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Part I

B L AC K H O L E S A N D T H E I R M I C RO S TAT E S I N
S T R I N G T H E O RY





1
I N T RO D U C T I O N

One of the most intriguing issues that have been puzzling theoretical physi-
cists for almost 50 years now is the so-called Black Hole information paradox.
Since the seminal papers by Bekenstein [8–10], where he discussed the neces-
sity of associating an entropy to black holes proportional to the area of their
event horizon, and by Bardeen, Carter and Hawking [11], where the four law of
black hole mechanics where proven, a mysterious relation between black holes
and thermodynamics has emerged. It was established that black holes have
a temperature, which is inversely proportional to its mass, and an entropy,
which is proportional to the square of its mass in four dimensions. But the
revolutionary paper by Hawking [12] was needed, both to fix the precise pro-
portionality coefficients, e.g. for a Schwarzschild black hole in four dimensions,

T =
ℏc3

8πGNkB
1
M

, S =
c3

ℏGN
AH
4 , (1.1)

and to highlight their physical meaning, understanding that indeed a black
hole behaves as a black-body emitter of particles; in fact, Hawking proved,
via a semiclassical computation, that a quantum field on a classical curved
background described by a black hole geometry forces the black hole to emit a
thermal radiation, whose temperature is indeed the temperature of the black
hole, called Hawking temperature. What remained unclear - and, in some fash-
ion, it is still not completely clear - was how to compute the entropy of the
black hole by counting its microstates via the Boltzmann law [13–15]. More-
over, it was immediately realised that the presence of a black hole undermines
the foundation of the quantum theory: indeed, due to its natural tendency
to emit a thermal radiation, the black hole seems to be a peculiar thermo-
dynamic object which transforms the pure state of the matter that creates
it into a thermal state of pure radiation, after its full evaporation. Since this
evolution cannot be described by a unitary operator, it violates one of the
principles of quantum mechanics. This is known as black hole information
paradox [16–19].

A sharp formulation of this information paradox that relies on the con-
trast between a statistical-mechanical description of the black hole and the
(exactly) thermal nature of Hawking radiation, was provided by Page [20],
further sharpened adding concepts of quantum information by Mathur [21]
and subsequently rephrased by Almheiri, Marolf, Polchinski and Sully [22].
We first start with a brief description of the former; suppose we have an or-
dinary thermodynamic system, whose Hilbert space we indicate with H, and
we want to describe it using microcanonical ensemble. We now find some en-
ergy ∆E that is small w.r.t. typical energy scales, but large enough to have
a large number of microstates in the interval (E,E + ∆E). Calling H(E) the
subspace of the Hilbert space spanned by energy eigenstates whose energy
eigenvalues are in (E,E + ∆E), we write H = ⊕EH(E), where the sum runs
over energies E = 0, ∆E, 2∆E, . . . ,N∆E , . . .. Suppose now the system begins
at microcanonical equilibrium at energy E0 with state contained in H(E0),
and then cools down emitting thermal radiation, i.e. emitting quanta of ra-
diation in highly mixed states. The original state of the system is pure and,

3
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Figure 1.1: The Page curve; the time tP is the Page time, while tE is the evaporation
time.

since the evolution is unitary, the total state “system+radiation” is pure and
contained in H(E0); but if the radiation is thermal, each emitted quanta will
be in a mixed state and thus entangled with some other system for the total
state to be pure; thus each emitted quanta has to be entangled with the sys-
tem. More concretely, it means that, if the system cools from E0 to E < E0
with Von Neumann entropy for the radiation equal to S, then also the Von
Neumann entropy of the system SVN(E0|E) must be equal to S. But this
means that if the system has energy E ∈ (E(t),E(t) + ∆E) at time t, its
state is contained in H(E(t)) and so must have a Von Neumann entropy that
is less than log dim H(E(t)), that is the microcanonical entropy SMC(E). In
other words,

SVN(E0|E(t)) ≤ SMC(E(t)), (1.2)

with the latter that decreases as the system cools down; it will come a time,
called Page Time, when the inequality is saturated, and after that the radi-
ation can no longer be exactly thermal, meaning that it has to be entangled
with the early time radiation. This process is illustrated in fig. 1.1 and the
characteristic time dependence of the entropy is known as Page curve.

The Page time for, let us say, the Schwarzschild black hole is approximately
half of its total evaporation time when it has approximately radiated away
half of its mass. After this Page time, it is not possible for the black hole’s
radiation to be thermal; instead, it should be maximally entangled with the
early-time radiation.

The problem with Hawking radiation, i.e. the core of the information loss
in this formulation is that, according to quantum-field theoretic calculations,
it is exactly thermal, showing no entanglement between early-time and late-
time quanta. This is a rude clash between the predictions of QFT (even if
carefully refined) and the predictions of black hole statistical mechanics that
occurs way long before complete evaporation, when the horizon scale is still
macroscopic, and then way before any Planck-size effect may come in to save
the day [15,19,21].

This paradox can be made even sharper by introducing some quantum in-
formation concepts, as first noticed by Mathur [21], and later emphasised by
Almheiri, Marolf, Polchiski and Sully [22]. Let us think about an old black hole
that has emitted a macroscopic part of its mass through Hawking radiation;
we may consider Hawking radiation as a particle-antiparticle pair excitation
of the vacuum, where one of the two (let us dub it A) falls back into the black
hole, while the other (B) escapes to infinity. In the semiclassical approxima-
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C

“early” radiation
A B

black hole horizon

Figure 1.2: A pictorial representation of the Hawking radiation as a particle-
antiparticle pair excitation of the vacuum. Hawking radiation can be
interpreted as a pair creation; the particle A fall back into the black
hole, while its antiparticle B escape to infinity. C are the early times
emitted quanta.

tion of Hawking, where the structure of the horizon is the one predicted by
general relativity, these two A and B particles are maximally entangled. If we
denote with C the early emitted quanta, we see that the previous argument
implies that, via the so-called “monogamy of entanglement” [23], A and C (or
B and C) cannot be entangled; this means that “late” and “early” radiation
are not entangled, and thus cannot form a pure state. This has a dramatic
implication for unitarity; it means that the pure state that formed the black
hole at the beginning will evolve into a thermal radiation that is entangled
only with the hole, that will eventually dissolve, leaving behind quanta of ra-
diation that are in a mixed state but entangled with anything left.

As far as we know, there is no way to avoid these problems in the framework
of usual semiclassical general relativity (GR); the impossibility of describing
and enumerating all the possible black hole microstates in GR is made sharper
due to the existence of uniqueness theorems - or “no-hair theorems” [24–26]
- by which a classical black hole can only be described by three classical
charges: its mass, its angular momentum and its electric(magnetic) charge.
It is then only inside a framework of “quantum gravity” that it is possible
to disentangle the paradox1 and compute the entropy of a black hole by a
microstate counting.

One of the biggest achievements of string theory - that is a framework for
a “theory of everything” in which gravity is quantized - was the computation
of the black hole entropy by microstate counting [33]. In [33], Strominger and
Vafa built an extremal black hole as a solution of a low energy limit of type
II string theory with a non-vanishing area, and then computed its entropy by
counting its stringy microstates, indeed perfectly reproducing the Bekenstein-
Hawking entropy in the semiclassical limit, and predicting also the quantum
corrections to it. The Strominger and Vafa result was a consequence of the
second superstring revolution happened after Strings ’95 and the seminal
paper of Polchinski on the Dp-branes [34]; in fact, in order to achieve their
results it was crucial both using the established set of dualities among different

1 This point of view is not entirely accepted in the community; there are in fact few other
proposal, that we will report briefly here for sake of completeness. We may have unitarity
loss [27, 28], remnants (as well as baby universes [29]) and non-local effects [30, 31] (or like
the ER=EPR proposal [32]).
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string theories as well as engineering a well-defined brane scenario, the so-
called D0D4 system in type IIA or D1D5 system in type IIB.

Another consequence of the second superstring revolution was the formu-
lation of the most fruitful conjecture in modern contemporary physics, the
so-called AdS/CFT conjecture [35–37]. This conjecture states that the Hilbert
space of type IIB string theory in AdS5 × S5 is equal to the Hilbert space of
N = 4 Super-Yang-Mills (SYM) living on R1,4, which can be regarded as the
boundary of AdS5. It relies, in its original formulation, on the near-horizon
limit of a stack of N D3-branes whose near-horizon geometry is AdS5 × S5.
On one side, we know that the closed string spectrum contains the graviton,
so we may take a limit where stringy effect are suppressed reducing us to
the supergravity regime, and where the string coupling gs is small. In this
framework, the limit we are looking for is

R2 ∼ (gsN)1/2α′ ≫ α′ , gs ≪ 1 ⇒ λ ≡ gsN ≫ 1 , (1.3)

where R is the radius of both AdS5 and S5 and where λ is the ’t Hooft-coupling,
it allows to describe the semiclassical limit of a quantum gravity theory. On
the other side of the duality, thanks to the open-closed string duality, we can
discuss the non-abelian SU(N) theory of the excitations of the open strings
attached to the stack of D3-branes, that, in the limit above, is the N = 4
SYM.

This conjecture was generalised (see [38–41] for a review) to different dimen-
sions and context; we will focus on a specific AdS3/CFT2 correspondence that
arises also when studying the Strominger-Vafa black hole [42]. Also, AdS/CFT
allows for a useful rephrasing of the black hole information paradox [43–46];
we will discuss its precise formulation later on in the introduction.

Even if Strominger and Vafa counted the stringy microstates of an extremal
black hole in the D-brane regime, the question of what these microstates are
and what do they look like in the regime where semi-classical supergravity
applies remained open. Later, Mathur [47–52] proposed how to realise them
in a string-theoretical framework. He introduced the Fuzzball proposal, that
states that the black hole solution is an effective coarse-grained description
that emerges from averaging over horizonless, non-singular microstates with a
nontrivial structure whose size could be macroscopically large, differing from
the naive black hole solution up to the horizon scale, well above the Planck
scale. The geometries of a fuzzball from the five-dimensional point of view can
be schematically see as:

• for large radius value, there is the asymptotically flat regime; this re-
gion looks the same for both the microstate and for the naive geometry
(i.e. the black hole) and it is the Minkowski five-dimensional spacetime;

• as r decreases, we encounter a region determined by the global mass
and charges of the solution, often dubbed neck, in which the functions
describing the geometry do not differ between the microstate and the
naive geometry, so the two are indistinguishable;

• as we approach the would-be-horizon, we enter in a region called throat
were the two geometries approaches AdS3 × S3 × T4;

• going further, the microstate geometry starts to differ from the black
hole one and depends strongly on the precise microstate we are consid-
ering. Since microstates are smooth and horizonless, we don’t encounter
any coordinate nor curvature singularity, and at r = 0 the geometry
ends smoothly in a cap, whose specific shape is determined by which
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microstate we are considering. The black hole and the microstate start
to differ just above where the horizon would be [50].

Generic fuzzballs are not always described by semi-classical supergravity so-
lutions, since they can be arbitrarily quantum and arbitrarily strongly curved
[53]. All fuzzballs are dual to so-called “heavy” states of the dual CFT, i.e.
states whose conformal dimension scales as the central charge c in the large
c-limit; this is necessary since in this case the mass of the excitations is big
in Planck units, allowing for a non-trivial back-reaction. Up to now, not all
the gravity dual for all the heavy states of the dual CFT theory are known.
In this thesis we will mainly discuss the largest known family of the so-called
microstate geometries, dubbed superstrata, that are regular and horizonless
geometries at the supergravity level, with the same conserved charges as the
black hole, whose dual CFT states can be built at the free orbifold point by
acting independently on each strand with an element of the global superalge-
bra.

The fuzzball proposal resolves de facto the information paradox: the Hawk-
ing radiation is then non-thermal since it is emitted by a precise microstate
and unitarity is not lost. The precise mechanism of how it is realised, even in
the simpler context of AdS/CFT, is still missing, and one of the goals of this
thesis is to make a step further in that direction.

The structure of the thesis is the following: in part i, we review some relevant
knowledge; in particular, in chap. 1 we briefly review the Strominger-Vafa
microstate counting (sec. 1.1) and the formulation of black hole information
paradox in the context of AdS/CFT (sec. 1.2), while in chap. 2 we discuss
the two side of the AdS3/CFT2 duality relevant for the fuzzball proposal.
In part ii we build new microstate solutions: in chap. 3 we build new three-
charge 1

8 -BPS superstrata with both external and internal excitations and
that are then described by two free parameters, and we furnish the holographic
interpretation in terms of CFT states; in chap. 4 we prove the existence of non-
supersymmetric superdescendants and discuss their behaviour. In part iii we
discuss the holography of 1

4 - and 1
8 -BPS states, computing four-point functions

in the so-called Heavy-Heavy-Light-Light (HHLL) limit; in chap. 5 we show
explicitly how correlators in microstate geometries show no information-loss,
even at the supergravity limit, and how the standard black hole result is
related to the microstate one; in chap. 6 we compute HHLL correlators from
1
8 -BPS states, check them using Ward identities that relate them to each other
and to correlators involving 1

4 -BPS states, and then we reconstruct all-light
(LLLL) correlators involving for the first time 1

8 -BPS operators.
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1 the strominger-vafa black hole

We will now briefly review the Strominger and Vafa argument for the enumer-
ation of stringy microstate of a certain supersymmetric black hole; we begin
by constructing the five-dimensional extremal black hole, starting from an M2
system in eleven-dimensional supergravity and then, using compactifications
as well as T− and S−dualities, we land onto the Strominger-Vafa solution (in
the type IIB duality frame), computing its charges and its Bekenstein-Hawking
formula; after that, we discuss the counting of microstates.

1.1 Building the solution

1.1.1 The M2 branes and Multi-branes solution in M-theory

For the notations, we refer to [42]. We recall that the bosonic part of the
action of 11-dimensional supergravity is

S11 ⊇ 1
2κ11

∫
d11x

[√
−G11

(
R11 − 1

48F
2
4

)
− 1

6 A3 ∧ dA3 ∧ dA3

]
, (1.4)

Where F4 ≡ dA3. From here we see that we can have two extended solitonic
objects, electo-magnetic dual to each other, that are M2 and M5 branes, that
couple respectively electrically and magnetically with A3.

We want to construct solutions with multiple orthogonal stacks of M2-
branes; we start building the single stack of M2 solution as an illustrative
example, using the fact that this kind of solution will have a symmetry of
SO(2, 1)×SO(8), plus a translation symmetry on the directions of the brane.
So it easy to guess an appropriate ansatz

ds2
11 = e2f1(r)dxµdxµ + e2f2(r)dxmdxm , (1.5a)

A3 = ef3(r) dt∧ dx1 ∧ dx2 , (1.5b)

where we called xµ = (t,x1,x2) the direction along which the M2 branes are
extended while xm, m = 3, . . . , 10 are the remaining ones and r2 ≡ xmxm.

We now want that our stack of M2 branes leaves some subset of the susy
unbroken. This implies that the variation of the gravitino must vanish [54]

δϵψM = DM ϵ+
1

288

(
ΓMNPQR − 8ΓPQR

)
FNPQR ϵ = 0 , (1.6)

where, as usual,

DM ϵ =

(
∂M +

1
4 ω

BC
M ΓBC

)
ϵ . (1.7)

Looking at the M = µ directions we can fix

∂µϵ = 0 , f3 = 3f1 , e0̂
P e

1̂
Q e

2̂
R ΓPQRϵ = ϵ , (1.8)

where the hat denotes the local Lorentz indices. Looking at the transverse
xM ⊃ xm directions on the other hand gives

f1 = −2f2 , (1.9)

so that, calling H(r) = e−f3(r),

f1 = −1
3 logH , f2 = +

1
6 logH , f3 = − logH . (1.10)
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Now the solution is parametrized by the only unknown function H that can
be fixed by the equations of motion (EoM) for A3, that are simply

∂M

(√
−g FMNPQ

)
= 0, (1.11)

since

F4 = −f ′
3 e

f3(r) dt∧ dx1 ∧ dx2 ∧ dr ⇒ F4 ∧ F4 = 0 . (1.12)

The equation (1.11) reduces to

∂m∂
m e−f3 = 0 ⇒ ∂m∂

mH = 0 , (1.13)

whose solution is simply

H(r) = 1 + k

r6 , (1.14)

where 1 and k are integration constants. So finally we have

ds2
11 = H−2/3 dxµdxµ +H1/3 dxmdxm , (1.15a)
A3 = H−1 dt∧ dx1 ∧ dx2 . (1.15b)

the bps nature of the m2 branes: It is easy to see that the
charges associated to time translation and gauge symmetry, i.e. mass M and
charge q, are related - in the appropriate unit system - as M = q. This is the
signal that M2 branes are BPS objects. We can see it by looking at the susy
algebra

V −1
2 {Qα,Qβ} = (CΓ0̂)αβM + (CΓ1̂2̂)αβ q , (1.16)

where V2 is the spatial volume of M2 and C is the charge conjugation matrix.
We can now notice that, taking the trace and using eq. (1.8), we have

(1 − Γ0̂1̂2̂)ϵ = 0 ⇒ ηαβ{Qα,Qβ} = 0, (1.17)

i.e. the BPS bound is saturated. It is then a 1
2−BPS solution.

Notice that, in the near-horizon limit, i.e. when 1 ≪ k/r6, we can write the
eight-dimensional part of the metric as

H1/3(dr2 + r2dΩ2
7) = k

dr2

r2 + k dΩ2
7 , (1.18)

so that

ds2
11 =

(
−f(r)dt2 + dr2

f(r)
+ r2dΩ2

2

)
+ k dΩ2

7 , f−1(r) =
k

r2 , (1.19)

i.e. the metric is asymptotically AdS4 × S7. This is not relevant to us, but it
is important in AdS4 holography.

multi-m2 solutions: We can now search for a solution with multiple
orthogonal stacks of M2 branes. The M2⊥M2 case has SO(2) × SO(2) ×
SO(6) plus five translations symmetry; then a natural ansatz is

ds2
11 = −e2f1(r)dt2 + e2f2(r)(dx2

1 + dx2
2) + e2f3(r)(dx2

3 + dx2
4)

+ e2f4(r)dxidxi , (1.20a)

A3 = ef5(r) dt∧ dx1 ∧ dx2 + ef6(r) dt∧ dx3 ∧ dx4 . (1.20b)
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M-theory R10−→ IIA T567−→ IIB
M2 (8,9) D2 (8,9) D5 (5,6,7,8,9)
M2 (6,7) D2 (6,7) D1 (5)

Table 1.1: The compactification and T−duality procedure from M-theory to Type
IIB.

Now, imposing again δϵψM = 0 we fix all the fi in terms of two harmonic
functions H1,H2

Hi = 1 + ki
r4 , (1.21)

that satisfies the equations of motion for the system. The solution, which is
1
4 -BPS, is

ds2
11 = (H1H2)

1/3
[
− dt2

H1H2
+

dx2
1 + dx2

2
H1

+
dx2

3 + dx2
4

H2
+ dxidxi

]
,

(1.22a)
A3 = H−1

1 dt∧ dx1 ∧ dx2 +H−1
2 dt∧ dx3 ∧ dx4 . (1.22b)

We can easily generalise to the M2⊥M2⊥M2 case, that will be useful for
us. Adding another orthogonal stack of M2 branes to the previous case and
following the same steps we get

ds2
11 = (H1H2H3)

1/3
[
− dt2

H1H2H3

+
dx2

1 + dx2
2

H1
+

dx2
3 + dx2

4
H2

+
dx2

5 + dx2
6

H3
+ dxidxi

]
,

(1.23a)
A3 = H−1

1 dt∧ dx1 ∧ dx2 +H−1
2 dt∧ dx3 ∧ dx4 +H−1

2 dt∧ dx5 ∧ dx6 .
(1.23b)

1.1.2 The IIB Black Hole from the M2⊥M2⊥M2 by dimensional reduction
and dualities

the 6d black string from m2⊥m2: We recall that, compactifying
along the 11th dimension the M-theory solution we obtain a type IIA solution.
We recall also that T−duality switches between IIA and IIB string theories.
So now we will do the following transformations on M2⊥M2:

1. compactify along the 11th dimension;

2. perform a T5 duality, followed by a T6 duality, followed by a T7 duality;

in order to obtain a type IIB solution, as showed in tab. 1.1.
The first step, i.e. the compactification on S1, simply amounts to the replace-

ment of r−4 with r−3 in the harmonic functions, plus a suitable redefinition
of the integration constants; also we need to rearrange the metric as

ds2
11 = e−2ϕ/3 ds2

10 + e4ϕ/3(dx10 +Cµdxµ)2 ,
A3 = B2 ∧ dx10 +C3 ,

(1.24)
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M-theory R10−→ IIA T567−→ IIB
M2 (8,9) D2 (8,9) D5 (5,6,7,8,9)
M2 (6,7) D2 (6,7) D1 (5)
M2 (5, 10) NS1 (5) P (5)

Table 1.2: The compactification and T−duality procedure from M-theory to Type
IIB for the M2⊥M2⊥M2 case.

where C1 = Cµdxµ, C3 and B2 are the RR and Kalb-Ramond fields of type
IIA. Then, performing the three T−dualities2 T567 = T5T6T7 and finally com-
pactifying along T4 - with x5 identified as living on a large S1 - we get

ds2
10 = − 1√

Z1Z2
(dt2 − dx2

5) +
√
Z1Z2 ds2

4 +

√
Z1
Z2

ds̃2
4 ,

C
(2)
05 = −1

2 (Z
−1
1 − 1) , F

(3)
ijk = ∂[iC

(2)
jk]

= εijkl∂lZ2 ,

eϕ =

√
Z1
Z2

, Z1 ≡ 1 + Q1
r2 , Z2 = 1 + Q5

r2 ,

(1.25)

where F (3) = dC(2), and where ds̃2
4 is the metric of the compact T4. It is easy

to see that the spacetime symmetries are

MD1D5 = SO(1, 1) × SO(4)E × SO(4)I , (1.26)

where the subscript refers to the large R4 and to the compact T4 part of
the metric. In fact the first are external directions, while the SO(4)I refers
to the internal directions of the T4 that, when compactified, get broken. We
can read the unbroken susy by starting from M2 theory and perform the
transformations or studying directly the Killing spinor equation. In any case
Type IIB is chiral and we have

Γ056789ϵL = ϵR , Γ05ϵR = ϵL . (1.27)

The first is related to the D5 brane, while the second to the D1 brane. The
solution of those constraints is

Γ6789ϵL = ϵL , ϵR = Γ05ϵL , (1.28)

which means that, since ϵL,R has 16 d.o.f., the first equations kills 8 of them
while the second fixes completely the ϵR. This means that we have 16+ 16 → 8,
i.e. a 1

4−BPS state. In the near-horizon limit 8 of those reemerge as unbroken.
In fact it is not difficult to see that in the near-horizon limit the metric ap-
proaches AdS3 × S3 × T4. This feature will play a major role in this thesis, and
its relation with an holographic dual theory will be discussed deeply chap. 2.

1.1.3 The Strominger-Vafa Black Hole from M2⊥M2⊥M2

We now do the same procedure with the M2⊥M2⊥M2 case. In this case,
from the IIB perspective, we have added a quantized momentum (in form of
gravitational wave) to the S1 direction, obtaining a solution that is described
by three charges Q1,Q5,QP , representing the number of D1, D5 and units of
momentum along S1, respectively.

Explicitly, the solution is a generalisation of the D1D5 case above, and it is
usually denoted by D1D5P solution,

2 For the notation on dualities, we refer to app. A.1.
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ds2
10 = − 1√

Z1Z2

(
dudv− F

2 du2
)
+
√
Z1Z2 ds2

4 +

√
Z1
Z2

ds̃2
T4 ,

C
(2)
05 = −1

2 (Z
−1
1 − 1) , F

(3)
ijk = εijkl∂lZ2 , eϕ =

√
Z1
Z2

,

Z1 ≡ 1 + Q1
r2 , Z2 = 1 + Q5

r2 , F = −2QP
r2 ,

(1.29)

where we have introduced the null coordinates u = t− x5, v = t+ x5.
The symmetries of the D1D5P system are less than the D1D5 case since the

addition of left-moving momenta along x5 reduces the spacetime symmetries
to be

MD1D5P = SO(4)E × SO(4)I . (1.30)

We have also an additional Killing spinor equation

Γ05ϵL,R = ϵL,R , (1.31)

that fixes the D1D5P solution to be 1
8−BPS.

We can reduce it to 5 dimensions defining two scalars χ,ψ and a 1−form
Aµ and writing the metric as

ds2
10 = e2χdxadxa + e2ψ(dx5 +Aµdxµ) + e− 8χ+2ψ+ϕ

3 ds2
5 , (1.32)

where the exponential factor in front of ds2
5 comes from the requirement that

ds2
5 must be the five dimensional Einstein metric. Explicitly, it is

ds2
5 = −f−2/3dt2 + f1/3(dr2 + r2dΩ2

3) ,

f(r) = Z1Z5ZP , Zi = 1 + Qi
r2 , Qi = Q1,Q5,QP ,

(1.33)

which is the Strominger-Vafa black hole, a generalisation of the Reissner-
Nördstrom black hole in five dimensions, that is a 1

8 -BPS solution of Type
IIB supergravity.

conserved charges and entropy: While we have have added the
“1” as an integration constant for the Zi in order to have a well-defined
asymptotically-flat limit, the Qi are instead related to the number of D1 and
D5 branes, as well as the number of units of momentum along the S1 circle; in
fact it is easy to see that the Strominger-Vafa black hole is a type IIB system
with n1 D1 branes and n5 D5 branes on M1,4 × S1 × T4, with nP units of
momentum along the S1; the D1 branes wrap the S1, while the D5 branes
wrap the S1 × T4.

We can now compute the charges of these objects via

QD1 =

∫
S3×T4

∗dC2 , QD5 =

∫
S3

dC2 , (1.34)

where we have used that M1,4 = Rt × R4 = R1,1 × S3, so that, at fixed time,
∂R4 = S3; recalling that a BPS bound is involved here, we can also compute
the mass (and then check the BPS-ness of the system) by the standard formula

M =

∫
d4xT00 = − 1

16πG5

2
3

∫
d4x ∂2h00 , (1.35)
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and using that M =M1 +M5 +MP , we get the BPS conditions

Qi =
16πG5
2(2π2)

Mi , (1.36)

and then, recalling that for a Dp-brane Mp = τpVp, with τp brane tension and
Vp the volume of the manifold wrapped by the Dp-branes, we get

Q1 =
(2π)4gs(α′)3

VT4
n1 , Q5 = gsα

′ n5 , QP =
(2π)4g2

s (α
′)4

VT4RS1
nP . (1.37)

We can then compute the Bekenstein-Hawking entropy directly from the
five dimensional metric, obtaining

SBH =
A5
4G5

= 2π√
n1n5nP . (1.38)

1.1.4 A small detour: the “original” Strominger-Vafa Black hole

Up to now, we have discussed the Strominger-Vafa black hole as a type IIB sys-
tem of the D1D5P kind, coming from the compactification of an M2⊥M2⊥M2
system in 11-dimensional supergravity via dualities; in the original paper,
Strominger and Vafa build a 1

8 -BPS solution in type IIA (a D0D4 system)
compactified on3 S1× K3. We will now briefly review it, mainly for historical
reason. The bosonic part of the IIA action compactified on S1× K3 is

SIIA =
1

16π

∫
d5x

√
−g5

[
e−2ϕ

(
R5 + 4(∇ϕ)2 − 1

4 H̃
2
2

)
− 1

4 F
2
2

]
, (1.39)

where ϕ is the dilaton, F2 is a RR 2-form strength related to D0 and D4
charges, and H̃2 is the dimensionally-reduced Kalb-Ramond field strength.
Imposing spherical symmetry, we can solve it as

ds5 = −f(r)dt2 + dr
f(r)

+ r2dΩ2
3 ,

f(r) = 1 − r2
0
r2 , r0 ≡

(
8QHQ2

F

π2

)1/6
,

(1.40)

and where QH and QF are the (electric) charges with respect with H̃2 and
F2, respectively. It is then easy to compute the entropy via the Bekenstein-
Hawking formula as

SBH = 2π

√
QHQ

2
F

2 . (1.41)

1.2 The Strominger-Vafa microstate counting

The original microstate counting in the Strominger-Vafa black hole relies on
the fact that their D0D4 system is dual to a D1D5 system compactified on S1×
K3; under that T−duality, we have that D1-D3-D5-P in type IIB maps into
D0-D2-D4-F1 in type IIA. The BPS states of the D-brane that they consider
carry the charges QF and QH for which the corresponding extremal black
hole solutions were found; now it is time to count the degeneracy of the black
hole system by counting the number of all the BPS bound states. The key
point is that

3 As noted by A. Sen (see [33], footnote 9), the Strominger and Vafa result can be equivalent
computed from toroidal compactification of type IIB on T4; the only difference is the
replacement of K3 with T4 in the symmetric orbifold. In this thesis we will then mainly use
T4 as a compact space.
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In the limit where K3 is small with respect to S1, the number of
microstates of the Strominger-Vafa black hole is the number of
independent ways in which the D1 branes can move inside the K3.

This can be computed noticing that in this limit we get a (1+ 1)−dimensional
supersymmetric sigma model whose target space is the symmetric product of
1
2Q

2
F + 1 copies of K3 and so, to count states that preserves only 1

4 of the
supercharges, that are states that are killed by the right-moving supercharges
so L̄0 = 0, we have to compute the Cardy formula [55]

d(n, c) ∼ exp
[
2π
√
nc

6

]
, (1.42)

that is valid for n ≫ c. The crucial feature of the Strominger and Vafa com-
putation is that the central charge c for the D1D5 system is determined solely
by the dimension of the moduli space; in particular, we have

n = QH , c = 6
(

1
2 Q

2
F + 1

)
. (1.43)

This gives

Smicro = log d(n, c) ∼ 2π

√
QH

(
1
2 Q

2
F + 1

)
, (1.44)

that, in the right D-brane limit QH ≫ Q2
F ≫ 1 (that is also the limit where

the Cardy formula applies), reproduces the Bekenstein-Hawking formula to
leading order.

Reviewed the historical roots of the Strominger-Vafa computations, we re-
perform it for the D1D5P system (i.e. for the 1

8 -BPS system by computing
explicitly the degeneracy of the 1

4 -BPS dual F1P system without using the
Cardy formula, and then generalising it). We will explicitly use the fact that
in the F1P frame we have a fundamental string carrying momentum, and then
the microstate are related to the possible excitation of the string, for which
it is possible to compute the partition function and then, taking the log, the
free energy. Finally, by Legendre transforming it, we can recover the entropy.

1.3 The microstate counting for 1
8 -BPS states

We will now compute the degeneracies of the D1D5 system in an alternative
way, by dualising it to the F1P frame and then enumerating them [51,52]. We
can perform a chain of dualities from F1P to D1D5 (and back) as(

F1
P

)
S−→

(
D1
P

)
T6789−→

(
D5
P

)
S−→

(
NS5

P

)
Tx5−→

(
NS5
F1

)
T1−→

(
NS5
F1

)
S−→

(
D5
D1

)
.

(1.45)

In the F1P system we have a fundamental string that winds nw times the
S1, and that have nP units of momentum. The excitations of the fundamental
string come from the bosonic XM and fermionic ψM modes, whose operator
modes create states with momentum and energy given by

|pk| = ek =
2πk
L

=
k

RS1nw
, (1.46)
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where L = 2πRS1nw is the effective total length of the string. We can then
compute both bosonic and fermionic partition functions

ZB
k =

∞∑
n=0

e−βekn =
1

1 − e−βek
, ZF

k = 1 + e−βek , (1.47)

and then the total partition function is

Z =

( ∞∏
k=1

ZB
k ZF

k

)8

. (1.48)

We can compute it by approximate the sum with an integral, that is possible
in the large nw limit,

∞∑
k=1

log ZB
k ≃

∫ ∞

0
dk log

(
1 − e

− β
R

S1
k
nw

)
=
π2

6
RS1

β
nw ,

∞∑
k=1

log ZF
k ≃

∫ ∞

0
dk log

(
1 + e

− β
R

S1
k
nw

)
=
π2

12
RS1

β
nw ,

(1.49)

so that

log Z = 8
∞∑
k=1

(
log ZB

k + log ZF
k

)
= 6 π

2

6
RS1

β
nw ≡ c

π2

6
RS1

β
nw , (1.50)

where c is the central charge. The energy of the system, given by the total
momentum, is

E =
nP
RS1

= −∂β log Z = c
π2

6
RS1

β
nw . (1.51)

This allows us to find

β = RS1

√
π2

6
RS1

β
c nw . (1.52)

Now, we can compute the entropy by Legendre-transform the free energy

SF1P = log Z + βE = 2π
√
c

6 nwnP . (1.53)

To recover the entropy for the D1D5 system we need to perform the chain of
dualities back, that amounts to send (nP ,nw) to (n1,n5) and c to c = 12.

For the D1D5P system, we have to consider the D1 branes as an effective
D1 brane with winding n1n5, so that we can simply recover the result from
the previous formula as

SD1D5P = 2π√
n1n5nP , (1.54)

that reproduces the Bekenstein-Hawking entropy of the D1D5P black hole
(1.38) in the large n1, n5, nP limit.
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2 black hole information paradox in ads/cft

2.1 Information loss without evaporation

The information loss paradox becomes very sharp in AdS space [43,56]. This is
because, having as a new length scale the AdS radius ℓ, we may build “small”,
i.e. M < ℓ, and “big”, i.e. M > ℓ, AdS-black holes; while the former share
the same decaying properties as their analogues in flat spacetime, the latter
do not evaporate. In fact, a big black hole is equivalent to a black hole in a
box4 that arrives in thermal equilibrium with its atmosphere and with the
wall of the box, ceasing to emit radiation. The key point is that correlations
between field operator at large time separations computed on (any) black hole
spacetime fall off exponentially

C(t) ≡ ⟨Ō(0)O(t)⟩BH = Tr [ρ Ō(0)O(t)] ∼ e−γβt , (1.55)

where ρ is the density matrix of the black hole, O is some operator, β = 1/T
and γ some dimensionless constant whose value is irrelevant. We will explicitly
present an example in sec. 1.2.2.

But, if statistical mechanics applies to black holes, the system is an ordi-
nary quantum system with discrete energy spectrum H|n⟩ = En|k⟩, so the
Poincaré recurrence theorem applies and thus it cannot be compatible with
exponentially-decaying correlation functions. To be more precise

C(t) = Tr
[
e−βH

Z
Ō(0)O(t)

]
=
∑
n,m

e−βEn

Z
|⟨n|O|m⟩|2e−i(En−Em)t , (1.56)

where O(t) here is in Heisenberg picture; so that, time-averaging its square
on a very long time T we get [45,58]

1
T

∫ T

0
dt |C(t)|2 =

∑
n,m;n′,m′

e−β(En+En′ )

Z
|⟨n|O|m⟩|2|⟨n′|O|m′⟩|2·

·
[

1
T

∫ T

0
dt ei(En−Em+Em′ −En′ )

]
.

(1.57)

The quantity in the square brackets is a representation of a delta-function,
thus approaches 1 as T → ∞ if (En −Em+Em′ −En′) = 0, while approaches
zero otherwise; if we assume that the energy spectrum is densely spaced near
the energy that dominates the canonical ensemble, with typical spacing of
order e−S times the temperature, we have that it can be non-zero only if
En −Em = En′ −Em′ = 0 or En −En′ = Em −Em′ = 0. Thus the average is
finite in the limit T → ∞, implying that C(t) cannot decrease monotonically
to zero for large time separations.

We can estimate the typical size of C(∞) by employing the eigenstate ther-
malization hypothesis [59, 60], that states

⟨n′|O|m′⟩ = O(En)δnm + e− 1
2 S[

En+Em
2 ] f(En,Em)Rij , (1.58)

where O(E) and f(E,E′) are real smooth functions while Rij is a complex
matrix; we then have

C(t) = CD(t) +CR(t) = ⟨O2
D⟩ρ +

∑
n̸=m

e−βEn

Z
|⟨n|R|m⟩|2e−i(En−Em)t .

4 Or to impose reflecting boundary conditions at a distance that is circa 3/2 of the black hole
radius [57].
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(1.59)

If we want a decaying correlation function, we should choose an observable
whose diagonal part is vanishing. In any case, the sums run over eS states,
and Z ∼ eS−βE0 , where E0 is the expected ensemble energy. For this sum to
be convergent at small times, we expect |⟨n|R|m⟩|2 ∼ e−2S . For large times
instead, the factors e−i(En−Em)t can be effectively treated as random so that
CR(t) is a sum of e2S terms of magnitude e−2S and a random phase. The
theory of random walks predicts that

CR(t) ∼ e−2S ·
√
e2S = e−S . (1.60)

So, if black hole statistical mechanics is true, the correlators computed on
black hole geometry initially decay exponentially, but only until it reaches a
(rather small) value of ∼ e−S , when it start oscillating and it will occasionally
fluctuate back to large values due to the (quantum version of the) Poincaré
recurrence theorem. Of course all of this is in sharp contradiction with the
semiclassical computation that predicts a permanent decay up to zero.

Notice that this formulation of the information paradox afflicts even all
the black holes that do not evaporate, such as the BPS or extremal black
holes, whose temperature is exactly zero. In fact all the extremal holes have
an AdS2 factor in their near horizon geometry (for the Strominger-Vafa black
hole we have seen that there is also an AdS3 factor), and we can consider
the asymptotically flat region as a thermal bath in communication with the
AdS throat, in order to not affect the statement of the paradox5. We have
then a formulation of the paradox even for extremal black holes, that can
be treated more easily; in fact, it can be shown that, on extremal black hole
geometries, correlators decay polynomially to zero for large time separations,
again in contrast with what we expect from a unitary theory. We will prove
this assertion for a particular extremal black hole in sec. 1.2.2.

One may wonder why AdS/CFT does not solve de facto the information
paradox: we have actually shows that the boundary CFT, being unitary, does
not show decay, thus solving the paradox (at least in this formulation). Even
if this is the case, we have no control on the semiclassical computations on the
gravity side, and no comprehension whatsoever on the origin their mismatch
with the quantum computations on the CFT side; also, as shown by [45],
Maldacena’s argument in [43] for the existence of subleading saddles in the
path integral that can give rise to long-time corrections of order e−S , that is
sometimes misunderstood as sufficient for solving the paradox, it is actually
not enough for this goal [18].

We will show in part iii how it is possible to address this topic in the context
of the Fuzzball proposal, already at the supergravity level.

2.2 The decay of the 2-point function on the massless BTZ geometry

As an illustrative example on how to holographically compute a 2-point func-
tion on a black hole geometry that is also analogous to what we will do in part
iii, we will show the case of a scalar perturbation on a massless BTZ black hole.
It is well known that gravity in three spacetime dimension in somewhat special,
since it is non-dynamical and hence, purely topological6, it does not have a

5 We thank E. Martinec, G. Bossard and M. Guica for a private discussion on this topic
during a RER B trip from Ecolé Normale to Ecolé Polytechnique.

6 in D = 2 + 1 the Riemann and the Ricci have the same degrees of freedom, so imposing
Einstein equations fixes completely the Riemann tensor and then the Weyl tensor.
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Newtonian limit and it can be quantised as a double copy of a Chern-Simons
Theory [61–63]. But, most importantly for us, three-dimensional solutions
can be uplifted to ten-dimensional superstring theory [42], and, in particu-
lar, as shown in sec. 1.1, the solutions of D1D5 system are asymptotically
AdS3 × S3 × T4.

Three-dimensional gravity admits black hole solutions only in anti-de sitter
spacetime. These solutions are called BTZ black holes, due to the name of Ba-
nados, Teitelboim and Zanelli [64, 65]; these are three-dimensional equivalent
of AdS4-Kerr-Newman black holes. The generic BTZ metric is

ds2
BTZ = −f(r)dt2 + dr2

f(r)
+ r2 (dϕ−A(r)dt)2 ,

f(r) =
(r2 − r2

−)(r
2 − r2

+)

ℓ2r2 , A(r) =
r+r−
ℓr2 ,

(1.61)

where ℓ is the AdS radius; it has two horizons, located at r = r±. This black
hole has two conserved charges, the mass M and the angular momentum J ,
that are

M =
r2
+ + r2

−
ℓ2

, J =
2r+r−
ℓ

. (1.62)

There exists an extremal limit when M = J , that is when the two horizons
merge, i.e. r+ = r−, as usual in higher dimensions. More interestingly, and
peculiar to the three-dimensional case, the limit M → 0 does not reduce the
BTZ to empty AdS3; instead, we have a degenerate black hole solution called
massless BTZ black hole [65, 66], whose horizon is the point r = 0. On the
contrary, to recover the standard AdS3, we need to have M = −1 and J = 0,
so we actually have a gap between M = −1 empty solution and M = 0
massless BTZ black hole; then, AdS3 is said to have a mass gap [62].

These black hole solutions can be uplifted to be solutions of type IIB su-
pergravity as BTZ × S3 × T4; We now focus on the simplest, BPS, massless
case M = J = 0 BTZ case, and compute holographically a 2-point function
on that geometry. We know that, in the AdS/CFT correspondence, black hole
are dual to coherent sum of heavy states - i.e. states generated by the action of
operator whose conformal dimension scale as the central charge in the central
charge limit - that are states with a non-trivial back-reaction on the geome-
try; thus, via operator/state correspondence in the CFT side, we may regard
a 2-point function of a Light operator - i.e. an operator whose conformal di-
mension does not scale with the central charge - on a non-trivial geometry as
a 4-point function computed with the two light operators and the two heavy
operators that are dual to the fields that generate the non-trivial geometry,
i.e.

⟨ŌL(0)OL(z, z̄)⟩BTZ ∼ ⟨OBTZ(∞)OL(1)OL(z, z̄)OBTZ(0)⟩ , (1.63)

where OBTZ can be schematically represented as the operator defining the
state whose density matrix can be written as7 [18]

ρBTZ =
⨂
ω,κ

(∑
n

e−βωnPabs(ω,κ)|n⟩⟨n|

)
. (1.65)

7 This is the form of the density matrix that reproduces the correct energy flux result in a
band of late-time outgoing modes with width dω [67, 68]

dE
dt

=
ωdω
2π

Pabs(ω,κ)
eβω − 1

, (1.64)

where β = 1/T , κ is the Fourier mode conjugated of ϕ as ω is the Fourier mode conjugated
with t, and Pabs is the absorption probability or grey-body factor.
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OH(0)

ŌH(∞)

ŌL(1)

OL(z, z̄)

Figure 1.3: A pictorial representation of the 4-point function; the Heavy operators,
inserted at z = 0 (correspond to t = −∞) and z = ∞ (corresponding
to t = +∞), due to the state/operator correspondence, are the in- and
out- states ⟨H| and |H⟩ of the conformal scattering process. They can
be regarded as sourcing a non-trivial background supergravity solution
in the bulk, on which the supergravity field dual to the light operator
moves.

This is pictorially represented in fig. 1.3.
The massless BTZ geometry can be written as

ds2
BTZ = −r2dτ2 + r2dσ2 +

dr2

r2 , τ = t/ℓ ,σ = ϕ , σ ∼ σ+ 2π . (1.66)

We now employ the standard holographic procedure to compute the the Heavy-
Heavy-Light-Light (HHLL) correlator. Since the massless BTZ black hole can
be uplifted to be a solution of the D1D5 system in type IIB supergravity, that
is a system with an AdS3/CFT2 duality, we may look for a Light operator in
the CFT side and find its supergravity dual; for sake of simplicity here, let us
assume that an operator of that sort exists and that have a supergravity dual
that is a minimally coupled massless scalar on AdS38, i.e. it satisfies

□ϕ(τ ,σ, r) = 0 ⇒ 1
r
∂r(r

3∂rϕ) +
1
r2 (∂

2
τ − ∂2

σ)ϕ = 0 . (1.67)

We have to solve this PDE by imposing that the leading order in the large-r
expansion behave as a delta-function of the variables on the plane, so that we
can read the 2-point function from the subleading term; since holographically
m = ∆(∆ − 2) = 0 implies ∆ = 2, it will behave as9

ϕ(τ ,σ, r) ∼ δ(2)(τ ,σ) + r−2 ⟨ŌL(0)OL(τ ,σ)⟩BTZ . (1.70)

8 We will prove this statement later on, but for now the detail of the proof are irrelevant.
9 In generic D = d + 1 dimensions, a field dual to an operator with conformal weight ∆

behaves as

ϕ(z, x⃗) ∼ zd−∆ϕ0(x⃗) + z∆ϕ1(x⃗) , z → 0 , (1.68)

where we have employed the Poincaré coordinates, for which z ∼ r−1 for r → ∞. ϕ0 is
usually called the non-normalisable solution, while ϕ1 is called the normalisable solution. If
we impose the non-normalisable solution to be a delta-function, the normalisable solution
becomes the 4-point function; thus we have, in two dimensions

ϕ(τ ,σ, r) ∼ r(h+h̄)−2δ(2)(τ ,σ) + r−(h+h̄)⟨H|OL(0)ŌL(τ ,σ)|H⟩ , r → ∞ . (1.69)
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In order to solve eq. (1.67), we Fourier transform it

Φ(τ ,σ, r) =
∫ dω

2π
∑
κ∈Z

eiωτ eiκσ g(ω,κ) fκ,ω(r) , (1.71)

thus reducing the PDE to an ODE

1
r
∂r(r

3∂rf) +
ω2 − κ2

r2 f = 0 . (1.72)

This can be recast in a Modified Bessel equation via the definition

f(r) =

√
κ2 − ω2

r
ψ(r) , x =

√
κ2 − ω2

r
, (1.73)

becoming then the (Modified) Bessel equation

x2ψ′′ + xψ′ − (x2 + 1)ψ = 0 , (1.74)

whose solutions are

ψ(x) = c1I1(x) + c2K1(x) . (1.75)

Going back to the r coordinate and f function, we read

f(r) =

√
κ2 − ω2

r

[
c1I1

(√
κ2 − ω2

r

)
+ c2K1

(√
κ2 − ω2

r

)]
. (1.76)

This geometry has an horizon located at r = 0, that is a fuchsian regular
double singularity of the ODE. In standard black hole physics [17, 69], espe-
cially in the computations of quasi-normal modes, it is customary to introduce
purely-ingoing radiation at the horizon as a boundary condition; In order to
set the right boundary conditions (at r = 0 and at r = ∞) it is useful to
recall that (see [70,71]):

r → 0 , x → ∞ :

⎧⎨⎩I1(x) ≃ ex√
2π x + · · · ,

K1(x) ≃
√

π
2x e

−x + · · · ,
(1.77a)

r → ∞ , x → 0 :

⎧⎨⎩I1(x) ≃ x
2 + · · · ,

K1(x) ≃ 1
x +

x
2 log x

2 − (ψ(1) + ψ(2)) x4 + · · · .
(1.77b)

It is clear that we have to set c1 = 0 in order to have a purely-ingoing wave
at r = 0; At r = ∞ instead, we have

f(r) ≃ 1 − (1 − 2γE)
κ2 − ω2

4r2 +
κ2 − ω2

2 log
[
κ2 − ω2

2r2

]
+ · · · . (1.78)

This gives that, to have a delta-function at r = ∞, we simply impose

g(ω,κ) = 1 , (1.79)

since the Fourier-transform of a constant is a delta-function; we can then read
from the subleading r−2 term the 2-point function as

b1(τ ,σ) = −
∫

dω
2π
∑

κ

ei(ωτ+κσ)

{
(1 − 2γE)

κ2 − ω2

4 − κ2 − ω2

2 log
[
κ2 − ω2

2

]}
.
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ω

−κ

+κ

Figure 1.4: The ω-plane for the massless BTZ black hole. In red we show the branch
cuts, emerging from the points ±κ ∈ Z. In green we reported the contour
of integration for the Feynman propagator.

(1.80)

The first piece is a pure contact term. We should also notice that we can
rewrite κ2 − ω2 → i(∂2

τ − ∂2
σ) so

b1(τ ,σ) = − i

2 (∂
2
τ −∂2

σ)

∫ dω
2π
∑
κ

ei(ωτ+κσ)
{

1
2 (1 − 2γE) − log

[
κ2 − ω2

2

]}
.

(1.81)

The first term is a contact term, and we can drop it. The second term is
indeed very interesting since it has no poles but a branch cut; in the complex
ω plane, where we compute it by analytic continuation, there is a branch cut
along the Real axis, at (−∞, −|κ|) and (|κ|,+∞). This is somehow expected,
since it is known that the massless BTZ black hole does not have any quasi-
normal modes [69] (that are naturally associated to poles with non-vanishing
imaginary part), since there is no-mass scale and then it is impossible to have
ω ∼ M−1; but, being a black hole, it still have a non-trivial structure in the
phase space, and it is represented here by the presence of two branch-cuts in
the ω-plane.

We can now try to compute explicitly b1. We recall that10∫
dω eiωτ log |ω| = − π

|τ |
− 2πγEδ(τ ) , (1.83)

so that, neglecting contact terms we have to compute

b1(τ ,σ) = +
i

2 (∂
2
τ − ∂2

σ)

∫ dω
2π
∑
κ

ei(ωτ+κσ) log
[
κ2 − ω2] . (1.84)

Since the prescription is the Feynman prescription, for τ > 0 only the branch
cut on the negative real axis matter11. To easily perform the computation, we
split it three cases: κ = 0,κ > 1 and κ < 1.

10 We can obtain the Fourier transform of the log by recalling that the Fourier transform of
the Principal Value of |x|−1 is

FT

[
P

1
|x|

]
=

∫
dx eiωx

1
|x|

= −2γE − 2 log |ω| . (1.82)

11 for τ < 0 is the one on the positive real axis, but the result is evidently symmetric and we
do not need to compute it twice
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case κ > 1: here we have

I = +

∫ dω
2π

∞∑
κ=1

ei(ωτ+κσ) log
[
κ2 − ω2]

=
∞∑
κ=1

eiκσ
[∫ dω

2π e
iωτ log(κ− ω) +

∫ dω
2π e

iωτ log(κ+ ω)

]

≃
∞∑
κ=1

eiκσ
∫ dω

2π e
iωτ log(κ− ω)

= −
∞∑
κ=1

eiκ(τ+σ)
∫ dω̃

2π e
−iω̃τ log ω̃ where (ω̃ = κ− ω)

= −
∞∑
κ=1

eiκ(τ+σ)
1

2π

[
− π

|τ |
+ 2πγEδ(τ )

]
≃ − 1

2τ
1

1 − ei(σ+τ )
,

(1.85)

where we have neglected contact terms and dropped the log(ω + κ) whose
branch cut lies outside the region of integration.

case κ < 1: here we simply shift the κ ∈ (−∞, −1) to κ ∈ (1, ∞) and
recast it as the integral done above:

II = +

∫ dω
2π

−1∑
κ=−∞

ei(ωτ+κσ) log
[
κ2 − ω2]

= +

∫ dω
2π

∞∑
κ=1

ei(ωτ−κσ) log
[
κ2 − ω2]

≃ − 1
2τ

1
1 − ei(τ−σ) ,

(1.86)

where, again, we have neglected contact terms and dropped the log(ω + κ)
whose branch cut is outside the region of integration.

case κ = 0: here we obtain the result as the limit with κ → 0 of the
above result in order to do not count twice the contribute in κ = 0:

III = lim
ε→0

∫ dω
2π
∑
κ

eiωτ log [ε− ω]

≃ +
1
2τ ,

(1.87)

where we neglected again contact terms.

the total b1 (τ , σ ): So adding all together we get

⟨O(0) Ō(τ ,σ)⟩BTZ − (∂2
τ − ∂2

σ)

[
1

2iτ

(
1

1 − ei(σ+τ )
+

1
1 − ei(σ−τ ) − 1

)]
.

(1.88)

It is evident from here that, for τ → ∞, the correlator decays polynomially
in time; this is a minor difference with the massive case, where it decays
exponentially - due to the presence of non vanishing quasi-normal modes [72].



2 black hole information paradox in ads/cft 23

This is traceable back to the presence of a point-size horizon, instead of a
macroscopic one. Also, notice that, if we define w = σ− τ , w̄ = σ+ τ we may
rewrite eq. (1.88) as eq. (2.14) of [72]

⟨O(0) Ō(w, w̄)⟩BTZ =
1

4(w− w̄)2

[
1

sin2 w
2
+

1
sin2 w̄

2
−

4 sin w−w̄
2

(w− w̄) sin w
2 sin w̄

2

]
.

(1.89)





2
T H E F U Z Z B A L L P RO P O S A L

As already emerged in the discussion of the Strominger-Vafa black hole in
sec. 1.1, one of the most relevant frameworks for the study of black hole
physics in string theory is the D1D5 system [42,73] that, on the gravity side,
it is a type IIB supergravity system with n1 D1 branes and n5 D5 branes in
a geometry that is asymptotically R(1,4) × S1 × T4; the D5 branes wrap the
S1 × T4, while the D1 wrap the common S1. The system has a so-called decou-
pling region where the geometry is asymptotically AdS3 × S3 and, by virtue
of the AdS/CFT correspondence, it is dual to a superconformal field theory,
often dubbed as D1D5 CFT. This is a N = (4, 4) SCFT with supercurrents
(G±±

n , G̃±±
n ) and with an affine SO(4)R ≃ SU(2)L × SU(2)R R-symmetry

algebra (Jan , J̃an), that corresponds in the gravity side to the rotation of the
S3; there exists a special locus in the D1D5 moduli space where the theory
can be described as a two dimensional non-linear sigma model whose target
space is (T4)N/SN , where SN is the permutation group of order N = n1n5.
It is important to recall that the states of an orbifold theory split into dif-
ferent twist sectors that can be described as a collection of effective strings
- or “strands” - of different winding number, with the constraint that the to-
tal winding must be equal to N . As explained in sec. 1.1, one of the most
successful achievements of String Theory was the computation of the num-
ber of string microstates of a D1D5 Black Hole and its matching with its
Bekenstein-Hawking entropy [33]. Motivated by this, the Fuzzball program
aim is to explicitly construct those microstates.

1 the d1d5 cft

1.1 The Free orbifold point SCFT

The theory we are interested in is often dubbed D1D5 CFT [42,73–75] that is
the dual theory of the type IIB system whose asymptotics is AdS3 × S3 × T4

we encountered in chap. 1, and it is a two dimensional superconformal field
theory with N = (4, 4) supercharges and a SO(4)R ≃ SU(2)L × SU(2)R R-
symmetry group which is holographically identified with the rotations of the
S3; there is also a global SO(4)I ≃ SU(2)1 × SU(2)2 “custodial” symmetry
group associated to the rotation of the compact T4 whose spinorial represen-
tations are also useful to label the fields in the theory. The D1D5 CFT at a
special point of its moduli space, called free orbifold point1, can be described
as a non-linear sigma model with target space (T4)N/SN , where SN is the
permutation group with N element and where N = n1n5, with n1 is the
number of D1 branes and n5 is the number of D5 brane in the supergravity
construction; its central charge is

c = 6n1n5 = 6N . (2.1)

It is then useful to visualize the CFT states by representing the N copies,
labelled by an integer index (r), as N strings, on which four bosons and four

1 For the discussion of the SCFT at the free orbifold point, we will follow the notation
of [3, 74,76–78].

25
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1

N

(a)

1

k

⇓twist

k

(b)

Figure 2.1: (a) The CFT at the orbifold point can be thought of as made of N copies,
each of which contains 4 free bosons and 4 free fermions. Each circle in
the figure corresponds to a single copy. (b) A twist field intertwines k
copies into a single strand of length k.

fermions live; labelling with α, α̇ = ± the spinorial indexes of the R-symmetry
group, with A, Ȧ = 1, 2 the spinorial indexes of the SO(4)I group, they are(

XAȦ
(r) (z, z̄) , ψαȦ(r) (z) , ψ̃α̇Ȧ(r) (z̄)

)
. (2.2)

The D1D5 CFT contains also twist operators that glue together k copies of
the free field into a single strand on length k. This implies that a generic state
in the CFT consists in a product of Nki strands with length ki, such that the
total winding is N , i.e.∑

i

∑
ki

kiNki = N . (2.3)

The first thing to set up is the picture of the target space: having the peculiar
orbifold (T4)N/SN , we can see it as n1n5 = N copies of a T4, modded out
by the identification SN ; on any copy we have a string, or strand, wrapped on
it.

To recap, this SCFT is a (1+ 1)-dimensional free theory with field content
made of(

XȦA
(r) (τ ,σ), ψαȦ(r) (τ + σ), ψ̃α̇Ȧ(r) (τ − σ)

)
(2.4)

where r = 1, . . . ,n1n5 is the strand index, (τ ,σ) the 1+ 1 dimension, and the
index notation is

SU(2)L : (α,β), SU(2)R : (α̇, β̇),
SU(2)1 : (A,B), SU(2)2 : (Ȧ, Ḃ),

(2.5)

where we recall that

SO(4)R ≃ SU(2)L × SU(2)R , SO(4)I ≃ SU(2)1 × SU(2)2 . (2.6)

We can wick rotate to euclidean signature via τ → −iτE and then pass
from the cylinder, where σ ∼ σ+ 2π, to the plane via

z = eτE+iσ , z̄ = eτE−iσ . (2.7)

From the CFT point of view will be more useful to write the elementary
bosonic fields as ∂X (∂̄X) for their holomorphic (anti-holomorphic) properties,
as (

∂XȦA
(r) (z), ∂̄X

ȦA
(r) (z̄), ψ

αȦ
(r) (z), ψ̃

α̇Ȧ
(r) (z̄)

)
. (2.8)
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We will start our discussion describing the untwisted sector of the SCFT,
i.e. where all the N strands are completely independent, and is actually re-
alised as fig. 2.1(a), with N strands of length 1, i.e. singly winded. The twisted
sector, on the contrary, has multiple strands glued together.

The CFT is described fully by the Operator Product Expansion (OPE) of
the fundamental fields

ψ1Ȧ
(r)(z)ψ

2Ḃ
(s) (w) =

εȦḂ δrs
z −w

+ · · · , (2.9a)

ψ̃1̇Ȧ
(r)(z̄) ψ̃

2̇Ḃ
(s) (w̄) =

εȦḂ δrs
z̄ − w̄

+ · · · , (2.9b)

∂XAȦ
(r) (z) ∂X

BḂ
(s) (w) =

εAB εȦḂ δrs
(z −w)2 + · · · , (2.9c)

∂̄XAȦ
(r) (z̄) ∂̄X

BḂ
(s) (w̄) =

εAB εȦḂ δrs
(z̄ − w̄)2 + · · · , (2.9d)

where ε12 = ε1̇2̇ = −ε12 = −ε1̇2̇ = +1, and where the · · · represents the
regular part of the OPE. These are standard normalisation of the OPE for the
fundamental bosonic and fermionic fields (see, for example, [79]). From here we
can build the currents operator, i.e. the stress energy tensor, the supercurrents
and the local SU(2)L,R R-symmetry currents. In order to do so we have to
sum over all strands. The difference in single winded vs multi-winded case will
be how the sum rearrange; we will see that in the multi-winded case we can
diagonalize the sector.

1.1.1 The Currents of the SCFT and their OPE

The way to define the currents is the following: for the stress energy tensor,
the usual sum of bosonic and fermionic contribution

T (z) =
N∑
r=0

T(r)(z) ,

T(r)(z) ≡ 1
2 εAB εȦḂ :∂XAȦ

(r) (z) ∂X
BḂ
(r) (z) : +

1
2 εαβ εȦḂ :ψαȦ(r) (z) ∂ψ

βḂ
(r)

(z) : .

(2.10)

The left-moving R-symmetry currents on the other side are, on each strand,

J+
(r)

≡ +
1
2 εȦḂ :ψ1Ȧ

(r)ψ
1Ḃ
(r) : , (2.11a)

J−
(r)

≡ −1
2 εȦḂ :ψ2Ȧ

(r)ψ
2Ḃ
(r) : , (2.11b)

J3
(r) ≡ −1

2

(
εȦḂ :ψ1Ȧ

(r)ψ
1Ḃ
(r) : −1

)
, (2.11c)

where we will label them as Ja(z), a = +, −, 3. For any of them there is of
course the Right moving counter part. The last currents are the supercurrents

GαA(z) ≡
N∑
r=1

:∂XAȦ (r) ψ
αA
(r) : ,

G̃αA(z) ≡
N∑
r=1

: ∂̄XAȦ (r) ψ̃
α̇A
(r) : ,

(2.12)
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Now, using the OPE rules (2.9a) we obtain the OPE between the currents:

T (z)T (w) =
c/2

(z −w)4 + 2 T (w)

(z −w)2 +
∂T (w)

z −w
+ · · · , (2.13a)

T (z)Ja(w) =
Ja

(z − 2)2 +
∂Ja

z −w
+ · · · , (2.13b)

T (z)GαA =
3
2

GαA

(z −w)2 +
∂GαA

z −w
+ · · · , (2.13c)

Ja(z)Jb(w) =
c

12
δab

(z −w)2 + iεabc
Jc(w)

z −w
+ · · · , (2.13d)

Ja(z)GαA(w) =
1
2 (σ

∗a)αβ
GβA(w)

z −w
+ · · · , (2.13e)

GαA(z)GβB(w) = − c

3
εABεαβ

(z −w)3

+ εABεβγ(σ∗a)αγ

[
2Ja(w)
(z −w)2 +

∂Ja(w)

z −w

]
− εABεαβ

T (w)

z −w
+ · · · . (2.13f)

where we have used the OPE between the currents and the Fields:

T (z)∂XAȦ(w) =
∂XAȦ(w)

(z −w)2 +
∂2XAȦ

(z −w)
+ · · · , (2.14a)

T (z)ψαȦ(w) =
1
2
ψαȦ(w)

(z −w)2 +
∂ψαȦ(w)

z −w
+ · · · , (2.14b)

Ja(z)∂XAȦ(w) = · · · , (2.14c)

Ja(z)ψαȦ(w) =
1
2 (σ

∗a)αβ
ψβȦ(w)

z −w
+ · · · , (2.14d)

GαA(z)∂XBḂ(w) = εAB

(
ψαḂ(w)

(z −w)2 +
∂ψαḂ(w)

z −w

)
+ · · · , (2.14e)

GαA(z)ψβȦ(w) = εαβ
∂XAȦ(w)

z −w
+ · · · . (2.14f)

1.1.2 Mode Expansion and the Global Supergroup SU(1, 1|2)

From here we can read the Global Symmetry group of our free orbifold SCFT
and how the fundamental fields transform under its action. We define the
mode expansion of an operator according to its weight as

Om =

∮ dz
2πi O(z) z∆+m−1 ⇐⇒ O(z) =

∑
m

Om z
−(∆+m) , (2.15)

where the weight may be read off from the OPE of the Operator with T (z). All
the subtleties in the definitions of the mode (i.e. NS vs R sector; single winded



1 the d1d5 cft 29

vs multi-winded) lie in the definition of the sum over m. We will postpone the
discussion of this fact to the following subsections. We find the algebra

[Lm,Ln] = (m− n)Lm+n +
c

12m(m2 − 1)δm+n,0 , (2.16a)

[Lm, Jan ] = −nJam+n , (2.16b)

[Lm,GαAn ] =
(m

2 − n
)
GαAm+n , (2.16c)

[Jam, Jbn] = iεabcJ
c
m+n +

c

12 mδabδm+n,0 , (2.16d)

[Jam,GαAn ] =
1
2 (σ

∗a)αβG
βA
m+n , (2.16e)

{GαAm ,GβBn } = − c

6

(
m2 − 1

4

)
εABεαβδm+n,0

+ (m− n)εABεβγ(σ∗a)αγJ
a
m+n − εABεαβLm+n .

(2.16f)

As usual for a CFT2 algebra, this algebra has a global well defined subalgebra
that is anomaly-free. The generators of this subalgebra are{

L0,L±, Ja0 ,GαA± 1
2

}
, (2.17)

and the resulting subalgebra spans the algebra of the supergroup SU(1, 1|2)L,R.
Its cartan subalgebra is {L0, J3

0 } and so we can classify the states by their
eigenvalues (h,m). Also, ȷ will be the eigenvalue of the Casimir J2 ≡ JaJa.

1.1.3 The Short Multiplets of SU(1, 1|2)

In the context of AdS/CFT correspondence will be useful the short multiplets
of SU(1, 1|2). To build them we define the states |ϕ⟩ that satisfy

Chiral : G+A
− 1

2
|ϕ⟩ = 0 ⇒ h = ȷ . (2.18)

and dub them as chiral states. We recall that a Virasoro primary |χ⟩ is killed
by all the positive Virasoro generators, i.e.

Primary : Ln|χ⟩ = 0 , ∀n > 0. (2.19)

Finally, a global primary is defined by

Global Primary : L+1|ψ⟩ = GαA
+ 1

2
|ψ⟩ = 0 . (2.20)

If a state is both Primary and Chiral, is called Chiral Primary; its correspon-
dent operator - by operator-state correspondence of CFT - is called Chiral
Primary Operator (CPO).

These CPOs are of the most importance: they are the analogue of the high-
est weight state for SU(2), their energies and their 2- and 3-point functions
are protected as one moves in the moduli space and their supergravity dual
is well defined. Also they saturate the relation h ≥ m, i.e. they have h = m.
So CPO are also the highest weight states of the SU(2)L,R multiplet with
h = ȷ = m.

Another important feature is that supergravity fields can be identified as
the anomaly-free subalgebra descendants of CPO, i.e. CPO on which we act
with only L−1, J−

0 ,G−A
− 1

2
.
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state h ȷ m

CP |c⟩ h h h

P G−A
− 1

2
|c⟩ h+ 1

2 h− 1
2 h− 1

2

S (G−1
− 1

2
G−2

− 1
2
+ 1

2h J
−
0 L−1)|c⟩ h+ 1 h− 1 h− 1

Table 2.1: Here we show the basic structure of a short multiplet. The CP stands
for Chiral Primary state, the P for Virasoro Primary and S stands for
SL(2, R) primary. Further explanation in the text.

Now we describe how to obtain the short multiplet: in every strand there
is a minimal weight CPO; we can apply to it at most two different fermionic
modes and obtain 3 more chiral primaries, i.e.

|0⟩ , ψ+Ȧ
− 1

2
|0⟩ , ψ+1̇

− 1
2
ψ+2̇

− 1
2
|0⟩ . (2.21)

Each of these CPO will give rise to a distinct short multiplet. We can build
from any of them - called a representative of the class |c⟩ - with three different
operators, obtaining four different states2:

|c⟩ , G−1
− 1

2
|c⟩ , G−2

− 1
2
|c⟩ ,

(
G−1

− 1
2
G−2

− 1
2
+

1
2h J

−
0 L−1

)
|c⟩ . (2.23)

Finally, we can act as many times as we want on them with L−1, obtaining
the so-called Virasoro descendants of the CPO. Finally, we can span all the
SU(2) multiplet acting with J−

0 . The results is summarized in tab. 2.1.

1.2 Untwisted Sector (k = 1)

1.2.1 Monodromy Conditions and Mode expansion

Having only single winded strands means that the monodromy conditions we
have to impose are σ → σ + 2π on the cylinder or z → e2πi z on the plane.
This gives for the Bosons

Cylinder : XAȦ
(r) (τE ,σ+ 2π) = XAȦ

(r) (τE ,σ),

Plane :

⎧⎪⎨⎪⎩∂X
AȦ
(r) (e

+2πiz) = ∂XAȦ
(r) (z),

∂̄XAȦ
(r) (e

−2πiz̄) = ∂̄XAȦ
(r) (z̄).

(2.24)

The Fermions on the other hand are allowed to have either Ramond (R) or
Neveu-Schwarz (NS) boundary conditions that are reported in tab. 2.2.

It corresponds, on the Cylinder, as

R : ψαA(r) (τE ,σ+ 2π) = +ψαA(r) (τE ,σ) ,

NS : ψαA(r) (τE ,σ+ 2π) = −ψαA(r) (τE ,σ) ;
(2.25)

2 The last odd operators come from the fact that

L1J
+
0 (G−1

− 1
2
G−2

− 1
2

|c⟩) = L1(G
+1
− 1

2
G−2

− 1
2
+G−1

− 1
2
J+

0 G
−2
− 1

2
)|c⟩

= −L1L−1|c⟩
= −2h|c⟩ ,

(2.22)

that means that part of two applications of the supercurrents is equivalent to applying
J−

0 L−1.
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Cylinder Plane
R Periodic Antiperiodic
NS Antiperiodic Periodic

Table 2.2: Cylinder vs plane conditions for R and NS boundary conditions.

while, on the Plane,

R : ψαA(r) (e
+2πiz) = −ψαA(r) (z) ,

NS : ψαA(r) (e
−2πiz̄) = +ψαA(r) (z̄) .

(2.26)

We recall again that Cylinder and Plane has opposite definitions for the peri-
odicity of R and NS sectors.

We can then Laurent-expand the fundamental Bosons

∂XAȦ
(r) (z) =

∑
n∈Z

αAȦ(r)nz
−n−1 , ∂̄XAȦ

(r) (z̄) =
∑
n∈Z

α̃AȦ(r)nz̄
−n−1 , (2.27)

and the fundamental Fermions

R : ψαA(r) (z) =
∑
n∈Z

ψαȦ(r)nz
−n− 1

2 , ψ̃α̇A(r) (z) =
∑
n∈Z

ψ̃α̇Ȧ(r)nz̄
−n− 1

2 ,

NS : ψαA(r) (z) =
∑

n∈Z+ 1
2

ψαȦ(r)nz
−n− 1

2 , ψ̃α̇A(r) (z) =
∑

n∈Z+ 1
2

ψ̃α̇Ȧ(r)nz̄
−n− 1

2 .

(2.28)

The OPE (2.9a) gives the algebra for the modes, both Bosonic[
αAȦ(r)n ,αBḂ(s)m

]
= εABεȦḂ n δn+m,0δrs,

[
α̃AȦ(r)n , α̃BḂ(s)m

]
= εABεȦḂ n δn+m,0δrs,

(2.29)

and Fermionic (in both sectors they are the same){
ψ1Ȧ
(r)n ,ψ2Ḃ

(r)m

}
= εȦḂδn+m,0δrs ,

{
ψ̃1Ȧ
(r)n , ψ̃2Ḃ

(r)m

}
= εȦḂδn+m,0δrs . (2.30)

1.2.2 Vacuum states

We now build the vacuum states. For the Bosonic sector we define the vacuum
|0⟩(r) as the state annihilated by all the positive modes of the bosons3:

αAȦ(r)n|0⟩(r) = α̃AȦ(r)n|0⟩(r) = 0 , ∀n ≥ 0 , ∀A, Ȧ . (2.32)

Moving to the Fermions, for the NS sector everything work out more or
less to be the same as the bosonic one; The vacuum |0⟩(r)NS is defined as

ψαȦ(r)n|0⟩(r)NS = 0 , ψ̃α̇Ȧ(r)n|0⟩(r)NS = 0 , ∀n > 0 , ∀α, α̇, Ȧ . (2.33)

In the R sector, on the other hand, works differently since fermions do
have zero modes in their expansion, and half of them annihilate the vacuum
while the other half does not. So we have a vacuum |0⟩(r)R defined as

ψαȦ(r)n|0⟩(r)R = 0 , ψ̃α̇Ȧ(r)n|0⟩(r)R = 0 , ∀n > 0 , ∀α, α̇, Ȧ , (2.34)

3 Here the strands are all independent and then we assume that

(r)⟨0|0⟩(s) = δrs . (2.31)
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but we have also another vacuum |++⟩(r)R such that

ψ1Ȧ
(r)0 |++⟩(r)R = 0 , ψ̃1̇Ȧ

(r)0 |++⟩(r)R = 0 . (2.35)

We can act on them with zero modes that does not annihilate those vacua;
this means that we have a family of non-degenerate vacua generated by apply-
ing to |++⟩(r)R the operators ψ2Ȧ

(r)0 ,ψ2̇Ȧ
(r)0. This means that, in the untwisted

sector, we have 16 non-equivalent vacua per each strand, that are labelled by
their R-symmetry charge under Left and Right SU(2) groups and/or their
quantum number under the “custodial” SU(2)1 × SU(2)2; they are then4

|αα̇⟩1 , |αȦ⟩1 , |Ȧα̇⟩1 , |ȦḂ⟩1 . (2.36)

1.3 Twisted Sector (k > 1)

1.3.1 Monodromy conditions and Mode Expansion:

Here we describe the twisted sector; to have a pictorial image in mind, recall
fig. 2.1(b). Here we sew togheter k strands of length 1 in a single strand of
length k; this gives a non trivial monodromy to the fields. In the most general
case we can have M strands of length ki such that

∑M
i=1 ki = N .

In this case, going around the center one time brings the field to the adjacent
strand glued together, similarly at what happens in a Riemann sheet:

∂XAȦ
(r) (e

+2πiz) = ∂XAȦ
(r+1)(z) , ∂̄XAȦ

(r) (e
−2πiz̄) = ∂̄XAȦ

(r+1)(z̄), (2.37)

We can anyway diagonalize the system rearranging the fields in a linear
combination of fields on different copies, i.e. redefining the base of the strands,
from r = 1, . . . , k to ρ = 0, . . . , k− 1 via

∂X11̇
ρ (z) =

1√
k

k∑
r=1

e−2πi rρ
k ∂X11̇

(r)(z), ∂X
22̇
ρ (z) =

1√
k

k∑
r=1

e+2πi rρ
k ∂X22̇

(r)(z),

(2.38a)

∂X12̇
ρ (z) =

1√
k

k∑
r=1

e+2πi rρ
k ∂X12̇

(r)(z), ∂X
21̇
ρ (z) =

1√
k

k∑
r=1

e−2πi rρ
k ∂X21̇

(r)(z),

(2.38b)

∂̄X11̇
ρ (z̄) =

1√
k

k∑
r=1

e+2πi rρ
k ∂̄X11̇

(r)(z̄), ∂̄X
22̇
ρ (z) =

1√
k

k∑
r=1

e−2πi rρ
k ∂̄X22̇

(r)(z̄),

(2.38c)

∂̄X12̇
ρ (z̄) =

1√
k

k∑
r=1

e−2πi rρ
k ∂̄X12̇

(r)(z̄), ∂̄X
21̇
ρ (z) =

1√
k

k∑
r=1

e+2πi rρ
k ∂̄X21̇

(r)(z̄).

(2.38d)

4 Sometimes it is useful to denote the vacuum state with its left and right R-charges, so
we may split the four states |ȦḂ⟩1 in the irreducible representations of singlet and triplet
under the custodial symmetry as |00⟩1 = εȦḂ |ȦḂ⟩1 and |00⟩(ȦḂ)

1 .
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Now we have the diagonalized monodromy relations

∂X11̇
ρ (e+2πiz) = e+2πi ρk ∂X11̇

ρ (z), ∂X22̇
ρ (e+2πiz) = e−2πi ρk ∂X22̇

ρ (z),
(2.39a)

∂X12̇
ρ (e+2πiz) = e−2πi ρk ∂X12̇

ρ (z), ∂X21̇
ρ (e+2πiz) = e+2πi ρk ∂X21̇

ρ (z),
(2.39b)

∂̄X11̇
ρ (e−2πiz̄) = e−2πi ρk ∂̄X11̇

ρ (z̄), ∂X22̇
ρ (e−2πiz̄) = e+2πi ρk ∂X22̇

ρ (z̄),
(2.39c)

∂̄X12̇
ρ (e−2πiz̄) = e+2πi ρk ∂̄X12̇

ρ (z̄), ∂̄X21̇
ρ (e−2πiz̄) = e−2πi ρk ∂̄X21̇

ρ (z̄),
(2.39d)

The mode expansions are obtained from the untwisted case with the appro-
priate substitution n → n± ρ

k .
For the fermions we have to distinguish again between R and NS sector. For

the R sector we have again

ψαȦ(r) (e
2πiz) = ψαȦ(r+1)(z) , ψ̃α̇Ȧ(r) (e

−2πiz̄) = ψ̃α̇Ȧ(r+1)(z̄) . (2.40)

We can again diagonalize with a change of basis in analogy with the bosonic
case. In the diagonalized frame if we go around the origin k times we get

ψαȦρ (e2πikz) = (−1)k ψαȦρ (z) , ψ̃α̇Ȧρ (e−2πik z̄) = (−1)k ψ̃α̇Ȧρ (z̄) . (2.41)

For the NS sector we have the same monodromies on the (r) basis, but
with the opposite identification at the end

ψαȦ(k+1) = (−1)k+1ψαȦ(1) , ψ̃α̇Ȧ(k+1) = (−1)k+1ψ̃α̇Ȧ(1) , (2.42)

so we need to change the diagonalization procedure with

(r) → ℓ , ℓ = −k− 1
2 , −k− 1

2 + 1, · · · , k− 1
2 . (2.43)

At the end of the procedure going around the origin k times will give

ψαȦℓ (e2πikz) = (−1)k+1 ψαȦℓ (z) , ψ̃α̇Ȧℓ (e−2πik z̄) = (−1)k+1 ψ̃α̇Ȧℓ (z̄) . (2.44)

1.3.2 Vacuum States

The vacua of the twisted sector are very close to the one of the untwisted sector,
having in mind that we have different monodromy conditions discussed above.
Again, the bosonic vacuum is

αAȦ(ρ)n|0⟩k = α̃AȦ(ρ)n|0⟩k = 0 , ∀n ≥ 0 , ∀A, Ȧ . (2.45)

In the NS sector, we have only |0⟩k with again

ψαȦ(ℓ)n|0⟩k, NS = 0 , ψ̃α̇Ȧ(ℓ)n|0⟩k, NS = 0 , ∀n > 0 , ∀α, α̇, Ȧ . (2.46)

In the R sector instead, we have again, as in the untwisted sector, 16 vacua

|αα̇⟩k , |αȦ⟩k , |Ȧα̇⟩k , |ȦḂ⟩k , (2.47)

such that

ψαȦ(ρ)n|0⟩k, R = 0 , ψ̃α̇Ȧ(ρ)n|0⟩k, R = 0 , ∀n > 0 , ∀α, α̇, Ȧ . (2.48)
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while5

ψ1Ȧ
(ρ)0 |++⟩k, R = 0 , ψ̃1̇Ȧ

(ρ)0 |++⟩k, R = 0 . (2.50)

The other states - i.e. the one with the minus - are obtained from |++⟩k, R
acting with J−, J̃− defined on a length k strand.

1.4 Bosonization

As usual for a (1 + 1)-dimensional CFT, we can bosonize the fermion fields
[75,77–79] following the rule

ψ+1̇
(r)

= i :eiH(r)(z) : , ψ−2̇
(r)

= i :e−iH(r)(z) : ,

ψ+2̇
(r)

= i :eiK(r)(z) : , ψ−1̇
(r)

= i :e−iK(r)(z) : ,
(2.51)

with the following OPE

H(r)(z)H(s)(w) = −δrs log(z −w) + · · · ,

K(r)(z)K(s)(w) = −δrs log(z −w) + · · · .
(2.52)

Following [79] we have

:eiαH(r)(z) : :eiβH(r)(w) := (z −w)−αβ :ei(αH(r)(z)+βH(r)(w)) : . (2.53)

1.4.1 Spectral Flow

The bosonization is useful since it can be used to define an operator that maps
the fermions’ NS vacuum to the R vacuum: the Spectral Flow. On a length 1
strand it is defined as

|++⟩(r) = lim
z→0

e
i
2 (H(r)(z)+K(r)(z)+H̃(r)(z̄)+K̃(r)(z̄))|0⟩(r),NS . (2.54)

The generalization to N single winded strands is straightforward:
N⨂
r=1

|++⟩(r) =
N⨂
r=1

[
lim
z→0

e
i
2 (H(r)(z)+K(r)(z)+H̃(r)(z̄)+K̃(r)(z̄))|0⟩(r),NS

]
. (2.55)

The spectral flow will play an important role in the following, when it will
turn out to be useful to reconstruct all-light 4-point functions from the Heavy-
Heavy-Light-Light ones.

From the definitions of currents in terms of the elemetantary fields, ex-
plained in sec. 2.1.1.1, we may see how the spectral flow acts on them, and
then see how it changes the elementary charges of the state; in fact it turns
out that [4, 74,78]

Ln ↦→ Ln+J3
m+

1
4 δm,0 , J3

m ↦→ J3
m− 1

2 δm,0 , Jmm ↦→ J±
m∓1 , G±,A

m ↦→ G±,A
m± 1

2
.

(2.56)

In general, the spectral flow in a CFT is a local transformation on oper-
ators that leaves the N = (4, 4) algebra invariant. It is defined as a finite
transformation generated by the J3(z), J̃3(z̄) with angles given by

η(z) = iα log z , η̄(z̄) = iᾱ log z̄ , (2.57)
5 Of course we have also

ψαȦ(ρ)n |++⟩k, R = 0 , ψ̃α̇Ȧ(ρ)n |++⟩k, R = 0 , ∀n > 0 , ∀α, α̇, Ȧ . (2.49)
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where α, ᾱ are the units of spectral flow. So the generalization of eq. (2.56) is

Ln ↦→ Ln − αJ3
m +

cα2

24 δm,0 ,

J3
m ↦→ J3

m − cα

12 δm,0 , Jmm ↦→ J±
m±α ,

G±,A
m ↦→ G±,A

m±α
2

;

(2.58)

this means that the charges of the state change as

h ↦→ h+ αm+
cα2

24 , m ↦→ m+
cα

12 . (2.59)

To recover the result (2.56), we have used c = 6 and imposed α = −1. The
α = −1 case is of special interest, since in this case fermions transforms as
ψ±Ȧ(z) ↦→ z± 1

2ψ±Ȧ(z) changing the periodicity conditions, sending states
from NS to R (and viceversa). It is important to notice then that, taking four
chiral primaries in the NS untwisted sector

|0⟩ , ψ+Ȧ
− 1

2
|0⟩ , ψ+1̇

− 1
2
ψ+2̇

− 1
2
|0⟩ , (2.60)

using the spectral flow rules, we can see that the four states above goes into
four R states with h = 1/4 with and SU(2)L charge; joining then left and
right sector in all possible way we map 16 chiral primary states in the NS
sector into the 16 R ground states

|αα̇⟩ , |αȦ⟩ , |Ȧα̇⟩ , |ȦḂ⟩ . (2.61)

One of the most relevant examples of these mapping is that the NS vacuum
is mapped into the maximally spinning R ground state, i.e.

|0⟩ ↦→ |++⟩ . (2.62)

1.5 Useful operators

We now list some families of composite operators that will be relevant in the
discussion; later on, for each of these operators that are also CPO, we will
discuss their holographic dual in the supergravity side.

1.5.1 Twist fields

We will discuss here the twist operators, i.e. operators that acts on a tensor
product of k strand to give a single strand with a length that is the sum of
the lengths of the original strands, sewing them together. We start defining
the fundamental twist operators σXk , σXk in the bosonic sectors as

lim
z,z̄→0

σXk (z)σXk (z̄)
[
⊗k
r=1|0⟩(r)

]
= |0⟩k , (2.63)

with conformal dimension and spin

(h,m) =

(
k2 − 1

6k , 0
)

. (2.64)

In the NS fermionic sector instead we define the fundamental twist field
Σk(z, z̄) as

lim
z,z̄→0

Σk(z, z̄)
[
⊗k
r=1|0⟩(r)

]
= |0⟩k , (2.65)
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so that its conformal dimension and spin are

(h,m) =

(
1
12

(
k− 1

k

)
, 0
)

. (2.66)

In the R sector, since we have multiple vacua that carries R-charges, we need
to have a multiplet of twists that are R-charged, Σα1α̇2

k (z, z̄), and the highest
weight of the multiplet has

(h,m) =

(
(k− 1)(2k− 1)

6k , k− 1
2

)
, (2.67)

where the indexes α1α̇2 transform in a
(
k−1

2 , k−1
2

)
representation of SU(2)L×

SU(2)R.

1.5.2 other CPOs

Another relevant family of operators with ∆ = h+ h̄ = 1 that will be relevant
in the following are

Oαα̇Fer(z, z̄) =
N∑
r=1

Oαα̇(r)(z, z̄) =
N∑
r=1

−iεȦḂ√
2N

ψαȦ(r) (z)ψ̃
α̇Ȧ
(r) (z̄) , (2.68)

that is CPO and has (h, h̄) =
(1

2 , 1
2
)
. It is worth noticing that its action on

the highest R vacua is

lim
z→0

O∓∓
(r)

(z, z̄) |±±⟩(r) = |00⟩(r) . (2.69)

These operators are often referred as “fermionic operators” since they are
made with two fermions, to distinguish them to the “bosonic operators” that
we are going to describe. These have (h, h̄) = (1, 1) and are made with two
bosons per strand as

OABBos(z, z̄) =
N∑
r=1

εȦḂ√
2N

∂XAȦ
(r) (z)∂̄X

BḂ
(r) (z̄). (2.70)

These bosonic operators are superdescendants of the fermionic ones; in fact,
since [2, 78]∮

w∼z

dw
2πi

√
wG1

1(w)ψ
2Ċ(z) =

√
z ∂X1Ė(z)ε

ĖĊ ,

∮
w∼z

dw
2πi

√
wGAα (w)∂X

BḂ(z) = δBA∂z

(√
z ψαḂ(z)

)
,

(2.71)

so

∂XAȦ(z)∂̄XBḂ(z̄) = −
∮

w∼z

dw
2πi

∮
w̄∼z̄

dw̄
2πi |w|G2

A(w)G̃2̇
B(w̄)ψ1

Ȧ(z)ψ̃1̇
Ḃ(z̄), (2.72)

that relates the two operators. We have raised and lowered the capital latin
letter indexes with εȦḂ . We may now construct operators with different
flavours; we have chosen in eq. (2.68) the anti-symmetric combination over
the custodial-symmetry indexes - i.e. we picked the singlet combination. We
may select a different configuration, e.g.

Oαα̇(z, z̄) = − i√
N

N∑
r=1

ψα1̇(z)ψ̃α̇1̇(z̄). (2.73)
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We also know that we have a custodial SU(2)1 ×SU(2)2 symmetry, so we may
build a light operator that is a scalar under the Kac-Moody SU(2)L×SU(2)R
and has a decomposable representation under the custodial symmetry, as

OȦḂ(z, z̄) = − i√
2N

N∑
r=1

εαα̇ψ
αȦ(z)ψ̃α̇Ḃ(z̄); (2.74)

similarly, we may have a different “flavour” by building operators involving
the twist fields described above, as

Oαα̇(z, z̄) =
∑
r>s

√
2

N(N − 1) Σαα̇(rs) , (2.75)

where Σαα̇(rs) is the R-charged twist operator of dimension k = kr + ks that
glues together the r-th and s-th strands [80]. These operators are of different
“flavour” both from the custodial-symmetric point of view as well as from the
point of view of the dual supergravity side, since these operators are dual to
different multiplets in the gravity side [81,82].

All of the above are examples of Light operators [2, 4, 77, 78, 83], that are
defined on one single strand, and on the orbifold can be described by a sym-
metrized sum of the schematic form

OL(z, z̄) =
N∑
r=1

1⊗ · · · ⊗O(r)(z, z̄) ⊗ · · · ⊗ 1 , (2.76)

so that their conformal dimension ∆ = h+ h̄ is the same as the one of the
operator defined on the single strand, and thus remains small w.r.t. N . In
the following paragraph we will encounter examples of Heavy states, that on
the contrary are products of non-trivial operator on any single strand of the
schematic form

OH =
∑⨂

r

O(r) , (2.77)

and thus their conformal dimension scales as N , i.e. is of the same order of
the central charge c = 6N of the theory.

1.5.3 1
4 - and 1

8 -BPS Heavy States

We have already see that, in the R sector, we have 16 different vacuum states
for each strand, both in the untwisted and twisted sector, labelled by their
left and right R-charges and custodial-symmetry charges; in order to build a
state of the ordifold we need to put together these vacuum states, such that
the sum of them, weighted with their winding length, equals N . For example,
the vacuum of the NS sector is trivially

|0⟩NS = [|0⟩1]
N . (2.78)

Spectrally flowing to R sector, since we know that |0⟩1 ↦→ |++⟩1, we get

[|++⟩1]
N . (2.79)

The two-charge microstates of the D1D5 black hole are supergravity solutions
dual to states of the CFT that preserves 1

4 of the total supersymmetries and
are constructed with the ground states in the R sector, found in each twisted
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sector, and combining them in a coherent state in the orbifold theory. The
most general two-charge microstate is obtained by taking the tensor product
of N (m)

k copies of the vacuum state |m⟩k, where m is a generic label for any
possible R vacuum state, with the constraint that the total winding number
has to be N ; thus

|ψ
N

(m)
k

⟩ =
∏
k,m

(|m⟩k)N
(m)
k ,

∑
m

∑
k

kN
(m)
k = N , (2.80)

where {N (m)
k } is a partition of N . The convention for the normalization is

such that

⟨ψ
N

(m)
k

|ψ
N

(m′)
k′

⟩ = N
(
N

(m)
k

)
δ
N

(m)
k

,N (m′)
k′

, (2.81)

where N (N
(m)
k ) is the number of ways the strand configuration determined

by the partition {N (m)
k } can be obtained starting from the R vacuum state

(2.79). One relevant example that we will encounter later on is6

[|++⟩1]
N (++)

[|00⟩k]N
(00)
k , N (++) + kN

(00)
k = N , (2.82)

where |00⟩k = εȦḂ |ȦḂ⟩k.
Usually, typical states of the black hole have multiple strands with different

winding and R-charges; we may then generalise this state by summing over
all possible twisted sectors [2]

[|++⟩1]
N (++)∏

k

[|00⟩k]N
(00)
k , N (++) +

∑
k

kN
(00)
k = N . (2.83)

We may now want to build CFT states dual to the microstates of the
three-charge black hole; these are 1

8 -BPS states; one way to obtain them from
the 1

4 -BPS states is via the action of a rigid symmetry transformation, i.e. by
acting on a generator of the superconformal algebra upon the whole state. The
states obtained this way are called superdescendants [3, 84–87]. An example
of a superdescendant is

[|++⟩1]
N (++)∏

k

[
(J+

−1)
k|00⟩k

]N (00)
k , N (++) +

∑
k

kN
(00)
k = N , (2.84)

since J+
−1 |++⟩1 = 0.

Another way to build 1
8 -BPS heavy states is by acting independently on

each strand with an element of the global superalgebra generated by L0, L±1,
Ja0 , G±±

0 ; these states are dubbed superstrata [3, 76, 88–90]. A prototypical
example of a superstrata is given by [90]

6 Here we recall that each R vacuum state has h = h̄ = 1/4, while the value of the R-charge
is (ȷ, ȷ̄) = (± 1

2 , ± 1
2 ) for |±±⟩1 and (ȷ, ȷ̄) = (0, 0) for |00⟩1.
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⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

N (++)

|++⟩1

⊗ (J+−1)
m

m!
(L−1)n

n!
(
G+1

0 G+2
0 + 1

k J
+
−1L−1

)q
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦
|00⟩k

N
(00)
k,m,n,q

Figure 2.2: A pictorial representation of the state (2.85). We show the untwisted
strands with left- and right-R-charges |++⟩1 and the twisted uncharged
|00⟩k ones.

[|++⟩1]
N (++)∏

k

[|k,m,n, q⟩]N
(00)
k,m,n,q ,

|k,m,n, q⟩ =
(J+−1)

m

m!
(L−1)

n

n!

(
G+1

0 G+2
0 +

1
k
J+−1L−1

)q

|00⟩k ,

N (++) +
∑

k

kN
(00)
k,m,n,q = N ,

(2.85)

where Ln ≡ Ln − J3
n, m ≤ k− 2q and q = 0, 1, while n = 0, 1, 2, . . . can be

any non-negative integer. A pictorial representation of this state is reported
in fig. 2.2.

1.6 Correlators: basic definition and examples

As always happens in CFT, the 2- and 3-point functions are fixed by conformal
invariance to be [79,91–94]

⟨O1(z1, z̄1)O2(z2, z̄2)⟩ =
δh1,h2

zh1
12

δh̄1,h̄2

z̄h1
12

, (2.86a)

⟨O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)⟩ =
C123

z
h12;3
12 z

h13;2
13 z

h23;1
23

C̄123

z̄
h̄12;3
12 z̄

h̄13;2
13 z̄

h̄23;1
23

,

(2.86b)

where we have defined hij;k ≡ hi + hj − hk and zij = zi − zj , where we have
exploited the fact that for the CFT2 the symmetry group is factorised as Vir ⊗
Vir, and where we have normalised the operators such that the Zamolodchikov
metric is flat7, gij = δij . The Cijk are the 3-point structure constants, and
together with the conformal dimensions forms the so-called OPE data of the
CFT. From here it is clear that the first non-trivial n-point function that
contains information about the dynamics of the theory is the 4-point function

C(z1, z2, z3, z4) = ⟨O1(z1, z̄1)Ō1(z2, z̄2)O2(z3, z̄3)Ō2(z4, z̄4)⟩

=
1

z2h1
12 z2h2

34

1
z̄2h̄1

12 z̄2h̄2
34

G(z, z̄) , (2.87)

7 This choice can always be made locally in moduli space, since it is equivalent to choosing
the Riemann normal coordinates on the moduli space manifold.
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where G is a function of the conformal cross ratios

z =
z14z23
z13z24

, z̄ =
z̄14z̄23
z̄13z̄24

, (2.88)

and where we have already written down the form of the 4-point function
that will be more relevant for us, i.e. with operators that are pairwise equal
(up to have opposite R-charges)8. The two conformal cross ratios are usually
repacked into [94]

u = zz̄ , v = (1 − z)(1 − z̄). (2.90)

The standard notation is to call Heavy-Heavy-Light-Light (HHLL) a correlator
that involves two-heavy and two-light operators, while is usual to call Light-
Light-Light-Light (LLLL) a correlator with four light operators.

Since we will mainly compute HHLL and LLLL operators that might have
an insertion of generators of the superalgebra, it is wise to look at the possible
Ward identities that may play a role in the following; in fact, the superalgebra
is preserved in all points of the moduli space, especially at the supergravity
point. This means that the Ward identities have to be satisfied from the 4-
point functions computed holographically, and thus they constitute a nice
sanity check for holographic correlators.

1.6.1 An example

We want now to compute an HHLL 4-point function at the free orbifold point;
in order to furnish an example to the reader, we will compute the 4-point
functions involving the Heavy state (2.83) and the two light operators (2.68)
and (2.70); since we have seen that they are related by the action of a generator
of the superalgebra, we will derive the Ward identity that relates the two
correlators and we will check that it is indeed satisfied. We have then to
compute

⟨OH(z1, z̄1)ŌH(z2, z̄2)OL(z3, z̄3)ŌL(z4, z̄4)⟩ =
1

z2hH
12 z2hL

34

1
z̄2h̄H

12 z̄2h̄L
34

G(z, z̄),

(2.91)

In order to easily isolate G from the correlators one can take the gauge z2 → ∞,
z1 = 0 and z3 = 1, which implies z = z4:

⟨ŌH |OL(1)ŌL(z, z̄)|OH⟩ ≡ C(z, z̄) = 1
(1 − z)2hL

1
(1 − z̄)2h̄L

G(z, z̄). (2.92)

With the above choice of light and heavy operators the correlator at the free
orbifold point depends only on the strand structure and not on the particular
quantum numbers of the R ground state considered; this simply because the
elementary bosonic and fermionic fields commute. A standard way to calculate
this correlator is to diagonalize the boundary conditions - as in (2.38) - and
then to take the linear combination of the contributions of each strand. We

8 The generic 4-point function with four different operators can be written as [95]

⟨O1(z1, z̄1)Ō2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)⟩ =
( |z24|

|z14|

)∆−
12
( |z14|

|z13|

)∆−
34 G(z, z̄)

|z12|∆+
12 |z34|∆+

34
,

(2.89)

where ∆±
ij = ∆i ± ∆j and ∆ = h+ h̄.
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start with (2.70) and notice that we can use (2.38) and rewrite the k terms
belonging to a single strand in the operators as a sum over ρ

k∑
r=1

∂XAḂ
(r) (z)∂̄X

AĊ
(r) (z̄) =

k−1∑
ρ=0

∂XAḂ
ρ (z)∂̄XAĊ

ρ (z̄) . (2.93)

Then by the commutation relations in the twisted sector[
αAȦρ1,n,αBḂρ2,m

]
= ϵABϵȦḂ n δn+m,0 δρ1,ρ2 , (2.94)

we can easily calculate the 2-point correlator on strand of length k

k⟨0|∂X11̇
ρ (z1) ∂X

22̇
ρ (z2)|0⟩k =

1
(z1 − z2)2

(
z1
z2

)− ρ
k
{

1 − ρ

k

(
1 − z1

z2

)}
,

(2.95)

with similar formulae holding for the antiholomorphic sector. Thus we have

CBos
k (z, z̄) = 1

(1 − z)2(1 − z̄)2

k−1∑
ρ=0

|z|
2ρ
k

⏐⏐⏐⏐1 − ρ

k

(
1 − 1

z

)⏐⏐⏐⏐2 (2.96)

= ∂∂̄

⎡⎣ 1 − zz̄

(1 − z)(1 − z̄)
(

1 − (zz̄)
1
k

)
⎤⎦ .

This then gives for the bosonic HHLL correlator

CBos =
1
N

N∑
k=1

NkCBos
k =

1
N

N∑
k=1

Nk∂∂̄

⎡⎣ 1 − zz̄

(1 − z)(1 − z̄)
(

1 − (zz̄)
1
k

)
⎤⎦ ,

(2.97)

Following a similar approach, it is straightforward to calculate the con-
tribution of a strand of length k to the correlator with the fermionic light
operators (2.68)

CFer
k (j j̄) =

1
|z|

|z|
2
k − |z|2

(1 − z)(1 − z̄)
(

1 − |z|
2
k

) + f(ȷ,ȷ̄)(z, z̄), (2.98)

where fk (ȷ,ȷ̄) is the ρ = 0 contribution which depends on the SU(2)L ×
SU(2)R quantum numbers as

f(ȷ,ȷ̄) =
zȷz̄ȷ̄

(1 − z)(1 − z̄)
, with ȷ , ȷ̄ = ±1

2 ,

f(0,0) =
1

2|z|(1 − z)(1 − z̄)

(
1 + |z|2 + |1 − z|2

)
.

(2.99)

The generic correlator with fermionic light operators is thus

CFer =
1
N

N∑
k=1

8∑
s=1

N
(s)
k CFer

k (s) , (2.100)

where s runs over the 8 different RR ground states (4 with ȷ, ȷ̄ = ±1/2 and 4
with ȷ, ȷ̄ = 0), N (s)

k is the number of strands of length k in the state s, which
has to satisfy the constraint

∑
s, k kN

(s)
k = N .
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We have already seen in eq. (2.72) that the action of the fermionic generator
of the superalgebra relates the Fermionic and the Bosonic operator; we then
deform the contour of integration so that it goes around all the other insertions
in the correlator (2.92). This explains why in (2.72) we inserted an extra factor
of

√
w which makes the integration of the supercurrents around the R heavy

states at z = 0, ∞ well defined. Since we are focusing on the case where OH
are R ground states, the contributions from w ∼ 0 and w ∼ ∞ vanish and
so the only non trivial terms come from w ∼ z and w̄ ∼ z̄, which can be
computed using (2.72). In summary we obtain the relation

⟨ŌH |OBos(1)ŌBos(z, z̄)|OH⟩ = ∂∂̄
[
|z|⟨ŌH |OFer(1)ŌFer(z, z̄)|OH⟩

]
. (2.101)

This is clearly satisfied by the orbifold point results (2.97) and (2.100), but
since this relation uses only the superconformal algebra, we remark that it
holds at a generic point of the CFT moduli space, especially at the supergrav-
ity point.
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2 type i ib supergravity on T4

On the supergravity side of the duality, the D1D5 system is a type IIB system
on M1,4 × S1 × T4 with n5 D5 branes wrapping S1 × T4 and n1 D1 branes
wrapping the common S1 [42, 73]. There will be open strings connecting the
branes in all possible way, i.e. 1 · 1 strings connecting D1 branes, 5 · 5 strings
connecting D5 branes as well as 1 · 5 connecting D1 with D5 branes. The space
that is wrapped by the branes is compact and then the brane system moves
like a particle in the non-compact space M1,4, as it can be seen in fig. 2.3.
Now, calling V4 the volume of T4 and R the radius of the S1, we see that the
various regimes of the D1D5 system are controlled by the set of parameters

(n1, n5, V4, R, gs, α′) . (2.102)

We will mainly work in the regime where

V4 ∼ O
(
(α′)2) , R2 ≫ α′ , (2.103)

so that we may consider the T4 as small w.r.t. S1. From the closed string
perspective, in order to have a well-behaved supergravity regime we need
to have a curvature that is small w.r.t. the string scale; we also need a small
string coupling so that we do not need to consider quantum corrections. These
requirements will give an ordering that is

n1, n5 ≫ g−1
s ≫ 1 . (2.104)

Going to the IR fixed point of the D-brane system we decouple the interaction
among the branes; this limit is a low-energy limit and it is known as the
decoupling limit and it is extremely relevant for the AdS/CFT correspondence.
As we will see later on, in this limit, the supergravity solutions - that, as
explained, is a trustworthy regime - becomes asymptotically AdS3 × S3 × T4

[42].
On the open string sector, within the effective field theory description of

their interaction with the Dp-branes that defined the boundary conditions
for the string, we have that the d.o.f. of the open string splits into parallel
to the brane and perpendicular: the parallel ones have Neumann boundary
conditions and give rise to an U(n) gauge field (where n is the number of the
branes); the perpendicular ones instead have Dirichelet boundary conditions
and give rise to adjoint scalars of the p+ 1-dimensional theory, that describe
the transverse oscillation of the Dp-branes. When all the Dp-branes are co-
incident, the gauge theory is said to be in the Higgs branch, since the gauge
group U(n) is unbroken, while when (some of) the Dp-branes are separated,
so that U(n) breaks down to U(q)×U(n− q), the gauge theory is said to be
in the Coulomb branch. The coupling constant gYM for the gauge theory for
the Dp-brane is

g2
YM = (2π)p−2(α′)

p−3
2 gs . (2.105)

The key point is that the Higgs branch of the D1D5 system flows in the
IR to the (1+1)-dimensional N = (4, 4) SCFT described in sec. 2.1, where
c = 6N = 6n1n5.

In this framework it is easy to discuss the fuzzball proposal. In particular,
we will focus on the study of microstate geometries, i.e. of smooth, horizonless
solutions of supergravity. These will be (some of the) microstates of the cor-
responding black hole solution, that will be then regarded as a naive solution,
with a horizon and a singularity.
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M1,4
D5 ⊆ S1 × T4

D1 ⊆ S1

×
1 · 1

5 · 5

1 · 5

Figure 2.3: A pictorial representation of the D1D5 system. We represent on the left
the non-compact M1,4 manifold where the brane system moves like a
particle, represented by the small red cross. On the right we show the
compact space S1 × T4 on which the branes live: the D1 are wrapping
only the common (blue) S1, while the D5 are wrapping S1 × T4. There
are also open strings that stretch among the branes; the 1 · 1 strings
have both ends on the D1, while the 5 · 5 ones have both ends on the D5.
Finally, there are the 1 · 5 strings that have one end on the D1 while the
other are on the D5.

2.1 The equations of motion of type IIB supergravity

The bosonic content of type IIB supergravity consists in a graviton gMN , a
dilaton ϕ, an NSNS 2-form B2, and a set of RR forms C0,C2,C4 [54,96]. Their
field strength are defined as

H3 = dB2 , F1 = dC0 , F3 = dC2 −H3 C0 , F5 = dC4 −H3 ∧C2 ,
(2.106)

so that the following Bianchi identities are satisfied:

dH3 = 0 , dF1 = 0 , dF3 = H3 ∧ F1 dF5 = H3 ∧ F3 . (2.107)

The EoM they have to satisfy are9

4d ∗ dϕ− 4dϕ∧ ∗dϕ+ ∗R− 1
2 H3 ∧ ∗H3 = 0 , (2.108a)

d ∗ (e−2ϕH3) − F1 ∧ ∗F3 − F3 ∧ F5 = 0 , (2.108b)
d ∗ F1 +H3 ∧ ∗F3 = 0 , (2.108c)
d ∗ F3 +H3 ∧ F5 = 0 , (2.108d)

F5 − ∗F5 = 0 , (2.108e)

e−2ϕ
(
RMN + 2∇M∇Nϕ− 1

4 HMPQHN
PQ

)
+

1
4 gMN

(
FPF

P +
1
3!
FPQRF

PQR

)
−1

2FMFN − 1
2

1
2!
FMPQFN

PQ − 1
4

1
4!
FMPQRSFN

PQRS = 0 , (2.108f)

9 For the notation of type IIB equations and duality rules, we refer to [3, 97].
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where the last one are the Einstein equations. They can be obtained from the
action in the string frame

SIIB =

∫ [
e−2ϕ

(√
−g R+ 4 ∗ dϕ∧ dϕ− 1

2 ∗H3 ∧H3

)
− 1

2 ∗ F1 ∧ F1

− 1
2 ∗ F3 ∧ F3 − 1

4 ∗ F5 ∧ F5 +
1
2 H3 ∧ F3 ∧C4

]
,

(2.109)

adding by hand the self-duality constraint for F510. The self-duality of RR
fields are expressed in the polyform language as [102]

F = ∗λ(F ) , (2.110)

where on a p-form λ acts as λ(fp) = (−1)
p(p−1)

2 fp, and where we have defined
the RR-flux polyform as

F = F1 + F3 + F5 + F7 + F9 . (2.111)

2.1.1 The BPS conditions

In the following we will review some solutions to these set of equations that are
especially relevant for the fuzzball proposal, and in part ii we will build some
now solutions to these equations. For all the solutions that preserves a minimal
amount of supersymmetry, namely all the 1

4 - and 1
8 -BPS solutions, there exists

a killing spinor ϵ that satisfies the Killing spinor equation DM ϵ = 0, where DM

is the generalised gauge-covariant derivative [54]. With that Killing spinor it is
possible to build a vector field VM = ϵ̄ΓM ϵ where ΓM are the 10-dimensional
gamma matrices; this vector is a killing vector for the metric LV gMN = 0,
so it can be used to generate a coordinate u with its integral flow, and the
metric will be u-independent by construction. Since we also preserve a subset
of supersymmetries, we may employ the remaining BPS conditions to solve
the equation of motions. In particular, in [102] it was shown that the minimal
set of equations that one has to solve are BPS constraints dubbed with the
existence of a null Killing vector whose integral flow generates the u coordinate,
the self-duality of RR fields and the vv component of the Einstein equations.
Since their results can be applied for all the 1

4 - and 1
8 -BPS solutions, we do

not have to solve both equations of motion and BPS in those cases. It will
then turns out that, to find 1

4 - and 1
8 -BPS solutions, we need to solve only

F5 − ∗F5 = 0 , (2.112a)
d ∗ F3 +H3 ∧ F5 = 0 , (2.112b)

e−2ϕ
(
Rvv + 2∇v∇vϕ− 1

4 HvPQHv
PQ

)
+

1
4gvv

(
FPF

P +
1
3!
FPQRF

PQR

)
−1

2FvFv − 1
2

1
2!
FvPQFv

PQ − 1
4

1
4!
FvPQRSFv

PQRS = 0 . (2.112c)

2.2 General structure of D1D5P solutions

Over the years, a set of two- and three-charge geometries of the type IIB
system described above were built [48, 49, 76, 84–89, 102–113]; if we ask for

10 We will not discuss the Pasti - Sorokin - Tonin formalism [98,99] for type IIB [100,101].
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the system to be invariant under rotation of the compact manifold T4, the
solution takes the factorized form R1,1 × B4 × T4

ds2
10 =

√
Z1Z2

P
ds2

6 +

√
Z1
Z2

ds2
T4 ,

e2ϕ =
Z2

1
P

, C0 =
Z4
Z1

, B2 = B̄2 , C2 = C̄2 ,

C4 = C̄4 +
Z4
Z2

dz1 ∧ dz2 ∧ dz3 ∧ dz4 ,

(2.113)

where everything is zi-independent, the forms with an over-bar have legs only
in the six-dimensional non-compact space and where we have explicitly writ-
ten down the directions on the T4. These geometries are 1

4 - or 1
8 -BPS and

have a null Killing vector ∂
∂u , inherited by the existence of a Killing spinor.

Restricting to v-independent base B4 = R4, the ansatz for the objects appear-
ing there is

ds2
6 = − 2√

P
(dv+ β)

[
du+ ω+

F
2 (dv+ β)

]
+

√
P ds2

4 ,

ds2
4 = Σ

(
dr2

r2 + a2 + dθ2
)
+ (r2 + a2) sin2 θ dϕ2 + r2 cos2 θ dψ2 ,

Σ = r2 + a2 cos2 θ , P = Z1Z2 −Z2
4 , u =

t− y√
2

, v =
t+ y√

2

B̄2 = −Z4
P

(du+ ω) ∧ (dv+ β) + a4 ∧ (dv+ β) + δ2 ,

C̄2 = −Z2
P

(du+ ω) ∧ (dv+ β) + a1 ∧ (dv+ β) + γ2 ,

C̄4 = −Z4
P
γ2 ∧ (du+ ω) ∧ (dv+ β) + x3 ∧ (dv+ β) ,

(2.114)

where the geometry has two charge and it is 1
4 -BPS if F = 0, and it has three

charge and it is 1
8 -BPS otherwise. We also define useful objects that are gauge

invariant under the remaining gauge freedom B2 → B2 + dλ1, where λ1 is an
u , v-independent 1-form and has legs only on the base space R4 [1, 3]:

Θ1 ≡ Da1 + γ̇2 , Θ2 ≡ Da2 + γ̇1 , Θ4 ≡ Da4 + δ̇2 , (2.115)

where ḟ = ∂vf and where

D ≡ d4 − β ∧ ∂v . (2.116)

In order for this ansatz to be a solution of the type IIB equations of motion,
we have to impose the following “layers” of equations, following the notation
of [3, 76,88,89,112]: the first layer is

∗4DŻ1 = DΘ2 , D ∗4 DZ1 = −Θ2 ∧ dβ , Θ2 = ∗4Θ2 ,
∗4DŻ2 = DΘ1 , D ∗4 DZ2 = −Θ1 ∧ dβ , Θ1 = ∗4Θ1 ,
∗4DŻ4 = DΘ4 , D ∗4 DZ4 = −Θ4 ∧ dβ , Θ4 = ∗4Θ4 ,

(2.117)

where the ∗4 is the Hodge relative to the base-space metric, plus the fact that
β̇ = 0 and

dβ = + ∗4 dβ , (2.118)

while the second layer is
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Dω+ ∗4Dω4 + F dβ = Z1Θ1 + Z2Θ2 − 2Z4Θ4 ,

∗4D ∗4

(
ω̇− 1

2DF
)
= ∂2

v (Z1Z2 −Z2
4 ) − [Ż1Ż2 − (Ż4)

2]

− 1
2 ∗4 (Θ1 ∧ Θ2 − Θ4 ∧ Θ4).

(2.119)

One may study, as in [102,112], geometries whose base is possibly v-dependent,
having then an almost-hyperkähler structure. Here we will only discuss geome-
tries with β̇ = 0 and consequently a v-independent base.

the structure of the d1d5p geometries: We are now in the
position to describe the generic structure of the D1D5P solution, that have
three charges as seen from infinity, corresponding to the three charges of the
Strominger-Vafa black hole, i.e. Q1, Q5 and QP , but are controlled by some
additional parameters whose holographic interpretation is clear and that will
be furnished in the following11; as briefly introduced in sec. 1, we have that
these geometries can be described in various regions:

• An asymptotically flat region, for r ≫
√
Qi, where the naive black hole

solution and the microstate geometry are indistinguishable;

• a decoupling region r ∼
√
Qi, where both the naive black hole solution

and the microstate geometry approaches an AdS3 × S3 × T4 region. Go-
ing further down, the throat becomes AdS2 × S1 × S3 × T4, as for the
BTZ black hole;

• a “cap” region, where the microstate geometry ends smoothly; it is the
end of the spacetime, that has no causal-disconnecting horizon nor a
curvature singularity, since the solution is geodesically complete.

A pictorial representation of the spacetime is reported in fig. 2.4.

2.3 Holographic dictionary

Now, following the lead of [75, 78, 80, 108, 110], we establish the dictionary
between solutions of the D1D5(P) type IIB system of the form (2.113) and
Heavy states of the D1D5 CFT of sec. 2.1. We use the holographic renormal-
ization to extract conformal data from the gravity solution, in order to find

11 Notice that we can build solutions of this type IIB system which are Asymptotically flat
or asymptotically AdS; the asymptotic structure is encoded in the large r expansion of Z1
and Z2: if they decays as r−2, the geometry is asymptotically AdS, while if they go to 1
the geometry is Asymptotically Flat.
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Figure 2.4: A pictorial representation of a microstate geometry; falling from the
top, we begin our journey by encountering the Asymptotically Flat re-
gion, that we represented in yellow shaded by light blue lines; then the
colours shade off and we find the AdS3 throat region and the AdS2 × S1

region that are common to both the naive black hole geometry and the
microstate geometry. Going further down, we end up in the “cap” for
the microstate, that is the region where the spacetime geodesically-ends
smoothly.

a precise holographic match between geometry and states. Expanding to the
boundary of AdS and following the notations of [75]12

Z1 ≃ Q1
r2

(
1 +

f1
1i
r
Y i1

)
+O(r−4) , Z2 ≃ Q5

r2

(
1 +

f5
1i
r
Y i1

)
+O(r−4) ,

Z4 ≃
√
Q1Q5
r3 A1iY

i
1 +O(r−4), F ≃ −

2Qp
r2 +O(r−3),

β ≃ −
√

2Q1Q5
r2 aα−Y

α−
1 +O(r−3), ω ≃ −

√
2Q1Q5
r2 aα+Y

α+
1 +O(r−3) ,

(2.122)

where the coordinates are in a gauge where f1
1i + f5

1i = 0, we can read

⟨H|Jα|H⟩ = cJ aα+ , ⟨H|J̃α|H⟩ = cJ̄ aα− , ⟨H|L0 − L̃0|H⟩ = np ,

⟨H|O(0,0)
(2)i |H⟩ = cO(0,0)

f1
1i − f5

1i
2 , ⟨H|O(1,1)

(1)1i|H⟩ = cO(1,1)A1i ,

(2.123)

where the coefficients cJ , cJ̄ , cO(0,0) , cO(1,1) are state-independent and are fixed
by consistency as

cJ = −cJ̄ =
NR√
Q1Q5

, cO(0,0) =
N3/2R√
Q1Q5

, cO(1,1) =

√
2NR√
Q1Q5

. (2.124)

12 Recall the definitions of the Spherical Harmonics:

Y i1 = 2
xi

r
, Y α+1 = ηαij

dxi xj

r2 , Y α−
1 = η̄αij

dxi xj

r2 , (2.120)

where ηαij = δαiδ4j − δαjδ4i + εαij4 and η̄αij = δαiδ4j − δαjδ4i − εαij4 with α = 1, 2, 3 are
the ’t Hooft symbols. Some useful examples are

Y 3+
1 = sin2 θ dϕ+ cos2 θ dψ , Y 3−

1 = sin2 θ dϕ− cos2 θ dψ . (2.121)
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The nomenclature for the operators follow from [108,110] and it is

Σ++
2 = O

(0,0)
(2)1 + iO

(0,0)
(2)2 , Σ−−

2 = O
(0,0)
(2)1 − iO

(0,0)
(2)2 = +(Σ++

2 )† ,
(2.125a)

Σ+−
2 = O

(0,0)
(2)3 + iO

(0,0)
(2)4 , Σ−+

2 = −
(
O

(0,0)
(2)3 − iO

(0,0)
(2)4

)
= −(Σ+−

2 )† ,
(2.125b)

O++ = O
(1,1)
(1)11 + iO

(1,1)
(1)12 , O−− = O

(1,1)
(1)11 − iO

(1,1)
(1)12 = +(O++)† ,

(2.125c)

O+− = O
(1,1)
(1)13 + iO

(1,1)
(1)14 , O−+ = −

(
O

(1,1)
(1)13 − iO

(1,1)
(1)14

)
= −(O+−)† .

(2.125d)

2.3.1 The 20 Moduli of the theory

We have discussed so far type IIB supergravity compactified on T4; it is
known [42] that it has 25 scalar moduli from the six-dimensional point of view,
corresponding to 10 components of the deformation of metric on the torus,
hij , 6 component of the perturbation Kalb-Ramond field on the torus, bij and
similarly 6 component of the perturbation of the Ramond-Ramond 2-form on
the torus, cij . The remaining 3 scalars are the perturbation of the dilaton
ϕ, the perturbation of the Ramond-Ramond scalar C0 and the perturbation
of the Ramond-Ramond 4-form with four legs on the T4 Cz1z2z3z4 . These
scalars parametrise the coset SO(5, 5)/(SO(5) × SO(5)). But in the near-
horizon limit there exists an attractor mechanism that freezes five out of the
25 scalars [73,114]:

vT4BijG
ikGjl =

1
2 Bijε

ijkl ,

vT4C0 = Cz1z2z3z4 − 1
8 ε

ijklBijCkl ,
n1
n5

= vT4 +
1
8 ε

ijklBijBkl ,

(2.126)

where vT4 is the volume of T4. We can classify these perturbations by their
mass and charges under the symmetry groups, as in tab. 2.3. They are mini-
mally coupled massless scalar around AdS3 × S3 × T4, and it seems that these
perturbations are minimally coupled massless scalar even on every D1D5P
background geometry. The proof of this assertion is rather non-trivial and
very involved; we prove in app. A.5 that the traceless, non-diagonal part of hij
indeed satisfies □6hij = 0, where □6 is the Laplacian of the six-dimensional
metric in the Einstein frame of a generic D1D5P solution. To get all the other,
one may use a set of S- and T -dualities among different background geometries
as well as different perturbations. Another way of proving it is to compactify
the theory to six dimensions with all the moduli turned on and see that all
the moduli are related by the Cremmer-Julia group; since one of them is a
minimally-coupled massless scalar, all of them are minimally-coupled mass-
less scalars. Unfortunately, due to its cumbersomeness, a careful proof of this
statement is still lacking. In any case, using T - and S-dualities, we will show
in app. A.5 that some of the moduli - the ones relevant for the present thesis
- are indeed minimally coupled massless scalars.
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Sugra CFT SU(2)1 × SU(2)2 SU(2)L × SU(2)R dof
hij − 1

4 δijh
k
k ∂X(i∂̄Xj) − 1

4 ∂X
i∂̄Xi (3, 3) (1, 1) 9

cij ∂X [i∂̄Xj] (3, 1) ⊕ (1, 3) (1, 1) 6
b+ij T 1 (3, 1) (1, 1) 3
vT4 ∂Xi∂̄Xi (1, 1) (1, 1) 1
Ξ T 0 (1, 1) (1, 1) 1

Table 2.3: The 20 moduli of type IIB on T4. We report here the moduli on the gravity
side and their holographic CFT dual operator, their representations under
the symmetry groups and their number of degrees of freedom. Also, Ξ is
the scalar combination of C0 and Cijkl that is not freezed by the attractor
mechanism.

The CFT operators dual to such perturbations are bosonic operators, and
come from the decomposition of the reducible operators ∂Xi∂̄Xj and T AB =
G−AG̃−BΣ++. In fact, they can be rewritten as

∂Xi∂̄Xj =

(
∂X(i∂̄Xj) − 1

4 δkl∂X
k∂̄X l δij

)
+
(
∂X [i∂̄Xj]

)
+

(
1
4 δkl∂X

k∂̄X l

)
δij ,

T AB = T [AB] + εABεCDT CD ≡ T 1 + T 0 ,

(2.127)

where we use the Pauli matrices σi
AḂ

to pass from the SO(4) indexes to
SU(2)L × SU(2)R ones.

The identification between supergravity fields and CFT operators is straight-
forward by looking at their representation under the symmetry groups. Notice
that the bosonic operator (2.70) is one of the marginal operators discussed
above. Also, both (2.68) and (2.75) are related by the action of the supercur-
rents to the moduli of the CFT, respectively to ∂Xi∂̄Xj and T ij .

2.4 All the 1
4 -BPS states

As we have already pointed out in sec. 1.1, the D1D5 system without momen-
tum, i.e. the system that admits two-charge, 1

4 -BPS geometries, is dual to an
F1P system. In that frame, it is possible to build all the possible solutions,
since there all the supergravity solutions are parametrized by a curve gA(v)
in B4 × T4, describing the profile of the fundamental string; applying then
the set of dualities to bring them back to D1D5 frame, we have all the solu-
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tions [108,110]. This procedure will led to a definitions of the ZI , β and ω in
terms of those profiles:

Z1 =
Q5
L

∫ L

0

|ġi(v′)|2 + |ġ5(v′)|2 + |ġα−(v′)|2

|xi − gi(v′)|2
dv′ ,

Z2 =
Q5
L

∫ L

0

dv′

|xi − gi(v′)|2
,

Z4 = −Q5
L

∫ L

0

ġ5(v′)

|xi − gi(v′)|2
dv′ , Z5 = −Q5

L

∫ L

0

ġα−(v′)ωα−

|xi − gi(v′)|2
dv′ ,

dγ2 = ∗4dZ2 , dγ1 = ∗4dZ1 , dδ4 = ∗4dZ4 , dδ5 = ∗4dZ5 ,

A = −Q5
L

∫ L

0

ġj(v′) dxj

|xi − gi(v′)|2
dv′ , dB = − ∗4 dA , ds2

4 = δijdxidxj ,

β =
−A+B√

2
, ω =

−A−B√
2

, F = 0 , aI = 0 , x3 = 0 ,

(2.128)

where L = 2πQ5/R and where ωα− is a basis of anti-self dual two forms on
the compact T4:

ωα− = (ω1− ,ω2− ,ω3−) ,
ω1− =

(
dz1 ∧ dz2 − dz3 ∧ dz4) ,

ω2− =
(
dz1 ∧ dz3 + dz2 ∧ dz4) ,

ω3− =
(
dz1 ∧ dz4 − dz2 ∧ dz3) ,

(2.129)

and where we have parametrized the flat base space B4 = R4 via coordinates
xi that are defined such that

x1 + ix2 = r̃eiϕ sin θ̃ , x3 + ix4 = r̃eiψ cos θ̃ , (2.130)

where r̃2 sin2 θ̃ = (r2 + a2) sin2 θ, r̃2 cos2 θ̃ = r2 cos2 θ, i.e.

r̃2 = r2 + a2 sin2 θ , cos2 θ̃ =
r2 cos2 θ

r2 + a2 sin2 θ
, (2.131)

so that the flat R4 ≃ R × S3 reads

ds2
4 = Σ

(
dr2

r2 + a2 + dθ2
)
+ (r2 + a2) sin2 θ dϕ2 + r2 cos2 θ dψ2 , (2.132)

so that we have written the S3 metric with a Hopf fibration.



52 the fuzzball proposal

Here we have allowed also excitations on the internal manifold T4, so that
the metric is13 14

ds2
10 =

√
α ds2

6 +

√
P̃

Z2
ds2

T4 , (2.134a)

ds2
6 = − 2√

P
(dv+ β) (du+ ω) +

√
P ds2

4 , (2.134b)

P = Z1Z2 −Z2
4 , P̃ = Z1Z2 −Z2

5 , P = Z1Z2 −Z2
4 −Z2

5 ,
(2.134c)

dv̂ = dv+ β , dû = du+ ω , v =
t+ y√

2
, u =

t− y√
2

, (2.134d)

e2ϕ = α
P̃
Z2

2
, ω5 = − ∗T4 ω5 , α =

P̃
P

, (2.134e)

B2 = −Z4
P
dû∧ dv̂+ δ2 − Z5

Z2
ω5 , (2.134f)

C0 =
Z2Z4

P̃
, (2.134g)

C2 = −Z2
P
dû∧ dv̂+ γ2 , (2.134h)

C4 =
Z4
Z2

volT4 − Z4
P
γ2 ∧ dû∧ dv̂+

(
δ5 − Z5

Z2
γ2

)
∧ ω5 , (2.134i)

where here the ω5 is any constant two-form that is anti-self dual on the T4.

2.4.1 A geometry with Z4 ̸= 0 and Z5 = 0

We want to construct, as an example, a geometry defined by the profile that
is circular on two directions of the R4, has no oscillations in the other two,
but oscillates in one direction along the torus, i.e.

g1(v
′) = a cos

(
2πv′

L

)
, g2(v

′) = a sin
(

2πv′

L

)
,

g5(v
′) = − b

k
cos
(

2πkv′

L

)
.

(2.135)

Using the change of coordinates (2.130) we get15

Z1 = 1 + R2

Q5

a2 + b2
2

r2 + a2 cos2 θ
+
R2b2

2Q5

a2k sin2k θ cos 2kϕ
(r2 + a2)k(r2 + a2 cos2 θ)

,

Z2 = 1 + Q5
r2 + a2 cos2 θ

,

Z4 = Rbak
sink θ cos kϕ

(r2 + a2)
k
2 (r2 + a2 cos2 θ)

.

(2.137)

13 In the decoupling limit, the dictionary between our notation and the notation of [110] is

f5 = H = Z1 , K = Z1 , Aα− = −Z5 , A = −Z4 , f̃1 =
P

Z2
, f1 =

P̃
Z2

. (2.133)

14 Notice that dû and dv̂ are not 1-forms, since ddû ̸= 0, ddv̂ ̸= 0.
15 Recalling that

L = 2π
Q5

R
. (2.136)
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In order to compute it we have to perform some change of coordinates. In
fact16

den ≡ (x1 − g1(v
′))2 + (x2 − g2(v

′))2 + x2
3 + x2

4

= |(x1 − g1(v
′)) + i(x2 − g2(v

′))|2 + |x3 + ix4|2

= |(x1 + ix2) − aeiw|2 + |x3 + ix4|2

= |r̃ sin θ̃ eiϕ − aeiw|2 + |r̃ cos θ̃eiψ|2

= r̃2 + a2 − ar̃ sin θ̃
(
e+i(ϕ−w) + e−i(ϕ−w)

)
= r2 + a2 + a2 sin2 θ− a

√
r2 + a2 sin θ

(
e+i(ϕ−w) + e−i(ϕ−w)

)
≡ A−B

(
e+i(ϕ−w) + e−i(ϕ−w)

)
.

(2.139)

where we have used the change of coordinates w = 2πv′
L and (2.130). We now

introduce the complex coordinate

z ≡ ei(ϕ−w) ⇒ i
dz
z

= dw =
L

2πdv′. (2.140)

Also we notice that

ġ5(v
′) = −b2π

L
cosw = −π b

L

[
e−ikϕzk + eikϕz̄k

]
. (2.141)

The poles in the denominator are

z± =
1

2B

[
A±

√
A2 − 4B2

]
(2.142)

where

∆ =
√
A2 − 4B2 = r2 + a2 cos2 θ, z− =

a sin θ√
r2 + a2

(2.143)

For example, the integral for Z4 becomes a complex integral

Z4 = −Q5
L

π b

L

L

2π

∮
C

dz
z
i
e−ikϕzk + eikϕz̄k

A−B(z + 1/z)

=
π bQ5
L

{
Res

Ω

[
e−ikϕzk

Bz2 −Az +B

]
+ Res

Ω̃

[
eikϕz̄k

Bz2 −Az +B

]}
= Rbak

sink θ cos kϕ
(r2 + a2)

k
2 (r2 + a2 cos2 θ)

,

(2.144)

where C is the circle with |z|2 = 1 and Ω : ∂Ω = C is the interior of the
unitary circle. Notice that the z and z̄ terms add up with complex conjugation
since, for the z̄ case, the contour moves in the opposite direction and that is
the same as integrating over the region C \ Ω ≡ Ω. In that region there is
only the z+ pole, that gives a contribute that is exactly the complex conjugate
of the z one. With similar computations we can obtain the other two Z1,Z2
functions, as in eqs. (2.137).

This state is dual to the heavy state (2.83) with one single mode discussed
in sec. 2.1

[|++⟩1]
N (++)

[|00⟩k]N
(00)
k , N (++) + kN

(00)
k = N . (2.145)

16 Generically, we have

den = A−
2B
a

(g1 cosϕ+ g2 sinϕ) + (g2
1 + g2

2 − a2). (2.138)
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We may generalise it to include multiple modes [2], i.e.

[|++⟩1]
N (++)∏

k

[|00⟩k]N
(00)
k , N (++) +

∑
kN

(00)
k = N . (2.146)

The geometry dual to such state is defined by [2]

Z1 =
R2

Q5 Σ

[
a2

0 +
∑
k,k′

bkbk′

2
ak+k

′

(r2 + a2)
k+k′

2
sink+k′

θ cos((k+ k′)ϕ)

+
∑
k>k′

bkbk′
ak−k′

(r2 + a2)
k−k′

2
sink−k′

θ cos((k− k′)ϕ)

]
,

(2.147a)

Z2 =
Q5
Σ

, Z4 =
R

Σ

∑
k

bk
ak

(r2 + a2)
k
2

sink θ cos(kϕ) , (2.147b)

β =
Ra2
√

2 Σ
(sin2 θdϕ− cos2 θdψ) , ω =

Ra2
√

2 Σ
(sin2 θdϕ+ cos2 θdψ) .

(2.147c)

For generic values of bk the geometry is complicated, but it can be shown to
be regular and without horizon for any values of the parameters, as far as the
regularity constraint

a2 +
∑
k

bk
2 = a2

0 ≡ Q1Q5
R2 , (2.148)

is satisfied. Using the holographic dictionary, looking at the large r-expansion
of the solution, it is possible to read that

N
(++)
1 = N

a2

a2
0

, kN
(0)
k = N

b2
k

2a2
0

with a2
0 ≡ Q1Q5

R2 . (2.149)

It is trivial to notice that, sending b → 0, we recover pure AdS3 × S3 × T4 as
expected since, on the CFT side, the state becomes the vacuum [|++⟩1]

N .
Sometimes it is useful to rewrite the metric as

ds2
6 = V −2ds2

3 +Gab(dθa +Aa)(dθb +Ab) , V 2 ≡ detGab
detGS3

. (2.150)

For the single-mode solution, the AdS3 part can be written as

g
(k)
tt√
Q1Q5

= −r2 + a2

R2a4
0

(
a2 +

b2
k

2
r2

Σ
Fk

)
, (2.151a)

g
(k)
yy√
Q1Q5

=
r2

R2a4
0

(
a2 +

b2
k

2
r2 + a2

Σ
Fk

)
, (2.151b)

g
(k)
rr√
Q1Q5

=
1

a4
0(r

2 + a2)

(
a2 +

b2
k

2
r2

Σ
Fk

)(
a2 +

b2
k

2
r2 + a2

Σ
Fk

)
,

(2.151c)

where

Fk ≡ 1 −
(
a2 sin2 θ

r2 + a2

)k
. (2.152)

For the single-mode solution, i.e. for k = 1, the geometry is separable and
in the limit a → 0, the metric approaches the massless BTZ metric, while for
b → 0 it approaches the vacuum AdS3 × S3.
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2.4.2 Another non-trivial example: ⊗k |++⟩k geometry

We now to build a geometry that contains only |±±⟩ vacuum states with
different length; following [115], we use as a profile function

g ≡ g1 + ig2 = a exp
[
i

(
w+

b

a
sinw

)]
, w =

2πv
L

, (2.153)

that it is dual to the state

|H̃⟩ = · · ·A |++⟩1 B |++⟩2 B
2 |++⟩3 · · · , (2.154)

as we can easily see by expanding the profile function in power series of b.
With this choice we have
den = |(x1 + ix2) − g|2 + |x3 + ix4|2

= r2 + a2(1 + sin2 θ) − a
√
r2 + a2 cos θ

(
ei(ϕ−w− b

a sinw) + c.c.
)

= A−B
(
ei(ϕ−w− b

a sinw) + c.c.
)

.

(2.155)

We will compute the Zi only up to O(b2), that is the power relevant for
holographic purposes. For the computations that follow, we have to use the
result of the integral

In,k =

∫ 2π

0
dw eikw

(A− 2B cosw)n , (2.156)

where we have defined, as above,

A = r2 + a2(1 + sin2 θ), B = a
√
r2 + a2 sin θ . (2.157)

Introducing now the complex coordinate

z = eiw ⇒ i
dz
z

= dw , (2.158)

we have to compute17

In,k =
(−1)n

Bn
i

∮
dz zn+k−1

(z − z+)n(z − z−)n

=
2π(−1)n+1

Bn
lim
z→z−

1
(n− 1)! ∂

n−1
z

[
zn+k−1

(z − z+)n

]
.

(2.159)

We report here18 the first three examples,

In=1,k = −2π
Σ

∆k ,

In=2,k = +2π (k− 1)Σ + 2(r2 + a2)

Σ3 ∆k ,

In=3,k = 2π∆k
Σ5

[
(k− 1)(k− 2)

2 Σ2 + 3(k− 2)(r2 + a2)Σ + 6(r2 + a2)2
]

,

(2.160)

where we have defined

Σ = r2 + a2 cos2 θ , ∆k =
ak sink θ

(r2 + a2)
k
2

. (2.161)

17 We have defined the two roots of the denominator

z± =
A±

√
A2 − 4B2

B
.

18 Please notice that for k ≤ −n we should include the contribution from the z = 0 pole.
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the regularity condition: We see that the regularity condition,
since

|ġi|2 = |ġ|2 = a2
(

1 + b

a
cosw

)2
, (2.162)

so that

Q1 =
2πQ5
L2

∫ 2π

0
dw |ġ|2

=
2πQ5
L2

∫ 2π

0
dw [a2 + 2ab cosw+ b2 cos2 w]

=
4π2Q5
L2

(
a2 +

b2

2

)
,

(2.163)

and, recalling that L = 2πQ5/R,

Q1Q5
R2 = a2 +

b2

2 . (2.164)

the Z2 : We now expand

Z2 = Z
(0)
2 +

b√
2 a

Z
(1)
2 +

b2

2a2 Z
(2)
2 +O(b3) , (2.165)

Explicitly we have, using that A = r2 + a2(1+ sin2 θ), B = a
√
r2 + a2 cos θ,

Z
(0)
2 = +

Q5
Σ

,

Z
(1)
2 = −Q5

Σ

√
2 a sin θ cosϕ√

r2 + a2
,

Z
(2)
2 = +

Q5
Σ

2a2 sin2 θ cos 2ϕ
(r2 + a2)

.

(2.166)

The full Z2 at order b2 is then

Z2 =
Q5
Σ

[
1 − b√

2 a

√
2 a sin θ cosϕ√

r2 + a2
+

b2

2a2
2a2 sin2 θ cos 2ϕ

(r2 + a2)

]
. (2.167)

the Z1 : Here we have to compute the numerator, that is

|ġi|2 = |ġ|2 = a2
(

1 + b

a
cosw

)2
, (2.168)

so that, expanding again

Z1 = Z
(0)
1 +

b√
2 a

Z
(1)
1 +

b2

2a2 Z
(2)
1 +O(b3) , (2.169)

we get

Z
(0)
1 = +

a2R2
Q5

Σ
,

Z
(1)
1 = +

a2R2
Q5

Σ

√
2 a sin θ cosϕ√
r2 + a2

,

Z
(2)
1 = −

a2R2
Q5

Σ

[
a2 sin2 θ cos 2ϕ

(r2 + a2)
− 1
]

.

(2.170)
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The full Z1 is then

Z1 =
a2R2
Q5

Σ

[
1 + b√

2 a

√
2 a sin θ cosϕ√
r2 + a2

− b2

2a2

(
a2 sin2 θ cos 2ϕ

(r2 + a2)
− 1
)]

.

(2.171)

the ω , β and Z4 : This is the easy part, since it is trivial to notice that

Z4 = 0 , β = β0 +O(b3), ω = ω0 +O(b3), (2.172)

where β0 and ω0 are the ones of the [|++⟩1]
N geometry, i.e.

β =
Ra2
√

2 Σ
(sin2 θ dϕ− cos2 θ dψ) , ω =

Ra2
√

2 Σ
(sin2 θ dϕ+ cos2 θ dψ) .

(2.173)

the geometry: To recap we have

Z1 =
a2R2
Q5

Σ

[
1 + b√

2 a

√
2 a sin θ cosϕ√
r2 + a2

− b2

2a2

(
a2 sin2 θ cos 2ϕ

(r2 + a2)
− 1
)]

,

Z2 =
Q5
Σ

[
1 − b√

2 a

√
2 a sin θ cosϕ√

r2 + a2
+

b2

2a2
2a2 sin2 θ cos 2ϕ

(r2 + a2)

]
,

β =
Ra2
√

2 Σ
(sin2 θ dϕ− cos2 θ dψ) , ω =

Ra2
√

2 Σ
(sin2 θ dϕ+ cos2 θ dψ) .

(2.174)

This means that we have the same geometry as the state of the previous
example, i.e.

|H̃⟩ = · · ·A |++⟩1 B |++⟩2 B
2 |++⟩3 · · · ↔ g1 + ig2 = a exp

[
i
(
w+

b

a
sinw

)]
,

|H⟩ = A |++⟩1 B|00⟩1 ↔ g1 + ig2 = a′eiw , g5 = − b′
√

2
eiw ,

(2.175)

where F is the profile on one direction of the Torus, have the same 6D geometry
in the Einstein frame

ds2
H̃

= ds2
H +O(b3) . (2.176)

This simply comes from the fact that the two P are the same at this order:

P|H̃⟩′ ≡ Z1Z2 =
a2R2

Σ2 +
b2

2
R2

Σ(r2 + a2)
+O(b3) ,

P|H⟩ ≡ Z1Z2 −Z4 =
(a′)2R2

Σ2 +
(b′)2

2
R2

Σ(r2 + (a′)2)
+O((b′)3) ,

(2.177)

where the identification that follows is

a = a′ , b = b′ . (2.178)

Careful holographic computations will give the relation between A, B with a,
b so that

|H̃⟩ = · · ·
[(
a− b2

4a

)
|++⟩1

]
(b |++⟩2) · · · . (2.179)
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2.5 Some known 1
8 -BPS superstrata

We now report two relevant examples of 1
8 -BPS solutions that will be useful

in chap. 6 and that will be generalised in chap. 3.

2.5.1 External excitations

The system we have discussed in eq. (2.113) admits a set of nice solutions [76,
88–90]; one of the most relevant for us will be the so called |10n⟩ superstratum,
that is a geometry dual to the state reported in eq. (2.85) with q = 0. The
explicit solution of the two layers (2.117, 2.119) for the (k,m,n) = (1, 0,n)
geometry was found in [88,89]

ds2
10 =

√
Z1Z2

P ds2
6 +

√
Z1
Z2

ds2
T4 , (2.180a)

ds2
6 = − 2√

P
(dv + β)

[
du+ ω +

F
2 (dv + β)

]
+

√
P ds2

4 , (2.180b)

v̂1,0,n =

√
2
R

nv + ϕ , v̂2,0,2n =

√
2
R

2nv + 2ϕ , (2.180c)

∆1,0,n =
a rn

(r2 + a2)
n+1

2
sin θ , ∆2,0,2n =

a2 r2n

(r2 + a2)n+1 sin2 θ (2.180d)

Z1 =
Q1
Σ

+
R2

2Q5
b2 ∆2,0,2n

Σ
cos v̂2,0,2n Z2 =

Q2
Σ

, (2.180e)

Z4 = bR
∆1,0,n

Σ
cos v̂1,0,n (2.180f)

ω =
a2R√

2 Σ

(
sin2 θ dϕ+ cos2 θ dψ

)
+
b2

a2
a2R√

2 Σ

[
1 − r2n

(r2 + a2)n

]
sin2 θ dϕ ,

(2.180g)

F = − b2

a2

[
1 − r2n

(r2 + a2)n

]
, β =

a2R√
2 Σ

(
sin2 θ dϕ− cos2 θ dψ

)
,

(2.180h)

so that, calling Fn ≡
[
1 − r2n

(r2+a2)n

]
,

ω =
a2R√

2 Σ

[(
1 + b2

a2Fn

)
sin2 θ dϕ+ cos2 θ dψ

]
. (2.181)

Notice that this is a three-charge geometry, due to the fact that we have
a non-vanishing F , controlled by a non-vanishing n; sending n → 0 will thus
reduce it to a 2-charge geometry, as expected. This metric can be rewritten,
via the splitting xM = (xµ, θa), with M = 0, . . . , 5, µ = 0, 1, 2 and a = 3, 4, 5,
as

ds2
6 = V −2gµνdxµdxν +Gab(dθa +Aaµdxµ)(dθb +Abνdxν), (2.182)

where V is fixed requiring that
√

− detGMN =
√

− det gµν
√

det qab with qab
the round S3 metric, for all values of b. The three-dimensional non-compact
metric is

ds2
3 = −

[
r2
(

1 − b2

2a2
0
Fn

)
+
a4

a2
0

]
dτ + r2

(
1 + b2

2a2
0
Fn

)
dσ2

+
r2 + a2

a2
0

(
a2 + b2

2 Fn

)
(r2 + a2

0)
2 dr2 ,

(2.183)

where we have defined the adimensional coordinates

τ =
t

R
, σ =

y

R
. (2.184)
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This system has only external excitations, and thus this solution is invariant
under rotation of the compact manifold T4; now we see how it is possible,
using it as as seed, to use T - and S-dualities to obtain a new solution that
has internal excitations, i.e. excitations on the compact manifold, so that it
is not invariant under rotations of the T4.

2.5.2 Internal excitations via dualities

The family of three-charge geometries found in the previous paragraph has
the schematic form

ds2
10 =

√
Z1Z2

P
ds2

6 +

√
Z1
Z2

ds2
T4 ,

e2ϕ =
Z2

1
P

, C0 =
Z4
Z1

,

B2 = B̄2 , C2 = C̄2 ,

C4 = C̄4 +
Z4
Z2

dz1 ∧ dz2 ∧ dz3 ∧ dz4 ,

(2.185)

where barred objects are forms with legs only along the non-compact six-
dimensional space.

If we want now a geometry that has only “internal” excitations, i.e. it is not
invariant under rotation of the compact manifold, we can simply perform the
following chain of dualities:(

D1
D5

)
S−→

(
F1

NS5

)
Tz1z2−→

(
F1

NS5

)
S−→

(
D1
D5

)
; (2.186)

if performed in order, we get

ds2
10 = ds2

6 +

√
P
Z2

ds2
T 4 , e2Φ =

P
Z2

2
,

B2 = −Z5
Z2

ω5 , ω5 = dz1 ∧ dz2 − dz3 ∧ dz4 ,

C0 = 0 , C2 = C̄2 ,

C4 =

[(
δ5 − Z5

Z2
γ2

)
+

(
a5 − Z5

Z2
a1

)
∧ (dv+ β)

]
∧ ω5 ,

(2.187)

where the two layers equations are inherited by duality; this means that the
objects defining the ansatz here satisfy the previous layers equations; We have
then changed the name of Z4 to Z5 (and similarly δ4 with δ5 and a4 with a5),
in order to distinguish them later.
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I N T E R N A L E XC I TAT I O N S

In chap. 2 we have discussed some two-charge 1
4 -BPS solutions that have

internal and external excitations. Up to now, no explicit three-charge 1
8 -BPS

solution having both internal and external excitation has been found. The
goal of this chapter is then to find these three-charge solutions that have both
excitations and to furnish their holographic interpretation.

In order to do so, we need to generalise the results of [102], in which the
supergravity fields are invariant under transformations of the T4. In this chap-
ter we will this report the results we found in [3], and We will show that the
general ansatz we define satisfies the type IIB supergravity equations once
we impose a system of partial differential equations that arrange in two lay-
ers for the objects appearing in the geometry; we want to stress that this
set of two layers, if solved in order, constitutes a linear system, and it is a
generalisation of the system of equations for geometries with only external
excitation [76,87–89,102,112].

After having established the system of equations, i.e. the two layers, we
build explicitly two asymptotically AdS3 × S3 solutions for them; one is a
three-charge superdescendant, obtained by the solution generating technique
of [87], starting from a known two-charge D1D5 solution [110] as a seed; the
second one is a superstratum solution with only one Fourier mode for the
internal excitation and one Fourier mode for the external excitation; this is
the first non-trivial three-charge smooth horizonless solution with an internal
excitation. We close the chapter with a brief discussion on the extension of
our solutions to Asymptotically Flat geometries.

1 three charge superstrata with internal excitations:
the ansatz

We want now to find the most general solution of D1D5P system that has
both Z4 and Z5 turned on, thus generalising eq. (2.134). This implies that the
warp factor is now P ↦→ P = Z1Z2 −Z2

4 −Z2
5 . We will also assume again that

β̇ = 0, in order to the ds2
4 base to be v−independent.

63
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Motivated from the discussion of chap. i, and from the 2-charges geometry
of [110], we formulate the following ansatz1:

ds2
10 =

√
α ds2

6 +

√
P̃

Z2
ds2

T4 ,

ds2
6 = − 2√

P
(dv+ β)

[
du+ ω+

F
2 (dv+ β)

]
+

√
P ds2

4 ,

ds2
4 = Σ

(
dr2

r2 + a2 + dθ2
)
+ (r2 + a2) sin2 θ dϕ2 + r2 cos2 θ dψ2 ,

P = Z1Z2 −Z2
4 , P̃ = Z1Z2 −Z2

5 , P = Z1Z2 −Z2
4 −Z2

5 ,

dv̂ = dv+ β , dû = du+ ω , v =
t+ y√

2
, u =

t− y√
2

,

e2ϕ = α
P̃
Z2

2
, ω5 = − ∗T4 ω5 , α =

P̃
P

,

B2 = −Z4
P
dû∧ dv̂+ a4 ∧ dv̂+ δ2 − Z5

Z2
ω5 ,

C0 =
Z2Z4

P̃
,

C2 = −Z2
P
dû∧ dv̂+ a1 ∧ dv̂+ γ2 ,

C4 =
Z4
Z2

vol4 − Z4
P
γ2 ∧ dû∧ dv̂+ x3 ∧ dv̂

+

[(
a5 − Z5

Z2
a1

)
∧ dv̂+

(
δ5 − Z5

Z2
γ2

)]
∧ ω5 ,

(3.1)

where here the ω5 is any constant two-form that is anti-self dual on the T4.
It is easy to see that if Z5 → 0 we recover (2.113), while if Z4 → 0 we recover
(2.187). This ansatz is 1

8−BPS and three-charge, and this is evident in the
geometry by the fact that our geometry has a Killing vector ∂

∂u , so we will
always assume that everything is u−independent.

1.1 Rewriting the type IIB Equations of Motion

In analogy of the discussion on superstrata on chap. 2, we want to find the
“layers” that our ansatz has to satisfy in order to be a IIB supergravity solu-
tion.

We have already seen in sec. 2 that the bosonic content of type IIB super-
gravity consists in a graviton gMN , a dilaton ϕ, an NSNS 2-form B2, and a
set of RR forms C0,C2,C4.

In [102], it was shown that the minimal set of equations that one has to
solve are BPS constraints dubbed with the existence of a null Killing vector
whose integral flow generates the u-coordinate, the self-duality of RR fields
and the vv component of the Einstein Equations. We see that their results
can be applied here, so we do not have to solve both equations of motion and
BPS equations, since it was shown there that one implies the other. So that
we will have to solve only one of the two. Our discussion will then focus on
solving the gauge equations of motion and the vv−component of the Einstein
Equations, and that, plus the result of [102], will imply that our ansatz is a
BPS solution of type IIB supergravity.

1 We recall that dû and dv̂ are not 1-forms, since ddv̂ ̸= 0, ddv̂ ̸= 0.
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We will show that to find the complete set of layers we have to study only
these equations2

F5 − ∗F5 = 0 , (3.2a)
d ∗ F3 +H3 ∧ F5 = 0 , (3.2b)

e−2ϕ
(
Rvv + 2∇v∇vϕ− 1

4 HvPQHv
PQ

)
+

1
4 gvv

(
FPF

P +
1
3!
FPQRF

PQR

)
−1

2FvFv − 1
2

1
2!
FvPQFv

PQ − 1
4

1
4!
FvPQRSFv

PQRS = 0 , (3.2c)

and that the other are solved imposing the layers. We will briefly describe
how the two layers

∗4DŻ1 = DΘ2 , D ∗4 DZ1 = −Θ2 ∧ Dβ , Θ1 = ∗4Θ1 , (3.3a)
∗4DŻ2 = DΘ1 , D ∗4 DZ2 = −Θ1 ∧ Dβ , Θ2 = ∗4Θ2 , (3.3b)
∗4DŻ4 = DΘ4 , D ∗4 DZ4 = −Θ4 ∧ Dβ , Θ4 = ∗4Θ4 , (3.3c)
∗4DŻ5 = DΘ5 , D ∗4 DZ5 = −Θ5 ∧ Dβ , Θ5 = ∗4Θ5 , (3.3d)

and

Dω + ∗4Dω + F dβ = Z1Θ1 + Z2Θ2 − 2Z4Θ4 − 2Z5Θ5 , (3.4a)

∗4D ∗4

(
ω̇− 1

2 DF
)
= ∂2

v (Z1Z2 −Z2
4 −Z2

5 ) − [Ż1Ż2 − (Ż4)
2 − (Ż5)

2]

− 1
2 ∗4 (Θ1 ∧ Θ2 − Θ4 ∧ Θ4 − Θ5 ∧ Θ5) ,

(3.4b)

emerge from the system (2.112).

1.1.1 The Field Strengths

The first thing to notice is that everything is T4-independent, i.e. ∂zi = 0 , ∀i.
By the fact that the solution should be BPS, it is also u−independent and
then ∂u = 0. Then the ten-dimensional differential operator d = dxM ∧ ∂M
can be split as3

d = d4 + dv ∧ ∂v = D + (dv+ β) ∧ ∂v ≡ D + dv̂ ∧ ∂v . (3.6)

It will be useful to introduce the following gauge invariant objects

Θ1 ≡ Da1 + γ̇2 , Θ4 ≡ Da4 + δ̇2 , Θ5 ≡ Da5 + δ̇5 ,
Ξ1 = Dγ2 − a1 ∧ Dβ , Ξ4 = Dδ2 − a4 ∧ Dβ , Ξ5 = Dδ5 − a5 ∧ Dβ ,

(3.7)

2 Notice that the solution of these set of equations will be 1
8 -BPS, due to the results of [102]

that are still valid here.
3 Notice that, on a generic form fp, we have

D2fp = −Dβ ∧ ḟp . (3.5)
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so that we can compute the field strengths via the split4

H3 = H(3)
3 + H(1)

3 ∧ ω5 , (3.9a)

F1 = F
(1)
1 , (3.9b)

F3 = F
(3)
3 + F

(1)
3 ∧ ω5 , (3.9c)

F5 = F
(5)
5 + F

(3)
5 ∧ ω5 + F

(1)
5 ∧ volT4 , (3.9d)

where volT4 is the volume form of the compact T4. The field strengths are

H(1)
3 = −D

(
Z5
Z2

)
− ∂v

(
Z5
Z2

)
dv̂ , (3.10a)

H(3)
3 = −D

(
Z4
P

)
∧ dû∧ dv̂+ Z4

P
Dβ ∧ dû

+

[
Θ4 − Z4

P
Dω
]

∧ dv̂+ Ξ4 , (3.10b)

and

F
(1)
1 = D

(
Z2Z4

P̃

)
+ ∂v

(
Z2Z4

P̃

)
dv̂ , (3.11)

and

F
(1)
3 =

Z2Z4

P̃
D
(
Z5
Z2

)
+
Z2Z4

P̃
∂v

(
Z5
Z2

)
dv̂ (3.12a)

F
(3)
3 = −

[
D
(
Z2
P

)
− Z2Z4

P̃
D
(
Z4
P

)]
∧ dû∧ dv̂+ Z2

P̃
Dβ ∧ dû

+

[(
Θ1 − Z2Z4

P̃
Θ4

)
− Z2

P̃
Dω
]

∧ dv̂

+

[
Ξ1 − Z2Z4

P̃
Ξ4

]
, (3.12b)

where we have used that

Z2
P

− Z2Z4

P̃
Z4
P

=
Z2

P̃
. (3.13)

In the end, we have

F
(1)
5 = D

(
Z4
Z2

)
+ ∂v

(
Z4
Z2

)
dv̂ (3.14a)

F
(3)
5 = −Z2

P
D
(
Z5
Z2

)
∧ dû∧ dv̂+

[
Θ5 − Z5

Z2
Θ1

]
∧ dv̂

+

[
Ξ5 − Z5

Z2
Ξ1

]
(3.14b)

F
(5)
5 = −

[
Z4
P

Ξ1 − Z2
P

Ξ4

]
∧ dû∧ dv̂

+ [Dx3 − Θ4 ∧ γ2 + a1 ∧ Ξ4] ∧ dv̂
+ [x3 ∧ Dβ + Ξ4 ∧ γ2] . (3.14c)

4 Please notice that, since d(dû) = Dω + dv̂ ∧ ω̇ and d(dv̂) = Dβ + dv̂ ∧ β̇,

d(dû∧ dv̂) = Dω ∧ dv̂− Dβ ∧ dû− β̇ ∧ dû∧ dv̂ = Dω ∧ dv̂− Dβ ∧ dû , (3.8)

since we had assumed assume β̇ = 0. Also, since β̇ = 0, Dβ = dβ.
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Now notice that x3 ∧ Dβ + Ξ4 ∧ γ2 = 0 since it is a 3-form wedge a 2-form in
a 4-dimensional space. We recall that in eq. (2.17) of [76] they define

Ω4 ≡ Dx3 − Θ4 ∧ γ2 + a1 ∧ Ξ4 , (3.15)

so we recover this combination as expected:

F
(5)
5 = +

Z2
P

[
Ξ4 − Z4

Z2
Ξ1

]
∧ dû∧ dv̂+ Ω4 ∧ dv̂ . (3.16)

We can also use that α = P̃
P

so

F
(5)
5 = α

Z2

P̃

[
Ξ4 − Z4

Z2
Ξ1

]
∧ dû∧ dv̂+ Ω4 ∧ dv̂ . (3.17)

1.1.2 The eq. (2.112a)

We now study eq. (2.112a). We employ our split (3.8) and see that

∗F5 =
1
α

P̃
Z2

2
∗6 F

(5)
5 ∧ volT4 − ∗6F

(3)
5 ∧ ω5 + α

Z2
2

P̃
∗6 F

(1)
5 . (3.18)

So the type IIB supergravity equation (2.112a) becomes

I(5) ≡ F
(5)
5 − α

Z2
2

P̃
∗6 F

(1)
5 = 0 , (3.19a)

I(3) ≡ F
(3)
5 + ∗6F

(3)
5 = 0 , (3.19b)

I(1) ≡ F
(1)
5 − 1

α

P̃
Z2

2
∗6 F

(5)
5 = 0 . (3.19c)

So then we get, using that α Z2
2

P̃
P = Z2

2 ,

I(1) =

[
D
(
Z4
Z2

)
+

1
Z2

(
∗4Ξ4 +

Z4
Z2

∗4 Ξ1

)]
+

[
∂v

(
Z4
Z2

)
− 1
Z2

2
∗4 Ω4

]
dv̂ ,

(3.20)

that gives two equations

D
(
Z4
Z2

)
= − 1

Z2

(
∗4Ξ4 − Z4

Z2
∗4 Ξ1

)
, (3.21a)

Z2
2 ∂v

(
Z4
Z2

)
= ∗4Ω4 . (3.21b)

These two equations are like eqs. (3.45) and (3.47) of [102]. Notice also that
I(1) is the dual of I(5), so the only new equation of motion w.r.t. the case with
only external excitation is I(3) that is, broadly speaking, “self-dual":

I(3) =
1
P

[
Z2D

(
Z5
Z2

)
+ ∗4Ξ5 − Z5

Z2
∗4 Ξ1

]
∧ dû∧ dv̂

+

[(
Θ5 − Z5

Z2
Θ1

)
− ∗4

(
Θ5 − Z5

Z2
Θ1

)]
∧ dv̂

−
[
Z2 ∗4 D

(
Z5
Z2

)
−
(

Ξ5 − Z5
Z2

Ξ1

)]
.

(3.22)
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This gives5

Θ5 = ∗4Θ5 , Θ1 = ∗4Θ1 , (3.23)

and

Z2D
(
Z5
Z2

)
= − ∗4 Ξ5 +

Z5
Z2

∗4 Ξ1 . (3.24)

Notice that, since D
(
Z5
Z2

)
= 1

Z2
DZ5 − 1

Z2
2

DZ2, we can rewrite the equations
as

∗4DZ2 = Ξ1 , ∗4DZ4 = Ξ4 , ∗4DZ5 = Ξ5 , (3.25)

Where we have used that ∗d ∗d αp = (−1)p(d−p)s∗d αp, where s is the signature
value.

So, to recap, we have

∗4DZ2 = Ξ1 , ∗4DZ4 = Ξ4 , ∗4DZ5 = Ξ5 , (3.26a)
Θ1 = ∗4Θ1 , Θ4 = ∗4Θ4 , Θ5 = ∗4Θ5 , (3.26b)

Ω4 = Z2
2 ∗4 ∂v

(
Z4
Z2

)
, ∗4Dβ = Dβ . (3.26c)

Now, using that D2fp = −Dβ ∧ ḟp, we can rewrite (3.26a) as (3.3).

1.1.3 The eq. (2.112b)

We now see how the IIB sugra equation for the F3

d ∗ F3 +H3 ∧ F5 = 0 , (3.27)

translates in our notation. First, we employ again the splitting (3.8) to have

∗F3 = −α ∗6 F
(1)
3 ∧ ω5 +

P̃
Z2

2
∗6 F

(3)
3 ∧ volT4 , (3.28)

and get the following set of equations

d
[

P̃
Z2

2
∗6 F

(3)
3

]
+ H(3)

3 ∧ F
(1)
5 − 2H(1)

3 ∧ F
(3)
5 = 0 , (3.29a)

d
[
−α ∗6 F

(1)
3

]
+ H(3)

3 ∧ F
(3)
5 + H(1)

3 ∧ F
(5)
5 = 0 , (3.29b)

where we have used the fact that ω5 ∧ ω5 = −2volT4 . We will now focus on
the first one, and notice that

H(1)
3 ∧ F

(3)
5 = H(1)

3 ∧
[
dC(2)

4 − H(1)
3 ∧C(2)

2

]
= H(1)

3 ∧ dC(2)
4

= d
[
B

(0)
2 dC(2)

4

]
,

H(3)
3 ∧ F

(1)
5 = H(3)

3 ∧ dC(0)
4

= −d
[
H(3)

3 C
(0)
4

]
,

(3.30)

so that

d
[

P̃
Z2

2
∗6 F

(3)
3 − H(3)

3 C
(0)
4 − 2B(0)

2 dC(2)
4

]
= 0 . (3.31)

5 Actually, this imposes the self-duality of
(

Θ5 − Z5
Z2

Θ1
)

, but imposing also the gauge equa-
tion for F3 we have to solve independently the self-duality condition on all the Θ’s.
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To extract the solution we then write it as

P̃
Z2

2
∗6 F

(3)
3 − H(3)

3 C
(0)
4 − 2B(0)

2 dC(2)
4 = −dC̃(2)

2 − dB̃(2)
2 , (3.32)

where, in strict analogy with computations in the literature [76,87–89,102,112],

C̃
(2)
2 = −Z1

P
dû∧ dv̂+ a2 ∧ dv̂+ γ1 , B̃

(2)
2 = − 1

Z2

Z2
5

P
dû∧ dv̂ , (3.33)

we obtain, from the dû component of the equation, that

∗4Dβ = Dβ , (3.34)

and, from the dv̂ component of the equation, that

Dω+ ∗4Dω+ F dβ = Z1Θ1 + Z2Θ2 − 2Z4Θ4 − 2Z5Θ5 , (3.35)

where we have used ΘI = ∗4ΘI .

1.1.4 The eq. (2.112c)

To solve the last equation, eq. (2.112c), we need to split xM = (xµ, zi) =
(xui ,xa, zi) where xui = (u, v) and

gMNdxMdxN =
√
α gµνdxµdxν +Xδijdzidzj , (3.36)

where X =

√
P̃

Z2
and α = P̃

P
, and

gµνdxµdxν = Guiuj (dx
ui +Aui)(dxuj +Auj ) +

√
P qabdxadxb , (3.37)

and where

Aui = Auia dxa , Au = ω , Av = β , Guiuj =

⎛⎝ 0 − 1√
P

− 1√
P

− F√
P

⎞⎠ , (3.38)

so that we can write 6

gµν =

(
Guiuj GuiujA

ui
a

Auia Guiuj
√

P qab +GuiujA
ui
a A

uj
b

)
,

gµν =

⎛⎝Guiuj + 1√
P
qabAuia A

uj
b − 1√

P
qabAuib

− 1√
P
Auia q

ab 1√
P
qab

⎞⎠ .

(3.40)

Notice that we can inherit the results of [116]; in particular, we can use
their eq. (3.30). We can thus define the sechsbein as

e+ =
1√
P
(dv+ β), e− =

1√
P

[
du+ ω+

F
2 (dv+ β)

]
, ea = P1/4 ẽa ,

(3.41)

6 Notice that

Guiuj =

(
0 − 1√

P

− 1√
P

− F√
P

)
, Guiuj =

(√
P F −

√
P

−
√

P 0

)
. (3.39)
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so that

ηabe
aeb = 2η+−e

+e− +
√

P δabẽ
aẽb = ds2

6 . (3.42)

With this kind of metric we can use eq. (3.30) of [116]7

Rvv = ∗4D ∗4 L+
1
2

1
P

(
Dω+

1
2 Fdβ

)2

− 1
2

√
P qab∂2

v

(√
P qab

)
− 1

4 ∂v
(√

P qab
)
∂v

(√
P qab

)
,

(3.43)

where

L ≡ ω̇− 1
2 DF . (3.44)

With carefulness and using eqs. (3.3) and (3.35) intensively, one can extract
the last equation to be

∗4D ∗4

(
ω̇− 1

2 DF
)
= ∂2

v (Z1Z2 −Z2
4 −Z2

5 ) − [Ż1Ż2 − (Ż4)
2 − (Ż5)

2]

− 1
2 ∗4 (Θ1 ∧ Θ2 − Θ4 ∧ Θ4 − Θ5 ∧ Θ5) .

2 the dual cft description

2.1 Two-Charge States

As we have seen repeatedly in chap. 2, the black hole microstates are dual to
heavy states in the Ramond sector of the CFT. A typical heavy state will be
a product of Ni strands with length ki, and we will describe them strand by
strand. In the R sector we can act on each strand on the vacuum with the
fermionic zero-modes ψ−Ȧ

0 , ψ̃−Ḃ
0 to build 24 states and, for concreteness, we

pick from the R vacuum states the one with ȷL = ȷR = + 1
2 , i.e. |++⟩k. Half of

these states are fermionic, and do not have a clear holographic dual geometry;
the other half are bosonic, and we will focus on those. Out of these eight states,
we have the subset of those with zero angular momentum |00⟩(ȦḂ)

k . We can
extract a combination of those states that is invariant under transformation
of the T4, i.e. |00⟩k = εȦḂ |00⟩(ȦḂ)

k , while the others are non-invariant under
the same transformations; to build our heavy states, we will pick without loss
of generality the state |00⟩1̇1̇

k . Here we use the notation commonly used in the
literature; we want to stress the fact that all the states written above have
zero angular momentum.

To be explicit, we will study in the next section the geometry dual to the
two-charge Heavy state

|H⟩ =
∏

[|++⟩1]
N (++)

[|00⟩k1 ]
Nb
k1
[
|00⟩(1̇1̇)

k2

]Nc
k2 ,

N = N
(++)
1 +

∑
k1

k1N
b
k1 +

∑
k2

k2N
c
k2 .

(3.45)

2.1.1 The profile functions and their holographic interpretation

We now want to briefly describe the map between the two-charge states and
their dual geometry, as seen in chap. 2. As explained in detail in [75,76,89,110],

7 Notice that in [116] the notation for u and v is exchanged and also they use the mostly plus
signature of the metric.
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we can construct two-charge solutions of type IIB supergravity in the D1D5
frame by dualities to the F1P frame and assigning a F1P profile and the going
back with the proper chain of dualities; this will led to a definitions of the ZI ,
β and ω in terms of those profiles:

Z1 =
Q5
L

∫ L

0

|ġi(v′)|2 + |ġ5(v′)|2 + |ġα−(v′)|2

|xi − gi(v′)|2
dv′ ,

Z2 =
Q5
L

∫ L

0

dv′

|xi − gi(v′)|2
,

Z4 = −Q5
L

∫ L

0

ġ5(v′)

|xi − gi(v′)|2
dv′ , Z5 = −Q5

L

∫ L

0

ġα−(v′)ωα−

|xi − gi(v′)|2
dv′ ,

dγ2 = ∗4dZ2 , dγ1 = ∗4dZ1 , dδ4 = ∗4dZ4 , dδ5 = ∗4dZ5 ,

A = −Q5
L

∫ L

0

ġj(v′) dxj

|xi − gi(v′)|2
dv′ , dB = − ∗4 dA , ds2

4 = δijdxidxj ,

β =
−A+B√

2
, ω =

−A−B√
2

, F = 0 , aI = 0 , x3 = 0 ,

(3.46)

where we recall that L = 2πQ5/R and where ωα− is the usual basis of anti-self
dual two forms on the compact T4.

The profile we need to construct the geometry dual to the heavy state (3.45)
is

g1 + ig2 = a e
2πiv′
L , g3 + ig4 = 0,

g5 = − b

k1
sin
(

2πk1v′

L

)
, gα− = − c

k2
sin
(

2πk2v′

L

)
.

(3.47)

The holographic dictionary then relates [75,76,89,110]

N (++)

N
=
a2

a2
0

,
k1N b

k1

N
=

b2

2a2
0

,
k2N c

k2

N
=

c2

2a2
0

, (3.48)

that translates into the regularity condition

a2 +
b2

2 +
c2

2 = a2
0 ≡ Q1Q5

R2 . (3.49)

Here R is the S1 radius and Q1 and Q5 are the D1 and D5 supergravity
charges; they are related to the number n1 and n5 via

Q1 =
(2π)4gs(α′)3

VT4
n1 , Q5 = gsα

′ n5 , (3.50)

where gs is the string coupling constant and where VT4 is the volume of the
T4.

2.2 Three charge states

Starting from the two-charge D1D5 geometry dual to the state in (3.45) we
can build a three-charge D1D5P geometry that is dual to a superdescendant
of the heavy state (3.45); as explained in [76, 87, 89] we can act with the
symmetries of the CFT on each strand to generate new solutions. Since

(J+
−1)

m1 |00⟩k1 = 0 , ∀m1 > k1 , (3.51)
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we can act with a global transformation eχ(J
+
−1−J−

+1) on the two-charge state,
where we follow the notation of [87]; picking a precise choice for χ, i.e. χ = π/2,
the resulting state is obtained as a product of states on which we have acted
with the maximum number of J+

−1:

|H̃⟩ =
∏

[|++⟩1]
N (++)

[
(J+

−1)
k1 |00⟩k1

]Nb
k1
[
(J+

−1)
k2 |00⟩(1̇1̇)

k2

]Nc
k2 . (3.52)

To construct its dual geometry we can start from the dual geometry of (3.45)
and act, on the supergravity side already in the R sector, with the coordinate
transformation

θ → π

2 − θ , ϕ → −ψ+

√
2 v
R

, ψ → −ϕ+
√

2 v
R

. (3.53)

We will see in the next section what are the dual geometries of these heavy
states |H⟩, |H̃⟩ and we will check that those geometries satisfies the layer
equations (3.3, 3.4), furnishing a non-trivial check.

We will also build new non-superdescendant geometries that are dual to
more complicated heavy states, by means of the action of the generators of
the algebra; in particular we can act with (L−1 − J3

−1)
n and with (J+

−1)
m, as

in [89], giving

⏐⏐⏐H(k1,m1,n1),(k2,m2,n2)

⟩
=
∏

[|++⟩1]
N (++)

·

·
[
(L−1 − J3

−1)
n1(J+

−1)
m1 |00⟩k1

]Nb
k1,m1,n1 ·

·
[
(L−1 − J3

−1)
n2(J+

−1)
m2 |00⟩(1̇1̇)

k2

]Nc
k2,m2,n2 .

(3.54)

As explained in chap. 1, they are called superstrata, in order to distinguish
them from the rigidly generated superdescendants [76,89].

We now want to remark that those states will have a dual geometry that
will not be invariant under rotation of the compact space T4; this is easy to
see from the CFT point of view because these states have explicit indexes
of the torus symmetry group SO(4)I , so are not invariant under SO(4)I
transformations.

3 three-charge superstrata with internal excitations:
solutions

3.1 The Superdescendant check

We now start from the two-charge geometry with both Z4 and Z5 excitations;
as described in the previous section, the geometry we want to consider is



3 three-charge superstrata with internal excitations: solutions 73

holographically dual to the heavy state (3.45). The dual geometry is then a
two-charge geometry [110] described by the general ansatz (3.1) with

Z1 =
R2

Q5

a2 + b2

2 + c2

2
Σ

+
R2a2k1

2Q5

b2 sin2k1 θ cos 2k1ϕ

Σ (r2 + a2)k1
+
R2a2k2

2Q5

c2 sin2k2 θ cos 2k2ϕ

Σ (r2 + a2)k2
,

Z2 =
Q5
Σ

, Z4 = Rbak1 sink1 θ cos k1ϕ

Σ (r2 + a2)
k1
2

, Z5 = Rcak1 sink2 θ cos k2ϕ

Σ (r2 + a2)
k2
2

,

a1 = 0 , a4 = 0 , a5 = 0 , x3 = 0 ,

γ2 = −Q5
r2 + a2

Σ
cos2 θ dϕ∧ dψ ,

δ4 = −Rbak1 sink1 θ

(r2 + a2)
k1
2

(
r2 + a2

Σ
cos2 θ cos k1ϕ dϕ∧ dψ + sin k1ϕ cot θ dθ ∧ dψ

)
,

δ5 = −Rcak2 sink2 θ

(r2 + a2)
k2
2

(
r2 + a2

Σ
cos2 θ cos k2ϕ dϕ∧ dψ + sin k2ϕ cot θ dθ ∧ dψ

)
.

(3.55)

We will now to generate a three-charge solution that is its superdescendant;
to do so we will use the generating-solution technique of [87]; on the super-
gravity side the transformation we have to employ is, already in the R Sector,

θ → π

2 − θ , ϕ → −ψ+

√
2 v
R

, ψ → −ϕ+
√

2 v
R

. (3.56)

This rigidly generated solution is a three-charge, 1
8−BPS geometry that solves

the two layers (3.3, 3.4). We remark that this is a highly non-trivial check for
the layers.

The explicit solution is defined in terms of

Z1 =
R2

2Q5

1
Σ

[(
2a2 + b2 + c2)+ a2k1 cos2k1 θ

(r2 + a2)k1
b2 cos (2k1v̂)

+
a2k2 cos2k2 θ

(r2 + a2)k2
c2 cos (2k2v̂)

]
,

Z2 =
Q5
Σ

,

Z4 =
R

Σ
b
ak1 cosk1 θ

(r2 + a2)
k1
2

cos (k1v̂) , Z5 =
R

Σ
c
ak2 cosk2 θ

(r2 + a2)
k2
2

cos (k2v̂) ,

F = − 1
r2 + a2 sin2 θ

[
b2
(

1 − a2k1 cos2k1 θ

(r2 + a2)k1

)
+ c2

(
1 − a2k2 cos2k2 θ

(r2 + a2)k2

)]
,

(3.57)
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and

ω = ω0 + ω1 , β = β0 ,

β0 =
Ra2
√

2 Σ

(
sin2 θ dϕ− cos2 θ dψ

)
, ω0 =

Ra2
√

2 Σ

(
sin2 θ dϕ+ cos2 θ dψ

)
,

ω1 = − R√
2 Σ

F
[
(r2 + a2) sin2 θ dϕ+ r2 cos2 θ dψ

]
,

γ2 =
Q5
Σ

(r2 + a2) sin2 θ , a1 = 0 ,

a4 =
√

2 b ak1 cosk1 θ

(r2 + a2)
k1
2

[tan θ sin(k1v̂)dψ+ cos(k1v̂)dψ] ,

δ4 =
R

2Σ
b
ak1 cosk1 θ

(r2 + a2)
k1
2

tan θ
[
−2(r2 + a2) sin(k1v̂)dθ ∧ dϕ

+2a2 cos2 θ sin(k1v̂)dθ ∧ dψ+ (r2 + a2) sin 2θ cos(k1v̂)dϕ∧ dψ
]

,

a5 =
√

2 c ak2 cosk2 θ

(r2 + a2)
k2
2

[tan θ sin(k2v̂)dψ+ cos(k2v̂)dψ] ,

δ5 =
R

2Σ
c
ak2 cosk2 θ

(r2 + a2)
k2
2

tan θ
[
−2(r2 + a2) sin(k2v̂)dθ ∧ dϕ

+2a2 cos2 θ sin(k2v̂)dθ ∧ dψ+ (r2 + a2) sin 2θ cos(k2v̂)dϕ∧ dψ
]

.
(3.58)

and where we have defined for convenience

v̂ =

√
2 v
R

−ψ . (3.59)

We want to stress that the presence of a non-vanishing F with the proper
large r asymptotic means that we have a non-vanishing P charge [75]:

F = −2(b2 + c2)

2r2 +O(r−3) ≡ −2QP
r2 +O(r−3). (3.60)

3.2 The superstratum ansatz: (k,m,n) = (1, 0,n1), (1, 0,n2)

We want now to build a superstratum solution, that is not a superdescendant
of a two-charge state. In order to do so, we follow the strategy outlined in
sec. 2.4 of [76]: we will start with a well-defined ansatz for the ZI functions
that satisfy the first layer (3.3); then we use this ansatz to derive the sources
of the second layer (3.4) in order to solve them for ω and F . This gives a set
of linear partial differential equations for the ω and F functions.

We start from the simple case of two Fourier modes, one for Z4 and one
for Z5, described, in the notation of [89], by the triplets (k,m,n) = (1, 0,n1),
(1, 0,n2), respectively. We thus define

∆k,m,n =

(
a√

r2 + a2

)k ( r√
r2 + a2

)n
sink−m θ cosm θ ,

v̂k,m,n = (m+ n)

√
2 v
R

+ (k−m)ϕ−mψ ,

ϑk,m,n = −
√

2 ∆k,m,n

[(
(m+ n)r sin θ+ n

(m
k

− 1
) Σ
r sin θ

)
Ω(1) sin v̂k,m,n

+
(
m
(n
k
+ 1
)

Ω(2) + n
(m
k

− 1
)

Ω(3)
)

cos v̂k,m,n
]

,
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(3.61)

and the usual basis of self-dual two forms on the base space ds2
4

Ω(1) =
dr ∧ dθ

(r2 + a2) cos θ +
r sin θ

Σ
dϕ∧ dψ ,

Ω(2) =
r

r2 + a2 dr ∧ dψ+ tan θ dθ ∧ dϕ ,

Ω(3) =
dr ∧ dϕ

r
− cot θ dθ ∧ dϕ .

(3.62)

We will then build a geometry whose holographic dual is the heavy state (3.54)
with (k,m,n) = (1, 0,n1), (1, 0,n2), respectively.

The supergravity ansatz is then8

Z1 =
Q1
Σ

+
R2

2Q5
b2 ∆2,0,2n1

Σ
cos v̂2,0,2n1 +

R2

2Q5
c2 ∆2,0,2n2

Σ
cos v̂2,0,2n2 ,

Z2 =
Q5
Σ

, Z4 = Rb
∆1,0,n1

Σ
cos v̂1,0,n1 , Z5 = Rc

∆1,0,n2

Σ
cos v̂1,0,n2 .

(3.64)

where the definition of Z1 is inspired by the superdescendant case and is
defined in a way that assures the coiffuring [117–119]. This coiffuring is a
procedure that consists in adjusting the Fourier coefficient of (Z1, Θ2) in terms
of those of (Z4, Θ4) and (Z5, Θ5), in order to have a smooth geometry at the
end of the computations. In fact, since the first layer of equations are a set of
decoupled second-order partial differential equations for the couples (ZI , ΘI ),
a priori we have no relation whatsoever among the Z1,Z2,Z4,Z5 functions.
But only an appropriate choice of the Z1 in terms of the Z4,Z5 will lead to a
well-defined, smooth solution (ω, F) for the second layer of equations.

Based on previous result for geometries with a single internal mode for
Z4 [117–119], where the correct Z1 is such that Z1Z2 −Z2

4 was v−independent,
we have coiffured our geometry as the following: after having chosen the two
Fourier modes for Z4 and Z5, i.e. having chosen the dual CFT state (3.54)
described by

⏐⏐⏐H(1,0,n1),(1,0,n2)

⟩
, we pick Z1 such that P is v−independent.

This will also imply that in the second layer we will not have any v−dependent
sources, allowing us to construct a v−independent ω and F that we will denote
as ωRMS and FRMS.

Please notice that in this thesis we will work with only one Fourier mode for
Z4 and Z5; one may wonder to generalise it allowing many different Fourier
modes for both of them and then have a more involved coiffuring; for sake of
simplicity we will restrain to do that here.

Then we define

Θ1 = 0 , Θ2 =
R

2Q5
b ϑ2,0,2n1 +

R

2Q5
c ϑ2,0,2n2 ,

Θ4 = b ϑ1,0,n1 , Θ5 = c ϑ1,0,n2 .
(3.65)

By construction this set solves the first layer (3.3), as wanted. We are then
left to solve the second layer (3.4); in order to do so we need a good ansatz

8 We will use the regularity condition for this case, that is

Q1Q5

R2 = a2 +
b2

2
+
c2

2
. (3.63)

Later on we will explain how this condition emerges.
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for ω and F . We are searching now for asymptotically AdS solutions, then we
define

ωAdS = ω0 + ωRMS(r, θ) , F = FRMS(r, θ) , (3.66)

where ω0 is the one of the original two-charge solution9, and where RMS
stands for the non-oscillating part. An important fact is that the oscillating
part in asymptotically AdS geometry turns out to decouple from the RMS
part, so we do not need to include it, and we avoid its analysis.

The Second Layer gives an equation of motion of the form

dωRMS + ∗4dωRMS + FRMSdβ0 = J
(1)
n1,n2 ,

L̂FRMS = J
(2)
n1,n2 ,

(3.68)

where β0 is the one of the two-charge state, and where

L̂F ≡ 1
r Σ

∂r
(
r(r2 + a2)∂rF

)
+

1
Σ sin θ cos θ∂θ (sin θ cos θ ∂θF ) , (3.69)

is the scalar Laplacian on the base space, i.e. L̂F = − ∗4 D ∗4 DF . We can see
that the sources have a linear form in the b, c parameters and also that, in the
first equation, there is no Ω(1) direction, and then ωr = 0 = ωθ; in particular

J
(1)
n1,n2 =

√
2R

(
b2 ∆2,0,2n1

Σ
n1 + c2 ∆2,0,2n2

Σ
n2

)
Ω(3) ,

J
(2)
n1,n2 =

4
r2 + a2

1
Σ cos θ

(
b2 ∆2,2,2n1−2 n

2
1 + c2 ∆2,2,2n2−2 n

2
2
)

.
(3.70)

We have then to solve the system

dωRMS + ∗4dωRMS + FRMSdβ0 =
√

2R
(
b2 ∆2,0,2n1

Σ
n1 + c2 ∆2,0,2n2

Σ
n2

)
Ω(3) ,

L̂FRMS =
4

r2 + a2
1

Σ cos θ
(
b2 ∆2,2,2n1−2 n

2
1 + c2 ∆2,2,2n2−2 n

2
2
)

.

(3.71)

Those equations are linear, and are of the same form of the eqs. (4.7, 4.8)
of [89]; then superimposing a linear combination of the form

ωAdS = ωAdS
1,0,n1 + ωAdS

1,0,n2 , FAdS = FAdS
1,0,n1 + FAdS

1,0,n2 , (3.72)

we simply have two identical set of equations that are exactly the one appear-
ing in [89]

dωRMS
1,0,ni + ∗4dωRMS

1,0,ni + FRMS
1,0,nidβ0 =

√
2Rb2

i
∆2,0,2ni

Σ
ni Ω(3) ,

L̂FRMS
1,0,ni =

4n2
i

r2 + a2 b
2
i

∆2,2,2ni−2
Σ cos θ , bi = (b, c),

(3.73)

where they are also solved.
This behaviour is quite natural: having imposed only one mode for Z4 and

one for Z5, after the right linear coiffuring for Z1, the linearity of the layers

9 In detail, we have

β0 =
Ra2
√

2 Σ

(
sin2 θ dϕ− cos2 θ dψ

)
, ω0 =

Ra2
√

2 Σ

(
sin2 θ dϕ+ cos2 θ dψ

)
. (3.67)
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equations - and the fact that Θ1 = 0 - imposes that we can solve separately
the equations; to be more explicit let us define

Z1 = Z
(0)
1 + Z

(b)
1 + Z

(c)
1 , Z2 = Z

(0)
2 , Θ2 = Θ(b)

2 + Θ(b)
2 , (3.74)

such that the first layer is separately solved by the couples
(
Z
(b)
1 , Θ(b)

2

)
and(

Z
(c)
1 , Θ(c)

2

)
, as is our case. Then, defining also

ωAdS = ωAdS
(b) + ωAdS

(c) , FAdS = FAdS
(b) + FAdS

(c) , (3.75)

and using the layer equations for the ω0, the second layer decouples into

Dω(i) + ∗4Dω(i) + F(i) dβ = Z
(i)
1 Θ(0)

1 + Z
(0)
2 Θ(i)

2 − 2Z(i)Θ(i) , (3.76a)

∗4D ∗4

(
ω̇(i) − 1

2 DF(i)

)
= ∂2

v (Z
(i)
1 Z

(0)
2 −Z(i)) − [Ż

(i)
1 Ż

(0)
2 − (Ż(i))

2]

− 1
2 ∗4

(
Θ(0)

1 ∧ Θ(i)
2 − Θ(i) ∧ Θ(i)

)
,

(3.76b)

Z
(i)
1 =

(
Z
(b)
1 ,Z(c)

1

)
, Z(i) = (Z4,Z5) , (3.76c)

Θ(i)
2 =

(
Θ(b)

2 , Θ(c)
2

)
, Θ(i) = (Θ4, Θ5) . (3.76d)

We can then read the solution directly from [89]; for the (k,m,n) = (1, 0,n1),
(1, 0,n2) case we then have

FRMS = − b2

a2

(
1 − r2n1

(r2 + a2)n1

)
− c2

a2

(
1 − r2n2

(r2 + a2)n2

)
, (3.77a)

ωRMS =
R√
2Σ

[
b2
(

1 − r2n1

(r2 + a2)n1

)
+ c2

(
1 − r2n2

(r2 + a2)n2

)]
sin2 θ dϕ.

(3.77b)

3.3 The superstratum ansatz: (k,m,n) generic

In the light of the discussion of the previous section, it is now easy to generalise
the previous solution to generic (k1,m1,n1) and (k2,m2,n2); with the right
ansatz for the ZI

Z1 =
Q1
Σ

+
R2

2Q5
b2 ∆2k1,2m1,2n1

Σ
cos v̂2k1,2m1,2n1

+
R2

2Q5
c2 ∆2k2,2m2,2n2

Σ
cos v̂2k2,2m2,2n2 ,

Z2 =
Q5
Σ

,

Z4 = Rb
∆k1,m1,n1

Σ
cos v̂k1,m1,n1 , Z5 = Rc

∆k2,m2,n2

Σ
cos v̂k2,m2,n2 ,

(3.78)

and for the ΘI

Θ1 = 0 , Θ2 =
R

2Q5
b ϑ2k1,2m1,2n1 +

R

2Q5
c ϑ2k2,2m2,2n2 ,

Θ4 = b ϑk1,m1,n1 , Θ5 = c ϑk2,m2,n2 ,
(3.79)
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splitting also the ω and the F again as

ωAdS = ω0 + ωRMS(r, θ) , F = FRMS(r, θ) ,
ωRMS = ωRMS

k1,m1,n1 + ωRMS
k2,m2,n2 , FRMS = FRMS

k1,m1,n1 + FRMS
k2,m2,n2 ,

(3.80)

we get the two identical systems

dωRMS
k,m,n + ∗4dωRMS

k,m,n + FRMS
k,m,ndβ0 =

√
2Rb2

i

∆2k,2m,2n
Σ

(
m(k+ n)

k
Ω(2)

− n(k−m)

k
Ω(3)

)
, (3.81a)

L̂FRMS
k,m,n =

4b2
i

r2 + a2
1

Σ cos2 θ

[(
m(k+ n)

k

)2
∆2k,2m,2n

+

(
n(k−m)

k

)2
∆2k,2m+2,2n−2

]
, (3.81b)

where bi = (b, c). This system coincides exactly with eqs. (4.7, 4.8) of [89], so
we can inherit the solution from there and, in the following, we will briefly
review how those solutions are built: we split

ωRMS
k,m,n = µk,m,n(dψ+ dϕ) + ζk,m,n(dψ− dϕ), (3.82)

and then, defining

µ̂k,m,n = µk,m,n +
R

4
√

2
r2 + a2 sin2 θ

Σ
Fk,m,n +

R

4
√

2
b2
i

∆2k,2m,2n
Σ

, (3.83)

we recast10 the system (3.81) in a system regarding only the two scalar func-
tions Fk,m,n and µ̂k,m,n:

L̂µ̂k,m,n =
Rb2

i

4
√

2 (r2 + a2)

1
Σ cos2 θ

(
(k−m)2(k+ n)2

k2 ∆2k,2m+2,2n

+
n2m2

k2 ∆2k,2m,2n−2

)
, (3.84a)

L̂Fk,m,n =
4b2
i

r2 + a2
1

Σ cos2 θ

[(
m(k+ n)

k

)2
∆2k,2m,2n

+

(
n(k−m)

k

)2
∆2k,2m+2,2n−2

]
,

(3.84b)

while ζk,m,n is determined after having determined µ̂k,m,n by putting (3.82)
into eq. (3.81b), as explained in [89]. Since its expression is quite cumbersome
and, in the end, not relevant in what follows, we restrain to write it down
explicitly.

To solve eqs. (3.84) we need a function F2k,2m,2n such that

L̂F2k,2m,2n =
∆2k,2m,2n

(r2 + a2)Σ cos2 θ
, (3.85)

10 The equation for ω is a system of first-order partial differential equation for the components;
we can rearrange it eliminating the unwanted components. This procedure recasts the equa-
tion for the wanted degrees of fredom as a second-order partial differential equation, the
one we show.
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that is

F2k,2m,2n = −
j1+j2+j3≤k+n−1∑

j1,j2,j3=0

(
j1 + j2 + j3

j1, j2, j3

)
×

×

(
k+ n− 1 − (j1 + j2 + j3)

k−m− j1,m− j2 − 1,n− j3

)2

(
k+ n− 1

k−m,m− 1,n

)2 ×

×
∆2(k−1−j1−j2),2(m−j2−1),2(n−j3)

4(k+ n)2(r2 + a2)
,

(3.86)

where(
j1 + j2 + j3

j1, j2, j3

)
≡ (j1 + j2 + j3)!

j1!j2!j3!
. (3.87)

Having that, the solution is

Fk,m,n = 4b2
i

[
m2(k+ n)2

k2 F2k,2m,2n +
n2(k−m)2

k2 F2k,2m+2,2n−2

]
,

(3.88a)

µk,m,n =
Rb2

i√
2

[ (k−m)2(k+ n)2

k2 F2k,2m+2,2n +
m2n2

k2 F2k,2m,2n−2

− r2 + a2 sin2 θ

4Σ
1
b2
i

Fk,m,n −
∆2k,2m,2n

4Σ
+
x
(i)
k,m,n
4Σ

]
,

(3.88b)

where x(i)k,m,n are a set of numbers. Since µ̂ satisfies a generalised Poisson equa-
tion L̂µ̂ = J , we always have the freedom to add a solution of the homogeneus
equation L̂G = 0; this is the role of the piece multiplied by the constant x(i)k,m,n;
it will be fixed by requiring the regularity of the solution at r = 0, θ = 0 and
r = 0, θ = π/2. Notice that, by linearity, we have to impose the regularity
on the two separate solutions

(
F (b)
k,m,n,µ(b)k,m,n

)
and

(
F (c)
k,m,n,µ(c)k,m,n

)
, and this

will separately fix the two constants x(i)k,m,n. This means that we can read the
regularity condition from [89]

x
(i)
k,m,n =

[(
k

m

)(
k+ n− 1

n

)]−1
, (3.89)

following from requiring regularity at r = 0, θ = 0, and
Q1Q5
R2 = a2 + x

(b)
k,m,n

b2

2 + x
(c)
k,m,n

c2

2 , (3.90)

following from requiring regularity at r = 0, θ = π/2. In the case (k,m,n) =
(1, 0,n1), (1, 0,n2) the two x(i)k,m,n are equals to one, so that

x
(b)
1,0,n = 1 , x

(c)
1,0,n = 1 , (3.91)

so the regularity there reads
Q1Q5
R2 = a2 +

b2

2 +
c2

2 . (3.92)

Since the most troublesome points in the spacetime are the ones discussed
previously, where we have shown the regularity of the solution, we have no
reason to expect problem elsewhere.
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3.4 The absence of CTCs

Another possible issue that could affect the microstates we have built is the
existence of Closed Timelike Curves (CTCs); if these geometries have CTCs
they have to be regarded as unphysical. Proving that all the members of the
family of solutions we have found are free of CTCs is particularly involved; we
will then focus on the family (1, 0,n1), (1, 0,n2) of sec. 3.3.2 and we will show
explicitly that it is indeed regular and free of CTCs. To do that, we have to
rewrite the Einstein frame metric in the t, y coordinate as

ds2
6 = Gttdt2 +Gyy(dy+A)2 +Gθθdθ2 +Grrdr2

+Gϕϕ(dϕ+Btdt+Bydy)2 +Gψψ(dψ+Ctdt+Cydy)2.
(3.93)

It is indeed easy to show that, thanks to eq. (3.77), we can write

ωRMS =
Ra2
√

2 Σ
F sin2 θ dϕ , FRMS = −F ,

F ≡ b2

a2

(
1 − r2n1

(r2 + a2)n1

)
+
c2

a2

(
1 − r2n2

(r2 + a2)n2

)
> 0 ,

(3.94)

so that all the angular terms of the metric can be written as

Gyy =
(2 + F )ΛΣ

√
2a2 + b2 + c2

√
2R (a4(F + 2) cos2 θ+ Λ2r2 (2a2 + b2 + c2))

r2 ,

Gθθ = R

√
a2 +

b2

2 +
c2

2 Λ ,

Gϕϕ =
R sin2 θ

(
Λ2 (a2 + r2) (2a2 + b2 + c2)− a4(2 + F ) sin2 θ

)
√

2ΛΣ
√

2a2 + b2 + c2
,

Gψψ =
R cos2 θ

(
a4(2 + F ) cos2 θ+ Λ2r2 (2a2 + b2 + c2))

√
2ΛΣ

√
2a2 + b2 + c2

,

(3.95)

where

Λ =

√
P Σ

R
√
a2 + b2

2 + c2
2

. (3.96)

Due to their cumbersomeness and their futility for what follows, we do not
show here explicitly the form of all the other coefficients that appear in
eq. (3.93).

It is quite straightforward to see that all the angular terms reported in
eq. (3.95) are positive and that near r = 0 they behave as

Gyy ≃
√

2a2 + b2 + c2
√

2R
r2

a2 ,

Gθθ ≃ R

√
a2 +

b2

2 +
c2

2 ,

Gϕϕ ≃ R
√

2a2 + b2 + c2
√

2
sin2 θ ,

Gψψ ≃ R
√

2a2 + b2 + c2
√

2
cos2 θ ,

(3.97)

since Λ → 1 and F → a−2(b2 + c2) for r → 0. We have then shown that this
set of solutions has no CTCs. We want also to stress the fact that, since the
S1 shrinks smoothly at r = 0, the spacetime is geodesically complete and no
possible extension in the r < 0 region is allowed.
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3.5 A detour: Asymptotically Flat geometries

One may now ask if it is possible to extend this construction to Asymptotically
Flat geometries, rather then Asymptotically Anti-de Sitter ones. In order to
do that we need to “add back” the 1, i.e. that we need to perform the shift
[76,87–89,102]

Z1 → 1 + Z1 , Z2 → 1 + Z2 , Z4 → Z4 , Z5 → Z5 . (3.98)

This will give a more involved problem, as pointed out - and then solved -
in [89]. But we can see that having both Z4 and Z5 with a single mode adds
no other difficulties with their analysis. In fact we can easily see that, since
Θ1 = 0 and ∂vZ2 = 0, the only difference w.r.t. the asymptotically AdS case
is that the sources in the second layer equations (3.4) acquires a new term. In
fact, defined

JAdS
1 = Z1Θ1 + Z2Θ2 − 2Z4Θ4 − 2Z5Θ5 ,
JAdS

2 = ∂2
v (Z1Z2 −Z2

4 −Z2
5 ) − [Ż1Ż2 − (Ż4)

2 − (Ż5)
2]

− 1
2 ∗4 (Θ1 ∧ Θ2 − Θ4 ∧ Θ4 − Θ5 ∧ Θ5) ,

we simply have, after the shift (3.98) that

JAF
1 = JAdS

1 + Θ2 , JAF
2 = JAdS

2 + ∂2
vZ1 . (3.99)

Now we cannot decouple anymore the v−dependent modes, as it was in [89];
but, by linearity of the equation and of the sources, our problem simplifies
drastically, leaving us with (twice) the same problem of [89]. We can then again
follow their steps and build an Asymptotically Flat superstratum solution.
Since this analysis will not add anything to our discussion, and since it is very
cumbersome, we will avoid performing that in detail here.

4 recap of the results

In this chapter, working in the framework of type IIB string theory on a
compact T4, we have presented the ansatz (3.1) for the most general D1D5P
BPS geometry, allowing excitations also in the internal T4 and we have then
shown under which conditions this ansatz is a 1

8−BPS solution of type IIB
supergravity. We have thus built a superdescendant D1D5P geometry from
a D1D5 geometry with the generating solution technique of [87] and we fur-
nished a non-trivial check for those equations by proving that this geometry
solves our system (3.3, 3.4).

We have also shown how it is possible to construct new asymptotically AdS
D1D5P superstratum solutions with both internal and external excitations,
inheriting some known results in literature and extending them; we have ex-
plicitly built superstrata adding only one mode for the external excitation Z4
and one mode for the internal excitation Z5; we have explicitly written down
the solution (3.77) for the (k,m,n) = (1, 0,n1), (1, 0,n2) case, but we have
also built implicitly the generic (k1,m1,n1), (k2,m2,n2) case. We have finally
discussed how it is possible to extend these results to the Asymptotically Flat
case, that could be useful for the Fuzzball proposal.

One may wonder if this class constitutes the full set of possible microstates;
actually, even if it is fairly general, it does not contain all the possible heavy
states: one example of microstate that does not fall in this class is the one
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recently constructed in [90], obtained by acting also with the fermionic gener-
ators of the superconformal algebra. But it is also straightforward to notice
that we can easily build superstrata that contain excitation of the form dis-
cussed in [90], since the steps we made proceed the same way in this case. In
fact, repeating the step here reported along the lines of [90], where they need
a Θ4 ̸= 0 but Z4 = 0, is fairly straightforward; we simply need to perform the
ansatz

Z4 = 0 , Θ4 = b̂ ϑ̂k1,m1,n1 ,

Z5 = 0 , Θ5 = ĉ ϑ̂k2,m2,n2 ,
(3.100)

where ϑ̂k,m,n is defined in eq. (5.12) of [90].
By the form of the ansatz, the first layer is again solved, while the second

layer gives a set of two linearly independent systems of PDEs, that are of
the form of [90]. Due to this, it is trivial to solve them by again reproducing
exactly the computation reported therein, giving us the most general 1

8 -BPS
superstrata with both external and internal excitations, which is dual to the
heavy state

|++⟩N (++)

1 ·

·

[(
J+−1

)m1

m1!

(
L−1 − J3

−1
)n1

n1!

(
G+1

0 G+2
0 +

1
k
J3

−1
(
L−1 − J3

−1
))q1

|00⟩k1

]N (b)

·

[(
J+−1

)m2

m2!

(
L−1 − J3

−1
)n2

n2!

(
G+1

0 G+2
0 +

1
k
J3

−1
(
L−1 − J3

−1
))q2

|00⟩(11̇)
k2

]N (c)

.

(3.101)
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We have shown, both in chap. 2 and in chap. 3, that generating the geome-
tries of supersymmetric superdescendants is rather simply. Indeed, the CFT
chiral algebra is represented on the gravity side by diffeomorphisms that do
not vanish at the AdS boundary and thus the geometries of superdescendants
are obtained by applying such diffeomorphisms to the RR ground state geome-
tries, as in [87]. This produces asymptotically AdS solutions, but we are also
interested in black hole microstates that are asymptotically flat, i.e. that at
large distances the spacetime approaches R4,1 × S1 × T4. Even for supersym-
metric superdescendants this extension requires solving a non-trivial problem,
since the asymptotically flat geometry is not diffeomorphic to the seed 1

4 -BPS
solution, with the non-trivial deformation of the geometry occurring in the
neck region that joins AdS and asymptotic infinity. This problem was first
discussed in [49], where it was solved using a double approximation: first they
considered the limit in which the microstate can be described as a perturba-
tion around the background of a simpler state, and then the linear equations
for the perturbation are solved approximately using a matching procedure
between the AdS and the flat regions. This technique was further generalised
in [84,85,115], while an exact construction was given, for two different classes
of states, in [86] and [87]. The key point is that the existence of an exact solu-
tion is again ultimately a consequence of the linearity of the BPS equations.

The purpose of this chapter is to investigate how much of this structure
extends to non-supersymmetric microstates. We know only very few non-
extremal microstate geometries; the first example, and also the only one with
a known CFT dual, was constructed in [120] by generalising to the non-BPS
case the technique of [105]. The full holographic interpretation of this solu-
tion was found in [121] and it involves states obtained by spectrally-flowing in
both left-moving and right-moving sectors to some simple 1

4 -BPS state. The
existence of non-supersymmetric supergravity solutions that carry no global
charges was conjectured in [117], where a construction of these solutions based
on neutral oscillating supertubes was performed.

Powerful techniques to construct exact fully non-linear non-supersymmetric
solutions have been developed over the past years [122–125], but the relation
between these gravity solutions and the states of the CFT is unclear yet.
In fact, the issue of which states of the orbifold theory should survive in
the spectrum at the gravity point is less understood for non-supersymmetric
states than for supersymmetric ones. The existence of a non-BPS analogue of
the graviton gas made of states that are not descendants of RR ground states
is far from obvious, since the linear properties of the supergravity equations
that allowed the construction of the supergraviton gas in the supersymmetric
setting is not guaranteed to exist when supersymmetry is broken. On the
other hand the chiral algebra guarantees the existence of superdescendants
on the whole moduli space, and crucially at supergravity point, even when
the states contain both left- and right-moving generators and, hence, break
supersymmetry completely. The geometry of these states in the decoupling

83
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limit is thus obtained by the action of a large diffeomorphism on a 1
4 -BPS

solution, similarly at what we have done in chap. 3.
The non-trivial task is the extension from the asymptotically AdS geometry

so constructed to an asymptotically flat one, which could be interpreted as
a black hole microstate of the Strominger-Vafa black hole. In this chapter,
we will not attempt here to perform this task at the full non-linear level,
and we will work in the regime in which the microstate is merely a linear
perturbation around a supersymmetric background. This is enough for us to
show that the simplification that allowed for a simple solution of the problem
for supersymmetric states does not happen when the perturbation breaks
supersymmetry. We reduce the problem to the solution of a partial differential
equation, which we will able to solve approximately using the same matching
technique of [49].

Our main goal is to prove the existence of a solution that interpolates be-
tween the geometry in the decoupling limit and a well-behaved asymptotically-
flat solution at large distances. The existence of such a solution is non-trivial
since non-extremality has drastic effects on the large-distance behaviour of
the geometry. It was shown in [49] that when the perturbation carries more
energy than its charge, it will be non-normalisable, i.e. it belongs to the contin-
uum spectrum of excitations around the extremal background. This behaviour
is expected for non-extremal perturbations, and it does not signal a pathol-
ogy of the solution1. A similar conclusion was reached more recently in [121],
which also considered non-extremal states obtained by applying left- and right-
moving transformations to 1

4 -BPS geometries: it was concluded that the only
normalisable solutions are given by extremal perturbations around the non-
extremal background of [120]. Here we consider genuinely non-extremal pertur-
bations and we find that they indeed fall-off very slowly, as r−3/2 at large dis-
tances. This is the expected asymptotic behaviour for non-extremal states [49];
moreover, we verify that the perturbation does not alter the global charges
of the background. Hence we conclude that the perturbative non-extremal
solutions we find can be consistently identified with non-supersymmetric mi-
crostates of the asymptotically-flat black hole.

1 the cft states

As we have seen in chap. 2, the RR ground states can be described as a
collection of strands that are characterised by the winding number k and
the left and right R-charges (ȷ, ȷ̄); as usual, we will denote the state of each
strand by |ȷ ȷ̄⟩k and the full D1D5 state containing Ni strands of type |ȷi ȷ̄i⟩ki
as
∏
i(|ȷi ȷ̄i⟩ki)Ni , plus the constraint that the total winding number must be

N , i.e.
∑

i kiNi = N . The CFT has a spectral flow symmetry which maps
R and NS sectors; performing one unit of spectral flow on the left- and the
right-sector of the CFT maps the state (|++⟩1)

N into the SL(2,C)-invariant
vacuum. This fact allows to deduce easily the gravity dual geometry for the
state (|++⟩1)

N .
Each D1D5 ground state admits a dual description in terms of an asymptot-

ically AdS3 × S3 × T4 geometry [48]; in this chapter, for all the states consid-
ered the compact space will just play a spectator role, and we will only focus

1 We thank S. Mathur for discussion on this point.
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on the dimensionally reduced six-dimensional theory. The geometry dual to
the SL(2,C)-invariant vacuum is simply the global AdS3 × S3:

ds2
6 =

√
Q1Q5

(
ds2

AdS3 + ds2
S3
)

, (4.1a)

ds2
AdS3 =

dr2

r2 + a2 − r2 + a2

Q1Q5
dt2 + r2

Q1Q5
dy2 , (4.1b)

ds2
S3 = dθ2 + sin2 θ dϕ̂2 + cos2 θ dψ̂2 , (4.1c)

F3 = 2Q5 (−volAdS3 + volS3) , e2Φ =
Q1
Q5

, (4.1d)

volAdS3 =
r

Q1Q5
dr ∧ dt∧ dy , volS3 = sin θ cos θ dθ ∧ dϕ̂∧ dψ̂ , (4.1e)

where ds2
6 is the Einstein metric in six dimensions, F is the RR 3-form field

strength and Φ the dilaton.Q1 andQ5 are the supergravity D1 and D5 charges

Q1 =
(2π)4n1gs(α′)3

V4
, Q5 = gsn5α

′ , (4.2)

where gs is the string coupling and V4 is the volume of the T4. The parameter
a is linked to the D-brane charges and the S1 radius R by

a =

√
Q1Q5
R

. (4.3)

In the following we will slightly simplify our equations by taking

Q1 = Q5 = Q. (4.4)

Spectral flow acts geometrically on the gravity side via the change of coordi-
nates

ϕ̂ = ϕ− t

R
, ψ̂ = ψ− y

R
. (4.5)

Note that this is a diffeomorphism that acts non trivially at the AdS3 bound-
ary, and hence it changes the state. Thus the geometry dual to the state
(|++⟩1)

N is (4.1) with the above coordinate redefinition (4.5).
As we has intensively shown in the previous chapters, one can construct

more generic states by adding strands with different winding numbers and/or
different R−charges; for example, one can consider the state |00⟩k, with wind-
ing k and ȷ = ȷ̄ = 0. The RR ground state (|++⟩1)

N1(|00⟩k)N2 with N1 +
kN2 = N2 sources a non-trivial geometry when both N1 and N2 are of order
N . The full geometry is given for example in eq. (3.11) of [87]. The limit of
interest here is when the strands of type |00⟩k are much fewer then the ones
of type |++⟩1, i.e. N2 ≪ N1. In this regime the appropriate gravitational de-
scription of the state is as a perturbation around the AdS3 × S3 background
(4.1), which solves the supergravity equations at linear order. After flowing
to the NS sector this perturbation is an (anti-)chiral primary of dimension
and charge h = h̄ = −ȷ = −ȷ̄ = k/2 [49]. The linearised perturbation is thus
controlled by a scalar w, which is identified with the RR 0-form, and by the
2-form B-field B2, and is given by

w = B Y , B2 =
Q

k
(Y ∗AdS3 dB − B ∗S3 dY ) ,

(4.6a)

B =
bR

Q

(
a√

r2 + a2

)k
e−ik tR , Y = Y ℓ,ℓ−ℓ,−ℓ = sink θ e−ikϕ̂ , k = 2ℓ ,

(4.6b)

2 Or, more precisely, a coherent superposition [107] of states of this form.
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where ∗AdS3 and ∗S3 are the Hodge duals with respect to the AdS3 and S3

metrics defined in (4.1b) and (4.1c). Y ℓ,ℓȷ,ȷ̄ denotes the S3 spherical harmonics
of order k = 2ℓ:

□S3Y
ℓ,ℓ
ȷ,ȷ̄ = −k(k+ 2)Y ℓ,ℓȷ,ȷ̄ ; (4.7)

analogously, B is an eigenfunction of the AdS3 Laplacian:

□AdS3B = k(k− 2)B . (4.8)

The parameter b controls the number of strands of type |00⟩k (b2 ∼ N2/N)
and the above perturbation solves the supergravity equations at first order in
b.

While the holographic description of RR ground states is well-understood
[48, 108, 110], as described in chap. 2, the analysis of excited states, and in
particular of non-supersymmetric states which carry excitations on both the
left- and right-sectors of the CFT, is widely incomplete. An effective way to
approach the problem is to use the CFT algebra. As we have widely discussed,
simple class of excited states, which are guaranteed to exist at any point of
the CFT moduli space, is formed by descendants obtained by acting on RR
ground states with an arbitrary string of generators of the superalgebra. In
this chapter we focus on the R-charge currents and consider the states

[|++⟩1]
N1 [(J+

−1)
m(J̃+

−1)
m̄ |00⟩k]N2 . (4.9)

When both m and m̄ are non-vanishing, these states are non-supersymmetric.
As explained above, in the limit N2 ≪ N1 the states are described by a
linearised perturbation around AdS3 × S3, which is easily built starting from
(4.6). Indeed, when one flows from the R sector to the NS sector, J+

−1, J̃+
−1

↦→ J+
0 , J̃+

0 , which rotate the perturbation (4.6) while leaving the AdS3 × S3

background invariant. Thus the perturbation dual to the state (4.9) for N2 ≪
N1 is of the form of eq. (4.6), with the same B but a rotated spherical harmonic
Y , i.e. we have

Y = Y ℓ,ℓ−ℓ+m,−ℓ+m̄ . (4.10)

This construction provides a systematic way to generate the geometries dual
to descendant states in the decoupling limit, valid when the S1 radius is large
w.r.t. the charges, i.e. R ≫

√
Q, and in the inner region of the spacetime, in

which r ≪
√
Q. In this region the geometries have AdS3 × S3 asymptotics. If

the states represent microstates of asymptotically flat black holes, they should
admit a description outside this inner region, in which they have to smoothly
join to the R4,1 × S1 flat spacetime at large distances. The construction of
this asymptotically flat extension for non-supersymmetric states will be the
focus of the remainder of this chapter. We will focus on two subclasses of
states: non-extremal states with m = m̄ = 1 and near-extremal states with
m = k ≫ 1, m̄ = 1.

2 asymptotically flat ansatz

The non-supersymmetric solutions we are looking to solve are the equations
of motion of type IIB supergravity of sec. 2.2.1, linearised around a supersym-
metric background, which is the asymptotically flat extension of the AdS3 × S3

solution (4.1). The fields that make up the background are the metric, the RR
3-form field strength F3 = dC2, the dilaton Φ and the volume of T4; these
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two scalars trivialise if one takes Q1 = Q5. The background, which represents
the first example [126,127] of an asymptotically flat solution dual to a D1D5
state, can be conveniently written as

ds2
6 = − 2

Z
(du+ ω)(dv+ β) + Z ds2

4 , (4.11a)

C2 = − 1
Z
(du+ ω) ∧ (dv+ β) + γ , (4.11b)

where

ds2
4 = Σ

(
dr2

r2 + a2 + dθ2
)
+ (r2 + a2) sin2 θ dϕ2 + r2 cos2 θ dψ2 ,

(4.12a)

β =
Ra2
√

2 Σ
(sin2 θ dϕ− cos2 θ dψ) , ω =

Ra2
√

2 Σ
(sin2 θ dϕ+ cos2 θ dψ) ,

(4.12b)

Z = 1 + Q

Σ
, γ = −Q r2 + a2

Σ
cos2 θ dϕ∧ dψ , Σ ≡ r2 + a2 cos2 θ ,

(4.12c)

and where, as usual, the light-cone coordinates u and v are related with time
t and the S1 coordinate y by

u =
t− y√

2
, v =

t+ y√
2

; (4.13)

the Euclidean four-dimensional base-space metric ds2
4 is just flat R4 written

in a convenient system of coordinates, which are related to the usual cartesian
coordinates xi by

x1 + ix2 =
√
r2 + a2 sin θ eiϕ , x3 + ix4 = r cos θ eiψ . (4.14)

Note that the following relations, which are ultimately a consequence of su-
persymmetry, are satisfied:

dβ = ∗4dβ , dω = − ∗4 dω , ∗4dZ = dγ , (4.15)

where ∗4 is the Hodge dual with respect to ds2
4. The length scale a is defined

in (4.3). It is easy to verify that the asymptotically flat geometry (4.11,4.12)
reduces to the AdS3 × S3 solution (4.1) in the decoupling limit r, a ≪

√
Q,

in which one can simply neglect the 1 in the function Z. Note also that for
Q1 = Q5 the 3-form F3 is anti-self-dual in the full asymptotically flat geometry,
i.e.

F3 + ∗6F3 = 0 , (4.16)

where ∗6 denotes the Hodge dual with respect to the 6D Einstein metric ds2
6.

The perturbation that add few strands of the type (J+
−1)

m(J̃+
−1)

m̄ |00⟩k
excites the B-field B2, the RR 0-form χ1 and the component of the RR 4-
form along T4, χ23: again a slight simplification happens for Q1 = Q5, where
χ1 = χ2 ≡ w. In the decoupling limit the form of the perturbation is given
by (4.6) and (4.10).

We also find that the task of extending the perturbation to the asymptoti-
cally flat region is simplified by using as an ansatz

w =
Z4
Z

, B = −Z4
Z2 (du+ω)∧ (dv+β)+a4 ∧ (dv+ω)+ b4 ∧ (du+β)+ δ2 .

3 Here we use the notation of [83] for the type IIB supergravity reduced on T4.
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(4.17)

Here Z, β and ω are the same 0- and 1-forms that appear in the background
(4.11), while the 0-form Z4, the 1-forms a4, b4 and the 2-form δ2 are the
unknowns that define the perturbation. All these forms have legs only along
the 4D Euclidean base space ds2

4, but they might depend also on u and v.
It was found in [102] that general supersymmetric solutions have the form
(4.17) with b4 = 0, if one specialises their results to Q1 = Q5. Moreover,
supersymmetry implies that nothing can depend on u. It is clear that any
0-form w and any 2-form B2 can be written as in (4.17) for some choice of
Z4, a4, b4, δ2; having chosen the uv component of B2 to be controlled by the
same function Z4 that appears in w has partially restricted the 2-form gauge
invariance B → B+ dλ. The remaining gauge freedom left is the one where λ
is a u and v-dependent 1-form with only legs on R4 that acts on our unknowns
as

a4 → a4 − ∂vλ , b4 → b4 − ∂uλ , δ2 → δ2 +Dλ , (4.18)

where we introduce the generalised non-supersymmetric covariant differential

D ≡ d4 − β ∧ ∂v − ω ∧ ∂u = D − ω ∧ ∂u , (4.19)

where d4 is the exterior differential with respect to the R4 coordinates; thus,
the combinations of a4, b4, δ2 that are left invariant by this residual gauge
freedom are

A ≡ ∂ua4 − ∂vb4 , Θ4 ≡ Da4 + ∂vδ2 , Θ̃4 ≡ Db4 + ∂uδ2 ,
Ξ ≡ Dδ2 − a4 ∧ dβ − b4 ∧ dω ,

(4.20)

and it will be convenient to express the equations of motion in terms of these
gauge-invariant quantities, as customary for the supersymmetric case. These
quantities satisfy the Bianchi identities

∂uΘ4 − ∂vΘ̃4 = DA , (4.21a)
DΘ4 − ∂vΞ + A ∧ dω = 0 , DΘ̃4 − ∂uΞ − A ∧ dβ = 0 , (4.21b)

D Ξ = −Θ4 ∧ dβ − Θ̃4 ∧ dω . (4.21c)

We remark here a key difference w.r.t. the supersymmetric case; in super-
symmetric solutions, for which b4 = 0 and ∂u is an isometry, A and Θ̃4 are
trivial. In that case the parametrisation (4.17) was particularly useful as it sim-
plifies the problem of finding the asymptotically flat linearised solution given
the one in the decoupling limit [102]. The crucial point in that discussion
is that it turns out that when supersymmetry is preserved the supergravity
equations for Z4, a4 and δ2 do not depend on Z: then, all one has to do to
construct the asymptotically flat solution is to keep the same Z4, a4 and δ2
of the inner region solution and simply add back the 1 in the function Z that
appears in [102]. One may hope that a similar simplification also happens for
non-extremal solutions: we will see that life is not quite as easy, since the
equations of motion couple crucially A with Z and hence deforming Z, as
it is required by asymptotic flatness, necessarily induces deformations of all
the objects Z4, a4, b4, δ2 that control the (w,B2) fields. Nevertheless we find
that using the parametrisation (4.17) helps in simplifying the equations and
ultimately reduces the whole problem to a single partial differential equation
for a scalar function.
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3 linearised supergravity equations

Our goal is to construct a solution for the linearised equations of motion
around the background (4.11, 4.12); the solution contains the fields w and
B2, parametrised as in (4.17), and must reduce to the near-horizon solution
described in sec. 3.2 in the inner region.

The non-trivial equations of motion for (w,B2) at linear order are

d(∗6H3 + 2wF3) = 0 , (4.22a)
d ∗6 dw+ F3 ∧H3 = 0 , (4.22b)

where H3 = dB2 is the NSNS 3-form field strength and the Hodge dual ∗6 and
the 3-form F3 = dC2 refer to the background (4.11,4.12). The first equation
can be partially integrated to

∗H3 −H3 + 2wF3 = 0 , (4.23)

after taking into account the anti-self-duality of F3 (4.16). With the ansatz
(4.17), eq. (4.23) is indeed equivalent to

∗4DZ4 = Ξ −Z2 ∗4 A , (4.24a)
Θ4 = ∗4Θ4 , Θ̃4 = − ∗4 Θ̃4 . (4.24b)

The scalar eq. (4.22b) adds one more differential constraint which, after using
(4.24a), can be shown to reduce to

∗4D ∗4 A = 2 ∂u∂vZ4 . (4.25)

One can check that the near-horizon solution (4.6,4.10), when rewritten in
the form (4.17), indeed satisfies eqs. (4.24a), (4.24b) and (4.25). When one
considers the same equations in the asymptotically-flat background, one has
to send Z → Z + 1: then the Z-dependent term in eq. (4.24a) is modified, and
this induces a non-trivial change of all other fields. We have already underlined
that this complication is a feature of the non-supersymmetric solutions, for
which A ̸= 0.

Eqs. (4.24a), (4.24b), (4.25) seem to form a complicated set of coupled
partial differential equations; one can however simplify the problem drastically
by reducing this set to a single equation for the 1-form A. This is done as
follows: joining eqs. (4.21a) and (4.24b) gives

∂uΘ4 + ∂vΘ̃4 = ∗4DA . (4.26)

From (4.21b) and the identity above one derives

2 ∂u∂vΞ = D ∗4 DA + ∂uA ∧ dω− ∂vA ∧ dβ . (4.27)

Applying D to (4.25) and using (4.24a), one obtains

D ∗4 D ∗4 A = − 2 ∂u∂v(∗4Ξ + Z2A)

= − ∗4 D ∗4 DA − ∗4(∂uA ∧ dω− ∂vA ∧ dβ) − 2Z2∂u∂vA ,
(4.28)

where in the last step we have used (4.27). If one defines the Laplacian asso-
ciated with the covariant differential D :

∇2 ≡ −(D ∗4 D ∗4 + ∗4 D ∗4 D) + ∗4(∂vA ∧ dβ − ∂uA ∧ dω) , (4.29)
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one can prove that ∇2 has a simple action on forms

∇2 = D iDi , (4.30)

where indices are contracted using the flat metric ds2
4. Then eq. (4.28) reduces

to

∇2A = 2Z2∂u∂vA , (4.31)

which is a set of decoupled PDEs for each component of the 1-form A. These
are the main dynamical equations one needs to solve to build the linearised
solution. All the other gauge-invariant quantities Z4, Θ4, Θ̃4, Ξ can be recon-
structed from the 1-form A thanks to eqs. (4.25, 4.21a, 4.26, 4.27). Note that
in the examples we consider in this chapter the perturbation has a simple
exponential dependence on u and v, hence inverting u and v derivatives is
trivial.

In summary, we need to solve eq. (4.31) plus the constraint that A agrees
with the decoupling limit result in the inner region and vanishes sufficiently
fast at large distances.

4 a non-extremal solution

Here we start solving the equations of motion for the state

[|++⟩1]
N1 [J+

−1J̃
+
−1 |00⟩k]N2

in the N2 ≪ N1 regime: this is a maximally non-extremal perturbation of the
background (4.11, 4.12), where one adds energy, through the action of the
currents J+

−1 and J̃+
−1, without adding any net momentum along the S1.

In the inner region, the perturbation is given by (4.6) with

Y = Y ℓ,ℓ−ℓ+1,−ℓ+1 = e−i(k−2)ϕ (k cos2 θ− 1) sink−2 θ , ℓ =
k

2 . (4.32)

The inner region solution can be rewritten in the form (4.17), and thus one
can read off the near-horizon values of the gauge-invariant quantities Z4, A,
Θ4, Θ̃4, Ξ that parametrise the perturbation; in particular we find that

An.h. = e−i
√

2 (u+v)
R −i(k−1)ϕ fn.h.(r, θ) (dx1 + idx2) , (4.33)

with

fn.h.(r, θ) =
2
R

bak

(r2 + a2)
k+1

2
sink−1 θ . (4.34)

As explained, all other gauge-invariant quantities easily follow from A; for
example

Z4, n.h. = Re−i
√

2 (u+v)
R −i(k−2)ϕ b ak

(r2 + a2)
k
2

sink−2 θ
k cos2 θ− 1
r2 + a2 cos2 θ

. (4.35)

A natural ansatz for the asymptotically flat extension of A is

A = e−i
√

2 (u+v)
R −i(k−1)ϕ fn.h.(r, θ) f(r, θ) (dx1 + idx2) , (4.36)
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where f(r, θ) is an unknown function such that f(r, θ) → 1 for r, a ≪
√
Q

and f
rk+1 → 0 for r → ∞. Also, f(r, θ) is determined by a PDE which comes

from (4.31)

(r2 + a2)∂2
rf + ((1 − 2k)r2 + a2)

∂rf

r
+ ∂2

θf − 2 1 − 2k cos2 θ

sin 2θ ∂θf

+
4
R2
[
(r2 + a2 cos2 θ) + 2Q

]
f = 0 .

(4.37)

Note that the term in the second line is negligible for r, a ≪
√
Q (which im-

plies Q ≪ R2), and hence f = 1 constitutes a solution in the inner region, as
expected. Even if eq. (4.37) is separable, due to the nature of its fuchsian singu-
larities, we were unable to find an exact analytic solution. To provide evidence
for the existence of a solution with the appropriate boundary conditions, we
resort to a matched asymptotic expansion, as was done in [49] and [128]. This
expansion is applicable to the regime in which one has two widely separated
scales a and

√
Q such that a ≪

√
Q: one can then solve the equation sepa-

rately in the inner region r ≪
√
Q and in the outer region r ≫ a, and then

require that the two solutions match in the overlapping region a ≪ r ≪
√
Q.

We will perform the matching at leading order. We already know the inner
region solution, that is f = 1, so we just have to solve eq. (4.37) in the outer
region.

4.1 The solution in the outer region r ≫ a

When a is negligible w.r.t. r, the equation for F3 simplifies to

r2∂2
rf +(1−2k)r∂rf +

4
R2 (r

2 + 2Q)f +∂2
θf −2 1 − 2k cos2 θ

sin 2θ ∂θf = 0 . (4.38)

This equation is now separable, and we set f(r, θ) = f1(r)f2(θ); moreover,
since it has to match to a constant for small r, we need to have a constant
f2(θ). One can also check that a constant is the only solution of the angular
equation that does not have unphysical singularities for some values of θ. The
radial equation is thus a Bessel equation, whose general solution is

f(r, θ) = rk
[
c1 Jα

(
2r
R

)
+ c2 Yα

(
2r
R

)]
with α =

√
k2 − 8Q

R2 , (4.39)

where c1 and c2 are constants. Substituting this result in (4.36), we see that
the asymptotic behaviour of the 1-form A for r ≫ R is

A ∼ 1
r3/2 e

−i
√

2 (u+v)
R −i(k−1)ϕ sink−1 θ

[
c̃1 cos

(2r
R

)
+ c̃2 sin

(2r
R

)]
(dx1 + idx2) ,

(4.40)

with

c̃1 = c1 cos
(

2α+ 1
4 π

)
− c2 sin

(
2α+ 1

4 π

)
,

c̃2 = c2 cos
(

2α+ 1
4 π

)
+ c1 sin

(
2α+ 1

4 π

)
.

(4.41)

We find the same fall-off for the scalar Z4: Z4 ∼ r−3/2. This is a slower
fall-off than the one exhibited by the extremal solutions, and agrees with the
one estimated in Section 3.3 of [49] for non-extremal perturbations4. Notice

4 The same decay was found for the time-dependent non-supersymmetric solutions of [117].
We thank D. Turton for pointing this out.
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that this is a general and unavoidable feature of non-extremal perturbations,
since all non-trivial solutions of eq. (4.31) have this fall-off; the only way to
a obtain a faster asymptotic decay is to have A = 0, which implies that the
perturbation is u- and/or v-independent, i.e. it is extremal. We will show that,
despite this slow fall-off, the global charges of the solution are not altered by
the perturabation, and thus the solution can be consistently identified with a
microstate of a D1D5P black hole.

4.2 The matching region a ≪ r ≪
√
Q

Consistency with the near-horizon solution requires that in the limit r ≪
√
Q

(and a ≪
√
Q) the function (4.39) tends to 1, for some choice of the constants

ci. This is actually guaranteed a priori, since the asymptotic analysis has not
imposed any constraint on the integration constants ci, and since the equation
for f has the solution f = 1 in the inner region. Indeed one finds in the small
r limit

f(r, θ) ≃ rk
[
c1
k!

( r
R

)k
− c2 (k− 1)!

π

( r
R

)−k
]

, (4.42)

where we have approximated α ≃ k since Q ≪ R2 for a ≪
√
Q. Thus the two

solutions matches at leading order if c2 = −π R−k/(k− 1)!.

4.3 Asymptotic charges

Up to now we have shown the existence of a solution which interpolates be-
tween the near-horizon and the asymptotic regions. We have found that the
fields of the perturbation fall off at large distances like r−3/2; this is a very
slow decay: in five non-compact dimensions a field strength carrying a global
charge vanishes like r−3, and we expect our perturbation to decay faster, so
as to leave the global charges of the solution invariant. We show here that this
unusually slow decay is not a problem, since the non-trivial angular depen-
dence of the perturbation guarantees that it does not contribute to the global
charges.

Since the perturbation excites the NSNS B-field, it could carry a global F1
and NS5 charge, proportional to

QF1 ∝
∫

S3
∗6H , QNS5 ∝

∫
S3
H , (4.43)

where the integral is over a 3-sphere with infinite radius in the four non-
compact spatial directions. It follows from eq. (4.23) and from the fact that
the wF3 term is negligible at large r, that∫

S3
H =

∫
S3

∗6H =

∫
S3

Ξ . (4.44)

The large r limit of the 3-form Ξ can be computed from the asymptotic
expression for A in (4.40) via eq. (4.27), where one can discard the last two
terms at large distances

2 ∂u∂v Ξ ≈ D ∗4 DA . (4.45)

One thus finds that∫
S3

Ξ ∼ lim
r→∞

r1/2
[
c̃1 sin

(
2r
R

)
− c̃2 cos

(
2r
R

)]
×

×
∫

dθ dϕ dψ e−i
√

2 (u+v)
R −i(k−2)ϕ sink−1 θ cos θ [(k+ 2) cos 2θ+ 3(k− 2)] .
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(4.46)

Based only on the r-dependence of Ξ one would conclude that the charge
carried by the perturbation is not only non-vanishing, but divergent. However
the integral over the angular variables vanishes for any k > 0. In fact, when
k ̸= 2 the oscillating factor e−i(k−2)ϕ kills the ϕ-integral, while when k = 2 it
is the θ integral that vanishes, since

∫ π/2
0 dθ sin 4θ = 0. Note that the state

with k = 2 is special because it does not depend on either ϕ or ψ: this is a
consequence of the fact that the strand J+

−1J̃
+
−1 |00⟩2 carries the same angular

momenta as (|++⟩1)2.

5 a near-extremal solution

Here we want to consider a non-supersymmetric state where the departure
from extremality could be made arbitrarily small. In order to do so, we could
start from the supersymmetric D1D5P state [|++⟩1]

N1 [(J+
−1)

k|00⟩k]N2 . Note
that, as explained in chap. 2, k is the maximum number of times the charge
J+

−1 can act on the ground state |00⟩k, since (J+
−1)

k+1|00⟩k = 0. We can thus
break supersymmetry by acting once with the right-moving current J̃+

−1 to
have

[|++⟩1]
N1 [(J+

−1)
kJ̃+

−1|00⟩k]N2 . (4.47)

In the limit of large k one would expect this to be a small perturbation of the
supersymmetric state; we will thus work in a large k expansion and keep the
first non-trivial order in 1/k. As usual we will also assume N2 ≪ N1, so we
can linearise the supergravity equations around the background (4.11,4.12).

The solution in the inner region is given by (4.6) with

Y = Y ℓ,ℓℓ,−ℓ+1 = ei(k−1)ψ+iϕ cosk−1θ sin θ (ℓ = k/2) , (4.48)

where we neglect the spherical harmonic normalisation factor. We can extract
from this solution the near-horizon values of the functions that appear in the
ansatz (4.17). For example:

Z4,n.h. = Rb e−i
√

2
R (u+kv)+i(k−1)ψ+iϕ ∆k,k−1

Σ
, (4.49a)

An.h. = −2 b
R
e−i

√
2
R (u+kv)+i(k−1)ψ ∆k,k−1√

r2 + a2 sin θ
(dx1 + idx2) ,

(4.49b)

where we define

∆k,m ≡
(

a√
r2 + a2

)k
sink−m θ cosm θ . (4.50)

This is an exact solution of the equations of motion in the inner region for
any k.

We expect that the problem of extending the solution outside of the inner re-
gion simplifies in the regime of large k, since the state becomes approximately
extremal. We thus look for a solution of the equations of motion (4.24), (4.25)
with an expansion in 1/k, and only keep the first non-trivial order

Z4 = Z4,0 + k−1Z4,1 + O(k−2) , A = A0 + k−1A1 + O(k−2) . (4.51)

In defining the large k expansion, we keep the exact k-dependence of expo-
nents; this means that we do not expand the oscillating factor exp[−i

√
2
R (u+
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kv)+ i(k− 1)ψ+ iϕ] nor ∆k,k−1, and only expand the k-dependent coefficients
that multiply the various functions. According to this definition, Z4, A, Θ̃4 be-
gins at order k0, while the leading term of Θ4 is of order k1. Moreover, when v,
r, θ- and ψ-derivatives act on our solution, they increase the k-order by one, as
a consequence of the k-dependence of exp[−i

√
2
R (u+ kv)+ i(k− 1)ψ+ iϕ] and

∆k,k−1, while u- and ϕ-derivatives do not change the order in k: schematically
D , ∂v ∼ k1, ∂u ∼ k0.

One can now see how the equations of motion simplify at large k. As ex-
plained in sec. 4.3, it is convenient to derive A using eq. (4.31). The remaining
gauge invariant quantities follow from A without the need to integrate any
further differential equation. The leading contribution to the l.h.s. of (4.31)
is of order k2, as it is ∇2 ∼ k2 , while the r.h.s. starts at order k. Thus at
leading order one should require

∇2A0 = O(k) . (4.52)

Since Z has disappeared from the equation above, the solution for A at leading
order in k coincides with the near-horizon solution, even outside the inner
region

A0 = An.h. . (4.53)

At the next order in 1/k, the l.h.s. of (4.31) has two contributions: the leading
order contribution to k−1∇2A1, and the order k contribution to ∇2An.h.,
which is given by

∇2An.h. = 2 Q
2

Σ2 ∂u∂vAn.h. , (4.54)

as a consequence of the near-horizon equations of motion. On the r.h.s. one
can approximate A with An.h., up to corrections of O(k0). Hence the first
non-extremal correction to our solution is determined by

k−1∇2A1 = 2
(

1 + 2Q
Σ

)
∂u∂vAn.h. + O(k0) . (4.55)

Given the form of An.h. (4.49b), one can look for a solution A1 of the form

A1 = 2 b
R
e−i

√
2
R (u+kv)+i(k−1)ψ G(r, θ) (dx1 + idx2) . (4.56)

Then eq. (4.55) implies

L̂(k,k)G =
4k2

R2

(
1 + 2Q

Σ

)
∆k,k−1√

r2 + a2 sin θ
+ O(k) , (4.57)

where L̂(k,k) is the covariant Laplacian that was defined in [76]

L̂(k,k)G ≡ 1
rΣ
∂r(r(r

2 + a2)∂rG)

+
1

Σ sin θ cos θ∂θ(sin θ cos θ ∂θG) − k2 r2 + a2 sin2 θ

(r2 + a2)Σ cos2 θ
G

≈ r2 + a2

Σ
∂2
rG+

1
Σ
∂2
θG− k2 r2 + a2 sin2 θ

(r2 + a2)Σ cos2 θ
G ,

(4.58)

where in the second line we have kept only the terms of order k2, according
to our working assumption that r and θ derivatives of G give terms of order
k.
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We have thus reduced our problem to the solution of a Poisson equation
for the deformed Laplacian L̂(k,k)G. Equations of this type usually appears
in the construction of extremal superstrata [76], but the source term in (4.57)
is different from the one that appears in [76]. Though we do not exclude that
a variation of the techniques of [76] could be useful to find an exact solution
of (4.57), we have not been able to find one. Thus we resort to a matching
technique to show that (4.57) admits a solution that is well behaved at large
distances and is negligible with respect to An.h. in the inner region.

5.1 A matching near-extremal solution

We now assume as usual that a ≪
√
Q and look for a solution in the outer

region r ≫ a, where the l.h.s. of (4.57) approximates to

L̂(k,k)G ≈ ∂2
rG +

1
r2 ∂

2
θG− k2

r2 cos2 θ
G

+
a2

r2

[
sin2 θ ∂2

rG− cos2 θ

r2 ∂2
θG+

2k2

r2 G

]
,

(4.59)

and where the r.h.s. approximates to

r.h.s. ≈ 4k2

R2

(
1 + 2Q

r2

)
ak

rk+1 cosk−1 θ . (4.60)

Now we look for a factorised solution of the form

G(r, θ) ≈ g(θ)

(
1 + 2Q

r2

)
ak

rk+n
cosk−1 θ , (4.61)

where n is a number that we assume to be much smaller than k, i.e. n ≪ k, and
that will be determined shortly. At leading order in 1/k, one can approximates
∂2
rG ≈ k2/r2 G and ∂2

θG ∼ k2 tan2 θ G, so that, when one substitutes (4.61)
into (4.59), one immediately sees that the leading term in a/r vanishes for
any choice of n up to terms of O(k)

∂2
rG+

1
r2 ∂

2
θG− k2

r2 cos2 θ
G =

k2

r2

[
1 + tan2 θ− 1

cos2 θ

]
G+O(k) = O(k) .

(4.62)

Thus only the term proportional to a2/r2 survives in (4.59), and, in order to
match the source (4.60), one needs n = −3. The equation for G then becomes

k2 a2

r4 [sin2 θ− sin2 θ+ 2]G =
4k2

R2

(
1 + 2Q

r2

)
ak

rk+1 cosk−1 θ+O(k) , (4.63)

which is satisfied by taking

g(θ) =
2
Q2 . (4.64)

Then the solution for A1 in the outer region is

A1 ≈ 4 b

Q2R
e−i

√
2
R (u+kv)+i(k−1)ψ

(
1 + 2Q

r2

)
ak

rk−3 cosk−1 θ (dx1 + idx2) .

(4.65)



96 non-extremal superdescendants

Consistency requires that in the matching region a ≪ r ≪
√
Q we need A1

to be suppressed w.r.t. An.h.; this is evidently so, since

|A1|
|An.h.|

∼ r4

Q2 ≪ 1 for a ≪ r ≪
√
Q . (4.66)

The remaining fields in the outer region can be reconstructed from A1, e.g.

Z4,1 ≈ −2Rb
Q2 e

−i
√

2
R (u+kv)+i(k−1)ψ+iϕ

(
1 + 2Q

r2

)
ak

rk−2 cosk−1 θ sin θ . (4.67)

One can also see that in the near-extremal regime k ≫ 1 the fields of the
perturbation fall-off very fast at large distances, e.g. Z4 ∼ 1/rk−2. This is to
be contrasted with the much slower r−3/2 fall-off seen for the non-extremal
solution. This indicates that the k → ∞ and r → ∞ limits do not commute:
our near-extremal expansion is valid up to a distance r that grows with k,
while for larger distances one should recover the large r behaviour of non-
extremal solutions.

6 summary and outlook

In this chapter, we have constructed linearised solutions of the type IIB equa-
tions of motion that are dual to non-extremal states of the D1D5P system
that are obtained by acting with left- and right-moving algebra generators on
a 1

4−BPS state. We have employed an ansatz inspired by the supersymmetric
geometries. However, we have shown that already at the linearised level the
solution of the equations is significantly more involved for non-extremal con-
figurations. The main complication arises from the fact that the warp factor Z
does not decouple from the equations for the perturbation: thus the problem
of extending the solution outside of the inner region requires to solve a non-
trivial differential problem. The problem is sourced by the 1-form A, which
couples to Z through the last term of eq. (4.24a). It is evident from eq. (4.25)
that A does not vanish exactly when the perturbation is non-extremal and
depends on both the light-cone coordinates u and v.

From the technical point of view, the main result of this chapter is the
reduction of the differential equations to a single equation (4.31) of the Poisson
type for A. The full perturbation can be reconstructed from A without the
need to solve any further differential equation. Even if we have not been
able to fully solve the A equation exactly, we have shown that it admits a
matching solution that interpolates between the inner region result and an
asymptotically decaying solution. Despite the unusually slow fall-off of the
solution at large distances, the global charges of the solution are the ones of
the D1D5P black hole, supporting the identification of our solutions with black
hole microstates. We have also developed an approximation scheme that allows
to expand near-extremal solutions around a supersymmetric background.
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5
N O I N FO R M AT I O N L O S S O N
2 - C H A RG E M I C RO S TAT E
G E O M E T R I E S

In this chapter we use the AdS/CFT duality as a tool to study a relatively sim-
ple set of heavy operators OH in D1D5 CFT which are the Ramond-Ramond
(RR) ground states. As explained in chap. 2, this ensemble is not dual to a
macroscopic black hole at the level of two derivative gravity1, but it provides
a good testing ground as we know the details of the gravitational solutions
dual to these states [48, 103, 110]. As explained in sec. 2, it is possible to test
the dictionary between the RR ground states on the CFT side and the corre-
sponding bulk description in terms of smooth horizonless solutions of type IIB
supergravity [75, 107,108, 110, 130]: the basic idea is to exploit the AdS/CFT
map between protected CFT operators OL, introduced in sec. 2.1, and the
supergravity modes in the bulk, described in sec. 2.2.1, and then compare the
3-point CFT correlators ⟨OHOHOL⟩ with the holographic results obtained
from the dual microstate geometries. Here the supergravity operators are in-
dicated with a subscript L because they are light, meaning that their conformal
dimension is fixed in the large central charge limit c = 6N → ∞. This class of
3-point correlators is protected [131] and so it is possible to match the results
obtained in the weakly curved gravitational regime and those derived at a
different point in the D1D5 SCFT moduli space, where the boundary theory
can be described as non-linear sigma model whose target space is the orbifold.

While focusing on non-renormalised quantities is usually useful to estab-
lished a dictionary between BPS states in different descriptions, this kind of
observables is not well suited to study interesting gravitational features of
the black hole microstates. Then it is important to extend the analysis to
non-protected quantities involving heavy operators. Usually two dynamical
quantities of this type have been under detailed scrutiny: the entanglement
entropy of a region in a non-trivial state [132–134] and the HHLL 4-point
function with two heavy and two light operators

⟨OH(z1, z̄1)ŌH(z2, z̄2)OL(z3, z̄3)ŌL(z4, z̄4)⟩ . (5.1)

In this chapter we study this second observable focusing on the large central
charge limit c ≫ 1. When the D1D5 superconformal field theory is at the
free orbifold point in its moduli space, it is possible to calculate the corre-
lator (5.1) exactly by using standard techniques and to study the statistical
properties of the result when the heavy operator is chosen from an ensemble
of RR ground states [72,135], as we have already shown in sec. 2.1.6. In order
to extract some detailed information on the dual gravitational theory, it is of
course important also to deform the CFT away from the free orbifold point,
and a possible way for doing this is to insert perturbatively operators corre-
sponding to the interesting superconformal deformations2. Here we focus on

1 See [129] for a nice discussion of this system.
2 see [136] and reference therein for a recent discussion of this approach

99



100 no information loss on 2-charge microstate geometries

the opposite limit and discuss how to calculate (5.1) holographically directly
in the strongly interacting regime where the CFT is well approximated by
type IIB supergravity.

Notice that it is not straightforward to use the standard Witten diagrams
technology to compute the correlators above, since here the heavy states cor-
respond to multi-particle operators with a large conformal dimension and are
not dual to a single supergravity mode. We overcome this issue by exploit-
ing the known smooth geometries dual to the heavy states; then we use the
standard AdS/CFT dictionary to compute the HHLL correlators by studying
the quadratic fluctuations of the supergravity field dual to the light opera-
tors in the asymptotycally AdS geometry dual to the the heavy operators.
This technique was developed in [77, 83] in several concrete examples in the
AdS3/CFT2 context. In particular, in [83] the authors considered a compli-
cated heavy operator made out of two types of supergravity modes, while
they considered (2.68) as a light operator. This case provides the first explicit
example of a dynamical HHLL correlator, where the result in the CFT strong
coupling region is different from the one valid at the orbifold point. How-
ever, the quadratic equations around the asymptotically AdS geometry were
explicitly solved resorting to a particular approximation where the two con-
stituents forming the heavy multi-particle state were not on the same footing:
the modes carrying a non-trivial R-charge are much more numerous than the
modes with no R-charge. In such limit, the HHLL correlators could be recast
in terms of the standard D-functions that appear also in the evaluation of the
standard Witten diagrams.

In this chapter we generalise the above analysis of [83] in several directions.
First, we consider the bosonic light operator (2.68) studied in [72,135] which
is a superdescendant of the chiral primary operator (2.68) mentioned above,
as proved in sec. 2.1.6. This implies that the HHLL correlators derived in this
chapter satisfy a Ward identity linking them to the correlators computed in
[83]; as a consistency check, when we specify our new supergravity results to
the heavy state considered in [83], we show that the Ward identity is satisfied.
On the gravity side, the derivation of the HHLL correlators is drastically
simplified with respect to [83] because the gravity perturbation dual to the
light operator is described by the scalar Laplace equation in six dimension,
as proven in app. A.5, while for the case of the CPO one had to deal with
a coupled system of a scalar and a 3-form. This simplified setup allows to
consider more general heavy operators that are formed by many different types
of supergravity modes. In one approach we still maintain the approximation
where the heavy state constituents include a large number N (++)

1 of R-charge
carrying modes, that we denote by |++⟩1, and much smaller numbers N (0)

k
of different modes with no R-charge, denoted by |00⟩k, with k any positive
integer. These states form an ensemble, whose generic elements we represent
schematically as

(|++⟩1)
N

(++)
1

∏
k

(|00⟩k)N
(0)
k , N

(++)
1 +

∑
k

kN
(0)
k =

c

6 . (5.2)

Of course these states have a large R-charge J ∼ N
(++)
1 , but their ensemble

has interesting statistical properties [72, 137] and an entropy that scales like√
c/6 − J . One of the results of this chapter is an explicit expression for the

correlator (5.1) with these heavy states, at the supergravity point of the CFT
moduli space. In an alternative approach we focus on a RR ground state that
was considered also in [83] and is made out of only the |++⟩1 and |00⟩1 modes.
However we keep the ratio N (0)

k /N (++)
1 of the two constituents arbitrary and
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derive an expression for the HHLL in terms of a Fourier series. While we do
not perform the transformation to configuration space in general, we show
explicitly that, when it is possible to compare them, the results obtained in
the two approaches agree.

In summary the main results of this chapter are:

1. the holographic computation of the correlator of the two bosonic op-
erators in (2.70) in a generic state of the ensemble (5.2) in the limit
N

(0)
k ≪ N

(++)
1 ;

2. the check that the bosonic correlator computed here is related via a
supersymmetric Ward identity to the fermionic correlator of [83];

3. the holographic computation of the same correlator in a state with
N

(0)
k = 0 for k ≥ 2, exactly in the ratio N (0)

1 /N (++)
1 .

One of our main motivations for doing these computations is to confront
the correlators computed in pure states with those computed in a black hole
background. As we mentioned above, the ensemble of BPS two-charge states
is not described by a regular black hole in classical supergravity, but by the
singular geometry obtained by taking massless limit of the BTZ black hole,
as in sec. 1.2.2. This geometry shares some properties with black holes: in
particular, as we have shown in sec. 1.2.2, correlators computed in this back-
ground vanish at large Lorentzian time, albeit only polynomially. As reviewed
in sec. 1.2 the late-time decay of correlators is one of the manifestations of the
information loss problem. By contrast correlators in pure states should not
decay. It is quite easy to see that this is the case for correlators computed at
the orbifold point in a generic D1D5 state [72, 135]. The orbifold point CFT,
however, has some special features that distinguish it from the point where
a weakly coupled gravitational description is applicable: in particular, at free-
orbifold point there exists an infinite series of conserved (bosonic) currents,
of which only the Virasoro and the R-currents survive at a generic point.
The presence of these currents certainly changes qualitatively the late-time
behaviour of the correlators.

In some cases, like the ones considered in [77], even just the R-current is
sufficient to completely constrain the form of the correlator, and prevent the
vanishing at large Lorentzian times. A mechanism based on the R-current,
even if it applies uniformly on the moduli space, can reasonably be argued
to be non-generic [138]. The correlator we consider in this chapter, where the
light operators are the non-chiral primaries in (2.70), is not constrained by
the R-symmetry. This is confirmed by the fact that only the conformal block
of the identity3 contributes to the correlator in the lightcone OPE limit. We
can thus use the exact strong coupling result obtained in sec. 5.1.3 to analyse
the late-time behaviour of this correlator, and even in this more generic case
we find that it does not decay. Note that this conclusion applies to a correlator
computed in supergravity, and hence at leading order in the 1/N expansion.
Since all large N Virasoro blocks4 vanish at late times [140], the only mech-
anism by which we can explain our findings is that even our non-protected
correlator receives contributions from an infinite series of Virasoro primaries5.

3 As explained in sec. 5.2, it is convenient to use the Virasoro blocks defined with respect to
the “reduced" Virasoro generators, given by the full Virasoro blocks minus their R-current
Sugawara contribution.

4 For a derivation of Virasoro blocks in the limit of large central charge from AdS3 gravity
see [5, 139].

5 The contribution of these primaries should be relevant also at finite values of the central
charge, as each individual Virasoro block is still expected to decay at late times [141].
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These primaries cannot be single-particle operators: in fact, such operators are
either dual to protected supergravity modes, in which case their contribution
appears already in the orbifold-point result, or to string modes, which acquire
large anomalous dimensions and decouple when one moves towards the super-
gravity regime. So the Virasoro primaries that contribute to our correlator at
strong coupling must be multi-particle operators.

1 bosonic correlators at strong coupling

The aim of this section is to study the HHLL correlators on the bulk side by
using the supergravity approximation of type IIB string theory on AdS3 ×
S3 × T4 reviewed in chap. 2. The case where the light operators are the chi-
ral primaries (2.68) was discussed in [83], so here we consider the correlators
with the bosonic light operators of dimension two (2.70). While in the orb-
ifold CFT description of sec. 2.1.6 it was easy to keep the RR ground states
completely generic, in the bulk analysis we will find it convenient to focus
on a subsector of these heavy states. First we focus on the states that are
invariant under the SU(2) acting on the coordinates of T4, which ensures
that the dual solutions are invariant under rotations of the four stringy-sized
compact directions. Then, as explained above, we focus on the case where
the RR ground states are made of a large number N (++)

1 of strands of the
type |++⟩1, while the remaining strands have arbitrary winding k ≥ 1 but
are in the unique RR state that is a scalar of SU(2)L × SU(2)R; we denote
strands of this type as |00⟩k and their numbers as N (0)

k . These states form
the ensemble that was introduced in (5.2). On the bulk side the restriction
to this subset of states simplifies the six-dimensional metric (5.3). At some
point of our analysis we will also assume that the numbers of |00⟩k strands are
smaller than the number of |++⟩1 strands (N (0)

k ≪ N
(++)
1 ): this will allow

the perturbative approach in bk discussed in sec. 5.1.2.
The heavy operators OH are described in the gravity regime by six di-

mensional geometries that asymptotically are AdS3 × S3 and are everywhere
regular and horizonless. Operators that are Ramond ground states both in the
left and in the right sector are dual to D1D5 geometries with no momentum
charge. The six-dimensional Einstein metric dual to RR ground states that
are invariant under rotations in the four compact dimensions is (see chap. 2)

ds2
6 = − 2√

P
(dv+ β)(du+ ω) +

√
P ds2

4 , (5.3)

where

P ≡ Z1Z2 −Z2
4 . (5.4)

We use lightcone coordinates

u ≡ t− y√
2

, v ≡ t+ y√
2

, (5.5)

with t time and y the coordinate along S1, and denote by ds2
4 the flat metric

on R4. Z1, Z2, Z4 are harmonic scalar functions on R4 and β, ω are 1-forms
with self-dual and anti-self-dual 2-form field strengths. Apart from the metric,
all other fields of type IIB supergravity are non-trivial in the solution, but
their expressions will not be relevant for the correlator we compute here.

The form of the supergravity data Z1, Z2, Z4, β and ω depends on the RR
ground state and is usually rather complicated. As mentioned above, we focus
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on the family of D1D5 states described in (5.2). Their dual gravity solutions
depend on some continuous parameters: a, whose square is proportional to
N

(++)
1 , and bk, whose square is proportional to kN (0)

k [75]:

N
(++)
1 = N

a2

a2
0

, kN
(0)
k = N

b2
k

2a2
0

with a2
0 ≡ Q1Q5

R2 . (5.6)

Here R is the radius of the S1 and Q1, Q5 are the supergravity D1 and D5
charges. The condition that the total number of strands be N implies the
constraint

a2 +
∑
k

b2
k

2 = a2
0 , (5.7)

which turns out to be also the regularity condition for the metric. The metrics
are more easily written in spheroidal coordinates in which the flat R4 metric
is

ds2
4 = Σ

(
dr2

r2 + a2 + dθ2
)
+ (r2 + a2) sin2 θ dϕ2 + r2 cos2 θ dψ2 . (5.8)

The remaining data encoding the metric are the one reported in eq. (2.147)
of sec. 2.2.4.1.

1.1 The perturbation

To compute the HHLL correlator one should consider the wave equation for a
perturbation in the background (5.3). The bosonic light operator OL = OBos
is described by a minimally coupled scalar in the six-dimensional Einstein
metric ds2

6. We show in Appendix A.5 that such scalars arise by dimensional
reduction from traceless perturbations of the metric on T4, and thus have
the right quantum numbers to be dual to the CFT operator6 ∂X(i∂̄Xj), with
i, j = 1, . . . , 4.

Following the line of [77, 83], the gravity computation of the correlator
requires solving the wave equation

□6B = 0 , (5.9)

where □6 is the scalar Laplace operator w.r.t. ds2
6, i.e.

□6· ≡ 1
√
g6
∂M

(√
g6 g

MN
6 ∂N ·

)
, (5.10)

dubbed with the boundary condition

B(t, y, r) ∼ δ(t, y) + b(t, y)
r2 , (5.11)

for large r. Since the background metric is regular everywhere, one should also
require that B have no singularities at any finite value of r. As the operator OL
is an R-charge singlet, only the projection of B on the trivial scalar spherical
harmonic on S3 contributes to the correlator. The 4-point function computed
on the Euclidean plane is thus encoded in the function b(t, y) via

⟨OH(0)ŌH(∞)OL(1, 1)ŌL(z, z̄)⟩ =
1

|1 − z|4
GBos(z, z̄) = (zz̄)−1 b(z, z̄) ,

6 Actually, the right dual supergravity field dual to operator (2.70) is the self-dual part of
Kalb-Ramond field on the T4, bij . But, as explained in sec. 2.2.3.1, it is dual to the torus
metric perturbation.
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(5.12)

where

z = ei
t+y
R = e

te+iy
R , z̄ = ei

t−y
R = e

te−iy
R , (5.13)

with te ≡ it the Euclidean time. The factor (zz̄)−1 on the right hand side of
(5.12) comes from the transformation of the primary field

ŌL(z, z̄) = (zz̄)−1 ŌL(t, y) , (5.14)

from the cylinder to the plane coordinates.
The Laplacian operator in (5.10) is easily derived if one writes the six-

dimensional metric as [75,133,142]:

ds2
6 = V −2gµνdxµdxν +Gαβ(dθα +Aαµdxµ)(dθβ +Aβνdxν) , (5.15)

where

V 2 ≡ detG
(Q1Q5)3/2 sin2 θ cos2 θ

. (5.16)

We have thus split the six-dimensional coordinates in the AdS3 coordinates
xµ,xν , . . . ≡ (r, t, y) and the S3 coordinates θα, θβ , . . . ≡ (θ,ϕ,ψ). The def-
inition of gµν , Gαβ , Aαµ depends of course on the choice of coordinates; the
coordinates are fixed at the boundary by the requirement that the metric looks
like AdS3 × S3 asymptotically, but one is free to redefine the coordinates in
the space-time interior. We will stick to the coordinates defined in (5.8).

If one takes the solution in (2.147) and sets bk = 0 for any k, one finds that
gµν becomes the metric of global AdS3

gµνdxµdxν
⏐⏐⏐
bk=0

=
√
Q1Q5

[
dr2

r2 + a2
0

− r2 + a2
0

Q1Q5
dt2 + r2

Q1Q5
dy2
]

≡
√
Q1Q5 ds2

AdS3 ,
(5.17)

and Gαβ the metric of the round S3. When, like in this case, the metric
gµν does not depend on the coordinates of S3, the six-dimensional Laplace
equation (5.9) admits an S3-independent solution which satisfies the simpler
equation

□3B = 0 , (5.18)

with □3 the Laplacian of gµν :

□3· ≡ 1
√
g
∂µ (

√
g gµν∂ν ·) . (5.19)

In general, the six-dimensional metric does not factorise and gµν and Gαβ
depend on both AdS3 and S3 coordinates. In this situation solving the six-
dimensional equation (5.9) exactly seems hard. When this happens we resort
to an approximation scheme that was used already in [83]: we solve the wave
equation perturbatively in bk, keeping only the first non-trivial order O(b2

k). In
the following we will apply this perturbative method to compute the correlator
for generic bk. In the particular example in which b1 is the only non-vanishing
mode, we will be able to do perform the computation exactly in b1 since in
that case the metric factorise.
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1.2 Perturbative computation for generic bk’s

As anticipated, we consider here a generic state in the ensemble (5.2) and
compute the correlator in the limit N (0)

k ≪ N
(++)
1 , keeping the first non-

trivial term in an expansion in bk/a0. This contribution already depends on
the CFT moduli and hence it contains non-trivial information on the dynamics.
We perform the bk-expansion keeping Q1, Q5 and R (and thus a0) fixed: on
the CFT side this means we are keeping the central charge fix and we are not
changing the size of the circle on which the CFT is defined. At zeroth order
in bk the metric is AdS3 × S3, and we will expand the terms of order b2

k in
the basis of spherical harmonics of this unperturbed S3. We thus write the
solution of (5.9) as

B = B0 +B1 + O(b4
k) , (5.20)

where B1 quadratic in bk. The terms of order zero and two of the equation
give

□0B0 = 0 , □0B1 = −□1B0 , (5.21)

where □0 is the Laplacian of global AdS3

□0· ≡ 1
r
∂r(r(r

2 + a2
0)∂r·) − a2

0 R
2

r2 + a2
0
∂2
t · +a

2
0 R

2

r2 ∂2
y · , (5.22)

and □1 is the order b2
k contribution to the Laplacian □3 defined in (5.18).

The order zero equation in (5.21), together with the asymptotic boundary
condition (5.11) and the regularity condition, implies that B0 is the usual
bulk-to-boundary propagator of dimension ∆ = 2 in global AdS3:

B0(r, t, y) = KGlob
2 (r, t, y|t′ = 0, y′ = 0)

=

⎡⎣1
2

a0√
r2 + a2

0 cos(t/R) − r cos(y/R)

⎤⎦2

.
(5.23)

The second-order part in (5.21) gives an equation for B1. If the metric gµν is
a non-trivial function on S3, the B1 that solves this equation has components
along non-trivial S3 spherical harmonics, which we should project away for the
purpose of extracting the correlator. In particular all terms in the solution
(2.147) that are proportional to bkbk′ for k ̸= k′ depend non-trivially on ϕ

as cos((k − k′)ϕ) and source non-trivial spherical harmonics in B1 and thus
they do not contribute to the correlator at quadratic order in bk. We can then
simplify the computation by focusing on a single k-mode at a time. The metric
gµν derived from the solution where a single bk is non-vanishing is reported
in (2.151) of sec. 2.2.4.1.

We see that, unless k = 1, even for a single mode gµν depends non-trivially
on the S3 coordinate θ and this is not separable. To compute B1, one should
expand the Laplacian of g(k)µν up to order b2

k

□(k) = □0 + b2
k□

(k)
1 + O(b4

k), (5.24)

and project on the trivial spherical harmonic. One then finds

⟨Jk⟩ ≡ −⟨□(k)
1 B0⟩

= − r

(r2 + a2
0)
∂rB0 +

a2
0 R

2

(r2 + a2
0)

2 ∂
2
tB0 +

R2

2a2
0
Sk (∂

2
tB0 − ∂2

yB0) ,
(5.25)
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where

Sk ≡
k∑
p=2

(
a2

0
r2 + a2

0

)p
⟨sin2p−2 θ⟩ =

k∑
p=2

1
p

(
a2

0
r2 + a2

0

)p
, (5.26)

where the bracket ⟨·⟩ denotes the average on S3. In deriving (5.25) we have also
used that □0B0 = 0. The second equation in (5.21) is then easily integrated
using the AdS3 bulk-to-bulk propagator GGlob

2 (r′|r, t, y), and summing over
all the modes:

B1(r, t, y) = −i
∑
k

b2
k

∫
d3r′√−gAdS3 G

Glob
2 (r′|r, t, y) ⟨Jk(r′)⟩ , (5.27)

where r′ ≡ {r′, t′, y′} is a point in AdS3 and gAdS3 the metric of global AdS3.
According to (5.12), the correlator is then determined by the large r limit

of B1, which follows from the asymptotic limit of GGlob
2 (r′|r, t, y), that is

GGlob
2 (r′|r, t, y) → a2

0
2πr2K

Glob
2 (r′|t, y). (5.28)

Moving from the Lorentzian cylinder to the Euclidean plane, one finds that
the order b2

k contribution to the 4-point function is

⟨OH (0)ŌH (∞)OL(1, 1)ŌL(z, z̄)⟩|b2
k
= −

∑
k

b2
k

2π

∫
d3w

√
ḡ K2(w|z, z̄) ⟨Jk(w)⟩ ,

(5.29)

where ḡ is the metric of Euclidean AdS3 and K2(w|z, z̄) the usual bulk-to-
boundary propagator in the Poincaré coordinates w. The integral in (5.29),
with the source ⟨Jk⟩ given in (5.25), can be expressed in terms of D-functions
using standard methods; we summarise the various steps in app. A.2. Including
also the free contribution at bk = 0, the final result for the strong coupling
limit of the bosonic correlator up to order b2

k can be written in the suggestive
form

CBos
O(b2)(z, z̄) = ∂∂̄

⎡⎣ 1
|1 − z|2

−
∑
k

b2
k

a2
0

⎛⎝1
2

1
|1 − z|2

−
k∑
p=1

|z|2D̂pp22
π p

⎞⎠⎤⎦ .

(5.30)

Comparing this result with the Ward identity (2.101) linking bosonic and
fermionic correlators, one is lead to the following natural guess for the corre-
lator with fermionic light operators

CFer
O(b2)(z, z̄) = 1

|z|

[
1

|1 − z|2
+
b2

1
a2

0

N

2 −
∑

k

b2
k

a2
0

(
1
2

1
|1 − z|2

−
k∑

p=1

|z|2D̂pp22
π p

)]
,

(5.31)

Where the term of order N is the disconnected contribution to the correlator,
which cannot be predicted by the Ward identity since it is annihilated by the
operator ∂∂̄(|z|·).

Specialising (5.31) to the heavy state considered in [83], which has b1 =
b ̸= 0 and bk = 0 for k > 1, one can check that the above result is in perfect
agreement with eq. (3.58) of [83], using to eq. (D.12a) of the same paper.
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This proves that the Ward identity is satisfied for this particular heavy state,
and provides a quite non-trivial check of our computations. One can also
check that the bosonic correlator (5.30) has the expected symmetry under the
exchange of the points z3 and z4; this transformation permutes OL with ŌL
and, according to the definition (2.70), amounts to exchange the T4 index
A = 1 with A = 2; since the heavy operators we consider are invariant
under transformations of the compact space T4, the correlator should be left
invariant. From the definition of the conformal cross ratio z one sees that the
transformation z3 → z4 is equivalent to z → 1/z and thus one should have
that

GBos(z, z̄) = GBos(z−1, z̄−1) . (5.32)

That the result (5.30) has this property follows from the symmetry of the
D̂-functions

D̂pp22(z
−1, z̄−1) = |z|4D̂pp22(z, z̄) . (5.33)

1.3 Exact computation for bk = b δk,1

As we have seen, the solution in which only the mode b1 ≡ b is non-vanishing
is particularly simple; in fact it is easy to see from (2.151) and (2.152) that
F1 = Σ/(r2 + a2) and thus the three-dimensional metric gµν is θ-independent.
One can thus look for an exact solution of the three-dimensional Laplace
equation (5.18):

r2 + a2

r(r2 + a4/a2
0)
∂r[r(r

2 + a2)∂rB]− a2
0

r2 + a4/a2
0
∂2
τB+

a2
0
r2 ∂

2
σB = 0 , (5.34)

where we have defined

τ ≡ t

R
, σ ≡ y

R
. (5.35)

The solution of (5.34) that is regular at r = 0 and that has the asymptotic
behaviour (5.11) for large r is

B =
1

(2π)2

∑
ℓ∈Z

∫
dω eiωτ+iℓσ g(ω, ℓ)

(
r√

r2 + a2

)|ℓ|
·

· 2F1

(
|ℓ| + γ

2 , |ℓ| − γ

2 , 1 + |ℓ|; r2

r2 + a2

)
,

(5.36)

where we need to impose

g(ω, ℓ) =
Γ
(

1 + |ℓ|+γ
2

)
Γ
(

1 + |ℓ|−γ
2

)
Γ(1 + |ℓ|)

, (5.37)

and where we have defined

γ ≡

√
a2

0 ω
2 − 1

2 b
2 ℓ2

a
. (5.38)

The function b(t, y) defined in (5.11) is then extracted from the large r limit
of B:

b(τ ,σ) = a2

a2
0

∑
ℓ∈Z

∫ dω
(2π)2 e

iωτ+iℓσ ·

·
{

−|ℓ|
2 +

ℓ2 − γ2

4

[
H

(
|ℓ| + γ

2

)
+H

(
|ℓ| − γ

2

)
− 1
]}

,
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(5.39)

where H(z) is the harmonic number, which is related to the digamma function
ψ(z) as

H(z) = ψ(z + 1) + γE =
∞∑
n=1

(
1
n

− 1
n+ z

)
. (5.40)

Discarding contact terms proportional to δ(τ ) and/or δ(σ) and their deriva-
tives, and using the identity

ℓ2 − γ2 =
a2

0
a2 (ℓ2 − ω2) , (5.41)

one can write

b(τ ,σ) = ∂2
τ − ∂2

σ

4 bF (τ ,σ) , (5.42)

where

bF (τ ,σ) =
∑
ℓ∈Z

∫ dω
(2π)2 e

iωτ+iℓσ
∞∑
n=1

(
2

γ − |ℓ| − 2n − 2
γ + |ℓ| + 2n

)
. (5.43)

The ω-integral is performed along Feynman’s contour, as in sec. 1.2.2; assum-
ing τ > 0 the contour has to be closed on the upper half plane, so we pick the
poles on the negative real axis:

ωn = − a

a0

√
(|ℓ| + 2n)2 +

b2ℓ2

2a2 . (5.44)

The correlator on the plane is found by transforming from the (τ ,σ) coordi-
nates to the (z = ei(τ+σ), z̄ = ei(τ−σ)) coordinates and using (5.12). Dropping
an irrelevant overall normalisation one finds

CBos(z, z̄) = ∂∂̄
(

|z| CFer(z, z̄)
)

, (5.45)

with CFer(z, z̄) = CFer(τ ,σ)/|z|, where the factor 1/|z| follows from the trans-
formation of the operator in z, and

CFer(τ ,σ) = a

a0

∑
ℓ∈Z

eiℓσ
∞∑
n=1

exp
[
−i aa0

√
(|ℓ| + 2n)2 + b2ℓ2

2a2 τ

]
√
ℓ+ b2

2a2
ℓ2

(|ℓ|+2n)2

. (5.46)

In our computation the fermionic correlator CFer(τ ,σ) is determined only up
to terms that are annihilated by the derivatives in (5.42). We have chosen these
ambiguous terms such that CFer(τ ,σ) agrees7 up to terms of order O(b2) with
the correlator computed in [83]. In order to verify that the O(b2) expansion
of the CBos(z, z̄) and CFer(z, z̄) above agrees with the result obtained via the
perturbative method in (5.30) and (5.31) one can start by expanding each
term of the series for small b at fix a0 up to order b2

CFer(τ ,σ) ∼
∑
ℓ∈Z

eiℓσ
∞∑
n=1

ei(|ℓ|+2n)τ ·

·
[
ℓ+

b2

2a2
0

(
−1

2 − ℓ2

2(|ℓ| + 2n)2 +
2iτ (|ℓ| + n)n

|ℓ| + 2n

)]
.

(5.47)

7 Note that in (5.45) we have not included the disconnected contribution to the correlator;
this contribution can be computed in the free orbifold theory and is given by the O(N)
term in (5.31) at all values of b2/a2

0.
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The terms in the round parenthesis can be written as ratios of polynomials
in the combinations ℓ and |ℓ| + 2n that appear in the exponentials. It is thus
possible to reduce the sums over ℓ and n in terms of derivative or integrals with
respect to τ and σ of the geometric series. In particular, the presence in the
denominator of a factor of (|ℓ| + 2n)2 implies that we have to integrate twice
with respect to τ . It is easy to see that the first integration yields logarithms
and the second one dilogarithms, producing exactly the terms proportional
to Li2 in the D̂ function present in (5.31). It is possible to check that also all
other terms of (5.31) are reproduced by performing the sums for the remaining
terms in (5.47).

1.3.1 Other flavours

We have seen in sec. 2.2.4.2 that the 1
4 -BPS heavy state

|H̃⟩ = · · ·
[(
a− b2

4a

)
|++⟩1

]
(b |++⟩2) · · · (5.48)

is dual to a ten-dimensional supergravity solution whose six-dimensional met-
ric in Einstein frame is the same as the one for the state (5.2) if bk = bδk,1,
up to O(b2); this immediately means that

⟨H̃|OB(0)ŌB(z, z̄)|H̃⟩ = ⟨H|OB(0)ŌB(z, z̄)|H⟩ +O(b4) , (5.49)

where ⟨H|OB(0)ŌB(z, z̄)|H⟩ is eq. (5.45). This result will be useful in chap. 6.

2 cft interpretation of the bulk correlator

A natural way to make contact of the supergravity results (5.46) and (5.47)
with the CFT interpretation is to study the OPE limits. For instance, the
leading terms of the z, z̄ → 1 limit, corresponding to the OPE where the
two light operators are close, do not receive any contributions from the D̂pp22
with p > 1. By using the definition of appendix A.2, it is straightforward to
check that, in this OPE limit, the singular terms obtained from the round
parenthesis in (5.30) and (5.31) are

1
2

1
|1 − z|2

−
k∑
p=1

|z|2D̂pp22
π p

∼ 1
4(1 − z)

+
1

4(1 − z̄)
, (5.50)

and so do not contribute to the bosonic correlator (5.30). The two singu-
lar terms above capture the contributions to the fermionic correlator of the
SU(2)R and SU(2)L currents. After having substituted the result (5.50) in (5.31),
we can extract the contribution due to the exchange of the SU(2)L current
by looking at the term proportional to 1/(1 − z̄), that is

CFer
O(b2) ∼ 1

1 − z̄

[
1
2 − 1

4
∑
k

b2
k

a2
0

]
=

a2

2a2
0

1
1 − z̄

, (5.51)

where in the last line we used (5.7). This provides a check of the relative
normalisation between the free contribution and the terms proportional to
b2
k; at order 1/(1 − z̄) the two combine to produce a result proportional to a2

which is related to the number of strands with ȷ = 1/2. This is the only type of
strands in the state considered in sec. 5.1 that can contribute to the exchange
of the SU(2)L currents. In particular, the OPE (5.51) is saturated by the
exchange of J3 and, since the correlator factorises into two protected 3-point
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functions ⟨OHŌHJ3⟩ ⟨J3OLŌL⟩, it is easy to check the overall normalisation
just by using the free theory result for the 3-point building blocks.

It is possible to extend further the result above and focus on the leading
term in the (1 − z̄) expansion, but keep all corrections in (1 − z). In Lorentzian
signature this corresponds to a lightcone OPE where y → t. Also in this case,
only the terms proportional to D̂1122 are relevant and we obtain

CBos
O(b2) ∼ 1

|1 − z|4

{
1 −

∑
k

b2
k

a2
0

[
1 + 1

2
1 + z

1 − z
ln z
]}

. (5.52)

It is interesting to compare this result with the contribution of the (holomor-
phic) Virasoro block of the identity8, but this has to be done with great care.
While the heavy operators, being RR ground state, have conformal weight
hH = h̄H = c/24, it is convenient to factor out the contribution of the
Sugawara part of the stress tensor that is due to the SU(2)L × SU(2)R R-
currents. The main reason for doing this is that it is possible to take linear
combinations of a Virasoro descendant and an affine descendant constructed
with the Sugawara stress-tensor to construct a Virasoro primary, i.e. a state
annihilated by Ln for n > 0. So, if we try to interpret the correlators (5.30)
and (5.31) in terms of the full Virasoro blocks, primaries such as the ones
mentioned above would appear as new dynamical contributions, while they
should not, since their contributions is completely fixed by the symmetries of
the theory. Then it is more convenient to analyse the bulk results above in
terms of the Virasoro blocks generated by L[0] = L− LSug times the blocks
generated by the R-symmetry currents. This approach is particularly apt for
the bosonic correlator (5.30), since it is not constrained by the R-symmetry
at all. By indicating with a superscript [0] all quantities after factorising out
the Sugawara contributions, we have h[0]L = h̄

[0]
L = 1 and

h
[0]
H = h̄

[0]
H =

N

4 − ⟨J2⟩
N

=
N

4

⎡⎣1 −

(
N

(++)
1
N

)2 ⎤⎦ , (5.53)

where J2 is the Casimir operator of the SU(2)L algebra and, in our case, it is
sensitive just to the strands with ȷ, ȷ̄ ̸= 0. Thus we should compare (5.52) with
the contribution of the HHLL identity Virasoro block with the h[0]H and h

[0]
L

above, and c ∼ 6N9. By using the results of [140], we have that the leading
term in (1 − z̄) expansion of the leading N contribution of such Virasoro block
reads

CBos
Id ∼ 1

(1 − z̄)2

[
zα−1

(
α

1 − zα

)2
]

∼ 1
|1 − z|4

{
1 −

∑
k

b2
k

a2
0

[
1 + 1

2
1 + z

1 − z
ln z
]}

,
(5.54)

where in the second step we have used

α =

√
1 −

24h[0]H
c

=
N

(++)
1
N

=
a2

a2
0
= 1 −

∑
k

b2
k

2a2
0

, (5.55)

8 Since it is known that the Virasoro block saturates the leading contribution in the lightcone
ope limit.

9 Since subtracting the Sugawara sector does not change the leading N contribution of the
D1D5 CFT
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and took the approximation b2
k ≪ a2

0 up to the order b2
k/a2

0. This clearly
shows that the lightcone OPE (5.52) of the strong coupling correlator (5.30)
is entirely saturated by the L[0] Virasoro descendants of the identity (5.54),
at least in the O(b2) approximation. Of course the full correlator away from
the lightcone limit receives contributions from other L[0] Virasoro blocks. By
expanding (5.30) for z → 1 and z̄ → 1 and comparing with the same expansion
of the identity Virasoro block, one may see that the first primaries beyond
the identity that appear in the OPE have conformal dimension h = h̄ = 2. As
we argued at the beginning of the chapter, these primaries should be multi-
particle operators.

In the case of the heavy state discussed in sec. 5.1.3, it is possible to show
that lightcone OPE reproduces the L[0] identity Virasoro block even at finite
values of b. Consider first the fermionic correlator in (5.46). The lightcone
OPE is captured by the modes with ℓ ≫ n, so we can approximate each
term in the series (5.46) by expanding the square roots and by neglecting all
terms proportional to 1/ℓ; then, when zα is not too close to 1, the leading
contribution in the z̄ → 1 limit is captured by

CFer(τ ,σ) ∼ a2

a2
0

∞∑
ℓ=0

eiℓ(σ−τ )
∞∑
n=1

e
−2 i a

2
a2

0
nτ

= α
1

1 − z̄

1
1 − |z|2α

. (5.56)

By inserting this approximation in (5.45) we have

CBos(z, z̄) ∼ ∂∂̄

(
1

1 − z̄

α

1 − |z|2α

)
∼ 1

(1 − z̄)2 z
α−1

(
α

1 − zα

)2
, (5.57)

where we focused on the leading contribution in the limit z̄ → 1. As mentioned
above, this result agrees with (5.54) even at finite values of b1.

3 late time behaviour of the exact correlator

As we have discussed, for finite b we were not able to sum the series in (5.46).
However it is still possible to extract useful information already from (5.46),
and in particular one can analyse the behaviour of the correlator for large
values of the Lorentzian time τ , in order to contrast it with the black hole result
(1.88) discussed in sec. 1.2.2. For large τ we have shown that the correlator
vanishes like

GBos
BTZ(τ ,σ) ∼ 1

τ2 . (5.58)

This large-time decay is a signal of information loss (see sec. 1.2). As dis-
cussed in sec. 1.2.2, the decay in (5.58) is polynomial rather than exponential,
because the naive geometry of the massless BTZ black hole is a degenerate
zero-temperature limit of a regular finite-temperature black hole.

Let us now consider the correlator in the pure heavy state characterised by
bk = bδk,1, the one studied in sec. 5.1.3. The result of the previous section
implies that, for generic values of σ = σ0, the correlator given in (5.46) has
the same singularities at τk = σ0 + 2πk as the vacuum correlator. In fact,
in this regime, the leading contribution to the sum arises from the modes
with ℓ ≫ n and so, close to τk, the fermionic and bosonic correlators are well
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Figure 5.1: A pictorial representation of the HHLL correlator computed in both
the naive massless BTZ geometry (in dash-dotted red) and in the pure
microstate geometry (in violet). Up to a certain time τ ∼ a2

0/a2, the
two correlators present the same decaying behaviour; after that, the two
starts to differ: the BTZ one maintains its decaying behaviour, while the
microstate one starts oscillating, as imposed by unitarity.

approximated by (5.56) and (5.57). Then, as expected for a pure state, we
have that GBos

b1
or GFer

b1
tend to a finite value when τ → τk for every k, i.e.

GFer
b1 ∼ α

1 − e2iσ0

1 − e2iασ0e2πiαk ,

GBos
b1 ∼ α2e2iσ0(α−1)e2πiαk

(
1 − e2iσ0

1 − e2iασ0e2πiαk

)2
.

(5.59)

This is in contrast with what happens in the case of the naive geometry, where
GBos

BTZ goes to zero at late times.
Since the geometries (2.147), dual to the pure states (5.2), reduce to the

naive D1D5 geometry (1.66) in the limit a → 0, it is important to ask if the
non-unitary correlator (1.88) emerges as the a → 0 limit of the pure state
correlator (5.45,5.46). When a ≪ b, one can distinguish two contributions to
the series in (5.46):

a0
a

|ℓ| ≫ 2n : CFer ∼ a2

a2
0

∑
ℓ,n

(
1 + 2n

|ℓ|

)
ei(ℓσ−|ℓ|τ ) ; (5.60a)

a0
a

|ℓ| ≪ 2n : CFer ∼ a

a0

∑
ℓ,n

eiℓσe
−i aa0

2nτ , (5.60b)

where we have used that a
a0

∼
√

2a
b . The terms in the first line of the equation

above give the sum of a function of σ+ τ and a function of σ− τ , and thus do
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not contribute to the bosonic correlator. Then we keep only the second type
of contributions, which give

CFer(σ, τ ) ∼ a

a0

∑
ℓ∈Z

eiℓσ
∞∑

n=
a0
2a |ℓ|

e
−i aa0

2nτ
+ . . .

=
a

a0

1
1 − e

−2i aa0
τ

[
1

1 − ei(σ−τ ) +
1

1 − e−i(σ+τ ) − 1
]
+ . . . ,

(5.61)

where the dots are the terms that do not contribute to CBos.
The key point is that, no matter how small a/a0 is, as far as a is non-zero

the correlator in (5.61) and the bosonic correlator derived from it have an
oscillating non-vanishing behaviour for large enough τ , as was found in (5.59)
for finite a. However, if one observes the correlators at times τ ≪ a0/a, one
can approximate (5.61) as

CFer(σ, τ ) ∼ 1
2iτ

[
1

1 − ei(σ−τ ) +
1

1 − e−i(σ+τ ) − 1
]
+ . . . , (5.62)

and one obtains precisely the naive correlator result given in (1.88). We con-
clude that

the HHLL correlator (5.46), which was computed on a pure
two-charge state (5.2), approximates the one computed on the
massless BTZ black hole geometry (1.88) in the limit a ≪ a0
and for times τ shorter than a0/a.

A pictorial representation of this behaviour is reported in fig. 5.1.

4 summary and outlook

In this chapter we used the supergravity approximation of type IIB string
theory to derive, using AdS3/CFT2 hologrpahy, the strong coupling expres-
sion for the HHLL correlators (2.92), where the two light operators are the
bosonic states in (2.70) while the heavy operators belong to the ensemble of
RR ground states in (5.2). As reviewed in sec. 2.1.6, at the orbifold point in
the moduli space, it is easy to compute these correlators in full generality. This
was exploited in [72,135] to extract interesting properties of the correlators for
generic RR ground states. In order to study the problem in a regime where
weakly coupled AdS gravity is a valid approximation, one needs to deform
the orbifold description and then move to a region where the CFT is strongly
coupled. Here we bypassed this challenging task by working with the super-
gravity description, and to make the computation feasible we restricted to the
regime N (0)

k ≪ N
(++)
1 , where the states are close to the RR ground state with

maximal R-charge. For a particular family of states, the one with N
(0)
k = 0

for k ≥ 2, we were able to compute the correlator at strong coupling for all
values of the R-charge, even if only implicitly in the form of a Fourier series,
including the limit in which the R-charge becomes vanishingly small. To make
contact between the gravity results (5.30), (5.31) and (5.45), (5.46) and the
CFT, we looked at different OPE limits for the correlator. In the lightcone
OPE limit the only contributions to the bosonic correlator come from the
Virasoro descendants of the identity, as expected10 for generic correlators in
a CFT where the stress tensor is the only conserved current. In the usual Eu-
clidean OPE, however, other primaries other than identity could contribute,

10 see for instance the discussion in app. A of [138]
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and the first ones appears at dimension h = h̄ = 2 for the bosonic correlator.
Summing over these primaries crucially changes the qualitative late time be-
haviour of the correlator: while each individual classical Virasoro conformal
block vanishes at late times, we verified in sec. 5.3 that our correlator has
an oscillatory behaviour for arbitrarily large time, as expected in a unitary
theory without information loss. Note that, crucially, this result holds also for
states that are far from the maximally spinning ground state, for which the
correlator is dynamical and not fixed by the symmetries.



6
Ad S 3 FO U R - P O I N T
F U N C T I O N S F RO M 1

8 - B P S
S TAT E S

As we have briefly discussed in sec. 1, the study of correlators has been one
of the key ingredients in AdS/CFT correspondence [36, 143–146] and, more
recently, also in the context of black hole physics [48,74,147]. We have seen that
in AdS/CFT context, black hole solutions are regarded as supergravity duals
to a statistical ensemble of heavy states of the dual field theory (as in chap. 5),
and the study of correlation functions provides a powerful tool to shed light
on black hole physics and its puzzles. Among all the dynamical quantities
one may focus on, four-point functions are especially relevant because of their
nature as probes for the black hole and its microscopic structure.

In the D1D5 setup, the four-point function we focused on, often dubbed as
Heavy-Heavy-Light-Light (HHLL) correlator, is of the form

⟨OH(z1, z̄1)ŌH(z2, z̄2)OL(z3, z̄3)ŌL(z4, z̄4)⟩ , (6.1)

where we recall that the heavy operators OH have conformal dimensions scal-
ing with the central charge c, while the light ones OL have dimensions of
order unity. From the gravity point of view the heavy states we will focus on
are described by smooth, horizonless solutions of type IIB on T4, while the
light probes are dual to some perturbations around this heavy background.
When the D1D5 CFT is at the free point it is possible to calculate the cor-
relator (6.1) with standard technique, while in the opposite limit we have to
use holographic methods.

The class of correlators introduced above has recently been studied in [77,83]
and we have seen an example in chap. 5 for two-charge microstates, correspond-
ing to 1

4 -BPS RR ground states, whose statistical ensemble is not dual to a
macroscopic black hole at the level of classical gravity, but it provides a good
testing ground as we know in detail all the gravitational solutions dual to these
states [108,110]. We want now to take a step further and study HHLL correla-
tors for a large class of three-charge microstates recently found [88–90]1, and
whose thermodynamic description is actually a black hole with a macroscopic
entropy already at the level of (semi)classical gravity. These microstates break
another half of the supersymmetries of the two-charge seed solution and are
therefore 1

8 -BPS states and they are schematically written in the RR sector
as

|++⟩N1
1

∏
k,m,n,q

[ (
J+

−1
)m

m!

(
L−1 − J3

−1
)n

n!
·

·
(
G+1

0 G+2
0 +

1
k
J3

−1
(
L−1 − J3

−1
))q

|00⟩k

]Nk,m,n,q

,

(6.2)

1 For other three-charge geometries, see [84,86,142,148–150].
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where Ln, Jan , GαAn
2

are the generators of the Kac-Moody superalgebra of
the CFT. The numbers N1, Nk,m,n (or Nk,m,n,q) control the number of each
strand in the D1D5 orbifold picture, and on the gravity side corresponds to
some parameters a and b whose strength controls the depth of the throat of
the microstates; notice also that q = 0, 1 only, while m ≤ k and n ∈ N. The
infinite throat limit corresponds to take the limit a2/b2 → 0. Even though
exact results in the parameters a and b have been found in chap. 5 for a
class of two-charge geometries, for the three-charge state considered here, we
restrict to the regime where we take the ratio b2/a2 to be small, since one of
the main goal of this chapter is to reconstruct full LLLL correlators from the
HHLL one.

As in chap. 5, it is not straightforward to use Witten diagrams to calcu-
late the correlators (6.1) since the heavy states correspond to multi-particle
operators with a large conformal dimension that are not dual to a single su-
pergravity mode. We again bypass these difficulties by seeing the four-point
function as a two-point function in a non-trivial background state. In the grav-
ity picture, this boils down to solve a wave equation obtained by perturbing
the fields dual to the light operators, around the known smooth geometries,
dual to heavy states. The results obtained pass a set of non-trivial consistency
checks and they can be related to each other, as well as to the two-charge re-
sults obtained in [2, 83], by a set of Ward Identities (WI) encoding, in form
of differential operators, the action of all the generators of the global part of
the superconformal algebra on the two-charge states.

Moreover in [151] the authos put forward a conjecture to reconstruct the
all-light (LLLL) correlators from the corresponding HHLL version. In fact,
a class of LLLL four-point functions has been constructed in [151] starting
from the HHLL correlator computed in the two-charge geometries of [83]. In
analogy to that work, we will also go towards the extraction of the LLLL
version of our HHLL four-point function. The LLLL correlators can be thus
interpreted in terms of a sum of Witten diagrams, each of them reflects the
exchange of fields in AdS in different channels. The prescription of [151] allows
to extract the s-channel of the LLLL correlator straightforwardly from the
HHLL one. As it will be more clear in the following, in some cases it will
be possible to reconstruct all the other channels in order to get the entire
LLLL four-point function. Fundamental tools in this approach are the Ward
Identities, relating our three-charge correlators to the two-charge ones whose
LLLL version is known. Moreover, the Mellin formalism [152–154] constitutes
a natural language in which holographic correlators can be interpreted, and
it will turn out to be fundamental to analyse the dynamical properties of our
results, besides providing another non-trivial consistency check of our results.

1 cft picture

In this section we use the D1D5 CFT at the free orbifold point to describe
the correlators under analysis, introducing the heavy and the light operators
we will use, following the notation of sec. 2.1. At the orbifold point, the CFT
target space is (T4)N/SN and the theory can be formulated in terms of N
groups of free bosonic and fermionic fields(

∂XAȦ
(r) (z), ψ

αȦ
(r) (z)

)
,
(
∂̄XAȦ

(r) (z̄), ψ̃
α̇Ȧ
(r) (z̄)

)
, (6.3)

where (A, Ȧ) is a pair of SU(2) indices forming a vector in the CFT target
space, while (α, α̇) are indices of SU(2)L × SU(2)R which is part of the R-
symmetry group and where r = 1, . . . N is a flavour index running on the
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various copies of the target space on which the symmetric group SN acts. The
algebra of the theory in all points of the moduli space is given by an affine
algebra generated by three conserved currents(

T (z), Ja(z), GαA(z)
)

,
(
T̄ (z̄), J̄a(z̄), ḠαA(z̄)

)
, (6.4)

where T (z) is the stress energy tensor generating the conformal transforma-
tions, Ja(z) is the SU(2)L R-symmetry current and GαA(z) is the supercur-
rent.

As mentioned in the introduction, we will study four-point functions in the
HHLL limit. In order to identify and define these four operators we recall
that the spectrum of the theory usually decomposes in two sectors, given by
the two different periodicity of the fermionic fields under rotation: the Neveu-
Schwarz (NS) and the Ramond (RR) sector. On the CFT side the operation
of going to one of these sectors to the other one is implemented via a spectral
flow transformation (briefly reviewed in sec. 2.1) that has a particular action
on the operators of the theory (see sec. 6.4 for details).

The object we will focus on is then

⟨OH(z1, z̄1)ŌH(z2, z̄2)OL(z3, z̄4)ŌL(z4, z̄4)⟩ =
1

z2hH
12 z2hL

34

1
z̄2h̄H

12 z̄2h̄L
34

G(z, z̄) ,

(6.5)

where G is the usual function of the conformal cross ratios (A.32). In order to
easily find the function G one can perform a conformal transformation fixing
three of the four points, let us say z2 → ∞, z1 = 0 and z3 = 1, which further
implies z = z4:

⟨ŌH |OL(1)ŌL(z, z̄)|OH⟩ ≡ C(z, z̄) = 1
(1 − z)2hL

1
(1 − z̄)2h̄L

G(z, z̄). (6.6)

In what follows, we are going to define the operators we will consider in
computing the correlators defined above. We will focus on supersymmetric
ground states as heavy states, whose dual gravity solutions are known [3, 75,
76, 87–89] and, as light operators, we will consider a class of operators dual
to a family of perturbation of the fields that are minimally coupled massless
scalars on the gravity side.

The full state in the orbifold theory is a tensor product of ground states for
the cyclic twists in the symmetric group conjugacy class, having N(s) copies
of k-cycle ground states of the polarisation state s. The class of state then
takes the form

ψ{Ns
k

} ≡
∏
k,s

(|s⟩k)N
s
k . (6.7)

These are usually called two-charge states and their gravity dual are known
and completely classified [108,110].

Another class of heavy states, which are the ones we will focus on, are
three-charges, 1

8 -BPS state and are given by

ψ{N1,Nk,m,n} ≡ |++⟩N1
1

∏
k,m,n,q

[(
J+

−1
)m

m!

(
L−1 − J3

−1
)n

n!
·

·
(
G+1

0 G+2
0 +

1
k
J3

−1
(
L−1 − J3

−1
))q

|00⟩k

]Nk,m,n,q

.
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(6.8)

The integer numbers {N1,Nk,m,n,q} specify the number of strands with par-
ticular quantum numbers and must satisfy

N1 +
∑

k,m,n,q
kNk,m,n,q = N . (6.9)

In order to have a dual classical supergravity solution for these states we
need to take a coherent superposition of them. In particular, the heavy states
we are interested in with a gravity dual are given by

|k,m,n, q⟩ ≡
∑

N1,Nk,m,n,q

AN1
1
(
Bk,m,n,q

)Nk,m,n,q ψ{N1,Nk,m,n,q} , (6.10)

where the sum is restricted to {N1,Nk,m,n,q} satisfying (6.9), that gives the
condition

|A1|2 +
(
k

m

)(
n+ k− 1

n

)
|Bk,m,n,q|2 = N . (6.11)

It has been proposed in [88–90] that the states (6.10) are the holographic dual
of a class of single-mode supergravity solution whose explicit form can still be
found in the same work. We will describe these dual solutions in sec. 6.2.

In particular, we will focus on three classes of heavy states2

OH → |OH⟩ ≡ {|1, 0,n⟩, |m,m, 0⟩, |2, 0, 0, 1⟩} , (6.12)

as defined in (6.10) with the condition

|A|2 + |B|2 = N , (6.13)

where we have defined A ≡ A1 and B ≡ {B1,0,n, Bm,m,0, B2,0,0,1}.
For what concerns the light operators, we will work again with (2.70), i.e.

OL → OBos =
N∑
r=1

ϵȦḂ√
2N

∂X1Ȧ
(r) ∂̄X

1Ḃ
(r) , ŌL → ŌBos =

N∑
r=1

ϵȦḂ√
2N

∂X2Ȧ
(r) ∂̄X

2Ḃ
(r) .

(6.14)

With this choice of light and heavy operators (in the case q = 0), the
correlator at the orbifold point depends only on the strand structure, but
not on the particular quantum numbers of the RR ground state considered.
A standard way to calculate this correlator is to diagonalize the boundary
conditions and then to take the linear combination of the contributions of
each strand as done in [2]. We write here the results for first two cases, where
the heavy states are in the untwisted sector and the strand structure is trivial
(6.14)

C(1,0,n) = C(m,m,0) =
1

|1 − z|4
. (6.15)

The computation for C(2,0,0,1) instead is more involved and, since it is not
relevant for the aim of the present chapter, we avoid to report it here. In
all the cases we work out, we will see that at the strong coupling point the
correlators differ from the ones computed at the free orbifold point.

2 To easen the notation we denote |k,m,n, q = 0⟩ = |k,m,n⟩, and analogously for all the
objects with k,m,n, q indexes.
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We now recall the k,m,n, q geometries built in [3,88–90] and briefly described
in sec. 2.2.1; those are type IIB supergravity solutions described by four scalar
functions Z1, Z2, Z4 and F , three 2-forms Θ1, Θ2 and Θ4, and a 1-form ω,
by which we can describe all the type IIB fields:

ds2
10 =

√
Z1Z2

P
ds2

6 +

√
Z1
Z2

dsT4 , (6.16a)

ds2
6 = − 2√

P
(dv+ β)

[
du+ ω+

F
2 (dv+ β)

]
+

√
P ds2

4 , (6.16b)

ds2
4 = Σ

(
dr2

r2 + a2 + dθ2
)
+ (r2 + a2) sin2 θ dϕ2 + r2 cos2 θ dψ2 ,

(6.16c)

Σ = r2 + a2 cos2 θ , P = Z1Z2 −Z2
4 , u =

t− y√
2

, v =
t+ y√

2
(6.16d)

β =
Ra2
√

2 Σ

(
sin2 θ dϕ− cos2 θ dψ

)
, (6.16e)

where we are focusing only on the metric, since it is the only field that will be
relevant for us. The objects defining this ansatz have to satisfy the two layers
of differential equations (2.117) and (2.119), in order to have a solution of the
type IIB equations of motion.

The k, m, n family of solutions built in [88,89] is described by

Z1 =
Q1
Σ

+
R2

Q5

b2

2
∆2k,2m,2n

Σ
cos v̂2k,2m,2n ,

Z2 =
Q5
Σ

, Z4 = Rb
∆k,m,n

Σ
cos v̂k,m,n ,

Θ1 = 0 , Θ2 =
R

Q5

b2

2 ϑ2k,2m,2n , Θ4 = b ϑk,m,n ,

(6.17)

where we have defined

∆k,m,n =

(
a√

r2 + a2

)k ( r√
r2 + a2

)n
cosm θ sink−m θ , (6.18a)

v̂k,m,n = (m+ n)

√
2 v
R

+ (k−m)ϕ−mψ , (6.18b)

while ϑk,m,n is defined in eq. (3.20) of [89]. We do not report here its precise
form, since it will not be useful nor relevant. In order to have non-singular
geometries we need to impose a regularity condition

a2 + xk,m,n
b2

2 =
Q1Q5
R2 ≡ a2

0 , x−1
k,m,n =

(
k

m

)(
k+ n− 1

n

)
. (6.19)

The relation between a, b in the gravity side with the A, B of eq. (6.11) in
the CFT side is [75]

|A| = R

√
N

Q1Q5
a , |B| = R

√
N

2Q1Q5
xk,m,n b . (6.20)

The missing object F and ω can be computed via the second layer of equa-
tions. A close form for them is known only for particular choices of the
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three parameters [3, 88–90]; we will use here only two of those choices: the
(k,m,n) = (1, 0,n) and the (k,m,n) = (m,m, 0), the second of which we
will discuss in detail in the following.

We prove in app. A.5 that, in all the three-charge geometries (6.16), the
supergravity field dual to our operator (6.14) is a minimally coupled massless
scalar field in six dimensions with Y 00

0 harmonic3 on the S3, i.e.

□6
(
B(τ ,σ, r)Y 00

0 (θ,ϕ,ψ)
)
= 0 , (6.21)

where □6 is the scalar Laplacian of the ds2
6 metric, i.e.

□6· = 1
√
g6
∂M (

√
g6 g

MN
6 ∂N ·), (6.22)

and where τ = t/R, σ = y/R. We then resort to standard holographic
methods to extract the Heavy-Light four-point function, as done in chap. 5;
In fact, we can compute it by solving the equation of motion for the dual
supergravity field with the appropriate boundary conditions

B(τ ,σ, r) ∼ δ(τ ,σ) + b(τ ,σ)
r2 , (6.23)

for r → ∞, plus regularity at r = 0. From here we will read the correlator as

⟨OH(0)ŌH(∞)OL(1)ŌL(z, z̄)⟩ = |z|−2 b(z, z̄) , (6.24)

where we have mapped the cylinder to the plane via z = eτE+iσ, z̄ = eτE−iσ,
with τE = iτ .

Since we were not able to solve the equation, we will resort to a perturbative
solution of the equation, expanding it in powers of b2

2a2
0
, that gives a separable

equation of motion, since all the (k,m,n) geometries approaches the vacuum
AdS3 × S3 solution when b → 0. It will be then useful to rewrite the metric in
the following form

ds2
6 = V −2gµνdxµdxν +Gab(dθa +Aa)(dθb +Ab), V 2 =

detGab
sin2 θ cos2 θ

,

(6.25)

where Aa = Aaµdx
µ can be seen as a 1-form on AdS3. We have split the

six-dimensional coordinates as xM = (xµ, θa) where xµ = {τ ,σ, r} and θa =
{θ,ϕ,ψ}. Schematically, we will have then

□6

[(
B0 +

b2

2a2
0
B1

)
Y 00

0

]
≃
[
□0B0 +

b2

2a2
0

(
□0B1 +

b2

2a2
0
□1B0

)]
Y 00

0

+ O
(
b4

4a4
0

)
+ higher harmonics,

(6.26)

where □0· = 1√
g3
∂M (

√
g3gMN

3 ∂N ·) is the scalar Laplacian of AdS3 in global
coordinates, and where the higher harmonics are integrated out; this equation
can be solved order by order; at the zeroth order, the solution that respects
the correct boundary solutions is the AdS3 Bulk-to-Boundary propagator:

B0(τ ,σ, r) = Kglob
2 (τ ,σ, r|τ ′ = 0,σ′ = 0) =

⎡⎣1
2

a0√
r2 + a2

0 cos τ − r cosσ

⎤⎦2

.

3 For the harmonic functions on S3 we use the notation of [83].
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OH

ŌHŌL

OL

=

OL

ŌL

OH

Figure 6.1: A pictorial representation of the method to compute the HHLL 4-point
function discussed in the main text, seen as a 2-point function of the
light operators on a non-trivial background sourced by the heavy opera-
tors. In the left-hand side, the dual supergravity fields of the single-trace
light operators are represented by black straight lines in the bulk; on
the contrary the heavy operators, being multi-trace, do not have a rep-
resentation in terms of single-mode supergravity fields, and then their
supergravity duals in the bulk are therefore pictorially represented by
a blue double-line. In the right-hand side instead, we represent the fact
that heavy states source a non-trivial geometry acting like a background
field, represented by a crossed blue circle.

(6.27)

The second order can be computed via the Green-function method

B1(τ ,σ, r) = −i
∫
d3r′√−ḡ3 G(r|r′)Js(r′) , Js ≡ −⟨□1B0⟩ , (6.28)

since at the b0 order the metric reduces to AdS3 × S3. Now, from the large
r-limit of B1, that is deduced by the large r-limit of the Bulk-to-Bulk propa-
gator4 as

G2(r′|r, τ ,σ) → a2
0

2πr2 K2(r′|τ ,σ); (6.29)

we thus get, mapping onto the plane,

⟨OH(0)ŌH(∞)OL(1)ŌL(z, z̄)⟩|b2 = − b2

2π

∫
d3w′√−ḡ3 K2(w′|z, z̄)Js(w′) .

(6.30)

This method for computing the 4-point function allows us to avoid using the
Witten Diagram technology, that is still not properly defined for AdS3 [151],
since only the cubic coupling have been worked out [155]. To have an intuitive
picture in mind, we report in fig. 6.1 a graphic representation of how this
method allows us to compute the Heavy-Light 4-point function.

4 Here we explicitly use that ∆L = 2.
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2.1 HHLL 4-point functions in the (k,m,n) = (1, 0,n) geometry

We start with a case where q = 0. The explicit solution of the two layers (3.3,
3.4) for the (k,m,n) = (1, 0,n) geometry was found in [88, 89] and reviewed
in sec. 2.2.5

ds2
6 = − 2√

P
(dv+ β)

[
du+ ω+

F
2 (dv+ β)

]
+

√
P ds2

4 , (6.31a)

v̂1,0,n =

√
2
R

nv+ ϕ , v̂2,0,2n =

√
2
R

2nv+ 2ϕ , (6.31b)

∆1,0,n =
a rn

(r2 + a2)
n+1

2
sin θ , ∆2,0,2n =

a2 r2n

(r2 + a2)n+1 sin2 θ (6.31c)

Z1 =
Q1
Σ

+
R2

2Q5
b2 ∆2,0,2n

Σ
cos v̂2,0,2n Z2 =

Q2
Σ

, (6.31d)

Z4 = bR
∆1,0,n

Σ
cos v̂1,0,n (6.31e)

ω =
a2R√

2 Σ

(
sin2 θ dϕ+ cos2 θ dψ

)
+
b2

a2
a2R√

2 Σ

[
1 − r2n

(r2 + a2)n

]
sin2 θ dϕ , (6.31f)

F = − b2

a2

[
1 − r2n

(r2 + a2)n

]
, β =

a2R√
2 Σ

(
sin2 θ dϕ− cos2 θ dψ

)
,

(6.31g)

so that, calling

Fn ≡
[
1 − r2n

(r2 + a2)n

]
, (6.32)

we have

ω =
a2R√

2 Σ

[(
1 + b2

a2Fn

)
sin2 θ dϕ+ cos2 θ dψ

]
. (6.33)

Notice that this is a 3-charge geometry, due to the fact that we have a
non-vanishing F , controlled by a non-vanishing n; sending n → 0 will reduce
it to a 2-charge geometry, as expected. This metric can be rewritten, via the
splitting of the coordinates xM = (xµ, θa), with M = 0, . . . , 5, µ = 0, 1, 2 and
a = 3, 4, 5, as

ds2
6 = V −2gµνdxµdxν +Gab(dθa +Aaµdxµ)(dθb +Abνdxν), (6.34)

where V is again fixed requiring that
√

− detGMN =
√

− det gµν
√

det qab
with qab the round S3 metric, for all values of b. The three-dimensional non-
compact metric is

ds2
3 = −

[
r2
(

1 − b2

2a2
0
Fn

)
+
a4

a2
0

]
dτ + r2

(
1 + b2

2a2
0
Fn

)
dσ2

+
r2 + a2

a2
0

(
a2 + b2

2 Fn

)
(r2 + a2

0)
2 dr2 ,

(6.35)

where we recall that we have defined

τ =
t

R
, σ =

y

R
. (6.36)
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We then try to solve the scalar equation perturbatively, giving us the source

Js =
R2

2(r2 + a2
0)

2

[
(r2 + 2a2

0) − rn

(r2 + a2
0)
n−1

]
∂2
tB0

− R2

r2 + a2
0

[
1 − rn

(r2 + a2
0)
n

]
∂t∂yB0 +

1
2

(
1
r2 − rn

(r2 + a2
0)
n−1

)
R2∂2

yB0

+
1
r
∂r (r∂rB0) .

(6.37)

In the case n = 0 we recover the result of the 2-charge case

J
(n=0)
s =

a2
0R

2

2(r2 + a2
0)

2 ∂
2
tB0 +

a2
0R

2

2r2(r2 + a2
0)
∂2
yB0 +

1
r
∂r (r∂rB0) , (6.38)

as wanted. After some simple algebraic manipulations, we can rewrite the
source as5

Js = J
(n=0)
s + J

(n>0)
s , (6.39a)

J
(n=0)
s =

a2
0R

2

2(r2 + a2
0)

2 ∂
2
tB0 +

a2
0R

2

2r2(r2 + a2
0)
∂2
yB0 +

1
r
∂r (r∂rB0) ,

(6.39b)

J
(n>0)
s =

R2

a2
0
B

(0)
+ B

(0)
−

[
1 − r2n

(r2 + a2
0)
n

]
∂2
uB0 . (6.39c)

The integration of the J (n=0)
s source piece is exactly the same as the one 5

(once we specialise there k = 1), giving

B(n=0)(z, z̄) = b2

πa2
0

[
−1

2 D̂2222 +
1

|1 − z|4
(
2(1 + |z|2)D̂3311 − π

)]
=

b2

πa2
0
∂∂̄

[
−π

2
1

|1 − z|2
+ |z|2D̂1122

]
,

(6.40)

while the n > 0 term can be integrated noticing that

J
(n>0)
s = − R2

2a2
0

n∑
p=1

(
n

k

)
(−1)p(B+B−)

p+1∂2
uB0 , (6.41)

so that, using the fact that ∂u′ = −∂u by the dependence upon τ ′
E − τE , σ′ −σ

of the integrand, we can integrate by parts each p-term as

|z|2Ip(z, z̄) = ∂2
u

∫
d3r′

e

√
−g B0(r′

e|0, 0)Bp+1
+ (r′)Bp+1

− (r′)B0(r′
e|te, y)

= 4(z̄2 ∂̄2 + z̄ ∂̄)
(

|z|2D̂(p+1)(p+1)22

)
,

(6.42)

5 Notice that, since
B± =

a0√
r2 + a2

0

e±iτ ,

we have
R2

r2 + a2
0
=
R2

a2
0
(B

(1)
− B

(1)
+ ) .
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where we used the notation of app. A.2, A.3, and that ∂2
u = −(z̄ ∂̄)2 =

−z̄2 ∂̄2 − z̄ ∂̄. Summing all the p terms, we thus get the final result

CO(b2)
(1,0,n) = Cn=0 + Cn>0 , (6.43a)

Cn=0 = +
b2

πa2
0

[
1

|1 − z|4
(
2(1 + |z|2)D̂3311 − π

)
− 1

2 D̂2222

]
, (6.43b)

Cn>0 = − b2

πa2
0

n∑
p=1

(
n

k

)
(−1)p 1

z
(z̄ ∂̄2 + ∂̄)

(
|z|2D̂(p+1)(p+1)22

)
.

(6.43c)

Adding the free part, we have the first 4-point function involving 1
8 -BPS op-

erators in AdS3:

C(1,0,n) =
1

|1 − z|4
+

b2

πa2
0

[
1

|1 − z|4
(
2(1 + |z|2)D̂3311 − π

)
− 1

2 D̂2222

−
n∑
p=1

(
n

k

)
(−1)p 1

z
(z̄ ∂̄2 + ∂̄)

(
|z|2D̂(p+1)(p+1)22

)]
.

(6.44)

2.2 HHLL 4-point functions in the (k,m,n) = (m,m, 0) geometry

We want now to discuss the bosonic 4-point function in a different three-charge
geometry, the k = m, n = 0, q = 0 one; this is a superdescendant of a two
charge geometry and was built in [3, 87–89]:

ds2
6 = − 2√

P
(dv+ β)

[
du+ ω+

1
2 F(dv+ β)

]
+

√
P ds2

4 , (6.45a)

ds2
4 = Σ

(
dr2

r2 + a2 + dθ2
)
+ (r2 + a2) sin2 θ dϕ2 + r2 cos2 θ dψ2 ,

(6.45b)

Z1 =
R2

2Q5

1
Σ

[(
2a2 + b2)+ a2m cos2m θ

(r2 + a2)m
b2 cos (2mv̂)

]
, Z2 =

Q5
Σ

,

(6.45c)

Z4 =
R

Σ
b
am cosm θ
(r2 + a2)

m
2

cos (mv̂) , Σ = r2 + a2 cos2 θ , (6.45d)

F = − b2

r2 + a2 sin2 θ

(
1 − a2m cos2m θ

(r2 + a2)m

)
, P = Z1Z2 −Z2

4 ,

(6.45e)

ω = ω0 − R√
2 Σ

F
[
(r2 + a2) sin2 θ dϕ+ r2 cos2 θ dψ

]
, (6.45f)

β0 =
Ra2
√

2 Σ
(sin2 θ dϕ− cos2 θ dψ), ω0 =

Ra2
√

2 Σ
(sin2 θ dϕ+ cos2 θ dψ),

(6.45g)

where v̂ =
√

2 v
R −ψ. As before, it may be useful to rewrite this geometry as

ds2
6 = V −2gµνdxµdxν +Gab(dθa +Aaµdxµ)(dθb +Abνdxν). (6.46)
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For sake of simplicity, we report here only the g3 for the case k = m = 1, that
is

ds2
3√

Q1Q5
= −

(
1 + r2 − b2

a2
0

− b4

4a4
0

)
dτ2 +

r2

a2
0

dσ2 +
r2 + a2

0

(
1 − b2

2a2
0

)
(
r2 + a2

0 − b2
2

)2 dr2 ,

(6.47)

since the m > 1 differs from this only via higher scalar harmonics term, that
gives rise only to terms that are integrated out in the extraction of the solution.

In order to compute the four-point function we will again perform the same
procedure; this will give us the source, once we have integrated on the appro-
priate harmonic, that is

Js = − b2

2a2
0

[
2a2

0
r

r2 + a2
0
∂rB0 − 2 a4

0
(r2 + a2

0)
2 ∂

2
τB0

]
, (6.48)

for all m. This is due to the fact that m sources higher harmonics that are
projected out. This source can be easily integrated and, using the notation of
app. A.2, we get

CO(b2)
(m,m,0) =

b2

πa2
0

[
I1 + I2

2 − I3

]
, (6.49)

that is, explicitly,

CO(b2)
(m,m,0) =

b2

πa2
0

[
1

|1 − z|4
(
2(1 + |z|2)D̂3311 − π

)
− 1

2 D̂2222

]
. (6.50)

This means that the full correlator is

C(m,m,0) =
1

|1 − z|4
+

b2

πa2
0

[
1

|1 − z|4
(
2(1 + |z|2)D̂3311 − π

)
− 1

2 D̂2222

]
.

(6.51)

2.3 HHLL 4-point functions in the (k,m,n, q) = (2, 0, 0, 1) geometry

Here we study an example of a geometry with q = 1. The geometry with
k = 2,m = n = 0, q = 1, built in [90] has the usual form (6.16) with

ds2
6 = − 2√

P
(dv + β)

[
du+ ω +

F
2 (dv + β)

]
+

√
P ds2

4 , (6.52a)

ds2
4 = Σ

(
dr2

r2 + a2 + dθ2
)
+ (r2 + a2) sin2 θ dϕ2 + r2 cos2 θ dψ2 , (6.52b)

Z1 =
Q1
Σ

, Z2 =
Q5
Σ

, Z4 = 0 , P = Z1Z2 , (6.52c)

F = −
b2 (3r4 + 8r2a2 + 5a4 − a2 (r2 + 2a2) sin2 θ

)
3 (r2 + a2)3 , (6.52d)

ω =
Ra2
√

2 Σ
(sin2 θ dϕ+ cos2 θ dψ)

+
1
6
Rb2
√

2 Σ
(3r4 + 8r2a2 + 6a4) sin2 θ dϕ+ r2(3r2 + 4a2) cos2 θ dψ

(r2 + a2)2 ,

(6.52e)
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and with the regularity condition

a2 +
b2

2 =
Q1Q2
R2 ≡ a2

0 . (6.53)

This peculiar metric is separable at all order in b. Performing the same small
b procedure, we get a source that is

Js =
b2

2a0

[
− 2a2

0
r

r2 + a2
0
∂rB0 +

1
3

(
2
(

a2
0

r2 + a2
0

)3
+ 9
(

a2
0

r2 + a2
0

)2
)
∂2

τB0

−

((
a2

0
r2 + a2

0

)3
+

(
a2

0
r2 + a2

0

)2
)
∂τ∂σB0 +

1
3

(
a2

0
r2 + a2

0

)3
∂2

σB0

]
.

(6.54)

This can be easily integrated noticing that

(B+B−)
2 =

(
a2

0
r2 + a2

0

)2
, (B+B−)

3 =

(
a2

0
r2 + a2

0

)3
, (6.55)

and that

−2a2
0

r

r2 + a2
0
∂rB0 , (6.56)

is the term we already encountered in eq. (6.48), so that, using the results of
app. A.2 and mapping from the cylinder to the plane and the free part, we
get

C(2,0,0,1)(z, z̄) = 1
|1 − z|4

− b2

2πa0

1
|z|2

[
|z|2D̂2222

− 1
3 (z∂ + z̄∂̄)2 (2|z|2D̂3322 + 9|z|2D̂2222

)
+ (z∂ + z̄∂̄)(z∂ − z̄∂̄)

(
|z|2D̂3322 + |z|2D̂2222

)
− 1

3 (z∂ − z̄∂̄)2 (|z|2D̂3322
)]

.

(6.57)

With this correlator, we have computed all the four-point functions involving
1
8 -BPS operators whose dual geometries are explicitly known that we have de-
scribed in sec. 6.1. Using the properties of the D-functions reported in app. A.3,
it is straightforward to notice that all the 4-point function results (6.44, 6.51,
6.57) posses the symmetry under the exchange of the two bosonic operators
z3 ↔ z4, i.e. z → z−1, as required. This is a first check on the validity of the
computations.

3 from hhll to llll correlators

Here in this section our goal is to follow the arguments of [151] to extract
the s-channel of a correlator containing only single-trace operators from the
correlators we computed in the previous sections. Here we focus on 4-point
functions of the type

⟨O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)⟩ =
1

|z12|2∆1 |z34|2∆3
G(z, z̄), (6.58)
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O4

O2 O3

O1

=

O3

O4O1

O2

+

O4

O2 O3

O1

+

O4O1

O3O2

+

O4

O2 O3

O1

Figure 6.2: Pictorial representation of all the channels that enters in the com-
putation of a generic four-point function. Recall that each dia-
gram correspond to a channel contribution to the correlator C =
⟨O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)⟩.

where we assume that the conformal dimensions satisfy ∆1 = ∆2 and ∆3 = ∆4
and they does not scale with the central charge. From the general structure
of the correlator we can write it as a sum over channels6

G = Gs + Gt + Gu + Gcont , (6.59)

where the s, t, u contributions take into account the single-trace operators
exchanged in each of those channel, while Gcont encode the contribution of the
possible contact terms. On the complex plane, the three s, t, u channels are
z → 0, z → 1, z → ∞, respectively. Each of these terms has a bulk picture in
terms of Witten diagram. In particular we have that the s, t, u contributions
come from three different Witten diagrams arising from 3-point vertexes in
the bulk and the contact terms come from the 4-point vertexes. A pictorial
representation of eq. (6.59) is reported in fig. 6.2.

In the case of HHLL 4-point functions we bypassed the Witten diagram
machinery and we computed them as a 2-point function of the light operators
in a non-trivial background, sourced by the heavy operators. The possibility
to extract the all-light (LLLL) four-point functions from the HHLL relies in
the fact that the heavy multi-trace operators involved in the HHLL correlators
are made of the single-trace constituents involved in the LLLL one, where the
number of these constituents is controlled by the free parameter that we called
b in the previous sections.

Since the D1D5 has two sector, as explained in sec. 6.1, we can use the
spectral flow to go from the NS to the R sector, and vice versa. In particular,
the HHLL correlators described above are computed in the R sector, and
would be interesting to see how they flow into the NS sector. This interest
arise in the fact that the spectral flow, that acts on the generator as (see
sec. 2.1)

Ln ↦→ Ln+J3
m+

1
4 δm,0 , J3

m ↦→ J3
m− 1

2 δm,0 , Jmm ↦→ J±
m∓1 , G±,A

m ↦→ G±,A
m± 1

2
,

(6.60)

on the R-vacua acts as

|++⟩1 ↦→ |0⟩1 , |00⟩1 ↦→ O−−|0⟩1 , (6.61)

where O−−, is the fermionic operator7 [2,75,77,83], that is one of the element
of the family (2.68)

Oαα̇(z, z̄) =
N∑
r=1

−iεȦḂ√
2N

ψαȦ(r) ψ̃
α̇Ḃ
(r) . (6.62)

6 Here we use the usual notation for the s, t and u channels used when computations with
Witten diagrams are performed.

7 The nomenclature comes from the fact that it is a product of two fermions of the two
different chiral sectors of the theory, i.e. ψ and ψ̃.
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OL
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b2

2a2
0

→ 1
N

O−−
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ŌL

Figure 6.3: The spectral flow from the Ramond sector to the Neveu-Schwarz sector
lightens the heavy operator, since the |++⟩1 states flow into the NS-
vacua; since we are keeping b2

2a2
0

small, it is like having N++ ≪ N .

Taking then the limit b2

2a2
0

→ 1
N while in the NS sector, we obtain a

LLLL 4-point function s-channel out of the spectrally-flowed HHLL one.

This last point is crucial, since it means that the heavy state (6.8) flows in
the NS sector to

|k,m,n⟩ ↦→ [|0⟩1]
N1

∏
k,m,n

[
(L−1)n

n!
(J+

0 )m

m!
O−−|0⟩1

]Nk,m,n

. (6.63)

This explicitly means that we can now play with the number of operators
insertion by controlling Nk,m,n/N , i.e. b2

2a2
0
; in the NS the b2 ≪ 2a2

0 limit is

the “lightening” limit Nk,m,n ≪ N ; sending

b2

2a2
0
=
Nk,m,n
N

→ 1
N

, (6.64)

we reduce the HHLL to a LLLL in the s-channel [151]. One may wonder why
this limit does not reproduce the full LLLL correlator, but only the s-channel
contribution; this is due to the fact that, in the HHLL computation in the R-
sector, no single-trace operator is exchanged in the channels where one heavy
and one light operator fuse together, i.e. in the t- or u-channels.

Since this statement is true for all values of b, this survives the lightening
limit. This implies that the correlator we extract via this lightening ansatz
of [151], lacks of the t- and u-channel contribution, and the contact terms8.
We report a pictorial representation of that in fig. 6.3. In [151] it is also
shown how, at least for a certain subset of all the possible D1D5 4-point
functions, it is possible to fix unambiguously all the missing terms, effectively
reconstructing the full LLLL 4-point functions. In particular, they focus on
4-point functions where the four operators are all the possible combinations
of the Oαα̇ operators of eq. (6.62).

We start from the multi-particle heavy states that create the background
in the R sector. As explained in eq. (6.63), these heavy operators flow in the
NS in:

|1, 0,n⟩ →
(
Ln−1O

−−)Nb , (6.65a)

|m,m, 0⟩ →
(
(J+

0 )mO−−)Nb , (6.65b)

with Nb = Nb2/(2a2
0) in the parameter controlling the number of single trace

operator inside the heavy state.

8 since even in contact terms heavy and light operator fuse, so are not taken in account.
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Let us start analysing the LLLL 4-point function (6.58), coming from the
states in (6.65a)

O1 =
(
Ln−1O

−−) , O2 =
(
Ln+1O

++
)

, O3 = OBos, O4 = ŌBos . (6.66)

Following [151] we have that the s-channel of the this correlator is given by
the correlator (6.44) flowed in the NS sector and setting Nb = 1:

G(1,0,n)
s (z, z̄) = |1 − z|4

πN

[
1

|1 − z|4
(
4(1 + |z|2)D̂3311 − 2π

)
− D̂2222

− 2
n∑
p=1

(
n

k

)
(−1)p 1

z
(z̄ ∂̄2 + ∂̄)

(
|z|2D̂(p+1)(p+1)22

)]
,

(6.67)

i.e., for n = 1 case,

L+1O++

L−1O−−OB

ŌB

=
1
πN

[4(1 + |z|2)D̂3311 − 2π
|1 − z|4

− D̂2222

+ 2 (z̄∂̄2 + ∂̄)

z

(
|z|2D̂2222

) ]
.

(6.68)

Notice that taking the case n = 0 we obtain the s-channel for the LLLL
correlators with

O1 = O−− , O2 = O++ , O3 = OBos, O4 = ŌBos . (6.69)

This contribution could be directly found by performing this analysis starting
from the HHLL correlator computed in [2], and applying the prescription
described above. The results agree and they are given by

Gs(z, z̄) =
|1 − z|4

πN

[
1

|1 − z|4
(
4(1 + |z|2)D̂3311 − 2π

)
− D̂2222

]
, (6.70)

that is

O++

O−−OB

ŌB

=
1
πN

[
1

|1 − z|4
(
4(1 + |z|2)D̂3311 − 2π

)
− D̂2222

]
. (6.71)

With similar analysis we can extract the s-channel for the LLLL correlator
(6.58) with

O1 =
(
(J+

0 )mO−−) , O2 =
(
(J−

0 )mO++
)

, O3 = OBos, O4 = ŌBos, (6.72)

coming from the heavy states (6.65b). The result for the s-channel reads

G(m,m,0)
s (z, z̄) = |1 − z|4

πN

[
1

|1 − z|4
(
4(1 + |z|2)D̂3311 − 2π

)
− D̂2222

]
,

(6.73)
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that is

J−
0 O

++

J+
0 O

−−OB

ŌB

=
1
πN

[
1

|1 − z|4
(
4(1 + |z|2)D̂3311 − 2π

)
− D̂2222

]
.

(6.74)

For sake of completeness, we report here also a result already obtained
in [83, 151], where it was computed the HHLL 4-point function with four
fermionic operators by which it is possible to extract the LLLL s-channel
contribution[

⟨O−−(0)O++(∞)O++(1)O−−(z, z̄)⟩
]
s−channel ≡ 1

|1 − z|2
GFer
s (z, z̄), (6.75)

that is

GFer
s =

1
πN

[
2 |z|2|1 − z|2D̂1122 − π

]
, (6.76)

i.e.

O++

O−−O−−

O++

=
1
πN

(
2|z|2D̂1122 − π

|1 − z|2

)
. (6.77)

In the next section we will explain how, using Ward identities, we will be
able to reconstruct the full LLLL correlators out of the one written here.

3.1 LLLL correlators with other flavours

We now start from the state (2.179) and the result of sec. 5.1.3.1. We recall
that the state (2.75) constitutes an example of a “fermionic” operator with
different “flavour” w.r.t. the operator (2.68); if now we use the lightening
ansatz and the supersymmetric WI we have that

⟨Σ−−
2 (0)Σ++

2 (∞)O++(1)O−−(z, z̄)⟩
⏐⏐
s = ⟨O−−(0)O++(∞)O++(1)O−−(z, z̄)⟩

⏐⏐
s .

(6.78)

i.e.

Σ−−
2

Σ++
2

O−−

O++

=
1
πN

(
2|z|2D̂1122 − π

|1 − z|2

)
. (6.79)

Moreover, since we have seen in sec. 2.2.3.1 that the moduli of the D1D5
CFT are all minimally coupled massless scalar; since also the modulus T [ij] ≡
T 1 is the superdescendant of Σ±±

2 , if we compute the ⟨1, 0, 0|T 1(1)T̄ 1(z, z̄)|1, 0, 0⟩
correlator, it will be the same as ⟨1, 0, 0|OBos(1)ŌBos(z, z̄)|1, 0, 0⟩; also, we can
use the same Ward Identity, since the state is again 1

4 -BPS and thus annihi-
lated by the action of the supercharges. This means that

⟨Σ−−
2 (0)Σ++

2 (∞)Σ++
2 (1)Σ−−

2 (z, z̄)⟩
⏐⏐
s = ⟨O−−(0)O++(∞)O++(1)O−−(z, z̄)⟩

⏐⏐
s .
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(6.80)

i.e.

Σ−−
2

Σ++
2

Σ−−
2

Σ++
2

=
1
πN

(
2|z|2D̂1122 − π

|1 − z|2

)
. (6.81)

4 ward identities for four-point functions

As explained in sec. 2.1, the D1D5 CFT has a N = (4, 4) superconformal
algebra with a chiral SU(2)L,R Kac-Moody symmetry, with an SU(2)1 ×
SU(2)2 custodial global symmetry.

The main purpose of this section is to find the Ward Identities (WI) for
the generators of the global subalgebra L−1, Ja0 , G+A

0 that appeared in the
correlators computed in the previous section. Concretely, one wants to find
differential operators encoding the effects of the insertion of the algebra gener-
ators, that acts on the correlators without any insertion, namely the four-point
function in (6.70).

The WI referring to the spectrally-flowed state (6.65a) can be found by
considering

⟨
(
Ln−1O

−−(z1, z̄1)
) (
Ln+1O

++(z2, z̄2)
)
OBos(z3, z̄3)ŌBos(z4, z̄4)⟩, (6.82)

and finding the differential representation of the operators Ln±1 on the opera-
tors. In order to do that we focus on the case n = 1 for simplicity. We have

⟨
(
L−1O

−−(z1, z̄1)
) (
L+1O

++(z2, z̄2)
)
OBos(z3, z̄3)ŌBos(z4, z̄4)⟩

=

∮
z1

dw1
2πi

∮
z2

dw2
2πi w

2
2·

· ⟨T (w1)O
−−(z1, z̄1)T (w2)O

++(z2, z̄2)OBos(z3, z̄3)ŌBos(z4, z̄4)⟩

=
[(
z2

2∂z2 + 2h1z2
)
∂z1

]
⟨O−−(z1, z̄1)O

++(z2, z̄2)OBos(z3, z̄3)ŌBos(z4, z̄4)⟩,
(6.83)

where we used the action of the stress energy tensor on primaries (see sec. 2.1).
Using the definition of the cross ratios (A.32) it is straightforward to write
the derivative as

∂

∂zi
=

∂z

∂zi

∂

∂z
+
∂z̄

∂zi

∂

∂z̄
, (6.84)

such that in the (z, z̄) coordinates the WI is realised as

G(1,0,1)(z, z̄) =
[
(1 − z)2∂(z∂) + 1

]
G(z, z̄), (6.85)

where G(1,0,1)(z, z̄) and G(z, z̄) are defined to be in the full LLLL correlators.
Diagrammatically, we have

L−1O−−

ŌB L+1O++

OB

= |1 − z|4
[
(1 − z)2∂(z∂) + 1

]
⎛⎜⎜⎜⎝|1 − z|4

O−−

ŌB O++

OB
⎞⎟⎟⎟⎠ .
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(6.86)

It can be checked from the explicit expressions (6.67) and (6.70) that the
WI works also in the s-channel and thus we can write

G(1,0,1)
s (z, z̄) =

[
(1 − z)2∂(z∂) + 1

]
Gs(z, z̄). (6.87)

Diagrammatically it is represented by

L+1O++

L−1O−−OB

ŌB

= |1 − z|4
[
(1 − z)2∂(z∂) + 1

]
⎛⎜⎜⎜⎝|1 − z|4

O++

O−−OB

ŌB

⎞⎟⎟⎟⎠ .

(6.88)

Similarly we can write the WI for spectrally-flowed state (6.65b) for the
simple case m = 1

⟨
(
J+

0 O
−−(z1, z̄1)

) (
J−

0 O
++(z2, z̄2)

)
OBos(z3, z̄3)ŌBos(z4, z̄4)⟩. (6.89)

This can be done in the same way of the previous case by two insertion of the
currents and by using the OPE relations (see eqs. 2.1) to get the result

G(1,1,0)(z, z̄) = G(z, z̄), (6.90)

i.e., diagrammatically,

J+
0 O

−−

ŌB J−
0 O

++

OB

=

O−−

ŌB O++

OB

. (6.91)

It is straightforward to check, using the explicit expression in (6.73) and (6.67),
that also in this case the WI works also in the s-channel and we have

G(1,1,0)
s (z, z̄) = Gs(z, z̄). (6.92)

We remark that these computations then furnish a highly non-trivial check to
our results.

The last WI we want to recall, that will be useful in the next section, is the
one coming from supersymmetry. This has been found in chap. 5 (see eq. 5.30)
and it reads

G(z, z̄) = |1 − z|4 ∂∂̄
[

GFer(z, z̄)
|1 − z|2

]
, (6.93)

with GFer(z, z̄) defined as

⟨O−−(z1, z̄1)O
++(z2, z̄2)O

++(z3, z̄3)O
−−(z4, z̄4)⟩ =

1
|z12|2|z34|2

GFer(z, z̄),

(6.94)

and the explicit expression has been found in eq. (3.10) of [151] to be

GFer(z, z̄) =
(

1 − 1
N

)
(1+ |1 − z|2) + 2

πN
|z|2|1 − z|2(D̂1122 + D̂1212 + D̂2112),
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(6.95)

while the s−channel piece is the one reported in eq. (6.76). Again, diagram-
matically it is

O−−

ŌB O++

OB

= ∂∂̄

⎛⎜⎜⎜⎝
O−−

O++ O++

O−−
⎞⎟⎟⎟⎠ . (6.96)

Also in this case the WI are valid in the s−channel and then we have

Gs(z, z̄) = |1 − z|4∂∂̄
[

GFer
s (z, z̄)
|1 − z|2

]
. (6.97)

4.1 Reconstructing the full LLLL correlators using the Ward identities

So far we have used the validity of WI in the s-channel to check our com-
putations. Now we will instead use it to construct the full LLLL correlators
involving the 1

8 -BPS operators. It is easy to see that, via eq. (6.96), using
eq. (6.95),

G(z, z̄) = 1 + 1
πN

[(
4(1 + |z|2)D̂3311 − 2π

)
+ |1 − z|4D̂2222

]
. (6.98)

From here, using eq. (6.90), we can build

G(1,1,0)(z, z̄) = 1 + 1
πN

[(
4(1 + |z|2)D̂3311 − 2π

)
+ |1 − z|4D̂2222

]
,

(6.99)

and, using eq. (6.85),

G(1,0,1)(z, z̄) = 1+ 1
πN

[ (
4(1 + |z|2)D̂3311 − 2π

)
+ 5|1 − z|4D̂2222

+ 2|1 − z|4 (z̄∂̄
2 + ∂̄)

z

(
|z|2D̂2222

)
− 8|1 − z|4D̂3322

]
.

(6.100)

These last two equations constitute the first example of all-light AdS3 4-point
functions at strong coupling involving 1

8 -BPS operators.

5 discussion

In this chapter we have holographically computed the 4-point functions (6.44,
6.51, 6.57) in the HHLL limit from a large family of 1

8 -BPS states whose dual
supergravity solution is explicitly known. These 4-point functions involve two
heavy states (6.8) and two Bosonic light states (2.70). In order to perform
these computations we used a standard holographic technique: we identified
the supergravity field dual to the light state, and we consider it as a per-
turbation around the type IIB supergravity solution dual to the heavy state,
that can be regarded as acting as a source for the equation of motion of the
perturbation [2, 77,83] (as in fig. 6.1).
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This was possible to be achieved in the D1D5 SCFT, due to the existence
of a precise dictionary that was established between heavy states and type
IIB solutions (see chap. 2). We were also able to perform these computations
without using the Witten diagram technology, that is still not properly defined
in AdS3 [151,156], since, up to now, only the cubic coupling are known [155].

With respect to the analysis put forward in 5, we have computed the HHLL
correlators on three-charge microstates of a black hole with non-degenerate
horizon, in the sense that the ensemble of such states is described by a black
hole with a finite horizon in the (semi)classical limit of supergravity; our
analysis was performed in the small-b limit. In the regime under scrutiny, the
correlators show a behaviour that is compatible with unitarity, as expected for
pure states, as it was found for two-charge 5. It would then be very interesting
to extend the results of sec. 5 in the three-charge geometries analysed here,
that was done in the infinite throat limit, i.e. a ≪ b in [157], to see if the general
mechanism for information conservation described in sec. 5 is extended to an
ensemble dual to a regular black hole.

A conjecture on how to extract LLLL four-point functions from the HHLL
one was put forward in [151], where the authors suggest that, under a proper
lightening limit, the HHLL correlator reduces to a single-channel contribution
of the LLLL, the s-channel one. The reason is quite simple: in the HHLL case,
no single-trace operators are exchanged in the cross channels where one heavy
and one light operator fuses, i.e. in the t- and the u-channels; this implies that
the HHLL correlator contains only contributions from the channel where the
two heavy operators fuses. Crucial to this lightening limit was the fact that the
theory contains two sectors, a Ramond and a Neveu-Schwarz sector, that are
connected by a spectral flow. We have shown in sec. 6.3 how spectral-flowing
the one-parameter family of heavy states from the R sector to the NS sector
and then taking an appropriate limit on the free parameter, it was possible
to extract the aforementioned s-channel contribution of the LLLL correlator.

This conjecture is further supported by looking at the correlator in Mellin
space (see app. A.4); in fact, from the Mellin transform of the 4-point functions
we can read all the single-trace operators that are exchanged simply by looking
at their poles [152]. The location of the poles describes the twist of the single
trace, while the residue at the pole is related to the 3-point function at the
vertexes. It is easy to see that the s-channel contribution deduced from the
HHLL correlator (6.76) reads in Mellin space

MFer
s (s, t,u) = −2

(
1 − t

2

)2 1
s

, (6.101)

showing then only the pole in s. Since this correlator is of the form

⟨O(z1)Ō(z2)Ō(z3)O(z4)⟩, (6.102)

one may expect that also a u-channel pole should arise, due to the evident
symmetry under z1 ↔ z3. Indeed, the fully reconstructed one (6.95) in Mellin
space reads

MFer(s, t,u) =
(

1 − t

2

)
− 2

(
1 − t

2

)2(1
s
+

1
u

)
, (6.103)

showing clearly the u-channel pole as well as all the correct symmetries,
i.e. s ↔ u. The only poles arising are then s = 0 and u = 0. As already
pointed out, from here we read that the exchanged single-traces have zero
twist and correspond therefore to conserved currents [83].
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We have further checked our results by using Ward identities that relate the
correlators. This was possible since in the R sector the heavy states are gener-
ated by acting with certain generators of the global part of the superconformal
Affine algebra. This constitutes a non-trivial check on our computations, but
it furnishes a way to reconstruct the full LLLL correlators (6.99, 6.100), using
the result of [151], eq. (6.95), as a seed.

We can then compute the Mellin transform of both the s-channel result
(6.73) for the ⟨(J+

0 O
−−)(J−

0 O
++)OBŌB⟩ correlator, that reads

M
(1,1,0)
s (s, t,u) = +(s− 2) − (t− 3)2

s
− (u− 3)2

s
, (6.104)

as well as the full LLLL result (6.99);

M (1,1,0)(s, t,u) = −(s− 2) − (t− 3)2

s
− (u− 3)2

s
. (6.105)

These result have the right symmetry manifestly, that is z3 ↔ z4, i.e. t ↔ u.
Also, we see that, again, only twist-zero single-trace operators are exchanged,
namely the identity and the affine currents. From the latter we also learn
that there is no exchange of single-trace operators in the t- and u-channels,
meaning that the only difference among the s-channel part and the full LLLL
is a term containing no poles, that can be interpreted as a contact term [156].





7
C O N C L U S I O N S

1 summary of results

In this thesis, we have reported the results of research conducted during the
three years of the graduate programme at the University of Padua. We devoted
the part ii to the construction of a new set of microstate geometries, while we
dedicated part iii to their applications in the context of holography.

The main result of chap. 4 is the explicit construction of the asymptotically
flat type IIB supergravity solutions dual to two non-extremal superdescen-
dants of the D1D5 CFT, corresponding to the states

[|++⟩1]
N1 [J+

−1J̃
+
−1 |00⟩k]N2 , [|++⟩1]

N1 [(J+
−1)

kJ̃+
−1 |00⟩k]N2 , (7.1)

in the perturbative limit, where N1 ≫ N2. While the first one is genuinely
non-extremal, since we act on the |00⟩k strand with Left- and Right-moving
generators the same amount of times, the second is near-extremal in the limit
k ≫ 1, that is the limit we employed to construct the solution. Unfortunately,
due to the difficulties arising in non-supersymmetric settings, we were not
able to find any analytic solution valid both in the throat region and in the
asymptotically flat region. However, we were able to solve the type IIB equa-
tions of motion approximately by a matching procedure, showing that indeed
a solution exists.

In chap. 3 instead, we focused on three-charge, 1
8 -BPS solutions of type IIB

supergravity equations on T4 that have both internal and external excitations,
meaning that these solutions are not invariant under rotations of the compact
T4; these solutions enlarge the family of superstrata discussed in chap. 2, they
are dual to the state

[|++⟩1]
N++[

(L−1 − J3
−1)

n1 (J+−1)
m1 |00⟩k1

]Nb[
(L−1 − J3

−1)
n2 (J+−1)

m2 |00⟩(1̇1̇)
k2

]Nc

,
(7.2)

where we recall that |00⟩k and |00⟩(11̇)
k are respectively singlet and triplet

w.r.t. T4 rotations. Since we have to satisfy the regularity condition N++ +
k1N b + k2N c = N , these solutions are described by two free parameters,
the ratios N b/N and N c/N . All the geometries we have explicitly built are
smooth, horizonless and geodesically complete and have the same conserved
charges as the naive black hole geometry.

In chap. 5 we computed Heavy-Heavy-Light-Light (HHLL) 4-point func-
tions; we use the CFT state [|++⟩1]

N++
[|00⟩k]

N00
k as heavy operator, which

is dual to a two-charge, 1
4 -BPS type IIB supergravity solution, and we use

the bosonic operator (2.70) as light operator, which is a superdescendant of
the fermionic operator (2.68). The correlator is extracted via a standard holo-
graphic procedure by solving the semi-classical equation of motion for the
supergravity field dual to the light operator, which deforms the background
geometry sourced by the heavy states. In the N00

k ≪ N limit, we were able
to compute the correlator for all k. We further checked the result by virtue of
the supersymmetric Ward identities that relate this correlator with the one
involving the fermionic operator (2.68). For the k = 1 case, we were able to
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solve the equation of motion exactly in the N00
1 /N limit and, extracting the

correlator, we found that it does not show any decay in Lorentzian time, as
expected from the unitarity of the CFT. Indeed, the correlator computed on
the microstate shows the same decaying behaviour of the correlator computed
on the naive black hole geometry only up to a certain time, which is propor-
tional to N/N00

k ; after that, the correlator computed on the pure microstate
starts to grow again and then oscillate, thus preserving unitarity.

Finally, in chap. 6 we extended the computations of HHLL 4-point functions
by employing heavy states of the form

|++⟩N1
1

[(
J+−1

)m

m!

(
L−1 − J3

−1
)n

n!

(
G+1

0 G+2
0 +

1
k
J3

−1
(
L−1 − J3

−1
))q

|00⟩k

]Nk,m,n,q

,

(7.3)

that are dual to three-charge, 1
8 -BPS geometries. We put forward the com-

putations explicitly for three cases: (k,m,n, q) = (1, 0,n, 0), (m,m, 0, 0) and
(2, 0, 0, 1). After extracting the three corresponding HHLL correlators, we
were able to employ a set of Ward identities to relate all of them to each
other as well as to the correlator computed in chap. 5, furnishing a non-trivial
check of our results. We also made a step further: using the procedure dis-
cussed in [151] as well as the Ward identities, we were able to reconstruct the
LLLL correlators out of the HHLL ones, furnishing the first example of LLLL
correlators on AdS3 involving 1

8 -BPS operators; it was achieved by spectrally
flowing from the Ramond sector to the Neveu-Schwarz sector, since the vac-
uum state |++⟩1 flows into the NS vacuum |0⟩, and then setting the ratio
Nk,m,n,q/N → 1/N , thus “lightening” the heavy state to the state O−−|0⟩.
This procedure gave us the s-channel contribution to the LLLL 4-point func-
tion. In [151], exploiting the symmetries of the correlator and requiring the
right flat space limit of the Mellin transform, the LLLL involving only 1

4 -BPS
fermionic operators of the form (2.68) were reconstructed. We extended such
construction by employing the Ward Identities to extract other LLLL correla-
tors of 1

8 -BPS operators, reported in eq. (6.99, 6.100). We further motivated
the results by looking at their structure in Mellin space, finding the expected
poles at the expected locations.

2 future directions

One may wonder what are the possible future developments that rely on the
results presented in this thesis. On the line of what was presented in part
ii, it would be nice to push further the analysis of non-extremal microstate
geometries by extending the construction to the non-linear level, thus trying to
find a non-supersymmetric analogue of the superstrata discussed in chap. 2;
due to the absence of supersymmetry, we have a more involved framework,
that was not worked out yet. If in the case of 1

8 -BPS geometries, as explained
extensively in chap. 2, 3, the non-linear type IIB equations of motion reduces
to a set of two linear systems of partial differential equations, this would not
probably hold in a non-supersymmetric setting, leaving us to a set of non-
linear partial differential equations.

It could be possible to try to generalise the results of [158, 159] to the two-
parameter family of geometries built in chap. 3, that has a non-trivial cap
structure dictated by the two free parameters. One may also try to compute
holographically quantum information-theoretical quantities such as entangle-
ment entropy or complexity on these geometries, extending some of the results
of [133,160].
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Another interesting direction to follow could be the generalisation of the
discussion about unitarity restoration described in chap. 5 to more general
states, possibly refining the nice results of [157], where it was argued that
HHLL correlators computed on (1, 0,n) geometries with n > 0 do not decay
in Lorentzian time. It will be nice to elucidate how a similar result holds
once we expand the 4-point function in conformal blocks, since each of them
decays exponentially in the (1, 0,n) framework; we expect that the unitarity
restoration appears in the infinite sum over the primaries, but working out
the detail would be a crucial step in the resolution of black hole information
paradox.

One may also think to expand the results of chap. 6 by computing more
general LLLL correlators from the HHLL ones, along the line of [80, 82], by
changing either the Light or the Heavy states employed.
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A
N O TAT I O N A N D U S E F U L
R E S U LT S

1 notation and duality rules

1.1 Duality rules

For the notation on dualities, we follow [97,110]; for the S-duality we need to
define

τ = C0 + ie−ϕ ⇒ τ → − 1
τ

. (A.1)

Since

τ → − 1
τ
= − 1

C0 + ie−ϕ = −C0 − ie−ϕ

C2
0 + e−2ϕ , (A.2)

we then have

ds2
E → ds2

E , e−ϕ → e−ϕ

C2
0 + e−2ϕ C0 → − C0

C2
0 + e−2ϕ ,

B2 → C2 , C2 → −B2 , C4 → C4 −B2 ∧C2 ,
(A.3)

where ds2
E is the metric in the Einstein frame. For the string frame metric we

thus ds2
S → |τ | ds2

S .
If we arrange the solution as

ds2 = Gyy(dy+Aµdxµ)2 + dŝ2
9 ,

B2 = Bµydxµ ∧ (dy+Aµdxµ) + B̂2 ,
Cp = Cyp−1 ∧ (dy+Aµdxµ) + Ĉp ,

(A.4)

where the hatted quantities are object on the nine-dimensional part of the
metric, and Cyp−1 is the (p− 1)-form obtained factorising out the (dy+Aµdxµ)
leg of Cp, the action of the T -duality along the y direction is

ds̃2 = G−1
yy (dy−Bµydxµ)2 + dŝ2

9 , e2ϕ̃ =
e2ϕ

Gyy
,

B̃2 = −Aµdxµ ∧ dy+ B̂2 ,
C̃p−1 = Ĉp−2 ∧ (dy−Bµydxµ) +Cyp−1 ,

(A.5)

where Cyp−1 is the previous (p− 1)−form obtained factorizing out the (dy +
Aµdxµ) leg of Cp, while Ĉp−2 is the part of Cp−2 with no (dy+Aµdxµ) legs.

1.2 Hodge star operator on warped geometries

Our notation for the Hodge operator is the following: on a p−form, in d
dimensions,

∗dα
(p) =

√
|g|

p!(d− p)!
dxM1 ∧ · · · dxMd−p εM1···Md−pN1···Np

g
N1N ′

1
(d)

· · · gNpN ′
p

(d)
α
(p)
N ′

1···N ′
p

.
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(A.6)

We will repeatedly use that our most general geometry of chap. 3 is factorized
as R(1,1) × B × T4; we will refer to ∗4 and ∗T4 as performed w.r.t. the flat
metrics

ds2
4 = Σ

(
dr2

r2 + a2 + dθ2
)
+ (r2 + a2) sin2 θ dϕ2 + r2 cos2 θ dψ2 ,

ds2
T4 = dz2

1 + dz2
2 + dz2

3 + dz2
4 .

(A.7)

Now we employ the diagonal split between the six dimensional metric in the
Einstein frame and the flat torus metric, as

gMNdxMdxN =
√
α gµνdxµdxν +

√
P̃

Z2
δijdzidzj , (A.8)

where we have split xM = (xµ, zi), so that

√
|g10| =

(√
α
)3(√P̃

Z2

)2√
|g6| . (A.9)

We have then that, called λ(p) a p−form (with p ≤ 6) with legs only along xµ
directions,

∗10
[
λ(p) ∧ v̂olT4

]
=
(√
α
)3−p

(
Z2√

P̃

)2

∗6 λ
(p) ,

∗10
[
λ(p) ∧ ω5

]
=
(√
α
)3−p ∗6 α

(p) ∧ ∗T4ω5 = −
(√
α
)3−p ∗6 λ

(p) ∧ ω5 ,

∗10
[
λ(p)

]
=
(√
α
)3−p

(√
P̃

Z2

)2

∗6 λ
(p) ∧ v̂olT4 .

(A.10)

We can go further and split the ∗6 into ∗4 and the null directions. We split

ds2
6 = − 2√

P
dv̂

[
dû+

F
2 dv̂

]
+

√
P ds2

4 ,

= − 2√
P
dûdv̂− F√

P
dv̂2 +

√
P qabdxadxb ,

(A.11)

where we have split xµ = (û, v̂,xa), so that√
|g6| =

√
P
√

|q| . (A.12)

We have then that, called λ(p) a p−form (with p ≤ 4) with legs only along xa
directions1,

∗6
[
λ(p) ∧ dû∧ dv̂

]
= −

(√
P
)3−p

∗4 λ
(p) ,

∗6
[
λ(p) ∧ dû

]
= (−1)p+1

(√
P
)2−p

∗4 λ
(p) ∧ (dû+ F dv̂) ,

∗6
[
λ(p) ∧ dv̂

]
= (−1)p

(√
P
)2−p

∗4 λ
(p) ∧ dv̂ ,

∗6
[
λ(p)

]
= +

(√
P
)1−p

∗4 λ
(p) ∧ dû∧ dv̂ .

(A.14)

1 Notice that[
−

1
P

(
F 1
1 0

)]−1

= P

(
0 −1

−1 F

)
(A.13)
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2 bulk integrals

In this appendix we describe how to compute Bulk integrals appearing in
the formulae for the correlators. In order to do so, we need to introduce the
Bulk-to-Boundary propagator of conformal dimension ∆

B0(r′|τE ,σ) ≡ K∆(r′|τE ,σ)

=

⎡⎣1
2

a0√
r2 + a2

0 cos(τ ′
E − τE) − r sin(σ′ − σ)

⎤⎦∆

;
(A.15)

in this notation, we read B0(r) ≡ B0(r′|0, 0). We also have that

B± ≡ a0√
r2 + a2

0

e±τE , (A.16)

are the bulk-to-boundary propagators with conformal dimension ∆ = 1 eval-
uated at the points z = ∞ and z = 0

B0(r′|τE ,σ) = |z|2K2(w|z, z̄), (A.17a)
B+(r′) = lim

z2→∞
|z2|2K1(w|z2, z̄2) ≡ K1(w|∞) = w0 , (A.17b)

B−(r′) = K1(w|0) , (A.17c)

where w = {w0,w, w̄} are the AdS3 Poincaré patch coordinates. We will also
need to notice that

−2 a2
0

r

r2 + a2
0
∂rB0 = (B+∂µB+B−∂µB+)∂

µB0 . (A.18)

The bulk integrals that appear in the main part are

I1 ≡
∫
d3r′

e

√
ḡ B0(r′

e|τE ,σ) ∂′µB0(r′
e|0, 0)B−(r′

e) ∂
′
µB+(r′

e) , (A.19a)

I2 ≡
∫
d3r′

e

√
ḡ B0(r′

e|τE ,σ) ∂′µB0(r′
e|0, 0)B+(r′

e) ∂
′
µB−(r′

e) , (A.19b)

I3 ≡
∫
d3r′

e

√
ḡ B0(r′

e|τE ,σ) ∂2
τ ′
E
B0(r′

e|0, 0) a4
0

(r′2 + a2
0)

2 , (A.19c)

I(p) ≡
∫
d3r′

e

√
ḡ B0(r′

e|τE ,σ)B0(r′
e|0, 0)

(
a2

0
r′2 + a2

0

)p
, (A.19d)

These integrals can be written in terms of the same D-functions D∆1∆2∆3∆4 ,
defined in eq. (A.28), that usually appear in the computations of Witten
diagrams.

The first integral can be computed as in [83] by writing it in Poincaré
coordinates as

|z|−2I1 =

∫
d3ww−1

0

(
w0

w2
0 + |w− z|2

)2
·

·
[

2w0
(w2

0 + |w− 1|2)2 − 4w3
0

(w2
0 + |w− 1|2)3

]
w0

w2
0 + |z|2

= 2D̂1122 − 4D̂1232 .

(A.20)

Similarly, we get

|z|−2I2 = 2D̂2222 − 2D̂1122 + 4D̂1232 . (A.21)
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The computation of I3 instead is done using that we can integrate by parts
exchanging ∂2

τ ′
E

with −∂2
τE

, since the bulk-to-boundary depends only on the
difference τ ′

E − τE :

I3 = ∂τE
I1 − I2

2 = (z∂ + z̄∂̄)
(
|z|2(2D̂1122 − 4D̂1232 − D̂2222)

)
=

2|z|2

|1 − z|4
(
2(1 + |z|2)D̂3311 − π

)
,

(A.22)

where the last identity follows from a computation that uses properties of the
D̂-functions reported in app. A.3.

The last integral is similarly computed as

I(p) = |z|2D̂pp22 . (A.23)

Now, using again that we can integrate by parts exchanging ∂2
τ ′
E

with −∂2
τE

,
since everything depends only on the difference τ ′

E − τE , we can compute

Ĩ(p) ≡
∫
d3r′

e

√
ḡ B0(r′

e|τE , y) ∂i∂jB0(r′
e|0, 0)

(
a2

0
r′2 + a2

0

)p
, (A.24)

with i,j that can be either τ or σ, giving

Ĩ(p) = ∂i∂j
(
|z|2D̂pp22

)
. (A.25)

Substituting (A.19d) for the integrals, transforming to the Euclidean plane
and adding the trivial contribution 1/|1 − z|4 from bk = 0, one finds the
correlator

1
|1 − z|4

GBos(z, z̄) = 1
|1 − z|4

+
∑
k

b2
k

πa2
0

[
1

|1 − z|4
(
2(1 + |z|2)D̂3311 − π

)
− 1

2D̂2222 +
k∑
p=2

1
p
∂∂̄(|z|2D̂pp22)

]
.

(A.26)

The first line can be rewritten in a more suggestive form by making use of the
identity

1
|1 − z|4

(
2(1 + |z|2)D̂3311 − π

)
− 1

2D̂2222 = ∂∂̄

[
−π

2
1

|1 − z|2
+ |z|2D̂1122

]
,

(A.27)

that can be verified explicitly. Substituting this identity in (A.26) one arrives
at (5.30).

3 d-function technology

The D-functions are defined as2

D∆1∆2∆3∆4(zi) =

∫
dd+1w

√
ḡ

4∏
i=1

K∆i(w, z⃗i) , (A.28)

2 We follow the notation of [4, 152,161,162]
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where the AdSd+1 metric in the Euclidean Poincaré coordinates is3

ds̄2 =
1
w2

0

(
dw2

0 +
d∑
i=1

dw2
i

)
. (A.29)

and the boundary-to-bulk propagator for a scalar field propagating in Eu-
clidean AdSd+1 is

K∆(w, z⃗) =
[

w0
w2

0 + (w⃗− z⃗)2

]∆
=

1
Γ(∆)

∫ ∞

0
dt w∆

0 t
∆−1e−t(w2

0+(w⃗−z⃗)2) ,

(A.30)

where ∆ is the conformal dimension of the dual operator. By using the repre-
sentation of the propagator in terms of Schwinger parameters given in (A.30)
we can perform the integration over the interaction point (w0, w⃗), obtaining

D∆1∆2∆3∆4(zi) = Γ

(
∆̂ − d

2

)∫ ∞

0

∏
i

[
dti

t∆i−1
i

Γ(∆i)

]
πd/2

2T
∆̂
2

e
−
∑4

i,j=1 |zij |2
titj
2T ,

(A.31)

where T =
∑

i ti, ∆̂ =
∑

i ∆i and zij = zi − zj .
We also recall the definition for the conformal cross ratios

u = (1 − z)(1 − z̄) =
z2

12z
2
34

z2
13z

2
24

, v = zz̄ =
z2

14z
2
23

z2
13z

2
24

. (A.32)

The D̂-functions that appear in the bulk computation of the correlators are
thus defined as

D̂∆1∆2∆3∆4(z, z̄) = lim
z2→∞

|z2|2∆2D∆1∆2∆3∆4(z1 = 0, z2, z3 = 1, z4 = z).

(A.33)

Once written in terms of Schwinger parameter, one can see that D1111 is
proportional to the massless box-integral in four dimensions with external
massive state [161, 162], whose result can be written in term of logarithms
and dilogarithms

D1111 =
π

2|z13|2|z24|2(z − z̄)

[
2Li2(z) − 2Li2(z̄) + ln(zz̄) ln 1 − z

1 − z̄

]
, (A.34)

The result in (A.34) is proportional to the Bloch-Wigner dilogarithm D(z, z̄)
[2, 4, 83]

D1111 =
2πi

|z13|2|z24|2(z − z̄)
D(z, z̄) , (A.35)

where

D(z, z̄) = Im[Li2(z)] + Arg[ln(1 − z)] ln |z|

=
1
2i

[
Li2(z) − Li2(z̄) +

1
2 ln(zz̄) ln 1 − z

1 − z̄

]
.

(A.36)

3 We recall that the change of coordinates that brings global AdS3 into this coordinate set is

w0 =
a0√
r2 + a2

0

eiτ , w =
r√

r2 + a2
0

ei(τ+σ) , w̄ =
r√

r2 + a2
0

ei(τ−σ) .
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Moreover we report here the following useful identity

D(z, z̄) = −D
(

1
z

, 1
z̄

)
= −D (1 − z, 1 − z̄) , (A.37)

which implies

D(z, z̄) = D

(
1 − 1

z
, 1 − 1

z̄

)
= D

(
1

1 − z
, 1

1 − z̄

)
= −D

(
−z

1 − z
, −z̄

1 − z̄

)
.

(A.38)

Other useful relations are [151]

D̂∆2∆1∆3∆4

(
1
z

, 1
z̄

)
= |z|2∆4D̂∆1∆2∆3∆4(z, z̄), (A.39a)

D̂∆3∆2∆1∆4 (1 − z, 1 − z̄) = D̂∆1∆2∆3∆4(z, z̄), (A.39b)

D̂∆2∆1∆4∆3 (z, z̄) = |z|∆1−∆2−∆3+∆4D̂∆1∆2∆3∆4(z, z̄). (A.39c)

Using in order (A.39b), (A.39c), (A.39b) we get the relation

D̂∆1∆2∆3∆4(z, z̄) = |1 − z|∆2−∆3−∆4+∆1D̂∆4∆3∆2∆1(z, z̄). (A.40)

In the literature, it is customary to introduce the D̄-functions, which depend
only on the cross ratios [152, 161, 162]; we will briefly review how they are
defined in our notation, where they read

D̄∆1∆2∆3∆4 (z, z̄) =
2
∏4

i=1 Γ(∆i)

πd/2Γ
(

∆̂−d
2

) |z13|∆̂−2∆4 |z24|2∆2

|z14|∆̂−2∆1−2∆4 |z34|∆̂−2∆3−2∆4
D∆1∆2∆3∆4 (zi).

(A.41)

The relation between D̂ and D̄-functions is thus

D̂∆1∆2∆3∆4 (z, z̄) =
πΓ
(

∆̂−2
2

)
2
∏4

i=1 Γ(∆i)
|z|∆̂−2∆1−2∆4 |1 − z|∆̂−2∆3−2∆4D̄∆1∆2∆3∆4 (z, z̄).

(A.42)

In the results for the correlators we encountered in the main text appears
the derivative of the D̂-functions with respect z or z̄. In order to handle with
D̂-functions, it is useful to write these contributions in terms of D̂-functions
without derivatives. In order to find an useful expression we rewrite the generic
D̂-functions in terms of D̄-functions using (A.42) and (A.41), and expressing
them as function of u and v. We thus have

D̂∆1∆2∆3∆4(u, v) =
πΓ
(

∆̂−2
2

)
2
∏4
i=1 Γ(∆i)

v
∆̂−2∆1−2∆4

2 u
∆̂−2∆3−2∆4

2 D̄∆1∆2∆3∆4(u, v).

(A.43)

The object to be computed is therefore

∂

∂z
D̂∆1∆2∆3∆4(z, z̄) =

(
∂v

∂z

∂

∂v
+
∂u

∂z

∂

∂u

)
D̂∆1∆2∆3∆4(u, v). (A.44)

Rewriting now the D̂∆1∆2∆3∆4(u, v) in terms of D̄∆1∆2∆3∆4(u, v) and using
(A.43) and the fact that ∂v

∂z = z̄, ∂u∂z = −(1 − z̄), we end up with an expression
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containing D̄∆1∆2∆3∆4(u, v)-functions and its derivatives w.r.t. u and v. We
can use the result of [161–163]

∂

∂u
D̄∆1∆2∆3∆4(u, v) = −D̄∆1+1∆2+1∆3∆4(u, v), (A.45)

∂

∂v
D̄∆1∆2∆3∆4(u, v) = −D̄∆1∆2+1∆3+1∆4(u, v). (A.46)

Reconstructing now the D̂-functions and coming back to z, z̄, we get

∂

∂z
D̂∆1∆2∆3∆4(z, z̄) =

(
∆̂ − 2∆1 − 2∆4

2z(1 − z)
+

∆4 − ∆2
1 − z

)
D̂∆1∆2∆3∆4(z, z̄)

+
2∆2∆3

(2 − ∆̂)z
D̂∆1∆2+1∆3+1∆4(z, z̄) (A.47)

− 2∆1∆2

(2 − ∆̂)(1 − z)
D̂∆1+1∆2+1∆3∆4(z, z̄).

With very similar procedure it is straightforward to find

∂

∂z̄
D̂∆1∆2∆3∆4(z, z̄) =

(
∆̂ − 2∆1 − 2∆4

2z̄(1 − z̄)
+

∆4 − ∆2
1 − z̄

)
D̂∆1∆2∆3∆4(z, z̄)

+
2∆2∆3

(2 − ∆̂)z̄
D̂∆1∆2+1∆3+1∆4(z, z̄) (A.48)

− 2∆1∆2

(2 − ∆̂)(1 − z̄)
D̂∆1+1∆2+1∆3∆4(z, z̄).

The above results are enough to find the generic term containing higher deriva-
tives of D̂-functions and to trade it as a sum of D̂-functions.

Acting with ∂z on the relations (A.39c), (A.40), and using them, we can
easily find non-trivial relations among D-functions of different ∆̂, as

D̂2442(z, z̄) =
4
9
(
D̂2332(z, z̄) + |z|2D̂3333(z, z̄)

)
,

D̂4422(z, z̄) =
4
9
(
D̂3322(z, z̄) + |1 − z|2D̂3333(z, z̄)

)
.

(A.49)

4 mellin representation

Following [152], we define the Mellin amplitudes for four-point function

C∆1∆2∆3∆4 (zi) = ⟨O1(z1)O2(z2)O3(z3)O4(z4)⟩ , (A.50)

as

C∆1∆2∆3∆4 (zi) =
4∏
i<j

∫ c+i∞

c−i∞

dsij
2πi M (sij) Γ(sij)(z2

ij)
−sij , (A.51)

where we need to impose the following constraint
4∑

j=1,j ̸=i
sij = ∆i . (A.52)

The variables sij can be defined introducing four Lorentzian vectors pi, satis-
fying

4∑
i=1

pi = 0 , p2
i = −∆i , (A.53a)

sij = pi · pj =
1
2 (∆i + ∆j + (pi + pj)

2). (A.53b)
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In order to compute the Mellin transform of D-functions let us recall the
definition (A.31)

D∆1∆2∆3∆4(zi) = Γ

(
∆̂ − d

2

)∫ ∞

0

∏
i

[
dti

t∆i−1
i

Γ(∆i)

]
πd/2

2T
∆̂
2

e
−
∑4

i,j=1 z
2
ij

titj
2T ,

(A.54)

where we have defined T =
∑

i ti, ∆̂ =
∑

i ∆i. Then performing the following
change of variables

ti −→ T
1
2 ti , (A.55)

the D-function becomes

D∆1∆2∆3∆4(zi) = πd/2Γ

(
∆̂ − d

2

)∫ ∞

0

∏
i

[
dti

t∆i−1
i

Γ(∆i)

]
e

−
∑4

i,j=1 z
2
ijtitj .

(A.56)

Now, by rescaling the coordinates

t1 =
|z23|

|z12||z13|
t̂1, t2 =

|z13|
|z12||z23|

t̂2, (A.57a)

t3 =
|z12|

|z13||z23|
t̂3, t4 =

|z12||z23|
|z24|2|z13|

t̂4, (A.57b)

and then using the Mellin representation of the exponential

exp[−z2
ij ] =

∫ c+i∞

c−i∞

dsij
2πi Γ(sij)(z2

ij)
−sij , (A.58)

and finally performing the Gaussian integrals over t̂i, we get

D∆1∆2∆3∆4(zi) =
πd/2Γ

(
∆̂−d

2

)
Γ(∆1)Γ(∆2)Γ(∆3)Γ(∆4)

⎡⎣ 4∏
i<j

∫ c+i∞

c−i∞

dsij
2πi Γ(sij)(z2

ij)
−sij

⎤⎦ ,

(A.59)

that means that the Mellin transform of the D∆1∆2∆3∆4(zi) is indeed a con-
stant function

M (sij) =
πd/2Γ

(
∆̂−d

2

)
Γ(∆1)Γ(∆2)Γ(∆3)Γ(∆4)

, (A.60)

in agreement with [152].
Since in the correlators we computed usually appears more generic terms,

let us discuss terms of the form C∆1∆2∆3∆4(zi) as

G(p,q)
Λ1Λ2Λ3Λ4

(u, v) = upvqD̂∆1+Λ1∆2+Λ1∆3+Λ3∆4+Λ4(u, v), (A.61)

where p, q, Λi ∈ Z and u, v are the usual cross ratios defined in (A.32). We
define the following quantities4

s = −(p1 + p2)
2 = −(p3 + p4)

2, t = −(p1 + p4)
2 = −(p2 + p3)

2 ,
(A.62a)

4 We also have the variable u = −(p2 + p4)2. Notice that, because of the conservation of
momentum, we have the relation between the three Mandelstam variables s + t + u =
∆1 + ∆2 + ∆3 + ∆4.
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and writing the variables sij in (A.53b) in terms of the above Mandelstam
variables we get

C∆1∆2∆3∆4(zi) =
z∆1−∆2−∆3+∆4

23 z∆1−∆2+∆3−∆4
24

z2∆1
12 z∆1−∆2+∆3+∆4

34
·

·
∫ dsdt

(2πi)2u
s
2+

∆1−∆2
2 v

t
2 − ∆1+∆4

2 M (s, t)Γ̄(s, t) ,

(A.63a)

where we have defined the block of Γ-function as

Γ̄(s, t) ≡ Γ
(

− s

2 +
∆1 + ∆2

2

)
Γ
(

− s

2 +
∆3 + ∆4

2

)
Γ
(

− t

2 +
∆1 + ∆4

2

)
× Γ
(

− t

2 +
∆2 + ∆3

2

)
Γ
(
s+ t

2 − ∆1 + ∆3
2

)
Γ
(
s+ t

2 − ∆2 + ∆4
2

)
.

(A.64a)

We focus on the case d = 2, ∆1 = ∆2, ∆3 = ∆4 even if the generalisation can
be performed for generic ∆i. The generic term appear inside the correlators
as

C∆1∆1∆3∆3(zi) =
1

z2∆1
12 z2∆3

34

[
G(p,q)

Λ1Λ2Λ3Λ4
(u, v) + · · ·

]
. (A.65)

The logic to find the Mellin representation of this term inside the correlator
is to put it in the same form of (A.63) and considering the function M (s, t)
as the unknown.

Concretely, we first notice that we are dealing with D̂-function and so we
have to rewrite it as a non-hatted D-function using (A.41) and (A.42). Then
we use the Mellin representation of the D-function (A.59). The factor upvq in
front of the D-function and the other factors coming from passing from D̂ to
D-function will shift the power of the terms (zij)−sij . Then we can extract
the function by performing a change of variable in order to have the correct
power as in (A.63) and the same block of Γ-functions.

The Mellin transform of the generic terms then reads

M
(p,q)
Λ1Λ2Λ3Λ4

(s, t) = πN (Λi, ∆i)
(

−s

2 + ∆1
)
a

(
−s

2 + ∆3
)
b

×
(

− t

2 +
∆1 + ∆3

2

)
c

(
− t

2 +
∆1 + ∆3

2

)
d

(A.66a)

×
(
s+ t

2 − ∆1 + ∆3
2

)
e

(
s+ t

2 − ∆1 + ∆3
2

)
f

,

with

a = p− ∆1, b = p+ ∆1 − 2∆3 +
Λ1 + Λ2 − Λ3 − Λ4

2

c = q, d = q− Λ1 − Λ2 − Λ3 + Λ4
2 (A.67a)

e = −p− q+ ∆3 + Λ4, f = −p− q+ ∆3 +
Λ1 − Λ2 + Λ3 + Λ4

2 ,

and with the normalisation factor given by

N (Λi, ∆i) =
Γ
(

−1 + ∆1 + ∆3 +
Λ1+Λ2+Λ3+Λ4

2

)
Γ (∆1 + Λ1) Γ (∆2 + Λ2) Γ (∆3 + Λ3) Γ (∆4 + Λ4)

, (A.68)

and where the Pochammer symbol is defined as (x)a =
Γ(x+a)

Γ(a) .
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5 wave equation on superstrata

The goal of this appendix is to compute the linearized equation of motion of
a traceless perturbation hij of the torus metric, i.e.

ds2
10 =

√
α ds2

6 +X(δij + hij)dzidzj ,

ds2
6 = − 2√

P
(dv+ β)

[
du+ ω+

F
2 (dv+ β)

]
+

√
P ds2

4 ,

X =

√
Z1
Z2

, e2ϕ̄ =
Z2

1
P

, P = Z1Z2 −Z2
4 , α =

Z1Z2
P

,

(A.69)

while the gauge fields are

H3 = −D
(
Z4
P

)
∧ dû∧ dv̂+ Z4

P
Dβ ∧ dû

+

[
Θ4 − Z4

P
Dω
]

∧ dv̂+ Ξ4 , (A.70a)

F1 = D
(
Z4
Z1

)
+ ∂v

(
Z4
Z1

)
dv̂ , (A.70b)

F3 = −
[
D
(
Z2
P

)
− Z4
Z1

D
(
Z4
P

)]
∧ dû∧ dv̂+ 1

Z1
Dβ ∧ dû

+

[(
Θ1 − Z4

Z1
Θ4

)
− 1
Z1

Dω
]

∧ dv̂+
[

Ξ1 − Z4
Z1

Ξ4

]
, (A.70c)

F5 =

[
D
(
Z4
Z2

)
+ ∂v

(
Z4
Z2

)
dv̂

]
∧ dz1 ∧ dz2 ∧ dz3 ∧ dz4

−
[
Z4
P

Ξ1 − Z2
P
Z2

]
∧ dû∧ dv̂+ Ω4 ∧ dv̂ , (A.70d)

where we recall that dû = du+ ω, dv̂ = dv+ β and that

D = d4 − β ∧ ∂v , (A.71)

and where the object appearing here are defined as

Ω4 = Dx3 − Θ4 ∧ γ2 + a1 ∧ Ξ4 ,
Θ1 = Da1 + γ̇2 , Θ4 = Da4 + δ̇2 ,
Ξ1 = Dγ2 − a1 ∧ Dβ , Ξ4 = Dδ2 − a4 ∧ Dβ ,

(A.72)

where the dot represent a derivative w.r.t. v, and have to satisfy the following
differential equations

∗4DZ1 = Ξ1 , ∗4DZ4 = Ξ4 , Ω4 = Z2
2 ∗4 ∂v

(
Z4
Z2

)
, (A.73a)

and

∗4DŻ1 = DΘ2 , D ∗4 DZ1 = −Θ2 ∧ Dβ , Θ1 = ∗4Θ1 , (A.74a)
∗4DŻ2 = DΘ1 , D ∗4 DZ2 = −Θ1 ∧ Dβ , Θ2 = ∗4Θ2 , (A.74b)
∗4DŻ4 = DΘ4 , D ∗4 DZ4 = −Θ4 ∧ Dβ , Θ4 = ∗4Θ4 , (A.74c)

and

Dω+ ∗4Dω+ F dβ = Z1Θ1 + Z2Θ2 − 2Z4Θ4 , (A.75a)

∗4D ∗4

(
ω̇− 1

2 DF
)
= ∂2

v (Z1Z2 −Z2
4 ) − [Ż1Ż2 − (Ż4)

2]

− 1
2 ∗4 (Θ1 ∧ Θ2 − Θ4 ∧ Θ4) . (A.75b)
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The relevant equation of type IIB we are interested in the Einstein equation

e−2ϕ
(
RMN + 2∇M∇Nϕ− 1

4 HMPQHN
PQ

)
+

1
4 gMN

(
FPF

P +
1
3!
FPQRF

PQR

)
− 1

2FMFN − 1
2

1
2!
FMPQFN

PQ − 1
4

1
4!
FMPQRSFN

PQRS = 0 .

(A.76)

5.1 Zehnbein and Spin connection

We may rewrite the 10-dimensional metric for the 1
8 -BPS geometries

gMNdxMdxN =
√
α gµνdxµdxν +Xδijdzidzj , (A.77)

where we split xM = (xµ, zi) = (xui ,xa, zi) with xui = (u, v), where X =√
Z1
Z2

and α = Z1Z2
P , and

gµνdxµdxν = Guiuj (dx
ui +Aui)(dxuj +Auj ) +

√
P qabdxadxb , (A.78)

and where

Aui = Auia dxa , Au = ω , Av = β , Guiuj =

⎛⎝ 0 − 1√
P

− 1√
P

− F
2
√

P

⎞⎠ , (A.79)

so that5

gµν =

(
Guiuj GuiujA

ui
a

Auia Guiuj
√

P qab +GuiujA
ui
a A

uj
b

)
,

gµν =

⎛⎝Guiuj + 1√
P
qabAuia A

uj
b − 1√

P
qabAuib

− 1√
P
Auia q

ab 1√
P
qab

⎞⎠ .

(A.81)

We can now introduce the 10-dimensional vielbein, i.e. the zehnbein, eA as

gMNdxMdxN = ηABe
AeB , (A.82)

splitting them in a set of sechsbein eα and vierbein ei; We can define the
sechsbein as

e+ =
1√
P
(dv+β), e− =

1√
P

[
du+ F

2 dv+
(
ω+

F
2 β

)]
, eI = P1/4 ẽI ,

(A.83)

where we split µ = u, v, a and α = +, −, I, so

ηαβe
αeβ = 2η+−e

+e− +
√

P δIJ ẽ
I ẽJ = ds2

6 . (A.84)

This allows us to define the ten dimensional metric as

ds2
10 =

√
α
[
2η+−e

+e− +
√

P δIJ ẽ
I ẽJ
]
+Xδije

iej . (A.85)

5 Notice that

Guiuj =

(
0 − 1√

P

− 1√
P

− F
2

√
P

)
, Guiuj =

(
1
2

√
P F −

√
P

−
√

P 0

)
. (A.80)
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With this definitions, using that

eMA = gMNηABe
A
M , (A.86)

we may compute

e+ =

(
1 + F

2
√

P
β ∧ ∗4β

)
∂v ,

e− =

[
1 − 1

P
β ∧ ∗4(ω− β)

]
∂v −

[
F
2 − 1

P
ω ∧ ∗4(ω− β)

]
∂u ,

eI = δIJ

[
−qcdωcẽJd∂v − qcdβcẽ

J
d∂u + qcdẽJc ∂d

]
= −ẽaIωa∂v − ẽaIβa∂u + ẽaI∂a ,

(A.87)

where the ∗4 is the Hodge star operator on the 4-dimensional flat manifold
whose metric is δIJ ẽI ẽJ .

We may also refer to gSµν as the string-frame metric in 6D, and with gEµν as
the Einstein-frame metric, so that

ds2
S =

√
α ds2

E =
√
α

{
− 2√

P
(dv+ β)

[
du+ ω+

F
2 (dv+ β)

]
+

√
P ds2

4

}
.

(A.88)

5.2 The linearized Einstein equations

5.2.1 The linearized Ricci

We want to compute the linearized Ricci, via

δRij = ∇̄AδΓAij − ∇̄iδΓAAj , (A.89)

where we refer to the background objects with an overbar, and where

δΓAMN =
1
2 ḡ

AB (∇̄MhNB + ∇̄NhMB − ∇̄BhMN ) , (A.90)

so that the only non-vanishing perturbations are6

δΓµij = −1
2 ḡ

µν∂ν (Xhij)

δΓiµj = +
1
2 X

−1 δik
[
∂µ
(
Xhjk

)
−X(∂µ logX)hjk

]
.

(A.92)

We then get in the string frame

δRij = −1
2
[
□̄S (Xhij) +XḡµνS (∂µ logX)(∂ν logX)hij

]
. (A.93)

We may express it in Einstein frame using the general formula that under
Weyl transformations of the metric g̃AB = e2φgAB ,

□g̃ = e−2φ□g + (D− 2)e−2φgAB(∂Aφ)∂B . (A.94)

6 The only non-vanishing background Christoffels are, other that the six-dimensional string-
frame Γ̄µνρ ones, whose explicit form is not relevant for now,

Γ̄iµj = +
1
2
(∂µ logX)δij

Γ̄µij = −
1
2
(∂µX)δij .

(A.91)
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gives

□Shij = α−1/2 □Ehij + α−1/2 gabE (∂a logα)∂bhij . (A.95)

So we get

δRij = −1
2 α

−1/2
[
□̄E (Xhij) + ḡµνE (∂µ logα)(∂ν log (Xhij))

+XḡµνE (∂µ logX)(∂ν logX)hij
]

.
(A.96)

It is also easy to see that δRµν = 0 = δRµj , so that the variation of the Ricci
is only along the torus.

5.2.2 The scalar variation

We now compute

δ (∇M∇N ϕ̄) = −δΓAMN ∂Aϕ̄ = −δΓµMN ∂µϕ̄ = −δiMδ
j
NδΓµij ∂µϕ̄

= +
1
2 δ

i
Mδ

j
N ḡ

µν
S ∂µ (Xhij) ∂ν ϕ̄

= +
1
2 δ

i
Mδ

j
N ḡ

µν
S (∂µ logX)∂ν (Xhij) .

(A.97)

so that the variation is again only on the torus.

5.2.3 The linearized Einstein equation: part I

If we now sum the two together as they appear in the variation of the Einstein
equation, i.e. as

δRMN + 2δ (∇M∇N ϕ̄) , (A.98)

using the fact that

ϕ̄ = log Z1√
P

= log
(√

Z1
Z2

√
Z1Z2

P

)
= log(X

√
α) = logX+

1
2 logα , (A.99)

so

ḡµνS (∂µϕ̄)∂ν (Xhij) = α−1/2ḡµνE

(
1
2∂µ logα+ ∂µ logX

)
∂ν (Xhij) , (A.100)

and then, after some manipulation, we get, for the linearized Einstein equa-
tions (A.76)

0 = □̄Ehij − 1
4!
X2α3/2 hkℓF̄ikPQRF̄jℓ

PQR

+ hij

[
X−1□̄EX − ḡµνE (∂µ logX)(∂ν logX) − 1

2 X
2α3/2

(
F̄ 2

1 +
1
3!
F̄ 2

3

)]
,

(A.101)

where we have used that F̄1, F̄3 and H̄3 have no legs on T4, so the terms FiFj ,
FiPQFj

PQ and HiPQHj
PQ are all zero, while

δ
(
FMPQRSFN

PQRS
)
= 2δiMδ

j
Nh

kℓFikPQRFjℓ
PQR . (A.102)
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5.2.4 The F̄1 term

We now compute, using the formulae of app. A.1.2

F̄ 2
1 = ∗10(F̄1 ∧ ∗10F̄1)

= αX2 ∗10

[
D
(
Z4
Z1

)
∧ ∗4D

(
Z4
Z1

)
∧ dû∧ dv̂ ∧ volT4

]
= α−1/2P−1/2 ∗4

[
D
(
Z4
Z1

)
∧ ∗4D

(
Z4
Z1

)]
.

(A.103)

since

∗10F̄1 = αX2 ∗E F̄1 ∧ volT4

= αX2
[
∗4D

(
Z4
Z1

)
∧ dû∧ dv̂− P ∗4 ∂v

(
Z4
Z1

)
∧ dv̂

]
∧ volT4 .

(A.104)

5.2.5 The F̄3 term

Here we have, again using the formulae of app. A.1.2 that

∗10F̄3 = X2 ∗E F̄3 ∧ volT4

=

{
P ∗4

[
Z1
Z2

D
(
Z2
P

)
− Z4
Z2

D
(
Z4
P

)]
− 1
Z1

∗4 Dβ ∧ dû

+

[(
Z1
Z2

∗4 Θ1 − Z4
Z2

∗4 Θ4

)
− 1
Z2

(∗4Dω+ F ∗4 Dβ)
]

∧ dv̂

+
1
P

[
Z1
Z2

∗4 Ξ1 − Z4
Z2

∗4 Ξ4

]
∧ dû∧ dv̂

}
∧ volT4 ,

(A.105)

so that, using the self-duality conditions for the ΘI and ∗4Dβ = dβ, we get

F̄ 2
3 = ∗10 (F̄3 ∧ ∗10F̄3)

= ∗10

{
− PX

[
D
(
Z2
P

)
− Z4
Z1

D
(
Z4
P

)]
∧ ∗4

[
D
(
Z2
P

)
− Z4
Z1

D
(
Z4
P

)]
∧ dû∧ dv̂

+
1

Z1Z2
dβ ∧ [Dω + ∗4Dω + Fdβ − (2Z1Θ1 − 2Z4Θ4)] ∧ dû∧ dv̂

+
X

P

[
Ξ1 − Z4

Z1
Ξ4

]
∧ ∗4

[
Ξ1 − Z4

Z1
Ξ4

]
∧ dû∧ dv̂

}
∧ volT4 .

(A.106)

Please notice that, using eq. (A.73, A.74) we can reconstruct eq. (A.75) as

F̄ 2
3 = ∗10 (F̄3 ∧ ∗10F̄3)

= ∗10

{
− PX

[
D
(
Z2
P

)
− Z4
Z1

D
(
Z4
P

)]
∧ ∗4

[
D
(
Z2
P

)
− Z4
Z1

D
(
Z4
P

)]
∧ dû∧ dv̂

+
1

Z1Z2
dβ ∧ [Dω + ∗4Dω + Fdβ − (Z1Θ1 + Z2Θ2 − 2Z4Θ4)] ∧ dû∧ dv̂

+
1

Z1Z2
[Z1D ∗4 DZ2 −Z2D ∗4 DZ1] ∧ dû∧ dv̂

+
X

P

[
DZ1 − Z4

Z1
DZ4

]
∧ ∗4

[
DZ1 − Z4

Z1
DZ1

]
∧ dû∧ dv̂

}
∧ volT4

= ∗10

{
− PX

[
D
(
Z2
P

)
− Z4
Z1

D
(
Z4
P

)]
∧ ∗4

[
D
(
Z2
P

)
− Z4
Z1

D
(
Z4
P

)]
∧ dû∧ dv̂

+
1

Z1Z2
[Z1D ∗4 DZ2 −Z2D ∗4 DZ1] ∧ dû∧ dv̂

+
X

P

[
DZ1 − Z4

Z1
DZ4

]
∧ ∗4

[
DZ1 − Z4

Z1
DZ1

]
∧ dû∧ dv̂

}
∧ volT4 .
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(A.107)

where we have also used that ∗4 ∗4 λ1 = −λ1, for every-one form λ1. Using
again the formulae of app. A.1.2

F̄ 2
3 = X−2α−3/2P−1/2 ∗4

{
X

P

[
DZ1 − Z4

Z1
DZ4

]
∧ ∗4

[
DZ1 − Z4

Z1
DZ1

]
+

1
Z1Z2

[Z1D ∗4 DZ2 −Z2D ∗4 DZ1]

− PX
[
D
(
Z2
P

)
− Z4
Z1

D
(
Z4
P

)]
∧ ∗4

[
D
(
Z2
P

)
− Z4
Z1

D
(
Z4
P

)]}
.

(A.108)

5.2.6 The F̄5 term

Using the notation of chap. 3, we see that the only relevant part of the F̄5 for
us is the one with legs on the torus, i.e.

F̄5 ⊇
[
D
(
Z4
Z2

)
+ ∂v

(
Z4
Z2

)]
∧ volT4 ≡ F

(1)
5 ∧ volT4 , (A.109)

so that Fijkℓµdxµ = F
(1)
5 and then

FikPQRFjℓ
PQR = εikmnεjℓ

mnFµF
µ

= 4α−1/2P−1/2(δijδkℓ − δikδjℓ) ∗4

[
D
(
Z4
Z2

)
∧ ∗4D

(
Z4
Z2

)]
,

(A.110)

so that, since hijδij = 0,

hkℓFikPQRFjℓ
PQR = 4α−1/2P−1/2 ∗4

[
D
(
Z4
Z2

)
∧ ∗4D

(
Z4
Z2

)]
hij . (A.111)

5.2.7 The linearized Einstein equation: part II

We now restart from eq. (A.101), and we plug in it eqs. (A.103, A.108, A.111)
using that

□̄EX = P−1/2 ∗4 (D ∗4 DX)

=
1
2 P−1/2 ∗4

[
X

Z1Z2
(Z2D ∗4 DZ1 −Z1D ∗4 DZ2)

+
1
2D

(
X

Z1

)
∧ ∗4DZ1 − 1

2D
(
X

Z2

)
∧ ∗4DZ2

]
.

(A.112)

After careful computations, one gets

□̄Ehij = 0 . (A.113)

5.3 A short derivation of the linearized equation using dualities

There is a very fast way to prove eq. (A.113): we simply use that the geometries
(2.113) and (2.187) are related by the action of dualities, as explained in
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sec. 2.2.5. Now, it is easy to see that if we turn on a linear perturbation
c2 = c ω̃2, where e.g. ω̃2 = dz1 ∧ dz3, is a 2-form on the flat Torus on the
geometry (2.187), so that

ω̃2 ∧ ω2 = 0 , ω2 = dz1 ∧ dz2 − dz3 ∧ dz4 , (A.114)

the only type IIB equation (2.108) that is modified is

d ∗ F3 +H3 ∧ F5 = 0 ⇒ d ∗6 dc = 0 , (A.115)

while the others are trivially satisfied due to eq. (A.114). This meas that this
kind of perturbation is a minimally-coupled massless scalar on the geome-
try (2.187). If we now perform the dualities that relates (2.187) to (2.113),
i.e. STz2Tz1S, we obtain

ds2
10 =

√
Z1Z2

P
ds2

6 +

√
Z1
Z2

(
ds2

T4 − cdz1dz2) ,

e2ϕ =
Z2

1
P

, B2 = B̄2 ,

C0 =
Z4
Z1

, C2 = C̄2 , C4 = C̄4 +
Z4
Z2

dz1 ∧ dz2 ∧ dz3 ∧ dz4 .

(A.116)

If we have chosen a different ω̃2, let us say ω̃2 = dz1 ∧ dz2 + dz3 ∧ dz4, we
have instead turned on a modulus for the B2:

ds2
10 =

√
Z1Z2

P
ds2

6 +

√
Z1
Z2

ds2
T4 , e2ϕ =

Z2
1

P
,

B2 = B̄2 +
Z4
Z2

c ω̃2 , ω̃2 = dz1 ∧ dz2 + dz3 ∧ dz4 ,

C0 =
Z4
Z1

, C2 = C̄2 + c ω̃2 ,

C4 = C̄4 +
Z4
Z2

dz1 ∧ dz2 ∧ dz3 ∧ dz4 +
Z4
Z2

C̄2 ∧ c ω̃2 .

(A.117)

This is a strong indication (but not a proof) that all the 20 moduli are mini-
mally coupled massless scalar; one simply need to find the appropriate frame,
in which the equation of motion is trivial, and then find the appropriate set
of dualities to move to the chosen background geometry.
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