or income and they can be changeable or

fixed;

3. ways of entering, exiting, or moving within the system: typically one enters a

population by birth, immigration or enrolment, exits by death, emigration or
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cancellation from a register or list and moves by migrating internally from one

place of the region of interest to another.

A way to summarise information about the demographic system is to cross-tabulate

data in a demographic array, usually according to the dimensions of the classification

system. A demographic array collects data in aggregate form and data are typically

either population counts or life events occurred during the considered time frame. In

tables 2.1 and 2.2 there are two examples of demographic array. In the first one each

cell contains the number of deaths by sex occurred in 2015 in the regions of Southern

Italy, and the second one gives the total number of birth from 2012 to 2015 by mothers

age groups. The two arrays have different dimensions stressing different aspects: the

first one focuses on a geographic and sex division, whereas the second highlights age

and time.

Sex
Region Female Male
Abruzzo 7998 7367
Molise 1967 1917
Campania 29277 27519
Puglia 20294 19231
Basilicata 3240 3174
Calabria 10182 10129
Sicilia 27484 25633
Sardegna 8172 8356

Table 2.1: Demographic array by region and sex for deaths in the Southern regions
of Italy in 2015.

Source: Istat, www.istat.it

Year
Age 2012 2013 2014 2015

15-19 8706 7989 7862 7240
20-24 50095 47084 46260 43335
25-29 118936 113590 113361 109864
30-34 178141 169240 168654 164610
35-39 137531 131121 128793 124827
40-44 36168 36546 36806 37368
45-49 2847 2993 3188 3220

Table 2.2: Demographic array by mothers’ age and year for births in Italy from
2012 to 2015.

Source: Istat, www.istat.it.

www.istat.it
www.istat.it
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Population Women Men
1/01/2015 31294022 29501590

31/12/2015 31209230 29456321

Table 2.3: First part of Italian de-
mographic account considering pop-
ulation by sex in 2015.

2015 Women Men
Births 235830 249950
Deaths 339607 307964

Immigration 129076 151002
Emigration 68633 78322

Table 2.4: Second part of Italian
demographic account considering life
events by sex in 2015.

When arrays describing population counts, entries, exits and movements within the

demographic system are consistently organised together they form a demographic ac-

count. In this case the dimensions considered for all the arrays must be the same. A

simple example of demographic account is given in tables 2.3, 2.4. Along with the ini-

tial and final population (table 2.3), it considers the total number of births, deaths,

international (or external) immigration and emigration in 2015 in Italy divided by sex

(table 2.4). Adding dimensions the structure becomes more detailed and also more

complicated.

A theoretical requirement of the demographic account is internal consistency, which

means that it has to be possible to retrieve the initial population by combining all life

events occurred in the period with the final population. This concept is summarised in

the demographic balance equation (2.2) and must be true for every population system

if data are right.

Popt1 = Popt0 + Entriest0 − Exitst0 (2.2)

The equation is very general and states that a population at the end of a period (t1)

is equal to the population at the beginning of the period (t0), plus entries and minus

exits occurred during the period, in the demographic account in table 2.3 entries are

births and immigration and exits are deaths and emigrations. The specific demographic

equation in this case is then

Pop31/12/15 = Pop1/1/2015 + Births15 −Deaths15 + Immigration15 − Emigration15 (2.3)

Despite being a very simple and intuitive equation in practice it is very difficult to

have perfectly matching data and retrieve the truth about the evolution of the popula-

tion. Reconstruct a consistent demographic account in a probabilistic way is the goal

of the model presented in the chapter.

Initially, the account structure was applied to economics and, as the same concepts

of “stock” and “flow” can apply to money and populations, it was then adapted to
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demographic use. Classical examples of discussions, projections and models for the

demographic account are Rees (1979) and the Nobel Memorial Lecture 1984: “The

Accounts of Society” reported in Stone (1986). The demographic account is a practical

tool to represent a population. It is flexible, as it allows for any choice of dimensions

and it relates all population movements in a consistent and unique framework. These

good characteristics meet the needs for demographers to experiment new tools and new

way of estimating population. The interest in new demographic models has risen both

at academic and political level and a shift from traditional census methods to register

based system or to probabilistic population estimations is now a general trend in many

countries encouraged by governments and international organisations. An example of

population estimation model using the demographic account is Bryant and Graham

(2013) (initial model) and, later, Bryant and Graham (2015) and Bryant and Zhang

(2018). The Bayesian hierarchical model for population size estimation proposed is

among the most complex and recent models in Bayesian demography.

2.2 Super and finite population

Bryant and Graham (2013, 2015) propose a Bayesian hierarchical model for population

size estimation and forecasting integrating traditional demography and more recent

Bayesian demographic models enhancing the estimation process by controlling assump-

tions and embedding extra-model information.

The main assumption for population estimation models is that the true value of the

population is unknown because values given by the datasets have accuracy and relia-

bility varying from source to source and, usually, they cannot be considered as perfect.

They can suffer from bias, incompleteness, under- or over-coverage. For this reason the

model distinguishes between hypotheses on the true population (system model) and hy-

potheses on datasets (data model); this distinction is addressed in section 2.3. Another

distinction is between the “underlying risks or propensities (super-population quanti-

ties), and the random events governed by these risks or propensities (finite-population

quantities)” (Bryant and Zhang, 2018). Difference between super-population and finite-

population quantities starts from the assumption that the population of interest is a

random variable assumed to follow a suitable probability distribution. It is then nec-

essary to distinguish between a realisation of the distribution and the hypotheses on

the distribution itself. Super-population quantities are values like rates, probabilities,

percentages, means, growth rates or other quantities representing theoretical values,

underlying risks or propensities the population is subject to. They provide trends or
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general features of a population which are quantities more of interest for researchers

and demographers. Finite-population quantities are population direct estimates. All

quantities are directly calculated from actual data that can be affected by random vari-

ations. They aim to recreate the actual population of interest, in this sense, they are

very specific values. These quantities concern more politicians or institutes in need to

have the actual number of people rather than theoretical features or trends. For in-

stance, if no death occurred during the time considered, the “mortality rate” is zero

when computed from actual data (finite-population quantity) but, the underlying risk

of dying, even if very small, would be different from zero (super-population quantity).

Finite- and super-population quantities are hardly ever equal and their difference tends

to be higher when counts are small but, if quantities are large enough, estimates for one

can be used as proxy for the other (Bryant and Zhang, 2018).

Bryant and Graham (2013)’s model considers all these different aspects and it is

graphically represented in Figure 2.1. In the central box “Account” there are the final

arrays of interest that are estimated in the model (population, births, deaths and mi-

grations). They are all connected to ensure the account consistency and they represent

the estimation of the true population counts which are finite-population quantities. The

account is estimated combining information from the system model (upper part) and

the data model (lower part). The system model has a prior model which helps to define

the arrays of rates or means that are super-population quantities. The data models are

models a priori defined that create, along with raw data, the arrays of components or

counts which are finite-population quantities. The only observed quantity of the whole

model are these finite-population quantities in red in figure 2.1. Interactions between

these three parts through the Demographic account model (DAM) lead to the estima-

tion of all the unknown quantities. Except from raw data, in figure 2.1 all white filled

boxes are unknown and need to be inferred, only red filled rectangles are partly or fully

observed. Each series in the demographic account have one and only one corresponding

system model. For data models, as each dataset has its own data model and there can

be one or more datasets referring to each series (or no dataset at all), there can be more

than one array of population count referring to each demographic account series.
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Figure 2.1: Inferring a demographic account. Rectangles in the upper part are the
system models formed by prior models and super-population quantities arrays, each
system model correspond to only one array in the demographic account (middle part
boxes). All the arrays in the accounts are interconnected to ensure the account con-
sistency. The lower part is formed by datasets. Each dataset has its own data model
and each demographic account array can have one, several or no dataset referring to
it.

2.3 Model framework

As shown in the examples in section 2.1, arrays and consequently the demographic

account is composed of cells. Each cell is a population count for the specific dimensions

it corresponds to. For example in Table 2.2 the cell corresponding to the number of

births occurred in 2013 from mothers aged between 25 and 29 years contains number

113590. Let now Y births denote the array of births, each cell ybirths can be identified either

by a number, i = 1, · · · , N with N being the total number of cells, or by numbers or

names corresponding to the dimensions of the array, e.g. a = 1, ..., A for age dimension,

r = 1, ..., R for the region, t = 1, ..., T for time. The selected cell in Table 2.2 is then

indicated in one of the three following equivalent ways

ybirths10 = ybirths3,2 = ybirths24−29,2013 = 113, 590

According to the degree of specification needed the more or less compact notation is used.

The array of births is only one of the arrays of the demographic account, the whole demo-

graphic account is denoted by Y and contains all the arrays in the demographic system,
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in our example from table 2.3 there are six arrays, initial population, final population,

births, deaths, immigrations, emigrations: Y = {Y in.pop, Y fin.pop, Y bir, Y dea, Y imm, Y emi}.
Each array has sex dimension with categories “women” and “men”.

In general, at the first level of the hierarchical model, each cell of a demographic

array is considered separately from the others and has its own parameters. Specifically,

each number in the cell yi is assumed to be a realisation from a random variable with

Poisson distribution with its own mean γi

yi ∼ Pois(γi) (2.4)

Or, if exposure term (ωi) is considered

yi ∼ Pois(γiωi) (2.5)

It is important to consider this second version including exposure because demog-

raphers usually work with rates rather than counts. Rates are comparable between

demographic systems and give a clearer idea about the magnitude of phenomena than

a stock number which is always relative to the population size it refers to. This is why,

despite the aim of the DAM is to estimate counts, the models linked to life events esti-

mation (births, deaths, migration) usually have the form of equation (2.5), whereas for

population arrays, which have no exposure to refer to (but population itself), the model

is obviously the first one (equation (2.4)). The exposure is internally calculated either

through the approximation

ωi = 1/2(yi−1 + yi) + ε (2.6)

or, if more information is available from the data, it is possible to calculate the exposure

using “person-years” values resulting in a more accurate exposure term. The accuracy of

life tables reconstruction depends on data quality. Parameter γi was initially assumed to

be Gamma distributed (Bryant and Graham, 2013) but, for reasons that will be clarified

later, a Lognormal distribution has been eventually preferred (Bryant and Graham,

2015) so that

log(γi) ∼ N(µi, σ
2) (2.7)

The Poisson-Lognormal structure is quite common for hierarchical models as it al-

lows to easily assume a regression model on the mean of the Normal distribution (µi).

Whereas the mean parameter µi is specific for each cell, the variance σ2 is unique for

each the array. What motivates this choice is the difficulty to make specific assumptions

for variance on each cell as there is no particular reason to expect different variances
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across the array, and it also substantially reduces the number of parameters to estimate.

Mean parameter µi is itself a sum of parameters (β(k), single element or a vector) that

can have different distributions according to what they refer to, and σ is assumed to

follow a Half-t distribution for its good properties (Gelman, 2006). The specification of

both parameters is further discussed in section 2.4:

µi =
K∑
k=0

β(k) (2.8)

σ ∼ t∗ν(A) (2.9)

where A is the rate parameter of the Half-t distribution and ν denotes the degree of

freedom.

2.3.1 System model and the demographic account

The system model refers to a part of the DAM which is not directly observed. The aim

is to include prior knowledge and regularities in the true population through prior dis-

tributions on dimensions like age, regional differences or evolution through time. Each

pattern coming from a priori information have to be plausible and motivated. The

structure contains a priori independent models of parameter denoted by Θ, each one

corresponding to an array of the demographic account. So each model applies directly to

its associated series. Therefore, if we have an account as the one in the previous section

Y = {Y in pop, Y fin pop, Y bir, Y dea, Y imm, Y emi} there will be six independent parameter

models, one for each array Θ = {Θin pop,Θfin pop,Θbir,Θdea,Θimm,Θemi}. This way of

proceeding is different from the usual one. Most of the time there is one series which is

not modelled but only derived combining the others through the demographic balance

equations, in this way the equation satisfaction and parsimony are guaranteed. Never-

theless, the advantage of modelling all series directly as in the DAM is that they are

treated the same way, each series has its own independent prior model, and it prevents

from implausible results for the series derived from a mere application of the demo-

graphic balance equations. It also results in a relatively simple structure because each

model is assumed a priori independent so the conditional joint posterior distribution is

simply obtained by the product of the models distributions (equation (2.10)). On the

other hand, despite each series is independently modelled, consistency still has to be re-

spected within the account, so every change in one series has to be balanced by a change

in, at least, one other series. In this sense series are not completely independent but

bounded by this constraint. Furthermore, cells share parameters in the hierarchy so, in
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order to capture possible dependencies, there are: i) explicit conditioning on population

counts, ii) covariates, iii) demographic balance equations.

Before introducing the demographic account conditional posterior distribution, there

is another distinction to point out between demographic arrays. The distinction follows

from the nature of the count the array contains. If the array refers to a population at

a specific time it is a point array, this is the case for Y in.pop and Y fin.pop in section 2.3.

Arrays of this kind are denoted from now on with letter N , and they typically refer to

population counts. Instead, if the array contains counts of life events occurred during

a time interval then, they are interval arrays, like Y bir, Y dea, Y imm and Y emi and they

are now denoted with Cl, l = 1, · · · , L. So the demographic account is a collection of

arrays with general form

Y = {N,C1, · · · , CL}

This distinction is particularly important during the updating process described in sec-

tion 2.5 and Appendix. Therefore, the conditional prior distribution for the unknown

demographic account is

p(Y |ΘY , Z) ∝ p(N |ΘN , Z)p(C1|N,Θ1)p(C2|N,Θ2)...p(CL|N,ΘL)I(Y ) (2.10)

where Z is the set of covariates, Θs are the parameter sets of the arrays and I(Y ) is an

indicator function. The indicator function ensure the respect of the constraints taking

value 0 when values are not consistent with the balance equations or impossible.

2.3.2 Data model

Whereas the system model catches regularities in the demographic account and relates to

an unobserved part of the model, the data model relates datasets, the only observed part

of the model, to the demographic account. The system model includes all demographic

series to be estimated with all the dimensions and no missing data, whereas series in

the data model coming from datasets can be incomplete, have fewer dimensions or cover

only a part of the series of the system model. Each system model corresponds to one

and only one series in the demographic account whereas it is possible that more than one

dataset link to the same series in the demographic account. For instance, in the system

model there is only one array for births but there can be more than one dataset in the

data model containing birth counts. This is coherent with the fact that there is only

one series of super-population quantities relating to the true value of births occurred

in the period considered by the model, but birth registration datasets can come from

different sources (e.g. hospital, city council, surveys). Also, the dataset quality can vary
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and have different degree of detail (e.g. with or without parents age, sex, citizenship,

missing data, coverage).

Each dataset is different and has its own characteristics and level of accuracy, there-

fore each data model has to consider it and adapt to the dataset it refers to. Furthermore,

reliable sources, like census data, are not always available or recent enough to make in-

ference so the possibility to have multiple datasets referring to the same demographic

account array can help to improve estimates quality. Because datasets can have miss-

ing data or lesser dimensions than their corresponding demographic account arrays, in

theory all dataset providing information about the population can be used, from official

registers covering the whole population to surveys. In practice, a sensible selection of

the datasets used is necessary and if a reliable, detailed enough and accurate source is

already available there is no need to add a worse one.

In Figure 2.1 the only parts filled in red are the arrays of population counts but

the data model boxes themselves are white, meaning that they need to be estimated.

One could wonder why there is need for a data model in addition to the system model.

The necessity to estimate the data model could appear somehow counter-intuitive, it is

normal to estimate the true value of the population given the data, it is less obvious

to do the opposite, i.e. estimate data given the true unknown value, but it is sensible

from a demographical perspective. As datasets are not perfect, and they are usually not

consistent when compared and combined, each datum can be considered as a random

variable generated from a distribution depending on the true value of the population. In

demography the true value of the population exists for sure even if it is unknown, whereas

datasets can contain errors, missing data and have different coverage. Therefore, it is

sensible to consider datasets as random variables generated from the true population

and to find what model originates the data to better reconstruct the unknown true

value of the population. In this way, all the three parts of the DAM contribute and

exchange information with one another during the estimation process. This theoretical

explanation translates to a computational point of view introducing for each cell of

the datasets a dependence on the corresponding true value of the demographic account

(in addition to the dataset parameter set). Let each dataset be Xm, m = 1, · · · ,M ,

with cells xjm, with j = 1, · · · , J number of observations in the m-th dataset, let

Ωm be the corresponding parameter set, and yj[m] the cell in the demographic account

corresponding to xjm and Y[m] the corresponding array. Note that: j 6= i as datasets

can have a different number of cell than the corresponding array; M is the number

of datasets corresponding to the same array Y[m] therefore for all Xm, m = 1, · · · ,M
the corresponding demographic account array Y[m] is always the same; the data model
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does not share any parameter with the system model therefore they are denoted with

two different letters Ω for the data models and Θ for the system model. Another

assumption is that all datasets are conditionally independent, therefore for each data

model the structure is

p(X|Y,ΩX) =
M∏
m=1

p(Xm|Y[m],ΩXm)

p(ΩX) =
M∏
m=1

p(ΩXm)

(2.11)

Each observation xjm is conditionally independent on y[m] and ΩXm so that

p(Xm|Y[m],ΩXm) = p(Xm|y[m],ΩXm) =
J∏
j=0

p(xjm|yj[m],Ωjm) (2.12)

Note that from the first to the second term of equation (2.12), Y[m], which is the true

unknown value of the population is replaced by y[m] which is only a realisation of the

true value, in practice, it is the value available at the moment of the estimation, i.e. at

the z-th iteration of the Markov Chain Monte Carlo (MCMC).

Selection of the right yj[m]s from the demographic account corresponding to the cells

in Xm happens via an indicator function Ijmi , and collapsing extra dimensions in Y if

Xm has fewer dimensions than Y[m].

yj[m] =
∑
i

Y
[m]
i Ijmi + ε (2.13)

The indicator function Ijmi takes value 1 if dimensions of cell xjm match the one of yi,

and 0 otherwise. The error term ε allows for xjm to be positive if y[m] cells happen to

be all 0. Through prior distributions on the data model it is possible to include prior

beliefs on the datasets and to allow for systematic biases. Usually data models do not

need to be very complex as allowing for too much flexibility might affect estimation

process and deviate from Y .

According to the accuracy or reliability of data, three main models can apply to

X with corresponding prior models and link functions (g(·)) for parameter γjm. The

link function g(·) changes according to the model in order to always have the transform

g(γjm) such that

g(γjm) ∼ N(µjm, σ
2) (2.14)

Parametrisation of µjm and σ follow equations (2.8) and (2.9), as in the system model.
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Models for X are:

1. Poisson: same model as in equation (2.4) and (2.5), it is used when the source

is not very reliable or accurate. Variance is restricted to be as large as the mean

so, usually, the model provides output with larger credible intervals than with the

other models and estimates can then be far from the data. The link function g()

is the logarithmic function as in equation (2.7).

xjm ∼ Pois(γjm) model without exposure

xjm ∼ Pois(γjmωjm) model with exposure

log(γjm) ∼ N(µjm, σ
2)

2. Normal: used for rather reliable data source, it allows for tuning variance param-

eter according to data quality. A Normal distribution might seem a questionable

choice for counting people as it is continuous and defined on the whole real line.

Despite this, if the estimate of γjm and the of σ are good, it performs quite well in

practice. Moreover, mean values are usually far from zero and variances are quite

low so values are seldom negative.

xjm ∼ N(γjm, φ
2/wjm) (2.15)

where wjm is a weight term that can be introduced if variance has to vary across

cells. If necessary, it is possible to use the integer-only version of the Normal

distribution. The integer-only version is mainly used if, instead of separate arrays

for immigration and emigration, there is only one array of net migration which

can assume also negative values.

xjm ∼ round
(
N(γjm, φ

2/ωjm)
)

(2.16)

For the Normal distribution the link function is the identity function therefore

γjm ∼ N(µjm, σ
2) (2.17)

Variance parameter φ2 can take a fixed value or have a Half-t prior φ ∼ t+νφ(0, A2
φ)

as in equation (2.9).

3. Poisson-Binomial: this is a mixture model used for reliable and accurate data,

each cell count is divided in a Binomial and a Poisson part. The higher the
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Binomial probability parameter the lower the flexibility, meaning that trust in the

data is high. The parameter of the Binomial “can be interpreted as the probability

that a person or event is detected and appropriately enumerated by the dataset”

(Bryant and Graham, 2013).

Each cell is then considered as the sum of a Binomial (hjm) and a Poisson (gjm)

random variable.
xjm = hjm + gjm where

hjm ∼ Bin(ωjm, γjm)

gjm ∼ Pois(ωjm(1− γjm))

(2.18)

where ωjm is, at the same time, the exposure for the Poisson part and the sample

size for the Binomial. The Binomial part hjm is the number of people correctly

included in cell j and gjm is the “over-count”, people that are counted twice

or incorrectly included in cell j. Value of gjm is assumed proportional to the

cell count. The expected value of the mixture is E[xjm] = ωjm and variance

Var[xjm] = ωjm(1 − γ2
jm). The probability γjm depends on the dataset but in

general the model is quite robust to this choice, estimates are always very close

to the original data. The link function for the Binomial distribution is the logit

function so

logit(γjm) ∼ N(µjm, σ
2)

Parameters µjm and σ follow equations (2.8) and (2.9) respectively.

2.4 Choice of prior distribution for hyper-parameters

If the structure for cells and γs parameters is quite standard and choice is limited, the

distribution choice for standard deviations σ and, especially for components of parameter

µs (βs coefficients as shown in equation (2.8)) is wider and is still a field of ongoing

research for the model.

The choice of prior distributions is the strength but also the most discussed character-

istic of the Bayesian framework. On the one hand prior distributions introduce a struc-

ture embedding informations not available or hidden in the data, and they strengthen

the model when information from the data is weak or missing. On the other hand,

they introduce a degree of subjectivity that could be misleading during the estimation

process and which is absent, or hidden according to Bayesians, in Frequentist models.

It is therefore important to carefully select prior distributions and test the sensitivity

of the model to different choices.



Chapter 2 - Demographic Account Model 41

The use of prior distributions can be particularly helpful in demography because

demographic phenomena often present regularities and patterns demographers are aware

of, and that can speed up estimation and forecast of population size, if embedded in prior

distributions. For instance, mortality rates have now quite regular patterns, especially in

countries with high life expectancy, and they are easier to estimate and to predict than

migration. Migration is a complex phenomenon, even the definition itself of migrant

changes according to different countries. Migration depends on economic, political and

social factors that change over time so that a “sending” country can become a “receiving”

country and vice-versa.

Fertility rates are an intermediate case, regularities can be identified and factors in-

fluencing it have been widely studied. For example mothers’ age, the economic and

social status, country healthcare, laws regulating maternity and paternity leaves, child-

hood related facilities, all these factors influence fertility. Nonetheless, these factors

are partly influenced by national policies and migration which can both change over

time making prediction on fertility a delicate point. The possibility to include a priori

knowledge can help modelling any kind of phenomenon from regular to less stable ones,

and the ability to choose suitable prior distributions helps to deal with complicated and

realistic models untreatable otherwise.

In section 2.3 parameters µs and σs are only quickly defined, but they actually play

a central role in the model. Recalling equations (2.8) and (2.9), details are now further

developed.

µi =
K∑
k=0

β
(k)

hki
(2.19)

σ ∼ t∗ν(A) (2.20)

Standard deviation σ is unique for each array and it is assumed to be Half-t dis-

tributed (Gelman, 2006) with an updating process in the MCMC algorithm involving

Slice Sampling (Radford, 2003) (see Appendix). Mean parameter µ is unique for each

cell and it is a sum of K coefficients that can be main effects or interactions among the

array dimensions. Even if the combination of βs is unique for each µi, i.e. there is a µ

for each cell, the number of βs is much lower depending on the dimensions considered.

For each cell “i” the value of µi depends on the sum of coefficients βs where each β(k)

is a vector of length h representing an effect included in the regression. The index k

refers to the variable the coefficient corresponds. The length h depends on the number

of categories each effect can take, e.g. h = 1 if it refers to the intercept, for a variable

like “sex” h = 2 (values are “Female” and “Male”), or for Italian regions h = 20.

For example, let cell i be the number of female (corresponding to sex number 1), in
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region number “16”. Let the mean µi include intercept (k = 0), sex (k = 1) and region

(k = 2) effects, then µi = β0 + β
(1)

11i
+ β2

162i
=
∑2

k=0 β
(k)

hki
. If an interaction sex:region is

introduced then µi = β0 + β
(1)

11i
+ β2

162i
+ β3

(16×1)3i
. Length of vector β3 is the product of

the number of region and sexes 20 × 2 and the element corresponding to the 16th and

first sex is 16× 1.

Assumptions on vectors β(k)s consider different distributions and research is still on-

going. At the moment the most common and experimented priors are the exchangeable

prior (Normal distributions), dynamic linear models (DLMs) or Student’s t distribu-

tion. These are analysed one by one in the following paragraphs. In very simple cases

the mean µi can also be assumed to simply follow a standard Normal distribution,

µi ∼ N(0, 1). There are many possible prior models on µi allowing for more or less

flexibility depending on the application. Complexity of prior distributions can vary but,

as a general rule, when it comes to β vectors, it is a good practice to keep complexity

low when information is weak, especially for interactions as it is usually difficult to un-

derstand or identify clear patterns or their influence on the variables. Also, if the model

includes interactions then also their corresponding marginal terms have to be included.

For instance if an “age-time” interaction is included, then also “age” and “time” effects

have to be included in the model; if a more complicated one as “age-time-region” is in

the model, then also, “age-time”, “age-region”, “time-region” interactions and “age”,

“time” and “region” effect have to be included, like in most ANOVA models.

2.4.1 Ad hoc prior distributions, an example

Currently only standard prior distributions have been experimented but there is room

for development in this field. An example of ad hoc prior distribution is provided

in Wísniowski et al. (2013) where the prior is built starting from expert opinions is.

Authors’ starting point is the difference on the registration of migration flows between

origin and destination country. Ideally the number of people cancelling from country A

to live in country B should match, or at least be very similar, to the number of people

from country A registering in country B over the same period of time. It comes out

that this is not the case. As an example they cite the case of Germany and Spain when,

in the same year (2007), Germany registered 15, 515 immigrants from Spain and Spain

only 3, 601 emigrants to Germany. In order to reconstruct the true value of migration

flows starting from the country-specific registered values, Authors present an equation

to relate these two quantities through four parameters: (i) accuracy of data collection;

(ii) how much of the divergence is due to difference in the duration criteria used to

qualify migrants, using the UN criterion as baseline (12 months); (iii) underestimation
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in capturing migration flows in different countries; (iv) a country-specific parameter of

coverage in migration flows including subgroups of population like students or refugees.

The estimation of these parameters is performed in a Bayesian framework where prior

distributions are mixtures of distributions reflecting expert opinions collected through

a two stages Delphi method. First of all this method requires a lot of time and work;

secondly, reliability of results is arguable as, despite the research involved only experts,

subjectivity and differences in responses were large. Therefore, the resulting mixtures

from non-homogeneous responses are not very informative with respect to the effort

required. Wísniowski et al. (2013) were pioneer in this demographical prior distribution

building process. The motivation of the research was the need of proper tools to take

advantage of the amount of information and knowledge about demographic phenomena

and what emerged was encouraging but also challenging for further research.

Another ad hoc prior distribution partially investigated but still needing experimen-

tation is a mixed distribution proposed in Dunson and Xing (2009) and Kunihama and

Dunson (2013). They investigate in a non-parametric way how to model trends among

categorical variables and, in general, relationships among multivariate unordered cate-

gorical variables. They use Dirichlet process mixture of product of Multinomial distri-

butions where weights change over time. If Kunihama and Dunson (2013) use Multino-

mials, Bryant and Graham (2015) have tested Normal distributions and the model have

been proven to work as well. The model share some feature with intrinsic conditional

autoregressive models (ICAR) and principal component. These models appear to be a

parsimonious way to handle interactions if compared with other options, and it is also

useful to model changes in patterns as the framework allows for breaks and for changes

over time. It is still not very clear though how to set parameters and how they interact

within the Demographic account model (DAM).

Keeping in mind that there is room for improvement and research in this field, the

next sections describe the principal prior distributions used in the model. Of particular

interest are distributions of the components of mean parameter µi =
∑K

k=1 β
(k)

hki
and

priors for standard deviation terms. Instead, the prior on transformed parameter g(γi)

is stable as it is always a Normal distribution N(µi, σ
2), see equation (2.14). The priors

described in the following sections are those implemented in the demest R package. So

far, rather simple priors seem to be the best choice for this complex model, but there is

space for experimenting and implementing new options.
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2.4.2 Exchangeable prior

When elements β
(k)
h seem not to have a specific pattern or reason to be sequentially

linked to one another, the h units are assumed to be exchangeable, i.e. their labels or

ordering does not affect the distribution. This is the most general prior to use, but it

is also quite flexible, as means and standard deviations can vary. It is also possible to

control for covariates if they have a role in the exchangeability assumption, as sometimes

there are factors not included in the model that prevent elements from being assumed

exchangeable.

For vector β(k) with only one or two elements, such as intercept or effects with only

two elements (e.g. “sex”), prior distributions are as follows

• For the intercept β(0) (k = 0 is always used for intercept as it does not represent

any specific effect): β(0) ∼ N(0, τ 2
0 )

• For an independent two element vector β(k): β
(k)
h ∼ N(0, τ 2

2 ), h = 1, 2, e.g. 1 =

Female and 2 = Male

When vectors have length of one or two (h < 3) a simple prior is enough as it is not

proper to mention exchangeability when the order of the vector cannot substantially

change. Instead, when β(k) has three or more components and covariates can be intro-

duced, there are four main model options for each element h of β(k):

1. Normal without covariates: β
(k)
h ∼ N(0, τ 2

k )

2. Robust version without covariates: β
(k)
h ∼ tνβ(0, τ 2

m)

3. Normal with covariates: β
(k)
h ∼ N(z

(k)
h η(k), τ 2

k )

4. Robust version with covariates: β
(k)
h ∼ tνβ(z

(k)
h η(k), τ 2

k )

In all cases the model is presented for one element (β
(k)
h ) of vector β(k). In the robust

version a Student’s t distribution is used instead of a Normal. With a Student’s t tails

are heavier and further values from the mean have higher density values, i.e. there is

less concentration of value on the mean. The value recommended in Bryant and Zhang

(2018) for the degrees of freedom parameter is νβ = 4, implying thick tails, but any

other valid value can be chosen.

In the version with covariates (Z), for each β(k) covariates are all standardised and

stored in a Hk×Pk matrix Z(k) with elements denoted as z
(k)
h . Matrix dimension depends

on the length of vector β(k) (Hk), and on the length of the covariate vector (Pk). As

usually in regression model, the first element is the intercept and hence the first column
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of Z(k) is a column of 1s, whereas the vector of coefficients, η(k), has length p = 1, · · · , Pk,
where each element η

(k)
p also has either Normal or Student’s t prior.

η
(k)
1 ∼ N(0, A2

0) (2.21)

η(k)
p ∼ tνη(0, A

2
ηk), p = 2, · · · , Pk (2.22)

Standard deviation τ can be either fixed (set to a pre-determined value, like 1 or 10,

or equal to the standard deviation of data), or assumed Half-t distributed τk ∼ t+ντ (A
2
τk)

with degrees of freedom ντ and scale parameter A which can be fixed or depend on data

standard deviation. Bryant and Zhang (2018) recommend ντ = 7 based on empirical

results, but any other valid value for degrees of freedom can be chosen. Usually, the

more uncertainty there is the lower is A, for example for interactions a good choice for

scale value is half the one of main effect.

When vectors β(k) are large enough, it can be worth considering pooling options. If

elements have similar value and can be imputed to the same probability distribution

then a complete pooling is possible, i.e. all element have a unique prior distribution; if

elements can be grouped according to a criterion then a partial pooling is performed,

i.e. there are as many prior distribution as groups; if elements share no common feature

and they all need their own distribution then there is no-pooling and there are h prior,

i.e. as many prior as elements of β(k). This means that elements β
(k)
h can be normally

distributed either all with the same mean, or with a mean common only to a subset of

them, or with their own mean.

2.4.3 Dynamic Linear Model prior

The Dynamic Linear Model (DLM) prior is a convenient model for ordered parame-

ters with higher correlation for neighbouring categories than for non-neighbouring ones.

Typically, a DLM model suits variables such as time, age and, to some extent, also to

education and income. Originally the DLM is a time series model suitable for time series

with non-stationary components and Prado and West (2010) provide a good descrip-

tion. With respect to an exchangeable prior setting which is more general, if a DLM is

suitable for the variable of interest, then this prior usually speeds up convergence. In its

simplest version, a DLM prior is a local level model, and the h-th element of coefficient

vector β(k) is assumed normally distributed with means α
(k)
h (level term), and linked to

the previous term h− 1 as in equation (2.24). Each β
(k)
h has distribution

β
(k)
h ∼ N(α

(k)
h , τ 2

k ), h = 1, · · · , Hk (2.23)
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with mean α
(k)
h that depend on the mean of the previous term α

(k)
h−1:

α
(k)
h ∼ N(α

(k)
h−1, τ

2
αk), h = 1, · · · , Hk (2.24)

when h = 1 then α
(k)
h−1 = α

(k)
0 ∼ N(0, A2

0). A local level model works as a random

walk where the level of the mean can be higher or lower than the previous one but has

expected value equal to the previous one. Parameter α
(k)
h is the level term. If there is a

trend in the pattern, i.e. the values α
(k)
h are expected to be always higher or lower than

the previous one, then a trend term can be introduced. Let δ
(k)
h be the trend term for

α
(k)
h then equation (2.24) becomes

α
(k)
h ∼ N(α

(k)
h−1 + δ

(k)
h−1, τ

2
αk), h = 1, · · · , Hk (2.25)

and the general trend term δ
(k)
h has distribution

δ
(k)
h ∼ N(δ

(k)
h−1, τ

2
δk), h = 1, · · · , Hk (2.26)

δ
(k)
0 ∼ N(0, A2

δk) for h = 0 (2.27)

When a trend term is included then the DLM assumed is a local trend model.

Especially when considering trends in the long run, but sometimes also in other

situations, it is not appropriate to expect upward or downward trends to always continue

at the same pace. Sometimes trends tends to get weaker or reach a lower/upper bound

so that an ordinary random walk as in equation (2.26) is not appropriate. A good option

in those cases is a damped random walk where each step tends to be smaller than the one

before it. In Bryant and Zhang (2018), Authors take the example of age-time interactions

for mortality rates, pointing out that: “Human mortality rates have a characteristic

age-profile, which recurs, with variations, across many populations. Damping prevents

forecast age-profiles from departing too far from their observed historical average, which,

arguably, increases their plausibility” (Bryant and Zhang, 2018). A damped random

walk includes a damping term ζ ∈ {0, 1} that affects the value of the trend term mean

so that equation (2.26) becomes

δ
(k)
h ∼ N(ζkδ

(k)
h−1, τ

2
δk), h = 1, · · · , Hk (2.28)

ζk ∼ Unif(Vmin, Vmax) (2.29)

As values get closer to 0, damping term effect on the random walk steps gets higher,

whereas, if ζ = 1 it goes back to the classic random walk. The range for ζ, as shown in
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equation (2.28), can be chosen, but empirical results show the lower bound is hardly ever

below Vmin ≈ 0.8. When a local trend model is assumed, damping is particularly useful

for forecasts in the long run. As a general rule, when modelling interactions damping

should not be used and variance should be fixed. Another option for damping term ζ is

to assume a Beta prior possibly restricted to values inferred from the data.

In addition to level term, it is possible to include in the model for β(k) a season effect

(s(k)) and/or covariates (Z(k)). Adding these terms to equation (2.23), distribution for

term β
(k)
h is

β
(k)
h ∼ N(α

(k)
h + s

(k)
h + z

(k)
h η(k), τ 2

k ), h = 1, · · · , Hk (2.30)

The covariates structure is the same as described in subsection 2.4.2 and equation (2.21).

For seasons, let Sk be the total number of seasons considered then, like for level and

trend terms, the mean term depends on the value of the one before so that

s
(k)
h ∼ N(0, A2

sk), h = −Sk, · · · , 0, Sk for the first season (2.31)

s
(k)
h ∼ N(s

(k)
h−Sk , τ

2
sk), h = 1, · · · , Hk for the following seasons (2.32)

Standard deviations τs have Half-t distribution as in previous cases, with degrees of

freedom ν and scale parameter A.

As in subsection 2.4.2, there is a robust version for β(k) prior (2.30):

β
(k)
h ∼ tνβ(α

(k)
h + s

(k)
h + z

(k)
h η(k), τ 2

m) (2.33)

Informative prior assumptions on the terms just defined (local levels, local trends,

damping terms, season effects or covariates) can improve the model fit and speed up

computations. They can also improve convergence and lower auto-correlation functions.

Nonetheless, prior distribution have to be handled with caution as they can distort the

estimation.

During the estimation process of parameter β(k) a centring step has been introduced

to mitigate identifiability problems often occurring during the estimation. Especially

when level (αh) and season (sh) parameters are included in the definition of β
(k)
h , there

can be more than one combination of β(k), k = 0, ...K, providing a sensible and/or

optimal µi (recall µi =
∑K

k=0 β
(k)

hki
). This identifiability problem makes β

(k)
h values de-

termination hard. The problem has been reduced introducing a centring step during

the process, i.e. at each iteration the estimate mean of each term is embedded in the

intercept value.
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2.4.4 Half-t or Folded-t distribution for standard deviation pa-

rameters

Half-t distribution is a special case of the Folded non-central t distribution introduced

in Gelman (2006). Starting from a Folded non-central t distribution and restricting the

prior mean to zero the result is the absolute value of a Student’s t distribution centred at

zero with two parameters: the scale term A and degrees of freedom ν, with probability

density function

p(σ|·) ∝ 1

σn
exp

(
− Vσ

2σ2

)(
σ2 + νσA

2
σ)
)(νσ+1)/2

(2.34)

where Vσ =
∑n

i=1

(
g(γi)− µi

)2
. Two special cases occur when ν = −1 and when ν = 1

giving respectively an improper Uniform density and a proper Half-Cauchy . Gelman

(2006) praises the use of the Half-t with respect to a Uniform or an Inverse-Gamma

in hierarchical models. The first has problem when the number of groups is small

and the second one has problems for small values of standard deviation. The Half-t

distribution is very flexible and it is generally weakly informative and suitable for both

(i) restricting standard deviation from assuming very large values, unlike the Uniform

and the sometimes recommended uninformative Inverse-Gamma(ε, ε), where ε is a small

number, and (ii) dealing with standard deviation values near zero, as it behaves better

than the two others for very low values. If even the Half-t provides too large values in a

weakly informative case, a truncated version can be used, but usually truncation takes

place at very high quantiles (0.999 or 0.98) not heavily distorting estimation. This

distribution works well in hierarchical models especially when the number of groups

is small, it is a good option for a non-informative or weakly informative prior, it is

conditionally conjugate with the Normal and, from a computational point of view, it

is an easy distribution to sample from. For these properties it is a common choice for

prior distribution for the standard deviation in the DAM.

2.5 Posterior calculations and account updating

The previous sections describe the assumptions made on data and parameters and the

different options available for them. These assumptions will now be combined to calcu-

late the posterior distribution the DAM aims to estimate. The number of parameters

involved in the model is very high, especially if compared to the data. The only known

parts are the datasets and the assumptions made a priori but then parameters of both
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the system model and data model plus the whole demographic account have to be esti-

mated. The hierarchical structure with possibly three or four layers, the high number

of parameters and the interactions among all the parts of the model create a complex

structure whose full understanding will require further testing and time. Nevertheless,

many of the assumptions ease the calculation of the posterior, and of the updating

process.

The joint posterior distribution includes the demographic account Y with the system

model parameter set Θ, the data model parameter set Ω, the datasets X and, possibly,

the set of covariates Z. Its general form is

p(Y,Θ,Ω|X,Z) ∝ p(X|Y,Θ,Ω, Z)p(Y |Θ,Ω, Z)p(Θ,Ω|Z)

= p(X|Y,Ω)p(Y |Θ)p(Θ|Z)p(Ω)
(2.35)

with full conditionals:

p(Y |Θ,Ω, X, Z) ∝ p(X|Y,Ω)p(Y |Θ)

p(Θ|Y,Ω, X, Z) ∝ p(Y |Θ)p(Θ|Z)

p(Ω|Y,Θ, X, Z) ∝ p(X|Y,Ω)p(Ω)

(2.36)

Simplifications from the first to the second line of equation (2.35) are possible because

of assumptions made in the system and data models. Recalling that parameter sets Θ

and Ω, corresponding respectively to Y and X, do not share any parameter, the following

decomposition is possible for their joint distribution:

p(Θ,Ω|Z) = p(Θ|Z)p(Ω) (2.37)

From assumption in equation (2.37), conditional independence for the joint distribution

of Y and X follows:

p(Y,X|Θ,Ω, Z) = p(Y |Θ, Z)p(X|Y,Ω) (2.38)

Moreover, recalling equation (2.10), in the system model it is possible to “drop” the

covariate term Z from p(Y |Θ, Z) as it is already considered in the estimation of the

parameter set Θ whose distribution includes covariates Z, (third term in the second line

of equation (2.35)).



50 Section 2.6 - Updating process

As mentioned in section 2.3.2, the data model is conditioned on the value of popula-

tion of the demographic account Y so the model has form

p(X|Y,Ω) =
M∏
m=1

p(Xm|Y [m],Ωm) (2.39)

where X = {X1, · · · , XM} (as in equation (2.11)), and Y [m] is the demographic array

referred to dataset Xm and accordingly collapsed in order to have the same dimension

as Xm. This part involving datasets only appears in the conditioning part of the joint

posterior (equation (2.35)).

As already pointed out in section 2.3.1, an important difference in the updating

process is the one between point and interval demographic arrays. In the first case no

exposure term is involved whereas in the second exposure is normally used. Furthermore,

if for point values, typically population arrays, only the initial values are updated, for

interval values each cell has the same probability to be updated and population is

updated only as a consequence to balance the demographic equation. When updating a

term using exposure, then also the new population implied by the potential change has to

be taken into account during the updating process. Recalling the demographic account

division introduced in section 2.3.1, Y = {N,C1, · · · , CL}, with all the demographic

series assumed as independent, the distribution of the whole demographic account Y is

p(Y |ΘY , Z) = p(N |ΘN , Z)
L∏
l=1

p(Cl|N,Θl, Z)

= p(N |ΘN)
L∏
l=1

p(Cl|N,Θl) (2.40)

2.6 Updating process

The updating process of the whole model is quite complex and long, this section gives

an overview of the main passages. Appendix contains more details about the whole

process.

The DAM is a Bayesian model and it calculates the posterior distribution through

standard Markov Chain Monte Carlo methods. Most of the time a Metropolis-Hastings

algorithm is implemented and when possible Gibbs sampling is used. Despite methods

being standard, the complexity of the model requires care during the updating pro-

cess, and for the demographic account updating the process for generating proposals is

customised. As shown in equation (2.36), there are three main full conditional distribu-

tions: the first for the demographic account Y , the second for the parameter set Θ of
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the system model, and the third for Ω, the parameter set of the data model.

• p(Y|Θ,Ω,X,Z): the updating process of the demographic account Y is a chal-

lenging part of the model because Y can be very large and because the balance

equations must always be satisfied. This last constraint slows down the whole

process as the equation needs an exact result. The respect of the equation is guar-

anteed by the proposal distribution. Once candidate terms are drawn from the

proposal a Metropolis-Hastings acceptance step is performed. It turns out that

candidate values both respecting the constraint and accepted by the Metropolis-

Hastings algorithm are often values very close to current ones and this causes

chains slow mixing and high auto-correlation.

Despite it, the model performs quite well and it is reasonably fast. Following

the description in (Bryant and Graham, 2013), there are five steps to generate a

candidate value for the Metropolis-Hastings algorithm:

1. A demographic series is randomly selected from the demographic account.

Whereas any of the interval arrays Cl can be chosen, only the initial popu-

lation N0 can be directly changed. Intermediate and last population values

are updated during the following steps for balancing the account equations.

Note that for the constraint to be satisfied it is impossible to change one cell

at the time, at each iteration at least two cells need to changed.

2. A cell among the chosen array is randomly selected. All the cells have the

same probability to be selected. The “probability does not depend on the

starting point, so it cancels out when the Metropolis-Hastings ratio is taken”

(Bryant and Graham, 2013).

3. The proposed value is drawn from one of the models of section 2.3. If the

model includes an exposure term then the corresponding expected exposure

is considered and not the current one.

4. As a change in an array affects the consistency of the demographic account,

then all population counts affected by the proposed value have to change in

order to re-balance the account.

5. Check that the subsequent population contains no negative values. If they

do, return to step 3.



52 Section 2.6 - Updating process

Once the proposal is ready, the Metropolis-Hastings ratio is calculated and ac-

cepted with probability

a(Y ) = min

(
1,

p(Y ∗|Θ,Ω, X, Z)

p(Y (z)|Θ,Ω, X, Z)

Q(Y (z)|Y ∗)
Q(Y ∗|Y (z))

)
(2.41)

where Q(·) is the proposal density, Y ∗ is the demographic account proposed with

the candidate value and Y (z) is the current one with z being the number of the

iteration. Details and decomposition of ratio in equation (2.41) is in the Appendix.

• p(Θ|Y,Ω, X, Z) and p(Ω|Y,Θ, X, Z) contain different kind of parameters with dif-

ferent distributions and belonging to different level of the hierarchy. Following the

division in section 2.4, it is possible to mainly divide them in five groups:

1. Parameters γ: according to the model chosen for the data and the corre-

sponding link function, the updating process algorithm is either a Metropolis-

Hastings in the Poisson and Poisson-Binomial case or a Gibbs sampler, when

the model is Normal and the link function is the identity function so that

conjugacy property hold.

2. Standard deviation parameters (φ, σ, τ): they all have a Half-t distribution

and, because of the form and the property of the density, the best way to

update them is through a slice sampler (Radford, 2003). Slice sampler is

rather straightforward and performs well in the model. The Appendix gives

further details.

3. Parameters β: because of the model structure for both exchangeable and

DLM prior assumptions, they are conjugate with the parameters g(γ) there-

fore a Gibbs sampling is always possible for their update. This has changed

since the first version of the model (Bryant and Graham, 2013). The 2013

model had a Poisson-Gamma conjugate model, i.e. γs were assumed Gamma

distributed instead of Lognormal as now. Because betas can have more com-

plex structures and, unlike γs, they have identifiability problems, it was better

to ease the update of the betas rather than the γs shifting conjugacy from

the first to the second level of the hierarchy.

4. DLM parameters a
(k)
h , δ

(k)
h , ζk and s

(k)
h : the damping term ζk has a simple

prior structure and can be updated through a simple Metropolis-Hastings

algorithm. The others all have an autoregressive structure and their updating

process relies on a Forward-Filtering Backward-Sampling (FFBS) algorithm

(Carter and Kohn, 1994; Frühwirth-Schnatter, 1994). This method has been
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widely tested and it is a standard and efficient choice in Bayesian inference

for linear state space models.

2.7 Model strengths and limitations

The field of Bayesian demography is developing fast, the investigation area is wide,

demographic phenomena can be difficult to understand, and models develop and change

quickly, especially since the last two centuries. Among the models proposed until now

the DAM is complex and still need testing before being ready for a wide use but the

aim is it to make it be available for National statistical institutes in order to perform

population size estimation instead of traditional censuses as soon as possible. In this

sense authors also developed a package for the open-source statistical programme R called

demest. The package is available on the Statistics New Zealand GitHub repository at the

link https://github.com/StatisticsNZ/demest but still needs further testing before

being finally released.

Model complexity carries both advantages and disadvantages. The flexible hierar-

chical structure, along with the range of options available provides high adaptability to

different needs and it is able to include a wide range of a priori information. The model

can estimate both a whole demographic account and a single demographic array, and

it is meant to work with different qualities of data. Bryant and Zhang (2018) provide

examples with both reliable and unreliable data and show how it is possible to perform

inference in both cases. In this sense the importance and the novelty of Bayesian demog-

raphy is to provide results that reflect the quality of data, not aiming to give a precise

answer about the population size but rather a sensible credible interval. The main idea

is that it is more useful to have an interval that might be wide but right, rather than

a wrong but precise estimate. Results in Bryant and Zhang (2018) provide very good

and precise estimate for reliable data with rather narrow credible intervals and sensible

but wider intervals for unreliable sources.

Drawbacks include the difficulty to estimates β parameters. A first problem with

the βs regarding their updating process has been solved by shifting from the Poisson-

Gamma conjugate model in Bryant and Graham (2013) to the new model Bryant and

Graham (2015) where conjugacy hold between parameters β and g(γ). The original

model in Bryant and Graham (2013) was a Poisson-Gamma model so that yi and log(γi)

https://github.com/StatisticsNZ/demest
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distributions were
yi|γi ∼ Pois(γi)

γi|ξ, µi ∼ Γ(ξ, ξ/µi)

log µi =
K∑
k=1

β
(k)

hki
where

β
(k)

hki
∼ N(η(k), τ 2

k )

(2.42)

The new version in Bryant and Graham (2015) considers a Poisson-Lognormal struc-

ture, as presented in section 2.3. With respect to the Poisson-Gamma model, it loses

conjugacy in the first level of the model, but it simplifies the updating process in the

second and third level involving g(γ) and β. The Poisson-Lognormal model is a com-

mon structure in hierarchical modelling and, from a computational point of view, it has

proven to be a better choice than the previous one (Bryant and Graham, 2013). Another

problem that has been reduced but not completely solved is the weak identifiability of

many parameter. In section 2.4.3 β(k)s identifiability problems have been mentioned, but

also other parts of the model suffer of it. All the model aims to produce a coherent result

but sometimes there is more than one value satisfying this requirement. With βs and

migration count/rate cells this is particularly clear. For instance, when estimating immi-

gration and emigration, if they both increase of the same amount this leaves the balance

constraint satisfied but values assumed by both migration values could be very far from

its actual value. A very simple example, let population at time 0 be P0 = 100 and pop-

ulation at time 1 be P1 = 110, let births be B = 5, deaths D = 3 and the true value of

immigration and emigration be respectively I = 14 and E = 6 the balance equation (2.2)

becomes P1 = P0+B−D+I−E = 100+5−3+14−6 = 110 but if instead of I = 14 and

E = 6 values estimated are I = 24 and E = 16 the equation is still satisfied, but with val-

ues much larger than the true ones (P1 = P0+B−D+I−E = 100+5−3+24−16 = 110).

Something similar happens with the βs. For each g(γi) ∼ N(µi, σ
2) the parameter µi

is the sum of k β parameters (equation (2.8)) but, as in the migration example there

are many combinations of βs that can provide a sensible result for µi. For reducing this

problem, a centring process has been introduced so that, at each iteration, the level of

the βs is embedded in the intercept value. Another way, more practical, is to carefully

act on prior assumptions, e.g. reducing variance, assuming a range for the intercept.

Other aspects of the model that can slow down the estimation process or limit its

efficiency are the high number of parameters with respect to the number of data, and

the balance equations. The problem of high number of parameters with respect to

data is quite common in Bayesian inference, and when data information is low prior

distributions are important. In a field like demography, a Bayesian framework allowing
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for a priori information inclusion is ideal and it somehow compensates the lack of

data. Nevertheless, a priori choices can cause distortion and harm the estimation.

Furthermore, if the model is well defined, MCMC models should reach convergence

even with few data although the estimation might take longer than with more accurate

data. The demographic balance equation constraint requires that at each iteration all the

cells of the demographic account must be consistent making sometimes a candidate value

hard to find. To overcome this limitation, and in order to have a consistent candidate

value and a good acceptance probability, the algorithm tends to propose candidate

values close to the current ones. This increases the acceptance rate but it often causes

high auto-correlation within the chains requiring sometimes high thinning. Overall, this

solution performs well but it is possible that other updating techniques could improve

the algorithm. An alternative could be the Adaptive multiple importance sampling

(AMIS) proposed by Cornuet et al. (2012) where the proposal density can change and

adapt at each iteration. The idea is to initially set a loose constraint (e.g. constraint

must be satisfied with an error of ±10%) so that it only shrinks the parameter space and

then gradually narrowing it until the estimate perfectly satisfies the balance equation.

This method would heavily transform the method and at the moment it is just an idea,

but the optimisation of the candidate value generation process is an area to further

investigate.

Another difficult task is to identify the right model structure both for the system

and the data model. The system model has to identify the general features of the

population, e.g. what effects and interactions to include, presence of trends, seasonality

or important covariates. If these choices could depend on previous knowledge, and are

common to any generalised linear model, the choice of prior distribution on the variance

terms is less evident because, depending on it, convergence can slow down or speed up.

Despite being a delicate point convergence is usually reached and Bryant and Graham

(2013) performed sensitivity tests with encouraging results.

Unlike the system model, the task of the data model is to incorporate prior knowledge

of each dataset. Each dataset has its specific structure and data model resulting in a

highly customizable structure. For example, if there are reasons to believe that coverage

or accuracy change across a dimension of the dataset, then this information can be

included in the prior model. Data model allows for much more flexibility than the system

model (see section 2.3.2), but including too much flexibility and letting parameters vary

for too many dimensions can eventually affect estimation more than it helps. Because

the estimation of the data model has a conditioning on the true value of the population

Y , if the data model is too complicated, it becomes difficult to control what features



56 Section 2.7 - Model strengths and limitations

reflect actual characteristics of populations and what only arises because of the choice of

the model. For example, given a dataset on births, if the mean value function includes

a dependence on time and age of the mother, it is like saying that the dataset accuracy

depends on these factors. If the reliability of data depends on many factors, then the

estimation of all the parameters becomes very complicated. In this sense for data model

“less is more”, unless there is a true bias linked to a factor (as time or age), then keeping

data model as simple as possible usually gives better results.

At the moment model checking is performed through replicate data and held-back

data. Despite held-back data are typically used for forecasting, the technique works

also for estimation. Calculation of criteria like Watanabe-Akaike information criterion

(WAIC) , Widely applicable Bayesian Information Criterion (WBIC) Watanabe (2010),

Akaike Information Criterion (AIC) or Deviance Information Criterion (DIC) with such

a complicate posterior distribution is challenging and not possible to calculate with the

current demest R package. When the whole model estimation will be more stable,

demest package extensions including such functions will be implemented.

When choosing a Poisson distribution as prior for the data model, an implicit as-

sumption of equi-dispersion is made on the data, since mean and variance have the same

value in this distribution. The equi-dispersion assumption can affect the measurement

process as the level of dispersion, and hence of variance, can be higher or lower than

the mean value of the cell. Dispersion can vary according to the structure and charac-

teristics of a dataset (e.g. number and length of dimensions, periodicity, accuracy, data

collection strategy, updating and revisions), and the population considered. Usually a

higher level of dispersion is expected for heterogeneous datasets. Variance correspond-

ing to a population specified in a cell of the demographic account can be higher than the

population mean if people have different demographically relevant characteristics as life

style, revenue, propensity to declare life events to administrative offices, fertility, mor-

tality and migration rates. The opposite happens if the population is homogeneous, in

this case variance should be lower than the mean, as people share many characteristics.

This make it easier to make assumptions and a low dispersion can reasonably expected.

Unfortunately the Poisson distribution always implies equal mean and variance. The

solution suggested for this last point is the use of the Conway-Maxwell Poisson (CMP)

distribution (Conway and Maxwell, 1962), in chapter 4. Originally introduced in the

1960s and then proposed again in mid 2000s in Shmueli et al. (2005), this distribu-

tion is a discrete distribution, similar to a Poisson distribution but it has an additional

parameter that allows for modelling under-, equi- and over-dispersion.
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Application to the Italian case

3.1 Introduction to Italian data

The Italian national statistical institute (Istat) is continuously improving its services

and harmonising procedures according to European and international standards. The

harmonisation, integration and digitalisation of data sources are priorities for all the

aspects Istat takes care of. For resident population and other related data (births,

deaths and migrations), Istat cooperates with regional and local offices and has started

systematic procedures to reduce formal and substantial errors, i.e. respectively errors

or omitted information in the documents and information inconsistency with respect to

other data available. One of the greatest effort concerns census data. In October 2018,

the “permanent census for population and housing” is starting and it represents a revo-

lution for Italian official statistics. Also for the last traditional census in 2011, important

innovations were introduced. An important effort was made for the Post Enumeration

Survey (PES, introduced in Commission Regulation n. 1151/2010), a three-years pro-

cess for checking census information and correcting over- or under-coverages due either

to errors committed during the census or by administrative delays or errors. During the

PES, municipalities compare Census data with their lists (lista anagrafica comnunale

LAC) and correct errors using on-line softwares like SIREA (Sistema di revisione delle

anagrafi). For census data, municipalities cooperate with Istat and make a major effort

during all the process and, eventually, data are available for further studies, trustworthy

and provide information not only on population size but also on its characteristic (Istat,

2016). For other data, Istat follows Eurostat standards and checks data from a quali-

tative and quantitative point of view, cooperating with other administrative offices and

taking advantage of technology, for a direct link and comparison between sources, and

also of new methods like record linkage (see for example Tancredi and Liseo (2011)).

57
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Despite efforts and improvements, it is difficult and long to change and modernise pro-

cedures according to the latest standards, especially in big institutions and delays and

errors have always to be accounted for. If, on the one hand, it is normal to find incon-

sistencies in the datasets even after revisions and checks, on the other hand this has to

be avoided as much as possible as it can be misleading for the NSIs estimations and

cause problems. With respect to Italian data, births and deaths errors are quite low

and most of the time corrected within one year. More difficult is to have a clear idea

of migration and resident population. Migration problems are addressed in section 3.4.

Resident population data are kept in municipality offices and suffer from all other se-

ries inconsistencies as it depends on the update of other series. Municipalities calculate

the total population year after year through the demographic balance equation so that

counts should always be consistent, at least in theory. Despite this procedure might ap-

pear straightforward, the regularly updated data hardly ever match with census data.

For the last census, for example, at January, 1st, 2011 population was estimated to be

60.626.442 according to the municipalities registers, but the census, referring to popula-

tion at the 9th of October 2011 reported only 59.433.744 people resident in Italy (results

after PES). Population between the last two censuses (2001 and 2011) has then been

completely reconstructed according to census results and was estimated at 59.364.690

people for the beginning of 2011, a difference of almost 1.300.000 people, i.e. ∼ 2% less

than the former value. The following sections describe results of the model proposed

by (Bryant and Graham, 2013) applied to Italian data. The demographic system con-

sidered is the population resident in Italy, with classification varying according to the

model. With the datasets considered dimensions available include region, five years age

group, sex and time. Even if not all the dimensions are available in the same dataset,

the missing dimensions can be found in another dataset referring to the same series. A

person enters the demographic system either by birth or immigration (international or

interregional) and exits by death or emigration.

The next two sections contains examples for deaths and births modelling with pre-

liminary analysis and model selections steps. Death counts are addressed before births

as their modelling is less problematic, then the more complex case of births is consid-

ered. Italian migration data are presented in section 3.4 with problems related to its

estimation. Eventually section 3.5 provides examples of complete demographic account

estimation according to different dimensions. In each section datasets used are intro-

duced with a preliminary analysis using direct estimates, then the actual estimation

process is performed, checked and results presented.
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3.2 Death counts model

After describing the data and performing preliminary analysis, the section presents the

structure of the chosen model with its a priori assumptions. Then results of parameter

estimation follow with graphs and interpretation. Model checking and selection are

performed via held-back data technique. Results provide not only estimated mortality

rates and counts but also life expectancies from different models. Life expectancy is

calculated following steps in Preston et al. (2001) and refers to periods and not to

cohorts.

Dimensions considered in these analysis are age, time and sex. Region dimension was

also available, but the effect checked in preliminary analysis and also in few attempts

does not show clear or regular patterns and did not provide better results than those

displayed here. In order to not over-complicate the model and to decrease computational

costs for the analysis region dimension is not considered in this death counts model.

3.2.1 Data and preliminary analyses

In order to estimate death rates, two different datasets have been compared, both com-

ing from the Italian national statistical institute (Istat). The most detailed dataset is

the table by death causes, denoted by X2. In this dataset age, sex, region of residence

and cause of death are available. The data collection process Istat has implemented

is described in figure 3.1. There are three main steps: (i) the distribution of official

forms from Istat to Istat regional offices or directly to municipalities and then from

municipalities to hospitals, Aziende sanitarie locali (ASL, literally local health compa-

nies) and general practitioners; (ii) the information collection. Doctors are responsible

for filling the documents sent by Istat with information about death circumstances and

personal details of the dead person. The documents are then sent to the municipalities,

to the ASL and from the municipalities to the prefectures; (iii) the forms are eventually

returned to Istat offices. When documents go from the health system to the adminis-

trative system they have local qualitative and quantitative control, plus an additional

last control at central level (last Istat box in figure).



60 Section 3.2 - Death counts model

Istat
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Figure 3.1: Information flow for death causes survey. Three phases of (i) form
distribution, (ii) information collection and (iii) form returning and data processing.
Source: www.istat.it.

Preliminary results on death count data are published after one year and final data

after two years. These data only account for people dying in Italy, people resident

in Italy but who have died abroad are not included. A more complete dataset is the

one provided by municipalities to Istat and inserted in the national and regional demo-

graphic balance before being published on the Istat official annual documents (Annuario

statistico italiano). Unfortunately this dataset does not provide age dimension. This

dataset from Annuario statistico italiano is denoted by X1. Figures 3.2 show a compar-

ison between these two datasets by sex and time (upper figure), and then the differences

between the dataset at national level during the years (X1−X2). Only in years 2014 and

2015 they coincide because procedures have been harmonised. As they provide different

dimensions, both datasets are needed for a complete analysis.

 www.istat.it
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Deaths counts by sex and time from dataset X1 and dataset X2
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(a) Death counts for years 2006-2015 from dataset X1 (Annuario statistico italiano), males in light turquoise and females

in light pink, and from dataset X2 (Death causes survey), males in dark turquoise and females in dark pink.
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(b) Differences by time between dataset X1 (Annuario statistico italiano and dataset X2 (Death causes survey), i.e.

X1 −X2, from 2006 until 2015.

Figure 3.2: Comparisons between datasets X1 (Annuario statistico italiano) and
dataset X2 (Death causes survey) from 2006 until 2015 at national level.
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The most reliable dataset is the one containing values published on Istat official an-

nual documents (Annuario statistico italiano). They are the data used for calculation

of the national demographic balance. The dataset provides region, sex and time dimen-

sions and is denoted by X1. The second dataset has overall lower counts but it has

also age dimension by five years groups, the first group is “0 − 4” and the last “90+”.

The dataset is denoted by X2. Analysis considers 10 years, from 2006 until 2015. The

last age group considered (90+) is quite a low age considering the current longevity and

the increase in life expectancy in general. The population reaching the age of 90 and

surviving until much older ages is increasing as figure 3.3 shows.
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Figure 3.3: Population belonging to age group 90+ from 2005 to 2015. From the
end of 2009 the size of this groups has constantly increased.

Unfortunately datasets provided by Istat have different last age groups depending

on the year. From 2006 to 2009 the last age group is “100+”, for years 2010-2013

is “90+” 1, and from 2014 on is “95+”. Given this initial heterogeneity, the choice

of considering the lowest class (“90+”) for all the datasets has been made to simplify

results and computations. At a larger scale, the debate of projected mortality trends is

1On the new Istat data website http://dati.istat.it now class “95+” is available also for year
2011-2012. At the time data have been provided by Istat these table were not available and, in any
case, data for year 2010 still considers only until class “90+”. The choice of considering “90+” as the
last class stays therefore unchanged.

http://dati.istat.it
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worth mentioning. If life expectancy will keep increasing or if it will reach a “mortality

plateau” Vaupel (2014) is still debated among demographers, the topic is increasingly

being analysed at international level, and different measure of longevity are investigated,

see Lee (2006); Oeppen (2006); Oeppen and Vaupel (2002, 2006) for further discussion.

For life table calculations, the last age group causes a problem as it is an open-ended

age interval. Closing the life table, i.e. inserting the final estimate of the person-

years of life expected in the last open-ended age group (usually denoted by nLx), is a

problem, as everybody dies in the last interval, but no information is provided about

the number of years lived after the last age group is reached. The usual approaches are

(i) the imputation of a value taken from another suitable life table, (ii) using empirical

death rates, (iii) make assumptions about the oldest reachable age and apply a trend to

estimate nLx. Once nLx is calculated, it is possible to obtain life expectancies. In the

following applications direct death rates are used to close life tables.

The analysis and estimation of mortality rates considers only the two mentioned

datasets. The choice to work only with these two datasets has mainly three reasons: (i)

differences are relatively low (∼ 1% difference between X1 and X2) so keeping only two

datasets allows not to overcomplicate the estimation; (ii) model is meant to work with

sources and datasets of different reliability and level of completeness so it is a good way

to test it; (iii) other institutes supplying data on Italian death rates (Eurostat, Human

mortality database, OCSE...) still rely +on Istat data therefore a better quality cannot

be expected or justified using them. Exposure terms have all the dimensions required

by deaths data (age, sex, region and time), and they are calculated from population

counts based on municipalities data on resident population according to equation (2.6).

Figure 3.4 shows mortality rates by age, sex and time on a logarithmic scale. They

are direct estimates, calculated dividing deaths counts by exposures. Working with

rates on a log-scale is useful when dealing with small values and with different scales

as it emphasizes relative differences rather than absolute differences and it is an usual

procedure in demography as in other fields.
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Mortality log−rates by age and sex, 2006−2015
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Figure 3.4: Mortality log-rates by 5 years age group (from 0 − 4 until 90+) , sex
(female in pink and male in light blue) and year (2006-2015). Males have higher
mortality rates in every age group but in the extremes (0−4 and 90+) when the level
is almost the same for both sexes.

Before the estimation, it is useful to conduct some preliminary analyses in order to

identify what effects could be included in the model. First of all, a graphical analysis

can be helpful. From figure 3.4, for example, an age and sex effect are quite clear.

Besides this intuitive procedure, it is also possible to decompose log-rates in order to

isolate and quantify effects in a more formal way. Bryant and Zhang (2018) report the

following formulas:

“Let mast denote the direct estimate of log mortality rate for age group a, sex s, and

year t, where a = 1, ..., A, s = 1, 2, and t = 1, ..., T . The overall average log mortality

rate is then”

λ0 =
1

2AT

A∑
a=1

2∑
s=1

T∑
t=1

mast (3.1)

the age, sex and time effects are

λagea =
1

2T

2∑
s=1

T∑
t=1

mast − λ0 (3.2)
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λsexs =
1

AT

A∑
a=1

T∑
t=1

mast − λ0 (3.3)

λtimet =
1

2A

A∑
a=1

2∑
s=1

mast − λ0 (3.4)

and interactions

λage:sexas =
1

T

T∑
t=1

mast − λ0 − λagea − λsexs (3.5)

λage:timeat =
1

2

2∑
s=1

mast − λ0 − λagea − λtimet (3.6)

λsex:time
st =

1

A

A∑
a=1

mast − λ0 − λsexs − λtimet (3.7)

Figures 3.5 and 3.6 show main effects and interactions decomposition. For main

effects it is clear that time, age and sex effects are all significant which will be confirmed

in the model estimation. Except from the first age group “0 − 4” rates increase with

age, women values are lower than for men and rates generally decrease with time even

if over a quite small range (−0.1− 0.1). The small time effect is mainly due to the little

number of years considered. Also interactions considering time are not very significant.
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Figure 3.5: Computation of main effects from overall mortality log-rates. Left :
Age effect, dropping from the first age group (0 − 4) to the second (5 − 9) and then
constantly rising with a bump at age groups 20− 24 and 25− 29. Centre: Sex effect,
with lower mortality for females. Note, the values are symmetrical for males and
females. Right : Time effect, lowering from 2006 until 2014 and rising again in 2015.
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Figure 3.6: Computation of interactions from overall mortality log-rates. Up-left :
Age-sex interaction for females has the highest magnitude among interactions. 5 years
age group (0 − 4 - 90+). Up-right : Time-sex interaction for females with increasing
pattern but very low magnitude. Bottom: Age-time interaction with irregularities in
the young ages mainly due to the small counts in these cells.

Age-sex interaction is quite significant, depending on the age females mortality rates

are higher or lower than males’ one and the range goes from −0.2 until 0.2. For time-

sex interaction an effect exists but its range (−0.02, 0.02) is close to zero and therefore
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it appears to have little impact on rates. Almost the same happens with the age-

time effect. For the two oldest age groups the effect is a bit higher but elsewhere it

is either very irregular, until 24-29 years old, or very small. The fact that time effect

and interactions including time are small is probably linked to the few number of years

considered. There is no reason to expect death trend and level to significantly change

in Italy during the period 2006− 2015.

3.2.2 System and data models

The system model chosen for modelling deaths in Italy from 2006 until 2015 has the

form displayed in equation (3.8). Deaths counts, classified by age, sex and time, yast,

are i.i.d. 2 random variables from a Poisson distribution with exposures ωast and death

rates γast.

yast ∼ Poisson(γastωast), a = 1, ..., 7, s = 1, 2, t = 1, ..., 10

log(γast) ∼ N(µast, σ
2)

µast = β0 + βagea + βsexs + βtimet + βage:sexas

σ ∼ t∗7(1)

(3.8)

Mean µast includes intercept, main effects of age, sex and time and age-sex interaction.

Intercept and sex effect have a fixed exchangeable prior whereas age, time and age-sex

effects have a DLM prior:

β0 ∼ N(0, 102)

βsexs ∼ N(0, 1)

βagea ∼ N(αa, τ
2
age)

with level and trend terms: αa ∼ N(αa−1 + δa, τ
2
α), δa ∼ N(δa−1, τ

2
δ )

βtimet ∼ N(αt, τ
2
time)

with level and trend terms: αt ∼ N(αt−1 + δt, τ
2
α), δt ∼ N(δt−1, τ

2
δ )

βage:sexas ∼ N(αas, τ
2
age:sex)

2independent identically distributed
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with level and trend terms: αas ∼ N(αas−1 + δas, τ
2
α), δas ∼ N(δas−1, τ

2
δ ) damping term

and standard deviation have the same form in all priors:

φ ∼ Unif(0.8, 1)

τage, τtime, τage:sex, τα, τδ ∼ t+7 (1)

The datasets have two different data models. The more reliable one, X1, has prior:

x1st ∼ N(γ1st, φ
2
1st) (3.9)

Parameters γ1st and φ1st are respectively γ1st = y[1]st and φ1 = 0.0025× x1st ≈ 0.0025×
y[1]st. According to properties of Normal distribution, the chosen variance term for X1

implies that data are at ∼ 95% within 0.5% of the true population count Y and x1st is

considered as a proxy for y[1]st. In this case standard deviation φ1st is fixed and different

for every cell because it depends on population. Also, the choice of the mean makes the

model heavily driven by corresponding values y[1]sts and does not assume any effect. In

fact there is no reason to think the mean has any bias for any dimension. Coverage and

accuracy should a priori be the same for all age, sex and time. The same happens for

X2 where coverage is assumed to be approximately the same for all dimensions but, as

trust on X2 is lower than on X1, a Poisson data model is chosen

x2ast ∼ Poisson(γ2astω2ast) (3.10)

log(γ2ast) ∼ N(µ2ast, σ
2
2)

µ2ast ∼ N(0, 1)

σ2 ∼ t∗7(1)

Prior distributions for µ2ast and σ2 are weakly informative and provide good and quick

convergence for both parameters.

Before selecting these models several other models have been tested, both for the

system model and for the data model. Overall results seem to be robust to different

choices of data model. Eventually choices reflect datasets accuracy, and the Normal

assumption on X1 speeds up convergence.

In addition to the chosen model (equation (3.8)), also other system models have been

tested with µast modelled as follows

µast = β0 + βagea + βsexs

µast = β0 + βagea + βsexs + βtimet
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µast = β0 + βagea + βsexs + βtimet + βsex:time
st

µast = β0 + βagea + βsexs + βtimet + βage:sexas + βsex:time
st + βage:timeat

Results are all somehow comparable to the chosen model. On the one hand this is good

because if results completely change according to the model then it means that there is

a too high sensitivity to a priori assumptions, on the other hand convergence, credible

intervals and held-back data checking were better with the chosen model (equation

(3.8)).

3.2.2.1 Results and model checking

For all the models three parallel chains are run with a burn-in of 50% of iterations.

The number of iterations varies but, on average, 10.000 is enough to reach convergence.

Convergence is checked analysing trace plots and calculating R̂, the Gelman and Ru-

bin convergence diagnostic between chains (Gelman and Rubin, 1992). If after 10.000

iterations chains do not reach convergence for all the parameters other attempts are

made with more iterations. Sometimes an increase in the number of iteration helps

but sometimes chains only diverge more and more often implying a problem with the

model specification. This happens, for example, with the model considering three inter-

actions (age-sex, sex-time and age-time). Probably this model is over-fitting data, i.e.

it considers also random variations as part of the model making convergence harder to

reach.

For the other system models the results are all very similar to the chosen one in

terms of parameter values but convergence was worse for some parameters especially for

standard deviation of data model. An important difference among models is the inclu-

sion of time effect in the system model (3.8). Despite being small, as also preliminary

analysis shows (figure 3.5), the effect is not so small to be ignored. The importance to

include time effect is also confirmed by figure 3.7.
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Figure 3.7: Up-left : Box-plot of model intercept estimation, β0. Up-right : Age
effect estimation, βagea . Centre-left : Sex effect estimation, βsexs . Centre-right : Time
effect estimation,βtimet . Bottom: Age-sex interaction estimations for females (left) and
males (right), βage:sexas . Except for the box-plot in , all other plots show the medians
in white, the 50% C.I.s (credible intervals) in blue and the 95% C.I.s in light blue.

The largest effect, as expected is the age effect, it has interval between −4 and 6.

Sex effect of preliminary analyses (figure 3.5) seems now almost completely embedded

in the age-sex effect (figure 3.7), it might be that the interaction is more important

than sex effect itself or it could be an identification problem. This second hypothesis

is less plausible as the interaction is essential for the model, as the model checking

shows. For time effect, a clearly decreasing trend is confirmed even if low in magnitude.

Age-sex interaction has a clear pattern when it comes to median values but it has very

large credible intervals. Despite this, the importance of age-sex interaction is strongly
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confirmed by the held-back data analysis. Hyper-parameter models for time and age

effect reflect what expected and estimated parameters are in figures 3.8 and 3.9. The

level term for time is decreasing but with a very low decreasing trend, also mitigated

by the damping term φtime. As values are all very small and close to each other, the

standard deviation term is very low but with a heavy right tail. This is the same for all

effects and reflects the difficulty of convergence of these parameters.

Level term αtime
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Figure 3.8: Time hyper-parameters. Up: Level, αtime, and trend, δtime, terms,
respectively on the left and on the right, with medians (white line), 50% C.I.s (blue)
and 95% C.I.s (light blue). Bottom: Box-plots of the damping term, φtime, on the
left, and of the standard deviation, τ time, on the right.

Age hyper-parameters confirm the prior local level model with positive trend except

for the first age group because of infant mortality. For infant mortality an encouraging

trend is the 25% decrease between 2006 and 2015 (Fig. 3.11).
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Figure 3.9: Age hyper-parameters. Up: Level, αage, and trend, δage, terms, respec-
tively on the left and on the right, with medians (white line), 50% C.I.s (blue) and
95% C.I.s (light blue). Bottom: Box-plots of the damping term, φage, on the left, and
of the standard deviation, τage, on the right.

Age-sex interaction hyper-parameters in figure 3.10 reflect uncertainty in level term,

even if it shows a constant higher level for men. Differences between men and women

level terms tends to be higher during the 20s age groups and to disappear in the oldest

age groups. The trend changes according to the age considered, an increasing trend for

men in young ages and from 35 until 60 years old, whereas almost the opposite happens

for women.
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Figure 3.10: Age-sex hyper-parameters, Up: Level term, αage:sex for females (left)
and males (right). Centre: Trend term δage:sex for males (upper plot) and females
(lower plot). Plots show medians (white line), 50% C.I.s (blue) and 95% C.I.s (light
blue). Bottom: Box-plots of the damping term, φage:sex, on the left, and of the
standard deviation, τage:sex, on the right.

Death counts estimated by the model are very close to the data (red and black lines

in the graph) as it was expected by the data model specification (3.9). Figure 3.11 show
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the median (white line), 50% and 95% credible intervals respectively in dark and light

blue. Width of credible intervals seem to mainly depend on the number of registered

deaths. For young ages (5 − 14), intervals are wide as counts are quite low (less than

200) then intervals get narrower. An exception stands for age group 80 − 84 where

the number of deaths for men and women is almost of the same magnitude and it is

more difficult to well estimates the counts by sex. After this age groups, the number

of deaths for women exceed by far the number of men as many more women reach this

age. This is a problem only for counts as rate estimation, figure 3.11, does not show this

irregularity, rates for men are always higher than for women. The rates estimation is

smoother than data as it does not take into account the larger differences due to random

death counts variations. Rates are super-population quantities, hence they reflect the

theoretical model rather than the random data. Anyway, direct estimates (in red) are

most of the time included in the intervals. The estimated mean coverage rate for the

dataset X2 is 98.5% with very low variability, confirming the homogeneity of the dataset.

Deaths count estimation by age and sex, 2006−2015
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Figure 3.11: Death counts estimation by sex, time and age. Every age group
block shows the medians (white line), 50% C.I.s (blue) and 95% C.I.s (light blue) for
male and female for years 2006-2015. In addition values from dataset X1 (Annuario
statistico italiano) for males (black) and females (red).
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Mortality rate estimation 2006−2015
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Figure 3.12: Mortality rates estimation by sex, time and age. Every age group block
shows the medians (white line), 50% C.I.s for males (dark turquoise) and females
(dark pink), and 95% C.I.s for male (light turquoise) and female (light pink) for years
2006-2015. Direct estimates of mortality rates from dataset X1 (Annuario statistico
italiano) for males and females are added in red.

In addition to convergence results, the model choice is also confirmed by the cal-

culation of life expectancy with held-back data. Figure 3.14 shows the estimation of

life expectancy calculated from held-back data. The held-back data technique consists

of estimating the model only on a subset of data (“training” dataset) and to test the

estimated model on the remaining part (“test” dataset). In this case the training part

are data from 2006 until 2011 and the rest (2012-2015) is the test dataset.

In figure 3.14 there are results for life expectancy estimation according to model

(3.8) chosen as baseline. Lines in light blue are the estimates calculated starting from

median values of the death count estimates. In black and red the life expectancies

respectively for men and women, computed from actual data. Direct estimates of life

expectancy for year 2015 are lower than the estimates. This can be explained because

more deaths than expected occurred in 2015, probably related to the unusually high

and low temperatures registered respectively summer and winter time. So far, 2015 has

been considered a record year for deaths and, therefore, the direct estimation of life

expectancy dropped for this year. As 2015 can be considered an exceptional year, this

drop in direct estimates of life expectancy does not appear in life expectancy estimation
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as the drop is just a random variation that is not actually affecting life expectancy.

Nevertheless, the exceptional nature of 2015 has to be carefully considered and it is

still to be confirmed. Looking at the data, until 2014 they are quite regular (598.364

deaths occurred in 2014), then in 2015 the number rose to 647.571 to decrease again

in 2016 (615.261 deaths) but the number rose again in 2017 up to 649.061 deaths.

Therefore, in year 2017 deaths exceeded 2015 ones, it can be argued that 2017 was also

an exceptional year (summer was exceptionally hot, more than in 2015) but time will

confirm this hypothesis. Italian population is getting older and the natural balance has

been negative for more than 10 years now (figure 3.13) and, if on the one hand life

expectancy is increasing as people live longer, on the other hand population is getting

older and deaths naturally exceed births in absolute values. It is likely that in the

next years the mortality rate analysis considering as last age group the class “90+” will

not longer be acceptable and there will be more elements for the discussion on how

life expectancy is evolving (as mentioned earlier, the discussion is about the constant

increase or the reach of a plateau of life expectancy).

Figure 3.13: Natural balance (light blue) and external migration balance (blue) in
thousands, from 2007 to 2017. Source: Demographic indicators, 2017 estimations,
www.istat.it.

Except for year 2015, estimated life expectancy values in figure 3.14 are close to the

direct estimates. Results from the baseline model including intercept, age, sex and time

main effect and age-sex interaction (recalling equation 3.8) are compared with two other

models in figures 3.15 and 3.16. Figure 3.15 show the estimation of life expectancy of a

www.istat.it
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model including in µast also age-time and sex-time interactions in addition to the base-

line (equation 3.8). This model provides much higher life expectancies than the direct

estimates which are quite unrealistic. In this case, how it is often suggested in literature,

a more complicated model does not provide a better result. Figure 3.16 instead shows

results for life expectancies from a model which only includes intercept and main effects

without the age-sex interaction present in the baseline model. Comparing the results

in figure 3.16 with the baseline model in figure 3.14, it can be noticed that without the

age-sex interaction the model systematically overestimates women life expectancy and

the difference between the model and the direct estimates increases for older ages. The

result confirms the importance of including the age-sex interaction in the model.
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Figure 3.14: Median life expectancy estimation (light blue) by time, age and sex
calculated using held-back data from the baseline model. Direct estimates for male
(black) and female (red) are added for comparison.
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Life expectancy 2012−2015
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Figure 3.15: Median life expectancy estimation (light blue) by time, age and sex
calculated using held-back data from the model considering three interactions. Direct
estimates for male (black) and female (red) are added for comparison.
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3.3 Birth counts model

For births estimation the model considers age, region and time dimensions. Accord-

ing to the difficulties encountered, there must be variables not included in the model

that might have an impact on age-specific fertility rates. Attempts including “marital

status”, “parents citizenships” and “regional consumer households’ disposable income

per inhabitant” have been made but no significant result or improvement was found.

Marital status has almost no impact, parents citizenship is significant in the sense that,

overall, immigrants tend to have more children than Italians so region with higher im-

migration could have higher fertility rates but this has not been proven to be significant

in the model estimation. For disposable income the relationship between income and

fertility is not clear and this additional information does not help to get better results.

Direct estimates of fertility rates 3 are the ratios of births on women population, by

five years age groups from 15 to 49 years old (in the last age group also births from 50+

women are considered). The model used is the female dominant model (Preston et al.,

2001), therefore only the number of women influence the number of births, regardless

the number of men. The female population is then used as exposure in the model. There

are two models outperforming the others, both include intercept, age, time, region and

age-time effects and one also consider age-region interaction. Eventually the simpler

one without age-region interaction has been preferred.

3.3.1 Data and preliminary analyses

Data on births released by Istat come from Italian municipalities administrative regis-

ters. As for deaths, there are different values for different tables because of revisions

and comparison between datasets. An explanation about how Istat is planning to inte-

grate sources for newborns can be found in Tuoto et al. (2015). Data quality is a major

issue for statistical institutes and plans to improve are a priority. In order to have all

the needed dimensions (region, time and mothers’ age), at least two datasets have to

be used: the datasets from Annuario statistico italiano, providing Istat ultimate data

after corrections and controls, and the datasets from administrative registers where the

newborn has to be registered within ten days from the birth. Between the two chosen

datasets, differences at national level go from around 5.000 units in 2015 to more than

15.000 in 2011 and 2013. At a percentage level, these differences represent between 1%

and 3% of the total births. Figures 3.18 and 3.17 show the differences at national and

regional level. Dataset 1 (X1) refers to data from Annuario statistico italiano which

3we always refer to age-specific fertility rates
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has only time and region dimensions; dataset 2 (X2) refers to the datasets from the

municipalities where the newborn is registered and provide, in addition to time and

region dimensions, also mothers’ age. Figure 3.17 shows that non-negligible differences

exist among regions. Quite remarkable are differences in regions Lazio, Abruzzo and

Molise, they are wider and more irregular than in other regions.

Births counts by region and time from dataset X1 and X2
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Figure 3.18: Differences by time between dataset X1 (Annuario statistico italiano
and dataset X2 (regional tables by parents’ age), i.e. X1 −X2, from 2006 until 2015
at national level.

In figure 3.19 the central panel shows the computation of region effect from prelimi-

nary data analyses. Preliminary analyses and calculation of main effects and interactions

follow the same process as for deaths rates in paragraph 3.2.1. Besides the age (first

panel on the right in figure 3.19), which is well-known for being a very important variable

in fertility studies, the region effect has a span of 0.3 (from −0.2 until more than 0.1)

wider than time effect in the third panel of figure 3.19, with a span of almost 0.15 (from

−0.1 to 0.05). The time effect is also noticeable in figure 3.20 where rates increase for

age groups over 30 years and decrease for groups before 30. Despite the general trend,

from the graph it is also clear that the increase is stronger in older ages, stays almost

the same for the age group 30− 34 and gets wider again in younger ages but still with

lower differences than for older age groups. This suggests that there is an age-time

interaction and that, while in young ages the rates are little decreasing, a major change

is happening for women in their 40s. Figures 3.22, 3.21 and 3.23 show all the interaction

effects computed from overall fertility log-rates. Age-time and age-region effects seem

to be more important than region-time interaction and this is confirmed by the results

of the model.
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Figure 3.23: Computation of region-time interaction from overall fertility log-rates.
Each block corresponds to a region and each light blue line to a year, from 2006 until
2015.

Dimensions considered and appearing in the graphs are:

• Age of the mother (a) with seven age groups: 15− 19, 20− 24, 25− 29, 30− 34,

35 − 39, 40 − 44 and 45 − 49. The first and the last groups include respectively

women giving birth before 15 or after 49, but this does not significantly affect

estimation for the years considered although, according to the trend, in few years

age group 50− 54 might be needed.

• Region (r), the twenty Italian regions: Piemonte, Valle D’Aosta, Lombardia,

Trentino Alto Adige, Veneto, Friuli Venezia Giulia, Liguria, Emilia Romagna,

Toscana, Umbria, Marche, Lazio, Abruzzo, Molise, Campania, Puglia, Basilicata,

Calabria, Sicilia, Sardegna. Technically region Trentino Alto Adige is divided

in two autonomous provinces, Provincia autonoma di Trento and Provincia au-

tonoma di Bolzano, but as they have very similar characteristics it has been chosen

to consider them together in the traditional unique region 4.

• Time (t), ten years: from 2006 to 2015.

4The opposite choice is made in section 3.5
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3.3.2 System and data models

Dimensions considered for the model on births are: “age”, “region” and “time”. Sex

dimension for newborns has not been considered. There are two main motivations for

this choice: (i) there is no sex effect on the fertility rates in Italy, proportions between

male and female does not show different pattern from what has already been investigated

in literature; (ii) in order to consider sex another database was needed, with different

numbers from the two other datasets adding further complication to an already difficult

model.

The model choice for births is delicate both for the system and data model. For the

system model different mean specification have been tested and eventually the best one

is the one in equation (3.11) with parameter µart including intercept and main effects

for all the dimensions plus only age-time interaction.

yart ∼ Poisson(γartωart), a = 1, ..., 7, r = 1, ..., 20, t = 1, ..., 10

log(γart) ∼ N(µart, σ
2)

µart = β0 + βagea + βregionr + βtimet + βage:timeat

σ ∼ t∗7(1)

(3.11)

Prior distributions on β parameters are exchangeable priors on region effect and for

intercept whereas a DLM is assumed for age, time and age:time interaction. DLMs do

not include any trend and damping terms, there are only local-level models.

β0 ∼ N(0, 102)

βregionr ∼ N(0, 1)

βagea ∼ N(αa, τ
2
a )

with level term: αa ∼ N(αa−1, τ
2
α).

βtimet ∼ N(αt, τ
2)

with level term: αt ∼ N(αt−1, τ
2
α).

Age-time interaction:

βage:timeat ∼ N(αat, τ
2
at)
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with level term: αas ∼ N(αas−1, τ
2
α).

Standard deviation has the same form in all priors:

τa, τt, τat, τα ∼ t+7 (1)

Data model reflects the one used for modelling death rates. On the most trusted

dataset a Normal prior is assumed (equation (3.12)) with mean γart = y[1]rt and standard

deviation φ1rt = 0.0025× x1rt ≈ 0.0025× y[1]rt chosen so that data are at ∼ 95% within

0.5% of the true population count Y whose proxy is X1 as the data are considered

accurate.

x1st ∼ N(γ1st, φ
2
1st) (3.12)

A Poisson model is set as prior for the second dataset X2, with a weak prior on the

mean with no systematic change of coverage according to the dimensions.

x2rt ∼ Poisson(γ2artω2art)

log(γ2art) ∼ N(µ2art, σ
2
2)

µ2art ∼ N(0, 1)

σ2 ∼ t∗7(1)

(3.13)

Distribution for µ2art and σ2 are weakly informative, more informative priors on the

mean or inclusion of upper and lower limits did not improve results. A prior including

a region effect, as suggested by the preliminary analysis, despite performing well in

the model with all the data, it performs worse than model in (3.13) when applied to

held-back data.

Other system models with more informative priors, trend and damping terms have

been tested. Models changing mean µart specification are:

µart = β0 + βagea + βtimet

µart = β0 + βagea + βregionr + βtimet

µart = β0 + βagea + βregionr + βtimet + βtimet : βage
age + βregionr : βage

age

µart = β0 + βagea + βregionr + βtimet + βagea : βregionr + βtimet : βregionr + βagea : βtimet
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They all provided worse results for convergence and with held-back data tests but

still comparable ones.

3.3.3 Results and model checking

The estimation of the model is quite quick, within 10.000 iterations all chains reach

convergence. For each parameter three chains are run in parallel and convergence is

checked via trace plot and Gelman and Rubin diagnostic (Gelman and Rubin, 1992).

In figure 3.24 there is an example of trace plots for fertility rates estimation γart and

the corresponding kernel densities. Chains seem to be robust to starting points. When

starting point is far it can take longer to converge because of small steps required to

obtain a sufficient acceptance rate, but chains move in the right direction in all the

attempts made.
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Figure 3.24: Right side: Trace plots for fertility rates of different age, time and
region. Each coloured line (black, green and red) corresponds to a chain resulting
from the MCMC algorithm. Left side: Kernel density plots of posterior draws with
all chains merged.

Figure 3.25 shows plots for estimation of effects the model includes. For level terms

results are different from those in figures 3.19, but the width is comparable except

for time effect whose width is smaller than in preliminary analysis, and for age-time

interaction where width is usually bigger than expected, meaning that the interaction

incorporates much of the main time effect.
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Figure 3.25: Up-left : Box-plot of model intercept estimation, β0. Up-right : Time
effect estimation, βtimet . Centre-left : Age effect estimation, βagea . Centre-right : Region
effect estimation βregionr . Bottom: Age-time interaction estimation, βage:timeat , each
block is an age group. Except for the box-plot in , all other plots show the medians
in white, the 50% C.I.s (credible intervals) in blue and the 95% C.I.s in light blue.

Fertility rate estimates for the whole period 2006− 2015 are in figure 3.26. The 50%

credible intervals are in blue, the 95% credible intervals are in light blue, and the red

lines are the direct estimates. A slightly higher level, especially for age group 30 − 34,

is recurrently estimated, neighbouring groups have similar pattern but less evident,

whereas for other age groups model estimations reflect direct estimates. The difference
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can be seen also in the count estimates in figure 3.27 and reflect what happens in the

central age groups for rates. This higher uncertainty for age groups with higher rates

is found also in others works (e.g. Alkema et al. (2008); Bryant and Zhang (2018)) and

depends on the higher number of births occurring for women at these ages. Coverage

estimated for the second dataset has mean ∼ 98.7%.

Fertility rate estimation by age and time
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Figure 3.26: Age-specific fertility rates estimation by mothers’ age and time at
national level. Every time block shows the medians (white line), 50% C.I.s (blue) and
95% C.I.s (light blue) for mothers’ age groups. Direct estimates of fertility rates from
dataset X1 (Annuario statistico italiano) are added in red.
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Births estimation by age and region, year 2015
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Figure 3.27: Birth counts estimation by mothers’ age and region for year 2015.
Every region block shows the medians (white line), 50% C.I.s (blue) and 95% C.I.s
(light blue) for mothers’ age groups. In addition values from dataset X1 (Annuario
statistico italiano) are added in red.

Model selection is made via held-back data. The training dataset includes births

from 2006 until 2012 and the test part from 2013 until 2015. Fertility rates results are

shown in figures 3.28 with usual 50% and 95% credible intervals. Results reflect quite

accurately the direct estimates. The second best model whose results are in figures 3.29

includes age-region interaction in addition to age-time one. In this case credible intervals

are much wider than with the baseline model, and convergence is worse. Therefore, the

simpler model is preferred.
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Fertility rate estimation for 2013, from held−back data (2006−2012)
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Figure 3.28: Estimation of age-specific fertility rates by region using held-back data
for 2013 from the baseline model. Every region block shows the medians (white line),
50% C.I.s (blue) and 95% C.I.s (light blue) for mothers’ age groups. In addition direct
estimates from dataset X1 (Annuario statistico italiano) are added in red.
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Figure 3.29: Estimation of age-specific fertility rates by region using held-back data
for 2013 from the alternative model. Every region block shows the medians (white
line), 50% C.I.s (blue) and 95% C.I.s (light blue) for mothers’ age groups. In addition
direct estimates from dataset X1 (Annuario statistico italiano) are added in red.
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3.4 Migrations

Migration is a critical point for population estimation even in countries with reliable

registers. Migration related problems are important to address as population mobility is

constantly increasing, and registration of such movements is not always and not evenly

reported. The differences in registering in and out migration is not the only one, there

are also problems for specific sub-populations, like students or migrants within the

European Community. Also, the phenomenon of illegal migration has relevant political

implications and it is the centre of a significant part of the public and political debates

in the recent years. Despite there are studies and estimations of the number of illegal

migrant coming to Italy and to other European countries, this issue is out of the scope

of this work. These applications only consider official data on resident population of

Italy. The complexity of illegal migration is high, data quality is difficult to evaluate and

results from application of the model would be difficult to interpret especially because

the model investigation has not been completed yet and still needs improvements.

In addition to the difficult data quality assessment and accuracy variability depending

on time and countries, migration is a complex phenomenon also from other points of

view. Especially for countries experimenting a zero or negative natural population

growth, migration is an important issue from demographic but also sociological, political

and economic perspectives. Therefore, despite migration is “the most complex and

most difficult to predict component of population change, bearing high levels of forecast

errors” (Kupiszewski, 2002) it is essential, especially for so-called “developed countries”,

to find methods to estimate and predict migration flows.

Attempts to estimate or forecast migrations flows can be found, in several works

adopting different approaches, and Bijak (2010) dedicated a book to migration in Eu-

rope. Raymer et al. (2013) address the problem of incoherence in migration flows reg-

istrations between countries. Their aim is to harmonise and estimate migration flows

among 31 countries in the European Union and European Free Trade Association from

2002 until 2008. They integrate a theory-based migration model and a measurement

models from both sending and receiving countries. Using Eurostat data and a set of

covariates, they model measurement errors considering imbalance between in- and out-

migration and estimate under-counting country levels. Expert opinions are used for

building prior distributions. Tests on sensitivity to prior information and to partial re-

moval of the data are also accomplished along with a comparison with other approaches.

In Congdon (2008) the Author compares the estimation of migration flows through a

fully Bayesian and an estimation approach. He applies the method to the migration
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flows from Scotland to England during the 1990s. He uses the software “WinBugs” for

the analysis and comments on benefits of the Bayesian approach and, specifically, on

the random effect approach. The comparison between parametric and non-parametric

approaches reveals how the first one performs well and gives good results for preliminary

smoothing analysis, whereas the second one, having fewer constraints, is able to reveal

details that are not so strongly empathised in the first one. An example of projections on

net migration with very few data is Azose and Raftery (2016). They perform a Bayesian

estimation of correlation matrices with informative priors and show how it outperforms

Pearson correlation matrix and simple shrinkage estimators especially when the correla-

tion matrix to estimate is sparse. Putting interpretable and simple priors on correlations

is the main innovation of the method. An extension they suggest is to consider a matrix

of bilateral migration instead of net migration.

As for deaths and births examples, data on migration for Italy come from Istat

and different datasets show differences in counts and dimensions. A first distinction

is between migration from or to other countries, international migration, and migra-

tion within the country, internal migration. For internal migration, data have differ-

ent level of detail from migration between municipalities to migration between regions.

Municipalities collect data on registrations and cancellations from their registers and

communicate them to Istat which publishes customised tables. Data on Istat website

are complete in the sense that there is international and internal migration at different

levels. There are data about origin and destination, but they only come with large age

class groups (”0-17”, ”18-39”, ”40-64”, ”65+”). In order to have more details about mi-

grants age, Eurostat data provide yearly age classes but only for international migration

at national level. All datasets have data on migrant sex, and time span is 2006-2015.

Note that registrations and cancellations refer to permanent residences, it is then very

likely that actual data on migration are much higher than what data report.

3.4.1 International migration

Figure 3.30 shows the differences between the two Istat datasets and trend in interna-

tional immigration. Dataset 1 (X1) comes from Istat demographic balance data whereas

dataset 2 (X2) comes from single series provided by municipalities. From 2007-2008

there is a decreasing trend in almost all regions, whereas for emigration the trend is

increasing (figure 3.31). These opposite behaviours are probably consequences of the

economic crisis.
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External immigration by region from two datasets 2006−2015
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Figure 3.30: International immigration data at regional level for years 2006-2015
from dataset X1 (Istat demographic balance) in black, and from dataset X2 (munici-
palities data) in green.
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Figure 3.31: International emigration data at regional level for years 2006-2015 from
dataset X1 (Istat demographic balance) in black, and from dataset X2 (municipalities
data) in green.
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In figures 3.32 and 3.33 there are respectively numbers on international immigration

and emigration by large age groups, sex and year. Not surprisingly the largest group for

both is the one for people aged 18-39, followed by 40-64 one. For gender, it seems there

is an inversion for immigration, from 18+ years women coming to Italy are always more

than men, but from 2011 on, men aged 18-40 become more than women. For emigration

instead men are always more than women.

External immigration by age and sex, 2006−2015
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Figure 3.32: International immigration data by age, sex and time at national level.
Every block represents data for one year (from 2006 until 2015) by large age groups
(0− 17, 18− 39, 40− 64, 65+) and sex (pink for females and light blue for males).
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External immigration by age and sex, 2006−2015
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Figure 3.33: International emigration data by age, sex and time at national level.
Every block represents data for one year (from 2006 until 2015) by large age groups
(0− 17, 18− 39, 40− 64, 65+) and sex (pink for females and light blue for males).

Some things noticed in figure 3.32 and 3.33 can be found also analysing migration

direct log-rates. Age, time and region effects appear to be strong in both immigration

and emigration phenomena. For immigration (figure 3.34) age and sex effects are higher

than for emigration (figure 3.35), whereas emigration have higher region and time effects.

In both cases log-rates are higher than the overall log-rates for regions in the North and

Centre of Italy and lower for the South and Islands. The only exception seems to be

the region of Calabria, it is the only Southern region with smaller difference with North

and Centre. Time trend confirms to be decreasing for immigration and increasing for

emigration.
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Figure 3.34: Computation of main effects from overall immigration direct estimates
rates. Up-Left : Age effect, by large age groups. Up-right : Region effect, with vertical
line dividing North and Centre regions from South and Islands regions. Bottom-Left :
Time effect, lowering since 2008. Bottom-Right : Sex effect, higher for females.
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Figure 3.35: Computation of main effects from overall emigration direct estimates
rates. Up-Left : Age effect, by large age groups. Up-right : Region effect, with vertical
line dividing North and Centre regions from South and Islands regions. Bottom-Left :
Time effect, rising since 2010. Bottom-Right : Sex effect, slightly lower for females.

With respect to interactions, immigration (figures 3.36 and 3.37) do not show strong

or clear patterns. Usually women rates are higher in older age groups, and Southern

regions have higher rates for older ages, whereas in the North and the Centre, where

unemployment rates are lower, rates for older age groups are lower. Age-time interaction

in this preliminary analysis does not seem to be significant. The same holds for region-

time interaction, few regions show a general trend but it does not seem to be enough to

identify an actual super-population effect.
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Figure 3.36: Computation of interactions obtained decomposing immigration direct
estimate. Left : Age-sex interaction for females (left) and males (right) by large age
groups. Right : Age-time interaction, each block shows the effect over time (2006-205)
by large age groups.
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Figure 3.37: Computation of age-region interaction obtained decomposing immi-
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sponds to a large age group.
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Figure 3.38: Computation of region-time interaction obtained decomposing im-
migration direct estimate. Each block represents a region and each light blue line
corresponds to a year.
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Figure 3.39: Computation of interactions obtained decomposing emigration direct
estimate. Left : Age-sex interaction for females (left) and males (right) by large age
groups. Right : Age-time interaction, each block shows the effect over time (2006-205)
by large age groups.
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Figure 3.40: Computation of age-region interaction obtained decomposing emigra-
tion direct estimate. Each block represents a region and each light blue line corre-
sponds to a large age group.
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Figure 3.41: Computation of region-time interaction obtained decomposing em-
igration direct estimate. Each block represents a region and each light blue line
corresponds to a year.
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3.4.2 Modelling migration

As mentioned introducing migration topic, difficulties in estimating international flows

are a common problem in many countries. Even in a country like New Zealand which

is an island with better immigration records than in most of the countries, accuracy on

migration data is considered “moderate” (Bryant and Zhang, 2018) whereas births and

deaths registration have excellent accuracy. Italian data on migration refer to registra-

tions and cancellations from municipality registers. International migration, especially

at European level, is difficult to estimate. European laws and increasing mobility espe-

cially for students and workers make available data only partially trustworthy whereas

illegal migration topic is not even addressed despite it is a major topic in Italy and

Europe nowadays.

Internal migration analysis is similar to the international one but, apart from age

effect, all the other effects and interactions do not show any clear pattern and, if they

do, magnitude is quite low. Unlike for international migration which has clearer charac-

teristics, a preliminary analysis easing the choice of system model for internal migration

is difficult to provide. Clearly preliminary analyses give a glimpse of what could be

the driving effects of a phenomenon, but they do not replace the proper estimation

procedures.

Another aspect of migration is the format to describe it. There are four formats ex-

plained in Bryant and Zhang (2018) each one providing a different level of information.

The most complete is the origin-destination format, all the movements are recorded in

a square matrix with all the regions of origin and destination. This model provides

information about both sending and receiving regions but it is a computationally de-

manding format. For example, considering the twenty Italian regions a matrix of four

hundreds cells would be needed. Another way is the pool structure where only “total

outward movements and total inward movements are shown for each status” (Bryant

and Zhang, 2018). In this way the number of cells for Italian internal migration would

be 40. A third format is the net format, it is efficient for population size estimation and

only requires as many cells as status, i.e. twenty for Italy. Net migration only gives the

balance between immigration and emigration but it does not provide information about

the size of the flows and, as net flows are usually much smaller than inward and outward

flows, even small percentage changes in separate flows could produce large percentage

changes in net flows.

Data collected from the Istat website have pool format, they do not link origin

and destination but only provide the number of registrations and cancellations. An

origin-destination format can be obtained but the pool format, more parsimonious, has
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been chosen. Unlike net migration, pool format allows for separate immigration and

emigration estimation but is not as computationally demanding as an origin-destination

model. Migration is a complex phenomenon and to only estimate these series based only

on the datasets available provide very partial results, especially because they are known

not to be very accurate. For this reason migration estimation is only estimated within

the demographic account, where demographic balance consistence is always checked and

hence provide results that ensure internal consistency. When only estimating migration

series results tend stay closer to the data, but they might not reflect the actual situation

as balance equation is not considered.

3.5 Demographic account estimation

Unlike in sections 3.2 and 3.3, demographic account estimation involves all the demo-

graphic series. The whole model is much more complex, and combinations are almost

endless. Here, three types of demographic account estimation are presented. The first

only involves time dimension. This is the less flexible model, but also the best for com-

paring results from models with different assumptions. Then models considering time

and region follow and, eventually, models with time and age dimensions. Each of them

has its own peculiarities and difficulties to tackle. Comparisons are needed but, as it is

impossible to give a complete report of all the attempts and changes that can be done,

only the most representative results are shown. Unlike for births and deaths counts

estimation, where data were trusted more than those on migration and the aim was to

find the best model, now the aim is to see how the model performs and how robust

it is to different assumptions. For demographic account estimation to choose the best

model is not always easy as performance are different and data are sometimes far from

the results. Depending on the dimensions needed, one or more datasets are included

in the data model referring to the same demographic account series. Usually, there are

two datasets for each series, the same compared in the previous sections: (i) one from

the municipalities, and (ii) one from the demographic balance published by Istat in the

annual report. Only for population there are three datasets: (i) the resident population

dataset corresponding to the data published by Istat on the demographic balance and

coming from municipalities, i.e. the POSAS form 5; (ii) census data (only for 2011);

(ii) the population reconstruction computed after the 2011 census (only for data from

2006 to 2011). Therefore, there are two datasets for the period 2006-2010, three for

census year 2011, and only one for period 2012-2015. Census data, even after the Post

5POSAS = Popolazione residente comunale per Sesso, Anno di nascita e Stato civile; Resident
population for municipalities by sex, year of birth and marital status.
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Enumeration Survey (PES), are much lower than the population registered. Therefore

there are two choices: either ignore census data and trust residence registers, or trust

census data somehow forcing population estimation to closely follow them. To ignore

census data is a controversial choice. Even if it is true that census has limitations, its

results are presented to be highly reliable by Istat. Istat conducted all census process

according to the best international standards, checking census results for three years

through the Post enumeration survey (PES), combining census data with administra-

tive registers to correct errors (see for example Istat (2016)). Therefore, following Istat

census documents, it has been chosen to consider census data as the most accurate

dataset. An accuracy of 98% is assumed, on line with Istat estimated results (Istat,

2015a). Population considered is only the resident population, so legally enrolled in

an Italian municipality, and not the present population which is also measured by the

census but it is more difficult to estimate both for scarcity of data and much lower

accuracy.

Results are presented, as in sections 3.2 and 3.3, through graphs realised using the

function dplot of demest R package and, as a general rule, they show the 95% credible

interval in light blue, the 50% credible interval in blue, the median in white and the

original data in red.

3.5.1 Only time

Estimating the whole demographic account considering only time dimension has pros

and cons. The main advantage is that choices for the system model are quite simple.

The only dimension that can be included is time for which a DLM prior is the best

and almost automatic choice in every model. Therefore, the only thing to tune is the

strength of a priori assumptions on standard deviation parameters, and the choice of

DLM models (local level model, local trend model, with or without dumping term).

Setting a priori for DLM parameters can be difficult but, in general, results are quite

robust to different choices. When the model includes more dimensions, the choice of

the system model becomes more complex. As the time dimension is available for all

the series and it is the only one considered, time effect has been included in all system

models. Equation (3.14) shows the system model assumed for all demographic series

with the generic cell denoted by yt. Priors on time coefficient βtimet are all DLM with
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local trend model with no dumping term and informative prior on σ with a scale of 0.05.

yt ∼ Pois(γtωt), t = 1, ..., 10

log(γt) ∼ N(µt, σ
2)

µt = β0 + βtimet

σ2 ∼ t∗7(1)

where

β0 ∼ N(0, 102)

βtimet ∼ N(αt, τ
2
t )

αt ∼ N(αt−1 + δt, τ
2
α)

δt ∼ N(δt−1, τ
2
δ )

τt, τα, τδ ∼ t+7 (1)

(3.14)

Exposure term ωt appears in all the models but the one for population as no exposure

term can be used for it.

More options are available for the data models choice. According to the assumptions

on each dataset, results can be different and convergence can take much longer. Before

choosing the data models, the first problem is what dataset to include since all of

them have time dimension. Attempts have been made both considering all the different

datasets available for each series, and only with the most trusted ones. Most of the time

it is sensible to differentiate data models according to prior beliefs on datasets. Making

the same assumption on all datasets, ignoring that some datasets are more trustworthy

than others, prevents the whole estimation process to work properly and often makes

the estimation much more difficult. Instead, when datasets are differentiated using

prior knowledge on their reliability, the less trusted datasets have lower influence on the

estimation and results usually reflect prior assumptions.

Eventually datasets used for the estimation are

• for population series: (i) after census population reconstructions for years 2006−
2011, (ii) census data for year 2011 and (iii) population from Istat official annual

documents and used from demographic balances for years 2012 − 2015 coming

from POSAS forms.

• for births, deaths and external migration data come all from Istat official annual

documents (Annuario statistico italiano).

Different combinations of data models have been tested. Only model on census data

stays the same. As census data are the best data available for the decade considered,
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a model allowing for very little variation with respect to the dataset is assumed: a

Poisson-Binomial distribution with a probability of 0.98, equation (3.15).

xcensust ∼ PoissonBinomial(p = 0.98) (3.15)

Census data refer to the resident population in Italy on October the 9th, 2011 and

official results appeared only in mid 2014. After collection and counting process, data

went through a Post Enumeration Survey (PES), i.e. a control of data collected during

the census with lists and registers of all Italian municipalities in order to correct errors,

over-coverage or under-coverage that might have occurred during the census. The PES

process started in March 2012 and ended on June the 30th 2014. Births and deaths

datasets have a normal prior assuming data are at 95% within 2% of the true births and

deaths counts. In equation (3.16) only contains the births model but model for deaths

series (xbt) follow the same structure. The standard deviation assumed is higher than

the one used in sections 3.2 and 3.3 in order for the model to be more flexible and adapt

to balance equations if needed. The difference is not much and posterior estimation

closely follow the data anyway.

xbt ∼ N
(
γbt , φ

b
t

2)
γbt = ybt

φbt = 0.01× xbt ≈ 0.01× ybt

(3.16)

Prior distributions for population, external immigration and external emigration are,

in all cases, Poisson models with informative priors on standard deviation parameters

and no systematic bias on the mean is expected. If in simpler models, like with deaths

and births series estimation, standard deviations prior distributions were weak, in more

complex model a more informative prior can be helpful. Equation (3.17) presents data

model for external (international) immigration (ei), but the same holds for external

emigration (ee) and population.

xeit ∼ Pois(γeit ω
ei
t )

log(γeit ) ∼ N(µeit , σ
2
ei)

µeit ∼ N(0, 0.0252)

σei ∼ t∗7(0.1)

(3.17)

Convergence was reached between 100.000 and 200.000 iterations in all attempts. In all

the models, population estimation is lower than the data, even for the period 2006 −
2011 where data come from the post-census population reconstruction. Figure 3.42
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shows results on population estimation for four different combinations of data models,

including the one described above. System models are the same as in equation (3.14)

but data models change. The upper right graph shows results for population estimation

when all the data models are Normal with a prior standard deviation assumption of 10%

(i.e. much larger than expected, at least for births, deaths and population). On the

upper left plot, population, births and deaths data have a Normal model with standard

deviation assumptions of 2%. Bottom left plot shows results for the baseline model

(equations 3.16 and 3.17) and the bottom right has all Poisson data models. Results for

population do not differ very much from one another, in all cases 95% credible interval

(light blue in the figure) hardly reach data. The same also happens for system models

with weaker prior, e.g. larger prior standard deviation values τs = 1.
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Figure 3.42: Population size estimation at national level for four different data
models from 2006 until 2015. All four blocks show the medians as a white lines,
the 50% C.I.s in blue, the 95% C.I.s in light blue and in red Istat population re-
construction. Up-left: Data models consider only Normal distributions. Up-right:
Data models consider Poisson prior distributions for migrations and all Normal for
other series. Bottom-left: All distributions are assumed Poisson except for births and
deaths where Normal distributions are assumed. Bottom-right: Priors for all series
are assumed to be Poisson.

Other demographic series results in figures 3.43 and 3.44 show respectively results

for births and deaths, and for international immigration and emigration. On the left

side there are baseline model results (equations 3.16 and 3.17), on the right side there

are results from the model with all Poisson data models. In figure 3.43 the effect of
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the data model change is only on the credible interval size which is much larger for the

Poisson case, but medians are not substantially different.
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Figure 3.43: Comparison between birth and deaths count estimations by time for
baseline data models and data models with all Poisson priors. All four blocks show
the medians as a white lines, the 50% C.I.s in blue, the 95% C.I.s in light blue and in
red data from Annuario statistico italiano. Up-left: Births, baseline model. Up-right:
Births, all Poisson. Bottom-left: Deaths, baseline model. Bottom-right: Deaths, all
Poisson.

For migration instead the model is the same, both on the baseline and on the al-

ternative model, and the change on births and deaths models do not affect migration

series estimation. For the other two models shown in figure 3.42 results are comparable

to results shown, only on the credible intervals size vary a bit. The model appears to be

robust to prior choices. Estimates do not substantially change when different priors are

assumed, only variations on credible intervals width occur depending on the strength of

the prior but no big change on values of the estimates.
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Figure 3.44: Comparison between immigration and emigration count estimations
by time for baseline data models and data models with all Poisson priors. All four
blocks show the medians as a white lines, the 50% C.I.s in blue, the 95% C.I.s in light
blue and in red data from Istat demographic balance. Up-left: Immigration, baseline
model. Up-right: Immigration, all Poisson. Bottom-left: Emigration, baseline model.
Bottom-right: Emigration, all Poisson.

An attempt not considering census data has been performed aiming to leave estima-

tion less bounded to the strong prior assumption implied by the use of census data. A

Normal prior for data models on both population datasets allowing for a 2% errors is

assumed along with baseline model for the other series (equations 3.16 and 3.17). The

resulting population size estimation in figure 3.45 is higher than in figures 3.42 but still

remains very close to the population reconstruction. Other data series estimations are

very close to the data and look very similar to baseline model results in figures 3.43 and

3.44 (right side results of both figures).
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Figure 3.45: Both blocks show population size estimation at national level from 2006
until 2015 for baseline model not considering census data, i.e. only with POSAS data
and reconstructed population data. The medians are the white lines, the 50% C.I.s in
blue and the 95% C.I.s in light blue. Red lines show data from right: Administrative
(POSAS) data, left: Reconstructed data.

Results do not change much when only official data on resident population (POSAS)

are included, i.e. ignoring census and reconstructed population data. Keeping the

baseline data models for all the remaining series (equations 3.16 and 3.17), results for

migration and population are shown in figure 3.46. Births and deaths estimations are

not presented as they reflect results for the baseline model in figure 3.43. Population

estimation (bottom block of figure 3.46) is higher than in the other cases as census data

and reconstructed data are not included, but it still remains lower than POSAS data that

are still not included in the 95% credible interval. Only migration appears to be more

irregular than in the other cases (compare two upper blocks of figure 3.46 with results

in figure 3.44 and figure 3.47). This can be explained by the fact that migration has the

weakest assumptions on its series (Poisson), whereas all the other series have Normal

models that allow for less variability. The model uses the flexibility allowed by Poisson

priors to modify migration series in order to obtain a consistent demographic account

and leaves the series on births and deaths substantially unchanged. Results obtained

are median lines still very close to the data but with irregular credible intervals.



112 Section 3.5 - Demographic account estimation

Immigration estimation 2006−2015

time

co
un

t

30
00

00
40

00
00

50
00

00
60

00
00

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Emigration estimation 2006−2015

time

co
un

t

50
00

0
10

00
00

15
00

00
20

00
00

25
00

00
30

00
00

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Population estimation 2006−2015

time

co
un

t

58
00

00
00

58
50

00
00

59
00

00
00

59
50

00
00

60
00

00
00

60
50

00
00

61
00

00
00

2006 2008 2010 2012 2014

Figure 3.46: Estimated results at national level from 2006 until 2015 for the baseline
data models only considering POSAS data, i.e. ignoring census and reconstructed
population data. The medians are the white lines, the 50% C.I.s are in blue, and the
95% C.I.s in light blue. Up-Right : Immigration count estimations with data from Istat
demographic balance in red. Up-Left: Emigration count estimations with data from
Istat demographic balance in red. Bottom:Population size estimation with POSAS
data in red.

Results for an ad hoc model are shown in figure 3.47. Here only resident population

dataset is included, deaths and births have Normal prior with 2% prior error and mi-

gration is assumed a priori under-reported of 10%. Prior distributions for this model

are very informative and strongly influence estimation. Results reflect expectations and

give a likely scenario for the Italian demographic account, with good birth and death

data estimation, immigration data under-reported and asymmetric credible intervals in

favour of larger values and a rising and much higher emigration than registered.
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Figure 3.47: Demographic account estimation at national level for ad hoc data
models from 2006 until 2015. Only resident population dataset is included and it is
assumed Normal with 2% prior error, as well as births and deaths; both immigration
and emigration are considered a priori affected by 10% under-reporting. All blocks
show the medians as white lines, the 50% C.I.s in blue, the 95% C.I.s in light blue,
and in red data from Istat respectively from: Up-left : Birth data from Annuario
statistico italiano. Up-right : Death data from Annuario statistico italiano. Centre-
left : Immigration from Istat demographic balance. Centre-right : Emigration from
Istat demographic balance. Bottom: Resident population from POSAS data.

In general, when only official data on resident population are considered the estima-

tion of demographic series varies much more, results are less robust, with high variation

and hard to reach convergence. But, still, results do not show opposite results than

in models with more information. Estimations reflect data but also remain consistent

and sensible despite changes in prior assumptions and datasets considered. Especially

for population, where the higher differences are observed, estimation is always generally

lower than data.
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3.5.2 Time and region

The demographic account considered in this section includes time and region dimen-

sions. As the time dimension, the regional dimension is present in all the considered

datasets, therefore only the more accurate ones are included (i.e. Istat regional demo-

graphic balance datasets). Italy has twenty regions but instead of region “Trentino Alto

Adige” the two autonomous provinces of “Trento” and “Bolzano” are considered, in line

with Istat and administrative recommendations. There are therefore twenty-one regions

included in the model. Data for “Trentino Alto Adige” simply correspond to the sum

of the two provinces. When estimating population size at regional level, a complication

arising is the need to include data on internal migration or, more precisely, inter-regional

migration.

For historical reasons internal migration has always been hard to trace in Italy.

Since the 1990’s the situation has substantially improved and even more after 2013

when paper forms have been replaced by the software ISI-Istatel. ISI-Istatel allows

for electronic management of all the forms, it produces tracks of internal migrations

and and automatically transmits data. This software has improved all the steps of data

management, reducing errors and delays (Istat, 2015b). Nevertheless, internal migration

is still difficult to track as many people do not notify their de facto change of residency.

Reasons for not changing residency when moving somewhere else in the country are

diverse. They go from carelessness or ignorance to financial advantages, sometimes the

process is considered to be too long therefore people do not notify temporary moving.

This phenomenon is particularly true for example for students attending an university

outside their region of residence. They study and live for years in a different city,

sometimes also starting working there, without notifying it to the authorities. The

problem of internal migration has been addressed and studied also in other countries

and it has sometimes been considered even more serious than international migration

(Bryant and Graham, 2013; Egidi and Ferruzza, 2009; Spencer et al., 2017; Yildiz and

Smith, 2015). Hence, as international migration, also internal migration it is very likely

to suffer from under-reporting, and, despite the data quality has improved, reliability

is still not high enough. Furthermore, when estimating internal migration there is

an additional constraint the model has to account for. Internal migration needs to be

consistent at national level, i.e. the sum of all inter-regional immigration and emigration

must be zero at national level. This further complicates the whole demographic account

model (DAM) as in addition to the population balance constraint also the migration

constraint (equation (3.18)) needs to be satisfied at every updating of the demographic

account.



Chapter 3 - Application to Italian deaths, births and account 115

R∑
r=1

yiirt =
R∑
r=1

yiert (3.18)

where r = 1, ..., R is the number of regions, t = 1, ..., T is the number of years

considered and ii and ie are respectively internal immigration and emigration.

The analysis presented in this section compares three different DAMs denoted by M1,

M2 and M3. The three models share the same system model but different data models.

In the system model, common to the three models, each series has its system model with

different structure of parameter µrt. Despite standard deviations are small in all cases

(0.05 for DLM and 0.25 for Exchangeable priors), the effects included in µrt are different.

The first part is the same for all series (equation (3.19)), but the definition of µrt depends

on the series it relates to. Equation (3.20) shows the specification for population, births,

deaths, external immigration, external emigration, internal immigration and internal

emigration, respectively referred to by p, b, d, ei, ee, ii and ie.

yrt ∼ Pois(γrt), r = 1, ..., 21, t = 1, ..., 10

log(γrt) ∼ N(µrt, σ
2)

σ2 ∼ t∗7(1)

(3.19)

For deaths only time effect is included as no big regional effect has been identified

(see section 3.2), births include time and region effects but no interaction to avoid over-

fitting, whereas for population and all migration series also a region-time interaction is

considered. The reason is the evidence during preliminary analyses for a considerable

region-time effect, see figures 3.38 and 3.41. Moreover, this is also consistent with quick

changes in migration flows and regional differences. In each model intercept β0 has the

same weak prior N(0, 102), whereas βtime and βregion:time
rt (if included) have both a local

trend model without damping term, and βregionr has an exchangeable prior with 0.25

standard deviation scale.

µbrt = β0 + βtimet + βregionr (3.20)

µdrt = β0 + βtimet (3.21)

µprt = β0 + βtimet + βregionr + βregion:time
rt (3.22)

µeirt = µeert = µiirt = µiert = µprt (3.23)

Models M1 and M2 include reconstructed population datasets and census data for

population series, and for all the other series datasets from the demographic balance
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are used. M3 includes also the dataset on resident population (POSAS) from the de-

mographic balance for population series. Data models for M1 are similar to the one

presented in section 3.5.1 but there are more cells due to regional additional dimension.

Census data have a Poisson-Binomial prior as in equation (3.15), birth and death counts

are Normal as in equation (3.16), and the rest (population and migrations) are all Pois-

son with a informative priors on the intercept to avoid large identification problems, see

equation(3.17). M2 assumes Normal prior on all the series with standard deviation of

1% for population, births and deaths, and 5% for migrations. In M3, census data, births

and deaths have the same data models as in M1 and M2, Poisson models are assumed on

both population datasets as in equation (3.17), and migration models are again Poisson

but with larger standard deviations on hyper-parameters (σ = 1 and τ = 1). Models

M1, M2 and M3 are reported in table 3.1.
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Model Series Data model

M1

Census xcensusrt ∼ PoissonBinomial(p = 0.98)
Births

xbrt ∼ N(γbrt, φ
b2

rt), γbrt = ybrt, φbrt = 0.01× xbrtDeaths
Rec. pop. xeirt ∼ Pois(γeirtω

ei
rt)

log(γeirt) ∼ N(µeirt, σ
2
ei),

µeirt ∼ N(0, 0.0252),
σei ∼ t∗7(0.1)

Ext. imm.
Ext. emi.
Int. imm.
Int. emi.

M2

Census xcensusrt ∼ PoissonBinomial(p = 0.98)
Births

xbrt ∼ N(γbrt, φ
b2

rt), γbrt = ybrt, φbrt = 0.01× xbrtDeaths
Rec. pop.
Ext. imm.

xeirt ∼ N(γeirt, φ
ei2

rt )

γeirt = yeirt
φeirt = 0.05× xeirt

Ext. emi.
Int. imm.
Int. emi.

M3

Census xcensusrt ∼ PoissonBinomial(p = 0.98)
Births

xbrt ∼ N(γbrt, φ
b2

rt), γbrt = ybrt, φbrt = 0.01× xbrtDeaths
Rec. pop.

xprt ∼ N(γprtφ
p2

rt ), γprt = yprt, φprt = 0.05× xprtPOSAS
Ext. imm. xeirt ∼ Pois(γeirtω

ei
rt)

log(γeirt) ∼ N(µeirt, σ
2
ei),

µeirt ∼ N(0, 1), σei ∼ t∗7(1)

Ext. emi.
Int. imm.
Int. emi.

Table 3.1: Data models for the three models tested (M1, M2, M3). For each model
the data model assumed on each series is presented. If data model are the same for
more than one series, then only one is shown with the name of the series the example
refers to. Series are census, births, deaths, reconstructed population and POSAS pop-
ulation, external immigration, external emigration, internal immigration and internal
emigration, respectively referred to by census, b, d, p (for both reconstructed and
POSAS), ei, ee, ii and ie.
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In figure 3.48 there are plots for population estimation of the three different models.

For M1 and M2 estimation is quite similar, but in M1 intervals follow much closely the

data than in M2. Especially for the last years M1 seems to fit better to the slower popu-

lation growth whereas M2 sticks more to the general trend (both upward or downward,

depending on the region). In M3 credible intervals are much narrower than in the other

cases. Probably the presence of more than one dataset and the weaker assumptions had

a positive impact on the results.

As the data model is the same for all three cases, according to expectations, births

and deaths counts have almost identical results in all cases. It means that changes in

one or more series assumptions do not significantly affect results for the other series.

Being so similar only results of M1 are reported in figure 3.49.

For migration results and interpretation is more challenging, as for the three models

there are three different results (figure 3.50). M1 has very large and irregular credible

intervals (both 50% in blue and 95% in light blue) that include the data. M2 has smaller

credible intervals, but they seem not to respect the data trend at all, whereas in M3

both credible intervals and data trend are respected.

For international emigration credible intervals are in all cases small and regular but

models M1 and M2 have higher estimations than data (which is sensible according to

a priori information Istat has on international emigration). In M3 instead, interna-

tional emigration closely follow data. From the results on international migration a

general phenomenon of under-reporting of emigrations can be deduced, whereas more

complicated is to understand international immigration.

For internal migration, both immigration and emigration results reflect the expected

low accuracy of the datasets according to Istat warnings (Egidi and Ferruzza, 2009)

and the further complication the constraint (3.18) introduces. Credible intervals are

wide and often do not even include data, immigration estimation is usually lower than

data whereas emigration estimation is almost always higher except for the province of

Bolzano where is lower. Estimation of internal migration for the three cases are in

figures 3.52 and 3.53.



Chapter 3 - Application to Italian deaths, births and account 119

Population estimation 2006−2015

time

co
un

t
42

50
00

0
43

50
00

0

2006
2008

2010
2012

2014

Piemonte

12
30

00
12

50
00

12
70

00
12

90
00 Valle D'Aosta

94
00

00
0

98
00

00
0

2006
2008

2010
2012

2014

Lombardia

48
00

00
50

00
00

52
00

00

Bolzano/Bozen

50
00

00
52

00
00

54
00

00

2006
2008

2010
2012

2014

Trento

47
00

00
0

48
00

00
0

49
00

00
0

Veneto

12
00

00
0

12
20

00
0

Friuli Venezia Giulia

15
60

00
0

15
80

00
0

Liguria

41
00

00
0

43
00

00
0

Emilia Romagna

35
50

00
0

36
50

00
0

37
50

00
0 Toscana

85
00

00
87

00
00

89
00

00

Umbria

15
00

00
0

15
40

00
0

Marche

52
00

00
0

56
00

00
0

Lazio

12
80

00
01

30
00

00
13

20
00

0

Abruzzo

31
00

00
31

40
00

31
80

00

Molise

57
00

00
0

58
00

00
0

Campania

40
00

00
0

40
40

00
0

40
80

00
0

Puglia

57
00

00
58

00
00

59
00

00

Basilicata

19
40

00
0

19
60

00
0

19
80

00
0

Calabria

2006
2008

2010
2012

2014

49
50

00
0

50
50

00
0

Sicilia

16
20

00
0

16
40

00
0

16
60

00
0

Sardegna

Population estimation 2006−2015

time

co
un

t
42

50
00

0
43

50
00

0

2006
2008

2010
2012

2014

Piemonte

12
40

00
12

60
00

12
80

00

Valle D'Aosta

94
00

00
0

98
00

00
0

2006
2008

2010
2012

2014

Lombardia

48
00

00
50

00
00

52
00

00

Bolzano/Bozen

50
00

00
52

00
00

54
00

00

2006
2008

2010
2012

2014

Trento

47
00

00
0

48
00

00
0

49
00

00
0

Veneto

12
00

00
01

21
00

00
12

20
00

01
23

00
00

Friuli Venezia Giulia

15
60

00
0

15
80

00
0

Liguria

42
00

00
0

44
00

00
0

Emilia Romagna

35
50

00
0

36
50

00
0

37
50

00
0 Toscana

85
00

00
87

00
00

89
00

00
Umbria

15
00

00
0

15
40

00
0

Marche

52
00

00
0

56
00

00
0

Lazio

12
80

00
01

30
00

00
13

20
00

0

Abruzzo

31
00

00
31

40
00

31
80

00

Molise

57
50

00
05

80
00

00
58

50
00

0

Campania

40
00

00
0

40
40

00
0

40
80

00
0

Puglia

57
00

00
58

00
00

59
00

00

Basilicata

19
50

00
01

96
00

00
19

70
00

01
98

00
00 Calabria

2006
2008

2010
2012

2014

49
00

00
0

50
00

00
0

51
00

00
0 Sicilia

16
20

00
0

16
40

00
0

16
60

00
0

Sardegna

Population estimation 2006−2015

time

co
un

t
43

00
00

0
44

00
00

0

2006
2008

2010
2012

2014

Piemonte

12
40

00
12

60
00

12
80

00

Valle D'Aosta

94
00

00
0

98
00

00
0

2006
2008

2010
2012

2014

Lombardia

48
00

00
50

00
00

52
00

00

Bolzano/Bozen

50
00

00
52

00
00

54
00

00

2006
2008

2010
2012

2014

Trento

47
00

00
0

48
00

00
0

49
00

00
0

Veneto12
00

00
01

21
00

00
12

20
00

01
23

00
00

Friuli Venezia Giulia

15
65

00
0

15
75

00
0

15
85

00
0

15
95

00
0 Liguria

42
00

00
04

30
00

00
44

00
00

0

Emilia Romagna

36
00

00
0

37
00

00
0

Toscana

85
00

00
87

00
00

89
00

00

Umbria

15
00

00
01

52
00

00
15

40
00

01
56

00
00 Marche

54
00

00
0

58
00

00
0

Lazio

12
80

00
0

13
00

00
0

13
20

00
0

Abruzzo

31
20

00
31

60
00

Molise

57
50

00
0

58
00

00
0

58
50

00
0

Campania

40
40

00
0

40
80

00
0

Puglia

57
50

00
58

00
00

58
50

00
59

00
00

Basilicata

19
60

00
0

19
70

00
0

19
80

00
0

Calabria

2006
2008

2010
2012

2014

50
00

00
0

50
50

00
0

51
00

00
0 Sicilia

16
40

00
0

16
60

00
0

Sardegna

Figure 3.48: Population estimation at regional level for years from 2006 until 2015.
All regional blocks show the medians as white lines, the 50% C.I.s in blue, the 95%
C.I.s in light blue, and in red data from Istat reconstructed population. Upper: Pop-
ulation estimation, M1. Centre: Population estimation, M2. Bottom: Population
estimation, M3.
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Figure 3.49: Birth and death count estimations at regional level for years from 2006
until 2015. All regional blocks show the medians as white lines, the 50% C.I.s in blue,
the 95% C.I.s in light blue, and in red data from Istat demographic balances. Upper:
Birth counts estimation. Lower: Death counts estimation.
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International immigration estimation 2006−2015
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Figure 3.50: International immigration count estimations at regional level for years
from 2006 until 2015. All regional blocks show the medians as white lines, the 50%
C.I.s in blue, the 95% C.I.s in light blue, and in red data from Istat demographic
balances. Upper International immigration estimation, M1. Centre: International
immigration estimation, M2. Bottom: International immigration estimation, M3.
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Figure 3.51: International emigration count estimations at regional level for years
from 2006 until 2015. All regional blocks show the medians as white lines, the 50%
C.I.s in blue, the 95% C.I.s in light blue, and in red data from Istat demographic
balances. Upper International emigration estimation, M1. Centre: International
emigration estimation, M2. Bottom: International emigration estimation, M3.
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Figure 3.52: Internal immigration count estimations at regional level for years from
2006 until 2015. All regional blocks show the medians as white lines, the 50% C.I.s
in blue, the 95% C.I.s in light blue, and in red data from Istat demographic bal-
ances. Upper: Internal immigration estimation, M1. Centre: Internal immigration
estimation, M2. Bottom: Internal immigration estimation, M3.
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Figure 3.53: Internal emigration count estimations at regional level for years from
2006 until 2015. All regional blocks show the medians as white lines, the 50% C.I.s
in blue, the 95% C.I.s in light blue, and in red data from Istat demographic balances.
Upper: Internal emigration estimation, M1.Centre: Internal emigration estimation,
M2. Bottom: Internal emigration estimation, M3.
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It is difficult to motivate and compare these results on migration, but estimates

clearly show inconsistencies in the data. Istat regularly corrects errors in residence

registrations or cancellations, but population movements are not always easy to recon-

struct. Even with a Normal prior (in model M2), results do not improve, showing that,

even with a prior assuming higher accuracy on data, estimates still deviate from data.

Nowadays migration is a challenging aspect of population studies, here models only

include time and region dimensions, without any other covariate. Here only three at-

tempts sharing the same system model are presented, allowing for data model robustness

checking, comparisons are harder when too many things change. Changes to the system

models do not seem to affect much the estimation, for example with a system model

not considering interactions at all or with weaker priors on standard deviations results

are almost the same. Other data models and other datasets can also be considered, but

attempts with the most accurate datasets were more worth presenting than the others

where results were worse and convergence harder to reach.

The territorial level considered in this section is the regional one. There are no theo-

retical restriction to the level of territorial specification. Application can be performed

at provincial or even municipality levels. For Italy only the regional level has been con-

sidered for three main reasons: (i) differences between regions are usually more evident

that differences between provinces or municipalities; (ii) the number of provinces has

been varying multiple times during the time span considered 2006− 2015 making diffi-

cult datasets comparisons across years; (iii) the analysis of almost a hundred territorial

units implies a high computational cost not affordable in the context of the present

investigation.
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3.5.3 Time and age

Estimation by time and age is a particularly challenging task. First of all because

not all the datasets come with age, and sometimes age groups are different. For in-

stance, all datasets from Istat demographic balance only come with time, region and

sex dimensions, and these are the data having being trusted the most so far; population

usually comes in single year groups; mothers’ age in births counts and deaths counts

depend on the table used. There can be either single or five years groups; migration

usually comes in large age groups (“0− 17′′, “18− 39′′, “40− 64′′, “65+′′) but can also

be found by single year. Estimation with single year age groups is prohibitive in terms

of computational time, and five-years age groups are commonly used in demography

as characteristics and rates are similar in such a small range. More difficult is to deal

with large age groups, but considering only age and not the region it is possible to use

migration datasets at national level with single year age groups provided by Eurostat.

Because some datasets only provide data with five years age groups, the model considers

age dimension in five years age groups, as it has already been in the previous models.

Considering the whole demographic account all the series must be consistent, and, as

the age groups are five years wide, for population (point arrays) only the data at five

years interval are considered (i.e. 31/12/2005, 31/12/2010 and 31/12/2015). For other

demographic series (interval arrays) data are collapsed for the two period 2006-2010 and

2011-2015.

The population system model (equation (3.24)) includes intercept, age and time

effects plus age-time interaction. Intercept is modelled as usual (β0 ∼ N(0, 102)), main

effects and the interaction all have DLM priors. Time has a local trend model, whereas

age and age-time interaction only assume a local level model. No damping term is

included. All other series have the same structure plus exposure term ωat, priors on

standard deviations are higher for migration (0.2 instead of 0.1).

yat ∼ Pois(γat), a = 1, ..., 19, t = 1, ..., 10 (3.24)

log(γat) ∼ N(µat, σ
2)

µat = β0 + βtimet + βagea + βage:timeat

σ2 ∼ t∗7(1)

where

β0 ∼ N(0, 102)

βtimet ∼ N(αt, τ
2
t )
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αt ∼ N(αt−1 + δt, τ
2
α)

δt ∼ N(δt−1, τ
2
δ )

τt, τα, τδ ∼ t+7 (0.1)

βagea ∼ N(αa, τ
2
a )

αa ∼ N(αa−1, τ
2
α)

τa, τα, τδ ∼ t+7 (0.1)

βage:timeat ∼ N(αat, τ
2
at)

αat ∼ N(αat−1, τ
2
α)

τat, τα, τδ ∼ t+7 (0.1)

Taking advantage of the fact that datasets can have different dimensions, both

datasets including age (but less accurate) and without age (but more accurate) have

been included. Data model for census population in this case cannot be used as census

correspond to year 2011 which does not correspond to the year needed. This choice

also aims to show results when census data are not available, and there are only two

different datasets on population treated in the same way. The two population datasets

both have the two needed dimensions and a Normal prior with a standard deviation

of 2.5% is assumed on both. For births and deaths, a Normal prior is assumed on

demographic balance data, with a standard deviation of 1% (same as (3.16) but with

age dimension). Less detailed but more accurate datasets get a more informative prior

reflecting information on accuracy despite the lack of age dimension. For dimension-

ally complete datasets but less accurate, data models are a Poisson distributions with

informative prior on the intercept β0 and on σ. Equation (3.25) shows the model only

for births, the dataset on death counts has the same structure. No systematic bias is

assumed, therefore no effect is included in the mean model. For international immigra-

tion and emigration only one dataset for each series is used as time and age dimensions

are available and there is no difference with other less detailed datasets. Data models

for migration have the same structure of equation (3.25), but higher standard deviation

on both µat and σ respectively 10% and 1% for both immigration and emigration.

xbat ∼ Pois(γbatω
b
at)

log(γbat) ∼ N(µbat, σ
2
b )

µbat ∼ N(0, 0.0252)

σb ∼ t∗7(0.1)

(3.25)
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Results on the demographic account are reported from figure 3.54 to figure 3.60.

Population has two different graphs, one showing pictures of the population estimates

at the 31th of December for years 2005, 2010 and 2015 by age groups (figure 3.54),

whereas figure 3.55 shows estimation of the evolution by age groups during the ten

years. Interpolation between years is made by a simple straight line in figure 3.54.

Differences in credible intervals width, especially for age groups 10 − 14, 15 − 19 and

20 − 24, mainly depend on irregularities within the age groups. As shown in figure

3.56, some age groups have regular evolution over time but others, especially the three

groups mentioned, have quite irregular patterns, making estimation harder, and affecting

credible intervals widths.

Population estimation by age group
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Figure 3.54: Population counts estimation by five years age groups in 2005 (left),
2010 (centre) and 2015 (right). The three blocks show the medians as white lines,
the 50% C.I.s in blue, the 95% C.I.s in light blue, and in red data from reconstructed
population data.
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Population estimation 2006−2015
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Figure 3.55: Population counts estimation evolution from 31/12/2005 until
31/12/2015 by five years age groups. The age blocks show the medians as white
lines, the 50% C.I.s in blue, the 95% C.I.s in light blue, and in red data from recon-
structed population data. Interpolation between the estimated years (2005,2010 and
2015) is linear.
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Difference in administrative and reconstructed population

time

co
un

t
26

00
00

0
27

50
00

0

2006 2008 2010 2012 2014

0−4

27
50

00
0

28
50

00
0

5−9

27
80

00
0

28
20

00
0

28
60

00
0

2006 2008 2010 2012 2014

10−14

28
50

00
0

29
50

00
0

15−19

30
50

00
0

31
50

00
0

2006 2008 2010 2012 2014

20−24

33
00

00
0

36
00

00
0

25−29

36
00

00
0

42
00

00
0

30−34

42
00

00
0

46
00

00
0

35−39

47
00

00
0

48
50

00
0

40−44

42
00

00
0

48
00

00
0

45−4938
00

00
0

44
00

00
0

50−54
37

00
00

0
39

00
00

0
41

00
00

0 55−59

32
00

00
0

36
00

00
0

60−64

32
00

00
0

36
00

00
0

65−69

28
50

00
0

30
00

00
0

70−74

25
00

00
0

27
00

00
0

75−79

2006 2008 2010 2012 2014

18
00

00
0

19
50

00
0

80−84

80
00

00
11

00
00

0

85−89

2006 2008 2010 2012 2014

45
00

00
55

00
00

65
00

00

90+

Figure 3.56: Resident population by age group for all years from 31/12/2005 until
31/12/2015. Yearly variations are shown here that are ignored in the model that only
considers population at time points 31/12/2005, 31/12/2010 and 31/12/2015.

For births, deaths and migrations estimation, credible intervals are larger for more

numerous age groups. Despite this could appear counter-intuitive, larger age groups are

also those experiencing larger variations over time; a larger credible interval width can

therefore be justified as estimation considers a five years period.

Birth and death counts are quite close to data with rather small credible intervals

(figures 3.57 and 3.58), whereas migration have wider ones as it is also expected from

the Poisson priors assumed.
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Births estimation by mothers' age group
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Figure 3.57: Births estimation by mothers’ age group and time for periods 2005-2010
(left) and 2011-2015 (right). The period blocks show the medians as white lines, the
50% C.I.s in blue, the 95% C.I.s in light blue, and in red data from Istat demographic
balance.
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Deaths estimation by age group

age

co
un

t

0e
+

00
2e

+
05

4e
+

05
6e

+
05

0−
4

5−
9

10
−

14

15
−

19

20
−

24

25
−

29

30
−

34

35
−

39

40
−

44

45
−

49

50
−

54

55
−

59

60
−

64

65
−

69

70
−

74

75
−

79

80
−

84

85
−

89

90
+

2006−2010

0−
4

5−
9

10
−

14

15
−

19

20
−

24

25
−

29

30
−

34

35
−

39

40
−

44

45
−

49

50
−

54

55
−

59

60
−

64

65
−

69

70
−

74

75
−

79

80
−

84

85
−

89

90
+

0e
+

00
2e

+
05

4e
+

05
6e

+
05

2011−2015

Figure 3.58: Deaths estimation by age group and time for periods 2005-2010 (left)
and 2011-2015 (right). The period blocks show the medians as white lines, the 50%
C.I.s in blue, the 95% C.I.s in light blue, and in red data from Istat demographic
balance.

Estimation for international emigration has the widest credible intervals (figure 3.60.

Overall emigration tends to be overestimated, whereas immigration (figure 3.59) is closer

to data. This is what is expected as emigrants have usually very low interest in being

cancelled from their former residency, whereas immigrants are usually interested in

registering in their new country or municipality mainly for civil rights and practical

reasons (Egidi and Ferruzza, 2009). Results by age and time for migration are much

more regular, an more on line with expectations than in the other models (only with time

dimension, section 3.5.1, and with region and time dimensions, section 3.5.2). This can

be mostly explained by the importance of age dimension in the modelling of migration.
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Immigration estimation by age group
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Figure 3.59: Immigration estimation by age group and time for periods 2005-2010
(left) and 2011-2015 (right). The period blocks show the medians as white lines, the
50% C.I.s in blue, the 95% C.I.s in light blue, and in red data from Istat demographic
balance.
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Emigration estimation by age group
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Figure 3.60: Emigration estimation by age group and time for periods 2005-2010
(left) and 2011-2015 (right). The period blocks show the medians as white lines, the
50% C.I.s in blue, the 95% C.I.s in light blue, and in red data from Istat demographic
balance.

Comparing the demographic account estimation for age and time dimensions with

the one considering region and time it is clear that region dimension is important in

Italy and that strong regional differences exist. For some regions data and estimates

are smooth, whereas there are regions for which data have high variability and credible

intervals are much wider. Examples of regions with smooth results and data are for

example Tuscany, Emilia Romagna, Umbria, Lombardia, Veneto, Trento and Bolzano.

Regions with high variability are Calabria, Campania, Sardegna, Liguria and Friuli

Venezia Giulia. The estimation process for regions could benefit from priors embedding

expert opinions. To a certain extent this is true also for the model considering age and

time and only time but problems are less obvious than with region dimension.

From all the applications the need of keeping uncertainty into account for migration

processes arises. The estimation of migration processes has been problematic in all sce-

narios both considering different dimensions and considering different prior models. The

effect is lower for the age and time model as age is an important dimension, internal

migration is not considered and data are grouped in five years time spans creating some

smoothing both for data and estimation. Even if lower in some cases, the uncertainty

related to migration series estimation is shown in all models and proves the importance
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of providing uncertainty measure when dealing with demographic quantities (especially

if not reliable) and the need of further information for a better estimation. Information

needed can be characteristics of the migrants, but also the efficiency of the registration

and cancellation process or the differences between countries or regions for definitions

and administrative processes. The demographic account model allows for much flexi-

bility and inclusion of prior information. In these paragraphs only a small part of what

is possible has been shown, accordingly to the status of the R package demest and of

the data available. The R package demest is available on the GitHub repository of

Statistics New Zealand (https://github.com/StatisticsNZ/demest). The package

still needs to be completed in some parts and experimented but many functions are

already mature. These applications to the Italian data at the moment are the most

advanced applications for the demographic account estimation and needs more work

to be fully ready for external use. Functions for single series estimation as in sections

3.2 and 3.3 have been developed and tested for a longer time than those for the whole

demographic account estimation. For this reason a deeper analysis has been possible

for deaths and births series.

For better demographic account estimation there are many possible improvements as

described in section 2.7. The next chapter presents an extension for available data model

options introducing the Conway-Maxwell Poisson distribution (Conway and Maxwell,

1962).

https://github.com/StatisticsNZ/demest




Chapter 4

Model extension: Conway-Maxwell

Poisson distribution

Options for data model distribution proposed by Bryant and Graham (2013) and

reported in section 2.3.2 include the Poisson, the Normal and the Poisson-Binomial

mixture distributions. The last two options are distributions typically concentrated

around the mean, hence they represent a suitable choice for good quality data where

expected variance is rather small. Even when high prior variance or low probability are

assumed respectively for the Normal and the Poisson-Binomial mixture, the results are

still closer to the initial data than when choosing the Poisson distribution. The Poisson

prior for data model is the main choice for all the other data whose quality is not very

high or is unknown. Unfortunately the Poisson distribution has limitations that do not

always suit the population it refers to. As with β parameters prior distributions, also

the number of available data model has to be increased and improved in order to provide

more suitable and customisable options for the data. One of the main limitations of

the Poisson distribution is that mean and variance have the same value, implying data

equi-dispersion. This is not always the case as population characteristics could require

variance higher than the mean or lower, depending if population is more heterogeneous

or homogeneous than in the equi-dispersion case, i.e. if it is over-dispersed or under-

dispersed. Causes of homogeneity or heterogeneity depend on various aspects. It can

be the propensity of an age group to be less traceable in its movements, e.g. students

migration; or of a sex to register less in some registers or having different habits, e.g.

men health care consumption is usually lower than for women (Friberg et al., 2016;

Wang et al., 2013); for regions to typically be sending or receiving regions and therefore

populations typically migrating or receiving migrants, e.g. for Italian internal migration

the South of Italy is typically a sending region and the North is typically a receiving

137
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region. When differences are not considered in the model and hence population is

considered as a whole, heterogeneity is high and for this reason variance could be higher

than the mean. Conversely when population characteristics are defined in the model

and information included through prior distribution, the population considered can

be homogeneous and have lower variance than the mean. In both cases a Poisson

distribution is not suitable for the model.

The alternative proposed in this chapter is the use of the Conway-Maxwell Poisson

distribution (Conway and Maxwell, 1962) which, unlike the Poisson, allows for over- and

under-dispersion of data with respect to the mean. The distribution is similar to the

Poisson but with an additional parameter for modelling dispersion. With this distribu-

tion heterogeneous populations are expected to have dispersion parameters suggesting

over-dispersion and, conversely, when more homogeneous populations are considered to

suggest under-dispersion, i.e. a lower variance with respect to the mean.

4.1 Theory, properties and application examples

Poisson distribution is a common and suitable choice for modelling count data, it has

many good properties and it is the basis for Poisson regression. A limitation, which is

also one of its property, is the assumption of equi-dispersion of data with respect to the

mean, as distribution mean and variance are equal: if Y ∼ Pois(λ), then E[Y ] = λ and

Var[Y ] = E[Y ] = λ. This assumption works in many cases but, when the assumption of

equi-dispersion does not hold, there might be problems with the estimation of Poisson

parameters. A solution when data are over-dispersed is to use a Negative Binomial

distribution, but it does not work if data are under-dispersed. Under-dispersion is less

frequent than over-dispersion, but if data are homogeneous enough, under-dispersion

is a possibility and it allowed to explain some phenomena, among others, in ecology,

insurance, marketing, and spatio-temporal count data in general.

An extension of the Poisson distribution, accounting for both over- and under-

dispersion, is the Conway-Maxwell Poisson (CMP) distribution. It is not the only one

extension, among other solutions, the main ones are the weighted Poisson distributions

of Del Castillo and Pérez-Casany (2005) and the generalised Poisson (GP) distribution

of Consul (1989). Until its “revival” in 2005 (Shmueli et al., 2005), the CMP distribu-

tion remained substantially unused after its first introduction in the 60s in Conway and

Maxwell (1962), mainly because of computational problems due to its structure. The

CMP probability mass function includes a normalisation constant creating problems for

parameter estimation, but with new methods and technology it has been possible to
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reduce the impact of this issue. Equation (4.1) shows the original CMP parametrisation

(Conway and Maxwell, 1962; Shmueli et al., 2005). A more intuitive equation has been

proposed in Guikema and Goffelt (2008). In order to show distribution properties the

original parametrisation is used, but for Bryant and Graham (2013) model extension

the latest one is considered.

Let Y ∼ CMP (λ, ν), then the probability mass function is

P (Y = y) =
1

Z(λ, ν)

λy

(y!)ν
(4.1)

where:

• Y is a count variable, y ∈ Z+ = {0, 1, 2, ...}.

• λ, as in the Poisson case, can be any positive real number, 0 < λ ≤ ∞

• ν, dispersion (or shape) parameter, can take any positive real number, but, ac-

cording to its value, the properties of the distribution change:

ν = 0, λ ≥ 1 distribution is undefined

ν = 0, λ < 1 geometric distribution

ν < 1 over-dispersion

ν = 1 reduction to a Poisson distribution

ν > 1 under-dispersion

ν =∞ reduction to a Bernoulli distribution

• Z(λ, ν) =
∑∞

i=0
λi

(i!)ν
, normalising constant, for λ > 0 and ν ≥ 0

The term Z(λ, ν) is a normalising constant depending on both parameters and, be-

ing an infinite sum, it needs to be either approximated or simplified. Approximation

methods are used in the Maximum Likelihood Estimation (MLE) approach, whereas

in the Bayesian approach simplification has been possible with the exchange algorithm

(Moller et al., 2006; Murray et al., 2006). Approximations, upper bound of Z(λ, ν), and

related quantities are provided in Minka et al. (2003). Due to the normalisation con-

stant, moments, cumulants and quantiles can only be approximately calculated. Mean

and variance are respectively

E[Y ] ≈ λ1/ν − ν − 1

2ν
(4.2)

Var[Y ] ≈ 1

ν
λ1/ν (4.3)
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where approximations are good for ν ≤ 1 and λ > 10ν .

The moment generating function (MGF) is

E[Y r+1] =

λE[Y + 1]1−ν , If r = 0,

λ d
dλ
E[Y r] + E[Y ]E[Y r], If r > 0,

(4.4)

and the approximation for the n-th cumulant κn for any n ≥ 1 is

κn ≈
1

νn−1
λ1/ν +O(1) (4.5)

as λ→∞.

An asymptotic approximation of Z(·, ·) was finally found, after an initial hint from

Shmueli et al. (2005), by Gillispie and Green (2015):

Z(λ, ν) ∼ exp(νλ1/ν)

λ(ν−1)/2ν(2π)(ν−1)/2
√
ν

(
1 +O

(
λ−1/ν

))
(4.6)

for ν fixed and for λ → ∞. Combining this asymptotic result with the MGF in equa-

tion (4.4), it is possible to obtain another approximation for CMP expected value and

variance, i.e. when, respectively, in equation (4.4) r = 0 and r = 1.

E[Y ] = λ
d[log(Z(λ, ν))

dλ
≈ λ1/ν − ν − 1

2ν

Var[Y ] = λ
dE[Y ]

dλ
≈ 1

ν
λ1/ν +O(1)

(4.7)

whereas the median approximation is m ≈ λ1/ν + O(λ1/2ν), as λ→∞. These approxi-

mations too are good for ν ≤ 1 and λ > 10ν as in equations (4.2).

Another property of the CMP distribution is that its probability function allows for

a non-linear decrease in ratios of successive probabilities in the form

P (Y = y − 1)

P (Y = y)
=
xν

λ
(4.8)

As well as the Poisson distribution, the CMP is also suitable for regression models

with discrete variables and it belongs to the exponential and the two parameter power

series families, inheriting all their properties. The likelihood in equation (4.9) is pre-

sented according the typical likelihood formulation for the exponential family: let Y be

a non-degenerate random variable with density p0(y), s(Y ) statistic, KS(θ) cumulant

generating function for θ ∈ Θ̃S. Then p(y; θ) = exp{θs(y)−KS(θ)}p0(y), y ∈ Y , θ ∈ Θ̃S

is a density for every θ ∈ Θ̃S. Or more generally, if parameter θ is expressed as a function
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of a parameter φ ∈ Φ, with θ(Φ) ⊂ Θ̃S, then p(y;φ) = exp{θ(φ)s(y)−G(φ)}h0.

Let y1, · · · , yn be a set of n independent identically CMP distributed observations,

then the likelihood is

L(y1, · · · , yn|λ, ν) =

∏n
i=1 λ

yi(∏n
i=1 yi!

)νZ−n(λ, ν)

= λ
∑
i=1nyi︸ ︷︷ ︸

= h0 (first part)

exp
(
− ν

n∑
i=1

log(yi!)︸ ︷︷ ︸
= G(·)

)
Z−n(λ, ν)︸ ︷︷ ︸

= h0 (second part)

(4.9)

this likelihood form shows that the CMP belongs to the exponential family and has

sufficient statistics
∑n

i=1 yi and
∑n

i=1 log(yi!).

There are three main methods to perform CMP parameter estimation, explained in

Sellers et al. (2011). These methods are

• Weighted least square method. It is an easy method, it fits the regression of the

logarithm of equation (4.8) on log(y) considering model heteroscedasticity and

first-order dependence. The method performs well when there are not many zero

counts.

• Maximum likelihood estimation. At the point of maximum likelihood, parameters λ

and ν satisfy E[Y ] = λȲ and E[log(Y !)] = log(Y !) where each of these equations is

an infinite sum of form E[f(Y )] =
∑∞

j=0 f(j)λj/(j!)
νZ(λ, ν). As it is not possible

to compute them analytically, a Newton-Raphson method is usually used. This

method is accurate but computationally intensive.

• Bayesian estimation. Shmueli et al. (2005) define this method as “immediate and

simple” because, belonging to the exponential family, the CMP has a conjugate

prior distribution. Kadane et al. (2006) provide an analysis of the conjugate prior.

Let the joint conjugate prior density for λ and ν have form:

h(λ, ν) = λa−1 exp(−νb)Z−c(λ, ν)κ(a, b, c) (4.10)

for λ > 0 and ν ≥ 0, where κ(a, b, c) is the integration constant, then the posterior

on λ and ν is of the same form of (4.10) with parameters a′ = a +
∑n

i=1 Yi,

b′ = b +
∑n

i=1 log(Yi!) and c′ = c + n. Prior in (4.10) “can be thought of as

an extended bivariate Gamma distribution” (Kadane et al., 2006). Its density is
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proper only if values of a, b and c lead to a finite κ−1(a, b, c) where

κ−1(a, b, c) =

∫ ∞
0

∫ ∞
0

λa−1e−bνZ−c(λ, ν)dλdν (4.11)

Despite the conjugate model simplifies the estimation, practitioner are usually

not familiar with this distribution, parameters a, b and c are difficult to tune, and

their meaning is not very clear. Kadane et al. (2006) made efforts to elicit them,

but the conjugate prior for the CMP distribution has not been much used until

now. In practice, Bayesian applications of CMP regression model do not use the

conjugate prior, but prefer assuming a Lognormal prior distribution on both λ and

ν. The Bayesian framework is also the only one allowing for estimation without

approximating the normalising constant Z(λ, ν).

If with Poisson random variables Y ∼ Pois(λ) the parameter lambda is a location pa-

rameter immediately available, with the CMP, Y ∼ CMP (λ, ν), parameter λ does not

provide the same understanding of the distribution. A more intuitive re-parametrisation

is found in (Guikema and Goffelt, 2008). They substitute parameter λ in the original

CMP probability mass function (equation (4.1)) with parameter µ = λ1/ν , 0 < µ ≤ ∞.

In this version parameter µ has a more intuitive meaning than λ in the first parametri-

sation because, as in the Poisson distribution, µ is a location parameter. Let Y ∼
CMP (µ, ν) then the probability mass function is

P (Y = y) =
1

S(µ, ν)

(
µy

y!

)ν
, y ∈ Z+ = {0, 1, 2, ...}

S(µ, ν) =
∞∑
i=0

(
µi

i!

)ν
, for µ > 0 and ν ≥ 0

E[Y ] ≈ µ+
1

2ν
− 1

2
; Var[Y ] ≈ µ

ν

(4.12)

Figure 4.1 compares the histograms of three samples of 1000 i.i.d. CMP distributed

random variables with µ = 10 and dispersion parameter ν respectively equal to 0.5

(over-dispersion), 1 (equi-dispersion) and 5 (under-dispersion). A Poisson density with

mean equal µ is overlapped in red.
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Figure 4.1: Histograms of a thousand CMP random variable samples compared with
corresponding Poisson densities. Left : Over-dispersed CMP data. Y ∼ CMP (10, 0.5).
Centre: Equi-dispersed CMP data. Y ∼ CMP (10, 1). Right : Under-dispersed CMP
data. Y ∼ CMP (10, 5).

Parameter ν controls the shape of the distribution, there is over-dispersion if ν < 1,

i.e, variance is higher than mean, on the contrary, under-dispersion implies ν > 1,

and variance is lower than mean. Parameter λ in the original version is immediately

related to the parameter of the Poisson distribution, but, in the CMP case, it is less

interpretable and does not provide a clear centring parameter. Parameter µ in the

second version is a better option, especially when the aim is to perform a CMP GLM on

the data. The ceiling of µ (dµe) is the mode of the distribution and it provides, along

with the dispersion parameter, a good approximation for the mean (equation (4.12)).

Approximations of both mean and variance, as shown in the third line of equation

(4.12), are good especially when µ ≥ 10. In equation (4.1), values are more accurate

when ν ≤ 1 and λ1/ν ≥ 10. From now on the text refers to the second parametrisation

(Guikema and Goffelt, 2008).

As with the Poisson distribution, also with the CMP it is possible to implement

a regression model (CMP regression). In most of the applications (Chanialidis et al.,

2014; Huang, 2017; Sellers and Shmueli, 2010), the chosen link function is the logarithmic

one for both µ and ν. As discussed in Sellers et al. (2011), the dispersion parameter

can be unique for all the data (constant dispersion), differ at group-level (group-level
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dispersion), or change at each observation (observation-level dispersion). The same is

true also for parameter µ. Sellers et al. (2011) also mention the implementation of a

CMP cure-rate model, and a CMP model with censoring.

CMP regression has been used in several works. Applications to marketing, linguis-

tics, biology (Sellers et al., 2011), transportation (Lord et al., 2008), healthcare (Cancho

et al., 2012) and also population studies (both in demography (Handock et al., 2014)

and ecology (Wu et al., 2013; Lynch and Brown, 2010)) are few examples. Particularly

innovating Bayesian implementations of CMP regression are Chanialidis et al. (2017)

and Benson and Friel (2017). In addition to CMP regressions, in both cases authors

introduce a new method to sample from a CMP distribution with exact algorithms.

The complication due to the normalising constant also affects the distribution sampling

algorithm. Chanialidis et al. (2017) construct a rejection sampler using a piecewise ge-

ometric distribution which has a closed form normalisation constant, whereas Benson

and Friel (2017) propose a “more efficient and less computationally intensive method”

(Benson and Friel, 2017), using a single envelope distribution depending on the disper-

sion parameter. A description of the Benson and Friel (2017) algorithm is presented in

section 4.1.1 where modifications introduced to add the CMP distribution to the DAM

are also explained. Once it becomes possible to sample from a CMP, a MCMC algorithm

avoiding the computation of the normalising constant can also be implemented. This

algorithm is the exchange algorithm and it was first proposed in Moller et al. (2006)

and Murray et al. (2006). Unlike standard MCMC algorithms, the exchange algorithm

allows generating from doubly-intractable posterior distributions, i.e. where there are

intractable normalising constants to their dependence on the parameter(s) of interest.

The idea of the exchange algorithm is to simplify the normalisation constant in the

Metropolis-Hastings ratio by enlarging the state of the Markov chain with auxiliary

variables drawn from a suitable proposal distribution. Formally, let a random variable

Y be distributed as a double intractable distribution of density f(·) and parameter γ,

where γ can be either a single parameter or a vector. Let the posterior distribution be

denoted by pi(·) so that π(γ|y) = L(y|γ)π(γ) where L(y|γ) is the likelihood and π(γ)

the prior on γ. The novelty of the exchange algorithm is in the posterior construction.

Instead of a standard posterior, an augmented posterior distribution is calculated. The

augmented posterior includes auxiliary draws (y∗) in addition to the data. Let γ∗ be

the candidate parameter generated by the proposal distribution h(γ∗|γi), and let y∗ be

draws from the sampling model π(y∗|γ∗), then the augmented posterior for γ∗ has the

form

π(γ∗|y, y∗, γi) ∝ L(y|γ∗)L(y∗|γi)π(γ∗) (4.13)
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where γi is the current value of the parameter at iteration i = 1, ..., N , y = y1, ..., yn is

the data vector, and y∗ = y∗1, ..., y
∗
n is the vector of auxiliary draws of same length as the

data vector y. Therefore, the augmented posterior considers two likelihoods: one with

the original data and one with auxiliary draws. The augmented posterior for current

parameter γi is

π(γi|y, y∗, γ∗) ∝ L(y|γi)L(y∗|γ∗)π(γi)

. The exchange algorithm also assumes that the probability density function f(·) of Y

can be factorised as

f(y|γ) = q(y|γ)(S(γ))−1 (4.14)

with S(γ) intractable normalising constant, which is the case of the CMP distribu-

tion. Starting from a Metropolis-Hastings acceptance ratio with augmented posterior

distribution, equation (4.15) shows how it becomes possible to simplify the normalising

constant.

a =
π(γ∗|y, y∗, γ)h(γ|γ∗)
π(γ|y, y∗, γ∗)h(γ∗|γ)

expliciting π() by eq. (4.13)

=
L(y|γ∗)L(y∗|γ)π(γ∗)h(γ|γ∗)
L(y|γ)L(y∗|γ∗)π(γ)h(γ∗|γ)

expliciting likelihoods

=

∏n
i=1 f(yi|γ∗)f(y∗i |γ)π(γ∗)h(γ|γ∗)∏n
i=1 f(yi|γ)f(y∗i |γ∗)π(γ)h(γ∗|γ)

(4.15)

replacing f(·) by equation (4.14)

=

∏n
i=1

q(yi|γ∗)
���

�(S(γ∗))

q(y∗i |γ)
XXX(S(γ))

π(γ∗)h(γ|γ∗)∏n
i=1

q(yi|γ)
XXX(S(γ))

q(y∗i |γ∗)
���

�(S(γ∗))
π(γ)h(γ∗|γ)

=

∏n
i=1 q(yi|γ∗)q(y∗i |γ)π(γ∗)���

��: If symmetric
h(γ|γ∗)∏n

i=1 q(yi|γ)q(y∗i |γ∗)π(γ)���
�h(γ∗|γ)

=

∏n
i=1 q(yi|γ∗)q(y∗i |γ)π(γ∗)∏n
i=1 q(yi|γ)q(y∗i |γ∗)π(γ)

(4.16)

Using the augmented posterior the normalising constants cancel out, and therefore,

a usual acceptance step can be performed. This solution is among those that Robert

(2015) call pseudo-marginals solutions. They “may prove difficult to calibrate” and

performances“ depend on the quality of the estimators and are always poorer than

when using the exact target” but, in both Chanialidis et al. (2017) and Benson and

Friel (2017), the Authors use this algorithm with apparently encouraging results.

The CMP distribution has advantages and disadvantages; among the advantages

there are flexibility and parsimony, it belongs to the exponential family, it generalises
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some important discrete probability distribution, and it can be used to perform re-

gression models as in the Poisson and logistic cases, but with dispersion parameter

adaptable to the required level of specificity. Disadvantages are the absence of an easy

closed form, difficulties to simulate from the distribution, difficult regression coefficients

interpretation, and computational issues.

Due to the similarities with the Poisson distribution and the high flexibility, the

CMP distribution seemed an attractive model for population data that, depending on

the aggregation level, could be homogeneous or heterogeneous, i.e. under- or over-

dispersed, and, therefore, not suitable for a Poisson distribution.

4.1.1 Rejection sampling implementation

To include the CMP distribution in the DAM within a Bayesian framework the ap-

proach of Chanialidis et al. (2017) using the exchange algorithm has been implemented,

but replacing their rejection sampling method with the one in Benson and Friel (2017).

Existing R functions for sampling from a CMP have been also considered but, when

dealing with a national population, it is often necessary to sample with location pa-

rameter of the order of thousands or millions and, in many cases, existing functions

were not able or too slow to deal with the Italian population. Therefore, a rejection

sampling algorithm has been implemented starting from quantities explained in Benson

and Friel (2017), but considering their logarithmic versions. This modification speeds

up computations and allows dealing with large numbers.

For their rejection sampler, Benson and Friel (2017) use two envelope distributions

and, depending on the value of the dispersion parameter, either one of them is used.

Let f(·|θ) be the target distribution (CMP(µ, ν)) with θ = (µ, ν), and g(·|γ) be the

envelope distribution where

g(·|γ) =

g1(y|γ = p) = p(1− p)y, if ν < 1 (, Geometric envelope)

g2(y|γ = µ) = µy

eµy!
, if ν ≥ 1 (, Poisson envelope)

(4.17)

An essential quantity in the algorithm, is the tractable bounding constant Bν
f/g which

can be interpreted as the “upper bound on the ratio of the unnormalised densities qf (·|θ),
and qf (·|γ)” (Benson and Friel, 2017), where the unnormalised densities are densities

showed in equation (4.14). As for the envelope distributions, there are two tractable

bounding constants, one in case of over-dispersion (ν < 1) and one for equi- or under-

dispersion (ν ≥ 1):
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• Logarithmic enveloping bounds for over-dispersion, Bν<1
f/g

Bν<1
f/g =

1

p

µ
ν

⌊
µ

(1−p)1/ν

⌋
(1− p)ν

⌊
µ

(1−p)1/ν

⌋(µbµcbµc!
)ν−1

(4.18)

log(Bν≥1
f/g ) = bν≥1

f/g = − log(p) + ν
⌊ µ

(1− p)1/ν

⌋
log(µ)

−
⌊ µ

(1− p)1/ν

⌋
log(1− p)− ν

⌊
µ

(1−p)1/ν

⌋
∑
n=1

log(n)

• Logarithmic enveloping bounds for equi- and under-dispersion, Bν≥1
f/g

Bν≥1
f/g =

(
µbµc

bµc!

)ν−1

(4.19)

log(Bν≥1
f/g ) = bν≥1

f/g = (ν − 1)
(

log(µbµc)− log(bµc!)
)

= (ν − 1)
(
bµc log(µ)−

bµc∑
n=1

log(n)
)

It is now possible to consider the acceptance ratio in its logarithmic form. The initial

formulas for αν<1 and αν≥1 directly come from Benson and Friel (2017), and passages

are reported in Appendix.

• Logarithmic acceptance ratios, ν < 1:

αν<1 =

(
µy
′
/y′!
)ν

Bν<1
f/g (1− p)y′p (4.20)

log(αν<1) = ν log
(
µy
′
/y′!
)
−
(

log(Bν<1
f/g ) + y′ log(1− p) + log(p)

)
=

(
y′ −

⌊ µ

(1− p)1/ν

⌋)(
ν log(µ)− log(1− p)

)

+ ν

(⌊ µ

(1−p)1/ν

⌋
∑
n=1

log(n)−
y′∑

m=1

log(m)

)

where y′ is drawn from a Geometric distribution (y′ ∼ Geo(p)), and the optimal

value for p is p = 2ν
2µν+1+ν

(Benson and Friel, 2017).
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• Logarithmic acceptance ratios, ν ≥ 1:

αν≥1 =

(
µy
′
/y′!
)ν

Bν≥1
f/g

(
µy′/y′!

) (4.21)

log(αν≥1) = ν log
(
µy
′
/y′!
)
−
(

log(Bν≥1
f/g ) + log

(
µy
′
/y′!
))

= (ν − 1)
(

log(µ)
(
y′ − bµc

)
−

y′∑
m=1

log(m) +

bµc∑
n=1

log(n)
)

where y′ is drawn from a Poisson distribution (y′ ∼ Po(µ)).

Once calculated the acceptance ratio, the algorithm works as other Metropolis-

Hastings algorithms: a random variable is generated u ∼ U(0, 1) and, if u ≤ α, the

sampled random variable y′ is accepted, otherwise the procedure is repeated with a

new y′ until the value is accepted. In order to avoid infinite loops a maximum value of

attempts is set.

The function for sampling CMP random variables has been compared with other

functions available. It gives good results for small values of µ and, unlike the other R

functions, it is also efficient with higher values. A comparison between the modified

Benson and Friel (2017) sampler (implemented in a GitHub package called demCMP in

addition to demest package), CRAN R Packages: COMPoissonReg and compoisson,

and Chanialidis et al. (2017) package available on GitHub combayes is presented in

figures 4.2 and 4.3. All of them show histograms of 1000 CMP random variables samples

with different packages. When possible, all four packages results are shown. The bottom

row of 4.2 only shows results for combayes and demCMP as the two others could not

simulate with λ = 1, 000 and λ = 10, 000. In these last two cases demCMP was slower than

combayes, but when it comes to under-dispersion, demCMP out-performs combayes, see

figures 4.3. For values up to λ = 1, 000 all packages work, but for higher values demCMP

definitely provides the best samples, despite being much slower than its counterpart in

combayes. As demographic values in the demographic account are large, the rejection

sampling algorithm in the demCMP package has been preferred. It is worth noting that

parameter µ depends on both λ and ν, therefore, for different λ and ν combinations,

the maximum values of λ the algorithms can tolerate changes accordingly but the plots

presented provide an idea of the advantages of the chosen algorithm.
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Figure 4.2: Histograms of over-dispersed (ν = 0.5) CMP draws from four different
R package (column from left to right: COMPoissonReg, compoisson, combayes and
demCMP, except the last row where only combayes and demCMP worked) with λ = 1
(first row), λ = 10 (second row), λ = 1, 000 and λ = 10, 000 (third row).
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Figure 4.3: Histograms of under-dispersed (ν = 5) CMP draws from four different
R package (column from left to right: COMPoissonReg, compoisson, combayes and
demCMP, second row only combayes and demCMP worked) with λ = 1000 (first row),
λ = 1010 and λ = 1020 (second row).

4.2 Integration in the Demographic Account model

Once solved the normalising constant computational issues, including the CMP dis-

tribution among the data model choices is quite straightforward as the model is very

similar to the Poisson case except for dispersion parameter ν. Data model with the

CMP distribution is displayed in equation (4.23) without exposure term, which can al-

ways be included. Notation now gets back to the one used in other chapters. For CMP

introduction the notation usually adopted in other articles is used to ease comparability.

xjm ∼ CMP (γjm, νjm) (4.22)

log(γjm) ∼ N(µjm, σ
2
γ)

µjm =
∑K

k=0 β
(k)

σγ ∼ t+dfσγ (A2)

log(νjm) ∼ N(η, σ2
ν)

where γ is the location parameter (as µ in the Guikema and Goffelt (2008) param-

eterisation) and ν dispersion parameter. As in the Poisson case the parameter γ is

assumed to be Lognormal distributed, the same holds for both γ and ν with the CMP.
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For parameter γ the model follows the structure of chapter 3 with the usual regression

structure. For ν, a simpler approach is adopted, with just a simple Normal prior with

hyper-parameters η and σν for all cells. So, there is a νjm for each cell of the demo-

graphic series, but they all have same mean and variance. This choice is possible as

there is no reason to expect much difference in the dispersion parameters of each series,

and a simpler structure allows not to further increase the number of parameters, which

is already high, and hence to further complicate the model. The posterior calculation

for ν is straightforward as there is only the CMP-Lognormal structure and η and σν

are set a priori. Usually the prior on the mean is η = 0, i.e. ν = 1, meaning that

the initial assumption is a Poisson model (equi-dispersion), then, during the estimation,

over- or under-dispersion can be identified. For σν a small value is recommendable, at

least within this framework, to help convergence and for simple numeric reasons. For

examples, in the following applications a prior σν = 0.5 is chosen so that values of log(ν)

hardly go beyond the interval [−2, 2], i.e. 0.13 ≤ ν < 7.4 which is already a high level

of over- and under-dispersion. Especially for under-dispersion, as shown in figure 4.1,

a value of ν = 5 is already high, despite ν being theoretically any positive real number

(0 ≤ ν <∞). Therefore, in practice, there is no need to let ν assume very large values.

In an earlier version of the model, each νjm was assumed to have its prior mean and

variance, but as results were not satisfying, and all values were very similar, a simpler

model with unique mean and variance has been implemented. Dispersion parameter

estimation still needs further developments and testing. Developments could be either

towards a further simplification with a unique value for all cells, or, possibly, towards

a more complicated model assuming a regression as with parameter γ. The first option

is likely to be implemented first as it is simpler and less complicated data models have

been performing better so far. In any case, CMP regression applied to demographic

series estimation needs to be further investigated.

4.3 Applications

Two applications to Italian death and birth counts follow with encouraging results

but, at the moment, they are only applications to single series, as applications to the

whole demographic account provides unlikely results suggesting the CMP model is not

stable enough yet. Examples can then be considered as an extension of sections 3.2 and

3.3.
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4.3.1 CMP data model for death counts

For death count series a comparison between a model including only time dimension

and another including time, age and sex is performed. The model with time has a

simple system model, only with a DLM prior on time effect with scale parameters of

0.1 for standard deviations, an informative prior on the intercept (β0 ∼ N(0, 0.0252)),

and a low scale parameter on variance σ ∼ t+dfσγ (0, 0.12). Two datasets are included as

in section 3.2, a Poisson-Binomial with p = 0.98 is assumed on the data coming from

the demographic balance dataset, and a CMP on the death causes dataset. No effect is

included in the CMP data model and dispersion parameter prior is log(ν) ∼ N(0, 0.5),

as previously suggested. The more complicated model includes effects on time, age, sex,

and an age-sex interaction. The system model is similar to the previous one plus the prior

on the additional effects. Time and age have the same DLM prior as in the model with

only time, whereas age-sex interaction has a DLM prior with weaker standard deviation

priors (scale parameter is 1), and sex has a fixed Normal prior βsex ∼ N(0, 1). The

data models are the same as in the previous model to allow for comparability. Results

on count estimation are shown respectively in figures 4.4 and 4.5. For the model with

only time, estimated counts are much higher than data, whereas when sex and age are

included estimates fit data much better. The most important point is the estimation of

dispersion parameters shown in tables 4.1 and 4.2. Comparing νs values for both tables

a weak under-dispersion is present in both models but in the second values are usually

higher with a mean for time model of ν̄t = 1.07 and ν̄ast = 1.10 for the second one.

When more dimensions are included in the demographic series, cells have lower values

and the population is likely more homogeneous. The difference is not very high but it

still corresponds to expectations. Probably there are other dimensions not included in

the model that could increase even more the homogeneity than age and sex.
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Figure 4.4: Death counts estimation for CMP model with only time dimension. The
medians are the white lines, the 50% C.I.s in blue, the 95% C.I.s in light blue, and in
red data from Annuario statistico italiano.
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Figure 4.5: Death counts estimation for CMP model by age group and time dimen-
sions, from 2006 until 2015. Each age block shows medians as white lines, the 50%
C.I.s in blue, the 95% C.I.s in light blue, and in red data from Annuario statistico
italiano.
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2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

ν 1.04 1.04 1.06 1.10 1.06 1.05 1.06 1.10 1.08 1.09

Table 4.1: Mean value of ν for death counts model with only time dimension, from
2006 until 2015.

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Female Male Female Male Female Male Female Male Female Male Female Male Female Male Female Male Female Male Female Male

0-4 1.05 1.07 1.13 1.12 1.09 1.15 1.09 1.07 1.09 1.06 1.10 1.11 1.07 1.16 1.08 1.10 1.08 1.06 1.09 1.04

5-9 1.14 1.09 1.15 1.14 1.08 1.14 1.07 1.09 1.14 1.07 1.09 1.10 1.12 1.12 1.14 1.12 1.11 1.10 1.10 1.10

10-14 1.10 1.14 1.05 1.08 1.13 1.08 1.13 1.06 1.13 1.09 1.15 1.07 1.10 1.14 1.12 1.07 1.11 1.10 1.10 1.12

15-19 1.09 1.05 1.09 1.12 1.10 1.06 1.14 1.11 1.09 1.09 1.10 1.08 1.08 1.14 1.13 1.14 1.14 1.10 1.08 1.09

20-24 1.11 1.09 1.12 1.08 1.10 1.09 1.09 1.09 1.10 1.10 1.10 1.08 1.11 1.10 1.11 1.08 1.09 1.09 1.12 1.08

25-29 1.10 1.08 1.09 1.10 1.11 1.13 1.13 1.14 1.12 1.07 1.07 1.08 1.08 1.15 1.11 1.07 1.10 1.09 1.12 1.09

30-34 1.08 1.08 1.09 1.14 1.10 1.10 1.10 1.09 1.11 1.10 1.14 1.07 1.15 1.12 1.08 1.15 1.11 1.10 1.08 1.14

35-39 1.06 1.07 1.09 1.10 1.11 1.10 1.07 1.11 1.10 1.10 1.11 1.12 1.03 1.11 1.11 1.14 1.12 1.08 1.14 1.09

40-44 1.15 1.09 1.15 1.09 1.08 1.05 1.13 1.08 1.06 1.07 1.03 1.20 1.09 1.05 1.08 1.09 1.13 1.03 1.09 1.08

45-49 1.12 1.09 1.08 1.15 1.05 1.09 1.33 1.12 1.11 1.14 1.12 1.18 1.17 1.11 1.13 1.09 1.10 1.05 1.06 1.08

50-54 1.06 1.15 1.17 1.09 1.10 1.07 1.10 1.10 1.09 1.11 1.06 1.07 1.07 1.11 1.11 1.08 1.11 1.05 1.12 1.09

55-59 1.17 1.14 1.08 1.13 1.07 1.11 1.10 1.07 1.14 1.09 1.05 1.09 1.09 1.11 1.23 1.12 1.08 1.09 1.03 1.09

60-64 1.09 1.05 1.17 1.04 1.05 1.11 1.07 1.09 1.10 1.11 1.09 1.06 1.12 1.10 1.03 1.07 1.15 1.08 1.05 1.17

65-69 1.09 1.13 1.07 1.81 1.09 1.10 1.12 1.04 1.05 1.12 1.07 1.06 1.10 1.62 1.07 1.08 1.10 1.06 1.08 1.08

70-74 1.07 1.13 1.14 1.10 1.08 1.11 1.12 1.03 1.13 1.07 1.10 1.14 1.06 1.04 1.10 1.07 1.10 1.18 1.12 1.08

75-79 1.06 1.10 1.09 1.10 1.13 1.12 1.08 1.15 1.06 1.09 1.09 1.07 1.12 1.08 1.09 1.06 1.07 1.12 1.13 1.15

80-84 1.15 1.14 1.09 1.11 1.04 1.13 1.09 1.12 1.09 1.13 1.11 1.13 1.11 1.11 1.10 1.05 1.12 1.05 1.05 1.08

85-89 1.15 1.05 1.14 1.13 1.06 1.14 1.16 1.11 1.09 1.13 1.09 1.37 1.11 1.06 1.15 1.14 1.08 1.21 1.05 1.11

90+ 1.07 1.04 1.07 1.09 1.09 1.17 1.09 1.02 1.10 1.08 1.07 1.08 1.11 1.06 1.15 1.07 1.08 1.09 1.14 1.13

Table 4.2: Mean value of ν for death counts model with age, sex and time dimensions,
from 2006 until 2015.
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4.3.2 CMP data model for birth counts

Almost the same applies to birth counts examples. Three system model are compared:

(i) one only considering time, (ii) one with time and region, (iii) and the last one with

age and time. As in the death count model, all system models assume a DLM prior

on time with standard deviation scale of 0.1 for all parameters, an informative prior

on the intercept, and a prior on the variance with scale 0.1. Age effect, region-time

and age-time interactions have the same DLM prior as time, whereas on region effect

an exchangeable prior is assumed. Also, as with death count model, two datasets are

considered, the one from the demographic balance and the one including mothers’ age.

The first has a Poisson-Binomial prior with p = 0.98, and the second a CMP prior, as

in the death counts example, with informative variance on the intercept for location

parameter and ν ∼ N(0, 0.5). Results are comparable with death counts models. In

figure 4.6, birth counts estimation is much higher than data and parameters νs for each

year are showed in table 4.3. The best fit is for the model including age and time

(figure 4.7). Parameters νs for model with age and time, and region and time are shown

respectively in tables 4.4 and 4.5. If regional dispersion parameters by year are not

much higher than the one considering only time, the difference is more evident when

comparing νs computed by age and time in table 4.4 with table 4.3. The mean values for

the three models are: ν̄t = 1.035, ν̄rt = 1.09 and ν̄at = 1.19. Even if differences amount

to few decimals only, it is hard to quantify what is a high or low difference between

two dispersion parameters, but this difference exists and reflects what was reasonably

expected.

Despite the number of region (21) is three times higher than the number of age groups

(7), νat is still higher than νrt suggesting that age is a more important dimension in

modelling births than region. This result that might seem counter-intuitive, as for the

same amount of people groups are smaller in the model considering regions, it is actually

not surprising from a demographical perspective as, in Italy, birth regional differences

are as not as important as mothers’ age ones, which has also been confirmed by the

preliminary analyses and results for age and region effects in section 3.3.
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Births estimation 2006−2015
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Figure 4.6: Birth counts estimation for CMP model with only time dimension, from
2006 until 2015. The medians are the white lines, the 50% C.I.s in blue, the 95% C.I.s
in light blue, and in red data from Annuario statistico italiano.

Births count estimation by age, 2006−2015
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Figure 4.7: Birth counts estimation for CMP model by age group and time dimen-
sions, from 2006 until 2015. Each age block shows medians as white lines, the 50%
C.I.s in blue, the 95% C.I.s in light blue, and in red data from Annuario statistico
italiano.
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2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

ν 1.04 1.04 1.03 1.03 1.04 1.04 1.04 1.02 1.04 1.03

Table 4.3: Mean value of ν for birth counts model with only time dimension, from
2006 until 2015.

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

15-19 1.11 1.08 1.10 1.18 1.29 1.21 1.15 1.06 1.26 1.13

20-24 1.23 1.14 1.06 1.30 1.22 1.21 1.09 1.11 1.17 1.23

25-29 1.35 1.14 1.17 1.15 1.13 1.17 1.12 1.13 1.09 1.21

30-34 1.29 1.29 1.10 1.16 1.15 1.22 1.17 3.19 1.18 1.20

35-39 1.08 1.13 1.11 1.19 1.32 1.20 1.13 1.15 1.15 1.17

40-44 1.11 1.26 1.22 1.14 1.21 1.31 1.12 1.17 1.09 1.09

45-49 1.12 1.18 1.06 1.11 1.12 1.11 1.11 1.17 1.10 1.02

Table 4.4: Mean value of ν for birth counts model with mothers’ age and time
dimension, from 2006 until 2015.
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2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Piemonte 1.06 1.06 1.09 1.07 1.07 1.04 1.06 1.08 1.09 1.08

Valle D’Aosta 1.15 1.20 1.19 1.19 1.18 1.20 1.20 1.08 1.16 1.15

Lombardia 1.03 1.03 1.07 1.07 1.05 1.04 1.06 1.05 1.04 1.07

Bolzano/Bozen 1.16 1.11 1.17 1.13 1.14 1.12 1.14 1.15 1.11 1.11

Trento 1.13 1.13 1.15 1.12 1.10 1.13 1.13 1.14 1.14 1.13

Veneto 1.09 1.07 1.07 1.06 1.11 1.06 1.09 1.10 1.04 1.06

Friuli Venezia Giulia 1.09 1.10 1.13 1.14 1.13 1.09 1.11 1.12 1.10 1.13

Liguria 1.10 1.10 1.09 1.10 1.11 1.09 1.14 1.10 1.11 1.12

Emilia Romagna 1.06 1.10 1.07 1.04 1.07 1.08 1.10 1.09 1.06 1.12

Toscana 1.07 1.08 1.06 1.07 1.10 1.07 1.07 1.10 1.08 1.09

Umbria 1.14 1.12 1.11 1.14 1.11 1.10 1.10 1.12 1.12 1.13

Marche 1.10 1.09 1.08 1.09 1.13 1.11 1.08 1.11 1.10 1.10

Lazio 1.06 1.07 1.08 1.08 1.06 1.06 1.05 1.07 1.04 1.07

Abruzzo 1.10 1.11 1.12 1.09 1.10 0.81 0.87 0.67 1.07 1.11

Molise 1.14 1.15 1.16 1.13 1.15 0.99 0.83 0.92 0.94 1.10

Campania 1.05 1.08 1.07 1.07 1.08 1.09 1.09 1.08 1.09 1.06

Puglia 1.09 1.07 1.09 1.09 1.06 1.05 1.07 1.06 1.08 1.08

Basilicata 1.14 1.12 1.14 1.15 1.13 1.08 1.13 1.11 1.16 1.15

Calabria 1.10 1.12 1.11 1.09 1.10 1.08 1.10 1.11 1.08 1.08

Sicilia 1.03 1.08 1.07 1.05 1.05 1.06 1.07 1.02 1.06 1.05

Sardegna 1.11 1.09 1.08 1.11 1.12 1.11 1.11 1.11 1.11 1.11

Table 4.5: Mean value of ν for birth counts model with region and time dimension,
from 2006 until 2015.

The application to the demographic account has not given satisfying results yet

and further developments are still needed in order to better understand what is the

best suitable model for the estimation of the CMP parameters. Dependence between

γ and ν have only started being studied and, as mentioned earlier, the form of nu

hyper-parametrisation can also be changed. Nevertheless, results provided so far are

encouraging and reflect expectations despite the magnitude of the difference among the

νs is not very high. Literature on CMP distribution and CMP regression models is

not wide but this extension of the Poisson distribution needs to be further investigated

and understood especially for demographic application where Poisson distribution is a

common and natural choice but it implies limitations that do not always suit data.
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Discussion

Results provided in the previous chapters show advantages and limitations of the

Bayesian demographic account approach for population size estimation. Literature

proposing models to correct or limit data problems and getting closer to the true popu-

lation size is wide and includes different approaches. Among the reasons to implement

and develop models to provide estimates of population size there is, first of all, the uncer-

tainty statements included in the estimation that are not provided by data. Statistical

models provide results in terms of confidence or credible intervals, implying that their

answers are probabilistic and not deterministic as data are. When dealing only with

data, their accuracy can be checked by comparison with other sources (whose accuracy

have to be verified too), or by other information not coming directly from data; instead,

the model proposed and, in general, Bayesian or Frequentist approaches to population

size estimation provide confidence and credible intervals giving an idea of the accuracy

and reliability of their results also with respect to available data. As a general rule,

when intervals are wide it means uncertainty is high and, conversely, narrower intervals

mean results are more reliable so the notion of uncertainty is clearly included and pro-

vided in the results. Bayesian approaches, including a priori knowledge in the model,

help the estimation process and to obtain likely results. The model initially proposed

in Bryant and Graham (2013) embed these characteristics. The empirical analysis on

Italian case in chapter 3 shows results according to different assumptions and highlights

both the importance of these assumptions along with the robustness of the model. As-

sumptions strength must always be motivated and reasonable as the model adjusts to

them, despite being in general quite robust. Constraints limiting parameters to some

values or assuming very low standard deviations have an impact on the results but, for

instance, the choice of distribution for the data models does not usually have a high

impact on the results if assumptions on parameters are not too strong. The same holds

for the system model: some models are better than others but, if assumptions are rea-

sonable, usually results are too. A third point is the possibility to correct for systematic
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biases in the data. With Italian data there has been no need to include any correction

for systematic bias, but with other data there can be biases depending on regions, age

groups or other dimensions. For instance, in Bryant and Zhang (2018) a correction for

mothers’age has been included in the data model to estimate age-specific fertility rates

in Cambodia, because there were coverage problems with older age groups. A novelty of

the demographic account model is also to estimate all the series at the same time, each

with its own models and data, whereas other models often extrapolate one series from

the demographic balance equations. Nonetheless, the demographic balance equations

consistency is still satisfied due to constraints included in the MCMC algorithm. Being

developed in the Bayesian framework, Bryant and Graham (2013) model is one of the

most flexible models proposed for population size estimation because it allows estimat-

ing models with far more parameters than data, giving demographers much space for

decision and inclusion of a priori information. Flexibility makes the model useful for a

large range of data of different quality, and allows for inclusion of more than one dataset

for each series. Eventually, the CMP model implementation also seems promising and

worth to be developed.

From the results, model limitations can be deduced. Firstly, the difficult conver-

gence, especially when data quality is low, and the high autocorrelation of the Markov

chains. High autocorrelation is mainly due to the constraints of the demographic bal-

ance equations that force candidate values to be very close to the current ones in order

to be accepted. Secondly, the identifiability problems that sometimes lead to unlikely

results especially with the CMP model and with migration series estimates.

Dealing with data problems is also not always straightforward, because the model

naturally provides smooth results and privileges more accurate datasets, but it is some-

times hard to combine these two features. For instance, it was difficult to combine 2011

Italian census data with administrative data on the resident population because census

data, without any information about their nature, would be considered as outlier with

respect to the other data. On the one hand, according to Istat (Egidi and Ferruzza,

2009; Istat, 2016, 2015a), final census data after PES are very accurate, they are checked

and compared with administrative registers, therefore, if people are absent in the census

count but present in the registers or, vice versa, if someone is in the census count but

not in the registers, then the error is corrected. In the other hand census data were

not matching the administrative registers trend, hence obtaining the actual evolution

of population size was not easy. With the current model it is also difficult to compare

results as no standard criterion has been implemented yet in the R package demest.

Therefore, results coming from different models are compared, but it is difficult to assess



Conclusions 161

what is the best one. Checking with held-back data have been made when estimating

single series of birth and death counts but a more general approach is needed, also for

comparison with other methods. The high complexity and flexibility have also impor-

tant drawbacks. Tuning the model can be sometimes difficult due to the high number

of parameters and flexibility might over-fit rather than improve the model.

Because of the problem complexity, the aim of the application to the Italian data,

especially for the demographic account estimation, does not propose a “right” model.

It is difficult to choose one model as, the true population is unknown and results, even

if somehow robust, need to be interpreted and, in any case, they also reflect what the

model structure suggests. The level of uncertainty provided often reflects the accuracy

assumed on data and the strength of a priori choices. What datasets are considered

more reliable, how much variability is allowed on parameters, everything influences

the estimation process and trying to compare or implement all the possible models is

impossible. Therefore, examples included are those considered representative to explain

model characteristics, and useful to give an idea of the different possibilities the model

provides. More than on results themselves the focus is on their comparison.

The model needs further investigations before being ready for being used by NSIs,

especially for the demographic account estimation part, but some parts are more mature

and are already used by Statistics New Zealand. The extension with the CMP model

is ambitious, it is still in its early stages, and it needs to be further developed and

understood.

Future directions of research

The area of Bayesian demography is still relatively young and it is developing fast.

Organisations as United Nations and more and more NSIs are starting implementing

some of these methods and keep on improving and working on them. Research is also

growing in this area, therefore it is reasonable to expect fast progress in the whole field.

The model initially proposed by Bryant and Graham (2013) and further developed

and discussed in this thesis will be no exception. What aspects of the model need

improvement have been pointed out discussing advantages and limitations of the model,

and steps to address issues and improve the model have also been planned. Especially for

the whole demographic account estimation, the model certainly needs more applications

for a better understanding of parameters interaction, to identify what modifications are

mostly needed, and how changes impact the whole structure and estimation process.

Especially data model structures need to be simplified in order to avoid over-fitting
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and speed up computations. Bryant and Zhang (2018) suggest the implementation of

models allowing for specifying if “some dimensions are measured more accurately than

others”, or to base data models on indirect models (Preston et al., 2001).

Prior distributions model set can be increased with both computationally convenient

and purpose-specific distributions; for instance, there were attempts using an adapted

version of the model proposed in Kunihama and Dunson (2013) for modelling interac-

tions, ad hoc distributions like the one used for migration in Wísniowski et al. (2013),

or simple objective priors to use with high quality data.

From a computational point of view the demographic balance equation constraints

sometimes makes the MCMC algorithm inefficient, causing convergence and autocorrela-

tion issues. Working with a more flexible framework could help to tackle this issues and

increase robustness to chains starting points. Now starting points need to be initially

consistent, i.e. the initial demographic account must satisfy demographic balance equa-

tions. The same consistency is required at each iteration. An idea for improving this

aspect is to use an adaptive proposal distribution that, starting from looser constraints,

gets closer to the target posterior iteration after iteration, until it perfectly satisfies the

constraints. Methods considered are linked to importance sampling and particle filter-

ing. The best, so far, seems to be the Adaptive Multiple Importance Sampling (Cornuet

et al., 2012).

A lot of work is also planned to improve the R package demest. A first example of

function worth implementing is the disaggregation function. To disaggregate a dataset

by given dimensions, a model must account for random variation, information, trends

or counter-trends and interactions. Sometimes this requires high complex models, but

it is important to keep the model as simple as possible and try to manage complexity

efficiently. Bryant and Zhang (2018) suggest, “decompositions and graphs to guide

the construction of each piece”. Also, a function to compute standard model estimation

criteria as the Watanabe-Akaike information criterion (WAIC) and/or other information

criteria Watanabe (2010) to compare different models is planned. Another issue is the

high computation power required for the estimation of very large models with hundreds

of thousands or millions of parameters. The examples presented in the thesis only

require a desktop computer, but for the estimation of larger models with a reasonable

number of iterations a much faster and powerful machine is needed.

The package also allows for forecast and for a wide range of applications related to

population studies. Bryant and Zhang (2018) suggest topics such as “modelling disease

prevalence, forecasting future labour supply, and studying promotion within organisa-

tions”. The model experimentation is only starting but it is promising and hopefully it
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is providing a productive contribution to statistical methods and demography.





Appendix

Account updating

Let N be the population array, which is usually the only one which refers to a point

on time (e.g. population on December 31st, 2017) whereas all the other are values

referring to an interval in time (e.g. births in 2017, or in December). The other array

are denoted with Cl, l = 1, · · · , L, and with the population array they compose the

demographic account Y = {N,C1, · · · , CL}. Typically, there are two population arrays,

one for population at the beginning of the period considered and one for the population

at the end of the period and all the account cells are linked by the account identity. The

demographic account Y is an unobserved quantity and its distribution is

p(Y |ΘY , Z) = p(Y |ΘY )

= p(N |ΘN , Z)
L∏
l=1

p(Cl|N,Θl, Z)

= p(N |ΘN)
L∏
l=1

p(Cl|N,Θl)

(A.1)

when conditioned on the parameter set ΘY then the Y is independent of covariates

Z as they are already included in the estimation of ΘY .

The data model has a conditioning on the demographic account Y so that the model

has the form

p(X|Y,Ω) =
M∏
m=1

p(Xm|Y [m],Ωm)

where X = {X1, · · · , XM} and Y [m] is the demographic array the dataset Xm refers

to collapsed in order to have the same dimensions as Xm. Then each sub-model is

p(Xm|Y [m],Ωm) =
∏

j p(xjm|yjm,Ωjm).

For the set of parameters associate to Y and X, respectively Θ and Ω, they are

assumed not to share any parameter and their distribution can therefore be decomposed
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as:

p(Θ,Ω|Z) = p(Θ|Z)p(Ω)

Therefore

p(Y,X|Θ,Ω, Z) = p(Y |Θ, Z)p(X Y,Ω)

From all these parts it is now possible to introduce the complete joint posterior the

whole model aims to estimate and that can be divided in three marginal models:

1. p(Y |X,Z), for the demographic account itself

2. p(Θ|X,Z) which estimates parameters of the system model and it gives informa-

tion about the super-population quantities

3. p(Ω|X,Z) which relates to the data model and potentially helps understanding

characteristics or possible problems of the datasets.

the joint posterior is therefore

p(Y,Θ,Ω|X,Z) ∝ p(X|Y,Θ,Ω, Z)p(Y |Θ,Ω, Z)p(Θ,Ω|Z) (A.2)

= p(X|Y,Ω)p(Y |Θ)p(Θ|Z)p(Ω)

with full conditionals

p(Y |Θ,Ω, X, Z) ∝ p(X|Y,Ω)p(Y |Θ) (A.3)

p(Θ|Y,Ω, X, Z) ∝ p(Y |Θ)p(Θ|Z)

p(Ω|Y,Θ, X, Z) ∝ p(X|Y,Ω)p(Ω)

Updating Y

As the form of (A.1) suggests, models for the arrays of the demographic account are

independent, therefore, simplifications are possible in the updating process.

1. When it comes to the Metropolis-Hastings algorithm, when updating starting

values for N , the proposal distribution Q takes the form

Q(Y (z)|Y ∗)
Q(Y ∗|Y (z))

=
p(n(z))

p(n∗)
(A.4)

where Y (z) and n(z), z = 1, · · · , Z, are respectively the current value of the demo-

graphic account Y and the population cell n to update at iteration z whereas Y ∗

and n∗ are the proposed value.
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Let N = (N0, N1+) where N0 is the population array at time 0 and N1+ is the set

of arrays from time 1 onward, the acceptance probability a is

a = min

(
1,

p(Y ∗)

p(Y (z))

Q(Y (z)|Y ∗)
Q(Y ∗|Y (z))

)

As the cells for t = 0 simplify, the ratio becomes

p(Y ∗)

p(Y (z))

Q(Y (z)|Y ∗)
Q(Y ∗|Y (z))

=
p(N∗)

p(N (z))

(
L∏
l=1

p(C
(z)
m |N∗)

p(C
(z)
m |N (z))

)
p(n(z))

p(n∗)
(A.5)

=
p(N∗1+)

p(N
(z)
1+ )

L∏
l=1

p(C
(z)
m |N∗)

p(C
(z)
m |N (z))

The first ratio in (A.6) is

p(N∗1+)

p(N
(z)
1+ )

=
T∏
t=1

Poisson(n∗(t)|λ(t))

Poisson(n(z)(t)|λ(t))

where n(z)(t) = N (z)[i,min(a+t, A), t], n∗(t) = N∗[i,min(a+t, A), t] = n(z)(t)+∆,

with ∆ = n∗ − n(z), a = 0, · · · , A age classes and t age class width.

2. In order to update a component Cu, u ∈ {1, · · · , L}, the proposal density depends

on the expected population N̂ rather than on the parameter γu. This conditioning

is convenient as both Cu and N̂ are distributed according to a Poisson distribu-

tion and it makes possible to suppress the dependence on γu which would make

calculations more complex.

In this case (A.4) becomes Q(Y (z)|Y ∗)
Q(Y ∗|Y (z))

= p(c(z)|N̂)

p(c∗|N̂)
and, using (A.1), equation (A.6)

takes the form:
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p(Y ∗)

p(Y (z))

Q(Y (z)|Y ∗)
Q(Y ∗|Y (z))

=
p(N∗)

∏L
l=1 p(C

∗
l |N∗)

p(N (z))
∏L

l=1 p(C
(z)
l |N (z))

=
p(N∗)

p(N (z))

p(C∗u|N∗)
p(C

(z)
u |N (z))

(∏
l 6=u

p(C
(z)
l |N∗)

p(C
(z)
l |N (z))

)
p(c(z)|N̂)

p(c∗|N̂)

=
p(N∗)

p(N (z))

p(C∗u|N∗)
p(C

(z)
u |N (z))

p(C
(z)
u |N (z))

p(C
(z)
u |N∗)

p(C
(z)
u |N∗)

p(C
(z)
u |N (z))(∏

l 6=u

p(C
(z)
l |N∗)

p(C
(z)
l |N (z))

)
p(c(z)|N̂)

p(c∗|N̂)

=
p(N∗)

p(N (z))

p(C∗u|N∗)p(c(z)|N̂)

p(C
(z)
u |N∗)p(c∗|N̂)

L∏
l=1

p(C
(z)
l |N∗)

p(C
(z)
l |N (z))

(A.6)

Through the simplification in (A.6), it is possible to calculate separately the three

terms on the last line of (A.6).

The first term
p(N∗)

p(N (z))
=

T∏
t=0

−t Poisson(n∗(t)|λ(t))

Poisson(n(z)(t) λ(t))

or, if there is an array containing two flows, in and out, like internal migration

with “origin-destination” format, or “pool” format or “net” format then

p(N∗)

p(N (z))
=

T∏
t=0

−tPoisson(n∗out(t)|λ(t))

Poisson(n
(z)
out(t) λ(t))

Poisson(n∗in(t)|λ(t))

Poisson(n
(z)
in (t) λ(t))

The second term depends on the form of the model if it contains or not exposure.

In the model without exposure the estimated and proposed populations N̂ and

N∗ coincide, as there is no new proposition for N but only for Cu, therefore only

the estimation of the population deriving from the new proposal C∗u is calculated.

Consequence of this is the complete simplification of the second term

p(C∗u|N∗)p(c(z)|N̂)

p(C
(z)
u |N∗)p(c∗|N̂)

= (
((((

((Poisson(c∗|n)
hhhhhhhhPoisson(c(z)|n)

hhhhhhhPoisson(cz|n)((((
(((Poisson(c∗|n)

When the exposure terms are included in the model they are first calculated

ez = Ez
i (A.7)

e∗ = e(z) + 1/2∆

γ = γli
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and then the ratio becomes

p(C∗l |N∗)p(c(z)|N̂)

p(C
(z)
l |N∗)p(c∗|N̂)

=
Poisson(c∗|γe∗)Poisson(c(z)|γê)
Poisson(c(z)|γe∗)Poisson(c∗|γê) (A.8)

= (e∗/ê)(c−c(z))

The third term of (A.6) does not depend on the term is being updated and the

product components have all the same form reflecting the previous terms structure.

The starting point of the whole updating process of the demographic account is to

choose the starting population to update. All the cells N at time 0 have the same

selection probability. Once the cell has been selected, a subset is created with the cells

in need to be updated because of the change of the starting population. Subset includes:

other population cells, exposures, expected values and corresponding cells in the datasets

X. The proposed value n∗ is drawn from a left-truncated Poisson distribution, where

truncation point is set at value v = minin
(z)
i to avoid unlikely or impossible values.

p(y) ∝

e−γγy If y ≥ n(z) − v
0 otherwise

Candidate value n∗ acceptance or refusal is performed through a Metropolis-Hastings

algorithm. Metropolis-Hastings ratios rs for population updating are formed by:

1. Likelihoods ratio:

rX|N =
∏

m∈MX

∏
i∈Nm

p(xjm|n∗jm)

p(xjm|n(z)
jm)

(A.9)

where n∗jm = n
(z)
jm + ∆, ∆ = n∗ − n(z) and MX and Nm are the subset of indexes

affected by the potential change of n(z).

2. Prior probabilities ratios:

rN |λ =
∏
i∈N

p(n∗i |λi)
p(n

(z)
i |λi)

(A.10)

and

rCl|λ,E =
∏
i∈Cl

p(cil|λile∗il)
p(cil|λile(z)

il )
(A.11)

the first one, (A.10), directly involves population, the second, (A.11), follows from

variation in the exposure term due to potential change in population.

3. Proposal probabilities ratio:

rJ =
p(n(z)|λ)

p(n∗|λ)
(A.12)
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Hence, a Metropolis-Hastings ratio r is

r = rX|NrN |λrCl|λ,ErJ

and therefore

n(z+1) =

n∗ If r > U ∼ U(0, 1)

n(z) Otherwise

If n∗ is accepted, then e∗il automatically is too.

When updating cells from C the process is the same as for cells from N but, in

addition to ratios rX|N of (A.9) and rN |λ of (A.10), there is

rX|C =
∏

m∈Mu

∏
j∈Jmu

p(xjm|c∗jm)

p(xjm|c(z)
jm)

(A.13)

where Mu and Jm
u are the set of indexes affected by a potential change in cell u and

rC|λ =
∏
i∈Nu

p(c∗i |λi)
p(c

(z)
i |λi)

(A.14)

ratios (A.9) and (A.10) are still included because, to a potential change from a cell c(z)

to c∗, corresponds a change in population and exposure from n(z) to n∗ and e(z) to e∗

respectively, therefore related ratios participate to the Metropolis-Hastings formation.

Proposal probabilities ratio changes accordingly from (A.12) to

rJ =
p(c

(z)
u |λu)

p(c∗u|λu)
(A.15)

The resulting Metropolis-Hastings ratio is then

r = rX|CrX|NrC|λrN |λrJ

Updating σ and φ

Considering the log-density of σ, i.e. logarithm of the Half-t probability distribution

function (equation (2.34)),

f(σ) = −n log σ − Vσ
2σ2
− νσ + 1

2
log(σ2 + νσA

2
σ)
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it is possible to maximise f taking the first derivative

df

dσ
= −n

σ
+
Vσ
σ3
− (νσ + 1)σ

σ2 + νσA2
σ

= − 1

σ3(σ2 + νσA2
σ)
h(σ)

where

h(σ) = (n+ νσ + 1)(σ2)2 + (nνσA
2
σ − Vσ)σ2 − VσνσA2

σ (A.16)

The value σ∗ maximising f , considering (A.16) as a function of σ2, is

σ∗ =

√
Vσ − nνσA2

σ +
√

(Vσ − nνσA2
σ)2 + 4(n+ νσ + 1)VσνσA2

σ

2(n+ νσ + 1)

So that: 
h(σ) < 0 for σ2 < (σ∗)2

h(σ) = 0 for σ2 = (σ∗)2

h(σ) > 0 for σ2 > (σ∗)2

Therefore f(σ) has a maximum at σ∗, it is increasing for σ < σ∗, decreasing for σ > σ∗,

and for any z < f(σ∗) there are two roots for f(σ) = z denoted by σmin and σmax.

These two roots can be found using a Newton-Raphson algorithm, either finding values

satisfying f(σmin) = f(σmax) = z, or minimising the objective function g(σ) =
(
f(σ)−

z
)2

.

From this results is then possible to update σ using a slice sampler Radford (2003):

set z = f(σ) − e with e ∼ Exp(1), find σmin and σmax roots of f(σ) = z and draw the

new value from U(σmin, σmax). The slice sampling is used also to update the variance

of the Normal model φ.

Updating β for exchangeable prior distribution

The estimation of the vector β is a complex process. Parameters are weakly identified

and, despite the estimation of µ and hence γ might be right overall, the estimation of

the single k-th components of µi =
∑K

k=0 β
(k) might be wrong even if the sum is right.

There are quantities useful to reduce this problem. Let

rki = g(γi)− µi + β
(k)

hki

then, recalling that g(γi) ∼ N(µi, σ
2) and µi =

∑K
k=0 β

(k)

hki
, we have rki ∼ N(β

(k)

hki
, σ2).

Then, let δkh = {i : jki = j} and nk be the number of elements in δkh, then
∑

i∈δkh
rki ∼
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N(nkβ
(k)
h , nkσ

2) and

r̄
(k)
h ∼ N

(
β

(k)
h ,

σ2

nk

)
(A.17)

where r̄
(k)
h =

(∑
i∈δkh

rki
)
/nk. These quantities are useful to update each β

(k)
h . In case

covariates are included:

β
(k)
h ∼ N(z

(k)
h η(k), τ 2

k )

τk ∼ t+ντ (0, A
2
τk)

η
(k)
1 ∼ N(0, A2

0)

η(k)
p ∼ N(0, U (k)

ηp ), p = 2, · · · , Pk
U (k)
ηp ∼ Inv-χ2(νη, A

2
ηk), p = 2, · · · , Pk

So β
(k)
h can be updated within a Gibbs sampler drawing from

β
(k)
h ∼ N

( n
σ2 r̄

(k)
h + 1

τ2k
z

(k)
h η(k)

n
σ2 + 1

τ2k

,
1

n
σ2 + 1

τ2k

)
(A.18)

Then, it is possible to update the parameter vector η(k) treating the hyper-priors as

extra data points. Let

y(k)
∗ =

(
β(k)

0

)
(A.19)

X(k)
∗ =

(
Z(k)

I

)

Σk =

(
τ 2
k I 0

0 D
U

(k)
η

)
where D

U
(k)
η

= diag{A2
0, U

(k)
η2 , ..., U

(k)
ηPk
}

Then

y(k)
∗ ∼ N(X(k)

∗ η(k),Σk) (A.20)

Σ
−1/2
k y(k)

∗ ∼ N(Σ
−1/2
k X(k)

∗ η(k), I)

η(k) ∼ N(η̂k, Yβk)



Appendix 173

where η̂k = Vβk
1
τ2k
Z(k)Tβk and Vβk = 1

τ2k
Z(k)TZ(k) +D−1

U
(k)
η

. Draws for updating U
(k)
ηp come

from

U (k)
ηp ∼ Inv-χ2

(
νη + 1,

νηA
2
ηm +

(
η

(k)
p

)2

νη + 1

)
, p = 2, ..., Pk

Updating β for DLM prior distribution

When coefficient β has a DLM prior then it is updated drawing from a normal

distribution with parameters similar to equation (A.18)

β
(k)
h ∼ N

( nk
σ2 r̄

(k)
h + 1

τ2k

(
α

(k)
h + s

(k)
h + z

(k)
h η(k)

)
nk
σ2 + 1

τ2k

,
1

nk
σ2 + 1

τ2k

)
(A.21)

Besides parameters a
(k)
h , δ

(k)
h and s

(k)
h are updated using the forward-filtering backward-

sampling (FFBS) algorithm (Carter and Kohn, 1994; Frühwirth-Schnatter, 1994). Let

θh =

(
α

(k)
h

δ
(k)
h

)
β̃h = β

(k)
h − s

(k)
h − z

(k)
j η(k)

F =

(
1

0

)
(A.22)

G =

(
1 1

0 φk

)
vh = τ 2

k

Wh =

(
ω2
αk 0

0 ω2
δk

)

and if the seasons are being updated, let s
(k)
qj , q = 1, ..., Sk, be the seasonal component

for element j − q − 1. Then

θh =


s

(k)
1h
...

s
(k)
Sk,h

 (A.23)

β̃h = β
(k)
h − α

(k)
h − z

k)
h η

(k)
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F =


1

0
...

0



G =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


vj = τ 2

k

Wh =


ω2
sk 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


where F is Sk×1, G is Sk×Sk and Wh is Sk×Sk. With mh and Ch being respectively

the mean and the variance of θh, given β̃1, · · · , β̃H , the FFSB algorithm can be applied.

The first part of forward filter is:

ah = Gmh−1 (A.24)

Rh = GCh−1G
T +Wh

qh = F T
h RhFh + vh

Ah = RhFh/qh

eh = β̃h − F T
h ah

Ah = RhFh/qh

mh = ah + Aheh

Ch = Rh − AhATh qh

Then values θh ∼ N(mh, Ch), h = 1, · · · , H, can be drawn and then the second part of

backward sampling consist of:

Bh = ChG
TR−1

j+1 (A.25)

m∗h = mh +Bh(θh+1 − ah+1)

C∗h = Ch −BhRh+1B
T
h
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θh ∼ N(m∗h, C
∗
h)

to obtain updated values for θh = J − 1, · · · , 0. The coefficient vector η(k) is updated

as in the exchangeable prior case except that β̃h = β
(k)
h − α

(k)
h − s

(k)
h takes the place of

βjin (A.19).

CMP rejection algorithm calculation

In order to calculate the logarithm of the acceptance ratio α for implementing the

Metropolis-Hastings algorithm, the logarithmic forms of the enveloping bounds Bν<1
f/g

and Bν≥1
f/g are needed and will be used in the calculations of αs

· Logarithmic enveloping bounds ν < 1:

Bν<1
f/g =

1

p

µ
ν

⌊
µ

(1−p)1/ν

⌋
(1− p)ν

⌊
µ

(1−p)1/ν

⌋(µbµcbµc!
)ν−1

(A.26)

log(Bν≥1
f/g ) = bν≥1

f/g = − log(p) + ν
⌊ µ

(1− p)1/ν

⌋
log(µ)

= −
⌊ µ

(1− p)1/ν

⌋
log(1− p)− ν

⌊
µ

(1−p)1/ν

⌋
∑
n=1

log(n)

· Logarithmic enveloping bounds ν ≥ 1:

Bν≥1
f/g =

(
µbµc

bµc!

)ν−1

(A.27)

log(Bν≥1
f/g ) = bν≥1

f/g = (ν − 1)
(

log(µbµc)− log(bµc!)
)

= (ν − 1)
(
bµc log(µ)−

bµc∑
n=1

log(n)
)
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The logarithmic forms of the acceptance ratios αν<1 and αν≥1 are:

· Logarithmic acceptance ratios ν < 1:

αν<1 =

(
µy
′
/y′!
)ν

Bν<1
f/g (1− p)y′p (A.28)

log(αν<1) = ν log
(
µy
′
/y′!
)
−
(

log(Bν<1
f/g ) + y′ log(1− p) + log(p)

)
= ν

(
y′ log(µ)−

y′∑
m=1

log(m)
)
− log(Bν<1

f/g )− y′ log(1− p)− log(p)

= ν

(
y′ log(µ)−

y′∑
m=1

log(m)

)

−
(
−����log(p) + ν

⌊ µ

(1− p)1/ν

⌋
log(µ)−

⌊ µ

(1− p)1/ν

⌋
log(1− p)

− ν

⌊
µ

(1−p)1/ν

⌋
∑
n=1

log(n)

)
− y′ log(1− p)−����log(p)

= νy′ log(µ)− ν
y′∑

m=1

log(m)

− ν
⌊ µ

(1− p)1/ν

⌋
log(µ) +

⌊ µ

(1− p)1/ν

⌋
log(1− p)

+ ν

⌊
µ

(1−p)1/ν

⌋
∑
n=1

log(n)− y′ log(1− p)

= ν log(µ)

(
y′ −

⌊ µ

(1− p)1/ν

⌋)

+ log(1− p)
(⌊ µ

(1− p)1/ν

⌋
− y′

)

+ ν

(⌊ µ

(1−p)1/ν

⌋
∑
n=1

log(n)−
y′∑

m=1

log(m)

)

=

(
y′ −

⌊ µ

(1− p)1/ν

⌋)(
ν log(µ)− log(1− p)

)

+ ν

(⌊ µ

(1−p)1/ν

⌋
∑
n=1

log(n)−
y′∑

m=1

log(m)

)

where y′ is drawn from a Geometric distribution (y′ ∼ Geo(p)).



Appendix 177

· Logarithmic enveloping bounds ν ≥ 1:

αν≥1 =

(
µy
′
/y′!
)ν

Bν≥1
f/g

(
µy′/y′!

) (A.29)

log(αν≥1) = ν log
(
µy
′
/y′!
)
−
(

log(Bν≥1
f/g ) + log

(
µy
′
/y′!
))

= (ν − 1) log
(
µy
′
/y′!
)
− log(Bν≥1

f/g )

= (ν − 1)
(
y′ log(µ)−

y′∑
m=1

log(m)
)
− (ν − 1)

(
bµc log(µ)−

bµc∑
n=1

log(n)
)

= (ν − 1)
(

log(µ)
(
y′ − bµc

)
−

y′∑
m=1

log(m) +

bµc∑
n=1

log(n)
)

where y′ is drawn from a Poisson distribution (y′ ∼ Po(µ)).
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De Finetti, B. (1965) Sull’oppurtunità di perfezionamenti e di estensione di funzioni dei

servizi anagrafici. In Problemi di rilevazione e classificazione dei dati demografici, ed.
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