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Abstract 

 

The term brain modulation refers to a wide range of interventions that allow modifying the central 

nervous system. The general purpose of this dissertation will regard the investigation and 

modulation of error-related processes through the use of behavioral interventions and 

noninvasive brain stimulation (NIBS). In order to accomplish this aim, three studies were 

conducted.  

Study 1 investigated the motivation-cognition interaction. In particular, this study aimed to 

increase error awareness by using rewards in a group of healthy older adults, compared to 

younger adults. Results showed a reduction of error awareness when participants were rewarded, 

both older and younger adults. This detrimental effect of rewards suggests more attention in 

planning motivational interventions with the aim to modulate error awareness. 

Study 2 aimed to investigate the neural bases of error awareness and modulate error 

awareness by using on-line transcranial magnetic stimulation (TMS). Results revealed an 

implication of the dorsolateral prefrontal cortex (DLPFC) in error awareness. However, this 

modulation was specifically induced by a single-pulse TMS paradigm, compared to a paired-pulse 

TMS paradigm that did not produce a modulation of the process. These results highlight how 

subtle variations of the TMS paradigm can differently affect error awareness. 

Study 3 investigated the behavioral and neurophysiological modulation of error-related 

processes induced by a low-frequency repetitive TMS paradigm. Results showed a reduction of the 

error positivity (Pe), an electrophysiological component associated with error awareness, only 

when the left DLPFC was stimulated, compared to the homologous right DLPFC and the Vertex. 

This result contributes to provide new knowledge about error-related processes, in particular 

about the neural bases of the Pe.  

Finally, a critical review of these studies will provide general insights for the design of future 

modulatory interventions. 
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Introduction 

 

 

 

The term brain modulation refers to a wide range of methods that allow modifying brain 

functioning, namely to modulate or change the central and peripheral nervous systems. The 

magnitude of these modifications can act at a micro-level, such as the alteration of the membrane 

potential of a single neuron, up to extended modifications able to affect behavior. In terms of 

duration, brain modulation produces effects that can last from few milliseconds to long-lasting 

effects that cover all life of an individual.  

The humanity’s history is rich in evidence that shows how our species has always been 

interested in researching ways to change the state of mind, enhance cognitive performance or 

alter the level of consciousness. The spectrum of means to reach this form of modulation can 

range from the use of popular psychotropic substances, such as alcohol and caffeine, to 

metacognitive strategies to improve memory, such as the famous “Method of Loci”. Together with 

these simple and ordinary methods, which have a long past, other more systematic and recent 

methods have been applied in extraordinary situations. A typical example is noninvasive brain 

stimulation (NIBS). This family of methods includes different kinds of techniques highly used with 

patients in which a neurological or psychiatric pathology has altered brain functioning and has 

produced cognitive deficits (Kuo, Paulus, & Nitsche, 2014; Obeso, Oliviero, & Jahanshahi, 2016; 

Schulz, Gerloff, & Hummel, 2013).  

In clinical settings, many treatments rely on the possibility of modifying our brain and it is not 

surprising that modulation of the nervous system is among the fastest-growing areas of medicine 

(Krames, Hunter Peckham, Rezai, & Aboelsaad, 2009). In addition, brain modulation allows us 

understanding the normal functioning of the brain. In fact, it is extremely informative to 

investigate how the brain reacts to modulatory interventions, showing its impressive ability to 

change both functionally and structurally (Schaefer et al., 2017).  

In a critical review published in Nature, Farah and colleagues (2004) compare the human 

ability to modulate its own brain function to the development of metallurgy in the Iron Age, 

mechanization in the Industrial Revolution or genetics in the second half of the twentieth century. 
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This analogy can be considered appropriate because the perspective of modulating our brain is 

extremely winsome, especially with the aim to enhance cognitive functioning in above mentioned 

clinical situations.  

Apart from these cases, in which the use of brain modulation can be justified by the purpose 

of reducing the impact of a cognitive impairment, it is important to highlight that the topic of 

cognitive enhancement, especially in everyday life contexts, raises important ethical issues. For 

example, normal aging is associated with a decline in cognitive functions (Cabeza, Nyberg, & Park, 

2009; Salthouse, 2010). In this case, can the use of brain modulation methods be ethically 

acceptable to restore cognitive functioning in elderly? Although these ethical aspects are relevant, 

they will not be under discussion in this dissertation. Nevertheless, for further information, we 

recommend some reviews (Bostrom & Sandberg, 2009; Farah et al., 2004). 

 

This dissertation will critically debate brain modulation. In Chapter 1, we will introduce an 

important aspect linked to brain modulation, namely neural plasticity. This property of the brain is 

at the base of any form of behavioral and neural change. Afterward, in Chapter 2, drivers of brain 

modulation will be described. In particular, related to this dissertation, we will describe two kinds 

of interventions that can modulate behavior and brain functioning: modulation induced by reward 

and modulation induced by NIBS. After these premises, in Chapter 3, we will move our focus to 

the core of this dissertation, namely error-related processes. Given that the general purpose of 

this dissertation was to produce a modulation of error-related processes, the following chapters 

will describe three studies in which different interventions aimed to induce behavioral and 

neurophysiological changes. In particular, in Chapter 4, performance was supported by means of 

incentives, in order to increase error awareness in a group of elderly, whereas, in Chapters 5 and 

6, brain modulation was induced by NIBS. Finally, in Chapter 7, we will conclude this dissertation 

by a critical review of our results and providing insights on a conscious application of modulatory 

interventions, especially we will summarize some significant points into a set of suggestions 

and strategies for designing modulatory interventions. 
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Chapter 1 

Neural Plasticity 

 

 

 

According to Bateson & Gluckman (2011), the phenotype of every organism is determined by a 

combination of two mutually interdependent properties: robustness and plasticity. Robustness 

refers to a property that is insensitive to environmental changes or genetic mutations and, 

therefore, contributes to maintaining stable the phenotype. On the contrary, plasticity is defined 

as a flexible property of each organism in expressing physiological, morphological, and behavioral 

differences in response to innate or acquired factors. Robustness and plasticity are not totally 

independent properties. In fact, plasticity can be regulated by robust mechanisms, and, vice-versa, 

robustness can be affected by mechanisms of plasticity (Bateson, 2017). For example, some innate 

traits typically regulated by robust mechanisms, like smiling in human babies, are rapidly modified 

after the social interaction, that is an example of plastic mechanism. Thus, the interaction 

between robustness and plasticity determines a unique phenotype. 

Importantly, plasticity should not be confused with elasticity, another property involved in the 

generation of the phenotype. In fact, elasticity is the ability of a body to return to its original size 

and shape after a distorting influence. In biology, for example, some types of elasticity relate to 

the ability of the skeletal tissue to repair itself after a damage or some homeostatic mechanisms of 

the human body, such as the re-acquisition of body weight after a period of fast. 

 

If it is true that robustness, plasticity, and elasticity mutually contribute in the expression of a 

phenotype, it is likewise true that they act differently along the ontogenetic stages (childhood, 

adulthood, old age), and their impact is different depending on the characteristics of the tissue 

they interact with (e.g. skin, muscles, skeleton, brain).  

As regards the brain, one of the most fascinating properties that characterized this organ is its 

ability to change the neural architecture in response to internal or external factors. The brain can 

be considered a structure in which plastic mechanisms act massively. This flexibility, known as 

neural plasticity, is the basic mechanism of memory formation (Fauth & Tetzlaff, 2016; Schaefer et 

al., 2017), allows facing new experiences in a variable environment (Mandolesi et al., 2017; Sale, 

Berardi, & Maffei, 2014), and, crucial from a clinical point of view, leads to compensate for 
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negative effects of brain damage (Kaas, 2015; Kou & Iraji, 2014). The final output of neural 

plasticity is an experience-modulated behavior that can react to environmental demands.  

Neural plasticity is defined as any change in cortical or subcortical properties either structural 

or functional (Sala & Segal, 2014). Structural plasticity is defined as any morphological changes 

(Lövdén, Wenger, Mårtensson, Lindenberger, & Bäckman, 2013), such as the generation of new 

synapses and new neurons, whereas functional plasticity considers some forms of functional 

reorganization (Schaefer et al., 2017), such as when the strength of synapses changes, as in long-

term potentiation (LTP) or long-term depression (LTD). Similarly, but with a focus on behavior, 

Berlucchi & Buchtel (2009) consider neural plasticity as several kinds of behavioral modifiability, 

including maturation and adaptation to a changing environment, specific and unspecific kinds of 

learning, and compensatory adjustments after functional losses from normal aging or brain lesion.  

 

Up until the 1950s, a spread and shared conviction claimed that after the adolescence the 

brain was destined to a progressive decay, without any possibility to observe forms of neural 

plasticity. However, nowadays this static vision has been abandoned and a more plastic 

conception has been accepted from scientists. In fact, neural plasticity is not necessarily restricted 

to the first stages of life, since it is typically retained by the individual throughout the lifespan. 

In line with this view, to date more and more evidence shows forms of neural plasticity in 

elderly as well (Burke & Barnes, 2006; Grady, 2012; Lazarov & Hollands, 2016). In an interesting 

study, Greenwood (2007) suggests that structural losses, typically observed in elderly, lead to a 

functional reorganization of the brain. In detail, Greenwood (2007) describes this sequence of 

events: (a) age-related atrophy (attributed to dendritic regression), synapse loss, and white matter 

degeneration lead to cognitive decline in elderly; (b) the cognitive decline lead to a changing in 

strategies used to process information; (c) these new processing strategies trigger different forms 

of functional reorganization of cortex, by modification in cortical innervation; (d) this functional 

reorganization is proofed by neuroimaging studies in which elderly show increased activity in 

regions adjacent and contralateral to those brain areas that typically present shrinkage in elderly. 

As regards neurogenesis phenomena, animal models confirm a continuous proliferation of 

neurons in two brain regions of adult rodents: the subventricular zone of the lateral ventricles and 

the subgranular zone of the hippocampal dentate gyrus (Ming & Song, 2005; Ming & Song, 2011; 

Seri, García-Verdugo, Collado-Morente, McEwen, & Alvarez-Buylla, 2004). Again, this evidence 
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suggests that neural plasticity is not only significant during the developmental period. Contrary, 

also the adult brain presents several forms of plasticity.  

Even if nowadays neural plasticity is broadly accepted from the scientific culture, before the 

Decade of the Brain (1990-2000) the word "neural plasticity" was accompanied by skepticism and 

many articles were rejected from prestigious journals when they tempted to report evidence 

against the dogma of the inflexibility of the adult brain. However, some pioneering evidence in 

favor of neural plasticity has come long before 1990. 

William James was among the first to bring attention to the hypothesis that the neural bases 

of learning depend on neural plasticity. In the volume The principles of Psychology (James, 1890), 

he postulated that the organic matter, especially the nervous tissue, seemed characterized by an 

extraordinary level of plasticity. When a stimulus is perceived, it leaves a sort of trace, a 

connection among several parts of the brain. If the sensory stimulation is repeated, this 

connection becomes stronger by reinforcement of the pre-existing connections or by generation 

of new connections. 

In 1892, Santiago Ramòn y Cajal thought that the connections among neurons changed both 

in response to physiological processes associated with the development, and through learning 

processes. He hypothesized that the brain could adapt to the environment thanks to dynamic 

histological changes resulting from mental activity. 

A huge step forward in the knowledge of neural plasticity was made by Sir Charles 

Sherrington, when in 1897 introduced the term "synapse" to explain how neurons exchange their 

chemical messages. Sherrington postulated that learning was strictly related to a sprouting of new 

synapses. 

Several years later, in 1949, both the hypotheses of Cajal and Sherrington were re-considered 

by Donald Olding Hebb. In his work, The organization of behavior (Hebb, 1949), he introduced the 

famous theory of Hebbian learning. In this important work, Hebb claimed that learning was an 

experience-dependent process in which new neural networks were generated by several 

circumstances. For example, he said: 

 

"When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes 

part in firing it, some growth process or metabolic change takes place in one or both cells 

such that A's efficiency, as one of the cells firing B, is increased." 
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This dynamic interaction among neurons, according to Hebb, would contribute to create, 

maintain, and reinforce neural networks. Moreover, another important contribution from Hebbian 

learning is the distinction between short-term and long-term memory. In order to explain the 

differences between these processes, Hebb assumed that in short-term memory the information 

is briefly retained through temporary and functional modifications of neurons, whereas the long-

term memory required structural modifications of neurons.  

 

The synaptic changes during learning can happen only when cells synthesize some proteins 

involved in learning processes (Rosenberg et al., 2014). Thus, protein expression is the base of 

structural and functional modifications of neurons. These modifications range from changes of the 

pre-existing synapses to creation of new synapses (Holtmaat & Svoboda, 2009). For example, 

during some training sessions, when an individual is involved in learning new information, neurons 

may present some structural modifications, such as the genesis of new synapses and dendritic 

spines. Alternatively, or in conjunction with structural modifications, other phenomena may 

generate functional changes, such as a reduction/improvement of neurotransmitter release 

(Nabavi et al., 2014; Nicoll, 2017). 

 

Since a strict distinction between structural and functional plasticity can be misleading, 

because both the processes are closely associated and coexist (Cramer, 2004; Swain et al., 2003), 

the next section will point out the main mechanisms underlying structural and functional 

plasticity, without to artificially categorize a mechanism within one or another form of plasticity. 

 

 

Mechanisms of neural plasticity 

 

This section aims to provide a synthetic overview of mechanisms underlying neural plasticity. In 

recent years, more and more empirical evidence allows understanding which different neural 

mechanisms lead to modifications of the adult brain. Several mechanisms are at the base of neural 

plasticity: 

 dynamics of synaptic structures 

 neurogenesis 

 neurotrophins 
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 modifications of gray and white matter 

 reorganization of cortical maps (remapping) 

 LTP and LTD 

 

Dynamics of synaptic structures - With the advent of new powerful cell imaging techniques, 

such as the confocal microscopy, it has been possible to identify the dynamic processes occurring 

within synaptic structures. Although all these studies mainly use animal models, they allow 

characterizing these neural plasticity processes in the adult mammalian brain. Sprouting of new 

synapses, together with the properties that dendrites show in contact with synapses, are the most 

important factors at the base of neural plasticity.  

Long-term in vivo imaging studies can reveal the structural dynamics of neurons as Holtmaat 

& Svoboda (2009) argue in a review. Although the large-scale organization of synaptic structures is 

generally stable, authors show a subset of structures that display an experience-dependent 

structural plasticity. In particular, Holtmaat & Svoboda (2009) show a dynamic turnover of 

dendritic spines that grow and retract according to sensory experience. Besides sensory 

experience, the dynamic of this turnover is also affected by sensory deprivation and neural 

damage (Holtmaat & Svoboda, 2009). 

In a study, also Brown and colleagues (2007) show a reorganization of dendritic spines 

following a stroke, in adult transgenic mice. Compared to the control mice, in which no significant 

modifications of dendritic spines was observed, after stroke, the survived areas undergo a long 

period of dendritic remodeling (up to 6 weeks after the stroke). These changes were mainly 

evident in the peri-infarct areas and appeared to be associated with a reorganization of the 

vasculature in the peri-infarct cortex. 

In general, changing in dendritic spines represent probably the main factor to explaining 

structural brain changing throughout life (Chen, Lu, & Zuo, 2014; Schaefer et al., 2017).   

 

Neurogenesis - Adult neurogenesis is a multiphase process that requires the production of cell 

progenitors, their migration, their differentiation, and maturation into fully integrated neurons. As 

previously reported, there are two brain areas in which neurogenesis processes are evident: the 

subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral 

ventricles. Most of the studies on neurogenesis, which reported the first results already in the 

mid-1960s (see for example Altman, 1962), observed neurogenesis mainly in animal models 
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(rodents, non-human primates, and other mammals). However, the most exciting discovery that 

neurogenesis is a phenomenon also presents in adult humans derives from more recent years.  

One of the first evidence comes from the study of Eriksson and colleagues (1998), in which 

they demonstrated that new neurons were generated from dividing progenitor cells in the dentate 

gyrus of adult humans and, interestingly, indicating that the human hippocampus could generate 

neurons throughout life. 

A second site of production of new neurons is the sub-ventricular zone lining the walls of the 

lateral ventricles. The stem cells of the subventricular zone generate new neurons that are 

grouped into cell aggregates. It is shown that in mice these newly-generated neurons migrate 

towards the olfactory bulb along a path of migration known as the rostral migratory stream (Lim & 

Alvarez-Buylla, 2016; Lois & Alvarez-Buylla, 1994).  

 

Although the potential implications of neurogenesis are exiting, for example in the 

prospective to repair the central nervous system using endogenous and transplanted neural stem 

cells, the precise role played by the production of new neurons is still unclear. Especially in human 

beings, the question of the role of the new neurons is far from being clarified (Couillard-Després, 

2012; Gheusi, Lepousez, & Lledo, 2012).  

  

Neurotrophins - This group of proteins is considered a molecular mediator in neural plasticity. 

Since these proteins modulate the electrical properties and the structural organization of the 

synapses, neurotrophins could be considered biological markers of memory and learning 

processes (Gómez-Palacio-Schjetnan & Escobar, 2013). The main neurotrophins are nerve growth 

factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 

(NT-4/5), neurotrophin-6 (NT-6), and neurotrophin-7 (NT-7). 

NGF is one among the first proteins discovered and it seems implicated in several functions, 

mainly NGF elicits axonal growth, promotes neuronal survival, and acts to sensitize the response 

to specific nociceptive inputs (Bothwell, 2014; Petruska & Mendell, 2009). Moreover, NGF 

contributes to affect the architecture of neural circuits, for example stimulating the maturation of 

Purkinje cells. Cohen-Cory and colleagues (1991) show how in a cell culture the simultaneous 

exposure to glutamate and aspartate (excitatory neurotransmitters) and NGF enhanced the size of 

Purkinje cells and increased their survival (figure 1). 
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Several studies have focused the attention on BDNF as well. For example, this protein seems 

to modulate the synaptic activity by modulation of postsynaptic mechanisms. A brief exposure to 

BDNF in hippocampus produces a long-term increase in synaptic transmission, similar to the LTP 

(Gazzaniga, 2004; Lu, Nagappan, & Lu, 2015).  

 

 

Figure 1 | Morphological structure of Purkinje cells after the expose to excitatory neurotransmitters, or nerve growth 
factor, or a combination between excitatory neurotransmitters and nerve growth factor (red squares). Modified by 
Cohen-Cory et al., 1991. 

 

The study of these proteins opens new line of research and may provide new treatments in 

various diseases, such as cognitive deficits, brain damage and neurological disorders. For example, 

some studies report an association between antidepressant drugs and increased BDNF in the 

hippocampus (Banasr & Duman, 2008; Mattson, Maudsley, & Martin, 2004; Taupin, 2006) that 

could explain the effects of antidepressants in reducing some cognitive deficits typically present in 

depression. Furthermore, also NIBS seem to positively interact with these neurotrophins. For 

instance, Floel & Cohen (2010) show that transcranial-direct current stimulation (tDCS) produces 

its effects through BDNF activation. Similarly, but using transcranial magnetic stimulation (TMS), 
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Niimi and colleagues (2016) show that the synergic combination of rehabilitation and repetitive 

TMS (rTMS) improves motor function in patients after stroke, by activating BDNF processing. 

Finally, several studies convey that the use of BDNF could open new frontiers of intervention in 

neurological diseases (for a review, Longo & Massa, 2013). 

 

Modifications of gray and white matter - Current non-invasive neuroimaging techniques, 

such as magnetic resonance imaging (MRI) or functional magnetic resonance imaging (fMRI) have 

allowed to investigate modifications in human brain in vivo. In particular, these techniques allow 

to observe structural modifications of gray and white matter. 

In a study (probably one of the most emblematic study in neuropsychology), Maguire and 

colleagues (2000) demonstrate experience-dependent modifications of the hippocampus, a crucial 

structure implicated in the representation of environment through cognitive maps (O’Keefe & 

Nadel, 1978). In detail, in Maguire and colleagues’ study, structural MRIs of London taxi drivers 

revealed larger posterior hippocampi of taxi drivers compared to the control group who did not 

drive taxis. Interestingly, hippocampal volume correlated with the number of hours spent on 

driving a taxi. 

Another suggestive evidence in favor of experience-dependent modifications of gray matter 

comes from a study of Gaser & Schlaug (2003). Using the voxel-based morphometry, they found 

differences between professional musicians and two control groups (nonmusicians and amateur 

musicians) in motor, visuospatial, and auditory brain regions. These anatomical differences may 

represent the outcome of long-term skill learning and repeated practice in professional musicians. 

White matter consists of axons connecting different brain regions and represents about half 

of the total human brain volume. The typical color of white matter depends on the chemical 

composition of myelin, a lipidic-rich substance that surrounds the axons of some neurons. White 

matter is essential to coordinate the timing of action potentials and its functions are particularly 

evident when it has damaged by white matter diseases, such as multiple sclerosis.  

More and more evidence highlights continuous modifications of white matter along the 

lifespan. Although myelinogenesis is maximum in the first infancy, it continues during the 

adolescence and the adult life as well (Sampaio-Baptista & Johansen-Berg, 2017). In a study, the 

anterior part of corpus collosum was modified after an intensive cognitive training. Compared to 

control group, the group of younger and older trained participants showed experience-dependent 

plasticity of the white matter microstructure. In particular, several diffusion-tensor imaging 
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metrics revealed an increment in size of the anterior part of the corpus callosum (Lövdén et al., 

2010). Thus, the study demonstrates that white matter plasticity extends into old age. 

Furthermore, within this theoretical framework of experience-dependent plasticity, Schlaug and 

colleagues (2009) show that a long instrumental music training (around 29 months) caused an 

increase of the anterior midbody of the corpus callosum. 

 

Reorganization of cortical maps (remapping) - The above-mentioned plastic modifications of 

the gray and white matter are not the unique kind of macro-modifications of the brain. Indeed, 

and emblematically after brain lesions, extended phenomena of functional reorganizations can 

involve the cortex. 

A well-established knowledge concerns the fact that motor and sensory cortices are organized 

and divided into functional areas. Since each of these functional areas represents a precise part of 

the body, they are also known as cortical maps. Following a deafferentation, for example the 

resection of a peripheral nerve of a limb, we can observe, after just a few hours, a reorganization 

of that cortical area deprived of the sensory input.  

In human beings is possible to investigate noninvasively the functional reorganization of 

motor maps through TMS since this technique allows mapping motor areas. When a magnetic 

pulse triggers a motor response in a specific part of the body, we can infer a causal relationship 

between the stimulated motor area and the motor response. Using this method, Pascual-Leone 

and colleagues (1995) demonstrated an enlargement of specific cortical maps after a motor 

training consisting of a five-finger exercise. Thus, before the training, the whole area sensitive to 

the TMS stimulation was smaller than after the training. Interestingly, they found similar effect 

also in the case participants were trained to mentally perform the same training (Pascual-Leone et 

al., 1995). 

The exact mechanisms underlying the reorganization of cortical maps is still unknown, even if 

at least three factors could be implicated: unmasking of latent synapses, sprouting, and 

synaptogenesis.  

 

LTP and LTD - These two phenomena reflect the ability of synapses to change their strength 

and seem to be basic mechanisms of explicit memory, or declarative memory (Kemp & Manahan-

Vaughan, 2007; Nicoll, 2017). The neural mechanisms for the formation of declarative memory 

(memory for facts and events) are believed to be integrated from processes mediated by 
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hippocampal long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD are 

induced by persistent stimulation of synapses at high or low frequency (Nabavi et al., 2014; Nicoll, 

2017). Although LTP and LTD have been initially discovered in two different brain sites, 

respectively the hippocampus (Bliss & Lømo, 1973) and the cerebellum (Ito, 1982), nowadays 

growing evidence shows that LTP and LTD are present in the neocortex as well (Eder, 

Zieglgänsberger, & Dodt, 2002; Tsumoto, 1990). The neocortex would be particularly crucial for 

neural plasticity because it performs sensory, motor, and cognitive tasks. Last but not least, LTP 

and LTD are among the main mechanisms underlying the modulatory effects of NIBS. For this 

reason, they will be again mentioned in Chapter 2. 

 

LTP corresponds to a long-lasting enhancement of synaptic transmission that follows high-

frequency stimulation (tetanic).  

In the hippocampus, the region of CA1 (Cornu Ammonis) receives input from the CA3 subfield 

through a set of fibers called the Schaffer collaterals. In a typical experiment, the stimulation with 

a single electrical pulse of a CA3 cell induce an excitatory postsynaptic potential (EPSP) in a CA1 

cell. In one of the first demonstration of LTP, Bliss and Lømo (1973) showed that, instead of a 

single pulse, a tetanic presynaptic stimulation of the CA3 region caused a long-lasting 

enhancement of EPSPs in postsynaptic cells of the CA1 region. Thus, a tetanic stimulation can 

modify the synaptic transmission between the CA3 and CA1 regions. 

The N-methyl-D-aspartate receptor (NMDA receptor) plays an important role in LTP (Lüscher 

& Malenka, 2012). Normally, extracellular magnesium (Mg2+) ions bind to specific sites on the 

receptor, blocking the passage of calcium (Ca2+) ions. However, if the postsynaptic membrane is 

sufficiently depolarized, Mg2+ ions get dislodged from the pore, allowing Ca2+ ions to enter in the 

cell (Nicoll, 2017). The entry of Ca2+ ions activates a series of cascade reactions that triggers 

protein synthesis and, in turn, improves the efficiency of synaptic transmission. 

Contrary to LTP, LTD is a long-lasting decrement of synaptic transmission after low-frequency 

stimulation (Nabavi et al., 2014). The chemical bases of this phenomenon are similar to LTP since 

also in LTD the NMDA receptors would be involved. However, unlike LTP, in LTD the amount of 

Ca2+ ions is reduced because the low-frequency stimulation of presynaptic cells is not able to 

sufficiently depolarize the postsynaptic membrane. In LTD, the reduced flow of Ca2+ ions triggers 

another kind of chemical reactions that reduces dramatically the strength of synapses (Gazzaniga, 

2004). 
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So far the main factors involved in neural plasticity have been described: dynamic changes of 

synaptic structures, neurogenesis phenomena, neurotrophins, macro-modification of gray and 

white matter, functional reorganization of cortical maps, as well as LTP and LTD. However, for the 

sake of clarity, other aspects can contribute to change the brain. For example, some 

environmental factors such as environmental enrichment exposure (Mora, Segovia, & del Arco, 

2007; Sale et al., 2014) and sensory deprivation (Bengoetxea et al., 2012; Milshtein-Parush et al., 

2017).  

Additionally, age seems to play an important role in neural plasticity, both when we consider 

age as a crucial aspect during the development of the nervous system and when we consider age 

as an interacting factor with the recovery after a brain lesion. In the first case, considering age as a 

central factor within the development of the brain, the presence of sensitive periods during the 

development, in particular, the first years of life, is a proof of the importance of age in the 

maturation of the nervous system. In line with Bateson (1979), these sensitive periods can be seen 

as time windows by which the experience determines a proper development of a process. The 

absence of an adequate stimulation within these periods may cause an atypical development (Fox, 

Levitt, & Nelson, 2010) and leads to permanent alterations in the neural networks of different 

brain regions (Ismail, Fatemi, & Johnston, 2017). In the second case, taking the interaction 

between age and brain lesion into account, different outcomes may derive after a damage, 

depending on age. An interesting vein of research investigates the effect of brain injury on 

children (for a review, Anderson, Spencer-Smith, & Wood, 2011). For instance, some authors show 

a better recovery after a brain injury in childhood, compared to adults with the same lesion (Singh 

et al., 2013; Woods & Carey, 1979). In fact, the children's brain would be more plastic than the 

adult's one. Nevertheless, other authors draw a worse prognosis in case the brain injury occurs 

during the childhood (Anderson et al., 2005; Taylor & Alden, 1997) since in this period the brain is 

not still well developed and it is particularly fragile (Keenan, Hooper, Wetherington, Nocera, & 

Runyan, 2007). However, a more recent view (Anderson et al., 2011) suggests that the outcome 

following the injury in children is not only given by the age at which brain damage occurs, but also 

by other factors, such as injury-related factors (e.g. nature, severity, and timing of damage), 

constitutional factors (e.g. developmental stage, cognitive abilities) and environment (e.g. social 

status, and access to medical/rehabilitation treatments). All of these factors interact with each 

other, explaining the variable outcomes observed post-early brain damage. 
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Chapter 2 

Drivers of brain modulation 

 

 

 

The brain is a wonderful flexible structure. As we have seen, neural plasticity is an intrinsic 

property of the brain that is present throughout life. Perception of sensory stimuli, stimulus-

response associations, memories or motor procedures are all consequences of neural plasticity. 

Within this theoretical framework, the distinction between a psychological process and an organic 

process ceases to be informative. In fact, changes in brain functioning can lead to behavioral 

changes, just as modifications of behavior can induce functional or structural changes in the brain 

(Pascual-Leone, Amedi, Fregni, & Merabet, 2005).  

The possibility to modify our behavior or deeper brain processes is intriguing and several 

research fields have focused their attention on the fascinating field of brain modulation. A crucial 

point concerning brain modulation is the "direction" of expected results of modulation. When we 

conceive to modulate behavior and/or brain functioning, an important issue should be addressed: 

What can we expect from modulation? Depending on the desired outcome, we should consider 

the proper method. In some cases, the purpose could be to enhance a specific process. For 

example, an intervention could be focused on improvement of selective attention in patients with 

traumatic brain injury. On the other hand, the aim could be to downregulate a process, for 

example with the purpose to reduce an aberrant behavior. Thus, an intervention can act at 

different levels: to enhance neural plasticity when it plays an adaptive role or to reduce it when it 

is maladaptive (Hummel & Cohen, 2005). 

In this dissertation, the main purpose was to induce behavioral and neurophysiological 

modulation, as well as to investigate error-related processes. In Chapter 4, 5, and 6, we will 

present three studies aim to modify one or more processes. In particular, in study 1, in order to 

increase error awareness (error awareness and other error-related processes will be exhaustively 

described in Chapter 3), performance of a group of elderly and younger adults were incentivized 

by using rewards, whereas in studies 2 and 3, TMS was used to modulate and investigate error-

related processes. 
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Behavioral modulation: enhancing performance with rewards 

 

Performing a task in a context in which rewards are available contributes to improving 

performance. Growing evidence shows that this improvement can involve several cognitive 

processes: working memory, attention, episodic encoding, and decision making (Locke & Braver, 

2010; Maddox & Markman, 2010; Pessoa, 2009, 2010; Shohamy & Adcock, 2010). These results 

suggest an interaction between motivation and cognition. In fact, motivation can modulate 

ongoing neurocognitive processing (Braver et al., 2014; Hughes & Zaki, 2015). 

 

Motivation-cognition interaction is investigated by different disciplines such as cognitive 

neuroscience, social and personality psychology, and cognitive-aging research. Since in general 

these disciplines vary significantly in terms of disciplinary focus, only the perspective of cognitive 

neuroscience and cognitive-aging research will be considered here, at the expense of the 

framework of social and personality psychology that is not strictly related to this dissertation. 

 

In cognitive neuroscience, the construct of motivation is often conceptualized as a neural 

representation of an expected result by which it is possible to predict the effort that an individual 

will invest in order to reach that result. In other words, motivation can be seen as a process that 

supports, guides and maintains a goal-directed behavior.  

In the domain of cognitive neuroscience, a common approach to investigate motivation is by 

using reward signals. Motivation is a transient representation triggered by internal or external 

incentives. Experimental research typically operationalizes motivation as a mental representation 

evoked by extrinsic incentives (Braver et al., 2014). In a classical experiment, extrinsic incentives 

(e.g. monetary rewards) can be manipulated and delivered during the execution of a task, in order 

to investigate their impact on performance (Bonner & Sprinkle, 2002). This approach typically 

involves various programs of incentives or several types of rewards. Taken together each variation 

of these parameters may produce different effects on performance. For example, as regards 

different programs of incentives, a reward could be delivered either before or after a response, 

namely trial-by-trial. In other cases, a reward could be delivered after a certain number of 

responses, for example after each block of a task. Even if these programs of incentives seem pretty 

the same, their impact on performance can be dramatically different.  
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Depending on cognitive process investigated, age of participants and other factors such as 

cognitive strategies employed in the execution of a task, we could have diametrically opposite 

results by changing the program of incentives. It is not surprising, therefore, that several studies 

show a paradoxical reduction of incentivized performance (Bonner, Hastie, Sprinkle, & Young, 

2000; Bonner & Sprinkle, 2002; Camerer & Hogarth, 1999). Thus, it is extremely important to 

accurately choose when an incentive/reward should be provided. 

This paradoxical effect of incentives has been recently discussed in a review of Yu (2015), 

where mechanisms of incentive-induced performance decrements have been carefully considered. 

This article raises an important issue: although goals can support strong motivation, at the same 

time, they may induce a reduction of performance due to a strong psychological pressure. This 

phenomenon is known as "choking under pressure" and efficaciously described failures of 

performance caused by a high motivation that induces stress and, in turn, poor performance. An 

emblematic and practical example concerns the performance of football players on the penalty 

shootout. In major competitions, such as World Cup Games, it is common to observe big fails due 

to psychological pressure. 

Previous accounts have tempted to explain "choking under pressure" phenomenon: 

 

 the distraction account 

 the explicit monitoring account 

 the over-arousal account 

 

In the distraction account, attention would have a crucial role in explaining failures of 

performance in stressful scenarios. In fact, the reduction of performance would be a consequence 

of an attentional shift from skill execution to psychological pressure (Carver & Scheier, 1981; 

Wine, 1971). Thus, attentional focus is moved to distracting cues, such as the consequences 

associated with failure. 

Differently, the explicit monitoring account claims that pressure would shift mental processes 

from an automatic to a controlled mode (Baumeister, 1984). Also a well-learned behavior, such as 

driving a car, had required at the beginning of its acquisition a constant monitoring of 

performance during its execution. At this stage, when we are still somehow untrained, the level of 

cognitive resources is high to have an acceptable performance. The transition from a step-by-step 

monitoring stage to an automatic stage leads an advantage since, in this case, we can maintain 
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good performance by using a minimal level of resources. According to the explicit monitoring 

account, high psychological pressure would lead to a sort of regression in which even an automatic 

behavior would require a high step-by-step control. Therefore, this regression from the automatic 

stage to the step-by-step monitoring stage would lead performance to the inefficient style of 

execution at the beginner level. 

Finally, the over-arousal account suggests that an optimal level of arousal would contribute to 

maintain a good performance. In line with this theory, although an enhancement of arousal can 

improve performance in simple or well-learned task, it can disrupt performance on complex tasks 

(Yerkes & Dodson, 1908). Even if this theory is popular in psychology, so far the role of arousal on 

cognition is still debated. Whereas some studies show a positive effect of arousal on cognition (for 

example, Lambourne & Tomporowski, 2010), other ones reveal an opposite effect. In fact, several 

studies suggest that arousal, especially high level, can be detrimental on performance (Han, Liu, 

Zhang, Jin, & Luo, 2013; Moran, 2016), irrespective of the kind of task and the level of expertise 

(Ariely, Gneezy, Loewenstein, & Mazar, 2009). 

 

Unlike cognitive neuroscience, cognitive-aging research aims to investigate how cognitive 

processes change in aging, either normal or pathological, as well as to pinpoint underlying neural 

mechanisms implicated in aging. Many factors can be considered crucial to explain cognitive 

performance in aging, such as general health condition, education, gray and white matter volume, 

working memory, and speed processing. However, research points out motivation as a key factor 

to explain performance in aging as well (Braver et al., 2014; Spaniol, Schain, & Bowen, 2014; 

Spaniol, Voss, Bowen, & Grady, 2011).  

Cognitive-aging studies emphasize how motivation interacts with emotion and vice-versa. 

Interestingly, some studies show a sort of cognitive bias in elderly towards positive stimuli 

(positive valence) compared to negative stimuli (Carstensen & Mikels, 2005; Reed & Carstensen, 

2012). 

However, while several studies have investigated how motivational states interact with 

emotion or, in general, cognitive functioning, little is known about the effects of motivational 

incentives on the age-related cognitive decline that occurs in normal aging. In an interesting study, 

Spaniol and colleagues (2014) investigated the effect of remote monetary rewards on episodic 

memory in two groups of healthy participants, namely younger and older adults. In two different 

experiments, younger and older adults showed enhanced recognition for high-reward items 
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compared with low-reward items. In another study, Spaniol and colleagues (2011) investigated the 

effect of rewards on perceptual age-related decline. In this study, they used symbolic positive and 

negative rewards in a perceptual discrimination task, in which bicolored stimuli had to be classified 

according to their dominant color. The valent color was associated with either a positive or 

negative reward, whereas the neutral color was not associated with a reward. In line with 

expected results, authors showed that perception of neutral stimuli presented age-related decline, 

whereas perception of valent stimuli, associated with a positive or negative reward, showed no 

age difference. Authors interpreted these results in terms of preserved top-down control over the 

allocation of perceptual processing resources. Interestingly, this demonstrates that motivational 

incentives can modulate cognition, in particular, contribute to reducing age-related perceptual 

decline. 

 

 

Neural mechanisms of motivation–cognition interaction 

 

"Motivation" and "cognition" are typically two labels aimed to define distinct and precise entities. 

However, the concept of "motivation-cognition interaction" elicits itself a rethinking of these 

segregated constructs. In order to arbitrarily avoid distinguishing these two processes, the neural 

mechanisms that will be illustrated are, first of all, common to both processes. Secondly, we will 

not only talk about single brain structures, but also about brain networks and widespread 

broadcast systems of neural information involved in motivation-cognition interaction.  

Basically the main neural mechanisms involved in motivation-cognition interaction can be 

summarized as: (1) single brain structures; (2) brain networks; (3) neuromodulatory systems. The 

figure 2 shows a representation of these mechanisms. For a careful review of this topic, we 

recommend Braver and colleagues (2014). 

 

Single brain structures - One of the key structures of motivation-cognition interaction is the 

striatum. In particular, the nucleus accumbens seems to play an important role since it could be 

the structure able to bridge the gap between the dopaminergic system, widely implicated in 

motivation, and behavior (Berridge & Waterhouse, 2003). Moreover, the reciprocal connection 

between the striatum and the frontal cortex could contribute to prevent inappropriate actions and 

thoughts until the context or the situation is more adequate (O’Reilly & Frank, 2006). 
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Figure 2 | Neural Mechanisms of motivation-cognition interaction. Inspired by Braver et al., 2014. 

 

Another brain structure has been many times associated with motivation: the anterior 

cingulate cortex (ACC). This area forms a large region around the rostrum of the corpus callosum 

and seems to perform several functions that range from motor to motivational processes. For 

example, by the invasive method of single-unit recording, a study suggested that neurons in the 

ACC process multiple aspects of reward, such as proximity to the reward within a sequence of 

actions (Shidara & Richmond, 2002). In addition, the ACC and the prefrontal cortex (PFC), in 

particular the dorsomedial PFC, are implicated in performance monitoring, as well as in triggering 

cognitive control in response to motivational variables (Kouneiher, Charron, & Koechlin, 2009). 

An interesting theory of Shenhav and colleagues (2013) offers a possible interpretation of 

these findings, suggesting that the ACC would have a role in both motivation and executive 

functions. Specifically, the ACC might be crucial in the cost-benefit evaluation of an action, 

contributing to triggering a proper level of executive control. Thus, after this evaluation, the ACC 

would send the information to the PFC that would allocate an appropriate level of cognitive 

control.  

The Shenhav and colleagues' theory introduces the third hub described by Braver and 

colleagues (2014) as central in motivation-cognition interaction: the lateral PFC. In particular, 

Braver and colleagues claim that the lateral PFC would be a structure that receives and integrates 

motivational and cognitive information. 
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Brain networks - So far, the striatum, the ACC, and the lateral PFC have been described as 

areas strictly related to motivation-cognition interaction. However, as nowadays is well 

established, any brain process is supported by a combined functioning of structures that are 

organized in brain networks.  

In line with Braver and colleagues (2014), motivation-cognition interaction relies on two 

networks, namely "task network" and "valuation network". Depending on how these networks 

interact with each other and exchange information, we can observe two modes of communication: 

direct pathways and reconfiguration of network topology modes. Although distinct, these modes 

of communication are not mutually exclusive. 

Direct pathways mode considers each kind of direct connection between task and valuation 

networks. For instance, the connection between dorsolateral prefrontal cortex (DLPFC) and 

cingulate regions or between orbitofrontal and lateral PFC. 

On the other side, reconfiguration of network topology mode explains motivation-cognition 

interaction in terms of reorganization of networks. In a network analysis study (Kinnison, Padmala, 

Choi, & Pessoa, 2012), task and valuation networks were compared during a task in which trials 

could be presented in two modalities: low versus high reward value. Results showed that while on 

control trials (no reward) the two networks performed in a modular way and presented a high 

within-network functional connectivity, on high-reward trials between-network connectivity 

increased. Thus, the within-between alternation of network connectivity reflected which kind of 

information was processed. 

 

Neuromodulatory systems - Neuromodulatory systems, including the noradrenergic, 

serotonergic, dopaminergic, and cholinergic systems have a strong influence on behavior and 

cognition since they can rapidly influence neuronal activity through broad projections to large 

portions of the brain. A large amount of literature shows an involvement of dopamine in 

motivation (Collins & Frank, 2015; Volkow, Wise, & Baler, 2017). Moreover, dopamine is crucial in 

cognition because it produces spread effects on cellular-level physiology that affect neural 

excitability (Henze, Gonzalez-Burgos, Urban, Lewis, & Barrionuevo, 2000; Lisman et al., 2011) and 

enhances the signal-to-noise ratio (Durstewitz & Seamans, 2008; Thurley, Senn, & Lüscher, 2008). 

Taken together, these findings support the idea that dopamine might be implicated in 

motivation-cognition interaction. In other words, dopamine may represent somehow a chemical 
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modulator of motivation-cognition interaction. However, it is equally true that other widespread 

neuromodulatory systems may be involved. 

 

In these two paragraphs, some essential aspects of reward-related modulation have been 

described. Several studies were presented showing how the use of rewards is associated with 

improved performance in different fields (Locke & Braver, 2010; Maddox & Markman, 2010; 

Pessoa, 2009, 2010; Shohamy & Adcock, 2010). As anticipated, this modulation would be possible 

since motivation and cognition are not unrelated processes. Another interesting point concerns 

the direction of modulatory effects. All the studies previously illustrated were aimed to increase a 

certain process. However, an extensive literature about reward-related modulation shows cases in 

which rewards are used in order to reduce specific behaviors, such as hyperactivity in children 

with attention deficit hyperactivity disorder (ADHD) (Coelho et al., 2015), the negative symptoms 

of schizophrenia (Gholipour, Abolghasemi, Gholinia, & Taheri, 2012), agitated behaviors in elderly 

(Billig, 1986), and aggressive behaviors in psychiatric patients (Corrigan, Yudofsky, & Silver, 1993). 

 

The next paragraph will introduce another emerging and promising group of techniques more 

and more used to modulate brain functioning and behavior: NIBS. Given that a deep examination 

of these techniques goes beyond the objectives of this dissertation, the next sections will briefly 

describe the main NIBS, without going into too much detail. Greater attention will be given to 

TMS, as the technique used in the studies described in Chapters 5 and 6. 

 

 

Noninvasive brain stimulation 

 

The concept of stimulating the brain dates back thousands of years, but only recently this 

approach has become a reality. Indeed, the past decade has seen a growing interest in research in 

the application of NIBS to investigate brain-behavior relations and implement new treatments in 

neurologic and psychiatric fields. NIBS not only modulates neural activity during application, but 

can also induce long-lasting modifications of cortical excitability (Polanía, Nitsche, & Ruff, 2018; 

Yavari, Jamil, Mosayebi Samani, Vidor, & Nitsche, 2017). The growing  use of NIBS lies in the fact 

that this set of techniques represent an advantageous tool for interventional neurophysiology 

applications, modulating brain activity in specific brain areas or networks, as well as to produce 
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controlled modulations in behavior. Moreover, NIBS can overcome one of the most limitations of 

neuroimaging techniques: the difficulty to infer causal relationships between brain areas or 

networks and cognitive, motor, or perceptual processes. While neuroimaging techniques can 

reveal correlations, NIBS are able to identify causative relations. Before the introduction of NIBS, 

the only way to infer a causal implication of an area in a specific task was studying patients with 

brain damage. However, this approach presents some drawbacks: firstly, brain lesions are rarely 

restricted to a specific region (Robertson, Théoret, & Pascual-Leone, 2003), and second, after a 

lesion, the brain undergoes a massive functional and structural reorganization so that every 

behavioral outcome we observe may depend on these plastic and compensatory phenomena 

(Veniero, Strüber, Thut, & Herrmann, 2016). 

NIBS can affect neural states and behavior through variations of the membrane potentials. 

This is a common feature that all NIBS share. In fact, in general, NIBS can induce ionic movements 

and change the membrane potentials and, in turn, foster or reduce spikes. Although, all these 

techniques can modify the membrane potential of neurons by inducing electric currents, the way 

through they reach this aim can vary according to the method.  

For example, transcranial electrical stimulation (tES) is mainly a neuromodulatory method 

that induces a change in the state of the membrane potential by weak electric current (Miniussi, 

Harris, & Ruzzoli, 2013). Thus, the neuron may be depolarized or hyperpolarized, depending on 

the parameters of stimulation and other multiple aspects. However, unlike TMS, tES does not 

directly induce action potentials, but a subthreshold modulation of neuronal membrane 

potentials. On the other side, TMS is both a neuromodutory and neurostimulation method 

because it induces a direct depolarization of the membrane and elicits action potentials of the 

stimulated area. 

 

tES and TMS are two of the most well-known types of NIBS, which affect brain functioning 

based on different electromagnetic principles. The next sections of the dissertation will explain 

more in details both these techniques. Firstly, tES will be introduced, by describing several 

methods that belong to this category of methods and explaining their physiological effects on the 

brain. Secondly, TMS will be described in order to classify different paradigms of stimulation. 

Moreover, similarly to tES, the physiological effects of TMS will be deeply elucidated. 
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Transcranial electrical stimulation 

 

The term tES refers to several methods that require the application of weak electric currents (1-2 

mA) directly over the scalp. As already mentioned, tES does not induce an action potential, since 

the polarization of the membrane is too weak. However, tES can modify intrinsic neuronal 

excitability leading to variations in synaptic efficacy, even for long period after the stimulation. In 

general, the stimulation is delivered through two or more electrodes applied over the scalp. The 

position of the electrodes, as well as their size, are two factors that will contribute massively to 

determine the effects of tES. 

One of the main disadvantages of tES concerns their reduced spatial resolution. In fact, the 

electric currents applied on the scalp diffuse in a spread way, depending on the electrical 

resistance produced by a given tissue (e.g. bone, liquor, and gray matter present different level of 

electric resistance) and modeling and imaging studies suggest diffuse brain modulation (Bikson, 

Datta, Rahman, & Scaturro, 2010; Datta et al., 2009; Lang et al., 2005). Between tES and TMS, this 

latter method is without doubts characterized by a higher spatial and temporal resolution than 

tES. However, contrary to TMS, tES is more easy to operate, cost-effective, and suitable for 

double-blind, sham-controlled studies (Yavari et al., 2017). 

Among tES, we can identify the above-mentioned tDCS, in which the electrical current is 

direct, and two different methods in which the current is alternating: transcranial alternating 

current stimulation (tACS) and transcranial random noise stimulation (tRNS). The figure 3 shows a 

representation of different kinds of tES. 

 

 

Figure 3 | A representation of tES: tDCS, direct current; tACS, alternating current with a fixed frequency; tRNS, 
alternating current with random frequencies. 
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One of the most popular and used tES is tDCS. In the classic setup of tDCS, one of the 

electrodes (anode or cathode) is placed on the area of interest, while the other is placed in a 

neutral area, either cephalic or extracephalic. Depending on which electrode is placed over the 

area of interest, we can have different effects. Studies on animal models have shown that anodal 

stimulation (anode placed over the area of interest) increases the frequency of spontaneous 

neuronal discharges, whereas cathodal stimulation (cathode placed over the area of interest) 

seems to produce an opposite effect (Bindman, Lippold, & Redfearn, 1962; Purpura & McMurtry, 

1965). Interestingly, this effect has been replicated on humans as well, by using 10 minutes of 

tDCS (Nitsche et al., 2008; Nitsche & Paulus, 2000). 

Although this evidence shows how anodic stimulation may potentially facilitate a particular 

process and cathodal stimulation may inhibit it, several studies show that these effects are not 

always consistent and they seem only valid for the use of tDCS on the motor areas (Nitsche et al., 

2008). For instance, in many studies, the stimulation of non-motor areas has shown unexpected 

behavioral outcomes, with anodal tDCS usually inducing facilitation and cathodal tDCS inducing a 

range of effects (Jacobson, Koslowsky, & Lavidor, 2012; Wiethoff, Hamada, & Rothwell, 2014).  

 

With regards to tACS, the neuromodulatory purpose is generally to entrain brain oscillations 

(Amengual, Vernet, Adam, & Valero-Cabré, 2017; Miniussi et al., 2013; Tavakoli & Yun, 2017). 

Unlike tDCS, in tACS the current is lower and is not direct but alternating with predetermined 

frequencies that can range between 0.1 Hz, up to 1000 Hz. This method shares with tES all pros 

and cons, even if the mechanisms by which tACS modulates the brain are still debated. 

It has been suggested that tACS may modulate ongoing neuronal activity and behavior 

through the entrainment of a specific frequency in a certain area. In brief, by the application of 

tACS on a particular brain area, we could potentially induce that area to oscillate at a particular 

frequency (Kanai, Chaieb, Antal, Walsh, & Paulus, 2008). Within the theoretical framework of 

"rhythmic approach" (Miniussi, Brignani, & Pellicciari, 2012; Thut & Miniussi, 2009), tACS can 

represent a fruitful tool to establish a causal relationship between cognition and brain oscillations, 

as many cognitive neuroscience studies show. For example, when tACS was applied over the 

primary motor cortex at different frequencies during a motor task, several authors revealed an 

improvement of performance at alpha frequency stimulation only (10 Hz) (Antal et al., 2008). In 

another study, Pogosyan and colleagues (2009) demonstrated in a group of healthy participants 

that the entrainment of cortical activity at beta frequency stimulation (20 Hz) of the motor cortex 



34 
 

was associated with a slowing of voluntary movements. This result is suggestive because allows 

drawing a connection between Parkinson's slowing and the exaggerated beta activity found in 

these patients. 

 

Finally, the third and newest type of tES is tRNS. This kind of stimulation is somehow similar to 

tACS because in both cases the current is alternating. However, in tRNS, the frequency of 

oscillation is not stable as in tACS but random. Thus, the frequency of stimulation changes 

continuously within a spectrum of oscillation that ranges from 0.1 Hz to 640 Hz. Sometimes, some 

studies adopt smaller ranges, for example low band (0.1–100 Hz) or high band (101–640 Hz). 

Given that tRNS is a relatively recent method, so far the underlying mechanisms by which it 

can modulate the brain are still uncertain (Antal & Herrmann, 2016). A prominent hypothesis 

suggests that tRNS may be based on the repeated subthreshold stimulations that avoid 

homeostasis of the system (Fertonani, Pirulli, & Miniussi, 2011). The homeostasis mechanisms are 

important in the systems like the brain because they allow maintaining the functioning within a 

normal range. For example, the impact of tDCS could be reduced because of these homeostasis 

mechanisms. In fact, since tDCS is a direct current, it might produce a disequilibrium in the system 

and trigger these mechanisms. This possibility could explain some null or unexpected effects find 

in tDCS studies. Contrary, tRNS is a subthreshold alternating stimulation that may induce 

mechanisms of temporal summation in neural activity without to activate homeostasis (Miniussi et 

al., 2013). In line with this theory, Fertonani and colleagues (2011) compared in a study the effect 

of tDCS (anodal and cathodal) and high-frequency tRNS on the visual cortex. Their results suggest 

that high-frequency tRNS produce stronger effect on performance than tDCS.  

 

 

Basic neurophysiology of transcranial electrical stimulation 

 

In this section will be reviewed some studies that describe the neurophysiological bases of tES. 

The main purpose of this paragraph is a brief presentation of neural mechanisms responsible for 

the capability of tES to modulate plasticity and cortical excitability, as well as motor and cognition 

processes. Since tDCS is one of the first tES used in research, most evidence about 

neurophysiological bases of electrical stimulation derives from this technique (for a review, Yavari 

et al., 2017). 
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The duration and direction of tES effects are determined by several stimulation parameters: 

polarity (only in tDCS), montage of electrodes, current density (i.e. shape of the electrodes), and 

duration of stimulation. For instance, in tDCS, a stimulation of a few seconds only produces a 

modulation of the brain during the intervention (Nitsche & Paulus, 2000). However, if we 

implement a stimulation for a longer period, for example minutes, we can observe long-lasting 

changes of cortical excitability (Nitsche et al., 2008; Paulus, 2011) 

A notable contribution from animal and pharmacological studies has allowed understanding 

how tDCS induces modulatory effects on the brain. In general, anodal stimulation seems somehow 

to induce similar effects observed in LTP, whereas cathodal stimulation seems to replicate the 

effects typically observed in LTD (Monte-Silva et al., 2013; Yavari et al., 2017). Furthermore, first 

animal studies suggested an involvement of other plastic mechanisms to explain modulation of 

anodal and cathodal stimulations: changes of intracellular cyclic AMP concentration, gene 

expression, intracellular calcium level, BDNF concentration, and protein expression (Yavari et al., 

2017).  

Summarizing the neural mechanisms of tDCS is not simple because different mechanisms may 

be involved depending on several factors, such as the duration of stimulation. For example, a 

study investigating the anodal stimulation on-line effects revealed an implication of sodium and 

calcium channels in the induction of cortical excitability produced by stimulation (Nitsche et al., 

2003). In addition, another study excluded the involvement of NMDA and GABAA receptors in on-

line anodal stimulation, again as regards on-line effects. On the other hand, long-lasting 

aftereffects on cortical excitability seem to reflect other mechanisms. For example, 

pharmacological studies show that NMDA receptors are crucial for excitatory effects of anodal 

stimulation. In fact, the blockage of NMDA receptors causes a suppression of cortical excitability, 

whereas using the partial NMDA receptor agonist d-cycloserine the excitability after anodal 

stimulation is increased (Nitsche et al., 2003; Nitsche et al., 2004). 

A pharmacological intervention has unveiled additional mechanisms of tDCS effects in 

humans. Indeed, a study has investigated the role of the dopaminergic system. Results showed 

that low and high L-DOPA administration nullifies tDCS-induced LTP-like and LTD-like plasticity 

(Monte-Silva, Liebetanz, Grundey, Paulus, & Nitsche, 2010), suggesting that dopaminergic 

neurotransmission is required for tDCS-induced LTP-like and LTD-like plasticity. 

Finally, it has been shown that the long-lasting aftereffects of tDCS are also dependent on 

calcium. A low and prolonged influx into Ca2+ postsynaptic neurons causes LTD, a moderate 
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increase of influx does not induce synaptic changes, a larger calcium influx increases LTP, and, 

paradoxically, excessive calcium again induces LTD due to potassium channel-dependent counter-

regulation (Lisman, 2001; Misonou et al., 2004). 

 

 

Transcranial magnetic stimulation 

 

In the next paragraphs TMS will be illustrated, providing essential information aimed to 

understanding the studies that will be then described in the next chapters of this dissertation 

(Chapter 5 and 6).  

 

A number of books have been written about TMS and thousands of studies have been 

conducted using this technique. The reasons for this success are numerous, but probably one of 

the first concerns the noninvasiveness of TMS. In fact, before the advent of TMS, the procedures 

able to stimulate the brain, producing a suprathreshold depolarization of neurons, needed 

invasive interventions. For example, some procedures consisted in delivering electrical currents 

directly over the surface of the cerebral cortex, therefore after craniotomy (Adrian & Moruzzi, 

1939; Patton & Amassian, 1954). Alternatively, without the removing of parts of the skull, the 

depolarization of neurons could be conducted by delivering of high-voltage electric currents 

(Merton & Morton, 1980). Although these currents could overcome the natural barrier 

represented by the skull, they were at the same time extremely intolerable and painful. 

The first nonpainful stimulation of the human brain, through the use of magnetic fields, dates 

back to the 1980s (Barker, Jalinous, & Freeston, 1985). The introduction of TMS has been a turning 

point for neurosciences because the advantage of this technique lies in the fact that the magnetic 

field delivered by TMS passes through the extracortical structures without encountering any 

resistance, unlike the electric currents. Once the magnetic field reaches the cortex, it induces an 

electric field that causes a rapid depolarization of neurons. 

In order to simplify the TMS description, the next sections will be so organized: (1) TMS 

fundamentals; (2) TMS paradigms; (3) basic neurophysiology of TMS; (4) future role of TMS in 

research field. 
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TMS fundamentals 

 

Faraday's law of electromagnetic induction is the physical principle by means TMS can induce 

electric currents in the brain. An electric pulse, sent through a wire coil (primary conductor), 

generates a magnetic field. The rate of change of this magnetic field induces a secondary current 

in a nearby conductor (secondary conductor). An essential aspect of this principle is that a contact 

between the two conductors is not necessary. In the theoretical framework of Faraday's law, the 

TMS coil represents the primary conductor and the brain the secondary one. Obviously, in the 

magnetic stimulation of the brain, the stimulating coil is not directly in contact with the brain 

tissue. Indeed, the skull is in between the coil and the brain. However, as already explained, the 

magnetic field passes through both bone and soft tissue without being affected by them. 

In TMS, an electric pulse which peaks and diminishes rapidly back to zero in a brief period (< 1 

ms) is sent through the coil. The rapid fluctuation of the current generates a magnetic field, 

perpendicular to the horizontal plane of the coil. The magnetic field rises (up to 2.5 T) and falls 

rapidly. Consequently, this fluctuation of the magnetic field induces a current flow in the brain 

tissue nearby the magnetic field. The figure 4 summarizes this cascade of events. 

 

 

Figure 4 | On the left (A): The coil generates a magnetic field that induces, in turn, an electric field in the brain tissue. 
On the right (B): at a microscopic level, TMS induces a local membrane depolarization and, consequently, an action 
potential in the stimulated neurons. 
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The intensity and focality of stimulation will depend on some factors such as the geometry 

and size of the coil and its distance from the stimulated site. In the last few years, different types 

of coils have been developed in order to administrate a proper stimulation according to the aims 

of investigators or clinicians. For example, in basic research, it is generally preferred the use of 

coils that induced focal electric fields. On the other hand, less focal coils are often used in clinical 

practice since they allow an adequate stimulation of the peripheral nerves (indeed, TMS is not 

only used to stimulate the central nervous system). Among the main coils: 

 

 Round coil (or circular coil) - The round coil is the first coil designed for TMS. It is not very 

focal and it is generally useful for peripheral stimulation. 

 Figure-of-8 coil (or butterfly coil) - This coil is formed by two circular coils and it is 

conventionally adopted for academic uses of TMS. It induces a smaller electric field than 

the round coil, therefore it allows to maintain a better spatial resolution. Although not fully 

experimentally confirmed, mathematical modeling suggests that a pulse delivered at the 

100% of intensity by a standard figure-of-8 coil (70 mm) can stimulate a 2 x 2 cm2 cortical 

surface (Deng, Lisanby, & Peterchev, 2013). Nowadays, smaller figure-of-8 coils (50 mm) 

are used in several experimental fields. They allow a more focal stimulation but, at the 

same time, less deep. 

 H-coil - Thanks to a complex and recent coil design, the H-Coil can stimulate deeper and 

larger areas than usual coils. A study suggests that H-coil could stimulate neural structures 

up to 6 cm below the cortex (Roth, Amir, Levkovitz, & Zangen, 2007). This type of coil is 

mainly used in clinical contexts, where the focality can be less precise. 

 

Apart from the geometry of the coil, it is important to keep in mind that the orientation of the 

coil, as well as the distance between the coil and the brain, are crucial variables that determine 

the efficacy of TMS. Moreover, even if some coils allow directly stimulating only cortical areas, it is 

plausible that the effects of TMS can also propagate along white matter tracts and to reach 

subcortical nuclei.  

The administration of single-pulse TMS (spTMS) is a proficient stimulation paradigm highly 

used in the clinical setting (Rotenberg, Horvath, & Pascual-Leone, 2014) to evaluate, for example, 

the integrity of the corticospinal tract. This procedure introduces some possibilities offered by the 

use of spTMS. Using spTMS, it is possible to evaluate various parameters such as the state of 
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cortical excitability of the primary motor and visual cortices and the conduction time of the motor 

pathways. For example, a well-known measure related to the motor system is the motor-evoked 

potential (MEP). The MEP is evaluated through the use of the electromyography (EMG), which 

allows measuring the degree of muscle contraction. When applied to the motor cortex, spTMS can 

induce contralateral muscle activity which can be recorded by EMG as MEPs. From an 

electrophysiological perspective, the MEP is considered an indirect index of the integrity of the 

corticalspinal tract.  

An index of cortical excitability, directly associated with the MEP, is the motor threshold (MT). 

The MT is defined as the lowest intensity of the TMS stimulator able to induce, at least in 50% of 

TMS pulses, MEPs of 50 µV. The standard procedure to measure the MT is in detail described by 

Rossini and colleagues (2015). 

Finally, the phosphene threshold (PT) is another index adopted to evaluate cortical 

excitability, namely the visual cortex excitability (Silvanto, 2013). The PT is not correlated to the 

MT and is generally higher (Stewart, Walsh, & Rothwell, 2001). However, it cannot be considered 

an objective measure because it depends on a personal report of the participant that 

communicate when it is perceiving the phosphene. Thus, the interindividual variability of this 

measure is an unavoidable consequence. 

Importantly, the MT and PT are conventionally used to establish the intensity of stimulation of 

the brain. However, the MT and PT are related to motor and visual areas, respectively. Thus, if an 

investigator decides to stimulate nonmotor/nonvisual areas, such as the DLPFC, and the intensity 

of stimulation is assessed by the above-mentioned indices (MT or PT), it should consider that the 

intensity could affect this area differently, because the DLPFC, an associative area, is surely 

different from motor and visual areas (e.g. these areas have a different cytoarchitecture). 

 

 

TMS paradigms 

 

An important aspect concerning TMS regards its functional versatility. By variation of several 

paradigms, researchers and clinicians can address interesting questions. In this paragraph, the 

main paradigms will be described. 

 



40 
 

Single-pulse TMS - spTMS consists of an isolated pulse applied to a specific cortical site. The 

main applications of spTMS have already been described, such as the evaluation of the MT and PT. 

In general, spTMS is used to diagnose or investigate the cortical reaction to each pulse. Moreover, 

spTMS can be used to affect cognitive functioning during a task. For example, an investigator could 

administer spTMS in specific time windows while a cognitive process is occurring and to address 

important questions about the time course of cognitive processes. In Chapter 5, spTMS has been 

adopted to induce a time-selective modulation of error awareness. 

 

Paired pulse TMS (ppTMS) - the general purpose of this paradigm is to investigate the effect 

of a first stimulus, or conditioning stimulus (S1), on the MEP elicited by a second stimulus, or test 

stimulus (S2). Crucial parameters of this paradigm are the interstimulus interval (ITI) and the 

stimulus intensity. For instance, in some experiments different kinds of conditioning stimuli are 

delivered, progressively varying the intensity, whereas the intensity of test stimulus is maintained 

at 110-120% of the MT. ppTMS is generally used to investigate the cortico-cortical connection 

between two areas. In this case, the two stimuli are administered to two different cortical regions 

that are supposed to be connected with each other (Bolognini & Ro, 2010). 

 

Both spTMS and ppTMS are on-line paradigms. This means that stimuli are always delivered 

while participants are doing something (an action, a computerized task and so on). Theoretically, 

these paradigms can affect and modulate brain functioning for a brief period (for a review, 

Sandrini, Umiltà, & Rusconi, 2011). Unlike on-line paradigms, off-line ones are administered before 

a measurement and, in general, consist in repetitive stimulation in which trains of pulses are 

delivered at a specific frequency for a certain period. These paradigms are known as rTMS.  

 

Repetitive TMS - When the aim of investigators or clinicians is to produce long-lasting 

modulation, rTMS is the most proper paradigm. rTMS is characterized by trains of pulses delivered 

at a fixed intensity over a single brain site.  

Typically, after rTMS, a physiological or behavioral variable is measured, in order to evaluate 

the effect of rTMS on this variable. These paradigms are characterized by two crucial parameters: 

frequency and duration. Frequency refers to the number of pulses per second. The frequency of 

stimuli can range between 1 Hz (if ≤ 1 Hz: low-frequency rTMS) to 50 Hz (if > 5 Hz: high-frequency 

rTMS). In general, low-frequency rTMS is applied for several minutes, whereas high-frequency 
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rTMS is applied in a patterned fashion. In this case, brief and high-frequency bursts are spaced by 

short windows without TMS. For example, rTMS paradigm in the study illustrated in Chapter 6 is a 

low-frequency paradigm at 1 Hz of frequency. Duration refers to the length of the paradigm in 

terms of time. 

rTMS can induce long-lasting effects, either inhibitory or facilitative, that outlast the 

stimulation duration itself. In general, the effects last several minutes following a single rTMS 

session, and days/weeks following several consecutive rTMS sessions (Klomjai, Katz, & Lackmy-

Vallée, 2015; Oberman, 2014). Most of the studies investigating the modulatory effects of TMS 

focused on motor areas, as in the case of  tES. In general, low-frequency paradigms seem to 

induce a cortical inhibition, as evidenced by the peak-to-peak reduction of the MEP amplitudes. 

On the contrary, high-frequency paradigms produce a cortical facilitation, again highlighted by 

MEP amplitudes, which in this case are larger (Maeda, Keenan, Tormos, Topka, & Pascual-Leone, 

2000). 

 

Theta burst stimulation - Theta burst stimulation (TBS) is a family of recent TMS paradigms. 

TBS refers to pattern of stimuli that mimics neural oscillatory patterns (Rotenberg et al., 2014). 

Two types of TBS are mainly known: continuous TBS (cTBS) that would replicate the inhibitory 

effects of low-frequency TMS, and intermittent TMS (iTBS) that would replicate the effects of 

high-frequency TMS (Oberman, 2014). In general, TBS elicits more consistent effects than simple 

rTMS paradigms (Hoogendam, Ramakers, & Di Lazzaro, 2010). 

 

 

Basic neurophysiology of TMS 

 

In relation to the immediate effect that TMS can produce, pharmacological interventions shed 

light on possible underlying mechanisms. Two prominent indices used to on-line assess cortical 

excitability are the MT and MEP. A study shows that the MT is affected by agents blocking voltage-

gated sodium channels, that are essential in regulating axon excitability (Hodgkin & Huxley, 1990). 

Contrary, other neuromodulator systems do not affect the MT, such as dopamine, norepinephrine, 

GABA, acetylcholine, and serotonin (Klomjai et al., 2015). Differently, MEP amplitude is increased 

after both the administration of dopamine and norepinephrine agonists, and reduced by 

modulators of GABAA receptors (Ziemann, 2004). 
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The neurophysiological bases of rTMS are still debated (Hoogendam et al., 2010; Klomjai et 

al., 2015). However, more and more evidence suggests that a plausible explanation of long-term 

effects of rTMS might base on processes like LTP and LTD (Esser et al., 2006; Korchounov & 

Ziemann, 2011). In fact, an incontrovertible evidence concerns the fact that rTMS is able to 

produce effects that go beyond stimulation. The facilitative and inhibitory effects that rTMS can 

induce are somehow connected to LTP and LTD, respectively.  

Several research fields provide findings of an involvement of LTP and LTD in TMS-induced 

modulation of the brain and behavior. The effects of rTMS on motor cortex have already been 

described in terms of MEP modulation. In addition to these effects, neuroimaging and 

electroencephalography (EEG) studies contribute to confirming the implication of LTP and LTD in 

long-term effects of TMS. These findings consist in alteration of cerebral blood flow, different 

BOLD activation patterns, or EEG modifications (Hoogendam et al., 2010). 

Some parameters of rTMS such as intensity, frequency, and duration are crucial to determine 

a specific effect. However, an aspect that is sometimes neglected, but that is likewise important, is 

the state of the system before the stimulation (Miniussi et al., 2013). For example, a priming 

stimulation (i.e. a pretreatment exposition with a brief stimulation) can affect the results of the 

following stimulation (i.e. the treatment). In line with this statement, Iyer and colleagues (2003) 

tested 25 healthy participants using the MEP as an index of cortical excitability. They hypothesized 

that because in vitro LTD is increased by pretreatment of synapses with higher-frequency 

stimulation and rTMS inhibition had common mechanisms with LTD, higher-frequency priming 

would enhance it as well. Thus, a subthreshold rTMS (6 Hz) was used to prime the motor cortex 

and afterward a suprathreshold 1 Hz stimulation for 10 min was administered. Authors showed 

that the 6-Hz pretreatment enhanced the inhibitory effect of the subsequent 1-Hz rTMS. 

Again, according to the importance of the state of the system before the stimulation, some 

authors demonstrated that specific factors before the stimulation lead to longer effects. Kujirai 

and colleagues (2006) demonstrated this phenomenon by a paired associative stimulation (PAS) 

paradigm that combines: (1) a repetitive stimulation of peripheral nerve afferents of the target 

muscle, and (2) TMS over its motor area. Importantly, in this kind of paradigms is crucial the 

interstimulus interval (ISI) between the peripheral stimulation and the cortical stimulation. In this 

study, results suggested that the facilitative effects of PAS (ISI = 25 ms) lasted longer only when 

the peripheral muscle was contracted respect to when it was relaxed (Kujirai et al., 2006). 
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The studies just now described (Iyer et al., 2003; Kujirai et al., 2006) suggest an analogy 

between LTP and LTD and long-term effects of TMS. As in LTP and LTD, also in TMS a priming 

stimulation would support stronger neural plasticity. Thus, the aftereffects of stimulation seem 

sensitive to prior activation of cortical circuits (Hoogendam et al., 2010). 

Animal models and pharmacological interventions have contributed to unveil the 

neurophysiological mechanisms of rTMS. An interesting study combine these two approaches. Kim 

and colleagues (2006) compared four groups of rats under different conditions. The first three 

groups were administered a specific treatment (see below) and subsequently, all groups were 

exposed to a stressful condition, namely the forced swim test (FST). In this test, the immobility is 

an index of depression, so higher immobility is associated with higher depression. The fourth 

group was a control group composed of naive rats that were not treated and were not exposed to 

the FST. To summarize the four groups:  

 Group 1 - 7-day treatment with 10 Hz rTMS + FST 

 Group 2 - 7-day treatment with sham stimulation + FST 

 Group 3 - 7-day treatment with fluoxetine (antidepressant drug) + FST 

 Group 4 - no intervention 

This study reported two interesting results. Firstly, rats treated with rTMS showed less 

immobility than the sham group. No relevant improvement of immobility time in rats 

administered with fluoxetine. Secondly, whereas LTP was suppressed in fluoxetine and sham 

groups, rTMS and no-intervention groups presented LTP. Since is known that the stress can disrupt 

LTP (Foy, Stanton, Levine, & Thompson, 1987), this result shows that 7-day treatment with rTMS 

can reverse the negative effect of stress on synaptic plasticity. 

 

 

Future role of TMS in research field 

 

TMS is a versatile tool that allows the neurostimulation and neuromodulation of the brain. The 

main advantage of this technique is that it can induce a depolarization of neurons nearby the 

magnetic field, without causing pain. Therefore, TMS is considered a completely noninvasive 

technique.  

Among NIBS, TMS has some exclusive prerogatives. For example, contrary to tES, TMS allows 

investigating the time course of cognitive processes, thanks to the use of specific on-line 
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stimulation paradigms. By means the ability to modulate brain functioning for a period that 

outlasts the stimulation, TMS has gradually attracted the attention of clinicians who have begun to 

exploit this remarkable aspect in order to treat psychiatric and neurological disorders. Nowadays, 

the clinical applications of TMS are so varied that listing them would lead to the inevitable 

consequence of not mentioning someone.  

However, despite this success, TMS should still be considered a complementary tool and not a 

substitute for conventional treatment. In fact, there are no standard protocols that allow a 

systematic use of TMS in the clinical field. Unfortunately, each study is characterized by multiple 

methodological differences ranging from the type of stimulation paradigm adopted, the duration 

of the intervention, up to the outcomes taken into consideration to evaluate the modulatory 

effects of TMS. 

Nowadays, only the prefrontal TMS therapy is US Food and Drug Administration (FDA) 

approved for treating a specific condition, namely major depressive disorder in adults who have 

not responded to prior antidepressant medications (Perera et al., 2016). In all other cases, the 

research for the best stimulation parameters, or the most suitable stimulation targets, is still 

ongoing. 

 

In recent years, an interesting approach is gathering many favors in TMS research. It concerns 

the combined use of TMS with other neuroscientific techniques such as fMRI, positron emission 

tomography (PET) and EEG. The combined use of TMS and neuroimaging techniques is a promising 

tool to shade light on unsolved questions regarding the brain cognition-behavior relationship. The 

main advantage of coregistration lays on the fact that TMS can compensate for the limits of 

neuroimaging techniques and vice-versa. 

One of the most unsolved aspects of TMS regards its complex physiological mechanisms. As 

mentioned before, despite the widespread use of TMS in research, its underlying mechanisms of 

action are poorly known. For this reason, neuroimaging techniques can help to understand how 

TMS can modulate the brain. An example derives from the TMS-EEG coregistration that provides 

an important electric marker: TMS evoked potential (TEP). Some characteristics of TEP such as 

latency, polarity, amplitude, and waveform allow evidencing the physiological state of the 

stimulated brain site. 

Another advantage of the coregistration consists in investigating several aspects of the same 

process, by collecting data from different sources (e.g. behavioral and electrophysiological data). A 
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TMS-dependent behavioral modulation is not always noticeable. Sometimes, modulation cannot 

reach a sufficient threshold to produce a significant effect on behavior. In these cases, if the 

gathered measure is only a behavioral marker, investigators will not able to infer anything from 

the manipulation and the result will be only a null effect. By the combined use of TMS and other 

techniques, in addition to behavioral effects, it is also possible to reveal neurophysiological effects 

of TMS, even in cases in which the behavioral outcome does not seem to be influenced by 

stimulation. In Chapter 6, a combined use of TMS and EEG allowed us to evidence a significant 

effect of TMS on an event-related potential (ERP) associated with error-related brain activity, even 

if the behavioral results did not show a related modulation. 

As just now discussed, despite the widespread use of TMS, many questions are still opened 

and need answers. Especially the therapeutic use of TMS will require important research efforts in 

order to assess the effectiveness of the technique and to develop standardized protocols that can 

maximize the plasticity mechanisms when they play a positive role. An intriguing solution may lay 

on the coregistration between TMS and other neuroscientific techniques. TMS and neuroimaging 

are two complementary methods whose combined use will be probably more widespread in the 

future. 
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Chapter 3 

Error-related processes 

 

 

 

In the previous chapters, two topics have been addressed. In Chapter 1, neural plasticity has been 

illustrated as a general ability of the brain to functionally and structurally change. Afterward, in 

Chapter 2, some typical interventions used to modulate behavior and brain functioning have been 

described. In Chapter 3, the focus will be moved on a set of processes that are core in this 

dissertation, namely error-related processes. The three studies described in the next chapters will 

share a general aim: the modulation of error-related processes through the use of behavioral 

techniques and NIBS. By means the previous premises, it will be easier to understand how it is 

possible to modify a process, either behavioral or physiological, and which are the hypothesized 

mechanisms underlying this modulation. 

 

Let me to start this paragraph by asking a question: What does an error represent in our daily 

life? The easiest and most obvious answers could be that an error is a nuisance, an unexpected 

event, an obstacle that requires to review our actions. Probably none of these answers is wrong 

because they capture some aspects intrinsically connected to an error. An error is perceived as 

something with a negative valence, but this attribution may push to improve ourselves and 

therefore it may have a motivational role in our daily life. Furthermore, an error is a rare and 

unexpected event, therefore particularly salient and easily detectable. Finally, an error requires an 

adjustment of our actions, since it signals us that something has gone wrong. 

Contrary to common sense, this question is the affliction of many cognitive neuroscientists 

because to empirically explain the functional role of an error is not easy at all. In general terms, 

our behavior is constantly monitored by a set of cognitive processes that allow performing goal-

directed actions. This set of processes is called performance monitoring and it is crucial for 

keeping action performance as optimum as possible by ongoing monitoring of the course and 

outcome of actions (for a review, Ullsperger, Danielmeier, & Jocham, 2014). 

Once an individual has identified a goal, for example reaching some food in order to feed 

itself, an appropriate action is implemented. The performed action will produce results that will be 

evaluated in terms of changes in the state of the individual and the environment, for instance the 
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extinction of hunger. Performance monitoring aims to reveal a mismatch between the performed 

action and the planned action by monitoring before, during and after the execution of the action. 

In the event that the performance monitoring identifies a mismatch between executed and 

planned action (an error), it triggers a series of reactions aimed to correct the action or avoid 

similar errors in the future (Laming, 1968; Ullsperger, Fischer, Nigbur, & Endrass, 2014). These 

reactions range from motor adjustments, up to cognitive adaptations.  

Thus, an errors has a double meaning: (1) it represents the failure of the planning or 

monitoring of the action; (2) it provides information on the purpose, direction, and necessity of 

adjustments aimed to avoid the same error is repeated again. Moreover, an error can also result in 

an immediate change while the action is being performed to allow the achievement of the 

planned goal. 

Besides these considerations, performance monitoring is therefore a very general term that 

encompasses a wide range of processes. These include a set of processes that intervene after the 

commission of the error, namely error-related processes.  

In experimental settings, errors are a useful way to test the integrity of performance 

monitoring and to study how error-related processes affect behavior. Tasks developed for 

investigating error-related processes, although they are different with each other, share generally 

the fact that are demanding task and induce a participant to commit a certain number of errors. 

The number of errors is one of the most critical aspect of research on error-related processes. In 

fact, an ideal experimental task requires a subtle tradeoff between the number of correct 

responses and the number of errors. A reduced number of errors leads to a reduction in statistical 

power, whereas an excessive number of errors, for example higher than correct responses, 

produces atypical effects in which the error is processed somehow differently, as Notebaert and 

colleagues (2009) highlighted in an elegant study. To complicate matters further, the study of 

error awareness requires that the task elicits a sufficient number of unaware errors. In the next 

section, the main paradigms used to satisfy these requirements will be described. 

 

In order to simplify and make more comprehensible the description of error-related 

processes, they will be divided into two groups: behavioral and neurophysiological correlates of 

error-processes. Specifically, among the behavioral correlates, we will be described error 

awareness and post-error adjustments, whereas among the neurophysiological correlates, two 
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ERP components will be illustrated, namely the error-related negativity (ERN) and the error 

positivity (Pe). These processes have been investigated in studies describe in Chapter 4, 5, and 6. 

 

 

Behavioral correlates of error-related processes: error awareness 

 

First of all, before defining error awareness, a terminological distinction is necessary in order to 

avoid confusion. Indeed, in the literature, different terms can indicate the same processes. Studies 

that investigate the consequences of an error are divided between those that explore in general 

the process of error monitoring (or error processing) and studies that investigate specifically error 

awareness (or error detection). This paragraph will focus only on these latter studies. 

Human beings base their knowledge on awareness. This aspect characterizes and 

distinguishes humans from other living beings. However, the term "awareness" can assume 

various meanings and be used in a more or less extended way. In our case, error awareness is a 

component of awareness that specifically refers to the conscious detection of an error during the 

course of an action. Thus, error awareness is a metacognitive process somehow. 

The ability to detect an error has an adaptive role in everyday life. Although humans can act in 

absence of a proper action monitoring (e.g. when they perform well-learned actions), in general, 

being aware of errors supports an effective goal-directed behavior. In fact, as previously 

introduced, an aware error triggers a series of adjustments that allow correcting and avoiding the 

same error in the future (Laming, 1968; Ullsperger et al., 2014). In line with this statement, two 

studies show that aware errors induce larger behavioral adjustments than unaware errors 

(Nieuwenhuis, Ridderinkhof, Blom, Band, & Kok, 2001; Wessel, Danielmeier, & Ullsperger, 2011). 

However, not all studies seem to confirm this result. For example, van Gaal and colleagues (2012) 

review studies showing that also unconscious information triggers cognitive reactions. Similarly, 

Cohen and colleagues (2009), in a Go/No-go task, reported a significant post-error slowing (PES) 

effect after unaware No-go errors. 

Responses to aware errors are not only confined to behavioral reactions: also vegetative 

changes can be observed. A crucial point is whether these autonomous changes are a cause or 

reflect a consequence of error awareness. Several studies demonstrated that errors can elicit a 

response of the autonomic nervous system. A typical consequence of an aware error is a heart 

rate deceleration (Critchley, Tang, Glaser, Butterworth, & Dolan, 2005). This phenomenon could 



50 
 

be explained if considering an error as a significant internal event that evokes a response 

resembling the orienting response (Harsay, Spaan, Wijnen, & Ridderinkhof, 2012; Łukowska, 

Sznajder, & Wierzchoń, 2018). In addition, other indices of the autonomic system, such as changes 

in pupil diameter and skin conductance, are correlated to error (Hajcak, McDonald, & Simons, 

2003; O’Connell et al., 2007). 

Research on error awareness requires experimental paradigms that allow a manipulation and 

an assessment of error awareness. A task should take at least two points into account: (1) produce 

a good number of errors; (2) elicit both aware and unaware errors. In the literature, three types of 

paradigms are successfully adopted to investigate error awareness (Klein, Ullsperger, & 

Danielmeier, 2013). The first type of tasks progressively manipulates the perception level of 

stimuli, for example through a degradation of the stimulus visibility or masking stimuli (Scheffers & 

Coles, 2000; Steinhauser & Yeung, 2010). These manipulations contribute to producing a sort of 

"stimulus uncertainty" that increases the rate of unaware errors. The second type of tasks involves 

the detection of eye movements. A typical task is the anti-saccade task in which participants are 

asked to inhibit an automatic saccade towards a particular stimulus (Endrass, Reuter, & Kathmann, 

2007). The anti-saccade task induces unaware errors because the saccade towards the prohibit 

stimulus are so short and immediately corrected that the error is often unnoticed. Finally, the 

third type of tasks includes complex paradigms with competing and constantly to-be-monitored 

rules (Klein et al., 2013). Several authors accomplished these rules by using Go/No-go tasks with 

different No-go conditions, in order to increase the task difficulty.  

The error awareness task (EAT; Hester, Foxe, Molholm, Shpaner, & Garavan, 2005) belongs to 

the third group of tasks. The EAT is the paradigm we adopted in the studies presented in this 

dissertation. In the EAT, color words are presented at the center of a computer screen. 

Participants are asked to press a Go button, as soon as possible, when word and its font color are 

congruent (Go trial). On the contrary, participants have to withhold the response in two 

conditions: (1) when the same colored word was repeated on two consecutive trials (repeat No-go 

trial), or (2) when the word and its font color were incongruent (Stroop No-go trial). Moreover, 

participants are instructed to signal an error commission, both Stroop and repeat errors, by 

pressing an "awareness button". Although in all our studies the general structure of the EAT was 

maintained, some features were varied to tailor the EAT to different purposes and methods of the 

studies. These variations will be described in detail. 
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So far the debate on what makes the difference between aware ad unaware errors is still 

heated. Probably it depends on a combination of exogenous and endogenous factors (Klein et al., 

2013). For example, the nature of error itself can be relevant for its conscious detection. Typically, 

when errors occur in routine situations (e.g. action slips or lapses) are more easily detected than 

other kinds of errors, such as mistakes of planning (Reason, 1990). Moreover, overwhelming task 

situations contribute to determining unaware errors. Another possible context in which unaware 

errors are more probable is in the case of weak perceptual information that can determine a low 

confidence in own responses. In addition, a decrement of arousal may lead to unaware errors, as 

confirmed in a study in which a boring task reduced the number of aware errors (Shalgi, O’Connell, 

Deouell, & Robertson, 2007). Finally, also age plays a crucial role in error awareness. In fact, some 

studies show a decline of error awareness in normal aging (Harty, Murphy, Robertson, & 

O’Connell, 2017; Harty, O’Connell, Hester, & Robertson, 2013; Masina, Di Rosa, & Mapelli, 2018a). 

Altogether, these factors contribute, in a normal situation, to detecting an error or not. The 

comprehension of these interacting factors is essential because they allow characterizing error 

awareness deficits in neurological and psychiatric patients. From a clinical point of view, the 

modulation of error awareness could be relevant to reduce patient's deficits. In fact, some 

neurological patients present a reduction of awareness, such as in anosognosia, whereas in some 

psychiatric disorders error awareness seems excessive, such as in obsessive-compulsive disorder 

(Klein et al., 2013). In general, patients affected by obsessive-compulsive disorder pay excessive 

attention to their errors (Endrass et al., 2010). Furthermore, cannabis and cocaine users show a 

poor error awareness as well (Hester, Nestor, & Garavan, 2009; Hester, Simões-Franklin, & 

Garavan, 2007). 

 

With regards to the neural bases of error awareness, recent evidence suggests that the neural 

response to errors involves a network of areas. Specifically, examining the neural correlates of 

error awareness, several brain regions would have a crucial role in this process: the anterior 

inferior insula (AIC), the posterior medial frontal cortex (pMFC), the DLPFC, the ACC, and the 

thalamus. 

The insula is a part of the cortex that is deeply located within the Sylvian fissure, between the 

temporal and frontal lobes. Its functions are complex and heterogeneous because the insula is 

engaged in motor functions, language-related auditory processing, vestibular processes, visceral 

sensory processes, and interoceptive awareness (Klein et al., 2013). Especially the AIC seems 



52 
 

related to error awareness, as some authors show. In fact, the AIC has been associated with the 

detection of novel salient stimuli (Menon & Uddin, 2010). Thus, somehow, it is plausible that the 

AIC can have a central role in error awareness since an error is surely a salient event and an aware 

error is obviously more salient than an unaware error (Hester et al., 2009). 

Whether the pMFC is implicated in error awareness or not, it is not still clear. In fact, while in 

some studies the pMFC did not discriminate between aware and unaware errors (Hester et al., 

2005; Klein et al., 2007), more recent studies show that it was selectively activated by aware 

errors (Hester et al., 2009; Orr & Hester, 2012). 

Similarly to the pMFC, also the role of the DLPFC is not fully confirmed. Actually, the DLPFC 

seems related to error awareness, but it is not clear whether only the right DLPFC, as 

demonstrated by (Harty et al., 2014), or without lateralization, as shown in a recent study (Masina, 

Vallesi, Di Rosa, Semenzato, & Mapelli, 2018b) that revealed an implication of both the right and 

left DLPFC in error awareness. This study will be described in Chapter 5. Apart from these 

considerations about a possible lateralization of error awareness, the DLPFC will be crucial in this 

dissertation because in TMS studies described later, our hypotheses concerned the fact that this 

area could be involved in error awareness.  

Hester and colleagues (2009) observed a deficit of error awareness in chronic cannabis users. 

In addition, the researchers observed in the experimental group a reduction in activity both in the 

ACC and in the right insular cortex. These results are consistent with previous findings showing 

that in chronic drug users there would have a reduction in cognitive control and monitoring of 

interoceptive awareness. Given that the ACC has been reported in the majority of studies 

investigating error awareness, a general opinion is that the ACC activity may be necessary, but not 

exclusive, for error awareness. 

In a study (Seifert, von Cramon, Imperati, Tittgemeyer, & Ullsperger, 2011), patients with 

thalamic lesions, in particular the ventral anterior and ventral lateral anterior nuclei, showed 

impaired error awareness, suggesting a role of thalamus in this process. Seifert and colleagues 

(2011), observed in these patients difficulties in reporting their errors during a flanker task. 

Participants were asked to press a button to report their own errors. Compared to the control 

group (healthy people), which indicated an average of 85% of their errors, the experimental group 

of patients indicated on average only 39% of their errors. Although prominent, this result has been 

questioned because the task proposed by the authors presented some disadvantages that could 

be responsible for the result. In fact, since patients generally tended to produce a slower motor 
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response than controls, some of their unaware errors could simply reflect an omission in signaling 

the error, so due to difficulties not related to an impairment in error awareness.  

 

 

 

Behavioral correlates of error-related processes: post-error adjustments 

 

Error awareness promotes correction, adaptation, and optimization of behavior. An interesting 

consequence after an error conceives a set of behavioral adjustments that are extensively 

investigated. These forms of adaptations range from fast and immediate compensatory reactions 

(Danielmeier & Ullsperger, 2011) to long-term strategic changes in behavior (Ullsperger et al., 

2014). In particular, in this dissertation, the focus will be on "trial-by-trial" mechanisms, namely 

adjustments that are an immediate consequence of an error. These adjustments are measured at 

the level of the trial immediately following the error and therefore appear to occur 

simultaneously. The main post-error adjustments are:  

 

 Post-error improvement in accuracy (PIA) 

 Post-error reduction of interference (PERI) 

 Post-error slowing (PES) 

 

PIA is defined as an improvement in accuracy that occurs after the commission of an error. 

Post-error adjustments, such as PES, were thought to be necessary to allow people learning from 

own errors and improve their performance (accuracy). However, by evaluating accuracy in post-

error trials and in trials after correct responses, results for improved post-error accuracy are not 

unequivocal. In fact, the performance is not always improved after an error and PIA and PES do 

not always occur together (Danielmeier & Ullsperger, 2011). This result suggests that PES and PIA 

are two distinct processes. 

The separated nature of these mechanisms is remarked by a study in which these behavioral 

adjustments followed different time intervals. A study that examined the effects of different 

stimulus-response intervals (RSI) on PES and PIA, found that PES is greater with short intervals 

between the error and the following stimulus, whereas it decreases with longer intervals (Jentzsch 

& Dudschig, 2009). Differently, PIA is reduced with short RSI, whereas it improves with longer RSI. 
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In some cases, it is very difficult to observe PIA. Indeed, this effect occurs only when 

participants have the real possibility to improve their post-error performance. If the purpose of a 

task is to produce a large number of errors, participants might be unable to improve their accuracy 

(Danielmeier & Ullsperger, 2011).  

 

PERI has been observed for the first time by Ridderinkhof (2002). In tasks such as the Flanker 

task, we generally observe an interference expressed in terms of increasing of reaction times in 

incompatible trials compared to compatible trials. What the author observed was a reduction of 

interference in trials that followed an error. PERI seems to reflect cognitive control processes. An 

increased allocation of cognitive control would explain how the system can reduce interference in 

post-error trials (Danielmeier, & Ullsperger, 2011).  

PERI phenomenon, as well as PES, are considered post-error adjustments guided by the pMFC. 

However, PES and PERI are implemented in different neuronal networks. While PES is related to 

motor activity, regardless of the activity in progress, PERI is correlated with activity in areas 

relevant to that task (Ullsperger et al., 2014). This suggests that the resolution of the interference 

depends on the specific brain areas for the task. 

Pharmacological interventions confirm that PERI and PES have different neural bases. In a 

study, the administration of lorazepam suppressed only PERI, without to produce a modulation of 

PES. Thus, PES seems immune to GABAA-modulating drugs (Danielmeier & Ullsperger, 2011). 

 

PES is the motor slowing that usually occurs after errors, and was described for the first time 

in 1966 by Rabbitt, who reported significant slower reaction times after erroneous responses than 

mean reaction times of all correct responses. Nowadays, other studies have reported PES in 

different kind of tasks, for instance Stroop, Flanker, Simon, or categorization tasks (Danielmeier 

and Ullsperger, 2011; Wessel & Aron, 2017). 

PES is probably the post-error adjustment more frequently observed and studied. However, 

despite this large piece of knowledge, the functional role of PES is still not clarified. In general, two 

veins of research consider alternatively PES either an adaptive or a maladaptive phenomenon 

(Wessel & Aron, 2017). On the one hand, the adaptive theories suggest that PES contributes to 

improving ongoing behavior (Donald Richard John Laming, 1968). This view often associates PES 

and PIA. In these terms, PIA would reflect the positive and functional consequence of PES. On the 

other hand, the maladaptive theories claim that PES would be a detrimental effect of an error. For 
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instance, Notebaert and colleagues (2009) suggest an interesting interpretation of PES. In their 

study, the authors observed that it was not the error itself that produced a slowdown, but the 

frequency of the responses. Specifically, when participants made few errors, PES was very 

pronounced. On the contrary, if the errors were numerous, greater than correct responses, the 

slowdown was surprisingly observed after correct responses. When the error rate increased, 

approaching the frequency of correct responses, PES was reduced or absent. The authors 

interpreted these results as a consequence of an infrequent and surprising event. Apart from 

erroneous or correct responses, an infrequent event would capture attention (a sort of orienting 

response) and would produce a slowdown of the system.  

The magnitude of PES is sensitive to several factors, such as the frequency of errors, the 

salience of an error, the RSI between an error and the following stimulus (Danielmeier & 

Ullsperger, 2011; Ullsperger et al., 2014). Interestingly, PES seems to be a relatively stable 

phenomenon along the lifespan. In a recent study, by testing three age-groups (children, younger, 

and older adults), no difference was found (Masina et al., 2018a). 

From a clinical point of view, alterations of PES have been found in children with attention-

deficit/hyperactivity disorder (ADHD). For example, in a recent meta-analysis, PES appears to be 

reduced in children with ADHD compared to healthy children (Balogh & Czobor, 2016). 

Regarding the neural bases of PES, Danielmeier and colleagues (2011) have shown that the 

phenomenon is linked to an inhibitory network comprising the pMFC and other structures linked 

to performance monitoring. In fact, the activity of this inhibitory network in post-error trials 

predicts the decrease in the activity of motor areas in post-error trials. This latter, in turn, is 

associated with PES. Thus, less activation of the motor areas induces an increase of PES. The 

decreased motor activity following errors may reflect an increased response threshold, hence, 

motor inhibition (Ridderinkhof, 2002; Ullsperger et al., 2014). 

 

  

Neurophysiological correlates of error-related processes: the ERN 

 

In a classic event-related potential (ERP) experiment, trials in which participants make an error are 

generally rejected. However, by comparing these trials to ones associated with correct responses, 

it is possible to learn something about how the brain computes an error.  
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It has been almost 30 years since the first evidence of an event-related brain potential 

component associated with error commission (Falkenstein, Hohnsbein, Hoormann, & Blanke, 

1991; Gehring, Coles, Meyer, & Donchin, 1990; Gehring, Goss, Coles, Meyer, & Donchin, 1993). 

This component, called ERN (or error negativity, in the early Falkenstein's studies), was initially 

observed in choice reaction tasks. Currently, the ERN seems to be task-independent (Wessel, 

2012), as well as stimulus-independent, in fact both auditory or visual stimuli elicit the ERN 

(Falkenstein, Hoormann, Christ, & Hohnsbein, 2000).  

The ERN is an ERP component characterized by a negative deflection more prominent at the 

fronto-central sites where it reaches its greatest amplitude. It peaks around 50-100 ms after the 

commission of an error (figure 5). One of the most validated interpretations sees the ERN 

associated with the detection of a cognitive conflict, which typically occurs when an error is 

committed. Moreover, it has been suggested that the ERN reflects the activity of a system that 

either monitors responses or is sensitive to conflict between planned and executed actions 

(Kappenman & Luck, 2012; Luck, 2005; Wessel, 2012) 

 

 

 

Figure 5 | Top: Graphical representation of the neurophysiological correlates of error-related brain activity (extracted 
by Cz). The green line shows the waveform after correct responses, whereas the red line the waveform after errors. 
Bottom: Topographic distribution of the ERN and Pe components. 



57 
 

Although the neural generator of the ERN is not yet known with certainty, several areas have 

been supposed to participate in its genesis. The main candidate is the ACC that is constantly 

mentioned by investigators. Several fMRI studies suggest that the ERN occurs in the ACC 

(Iannaccone et al., 2015; Ito, Stuphorn, Brown, & Schall, 2003; Ullsperger & Von Cramon, 2001), in 

line with evidence provided by a brain electromagnetic source analysis (BESA) (Dehaene et al., 

1994). A subsequent BESA modeling study has supported an ACC locus as well (van Veen & Carter, 

2002). In addition, neuropsychological research shows results that partially confirm the 

involvement of the ACC as a source of the ERN. However, the presence of wide lesions and the 

differences between groups make difficult to compare these studies with each other (Kappenman 

& Luck, 2012). Thus, further work is still needed before to confirm the role of the ACC in the ERN. 

Moreover, as for other ERP components, it is likely that the ERN has multiple neural generators 

(Kappenman & Luck, 2012). 

A rich corpus of studies have investigated the relationship between the ERN and error 

awareness. Scheffers & Coles, (2000) were the first to point out the sensitivity of the ERN 

amplitude to error awareness. In this study, participants were involved in a modified version of the 

Flanker task. Of interest, after each trial, participants had to assess their confidence in their 

response on a five-point scale ranging from "sure correct" to "sure incorrect". Results showed that 

the ERN amplitude was positively correlated with growing error awareness. These findings are in 

line with a prominent theory in which the ERN would reflect a conflict response and, in turn, that 

conflict tends to be higher on aware errors (Botvinick, Braver, Barch, Carter, & Cohen, 2001; Nick 

Yeung, Botvinick, & Cohen, 2004). 

However, a second study, by using an anti-saccade task, revealed the opposite effect, namely 

a null implication of the ERN on error awareness (Nieuwenhuis et al., 2001). In line with 

Nieuwenhuis' study, Endrass and colleagues (2005) contradicted the association between the ERN 

and error awareness, in this case through another task: a stop-signal task.  

Unfortunately, the subsequent studies did not clarify the role of the ERN in error awareness. 

On the contrary, divergent data seemed to complicate everything. In fact, as Wessel (2012) 

reports in a detailed review, in the following five years some studies confirmed Scheffers & Coles' 

results, whereas others Nieuwenhuis' ones. 

Several factors can be called into question to explain these discrepancies (Wessel, 2012). For 

example, a first point concerns the tasks used to quantify the ERN. As emerges from previous 

studies, different tasks lead to different findings. An explanation for these discrepancies can 
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depend on the stimuli presented in these tasks. Some studies that failed to find an association 

between the ERN and error awareness used degraded stimuli (Scheffers & Coles, 2000; 

Steinhauser & Yeung, 2010). Although the manipulation of stimulus perception, by a gradual 

degradation of it, can increase the number of unaware errors, degraded stimuli might also induce 

a lower ERN amplitude. Another salient aspect should be considered as a mediator between the 

ERN and error awareness: the modality by which authors have operationalized aware errors. In 

some studies, participants have to report the error by pressing an "awareness button". Others 

require participants to indicate the level of awareness by using a scale with different points of 

judgment. Furthermore, while in some tasks participants have to signal their awareness within a 

narrow time window, other ones do not require a fast signaling. Finally, the sample size may be a 

crucial aspect that contributes to increasing the type-2 error probability. Thus, it is plausible that 

not all the tasks allow eliciting the ERN and therefore it may be difficult to highlight a relationship 

between this component and error awareness. 

A promising vein of research concerns the use of clinical markers to improve the diagnosis and 

treatment of several disorders. Apart from the controvert role of the ERN in error awareness, 

without doubts, the ERN is a reliable index of error monitoring. This process seems aberrant in 

some clinical conditions. Olvet & Hajcak (2008) review a significant bunch of clinical studies 

investigating the relationship between the ERN and psychopathology. For instance, Gehring and 

colleagues (2000) showed some differences between patients with obsessive-compulsive disorder 

and controls. In this study, patients had increased ERNs (Gehring et al., 2000).  

Also in depression, the ERN appears to be different compared to controls. The rationale for 

studying the ERN in depression is that these patients show an abnormal sensitivity to errors and 

negative feedback (Elliott, Sahakian, Michael, Paykel, & Dolan, 1998; Steffens, Wagner, Levy, Horn, 

& Krishnan, 2001). Thus, in depression, the different way by which the brain processes the error 

information may be at the base of some symptoms typically observed in these patients. In line 

with this possible processing bias, patients with depression exhibit abnormal error-related brain 

activity. For example, in a Stroop task, these patients showed greater ERN than controls after 

errors (Holmes & Pizzagalli, 2008). 

Taken together, these studies show that both anxiety and depression seem to be 

characterized by an increased sensitivity to committing errors (Olvet & Hajcak, 2008). 
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Neurophysiological correlates of error-related processes: the Pe 

 

The ERN is followed by a positive deflection, peaking around 200-400 ms after the erroneous 

response. This component is called Pe and has a centroparietal distribution (figure 5). Unlike the 

ERN, the Pe is more prominent after an aware error than an unaware error. For this reason, the Pe 

seems a reliable electrophysiological marker of error awareness (Endrass et al., 2007; Murphy, 

Robertson, Allen, Hester, & O’Connell, 2012; O’Connell et al., 2007). A recent study demonstrates 

that the ERN and the Pe may reflect two different mechanisms of human error monitoring (Di 

Gregorio, Maier, & Steinhauser, 2018). Their results are particularly important because for the first 

time reveal that the Pe is independent of the emergence of the ERN, namely the ERN is not 

necessary for the emergence of the Pe. Thus, they refute a previous assumption that saw the ERN 

and the Pe as consequential processes of error monitoring. 

Besides the relationship between the Pe and error awareness, other two interesting 

functional interpretations of the Pe are suggested: that it is a marker of adaptive strategies 

following an error and that it represents a sort of affective response to an error (Overbeek, 

Nieuwenhuis, & Ridderinkhof, 2005). 

The Pe can be divided into two sub-components (figure 6): the initial fronto-central positive 

deflection that immediately follows the ERN is called early Pe, whereas the deflection that settles 

around 300-500 ms after the erroneous response, with a maximum amplitude on parietal 

electrodes, is defined late Pe (van Veen & Carter, 2002). Especially this latter component would be 

modulated by error awareness (Wessel et al., 2011).  
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Figure 6 | Response-locked components related to an error in the frontal (yellow line) and parietal (green line) sites. 
Along the yellow waveform is clearly evident the ERN, followed by the early Pe, whereas along the green waveform is 
detectable the late Pe. Inspired by Ullsperger, Fischer, Nigbur, & Endrass (2014). 

 

Pharmacological studies provide further information about the Pe. In fact, it seems that this 

component is not dependent on the dopaminergic system. Except for caffeine, several substances 

that directly or indirectly modulate dopaminergic activity are able to produce effects only on the 

ERN, without producing effects on the Pe (Overbeek et al., 2005).  

The Pe seems also influenced by age, as reported from previous developmental studies. While 

no difference in terms of Pe amplitude was found between children and younger adults, a 

reduction of the Pe characterized older adults when compared to younger adults (Overbeek et al., 

2005). Similarly, Harty and colleagues (2017) show a reduction of Pe amplitude in a group of older 

adults respect to younger adults. 

From clinical studies emerge that Pe seems to be partly preserved in many clinical conditions, 

unlike the ERN (Overbeek et al., 2005). However, if present, the alteration of the Pe reveals 

awareness deficits. In fact, patients with traumatic brain injury and reduced Pe amplitude showed 

less awareness of abilities (measured in terms of the discrepancy between patient and significant-

other ratings on the Frontal Systems Behavior Scale) (Larson & Perlstein, 2009). This data 

contributes to reinforcing the hypothesis that the Pe is a marker of awareness processes, such as 

error awareness. Interestingly, the Pe may be somehow a correlate of metacognitive processes. 
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Chapter 4 

Study 1 - Motivation and error awareness 

 

 

 

Introduction 

 

As previously stated, the ability to detect an error is fundamental in our life. Even if an error can 

be perceived as an annoying event, it is informative because it indicates that the level of our 

performance has not been adequate to expectations and, therefore, a replanning or adjustment of 

our actions is necessary.  

Error awareness can be theoretically viewed as a function represented along a continuum 

where at the extreme points we observe an excessive or absent awareness. In Chapter 3, some 

clinical conditions have been mentioned since they present a symptomatic picture that refers to 

an over-expressed or reduced error awareness. Some neurological conditions and cannabis and 

cocaine users present a reduction of error awareness, whereas in some psychiatric disorders error 

awareness seems excessive, such as in obsessive-compulsive disorder (Hester et al., 2009, 2007; 

Klein et al., 2013). 

Although in normal aging error awareness is not dramatically absent, it seems reduced. A 

number of studies show that older adults tend to be less aware of their errors than younger 

adults. To test this hypothesis, Harty and colleagues (2013) compared a group of younger adults 

(age-range 18-34 years) with a group of older adults (age-range 66-90 years). Participants 

performed different tests aimed to evaluate self-awareness, namely the ability to assess own level 

of functioning. In particular, Harty and colleagues measured self-awareness in two ways: (1) a 

computerized task (the EAT, Hester et al., 2005) to evaluate the on-line ability to detect an error; 

(2) questionnaires, in particular, the discrepancy between self-reports and informant reports on 

questionnaire measures of daily functioning to measure self-awareness in daily contexts. In this 

study, two important results emerged. The first one confirmed the presence of a decline in error 

awareness in elderly, as already seen in a previous study (Rabbitt, 1990). Second, the authors 

observed a correlation between on-line error awareness and awareness of daily functioning. Thus, 
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results suggest that performance on laboratory measurements, such as the EAT, are 

representative of awareness in real-world contexts (Harty et al., 2013). 

Error awareness impairment can have a negative impact on daily life. Being unaware of 

personal limitations can lead to risky behaviors for the individual, for example by an 

overestimation of own abilities. Furthermore, some authors show an increased care-given burden, 

poor compliance treatment, and a poor general prognosis (David, 1992; Fleming, Strong, & 

Ashton, 1996; Malec & Moessner, 2000; Starkstein, Jorge, Mizrahi, Adrian, & Robinson, 2007). 

Since healthy older adults exhibit a decline in performance monitoring (Palmer, David, & 

Fleming, 2014; Schreiber, Pietschmann, Kathmann, & Endrass, 2011), it is plausible to suppose that 

this impairment may produce negative consequences on error awareness and, more generally, on 

error monitoring. On the other hand, it is also possible an opposite scenario in which the 

impairment of error awareness and error monitoring causes the reduction of performance 

monitoring. 

As already described, error awareness is reduced in elderly as confirmed by Rabbitt (1990) 

and Harty and colleagues (2013). Actually, a recent study suggests a U-shaped ontogenetic 

trajectory of error awareness that describes an increase of the process from childhood to early 

adulthood and a progressive reduction advancing age in late adulthood (Masina et al., 2018a).  

As regards the decline of error monitoring, growing evidence shows an impairment of this 

process in older adults. A proficient vein of research investigates the ERP correlates of error 

monitoring showing, in several cases, a reduction of the ERN in older adults compared to younger 

adults (Falkenstein, Hoormann, & Hohnsbein, 2001; Schreiber et al., 2011; Themanson, Hillman, & 

Curtin, 2006). 

In line with these previous studies, it is clear that error awareness, error monitoring, and 

performance monitoring decline in elderly may affect the ability to on-line monitor performance. 

In turn, this difficulty to monitor performance may depend on the decline of two crucial cognitive 

processes that it is well-know are reduced in older adults: working memory and vigilance.  

Since older adults have difficulty to maintain and update information in working memory, it is 

possible that in demanding situations, for example during a dual-task, the system can be prone to 

momentary failures. In this case, the consequences may be several: a general reduction of 

performance, a failure to detect an error, a reduction of the behavioral adjustments normally 

triggered by an error.  
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Vigilance is negatively affected by normal aging as well. Interestingly for the present study, a 

number of findings show a relationship between vigilance and error awareness (Masina et al., 

2018b; Shalgi et al., 2007). This evidence suggests that an appropriate level of vigilance could 

support an adequate ability for detecting errors.  

 

In Chapter 2, some methods widely used in research to modulate the behavior and underlying 

neural processes have been described. Among these methods, the use of rewards seems to be an 

effective tool capable of improving performance in a number of cognitive domains, such as 

working memory, attention, episodic encoding, and decision making (Locke & Braver, 2010; 

Maddox & Markman, 2010; Pessoa, 2009, 2010; Shohamy & Adcock, 2010). These results suggest 

that motivation can affect ongoing neurocognitive processing (Braver et al., 2014). 

 Despite these interesting findings, no studies have explored the effects of motivational 

rewards in error awareness, leaving this interesting and relevant research field still lacking of 

evidence. Thus, in order to contribute to fill this gap, the purpose of study 1 was the modulation 

of error awareness in a group of healthy older adults. Specifically, this study aimed to increase 

error awareness in a group of older adults compared to younger adults, by using rewards. To the 

best of our knowledge, the present study is the first that directly uses rewards with the aim of 

modulating error awareness. 

The previous considerations about error awareness have been extremely precious to plan the 

present study because they have helped us to think about which kind of intervention could be 

more efficient to modulate error awareness. As explained in Chapter 2, reward-related 

modulation requires to take some points into considerations to avoid unexpected results, such as 

a paradoxical reduction of performance which is expected to be improved by an intervention. 

Moreover, considering the decline of older adults in some cognitive domains such as working 

memory and vigilance, a manipulation should consider these processes as well. For example, in 

the view of using a computerized task to assess error awareness, it should not be extremely 

demanding, to avoid an overload of working memory. Moreover, considering the reduction of 

vigilance in older adults, an experiment should be characterized by breaks, in which participants 

can have time to take a rest. 

Taken together these considerations and with the aim to conduct a manipulation as efficiently 

as possible, the following points have been carefully considered in study 1: 
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 Task - The tasks generally used to evaluate error awareness are very different and can lead 

to different results. Therefore, in the present study, we have decided to use the same task 

that Harty and colleagues (2013) have shown to be fitted for measuring error awareness in 

a group of healthy older adults. However, considering the difficulties that older adults may 

encounter while performing a task such as the EAT, in the present study we have tried to 

further simplify the procedure. In particular, in our task, after each trial, a prompt was 

presented to explicitly check the accuracy of participants. We hypothesized this prompt 

would have supported participants in monitoring trial-by-trial own performance. 

 Reward - Assuming to confirm the reduction of error awareness in elderly, in our study we 

rewarded error awareness with the aim to improve it. All participants performed a task in 

which the performance was supported by virtual monetary incentives. After each trial 

participant received a feedback about her/his accuracy, as well as a reward. In particular: 

(1) a big reward, after a correct response; (2) a small reward, after a signaled error; (3) no 

reward, after an unnoticed error. With this program of incentives, we expected to increase 

both accuracy and error awareness.  

 

 

Method 

 

Participants1 

Sixty-one healthy participants were recruited in the study 1: 30 younger adults aged 19-35 (mean 

= 25.4; SD = 5; men = 10) and 31 older adults aged 61-83 (mean = 69.7; SD = 5; men = 12). 

Exclusion criteria were a history of neurological or psychiatric diseases, use of neurological or 

psychiatric medications, and a score at the Montreal Cognitive Assessment (MoCA; Nasreddine et 

al., 2005) under the Italian cut-off (Conti, Bonazzi, Laiacona, Masina, & Coralli, 2015; Santangelo et 

al., 2015). All participants had normal or corrected-to-normal vision. Written informed consent 

was obtained from all participants. The Table 1 shows the main demographics of the sample. The 

study 1 was conducted in accordance with the Helsinki Declaration on human rights and was 

approved by the Ethics Committee of the School of Psychology at the University of Padova.  

 

                                                           
1
 Post hoc power analysis has demonstrated that in study 1 the sample size was adequate to the analyses conducted 

(Effect size = 0.25, Power = 0.99). 
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Tasks and procedure 

Participants performed two different versions of the EAT (Hester et al., 2005), a motor Go/No-go 

response inhibition task in which participants are presented with a serial stream of single-color 

words. In both the versions of the EAT, participants were asked to respond with a single-speeded 

button press (“3” on the keyboard), using their left index finger, when the word and its color font 

matched (Go trial). On the contrary, participants were trained to withhold their response in two 

circumstances: (1) when the word and its color font were incongruent (Stroop No-go trial); (2) 

when the same word was presented twice, namely in two consecutive trials (repeat No-go trial). In 

the case of participants realized to have committed an error, namely to avoid withholding their 

response in the No-go trials (Stroop and repeat No-go), they were trained to signal the error by 

pressing an “error awareness” button (space bar), with their right index finger. Participants were 

required to respond as fast and accurate as possible, without to prioritize speed or accuracy. 

Structurally, each trial started with the color word that was presented at the center of the 

screen, on a black background, for 750 ms, followed by a second black screen that appeared for 

750 ms. Afterward, a prompt was presented for 1000 ms with the following question: "Did you 

make a mistake?”. During this time window, participants were instructed to signal a supposed 

error. Through this prompt, the task was simplified compared to the original version (Hester et al., 

2005), because participants were asked explicitly to monitor trial-by-trial own performance. 

So far, both the versions of the EAT shared the same characteristics. However, the screen that 

followed the prompt changed according to which version of the task participants were performing. 

In the Classical EAT version, a white screen was presented for 750 ms, whereas in the 

Motivational EAT this screen showed a reward message for 750 ms (figure 7).  

 

Table 1. Participant demographics and MoCA scores. 

   Younger Adults Older Adults 

Mean Age (SD) 

Education 

MoCA score (SD) 

  25.4 (5) 69.7 (5) 

  15.1 (3) 11 (6) 

  28.1 (2) 25.7 (2) 

Note. SD: Standard Deviation; MoCA: Montreal Cognitive Assessment test. 
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Figure 7 | The figure shows both the tasks: (a) the Classical EAT and (b) the Motivational EAT. As clearly represented 
by the figure, the only difference between the tasks was the screen that followed the prompt “Did you make a 
mistake?”. Only in the Motivational EAT participants received a feedback and a reward, according to their 
performance on the task. Instead, in the Classical EAT, after the prompt participants saw a white screen. 

 

In order to investigate the effect of rewards on error awareness, in the Motivational EAT after 

each trial participants received a feedback (“correct” or “wrong”) and, related to their accuracy or 

error awareness, a symbolic performance-contingent reward. Specifically, after each correct 

response and after each correctly signaled error, participants received a virtual monetary reward: 

a correct response was rewarded with a win of €0.50, whereas a signaled error was rewarded with 

€0.10. No penalty in case participants committed errors. The total virtual budget was updated 

trial-by-trial and it was shown at the bottom of the reward screen. 

In both versions of the task, 675 trials were presented, in three blocks of 225 (200 Go trials 

and 25 No-go trials, of which 12 Stroop No-gos and 13 repeat No-gos). Each participant was tested 

with both experimental tasks, Classical EAT and Motivational EAT, which were administered in a 

counterbalanced order across participants. Each task was performed on a different day and before 

the beginning of each task, it was ensured all participants were well-trained and correctly 

understood the instructions. The experiment was run by E-Prime software (version 2.0 Psychology 

Software Tools, Pittsburgh, PA) installed on a personal computer equipped with a 17’’monitor. 
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Figure 8 summarizes the experimental design of study 1. Each participant took part in two 

sessions in two different days. The session was so planned: (1) a training phase to guarantee 

participants had understood the task instructions; (2) a phase in which participants performed a 

full version of the EAT, either Classical or Motivational EAT (counterbalanced order). 

 

 

Figure 8 | The experimental design of study 1. 

 

Measures and data analysis 

According to the aims of study 1, participant’s performance was evaluated through different 

dependent variables, which were calculated and analyzed as following. 

 

Reaction times and accuracy - Average performance indices was assessed in term of mean 

reaction times and mean accuracy (calculated as the ratio of correct withholds on No-go trials) in 

both Classical and Motivational EAT. Reaction times under 100 ms were removed from analyses. 

To evaluate differences on mean reaction times, a mixed 2 x 2 x 2 ANOVA was conducted with task 

(Classical Vs Motivational EAT) and response type (correct Vs error) as within-subjects variables 

and group (younger Vs older adults) as between-subjects variable.  

Differences in mean accuracy were computed by a mixed 2 x 2 ANOVA with task (Classical Vs 

Motivational EAT) as within-subjects variable and group (younger Vs older adults) as between-

subjects variable.  
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Error awareness - Mean error awareness was calculated as the percentage of correctly 

signaled errors on the total number of commission errors (O’Connell et al., 2009).  

A mixed 2 x 2 ANOVA was conducted with task (Classical Vs Motivational EAT) as within-

subjects variable and group (younger Vs older adults) as between-subjects variable 

 

Post-error slowing - PES was computed according to Dutilh and colleagues (2012) by the 

difference between the reaction times that follows and precedes each error. This difference was 

compared with the difference between the reaction times that follows and precedes each correct 

inhibition. Unaware errors were excluded from the analyses of PES as well as reaction times under 

100 ms. We performed a mixed 2 x 2 x 2 ANOVA with task (Classical Vs Motivational EAT) and 

target response (aware error Vs correct inhibition) as within-subjects variables and group (younger 

Vs older adults) as between-subjects variable. For these analyses, the sample size was reduced to 

59 participants (30 younger adults and 29 older adults) because 2 older adults did not signal any 

error during a particular task (so it was impossible to calculate PES for aware errors). 

 

The Bonferroni correction was always applied to multiple comparisons and post-hoc analyses 

and a corrected alpha-level of 0.05 was considered. Finally, effect sizes were estimated by partial 

eta squared (η2
p). 

 

 

Results 

 

Reaction times and accuracy - The mean of reaction times and accuracy are shown in Table 2. 

Analyses on mean reaction times showed a main effect of task [F(1,59) = 7, p < 0.05, η2
p = 0.1], 

response type [F(1,59) = 40.1, p < 0.001, η2
p = 0.4], and group [F(1,59) = 64.7, p < 0.001, η2

p = 0.5]. 

Post-hoc comparisons showed that participants were faster when performed the Classical EAT 

than the Motivational EAT (550 ms Vs 567 ms; p < 0.05). Moreover, error reaction times were 

faster than correct reaction times (548 ms Vs 570 ms; p < 0.001). Generally, younger adults were 

faster than older adults (480 ms Vs 638 ms; p < 0.001). No interaction was found.  

As regards mean accuracy, a main effect of group was found [F(1,59) = 4.4, p < 0.05, η2
p = 0.1]. 

Post-hoc comparisons showed that younger adults made more errors than older adults (52% Vs 

62%; p < 0.05).  
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Error awareness - The mean error awareness percentages are presented in Table 2. 

revealed a main effect of task [F(1,59) = 4.6, p < 0.05, η2
p = 0.1] and group [F(1,59) = 54.1, p < 

0.001, η2
p = 0.5]. Post-hoc comparisons showed that participants were more aware of their 

errors when performed the Classical EAT than the Motivational EAT (73% Vs 67%; p < 0.05). 

Moreover, we observed by post-hoc comparisons that younger adults had generally a higher 

error awareness than older adults (85% Vs 55%; p < 0.001). No interaction between task x 

group was observed (p = 0.5) (figure 9).  

 

 

 

Figure 9 | The figure shows mean error awareness scores in both the Classical and Motivational EAT. Error bars 
represent standard errors of the mean. Note: * (p < 0.05). 

 

Table 2. Mean and standard deviations (SD) of performance indices on the Classical and Motivational EAT for 
younger and older adults. 

   
Classical  

EAT 
Motivational  

EAT 

   
Younger  
Adults 

Older  
Adults 

 Younger  
Adults 

Older  
Adults 

   Mean (SD) Mean (SD)  Mean (SD) Mean (SD) 

Correct reaction times (ms)   483 (60) 636 (94)  500 (77) 659 (89) 
Error reaction times (ms)   464 (63) 619 (89)  472 (75) 639 (103) 

Accuracy (%)    52 (22) 64 (19)  51 (25) 60 (17) 
Error awareness (%)    89 (8) 57 (20)  81 (14) 53 (27) 
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Post-error slowing - The mean of reaction times following and prior an aware error or a correct 

inhibition are shown in Table 3. The analyses showed a main effect of task [F(1,57) = 4.8, p < 

0.05, η2
p = 0.1] and target response [F(1,57) = 196, p < 0.001, η2

p = 0.8]. The paired sample 

comparisons indicated that participants showed a lower slowing (independently from the 

response) when performed the Classical EAT than the Motivational EAT (32 ms Vs 48 ms; p < 

0.05). Furthermore, the difference between post- and pre-target response was greater when the 

target response was an error than a correct inhibition (105 ms Vs -25 ms; p < 0.01). In addition, the 

analyses revealed a target response x group interaction [F(1,57) = 10.4, p < 0.01, η2
p = 0.2]. 

Younger adults showed a lower slowing after errors than older adults (83 ms Vs 127 ms; p < 0.01). 

The figure 10 shows clearly PES effect and the response x group interaction. 

 

 

 

Figure 10 | The figure shows the difference between reaction times following and prior an aware error or a correct 
inhibition for each group. Post-error slowing is clearly visible after an aware error, as well as the response x group 
interaction in which older adults were slower after an error compared to younger adults. Error bars represent 
standard errors of the mean. 

Table 3. Means and standard deviations (SDs) for post- and pre-target responses computed as a function of target 
response (aware error and correct inhibition) and group. 

 
  

Classical  
EAT 

Motivational  
EAT 

 
  

Younger 
Adults 

Older 
Adults 

Younger 
Adults 

Older  
Adults 

   Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

 

Post-target (aware error)  546 (104) 724 (126) 561 (107) 766 (150) 
Pre-target (aware error)  463 (59) 610 (97) 476 (72) 624 (86) 

Post-target (correct inhibition)  463 (60) 596 (97) 495 (70) 632 (107) 
Pre-target (correct inhibition)  489 (62) 637 (93) 503 (78) 658 (91) 
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Discussion 

 

The purpose of the present study was to investigate the role of motivational rewards in error 

awareness through the comparison of two groups (younger and older adults). Each participant 

took part in two sessions in which a different version of the EAT was presented: a version similar 

to the original task, called Classical EAT, and a version characterized by incentives, called 

Motivational EAT. 

First, the results on average performance on the EAT showed that older adults were 

generally slower than younger adults. However, in terms of accuracy, older adults were more 

accurate than younger adults. These findings are in line with prior studies that show a 

different speed-accuracy tradeoff between younger and older adults. While younger adults 

are generally faster but less accurate, older adults are slower but more accurate (Dutilh, 

Forstmann, Vandekerckhove, & Wagenmakers, 2013; Starns & Ratcliff, 2010). This 

phenomenon seems to reflect different strategies used to tackle a task. Perhaps older adults 

are more caution than younger adults because a lifetime of experience can have suggested 

that a correct response requires a sufficient time for the deliberation (Starns & Ratcliff, 2010). 

Second, our results confirm the presence of an age-related reduction of error awareness. 

This reduction seems independent from the difficulty of the task since our tasks, both 

Classical and Motivational EAT, were designed so that the error signaling procedure was more 

simple than the version used by Harty and colleagues (2013). Interestingly, this evidence was 

present despite older adults were generally more accurate than younger adults. Thus, it does 

not seem that elderly have had difficulty performing the task itself, but it seems tha t they 

have had difficulty in the detection of errors. This result adds further confirmation about the 

decline in error of awareness in normal aging (Harty et al., 2013; Masina et al., 2018a; 

Rabbitt, 1990).  

As discussed in Chapter 3, error awareness involves several brain regions such as the AIC, the 

pMFC, the DLPFC, the ACC, and the thalamus. Moreover, the association between the PFC and 

awareness decline suggests that the PFC is a crucial component of self-awareness and, probably, 

metacognition. Since the PFC is particularly vulnerable to the effects of aging (Hof & Morrison, 

2004; Raz, 1997) and considering the role of PFC in error awareness, it is plausible to suppose that 

the age-related decline of error awareness may lay on the alteration of the prefrontal neural 

circuits.  
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The third result is particularly interesting. In the present study, the main purpose was to 

improve error awareness in older adults. With the aim to reach this objective, participants 

performed a motivational version of the task, in which both the correct responses and the 

detection of an errors were rewarded by symbolic economic wins. Contrary to our expectations, 

the effect produced by rewards was counterproductive: error awareness was significantly reduced 

in the condition in which error awareness was rewarded, in both younger and older adults. 

Although this result can seem paradoxical, previous studies suggest several possible explanations. 

In Chapter 2, we have described the effect of motivation on cognition. In general, a rewarded 

performance is associated with an improvement of accuracy. However, some authors point out 

that the use of rewards to modulate cognition should be carefully considered. In fact, sometimes 

rewards can produce a reduction of performance (Yu, 2015), as in our study. This unexpected 

effect may be addressed by several explanations that share an important point: a reward can be 

stressful and, in turn, distracting because it induces psychological pressure.  

A first view, the distraction account, claims that attention would have a crucial role in 

explaining the failures of performance. The reduction of performance would be a consequence of 

an attentional shift from skill execution to psychological pressure (Carver & Scheier, 1981; Wine, 

1971). In the Motivational EAT, participants would have focused their attention on distracting 

cues, such as the consequences associated with failure, instead of focusing their attention on the 

task. A second plausible explanation of our result may be corroborated by the monitoring theory. 

According to this view, high psychological pressure would lead to a sort of regression in which 

even an automatic behavior would require a resource-demanding control. Therefore, this shifting 

from the automatic to controlled information processing would produce a performance reduction 

(Baumeister, 1984). Finally, the over-arousal account, suggests that an excessive level of arousal, 

caused by psychological pressure, may have detrimental effect on performance (Yerkes & Dodson, 

1908).  

Apart from the over-arousal account, both the distraction and monitoring account may 

partially contribute to explain the error awareness reduction that we found. The over-arousal 

theory is not plausible because, in general, an increase of arousal is accompanied by a reduction of 

reaction times. However, this is not our case since we found an opposite effect, namely faster 

responses in the Classical EAT than the Motivational EAT. Moreover, against the over-arousal 

account, in a previous study, participants were stressed to provide speeded responses. This 

manipulation, besides to produce an increase of arousal, namely a reduction of reaction times and 
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accuracy, was associated with an enhancement of error awareness (Shalgi et al., 2007). Therefore, 

authors concluded that error awareness can be enhanced in arousal-inducing conditions (Shalgi et 

al., 2007).  

Unfortunately, except from the over-arousal account, this study does not allow to establish 

which theory, distraction or monitoring, can be responsible for results. This limitation points out 

the necessity for further investigations. 

A limitation of this study concerns the fact that the manipulation of reward was not 

comprehensive. Considering that the manipulation of incentives can produce different effects on 

behavior, other reward schedules could be employed. For example, the administration of rewards 

through non-visual modalities may result less distracting. Moreover, it should be considered that 

participants were reinforced with different rewards according their accuracy. Since participants 

received more virtual money for correct responses than signaled errors (€0.50 vs. €0.10), they 

could be biased toward reporting a correct response instead of signaling an error. This might 

account for lower error awareness in the reward condition.  

Finally, our last result concerns the age-related modulation of PES. This phenomenon has 

been highly investigated as a correlate of error monitoring and error awareness (for a review, 

Danielmeier & Ullsperger, 2011), therefore our analyses could not neglect this crucial 

phenomenon. First of all, also in this study, PES was confirmed, as expected when the difference 

between post- and pre-reaction times after aware errors was compared with the difference 

between post- and pre-reaction times after correct inhibitions. Thus, the EAT, especially our 

modified versions, can elicit a significant PES. This aspect is not trivial because PES seems highly 

task-dependent and, in particular, it seems affected by the duration of RSI. The shorter is RSI, the 

higher PES will be (Ullsperger et al., 2014). In our study, the interval between erroneous response 

and the next stimulus was longer than 750 ms. In a previous study, Danielmeier & Ullsperger, 

(2011) showed that with RSI longer of 750 ms, PES was not observed anymore. However, this 

evidence is not consistent in the literature and some fMRI studies found a substantial PES even 

after RSIs of 4–5 seconds (Danielmeier et al., 2011; King, Korb, von Cramon, & Ullsperger, 2010). 

A second important result concerns the target response x group interaction we found. This 

result is coherent with a previous study that showed a more pronounced PES in older adults 

(Dutilh et al., 2013). In our opinion, this result may be interpreted both in terms of different 

strategies used by younger and older adults to perform a task and in terms of differences in error-

related processing. As regards the first hypothesis, some investigators agree that older adults 
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slowdown because they are more cautious than younger adults. Thus, elderly need more 

evidence, and so, more time, before they are willing to make a decision. The second possibility 

takes changes in error-related processing into consideration. This hypothesis is also plausible 

because, as previously shown, some error-related components, such as the ERN, seems affected 

by aging, indicating a general reduction of error processing in older adults (Colino et al., 2017; 

Hoffmann & Falkenstein, 2011). However, further confirmations are necessary to corroborate or 

not these statements since the reduction of a specific error-related process cannot suggest a 

generalized reduction of error processing in older adults. In fact, some processes could be 

differently affected by aging. 

 

 

Conclusion 

 

In study 1, the main topic was the modulation of error awareness through the use of behavioral 

techniques, namely rewarding performance. The use of rewards to facilitate, or reduce specific 

behaviors is not new. As discussed in Chapter 3, these techniques are already widely used, even in 

clinical settings.  

In the present study the introduction of rewards to incentivize error awareness was 

detrimental. The reasons could be multiple and, as described above, other authors have observed 

counterproductive effects of rewards. Although results of this study show a paradoxical effect of 

incentives on error awareness, they allow at the same time to raise an important issue. Despite 

the promising applications of rewards to modulate performance, the efficacy of these methods is 

not always guaranteed.  

For this reason, and in particular because the literature on the topic "modulation of error 

awareness" is still rather scanty, future studies should investigate the possibility of modifying error 

awareness. This research field may facilitate the conception of new interventions in clinical 

settings, especially for patients with error awareness deficits. 
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Chapter 5 

Study 2 - The role of dorsolateral prefrontal cortex in 

error awareness: insights from single-pulse TMS 

 

 

 

Introduction 

 

The objective of study 1 was to improve error awareness by supporting the process through 

virtual monetary incentives. However, as in Chapter 2 it has been highlighted, the modulation 

of behavior or underlying neural processes can also be induced by NIBS. NIBS is a set of brain 

stimulation methods in which current flows are induced into the brain to produce changes in 

brain plasticity. These techniques are important in the field of neuroscience since they allow 

identifying possible causative relationships between the brain and the investigated process. 

Moreover, they are able to produce long-term modification of brain activity. This feature is 

perhaps one of the most important aspect of NIBS and makes it an excellent tool for inducing 

modulation. 

TMS is probably one of the best known NIBS. The application of TMS ranges from the 

study of very short brain effects induced by single pulses to long-lasting effects induced by 

repetitive paradigms of stimulation. In study 2, spTMS will be used to investigate some 

aspects of error awareness, specifically the time-course of the process and its neural bases. 

 

Indro Montanelli, a famous Italian journalist, wrote: “Among errors, there are those that 

stink of sewage and the ones that smell of laundry” (Montanelli, 1992). Although this 

aphorism can only seem romantic and poetic, it expresses in a couple of words the value and 

functional meaning of errors. The detection of an error is essential because it forces us to 

adapt our behavior as a function to our goals. Moreover, from our errors, we can learn how 

to avoid future erroneous and potentially detrimental actions.  

The behavioral and neural effects produced by errors have been broadly studied in the 

literature. In many studies, the focus is generally on the ability of the brain to process the 

error-related information, in other cases, a number of studies specifically  investigate the 



76 
 

ability to consciously perceive an error. While in the first case we talk about error monitoring, 

in the second one we refer to error awareness.  

Error monitoring refers to a multi-componential system that contributes to refocus 

attention to the task, triggering behavioral adjustments and emotional reaction following an 

error (Taylor, Stern, & Gehring, 2007), regardless of whether the error made was aware or 

not. Differently, error awareness indicates more specifically a metacognitive process that 

allows the conscious detection of an error (Ullsperger et al., 2014).  

In Chapter 3, we have illustrated many studies showing how error monitoring is not a 

synonym of error awareness (for example, Endrass et al., 2005). For instance, ERP studies 

have established that an error is processed by at least two independent and parallel 

processes: a first process seems dedicated to a rough processing of error, and a second one, 

more related to a proper evaluation and conscious detection of error (Di Gregorio et al., 

2018; Wessel, 2012). Two ERP components seem to reflect these distinct processes. On the 

one hand, the ERN, i.e. a fronto-central deflection that peaks between 20 and 100 ms after an 

erroneous response, is more related to the first process, whereas on the other hand, the Pe, 

namely a more posterior positive deflection that peaks 100-200 ms after an erroneous 

response, is modulated by error awareness. In particular, the Pe is generally larger for aware 

error than unaware error (Endrass et al., 2007; Nieuwenhuis et al., 2011). 

Similarly to ERP studies, MRI and fMRI evidence confirms that the processing of aware and 

unaware error is different. As mentioned before, the ACC (Hester et al., 2009; Maier, Di 

Gregorio, Muricchio, & Di Pellegrino, 2015; van Veen & Carter, 2002), the thalamus (Seifert et 

al., 2011), the anterior insula (Klein et al., 2007; Klein, Ullsperger, et al., 2013), and the PFC 

(Hoerold, Pender, & Robertson, 2013) seem selectively activated by aware errors. 

Complementary to these findings, several EEG studies using source analyses have identified 

cortical structures correlated with error awareness. For example  Charles and colleagues 

(2013) have revealed a relationship between aware errors and the activity of the posterior 

cingulate cortex, as well as a correlation between unaware errors and the dorsal anterior 

cingulate cortex. 

Although these results contribute to improve the knowledge about the neural bases of 

error awareness, they share the fact that the information obtained with ERP, neuroimaging, 

and EEG methods, despite their good spatial or temporal resolution, do not allow to establish 
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a causal relationship between structure and function, because they provide only correl ational 

evidence.  

With the aim to overcome these methodological limitations, NIBS has recently been 

employed, obtaining promising results. In particular, in a tDCS study, Harty and colleagues 

(2014) revealed a causal relationship between error awareness and the DLPFC, a brain area 

associated with awareness of cognitive functioning (Fleming, Huijgen, & Dolan, 2012). In their 

study, authors tested a group of healthy older adults (65–86 years), who were involved in 

four different experiments, in order to test the effect of both anodal and cathodal stimulation 

over the right and left DLPFC. Interestingly, the authors observed in Experiment 1, and 

confirmed in Experiment 4, that only anodal tDCS over the right DLPFC induced an 

improvement of error awareness in their participants. This result is crucial because is the first 

evidence that establishes a causal relationship between the right DLPFC and error awareness.  

However, the method that Harty and colleagues (2014) used in their study, namely tDCS, 

presents two important limitations. Firstly, tDCS is characterized by low spatial resolution and 

this limitation does not allow establishing which brain area was modulated. According to a 

recent study (Cieslik et al., 2013), at least from a functional point of view, the DLPFC can be 

divided into two subregions: an anterior subregion, more associated with attention and 

cognitive control, therefore more related to error awareness, and a posterior subregion, 

more associated with working memory. Thus, considering this evidence, results of Harty and 

colleagues (2014) does not allow clarifying which part of the right DLPFC was really involved 

in error awareness. Moreover, aside from this consideration, the study of Cieslik and 

colleagues (2013) is relevant because it may provide an explanation for results provided by 

Harty and colleagues (2014). In line with Cieslik and colleagues (2013), the anterior subregion 

of the right DLPFC seems to be functionally connected with the ACC, another brain are a 

strongly related to error awareness (Hester et al., 2009; Maier et al., 2015; van Veen & 

Carter, 2002). Therefore, it is plausible to suppose that Harty and colleagues (2014), by the 

stimulation of the right DLPFC may indirectly have modulated the ACC.  

Secondly, this study cannot provide any temporal information about error awareness, 

specifically when the activity of the right DLPFC is crucial in error awareness. Again, this 

limitation depends on tDCS that, unlike TMS, does not allow to study the time-course of the 

process under investigation. 
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In order to overcome these limitations, in the present study we decided to employ TMS. 

Specifically, through on-line TMS we aimed to investigate temporal information about error 

awareness. Unlike tDCS, in on-line TMS paradigms, pulses are discrete events that produce a 

punctual neuronal depolarization (Wagner, Valero-Cabre, & Pascual-Leone, 2007) and can, 

therefore, be used to infer information about the time-course of neural and cognitive events.  

 

The purpose of the present study was to confirm the involvement of the right DLPFC in 

error awareness, as well as to investigate the timing of error awareness.  In this study, three 

experiments were conducted: a paired-pulse and a single-pulse on-line stimulation paradigms 

were employed respectively in Experiments 1 and 3, whereas a control test was conducted 

without stimulation (Experiment 2). All three experiments were conducted according to the 

declaration of Helsinki and were approved by the Ethics Committee of the School of 

Psychology, University of Padua. All the participants2 enrolled in experiments were volunteers 

and did not receive any reimbursement. Before experiment, participants gave their written 

informed consent and were checked for TMS exclusion criteria (Rossi, Hallett, Rossini, & 

Pascual-Leone, 2011) (see appendix). Extra exclusion criteria were a history of neurological or 

psychiatric diseases, use of neurological or psychiatric medications. The adopted safety 

procedures were in line with the guidelines for the use of TMS (Rossi et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
2
 Post hoc power analysis has demonstrated that in study 2 the sample size of each experiment was adequate to the 

analyses conducted (Effect size = 0.25, Power = 0.84). 



79 
 

Experiment 1 

 

 

Method 

 

Participants 

Twenty volunteers participated in Experiment 1 (6 male, 22.5 ± 3.2 years, range: 19 -30). All 

participants had a normal or corrected-to-normal vision and were right-handed. Each 

participant took part in three experimental sessions carried out on different days (3 days on 

average were left between each session). During each session, only a brain site was 

stimulated (e.g. Session 1: right DLPFC, Session 2: left DLPFC; Session 3: Vertex). Figure 11 

summarizes the experimental design of study 2. Each participant took part in three sessions in 

three different days. The session was so planned: (1) a training phase to guarantee participants 

had understood the task instructions; (2) a phase in which participants performed a full version of 

the task, namely the EAT (Hester et al., 2005), while on-line TMS was administered. 

 

 

Figure 11 | The figure represents three hypothetical sessions during which each participant, after a brief training, 
performed the EAT (Hester et al., 2005) while on-line TMS was delivered. In this figure the order of stimulated brain 
sites was: (1) right DLPFC; (2) left DLPFC; (3) Vertex. This is only an example because the order was randomly 
determined. 

 

Task 

In order to evaluate error awareness, a modified version of the EAT was adopted. Similarly to 

study 1, participants were trained to respond as fast and accurate as possible (without to 

prioritize speed or accuracy), with a single-speeded press of a button (“3” on the keyboard), 
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with the left hand, when the semantic meaning of the word and its font color were congruent 

(Go trial), while they were asked to withhold the response in two circumstances: (1) when the 

semantic meaning of the word and its font color were incongruent (Stroop No-go trial); (2) 

when the word presented on the current trial was the same as the one presented previously 

(repeat No-go trial). Moreover, participants were instructed to signal an error commission, 

both Stroop and Repeat errors, by pressing the space bar with the right hand.  

Unlike the EAT versions used in study 1, in the present study the EAT differs for two 

important points. Firstly, in line with previous studies (Harty et al., 2014; Murphy et al., 2012; 

O’Connell et al., 2009), participants could signal an error immediately after its commission, 

instead of delaying this response for a fixed time as it was the case for other studies in which 

the EAT was used (Harty et al., 2013; Hester et al., 2009; Shalgi et al., 2007). This aspect 

allowed measuring the timing of error awareness (error awareness reaction time) as well as 

the error awareness itself. The second aspect, similarly to a prior study (Harty et al., 2013), 

concerns the implementation of an adaptive staircase approach to maintain the number of 

errors between subjects as similar as possible (figure 12). To this aim, in the present study, 

the task difficulty was based on the participants' accuracy on No-go trials. In this way, any 

potential variation of error awareness would have been related to our manipulation, namely 

TMS, instead of depending on accuracy.  

Initially, the word was presented for 750 ms with an ISI of 1250 ms. These parameters 

were maintained if the accuracy was between 50% and 60%. If the accuracy on No-go fell 

under 50%, the presentation of the word and ISI were both set to 1000 ms, whereas if the 

accuracy on No-go exceeded 60%, the presentation of the word and ISI were respectively set 

to 500 ms and 1500 ms. During the task, this check of accuracy was computed after each No-

go trial. Stimuli appeared at the center of the screen on a black background. The total number 

of trials in the task was 1150, specifically 1000 Go trials, 75 Repeat No-go trials, and 75 Stroop 

No-go trials. The task was divided into five blocks including 230 trials each. It was ensured 

that all participants were well-trained and fully understood the instructions of the task before 

they began experiment. Participants rested their head on a table-mounted head-rest which 

fixed their distance at 60 cm from a 19-inch monitor for the duration of the task. The 

response device was a PS2 standard keyboard. Stimulus presentation was controlled by E-

Prime software (Psychological Software Tools, Pittsburgh, PA, USA; version 2.0.8.90).  
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Figure 12 | A representation of the EAT. (a) A serial stream of single color words in which all the three kinds of trial are 
shown: Go trial, Stroop No-Go, and Repeat No-go. (b) This part of figure shows the typical scenario when a participant 
made an error and, afterwards, signaled it. In this case two measures were collected: error reaction time and error 
awareness reaction time. 

 

TMS  

TMS pulses were delivered via a Magstim Rapid2 TMS stimulator (Magstim Company, 

Whitland, UK). A 70-mm figure-of-eight stimulation coil was fixed in space thanks to well-

trained operators over target brain sites. In both the right and left DLPFC sessions the coil was 

oriented with the handle at 45° to the mid-sagittal line. In the Vertex session, the coil was 

positioned with the handle pointing backwards parallel with the midline. Since TMS over the 

frontal sites could be annoying, the intensity of magnetic stimulation was prudentially set 5% 

below the individual motor threshold. The intensity was estimated by the observed 

movement motor threshold (OM-MT) method (Pridmore, Fernandes Filho, Nahas, Liberatos, 

& George, 1998). The stimulation targets were identified with Brainsight frameless 

stereotaxic system (Rogue Research, Montreal, Canada) and spatial transformation was used 

to adjust the MRI template (the non-linear ICBM-152 template by the Montreal Neurological 

Institute) to individual head shapes. According to Cieslik and colleagues (2013), the 

coordinates of the right and left DLPFC were ±30, 43, 23 (MNI coordinates). Since one of the 

aims of the study was to confirm the involvement of the right DLPFC in error awareness, the 
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left DLPFC was a control area, as well as the Vertex. For this reason, we decided to target the 

left DLPFC by using the same coordinates we adopted to identify the right DLPFC (MNI 

coordinates: 30, 43, 23), but changing only the x-parameter (MNI coordinates: -30, 43, 23), a 

strategy to select a control site that has already been used in previous TMS studies (Herwig et 

al., 2003; Vallesi, Shallice, & Walsh, 2007). The Vertex corresponded to the Cz site of the 

international 10-20 system (Steinmetz, Fürst, & Meyer, 1989). The order of the stimulation 

sites was randomly assigned to each participant, for example, PARTICIPANT_1 (Session 1: 

right DLPFC, Session 2: left DLPFC; Session 3: Vertex), PARTICIPANT_2 (Session 1: left DLPFC, 

Session 2: right DLPFC; Session 3: Vertex), and so on. In total, in Experiment 1, we collected 

data from 60 TMS sessions (20 participants x 3 sessions).  

During the task, pairs of TMS pulses (with 40 ms between the two pulses) were delivered 

with the aim to produce greater effects than spTMS, as previous studies reported (Bardi, 

Kanai, Mapelli, & Walsh, 2012; O’Shea, Muggleton, Cowey, & Walsh, 2004) . This delay, as 

suggested in these two studies, guaranteed an adequate spatial resolution (longer delay 

would have reduced the spatial resolution of TMS). In order to investigate the time-course of 

error awareness, TMS pulses were delivered in two possible time windows after an error 

commission: 20-60 ms or 170-210 ms (figure 13).  

 

Figure 13 | The figure shows four possible scenarios after a No-go trial. If participant withheld the response, TMS was 
not delivered. Contrary, if participant committed an error, three scenarios could occur: (1) a couple of TMS pulses was 
delivered at 20 and 60 ms; (2) a couple of pulses was delivered at 170 and 210 ms; (3) no TMS pulse was delivered. 

 

Furthermore, pairs of TMS pulses were also delivered at 110-150 ms after a correct 

response, so that participants avoided to associate TMS pulses with error commission. 
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Notably, TMS pulses were always triggered by a response, but not all the responses trig gered 

TMS pulses. In fact, the delivery of TMS pulses was predetermined. Specifically, only 80% of 

No-go trials and 40% of Go trials triggered TMS pulses. Different percentages allowed 

maximizing the probability that an error was associated with TMS (80% of errors) and, on the 

other hand, reducing the probability that a Go response was associated with TMS (40% of Go 

trials), especially considering the different number of trials (150 No-go trials vs. 1000 Go 

trials). 

 

Measures and data analysis 

Error awareness - The mean error awareness was computed dividing the number of aware 

errors by the total number of errors (O’Connell et al., 2009). As in study 1, error awareness 

for Stroop and Repeat errors was computed separately. Therefore, we performed a repeated -

measures 2 x 3 x 3 ANOVA trial type (Stroop Vs repeat), timing of TMS pulses (no pulse, 20-60 

ms, and 170-210 ms), and stimulation site (right DLPFC, left DLPFC, and Vertex) as within-

subject factors. In this analysis, the sample size was reduced to 18 participants because 2 of 

them did not commit any repeat errors within some conditions of the analysis. Since the 

reduction of the sample size can increase the Type 2 error rate, we decided to conduct two 

different repeated-measures 3 x 3 ANOVAs, in order to evaluate separately the effect of TMS 

on Stroop and repeat errors.  

The first 3 x 3 ANOVA (sample size: n = 20) considered only the Stroop errors with timing 

of TMS pulses (no pulse, 20-60 ms, and 170-210 ms) and stimulation site (right DLPFC, left 

DLPFC, and Vertex) as within-subject factors. The second 3 x 3 ANOVA (sample size: n = 18) 

took only the repeat errors into consideration, again with timing of TMS pulses (no pulse, 20-

60 ms, and 170-210 ms) and stimulation site (right DLPFC, left DLPFC, and Vertex) as within-

subject factors. 

 

Error awareness reaction times - This measure was computed as the time between the 

erroneous response and its detection (figure 12). A repeated-measures 3 x 3 ANOVA was 

conducted with timing of TMS pulses (no pulse, 20-60 ms, and 170-210 ms) and stimulation 

site (right DLPFC, left DLPFC, and Vertex) as within-subject factors.  
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Mean reaction times and accuracy - Mean reaction times referred to correct responses 

and errors and they were analyzed in a repeated-measures 2 x 3 ANOVA considering kind of 

response (Go reaction times Vs error reaction times) and stimulation site (right DLPFC, left 

DLPFC, and Vertex) as within-subject factors. Finally, accuracy was calculated as the ratio of 

correct withholds on No-go trials. The mean accuracy was analyzed by a repeated-measures 

ANOVA with stimulation site (right DLPFC, left DLPFC, and Vertex) as within-subject factor. 

 

Before data analyses, reaction times above and below 2 SD from the mean were excluded and 

a logarithm transformation was applied on the remaining reaction times, in order to improve 

normalization. In every analysis, the Bonferroni correction for multiple comparisons was 

applied and a corrected alpha-level of 0.05 was considered. Finally, effect sizes were 

estimated by partial eta squared (η2
p). 

 

 

Results  

 

The behavioral measures of Experiment 1 are presented in Table 4.  

 

 

Error awareness - The number of errors in each condition is shown in Table 5. 

Results from the first 2 x 3 x 3 ANOVA showed a main effect of trial type [F(1,17) = 13.8, p < 

0.01, η2
p = 0.4]. As observed in study 1, participants were more aware for Stroop than Repeat 

Table 4. Mean and standard deviation (SD) of performance indices on the EAT for right DLPFC, left 
DLPFC, and Vertex stimulation. 

  Right DLPFC Left DLPFC Vertex 

  
Mean (SD) Mean (SD) Mean (SD) 

Stroop awareness (%)   94 (10) 95 (10) 94 (10) 

Repeat Awareness (%)   83 (10) 82 (20) 81 (20) 

Error awareness reaction times (ms)  407 (95) 408 (94) 407 (92) 

Go reaction times (ms)   471 (66) 482 (56) 479 (70) 

Error reaction times (ms)  448 (56) 453 (55) 449 (62) 

Accuracy (%)   51 (20) 52 (20) 52 (20) 

Note: DLPFC, Dorsolateral prefrontal cortex. 
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errors. No other main effect or interaction reached statistical significance (lowest p-value = 

0.1). When we performed two separate repeated-measures 3 x 3 ANOVAs, both models did 

not reveal main effects or interactions (lowest p-value = 0.4). 

 

Error awareness reaction times - This analysis did not show any effect of TMS on error 

awareness reaction times (lowest p-value = 0.3). 

 

Table 5. Mean and standard deviation (SD) of the number of errors in each condition. 

Condition Right DLPFC Left DLPFC Vertex 

 Mean (SD) Mean (SD) Mean (SD) 

Errors 72 (30) 71 (25) 70 (30) 

Stroop Errors 44 (17) 43 (12) 43 (16) 

Stroop Errors_no pulse 7 (3) 7 (2) 7 (3) 

Stroop Errors_20-60 ms_TMS 18 (7) 18 (5) 19 (7) 

Stroop Errors_170-210 ms_TMS 18 (7) 18 (5) 17 (7) 

Repeat Errors 29 (16) 28 (15) 27 (16) 

Repeat Errors_no pulse 6 (3) 5 (3) 4 (3) 

Repeat Errors_20-60 ms_TMS 11 (7) 11 (6) 11 (7) 

Repeat Errors_170-210 ms_TMS 12 (7) 12 (6) 12 (7) 

Note: DLPFC, Dorsolateral prefrontal cortex. 

 

 

Reaction times and accuracy - The analysis of mean reaction times showed a significant 

difference between Go reaction times and error reaction times [F(1,19) = 73.7, p < 0.001, η2
p= 

0.8], indicating that error reaction times were faster than Go reaction times. No main effect 

or interaction with the factor stimulation site was found (lowest p-value = 0.3). Finally, no 

significant effect of TMS was found on accuracy (lowest p-value = 0.8).  

 

 

Discussion 

 

Contrary to our expectations, results of Experiment 1 showed no significant effect of paired -

pulse TMS over either left or right DLPFC on error awareness. Although this evidence seems 

to not confirm a previous finding (Harty et at., 2014), namely the role of the right DLPFC in 

error awareness, alternative explanations could be involved to explain null results we found. 
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The first one could depend on the inadequacy of the target area. Thus, the right DLPFC may 

not be implicated in error awareness. Although this explanation is the most obvious, it should 

be carefully considered to avoid a false negative. In fact, Harty and colleagues (2014) 

confirmed the involvement of the right DLPFC in error awareness twice. A second plausible 

cause may derive from the stimulation paradigm we used in this experiment. This latter point 

needs a brief discussion of some nonspecific effects that TMS can produce.  

TMS can produce a direct modification of brain activity through the depolarization of 

neurons. However, since TMS generates somatosensory sensations that can nonspecifically 

alter task performance (Robertson et al., 2003) it contributes partially to introduce noise, 

namely producing effects that are not strictly related to the brain site stimulated in a specific 

circumstance. In Experiment 1, participants may have moved their attention from the task to 

TMS pulses. In this experiment, the paradigm consisted of paired pulses delivered during the 

execution of the task. Although TMS is generally painless, it is plausible to  suppose that 

paired pulses delivered during the execution of a task could have been perceived as annoying. 

In turn, this uncomfortable sensation may have increased the arousal of participants. This 

hypothesis is not new in literature because, among others, also Dräger and colleagues (2004) 

revealed an increase of arousal caused by TMS. 

Taken together these considerations, we believed that a fruitful strategy to disambiguate 

confounding nonspecific effects of TMS from specific effects induced by this technique was to 

compare Experiment 1 with a second experiment in which TMS was not delivered.  

 

 

 

Experiment 2 

 

 

Method 

 

Participants 

In Experiment 2, 20 healthy participants were recruited. All participants were right -handed 

and had normal or correct-to-normal vision. Because of an unusual mean error awareness (< 

30%), a participant was excluded from the analyses. As a result, the final  sample consisted of 
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19 participants (5 men, 23.8 ± 3.3 years, range: 19-29). Each participant performed the EAT 

and received the same instructions as in Experiment 1. All participants were tested in one 

experimental session without TMS. 

 

Measures and data analysis 

Experiment 2 aimed to compare the behavioral measures collected from this experiment with 

the measures of Experiment 1. Since participants in Experiment 1 performed the EAT three 

times (once for each session), in order to avoid practice effect, we compared the behavioral 

measures of Experiment 2 with the measures at the first session of Experiment 1. For the sake 

of clarity, in Experiment 1, sites of stimulation in the first session were so distributed: right 

DLPFC (n=7), left DLPFC (n=7), Vertex (n=6).  

Error awareness, error awareness reaction times, mean reaction times and accuracy  from 

both experiments were compared by one-way ANOVAs with group (Experiment 1 Vs 

Experiment 2) as between-subject factor. As in Experiment 1, reaction times above and below 

2 SD were not included in the analyses. Moreover, a logarithm transformation was used on 

the remaining reaction times, to increase normalization. A corrected alpha-level of 0.05 was 

considered in each analysis and the effect sizes were estimated by partial eta squared (η2
p). 

 

 

Results  

 

The behavioral measures of both experiments are shown in Table 6.  

 

Table 6. Mean and standard deviation (SD) of performance indices on the EAT for the first and second experiment.  
  Experiment 1 - TMS 

(first session) 
Experiment 2 - 

no TMS 
 

  Mean (SD) Mean (SD) F-values 

Stroop Awareness (%)   93 (10) 91 (10) 0.6 

Repeat Awareness (%)   82 (20) 79 (20) 0.3 

Error Awareness reaction times (ms)  445 (101) 503 (92) 4.3 

Go reaction times (ms)  515 (50) 496 (115) 1.2 

Error reaction times (ms)  462 (50) 451 (116) 0.7 

Accuracy (%)   53 (20) 58 (20) 0.5 

Note: In bold, statistically significant differences between groups (p < 0.05). 
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The statistical analyses revealed that error awareness reaction times were different 

between groups, [F(1,38) = 4.3, p < 0.05, η2
p= 0.1]. Participants in Experiment 1 were faster to 

signal their errors than participants in Experiment 2. The other one-way ANOVAs did not 

reveal differences between groups (lowest p-value = 0.3).  

 

 

Discussion 

 

In Experiment 2, participants performed the EAT without TMS. Measures from this 

experiment were then compared to measures from the first sessions of Experiment 1 (TMS 

experiment).  

The comparison between experiment 1 and 2 shows an interesting result. Regardless of the 

stimulation site, in experiment 1 TMS induced a significant reduction of error awareness reaction 

times. This result highlights how TMS can interfere with performance in a nonspecific manner, 

namely inducing effects independently from the stimulation site. Corroborating this result, 

previous studies reported a speeding effect associated with TMS (Campen, Keuken, Wildenberg, 

& Ridderinkhof, 2013; Terao et al., 1997). Thus, this nonspecific TMS-induced effect on 

reaction times is not unusual.  

However, how can TMS affect reaction times, independently from the stimulation site? A 

previous study may provide a response. In fact, Dräger and colleagues (2004) revealed that 

TMS can increase the arousal in participants involved in a task. Since a TMS pulse produces a 

noticeable sensation on the head and a clicking sound, it plausible to suppose that these 

somatosensory sensations could affect task performance, cause an attentional shift from the 

task to TMS and, furthermore, increase the arousal.  

This previous evidence might support an explanation for null f indings we found in 

Experiment 1. If this explanation was correct, in Experiment 1 the paradigm of stimulation 

may have increased the level of arousal, submerging any specific effect of TMS on error 

awareness. Thus, null results of Experiment 1 may depend on the inadequacy of the paradigm 

of stimulation. This consideration points out an important aspect that investigators should 

consider if interested to adopt TMS (or more in general NIBS) in their studies: a careful 

reflection about the chosen of the stimulation paradigm. In Experiment 1, we expected that 

the paradigm of stimulation would have maximized the behavioral effects of TMS on error 
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awareness (Bardi et al., 2012; O’Shea et al., 2004). Unfortunately, contrary to our 

expectations, the high number of pulses delivered during the task may have been the reason 

for the increase of the arousal, that in turn would have submerged specific effects of TMS. 

This consideration is plausible if considering that error awareness is particularly sensitive to 

arousal (Robertson, 2014; Shalgi et al., 2007). 

Aside from this interpretation, two crucial questions are still open, because both 

Experiment 1 and 2 cannot shed light on brain regions involved in error awareness and its 

time-course. In fact, these experiments can only provide information about nonspeci fic 

effects that TMS induced in Experiment 1.  

Thus, with the same purposes of Experiment 1, namely to confirm the involvement of 

the right DLPFC in error awareness, as well as to investigate the timing of error awareness,  

we decided to implement the third experiment, setting a paradigm of stimulation 

characterized by fewer pulses than the paradigm in Experiment 1, in order to minimize the 

hypothesized impact of the arousal on error awareness. 

 

 

 

Experiment 3 

 

 

Method 

 

Participants 

Twenty right-handed healthy individuals, with a normal or corrected-to-normal vision, 

participated in Experiment 3 (5 men, 24.6 ± 2.9 years, range: 21-31). The experimental design 

was the same of Experiment 1. Each participant took part in three sessions in three different days. 

The session was so planned: (1) a training phase to guarantee participants a good familiarization 

with the task; (2) a phase in which participants performed a full version of the task, namely the 

EAT (Hester et al., 2005), while on-line TMS was administered (figure 11). During each session, 

only a brain site was stimulated (e.g. Session 1: right DLPFC, Session 2: left DLPFC; Session 3: 

Vertex). All participants performed the EAT. Structure and instructions of the task were the 

same as Experiment 1 and 2.  
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TMS 

TMS stimulator, type of coil, placing of the coil, and method to measure the individual motor 

threshold were identical to those of Experiment 1. In Experiment 3, the TMS intensity was set 

at 100% of the individual motor threshold, to increase a possible effect of TMS and also in the 

light that here the TMS protocol was overall less intensive than Experiment 1 (single pulse Vs 

paired pulse). In Experiment 3, we collected data from 60 TMS sessions (20 participants x 3 

sessions).  

Since the purposes were the same of Experiment 1, in Experiment 3 we maintained the 

same stimulation sites. Thus, the MNI coordinates of the right and left DLPFC were ±30, 43, 

23 (MNI coordinates). Again, the control sites were the left DLPFC and the Vertex. In addition, 

in Experiment 3, the cortical location of sites was visually verified by Brainsight frameless 

stereotaxy (Rogue Research, Montreal, QC, Canada) on T1-weighted MRIs of 11 participants. 

Images were acquired using a 3-T Philips Ingenia whole-body scanner with a 32-channel head-

coil at the Neuroradiology Unit, University-Hospital of Padova, Italy. MRIs were then 

registered to the MNI template. For the extra 9 participants, the localization of sites was 

based on individualized MRI template by a magnetic resonance-based head model, as all 

participants in Experiment 1. 

Importantly, in Experiment 3, we maintained same procedures of Experiment 1, apart 

from the paradigm of stimulation. As mentioned before, in Experiment 3 we implemented a 

stimulation paradigm that we thought may be more suitable to investigate error awareness. 

In this case, to minimize a possible confound of nonspecific effects of TMS and to reduce the 

impact of a supposed increase of the arousal level induced by TMS, in Experiment 3 we 

adopted a single-pulse paradigm, instead of a paired-pulse. This paradigm of stimulation was 

characterized by an overall reduced number of TMS pulses per session (50%) than the 

paradigm adopted in Experiment 1. Similarly to Experiment 1, we delivered the pulse in two 

possible time windows: 50 ms or 200 ms after the commission of an error (figure 14). 

Furthermore, a spTMS was also delivered at 125 ms after a correct response. As in 

Experiment 1, the probability to receive a TMS pulse after an error was 80% and 40% after a 

Go trial. 
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Figure 14 | The figure shows four possible scenarios after a No-go trial. Similarly to Experiment 1, if participant 
withheld the response, TMS was not delivered. However, unlike Experiment 1, in Experiment 3, if participant 
committed an error, three scenarios could occur: (1) a single pulse was delivered at 50 ms; (2) a single pulse was 
delivered at 200 ms; (3) no TMS pulse was delivered. 

 

 

Measures and data analysis 

Error awareness - The analyses on error awareness were the same as Experiment 1. Initially, 

an omnibus repeated-measures 2 x 3 x 3 ANOVA was conducted, with trial type (Stroop Vs 

Repeat), timing of TMS pulses (no pulse, 50 ms, and 200 ms), and stimulation site (right 

DLPFC, left DLPFC, and Vertex) as within-subject factors. As in Experiment 1, this analysis 

yielded to a reduction of the sample size (n = 15) because 5 participant did not commit any 

Repeat commission errors within some conditions of the analysis. Therefore, exactly for the 

same reasons of Experiment 1, namely to avoid an increase of the Type 2 error rate, we 

evaluated separately the effect of TMS on Stroop and Repeat commission errors by means of 

two models. The first model, a 3 x 3 ANOVA (sample size: n = 20), considered only the Stroop 

commission errors with timing of TMS pulses (no pulse, 50 ms, and 200 ms) and stimulation 

site (right DLPFC, left DLPFC, and Vertex) as within-subject factors. Since this analysis showed 

a borderline significant interaction, we decided to reduce the model and collapse the factor 

timing of TMS pulses (no pulse, 50 ms, and 200 ms) in a dichotomous factor TMS (no pulse Vs 

TMS pulse). Finally, the second model, a 3 x 3 ANOVA (sample size: n = 15), included only the 
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Repeat commission errors, with timing of TMS pulses (no pulse, 50 ms, and 200 ms) and 

stimulation site (right DLPFC, left DLPFC, and Vertex) as within-subject factors.  

 

Error awareness reaction times - A repeated-measures 3 x 3 ANOVA with timing of TMS 

pulses (no pulse, 50 ms, and 200 ms) and stimulation site (right DLPFC, left DLPFC, and Vertex) 

as within-subject factors was performed. 

 

Reaction times and accuracy - Mean reaction times were analyzed in a repeated-

measures 2 x 3 ANOVA considering kind of response (Go reaction times Vs error reaction 

times) and stimulation site (right DLPFC, left DLPFC, and Vertex) as within-subject factors. 

Finally, accuracy was analyzed by a repeated-measures ANOVA with stimulation site (right 

DLPFC, left DLPFC, and Vertex) as within-subject factor. 

 

As in Experiment 1 and 2, reaction times above and below 2 SD were excluded from the 

analyses and a logarithm transformation was applied on the remaining reaction times. The 

Bonferroni correction was applied to post hoc analyses. Effect sizes were calculat ed in terms 

of partial eta squares (η2
p). 

 

 

Results 

 

The behavioral measures of Experiment 3 are summarized in Table 7. 

Table 7. Mean and standard deviation (SD) of performance indices on the EAT for right DLPFC, left 
DLPFC, and Vertex stimulation. 
  Right DLPFC Left DLPFC Vertex 

  Mean (SD) Mean (SD) Mean (SD) 

Stroop Awareness (%)   96 (0) 95 (10) 97 (10) 

Repeat Awareness (%)   79 (10) 79 (20) 81 (10) 

Error awareness reaction times (ms)  384 (82) 398 (89) 415 (76) 

Go reaction times (ms)   462 (61) 467 (56) 458 (39) 

Error reaction times (ms)  436 (46) 442 (42) 435 (36) 

Accuracy (%)   58 (10) 55 (10) 58 (10) 

Note: DLPFC, Dorsolateral prefrontal cortex. 



93 
 

Error awareness - The number of errors in each condition is presented in Table 8.  

 

 

 

 

 

 

 

 

 

 

 

 

The first omnibus repeated-measures 2 x 3 x 3 ANOVA revealed a main effect of trial type 

[F(1,14) = 37.4, p < 0.001, η2
p = 0.7]. As in Experiment 1, participants were more aware for 

Stroop than Repeat errors. No other main effect or interaction was found (lowest p-value = 

0.3).  

When we split this analysis into two different models, the first 3 x 3 ANOVA on Stroop 

errors shown a main effect of timing of TMS pulses [F(2,38) = 8.1, p < 0.01, η2
p = 0.3]. The 

corrected paired sample comparisons indicated that participants were more aware when they 

did not receive any TMS pulse after an error commission (no pulse condition) than the 

condition in which the pulse was delivered at 200 ms after an error commission (respectively 

98% Vs 95%; t(19) = 4, p < 0.01) (figure 15).  

 

 

Figure 15 | The panel on the left refers to Stroop Awareness, whereas the panel on the right Repeat Awareness. Error 
bars represent standard errors of the mean. 

Table 8. Mean and standard deviation (SD) of the number of errors in each condition. 

Condition Right DLPFC Left DLPFC Vertex 

 Mean (SD) Mean (SD) Mean (SD) 

Errors 59 (20) 63 (18) 59 (20) 

Stroop Errors 38 (11) 41 (10) 38 (11) 

Stroop Errors_no pulse 5 (2) 5 (2) 5 (1) 

Stroop Errors_50 ms_TMS 15 (4) 17 (3) 16 (4) 

Stroop Errors_200 ms_TMS 17 (6) 19 (5) 16 (6) 

Repeat Errors 21 (11) 21 (11) 21 (11) 

Repeat Errors_no pulse 4 (2) 4 (3) 5 (3) 

Repeat Errors_50 ms_TMS 9 (5) 8 (5) 7 (5) 

Repeat Errors_200 ms_TMS 8 (5) 10 (5) 9 (5) 

Note: DLPFC, Dorsolateral prefrontal cortex. 
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No other main effect or interaction was found (lowest p-value = 0.1). However, after 

collapsing the factor timing of TMS pulses (no pulse, 50 ms, and 200 ms) in a dichotomous 

factor TMS (no pulse Vs TMS pulse), the analysis for Stroop Awareness showed a significant 

interaction between TMS x stimulation site [F(2,38) = 3.61, p < 0.05, η2
p = 0.2]. Corrected 

paired sample t-tests indicated that the interaction was driven by a reduction of Stroop 

Awareness in both the right and left DLPFC stimulation sessions: participants were less aware 

for Stroop errors when they were stimulated on prefrontal sites than on Vertex  (right DLPFC 

vs. Vertex: t(19) = 4.2, p < 0.01; left DLPFC vs. Vertex: t(19) = 2.3, p < 0.05), (figure 16). 

The second 3 x 3 ANOVA on Repeat errors did not reveal any effect or interaction (lowest 

p-value = 0.5). 

 

 

Figure 16| Figure shows Stroop Awareness (%) after collapsing the factor timing of TMS pulses. Error bars represent 
standard errors of the mean. Note: * (p < 0.05). 

 

Error awareness reaction times - The analyses did not show any effect of TMS on error 

awareness reaction times (lowest p-value = 0.1). 

 

Reaction times and accuracy - As expected, the analysis of mean reaction times revealed 

a significant main effect of kind of response, [F(1,19) = 38.6, p < 0.001, η2
p = 0.7]. Error 

reaction times were faster than Go reaction times, as in Experiment 1. No main effect or 

interaction with the factor stimulation site was found (lowest p-value = 0.8). Finally, similarly 

to Experiment 1, no significant effect of TMS was found on accuracy (lowest p-value = 0.3). 
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Discussion  

 

The general purposes of this study were to investigate the relationship between the right 

DLPFC and error awareness, as well as identify crucial time-windows within which this process 

occurs. With the aim to shed light on these aspects, on-line TMS was employed in two 

experiments. 

In Experiment 1, results failed to confirm our hypothesis about an implication of the right 

DLPFC in error awareness. As above discussed, these null findings may have several 

explanations. Firstly, these null findings could depend on the target area, namely the right 

DLPFC. The most simple explanation consists in refusing an implication of this  brain region in 

error awareness. Unfortunately, despite this explanation can be the easiest and the most 

convenient interpretation, other alternative views should be considered, especially because 

null findings in NIBS studies are frequent and a number of authors encourage to report and 

productively interpret null results (Munafò & Neill, 2016) so that they can methodologically 

guide the design of future TMS research (De Graaf & Sack, 2011).  

In a previous study, Harty and colleagues (2014) had strongly demonstrated in two 

experiments the involvement of the right DLPFC in error awareness and this evidence 

encouraged us to search a different explanation for null findings revealed in Experiment 1. 

We thought that a plausible reason may depend on the inadequacy of the paradigm of 

stimulation used in Experiment 1. Interestingly, when we compared Experiment 1 with 

Experiment 2 results showed that in Experiment 1 TMS induced a reduction of error 

awareness reaction times, regardless the stimulation site. Thus, participants were surprisingly 

faster to signal their errors in Experiment 1 than in Experiment 2. This aspect could be 

ascribable to an increase of the arousal in participants that were stimulated with TMS. In fact, 

as confirmed in previous studies (Dräger et al., 2004; Terao et al., 1997), TMS can enhance 

the arousal level, inducing nonspecific effects on performance of a task.  

An aspect we strongly stressed in this study is the fact that is reasonable to assume that 

in Experiment 1 the paired-pulse TMS paradigm may have maintained the participants' 

arousal high during the task because a paired pulse, constantly delivered on the head, is 

somehow an activating situation.  

In order to control this nonspecific effect of TMS, in Experiment 3, a spTMS paradigm was 

employed. Experiment 3 was identical to Experiment 1, except form the paradigm of 
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stimulation. In fact, in Experiment 3, participants received only a single pulse instead of two, 

as in Experiment 1. We hypothesized that the spTMS paradigm could be a less arousal-

inducing paradigm than the paired-pulse. 

Of interest, Experiment 3 revealed an implication of the DLPFC in error awareness, 

without evidence for lateralization. Even if this finding was not generalized on error 

awareness, but only for Stroop Awareness, it provides two important evidence: firstly, we 

confirm an involvement of the DLPFC in error awareness, secondly, both the right and left 

DLPFC seem implicated in error awareness. The study of Harty and colleagues (2014) depicted 

a different scenario because they found a selective role of the right DLPFC in error awareness. 

However, considering they used another technique, namely tDCS, different results are not so 

surprising. In fact, TMS and tDCS differ from their spatial resolution (Priori, Hallett, & 

Rothwell, 2009), physical, and physiological effects (Miniussi et al., 2013). Furthermore, in 

their study, the sample was composed of older adults, whereas in the present study our 

samples were composed of younger people. The age difference may contribute to explain the 

difference in terms of effect size between these studies. In fact, while in our study we 

evidenced a small effect of TMS, Harty and colleagues (2014) showed a strong modulation of 

tDCS on error awareness. Taken together these differences, we suppose that it may be easier 

to modulate (improve) error awareness in older adults, in which error awareness is normally 

reduced (see study 1) than to modulate the process in younger adults that present higher 

level of error awareness. Moreover, it should be considered that tDCS induces a more diffuse 

brain modulation (Bikson et al., 2010; Datta et al., 2009; Lang et al., 2005) compared to the TMS 

stimulation. This aspect can account for the difference in terms of modulatory effects between 

Harty’s study and the present study. 

Regarding the second objective of the study, namely to provide evidence about specific 

time windows within which error awareness would occur, neither Experiment 1 nor 

Experiment 3 showed significant results. A possible explanation may rely on the fact that the 

pulse timings were delivered too late after the commission of an error.  

In this study some limitations should be considered. In fact we must acknowledge that 

other possible explanations may apply to the null result found in Experiment 1, besides the 

nonspecific increase of the arousal we suggested. For example Experiment 1 and 3 differed 

for the intensity of stimulation. In Experiment 1, it was lower than Experiment 3 (95% of 

participants' motor threshold, instead of 100%). Although weak, this difference may have 
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affected our results. Second, a potential limitation of the study concerns the theoretical 

comparison between Experiment 1 and 3. In fact, the paired-pulse and the single-pulse on-

line TMS paradigm we employed were substantially different and, also in the case we had 

found similar effects of TMS, it would have been difficult to disambiguate any effect, 

especially because the paradigms were characterized by different timing. Finally, and more 

important, in Experiment 3 we only found a small effect of TMS on Stroop Awareness, instead 

of a generalized effect on error awareness.   

 

 

Conclusion 

 

Although the purposes of study 2 did not completely achieve, this study contributes to shed 

light on error awareness. In fact, results show that the right and left DLPFC are implicated in 

this process. Moreover, study 2 raises an important issue that deserves to be discussed: 

subtle changes in stimulation parameters can lead to different results. In Experiment 1 we 

saw how a paired-pulse paradigm failed to modulate error awareness. The only modification 

achieved was nonspecific and certainly did not concern an area-related modulation. However, 

through a simple modification of the paradigm, we observed that in experiment 3 a single-

pulse paradigm was able to produce a modulation of error awareness, in line with our 

expectations. 

Nowadays, TMS is widely used as a treatment for neurological and psychiatric disorders. 

Its applications cover several disorders such as, among others, depression, obsessive-

compulsive disorder, schizophrenia, Parkinson's disease, aphasia, attentional disorders, 

memory deficits, dystonia (writer's cramp), epilepsy and related disorders, and tic disorder. 

Although TMS is a versatile method highly used in clinical contexts, a consensus about which 

parameters of stimulation and target brain areas are recommended for effective treatments 

is not still reached. Actually, only in the treatment of major depressive disorder, the effort of 

research seems to converge toward a consensus. In fact, the most effective treatment 

consists in the high frequency stimulation (around 10 Hz) of the left  DLPFC, for a period of 4-6 

weeks (Perera et al., 2016). Obviously, this goal has been achieved thanks to a powerful 

research focused on the study of depression treatment by using unconventional techniques, 

such as TMS. For example, in the last few years, fifteen meta-analyses have confirmed the 
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efficacy of TMS in the treatment of depression, as well as a number of systematic reviews 

(Perera et al., 2016). 

In light of our results, we wish to stress the fact that small variations in the parameters 

can induce null or unpredictable effects. Therefore, the use of TMS in clinical settin gs requires 

careful consideration of the choice of parameters. 

Finally, another point relative to possible cognitive side effects of TMS, or more in 

general NIBS, should be argued. As highly discussed, NIBS is a set of methods able to 

modulate behavior and brain functioning in a safe manner, by respecting of guidelines on 

these methods, of course. Although in the past investigators have focused their studies on 

safety and physical side effects of NIBS (Poreisz, Boros, Antal, & Paulus, 2007), few studies 

have studied possible cognitive side effects of NIBS. For example, in a recent study, Iuculano 

& Cohen Kadosh (2013) showed that cognitive enhancement induces by tES can occur at the 

expense of other cognitive functions. Thus, although the enhancement of cognitive function is 

an intriguing and promising tool in neuroscience, at the same t ime it is naive to think that 

modulation of a process produces only positive effects without, for example, to trigger forms 

of maladaptive plasticity. 

 

Taken together these considerations underline the necessity, somehow, to monitor the 

effects of NIBS. Most NIBS studies use only behavioral measures to evaluate the effects of 

these techniques. For example, in clinical field, can a questionnaire consisting of a handful of 

items be considered a sufficient method to assess the impact of NIBS on the investigated 

disorder? The disadvantages of using only behavioral measures concerns the impossibility of: 

(1) to highlight neural modulation, even in the absence of behavioral modulation; (2) to 

investigate the neural mechanisms underlying a possible behavioral modif ication.  

In recent years, thanks to a growing improvement of neuroscientific techniques, an interesting 

approach allows combining NIBS with other methods such as fMRI, PET, and EEG. The combined 

use of NIBS and neuroimaging techniques, namely coregistration, is a promising tool because it 

can compensate for the limits of neuroimaging techniques and vice-versa, as well as to provide 

further evidence about the functioning of NIBS. 

As already argued, one of the most unsolved aspects of TMS regards its complex physiological 

mechanisms. Despite the widespread use of TMS in research, its underlying mechanisms of action 

are poorly known and, crucially, behavioral measures are not sufficient to investigate the effect of 
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TMS on brain functioning because they leave unsolved several questions. For this reason, 

neuroimaging techniques can help to understand how TMS modulates the brain. Moreover, 

coregistration is crucial because allows investigating several aspects of the same process, by 

collecting data from different sources (e.g. behavioral and electrophysiological data).  

To conclude, despite the widespread use of TMS, many questions are still opened and need 

answers. Research into clinical applications for TMS requires important research efforts in order to 

assess the effectiveness of the technique and to develop standardized protocols that can 

maximize the adaptive plasticity mechanisms and to avoid maladaptive plasticity mechanisms. A 

promising solution may involve coregistration between TMS and other neuroscientific techniques. 
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Chapter 6 

Study 3 - Modulation of error-related processes: a 

combined TMS-EEG study 

 

 

Introduction 

 

Study 2 was aimed at modulating error awareness through on-line TMS protocols. The generated 

modulation was weak, with a small effect size. This could be due to the use of a single-pulse or a 

paired-pulse paradigm, which were not able to produce a sufficient effect on brain activity. In 

order to cope with this limitation in the present study an off-line rTMS protocol was adopted. A 

prominent advantage of TMS is that the effects of every single pulse or single-train can summate 

with repeated application, leading to long-lasting effects (Hallett, 2007; Ridding & Rothwell, 2007; 

Rossi & Rossini, 2004). For this reason, rTMS is used to transiently modulate brain functions 

beyond the time of stimulation. This stimulation protocol would have contributed to maximize the 

effect of TMS, in terms of modulatory effects, and to avoid nonspecific effects induced by on-line 

paradigms. Importantly, in the present study, in order to better quantify the modulatory TMS 

effects, the EEG signal was recorded soon after the rTMS session, simultaneously with the task 

execution. Therefore, in study 3, besides the classical behavioral measures already analyzed in this 

dissertation (i.e. error awareness and PES), included neurophysiological measures. Specifically, we 

combined TMS with EEG technique, in order to investigate TMS-induced brain modulation of 

error-related processes. 

 

We have seen in previous chapters that our everyday life is scattered by minor errors that do 

not generally produce significant consequences. James Reason defined these errors “slips”, 

pointing out all kinds of minor errors characterized by a mismatch between the execution of an 

action and a planned action (Reason, 1990). However, also a minor error can have important 

consequences, for example, a driving distraction. Thus, it is not surprising that human error has 

broadly investigated by several subjects, such as Cognitive Science, Psychology, and Neuroscience. 

These disciplines have studied human error from different points of view, through the use of 

own methodologies and techniques. Nevertheless, what these different approaches share, it is 



102 
 

probably the focus on which they have addressed their attention. Since an error is a distinct event 

occurring at a precise time, we can distinguish, somehow, two lines of research: (1) studies that 

investigate antecedents of an error, that are the causes of the error itself, and (2) studies that 

examine the consequences after an error, namely the impact and the effects an error produces 

within a system or the reaction of a system following an error. In particular, related to this last line 

of research, Psychology and Neuroscience have broadly studied the behavioral and neural effects 

following the commission of an error. 

At a behavioral level, an interesting aspect concerning the commission of an error is its 

detection. We have described this phenomenon in previous chapters. Although a clear definition 

of error awareness is not present, in the literature error awareness seems to be considered both a 

metacognitive process (Dockree, Tarleton, Carton, & FitzGerald, 2015; N. Yeung & Summerfield, 

2012), and/or a component of executive functions (Simões-Franklin, Hester, Shpaner, Foxe, & 

Garavan, 2010).  

Another interesting behavioral phenomenon, already described in 1966 by Rabbit and 

colleagues, evidences how the responses associated with a correction of an error are faster than 

the correct responses (Rabbitt, 1967; Rabbitt, 1966, 1968). Moreover, individuals generally tend to 

slow down their response on the next trial after committing an error (Rabbitt, 1966). As previously 

discussed, this phenomenon, highly investigated in the literature, is known as PES (Danielmeier 

and Ullsperger, 2011; Ullsperger et al., 2014).  

From the neural perspective, a rich corpus of EEG studies has investigated the 

electrophysiological correlates of error monitoring (see Chapter 3). Two ERPs seem particularly 

involved in error monitoring. The first one, the ERN, occurs at or shortly before an erroneous 

response and peaks around 50-100 ms after. The ERN has a frontocentral radial voltage 

distribution on the scalp (Falkenstein et al., 1991; Gehring et al., 1990). Immediately after the ERN, 

a second positive potential emerges between 200-400 ms after error onset, which is called the Pe. 

The scalp distribution of the Pe shows a maximum at centroparietal sites (Falkenstein et al., 1991; 

Overbeek et al., 2005). Several authors found a relationship between the behavioral and ERP 

correlates of error monitoring: PES seems positively correlated to the Pe (Hajcak et al., 2003; 

Nieuwenhuis et al., 2001; Overbeek et al., 2005) and, unlike the ERN, the Pe is also strongly 

observed when an individual detects an error (Endrass et al., 2007; O’Connell et al., 2007; 

Overbeek et al., 2005).  
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Although a large piece of knowledge has made possible to understand the effects of an error 

on our behavior or on the brain, few studies have tried to directly modulate these error-related 

processes. With regard to PES and error awareness, two studies have succeeded in producing an 

increase in these processes. In particular, Sellaro and colleagues (2015), by applying 

transcutaneous vagus nerve stimulation, observed an increase in PES in healthy young individuals, 

whereas Harty and colleagues (2014) increased error awareness through the use of tDCS in a 

group of elderly.  

As behavioral measures, ERP correlates of error monitoring have been found to be sensitive to 

NIBS. For example, Rollnik and colleagues (2004) produced a modulation of the ERN and the Pe by 

means of TMS. In this study, the authors showed how a low-frequency (0.9 Hz) rTMS on medial 

frontal regions produced a reduction of the ERN amplitude and an increase of the Pe. The authors 

suggested that the stimulation of the medial frontal regions can have modulated a crucial area 

associated with the ERN, namely the ACC. Unfortunately, we think that by means of a 

conventional figure-of-8 coil is pretty improbable to directly modulate deep brain areas such as 

the ACC. 

Taken together, these studies suggest the possibility to modulate error-related processes also 

in the clinical context, where such processes seem impaired (Klein et al., 2013; Larson, Perlstein, 

Demery, & Stigge-Kaufman, 2006). However, so far the absence of a strong evidence does not 

allow defining which approach can be the best choice to modulate error-related processes. In fact, 

no standardized areas and protocols have been identified and, consequently, future studies are 

necessary to shed light on this important aspect. 

 

 

The main purpose of study 3 was the modulation of error-related processes through a low-

frequency rTMS paradigm. We opted for a low-frequency rTMS paradigm with the aim of 

inhibiting the processes associated with error commission. In particular, a 1-Hz rTMS protocol is 

known to reduce cortical excitability in targeted brain areas for several minutes after the end of 

stimulation (R. Chen et al., 1997).  Specifically, we targeted the DLPFC bilaterally. This regions has 

been shown to be involved both in error awareness (Harty et al., 2014; Masina et al., 2018b) and 

in PES (Kerns et al., 2004; Magno, 2006; Mansouri et al., 2016). However, the exact role of this 

area in error processing is still unclear and, as far as we know, its contribution to error-related 

ERPs has not been investigated yet. Our working hypothesis was that if the DLPFC contributes to 
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the error awareness process the low-frequency rTMS paradigm would have produced fewer aware 

errors and/or reduced PES. Simultaneously, the stimulation would have induced an attenuation of 

the error-related potentials, namely of the ERN if the DLPFC acts on earlier stage of error 

detection, of the Pe if it intervenes at later stages.  

 

 

Method 

 

Participants3 

Fifteen right-handed healthy participants aged 20-34 (mean = 24.3; SD =3.6) were included in this 

study (9 females). All participants had normal or corrected-to-normal visual acuity. Exclusion 

criteria were a history of neurological or psychiatric diseases, and use of neurological or 

psychiatric medications. Moreover, before experiment, participants gave their written 

informed consent and were checked for TMS exclusion criteria (Rossi et al., 2011). The 

adopted safety procedures were in line with the guidelines for the use of TMS (Rossi et al., 

2009). The study was approved by the Ethics Committee of School of Psychology, University of 

Padua. The experimental procedure was in accord with the ethical principles of the 1964 

Declaration of Helsinki. 

 

TMS 

Repetitive TMS was performed using a Magstim Rapid2 TMS stimulator (Magstim Company, 

Whitland, UK) with a 70-mm figure-of-eight stimulation coil. The stimulation targets were 

identified with Brainsight frameless stereotaxic system (Rogue Research, Montreal, Canada) and 

the position of the coil was maintained in real-time by the optical tracking system Polaris Vicra 

(NDI, Waterloo, Canada). 

 

 

EEG 

                                                           
3
 Post-hoc power analysis has demonstrated that in study 3 the power was pretty low (0.7). This should be recognized 

as a limitation of study 3. However, as Luck (2005) explains, ERP experiments with a homogeneous group in terms of 
cognitive abilities, generally cooperative and able to stay focused on the task, usually have an N of 12-16 subjects per 
experiment. 
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The EEG signal was recorded by means of 64 Ag/AgCl sintered electrodes mounted on an elastic 

cap according to the International 10-20 system (EASYCAP GmbH, Germany). Compared to 

standard electrodes, they are specifically designed to be compatible with TMS. Their material and 

C-shape avoid overheating during stimulation and eliminates any risk for participants. 

Furthermore, their thickness is thinner than standard ones (i.e., < 4 mm), reducing the space 

between the TMS coil and participant's scalp (figure 17). The cap was connected to an AC amplifier 

(Micromed SD MRI, Micromed Srl., Mogliano Veneto, Italy). The amplifier was optically connected 

to a PC and Brain-Quick System Plus software allowed monitoring EEG during every session. 

The EEG recordings were referenced to FCz electrode, while the ground electrode was placed 

on AFz. The sampling frequency was 512 Hz. 

 

 

 

Task 

During EEG recording, participants performed an adapted version of the EAT (Hester et al., 2005). 

In this task, a serial stream of single color words was presented at the center of the screen on a 

gray background. Participants were trained to respond as fast and accurate as possible (without to 

prioritize speed or accuracy), with a single-speeded press (“3” on the keyboard), when the word 

and its color form were congruent (Go trial). They were asked to withhold this response when the 

word and its color font were incongruent (Stroop No-Go trial), or when the word was presented in 

two consecutive trials (Repeat No-Go trial). In case that participants failed to withhold their 

responses in either No-Go conditions (Stroop and Repeat), they were instructed to signal as soon 

as possible the error commission by pressing a different button (the space bar). In line with the 

study 2, we measured the timing of error awareness (error awareness reaction time), namely 

    Figure 17 | An example of an electrode mounted on the EEG recording system. 
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the interval between the onset of an error and its signaling.  

Accordingly with the previous study, in order to maintain the number of errors between 

participants as similar as possible, we adopted an adaptive staircase approach. Specifically, the 

task difficulty was based on the participants' accuracy on No-go trials. We manipulated the 

duration of ISI so that the time required to retain the previous word was modulated as a function 

of accuracy. By means of this manipulation, longer ISIs would have induced more commission 

errors on repeat trials. At the beginning of the task, the word was presented for 200 ms with an ISI 

of 1800 ms. ISI durations could change according to three scenarios: (1) if the accuracy was below 

50%, the ISI duration was set at 1700 ms; (2) if the accuracy was higher than 60%, the ISI duration 

was set at 2000 ms; (3) if the accuracy was between 50% and 60%, the ISI duration was set at 1800 

ms, as at the beginning of the task. During the task, this check of accuracy was computed after 

each No-go trial. The task was divided into two equal blocks and each block lasted 10 minutes. The 

total number of trials in the task was 668, specifically 468 Go trials, 100 Repeat No-go trials and 

100 Stroop No-go trials. Participants rested their head on a table-mounted head-rest which fixed 

their distance at 60 cm from a 19-inch monitor for the duration of the task. Stimulus presentation 

was controlled by E-Prime software (Psychological Software Tools, Pittsburgh, PA, USA; version 

2.0.8.90). 

  

Procedure 

Each participant was involved in three sessions, carried out on different days. The study was 

divided into three sessions because a different brain site was stimulated by the TMS during each 

session. In order to ensure an appropriate washout period, at least 24 hours had to pass in 

between two sessions. The stimulation sites were the right DLPFC, the left DLPFC, and the Vertex. 

The order of the stimulation sites was randomly assigned to each participant, in order to control 

for training and fatigue effects or at least to avoid systematic influences of these effects in our 

experimental design (e.g., Participant_1: I session-right DLPFC, II session-left DLPFC, III session-

Vertex; Participant_2: I session-Vertex, II session-left DLPFC, III session-right DLPFC ... and so on). 

Overall, each session was divided into three phases: (1) task training; (2) EEG cap placement and 

rTMS; (3) task during the EEG recording (figure 18). 
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In the first phase (task training), it was ensured that all participants were well-trained and fully 

understood the instructions of the task. In this phase, participants performed a short version of 

the task that lasted 5 minutes. Furthermore, participants familiarized with TMS. Some TMS pulses 

were delivered so that participants could experience the somatic somatosensory sensation and 

the clicking sound that TMS produces. 

 

In the second phase (EEG placement and TMS), the EEG cap was placed on participants’ head. 

Electrode impedances were kept below 5 kΩ. Afterward, the participants’ resting motor threshold 

(RMT) was determined in line with the standardized procedure (Rossini et al., 2015). 

Afterward, the stimulation targets were identified with Brainsight frameless stereotaxic 

system (Rogue Research, Montreal, Canada) and spatial transformation was used to adjust the 

MRI template (the non-linear ICBM-152 template by the Montreal Neurological Institute, MNI) to 

individual head shapes. According to Cieslik and colleagues (2013), the MNI coordinates of the 

right DLPFC were 30, 43, 23, whereas the MNI coordinates of the left DLPFC were -30, 43, 23. The 

position of the Vertex was the Cz site of the International 10-20 system.  

Finally, rTMS was administered over the stimulation site, randomly chosen for that session. 

Stimulation parameters were frequency of 1 Hz, 0.1-millisecond pulse duration, and field intensity 

of 90% of RMT. In total, in each session, 1200 TMS pulses were delivered for 20 minutes. During 

the stimulation, the coil was oriented with the handle at 45° to the mid-sagittal line, when the 

right and left DLPFC were stimulated. In the Vertex session, the coil was positioned with the 

handle pointing backwards parallel with the midline.  

Figure 18 | An example of experimental session where the order of the stimulation sites were Vertex, right DLPFC, 
and left DLPFC is depicted. 
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In the third phase (task during the EEG recording), at the end of the stimulation, we ensured 

the impedance was still below 5 kΩ. Only after this check, the EEG was recorded while participants 

performed the task. The shortest interval passed between the stimulation and the beginning of 

the EEG recording, in order to ensure that possible modulatory effects of TMS were present while 

participants performed the EAT. 

 

 

Behavioral analysis 

Participant’s performance was evaluated in terms of reaction times, accuracy, error awareness 

and PES.  

 

Reaction times and accuracy - Reaction times below 100 ms were removed. A repeated-

measure 2 × 3 ANOVA was performed, with response type (correct vs. error) and stimulation site 

(right DLPFC, left DLPFC, and Vertex) as within subjects variables. Accuracy (withholding 

accuracy) was analyzed by a repeated measures ANOVA with stimulation site (right DLPFC, left 

DLPFC, and Vertex) as within subjects factor. 

 

Error awareness - Mean error awareness was calculated as the percentage of correctly 

signaled commission errors on the total number of commission errors (O’Connell et al., 2009). 

Error awareness for commission errors on Stroop and Repeat trials was computed separately since 

previous studies using the EAT have found higher error awareness for Stroop compared with 

Repeat errors (Harty et al., 2014; Hester et al., 2009; O’Connell et al., 2007). Therefore, a 

repeated-measure 2 x 3 ANOVA with trial type (Stroop vs Repeat) and stimulation site (right 

DLPFC, left DLPFC, and Vertex) as within-subject factors was conducted.  

 

Error awareness reaction times - A repeated-measures ANOVA with stimulation site (right 

DLPFC, left DLPFC, and Vertex) as within-subject factor was performed.  

 

Post-error slowing - This index was computed according the Dutilh method, namely by the 

difference in reaction times between post-error trials and the associated pre-error trials (Dutilh et 

al., 2012). 
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Unaware errors were excluded from the analyses of PES as well as reaction times under 100 ms. 

We performed a mixed 2 x 2 x 3 ANOVA with response (post vs. pre No-Go target response), target 

response (aware error vs. correct inhibition) and stimulation site (right DLPFC, left DLPFC, and 

Vertex) as within-subject factors. 

 

The Bonferroni correction was always applied to multiple post-hoc analyses and a corrected 

alpha-level of 0.05 was considered. Finally, effect sizes were estimated by partial eta squared (η2
p). 

 
 
ERP analysis 

Data were offline analyzed using custom routines in EEGLAB v14 (Delorme & Makeig, 2004) 

running on Matlab R2017b (The Mathworks Natic, MA, USA).  

The continuous EEG trace was filtered with a windowed sinc FIR filter, with a cut-off frequency 

40 Hz, a Kaiser Window type with a beta of 5.65, a maximum passband deviation of 0.01 and a 

transition band of 20 Hz. To visually inspect stimulus-locked waveforms, epochs from 200 before 

and 2150 ms after stimulus onset were extracted from the continuous EEG signal. Baseline 

correction was performed by subtracting the mean voltage of a window from 200 to 0 ms before 

the stimulus onset. In response-locked analysis, epochs from 200 before and 1000 ms after the 

response (when participants pressed "3" on the keyboard) were extracted from the continuous 

EEG signal. Baseline correction was performed by subtracting the mean voltage of a window from 

200 to 100 before the response onset. Epochs contaminated with artifacts (eye blinks and muscle 

activity) were identified using the independent component analysis (ICA) function on EEGLAB. The 

identified components were visually inspected in terms of scalp distribution, frequency, timing and 

amplitude and removed with ICA (Chaumon, Bishop, & Busch, 2015). Unaware errors were 

excluded from the analyses because an insufficient number of trials allowed a reliable analysis. 

Since participants made more than 5 aware errors in each condition, the ERN and Pe could be 

quantifies (Olvet & Hajcak, 2008; Pontifex et al., 2010). Finally, data was re-referenced off-line to 

the mean of channels. 

The ERN was defined as the most negative deflection from -50 ms to 0 ms from the erroneous 

button press. Since the ERN is typically distributed over fronto-central regions  (Falkenstein et al., 

1991; Gehring et al., 1990), the ERN amplitude was examined over the FCz electrode site; 

furthermore, the scalp distribution of the component was confirmed by means of topographical 

maps. For statistical analysis, in order to evidence difference related to the stimulation site, we 
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performed point-by-point ANOVAs on the entire epoch, from 200 before and 1000 ms after the 

response.  

The Pe was defined as the most positive deflection after an erroneous button press. Since the 

Pe is typically distributed over central regions (Falkenstein et al., 1991; Overbeek et al., 2005) , the 

Pe was analyzed at electrode Cz. Topographical maps confirm the scalp distribution of the Pe. In 

line with the analysis on ERN, to evidence difference related to the stimulation site, we performed 

ANOVAs on the entire epoch. 

 

If Mauchly's Sphericity Test indicated that the assumption of sphericity was violated, the 

Greenhouse-Geisser correction was applied. 

 

 

Results 

 

Behavioral analysis 

 

Reaction times and accuracy - The mean of reaction times and accuracy are shown in Table 9. The 

2 (response type) × 3 (stimulation site) ANOVA on reaction times showed a main effect of 

stimulation site [F(2,28) = 3.9, p < 0.05, η2
p = 0.2]. Post-hoc comparisons showed that participants 

were slower when rTMS was administered on the right DLPFC than the left DLPFC, regardless their 

response (571 ms vs. 526 ms; p < 0.05). No other main effect or interaction was found. As regards 

accuracy, the analysis did not show significant differences.  

 

Error awareness - The mean percentage of error awareness is presented in Table 9. The 2 

(trial type) x 3 (stimulation site) ANOVA, revealed a main effect of trial type [F(1,14) = 31, p < 

0.001, η2
p = 0.7]. The post-hoc comparisons indicated that participants signaled more often a 

commission error on a Stroop trial than on a Repeat trial (98% vs. 71%; p < 0.001). This model 

did not reveal a significant effect of stimulation site.  
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Error awareness reaction times - The repeated-measure (stimulation site) ANOVA did not 

reveal a significant effect of stimulation site.  

 

Post-error slowing - The mean of reaction times following and prior to an aware error and a 

correct inhibition are shown in Table 9. The 2 (response) x 2 (target response) x 3 (stimulation 

site) ANOVA showed a main effect of response [F(1,14) = 13, p < 0.01, η2
p = 0.5], target 

response [F(1,14) = 12, p < 0.01, η2
p = 0.5], and stimulation site [F(2,28) = 3.7, p < 0.05, η2

p = 

0.2]. The post-hoc comparisons indicated that reaction times following a No-Go trial were 

slower than reaction times prior to a No-Go trial (551 ms vs. 539 ms; p < 0.01). Moreover, 

reaction times were slower, without a distinction between post and pre No-Go target 

response, when participants committed an error than a correct inhibition (559 ms vs. 531 ms; 

p < 0.01), and slower when rTMS was administered on the right DLPFC than the left DLPFC, (568 

ms vs. 525 ms; p < 0.05). Finally, a response x target response  interaction was found [F(1,14) = 

12.2, p < 0.01, η2
p = 0.5]. This interaction confirmed a PES effect, namely a slowing after an 

aware error (post-error reaction times = 573 ms vs. pre-error reaction times = 530 ms; p < 

0.001), without to evidence a difference after a correct inhibition (post-inhibition reaction 

times = 546 ms vs. pre-inhibition reaction times = 533 ms; p = 0.26). 

 

Table 9. Mean and standard deviation (SD) of performance indices on the EAT for right DLPFC, left 
DLPFC, and Vertex stimulation. 
  Right DLPFC Left DLPFC Vertex 

  Mean (SD) Mean (SD) Mean (SD) 

Accuracy (%)   86 (6) 84 (6) 84 (6) 
Stroop Awareness (%)  98 (5) 99 (3) 97 (5) 
Repeat Awareness (%)   71 (22) 69 (21) 72 (30) 

     
Go reaction times (ms)   574 (65) 532 (51) 553 (66) 

Error reaction times (ms)  567 (68) 519 (73) 537 (91) 
Error awareness reaction times (ms)  500 (75) 475 (115) 461 (98) 

     
Post-error reaction times (ms)  592 (69) 550 (55) 577 (71) 
Pre-error reaction times (ms)  570 (55) 532 (63) 535 (72) 

Post-inhibition reaction times (ms)  550 (63) 511 (53) 528 (68) 
Pre-inhibition reaction times (ms)  562 (60) 507 (67) 530 (76) 

     
Note: DLPFC, Dorsolateral prefrontal cortex. 
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ERP analysis 

 
Grand average stimulus-locked ERP waveforms at electrode Cz as a function of response (correct 

response, inhibition, error) and stimulation site (right DLPFC, left DLPF, Vertex) revealed 

differences between the waveforms (figure 19).  

 

 
 

Figure 19 | Stimulus-locked ERP data at electrode Cz (the zero point corresponds to stimulus onset). Grand average 
waveforms for correct responses (green line), inhibitions (blue line), and aware errors (red line). 

 
As shown, a large difference emerged between the ERPs evoked by erroneous responses and 

the ERP evoked by correct responses (Go trials) or inhibitions (No-go trials). A negative deflection 

is present around the time point of erroneous button press, not in the correct responses or 

inhibitions. This deflection represents the ERN potential. Afterwards, a positive deflection 

emerged, only on erroneous trials, which reach up to 7 V amplitude on average and that 

represents the Pe potentials. The visual inspection of topographical maps of these two 

components showed that, in line with literature, the ERN had a more fronto-central distribution, 
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especially localized over FCz (see Figure 20B), whereas the Pe had more central distribution, 

especially localized over Cz (see Figure 21B).  

Grand average response-locked ERP waveforms and scalp topographies of the ERN and Pe 

components are shown in Figure 20A and 21A, respectively. As depicted in Figure 20A, no 

differences in amplitude across stimulation sites were found. The point-by-point ANOVA 

performed over the entire epoch, from -100 to 1000 ms, confirmed this observation. Also, when 

the effect of the stimulation site was examined on mean ERN amplitude over the entire window 

the ANOVA did not show significant differences.  

 

 

 

Figure 20 | (A) Response-locked ERP waveforms for aware errors as a function of stimulation site (right DLPFC/left 
DLPFC/Vertex) over the FCz electrode. The zero point corresponds to response time. (B) Scalp topography of aware 
errors in the selected time-window (from -50 ms to 0 ms). In all three conditions of stimulation (right DLPFC/left 
DLPFC/Vertex) the ERN was maximum over frontal sites. 

 

The point-by-point statistical analysis over the Cz electrode revealed that from 142 to 254 ms 

the mean amplitude of the Pe was more reduced in the left DLPFC condition (figure 21A) 

compared to the other two conditions, namely the right DLPFC and the Vertex. The Pe mean 

amplitude in this time-window was extracted and a repeated-measures ANOVA with stimulation 
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site (right DLPFC, left DLPFC, and Vertex) as within-subject factor was performed [F(2,17.6) = 

7, p < 0.05, η2
p = 0.3]. Post-hoc comparisons confirmed the presence of a reduced amplitude 

in the left DLPFC condition compared the right DLPFC condition (4.8 µV vs. 6.4 µV; p < 0.05), 

without evidence of a difference between the right DLPFC and the Vertex (6.4 µV vs. 6.5 µV; p 

= 1) and the left DLPFC and the Vertex (4.8 µV vs. 6.5 µV; p = 0.07).  

 
 
 

 
 

Figure 21 | (A) Response-locked ERP data at electrode Cz. The gray bar shows the time-window (142-254 ms) in which 
the statistical analysis indicated a significant difference between the left DLPFC and the right DLPFC. The zero point 
corresponds to response time. (B) Scalp topography of aware errors in the selected time-window (from 142 ms to 254 
ms). In all three conditions of stimulation (right DLPFC/left DLPFC/Vertex) the positivity was maximum over central 
sites. 

 
 

Discussion 

 

The aim of study 3 was the modulation of error-related processes through a 1 Hz rTMS paradigm. 

In the present study, an off-line rTMS paradigm was employed in order to cope the limitations 

raised in a previous study (Masina et al., 2018b). First of all, on-line paradigms appeared 
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insufficient to induce a strong behavioral modulation. Although sporadic TMS pulses delivered 

after particular events can generally induce a modulation of brain activity, they could be not so 

significant to produce a strong behavioral modification. Secondly, authors found that on-line TMS 

non-specifically interfered with performance (Experiment 1). Thus, on-line paradigms could not 

represent the most appropriate solution to investigate error awareness. 

An additional improvement was the introduction of EEG, a more fine-grained technique to 

detect brain modifications, along with behavioral changes. This solution is in line with new trends 

in the use of TMS, which have pointed out the fact that the neurophysiological measures can be 

proficient to properly evaluate TMS-induced modulation (Sokhadze et al., 2012).  

 

Regarding behavioral results, in the present study, we did evidence an interesting effect of 

rTMS on reaction times. In fact, the left DLPFC condition was associated with a general reduction 

of reaction times compared to the right DLPFC condition. We think this effect would not depend 

on an increase of arousal as we observed in Experiment 1 of study 2. In fact, as previously 

explained, on that occasion TMS induced nonspecific effects (regardless of the stimulation site) 

due to a pervasive on-line stimulation paradigm. In study 3, we are quite confident in excluding 

this confound since in the present study TMS was off-line, therefore delivered before the 

execution of the EAT. Thus, the effect may encounter an explanation relying on a specific and 

area-dependent TMS effect. 

An unequivocal explanation of this result is not easy because we found only a difference 

between the left and right DLPFC, without to evidence a difference with the Vertex. Thus, it is 

tricky to claim if TMS on the right DLPFC had produced an increase of reaction times, or TMS on 

the left DLPFC had induced an acceleration of them. A previous important study suggests that the 

left DLPFC plays an important role in higher levels of attentional control (Posner & Presti, 1987). 

TMS may have modulated the ability of participants to inhibit their responses, therefore a 

reduction of reaction times, without to affect the general performance. In fact, independently 

from the stimulation sites, we did not find any difference in terms of accuracy. However, at the 

same time, the right DLPFC might be implicated in our result as well. In fact, corroborating this 

claim, a recent study shows a relationship between phasic alertness and the right DLPFC 

(Mannarelli et al., 2015). Unfortunately, although the authors used a stimulation paradigm very 

similar to ours, contrary to our study, they did not find a reduction of reaction times after 

inhibitory rTMS. Because of this ambiguous result, we think that further studies are warranted to 
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shed light on this finding. 

Contrary to our expectations, in the present study, TMS did not produce an inhibition, or a 

more general modulation, of error awareness. This result contrasts with previous findings in which 

the DLPFC appeared involved in error awareness (Harty et al., 2014; Masina et al., 2018b). 

Although in previous studies error awareness was modulated through a different stimulation 

paradigm (Masina et al., 2018b) or a different NIBS, namely tDCS (Harty et al.,2014), we expected 

that rTMS could induce a modulation of the process. Actually, we hypothesized rTMS would have 

produced stronger modulation than spTMS (study 2). Null finding we found in study 3 about a 

modulation of error awareness may rely on a reduction of the TMS effects after the end of the 

stimulation. Even if rTMS paradigms are highly employed because they induce long-lasting effects 

(Hallett, 2007; Ridding & Rothwell, 2007; Rossi & Rossini, 2004), it is possible that in our study the 

adopted paradigm could not be sufficient to modulate the process after the stimulation duration. 

Future studies should clarify if changing the stimulation parameters (e.g. the duration of 

stimulation), rTMS can modulate error awareness. Perhaps, the use of trains of pulses delivered 

before a target event (e.g. an error) would represent a tradeoff between paradigms of study 2 and 

study 3. In this way, it would be possible to selectively investigate the contingent effect of a train 

of pulses and a specific event. However, as study 2 showed, the risk of on-line paradigms concern 

possible nonspecific effects that can blur area-dependent effects produced by TMS. This confound 

might be controlled by, for example, a sham condition. 

Finally, as regarding PES, although we confirm the PES effect, we did not find differences 

related to the stimulation site.  

 

With regard to ERP results, a visual inspection of the waveforms shows a difference in terms 

of electrophysiological response of the brain after an aware error or a correct response or a 

correct inhibition. In fact, contrary to a correct response or inhibition, an aware error triggers a 

biphasic waveform in which after a negative deflection, the ERN, it follows a positive deflection, 

the Pe. In our study, the ERN appears shortly before the error, as figure 19 shows. The most part 

of studies shows that the ERN peaks shortly after the commission of an error (Falkenstein et al., 

1991; O’Connell et al., 2007; Wessel, 2012), however, our result is not so exclusive and surprising 

because other authors reveal that the onset of the ERN can occur shortly before the moment of 

the erroneous button press (Gehring, Liu, Orr, & Carp, 2012). To the best of our knowledge, the 

latency of the ERN might depend on the nature of the error itself. In fact, if the error is an 
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incorrect withholding, representing a motor uninhibition, it is plausible the ERN can be observed 

before the motor response. This hypothesis could be easily verified in our study by analyzing the 

ERPs associated with Stroop and repeat errors. Since Stroop errors are generally inhibition errors, 

compared to repeat errors that are normally attentional errors, we should observe a different 

latency between the two ERNs. In particular, the ERN elicited by Stroop errors should appear 

earlier than the ERN elicited by repeat errors. Unfortunately, this analysis requires a sufficient 

number of errors in both the conditions but in study 3 this requirement is violated. For this reason, 

we analyzed together Stroop and repeat errors, in order to increase the statistical power of our 

analyses. 

The analysis of the TMS effects on the ERN did not evidence a difference between our 

stimulation sites. The mean amplitude of the ERN was similar in all the conditions. In study 3, we 

predicted a modulation induced by rTMS if the stimulated site had crucial for the generation of the 

ERN. Since our results reveal that rTMS on the right DLPFC, the homologous left DLPFC, and the 

Vertex did not produce any modulation, a fallacious inference can induce us to state that these 

sites are not involved in the ERN. However, it is a potential error to infer something about a null 

result. Fortunately, previous research can help us to explain this null result, in fact, several studies 

demonstrate that the neural source of the ERN would be located elsewhere. In fact, a plausible 

neural source of the ERN seems the ACC. For example, a BESA modeling study has supported an 

ACC locus (van Veen & Carter, 2002). In addition, a fMRI study confirms that the ERN occurs in the 

ACC (Ito, Stuphorn, Brown, & Schall, 2003). 

The second potential following the ERN is the Pe. The Pe seems associated with a multiple set 

of functions, such as the conscious detection of an error (Nieuwenhuis et al., 2001; Ullsperger et 

al., 2014), a potential in response to the motivational significance of an error (Ridderinkhof, 

Ramautar, & Wijnen, 2009), and a potential that reflects the accumulation of evidence that an 

error has occurred (Steinhauser & Yeung, 2010). However, all these studies define the functional 

role of Pe basing their statements on correlational evidence that mainly derives from EEG studies. 

The only causal evidence is provided by neuropsychological investigations (for instance, 

Ullsperger, von Cramon, & Muller, 2002) that, unfortunately, lack a fine-grained specificity due to 

the broad extent of the reported lesions. The originality of the present study consists in the 

employment of TMS to investigate error-related processes. As well-known, TMS is a technique 

extremely versatile that allows exploring possible causative brain-function relationships.  

When we analyzed the mean amplitude of the Pe as a function of the stimulation site, we 
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found an interesting result. The mean amplitude of the Pe was more reduced in the left DLPFC 

condition than in the right DLPFC condition. Furthermore, a tendency seems to be present 

between the amplitude of the Pe in the left DLPFC condition and the Vertex condition (p = 0.07). 

Again, it seems that the mean amplitude of the Pe is more reduced after the stimulation of the left 

DLPFC. The Vertex and the right DLPFC do not present a difference. This trend is also corroborated 

by the grand average waveforms shown in figure 21A. This result contribute to provide new 

knowledge about error-related processes, in particular about the neural and functional bases of 

error awareness and the Pe.  

First of all, this result is potentially incoherent with previous findings that revealed a 

relationship between error awareness and Pe. If the Pe is modulated by error awareness, we 

should expect that a modulation of the Pe can induce an effect on error awareness. However, 

although in our study we modulated the Pe, we did not find a behavioral effect on error 

awareness. We think that our result should be carefully considered, without to avoid summary 

conclusions. In fact, our result may not be in contrast with the error awareness-Pe relationship. In 

fact, it is also possible that our modulation could not so strong or long-lasting to affect the 

behavior, namely the frequency of the error signaling, but strong or long-lasting enough to 

modulate the Pe. Several studies assume that the emergence of error awareness can be 

conceptualized as a decision process, in which awareness about an error is achieved after that a 

sufficient evidence of initial error commission has been accumulated up to reach a decisional 

threshold (Steinhauser & Yeung, 2010; Steinhauser, Maier, & Hubner, 2008). Recent findings 

suggest that the amplitude of the Pe can reflect the strength of accumulated evidence about error 

commission (Murphy et al., 2012). Within this theoretical framework, in our study, perhaps the 

decisional threshold was reached anyway, even if the Pe was altered by rTMS. Thus, even if rTMS 

on the left DLPFC reduced the mean amplitude of the Pe, it could not be sufficient to disrupt error 

awareness. 

A second important aspect of our result concerns the genesis of the Pe. Contrary to the ERN, 

the neural source of the Pe is not still defined. A previous intracerebral ERP recording study 

suggested a common origin of the ERN and Pe, specifically multiple cortical structures: the rostral 

ACC, the mesiotemporal and some prefrontal cortical sites seemed to represent integral 

components of the error-checking system (Brázdil et al., 2002). Differently, a second study 

pinpointed two different neural sources of the ERN and Pe: the caudal ACC of the ERN and the 

rostral ACC and the parietal cortex of the Pe (van Veen & Carter, 2002). Finally, another study 
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associated the Pe with the ACC and the posterior cingulate–precuneus (O’Connell et al., 2007). 

Taken together these studies depict a complex view of the neural sources of the Pe. Although 

these studies offer an extremely interesting point of view, as previously claimed, they only provide 

a probabilistic association between the Pe and its neural bases. The present study, for the first 

time, contributes to identifying, by a causative technique, the neural generator of the Pe. 

Obviously, this result does not exclude that other brain loci can be involved as generators of the 

Pe. 

 

 

Conclusion 

 

In conclusion, in study 3, behavioral results show a different scenario compared to ERP ones. On 

the one hand, from behavioral results, we observed that the only TMS effect concerned the 

modulation of reaction times. As regards error awareness and PES, the main behavioral variables 

considered in this study, we did not find any TMS effect. On the other hand, ERP results reveal an 

interesting implication of the left DLPFC in the Pe. A rTMS paradigm on the left DLPFC induced a 

modulation of the potential, specifically a reduction of it.  

Thus, although the behavioral results did not seem to detect TMS effects, the ERP results 

showed the opposite. This discrepancy again underlines the importance of the combined use of 

TMS and other neuroscientific techniques. In fact, different indicators, both behavioral and 

neurophysiological, can be used as functional outcome measures to evaluate the effectiveness of 

brain modulation. 
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Chapter 7 

General discussion 

 

 

The plasticity is a property that allows a system changing in response to exogenous and 

endogenous stimuli. The central nervous system is one of the most fascinating organs 

because it can be considered a structure in which plastic mechanisms act massively. As we have 

broadly argued, several kinds of interventions, taking advantage of neural plasticity, can induce 

controlled modulation of behavior and, in general, brain functioning. These interventions can be 

defined as "controlled" because, according to the direction of the modification, it is potentially 

possible to enhance or reduce behaviors, cognitive functions, and brain processes. However, we 

cannot simplistically consider modulatory interventions as brain switches able to always produce 

effects in line with our expectations. For example, even if the application of rewards seems to 

generally support a better performance, this method may not be fitted to support all kinds of 

cognitive processes. Given that the brain is a nonlinear system and hundreds of factors may affect 

its functioning, investigators interested in brain modulation should consider as many as possible 

aspects before planning modulatory interventions. 

The main purpose of this dissertation was the modulation of error-related processes. These 

set of processes support performance monitoring, a system that contributes to monitoring our 

behavior and to maintain an acceptable performance. When performance monitoring identifies a 

mismatch between executed and planned actions, an error has occurred and a series of reactions 

are triggered in order to on-line correct the action or avoid similar errors in future (Ullsperger, 

Danielmeier, & Jocham, 2014). The error-related processes reflect a sequence of events that occur 

after the commission of an error and range from motor adjustments, up to cognitive adaptations. 

In this dissertation, we focused our interest in behavioral correlates, (i.e. error awareness and PES) 

and neurophysiological correlates (i.e. the ERN and the Pe) of error-related processes.  

In order to achieve the modulation of error-related processes, three studies were carried out. 

This chapter will review results from these studies and will argue some of the central issues in 

the design and interpretation of modulatory interventions. Throughout the chapter, we will 

summarize some significant points into a set of suggestions and strategies for designing 

modulatory interventions.  
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In study 1, the purpose was the modulation of error awareness supporting this process by 

using rewards. Given that previous evidence shows that error awareness is reduced in normal 

aging, study 1 aimed to improve error awareness in a group of elderly. In addition, a group of 

younger adults was tested to compare performance between groups. Results confirmed a 

reduction of error awareness in older adults, even if they were more accurate than younger 

adults. However, with regards to the modulation of error awareness, we found an unexpected 

result. Both younger and older adults were less aware of their errors when error awareness was 

incentivized. Thus, contrary to previous studies, instead of improving performance, rewards had 

produced a detrimental effect. Thus: 

 

The same modulatory intervention can lead to different effects if applied in two 

different contexts. 

 

In Chapter 2, we have described the effect of motivation on cognition. On the one hand, in a 

number of studies, a rewarded performance is associated with an improvement of cognitive 

functions (Locke & Braver, 2010; Maddox & Markman, 2010; Pessoa, 2009, 2010; Shohamy & 

Adcock, 2010). On the other hand, some authors point out that the use of rewards sometimes can 

produce a reduction in performance (Yu, 2015), as in our study. This phenomenon is defined as 

"choking under pressure" and concerns the performance reduction under stressful conditions. A 

trial-by-trial reward, as in study 1, can induce psychological pressure and impair performance. 

Psychological pressure may capture attentional resources and, in turn, reduce error awareness. 

Similarly, we can observe that the same intervention can produce different results also in 

other situations. For example, several tDCS studies employ anodic stimulation with the aim to 

facilitate a particular process and cathodal stimulation to inhibit it. This modus operandi relies on 

previous evidence that showed a bijective correspondence between these tDCS paradigms and the 

effects on the motor areas, namely facilitation for anodic stimulation and inhibition for cathodal 

stimulation (Nitsche et al., 2008). Unfortunately, if applied on non-motor areas, these tDCS 

paradigms induce unexpected behavioral outcomes, with anodal tDCS usually inducing facilitation 

and cathodal tDCS inducing a range of effects (Jacobson et al., 2012).  

Study 2 aimed to confirm the involvement of the right DLPFC in error awareness, as well 

as to investigate the timing of error awareness. In this study, we expected to modulate error 
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awareness by using on-line TMS paradigms. Three experiments were conducted: a paired-

pulse and a single-pulse on-line stimulation paradigms were employed respectively in 

Experiments 1 and 3, whereas a control test was conducted without stimulation in 

Experiment 2.  

Results from Experiment 1 showed no significant effect of paired-pulse TMS over either 

left or right DLPFC on error awareness. To the best of our knowledge, a plausible cause may 

derive from the stimulation paradigm we used in this experiment. By inducing nonspecific 

effects this stimulation paradigm would have submerged specific effects of TMS. This 

consideration points out an important issue: 

 

Any modulatory intervention cannot induce only modulation of a target behavior or 

brain process. Unavoidably, any intervention affects multiple behaviors and brain 

processes. 

 

Investigators should consider that any form of intervention they decide to adopt will not 

only induce modulation of a specific behavior or brain process. This principle is particularly 

important in rehabilitative contexts when an intervention is employed to selectively treat a 

symptom or a deficit. It is not surprising that in some situations the effects of an intervention 

on a behavior or brain process (e.g. working memory) can spread to another one (e.g. 

attention). Actually, the generalization of treatment effects is an ambitious goal of many 

clinical interventions, for example, with the aim of improving the functioning of a patient in 

ecological situations through selective rehabilitation of memory functions. The capability of a 

modulatory intervention to spread over the target behavior or brain process can depend on 

several factors, such as the relationship between the target behavior or brain process and the 

collateral behavior or brain process. Obviously, when this nonspecificity of interventions 

produces only positive effects, it does not represent a problem. The problem arises when the 

modulation of a behavior or process occurs at the expense of another behavior or process, as 

in Experiment 1. 

An emblematic example of maladaptive nonspecificity of interventions derives from a 

recent study. Iuculano & Cohen Kadosh (2013) showed that cognitive enhancement induces 

by tES can occur at the expense of other cognitive functions. For the first time, these authors 

point out possible cognitive side effects of NIBS (Poreisz, Boros, Antal, & Paulus, 2007).  
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We think that, although the modulation of cognitive function is an promising tool in 

neuroscience, at the same time it is simplistic to theorize that modulation can only induce 

positive effects without, for example, to trigger forms of maladaptive plasticity.  

In order to overcome the limitation of Experiment 1, in study 2 we carried out a second on-

line TMS experiment. Experiment 3 was identical of the previous one, except from the stimulation 

paradigm. In Experiment 3, we adopted a single-pulse paradigm because we conceptualized it 

was less pervasive than a paired-pulse paradigm. In line with our hypotheses, results showed a 

causal relationship between the DLPFC and error awareness, without evidence for 

lateralization. Unfortunately, as we previously discussed, the generated modulation was weak, 

with a small effect size. This finding raises another important aspect that should be considered in 

brain modulation studies: 

 

A modulatory effect is appreciable and reliable only if supported by a good effect size. 

 

The effect size argument is a common and eternal problem not only in studies in which 

modulatory interventions are employed but in general in all fields of research. A study should 

demonstrate a clear biological rationale for the hypotheses tested and the effect sizes should be 

sufficiently good to ensure that effects are reliable and, importantly, replicable. This assumption 

should be always taken into account, in particular when a modulatory intervention is applied in 

clinical settings.  

For example, in TMS studies there are no standard protocols that allow a systematic use of 

this method in the clinical field. Every study is characterized by multiple methodological 

differences ranging from the type of stimulation paradigm adopted, the duration of the 

intervention, up to the outcomes taken into consideration to evaluate the modulatory effects of 

TMS. This methodological heterogeneity inevitably leads to produce different results that cannot 

be easily compared to each other. In order to face this issue, the comparisons between effect sizes 

may represent an efficacious strategy to disambiguate reliable modulatory effects from unreliable 

ones. A significant goal has been achieved in the treatment of major depressive disorder 

through TMS. By means of meta-analyses, as well as a number of systematic reviews (Perera 

et al., 2016), nowadays TMS has been approved by the FDA for the treatment of major 

depressive disorder. Future studies should follow this example in order to assess the 

effectiveness of the technique and to develop standardized modulatory interventions that 
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can maximize the adaptive plasticity mechanisms in clinical settings. In general, regardless of 

the modulatory methods, the robustness of effects should be an essential must.  

 

Finally, study 3 aimed to investigate TMS-induced brain modulation of error-related 

processes. The originality of this study concerned the fact that, besides the classical behavioral 

measures, we considered neurophysiological measures as well. Study 3 was designed taking the 

limitations of previous studies into account. First of all, in order to avoid nonspecific effects and 

confounds, instead of an on-line stimulation paradigm we employed an off-line paradigm. 

Secondly, we combined TMS with EEG technique, in order to deeper investigate the modulatory 

effects of a low-frequency rTMS paradigm. Although the behavioral results did not reveal TMS 

effects, the ERP results showed an opposite scenario, namely a modulation of the Pe induced by 

rTMS when the left DLPFC was stimulated. The discrepancy between behavioral and 

neurophysiological effects suggests that: 

 

Different indicators, both behavioral and neurophysiological, should be considered as 

functional outcome measures to evaluate the effectiveness of brain modulation. 

 

We think this simple solution may contribute to provide significant improvements in studies 

focused on neural modulation for several reasons. The combined use of behavioral and 

neurophysiological measures may allow:  

 

 evaluating modulation from different points of view. The impact of an intervention can be 

better characterized if modulatory effects are measured in terms of behavioral and 

neurophysiological effects. In the past, especially in Psychology, constructs were mainly 

tested by measuring behavioral correlates (reaction times, accuracy, questionnaire 

responses, etc.). With the growing development of neuroscientific methods, more and 

more investigators have decided to combine several techniques in the same experiment. 

Of particular interest, the combined use of two methods makes it possible to compensate 

for some reciprocal limitations of methods. 

 revealing discrepancies between effects. In study 3, our results showed that rTMS on the 

left DLPFC did not induce a behavioral effect on error awareness but, interestingly, 

produced a reduction of the Pe, an ERP strictly related to error awareness. This evidence 
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highlights that the exclusive use of behavioral measures might neglect other forms of 

modulation and reaffirm the importance of a combined use of methods to evaluate neural 

modulation. 

 controlling for nonspecific effects of modulatory interventions. As previously argued, 

modulatory interventions can induce nonspecific effects. Even if prior hypotheses are 

correct and a selective modulation of a target behavior of process are found, we cannot 

exclude that the modulatory effects does not spread beyond the measured variable. 

Especially, it is extremely important to verify if the modulation of a behavior or a process 

has not occurred at the expense of another behavior or process. By combining behavioral 

and neurophysiological measures investigators are able to maximize the probability to 

evaluate nonspecific effect of interventions. 

 revealing modulatory effects that extend beyond behavioral outcomes. Sometimes, 

modulation cannot reach a sufficient threshold to produce a significant effect on behavior. 

In these cases, if the gathered measure is only a behavioral variable, investigators will not 

able to infer anything from the manipulation and the result will be considered only a null 

effect. For example, in study 3, a combined use of TMS and EEG allowed us to evidence a 

significant effect of TMS on the Pe, even if the behavioral results did not show a 

modulation in terms of variation of error awareness. 

 

To conclude, we think that this dissertation can significantly provide insights into a relatively 

unexplored research field: the modulation of error-related processes. In fact, a careful revision of 

our results can contribute to guide future investigators in designing modulatory interventions.  
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Appendix 

 

 

Per cortesia, prima di sottoporsi a Stimolazione Magnetica Transcranica (TMS) risponda alle seguenti 

domande. Le informazioni che fornirà sono strettamente confidenziali. 

 

 

 

Soffre o ha mai sofferto di crisi epilettiche, convulsioni febbrili o ricorrenti svenimenti?   SI NO  

Ci sono in famiglia casi di epilessia? SI NO 

Se SI, indichi il grado di parentela del/dei familiare/i ______________________________________  

Ha mai subito un trauma cranico? SI  NO 

Se SI, fornisca di seguito i dettagli _____________________________________________  

Ha inserti metallici o clip chirurgiche in testa (eccetto per i denti)?  SI  NO  

Ha problemi di cuore?   SI  NO  

È portatore di pacemaker cardiaco?  SI  NO  

È portatore di protesi acustiche?   SI  NO  

Ha problemi di udito o acufeni?       SI  NO  

Prende antidepressivi triciclici?   SI  NO  

Prende farmaci neurolettici?          SI  NO  

Soffre di severi e frequenti mal di testa?   SI  NO  

Ha bevuto più di 3 unità alcoliche nelle ultime 24 ore?  SI  NO  

Nelle ultime 2 ore, ha bevuto più di 2 tazze di caffè o assunto caffeina da altre fonti?         SI    NO  

Ha usato sostanze stupefacenti nelle ultime 24 ore?  SI  NO  

Ha già partecipato ad altri esperimenti con la TMS?  SI  NO  

Solo per le donne:  

Potrebbe essere incinta?  SI  NO  

È destrimane o mancino?  destrimane  mancino 

                                                                                                                                                                  


