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Abstract

This work deals with the numerical-optimisation methods employed for assessing
the minimum-lap-time of race vehicles. A particular emphasis is given to the
simulations based on the solution of an optimal-control problem.

First, a detailed review is devoted to the optimal-control theory, including
direct and indirect methods, together with explicit and implicit formulations.

Three vehicle models are proposed for the implementation in steady-state and
dynamic simulations. A steady-state double-track race-car model is presented first,
implementing aerodynamic forces, Pacejka-based tyre model, fixed brake-ratio and
steady-state lateral-load transfer. This model is then extended including the tran-
sient effects for the implementation in a dynamic minimum-time simulation. An
essential but comprehensive steady-state motorcycle model is also presented, re-
taining the peculiar aspects of the motorcycle dynamics, such as the wheelie and
stoppie conditions, while assuming the optimal braking-bias.

Then, an optimisation program is developed for computing the race car g-g
envelope. A different approach is shown for the steady-state motorcycle model,
which is employed for computing the g-g diagrams analytically.

Finally, the most widespread minimum-lap-time simulations are discussed and
developed for the presented models, including a quasi-steady-state fixed-trajectory
apex-finding approach and a quasi-steady-state fixed-trajectory optimal-control
simulation. In addition, a novel approach that combines a steady-state vehicle
model with the trajectory optimisation is presented and compared to the discussed
simulations. This approach builds upon the formulation of an optimal-control
problem and employs the g-g diagrams for limiting the vehicle performance. The
results are employed for a sensitivity analysis, that underlines the effect of different
parameters on the resulting race line. A dynamic race car model is also imple-
mented in a free-trajectory optimal-control simulation. This program is employed
for analysing the effect of different steering geometries on the vehicle performance
in different test manoeuvres and during a track lap.
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Chapter 1

Introduction

On a given day, a given circumstance, you think you have a limit.
And you then go for this limit and you touch this limit, and you think,
‘Okay, this is the limit’. As soon as you touch this limit, something
happens and you suddenly can go a little bit further. With your mind
power, your determination, your instinct, and the experience as well,
you can fly very high. Ayrton Senna, 1991.

In the motor-racing world, the research of the ultimate limit of the vehicle has
always led the work of drivers (or riders) and engineers. When Ayrton Senna
touches the walls of the tight roads of Monaco for squeezing every millisecond
from his McLaren MP4/6, the limit hides a subjective meaning, a mixture of
bravery, instinct and driving-skills that becomes tangible only when it is over-
taken. Despite of that, an a-priori estimation of the limit is fundamental on the
track, both for helping the driver to achieve the best performance and for obtain-
ing the optimal strategy for the race. Moreover, the knowledge of the limit allows
to optimise the performance of the vehicle also during the design stage. In this
engineering framework, the limit assumes an objective meaning and its estima-
tion is strongly connected to the concepts of simulation and optimisation. More
specifically, simulating the vehicle at the limit leads to the optimisation of the
action of a virtual driver, in order to minimise the time needed to complete a lap
on a given track, i.e. solving the so-called minimum-lap-time problem. Typically,
minimum-lap-time problems are faced employing offline simulations, which allow
to solve the problem without real-time constraints, since both the vehicle and the
driver are virtual and no cueing of a physical system is needed. For this reason,
they can include complex vehicle models, capable of a realistic representation of
the physical system, together with complex driver models that allow to optimise
the control strategy of the vehicle. Instead, the online simulations, such as the
driver-in-the-loop simulators, are performed in real-time, i.e. the model need be
solved at the same time in which the real driver applies controls to the physi-
cal simulation system. This strategy limits the complexity of the models, since
a reliable convergence time of the simulation need be maintained. In this case,
the driver is a fundamental part of the simulation and a non-portable complex
mechanical system is employed, in order to emulate the real vehicle.
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2 CHAPTER 1. INTRODUCTION

There are a variety of minimum-lap-time problems: they may have a free
or predetermined trajectory and may use dynamic or quasi-steady-state models.
In the case of free-trajectory problems, the race line is determined by the opti-
misation solver, while for fixed-trajectory problems, the race line is determined
from track data or from previous free-trajectory solutions. As a general rule,
fixed-trajectory problems are faster to solve, since a lower number of variables
is involved. The first attempts in computing the minimum-lap-time date back
in the late 1950s, when basic simulations have been implemented to predict the
performance of a Formula One vehicle employing heuristic methods [1]. In the
late 1980s minimum-time simulations of sections of the Paul Ricard circuit were
presented, employing quasi-steady-state model for computing the steady-state op-
timisation of the vehicle performance in each single point of the trajectory [2].
One of the first applications of optimal-control techniques for minimum-lap-time
are presented in [3] (1996). A basic double-track model is employed for computing
the maximum performance of a race car in simple manoeuvres. In [4] (1999) a
simple motorcycle model is used together with an indirect optimal-control method
for assessing the maximum performance and the optimal race line on the Mugello
circuit. Nowadays, the most widespread combinations reported in the literature
to solve minimum-lap-time problems are basically two: quasi-steady-state (QSS)
models with predetermined trajectory and dynamic models with free-trajectory.
The former approaches usually involve the computation of the well-known g-g map
of the vehicle at different speeds (g-g-speed surface), together with the determi-
nation of the corner apexes on the trajectory (i.e. the points at which the vehicle
achieves the maximum lateral acceleration). The latter approaches usually involve
the solution of a nonlinear-optimal-control problem (OCP), which may be solved
either with direct or indirect methods.

In this thesis, a detailed overview on the available minimum-lap-time meth-
ods is carried out, together with a comprehensive description of the optimisation
methods and on the modelling approaches employed for assessing the minimum-
lap-time. Different simulation programs are developed and compared, in order to
stress the advantages and drawbacks in terms of computational effort, consistency
with the real behaviour of the vehicle and complexity of implementation. In this
framework, three main contributions of this work should be underlined. These
studies mainly refer to the research work presented in [5] and [6]. The first con-
tribution consists in a novel method for minimum-time simulations that combines
the quasi-steady-state vehicle modelling with the trajectory optimisation, using
optimal-control techniques. The method builds upon the g-g diagrams, which
are commonly computed to analyse the vehicle performance. Numerical vehicle
models of very high complexity can be employed, since all their features (e.g. tyre
limits, power limits, aerodynamic drag and downforce, suspensions, etc.) are sum-
marised by the related g-g diagrams, and do not affect the complexity of the OCP
that needs to be solved. The method allows to employ even experimental g-g dia-
grams in place of numerical ones and is suitable for application to both cars and
motorcycles. A second contribution can be found in the implementation of an es-
sential motorcycle model in the quasi-steady-state simulations. The model retains
some of the peculiar aspects of the motorcycle dynamics, such as the wheelie and
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stoppie limits. The aerodynamic drag force is included, limiting the maximum ac-
celeration achievable, while the optimal braking-ratio is employed for estimating
the maximum deceleration performance. Due to its simplicity, the model requires
a relatively small computational effort, providing a rapid tool for assessing a basic
description of the vehicle performance. The third contribution aims to employ
a dynamic simulation for assessing the performance of an FSAE race car and
analyse the effect of steering geometry on the minimum-lap-time. This study is
devoted to the implementation and the validation of a transient vehicle model for
free-trajectory optimal-control simulations. The lap-time is computed in three ma-
noeuvres (steady-turning, slalom and track lap), while the baseline FSAE steering
system is compared against the Ackermann and parallel geometries.

The thesis is organised as follows. In Ch. 2 the optimal-control theory is
presented, together with the optimisation strategies employed for solving the
minimum-lap-time problems. Direct or indirect methods can be used for solving
the optimal-control. In the direct approach the problem is discretised and traduced
in a nonlinear-programming problem, which is solved iteratively. In the indirect
approach, the problem is stated employing the first-order necessary conditions,
which are then numerically solved. The solution of the set of equations obtained
can be solved though explicit and implicit formulations. In the explicit case, the
equations are solved though a time-marching technique, while in the implicit for-
mulation, a large-scale system of algebraic equations is solved simultaneously for
all the available mesh points. In Ch. 3 the modelling techniques employed for
the minimum-lap-time computation are discussed. A steady-state race car and
motorcycle model are presented first. These models are used for computing the
g-g diagrams at different speeds, which are employed for implementing the vehicle
model in the steady-state simulations. A race car dynamic model is also presented
for the implementation in the dynamic-optimal-control simulations. Ch. 4 is de-
voted to the generation of the g-g diagrams. An optimisation-based program is
developed for building the g-g in a finite number of points, at different speeds.
Numerically computed car and motorcycle g-g envelopes are then obtained and
the effect of different parameters is discussed. Ch. 5 represents the core chapter of
the entire work, since the results obtained in the previous chapters are employed
for building the minimum-lap-time problems, using different approaches. Three
g-g based steady-state simulations are discussed in detail. A fixed-trajectory apex-
finding program is presented first. In this method the speed is computed in the
corner-apexes of the trajectory; then, the acceleration and braking speed profiles
are calculated between two apexes using the g-g diagrams for limiting the vehicle
performance. A fixed-trajectory optimal-control program is also presented. In
this case, the g-g diagrams are employed in order to constrain the lateral and
longitudinal accelerations of a simple vehicle model, allowed to move on a given
trajectory. The previously-mentioned free-trajectory optimal-control program is
then discussed and compared to the other simulations in terms of results and com-
putational efficiency using both the race car and the race motorcycle models. In
conclusion, a free-trajectory optimal-control method is employed for computing
the minimum-lap-time of a dynamic vehicle model. In this case, the model is di-
rectly implemented in the optimal-control formulation, without involving the g-g
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diagrams. As previously discussed, this method is applied to the analysis of the
effect of steering geometry on a race car model in different manoeuvres.



Chapter 2

Optimal Control Problems

2.1 Historical notes

Optimal-control theory has been developed in the last six decades for many dif-
ferent purposes. A great progress on solving this kind of problems has arisen
during the Cold War, for military purposes. In 1959, Lev Pontryagin, member of
the URSS Academy of Sciences, developed a variational method for solving the
optimal control problems: the famous Pontryagin’s Maximum Principle, which
poses the foundations for a family of optimal-control-solving strategies, known as
indirect methods. In the same period, Richard E. Bellman, American researcher
in the RAND Corporation, developed the theory of Dynamic Programming for
achieving a numerical solution of the optimal-control problems. The minimum-
time-to-climb is a famous problem formulated in these years: the target is to
calculate the optimal flight trajectory, in order to achieve a given altitude in the
minimum time [7]. Another example is related to the minimum-intercepting-time
problem. In this case, the aim is to find the minimum-time trajectory of a missile
for intercepting a target aircraft [8]. Further examples can be found among the
space applications, such as the problem of minimum-fuel consumption in satel-
lite orbit transfer, which is investigated in [9, 10]. Many other optimal-control
applications span from the industrial-robot trajectory planning, to the parame-
ter optimisation in chemical reactions and the optimisation of cancer treatments
[11]. In the vehicle-engineering framework two main targets have been investi-
gated during the years, employing optimal-control methods: optimisation of the
driving efficiency of road vehicles and minimisation of the lap-time in motorsport
applications. Minimising the fuel consumption has become a critical problem with
the spreading of hybrid powertrains in road applications. The higher flexibility
of these propulsion systems determines a notably higher complexity in selecting
the best control strategies. Some efforts in facing these problems are discussed
in [12], where a real-time control strategy is presented for a parallel-hybrid vehi-
cle and compared to the global optimisation strategies. In [13] the Pontryagin’s
Maximum Principle is applied to a hybrid vehicle, together with proper assump-
tions for calculating an exact solution suitable for real-time applications. In [14] a
direct-collocation approach is employed for the power-split optimisation of a hy-
brid vehicle. In motorsport applications, the optimal-control problems are widely

5



6 CHAPTER 2. OPTIMAL CONTROL PROBLEMS

employed in a flavour of minimum-lap-time simulations, for evaluating and opti-
mising the vehicle performance along a given track. In [3], the optimal control
is found through gradient methods for a lane-change manoeuvre of a front-wheel
drive and rear-wheel drive car. The vehicle is represented by a double-track model
and the tyre-forces coupling is calculated through friction ellipses. In [4], a basic
motorcycle model is applied to indirect-implicit optimal-control methods, in order
to assess an index of manoeuvrability of the vehicle. A more complex car model,
which includes of the effect of trim on aerodynamics, is employed in [15] to find
the minimum-time of a Formula One car, using a direct-collocation method. The
trim and aerodynamics variations are parametrised as a lookup table, considering
their quasi-steady dependance on the tyre normal loads.

2.2 Fundamentals

In general, the dynamics of a controlled system can be written in terms of the
state-space equations:

ẋ(t) = f(x(t),u(t), t), x(ti) = xi, t ∈ (0, tf ). (2.1)

where x ∈ Rn represents the states of the system, u ∈ Rm represents the controls
and xi ∈ Rn represents the state initial conditions. A cost function J : Rn ×
Rm ×R→ R can be defined as a function of the states x and the controls u, and
represents the target that the system has to achieve:

J (x(t),u(t), t) = φ(x(tf ), tf ) +

∫ tf

0

L(x(t),u(t), t)dt. (2.2)

The first term φ : Rn × R→ R of the cost function is called the Mayer part and
determines the terminal/final cost, while the second term L : Rn × Rm × R → R
represents the Lagrange term, or running cost ; this formulation of the optimal-
control problem is usually addressed as the Bolza problem.

The optimal-control problem (OCP) has the aim to find the control set u∗ that
minimises J , subject to the dynamic constraints (2.1), in such a way that:

J (x∗(t),u∗(t), t) ≤ J (x(t),u(t), t), ∀u ∈ U , (2.3)

where U represents the set of the admissible controls and x∗ represents the state
variables related to the optimal control u∗.

The most widely used approach for solving the optimal-control problem of
Eq. (2.3) relates to the Pontryagin’s Minimum Principle (PMP), which will be
discussed in Sec. 2.3. An alternative approach is based on the Dynamic Pro-
gramming technique, which will not be included in the following discussion. The
solution of an optimal-control problem is tightly related to the possibility of tra-
ducing the problem into a form suitable for the computation. In fact, many
strategies have been developed for the numerical solution of the OCP during the
last decades. In a simplified classification, an OCP can be solved adopting either
explicit or implicit formulations, together with direct or indirect methods. The
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explicit strategies (Sec. 2.4.1) allow to integrate the dynamics of the system start-
ing from the previous-steps solutions, i.e. the solution at a given step is calculated
from the solutions of the previous steps and this process is iterated until satisfying
the boundary conditions. The implicit strategies (Sec. 2.4.2) allow to provide a so-
lution of the problem without calculating the solution step-by-step, along the time
domain: in this case, instead, the solution is calculated simultaneously in all the
mesh points by solving a large-scale system of algebraic equations. Both explicit
and implicit simulation strategies can be employed together with the direct and
indirect approaches. In the direct methods (Sec. 2.4.3) the continuous optimal-
control problem is first discretised into a Nonlinear Programming Problem (NLP)
and then solved as an optimisation problem, in a finite-dimensional domain. The
indirect methods (Sec. 2.4.4) are based on the research of a solution using the
first-order necessary conditions discussed in Sec. 2.3. In this case the optimisation
problem is stated first, through the first-order necessary conditions; then, the new
set of differential equations is numerically solved. The main differences between
direct and indirect approaches will be discussed in Sec. 2.4.5. Moreover, a widely
diffused direct-implicit approach (GPOPS-II) will be presented in Sec. 2.5.

2.3 First-order necessary conditions

The optimal control problem (OCP) can be solved in a variational framework,
considering the stationary points of the cost function. As reported in Sec. 2.3.3,
this approach has many common features to the formulation of the variational-
mechanics principles.

2.3.1 Unconstrained problem

The unconstrained representation of the OCP can be obtained introducing the
dynamic constraints of the system (2.1) in the cost function (2.2), through the
Lagrange multipliers vector λ(t), namely the costate vector of the OCP. The cost
function of the unconstrained problem becomes1:

Ja(x,u) = φ(x(tf )) +

∫ tf

0

(
L(x,u) + λT (f(x,u)− ẋ)

)
dt

= φ(x(tf )) +

∫ tf

0

(
L(x,u) + λT f(x,u) + λ̇

T
x
)
dt− λT x

∣∣tf
0

= φ(x(tf ))− λT x
∣∣tf
0

+

∫ tf

0

(
H+λ̇

T
x
)
dt. (2.4)

where H is the control Hamiltonian, given by

H = L(x,u) + λT f(x,u). (2.5)

1In the next sections the time dependency will be omitted.
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A variation δu of the controls, produces a correspondent variation δx in the states
and δ Ja in the cost function:

δ Ja =

[(
∂φ

∂x
− λ

)T
δx

]
t=tf

+

∫ tf

0

((
∂H
∂x

)T
δx +

(
∂H
∂u

)T
δu + λ̇

T
δx

)
dt.

(2.6)
The stationary points of the cost function can be found imposing the necessary
condition δ Ja(x

∗,u∗) = 0. This condition can be satisfied by verifying the follow-
ing set of equations:

ẋ∗(t) = f(x∗(t),u∗(t), t), (2.7)

λ̇
∗

= − ∂H
∂x

∣∣∣∣
x∗,λ∗,u∗

, (2.8)

0 =
∂H
∂u

∣∣∣∣
x∗,λ∗,u∗

, (2.9)

together with the following boundary conditions (BCs):

∂φ

∂x

∣∣∣∣
tf

= λ(tf ), (2.10)

x(ti) = xi. (2.11)

Equations (2.8) are known as coequations, equations (2.9) are known as optimality
equations and equations (2.10) are the transversality conditions. To ensure that
the stationary point is a minimum, a further condition have to be set:

∂2H
∂2u

∣∣∣∣
x∗,λ∗,u∗

≥ 0. (2.12)

Relations (2.7), (2.8), (2.9), (2.12) need be satisfied in order to solve the uncon-
strained optimal-control problem, with the boundary conditions defined in (2.10)
and (2.11) for the final and initial point. For this reason this set of equations is
known as two-points-boundary-value problem (TPBVP).

Equation (2.12) is not suitable for problems in which the controls are bounded
in the admissible control set U . In this case the condition assumes a more general
form:

H(x∗(t),u∗(t),λ(t)∗, t) ≤ H(x∗(t),u(t),λ(t)∗, t), ∀u ∈ U , (2.13)

which is equivalent to:

u∗(t) = argmin
u(t)∈U

H(x(t),u(t),λ(t), t). (2.14)

It should be noticed that the minimum condition is translated from the minimisa-
tion of the cost function J (x,u) (see Eq. 2.3) to the minimisation of the control
Hamiltonian H(x∗,u), evaluated at the solution state (see Eq. 2.13). Equation
(2.14) is the typical formulation of the Pontryagin’s Minimum Principle (PMP).
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Variable final condition

If the final time is not fixed, i.e. in the case of minimum-time applications, (2.6)
can be updated, calculating the variation respect to time and introducing (2.8):

δ Ja =

[(
∂φ

∂x
− λ

)T
δx +

(
H+

∂φ

∂t

)
δt

]
t=tf

+

∫ tf

0

((
∂H
∂x

)T
δx +

(
∂H
∂u

)T
δu + λ̇

T
δx

)
dt. (2.15)

A new transversality condition arises from this formulation:

H|t=tf = − ∂φ

∂t

∣∣∣∣
t=tf

. (2.16)

2.3.2 Constrained problem

A more general statement of the optimal control problem, includes a cost term both
on the initial and final states, together with path constraints (i.e. constraints that
affect the system along the time domain) and boundary constraints (i.e. constraints
related to the initial and final state). In this new general definition of the problem,
the cost function and the constraints have the following form:

J (x(t),u(t), t) = φ(x(ti),x(tf ), ti, tf ) +

∫ tf

ti

L(x(t),u(t), t)dt, (2.17)

ẋ(t) = f(x(t),u(t), t), (2.18)

c(x(t),u(t), t) ≤ 0, (2.19)

b(x(ti),x(tf ), ti, tf ) = 0. (2.20)

Equation (2.18) represents the dynamic constraints, (2.19) represents the path
constraints c : Rn × Rm × R → Rp, (2.20) represents the boundary constraints
b : Rn × Rm × R× R→ Rq. When introducing the constraints (2.18), (2.19) and
(2.20), the cost function becomes:

Ja(x,u) = φ(x(tf ),x(ti))− νT b(x(tf ),x(ti)) +∫ tf

ti

(
L(x,u) + λT (f(x,u)− ẋ) + µT c(x,u)

)
dt, (2.21)

where ν are the Lagrange multipliers associated to the boundary constraints b
and µ are the Lagrange multipliers associated to the path constraints c. The new
control Hamiltonian can be defined as:

H = L(x,u) + λT f(x,u) + µT c(x,u), (2.22)
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and the new cost-function variation becomes:

δ Ja =

(∂φ
∂x
− λ−

(
∂b

∂x

)T
ν

)T

δx +

(
H+

∂φ

∂t
− νT ∂b

∂t

)
δt


t=tf

+

(∂φ
∂x

+ λ−
(
∂b

∂x

)T
ν

)T

δx +

(
−H+

∂φ

∂t
− νT ∂b

∂t

)
δt


t=ti

+

∫ tf

ti

((
∂H
∂x

)T
δx +

(
∂H
∂u

)T
δu + λ̇

T
δx

)
dt. (2.23)

The fist-order necessary conditions become:

λ̇ = −∂H
∂x

, (2.24)

u = argmin
u∈U

H, (2.25)

while the transversality conditions are:

λ(tf ) =

(
∂φ

∂x
−
(
∂b

∂x

)T
ν

)
t=tf

, H|t=tf =

(
∂φ

∂t
− νT ∂b

∂t

)
t=tf

(2.26)

λ(ti) =

(
−∂φ
∂x

+

(
∂b

∂x

)T
ν

)
t=ti

, H|t=ti =

(
−∂φ
∂t

+ νT ∂b

∂t

)
t=ti

(2.27)

µj(t) = 0, when cj(x,u, t) < 0, j = 1, ..., p,

µj(t) < 0, when cj(x,u, t) = 0, j = 1, ..., p, (2.28)

µj(t) > 0, when cj(x,u, t) > 0, j = 1, ..., p.

The left equations in (2.26) and (2.27) hold only if the final state x(tf ) is free
(i.e. not fixed), while the right equations hold only if the final time tf is free.
Equations (2.28) are known as complementary slackness conditions, and have the
aim to penalise the cost function if the path constraints given in (2.19) are not
satisfied. This formulation of the problem is known as an Hamiltonian-boundary-
value-problem (HBVP).

2.3.3 Remarks on the variational approach

A fascinating parallelism arises between the achievement of the PMP and the
Hamiltonian mechanics. Hamilton’s principle, or principle of stationary action,
states that a mechanical system moves towards a configuration in which the so-
called action integral is stationary for any possibile perturbation. The action
integral is defined as:

A =

∫ t2

t1

L(q, q̇, t)dt, L = T − V (2.29)
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where q(t) represents the vector of generalised coordinates, T is the kinetic energy
and V is the potential energy. Hamilton’s principle requires that δA = 0, that
leads to the Euler-Lagrange equations:

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= 0. (2.30)

When introducing an holonomic constraint b(q, t) = 0, a new augmented La-
grangian can be defined by means of the Lagrange multiplier λ(t):

L̂ = L−λT b, (2.31)

for which the same Euler-Lagrange equations (2.30) hold. In some sense, the Euler-
Lagrange equations can be considered as a solution of an unconstrained OCP, in
which the target is equal to the action integral. Therefore, in the optimal control
framework, the action integral becomes the cost function, while the holonomic
constraints become the dynamic equations that describe the control system. The
Lagrangian approach make use of n generalised coordinated q, their derivatives
q̇ and the time t. In this framework n second-order differential equations need
be solved in order to describe the dynamics of the system. In a Hamiltonian
approach, the system can be described by n generalised coordinated q, n gener-
alised momenta p and the time t. This formulation leads to a 2n first-order set
of differential equations (Hamilton’s canonical equations). The conversion from
Lagrange equations to Hamilton equations is carried out through the Legendre
transformation. The generalised momenta are:

p =
∂L
∂q̇

, (2.32)

while the Lagrangian L is replaced by the Hamiltonian:

H = pT q̇− L, (2.33)

which is similar to the control Hamiltonian in 2.5. Posing δH = 0 leads to the
canonical equations of Hamilton:

q̇ =
∂H
∂p

, ṗ =
∂H
∂q

. (2.34)

In this case, the generalised momenta p have the same role of the costates λ in
2.5. A deeper investigation of these topics is presented in [16].

2.4 Numerical solution of the OCP

The equations that give a representation of the minimum problem, have now to be
solved using a numerical strategy, in order to find the optimal control. In this sec-
tion the explicit and implicit formulations of the OCP will be discussed, together
with the direct and indirect approach. Explicit and implicit strategies, differ from
how the dynamics differential equations are integrated in each time step. Direct
and indirect approaches are related to the moment in which the problem is discre-
tised for a numerical solution. Both direct and indirect methods can implement
an explicit or implicit formulation for the integration of the dynamics.
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2.4.1 Explicit solution

In the case of an explicit integration method, the solution at the next step is ob-
tained from the solution of the current and previous steps, with a time-marching
technique. A typical explicit formulation allows to integrate the system dynamics,
starting from a guess of the initial (unknown) condition and calculating the sub-
sequent solutions of the differential equations (step-by-step) until the final time is
reached. At the final step, the error between the solution and the final condition
(known) is calculated. Then, the initial guess is adjusted and the evaluation of the
solution at the final step is iterated, until the error on the final condition is lower
than a given value. This formulation is known as forward-shooting method. In case
the final state is unknown and the initial condition is known, a backward-shooting
method can be used, integrating the differential equations from the final to the
initial condition. In other words, with a single-shooting method the solution of
differential equations is propagated from a known condition to an unknown state
(or vice-versa).

The multiple-shooting method is an evolution of this concept, and allows to
reduce the sensitivity of the single-shooting strategy while changing the initial
condition. In the multiple shooting scenario, the time domain is divided into
a set of smaller intervals. The single-shooting method is then applied to each
interval, enforcing the continuity at each interval border. The new set of continuity
conditions produce a higher dimension problem, although integrating on shorter
intervals allows to overcome the high sensitivity related to the propagation of
the adjusted initial condition to the solution at the final step (in case of forward
integration).

2.4.2 Implicit solution

The implicit integration (or collocation) of the dynamics implies solving simulta-
neously, in each mesh point, a large-scale system of algebraic differential equations.
The solution at each mesh interval k = 1, ..., K is approximated as a linear com-
bination of coefficients a and time-dependent basis functions ψ(t):

x(k)(t) ≈ X(k)(t) =
J∑
j=1

a
(k)
j ψ

(k)
j (t). (2.35)

Each mesh interval k is divided in I smaller integration intervals. The solution is
calculated at each time-step tik ∈ [tk−1, tk] for i = 1, ..., I:

X(tik) = X(tk−1) +

∫ tik

tk−1

f(X(t), t)dt

= X(tk−1) +
I∑
j=1

A
(k)
ij f(Xjk, tjk), (2.36)

where f represents the equations to integrate (i.e. the dynamics equations), while
A(k) is the integration matrix for interval k, associated to the rule of integra-
tion. The defect conditions (2.36) can be rewritten in the form F(X(t), t) = 0
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by subtracting the right-hand-side of the equation to its left-hand-side. This set
of equations, together with the continuity conditions between each mesh interval
(similarly to the multiple shooting), can be solved for the coefficients a(k), in each
mesh interval, in order to calculate the solution x. The implicit methods differ
from the choice of basis functions ψ(t) (typically piecewise polynomials) and the
integration scheme used (or quadrature method).

2.4.3 Direct methods

Direct methods are based on the transcription of the OCP into a nonlinear-
programming-problem (NLP). The dynamics equations (2.1) and the cost function
(2.2) are directly discretised, while the optimisation problem is solved in a finite-
dimensional domain through a large-scale NLP solver (e.g. IPOPT, SNOPT).

Direct explicit solution

A direct-shooting method combines the simplicity of the explicit integration of the
dynamics equations (2.18) to the direct transcription of the OCP into a discrete-
time NLP. The controls of the system are approximated by piecewise polynomials:
the set of parameters that describes these approximating functions need be deter-
mined by the optimiser. Then, an integration scheme is selected for solving the
dynamics equations step-by-step, while a consistent quadrature formula is used for
evaluating the cost function (2.17). The OCP is solved through the arisen NLP,
which does not include the OCP Lagrange multipliers.

Direct implicit solution

In direct-collocation methods, both the states and the controls are approximated
by sets of basis functions. A widely employed family of methods for direct collo-
cation of OCPs is known as orthogonal-collocation or pseudospectral methods. In
these methods the states are approximated by a linear combination of Lagrange
polynomials (basis functions), while the collocation is based on Gauss quadrature,
that guarantees exponential convergence. In this case, the accuracy of the approx-
imation can be improved both adjusting the number and disposition of collocation
points and adjusting the polynomial degree, introducing more flexibility than the
classical fixed-order integration schemes (i.e. Runge-Kutta, Hermite-Simson, ...).

Considering an OCP defined by (2.18-2.20), the time domain t ∈ [ti, tf ] can be
conveniently transformed in the new scaled time interval τ ∈ [−1, 1], through the
affine transformation:

t =
tf − ti

2
τ +

tf − ti
2

. (2.37)

The interval considered is furthermore divided into K subintervals [Tk−1, Tk], with
k = 1, . . . K and Tk are the mesh points in which the solution will be calculated.
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In this discrete-time description of the OCP, the cost function becomes:

J = φ(x(1)(−1),x(K)(+1), ti, tf )+
tf − ti

2

K∑
k=1

∫ Tk

Tk−1

L(x(k)(τ),u(k)(τ), t(τ, ti, tf ))dτ,

(2.38)
while the dynamic constraints are:

dx(k)(τ)

dτ
=
tf − ti

2
f(x(k)(τ),u(k)(τ), t(τ, ti, tf )), (2.39)

with path constrints:

cmin ≤ c(x(k)(τ),u(k)(τ), t(τ, ti, tf )) ≤ cmax, (2.40)

and boundary conditions:

b(x(1)(−1),x(K)(+1), ti, tf ) = 0. (2.41)

Further boundary conditions x(T−k ) = x(T+
k ) need be included, in order to take

into account for the continuity at each mesh point. In order to introduce the
quadrature approximation, the dynamics equations (2.39) can be replaced by an
equivalent integral form:

x(k)(τ) = x(k)(Tk−1) +
tf − ti

2

∫ τ

Tk−1

f(x(k)(ζ),u(k)(ζ), t(ζ, ti, tf ))dζ. (2.42)

In a similar way to Eq. (2.35) and (2.36), the states can be approximated employing
a Legendre-Gauss-Randau (LGR) collocation scheme:

x(k) ≈ X(k)(τ) =

Nk+1∑
j=1

X
(k)
j l

(k)
j , (2.43)

l
(k)
j (τ) =

Nk+1∏
l=1

τ − τ (k)l

τ
(k)
j − τ (k)l

, l 6= j, (2.44)

where l
(k)
j (τ), for j = 1, . . . , Nk+1, represents a basis of Lagrange polynomials, and

τ
(k)
1 , . . . , τ

(k)
Nk

are the Legendre-Gauss-Randau (LGR) collocation points. The collo-
cation points, in each mesh interval k, are determined by the roots of a polynomial
obtained by the sum of an (Nk)-degree and a (Nk−1)-degree Legendre polynomial.
The peculiar formulation of the LGR polynomial generates an unevenly-spaced set
of collocation points, which does not include the upper border of the mesh interval.
Since the states and controls are evaluated (and approximated) in the collocation
points, their location has an important role in the convergence of the OCP. Equa-
tion (2.42) can be further discretised in the interval [Tk−1, Tk] by means of an LGR
quadrature scheme:

X
(k)
i+1 = X

(k)
1 +

tf − ti
2

Nk∑
j=1

A
(k)
ij f(X

(k)
j ,U

(k)
j , t(τ

(k)
j , ti, tf )), i = 1, . . . , Nk, (2.45)
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where U(k) represents the approximation of the controls and A
(k)
ij is an element

of the LGR integration matrix in interval k. The NLP that arises from the LGR
discretisation has the aim of minimising the approximated cost function

J ≈ φ(X
(1)
1 ,X

(K)
Nk+1, ti, tf ) +

K∑
k=1

Nk∑
j=1

tf − ti
2

w
(k)
j L(X

(k)
j ,U

(k)
j , t(τ

(k)
j , ti, tf )), (2.46)

where w
(k)
j are the LGR quadrature weights. Moreover, in discrete-time, the NLP

is subject to defect constraints

X
(k)
i+1 −X

(k)
1 −

tf − ti
2

Nk∑
j=1

A
(k)
ij f(X

(k)
j ,U

(k)
j , t(τ

(k)
j , ti, tf )) = 0, i = 1, . . . , Nk,

(2.47)
path constraints

cmin ≤ c(X
(k)
i ,U

(k)
i , t(τ

(k)
i , ti, tf )) ≤ cmax, i = 1, . . . , Nk, (2.48)

and boundary conditions

b(X
(1)
1 ,X

(K)
Nk+1, ti, tf ) = 0. (2.49)

The continuity conditions of the states at each mesh point are:

X
(k)
Nk+1 = X

(k+1)
1 , k = 1, . . . , K − 1. (2.50)

This condition can be deleted using the same variable for both X
(k)
Nk+1 and X

(k+1)
1 .

In summary, the NLP generated by the transcription of the OCP in a finite-
dimensional domain (i.e. approximating the states, controls and cost function),
aims to minimise (2.46), subject to the constraints (2.47 - 2.49). In this approach,
both the states and controls are discretised, leading to a larger NLP than in the
explicit solution (where only the controls are discretised).

The LGR collocation scheme used to explain the transcription steps is the
method implemented in GPOPS-II. Though, different collocation strategies are
available, i.e. Legendre-Gauss (LG) and Legendre-Gauss-Lobatto (LGL). These
methods differ from the location of the collocation points, that is related to differ-
ent combinations of the Legendre polynomials. In the next section further details
on collocation schemes will be discussed.

NLP solution

Considering the minimisation of a function J (z), subject to equality constraints
b̂(z) and inequality constraints c(z), the NLP can be formulated as:

minJ (z) subject to
{

b̂(z) = 0
c(z) ≤ 0

(2.51)

where z = (x, u). The Karush-Kuhn-Tucker (KKT) conditions are fundamental
to generalise the Lagrange multipliers method for a problem that includes inequal-
ity constraints. The Lagrangian can be formulated as:

L(z,λ,µ) = J (z) + b̂
T
λ+cT µ . (2.52)
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It should be noticed that this formulation is suitable also for the NLP that arises
from the transcription of the OCP, considering that both (2.47) and (2.49) are
included in the equality constraints b̂. The KKT necessary conditions that arise
form ∇L(z,λ,µ) = 0 are:

∂L

∂ z
=

∂ J
∂ z

+

(
∂b̂

∂ z

)T

λ+

(
∂c̃

∂ z

)T
µ = 0, (2.53)

∂L

∂ λ
= b̂(z) = 0, (2.54)

∂L

∂ µ
= c̃(z) = 0, µ ≥ 0, (2.55)

where c̃(z) represents the active inequality constraints, i.e. the set of inequality
constraints for which c(z∗) = 0. Condition (2.55) requires that, at the border of
the active inequalities c̃(z), the gradient of the cost function and the gradient of
the inequality constraints assume opposite directions, i.e. the frontier point z∗ is a
minimum. In fact, assuming b̂(z∗) = 0, the Lagrangian gradient can be calculated
as:

0 = ∇L(z∗,λ∗,µ∗) = ∇J (z∗) +∇c̃T (z∗)µ,

µi = −∇J (z∗)

∇c̃i(z∗)
, i = 1, . . . , Nc, (2.56)

where Nc is the number of active inequalities.
The solution of the NLP can be addressed with different strategies: the penalty

method, the augmented Lagrangian method, the sequential-quadratic-programming
and the interior point or barrier method. The penalty approach can be employed
for NLPs with no inequality constraints. The equality constraints are multiplied
by penalty terms in order to obtain an unconstrained problem. The new cost
function becomes:

J (z) + αb̂(z)2, (2.57)

where α > 0 represents the penalty parameter. The penalty parameter is incre-
mented until the constraints are satisfied. The augmented Lagrangian methods
lead to a slightly different cost function:

J (z)− λT b̂(z) + αb̂(z)2, (2.58)

where λi represents an estimate of the Lagrange multiplier, which need be updated
at each iteration, together with α, in order to reach the solution.

In the sequential-quadratic-programming (SQP) the NLP is approximated to
a linear-quadratic-programming (LQP) subproblem, at each iteration. The LQP
solution defines the search direction dk at each iteration k, i.e. the search direction
that minimises the cost function calculated at iteration k + 1 through a Taylor
approximation:

J (zk+1) ≈ J (zk) +∇J (zk)
Tdk +

1

‖dk‖
dTk∇zzL(zk,λk,µk)dk, (2.59)
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subject to:

b̂(zk+1) ≈ b̂(zk) +∇b̂(zk)
Tdk = 0, (2.60)

c(zk+1) ≈ c(zk) +∇c(zk)
Tdk ≤ 0. (2.61)

The last term of the cost function (2.59) relates to a common choice for improving
the robustness of the algorithm, although it does not correspond to the proper
Hessian of J .

In the interior-point methods a barrier-penalty function is used to find a solu-
tion of the NLP. A new set of slack variables s is defined in order to reduce the
original NLP into an equality-constrained NLP. The cost function becomes:

J (z)− λT b̂(z)− µT (c(z)− s(z))− τ log s(z), (2.62)

subject to:

b̂(z) = 0, (2.63)

c(z)− s = 0, (2.64)

s ≤ 0. (2.65)

It should be noticed that the slack variables s are set equal to the inequality
constraints c, which are satisfied only if s ≤ 0. In order to find the solution of the
NLP, the barrier parameter τ > 0 is reduced towards zero. The obtained solution
is an approximation of the solution of the original NLP.

Mesh refinement

In the direct-transcription methods the solution of the NLP (namely the real op-
timisation step) is only one part of the algorithm. At this point the accuracy of
the solution need be evaluated and compared to a desired value. If the accuracy
is insufficient, a new refined mesh is generated and the new refined NLP is solved.
This iteration is repeated until the desired accuracy is reached. The determination
of the mesh points and collocation points is known as mesh-refinement algorithm.
The h part of the mesh refinement method is related to the possibility of modifying
the mesh-point number and location. The control of the number and location of
the collocation points within a single mesh interval is related to the p part of the
refinement strategy. A p collocation method employs a single mesh interval, while
the subsequent mesh refinements are determined by varying the degree of the ap-
proximating polynomial. These methods give a good convergence when smooth
solutions can be achieved. The hp collocation methods allow to vary both the
number of mesh points and the degree of the approximating polynomials within
each mesh interval, taking into account for the computational efficiency of the h
methods, together with the advantages of using p methods where the solution is
smooth.

Different collocation schemes can be employed for the direct transcription. For
instance, a Legendre-Gauss (LG) scheme determines N collocation points within
a single mesh interval by finding the roots of an N -degree Legendre polynomial
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Figure 2.1: Comparison between the LG, LGR and LGR collocation schemes.

PN(τ). In a Legendre-Gauss-Radau (LGR) scheme, the collocation points are
determined by the N roots of PN−1(τ)+PN(τ), while in a Legendre-Gauss-Lobatto
(LGL) scheme, the N collocation points are evaluated from the N − 2 roots of
ṖN−1(τ), together with the two extreme points of the mesh interval. In Fig. 2.1 the
LG, LGR and LGL collocation points are shown, together with the corresponding
Legendre polynomials. Considering a normalised time interval τ ∈ (−1, 1), a set of
approximating polynomials l(τ), and a set of quadrature weights wi (dependent on
the quadrature scheme selected), these three collocation schemes have the property
that: ∫ +1

−1
l(τ)dτ =

N∑
i=1

wil(τi), (2.66)

is an exact equation (i.e. not a quadrature approximation) for polynomial degree
equal to 2N − 1 (LG), 2N − 2 (LGR) and 2N − 3 (LGL), i.e. the degree of the
approximating polynomial determines the number of collocation points in a single
mesh interval. The approximating polynomials can be for example the Lagrange
polynomials (2.44), which are actually used in GPOPS-II. It should be underlined
that the LGL scheme has proved to have minor convergence rate than LG and
LGR, because it determines an oscillating costate dynamics, due to the intrinsical
properties of the mathematical formulation (see [17]).

2.4.4 Indirect methods

In the indirect methods the optimisation problem is stated through the first-order
necessary conditions, which come from (2.7) and (2.24), together with a relatively
small optimisation subproblem (2.25). The arising set of differential equations is
then numerically solved.
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Indirect explicit solution

In an indirect-shooting approach, an initial guess on the unknown boundary con-
dition is assumed first. Then, the differential equations (2.7) and (2.24) are inte-
grated towards the known boundary with a time-marching criterium. The control
law at each step is obtained from (2.25). At the last integration step, the final
conditions are compared to those given in (2.10). The process is iterated adjust-
ing the initial guess, until the error between the evaluated final condition and the
actual terminal condition lays below a given threshold. Differently from the direct
shooting method, in this case the OCP Lagrange multipliers are involved in the
calculation.

Indirect implicit solution

In an indirect-collocation scenario, both the states and the Lagrange multipliers
(costates) are approximated through piecewise polynomials, according to a certain
integration scheme (Runge-Kutta, Hermite-Simpson, orthogonal collocation). The
new set of discretised differential equations leads to a finite-dimensional algebraic
equation system, that can be solved using an appropriate root-finding algorithm
(Newton-Raphson, ...).

An example of indirect collocation is now briefly discussed, in order to under-
line the basic features of this class of methods. The equality-constrained prob-
lem defined by the dynamics equations (2.18) and the constraints (2.20) is trans-
formed into an unconstrained problem through the formulation of the TPBVP,
i.e. introducing the first-order necessary conditions (2.24)-(2.25). The inequality
constraints (2.19) are then removed introducing a set of penalty functions p(x,u).
The Hamiltonian becomes:

H = L(x,u) + λT f(x,u) + pT c(x,u), (2.67)

where

pi(x,u) =

{ (
1 + ci(x,u)

hi

)ni
if t > −hi,

0 otherwise,
(2.68)

represents an example of penalty function (with i = 1, . . . , Nc), which increases if
the i-th constraint is violated. The parameters n and h define the sharpness of
the penalty function. It should be noticed that, with this penalty approach, the
violation of the inequality constraints is permitted. Alternatively, a set of barrier
functions can be used instead of the penalty functions: in this case no constraint
violation is allowed. The arising algebraic-differential system of equations is then
discretised into a finite-dimensional algebraic problem, through a proper integra-
tion scheme. To reduce the complexity of the problem, the controls are eliminated
by the symbolical (when possible) or numerical solution u(x,λ) of the optimality
condition (2.25). It is noticed that the control set is explicitly determined only
when the states x and costates λ are found. The use of penalty or barrier functions
transforms the OCP in a smooth problem. The new set of discrete-algebraic equa-
tions F(z) can be handled by a proper numerical root-finding solver. For instance,
a slightly modified Newton method can be implemented in order to improve the
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convergence of the problem. The search direction dj at iteration j is computed
first by:

dj = −
(
∂F(zj)

∂zj

)−1
F(zj), (2.69)

while the unknown z can be computed by:

zj+1 = zj − αjdj, (2.70)

where the damping factor αj is the first number in the sequence {1, q, q2, q3, . . . , qmax}
with q ∈ [0.5, 1) that satisfies the condition:∥∥∥∥∂F(zj)

∂zj
F(zj+1)

∥∥∥∥ ≤ κj‖dj‖, (2.71)

with κj < 1 chosen in the sequence {1 − qi/2}. Convergence is reached when
αj = 1 and ‖dj‖ is lower than a predefined tolerance. The described procedure is
implemented in the software PINS [18].

2.4.5 Remarks on direct and indirect methods

Two basic steps are necessary for the solution of the OCP: the calculation of the
optimality conditions and the discretisation of the problem. The order of these
steps represents the fundamental difference between direct and indirect methods.
In the direct approach the OCP is discretised first, while the optimality con-
ditions are stated in a finite-dimensional domain for solving the arisen discrete
NLP. In the indirect approach, the first-order optimality conditions are achieved
in a continuous-time domain, and are then discretised for obtaining a numerical
(i.e. discrete) solution. Obtaining the first-order optimality conditions in a closed
form, allows to achieve a good performance of the algorithm, as stated in [18].
Moreover, a symbolical or approximated formulation of the controls allows to em-
ploy the indirect approach in real-time applications, as discussed in [19]. On the
other hand, this method results less intuitive, since the symbolic calculation of
the PMP is not straightforward and the costates have to be expressed explicitly,
as reported in [11]. Considering now the following unconstrained OCP:

J = φ(x(T )),

ẋ = f(x,u), (2.72)

x(t0) = x0.

In an indirect collocation, the PMP leads to:

λ̇ = −∂H
∂x

,

0 =
∂H
∂u

, (2.73)

λ(T ) =
∂φ

∂x

∣∣∣∣
t=T

,
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with H = λT f . In a direct collocation scenario, employing a single-state Euler
quadrature method (A

(k)
ij = h and w

(k)
j = 1):

Xk+1 = Xk + h f(Xk,Uk), (2.74)

J a = φ(Xk) +
K−1∑
k=1

ΛT
k (Xk+1 −Xk − h f(Xk,Uk)), (2.75)

while the KKTs become:

∂J a

∂Xk

= −hΛk
∂f(Xk,Uk)

∂Xk

−Λk + Λk−1 = 0,

∂J a

∂Uk

= −hΛk
∂f(Xk,Uk)

∂Uk

= 0, (2.76)

∂J a

∂XK

= ΛK−1 +
∂φ(XK)

∂XK

= 0.

It should be noticed that, for h → 0, the PMP equations 2.73 correspond to
the KKT equations 2.76. Therefore, the costates in the direct approach are an
approximation of the costates calculated in the indirect approach.

Some important insights on direct and indirect methods can be found in
[20],[21] and [22].

2.5 GPOPS-II

GPOPS-II (General Purpose Optimal Control Software), represents a widespread
implementation of the direct collocation methods, for the solution of optimal con-
trol problems; many details are discussed in [23]. The software takes advantage of
a MATLAB implementation, that allows the user to build the problem by defin-
ing the fundamental parameters and functions that describe the system dynamics,
together with the the set-up parameters of the OCP. The key components of the
software relate to the transcription algorithm, based on the LGR orthogonal col-
location, and the hp-adaptive-mesh-refinement method for the determination of
the number of mesh points and the approximating polynomial degree. The opti-
misation step within a single mesh, is provided by a large-sparse NLP solver, such
as IPOPT or SNOPT. First, the problem is discretised (i.e. transcribed) into an
NLP through state and control approximation as in (2.43) and (2.44). An NLP
is now generated, with the aim of minimising the cost function (2.46), subject
to the constraints (2.47 - 2.49). The NLP is then presented to the optimiser,
which calculates the solution of the OCP, at the current mesh iteration, through
the KKT (2.53-2.55). After the optimisation step, the solution error is evaluated
and compared to the user-defined error tolerance. If the error is higher than the
accepted tolerance, a mesh refinement step is carried out. The new discretisation
leads to a new NLP to be solved by the optimiser. These steps are repeated until
the error tolerance on different meshes is satisfied.

In GPOPS-II both hp and ph adaptive-mesh-refinement schemes are imple-
mented. The key difference between the hp and the ph methods lies in the manner
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in which the decision is made to either increase the number of collocation points in
a mesh interval or to refine the mesh. The hp strategy, described in [24], increases
the degree of the approximating polynomial if the ratio of the maximum curva-
ture over the mean curvature of the state in a particular mesh interval exceeds a
user-specified threshold. In this case, the mesh spacing and the polynomial degree
for the mesh refinement are determined simultaneously. The dynamics and the
constraints are evaluated in the midpoints of the Nk collocation intervals, within
a single mesh interval k. A midpoint is defined as:

τ̄
(k)
j =

τ
(k)
j + τ

(k)
j+1

2
, j = 1, . . . , Nk. (2.77)

The j-th column of the midpoint residual matrix for the mesh interval k, can be
defined as follows:

R
(k)
j =

∣∣∣∣∣
Nk+1∑
l=1

D
(k)
jl X

(k)
j −

tf − ti
2

f(X
(k)
j ,U

(k)
j , t(τ

(k)
j , ti, tf ))

∣∣∣∣∣ (2.78)

where tf and ti represent the final and initial time at mesh interval k, D
(k)
jl is

an element of the LGR differentiation matrix, and X(k) and U(k) represent the
approximation of the states and the controls respectively. The elements of vector
R

(k)
j represent the residuals of the dynamics at the midpoints and provide a mea-

sure on the violation of the state dynamics. A vector r can be defined in such a
way that each element contains the largest value of R

(k)
j , for j = 1, . . . , Nk − 1. A

scaled midpoint residual vector can be defined as:

β =
r

r̄
, r̄ =

∑Nk−1
i=1 ri
Nk − 1

, (2.79)

where ri is an element of r. The vector β is a scaled measure of how far the
collocation condition is far from zero in a collocation midpoint, and gives a metric
for the determination of the subsequent refinement strategy. If the user-defined
error tolerance ε is lower than the maximum value of r, a mesh-refinement step
is needed for calculating the solution. If no elements of β are higher than a user-
defined parameter ρ, the case of uniform-type errors occurs, and the number of
collocation points is increased by a user-defined value. If some elements of β
exceed the parameter ρ, the errors are nonuniform-type and new mesh points are
added where the elements of the scaled midpoint residual vector βi > ρ. In [25] a
ph strategy is presented. The polynomial degree in a mesh interval is increased if
the estimate of the required polynomial degree is lower than a user-defined limit.
If the limit is exceeded, the mesh interval is divided into e defined number of mesh
intervals, i.e. the number of mesh points is increased. In this case, the polynomial
degree is incremented first (p refinement), while the mesh spacing (h refinement)
is adjusted only if the polynomial approximation step fails (p-then-h). The error
estimation is carried out by comparison of two different approximations of the
states. The underlying idea is that, in a problem in which the state evolution is
smooth, increasing the collocation points leads to a better approximation of the
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solution, i.e. a solution that fits the state dynamics more accurately. For this
reason, the estimate of the mesh-interval-error is calculated through the difference
between the solution obtained at the current refinement step and the approximated
solution obtained by increasing the LGR collocation points. Both the states and
the controls are approximated through the Lagrange polynomials, at each mesh
interval k (see Eq. 2.43). An improved state approximation is defined incrementing
the polynomial order or, equivalently, the number of collocation points. The state
at each new quadrature point j is:

X̂
(k)

j = X
(k)
1 +

tf − ti
2

Mk∑
l=1

Â
(k)
jl f(X

(k)
l ,U

(k)
l , t(τ

(k)
l , ti, tf )), j = 2, . . . ,Mk + 1,

(2.80)
where X(k) is the approximation of the states, U(k) is the approximation of the
controls, Mk = Nk + 1 is the new number of collocation points and Â

(k)
jl is the

LGR integration matrix corresponding to the points (τ̂
(k)
1 , . . . , τ̂

(k)
Mk

). An absolute
and relative error can be defined as:

E
(k)
j =

∣∣∣X̂(k)
j −X(k)

j

∣∣∣ , (2.81)

e
(k)
j =

E
(k)
j

1 + max
∣∣∣X(k)

l

∣∣∣ , l = 1, . . . ,Mk + 1, (2.82)

where X(k) and X̂(k) are the components of the approximated state vectors X(k)

and X̂
(k)

. The maximum relative error is then:

e(k)max = max e(k), e(k) = [e
(k)
1 , . . . , e

(k)
Nx

], (2.83)

where Nx is the number of states. In a global collocation scheme the error behaves
like O(N2.5−Kd

k ), where Nk is the number of collocation points in the mesh interval
k and Kd is the number of continuous derivatives in the solution (Kd = Nk if the
solution is smooth). Increasing the number of collocation points to Mk = Nk+Pk,

the error decreases at least by the factor N−Pkk . If the error e
(k)
max is higher than

the desired error tolerance ε, a mesh refinement is needed in such a way that the
error is reduced by a factor ε/e

(k)
max. In other words:

N−Pkk = ε/e(k)max, (2.84)

then

Pk =

⌈
logNk

(
e
(k)
max

ε

)⌉
. (2.85)

In case Mk > Nmax, i.e. the desired degree of approximating polynomials is higher
than the user-defined maximum polynomial degree, a h-refinement is performed.
The total number of collocation points in the new mesh intervals equals to the
predicted polynomial degree Mk. Moreover, each new mesh interval contains the
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user-defined minimum number of collocation points. Then, the number of newly-
defined mesh intervals is:

Bk = max

(⌈
Mk

Nmin

⌉
, 2

)
. (2.86)

Another important aspect to underline is represented by the scaling of the
NLP problem, that allows a faster and more robust convergence to the optimal
solution: the software employs an automatic-scaling approach, that transforms a
generic variable x ∈ [a, b] to a new scaled variable x̃ ∈ [−1/2, 1/2] considering the
following expressions:

x̃ = vxx+ rx, (2.87)

vx =
1

b− a, (2.88)

rx =
1

2
− b

b− a. (2.89)

2.5.1 IPOPT

IPOPT(Interior Point Optimizer) is a widespread NLP solver, based on an interior-
point algorithm with a filter line-search method [26]. In the optimal control sce-
nario, this algorithm has the task of solving the NLP generated by the OCP
discretisation, at each mesh-refinement step computed by GPOPS-II. Considering
the following NLP:

minJ (z) subject to
{ b(z) = 0

c(z) ≤ 0
, (2.90)

the interior-point method computes approximate solutions for a sequence of barrier
problems defined as

minJ (z)− τ
n∑
i=1

ln(si) subject to

{ b(z) = 0
c(z) = s
s ≥ 0

, (2.91)

for a decreasing sequence of barrier parameters τ converging to zero. The lower
τ , the higher the sensitivity of the cost function to the effect of infeasibility of the
inequality constraints. The Lagrangian becomes:

L(z,λ,µ, s) = J (z)− λTb(z)− µT (c(z)− s)− τ
n∑
i=1

ln(si). (2.92)

where λ and µ are the Lagrangian multipliers for the equality and inequality



2.5. GPOPS-II 25

constraints respectively. The condition ∇L(z,λ,µ, s) = 0 leads to

∂L

∂ z
=

∂ J
∂ z

+

(
∂ b

∂ z

)T
λ+

(
∂ c

∂ z

)T
µ = 0, (2.93)

∂L

∂ λ
= b(z) = 0, (2.94)

∂L

∂ µ
= c(z)− s = 0, (2.95)

∂L

∂ s
= µ s−τ = 0, (2.96)

which represent the KKTs of the NLP for τ → 0. The method described imple-
ments an approximated solution of the barrier problem considering a fixed value
of τ . The approximate solution of the next barrier problem is obtained from the
previous one while decreasing the barrier parameter τ . The optimality error for
the barrier problem can be defined as:

Eτ (z,λ,µ, s)
.
= max

{
‖∇J (z) + λ∇b(z)− µ∇c(z)‖∞

sd
, ‖b(z)‖∞,

‖µ s−τ‖∞
sc

}
,

(2.97)
where sd and sc are properly defined scaling parameters, that prevent the error
to become very large when the multipliers diverge. Evaluating the error at τ = 0
makes possible to obtain the optimality error for the original problem and defi-
nitely a terminal condition for the whole algorithm. In other terms, the algorithm
terminates if the approximate solution (z∗,λ∗,µ∗, s∗) satisfies

E0(z
∗,λ∗,µ∗, s∗) ≤ εtol, (2.98)

where εtol > 0 is a user-defined error tolerance. In interior-point problems, it is
essential to implement a good update of the barrier parameter. At step j + 1, the
parameter is

τj+1 = max
{εtol

10
,min

{
κττj, τ

θτ
j

}}
, (2.99)

where κτ ∈ (0, 1) and θτ ∈ (1, 2). With this update rule, the barrier parameter
can be decreased at super-linear rate and an excessive reduction is prevented,
avoiding numerical issues. The solution of the barrier problem can be found, for
the k-th iteration, adopting a damped Newton’s method. The search directions
(dzk,d

λ
k ,d

µ
k ,d

s
k) are generated from a linearisation of the optimality conditions

(2.93)-(2.96) at (zk,λk,µk, sk):
∇2
xxL −∇xb −∇xc 0
∇xb 0 0 0
∇xc 0 0 1

0 0 sk µk




dzk
dλk
dµk
dsk

 =


∇xL
b(zk)

sk − c(zk)
µk sk−τ

 , (2.100)

Considering now the step sizes (or damping factors) αk, α
µ
k ∈ (0, 1], it is possible
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to evaluate the following iterations as

zk+1
.
= zk − αkdzk, (2.101)

λk+1
.
= λk − αkdλk , (2.102)

µk+1
.
= µk − αµkdµk , (2.103)

sk+1
.
= sk − αµkdsk. (2.104)

The choice of step sizes is made in such a way that

αmaxk
.
= max {α ∈ (0, 1] : zk + αdzk ≥ (1− τ̃j)zk} , (2.105)

αµk
.
= max {α ∈ (0, 1] : µk + αdµk ≥ (1− τ̃j)µk} , (2.106)

where

τ̃ = max {τ̃min, 1− τj} , τ̃min ∈ (0, 1). (2.107)

The step size αk is a value of the interval (0, αmaxk ], determined by a backtracking
line-search procedure that spans a decreasing sequence of trial steps sizes in the
series

αk,l = 2−lαmaxk , l = 0, 1, 2, . . . , (2.108)

while αµk is the actual step size for updating µ.
In IPOPT, a line-search filter method is proposed instead of using exact penalty

merit functions to enforce progress toward the solution. With the merit functions
method, the trial points are accepted if they improve a combination of the objective
function and the constraint violation. The typical formulation of a merit function
is:

Ψβ = J (z)− τ
n∑
i=1

ln(si) +
β

2
‖b(z,λ,µ, s)‖2 = ψ(z, s) +

β

2
θ(z,λ,µ, s), (2.109)

where θ(z,λ,µ, s) represents the infeasibility of the constraints, ψ(z, s) is the
interior-point cost function and β is a weighting parameter. At each Newton’s
iteration step, it exists a value of β such that the solution of (2.100) is a descent
direction for the merit function (2.109). Therefore, a possible strategy is to choose
alpha in the backtracking procedure (2.108) in order to ensure that the merit func-
tion is decreasing [27]. Filter methods, instead, allow to accept trial points if they
improve either the objective function or the constraints violation. Considering a
trial point zk(αk,l) = zk +αk,ld

z
k during the backtracking line-search procedure.

This point is acceptable if either

θ(zk(αk,l)) ≤ (1− γθ)θ(zk),

or ψj(zk(αk,l)) ≤ ψj(zk)− γψ θ(zk), (2.110)

are satisfied for fixed constants γθ, γψ ∈ (0, 1). If the constraints violation is lower
than a given number θmin, a switching condition is provided to ensure a sufficient
progress in the barrier objective function. A filter Fk is defined for each step k,
in order to restrict the possibile combinations (θ,ψj) and guarantee a successful
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Figure 2.2: IPOPT console output quantities.

trial point. A trial point is rejected if (θ,ψj) ∈ Fk. At the initial step, the filter
is

F0
.
= (θ,ψ) ∈ R2 : θ ≥ θmax, (2.111)

where θmax is the largest constraint violation for accepting a trial point. Then,
the filter is updated:

Fk+1
.
= Fk∪

{
(θ,ψ) ∈ R2 : θ ≥ (1−γθ)θ(zk), ψ ≥ ψj(zk)−γψ θ(zk)

}
. (2.112)

This filters prevents the algorithm to return to the neighbourhood of zk. Finally,
a minimum step size αmink can be defined for the cases in which the described
procedure is not capable of finding a feasible trial step. If the backtracking line-
search leads to a trial step size αk,l ≤ αmink , the algorithm reverts to a feasibility
restoration phase. In this case, the algorithm tries to find a new iterate zk which
results acceptable for the filter Fk and satisfies (2.110). The restoration fails
whether the program converges to a stationary point for the constraints violation,
i.e. the problem seems locally infeasible and the constraints violation can not be
reduced.

IPOPT provides a console tabular output in order to compute an evaluation
for the most important parameters connected to the convergence of the problem;
in figure (2.2) can be seen an example of the printed quantities. The meaning of
the output parameters can be summarised as follows:

• iter : iteration count k;

• objective: unscaled objective value at current iteration;

• inf pr : unscaled constraint violation at current iteration, or rather the
infinity-norm (maximum) of the constraints;

• inf du: scaled dual infeasibility at current point, or rather the infinity-norm
of the internal dual infeasibility expressed in (2.93);

• lg(mu): log10 of the barrier parameter τ ;

• ‖d‖: infinity-norm of the primal search direction d;

• lg(rg): depends on log10 of regularization of Hessian and Lagrangian;

• alpha du: stepsize of dual variables αzk in (2.103);

• alpha pr : stepsize of the primal variables αk in (2.101);

• ls : number of backtracking line-search steps.
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2.5.2 ADiGator

The evaluation of the objective function gradient, the constraint Jacobian and
the Hessian of the Lagrangian is fundamental in order to obtain a solution for
the NLP problem; the standard strategy adopted to evaluate these derivatives is
the finite-differencing. Considering a generic function f(x), its derivative can be
approximated in an interval of length ε:

df

dx

∣∣∣∣
x

=
fx+ε/2 − fx−ε/2

ε
. (2.113)

The main advantage of this strategy consists in the fact that only evaluations of
the function are required; nevertheless the finite-differencing strongly depends on
the spacing between the chosen points: with a large spacing the approximation
is coarse, while using small spacing may lead to an improper evaluation of the
derivative.

An efficient and accurate method to compute the needed derivatives automat-
ically is known as automatic differentiation (AD). Taking into consideration a
differentiable computer program, it may be broken into a sequence of elementary
operations, each one connected to a correspondent derivative rule; applying sys-
tematically the chain rule to each of the elementary operation rules, it is possible to
achieve a derivative with accuracy coincident with machine precision. ADiGator
is a MATLAB-based tool, that provides automatic differentiation. This package
generates a MATLAB program for computing the possible non-zero derivatives
of the original function program. In an optimal-control scenario, the tool can be
easily implemented in GPOPS-II, leading to the following advantages:

1. no time penalties are added with the derivative evaluation because the
derivative code is only evaluated by MATLAB library;

2. the tool can compute vectorised derivatives of the vectorised functions which
result from the direct-collocation method provided by GPOPS-II, i.e. it im-
proves the efficiency of the calculation of the OCP solution;

3. second-order derivatives can be provided simply applying recursively the
same procedure.

ADiGator makes use of a source transformation via operator overloading in or-
der to determine the derivatives of functions defined in MATLAB programs. In
summary, the inputs of the software consist in a function (that has to be differ-
entiated), the information on the sizes of inputs and the derivative information
on the inputs; the operator is overloaded because different operators have differ-
ent implementations depending on their arguments: the program in fact will be
able to recall the functions using different input data-type available during the
calculations. The algorithm first transforms the given MATLAB source-code into
an intermediate code in which are included calls to ADiGator specific routines
for transformation; this code is then evaluated multiple times using overloaded
CADA objects, which include only information on the size of objects, symbolic
identifiers and the possible nonzero derivative locations. The evaluations and the
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information obtained are included in functions and derivative files. As result, the
method provides a transformation of the original user-function into a MATLAB
function that computes a numerical solution of the non-zero derivatives of the
original function. All these topics are extensively discussed in [28, 29].
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Chapter 3

Vehicle modelling

3.1 Introduction

The model development is a fundamental part of the minimum-time-simulation
framework. The complexity of the model strongly affects the computational ef-
fort and, in some cases, even the possibility of achieving the convergence of the
algorithm. In other words, a compromise between the accuracy of the results and
the simulation time need be taken into account. Moreover, it is important to find
an efficient mathematical representation of the vehicle, in which the constraints
are smooth enough to ensure differentiability. Two different strategies will be dis-
cussed in this chapter: the steady-state vehicle models, in which only stationary
effects are included, and the dynamic vehicle models, in which the transient ef-
fects are involved. Both these types of models have been applied to minimum-time
problems and many examples are available in literature. In [30], a steady-state
race car model is employed, including a friction-ellipse tyre model, together with
a simple engine model, limited braking power, aerodynamic forces and the stiff-
ness of the suspensions, the anti-roll-bars and the chassis. This formulation is
employed in a quasi-steady-state fixed-trajectory simulation. In [31] and [32] a
seven-degrees-of-freedom double-track model is used for assessing minimum-lap-
time with quasi-steady-state fixed-trajectory simulations, while in [33] and [34]
the same vehicle model is employed (neglecting the steady-state assumptions) for
free-trajectory dynamic simulations using optimal-control methods. The chassis
is represented by a rigid body with three degrees-of-freedom, while four degrees-
of-freedom are related to the wheels spin. The suspensions are neglected, as well
as the roll, pitch and heave motions. The Pacejka Magic Formula is used for the
tyre model, and the force combination is obtained by means of weighting func-
tions. The aerodynamic drag force is applied in the centre of gravity, while the
downforce is applied considering the force distribution between the two axles. A
parallel steering geometry is included. The powertrain model is based on experi-
mental engine maps, while the gear ratio is computed from the vehicle speed. A
speed-sensing differential is also considered for the rear-axle torque distribution. A
similar model is employed in [35] for transient and steady-state simulations. In this
case, the tyre model is obtained from a simplified Magic Formula, with a reduced
number of coefficients. This model allows to compute analytically the force-peak

31
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position for scaling the slip values. A more complex multibody car model is also
implemented for simulating short manoeuvres, including a more accurate repre-
sentation of the chassis for taking into account the roll, pitch and heave motions of
the vehicle. The suspension model consists in four-bar-linkages for the front and
rear axles, together with their springs and dampers. Also the unsprung masses
and the tyre bodies are included. In [36] a steady-state double-track model is
employed in a fixed-trajectory simulation. In this case, the vertical dynamics is
modelled through a lookup-table, which computes the aerodynamic forces and the
chassis motions from the tyre-normal loads. The TMeasy tyre model is included,
together with a tyre-temperature model. A seven-degrees-of-freedom double-track
car model is also discussed in [37] for the computation of g-g diagrams. The chassis
can move in the road plane and the wheels spin is considered, while the pitch, roll
and heave motions are neglected. A combined Magic Formula is employed for tyre
modelling. The powertrain in taken into account through lookup tables, while a
torque-sensing differential model is included. In [38] a double-track vehicle model
is employed for free-trajectory dynamic simulations using an optimal-control ap-
proach. The model has seven degrees-of-freedom, which consist in the translations
and yaw motion on the road plane plus the wheel spin. A speed-sensing differen-
tial model is also included, together with a constraint for avoiding wheel-locking
during braking. The same dynamic model is used in [39] for computing the free-
trajectory with an optimal-control approach, while including an energy recovery
model for the power-unit. In the literature related to motorcycle simulations the
modelling development is even more challenging due to the intrinsic instability
of these vehicles. A milestone in the minimum-time approaches can be found in
[4], where a simple dynamic model is implemented for computing a free-trajectory
optimal-control simulation. The vehicle has four degrees-of-freedom, namely the
longitudinal, lateral, yaw and roll motions. The gyroscopic effects are included,
although both the suspensions and the rider motion are neglected. A linear tyre-
model is employed together with the tyre relaxation-equation for including the
transient behaviour. In [40] a comprehensive dynamic motorcycle model is imple-
mented for the analysis of the effect of engine-spin direction. The model includes
nine degrees-of-freedom, which consist in four chassis motions, steering angle,
wheels spin and suspension travels. A linear tyre model is employed, together
with friction ellipses for estimating the force coupling and relaxation equations
for emulating the dynamics effects. The powertrain is taken into account for
simulating the gear changes, while the engine is modelled though lookup tables.
A very essential motorcycle model is presented in [41]. This model describes a
steady-state single-track model, in which the roll motion is considered. The tyre
performance is limited by constant friction ellipses, while the steering and the
suspension travels are neglected. Optimal braking performance is also considered,
together with roll-dependent wheelie and stoppie limits. This formulation allows
to compute the g-g envelope of the vehicle analytically.

This chapter summarises the main modelling strategies implemented in the
simulations described in Ch. 5. A double-track steady-state car model will be
discussed in Sec. 3.2. This model is used for the g-g diagrams generation by em-
ploying nonlinear-optimisation techniques (see Ch. 4) and, consequently, for com-
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Figure 3.1: Race car model employed in quasi-steady-state simulations.

puting quasi-steady-state minimum-time simulations. In Sec. 3.3, the motorcycle
model presented in [41] is modified to take into account for the drag force and
the engine power limit. The model allows to compute the g-g-speed diagrams
analytically (Ch. 4). The use of this simple model in minimum-time problems
(Ch. 5) represents a novel approach to motorcycle simulations, since it retains the
main features that characterise the dynamics of a motorcycle while requiring a
low computational effort. Finally, in Sec. 3.4 the previously discussed steady-state
car model is extended to a dynamic formulation for including the transient effects.
This model is employed in a free-trajectory optimal-control simulation (see Ch. 5),
which is used for assessing the effect of steering geometry on vehicle performance.
For this reason, an in-depth discussion is carried out in this chapter, for listing
and comparing the most widespread steering-geometry definitions.

3.2 Steady-state car model

A steady-state car model is fundamental for the computation of the g-g-V diagrams
discussed in Ch. 4. In this case, a RWD double-track car model is employed for
assessing the race car performance under steady-state conditions. The baseline
parameters of the vehicle and their related meaning are shown in Tab. 3.1, together
with the tyre coefficients used to compute the tyre forces. The wheel-steering angle
δ is assumed small, the roll, pitch and bounce degrees of freedom are neglected,
together with the suspension travels. The steady-state equations of the vehicle
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are given by

max = (Fxfl + Fxfr + Fxrl + Fxrr)− (Fyfl + Fyfr) δ − FD, (3.1)

may = (Fyfl + Fyfr + Fyrl + Fyrr) + (Fxfl + Fxfr) δ, (3.2)

0 = mg + FLf + FLr −Nfl −Nfr −Nrl −Nrr, (3.3)

mayh =
T

2
(Nfl −Nfr +Nrl −Nrr), (3.4)

max h = aFLf − bFLr − a(Nfl +Nfr) + b(Nrl +Nrr), (3.5)

0 =
T

2
(Fyfl − Fyfr) δ − a (Fxfl + Fxfr) δ +

T

2
(−Fxfl + Fxfr − Fxrl + Fxrr) +

− a (Fyfl + Fyfr) + b (Fyrl + Fyrr) , (3.6)

where the first three equations represent the force balance along the longitudinal,
lateral and vertical direction respectively, while the latter three equations represent
the moment balance around the roll, pitch and yaw axes through the projection of
the centre of mass on the ground. In (3.1) and (3.6), the longitudinal acceleration
is ax = u̇−Ωv, where u and v are the longitudinal and lateral velocity of the vehicle
respectively (V =

√
u2 + v2 is the total velocity), while Ω is the yaw rate. In (3.2)

and (3.5), the lateral acceleration is ay = Ωu. It should be noticed that, due to
the steady-state assumptions, the lateral acceleration v̇ (computed in the reference
frame fixed to the car) and the yaw acceleration Ω̇ are zero. The aerodynamics
forces consist in the drag force FD, the front FLf and rear FLr downforces. They
are applied on the road plane (see Fig. 3.1), and are given by1

FD =
1

2
ρaCDAu

2, FLf =
1

2
ρaCLfAu

2, FLr =
1

2
ρaCLrAu

2. (3.7)

The tyre longitudinal and lateral forces are given by Fxij and Fyij respectively,
where i = f, r (front, rear) and j = l, r (left, right). The tyre forces are computed
employing the Magic Formula with theoretical slips [43]:

Fx = N
σx
σ
Dx sin{Cx arctan [Bx σ − Ex (Bx σ − arctan(Bx σ))]}, (3.8)

Fy = N
σy
σ
Dy sin{Cy arctan[By σ − Ey (By σ − arctan(By σ))]}, (3.9)

with

σx =
κ

1 + κ
, σy =

tan(λ)

1 + κ
, σ =

√
σ2
x + σ2

y , (3.10)

where the theoretical slips σx, σy and σ are computed from the longitudinal and
lateral (practical) slips κ and λ [43]. The lateral slips λij of the current model are

λfl = δ − v + Ωa

u+ T
2
Ω
, λfr = δ − v + Ωa

u− T
2
Ω
, (3.11)

λrl = − v − Ωb

u+ T
2
Ω
, λrr = − v − Ωb

u− T
2
Ω
. (3.12)

1Selecting to apply the aerodynamic forces on the road plane is consistent to the methods
used for their measurement in the wind-tunnel using strain-gauge balances [42]. For this reason,
the moment due to the actual drag-force (applied to the centre of pressure) is taken into account
in the downforce coefficients.
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Figure 3.2: Longitudinal (left) and lateral (right) tyre forces for unit normal load
as a function of the (theoretical) longitudinal σx and lateral σy slip respectively,
for normal loads between 500 N (dash-dot-magenta) and 5500 N (dashed-cyan),
with steps of 1000 N. Stars represent the curve peaks.

The longitudinal slip will be an input to the model. Finally, B, C, D and E
are the Pacejka’s coefficients, which are herein expressed in the simplified form
introduced in [44]. The purpose is to avoid the full Magic Formula formulation,
while retaining some of its key features, namely load dependent friction coefficients,
load-dependent position of the peak of the force vs. slip curves, and load dependent
cornering stiffness per unit load. The coefficients are

Kx = BxCxDx = N pKx1 exp(pKx3 dfz), (3.13)

Ex = pEx1, (3.14)

Dx = (pDx1 + pDx2 dfz)λµ,x, (3.15)

Cx = pCx1, (3.16)

Bx =
Kx

CxDxN
, (3.17)

Ky = N0 pKy1 sin

(
2 arctan

N

pKy2N0

)
, (3.18)

Ey = pEy1, (3.19)

Dy = (pDy1 + pDy2 dfz)λµ,y, (3.20)

Cy = pCy1, (3.21)

By =
Ky

CyDyN
, (3.22)

where dfz = N−N0

N0
and N0 is a reference load. The dataset of tyre parameters

is given in Tab. 3.1, while the resulting tyre forces along the theoretical slips are
shown in Fig. 3.2 at increasing normal loads N . The tyre normal forces are given
by Nij, where again i = f, r and j = l, r (see Fig. 3.1), and are computed from the
system consisting of (3.3), (3.4) and (3.5), with the roll stiffness balance

may
h

T
ξ =

Nfl −Nfr

2
, (3.23)
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where ξ =
Kφf

Kφf+Kφr
is the roll stiffness ratio, Kφf is the front-axle roll stiffness,

and Kφr is the rear-axle roll stiffness.
The total driving force Fx is split between the rear and front axle according to

the distribution factor kt, under the open-differential assumption:

Fxfl =
(1− kt)Fx

2
, Fxfr =

(1− kt)Fx
2

, (3.24)

Fxrl =
ktFx

2
, Fxrr =

ktFx
2

. (3.25)

During acceleration kt = 1 for rear-wheel-drive (RWD) vehicles, kt = 0 for front-
wheel-drive (FWD) vehicles, and 0 < kt < 1 for all-wheel-drive (AWD) vehicles.
During braking the distribution factor is given by

kt =
1

1 + γ
, γ =

Fxfl + Fxfr
Fxrl + Fxrr

, (3.26)

where γ is the brake ratio, which is here defined as the ratio between the front and
rear longitudinal tyre forces – the switch between the value of kt in acceleration
and the value of kt in braking is implemented through an approximation of a
regularised piecewise function, in order to avoid numerical issues.

Summarising, given the longitudinal velocity u, the longitudinal acceleration
ax, and the lateral acceleration ay, the vehicle trim can be computed by solving the
steady-state equations (3.1)-(3.6), the roll balance (3.23), the brake ratio (3.26),
the open-differential conditions Fxfl = Fxfr and Fxrl = Fxrr, for the four normal
loads Nij, the steering angle δ, the four tyre longitudinal slips κij, and the lateral
velocity v.

3.3 Steady-state motorcycle model

The g-g-V diagrams of the motorcycle are computed employing the essential model
reported in [41], which is extended to include the drag force and the engine power
limit. Both the suspensions and the steer angle are neglected. As in the car
model, the yaw rate Ω is related to the lateral acceleration ay and the velocity
V by Ω = ay/V , under steady-state assumptions. In order to obtain a compact
formulation, it is further assumed that the vehicle sideslip angle is small, that the
motorcycle is symmetric with respect to the x-z plane (i.e. Ixy = Iyz = 0), that
the cross moment of inertia Ixz is negligible, and that Iy ≈ Iz. The benefit of
such model is that a compact formulation is obtained, while retaining motorcycle
peculiarities such as roll-dependent stoppie and wheelie limits.

The steady-state equations of motion are:

max = Fxr + Fxf − FD (3.27)

may = Fyr + Fyf (3.28)

mg = Nr +Nf (3.29)

mayh cosφ = mgh sinφ (3.30)

maxh cosφ = bNr − (w − b)Nf − FDha cosφ (3.31)

maxh sinφ = bFyr − (w − b)Fyf − FDha sinφ, (3.32)
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Table 3.1: Baseline car parameters and tyre coefficients.

Symbol Description Value

g gravity 9.81 m/s2

ρa air density 1.20 kg/m3

m mass 1300 kg
h height of centre of mass 0.330 m
w wheelbase 2.900 m
b longitudinal distance of the centre of mass 1.535 m
a w − b 1.365 m
Iz yaw inertia 1700 kgm2

T vehicle track 2.016 m
γ0 brake ratio Fxf/Fxr 1.13
ξ0 roll stiffness ratio 0.53
CDA drag area coefficient 0.65 m2

CLfA front lift area coefficient 0.15 m2

CLrA rear lift area coefficient 0.35 m2

Pmax maximum power 415 kW
δmax maximum wheel steer angle 20 deg

pCx1 longitudinal shape factor 1.6935
pDx1 max longitudinal friction coefficient 1.8757
pDx2 longitudinal friction load dependency factor -0.127
pEx1 longitudinal curvature factor 0.07708
pKx1 max longitudinal stiffness coefficient 30.5
pKx3 max longitudinal stiffness coefficient 0.2766
λµx longitudinal scaling factor 0.93
pCy1 lateral shape factor 1.733
pDy1 max lateral friction coefficient 1.8217
pDy2 lateral friction load dependency factor -0.4388
pEy1 lateral curvature factor 0.29446
pKy1 max cornering stiffness coefficient 44.2
pKy2 max cornering stiffness coefficient 2.5977
λµy lateral scaling factor 0.84
N0 nominal load (where dfz = 0) 3500 N



38 CHAPTER 3. VEHICLE MODELLING

Figure 3.3: Motorcycle model.

where the first three equations represent the balance of forces along the longi-
tudinal, lateral and vertical axes, while the latter three equations represent the
moment balance around the roll, pitch and yaw axes. The meaning of the model
parameters and values used in the simulations is reported in Tab. 3.2, while the
forces and the axes convention are depicted in Fig. 3.3. The lateral forces are
represented by Fyr and Fyf for the rear and front tyre respectively, while the roll
angle φ is measured from the vertical plane x-z. During braking, the longitudinal
forces Fxr and Fxf are related by

γ =
Fxf
Fxr

, (3.33)

where the brake ratio γ (compare with (3.26) where γ was defined for cars) is zero
during acceleration and is determined by the rider in braking. The seven steady-
state equations (3.27)-(3.33) can be solved analytically for φ,Nr, Nf , Fxr, Fxf ,Fyr, Fyf .
Such solution will be used to derive the g-g boundaries (Ch. 4).

The aerodynamic-drag force is applied on the centre of pressure, and is given
by

FD =
1

2
ρaCDAV

2. (3.34)

The coupling between longitudinal and lateral forces is included through fric-
tion ellipses, which (at the limit of friction) are given by(

Fxr/Nr

µx

)2

+

(
Fyr/Nr

µy

)2

= 1, (3.35)(
Fxf/Nf

µx

)2

+

(
Fyf/Nf

µy

)2

= 1, (3.36)

where µx and µy are the longitudinal and lateral friction coefficients respectively.
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The maximum acceleration, i.e. the upper boundary of the g-g map, is obtained
when introducing the analytical solution of the steady-state equations (3.27)-(3.33)
into the rear friction ellipse (3.35), to give(

w(max + FD)
√
a2y + g2

g((w − b)m
√
a2y + g2 +maxh+ FDha)

)2
1

µ2
x

+

(
ay
g

)2
1

µ2
y

= 1, (3.37)

which can be solved for the longitudinal acceleration ax at different lateral accel-
erations ay, using a standard root-finding solver.

Since the maximum engine power Pmax is given, the longitudinal force balance
(3.27) can be used to compute the related acceleration limit

ax =
Pmax

mV
− FD

m
. (3.38)

Differently from cars, the front tyre of a motorcycle can lift the road during
acceleration (wheelie condition). The related acceleration limit is obtained from
the condition Nf = 0, which can be solved analytically to give

ax =
b
√
a2y + g2

h
− FDha

mh
. (3.39)

In order to compute the minimum deceleration, it is assumed that the rider
applies an optimal brake ratio: this condition occurs when the front and rear tyres
are engaged equally, i.e. Fxr/Nr = Fxf/Nf . The condition (3.35)=(3.36) gives the
following (longitudinal- and lateral-acceleration dependent) optimal brake ratio

γopt =
mb
√
a2y + g2 −maxh− FDha

m(w − b)
√
a2y + g2 +maxh+ FDha

. (3.40)

When introducing the analytical solution of the steady-state equations (3.27)-
(3.33), together with (3.40) into either the front or rear friction ellipse (3.36), one
obtains

−ax = gµx

√
1−

(
ay
g

)2
1

µ2
y

+
FD
m
. (3.41)

Again, differently from cars, the rear tyre of a motorcycle can lift the road
while braking (stoppie condition). The related deceleration limit is obtained from
the condition Nr = 0, which can be solved analytically to give

−ax =
(w − b)

√
a2y + g2

h
− FDha

mh
. (3.42)

In sum, the g-g diagram is obtained by the envelope of (3.37), (3.38), (3.39),
(3.41), and (3.42). The resulting g-g diagrams of the motorcycle (at different
speeds), obtained with the dataset in Tab. 3.2, are discussed in Ch. 4.
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Table 3.2: Motorcycle (plus rider) parameters.

Symbol Description Value

g gravity 9.81 m/s2

ρa air density 1.20 kg/m3

m mass 250 kg
h height of centre of mass 0.69 m
ha height of centre of pressure 0.69 m
w wheelbase 1.50 m
b longitudinal distance of the centre of mass 0.73 m
CDA drag area coefficient 0.20 m2

Pmax maximum power 180 kW
µx longitudinal friction coefficient 1.2
µy lateral friction coefficient 1.44

Figure 3.4: Dynamic car model, including different front steering angles.
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3.4 Dynamic car model

A dynamics car model is derived from the steady-state RWD double-track model
discussed in Sec. 3.2 for the implementation in the optimal-control dynamic simu-
lation (see Ch. 5). In this case, no steady-state assumptions are included in order
to take into account for the transient effects. As for the steady-state model, the
roll, pitch and bounce degrees of freedom are neglected, together with the sus-
pension travels. In this formulation different left and right steering angles can be
employed at the front wheels: this feature is implemented for imposing a specific
steering kinematics (see Ch. 5, in which the dynamic model performance is anal-
ysed for different steering systems). The main model quantities are depicted in
Fig. 3.4. The model parameters are reported in Tab. 3.3 and describe an FSAE
race car. The dynamic equations are:

max = Fxfl cos δfl + Fxfr cos δfr − Fyfl sin δfl − Fyfr sin δfr +

Fxrl cos δrl + Fxrr cos δrr − Fyrl sin δrl − Fyrr sin δrr − FD, (3.43)

may = Fxfl sin δfl + Fxfr sin δfr + Fyfl cos δfl + Fyfr cos δfr +

Fxrl sin δrl + Fxrr sin δrr + Fyrl cos δrl + Fyrr cos δrr, (3.44)

0 = mg + FLf + FLr −Nfl −Nfr −Nrl −Nrr, (3.45)

mayh =
T

2
(Nfl −Nfr +Nrl −Nrr), (3.46)

max h = aFLf − bFLr − a(Nfl +Nfr) + b(Nrl +Nrr), (3.47)

IzΩ̇ =
T

2
(Fxfl cos δfl − Fxfr cos δfr − Fyfl sin δfl + Fyfr sin δfr)−

T

2
(Fxrl cos δrl + Fxrr cos δrr − Fyrl sin δrl − Fyrr sin δrr) +

a (Fxfl sin δfl + Fxfr sin δfr + Fyfl cos δfl + Fyfr cos δfr)−
b (Fxrl sin δrl + Fxrr sin δrr + Fyrl cos δrl + Fyrr cos δrr) , (3.48)

where the first three equations represent the force balance along the longitudinal,
lateral and vertical direction respectively, while the latter three equations represent
the moment balance around the roll, pitch and yaw axes through the projection
of the centre of mass on the ground. In (3.43) and (3.47), the longitudinal accel-
eration is ax = u̇ − Ωv, where u and v are the longitudinal and lateral velocity
of the vehicle respectively (V =

√
u2 + v2 is the total velocity), while Ω is the

yaw rate. In (3.44) and (3.46), the lateral acceleration is ay = v̇ + Ωu. It should
be noticed that, in this case, the steady-state conditions v̇ = 0 and Ω̇ = 0 are
neglected. The aerodynamic forces consist of the drag force FD and the front and
rear downforces, FLf and FLr. They are applied on the road plane (see Fig. 3.4),
and are given by (3.7). The tyre longitudinal and lateral forces are given by Fxij
and Fyij respectively, where i = f, r (front, rear) and j = l, r (left, right). The
tyre forces are computed employing the Magic Formula with theoretical slips [43]
and including the effect of camber on the lateral force:

Fx = N
σx
σ
Dx sin{Cx arctan [Bx σ − Ex (Bx σ − arctan(Bx σ))]}, (3.49)

Fy = N
σy
σ
Dy sin{Cy arctan[By σ − Ey (By σ − arctan(By σ))]}+ SVy,
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with

σx =
κ

1 + κ
, σy =

tan(λ)

1 + κ
, σ =

√
σ2
x + σ2

y , (3.50)

where the theoretical slips σx, σy and σ are computed from the longitudinal and
lateral (practical) slips κ and λ:

λfl = δfl −
v + Ωa

u+ T
2
Ω
, λfr = δfr −

v + Ωa

u− T
2
Ω
, (3.51)

λrl = δrl −
v − Ωb

u+ T
2
Ω
, λrr = δrr −

v − Ωb

u− T
2
Ω
. (3.52)

The steering angles on each wheel δij, where i = f, r (front, rear) and j = l, r
(left, right), can be computed as

δfl = δl − τf , δfr = δr + τf , (3.53)

δrl = −τr, δrr = τr, (3.54)

where δl and δr are the left and right wheel-steering angles in a zero-toe configu-
ration, while τf and τr are the toe angles at the front and rear tyres respectively
(positive for toe-out). The longitudinal slip will be an input to the model. Simi-
larly to the steady-state model (Sec. 3.2), the Pacejka’s coefficients B, C, D and
E are obtained using (3.14)-(3.22), while the camber-dependent term SVy is given
by

SVy = N(pVy3 + pVy4dfz)φλµ,y, (3.55)

where dfz = (N −N0)/N0, N0 is a reference load and φ is the wheel-camber angle.
A positive camber angle produces negative forces on the right tyres and positive
forces on the left tyres, i.e. the top of the tyres is farther from the vehicle than the
case of negative camber. The dataset of tyre parameters is given in Tab. 3.3. The
tyre normal forces are given by Nij, where again i = f, r and j = l, r (see Fig. 3.4),
and are computed from the system consisting of (3.45), (3.46) and (3.47), with
the roll stiffness balance obtained in (3.23). Similarly to the steady-state model,
the total driving force Fx is split between the rear and front axle according to the
distribution factor kt, under the open-differential assumption, using the (3.24)-
(3.25).

3.4.1 Steering geometry definitions

The possibility of choosing a specific steering kinematics when employing the dis-
cussed dynamic model, opens the problem of defining different steering geometries.
In this section the main definitions available in literature are discussed and anal-
ysed, following the comparison work carried out in [6], where the Ackermann and
parallel steering geometries are compared for an FSAE race vehicle.

The terms ‘Ackermann steering’ or ‘Ackermann geometry’ refer to the
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Figure 3.5: a) Comparison between the different steering kinematic characteristics
selected. FSAE current configuration (solid), Ackermann (dashed) and parallel
(dash-dot). b) Comparison between different Ackermann ratio definitions.
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Figure 3.6: a) Approximation of the Ackermann steering geometry using a four-bar
linkages. b) Steering linkage of the FSAE vehicle under investigation.
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Figure 3.7: Actual steering vs. Ackermann steering.

steering system kinematics where the wheel-spin axes of the steerable
wheels intersect the centre of rotation, for non-zero steering-wheel an-
gles at negligible lateral accelerations [...] A steering system with Ack-
ermann geometry is said to be 100 % Ackermann, and one with equal
steer angles (parallel steer) on the steerable axle is said to be 0 %
Ackermann. [45]

A standard and well-known derivation give the following relationship between the
inner δi and outer δo wheel angles in the case of Ackermann steering

1

tan δo
− 1

tan δi
=
T

w
, (3.56)

where δo is the steering angle of the outer wheel, δi is the steering angle of the
inner wheel, T is the track width and w is the wheelbase.

For example, the steering configuration of the FSAE car model (see Tab. 3.3 for
the main parameters) is compared with the Ackermann and the parallel steering
geometries in Fig. 3.5a. The difference between the inner and outer wheel steering
angles δi − δo is shown at different internal wheel steering angles δi. When δi − δo
is negative (which never happens with the current setup), the geometry is said
reverse-Ackermann [46, 47]. There are a number of different definitions in the
literature when it comes to comparing the actual steering against the Ackermann
steering. The most common definitions will now be concisely reviewed.

In 1878 C. Jeantaud proposed to approximate the Ackermann steering with a
four-bar linkage mechanism that has two rockers pointing towards the middle of
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the rear axle; see Fig 3.6a. Such layout could thus be considered 100 % Ackermann.
If the two rockers point below the middle of the rear axle, the steering is less then
100 % Ackermann, parallel steering is obtained when the two rockers are parallel,
while if the two rockers point above the middle of the rear axle the steering is
more than 100 % Ackermann. Finally, if the intersection of the two rockers moves
in front of the front axle, reverse-Ackermann steering is obtained, i.e. the steer of
the inner wheel is smaller that the steer of the outer wheel. The distance between
the connecting rod and the line between the steering pivots does not affect the
steering geometry for small steer rotations, as long as the inclination of the two
rockers remains constant. Indeed, basic kinematic considerations dictate that the
position of the velocity centre of the connecting rod is at the intersection of the
rocker axes. The Ackermann steering ratio is sometimes computed as

ντ =
τ

T/2
, (3.57)

where τ is the distance between the intersection of the rocker axis and the rear
axle, while T is the track width, see Fig. 3.6a.

In the current industrial practice, the Jeantaud layout is modified by replacing
the connecting rod with two tie rods (CB and EF) that connect the wheel hub to
the steering rack (CDE); see Fig. 3.6b. As in the case of the four-bar linkage, when
the two rods AB and FG point towards the middle of the rear axle the layout
could be considered 100 % Ackermann. The conditions of different Ackermann
ratios follow the considerations reported for the Jeantaud linkage.

A different method for defining the steering geometry relates to the position of
the projection of the velocity centre of the front wheels on the vehicle wheelbase
[48]. In this case the Ackermann ratio is given by

νw =
w

L
, (3.58)

where L is shown in Fig. 3.7. If the projection is on the rear axle, the steering
system is 100 % Ackermann. If the projection is below the rear axle (L > w) the
layout is less than 100 % Ackermann, if the projection lies at infinity (L =∞) the
parallel steering is obtained (0 % Ackermann).

A net-steer ratio definition is often employed. This is the ratio of the difference
between the inner and outer wheel-steering angles to the difference between the
inner and outer wheel-steering angles of the corresponding Ackermann geometry

νn =
δi − δo
δi,a − δo,a

, (3.59)

where δi and δo are the inner and outer wheel-steering angles of the current layout,
while δi,a and δo,a are the inner and outer wheel-steering angles in the correspond-
ing Ackermann geometry. There are two main widespread options to identify the
Ackermann geometry associated to the current steering geometry. In the first
option, the inner wheel-steering angle is kept fixed and equal to the inner-wheel
steering angle of the current layout, i.e. δi,a = δi, while the outer wheel-steering
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angle of the Ackermann geometry is readily computed from (3.56) as

δo,a = arctan

(
w tan δi,a

w + T tan δi,a

)
. (3.60)

In the second option, both the inner-wheel and outer-wheel steering angles are
changed by the same quantity t in order to give the Ackermann steering geometry,
i.e.

δi,a = δi + t, δo,a = δo − t. (3.61)

In other words, in this case the Ackermann steering is obtained by applying a toe
correction to the current steering layout. Such correction can be either positive
(toe-out) or negative (toe-in) and is not constant. The latter option is employed
e.g. in [49, 50].

Finally, a linearised version of the net-steer ratio (3.59) is sometimes used
[48]. In this case the denominator of (3.59) is approximated with the following
expression which is obtained from (3.56)

δi,a − δo,a ≈ δoδi
T

w
≈ δ2o

T

w
. (3.62)

The different definitions are compared in Fig. 3.5b using the current FSAE
steering layout. Application of (3.57) gives a (constant) Ackermann ratio of 47 %
(green solid line with crosses). All the other definitions are almost coincident
and equal to 32 % at very small wheel-steer angles. Definitions νw (3.58) and νn
(3.59) with (3.61) remain very close in the whole steer range, raising from 32 % to
34 % (dashed violet and solid blue respectively). Definition νn (3.59) with (3.62)
increases slightly more, and reaches a final value of 36 % (dotted yellow). Definition
νn (3.59) with (3.60) is more sensitive to steer changes and raises to 40 % at the
maximum steering considered (thick solid red). Finally, when applying a four-bar
linkage with the two rockers pointing towards the middle of the rear axle, ratios
in the range 24-33 % are obtained, depending on the definition selected.

Summarising, the net-steer definitions should be preferred over the practical
ones, such as those related to the intersection of the rocker axes. The definition
(3.59) with (3.61) is the one that is used in the steering characteristic analysis
discussed in Ch. 5.
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Table 3.3: Baseline car parameters and tyre coefficients.

Symbol Description Value

g gravity 9.81 m/s2

ρa air density 1.20 kg/m3

m mass 280 kg
h height of CoM 0.315 m
w wheelbase 1.535 m
a CoM from front axle 0.767 m
b CoM from rear axle 0.768 m
ξ roll stiffness ratio 0.489
Iz yaw inertia 109 kgm2

Tf front track 1.220 m
Tr rear track 1.190 m
T (Tf + Tr)/2 1.205 m
CDA drag area coefficient 1.38 m2

CLfA front lift area coefficient 0.89 m2

CLrA rear lift area coefficient 1.33 m2

Pmax maximum power 66.3 kW

pCx1 Longitudinal shape factor 2.31
pDx1 Max longitudinal friction coefficient -1.20
pDx2 Max longitudinal friction coefficient 0.71
pEx1 Longitudinal curvature factor 1.00
pKx1 Max longitudinal stiffness coefficient 39.06
pKx2 Max longitudinal stiffness coefficient -0.32
pKx3 Max longitudinal stiffness coefficient -0.23
λµ,x Longitudinal friction scaling factor 1.00
pCy1 Lateral shape factor 1.86
pDy1 Max lateral friction coefficient -2.48
pDy2 Max lateral friction coefficient 0.06
pEy1 Lateral curvature factor 0.93
pKy1 Max cornering stiffness coefficient 53.91
pKy2 Max cornering stiffness coefficient 2.57
pKy3 Max cornering stiffness coefficient 3.95
pVy3 Variation of shift with camber -3.01
pVy4 Variation of shift with camber and load -1.51
λµ,y Lateral friction scaling factor 0.61
N0 reference normal load (for df = 0 N) 809 N
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Chapter 4

g-g diagrams

4.1 Introduction

The g-g diagram summarises the global vehicle performance, taking into account
for the maximum attainable lateral and longitudinal acceleration of the vehicle. In
other words, the g-g diagram is a map of the lateral vs. longitudinal acceleration
that a given vehicle reaches when driving at the limit of its performance. This
representation has an important role in the parameter optimisation or in the com-
parison of the performance achieved by different vehicles. This approach has been
widely employed also in the simulation framework, in particular for minimum-lap-
time problems. In fact, the synthesising power of the g-g diagrams allows to retain
the complexity of the vehicle model out of the simulation. The computation of the
maximum performance can be simply performed by evaluating the pre-calculated
g-g at each simulation step, requiring a low computational effort for the minimum-
time program, while guaranteeing a fast and reliable solution. Nevertheless, only a
steady-state representation of the vehicle performance is allowed and no transient
effects can be included in the pre-computed g-g diagrams. The steady-state effects
involved in determining the g-g limits are [46]:

1. Power limit. The maximum engine power of the vehicle reduces the max-
imum longitudinal acceleration achievable since the traction force has to
compensate for the drag force. The g-g upper limit is given by:

malimx = Fx − FD = Pmax/V − FD, (4.1)

where alimx is the longitudinal acceleration limit, Fx is the available traction
force, FD is the drag force and Pmax is the maximum engine power.

2. Aerodynamics. The effect of the downforces is related to the increase of the
normal loads at ’high’ speeds. These forces allow higher lateral accelerations
and may modify the brake balance and the stability balance. The drag force
limits the available longitudinal acceleration (due to the power limit) and
increases the maximum braking performance, since FD and Fx have the same
direction while braking.

49
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3. Load transfer. The lateral and longitudinal load transfer affect the available
slip of the vehicle and limits (or increases) the performance in each part
of the g-g. This effect is optimised, for example, adjusting the suspension
geometry and compliance.

4. Rollover. The lateral acceleration is reduced during cornering when the inner
tyres lift from the ground.

5. Brake balance. For negative longitudinal accelerations, the brake balance
affects the achievement of tyre limit on each axle.

Each of these effects are related to the achievement of the tyre-force limit. For
this reason, in some sense, the g-g diagrams are a synthetic representation of the
vehicle performance when one or more tyres reach their friction limit.

The generation of g-g diagrams is a consolidated topic and some examples are
available in literature discussing their application on minimum-lap-time simula-
tions. In [31] and [32] a seven degrees-of-freedom vehicle model is employed for
computing the g-g-speed diagrams of a race car. The maximum speed achiev-
able is computed first, while the maximum lateral and longitudinal performance
of the car are obtained from optimisation methods for a finite set of speeds. The
g-g profile is then computed by maximising the lateral acceleration of the vehicle
at various increments of longitudinal acceleration. This process is repeated at
different speeds. A similar procedure is presented in [37] by including a limited-
slip-differential model. Differently, in [51] an experimental g-g diagram is used for
constraining the vehicle performance in a fixed-trajectory simulation.

In this chapter, a method for the numerical computation of g-g-speed diagrams
is discussed in detail. The method is mainly based on the approach presented in
[31]-[32], although quite different strategies have been implemented. In particular,
the presented approach make use of the polar-coordinate transformation in order
to obtain a more homogeneous formulation of the optimisation problem. Moreover
automatic differentiation (Ch. 2) is employed for providing the derivatives for the
optimiser. In Sec. 4.2 the optimisation program used for generating the g-g dia-
grams is outlined. A deeper insight on the implementation strategies adopted for
each part of the program is given in Sec. 4.3. In Sec. 4.4 the method is applied to
a race car model and the effect of different parameters on the g-g is also discussed.
Moreover, a set of race motorcycle g-g diagrams is obtained through analytical
solution of an essential model (see Ch. 3) and compared to the race car results.

4.2 Basics

The numerical generation of the g-g diagrams at different speeds, is a rather consol-
idated practice in the vehicle simulation framework. Despite of that, the achieve-
ment of a robust and reliable solution of the steady-state optimisation problem
is not trivial, due to the high number of suboptimal solutions of the steady-state
vehicle model [52]. In general, a g-g diagram at a given speed Vi is obtained from
the results of a series of dynamic equilibrium (i.e. steady-state) problems, that
are solved through a constrained nonlinear-optimisation routine. In the following
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Optimisation
(S.6)

Given speed Vi and
adherence angle αi,j

Variables
x = [κ,N, δ, β, ρ]

Tyre model
Fx,Fy

Constraints

Brake ratio
Fxf = γFxr

Equations of motion
f(x) = 0

Lateral load transfer
∆Nlat

Target function
J = −ρ

(S.1) Find maxi-
mum speed Vmax

(optimisation)

(S.2) Determine
speed mesh

Vi ∈ [V1, V2, . . . , Vmax]

(S.3) Find maximum
longitudinal accel-

eration/deceleration
amax
x,i /amin

x,i at
each speed Vi

(optimisation)

(S.4) Find maximum
lateral acceleration

amax
y,i at each speed Vi

(optimisation)

(S.5) Define an
adherence angle mesh
αi,j ∈ [−π/2, . . . , π/2]

at each speed Vi

(S.6) Find maximum
adherence radius

ρi,j at each speed Vi
(optimisation)

Figure 4.1: g-g calculation routine (left) and optimisation scheme for S.6 (right).
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paragraphs, a method for the numerical calculation of the g-g diagrams will be
presented, implementing the RWD vehicle steady-state model discussed in Ch. 3.
The g-g generation routine (Fig. 4.1, left) consists of the following steps:

S.1 An optimisation program is employed for calculating the maximum speed
Vmax of the vehicle. In this case, only the variables involved in the straight
constant-speed manoeuvre of the vehicle are considered. The variables of
the problem are:

xi,j = [κr, Nf , Nr]
T , (4.2)

given κf = 0, δ = 0, β = 0, Ω = 0,

where κr = κrl = κrr, κf = κfl = κfr, Nr = Nrl = Nrr and Nf = Nfl = Nfr.
The target is:

J = −V. (4.3)

The normal loads N and the longitudinal slips κ of left and right tyres of
the same axle are considered equal, while the steering angle δ, the yaw rate
Ω, the sideslip angle β and the front longitudinal slips κf are zero (straight
traction manoeuvre).

S.2 A set of absolute vehicle speeds Vi ∈ [V1, V2, . . . , Vmax] is defined. This set
represents a discretisation mesh for the problem and the g-g diagrams will
be calculated for each speed Vi.

S.3 The maximum longitudinal acceleration amaxx,i and the maximum longitudinal
deceleration aminx,i are calculated at speed Vi through an optimisation routine.
Only the variables involved in the straight acceleration/braking manoeuvre
are considered in the optimisation. This step is repeated for each element of
the speed mesh. The variables of the problem are:

xi,j = [κf , κr, Nf , Nr, ax]
T , (4.4)

given δ = 0, β = 0, Ω = 0, Vi,

while the target is:

J = −ax (acceleration) or J = ax (braking). (4.5)

In this case, the normal loads and the longitudinal slip of left and right
tyres of the same axle are considered equal. The steering angle, the yaw
rate and the sideslip angle are zero (straight traction/braking manoeuvre).
In the braking manoeuvre a constraint is added for implementing a fixed
brake-ratio.

S.4 The maximum lateral acceleration amaxy,i is calculated for longitudinal accel-
eration ax = 0 and speed Vi, through an optimisation routine. The maxi-
mum lateral performance is considered symmetrical for left and right corners.
Only the variables involved in the steady-turning accelerating manoeuvre are
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ax

ay

ρ

α

Figure 4.2: Polar coordinates.

considered in the optimisation. The condition ax = 0 implies that the lon-
gitudinal tyre forces are balancing the drag force at the given speed. This
step is repeated for each element of the speed mesh. The variables of the
problem are:

xi,j = [κrl, κrr, Nfl, Nfr, Nrl, Nrr,Ω, β, δ]
T , (4.6)

given κfl = κfr = 0, ax = 0, Vi,

while the target is:

J = −ay. (4.7)

This manoeuvre is simulated for ax = 0 and traction conditions (κrl > 0,
κrr > 0) are needed in order to balance the drag resistance.

S.5 A polar-coordinates reference-frame is considered in the (ax, ay) plane, with
the origin in (ay = 0, ax = 0). A point (ρ, α) of this frame is obtained from
the polar transformation of the standard g-g diagram frame (ay, ax), using
the following equalities:

ρ =
√
a2x + a2y, (4.8)

α = arctan

(
ax
ay

)
, (4.9)

where ρ is the adherence radius and α is the adherence angle (see Fig. 4.2). A
mesh of adherence angles αi,j ∈ [−π/2, . . . , π/2] is now defined at each speed
Vi. The g-g diagram will be calculated in each point of this adherence-angle
mesh.

S.6 Given the speed Vi and the adherence angle αi,j, an optimisation routine is
employed for calculating the maximum adherence radius ρi,j, at step (i, j).
In this case, the full set of variables is included, in order to involve both the
acceleration/deceleration equations and the lateral dynamics of the vehicle.
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This step is repeated for each element of the adherence-angle mesh and for
each element of the speed mesh. The variables of the problem are:

xi,j = [κfl, κfr, κrl, κrr, Nfl, Nfr, Nrl, Nrr, β, δ, ρ]T , (4.10)

given αi,j, Vi,

while the target is:
J = −ρ. (4.11)

It should be noticed that the steps S.3 and S.4 are not redundant. In fact the rou-
tine described in S.6 takes advantage of the knowledge of the previously-calculated
extreme points (amaxx,i , aminx,i and amaxy,i ) in order to improve the generation of a guess
for the optimisation (see Sec. 4.3). The optimisation routine for S.6 is described
in Fig. 4.1, (right). The problem variables and the parameters Vi and αi,j are in-
troduced in a nonlinear tyre model for computing the tyre forces on each wheel.
These information are used for calculating the nonlinear optimisation constraints,
which consist in the steady-state equations of motion of the vehicle, the braking
equations for introducing a fixed brake-ratio and the lateral load-transfer con-
straints. The aim of the program is to minimise the given target while satisfying
the constraints. A similar procedure is also employed in the previous optimisation
steps S.1, S.3 and S.4.

4.3 Implementation

In this section the g-g diagrams generation program for an RWD vehicle model
(see Ch. 3) is analysed in more detail and the strategies adopted for enhancing the
performance of the program are presented. The optimisation steps are solved with
IPOPT, while ADiGator (see Ch. 2) is employed for the evaluation of derivatives.

4.3.1 Maximum speed

The maximum-speed subproblem is formulated as a constant speed simulation
along a straight path. The longitudinal acceleration is zero (ax = 0), while the
lateral dynamics is neglected (steering angle δ = 0, lateral speed v = 0 and
acceleration ay = 0). The optimisation variables are:

x = [κr, Nf , Nr]
T , (4.12)

where κr = κrl = κrr, Nf = Nfl = Nfr and Nr = Nrl = Nrr (no lateral load
transfer). The optimisation (equality) constraints are the Newton-Euler equations
of the vehicle in straight motion1:

0 = max = Fxrl + Fxrr − FD, (4.13)

0 = max h = aFLf − bFLr − a(Nfl +Nfr) + b(Nrl +Nrr), (4.14)

0 = mg + FLf + FLr −Nfl −Nfr −Nrl −Nrr. (4.15)

1The meaning of the symbols used is reported in Ch. 3.
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Equation (4.13) is the force balance along the longitudinal axis, Eq. (4.14) is the
momentum balance in the lateral direction and Eq. (4.15) is the force balance
along the vertical axis. The longitudinal speed in the vehicle frame u can be
explicitly shown in the Newton-Euler equations considering ax = u̇. An inequality
constraint is considered for including the power limit of the engine.

(Fxrl + Fxrr)u ≤ Pmax, (4.16)

where Pmax is the maximum power displaced by the engine. The tyre forces Fxij
(i = f, r, j = l, r) are obtained from the rear longitudinal slips κr and the normal
loads Nij, considering the simplified Pacejka formulas presented in Ch. 3. Since a
traction force is needed for balancing the aerodynamic drag force, only the rear
forces and longitudinal slips are considered (i.e. the braking condition is not taken
into account and κfl = κfr = 0). The optimisation target is the longitudinal speed
u = V of the vehicle, i.e. J = −V . Since the model is rather simple, the initial
point at which the functions are evaluated (optimisation guess) can be estimated
by simple steady-state considerations.

4.3.2 Maximum longitudinal performance

The maximum longitudinal performance is determined by solving two optimisa-
tion sub-problems: the research of the maximum longitudinal acceleration, and
the research of the maximum braking performance of the vehicle. These points
represent the upper and the lower limits of the g-g diagram, and depend on the
manoeuvre speed (which is given for each sub-problem, see S.2). Both the max-
imum acceleration and the maximum deceleration of the vehicle are determined
through a straight simulation at constant acceleration. The lateral dynamics is
neglected (steering angle δ = 0, lateral speed v = 0 and acceleration ay = 0).

Maximum acceleration

In each optimisation, the longitudinal speed is given by u = Vi, where Vi is the
speed value included in the mesh-speed vector (see S.2). Only traction condition
is considered, i.e. κfl = κfr = 0. The optimisation variables are:

x = [κr, Nf , Nr, ax]
T , (4.17)

where κr = κrl = κrr, Nf = Nfl = Nfr and Nr = Nrl = Nrr (no lateral load
transfer). The equality constraints of the problem consist in the dynamic equations
during straight acceleration

max = Fxrl + Fxrr − FD, (4.18)

max h = aFLf − bFLr − a(Nfl +Nfr) + b(Nrl +Nrr), (4.19)

0 = mg + FLf + FLr −Nfl −Nfr −Nrl −Nrr. (4.20)

Equation (4.18) is the force balance along the longitudinal axis, Eq. (4.19) is the
momentum balance in the lateral direction and Eq. (4.20) is the force balance along
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the vertical axis. An inequality constraint is considered for including the power
limit of the engine.

(Fxrl + Fxrr)u ≤ Pmax, (4.21)

where Pmax is the maximum power displaced by the engine. Similarly to the
maximum-speed problem, the tyre forces Fxij (i = f, r, j = l, r) are obtained from
the rear longitudinal slips κr and the normal loads Nij, considering the simplified
Pacejka formulas presented in Ch. 3. Since the vehicle is evaluated in a traction
condition, only the rear forces and longitudinal slips are considered (i.e. the braking
condition is not taken into account). The optimisation target is the longitudinal
acceleration ax = u̇ of the vehicle, i.e. J = −ax. Since the model is rather simple,
the initial point at which the functions are evaluated (optimisation guess) can be
estimated by simple steady-state considerations.

Maximum deceleration

In each optimisation, the longitudinal speed is given by u = Vi, where Vi is a
speed value included in the mesh-speed vector (see S.2). In this case, the braking
condition is considered and the optimisation variables become:

x = [κf , κr, Nf , Nr, ax]
T , (4.22)

where κf = κfl = κfr, κr = κrl = κrr, Nf = Nfl = Nfr and Nr = Nrl = Nrr

(no lateral load transfer). The equality constraints of the problem consist in the
dynamic equations during straight deceleration

max = Fxfl + Fxfr + Fxrl + Fxrr − FD, (4.23)

max h = aFLf − bFLr − a(Nfl +Nfr) + b(Nrl +Nrr), (4.24)

0 = mg + FLf + FLr −Nfl −Nfr −Nrl −Nrr. (4.25)

Equation (4.23) is the force balance along the longitudinal axis, Eq. (4.24) is the
momentum balance in the lateral direction and Eq. (4.25) is the force balance along
the vertical axis. A further equality constraint is included for the fixed brake-ratio
between front and rear axle:

γ =
Fxfl + Fxfr
Fxrl + Fxrr

, (4.26)

Fxfl + Fxfr + γ (Fxrl + Fxrr) = 0, (4.27)

where γ is the ratio between the front and rear longitudinal forces. This formula-
tion of the constraint is valid only for braking (negative) forces; a slightly different
formulation will be discussed in Sec. 4.3.4 for including both the traction and brak-
ing conditions. It is assumed that there is no limit on the maximum braking force,
i.e. the brake system can always provide the necessary braking power. The longi-
tudinal tyre forces Fxij (i = f, r, j = l, r) are obtained from the front and rear
longitudinal slips (κf and κr) and the normal loads Nij, considering the simpli-
fied Pacejka formulas presented in Ch. 3. The vehicle is evaluated in a braking



4.3. IMPLEMENTATION 57

condition and both the front and the rear tyre forces and longitudinal slips have
to be taken into account. The optimisation target is the longitudinal acceleration
ax = u̇ of the vehicle, i.e. J = ax. Since the model is rather simple, the initial
point at which the functions are evaluated (optimisation guess) can be estimated
by simple steady-state considerations.

4.3.3 Maximum lateral performance

Similarly to the maximum acceleration/deceleration optimisation, the longitudinal
speed is given by V =

√
u2 + v2 = Vi, where Vi is a speed value included in

the mesh-speed vector (see S.2). The longitudinal speed of the vehicle is u =
V cos β and the lateral speed of the vehicle is v = V sin β. The maximum lateral
performance is achieved by a steady-turning manoeuvre, considering ax = 0. It
is noticed that, in general, this g-g point does not represent the proper maximum
lateral acceleration ay attainable by the vehicle. In fact, the condition ax = 0 is
achieved when the aerodynamic drag force is balanced by the traction force of the
vehicle. In other words, a positive traction force is needed for maintaining to zero
the longitudinal acceleration and the lateral performance is reduced by the tyre
force combination. The real maximum lateral performance is achieved for ax < 0,
at which the vehicle is decelerating because of the drag force. Despite of that, the
g-g point at ax = 0 has been chosen for the g-g generation in order to be consistent
with the polar reference frame considered. The optimisation variables related to
the steady-turning manoeuvre are:

x = [κrl, κrr, Nfl, Nfr, Nrl, Nrr,Ω, β, δ]
T , (4.28)

while the optimisation constraints consist in the steady-state equations of motion
of the RWD vehicle in traction conditions:

0 = max = (Fxrl + Fxrr)− (Fyfl + Fyfr) δ − FD, (4.29)

may = Fyfl + Fyfr + Fyrl + Fyrr, (4.30)

0 = mg + FLf + FLr −Nfl −Nfr −Nrl −Nrr, (4.31)

mayh =
T

2
(Nfl −Nfr +Nrl −Nrr), (4.32)

0 = max h = aFLf − bFLr − a(Nfl +Nfr) + b(Nrl +Nrr), (4.33)

0 =
T

2
(Fyfl − Fyfr) δ +

T

2
(−Fxrl + Fxrr)− a (Fyfl + Fyfr) +

+ b (Fyrl + Fyrr) , (4.34)

where the relation ay = Ωu holds for the steady-turning manoeuvre. Equations
(4.29), (4.30) and (4.31) represent the force balance along the x, y and z axes
of the vehicle reference frame, while Eq. (4.32), (4.33) and (4.34) represent the
moment balance with reference to the x, y and z axes. An equality constraint is
included to account for the lateral load transfer

may
h

T
ξ =

Nfl −Nfr

2
, (4.35)
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where ξ is the roll-stiffness ratio of the vehicle, i.e. the ratio between the front
roll stiffness and the total (front plus rear) roll stiffness. The open-differential
hypothesis produces the equality constraint

Fxrl = Fxrr, (4.36)

while the lateral slip angles are limited through four inequality constraints:

λmin ≤ λij ≤ λmax, (4.37)

where i = f, r, j = l, r. The power limit is included as an inequality constraint

(Fxrl + Fxrr)V ≤ Pmax, (4.38)

where Pmax is the maximum power displaced by the engine. The tyre forces Fxij
and Fyij (i = f, r, j = l, r) are obtained from the rear longitudinal slips κij,
the lateral slips λij and the normal loads Nij, considering the simplified Pacejka
formulas presented in Ch. 3. Since the vehicle is evaluated in traction condition,
only the rear forces and longitudinal slips are considered (i.e. the braking condition
is not taken into account). The optimisation target is the lateral acceleration of
the vehicle ay = Ωu, plus a penalty term for preventing the program to explore
solution areas with ‘high’ slips

J = −Ωu+ wββ
2 + wλ

∑
i,j

λ2ij + wκ
∑
i,j

κ2ij, (4.39)

where wβ, wλ, wκ are the penalty weight related to the vehicle sideslip angle, the
tyre sideslip-angles and the longitudinal slips respectively. The problem formu-
lation is more complex than the case of pure longitudinal simulations. For this
reason, the guess for each optimisation is fundamental for achieving a reliable
solution of the problem and a more complex algorithm for the guess generation
have to be implemented. Considering a generic step k related to the speed Vk.
A preliminary guess is determined from the solution at step k − 1 (if available),
while simple steady-state considerations are employed for k = 1. This preliminary
guess is used as starting point for the numerical solution of the system of equations
formed by the equality constraints of the optimisation problem. A zero-finding al-
gorithm is used for determining whether the preliminary guess satisfies the equality
constraints. This previous-solution check is carried out for a mesh of lateral accel-
erations formed by the neighbourhood of the preliminary estimation of ay. If the
residuals of this numerical method are lower than a given tolerance (i.e. 10−8), the
new solution is employed as guess for the optimisation step k. Otherwise, a mesh
of trial points is generated considering different combinations of steering angle δ,
lateral acceleration ay and longitudinal slip κrj. For each trial point (δ, ay, κ)k,
a guess for the other variables is deduced from steady-state considerations. This
guess is employed as starting point for the zero-finding algorithm. The guess of the
optimisation problem at step k is the solution of the zero-finding algorithm that
both satisfies the constraints with residuals lower than a given tolerance and re-
duces the residuals to the minimum. If no solutions are suitable for this criterium,
the optimisation guess is simply estimated from steady-state formulas.
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4.3.4 Maximum adherence radius

Both the maximum longitudinal and lateral performance optimisations (Sec. 4.3.2-
4.3.3) are employed in the guess estimation for the optimisation of the adher-
ence radius ρ at different adherence angles α (see Fig. 4.2). Determining the
extreme points of the g-g diagram is fundamental for employing reliable solutions
as starting-points for the optimisation of the entire g-g, especially in the sections
where the vehicle dynamics is more complex.

Guess generation

The maximum adherence radius problem is divided into three subproblems, in
order to enhance the reliability of the solutions using a proper guess and a proper
set of equations. For each subproblem the number of adherence angles α is selected
(e.g. 30 points), in order to give a discrete representation of the g-g diagram. The
subproblems are built through different definitions of the adherence-angle mesh,
which spans different parts of the g-g diagram. The procedure for generating the
adherence-angle mesh is outlined in S.5 and is now specified for each subproblem:

P.1 α ∈ [0, . . . ,−π/4]. This part of the g-g is related to the deceleration of the
vehicle while cornering. The g-g points are determined starting from α = 0,
(ax = 0) to α = −π/4. The first point is known from the solution of S.4,
and represents the guess for the first optimisation.

P.2 α ∈ [−π/2, . . . ,−π/4]. In this part of the g-g, the vehicle performs hard
braking manoeuvres. The g-g points are determined starting from α =
−π/2, (ay = 0) to α = −π/4. The first point is known from the solution of
S.3, and represents the guess for the first optimisation.

P.3 α ∈ [0, . . . , π/2]. In this part of the g-g, the vehicle accelerates. For this rea-
son, the braking forces and constraints are neglected. The g-g is determined
starting from α = 0, (ax = 0) to α = π/2, (ay = 0). Both the initial and the
final points are obtained from solving S.4 and S.3 respectively. In this case
the choice of the first point of the optimisation does not have much influence
on the solution, since both the extreme points represent a good guess for the
convergence of the first steps.

It should be noticed that only half of the g-g diagram is generated with this choice
of adherence-angles mesh, since the vehicle model and the tyre forces are sym-
metrical (at least with the employed parameters). For this reason the adherence
angle spans from −π/2 to π/2. Similarly to Sec. 4.3.3, the complexity of the
problem imposes the implementation of a routine for the guess generation. For
each g-g step (k, l), related to speed Vk and adherence angle αkl, a preliminary
guess is determined from the solution of step (k, l − 1) (if available). The pre-
liminary guess related to the first optimisation point is determined considering
the solution of S.4 at step k for P.1, the solution of S.3 at step k for P.2 and
the solution of S.4 at step k for P.3. For P.1 and P.2, the preliminary guess is
used as a starting-point for a zero-finding algorithm, used to determine whether
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the equality constraints of the problem are satisfied at this starting-point. This
previous-solution check algorithm is applied for a mesh of adherence radii, which
consists of the neighbourhood of the preliminary estimation of ρkl. If the residuals
of the solution are lower than a given tolerance (i.e. 10−8), the new solution is em-
ployed as guess for the optimisation step (k, l). Otherwise, a mesh of trial points is
generated considering different combinations of steering angle δ, adherence radius
ρ and longitudinal slip κij. For each trial point included in the mesh (δ, ρ, κ)kl,
a guess for the other variables is deduced from steady-state considerations. This
guess is employed as starting point for the zero-finding algorithm. The guess of
the optimisation problem at step (k, l) is the solution of the zero-finding algorithm
that both satisfies the constraints with residuals lower than a given tolerance and
reduces the residuals to the minimum. For P.3, the guess of the optimisation step
is determined by the preliminary guess, i.e. the solution at step (k, l − 1) or the
solution of S.4 at speed k for step (k, l = 1).

Optimisation

The maximum adherence radius problem involves a combination of lateral and
longitudinal performance. The longitudinal absolute speed V =

√
u2 + v2 = Vi

is given for each optimisation step (i, j), where Vi is included in the speed-mesh
vector obtained in S.2. Once the absolute speed is selected, the optimisation is
performed on the set of adherence angles αij described in S.5. Therefore, also the
adherence angle is given for each optimisation step (i, j).

For subproblems P.1 and P.2 both the acceleration and braking conditions need
be considered, since for small longitudinal decelerations, the drag force have to be
balanced by traction tyre forces. The optimisation variables are:

xi,j = [κfl, κfr, κrl, κrr, Nfl, Nfr, Nrl, Nrr, β, δ, ρ]T , (4.40)

while the optimisation constraints involve the most general formulation of the
Newton-Euler equations of the RWD vehicle,

max = (Fxfl + Fxfr + Fxrl + Fxrr)− (Fyfl + Fyfr) δ − FD, (4.41)

may = (Fyfl + Fyfr + Fyrl + Fyrr) + (Fxfl + Fxfr) δ, (4.42)

0 = mg + FLf + FLr −Nfl −Nfr −Nrl −Nrr, (4.43)

mayh =
T

2
(Nfl −Nfr +Nrl −Nrr), (4.44)

max h = aFLf − bFLr − a(Nfl +Nfr) + b(Nrl +Nrr), (4.45)

0 =
T

2
(Fyfl − Fyfr) δ − a (Fxfl + Fxfr) δ +

T

2
(−Fxfl + Fxfr − Fxrl + Fxrr) +

− a (Fyfl + Fyfr) + b (Fyrl + Fyrr) . (4.46)

where the longitudinal and lateral accelerations are given by ax = ρ sinα and
ay = ρ cosα, and the yaw rate is Ω = ay/u for the quasi-steady-state hypothesis.
Equations (4.41), (4.42) and (4.43) represent the force balance along the x, y and
z axes of the vehicle reference frame, while Eq. (4.44), (4.45) and (4.46) represent
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the moment balance with reference to the x, y and z axes. An equality constraint
is included to account for the lateral load-transfer

may
h

T
ξ =

Nfl −Nfr

2
, (4.47)

where ξ is the roll-stiffness ratio of the vehicle, i.e. the ratio between the front
roll stiffness and the total (front plus rear) roll stiffness. The open-differential
hypothesis produces the equality constraint

Fxrl = Fxrr, (4.48)

Fxfl = Fxfr, (4.49)

while the lateral slip angles are limited by four inequality constraints:

λmin ≤ λij ≤ λmax, (4.50)

where i = f, r, j = l, r. A further equality constraint is included for the fixed
brake-ratio between front and rear axle:

γ =
Fxfl + Fxfr
Fxrl + Fxrr

, (4.51)

Fxfl + Fxfr + γ[min (Fxrl + Fxrr, 0)] = 0, (4.52)

where γ is the ratio between the front and rear longitudinal forces. Eq. 4.52
activates the fixed brake-ratio constraint only if the sum of the rear tyre forces
is negative and is obtained through regularised functions. The power limit is
included as an inequality constraint

(Fxrl + Fxrr)V ≤ Pmax, (4.53)

where Pmax is the maximum power displaced by the engine. It is assumed that
there is no limit on the maximum braking force, i.e. the brake system can always
provide the necessary braking power. The tyre forces Fxij and Fyij (i = f, r,
j = l, r) are obtained from the longitudinal slips κij, the lateral slips λij and
the normal loads Nij, considering the simplified Pacejka formulas presented in
Ch. 3. The optimisation target is the adherence radius ρ, plus a penalty term for
preventing the program to explore solution areas with ‘high’ slip

J = −ρ+ wββ
2 + wλ

∑
i,j

λ2ij + wκ
∑
i,j

κ2ij, (4.54)

where wβ, wλ, wκ are the penalty weight related to the vehicle sideslip angle, the
tyre sideslip-angles and the longitudinal slips respectively.

Considering subproblem P.3, only acceleration condition during cornering need
be evaluated. The front tyre forces and longitudinal slips are neglected and a
reduced set of optimisation variables can be used:

x = [κrl, κrr, Nfl, Nfr, Nrl, Nrr, β, δ, ρ]T , (4.55)
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while the optimisation constraints consist in the steady-state equations of motion
of the RWD vehicle in traction condition:

max = (Fxrl + Fxrr)− (Fyfl + Fyfr) δ − FD, (4.56)

may = Fyfl + Fyfr + Fyrl + Fyrr, (4.57)

0 = mg + FLf + FLr −Nfl −Nfr −Nrl −Nrr, (4.58)

mayh =
T

2
(Nfl −Nfr +Nrl −Nrr), (4.59)

ax h = aFLf − bFLr − a(Nfl +Nfr) + b(Nrl +Nrr), (4.60)

0 =
T

2
(Fyfl − Fyfr) δ +

T

2
(−Fxrl + Fxrr)− a (Fyfl + Fyfr) +

+ b (Fyrl + Fyrr) , (4.61)

where the longitudinal and lateral accelerations are given by ax = ρ sinα and
ay = ρ cosα, and the yaw rate is Ω = ay/u for the steady-state hypothesis.
Equations (4.56), (4.57) and (4.58) represent the force balance along the x, y and
z axes of the vehicle reference frame, while Eq. (4.59), (4.60) and (4.61) represent
the moment balance with reference to the x, y and z axes. An equality constraint
is included to account for the lateral load transfer

may
h

T
ξ =

Nfl −Nfr

2
, (4.62)

where ξ is the roll-stiffness ratio of the vehicle, i.e. the ratio between the front
roll stiffness and the total (front plus rear) roll stiffness. The open-differential
hypothesis produces the equality constraint

Fxrl = Fxrr, (4.63)

while the lateral slip angles are limited by four inequality constraints:

λmin ≤ λij ≤ λmax, (4.64)

where i = f, r, j = l, r. The power limit is included as inequality constraint

(Fxrl + Fxrr)V ≤ Pmax, (4.65)

where Pmax is the maximum power displaced by the engine. The tyre forces Fxij
and Fyij (i = f, r, j = l, r) are obtained from the rear longitudinal slips κij,
the lateral slips λij and the normal loads Nij, considering the simplified Pacejka
formulas presented in Ch. 3. The optimisation target is the adherence radius ρ,
plus a penalty term for preventing the program to explore solution areas with
‘high’ slips

J = −ρ+ wββ
2 + wλ

∑
i,j

λ2ij + wκ
∑
j

κ2rj, (4.66)

where wβ, wλ, wκ are the penalty-weights related to the vehicle sideslip angle, the
tyre sideslip-angles and the rear longitudinal slips respectively.
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4.3.5 Coding features

Although the numerical calculation of the g-g diagrams is a consolidated proce-
dure, the solution of the g-g diagram optimisation is not in general an easy task,
since many solutions exist for a steady-state vehicle model [52]. A first fundamen-
tal strategy that allows to improve the convergence to the desired solution is an
effective determination of the problem guess. This topic is extensively discussed in
Sec. 4.3.3 for S.4 and in Sec 4.3.4 for S.6. In this section, the expedients developed
for facilitating the convergence of the optimisations are explained and the tools
used for improving the performance of the routine are described.

Enhancing the problem statement

A first major improvement adopted for enforcing the convergence to ‘low slip’
solutions is the implementation of boundaries for the longitudinal and lateral slips.
The maximum and minimum achievable slips are the values in which the lateral
or the longitudinal force attain its maximum or minimum, i.e. the slip values
correspondent to the peaks of the tyre forces. It is noticed that the peak value of
the longitudinal (lateral) tyre force depends on both the longitudinal and lateral
slips and on the tyre loads,

κpeakij = arg maxFxij(κij), given λij, Nij, (4.67)

λpeakij = arg maxFyij(λij), given κij, Nij, (4.68)

where i = f, r and j = l, r. The values of κpeakij are obtained for a mesh of lateral

slip angles λij and normal loads Nij, while the values of λpeakij are obtained for a
mesh of longitudinal slips κij and normal loads Nij. The discrete representation
obtained from the evaluation of the slip values correspondent to the maximum
(minimum) tyre force is then interpolated by a two-dimensional spline surface,
which can be evaluated by the optimisation program when computing the con-
straints. This strategy allows to avoid the solutions in which the tyre saturation
is reached. For this reason, the number of solutions available for the optimiser
is dramatically reduced and, consequently, the solutions achieved are similar to
the ones of the neighbour g-g points and the guess generation from the previous
solutions is more robust. Despite of that, there are some cases in which a higher
performance can be obtained through solutions that allow the saturation of one
or more tyres. These cases can not be properly handled by this formulation of the
program.

A further program feature is related to the solution of subproblem P.3. Due
to the vehicle limited power and to the drag resistance, the top of the g-g dia-
gram is close to zero for all the positive longitudinal accelerations ax. In these
conditions, the adherence-angle mesh does not provide a good discretisation of
the g-g. To avoid this problem, the polar reference frame (Fig. 4.2) is translated
to the maximum deceleration point (0, aminx ) and a new adherence-angle mesh is
defined as α ∈ [arctan(−aminx /amaxy ), . . . , π/2]. The resulting adherence radius is
then transformed in order to return to the original polar-coordinate frame.
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Algorithm 1: IPOPT interface for ADiGator

Data: guess x0, options, parameters
Result: solution x
ADiGator setup;
if File-generation needed then

ADiGator call → derivative functions;
Jacobian pattern setup;
Hessian pattern setup;
Jacobian pattern save;
Hessian pattern save;

else
Jacobian pattern load;
Hessian pattern load;
Derivative-functions stored;

end
IPOPT call → x;

Figure 4.3: Pseudo-code for the IPOPT interface employed to allow an efficient
usage of ADiGator.

Enhancing the program performance

Each optimisation point is obtained employing IPOPT and ADiGator (see Ch. 2)
in order to improve the performance of the program in terms of time needed for
solving the entire g-g. For this reason, a dedicated IPOPT interface is employed
in order to communicate to a custom ADiGator wrapper, which allows to generate
the derivatives only if the constraint equations are changed, i.e. there is no need
to calculate the derivatives at each IPOPT call.

The custom wrapper for ADiGator adds some simple features to the original
wrapper. It allows to save and store the sparsity information for the optimisation
jacobian and hessian, in order to call them when the derivatives need not to be
newly generated.

In the IPOPT interface two cases are distinguished. In the first case, ADiGator
is called and the derivative files are generated. At this step the sparsity pattern of
the jacobian and hessian are saved in separate files in order to be used later. This
case is necessary when new derivative files need be generated (e.g. when a new
problem or subproblem is solved for the first step). The second case is called when
there is no need to generate new derivative files and the previously-generated files
can be used. This condition occurs e.g. after the first optimisation point of the g-g,
during each optimisation problem or subproblem. In order to correctly provide
IPOPT with the previously-generated derivatives, the sparsity files saved after
the ADiGator call (when the first case is called) are loaded, while the functions
generated by ADiGator (when the first case is called) are stored in proper input
variables for IPOPT. The pseudo-code for this IPOPT interface is reported in
Fig. 4.3.
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Figure 4.4: Baseline car g-g diagrams at different speeds.

4.4 Examples of application

Some examples of numerical g-g diagrams are now shown for the car model de-
scribed in Sec. 4.3 and for a motorcycle model with analytical g-g diagrams (see
Ch. 3). The g-g diagrams obtained with different parameters are compared and
discussed in order to underline the effectiveness of this modelling strategy. The
comparison between the car g-g and the motorbike g-g is also discussed, in order
to highlight the main differences in modelling strategies and g-g generation.

4.4.1 Car model

A g-g diagram is shown in Fig. 4.4 using the baseline race car parameters (see
Ch. 3). The boundaries of such diagram are found employing the optimisation
procedures described in Sec. 4.3. At ‘low’ speeds, the g-g envelope is limited by
the tyre-friction characteristics, both in acceleration and in braking. The bound-
ary is reached when one or more tyres saturate. At ‘high’ speeds the effect of
aerodynamics becomes dominant: the maximum acceleration is now limited by
the power limit (the higher the speed, the lower the maximum acceleration avail-
able for traction), whereas in braking the drag force contributes to increasing
the braking performance. The g-g diagrams shape changes significantly when the
vehicle parameters are modified. Four parameters are taken into account for com-
paring the g-g diagrams at the same speed: the road adherence (modified through
the tyre force scaling factors λµ,x and λµ,y), the distance between centre of gravity
of the vehicle and the rear axle b, the roll-stiffness ratio ξ and the front-to-total
brake ratio βb.
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Figure 4.5: Car g-g diagrams at different adherence values µ (V = 20 m/s).

Road adherence

The g-g diagrams computed considering different values of road adherence are
shown in Fig. 4.5. This result is obtained by reducing the λµ,x and λµ,y tyre-peak
scaling factors by the same quantity, i.e. the condition of halved road adherence is
obtained by halving both λµ,x and λµ,y. The reduction of the adherence causes an
obvious reduction of the maximum longitudinal and lateral acceleration achievable.
Moreover, the combined lateral-longitudinal performance is reduced, and the shape
of the g-g is changed.

Rear to CoG distance

The g-g diagrams computed considering different values of the distance between
the rear axle and the centre of mass (while maintaining a constant wheelbase w) are
shown in Fig. 4.6. This parameter mainly affects the longitudinal performance of
the vehicle. Moving the centre of mass towards the rear of the vehicle (i.e. reducing
b) increases the static load on the rear tyres and reduces the static load on the front
tyres. As a consequence, higher traction forces can be produced in acceleration
while during braking the front tyres are less affected from force saturation.

Roll stiffness ratio

The g-g diagrams computed considering different values of the roll-stiffness ra-
tio, are shown in Fig. 4.7. This parameter mainly affects the lateral performance
and the combined lateral-longitudinal manoeuvres. The maximum and minimum
longitudinal accelerations are not influenced. A deeper investigation shows that
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Figure 4.6: Car g-g diagrams at different b values (V = 20 m/s).
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Figure 4.7: Car g-g diagrams at different roll stiffness ratio values ξ (V = 20 m/s).
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Figure 4.8: Car g-g diagrams at different bake ratio values βb (V = 20 m/s).

increasing the roll-stiffness ratio is detrimental for the maximum achievable lat-
eral acceleration, since the load transfer on the front axle is already large in the
baseline configuration. However, while simultaneously braking (or accelerating)
and cornering, increasing the roll stiffness ratio is beneficial, and higher deceler-
ation (or acceleration) can be achieved. Indeed, in such condition the rear tyres
saturate, and thus minimising the load transfer on the rear axle is beneficial for
improving the performance, i.e. the g-g area. The optimal value of the roll-stiffness
ratio is the best trade-off between these two effects.

Brake ratio

The g-g diagrams computed considering different values of front-to-total brake ra-
tio, are shown in Fig. 4.8. This parameter is related to the front-to-rear brake ratio
defined in Ch. 3 by γ = βb/(1 − βb). Increasing both βb and γ means increasing
the pressure delivered by the braking system to the front wheels, i.e. increasing the
front braking power (or reducing the rear braking power). The braking perfor-
mance increases when increasing βb, until the saturation of front tyres is reached.
Obviously, achieving the saturation is easier during combined lateral-longitudinal
manoeuvres; for this reason the g-g assumes a sharper shape at high values of βb,
i.e. the braking performance is more affected by tyre-force combination.

4.4.2 Motorcycle model

The g-g diagram of the motorcycle, obtained with the essential model presented
in Ch. 3, is shown in Fig. 4.9 at different speeds. The main differences with respect
to the car g-g diagram (Fig. 4.4) are the ‘dips’ related to wheelie and stoppie con-
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Figure 4.9: Baseline motorcycle g-g diagrams at different speeds.

ditions, which limit the motorcycle performance both in straight motion and with
small lateral acceleration. Four parameters are taken into account for comparing
the g-g diagrams at the same speed: the road adherence (modified through the
tyre force scaling factors µx and µy), the distance between centre of gravity of the
vehicle and the rear axle b, the height of the centre of mass h and the wheelbase
w.

Road adherence

The g-g diagrams computed considering different values of road adherence, are
shown in Fig. 4.10. This result is obtained by modifying the adherence parameters
µx and µy that define the limits of the adherence ellipse used for this vehicle
model (see Ch. 3). Halving the adherence reduces the longitudinal and lateral
performance in any condition. Moreover, the effects of wheelie and stoppie are
not visible since the adherence limit is achieved before lifting the front or rear
tyre.

Rear to CoG distance

The g-g diagrams computed considering different values of the distance between
the rear wheel and the centre of mass (without changing the wheelbase w), are
shown in Fig. 4.11. As seen for the car, this parameter does not affect the pure
lateral performance of the vehicle. Moving the centre of mass towards the rear
(i.e. reducing b), reduces the effect of the stoppie during hard baking and increases
the effect of the wheelie during acceleration, because the static load is augmented
at the rear wheel.
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Figure 4.10: Motorcycle g-g diagrams at different adherence values µ (V =
20 m/s).
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Figure 4.11: Motorcycle g-g diagrams at different b values (V = 20 m/s).
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Figure 4.12: Motorcycle g-g diagrams at different h values (V = 20 m/s).

CoG height

The g-g diagrams computed considering different values of the height of the centre
of mass, are shown in Fig. 4.12. Similarly to the position of the centre of mass,
this parameter mainly affects the longitudinal performance of the vehicle. Higher
values of h increase the longitudinal load transfer during acceleration and brak-
ing. For this reason both the wheelie and stoppie condition negatively affect the
longitudinal performance while increasing h.

Wheelbase

The g-g diagrams computed considering different values of the vehicle wheelbase,
are shown in Fig. 4.13. This parameter is changed while maintaining constant the
b/w ratio, in order to highlight the only effects related to different values of w.
As for the height of the centre of mass h, also w is related to the longitudinal
load transfer of the vehicle, although the effects obtained while increasing this
parameter are opposite to the ones obtained by increasing h. In fact, increasing the
wheelbase reduces the longitudinal load transfer and, by consequence, decreases
the effect of wheelie and stoppie to the longitudinal performance.

4.4.3 Comparison car and motorcycle

The presented car and motorcycle g-g diagrams, are obtained employing very
different strategies. The car diagrams represent the solution of an optimisation
problem for each g-g point, considering a simple but comprehensive vehicle model.
This strategy has been extensively discussed in Sec. 4.3. Instead, the motorcycle
diagrams are computed through a very simple model, that allows a fully-analytical



72 CHAPTER 4. G-G DIAGRAMS

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 4.13: Motorcycle g-g diagrams at different wheelbase values w (V =
20 m/s).

description of the g-g (see Ch. 3). In order to compare these two modelling tech-
niques, the friction coefficients of the motorcycle µx and µy have been chosen in
order to have the maximum lateral acceleration and g-g diagram area similar to
those of the race car at low speeds (indeed at high speeds the aerodynamics of
the race car becomes a dominant factor); see Fig. 4.14 where the g-g diagrams are
compared at 20 m/s and 80 m/s. The motorcycle g-g map includes the distinctive
effects of wheelie and stoppie during acceleration and braking. This behaviour is
typical for motorcycles and limits the maximum and minimum acceleration avail-
able (see Ch. 3). In spite of that, the motorcycle is capable of reaching higher ac-
celerations, because of the larger height-to-wheelbase ratio (see Fig. 4.14a), lower
drag area and higher power-to-mass ratio (see Fig. 4.14b). On the other hand,
the downforces allow the car to potentially reach higher lateral accelerations (see
Fig. 4.14b).
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Figure 4.14: Car and motorcycle g-g diagrams at V = 20 m/s (a) and V = 80 m/s
(b).
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Chapter 5

Minimum-lap-time problems

5.1 Introduction

The use of minimum-lap-time simulations represents a widespread method for as-
sessing and optimising the performance of a race vehicle in different conditions.
This class of offline simulations permits to predict the lap-time achievable by a
given vehicle, and to compute the quantities related to the model that describes the
vehicle behaviour. These methods are employed both in a design stage and during
the race weekends for the strategy analysis. The minimum-lap-time can be com-
puted through either a quasi-steady-state approach, i.e. employing a steady-state
model in each point of the simulation, or a dynamic approach, i.e. including in the
model the transient behaviour of the vehicle; the trajectory travelled by the vehicle
can be an input for the simulation (fixed-trajectory methods) or can be optimised
while solving the problem (free-trajectory methods). The most common combina-
tions reported in literature are basically two: quasi-steady-state models with fixed
trajectory and dynamic models with free trajectory. The former approaches usu-
ally involve the computation of the well-known g-g map of the vehicle at different
speed (g-g-speed surface), together with the determination of the corner apexes on
the trajectory (i.e. the points at which the vehicle has maximum lateral accelera-
tion). These steps usually identify an apex-finding method. The latter approaches
usually involve the solution of a nonlinear-optimal-control problem, which may be
solved either with direct or indirect methods (see Ch. 2). These two widespread
minimum-time approaches have been combined in a third method, that employs
a quasi-steady-state vehicle model together with a free-trajectory optimal-control
simulation. This novel method will be discussed later in this chapter.

In the quasi-steady-state fixed-trajectory framework, many variants of the so-
called apex-finding method have been employed for race car simulations. In [2]
the minimum-lap-time of a quasi-steady-state vehicle model is computed for pre-
determined sections of the Paul Ricard circuit. A set of critical points is found
for each corner of the track by simulating the model in constant-speed manoeu-
vres (e.g. steady-turning). The speed is increased until, at a certain point of the
curve, a constraint is exceeded. At this point the maximum speed is achieved
and the vehicle is assumed to switch between braking and acceleration. Between
two critical points the speed profile is computed by merging the speed profiles

75
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obtained in maximum accelerations and maximum braking simulations. In [30], a
simple steady-state car model is employed for a quasi-steady-state fixed-trajectory
simulation. The race line is obtained through optimisation of a set of meaningful
points, in order to maximise the minimum cornering radius (i.e. maximising the
steady-state cornering speed at the apex). These points are then interpolated
through cubic splines. A common version of the apex-finding approach is then
employed. In [31] and [32] the g-g-speed diagrams are produced for the imple-
mentation in an apex-finding method. In this case, the speed is computed for the
corner apexes through the slip-limited g-g diagram. The speed profile is then com-
puted between two apexes by merging the acceleration and braking speed profiles.
An extension of the quasi-steady-state approach is presented in [36] for including
the transient behaviour. The corner apexes are identified by calculating the max-
imum cornering speed, obtained on a given trajectory after maximising the sole
lateral performance. The minima of this profile are the switching points between
acceleration and braking phases. The acceleration and braking speed profiles are
then calculated and merged by maximising the longitudinal performance between
two switching points. This quasi-steady-state program is used iteratively in each
segment for including the longitudinal, yaw and vertical dynamics of the vehicle,
together with the transient tyre-temperature effects. Each dynamic state is com-
puted from distinct space-dependent simulations, which employ specific dynamic
models. The new values obtained for the dynamic-states represent the reference-
state values in the following quasi-steady-state computation of the speed profile.
This procedure is repeated until convergence.

Many examples are available also for the implementation of dynamic models
in optimal-control free-trajectory simulations. One of the earliest applications on
race cars can be found in [3] for short manoeuvres with a single-track model. The
optimal-control is solved through a direct approach based on a gradient method.
In [4] a simple motorcycle model is used together with an indirect optimal-control
method for assessing the maximum performance and the optimal race line on
the Mugello circuit. A multiple-shooting algorithm is employed in [33] and [34]
for computing the minimum-time optimal-control of a Formula One car model.
The same vehicle model is used in [35], where the free-trajectory optimal-control
is solved though sequential-quadratic-programming techniques. In [53], [54] and
[44] an indirect collocation method is employed focusing on single cornering ma-
noeuvres of race cars. The same method is used in [55] together with a quite
comprehensive GP2 car model. A direct-collocation method is used in [38] and
[39] for computing the free-trajectory optimal-control of a Formula One car. In
[40] an indirect collocation method is used for assessing the performance and the
optimal race line of a motorcycle model.

In this chapter some of the most widespread minimum-lap-time techniques are
discussed in detail, with a special focus on their program implementations. In
Sec. 5.2 the quasi-steady-state methods are presented. The fixed-trajectory apex-
finding approach is discussed first. Then, a fixed-trajectory simulation is devel-
oped using optimal-control techniques. In this section, a novel approach for free-
trajectory quasi-steady-state simulations employing optimal-control techniques is
presented and compared with the other methods. This part of the chapter gives
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an insight on the work published in [5] and represents one of the most important
contributions of the entire thesis. The free-trajectory dynamic optimal-control
approach is described in Sec. 5.3. An example of application is also carried out
for the analysis of the effect of steering geometry on lap-time performance. This
study is also published in [6].

5.2 Quasi-steady-state approach

The underlying concept of a quasi-steady-state (QSS) approach to a dynamic
problem refers to the solution of a series of equilibrium (i.e. steady-state) ma-
noeuvres of a given vehicle model. A set of mesh points need be defined on a
track. In this way, the problem is discretised and the model equilibrium can be
computed along a discrete path. The solution at each mesh point is affected by
the previous-point solution, since a constant acceleration (or deceleration) profile
is considered between two mesh points. It should be clear that, in this class of
methods, the transient effects are neglected, since only steady-state solutions are
considered. In this section, an overview of the different approaches available in the
quasi-steady-state simulations framework is carried out, either considering a fixed
(i.e. predetermined) or a free (i.e. non-predetermined) trajectory. The widespread
fixed-trajectory apex-finding method is discussed first (Sec. 5.2.2). In this case,
two strategies are available for the solution of the equilibrium at each mesh point.
A first strategy relies on the generation of the g-g-speed diagrams of the vehicle (see
Ch. 4). Each point of the g-g is obtained through the solution of a performance-
optimisation problem, subject to the steady-state equations of the vehicle at a
given speed. In this case, the optimisation is computed offline, and the previously-
calculated g-g diagrams represent an input for the subsequent minimum-lap-time
simulation. A second strategy consists in solving an optimisation problem at each
mesh point of the minimum-lap-time simulation. The performance-optimisation
problem is the same to the one defined for the g-g diagrams generation, although
in this case its solution is computed online. These two strategies are equivalent if
the underlying vehicle model is the same. Despite of that, in some cases the g-g-V
diagrams need be computed considering a mesh of space-dependent parameters,
which vary during a track lap. For instance, while using a three-dimensional road
model, the g-g-V diagrams should be computed at different values of the road
slopes and a three-dimensional description of the g-g diagrams is no more suffi-
cient. This issue can be solved either employing an interpolation method in a the
proper space-dimensionality (e.g. with a neural network approach) or solving the
model steady-state equations considering the road characteristics at the current
point of the track. In the following description, only the g-g-diagrams strategy is
considered since, for the vehicle model employed (see Ch. 3), both the g-g-based
and the point-by-point optimisation methods can be formulated employing the
same steady-state equations. Moreover, the g-g-related method is adequate for
the implementation in quasi-steady-state solutions obtained through an optimal-
control strategy. Consequently, a fixed-trajectory optimal-control method is out-
lined in Sec. 5.2.3, while a novel free-trajectory optimal-control method is pre-
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Figure 5.1: Polar-coordinates transformation. Original g-g diagram (a) and cor-
respondent version in polar coordinates (b). Note that the angle α is measured
counterclockwise and the reference frame is centred in (0, 0).

sented in Sec. 5.2.4. The different quasi-steady-state strategies are then compared
(Sec. 5.2.5) and the sensitivity analysis on different parameters is assessed with
reference to the lap time performance.

5.2.1 g-g surface interpolation

The g-g diagrams obtained in Ch.4 are consistent with the vehicle reference frame
discussed in Ch.3. A change of coordinates need be introduced, in order to be con-
sistent with the modelling choices implemented in the lap-time simulations. In the
following sections, the acceleration of the vehicle are computed in the trajectory
reference frame, in which the x-axis is tangent to the trajectory and the y-axis is
normal to the trajectory. The frame transformation gives

ax = ãx cos β + ãy sin β, (5.1)

ay = ãx sin β − ãy cos β,

where ãx and ãy are referred to the vehicle reference frame, while ax and ay
refer to the trajectory reference frame, rotated by the vehicle-sideslip angle β =
arctan(v/u). The g-g diagrams are then conveniently parametrised using polar
coordinates (see Ch. 4):

ρ =

√(
ax
g

)2

+

(
ay
g

)2

, (5.2)

α = arctan

(
ax
ay

)
. (5.3)

where ρ is the adherence radius, and α is the related orientation. This will also
make it easier to introduce the g-g constraint in the minimum-time-optimisation
problem, which will be discussed in the next sections. The values of the adherence
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Figure 5.2: Spline interpolation. Original g-g diagrams at various speeds (a) and
correspondent g-g-V surface (b).

radius at different speed are then interpolated by means of splines, to give the
following surface

ρ = ρ(α, V ), (5.4)

which is a function of the polar orientation α and the speed V . In Fig. 5.1 the
original g-g diagram (a) is compared with the polar-coordinates representation (b)
for a single speed. After producing the g-g diagrams at different speeds (Fig. 5.2a),
the obtained g-g-V surface in polar coordinates is depicted in Fig. 5.2b.

5.2.2 Apex-finding method

The quasi-steady-state apex-finding approach represents a widely-employed method
for solving minimum-lap-time problems. The simulation program allows to find
the speed profile of a given vehicle along a given (i.e. fixed) trajectory. The simu-
lation steps can be summarised as follows:

S.1 Identify the Na curvature peaks (apexes) of the trajectory. It is assumed that
in these points the lateral acceleration ay is maximum, and the steady-state
speed at the corner-apex is consequently

Vi =
√
amaxy κi, i = 1, . . . , Na, (5.5)

where κi is the road curvature at apex i and amaxy is the maximum lateral
acceleration obtained from a ‘low speed’ g-g diagram. In other words, the
speed at each corner apex is known before starting the program.

S.2 Corner exit. A mesh point j included in the interval defined by a pair of
curvature peaks i and i+ 1 is now considered. The speed of the vehicle Vj+1

at step j + 1 can be computed by solving

ax,j ≈
∆Vj
∆tj

=
Vj+1 − Vj
tj+1 − tj

= alimx,j
∣∣
alimy,j

, (5.6)
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Figure 5.3: Apex-finding method.

where alimx,j is the maximum longitudinal acceleration, evaluated from the g-g-
V diagrams at speed Vj and lateral acceleration alimy,j = V 2

j κj. The trajectory
curvature κj at step j is given and the time-step ∆tj is calculated from the
given trajectory-mesh-point distance ∆sT,j as follows:

∆tj = tj+1 − tj =
∆sT,j
V̄

= 2
sT,j+1 − sT,j
Vj+1 + Vj

. (5.7)

Eq. 5.6 is obtained considering that the vehicle employs the maximum ac-
celeration achievable, while a constant acceleration profile is assumed in the
mesh-point interval (j, j+1). The overall speed profile during acceleration is
obtained by repeating this step through a time-marching technique, i.e. the
speed is computed step-by-step starting from the corner apex, in which the
speed is known from (5.5).

S.3 Corner entrance. The same time-marching procedure described at step S.2 is
employed for the deceleration manoeuvre. In this case a braking manoeuvre
is assumed from apex i to the apex i+1, while in each mesh interval (j, j+1)
a constant deceleration profile is considered. The braking profile can be
computed backwards from apex i+ 1 to apex i. In this case the speed Vi+1

is known from Eq. 5.5, while the speed Vj is obtained from the solution of

ax,j+1 ≈
∆Vj
∆tj

=
Vj − Vj+1

tj+1 − tj
= alimx,j+1

∣∣
alimy,j+1

, (5.8)

where alimx,j+1 is the minimum longitudinal acceleration, computed from the
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g-g-V diagrams at speed Vj+1 and lateral acceleration alimy,j+1 = V 2
j+1κj+1.

The time-step ∆tj is obtained from (5.7).

S.4 Both a speed profile for acceleration and for deceleration are obtained be-
tween apex i and i + 1. A crossover point is identified at the intersection
of the two curves. The speed of the vehicle between two corners is then
determined by joining the acceleration profile before the crossover point and
the deceleration profile after the crossover point.

In summary, the corner apexes need be identified first: at each apex, where the
trajectory curvature is maximum, the vehicle is assumed to have maximum lat-
eral acceleration. Before the apex, the vehicle is braking along the g-g envelope,
while after the apex the tyres are engaged with traction forces in order to keep
the vehicle along the g-g envelope. The speed profiles between two apexes (accel-
eration out of turn i and deceleration into turn i+ 1) are then connected at their
intersection point. Sometimes it is assumed that at each apex the longitudinal
acceleration is zero, which is a slightly different condition (when compared with
the maximum lateral acceleration condition): in this scenario, after the apex the
vehicle is accelerating. It should be noticed that the apex-finding approach to
minimum-time problems is based on the assumption that the corner apex (i.e. the
point in which the curvature presents a maximum) is the point in which the ve-
hicle instantly switches from braking to acceleration. This does not necessarily
represent an accurate description of a real manoeuvre, in which different strate-
gies might be preferred by the driver (e.g. acceleration/braking in straight and
steady-state cornering).

Basic program

A basic version of the minimum-lap-time apex-finding program described in the
previous section, is now presented for underlining the core aspects of this strategy.
The vehicle model consists of a single-mass point and its g-g-V maps are described
by the following analytical expression of the adherence limit at point j ∈ (i, i+ 1)(

1

µx

ax,j
g

)2

+

(
1

µy

ay,j
g

)2

= 1, (5.9)

where µx and µy represent the maximum (normalised) longitudinal and lateral
accelerations respectively and ay,j = V 2

j κj. In this case the g-g-V diagrams of
the vehicle are described analytically by the adherence ellipse (5.9), which is not
affected by the speed (i.e. it is constant). For the acceleration speed profile (see
step S.2), the acceleration of the vehicle at point j ∈ (i, i+ 1) is

ax,j =
V 2
j+1 − V 2

j

2 ∆sT,j
, (5.10)

where ∆sT,j is the mesh-interval of the curvilinear coordinate computed on the
trajectory. Then, the speed Vj+1 of the vehicle is computed from the speed Vj at
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the previous step, by solving

V 2
j+1 − V 2

j

2 ∆sT,j
= µ̃x g

√
1−

(
ay,j
µy g

)2

, (5.11)

which is obtained from a combination of (5.9) and (5.10). The maximum nor-
malised acceleration in longitudinal direction µ̃x is defined as

µ̃x = min (µx, µx,P ), (5.12)

where µx refers to the longitudinal limit of the adherence ellipse (5.9), while µx,P
represents the longitudinal acceleration limit due to the limited power displaced
by the engine. Considering the longitudinal equilibrium of the single-mass point

max = Fx − FD, (5.13)

the acceleration limit µx,P is computed as

µx,P =
Pmax
mg Vj

− FD
mg

, (5.14)

where Pmax = FxVj is the maximum engine power and FD = 1/2ρCDAV
2
j is the

aerodynamic drag-force. For the deceleration profile (see step S.3) the acceleration
limit becomes

µ̃x = −µx −
FD
mg

, (5.15)

and the speed at step Vj is computed backwards from the speed at step Vj+1 by
solving (5.11). The speed profiles obtained for the forward and backward solution
are then joined at their intersection point (S.4) and the procedure is repeated for
each apex pair.

Program based on g-g

The same program described in steps S.1 - S.4 is now employed together with
the g-g-V surface, which summarises the quasi-steady-state performance of the
vehicle. The generation of the g-g-V is reported in Ch. 4, while the interpolation
method used for the implementation in the minimum-time problems is discussed
in Sec. 5.2.1.

Similarly to the previous method, the speed profile (in acceleration and brak-
ing) is obtained by solving (5.6) for the speed Vj at point j ∈ (i, i+1); nevertheless,
in this case, the maximum longitudinal acceleration (or deceleration) is not con-
stant, as occurs in (5.11), but is a function of the speed Vj and the maximum
lateral acceleration alimy,j . The g-g diagram at a given speed Vj is obtained by in-
terpolating the surface spline described by (5.4). Then, a different formulation is
introduced for positive and negative acceleration, at constant speed

a+x (α+) = ρ(α+, Vj) sin(α+), a+y (α+) = ρ(α+, Vj) cos(α+), (5.16)

a−x (α−) = ρ(α−, Vj) sin(α−), a−y (α−) = ρ(α−, Vj) cos(α−),
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Figure 5.4: Trajectory of the baseline car on the Adria International Raceway,
with corner numbers and distance (curvilinear abscissa s) from the start/finish
line.

where α+ ∈ (0, π) and α− ∈ (−π, 0). The speed profile during acceleration (S.2) is
now considered. The maximum lateral acceleration is given by alimy,j = V 2

j κ, while
the correspondent adherence angle α̃ is obtained by solving the equality a+y (α+) =
alimy,j , i.e. finding the angle α̃ at which the equation is verified. Then, the maximum
longitudinal acceleration alimx,j is computed from a+x at the same adherence angle
α̃, i.e. alimx,j = a+x (α̃). For the braking profile (S.3) the procedure is similar. The
adherence angle α̃ at which the lateral acceleration assumes the value alimy,j = V 2

j κ,
is obtained from equation a−y (α−) = alimy,j . The maximum longitudinal deceleration
is then alimx,j = a−x (α̃). These steps are repeated for updating alimx,j in (5.6) while
solving for Vj. The speed profiles obtained for the forward and backward solution
are then joined at their intersection point (S.4) and the procedure is repeated for
each apex pair.

Car simulation

The g-g-based apex-finding method is employed for simulating the minimum-lap-
time of the race car described in Ch. 3, on the Adria International Raceway. The
g-g-V diagrams used for this simulation are obtained from a dual-track vehicle
model, while the predetermined trajectory is computed offline and given as an
input to the minimum-time program (see Fig. 5.4). The solution is achieved with
a 0.1 m equally spaced mesh. The resulting speed profile and g-g map are reported
in Fig. 5.5. The top speed is 245 km/h in the pit straight, while the minimum
speed is 31 km/h at turn 3. The acceleration boundary is limited by the given g-g
diagram, with a 1.45 g maximum lateral acceleration, a -1.45 g maximum braking
deceleration and a 0.8 g maximum acceleration. The lap-time is 75.450 s.
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Figure 5.5: Apex-finding simulation results for the car model. Speed profile (a)
and g-g diagram (b).

Motorcycle simulation

The g-g based apex-finding method is also employed for simulating the minimum-
lap-time of the race motorcycle described in Ch. 3, on the Adria International
Raceway. The g-g-V diagrams used for this simulation are obtained from a basic
vehicle model, while the predetermined trajectory is computed offline and given
as an input to the minimum-time program (see Fig. 5.6). The solution is achieved
with a 0.1 m equally spaced mesh. The resulting speed profile and g-g map are
reported in Fig. 5.7. The top speed is 281 km/h in the pit straight, while the
minimum speed is 34 km/h at turn 3. The acceleration boundary is limited by the
given g-g diagram, with a 1.44 g maximum lateral acceleration, a -1.29 g maximum
braking deceleration and a 1.08 g maximum acceleration. The lap-time is 72.530 s.

5.2.3 Fixed-trajectory OCP

A minimum-lap-time problem with fixed trajectory can be also solved by means
of an optimal-control problem. In this case a set of state and controls need be
introduced to formulate the OCP (see Ch. 2). The main difference with respect
to the apex-finding method (Sec. 5.2.2) consists in the fact that, in this case, the
apexes are automatically identified by the optimiser and no assumption on their
locations need be made.

Basic program

In a basic formulation of the OCP, the numerical model consists in a single-mass
point that moves along the given trajectory by selecting the optimal throttle input.
Its performance is limited by a constant adherence ellipse. The only state variable
is the speed along the trajectory

x = V, (5.17)

while the only control variable is the longitudinal force employed by the mass-
point, i.e. the force along the tangent to the trajectory that allows the vehicle to
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Figure 5.6: Trajectory of the baseline motorcycle on the Adria International Race-
way, with corner numbers and distance (curvilinear abscissa s) from the stat/finish
line.
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Figure 5.7: Apex-finding simulation results for the motorcycle model. Speed pro-
file (a) and g-g diagram (b).
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accelerate and brake

u = Fx. (5.18)

The related state equation is

dV

dsT
=

dV/dt

dsT/dt
=
V̇

V
=

1

mV
(Fx − FD), (5.19)

where sT is the curvilinear coordinate along the trajectory and FD = 1/2ρCDAV
2

is the drag force.
Two constraints are included: the first one takes account for the limited engine-

power
FxV ≤ Pmax, (5.20)

while the second consist in the adherence limit(
1

µx

Fx
mg

)2

+

(
1

µy

V 2κ

g

)2

= 1, (5.21)

where µx and µy represent the constant longitudinal and lateral adherence limits
respectively, while κ represents the curvature of the given trajectory, which is
employed for computing the steady-state lateral acceleration ay = V 2κ. It is
noticed that the adherence ellipse (5.21) represents a tyre-related boundary, which
emulates the performance limits related to the maximum tyre-forces available.

The target function of the OCP is the total-manoeuvre time, which is computed
from the vehicle speed

J =

∫
(1 + p(u))dt =

∫
1

ṡT
(1 + p(u)) dsT =

∫
1

V
(1 + p(u)) dsT . (5.22)

The penalty term p(u) is employed to penalise the controls

p(u) = wF 2
x , (5.23)

where w is the penalty weight that have to be tuned for improving the convergence
of the OCP (∼ 10−4).

Program based on g-g

In case the performance is limited by the g-g-V surface (see Sec. 5.2.1), the OCP
is obtained though a slightly different formulation. The numerical model still
consists in a single-mass point that moves along the given trajectory by selecting
the optimal throttle input. The state variable vector is

x = {V, ax}T , (5.24)

where V is the vehicle speed and ax = V̇ is the longitudinal acceleration directed
along the trajectory. The only control variable is the time-derivative of ax,

u =
dax
dt
. (5.25)
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Figure 5.8: Fixed-trajectory optimal-control simulation results for the car model.
Speed profile (a) and g-g diagram (b).

This choice allows to limit the time-derivative of ax in order to avoid vibrations
of the states and to improve the convergence of the simulation. The drawback of
this strategy is that the number of states increases. The state equations are

dV

dsT
=

1

V
ax, (5.26)

dax
dsT

=
1

V

dax
dt
. (5.27)

Equations (5.19) and (5.26) are both expressions of the quasi-static equilibrium
in the longitudinal direction, although in the latter, the acceleration ax represents
the overall longitudinal performance of the vehicle, including the effect of drag and
limited power, as in the g-g diagrams definition. Instead, the force Fx in (5.19)
is only comprehensive of the tyre-friction effects. One constraint is employed, for
limiting the vehicle acceleration inside the given g-g envelope

ρ ≤ ρmax, (5.28)

where ρ is the adherence radius (5.2) and the lateral acceleration is ay = V 2κ,
where κ is the curvature of the given trajectory. The adherence radius limit
ρmax is computed from the g-g-V surface spline (5.4), after obtaining the current
adherence angle α from (5.3).

The OCP target is given by (5.22), while the penalty term is

p(u) = w

(
dax
dt

)2

, (5.29)

where w is the penalty weight (∼ 10−2).

Car simulation

The g-g-based fixed-trajectory-OCP method is employed for simulating the minimum-
lap-time of the GT3 vehicle described in Ch. 3 on the Adria International Race-
way. The g-g diagrams and the predetermined trajectory (see Fig. 5.4) are the
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Figure 5.9: Fixed-trajectory optimal-control simulation results for the motorcycle
model. Speed profile (a) and g-g diagram (b).

same of the apex-finding method (Sec. 5.2.2). The OCP is solved through direct
collocation by GPOPS-II, while IPOPT is used for solving each optimisation step
employing the derivatives computed by ADiGator. An unevenly-spaced mesh in
the range 25-100 m is provided at the first iteration. The resulting speed profile
and g-g map are reported in Fig. 5.8. The solution of the OCP is achieved with
an unevenly-spaced mesh, included in the range 0.1-10 m. Similarly to the apex-
finding method, the top speed is 245 km/h in the pit straight, while the minimum
speed is 31 km/h at turn 3. The acceleration boundary is limited by the given g-g
diagram, with a 1.45 g maximum lateral acceleration, a -1.45 g maximum braking
deceleration and a 0.8 g maximum acceleration. The lap-time is 75.456 s.

Motorcycle simulation

The g-g-based fixed-trajectory-OCP is also employed for simulating the minimum-
lap-time of the race motorcycle described in Ch. 3, on the Adria International
Raceway. The g-g diagrams and the predetermined trajectory (see Fig. 5.6) are the
same of the apex-finding method (Sec. 5.2.2). Again, the OCP is solved through
direct collocation by GPOPS-II, while IPOPT is used for solving each optimisation
step employing the derivatives computed by ADiGator. An unevenly-spaced mesh
in the range 25-100 m is provided at the first iteration. The solution of the OCP
is achieved with an unevenly-spaced mesh (in the range 0.1-10 m). The resulting
speed profile and g-g map are reported in Fig. 5.7. As for the apex-finding method,
the top speed is 281 km/h in the pit straight, while the minimum speed is 34 km/h
at turn 3. The acceleration boundary is limited by the given g-g diagram, with a
1.44 g maximum lateral acceleration, a -1.29 g maximum braking deceleration and
a 1.08 g maximum acceleration. The lap-time is 72.543 s.

5.2.4 Free-trajectory OCP

A third approach can be employed by combining a free-trajectory minimum-time
optimal-control problem together with the quasi-steady-state approach adopted
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for the generation of the g-g diagrams. This novel approach is extensively discussed
in [5].

Basic program

A basic version of the method is discussed first, employing a constant adherence
ellipse constraint instead of the speed-dependent g-g diagrams. The model used
in the OCP consists of a three-degrees-of-freedom model, which is constrained to
move within the road borders, while satisfying the adherence limits.

The model state variables x are the absolute velocity V along the trajectory, the
lateral position n with respect to the road centre line, and the relative orientation
χ with respect to the tangent to the centre line (see Fig. 5.10):

x = {V, n, χ}T . (5.30)

The related state equations (in time domain) are

V̇ =
1

m
(Fx − FD), (5.31)

ṅ = sin (χ)V, (5.32)

χ̇ =
dχ

dt
, (5.33)

where Fx is the longitudinal traction force and FD is the aerodynamic drag force.
The control vector u of the OCP is

u =

{
Fx,

dχ

dt

}T
. (5.34)

The model can be conveniently rewritten in the space domain

x′ =
dx

ds
=

ẋ

ṡ
, (5.35)

using the curvilinear coordinate s along the centre line (see Fig. 5.10)

ṡ =
cos(χ)

1− nκ V, (5.36)
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where κ is the curvature of the road centre-line.
Moreover, the vehicle is constrained to move within the road borders

−rwl ≤ n ≤ rwr, (5.37)

where rwl and rwr represent the left and right road limits, with a limited amount
of power available

FxV ≤ Pmax, (5.38)

where Pmax is the maximum power produced by the engine. The adherence limit
need also to be satisfied(

1

µx

Fx
mg

)2

+

(
1

µy

V ψ̇

g

)2

= 1, (5.39)

where the term V ψ̇ represents the steady-state lateral acceleration and ψ̇ is given
by

ψ̇ = χ̇+
cosχ

1− nκV κ. (5.40)

The target J of the OCP is the manoeuvre time, which can be computed from
the speed along the centre-line as follows

J =

∫
(1 + p(u))dt =

∫
1

ṡ
(1 + p(u)) ds, (5.41)

where

p(u) = wFxF
2
x + wχ

(
dχ

dt

)2

, (5.42)

where wFx (∼ 10−4) and wχ (∼ 10−6) are the penalty weights for the controls.
It is noticed that in this case the OCP integration domain is the curvilinear co-
ordinate of the road centre-line s, while for the fixed trajectory methods (see
Sec. 5.2.2-5.2.3) the curvilinear coordinate of the (given) trajectory sT is selected
as integration domain.

Program based on g-g

When including the g-g-V diagrams in the problem to summarise the vehicle per-
formance, a slightly different formulation need be employed. In this case, the
model used in the OCP consists of a three-degrees-of-freedom model, which is
constrained to move within the road borders, while satisfying the limits of the
g-g-speed surface. All the complexity of the vehicle, e.g. tyre nonlinearities, aero-
dynamics, etc., are included in the g-g map. Similarly to the basic description,
the model state variables x are the absolute velocity V along the trajectory, the
lateral position n with respect to the road centre-line, and the relative orientation
χ with respect to the tangent to the centre-line (see Fig. 5.10):

x = {V, n, χ}T . (5.43)
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The related state equations (in time domain) are

V̇ = ax, (5.44)

ṅ = sin (χ)V, (5.45)

χ̇ = ay/V − θ̇, (5.46)

ρ̇ =
dρ

dt
, (5.47)

α̇ =
dα

dt
, (5.48)

where ρ is the adherence radius (5.2) and α is the adherence orientation (5.3), while
θ is the orientation of the road centre-line with respect to the absolute reference
frame. Consequently, the longitudinal acceleration is ax = ρ sinα and the lateral
acceleration is ay = ρ cosα. The first term on the right-hand side of (5.46) arises
from the equation ay = ψ̇V = ΩV , where ψ̇ = Ω is the yaw rate. The control
vector u of the OCP consists of the time-derivatives of the adherence radius and
adherence angle

u =

{
dρ

dt
,
dα

dt

}T
. (5.49)

It should be noticed that the equations (5.47) and (5.48) have been introduced in
order to apply the control law to the state derivatives and, consequently, to obtain
smoother acceleration profiles and improve the OCP convergence rate. The vehicle
is constrained to move within the road borders

−rwl ≤ n ≤ rwr, (5.50)

where rwl and rwr represent the left and right road limits, and to satisfy the g-g
envelope

ρ ≤ ρmax, (5.51)

where ρmax = ρmax(α, V ) is the maximum value of the adherence radius ρ (given
by (5.2)) at the current orientation α (given by (5.3)) and speed V .

Also in this case, the problem is written in the centre-line curvilinear coordinate
domain (see (5.35)-(5.36)) and the OCP target is the same as in (5.41). The
penalty term is

p(u) = wρ

(
dρ

dt

)2

+ wα

(
dα

dt

)2

, (5.52)

where wρ (∼ 10−4) and wα (∼ 10−3) are the penalty weights related to the adher-
ence radius and orientation.

The OCP can be solved numerically using direct or indirect methods [20]. It
is noted that the resulting OCP is simple, although the underlying vehicle model
can be complex.
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Figure 5.11: Free-trajectory optimal-control simulation results for the car model.
Speed profile (a) and g-g diagram (b).

Car simulation

Similarly to the other quasi-steady-state methods, the g-g based free-trajectory-
OCP approach is employed for simulating the minimum-lap-time of the GT3 ve-
hicle described in Ch. 3 on the Adria International Raceway. The OCP is solved
through direct collocation by GPOPS-II, while IPOPT is used for solving each op-
timisation step employing the derivatives computed by ADiGator. An unevenly-
spaced mesh in the range 25-100 m is provided at the first iteration. In this
case, the g-g-V diagrams are the same employed for the apex-finding and fixed-
trajectory OCP, while the trajectory is a result of the simulation (see Fig. 5.4).
It should be noticed that the resulting race-line is used an input for the fixed-
trajectory simulations in Sec. 5.2.2 and 5.2.3. The resulting speed profile and
g-g map are reported in Fig. 5.11. The solution of the OCP is achieved with an
unevenly-spaced mesh, included in the range 0.1-10 m. Similarly to the fixed-
trajectory methods, the top speed is 245 km/h in the pit straight, while the min-
imum speed is 31 km/h at turn 3. The acceleration boundary is limited by the
given g-g diagram, with a 1.45 g maximum lateral acceleration, a -1.45 g maximum
braking deceleration and a 0.8 g maximum acceleration. The lap-time is 75.451 s.

Motorcycle simulation

The g-g-based free-trajectory-OCP is also employed for simulating the minimum-
lap-time of the race motorcycle described in Ch. 3, on the Adria International
Raceway. As for the car, the g-g diagrams are the same employed for the fixed-
trajectory methods. In this case, the trajectory is a result of the simulation
(see Fig. 5.6) and it is used as an input for both the apex-finding and the fixed-
trajectory OCP simulations. Again, the OCP is solved through direct collocation
by GPOPS-II, while IPOPT is used for solving each optimisation step employing
the derivatives computed by ADiGator. An unevenly-spaced mesh in the range
25-100 m is provided at the first iteration. The resulting speed profile and g-g
map are reported in Fig. 5.7. The solution of the OCP is again achieved with
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Figure 5.12: Free-trajectory optimal-control simulation results for the motorcycle
model. Speed profile (a) and g-g diagram (b).

an unevenly-spaced mesh (in the range 0.1-10 m). As for the other methods, the
top speed is 281 km/h in the pit straight, while the minimum speed is 34 km/h
at turn 3. The acceleration boundary is limited by the given g-g diagram, with a
1.44 g maximum lateral acceleration, a -1.29 g maximum braking deceleration and
a 1.08 g maximum acceleration. The lap-time is 72.519 s.

5.2.5 Comparison

The presented quasi-steady-state methods achieve consistent results in terms of lap
time, speed profiles and g-g envelopes. Nevertheless, the resulting computational
effort is significantly different because of the different formulations employed. The
computational effort is compared for the baseline car and motorcycle simulations
through the inspection of the computation time needed and the problem size.
The latter is measured through the number of equations that have to be solved
and the number of related solver iterations. The fixed and free-trajectory-OCP
methods are solved using GPOPS-II, while IPOPT is employed as optimisation
solver together with ADiGator for computing the derivatives (see Ch. 2). The
initial mesh in this case is unevenly-spaced in the range 25-100 m and an adaptive-
mesh-refinement method is used for computing the solution at each mesh iteration,
giving a resulting set of unevenly-spaced points. Differently, for the apex-finding
method a 1 m equally-spaced mesh is employed. Since no optimisation is involved,
the solution is computed in each point of the initial mesh and no refinement is
needed. It should be noticed that the fixed-trajectory methods (i.e. apex-finding
and fixed-trajectory OCP) require some pre-processing work in order to obtain
a suitable race-line. Either an experimental race-line (obtained from telemetry)
or a numerical race-line (e.g. computed using a free-trajectory optimisation) can
be employed. In this case, the given trajectory is the one computed from the
free-trajectory OCP approach (see Fig. 5.4 and 5.6).
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Figure 5.13: Race car: comparison between quasi-steady-state minimum-lap-time
methods. a) Speed profile. b) g-g diagrams. c) Longitudinal acceleration. d)
Lateral acceleration for free-trajectory OCP (solid), fixed-trajectory OCP (dash-
dot) and fixed-trajectory apex-finding method (dashed).

Table 5.1: Car simulation. Computational effort overview.

Apex-finding Fixed-OCP Free-OCP

Lap time [s] 75.450 75.456 75.451
Penalties [s] - 0.011 0.002
CPU time [s] 249 99 345
Initial mesh-points 26596 41 41
Initial equations 26596 123 328
Final mesh-points 26596 446 1478
Final equations 26596 1338 11824
Equations solved 26596 6270 83952
Mesh iterations 0 7 10
Total solver iterations 102373 7558 2884
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Car simulation

The speed-profile, g-g map and acceleration profiles obtained with the presented
quasi-steady-state programs (based on the predetermined g-g-V surface) are re-
ported in Fig. 5.13. The results are overlapped and the relative error is lower than
1%. Some points in the g-g diagrams of the OCP simulations (Fig. 5.13b) are
not representative of the maximum performance, but lay inside the g-g envelope.
In fact, the controls (i.e. the acceleration derivatives) are limited and penalised,
giving a non-instantaneous dynamic (or quasi-static) behaviour.

A comparison of the lap-time and the problem size in the quasi-steady-state
minimum-time simulation is shown in Tab. 5.1 for the race car model.

As expected, when solving the fixed-trajectory OCP, using the race line ob-
tained with the free-trajectory OCP, the lap time is nearly identical (difference of
0.01%). When solving the lap-time problem with the fixed-trajectory apex-finding
approach, using the race line obtained with the free-trajectory OCP, the lap time
is again nearly identical (difference of 0.01%).

Overall, with the current implementation, the computation time of the free-
trajectory OCP is about three times the computation time of the fixed-trajectory
OCP, while the computation time of the fixed-trajectory apex-finding method is
about one-and-a-half the computation time of the fixed-trajectory OCP.

Considering the problem size, the free-trajectory OCP needs to solve 328 equa-
tions (state equations plus constraints) with the initial mesh grid, which consists
of 41 mesh points (in the range 25-100 m). In the final mesh grid, the number
of mesh points is 1478 and the number of equations raises to 11824. The total
number of equations solved after the 10 mesh-refinement steps is 83952, while the
total number of iterations performed by IPOPT is 2884. The fixed-trajectory OCP
needs to solve 123 equations with the initial mesh grid, which consists of 41 mesh
points. In the final mesh grid the number of mesh points is 446 and the number
of equations to solve is 1338. The total number of equations solved after the 7
mesh-refinement steps is 6270, while the total number of iterations performed by
IPOPT is 7558. Finally, the apex-finding method has a constant number of 26596
mesh points (since there is no mesh refinement) and as many equations. The total
number of iterations performed by its root-finding solver is 102373.

Motorcycle simulation

The speed-profile, g-g map and acceleration profiles obtained with the presented
quasi-steady-state programs (based on the predetermined g-g-V surface) are re-
ported in Fig. 5.13 for the race motorcycle model. The results are overlapped and
the relative error is lower than 1%. As for the race car, some points in the g-g dia-
grams of the OCP simulations (Fig. 5.13b) are not representative of the maximum
performance, but lay inside the g-g envelope. In fact, the controls (i.e. the acceler-
ation derivatives) are limited and penalised, giving a non-instantaneous dynamic
(or quasi-static) behaviour.

A comparison of the lap-time and the problem size in the quasi-steady-state
minimum-time simulation is shown in Tab. 5.2 for the race motorcycle model.
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Figure 5.14: Race motorcycle: comparison between quasi-steady-state minimum-
lap-time methods. a) Speed profile. b) g-g diagrams. c) Longitudinal accelera-
tion. d) Lateral acceleration for free-trajectory OCP (solid), fixed-trajectory OCP
(dash-dot) and fixed-trajectory apex-finding method (dashed).

Table 5.2: Motorcycle simulation. Computational effort overview.

Apex-finding Fixed-OCP Free-OCP

Lap time [s] 72.530 72.543 72.519
Penalties [s] - 0.025 0.012
CPU time [s] 296 84 75
Initial mesh-points 26596 41 41
Initial equations 26596 123 328
Final mesh-points 26596 446 1463
Final equations 26596 1386 11704
Equations solved 26596 7731 82696
Mesh iterations 0 8 10
Total solver iterations 100943 7434 512
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Similarly to the race car scenario, even in the case of the motorcycle the lap
time obtained with the fixed-trajectory methods (either OCP or apex-finding)
almost coincides with the lap time of the free-trajectory OCP (difference around
0.02%). In fact, the predefined trajectory is the optimal race line obtained from
the free-trajectory OCP.

With the current implementation, the computation time of the free-trajectory
OCP is similar to the computation time of the fixed-trajectory OCP, while the
computation time of the fixed-trajectory apex-finding method is about three-and-
a-half the computation time of the fixed-trajectory OCP.

Considering the problem size, the free-trajectory OCP needs to solve 328 equa-
tions (state equations plus constraints) with the initial mesh grid, which consists
of 41 mesh points – this is identical to the car problem. In the final mesh grid,
the number of mesh points is 1463 and the number of equations raises to 11704.
The total number of equations solved after the 10 mesh-refinement steps is 82696,
while the total number of iterations performed by IPOPT is 512 – the number
of equations is close to that of the car problem, the number of mesh steps is the
same, while the number of iterations is smaller. The fixed-trajectory OCP needs
to solve 123 equations with the initial mesh grid, which consists of 41 mesh points
– again this is identical to the car problem. In the final mesh grid, the number
of mesh points is 446 and the number of equations to solve is 1386. The total
number of equations solved after the 8 mesh-refinement steps is 7731, while the
total number of iterations performed by IPOPT is 7434 – the numbers are close to
those of the car problem. Finally, the size of the apex-finding method is identical
to the case of the race car, i.e. 26596 mesh points, and the number solver iterations
is close (100943).

5.2.6 Sensitivity analysis

The main feature of the free-trajectory OCP method consists of the possibility
of achieving the optimal race-line, using a quasi-steady-state vehicle model (i.e. a
full dynamic model is not required). Trying to foresee the race-line that minimises
the lap-time is not a trivial problem when the setup is changed, since the vehicle
parameters may significantly affect the optimal trajectory. In the following sec-
tions, the effect of road friction, brake balance and roll-stiffness balance on the
trajectory of the race car is presented. A sensitivity analysis on the lap-time and
the race-line is carried out for each parameter. Moreover, a comparison of the
quasi-steady-state minimum-time methods is included for the optimisation of the
roll balance of the vehicle.

Effect of friction on the race-line

The coefficients λµ,x and λµ,y are halved, in order to simulate a low-friction con-
dition, e.g. very wet vs. dry conditions. The obtained g-g-V diagrams are reported
in Ch. 4, and are employed for limiting the performance of the OCP vehicle model
(Sec. 5.2.4). In the baseline friction scenario, the lap time is 75.451 s, while in the
low friction scenario the lap time increases to 102.727 s. The low-friction-OCP
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Figure 5.15: a) Lateral position n at different road-tyre friction (top) and lateral
position difference with respect to the baseline configuration (bottom). b) Mag-
nified view of turn 3, with different race lines (right). Baseline (dot-dash), low
friction (solid).

results are compared to the baseline simulation (i.e. baseline friction) in Fig. 5.15.
The race line differs significantly in the two scenarios, in particular in the tight
corners. When the vehicle enters turn 1 (300-500 m), the optimal lateral position
n in the low-friction scenario is 4 m closer to the outer border with respect to the
baseline friction scenario. The same behaviour is observed in turn 3 (1300-1500 m).

Effect of brake ratio on the race line

A small change in the brake ratio γ, defined in Ch. 3, can give a quite different
behaviour of the vehicle during braking. Three γ configurations are chosen for
the present investigation: the baseline configuration (A), a configuration with γ
increased by 10% (B), and a configuration with γ reduced by 10% (C). The g-g-
V maps obtained for each configuration are reported in Ch. 4, and are employed
for limiting the performance of the OCP vehicle model (Sec. 5.2.4). The lateral
position n of the three configurations is compared in Fig. 5.16. In general, the
A and C configurations have an opposite behaviour during corners. The baseline
brake ratio value γ0 is reported in Ch. 3. The lap time is 75.451 s for vehicle A,
75.040 s for vehicle B and 75.844 s for vehicle C. At turn 1 (300-500 m), vehicle B
approaches the corner closer to the outer border with respect to vehicle A, adopts
a tighter trajectory during cornering, and moves towards the outer border again
at the exit of the corner. The difference between the lateral position n of vehicle
B and A, in this case, is 0.5 m. Vehicle C, instead, runs tighter to the inner border
before the turn, goes larger during the turn, and exits the turn closer to the inner
border. At turn 2 (900-1100 m) the behaviour is similar to turn 1. At turn 3 (1300-
1500 m), vehicle B employs a wider race line both while entering and exiting the
corner, while vehicle C employs the opposite strategy, with a trajectory closer to
the inner side of the corner. Vehicle B has a maximum lateral position difference
of 1.3 m, with respect to the baseline trajectory (A), while leaving the turn.
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Figure 5.16: a) Lateral position of n at different brake ratios γ (top) and lateral
position difference with respect to the baseline configuration (bottom). b) Mag-
nified view of turn 3, with different race lines (right). Baseline (dot-dash), brake
ratio -10% (solid), brake ratio +10% (dashed).

Effect of race-line on the roll stiffness optimum

The roll stiffness ratio ξ (see Ch. 3) affects the lateral load transfer on each axle,
while the total lateral load transfer remains the same. The effect of such parameter
on the race line is shown in Fig. 5.17 for three configurations: the baseline vehicle
(A), the vehicle with ξ increased by 20% (B), and the vehicle with ξ reduced
by 20% (C). The g-g-V diagrams obtained for each configuration are reported in
Ch. 4, and are employed for limiting the performance of the OCP vehicle model
(Sec. 5.2.4). The baseline roll-stiffness ratio ξ0 is reported in Ch. 3. At turn 1
(300-500 m) and 2 (900-1100 m), vehicle B reaches the apex travelling on a race
line closer to the inner kerb, and exits the corner with a larger trajectory with
respect to vehicle A (baseline). At turn 3 (1300-1500 m), vehicle B drives closer
to the outer border during the corner and then closer to the inner border in the
exit phase. At turn 8 (2100-2300 m) the maximum difference of lateral position
is observed (1.2 m): again vehicle B drives the corner closer to the inner kerb. In
each case, vehicle C adopts an opposite strategy with respect to vehicle B.

A parameter optimisation is run in order to find the roll ratio that gives the
minimum-lap-time. Both the baseline adherence and the low adherence cases
are considered. The optimisation is carried out by employing the free-trajectory
OCP, the fixed-trajectory OCP, and the fixed-trajectory apex-finding method.
The fixed-trajectory methods are run using the race line obtained with the corre-
sponding free-trajectory OCP. The three methods give the same optimum, both
in the baseline-friction (ξ/ξ0 = 1.6) and low-friction (ξ/ξ0 = 1.7) scenario (see
Fig. 5.18). Indeed, as explained in Sec. 5.2.5, the three methods give roughly the
same lap time, once the same race line is given.

A deeper investigation shows that increasing the roll-stiffness ratio is detri-
mental for the maximum achievable lateral acceleration, since the load transfer
on the front axle is already large in the baseline configuration. However, while
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Figure 5.17: a) Lateral position n at different roll stiffness ratios ξ (top) and
lateral position difference with respect to the baseline configuration (bottom).
b) Magnified view of turn 8, with different race lines. Baseline (dot-dash), roll
stiffness ratio -20% (solid), roll stiffness ratio +20% (dashed).
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Figure 5.18: Lap time versus the normalised roll-ratio parameter ξ/ξ0 for baseline
friction (a) and low friction (b), using the free-trajectory OCP method (solid), the
fixed-trajectory OCP method (dash-dot), and the fixed-trajectory apex-finding
method (dashed).
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Figure 5.19: Lap time versus the normalised roll-ratio parameter ξ/ξ0, using the
low-friction free-trajectory OCP method (solid), the fixed-trajectory OCP method
(dash-dot) computed on the baseline friction race line (with low-friction g-g),
and the fixed-trajectory apex-finding method (dashed) computed on the baseline
friction race line (with low-friction g-g).

simultaneously braking (or accelerating) and cornering, increasing the roll stiff-
ness ratio is beneficial, and higher deceleration (or acceleration) can be achieved.
Indeed, in such condition the rear tyres saturates, and thus minimising the load
transfer on the rear axle is beneficial for improving the performance, i.e. the g-g
area. The optimal value of the roll stiffness ratio is the best trade-off between
these two effects (see Ch. 4).

In most of the practical cases, the race line is available for a certain configu-
ration only. The fixed-trajectory methods allow us to investigate the effect of a
given parameter, together with the g-g diagrams calculated with different values
of such parameter, while still employing the same predetermined trajectory. As an
example of application, the race line resulting from the baseline vehicle optimal lap
(with the baseline friction) is selected. The fixed-trajectory OCP and the apex-
finding method (Fig. 5.19) are employed on such trajectory, together with the g-g
surfaces obtained for low friction conditions, at different values of the roll stiffness
ratio ξ. The lap time is then compared against the lap time obtained with the
free-trajectory OCP optimisation for low adherence conditions (Fig. 5.19). The
lap times obtained with the fixed-trajectory methods are higher, since the race
line used (which is optimal for baseline-friction condition) is not the optimal one
for the g-g surfaces selected (which relate to the low-friction condition). However,
when it comes to the parameter optimisation, the fixed-trajectory methods give
the same optimal parameter value as the free-trajectory methods, although they
are run on a suboptimal trajectory. This need not be always the case.

5.3 Dynamic approach

In the minimum-lap-time framework, the optimal-control methods are usually
employed for computing the optimal trajectory of a transient vehicle model. In this
case, the quasi-steady-state assumptions are discarded and the non-steady-state
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effects need be taken into account by a more complex state-space representation.
Differently to the presented free-trajectory quasi-steady-state OCP (Sec. 5.2.4), no
preprocessing have to be dedicated for the computation of the g-g-V diagrams; in
fact, the entire complexity of the vehicle model is included in the OCP formulation,
giving a larger set of state variables and controls. Despite that, the same numerical
strategies can be adopted for the solution of the OCP (see Ch. 2), i.e. both direct
and indirect methods can be employed.

5.3.1 Free-trajectory OCP

This approach combines the advantage of a dynamic vehicle model together with
the optimisation of the race-line. The state-space formulation includes the dy-
namic equations of the vehicle and its position on the road. As for the free-
trajectory quasi-steady-state approach (Sec. 5.2.4) only the information on the
centre-line and the road-borders are given as an input for the simulation.

In the following sections, the OCP state-equations will be briefly discussed
for a race-car model, together with the controls and the constraints needed for
building the simulation. Moreover, the simulation results will be reported using
the same parameters of the quasi-steady-state analyses.

Optimal-control program

The same RWD double-track model used for computing the g-g-V diagrams (see
Ch. 4) is employed for building the state-space equations of the OCP. In this case
the steady-state assumptions are neglected, while the curvilinear-coordinates need
to be defined considering the sideslip angle of the car (see Fig. 5.20). The dynamics
equations of the vehicle are:

max = (Fxrl + Fxrr)− (Fyfl + Fyfr) δ − FD, (5.53)

may = Fyfl + Fyfr + Fyrl + Fyrr, (5.54)

0 = mg + FLf + FLr −Nfl −Nfr −Nrl −Nrr, (5.55)

mayh =
T

2
(Nfl −Nfr +Nrl −Nrr), (5.56)

ax h = aFLf − bFLr − a(Nfl +Nfr) + b(Nrl +Nrr), (5.57)

IzΩ̇ =
T

2
(Fyfl − Fyfr) δ +

T

2
(−Fxrl + Fxrr)− a (Fyfl + Fyfr) +

+ b (Fyrl + Fyrr) , (5.58)

where (5.53), (5.54) and (5.55) represent the force balance along the x, y and z
axes of the vehicle reference frame, while Eq. (5.56), (5.57) and (5.58) represent
the moment balance with reference to the x, y and z axes. Since no steady-state
assumption is considered, the longitudinal and lateral accelerations are ax = u̇−Ωv
and ay = v̇ + Ωu, where u and v are the longitudinal and lateral velocities of the
centre of mass. The tyre longitudinal and lateral forces Fxij and Fyij, where
i = f, r (front, rear) and j = l, r (left, right) are computed from the normal loads
Nij and the longitudinal and lateral slips κij and λij by employing the Pacejka
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Magic Formula. In Ch. 3 the quantities and the parameters used in the model are
described in more detail.

An equality constraint is included to account for the lateral load transfer

may
h

T
ξ =

Nfl −Nfr

2
, (5.59)

where ξ is the roll-stiffness ratio of the vehicle, i.e. the ratio between the front
roll stiffness and the total (front plus rear) roll stiffness. The open-differential
hypothesis produces the equality constraints

Fxrl = Fxrr, (5.60)

Fxfl = Fxfr,

while the lateral slip angles are limited by four inequality constraints:

λmin ≤ λij ≤ λmax, (5.61)

where i = f, r, j = l, r. The power limit is included as an inequality constraint

(Fxrl + Fxrr + Fxfl + Fxfr)V ≤ Pmax, (5.62)

where Pmax is the maximum power displaced by the engine. It is assumed that
there is no limit on the maximum braking force, i.e. the brake system can always
provide the necessary braking power. A further equality constraint is included for
the fixed brake-ratio between front and rear axle:

γ =
Fxfl + Fxfr
Fxrl + Fxrr

, (5.63)

Fxfl + Fxfr + γ[min (Fxrl + Fxrr, 0)] = 0, (5.64)

where γ is the ratio between the front and rear longitudinal forces. Eq. 5.64
activates the fixed brake-ratio constraint only if the sum of the rear tyre forces is
negative and is obtained through regularised functions.

The position of the vehicle on the road is described by the absolute motion of
the road-centre-line frame, given by

ṡ =
u cosχ− v sinχ

1− nκ , (5.65)

ṅ = u sinχ+ v cosχ, (5.66)

χ̇ = Ω− κu cosχ− v sinχ

1− nκ , (5.67)

where s is the curvilinear coordinate of the road centre-line, n is the lateral position
of the vehicle, κ is the road-centre-line curvature and χ is the angle between the
tangent to the centre-line and the vehicle absolute speed (see Fig. 5.20). The
vehicle is constrained to move within the road borders

−rwl ≤ n ≤ rwr, (5.68)
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Figure 5.20: Curvilinear coordinates for the dynamic model.

where rwl and rwr represent the left and right road limits.
The state-space equations of the dynamic system are obtained from (5.53),

(5.54), (5.58), (5.66), (5.67), while (5.55), (5.56) and (5.57) represent the problem
constraints, together with (5.59)-(5.62) and (5.64). Consequently, the state and
control vectors are:

x = [u, v,Ω, δ, κfl, κfr, κrl, κrr, n, χ]T , (5.69)

u = [δ̇, Nfl, Nfr, Nrl, Nrr, κ̇fl, κ̇fr, κ̇rl, κ̇rr]
T , (5.70)

where δ is the steering angle of the left wheel, Nij and κij are the loads and slips
of the four tyres. Additional constraints are included to account for the limited
steering angle and steering-angle rate

|δ| ≤ δmax, |δ̇| ≤ δ̇max, (5.71)

and for the limited longitudinal slip rate

|κ̇| ≤ κ̇max. (5.72)

The model can be conveniently rewritten in the space domain

x′ =
dx

ds
=

ẋ

ṡ
, (5.73)

where ṡ is computed from (5.65). The target J of the OCP is the manoeuvre
time, which can be computed from the speed along the centre-line as follows

J =

∫
(1 + p(x,u))dt =

∫
1

ṡ
(1 + p(x,u)) ds. (5.74)

The penalty term p(x,u) is given by

p(x,u) = wu

Nu∑
i=1

u2i + wκ
∑
i=f,r
j=l,r

κ2ij + wλ
∑
i=f,r
j=l,r

λ2ij, (5.75)

where Nu is the number of controls, wu (∼ 10−2) is the penalty weight of the
controls, wκ (∼ 10−4) is the penalty weight of the longitudinal slips and wλ (∼
10−4) is the penalty weight of the sideslip angles.
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Figure 5.21: Free-trajectory optimal-control simulation results for the dynamic
race-car model. Speed profile (a), g-g diagram (b) and optimal trajectory (c).



106 CHAPTER 5. MINIMUM-LAP-TIME PROBLEMS

Simulation

The free-trajectory dynamic OCP is employed for simulating the minimum-lap-
time of the GT3 vehicle (see Ch. 3) on the Adria International Raceway. GPOPS-II
is used for the numerical solution of the OCP by direct collocation, together with
the optimiser IPOPT and ADiGator for computing automatic derivatives. An
unevenly-spaced mesh in the range 25-100 m is provided for the first iteration,
while the solution is achieved e employing an unevenly-spaced mesh in the rage
0.1-10 m. The resulting speed profile, g-g map and optimal trajectory are shown
in Fig. 5.21. It should be noticed that both the g-g diagram and the trajectory are
obtained from the OCP solution and no assumptions on the maximum g-g perfor-
mance are considered for constraining the OCP. In fact, the resulting acceleration
boundary is generated considering the dynamic behaviour of the vehicle. The top
speed is 247 km/h in the pit straight, while the minimum speed is 52 km/h at turn
3. The resulting acceleration boundary is limited by a 1.51 g maximum lateral
acceleration, a -1.59 g maximum braking deceleration and a 1.01 g maximum ac-
celeration. The lap-time is 73.854 s, with a 0.031 s penalty. The computation time
is 850 s.

5.3.2 Example of application

The free-trajectory-dynamic-OCP approach is now applied to the analysis of the
effect of the steering geometry on a Formula SAE race car. This section is mainly
based on the results obtained in [6], with the aim of highlighting the peculiar
aspects of this minimum-lap-time technique. The FSAE vehicle model is dis-
cussed first together with the OCP formulation used. Then, the model is vali-
dated against experimental data acquired during the Italian FSAE competition
for three different test paths. Finally, three steering-geometry configurations are
compared computing the minimum-lap-time on the testing paths and the Adria
International Raceway.

Vehicle model and OCP

The vehicle model employed is based on the RWD double-track race car discussed
in Sec. 5.3.1. In this case, different steering angles can be employed at the left
and right front wheels, while their relative motion is constrained to follow a given
steering-geometry rule. Moreover, the toe and camber angles of the front and rear
wheels are considered, together with their effect on the tyre forces. More details
on the modelling features and the model parameters are discussed in Ch. 3.

The OCP state and control vectors are:

x = [u, v,Ω, δl, δr, κfl, κfr, κrl, κrr, n, χ]T , (5.76)

u = [δ̇l, δ̇r, Nfl, Nfr, Nrl, Nrr, κ̇fl, κ̇fr, κ̇rl, κ̇rr]
T , (5.77)

where δl is the steering angle of the left wheel, δr is the steering angle of the
right wheel, Nij and κij are the loads and slips of the four tyres. An additional
constraint is included to account for the fixed steering geometry

δl = δl(δr), (5.78)
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Table 5.3: Wheel camber and toe for validation tests.

Symbol Description Value

Acceleration
τf toe angle at the front wheels (toe-in) -0.5 deg
τr toe angle at the rear wheels (toe-in) -0.5 deg
φf camber angle at the front wheels (camber-in) -3.0 deg
φr camber angle at the rear wheels (camber-out) 0.5 deg

Skidpad
τf toe angle at the front wheels (toe-out) 2.0 deg
τr toe angle at the rear wheels (toe-in) -0.5 deg
φf camber angle at the front wheels (camber-in) -3.0 deg
φr camber angle at the rear wheels (camber-in) -1.5 deg

Slalom
τf toe angle at the front wheels (toe-out) 2.8 deg
τr toe angle at the rear wheels (toe-in) -0.5 deg
φf camber angle at the front wheels (camber-in) -1.5 deg
φr camber angle at the rear wheels 0.0 deg

i.e. the left steer angle is a function of the right steering angle, e.g. according to the
Ackermann steering, the parallel steering, etc. The numerical solution of the OCP
is obtained through a direct collocation approach, using GPOPS-II. ADiGator is
used to speed-up the computation.

Validation

The numerical simulations have been compared against the experimental data in
three manoeuvres: acceleration, skidpad and slalom. The first two tests have
been performed within the 2018 Italian FSAE competition in Varano de’ Melegari
(PR), while the slalom manoeuvre is a benchmark for the autocross and endurance
tests. In Tab. 5.3 the wheel camber and toe angles employed for each test are
reported. The vehicle is provided with a Plex VMU-900 IMU for measuring chassis
accelerations and angular velocities, two rotary potentiometers Avio Race Hall
AR 006-10 for measuring the steering angle and the throttle pedal position, four
linear potentiometers DIA 9,5-75 mounted on each spring-damper assembly for
measuring the suspension travel and rate, and four wheel-speed sensors (Texsense
M10). Since no GPS sensor is available, the use of a free-trajectory simulation is
dramatically important.

The acceleration test is performed on a 75 m straight road, where the target is
to reach the finish line in the minimum time. The simulation starts at a speed of
10 km/h, and reaches the speed of 100 km/h in 64 m. In the experimental data, the
same speed is reached in 66 m (Fig. 5.22). The speed profiles are almost identical,
although the gear change (see acceleration drops at 18 m and 37 m) is not included
in the numerical model.
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Figure 5.22: Acceleration: experimental and simulated speed (top) and longitudi-
nal acceleration (bottom).
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Figure 5.23: Skidpad: experimental and simulated speed (top), lateral acceleration
(centre), steering wheel angle (bottom).
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Figure 5.24: Slalom. a) Experimental and simulated speed (top), lateral acceler-
ation (centre), steering wheel angle (bottom). b) Slalom course.

The skidpad test consists in performing steady turning manoeuvres of given
radius, at the maximum speed. The actual track geometry has an eight-shaped
pattern, with an average curvature radius of 9.1 m and a width of 3.0 m. The
driver has to perform two clockwise turns on the first circle of the eight and
two counter-clockwise turns on the second circle. Since the vehicle numerical
model is symmetric with respect to its vertical plane, only the clockwise turns
can be considered – results on the counter-clockwise turns are clearly identical.
In the OCP simulation the car enters the skidpad course and keeps turning for
three turns. Steady-state conditions are reached after one turn. In steady state
conditions the numerical driver has no oscillations on the steer and throttle inputs,
differently from the real driver who is always adjusting the control inputs while
trying to keep the car close to its physical limit. In the road tests the mean speed
is 39 km/h, with a mean lateral acceleration of 1.34 g, a mean steering wheel angle
of 62 deg (mean wheel angle of 10.7 deg); see Figure 5.23. In the OCP simulation
the speed is limited to 39 km/h (same as the real road test) and the vehicle turns
with a lateral acceleration of 1.31 g and a steering wheel angle of 60 deg (mean
wheel angle of 10.3 deg). The skidpad test is then repeated at speeds between 10
and 15 km/h and the steering angle vs. lateral acceleration profile is obtained. The
slope of this profile (i.e. the understeer gradient) for lateral accelerations between
0.1 and 0.2 g is 0.943 deg/g.

The slalom course consists of four cones, at a distance of 12.4 m: the target is
turning around the cones in the minimum time. This path emulates sections of the
autocross and endurance FSAE tracks, and represents an important benchmark
for assessing the handling of the car. The experimental manoeuvre is obtained
using the speed limiter at 49 km/h: the same speed is set as upper bound for the
speed in the OCP simulation. In order to perform a slalom manoeuvre within the
minimum time OCP framework, a S-shaped track is built, in which the corner
apexes mimic the position of the cones, see Figure 5.24b. Since the OCP aims
at moving the vehicle close to the apexes for the best performance, the width of
the track has no effect on the results. A cosine function is employed to build the



110 CHAPTER 5. MINIMUM-LAP-TIME PROBLEMS

S-shaped track. Initial and final straights of 12.5 m are included. In the measured
data, the vehicle travels at 49 km/h, while the lateral acceleration is in the range
±0.8 g and the steering wheel angle in the range ±28 deg (±4.6 deg at wheels) see
Figure 5.24. The simulation results are consistent with the experimental data: the
lateral acceleration is in the range ±0.7 g, the steering wheel angle is in the range
±28 deg (±4.6 deg at wheels).

Effect of steering

The understeer gradient is obtained from steady-state tests at different speeds.
The OCP simulation is run with the same procedure described for the skidpad,
during the validation analysis. The vehicle travels a constant-radius corner (R =
50 m), while the speed spans from 15 km/h to 100 km/h. The manoeuvre is
consistent with the international standard [56].

The understeer gradient, computed as the slope of the steering angle vs. lateral
acceleration between 0.1 and 0.2 g [57], is 0.021 deg/g for the baseline vehicle,
0.026 deg/g in case of Ackermann steering geometry and 0.019 deg/g for parallel
steering.

The Ackermann steering vehicle is the most understeering, followed by the
baseline and the parallel. Indeed, Ackermann steering is the least understeering
configuration only at very low speeds, where the effects of tire slippage is negligible.
As an example, when turning at a speed of 1 km/h with a 18 deg constant average
steering-angle the Ackermann configuration performs the tightest circle, achieving
the smallest turn radius (R = 4.50 m), while the parallel configuration reaches the
worst turning performance (R = 4.75 m). The baseline geometry lays in between,
travelling a larger circle than the Ackermann case and a smaller circle than the
parallel case (R = 4.64 m). These results are obtained integrating the vehicle
state-space equations, while selecting the speed and the steering angle inputs with
a PI controller.

The understeer gradients may seem quite small. This is because toe and cam-
ber angles are neglected. In the case the toe angle is included, the values raise
significantly. With the baseline vehicle and a 2 deg toe-out at the front, the un-
dersteer gradient raises to 2.761 deg/g, while with a 2 deg toe-in at the front,
the understeer gradient raises to 0.458 deg/g. With 2 deg camber-in at the front
wheels the understeer gradient reduces to -0.047 deg/g, while with 2 deg camber-
out the understeer gradient (slightly) increases to 0.089 deg/g. These figures need
be compared with 0.021 deg/g, which is computed in the case of zero toe and zero
camber and shows that the effect of toe is the most significant on the steering
characteristic. Finally, in the case toe and camber of the skidpad configuration
are included, the understeer gradients are 1.144 deg/g for baseline, 1.157 deg/g
for Ackermann and 1.138 deg/g for parallel; again, the values get larger but the
ranking of configurations remains the same.

The skidpad manoeuvre is now examined to assess the maximum performance
of the different steering configurations. The same course used in the validation
analysis is considered. In Fig. 5.25a the speed, lateral acceleration and average
steer angle at the wheels are shown during the steady-turning part of the skidpad
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Figure 5.25: Skidpad. a) Speed, lateral acceleration and average steering angle
during steady-turning. b) Track and trajectory.

manoeuvre (for travelled distance from 120 m, i.e. after one turn of the circle,
to 170 m, i.e. before exiting the circle; see Fig. 5.25b). The speed is 39.88 km/h
for the baseline, 39.89 km/h for Ackermann (fastest) and 39.87 km/h for parallel
(slowest). The corresponding lateral accelerations are 1.317 g, 1.317 g and 1.316 g
respectively, while the average steering angles at wheels are 11.68 deg, 12.03 deg
and 11.50 deg.

Overall, the effect of the steering geometry is very small on the maximum
speed achievable (0.05 %). However, the related steering gradients (R = 9.1 m)
are quite different: -0.117 deg/g for the baseline, -0.041 deg/g for Ackermann and
-0.136 deg/g for parallel – all oversteering. It is worth noting that the understeer
gradients are all positive (i.e. understeering behaviour) when computed on a turn
with R = 50 m. However, the understeer ranking of configuration is the same:
Ackermann, baseline and parallel.

In conclusion, a slightly larger steady-turning lateral acceleration (in the case
of zero toe and zero camber) is achieved with the Ackermann configuration, which
is also the least oversteering.

However, when toe and camber are included (as for validation), the speed
raises to 44.36 km/h in the case of the baseline configuration, to 44.33 km/h in the
case of Ackermann and to 44.40 km/h (fastest, by 0.16 %) in the case of parallel
steering. The corresponding lateral acceleration are 1.662 g, 1.661 g and 1.667 g
respectively, while the average wheel steering angles are 10.6 deg, 11.01 deg and
10.4 deg. Therefore the most performing configuration is the parallel one.

The slalom manoeuvre is performed on the same course used for the model
validation, see Fig. 5.26b. The speed is constrained to assume the same values at
the beginning and at the end of the slalom course (cyclic condition). No constraints
are employed for limiting the speed to a constant value.

The maximum lateral acceleration is 1.658 g for the baseline, 1.663 g for Acker-
mann (highest) and 1.658 g for the parallel steering configuration. The maximum
average wheel-steering-angle is 4.73 deg for baseline (lowest), 4.74 deg for Acker-
mann and 4.82 deg for parallel (highest), see Fig. 5.26a.
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Figure 5.26: Slalom. a) Speed, lateral acceleration and average steering angle. b)
Vehicle trajectory.
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Figure 5.27: Racetrack. a) Speed, lateral acceleration and average steering angle.
b) Racetrack and trajectory.

The manoeuvre time is 2.468 s for the baseline (slowest), 2.457 s for Ackermann
(fastest) and 2.461 s for parallel. The maximum difference among the different
configurations is 11 ms (0.4%). The Ackermann configuration is again the best, in
the case of zero toe and zero camber.

When including toe and camber (as for validation) the manoeuvre times re-
duces to 2.130 s for the baseline, 2.130 s for Ackermann and 2.129 s (fastest, al-
though almost identical to the previous configurations) for the parallel.

The different steering geometries are simulated also on a lap of the Adria In-
ternational Raceway (Italy), characterised by a total length of 2702 m, and eight
turns mainly paced at speeds below 80 km/h, see Fig. 5.27. The vehicle travels
the track anticlockwise and reaches a maximum speed of ∼154 km/h at the pit-
straight, while the minimum speed is ∼58 km/h at turn 3. The maximum lateral
acceleration is ∼2.1 g at turn 4. More precisely, the maximum speed (pit-straight)
is 154.55 km/h for baseline (fastest), 154.54 km/h for Ackermann, 154.51 km/h for
parallel (slowest). The minimum speed (turn 3) is 58.69 km/h for baseline (fastest),
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58.65 km/h for Ackermann, 58.62 km/h for parallel (slowest). The maximum lat-
eral acceleration (turn 4) is 2.147 g for baseline (highest), 2.146 g for Ackermann,
2.124 g for parallel (lowest). The lap-time is 82.853 s for baseline (slowest), 82.827 s
for Ackermann, 82.827 s for parallel. The maximum difference among the different
configurations is 26 ms (0.03%). The mean difference of the lateral positions on
the road (variable n in Fig. 5.20) of the Ackermann and parallel configurations
with respect to the baseline are 0.040 m and 0.070 m respectively.

When the toe and camber are included (as for the slalom validation). the lap
time reduces to 79.173 s (slowest) for the baseline, 78.844 s (fastest) for Ackermann
and 78.891 s for parallel. The lap time difference in this case raises to 329 ms
(0.4 %), which is much larger than the difference obtained in the case the sole
steering configuration is changed. The mean difference of the lateral positions on
the road (variable n in Fig. 5.20) of the Ackermann and parallel configurations
with respect to the baseline configuration are around 0.5 m in both cases, again an
order of magnitude larger than the differences observed when varying the steering
configuration only.

Remarks

To conclude, the analysis showed that the effect of the steering configuration is
significantly smaller than the effect of toe and camber. The toe is the most influ-
ential parameter when it comes to performance of the vehicle under investigation.
Indeed the magnitude of the toe angle employed (around 2 deg) is comparable
with the typical average wheel steering angle during a lap of the selected race-
track, more than one-half of the wheel steering angle employed during the slalom
and about one-fourth of the steering angle employed during the skidpad.



114 CHAPTER 5. MINIMUM-LAP-TIME PROBLEMS



Chapter 6

Conclusions

In this work the main minimum-lap-time strategies have been presented and re-
viewed, starting from the fundamental components needed for their implementa-
tion.

A detailed insight on the optimal-control problems has been carried out, since
they represent a widespread and convenient approach for computing the minimum-
lap-time. Both direct and indirect methods have been discussed, together with
the explicit and implicit solutions. A direct implicit solver (GPOPS-II) has been
chosen for developing most of the presented simulations, together with automatic
differentiation (ADiGator) for evaluating derivatives.

Different modelling techniques have been discussed for cars and motorcycles.
Steady-state models have been created for generating the g-g diagrams. In partic-
ular, both a race car and an essential race motorcycle model have been developed
and implemented in the simulations. The car is represented by a double-track rear-
wheel-drive model, that includes aerodynamic forces, Pacejka-based tyre model,
fixed brake-ratio and the roll stiffness for computing the lateral-load-transfer. The
presented motorcycle model retains the peculiar aspects of the motorcycle dynam-
ics, such as the wheelie and stoppie conditions. The model includes the drag force
and takes account for the limited amount of power available. Moreover, the mo-
torcycle is assumed to perform the braking manoeuvres using an optimal braking-
bias. The simplicity of this model permits to compute the g-g maps analytically,
without employing optimisation methods. A dynamic race car model has also
been discussed for its implementation in an optimal-control problem. The model
is derived from the discussed steady-state double-track model, by including the
transient effects.

Some effort has been dedicated to the g-g-speed envelopes generation, starting
from steady-state vehicle models. An optimisation-based program has been devel-
oped for computing the g-g diagrams of a race car. A polar-coordinate parametri-
sation has been proposed, together with the automatic-differentiation, in order to
speed-up the optimisation program. A set of g-g diagrams has been computed also
for the motorcycle model; in this case the equations have been solved analytically,
i.e. without relying on an optimisation procedure. A sensitivity analysis has also
been carried out, for determining the effect of different parameters on the shape
of the g-g diagrams, underlining their effectiveness in describing the steady-state
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behaviour of the vehicle.

Starting from the theory and the results obtained in the previous part of the
work, some of the most common minimum-time-simulation strategies have been
discussed. Both quasi-steady-state (using steady-state vehicle models) and tran-
sient approaches have been employed, together with fixed (predetermined) or free
(non-predetermined) trajectories.

In the quasi-steady-state framework, three methods have been presented: a
fixed-trajectory apex-finding method, a fixed-trajectory optimal-control method
and a free-trajectory optimal-control method. Each of these methods is based on
the computation of the g-g diagrams, which are used to limit the performance
of the vehicle. The quasi-steady-state apex-finding program is solved by com-
puting step-by-step the vehicle speed during acceleration and deceleration phases
between two corners. In summary, the corner apexes need be identified first: at
each apex, where the trajectory curvature is maximum, the vehicle is assumed to
have maximum lateral acceleration. Before the apex the vehicle is braking along
the g-g envelope, while after the apex the tyres are engaged with traction forces
in order to keep the vehicle along the g-g envelope. The speed profiles between
two apexes are then connected at their intersection point. Performing the same
procedure for all the pairs of apexes, permits to obtain the entire speed profile
along the given trajectory and, consequently, the total lap-time. In the case of the
optimal-control-based free-trajectory and fixed-trajectory simulations, the aim is
to find the optimal driving inputs that minimise the total-manoeuvre time for
completing a track lap. A simple vehicle model is used for the optimal-control
problem formulation, since all the complexity is confined to the steady-state mod-
els employed for the generation of the g-g-speed envelopes. In the free-trajectory
approach, the model has three degrees-of-freedom: the speed, the lateral position
with respect to the road-centreline and the direction of the speed vector. The
vehicle is constrained to move within the road borders, while satisfying the limits
of the g-g-speed surface. This method represents a novel approach for calculating
the minimum-lap-time, since it allows the computation of the optimal race line
without involving a full dynamic model. In the fixed-trajectory approach, the
number of degrees-of-freedom is reduced to one, since the lateral motion and the
orientation of the velocity are constrained by the given race line, although the
lateral and longitudinal performance is still limited by the g-g boundary. With
the current implementation, the computation time of the free-trajectory approach
lies between one and three times the computation time of the fixed-trajectory
approaches. The advantage of optimising the trajectory has been underlined by
discussing the effect of the tyre-road friction, brake ratio, and roll-stiffness ratio on
the resulting race line. The effect of the fixed-trajectory assumption has been also
investigated in the case of the optimisation of the roll-stiffness ratio. In particular,
given a set of baseline parameters, the results of the free-trajectory optimisation
have been compared to the results obtained employing the fixed-trajectory meth-
ods on a suboptimal race line; this has been repeated for different roll-stiffness
ratios. In this case, the same optimal parameter has been obtained for both the
free and fixed-trajectory simulations.

In addition, the presented dynamic car model has been implemented in a free-
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trajectory optimal-control simulation. In this case, the entire vehicle model is
included in the OCP formulation, without involving the computation of the g-g
diagrams. This simulation has been employed for assessing the effect of the steer-
ing geometry on a race car. The model of a Formula SAE car has been built and
validated against experimental data. The effect of the baseline FSAE geometry,
the pure Ackermann geometry and the parallel steering geometry have been com-
pared in skidpad, slalom and for a lap of the Adria International Raceway. It has
been found that the effect of the Ackermann ratio on the maximum performance
is small, at least when compared with the effect of toe, whose magnitude can be
comparable with the wheel steering angle on a racetrack.

In conclusion, the work has addressed both the theoretical methods and the
more practical applications of minimum-lap-time simulations. A significant ef-
fort has been spent in designing and implementing the presented simulation pro-
grams, together with suitable vehicle models. Also the g-g diagrams generation
procedure has been developed from scratch, employing non-linear-programming
and automatic differentiation for finding the optimal steady-state solution. The
main contributions carried out in this work are basically three. First, a novel
minimum-time method that combines steady-state models together with the race
line optimisation has been presented and compared to other widespread simu-
lation strategies. Second, an essential but comprehensive motorcycle model has
been implemented for the minimum-time computation. Finally, a dynamic car
model has been employed for clarifying the effect of the steering geometry on the
performance of an FSAE car.
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