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A B S T R A C T

Smart cities and communities are conjugated by European Union in
different areas, including energy efficiency, low carbon technologies
and mobility which are deeply merged with electric motors. Electric
machines are ubiquitous in industry for a wide range of applications,
consuming between 43% and 46% of all electricity that is generated
in the world. Although some machines are used for high–performance
applications, such as robots and machine tools, the majority are used
in industrial processes for pumps, compressors, fans, conveyors, and
other slower–dynamic applications. It is estimated that 92% – 95% of
the life cycle costs of electric motors are associated with the energy
they consume, leading to typical payback periods of < 2 years for the
installation of an adjustable–speed drive. It is rather surprising to learn
that, despite overwhelming evidence of the attainable savings, only
10% – 15% of all industrial motors presently use electronic adjustable
speed drives. On the motor side, synchronous reluctance (SynR) motors
are gaining lots of attention from industrial researchers and academics,
due to their inherent characteristics like the high efficiency, the low
cost and the low environmental footprint. Their characteristics fully
meet the requirements imposed by smart cities and communities and
the aforementioned low–dynamics applications, so they could be the
heart of the revamping of those plants. There is wide agreement that
the potential for future growth in the sales of industrial drives and
SynR motors is still very substantial.

SynR motors are prone to magnetic saturation, making the classic
model with lumped parameters unsuitable. The main part of this the-
sis concerns the development of a new magnetic model for anisotropic
motors, especially for SynR motors. It is based on a special kind of
neural network (NN), called radial basis function (RBF) NN, which is
particularly advisable for an online updating due to its local property.
A complete training procedure is proposed in which some consider-
ations are done to define several NN parameters and to convert the
nonlinear training problem into a linear one. Two different training
algorithms are presented, the former one is fast but computationally
cumbersome then suitable for an offline training while the latter one
is lighter then proper for an online training. In order to complete the
online parameters identification, a scheme based on a DC current
injection is developed to estimate the stator resistance. An exhaustive
analysis is carried out to disclose that the proposed method is inde-
pendent from other motor parameters which is a strength asset in a
saturable motor. An accurate stator resistance value improves in turn
of the magnetic model.
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The second part of this dissertation deals with how to exploit an
accurate magnetic model to enhance the motor control. In order to
improve the efficiency of the motor, exploiting the RBF NN model
and the online training algorithm, the maximum torque per ampere
(MTPA) curve is found. Starting from a blank NN, it is continuously
online trained and a proper algorithm understands where the MTPA

curve is respect to the current working point. Afterwards, the drive
moves itself towards the actual MTPA. Finally, three different current
control schemes tailored for anisotropic motors are presented, all
based on the available NN–based magnetic model. The first one is a
gain–scheduling proportional–integral (PI) control where the control
gains are accordingly tuned to the working point to keep constant
the control bandwidth. The second one is based on a classical PI

regulator with a feed–forward (FF) action to compensate for all the
nonlinearity of magnetic maps. The third one is a constrained direct
model predictive control (MPC) where a long prediction horizon is
achieved. In order to accomplish a long prediction horizon, the Sphere
Decoding algorithm (SDA) is properly modified to make it suitable for
a nonlinear system.

The whole thesis was fully validated through an intensive simulation
and experimental stage, except the long–horizon MPC which was tested
only by simulation.

This thesis was typeset adopting the typographical
classicthesis style developed by André Miede.
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S O M M A R I O

Alcune aree definite dall’Unione Europea nel contesto delle smart cities
and communities si fondono pienamente con i motori elettrici come,
per esempio, l’efficienza energetica, le tecnologie a basse emissioni
di carbonio e la mobilità. I motori elettrici sono utilizzati in molte-
plici applicazioni industriali e non, consumando tra il 43% e il 46%
dell’energia elettrica prodotta su scala mondiale. Nonostante alcune
applicazioni siano contraddistinte da dinamiche elevate, come manipo-
latori o macchine utensili, la maggior parte di esse sono caratterizzate
da basse dinamiche in quanto facenti parte di processi industriali, per
esempio pompe, compressori, ventilatori o nastri trasportatori. Si è
stimato che il costo dell’intero ciclo di vita di un motore elettrico è
ascrivibile per il 92% – 95% all’energia consumata, il che indurrebbe
un tempo di ritorno dall’investimento per installazione di un aziona-
mento elettrico minore di due anni. Nonostante il notevole risparmio
economico e ambientale ottenibile, è piuttosto sorprendente apprende-
re che solo il 10% – 15% di tutti i motori industriali siano controllati
da azionamenti elettrici.

Per quanto riguarda le diverse tecnologie di motori elettrici, i motori
sincroni a riluttanza stanno ricevendo una notevole attenzione sia da
ricercatori industriali che accademici. Il crescente interesse è princi-
palmente motivato dalle loro intrinseche caratteristiche quali l’alta
efficienza, il basso costo e il basso impatto ambientale dovuto alla
mancanza di magneti permanenti. Per di più, le loro caratteristiche
soddisfano appieno i requisiti imposti dalle smart cities and communities
e sono adatti per tutte le applicazione, caratterizzate da una bassa
dinamica, viste sopra. Per questi motivi, questa tecnologia di motori
può essere posta al centro dei processi di rinnovamento di quelle
applicazioni. Vi è ampio consenso sul potenziale incremento delle
vendite sia di azionamenti elettrici che di motori sincroni a riluttanza.

I motori sincroni a riluttanza sono soggetti a una marcata satura-
zione magnetica, rendendo i classici modelli a parametri concentrati
poco adatti. La prima parte di questa tesi riguarda lo sviluppo di un
innovativo modello magnetico per motori anisotropi. Si basa su una
rete neurale non tradizionale, chiamata Radial Basis Function. La sua
proprietà locale rende questo tipo di rete neurale particolarmente adat-
ta ad un addestramento durante il normale funzionamento del motore.
Si propone una completa procedura di design e addestramento della
stessa. In particolare vengono fatte alcune considerazione le quali
permettono di definire a priori alcuni parametri della rete neurale
rendendo il problema di addestramento lineare. Si descrivono due
algoritmi di addestramento, il primo veloce ma computazionalmente
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dispendioso perciò adatto per un’implementazione offline mentre il
secondo idoneo ad un addestramento online. Infine, per conclude-
re l’identificazione parametrica del motore, si propone uno schema
basato sull’iniezione di una corrente continua il quale permette di
stimare la resistenza di statore indipendentemente da tutti gli altri
parametri della macchina. L’indipendenza parametrica permette un
notevolmente miglioramento nell’accuratezza di stima del modello
magnetico ottenuto con la rete neurale.

La seconda parte di questa tesi, invece, tratta il controllo del motore
e come sia possibile migliorarne le performance utilizzando il modello
identificato. Innanzitutto, per incrementarne l’efficienza si presenta un
innovativo metodo per trovare la curva a massima coppia per corrente.
La tecnica proposta lavora in stretta simbiosi con l’identificazione del
modello magnetico in quanto è in grado di capire dove si trova la
curva cercata rispetto all’attuale punto di lavoro sfruttando la stima
locale dei flussi magnetici. Identificata la direzione di movimento,
l’azionamento continuamente muove il punto di lavoro coerentemente.
Infine, si propongono tre diversi controlli di corrente pensati per
gestire un motore fortemente non lineare, tutti basati sul modello
stimato. Il primo è un controllore proporzionale–integrale nel quale
i parametri vengono modificati al variare del punto di lavoro con lo
scopo di mantenere la dinamica della corrente di motore costante. Il
secondo è anch’esso basato su un controllore proporzionale–integrale
ma a guadagni costanti accoppiato ad un’azione di feed–forward la
quale compensa tutte le non linearità presenti nella mappa magnetica.
Infine, il terzo è un controllo predittivo il quale determina direttamente
la posizione degli switch tali per cui la funzione di costo è minimizzata.
All’interno del controllo, è inserito un vincolo sulla corrente massima
e si utilizza un particolare algoritmo per ottenere un lungo orizzonte
di predizione.

Tutti i metodi presentati nella tesi sono stata verificati attraverso
dettagliate simulazioni e prove sperimentali, eccezione fatta per il
controllo predittivo il quale è stato testato attraverso simulazioni.
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ρk Initial radius of the hypersphere

R Stator resistance

sa, sb, sc Single–phase switches position

Tabc/αβo Matrix transformation from abc to αβo reference frame

Tαβ/dq Matrix transormation from αβ to dq reference frame

τL Load torque

τ Electromagnetic torque

Td Overall control delay

ϑm Mechanical position

ϑme Electromechanical position

Ts PWM sampling time

ua, ub, uc Phase line voltages

ud, uq Motor voltages in dq reference frame



nomenclature xxv

uFF
d , u

FF
q Feed–forward terms in dq reference frame

εN Normalised error

Vdc DC–link voltage

J Matrix representation of complex numbers

wk
d Second layer weigth related to the k–th Gaussian function

which computes the d–flux linkage estimate

·̂ Estimated quantity of · variable

wk
q Second layer weigth related to the k–th Gaussian function

which computes the q–flux linkage estimate

ξ Generic dummy variable

ξd, ξq Coefficients that linearise the torque equation

xk Centre of the k–th Gaussian function in the dq plane

xkdq,u
k
dq State and input vector

yk Output vector

iα, iβ Motor currents in αβ reference frame

K Number of Gaussian functions

M Total number of steady–state training point

uα, uβ Motor voltages in αβ reference frame





1
I N T R O D U C T I O N

European Union is increasingly influencing individual states in dif-
ferent socio–economic spheres. It defines the guidelines that should
be followed through the issuing of Community directives, e. g. the
Ecodesign Directive 2009/125/EN, and the definition of projects, e. g.
Horizon 2020. It is the biggest EU Research and Innovation programme
ever with nearly e80 billion of funding available over 7 years (2014
to 2020). It aims at a smart, sustainable and inclusive growth with
greater coordination of National and European policy. A branch of this
enormous programme is about the city of tomorrow and the project is
usually stated as smart cities and communities. Europe conjugates smart
cities and communities in different fields and areas of interests and
some of them are:

• smart health,

• smart education,

• cloud computing technologies for smart government,

• smart culture and tourism,

• renewable energy and smart grid,

• energy efficiency and low carbon technologies,

• smart mobility and last–mile logistic,

• sustainable natural resources (waste, water, urban biodiversity,
etc).

Some of these branches are deeply merged with the electric motor
field since mobility, energy efficiency, low carbon technologies are
some of the main research threads.

Efficiency and performance depict the essential and unavoidable
targets in up-to-date projects. Simultaneously, they symbolise two
sides of the same coin, indeed engineers have usually to find the
best trade-off among these two requirements. In the last years, the
emphasis on the efficiency has been due to many factors, in particular
the increasing energy costs, a growing environmental consciousness
and the national and European regulations, both in industrial and
civil society. The greater efficiency demanded by the customers has to
be achieved without sacrificing the performances of the final product.
The businessman wants the machinery with the highest productivity
and the private citizen wants a car with good performances.

1
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Both requirements can be achieved using permanent magnet syn-
chronous motor (PMSM). They have been adopted in applications char-
acterised by high dynamic demand since the 1980s when rare–earth
magnetic materials and low cost electronics devices were available.
The main strengths of PMSM are the high torque and power den-
sity, the high efficiency and the linearity of the torque respect to the
current, which simplifies the control. Their relatively high produc-
tion cost is one of the reason that limited their diffusion. Neverthe-
less, nowadays their strengths are overcoming their limitations and
they are gaining new attentions. In particular, car manufacturers are
choosing PMSM for their electric and hybrid cars. In 2017, Tesla an-
nounced to have adopted for their Model 3 Long Range car a 192 kW
PMSM instead of their patented induction motor (IM) [1]. In order to
get an idea, the production of the 500000 already ordered Model 3
will consume minimum 600 tonnes incrementing new demand of
Neodymium (Nd)/Praseodymium (Pr) oxide per year. This is equiva-
lent to 2% of the world’s global legal annual produced Nd/Pr oxide.
In addition, according to Bloomberg, more than 120 additional new
electric cars are in the pipe to get launched during the next 2, 5 years
[2].

The growing role of rare earth materials in a low carbon future
is described in [3]. They are playing an important match under a
technological point of view and political as well, because the reserves
are located only in few states. In particular, China accounts for over
80% of the world’s production of rare earths. The reason is the im-
mense impact on the environment and on the human health due to
the mining operations. Therefore, having control of these elements
pits China at a powerful position. In the fall of 2010, China showed his
power in this field. China temporarily cut off supplies of rare earths
to the Japan in retaliation for a maritime incident. Additionally, China
reduced exports by a 40% and it would further reduced exports by
another 30% the following year. The growing demand of rare earth
materials, both to build the electric motor and the batteries, and the
tightening on exports fell back on the price in a remarkable way. In
some months, the prices skyrocketed over factor 20 times. After hitting
their peak, prices of the materials dropped almost as rapidly and have
settled to a reasonable price [4]. Without international crisis as in 2010,
the analysts expect a generalised growing of prices in next years. In
particular, the forecast about Nd’s price shows an increment of about
50% in the next 8 years [5]. A possible shuffling of the cards in play
comes from Japan, where an enormous rare earth vein, containing
16 million tons of valuable metals, was discovered in 2012. The main
issue is that the mineral are buried 5000m deep the Pacific ocean,
near the Minami Torishima island. Only in April 2018, the scientists
published on the journal Scientific Reports an efficient method to mine
the minerals [6].
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Figure 1.1: SynR motor with a view of the cross–section rotor.

The exorbitant price reached by rare earth and high dependence
from one state had an important effect on PM motor manufacturers.
Another paramount element that has only been mentioned so far is the
huge pollution created during the mining operation. The production
of one ton of rare earth metal typically produces 2000 tons of toxic
waste, as the ore is usually laced with radioactive material [7]. In order
to reach a more cleaned and sustainable world, the environmental pol-
lution created during all life’s products have to be taken into account.
It is essential to find a right equilibrium among price, environmental
impact, efficiency and performance.

Based of what has been said, there has been a marked research activ-
ities to investigate the viability to develop alternative kinds of motor
with comparable performances but less needy of strong permanent
magnets. A viable solution can be identified in the SynR motors. They
have been proposed several years ago, but only in the last years they
are becoming more and more attractive. The reasons are the robust-
ness, the overload capability, the wide operating range and their low
cost. Furthermore, the absence of rotor currents leads SynR motors to a
higher efficiency than IMs. The standard IEC 60034− 30− 1 issued by
the International Electrotechnical Commission in March 2014 defined
four efficiency classes for electric motors designed for operation on
sinusoidal voltage, i. e. directly connected to the main. The IE4 Super–
Premium efficiency class can be easily achieved by SynR motors while
some expedients have to be taken into account for IMs.

SynR motors do not use PM then torque is generated accordingly
to the reluctance principle only. The design of SynR motor is chal-
lenging because high nominal torque and efficiency are achievable
only with an accurate design. Usually, several flux–barriers per pole
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are required. The essential anisotropic rotor to exploit the reluctance
torque generation principle yields these motors extremely suitable
for sensorless technique based on injection. As every synchronous
motors, the rotor position is demanded for an appropriate control but
the position sensor is generally an issues because it is expensive and it
reduces the reliability of the whole system. The low speed sensorless
aptitude of SynR motor is an important advantage respect to PMSM.

SynR motors are characterised by some limitations, e. g. high torque
ripple and a low power factor. In order to solve these restrictions
and to improve the performances, some magnets can be put inside
the flux barriers. The obtained motor is called permanent magnet
assisted synchronous reluctance motor (PMASRM). Generally, when
the PM flux tends to be the dominant component of the machine flux,
these motors are referred to as interior PM (IPM) motor. To preserve
the main advantage of the SynR motor, the added PM is minimum.
Moreover, in order to be independent from rare earth material, Ferrite
magnets are usually adopted. The remanent flux density is typically
of 0.4 T , less than half the corresponding value of NdFeB permanent
magnets. Nevertheless, they are widely used in PMASRM due to the
small flux required.

From the perspective of machine design, SynR motor and PMASRM

are a remarkable challenge but they are a not trivial system to be
controlled as well. These motors are prone to magnetic saturation,
therefore the current control becomes nonlinear. Furthermore, torque
nonlinearly depends on the stator current then torque and/or speed
control becomes nonlinear. The magnetic model has to be identified
accurately in order to develop and to employ suitable nonlinear con-
trol strategies. In addition, a precise knowledge of the magnetic model
allows to exploit all the intrinsic features of these motors. The reluc-
tance torque production lets an additional degree–of–freedom in the
choice of the stator currents. The same torque level can be generated
with different stator currents then the MTPA trajectory is usually imple-
mented. It is an inherent feature of each single motor since it relies on
the motor parameters. Moreover, the reduced amount or the complete
absence of PM flux allows the motor to operate at a speed higher
than the base one. To exploit this possibility, flux weaking (FW) and
maximum torque per volt (MTPV) control strategies can be employed.

Notwithstanding the worldwide awareness about environmental
issues supported by many high–profile projects, there are still people
who label these issues as fake news. They are a small percentage of the
world’s population, although in some cases they have great responsi-
bilities. Academics and researchers need to face new challenges with
the aim of increasing wealth, reducing the environmental footprint
and boosting the knowledge. They can follow some marked paths
highlighted by European Union, international organisations, top–level
academics. This dissertation wants to give its humble contribute into
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the smart cities and communities context, hoping to provide interest-
ing insights into future research.

1.1 investigated aspects and contribution

Within the scenario outlined above, the dissertation investigates some
critical aspects related to the identification and the control of nonlinear
motors. The challenges on which the thesis is focused on and the
proposed solutions are summarised in the following subsections.

1.1.1 Model identification

Challenge. High–end electric drives have to be able to identify
the whole model of the connected motor. In particular, the magnetic
model has to include nonlinearity and cross–coupling with a good
accuracy. The full exploitation of the motor features depends on the
knowledge of the model, for instance in sensorless, in current and
in maximum efficiency controls. Furthermore, the capability of the
electric drive to observe and track parameters variation plays a crucial
rule for adaptive controller and for fault monitoring as well.
Contribution. A method for estimating the stator resistance in-
dependently from the other motor parameters was proposed. It is
based on direct current injection in the stationary reference frame by
exploiting the current controller in the rotating reference frame. The
study was completed by a method to design the additional regulator
requested by the injection. The identification stage was completed
with a special kind of NN able to identify the whole magnetic model
of a synchronous motor. Some rules were developed to define some
NN parameters. The structure of the chosen NN is described. Two
different training algorithms were proposed, the former one is based
on a classical algorithm used in NN training while the latter one is
suitable for an online application. Both the stator resistance and the
magnetic maps can be estimated during the normal motor operation.
Finally, experimental tests were carried to prove the effectiveness of
whole identification stage.

1.1.2 Motor control

Challenge. Reluctance–based motors are characterised by a non-
linear magnetic model which poses new challenges compared to the
PMSM. The current control has to handle the magnetic model properly,
in order to guarantee the demanded dynamics and the stability of the
controlled system. Furthermore, both stator currents generate electro-
magnetic torque. An additional degree–of–freedom characterises the
control. In order to increase the system efficiency, it should be used to
drive the system towards minimising copper losses.
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Contribution. By exploiting the continuity of the NN–based model
and the training algorithm able to continuously update the NN, a
new strategy to find the MTPA was proposed. It is not based on any
signal injection but just on the observation of the local estimated flux
linkages. Furthermore, two different current control schemes were
presented. They are tailored for handling the nonlinear model and
the cross–coupling. The two regulators are easy to implement and
they exhibit constant dynamic behaviour over the entire input current
region. The former is mainly based on gain–scheduling PI controller
while the latter has a FF action to compensate the nonlinearity in the
magnetic model. Both the MTPA tracking algorithm and the controls
were experimentally tested.

1.1.3 Novel model predictive current control

Challenge. Usually, nonlinear motors are controlled by linear PI

regulators, due to their inherent simplicity. They can achieve good
performances but linear regulators cannot exploit all the system char-
acteristics. Furthermore, it is worth remembering that an electric drive
is composed by switches which have a non–continuous behaviour.
Usually, the averaging is used to conceal the switching behaviour but
it is not always effective in particular for low switching frequencies.
For those conditions, the switching behaviour should be addressed by
the regulator properly.
Contribution. Direct MPC was proposed as a current control for
SynR motors. It can manage quite easily the nonlinear magnetic model
of SynR motor and it computes the optimal switching pattern that
the electric drive has to apply. The main contributions is the range
extension of the prediction horizon. A long horizon was achieved
since the performances of the system can be enhanced respect to more
common control paradigms, specially when the switching frequency is
low as in high power application. Furthermore, hard current constraint
was added to guarantee a stator current smaller than a predetermined
threshold, since the current ripple is not negligible for low switching
frequencies. The control performances were verified through several
simulations.

1.2 dissertation outline

The dissertation consists of nine chapters. The current chapter, Chap-
ter 1, introduces the considered research topic, highlighting the main
aspects on which the research activity reported herein is focused. Chap-
ter 2 derives the motor model using a physical approach, starting from
the windings distributions into the slots to get the voltage equation
in the rotating reference frame. The central part of the thesis can be
subdivided in two parts. The first one is composed by Chapters 3, 4, 5
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where the methods to identify the model of a synchronous motor are
depicted. In particular, Chapter 3 describes how to identify the stator
resistance independently from all the other motor parameters during
normal motor operations. The design for the injection regulator is
also derived. An innovative technique to estimate the magnetic model
based on a special kind of NN is described in Chapter 4. The selected
NN is fully illustrated along with the proposed training algorithm, re-
vealing pros and cons. Chapter 5 introduces a new training algorithm
specially developed for the implementation in electric drives during
the normal motor operation likewise the resistance identification tech-
nique. Chapters 6, 7, 8 deal with the control of a synchronous motor.
All control paradigms are based on the accurate model developed in
the first part of the dissertation. In detail, a method for minimising the
copper losses, i. e. it finds the maximum torque–per–ampere curve, is
described in Chapter 6. It is deeply merged with the magnetic model
identification and it relies on the continuity of the NN model. Then,
the current control of the converter is presented. Chapter 7 depicts
two current control schemes able to handle the nonlinear magnetic
model properly. They are PI regulators specially modified to attain
a stable system which exhibit constant performance dynamics over
the whole input current region. A more sophisticated current control,
based on long–horizon model predictive algorithm is introduced in
Chapter 8. All the proposed techniques, both for the identification
and for the control, are experimentally verified with the exception of
the last one where only simulations results are carried out. Finally,
Chapter 9 reports the conclusions drawn from the research work.





Part I

PA R A M E T E R S I D E N T I F I C AT I O N





2
S Y N C H R O N O U S R E L U C TA N C E M O T O R S M O D E L

In control theory, the model of the controlled plant plays a key role. The
model describes the behaviour of the system, relating the input signals
with the output ones without feedback. It is commonly determined by
physical properties of the system. An electric motor is composed by
two subsystems: the electrical system and the mechanical one. In this
chapter, the derivation of both models for a SynR motor is carried out
[8]. It will be used throughout all this thesis.

2.1 electrical model

The mathematical derivation of the SynR motor model is quite chal-
lenging because it is a nonlinear system. The model of synchronous
motor without saturation, i. e. a linear motor, is first derived and then
some consideration will be carried out to obtain the complete model.
Furthermore, the study of the linear case allows to deeply understand
the fundamental behaviour of the machine, that it would be extremely
burdensome for the nonlinear case. The time dependency will be
omitted throughout the thesis to simplify the notation, except where
demanded for clarity.

2.1.1 Windings and magnetomotive force

The mechanical structure of a synchronous motor is composed by a sta-
tor, where the windings are housed, and a rotor. Different synchronous
motors are characterised by different rotors while the stator is gener-
ally the same for all kind of machines. The windings are embedded
in slots around the inside circumference of the stator and each phase
winding of a 3–phase winding is displaced 120° (electromechanical
degree) with respect to each other. Generally, the coils of each phase
are distributed and, if necessary, in the same slot there could be coils
of different windings. In some cases, the coils may not be distributed
uniformly over the part of circumference that they occupy. The de-
scribed winding arrangement produces an air–gap magnetomotive
force (MMF) which more closely approximates a sinusoidal air–gap

11
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Figure 2.1: Elementary 2–pole, 3–phase synchronous machine.

MMF with respect to the angular position1. For one pole pair motor,
the winding distribution Na for the first phase a can be written as:

Na =
Ns

2
|sin (φs)| , 0 < φs 6 2π (2.1)

whereNs represents the number of turns of the equivalent sinusoidally
distributed winding and the φs is the angular displacement along the
stator circumference respect to the axis of the phase a2. The other
windings are shifted by 2/3π and 4/3π radians. Finally, all the wind-
ings are identical in that each winding has the same resistance and
the same number of turns. When a machine has three identical stator
windings is often referred to as a symmetrical stator windings. A two
poles machine is depicted in Figure 2.1.

Due to the high permeability of the stator and the rotor steel, the
magnetic fields essentially exist only in the air–gap and tend to have
radial direction due to the short length of the air–gap relative to the
inside stator diameter. Applying the Ampere’s law, the magnetomotive
force of the first phase MMFa is:

MMFa =
Ns

2
ia cos (φs) (2.2)

1 A different winding arrangement is possible. Since the late of 1990s, researchers
started to focus on concentrated windings, in which every stator winding encircles a
single stator tooth. This kind of arrangement is frequently combined with a fractional–
slot winding configuration in which the number of slots–per–phase–per–pole is a
fraction that can be expressed as a non integer number [4, 9].

2 Ns is an equivalent number of turns of a sinusoidally distributed winding which
would give rise to the same fundamental component as the actual winding distribu-
tion. Ns is not the total number of turns of the winding.
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and the MMF of the other phases result:

MMFb =
Ns

2
ib cos

(
φs −

2π

3

)

MMFc =
Ns

2
ic cos

(
φs −

4π

3

)
.

(2.3)

The total air–gap MMF produced by the stator currents can be written
as:

MMF =
Ns

2

(
ia cos (φs) + ib cos

(
φs −

2π

3

)
+

+ic cos
(
φs −

4π

3

))
.

(2.4)

With a balanced and symmetric stator currents:

ia = I cos (ωmet)

ib = I cos
(
ωmet−

2π

3

)

ic = I cos
(
ωmet−

4π

3

)
(2.5)

where I is the amplitude of each stator current. Substituting (2.5) into
(2.4) and applying trigonometric functions, the total MMF becomes:

MMF =
Ns

2
I
3

2
cos (ωmet−φs) . (2.6)

The windings of a motor with p pole pairs consists of p series
connected windings which are considered as sinusoidally distributed
windings. The air–gap MMF generated by each phase can be written
as:

MMFa =
Ns

2p
ia cos (pφs)

MMFb =
Ns

2p
ib cos

(
pφs −

2π

3

)

MMFc =
Ns

2p
ic cos

(
pφs −

4π

3

)
(2.7)

and the total MMF as:

MMF =
Ns

2p
I
3

2
cos (ωmet− pφs) . (2.8)

2.1.2 Motor inductances

In a magnetic linear system the self–inductance of a winding is the
ratio between the flux linked by the winding and the current flowing
in the winding with all other winding currents equal to zero. Mutual
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inductance is the ratio between the flux linked by one winding due to
the current flowing in a second winding with all other currents equal to
zero. Let φr is the angular displacement along the rotor circumference
and θr is the rotor position, which is also called electromechanical
position ϑme. For a given angular position relative to the a–axis, the
following relation holds:

φs = φr + θr. (2.9)

In order to compute the self– and mutual– inductances of a one pole
pair synchronous motor, it is assumed that the air–gap length g can
be approximated as:

g(φr) =
1

α1 −α2 cos (2φr)
(2.10)

or

g(φs − θr) =
1

α1 −α2 cos (2(φs − θr))
(2.11)

where α1 and α2 depend on the rotor geometries and the minimum
air–gap length is (α1 +α2)

−1 and the maximum is (α1 −α2)
−1. The

air–gap flux density Br with all currents equal to zero excepts ia is:

Br(φs, θr) = µ0
MMFa(φs)

g(φs − θr)

= µ0
Ns

2
ia cos (φs) (α1 −α2 cos (2(φs − θr)))

(2.12)

where µ0 is the air permeability. Similarly, the flux density with all
currents zero except ib is:

Br(φs, θr) = µ0
Ns

2
ib cos

(
φs −

2π

3

)
(α1 −α2 cos (2(φs − θr))) (2.13)

and with all current zero except ic is:

Br(φs, θr) = µ0
Ns

2
ic cos

(
φs −

4π

3

)
(α1 −α2 cos (2(φs − θr))) . (2.14)

In order to determine the self–inductance is necessary to compute
the single winding flux linkage due to its own current. Let consider
the flux linkage of a single turn of a stator winding which spans π
radians and located at an angle φs, the flux can be determined by
performing a surface integral over the open surface of the single turn,
namely:

Φ(φs, θr) =

∫φs+π

φs

Br(ξ, θr)rl dξ (2.15)

where Φ is the flux linking a single turn oriented φs from the a–axis,
l is the axial length of the air–gap of the motor, r is the mean radius
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of the air–gap and ξ is dummy variable of integration. To obtain the
flux linkages of whole winding, the flux linked by each turn must be
summed. Considering the windings sinusoidally distributed and the
magnetic material to be linear, this summations can be accomplished
by integrating over all coil sides carrying current in the same direction.
The total flux linkages of the a–winding due to current flowing in the
same winding corresponds to:

λa =Lσia +

∫
Na(φs)Φ(φs, θr)dφs =

Lσia +

∫
Na(φs)

∫φs+π

φs

Br(ξ, θr)rl dξdφs

(2.16)

where Lσ is the leakage inductance related to the stator flux that does
not link the rotor. Substituting (2.1) and (2.12) into (2.16) yields:

λa = Lσia −

∫2π
π

Ns

2
sinφs

∫φs+π

φs

µ0
Ns

2
ia cos ξ

(α1 −α2 cos(2(ξ− θr))) rl dξdφs =

Lσia +

(
Ns

2

)2
πµ0rl

(
α1 −

α2
2

cos (2θr)
)
ia

(2.17)

where the interval of integration is taken from π to 2π so as to comply
with the convention that positive flux linkages are obtained in the
direction of the positive a–axis by circulation of the assumed positive
current in the clockwise direction about the coil (right–hand rule). The
self–inductance of the a–winding is obtained by dividing (2.17) by ia,
thus:

La = Lσ +

(
Ns

2

)2
πµ0rl

(
α1 −

α2
2

cos (2θr)
)

. (2.18)

In order to determine the mutual inductance it is necessary to
compute the flux linking one winding due to the current flowing
in another winding. The mutual inductance between the a– and b–
windings can be determined by computing the flux linking the a–
winding due to the current flowing only in the b–winding, thus:

λa =

∫
Na(φs)

∫φs+π

φs

Br(ξ, θr)rl dξdφs (2.19)

where the magnetic coupling that might occur at the end turns of the
windings is neglected. Substituting (2.1) and (2.13) in (2.19) yields:

λa = −

∫2π
π

Ns

2
sinφs

∫φs+π

φs

µ0
Ns

2
ib cos

(
ξ−

2π

3

)

(α1 −α2 cos(2(ξ− θr))) rl dξdφs.
(2.20)

The mutual inductance between the a– and b–windings is obtained by
dividing (2.20) by ib thus:

Mab = −

(
Ns

2

)2
π

2
µ0rl

(
α1 +α2 cos

(
2
(
θr −

π

3

)))
. (2.21)
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The remaining self– and mutual–inductances can be calculated using
the same procedure.

The motor self–inductances can be expressed as:

La = Lσ + L0 − L2 cos (2θr)

Lb = Lσ + L0 − L2 cos
(
2

(
θr −

2π

3

))

Lc = Lσ + L0 − L2 cos
(
2

(
θr −

4π

3

))
(2.22)

while the mutual inductances can be expressed as:

Mab = −
1

2
L0 − L2 cos

(
2
(
θr −

π

3

))

Mbc = −
1

2
L0 − L2 cos (2 (θr + π))

Mca = −
1

2
L0 − L2 cos

(
2
(
θr +

π

3

))
(2.23)

where the inductances L0 and L2 are defined as follow to obtain a
more compact notation:

L0 =

(
Ns

2

)2
πµ0rlα1

L2 =
1

2

(
Ns

2

)2
πµ0rlα2.

(2.24)

In order to generalise the motor inductances calculated for a 2–pole
machine to a p pole pairs motor, it is sufficient to substitute in (2.22)
and (2.23) the rotor position θr with the electromechanical position
ϑme/p and scale L0 and L2 by a factor 1/p3 [8]. The mathematical
proof is reported in Appendix B.

Finally, isotropic uniform air–gap motors, e. g. PMSM, are charac-
terised by constant inductances then the 2θr variation is not present.
The winding inductance my be determined from the above relation-
ship by simply setting α2 = 0 in (2.24).



2.1 electrical model 17

2.1.3 Voltage balance

The motor voltage equations in the stationary reference frame [10, 11]
can be written as follow:

ua = Ria +
dλa

dt
= Ria + La

dia

dt
+Mab

dib
dt

+Mca
dic

dt
+

dLa

dt
ia +

dMab

dt
ib +

dMca

dt
ic + ea

ub = Rib +
dλb

dt
= Rib + Lb

dib
dt

+Mab
dia

dt
+Mbc

dic

dt
+

dMab

dt
ia +

dLb

dt
ib +

dMbc

dt
ic + eb

uc = Ric +
dλc

dt
= Ric + Lc

dic

dt
+Mca

dia

dt
+Mbc

dib
dt

+

dMca

dt
ia +

dMbc

dt
ib +

dLc

dt
ic + ec

(2.25)

where the stator resistance R is considered identical for each phase.
The back electromotive force (BEMF) ea, eb and ec are defined as follow:

ea =
dλmg,a

dt
= −Λmgωme sin(ϑme) =

= −Λmgωme cos
(
ϑme −

π

2

)

eb =
dλmg,b

dt
= −Λmgωme cos

(
ϑme −

π

2
−
2π

3

)

ec =
dλmg,c

dt
= −Λmgωme cos

(
ϑme −

π

2
−
4π

3

)

(2.26)

where λmg,a, λmg,b and λmg,c are the flux linkages due to the PM along
the three stationary axes. The voltages equation can be written in a
matrix form as follow:

uabc = Riabc +
dλabc

dt
= Riabc +

dLabciabc

dt
+ eabc (2.27)

where:

uabc =



ua

ub

uc


 , iabc =



ia

ib

ic


 , λabc =



λa

λb

λc


 , eabc =



ea

eb

ec


 (2.28)

and R and Labc are the resistance and inductance matrices, respectively:

R =



R 0 0

0 R 0

0 0 R


 , (2.29a)

Labc =



La Mab Mca

Mab Lb Mbc

Mca Mbc Lc


 (2.29b)
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In a three–phase system, the αβo3 reference frame is often used, for
its compactness representation and properties even in case of unbal-
anced systems [12]. The matrix transformation Tabc/αβo is defined as
follows:

Tabc/αβo =
2

3




1 −1/2 −1/2

0
√
3/2 −

√
3/2

1/
√
2 1/

√
2 1/

√
2


 (2.30)

In compact notation, it stands:

ξαβo = Tabc/αβoξabc. (2.31)

It is worth highlighting that the transformation (2.31) ensures that the
amplitudes of the (balanced) three–phase signals are preserved but
it is not power invariant. By applying (2.31) on (2.27), the voltages
equation in the αβo reference frame is:

uαβo = Riαβo +
dLαβoiαβo

dt
+ eαβo (2.32)

where Lαβo = Tabc/αβoLabcT−1
abc/αβo

4.
Generally, electric motors can be considered as a balanced three–

phase system. The homopolar component ξ0 can be considered null in
both currents and voltages due to the balanced BEMF and the absence
of the neutral wire. However, the homopolar component has no effect
on the torque production. Therefore, (2.32) can be simplified by ne-
glecting the third equation labelled with "o". Equation (2.32) without
the homopolar component can be written as:

uαβ = Riαβ +
dLαβiαβ
dt

+ eαβ (2.33)

where all quantities have a suitable dimension. The resistance matrix
is still equal to R = RI but the identity matrix becomes I ∈ R2×2

respect to the one defined in (2.29a). Throughout the thesis, the same
symbol R will be used to indicate both R2×2 and R3×3 (see (2.29a))
resistance matrices.

Consequently, the Clarke matrix (2.30) can be revised by removing
the last row when only the αβ components are required. It is worth
noting that, generally, both Lαβo and Labc are functions of the position
then time–varying.

The αβo transformation can be generalised to the rotating orthog-
onal reference frame dqo with the direct d–, quadrature q– and ho-
mopolar o–axes. The angular position of the dqo reference frame is

3 The αβo transformation is also called Clarke transformation in honour of Edith Clarke,
the first woman to earn an M.S. in electrical engineering from Massachusetts Institute
of Technology MIT.

4 The matrix transformation between αβo reference frame to the abc stationary refer-
ence frame is usually stated as Tαβo/abc = T−1

abc/αβo.
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defined by ϑme, which is the angle between the d–axis of the rotating
reference frame and the a–axis of the three–phase system. Neglecting
the homopolar component, the transformation from the stationary
reference frame to the rotating reference one can be defined as:

Tabc/dq =
2

3




cos (ϑme) cos
(
ϑme −

2π

3

)
cos
(
ϑme −

4π

3

)

− sin (ϑme) − sin
(
ϑme −

2π

3

)
− sin

(
ϑme −

4π

3

)




(2.34)

where Tabc/dq = Tabc/αβTαβ/dq and Tαβ/dq is the matrix transforma-
tion between the orthogonal reference frame and the rotating reference
one defined as:

Tαβ/dq =

[
cos (ϑme) sin (ϑme)

− sin (ϑme) cos (ϑme)

]
(2.35)

The transformation from the αβ frame to the synchronous one is:

ξdq = Tαβ/dqξαβ (2.36)

which is also called Park transformation5.
By applying the (2.36) to the (2.33) the mathematical model of a

linear synchronous motor in the dq reference frame is obtained as
follow:

udq = Ridq + Ldq
didq

dt
+ωmeJLdqidq + edq (2.37)

where:

udq =

[
ud

uq

]
, idq =

[
id

iq

]
, edq =

[
0

ωmeΛmg

]
(2.38)

and ωme = pωm. The inductances matrix becomes constant due to
the new reference frame which rotates integral with the rotor. The
inductances matrix loses the position dependency then they become
time invariant:

Ldq =

[
Ld 0

0 Lq

]
(2.39)

where the d– and q–axis inductances are equal to:

Ld = Lσ +
3

2
(L0 − L2)

Lq = Lσ +
3

2
(L0 + L2)

(2.40)

5 The trasformation between the dq rotating reference frame to the orthogonal reference
one is Tdq/αβ = T−1

αβ/dq
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and the matrix J is defined as follows:

J =

[
0 −1

1 0

]
(2.41)

It is worth noting that the d– and q–axis inductances are equal if
L2 is equal to zero, i. e. with isotropic motor (see (2.24)). The matrix
equation (2.37) can be split into the dq axes:

ud = Rid + Ld
did
dt

−ωmeLqiq

uq = Riq + Lq
diq

dt
+ωmeLdid +ωmeΛmg.

(2.42)

The derived electrical model is valid for both isotropic and anisotropic
model with PM. It is advisable and suitable when the motor is not
prone to magnetic saturation, as PMSMs, or to describe the d–axis of
IPM motor which exhibits a quite linear behaviour.

The assumption about the linearity of the magnetic path is a strong
limitation in PMASRM and SynR motor modelling, where the induc-
tances change with the current magnitude. To overcome this restric-
tion, it is possible to derive a more general electrical model which
returns in (2.37) when the flux linkages are considered as a linear
function of the stator currents.

2.1.4 Electrical model including nonlinearity

A general electrical model for a synchronous motor considering the
magnetic saturation is:

uabc = Riabc +
dλabc (iabc)

dt
(2.43)

where the flux linkage λabc = [λa λb λc]
T is considered instead of the

product Labciabc as in (2.27). It is worth reminding that the flux linkage
λabc is composed by the induced flux linkage generated by the stator
currents and the one produced by the PM. The BEMF are included in
the time derivative of the flux components.

The three–phase system can be represented in the αβo reference
frame by using the transformation Tabc/αβo. With respect to the linear
case, the homopolar component of the voltages can not null despite
the absence of the neutral wire, while it is still zero in the currents.
Anyway, the homopolar component of the flux linkages does not take
part into the torque generation and therefore it can be neglected in
(2.43). Applying the (2.31) to the (2.43), it yields:

uαβ = Riαβ +
dλαβ

(
iαβ
)

dt
. (2.44)
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In order to formulate the model in the rotating reference frame, the
(2.36) can be applied to (2.44) and yields:

udq = Ridq + Tαβ/dq
d
(
Tdq/αβλdq

(
idq
))

dt

= Ridq +
dλdq

(
idq
)

dt
+ωmeJλdq

(
idq
) (2.45)

where:

λdq
(
idq
)
=

[
λd
(
idq
)

λq
(
idq
)
]

(2.46)

and λd
(
idq
)

and λq
(
idq
)

are the flux linkages on the d– and q–axis. It
is worth noting that both flux linkages depend on both dq currents
and λd

(
idq
)

takes into account the PM flux linkage Λmg as well. The
currents dependency of the dq fluxes linkage will tacitly understood
throughout the thesis to simplify the notation, unless it is required for
clarity.

The model represented by (2.45) can be split into the dq axes as
follows:

ud = Rid +
dλd

dt
−ωmeλq

uq = Riq +
dλq

dt
+ωmeλd

(2.47)

where the flux linkages λdq can be represented as a product among
the apparent inductances and the dq currents as:

λd = Ld(idq)id +Λmg

λq = Lq(idq)iq.
(2.48)

The equations (2.47) describe completely the non linear synchronous
motor. Nevertheless, they are not usually useful to design the motor
controller because most of the control techniques are based on the
linearised equations of the motor. In order to linearise the (2.47), the
chain rule can be used:

∂ξ (x, y)

∂t
=
∂ξ (x, y)

∂x

∂x

∂t
+
∂ξ (x, y)

∂y

∂y

∂t
(2.49)

which allows to compute the derivative of the composition of two
functions. Applying the (2.49) to the (2.47) yields:

ud = Rid +
∂λd

∂id

∂id
∂t

+
∂λd

∂iq

∂iq

∂t
−ωmeλq

uq = Riq +
∂λq

∂id

∂id
∂t

+
∂λq

∂iq

∂iq

∂t
+ωmeλd

(2.50)
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where the differential and cross–differential inductances are defined
as follows:

Ldiff
d
(
idq
)
=
∂λd

∂id
, Ldiff

q
(
idq
)
=
∂λq

∂iq

Ldiff
dq
(
idq
)
=
∂λd

∂iq
, Ldiff

qd
(
idq
)
=
∂λq

∂id
.

(2.51)

The linearised model (2.50) can be compactly stated as:

udq = Ridq + Ldiff
dq (idq)

didq

dt
+ωmeJLdq(idq)idq + edq (2.52)

where the vector udq, idq and edq are defined in (2.38), the matrix R
is the resistance matrix, the matrix J is defined in (2.41) while the
inductance matrices are defined as follows:

Ldiff
dq (idq) =


L

diff
d (idq) Ldiff

dq (idq)

Ldiff
qd (idq) Ldiff

q (idq)




Ldq(idq) =

[
Ld(idq) 0

0 Lq(idq)

] (2.53)

It is worth reminding that apparent and differential inductances are
correlated. Let a generic saturable inductor, the voltage equation is:

u(t) =
dλ(i(t))

dt
=
dλ(i)

di

di(t)

dt
= Ldiff(i(t))

di(t)

dt
(2.54)

where u(t), i(t) are the voltage and the current respectively and
λ(i(t)) is the flux linkage and it depends on the current. Furthermore,
all the quantities are function of the time. By introducing the rela-
tion λ(i(t)) = Lapp(i(t))i(t) and assuming the apparent inductance
Lapp(i(t)) functions of the current only, follows:

u(t) =
dλ(i(t))

dt
=
d(Lapp(i(t))i(t))

dt

= Lapp(i(t))
di(t)

dt
+ i(t)

dLapp(i(t))

di(t)

di(t)

dt

=

(
Lapp(i(t)) + i(t)

dLapp(i(t))

di

)
di(t)

dt

= Ldiff(i(t))
di(t)

dt

(2.55)

where the last equality derives from the (2.54). A graphic interpretation
is sketch in Figure 2.2. Finally, it is worth highlighting that both Lapp

and Ldiff are defined for a working point P which is described by the
couple (idc, λdc).
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λ

i

Lapp

Pλdc

idc

Ldiff

Figure 2.2: Illustration of the apparent and incremental inductances.

2.1.4.1 Cross–differential inductances properties

Cross–differential inductances hold some properties which are de-
rived from the general laws of the electromagnetic field theory and
from the geometrical symmetries of the rotor lamination [13]. One of
them is called reciprocity theorem which is based on the energy con-
servation principle and yields the equality of the cross–differential
inductances defined in (2.51). At locked rotor, the electric work dW
due to infinitesimal flux linkage variation is given by:

dW =
3

2

(
iddλd + iqdλq

)
=

=
3

2

(
id

(
∂λd

∂id
did +

∂λd

∂iq
diq

)
+ iq

(
∂λq

∂id
did +

∂λq

∂iq
diq

)) (2.56)

and it is equal to the magnetic energy variation. The magnetic energy
is a state function of the stator currents id and iq then:

dW =
∂W

(
id, iq

)

∂id
did +

∂W
(
id, iq

)

∂iq
diq. (2.57)

Comparing (2.56) and (2.57) results:

∂W

∂id
=
3

2

(
id
∂λd

∂id
+ iq

∂λq

∂id

)

∂W

∂iq
=
3

2

(
id
∂λd

∂iq
+ iq

∂λq

∂iq

) (2.58)

and the two second mixed derivatives are expressed as:

∂2W

∂id∂iq
=
3

2

(
id
∂2λd

∂id∂iq
+
∂λq

∂id
+ iq

∂2λq

∂id∂iq

)

∂2W

∂iq∂id
=
3

2

(
id
∂2λd

∂iq∂id
+
∂λd

∂iq
+ iq

∂2λq

∂iq∂id

)
.

(2.59)

Schwarz’s theorem for two variable functions yields:

∂2W

∂id∂iq
=
∂2W

∂iq∂id
(2.60)
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then substituting (2.59) into (2.60) and simplifying equal terms on
both sides equation, the reciprocity property is proven, then:

Ldiff
dq
(
idq
)
= Ldiff

qd
(
idq
)

. (2.61)

For the sake of completeness, the symmetries of the magnetic map
are the follows:

λd(id, iq) = λd(id,−iq)

λq(id, iq) = −λq(id,−iq)

λq(id, iq) = λq(−id, iq).

(2.62)

2.2 electromagnetic torque and mechanical model

The electromagnetic torque expression of a synchronous motor ex-
pressed in the dq rotating reference frame is equal to [14, 15]:

τ =
3

2
p
(
λdiq − λqid

)
+
dW ′fld
dϑm

(2.63)

where W ′fld is the magnetic coenergy and it must be expressed as a state
function of the state variables id, iq and ϑm. It takes into account for all
those effects which are usually neglected, such as the cogging torque.
The magnetic coenergy is defined as:

W ′fld(i, ϑm) = iλ−Wfld(λ, ϑm) (2.64)

whereWfld is the magnetic energy. The first term of the second member
of (2.63) returns the average electromechanical torque generated by the
motor, if an integral–slot winding motor is considered [14]6. Finally,
it is worth noting that (2.63) describes the torque production even in
presence of the magnetic saturation and, in case of a linear motor, it
can be simplified using the motor inductances as:

τ =
3

2
p
(
Λmgiq + (Ld − Lq)idiq

)
. (2.65)

Two different contributions can be recognised in equation (2.65) and
they result from different principles. The first one represents the
torque related to the interaction among the rotor PM flux and the
stator current while the second one is the reluctance torque which
implies only stator–generated field. SynR motors are characterised by
the lack of PM then the generated torque is based exclusively on the
reluctance principle.

Throughout the present dissertation, only the average value of the
torque (2.63) is considered and the variation of the magnetic coenergy

6 Only integral–slot windings motor are considered in this thesis.
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is neglected. Therefore, the electromechanical torque expression is
reduced to:

τ =
3

2
p
(
λdiq − λqid

)
(2.66)

where the currents dependency is omitted.
Finally, the mechanical expression of the motor, including the load,

is:

τ = τL +Bωm + J
dωm

dt
(2.67)

where B and J are the viscous friction coefficient of the system and the
moment of inertia of the system, respectively. The load torque τL is
independent from position and motor speed. It is worth highlighting
that a proper mechanical parameters estimation is still challenging
[16–18] and it plays a key role in high performances electric drives.





3
S TAT O R R E S I S TA N C E I D E N T I F I C AT I O N

The stator resistance knowledge is crucial in many cases, for example
in fundamental–frequency–based sensorless control at low speed [19,
20], in flux–linkage estimation based on the integration of the BEMF [21,
22] or in thermal monitoring [23, 24]. A mismatch may be detrimental
in control, parameters identification or monitoring of the electric drive.
Nevertheless, the exact computation of the stator resistance is not
as banal as it appears. Quite frequently the knowledge of the stator
resistance is taken for granted and its estimation is even omitted in
the study of the model.

Focusing on methods to estimate the stator resistance of a syn-
chronous motor, and especially on techniques tailored for anisotropic
motors, the already proposed methods can be subdivided in two cat-
egories. A first category is based on observers and recursive least
square (RLS) algorithms [25–27] while the second group is constituted
by injected–based techniques [28–30], implemented in open or closed
loop way. Usually, the techniques of the first group assume other
motor parameters constant and/or known. This assumption is not
satisfactory with SynR motors due to magnetic saturation, that leads
to the definition of many inductances, apparent and differential ones,
which vary with the operation point. Quite often, the estimated stator
resistance relies on another set of known or constant parameters. A
further flaw is intrinsic in the RLS method. The convergence and the
accuracy are subjected to several factors where the main one is the
closeness of the initial guess to the real values. This key element is
often neglected and poorly deepened.

On the other hand, in order to avoid the issues correlated to the
methods of the former group, the latter ones excite the system inject-
ing a direct current (DC) quantity. These methods can be implemented
with two opposite strategies, i. e. injecting either DC current or volt-
age. Both are characterised by specific features, which make them
suitable for different applications. The injection allows to become
free–standing from other motor parameters but it generates a torque
ripple in anisotropic motors. Despite the undesirable torque ripple,
the parametric independence makes these techniques well tailored for
SynR motor and PMASRM or, in general terms, for anisotropic machines.
It is worth noting how an estimated parameter completely self–reliant
from knowledge of the others allows to have a cornerstone in the
process of identification as well as in the control.

27
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3.1 resistance estimation principle

The voltage balance equation in the αβ reference frame was obtained
in (2.44) and recalled here for sake of clarity:

uαβ = Riαβ +
dλαβ

(
iαβ
)

dt
. (3.1)

For a constant DC current vector iαβ = Iαβ or for a constant DC voltage
vector uαβ = Uαβ, the stator resistance can be estimated as:

R =
|Uαβ|
|Iαβ|

(3.2)

regardless of the flux linkage knowledge. The conventional strategy
to inject an additional signal into the motor consists in injecting a
suitable voltage component, either an oscillating signal or a DC one,
on the references generated by the current controller. In particular, the
injection technique is widely study in sensorless control at low speed
and standstill [31–33]. Once the DC voltage component is injected, the
stator resistance can be estimated by measuring the corresponding DC

current. The main drawback is posed by the current control, which
rejects the injected voltage considering it as a disturbance. Actually, a
constant DC voltage in αβ is transformed into a sinusoidal voltage dis-
turbance at the electromechanical frequency in the rotating reference
frame. Usually, the frequency falls below the controller bandwidth,
so that the DC voltage really applied for resistance sensing is far less
than the imposed reference. If the resistance estimation is carried
out on the voltage reference, the estimation will get inaccurate. It is
worth highlighting how the mentioned issue is mitigated in a sen-
sorless scheme since the frequency of the injected signal can be set
high enough to reduce the attenuation of the current control. In order
to overcome the drawback of the classical injection method, in this
thesis the above procedure was reversed and a DC current is impressed
into the motor. Exploiting the current control loop, the DC current is
injected and the corresponding voltage is measured to estimate the
stator resistance. The current control bandwidth in modern alternating
current (AC) drives is usually broad enough to include the electrome-
chanical frequency up to the nominal motor speed and more. In a
practical implementation, the DC current in the αβ reference frame
can be produced by adding a sinusoidal signal δi∗dq = [δi∗d δi

∗
q]
T (at

the electromechanical frequency) to the reference of the dq current
controllers as depicted in Figure 3.1. It induces a small current vector
perturbation δidq = [δid δiq]

T around the actual steady state working
point (Id, Iq).

Let:

Gdq(s) =

[
Gdd(s) Gdq(s)

Gqd(s) Gqq(s)

]
(3.3)
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Figure 3.1: IPM motor and SynR motor drive block schematic with injection
scheme.

be the transfer matrix between the reference δi∗dq and the current vector
δidq actually injected. The system introduces a certain attenuation
and phase–lag at the frequency ωme of the injected sinusoidal signal.
Moreover, since the off–diagonal terms are not null, it also introduces
a cross–coupling between the d– and q–axes, as Figure 3.2 shows. In
the stationary reference frame, the actual injection current vector is
obtained by the inverse Park’s transformation as:

δiαβ = Tdq/αβ(ϑme)δidq. (3.4)

The actual signal δiαβ is generated according to the following compact
expression:

δiαβ = Gαβ(s)δi∗αβ (3.5)

where

Gαβ(s) = Tdq/αβ(ϑme)×Gdq(s)×Tαβ/dq(ϑme). (3.6)

Actually, (3.6) represents the base–band dynamical response of a mod-
ulated system, consisting of the following three parts: a modulation
at the system input, performed by the transformation Tαβ/dq(ϑme),
followed by a filtering in the pass–band (i.e. around the modulation
frequency ωme), and then finally a demodulation to recover the base–
band signal, operated by the inverse transformation Tdq/αβ(ϑme). In
Sec. 3.2 the linear, time–invariant (LTI) approximation of the time–
variant system (3.6) was obtained using the method explained in [34].
Because of the modulation, the output of (3.6) contains, in addition
to the base–band signals, sinusoidal terms at twice the modulation
frequency, which can be removed by low–pass filtering. Therefore, in
a practical implementation, the system (3.5) is replaced by:

δiαβ = F(s)Gαβ(s)δi∗αβ (3.7)

where F(s) = diag(F(s), F(s)), being F(s) the transfer function of a
suitable low–pass filter which design is done in Sec. 3.3. In stationary
reference frame, it is worth remembering that the measured currents
and voltages are composed by the components due to the modulation
superimposed on the fundamental ones. The low pass filter F(s) has
to be able to filter all the not constant components, not only the
sinusoidal terms due to the modulation.
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Figure 3.2: Magnitude of Gdq(s) elements at nominal torque, MTPA condition.

In order to keep the implementation of the resistance estimation
scheme as simple as possible, it is convenient to inject only on a single
axis, so that for the same amplitude of the current injection vector
the measured scalar current is maximum. In doing this, (3.2) reduces
to a ratio of two scalar quantities. For example, if the DC current is
injected along the α–axis, Uα is the only voltage component to be
measured, then the stator resistance estimation becomes R = Uα/Iα.
Unfortunately, forcing a reference I∗αβ directed only along the α–axis
is not sufficient for the purpose, since the attenuation, phase–lag and
cross–coupling effects introduced by (3.5) inevitably produce a current
component also along the β–axis, as shown in Figure 3.3. Therefore,
the resistance estimation carried out in an open loop manner could
induce a low accuracy estimation or a DC current bigger than the
reference. In order to highlight the issue, the Table 3.1 can be referred
which was obtained on an experimental setup.

The tests were performed in two different and particular working
points and they can help to stress out the concept outlined above. In
both tests, the reference current vector was set I∗αβ = [0.05 0]TA. The
first test was performed at 280 rpm in open loop. The influence of
the outer speed control almost nullify the actual αβ currents (and
voltages) so that the imprecision in the measurements (even after a
mean value post–processing) is quite inaccurate (error of −18.66%).
Another critical situation is shown with speed reference of 420 rpm,
where the open loop current δiα is close to the reference but the cross–
coupling also produces a non–negligible δiβ. In this case, while the
resistance estimation is still correct and robust, the amplitude of the
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Speed 280 rpm 420 rpm

δiα 0.047A 0.043A

δiβ 0A −0.085A√
δi2α + δi2β 0.047A 0.095A

uDC
α 0.0177V 0.205V

R 3.76Ω 4.78Ω

Error −18.66% 2.12%

Table 3.1: Estimation resistance obtained in open–loop injection.
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Figure 3.3: DC voltages and currents under closed–loop control (0 6 t 6 5.5s)
and at open–loop (t > 5.5s). The detrimental cross–coupling effect
is evident.

injected current vector is 2 times the closed loop case. To overcome
this issue, the actual reference δi∗αβ must be generated by a closed
loop current control for the DC current levels (Figure 3.1), as detailed
in Sec. 3.3.

3.2 transfer function analysis

Accepting some simplifying assumptions, the transfer function ele-
ments of (3.3) can be derived with a relatively modest effort. To this
purpose, one can assume that dq decoupling and BEMF compensa-
tions are accomplished in the current control loop. For the derivation
of (3.3), the whole control system of Figure 3.1 has to be linearised
around a specified working point. This, in turn, requires the linearisa-
tion of the block responsible of the generation of the current references
i∗∗dq = [i∗∗d i∗∗q ]T and the block representing the mechanism of motor
torque generation. The former is marked as MTPA in the block diagram
of Figure 3.1, since it is assumed that the current references are gener-
ated to attain the maximum torque–per–ampere condition. The latter
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is instead related to the expression for torque generation obtained in
(2.66) and recalled here:

τ =
3

2
p
(
λdiq − λqid

)
. (3.8)

In a steady–state operating condition with constant motor speed, the
linearisation of the MTPA block is performed around the constant
torque reference command T∗ imposed by the speed controller. The
following two linear expressions result for a small perturbation of the
current references:

δi∗∗d = γdδτ
∗, δi∗∗q = γqδτ

∗ (3.9)

where δτ∗ is a small perturbation of the torque reference provided to
the MTPA block by the speed controller, while γd and γq are two coeffi-
cients that depend on the steady–state torque T∗. For the linearisation
of the motor torque, after replacing:

id = Id + δid, iq = Iq + δiq (3.10)

within (3.8), and linearising the expressions of the flux linkages
λd(id, iq) and λq(id, iq) for small current perturbations, the expres-
sion for the torque perturbation around T∗ is:

δτ = ζdδid + ζqδiq (3.11)

with

ζd = −
3

2
p
(
Λq + L

diff
dq Id − Ldiff

d Iq

)

ζq =
3

2
p
(
Λd + Ldiff

dq Iq − L
diff
q Id

) (3.12)

where Λd and Λq are the dq flux linkages in the operation point.
By this linearisation, after some tedious algebraic computations, it

is possible to derive the following expressions for the transfer function
elements of (3.3):

Gdd(s) =
δid(s)

δi∗d(s)
= Hd(s)

1+ γqζqHq(s)Pm(s)Cω(s)

D(s)

Gdq(s) =
δid(s)

δi∗q(s)
= −Hd(s)

γdζqHq(s)Pm(s)Cω(s)

D(s)

Gqd(s) =
δiq(s)

δi∗d(s)
= −Hq(s)

γqζdHd(s)Pm(s)Cω(s)

D(s)

Gqq(s) =
δiq(s)

δi∗q(s)
= Hq(s)

1+ γd ζdHd(s)Pm(s)Cω(s)

D(s)

(3.13)

where Hd,q(s) are the closed–loop transfer functions of the dq current
control loops (from references δi∗∗dq to measures δidq), Pm(s) = 1/(Js+
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B) is the motor load transfer function, Cω(s) is the transfer function
of the PI speed controller, while the common denominator is:

D(s) = 1+
(
γdζdHd(s) + γqζqHq(s)

)
Pm(s)Cω(s). (3.14)

The expressions (3.13) can be slightly simplified by assuming that the
two PI current controllers are designed to cancel the electrical poles of
the dq axes (at the specified working point, at least for the nominal
case), i. e. by assuming that their transfer functions are set as follows:

Cd(s) = ωc
Ldiff

d s+ R

s
, Cq(s) = ωc

Ldiff
q s+ R

s
(3.15)

where ωc is the desired closed–loop bandwidth of the current con-
trol loops. In fact, provided that the dq voltage–to–current transfer
functions are approximated by:

Pd(s) =
1

Ldiff
d s+ R

, Pq(s) =
1

Ldiff
q s+ R

(3.16)

the closed–loop transfer functions of the dq current loops reduce to:

Hd(s) = Hq(s) = H(s) ,
ωc

s+ωc
. (3.17)

Moreover, (3.14) reduces to:

D(s) = 1+ (γdζd + γqζq)H(s)Pm(s)Cω(s)

= 1+ kτH(s)Pm(s)Cω(s)
(3.18)

where kτ = γdζd + γqζq. In order to achieve an invariant bandwidth
current control over the whole operating region with an anisotropic
motors, like SynR motors, special control schemes are demanded. A
simple but effective solution is reported in Chapter 7.

After linearising the block diagram of Figure 3.1 around a specific
working point, it follows quite easily that the closed–loop transfer
function Tω(s) from the speed reference δω∗m (small–signal deviation
around the working point value) to the actual speed δωm is:

Tω(s) =
δωm(s)

δω∗m(s)
=
kτH(s)Pm(s)Cω(s)

D(s)
. (3.19)

Assuming that the speed controller Cω(s) is designed to achieve
a certain phase margin ϕ∗m at a specified gain crossover frequency
ω∗n and according to the dominant–pole approximation method [35], the
transfer function Tω(s) can be approximated as follows (dominant–pole
approximation):

Tω(s) ≈ ω2n
s2 + 2ξωns+ω2n

(3.20)
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with ωn = ω∗n and ξ = sin(ϕ∗m/2). From (3.13), after some mathemati-
cal manipulations it follows that:

Gdd(s) = H(s) [1−KddTω(s)] and Kdd ,
γdζd

kτ
. (3.21)

After replacing (3.20) in (3.21) and by assuming that H(s) ≈ 1 (since
ωn � ωc), (3.21) reduces to:

Gdd(s) ≈
s2 + 2ξωns+ω

2
n(1−Kdd)

s2 + 2ξωns+ω2n
. (3.22)

Similarly, the following dominant–pole approximations can be derived
for the remaining transfer functions in (3.13):

Gdq ≈ −
Kdqω

2
n

s2 + 2ξωns+ω2n
, Gqd ≈ −

Kqdω
2
n

s2 + 2ξωns+ω2n

Gqq ≈
s2 + 2ξωns+ω

2
n(1−Kqq)

s2 + 2ξωns+ω2n
(3.23)

where

Kdq =
γdζq

kτ
, Kqd =

γqζd

kτ
, Kqq =

γqζq

kτ
. (3.24)

The approximations (3.22)–(3.23) are used next to derive the base–
band approximations of the transfer matrix Gαβ(s). The right–hand
side of (3.6) can be expanded to obtain the expressions of each el-
ement Gαα(s), Gαβ(s), Gβα(s) and Gββ(s). For sake of clarity, the
transfer function Gαα(s) (element in position (1, 1) of the transfer
matrix Gαβ(s)) is obtained as:

Gαα(s) = cos ϑme ×Gdd(s)× cos ϑme − · · ·
· · ·− cos ϑme ×Gdq(s)× sin ϑme − · · ·
· · ·− sin ϑme ×Gqd(s)× cos ϑme + · · ·
· · ·+ sin ϑme ×Gqq(s)× sin ϑme.

(3.25)

Similar expressions can be obtained for the remaining transfer function
elements Gαβ(s), Gβα(s) and Gββ(s). That is, each element of the
matrices is composed by addends that represents the sequence of a
modulation (with carrier frequency ωme), a band–pass filtering, and a
demodulation.

For example, the first term coincides with the modulated system
shown in Figure 3.4, where G(s) = Gdd(s), up to the demodulated
output y. The final low–pass filter F(s) is used to remove harmonics
at twice the modulation frequency, produced by the demodulation
process – see (3.7).
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um ymu y yfG(s) F(s)

cos(ωme t) cos(ωme t)

Figure 3.4: Modulated system.

As shown in [35], the Laplace transform of the modulated signal
σ(t) = cos (ωmet+φ) x(t) is:

L(σ) =

[
ejφX(s− jωme) + e

−jφX(s+ jωme)
]

2
. (3.26)

This equality can be effectively exploited to obtain an approximated
transfer function of the modulated system depicted in Figure 3.4.
According to (3.26), the transfer function of the modulated input um

is:

Um(s) =
1

2
[U(s− jωme) +U(s+ jωme)] . (3.27)

The modulated signal is then filtered by the pass–band filter G(s) to
get:

Ym(s) = G(s)Um(s). (3.28)

The property (3.26) can be further applied to obtain the Laplace trans-
form of the demodulated output, namely:

Y(s) =
1

2
[Ym(s− jωme) + Ym(s+ jωme)] . (3.29)

Expression (3.29) can be expanded by using (3.27) and (3.28) as follow:

Y(s) =
1

4
[G(s− jωme) +G(s+ jωme)]U(s) + · · ·

· · ·+ 1
4
[G(s− jωme)U(s− 2jωme) + · · ·

· · ·+G(s+ jωme)U(s+ 2jωme)] .

(3.30)

After filtering with the low–pass filter F(s), the terms at twice the mod-
ulation frequency in (3.30) are suppressed, and the Laplace transform
of the demodulated output becomes:

Yf(s) ≈ F(s)Gm,cc(s,ωme)U(s) (3.31)

where

Gm,cc(s,ωme) =
1

4
[G(s− jωme) +G(s+ jωme)] . (3.32)

It is therefore possible to conclude that the original modulated system
can be represented with the following base–band approximation:

F(s) [cos ϑme ×G(s)× cos ϑme] ≈ F(s)Gm,cc(s,ωme). (3.33)
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A similar procedure can be adopted to obtain the base–band approxi-
mation of a modulated system with any other combination of modu-
lation and demodulation carriers (corresponding to the other terms in
Gαα(s), as well as in all the other elements of Gαβ(s)). Equivalently
to (3.33), the remaining terms are:

F(s) [sin ϑme ×G(s)× cos ϑme] ≈ F(s)Gm,sc(s,ωme)

F(s) [cos ϑme ×G(s)× sin ϑme] ≈ F(s)Gm,cs(s,ωme)

F(s) [sin ϑme ×G(s)× sin ϑme] ≈ F(s)Gm,ss(s,ωme)

(3.34)

with

Gm,sc(s,ωme) =
1

4j
[G(s− jωme) −G(s+ jωme)]

Gm,cs(s,ωme) = −
1

4j
[G(s− jωme) −G(s+ jωme)]

Gm,ss(s,ωme) =
1

4
[G(s− jωme) +G(s+ jωme)] .

(3.35)

Therefore, the final expression of (3.25) is:

Gαα =F(s)
(
Gdd,cc(s,ωme) −Gdq,sc(s,ωme) − · · ·

· · ·−Gqd,cs(s,ωme) +Gqq,ss(s,ωme)
) (3.36)

where the subscript m is substituted by the identifier of the modulated
transfer function, e.g.:

Gdd,cc(s,ωme) =
1

4
[Gdd(s− jωme) +Gdd(s+ jωme)] (3.37)

The subscript cc, cs, sc and ss indicates the modulating terms, for
instance cc means that the transfer function is pre and post–multiplied
by cos(ϑme).

The base–band expression of (3.36) can be accordingly further ap-
proximated as:

Gαα(s) ≈ F(s)G ′αα(s) (3.38)

where

G ′αα(s) =
b4s

4 + b3s
3 + b2s

2 + b1s+ b0
a4s4 + a3s3 + a2s2 + a1s+ a0

(3.39)

with

b0 = 2ω
4
n −Kddω

4
n −Kqqω

4
n + 2Kdqξω

3
nωme − · · ·

· · ·− 2Kqdξω
3
nωme − 4ω

2
nω

2
me +Kddω

2
nω

2
me + · · ·

· · ·+Kqqω
2
nω

2
me + 8ξ

2ω2nω
2
me + 2ω

4
me

b1 = 8ξω
3
n − 2Kddξω

3
n − 2Kqqξω

3
n + 2Kdqω

2
nωme − · · ·

· · ·− 2Kqdω
2
nωme + 8ξωnω

2
me

b2 = 4ω
2
n −Kddω

2
n −Kqqω

2
n + 8ξ2ω2n + 4ω2me

b3 = 8ξωn, b4 = 2

(3.40)
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and

a0 = 2
(
ω4n − 2ω2nω

2
me + 4ξ

2ω2nω
2
me +ω

4
me
)

a1 = 2
(
4ξω3n + 4ξωnω

2
me
)

a2 = 2
(
2ω2n + 4ξ2ω2n + 2ω2me

)

a3 = 8ξωn, a4 = 2.

(3.41)

It can be verified that the four poles of (3.39) are equal to:

s1,2 = −ξωn ± jωn

(
rω +

√
1− ξ2

)

s3,4 = −ξωn ± jωn

(
rω −

√
1− ξ2

) (3.42)

where rω = ωme/ωn. The frequencies of the two pole pairs are ob-
tained by evaluating their magnitudes:

|s1,2| = ωn

√
1+ r2ω + 2rω

√
1− ξ2

|s3,4| = ωn

√
1+ r2ω − 2rω

√
1− ξ2.

(3.43)

The dominant poles are those with lower frequency, namely s3,4.
Therefore, the dominant–pole approximation of (3.39) is equal to:

G ′αα(s) ≈ G ′αα,0
s3s4

(s− s3)(s− s4)

= G ′αα,0
ω2d

s2 + 2ξdωds+ω
2
d

(3.44)

where

ωd = |s3,4|, ξd =
ξωn

ωd
(3.45)

and G ′αα,0 is the DC gain of (3.39), namely:

G ′αα,0 = G
′
αα(0) =

1

2
· 1+

(
8ξ2 − 3

)
r2ω + 2r4ω

1+ 2 (2ξ2 − 1) r2ω + r4ω
. (3.46)

The procedure outlined above can be repeated to determine the base–
band approximations of the other transfer function elements in Gαβ(s).
For example, it can be verified that:

Gαβ(s) ≈ F(s)G ′αβ(s) (3.47)

where

G ′αβ(s) =
b2s

2 + b1s+ b0
a4s4 + a3s3 + a2s2 + a1s+ a0

(3.48)

with

b0 = 2ξKddω
3
nωme −Kdqω

4
n +Kdqω

2
nω

2
me + · · ·

· · ·+Kqdω
4
n −Kqdω

2
nω

2
me + 2ξKqqω

3
nωme

b1 = 2Kddω
2
nωme − 2ξKdqω

3
n + 2ξKqdω

3
n + 2Kqqω

2
nωme

b2 = Kqdω
2
n −Kdqω

2
n

(3.49)
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while a0, . . . , a4 are identical to (3.41). Since G ′αβ(s) and G ′αα(s)
share the same denominator, the dominant–pole approximation of
G ′αβ(s) is equal to:

G ′αβ(s) ≈ G ′αβ,0
ω2d

s2 + 2ξdωds+ω
2
d

(3.50)

where ξd and ωd are defined as in (3.45), while:

G ′αβ,0 = G
′
αβ(0) =

ξrω

1+ 2 (2ξ2 − 1) r2ω + r4ω
. (3.51)

For the remaining transfer functions, it can be verified that:

Gβα(s) ≈ F(s)G ′βα(s), Gββ(s) ≈ F(s)G ′ββ(s) (3.52)

where G ′βα(s) = −G ′αβ(s) and G ′ββ(s) = G
′
αα(s).

The expressions of the DC gains (3.46) and (3.51) are obtained by
observing that under MTPA condition it holds:

γdζq − γqζd = 0. (3.53)

The expression (3.53) can be proven observing that the MTPA curve is
the locus of the operating point in the dq plane obtained by solving
the following constrained maximisation problem:

max
id,iq

τ
(
id, iq

)
subject to i2d + i2q = |i|2 (3.54)

where |i| is a certain constant current level. The problem can be solved
by resorting to the method of the Lagrange’s multipliers. To this aim,
let us to define the Lagrangian function:

L
(
id, iq, λ

)
= τ− λ

(
i2d + i2q − |i|2

)
(3.55)

where λ is the Lagrange’s multiplier. The solution of the original
constrained maximisation problem corresponds to a stationary point
of the Lagrangian function, i. e. a solution of the following set of
equations:

∂L

∂id
=
∂τ

∂id
− 2λid = ξd − 2λid = 0

∂L

∂iq
=
∂τ

∂iq
− 2λiq = ξq − 2λiq = 0

∂L

∂λ
= i2d + i2q − |i|2 = 0

(3.56a)

(3.56b)

(3.56c)

Solving (3.56a) and (3.56b) for ξd and ξq and exploiting the (3.56c)
yields:

λ =

√
ξ2d + ξ2q

2|i|
(3.57)
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that can be replaced into (3.56a) and (3.56b) to get the following
solutions:

id =
ξd√
ξ2d + ξ2q

|i|, iq =
ξq√
ξ2d + ξ2q

|i| (3.58)

which is the MTPA curve parametrised according to the variable current
vector magnitude. Therefore, on the MTPA curve it holds that:

γd =
∂id
∂τ

=
∂id
∂|i|

∂|i|

∂τ
=

ξd√
ξ2d + ξ2q

∂|i|

∂τ

γq =
∂iq

∂τ
=
∂iq

∂|i|

∂|i|

∂τ
=

ξq√
ξ2d + ξ2q

∂|i|

∂τ

(3.59)

which implies:

γdξq − γqξd = 0. (3.60)

In brief, the base–band dynamical response of the modulated sys-
tem (3.7) can be approximated with the following dominant–pole
approximated model:

F(s)Gαβ(s) ≈
[
G ′αα(0) G ′αβ(0)

−G ′αβ(0) G ′αα(0)

]
F(s)Gd(s) (3.61)

where G ′αα(0) and G ′αβ(0) are defined in (3.46) and (3.51), F(s) is
a suitable low–pass filter and Gd(s) represents the approximated
dynamic of the system (as obtained in (3.44)) and it is defined as
follows:

Gd(s) =
ω2d

s2 + 2ξdωds+ω
2
d

. (3.62)

It is worth noting that the base–band approximation (3.61) can be
further simplified if the cut–off frequency of the low–pass filter F(s) is
chosen sufficiently smaller than the frequencyωd of the poles of Gd(s).
Therefore, the base–band response is dominated by the low–pass filter
dynamics and (3.61) can be approximated as follows:

F(s)Gαβ ≈
[
G ′αα(0) G ′αβ(0)

−G ′αβ(0) G ′αα(0)

]
F(s). (3.63)

Equation (3.63) can be effectively exploited to design the current–
injection PI controllers in the αβ frame, as reported in Sec. 3.3.
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3.2.1 Base–band dynamical approximation analysis

The study of the base–band dynamical approximation (3.63) is of
paramount importance. It is not only crucial to tune the current–
injection PI controllers but it highlights some potential issues in the
current–injection scheme. For extremely low frequencies (as assumed
to get (3.63)), the system behaviour can be approximated with a func-
tion which depends on two variables that characterise the speed
control, i. e. phase margin ϕm and crossover frequency ωn, and the
current rotating speed ωme. It is worth noting how the obtained ap-
proximation is analytic then the meaning of the terms that compose it
is self–explicative. The expression (3.63), without the filter F(s), repre-
sents the DC gains of the system. From the control point of view, their
values are crucial and, in particular, the matrix should be a constant
not–null identity matrix to obtain a decoupled and steady behaviour
of the current–injection PI controllers. Actually, the aforementioned
condition is extremely complicated to be obtained and a critical issue
could appear. In some condition, the main diagonal entries G ′αα(0)
can become null. From control theory, a system characterised by a null
gain is not controllable. Therefore, the DC current injection becomes
impossible and this entails the impossibility to estimate the stator
resistance.

In order to understand how to avoid critical conditions, the expres-
sion (3.46) has to be analysed. It is quite evident that the crossover
frequency ωn of the speed control does not play a crucial role since
only shifts the ratio among the electromechanical frequency and the
crossover one. On the other hand, the speed regulator phase margin
deeply influences the shape of G ′αα(0), as shown in Figure 3.5. If the
phase margin is small, the shape of G ′αβ(0) is characterised by a sort
of oscillation. The smaller the phase margin, the deeper the valley is.
There is a limit value of phase margin such that G ′αβ(0) will be zero
or even negative. With a DC gain close to zero, the current injection
becomes not trivial. Therefore, the stator resistance cannot be properly
estimated with a small phase margin of the speed controller. It is
worth noting how the aforementioned issue should not appear in a
standard electric drive since the speed controller is properly tuned,
with a phase margin of 50° or more degrees. Nevertheless, if the load
inertia changes a lot during the normal operation of the drive, some is-
sues could appear. The purpose of this section is to highlight the issue
associated to the current injection which could affect some sensorless
schemes as well.

3.3 closed–loop injection control

Two independent PI controllers are designed to regulate the DC current
levels in the αβ frame. The approximated dynamics to be controlled
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Figure 3.5: G ′αα(0) magnitude with different phase margins of the speed
control and a constant crossover frequency equal to 15 rad/s.

(plant dynamics) is that reported in (3.63). Although a coupling is
present between the two axes because of the off–diagonal components
in Gαβ(s), the cross–coupling terms can be regarded as two inde-
pendent exogenous disturbances, and the two PI controllers can be
separately designed by taking the elements on the main diagonal of
(3.63) as the actual plant dynamics (decoupled design). This is the same
for both axes, so that:

δi∗α(s)
δiα(s)

=
δi∗β(s)

δiβ(s)
= G ′αα(0)F(s). (3.64)

The PI design can be performed with conventional methods, e. g.
frequency–domain methods aimed to achieve a certain phase margin
ϕm,αβ at a desired control bandwidth ωn,αβ (approximately equal to
the control bandwidth). Since the gain G ′αα(0) is slightly dependent
on the working point, i.e. the motor speed, the design has to be carried
out with a certain nominal value of such gain, obtained for a selected
motor speed. For a robust design, for which the control performance
is practically insensitive on the actual working point, it is preferable
to select the control bandwidth smaller or equal to the filter cut–off
frequency ωd, and a sufficiently high phase margin. In this work, the
bandwidth of the PI controller was set equal to ωd and the phase
margin was 70°. It is immediate to verify that the PI gains required to
achieve the desired specifications in terms of control bandwidth and
phase margin are (see [35]):

kp = κ cos(σ), ki = −ωn,αβκ sin(σ) (3.65)

where κ =
(
G ′αα(0)|F(jωn,αβ)|

)−1 and σ = −π+ϕm,αβ−∠ F(jωn,αβ)

(with ∠ denoting the argument of the complex number). The design is
simplified by the fact that the low–frequency response of Gαβ(s) is
dominated by the low–pass filter F(s) used for the demodulation (see
(3.63)). Therefore, by choosing a sufficiently small control bandwidth,
the closed–loop response becomes almost insensitive to variations of
both the motor parameters and the system working point as well.
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For the experiments, the speed controller has been designed to have
a control bandwidth ωn = 220 rad/s (i.e. 35Hz) and a phase margin
ϕ∗m = 75°. Given ωn and ϕ∗m, the poles ωd are described by a parabola
that is function of ωme. Then, it is possible to compute the minimum
ofωd in the operation range and to choose a suitable cut–off frequency.
With the above values, the minimum correspond to ωd ≈ 130 rad/s
therefore the choice:

F(s) =
1

s2 + 1.732s+ 1
(3.66)

for the low–pass filter is largely adequate to guarantee that the ap-
proximation (3.63) is valid. In fact, the cut–off frequency of the low
pass filter is 1 rad/s, well below the frequency ωd.

3.4 experimental results

The test bench is described in Appendix A. In order to fully validate
the proposed method, the estimated stator resistance was compared
with that obtained with a four–wire resistance measurement per-
formed by an Agilent 33410A multimeter. Two kinds of motors were
considered, namely a SynR motor and IPM motors, whose parameters
are reported in Table A.1. For the sake of generality, two different IPM

motors, namely IPM1 and IPM2, with different saliencies and stator
resistances were considered. It is worth noting that IPM2 motor resis-
tance is well below 1Ω. For completeness it is worth remembering
how the estimated resistance also includes the resistance of the cables
that connect the inverter to the motor. Therefore, for a fair comparison,
the resistance measurement carried out with the multimeter was per-
formed on the inverter terminals. After the estimation of the resistance
with the proposed method, the drive was switched off and the motor
was physically separated from the inverter by means of a very low
resistance switch (< 2mΩ). The dq current control bandwidth was set
equal to 350Hz, while the speed control bandwidth was set approx-
imatively equal to 35Hz. The resistance estimation was performed
at a constant motor speed of one third and at full rated speed. The
injected DC current magnitude was I∗α = 0.15A for the SynR motor and
I∗α = 0.2A for both the IPM motors, while I∗β = 0A for all the motors.

In order to test the performances of the proposed stator resistance
estimation technique, two different tests were carried out. In the
former, the stator resistance estimation is enabled by starting from a
predefined value. In this way, the ability of the estimation technique
to converge to the actual value is validated. In the second test, the
stator resistance estimation is always active, but the applied load was
changed. The goal of this test was to check the ability of the proposed
method to continuously track the stator resistance variations.
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Figure 3.6: Relevant variables dynamics during the estimation of the SynR

motor resistance.

3.4.1 Convergence of the resistance estimate

The result of the resistance estimation using the SynR motor are re-
ported in Figure 3.6, while the ones obtained using the IPM motors
are reported in Figure 3.7 and Figure 3.8. The DC currents δiα and
δiβ reach their set points in about 2 s, while the resistance estimate
reaches a constant value after 3 s.

The value of estimated R is affected by a small ripple, due to the
filter (3.66) that is unable to completely remove the no constant terms
(at the electromechanical frequency ωme and at twice of frequency
due to the modulation). Note that with a constant rotation speed of
500 rpm, the electromechanical speed was equal to 16.67Hz. However,
the filter cut–off frequency was set to 1 rad/s. To reduce the oscillation,
the estimated resistance can be further filtered by adding a second
low–pass filter.
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Figure 3.7: Relevant variables dynamics during the estimation of the IPM1
motor resistance.

For validation purposes, the result of the 4–wire measurement was
also included in the figures. The worst resistance estimation error was
of 2.25% for the SynR motor and of 1.7% for the IPM1 motor.

The waveforms of the injected current and voltage signals in the
αβ frame are also reported in Figure 3.6, 3.7, and 3.8 where the DC

injection starts at t = 1 s. As expected, the current δiβ goes to zero
after a short initial transient. This assures the best signal–to–noise ratio
in the computation of (3.2), for the same amplitude of the injected
vector I∗αβ.

In principle, the dynamics of the DC currents should be function
of the motor speed, as shown by (3.63). In practice, in all the tests,
the injected currents response is the same, proving that the low pass
filter F(s) is dominant in the dynamics of the resistance estimation.
Therefore, the technique is quite insensitive to motor parameters.
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Figure 3.8: Relevant variables dynamics during the estimation of the IPM2
motor resistance.

The motors speed before and after the application of the DC current
perturbation is reported at the bottom of the same figures. The speed
ripple is less than 2% of the steady–state speed value for the SynR

motor at 500 rpm. The higher the speed, the lower the ripple, due to
the filtering action of the load.

3.4.2 Tracking of the resistance at variable load

Since the resistance is a slow–varying quantity in time, it is possible to
filter the resistance estimate with a 0.1 rad/s cut–off frequency filter.
This allows to get rid of the ripple highlighted in Figure. 3.6 and 3.7,
without consequences on the usability of the resistance estimates.

Two different load tests were carried out on each motor. The first
test was performed by applying the nominal load to the motor. The
resistance estimation was enabled at the beginning of the experiment,
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Figure 3.9: Resistance tracking with different applied loads. The motor under
test is a SynR motor.
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Figure 3.10: Resistance tracking with different applied loads. The motor
under test is IPM1 motor.

in order to continuously track the resistance variation. The results are
reported in Figure 3.9a and 3.10a for the SynR and IPM1 motor, respec-
tively. The estimated resistance value (continuous line) is compared
with the measurements obtained with the 4–wire method (red circles).

A second test was carried out on both motors, by applying three
load steps, corresponding to the 25%, 50% and 100% of the rated load.
The resistance estimation technique was always active. The results
are reported in Figure 3.9b and 3.10b for the SynR and IPM1 motor, re-
spectively. As before, the estimate is compared with the measurement
obtained with the 4–wire method, showing an impressive matching.





4
O F F L I N E M A G N E T I C M O D E L L I N G U S I N G N E U R A L
N E T W O R K S

The rediscovery of SynR motor and PMASRM have encouraged the
researchers to develop new approaches able to estimate the magnetic
model of a motor accurately. Motors in which torque generation
is mainly based on the reluctance principle are characterised by a
strongly nonlinear magnetic model. Therefore, the usual magnetic
description based on two constant inductances in the rotating reference
frame is no longer satisfactory. As described in Sec. 2.1.4, the general
electrical model becomes more complex. It can be represented by
several lumped parameters in a linearised manner, as (2.52), or with
the nonlinear flux–based representation (2.45).

The proper way for modelling the magnetic model of a synchronous
motor is the flux–based representation because no linearisation is re-
quired. Several methods have already been proposed in literature and
they can be classified into different categories, sometimes overlapping.
A first important partition is related to the electromechanical speed
at which the identification is carried out, either standstill or not. The
former group is composed by [36–38] where the flux linkages are
computed by voltage integration, taking advantage of the zeroing of
the cross–coupling terms. These methods are particularly suitable for
an initial identification of the magnetic model in a commercial drive,
since they do not require the motion of the shaft. Nevertheless, it is
quite challenging the whole magnetic maps identification because it
is extremely complicated to explore the whole input region without
moving the rotor. As a general remark, the common flaw of standstill
methods is that they are well suited for SynR motors, whereas they fail
in estimating the PM flux linkage, when present. It is worth noting
that in both the cases, the injection of a voltage excitation forces the
use of a reduced dc bus voltage, which is not an industry standard.
On the other hand, methods belonging to the latter group estimate
the magnetic model by evaluating the cross–coupling voltage terms
in electrical steady–state condition, namely when the rate of change
of flux linkages in (2.45) is zero [39–41]. The estimation carried out
with these methods are accurate but they require a test bench or free
shaft rotation then they are not recommended for an industrial drive.
It is worth remembering how [39] is often taken as a benchmark for
comparison in magnetic model identification. The well–known influ-
ence of the phase resistance is smoothed by exploiting the flux linkage
maps symmetry.

49
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A second subdivision can be carried out on the mathematical model
that the methods return. Most of the techniques in literature give a
look-up table (LUT), [37, 39, 40]. Therefore, some problems of interpo-
lation and differentiability are posed. Recently, in order to solve the
aforementioned problems and to make available continuous models,
some novel methods are proposed [36, 38]. The first one suggests a
new flux saturation approximating function, which requires the iden-
tification of a multiple sets of constants to account for cross–coupling
effect. The method works well for self–axis identification, but the
whole model is troublesome for its high number of parameters and
its moderate accuracy. The latter one proposed a mathematical func-
tion for the inverse of the magnetic model, i. e. flux linkages to stator
currents, where some exponents of the model have to be empirically
chosen.

4.1 theoretical background

The voltage balance equation of a synchronous motor in the rotating
reference frame was obtained in (2.45) and reported hereafter for
clarity:

udq = Ridq +
dλdq

(
idq
)

dt
+ωmeJλdq

(
idq
)

(4.1)

where for this time the dependence of both flux linkages on currents
is made explicit. In steady state condition, the equation (4.1) loses its
derivative term as follow:

udq = Ridq +ωmeJλdq
(
idq
)

. (4.2)

The proposed identification method recalls a model reference adaptive
system (MRAS) in which the adaptive model is represented by a combi-
nation of a motor model and a NN. The block schematic of the training
procedure is reported in Figure 4.1. The NN is chosen to approximate
the inherent complexity of the interaction between motor structure,
currents and magnetic fluxes exploiting its universal approximator
property. The steady–state measured voltages are compared with the
estimated ones in order to obtain two performance indexes which will
use to train the NN. The estimated voltages ûdq are obtained as:

ûdq = Ridq +ωmeJλ̂dq(idq) (4.3)

where

λ̂dq(idq) =

[
λ̂d(idq)

λ̂q(idq)

]
. (4.4)

is the estimated flux linkages vector that represents the output of the
NN. The error εdq, which will lead the training of the NN, is calculated
as:

εdq = udq − ûdq = udq − Ridq −ωmeJλ̂dq(idq). (4.5)
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Figure 4.1: RBF network training scheme.
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Provided that voltages, currents and resistance are known, the zeroing
of error εdq will result in the fulfilment of the equalities:

λd(idq) = λ̂d(idq), λq(idq) = λ̂q(idq) (4.6)

namely the estimated linkage fluxes are equal to the actual ones.

4.2 rbf network fundamentals and design

For the first time, NNs were proposed in electric drives in the 80s, es-
pecially in the area of motor control. They did not draw and convince
the academic and industry staff due to training issue, outstanding
computational burden and poor results. In particular, the computa-
tional power demanded for the training and for the execution was
prohibitive for the electronic devices available in those years. For these
reasons, the research on NNs has cooled to a halt. In last years, the
coming of field programmable gate array (FPGA)s in the electric drive
field have pushed a second youth for NNs. FPGAs are suitable for
NNs implementation since their parallel architecture fits well with the
highly parallel structure of the NNs. The weakening of the technical
limits allows the study of new NNs for motor control and other pur-
poses. It is worth highlighting how the studies and the applications
based on NNs are having an important growth in other fields as well,
like speech recognition, artificial intelligence, image analysis and so
on. In electric drives and particularly in model estimation, the NNs
have some advantages respect to classical approaches based on LUT,
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for instance they give a continuous approximation of the nonlinear
magnetic relation including the cross–coupling and they can be easily
derived to compute the motor inductances.

In principle, artificial NNs can be considered as universal func-
tion approximators. There are several types, that differ by topology
and learning process. The choice must be application–oriented. The
common NNs are composed by many layers in which the activation
functions are usually made with a sigmoid function [42]. It is a global
function in the sense that its output is not zero even when the net
input tends to infinity. The sigmoid functions in the hidden layer
create a distributed representation for each input, with the hidden
neuron functions collaborating and overlapping. The training and the
design of this kind of NN is not trivial due to its inherent structure.
The design is usually made with a trial–and–error approach while the
training is based on an iterative back–propagation algorithm. Further-
more, the global property of a sigmoid function makes the common
NNs unsuitable for a efficient online training and updating. For these
reasons, RBF NNs were chosen to estimate the magnetic model of a
synchronous motor. The selected NN is always composed by only two
layers (more the input layer which connect the input to the hidden
layer). The activation functions in the hidden layer are Gaussian func-
tions, in place of the sigmoids ones. These functions present a local
characteristic, which means that the output of each neuron is close to
zero if the inputs are conveniently far from the centre of the Gaussian.
Since in a RBF network each Gaussian function is active only around its
centre, for any given input only few Gaussian functions will be active
at a time. Such local property is interesting in perspective, because
it facilitates the development of the online RBF updating algorithm
described in Chapter 5. It is worth noting how the local property of
the RBF NN helps to understand the basic working principle, aiding
the development of the training rules. The two–layer structure of the
RBF network can be described with the aid of Figure 4.2. Only four
Gaussian functions are drawn in Figure 4.2, but actually many others
are present and cover with the due resolution the whole input range.

4.2.1 First layer – Hidden layer

As indicated in Figure 4.2, the input to the RBF network is the phase
current vector idq, defined within a circular region in the R2 plane
(Figure 4.3). For an easier implementation, the RBF network training re-
gion was extended to the square that circumscribes the circumference.
Each dot in Figure 4.3 represents the centre of a Gaussian function.
The layout of the centres is a degree of freedom in the design of the
RBF network. The local property of the RBF NN entails that the hidden
neurons have to be spread over the whole input region to get a proper
flux linkages estimation wherever. A comprehensive analysis is given
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in [43], that proposes either a fixed layout, with random positioning
of the centres, or adaptive RBF centres. The conclusion is that the
nonlinear optimisation of the first layer parameters is beneficial only
when a minimal network is required to solve a given problem. This
is achieved at the cost of an overall increased complexity of the sys-
tem. Furthermore, it is worth highlighting that if the positioning of
the Gaussian functions is let to the training algorithm, the training
procedure becomes a nonlinear problem, i. e. complex to be solved.

In order to simplify the training and to solve the positioning of the
Gaussian function, it has been found that a regular spacing of the RBF

centres is a satisfactory solution. The lower the number of Gaussian
functions, the lighter the implementation and less the estimation ac-
curacy. A good trade–off consists in spacing the Gaussian centres of
about the 25% of the nominal current, in both axes directions. The
resulting number of Gaussian function is K = Ng×Ng functions, with
Ng = 9. Once the centres of each Gaussian function are defined, the
wideness of them have to be determined. It is a crucial parameter
because the Gaussian functions has to be partially overlapped by al-
lowing a proper flux linkage estimation but not excessively to preserve
the local property. The width of each Gaussian function is inversely
proportional to the parameter bk (Figure 4.2) and a good guess for it
is suggested in [42]:

bk =

√
K

2dmax (4.7)

where dmax is the maximum distance as defined in Figure 4.3.
The hidden layer computes the Euclidean distance between each

Gaussian centre xk = [xk
d x

k
q]
T and the input vector idq. The result is

then multiplied by the coefficients bk and sent as input to the Gaussian
functions:

nk =
∥∥∥idq − xk

∥∥∥bk k = 1 . . . K. (4.8)
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The hidden layer Gaussian outputs are:

ak = e−(nk)2 k = 1 . . . K. (4.9)

It is worth remembering that the first layer is completed by an unitary
neuron. It acts as a bias in the NN and it is modulated by weights
in the output layer. Being the only first layer neuron without the
local property, the associated second layer weights are set to zero
throughout all the thesis.

4.2.2 Second layer – Output Layer

The second layer is the conventional one adopted in most of NNs, i. e.
a linear one. It is composed by two neurons, since two flux linkages
have to be estimated. The estimated flux linkages vector λ̂dq can be
expressed as linear combinations of the first layer outputs, weighted
by the coefficients wk

d,q (Figure 4.2):

λ̂d =

K∑
k=1

wk
da

k = wTd a

λ̂q =

K∑
k=1

wk
qa

k = wTq a

(4.10)

where wd = [w1dw
2
d . . . w

K
d ]
T and wq = [w1q w

2
q . . . w

K
q ]
T are the second

layer weights vectors and a = [a1 a2 . . . aK]T is the vector of Gaus-
sian outputs. The RBF weights wk

d,q will be the object of the training
procedure described in Sec. 4.3.

4.3 rbf network training

The RBF training is a linear problem since all first layer parameters are
already set, i. e. the centre and the width of each Gaussian function.
Although the training problem is linear, the proposed NN is still
able to approximate nonlinear functions because it is still composed
by a nonlinear layer. The proposed RBF training procedure consists
of two steps. It starts by the acquisition of voltages, currents and
speed measurements in multiple steady–state conditions, followed
by an offline training. A lighter procedure suitable for an online
implementation will be developed in Chapter 5.

4.3.1 Data acquisition

In order to minimise the errors due to temperature variations, the
motor is first warmed up to the thermal equilibrium. Two current
references, namely i∗d and i∗q, are imposed to the motor under test
(MUT), which is driven at fixed speed by a second independent motor
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unit. The speed reference comes out as a design trade–off. On one
hand, the speed should be low to reduce the influence of iron losses,
which drain part of the stator current deputed to the flux production
[44]. On the other hand, there is the request of good signal–to–noise
ratio for the voltage measurement, which gets better at higher speed.
The experimental RBF training was performed at 100 rpm, as described
in Sec. 4.4.

It is worth mentioning that the acquisition phase is crucial from
the point of view of the estimation accuracy and training on NN. In
order to get a well conditioned problem, acquired data have to be
spread over the whole dq plane and in an appropriate quantity, i. e. in
comparable or greater number respect to the Gaussian functions Ng.
Therefore, the training region in Figure 4.3 was gridded to get current
references equally spaced–out from each other. The total number of
successive steady–state training points is:

M =

(
2IN
∆I

+ 1

)2
(4.11)

where ∆I = IN/10 is the result of a design trade–off between resolu-
tion and data storage space. For each of the M steady–state working
points, the voltages, currents and speed were sampled every Ts and av-
eraged over a complete mechanical revolution. This smooths possible
disturbances occurring at either the electrical or mechanical frequency,
caused by mechanical and winding asymmetries.

At the end of the first step, M reliable samples of the vectors udq, idq

and the speed ωme are available for the subsequent training of the RBF

network.

4.3.2 Offline network training

Two different sets of weights wd and wq are used for the flux link-
ages estimate, as shown in Figure 4.2. During the training, they
were iteratively adjusted by means of the Levenberg–Marquardt algo-
rithm (LMA), chosen for its documented property of fast convergence,
even from a rather wrong initial guess [42]. It is worth noting that
different algorithms can be chosen since the training problem is linear.
Essentially, LMA is a damped least–squares method that calculates
the weights with the goal of minimising two quadratic cost functions
defined as:

Ed(wq) =
1

2

M∑
i=1

(εid)
2 =

1

2
εTdεd

Eq(wd) =
1

2

M∑
i=1

(εiq)
2 =

1

2
εTq εq.

(4.12)

As shown in Figure 4.1, the inputs to the LMA are the voltage estima-
tion errors εd = [ε1d ε

2
d . . . ε

M
d ]T and εq = [ε1q ε

2
q . . . ε

M
q ]T . These errors
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were obtained from the measurements, according to (4.5). It is worth
noting that the cost function Ed depends on λ̂q, due to the motional
cross–coupling terms in (4.5). Therefore, Ed is function of wq and vice
versa for Eq. This cross–dependence has been made explicit in (4.12).

Assuming that whd and whq are the weight sets that minimise the cost
functions Ed and Eq at the h–th iteration of the LMA, let the Jacobian
matrix Jd(whd ) of the vector–valued function εq(whd ) be defined as:

Jd(whd ) =




∂ε1q(whd )

∂w1d

∂ε1q(whd )

∂w2d
...

∂ε1q(whd )

∂wKd
∂ε2q(whd )

∂w1d

∂ε2q(whd )

∂w2d
...

∂ε2q(whd )

∂wKd
...

...
...

∂εMq (whd )

∂w1d

∂εMq (whd )

∂w2d
...

∂εMq (whd )

∂wKd




(4.13)

A similar definition holds for Jq(whq ). The M current vector measure-
ments are proposed in sequence to the network input, and the related
estimation errors are computed accordingly. Then the LMA weights
updating laws are applied:

wh+1d = whd −
[
JTd Jd + µhI

]−1
JTdε

h
q

wh+1q = whq −
[
JTq Jq + µ

hI
]−1

JTq ε
h
d .

(4.14)

As a distinctive feature of the LMA, the coefficient µh is added to
make the two matrices [JTd,qJd,q + µ

hI] certainly invertible. Provided
that the data set is well conditioned (i. e. the measurements are well
spaced in the training region), the coefficient µh can be set very close
to zero, speeding up the training process. At least, when µh = 0, the
search of the optimal weights vectors is performed in a single iteration
only.

Each element of the matrix (4.13) can be made explicit by using (4.5).
For example, for the first element it holds:

∂ε1q(whd )

∂wh,1d
=
∂(u1q − Ri1q −ω1meλ̂

1
d(w

h
d ))

∂wh,1d
. (4.15)

It is worth noting that the stator resistance R is supposed to be known,
and u1q , i1q and ω1me are measurements, then independent from wh,1d .
With reference to (4.10) and the symbols used in Figure 4.2, equation
(4.15) is simplified as follows:

∂ε1q(whd )

∂wh,1d
= −ω1me

∂λ̂1d(w
h
d )

∂wh,1d
= −ω1me

∂

(
K∑
k=1

akwh,kd

)

∂wh,1d︸ ︷︷ ︸
a1

(4.16)
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Figure 4.4: 3D magnetic maps of the SynR motor.

where the indexes k and h indicate the evaluated Gaussian function
and the evaluated performance index, respectively. In the light of
(4.16), the computation of Jd(whd ) and Jq(whq ) is trivial and does not
require the calculation of new variables, since the ak terms are already
available (because they are used to compute the voltage estimation
errors εdq).

4.4 experimental results

The experiments were performed on both motors, IPM1 and SynR,
whose parameters are reported in Table A.1. The test bench is de-
scribed in Appendix A. In order to prove the RBF NN, the MUT was
current–controlled and the current references were generated as ex-
plained in Sec. 4.3, i. e. forming an equispaced grid in the dq reference
plane. The virtual load was speed–controlled at 100 rpm, as motivated
in Sec. 4.3.1.

The stator resistance R and the identification of the steady–state
condition play a key role to estimate an accurate magnetic model,
since they are the fundamental assumptions in (4.12). As mentioned in
Chapter 3, the estimation of the stator resistance is not trivial. The use
of its nominal value would lead to an imprecise stator flux linkages
estimation. In order to prove the proposed magnetic model, two
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Figure 4.6: 3D magnetic maps of the IPM1 motor.

different approaches can be exploited to estimate the stator resistance.
The first one is explained in Chapter 3 while the second one takes
advantage of how the test was carried out. Current references were
spread over an equispaced grid in dq plane and some of them have the
q–current equal to zero. At those references, the resulting steady–state
d–voltage equation (4.2) is further simplified, i.e.:

ud = Rid (4.17)

and the resistance can be easily estimated. Finally, the resistance value
was estimated before and after the application of some current ref-
erences and the intermediate values were calculated by means of
standard linear interpolation. It is worth remembering that the de-
scribed method is suitable exclusively for an offline training algorithm.
To obtain the resistance estimate it is necessary to have already com-
pleted the whole phase of measures. The aforementioned method can
be extended to the other axis if the motor lacks of PM.

In order to evaluate the proposed magnetic mapping technique, the
results were compared with those obtained by the offline benchmark
method [39]. Let the normalised error be defined as:

εN
dq =

λ̂dq − λdq

max(λdq)
· 100 (4.18)
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Figure 4.7: IPM1 motor flux linkages mismatch, proposed method vs. estimate
obtained as in [39].
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where λ̂dq are the RBF network estimates, λdq are the “true” values
obtained with the method proposed in [39] and max(λdq) are the two
maximum values of flux linkages along each axis.

The magnetic maps of the SynR motor, generated by the first trained
RBF network, are reported in Figure 4.4. The normalised errors with
respect to the cited benchmark are reported in Figure 4.5. Similarly,
the magnetic maps of the IPM1 motor and the normalised errors are
shown in Figure 4.6 and Figure 4.7, respectively. The error magnitude
remains almost within ±3% in both cases. In particular, the normalised
d–axis error is always within ±1%. At very low currents, the q–axis
error of the SynR motor increases up to 5%. The higher error εN

q around
zero q–current is probably due to the inability of the NN to properly
estimate the magnetic map. It is not a significant issue since the flux
linkages around zero currents are usually poorly exploited. As a coun-
termeasure, a more accurate result could be obtained by increasing
the number of neurons (Gaussian functions) in the region of interest.
This can always be done, as soon as the regular distribution proposed
in Figure 4.3 proves inadequate. Of course, any increase of K or M
brings along a not negligible memory consumption and computation
time.

For the sake of comparison, the curves obtained with the two ex-
treme cross–coupling conditions, in which the other current is either
null, or close to its nominal value, are reported in Figure 4.8. The match
between the two models is very accurate in any operating condition.
Being linear combinations of Gaussian functions, flux linkages are
continuous function of the currents (black lines), while the magnetic
maps obtained by the reference method [39] are discrete points (red
circles).

For safety reasons, the RBF network was trained up to the nominal
motor currents only. To investigate the behaviour of the RBF network
outside the training region, a simulation with currents up to twice
the nominal value was performed. The results related to the SynR

motor are reported in Figure 4.9. As expected, the estimated flux
linkages drop quite rapidly as the current exceeds the boundary of
the training region Figure 4.3. This tendency is motivated by the local
property of the network (Sec. 4.2.1), which ultimately prevents each
Gaussian function to contribute to the output only when the input is
outside the working region. It means that the proposed RBF NN has no
extrapolation skill but it always ensures convergence to zero outside
the working region. Of course, the working region (and the training
one) can be extended beyond the nominal current values, if requested
by the application. In LUT–based models, this is equivalent to enlarge
the table size.
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4.4.1 Assessment of model accuracy through MTPA curves

A further assessment of the precision of the RBF–based model can
be obtained comparing the MTPA and MTPV curves computed from
the proposed model and the ones determined with the direct torque
measure. The comparison is performed for both motors and the results
are reported in Figure 4.10a and Figure 4.10b, respectively. First, the
real MTPA curve was obtained by measurements. In particular, the
synchronous motor was speed–controlled at constant speed against a
variable load torque. For different torque levels ranging from 0 to TN

the phase of the reference current vector was swept to seek the one
relative to the minimum–amplitude vector. The result was a collection
of MTPA points that can be connected to form the “measured” MTPA

curve in Figure 4.10. In the experiment, the shaft torque was measured
by a torquemeter. Second, the estimated MTPA curve was computed by
exploiting the electromagnetic torque (2.66) and the magnetic model
(4.10) obtained by the RBF–based model (Figure 4.4 and Figure 4.6). In
order to obtain the estimated MTPA curve from (2.66), two different
approaches are feasible. The former is akin to the one used to obtain
the curve from the torque measurements while the latter is based on
the continuity of the NN and it will be reported in Chapter 6 and
both return the same result. The same assessment methodology were
used for the comparison of the MTPV curves, Figure 4.10b. It is worth
noting that since Λmg/Ld > IN, it was not possible to calculate the
MTPV curve for the IPM1 motor.

Actually, the superposition is almost perfect, testifying the high
accuracy of the proposed technique. The slight mismatch between the
IPM1 motor curves at higher currents can be ascribed to the flatness of
the torque vs. current surface for that motor. It reduces the sensitivity
of MTPA algorithm and may induce some imprecision in the measured
curve. Nevertheless, the possible error has little influence on the ef-
ficiency since the amplitude difference among the current vector in
MTPA and the one actually applied is very small.

4.4.2 Motor inductances

The continuity and the differentiability of the flux linkages respect to
stator currents is one of the main features of the proposed technique.
The computation of the differential inductances is a significant exam-
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the estimated curves and for the measured ones.

ple in this sense. They can be obtained by differentiating (4.10) with
respect to both id and iq and yield:

Ldiff
d = −2

K∑
k=1

akwk
d(b

k)2(id − xk
d)

Ldiff
q = −2

K∑
k=1

akwk
q(b

k)2(iq − x
k
q)

Ldiff
dq = −2

K∑
k=1

akwk
d(b

k)2(iq − x
k
q)

= −2

K∑
k=1

akwk
q(b

k)2(id − xk
d).

(4.19)

The obtained differential inductances of the SynR motor are reported in
Figure 4.11. The smoothness of the computed inductances is quite evi-
dent. Furthermore, it is noticeable that they change considerably over
the whole current input region, due to saturation and cross–coupling
of the magnetic flux paths. The inductance maps show the double sym-
metries along the two dq axes and the experimental cross–differential
inductances verify the properties reported in Sec. 2.1.4.1. Conversely,
the discrete nature of LUT–based model forces the computation of the
difference quotient, which returns the piecewise constant inductances.
The results for both motors, IPM1 and SynR, are reported in Figure 4.12.
The Ldiff

dq were obtained keeping the current in the other axis equal to
zero. The inductances calculated by both methods are consistent with
each other, although the NN–based inductances look more real.
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Figure 4.11: Differential and cross–differential inductances of the SynR motor
under test.
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O N L I N E M A G N E T I C M O D E L L I N G U S I N G N E U R A L
N E T W O R K S

Neural networks have proven to be an excellent tool for identifying
the magnetic model of a synchronous motor, with or without PM.
The nonlinear behaviour and cross–coupling are properly taken into
account by the model introduced in the Chapter 4. In order to train
the RBF NN, a two steps offline procedure has to be carried out, as
described in Sec. 4.3. It consists in the acquisition of M steady–state
samples of voltages, currents and speed and consequently in the
training of the network through the LMA. The LMA is computationally
cumbersome since multiplications and inversions among matrices are
demanded. Therefore, the training approach proposed in Sec. 4.3 can
be considered implementable only offline. It is worth reminding how
the LMA is a damped least–squares method and it works correctly
only if all the data for the model fitting are knowable a–priori. This
condition is fulfilled in the approach introduced in Chapter 4 but it
never occurs during an online training, where data are gathered instant
by instant. The incapability of the LMA to train NNs online establishes
a strong limitation since some NN features cannot be exploited. It is
worth remembering how RBF NN was chosen due to its local property
which makes this kind of NN notably tailored for an online application.
Notwithstanding its inherent feature, it is useless without an adequate
algorithm. The continuous learning ability is an indispensable feature
that high–end intelligent electric drives must have. To be convinced
of this, just think about the new services offered by tech giants who
learn the habits of users to offer more and more appropriate services
and suggestions.

The key features delineation is a fundamental process in the design
of new high–end electric drives. Fault detection, self–commission-
ing, parametric tracking and advanced controls are credible features
which have to be developed to be embedded in future electric drives.
Learning ability could be as a milestone in the implementation of
these aspects, perhaps combined with NNs. In order to make the
already proposed RBF NN able to carry out some of the aforementioned
features, a new training algorithm has to be developed. It has to
demand a low computational effort combined with the ability of
working with few data not evenly distributed over the entire input
current plane.

67
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Figure 5.1: Local property of the RBF network. First layer output components
ak with idq = 0 and bk equal to 0.5 and 1, respectively.

5.1 neural network structure adjustments

The NN structure was described in Chapter 4 with a comprehensive
mathematical dissertation. Despite the general behaviour was already
depicted, the local property of the RBF NN has to be deeply understood
since it will be used in different manners to develop the new algorithm.
The local property makes the output of each first layer neuron ak close
to zero whenever the input is far enough from the centre xk of the
related neuron. Local property can be strengthened or weakened by
changing the wideness of the Gaussian function, which depends on
the parameter bk in (4.8). In order to visualise this important property,
the Gaussian outputs ak obtained with two different values of bk are
reported in Figure 5.1. The current input vector idq = 0 is the same for
both figures. Figure 5.1a is computed by a smaller bk than Figure 5.1b
therefore it is characterised by a weakened local property. It is worth
highlighting that only the Gaussian functions, namely the first layer
neurons, close to the input return a non–zero output. This peculiarity is
very useful during the online training, which is performed in a certain
steady–state condition and where data of the whole input range are
not available. Thanks to the local property, the update action remains
limited to the surrounding of the new measured point, without (badly)
influencing the other input region. A sort of memory is given to the
RBF NN since the update procedure does no alter the weights related to
the far neurons. For the sake of completeness, the tighter the Gaussian
functions, the higher the number of hidden neurons.

5.1.1 Approximation of the Gaussian function

The online implementation of the RBF NN requires the computation
of the exponential function (4.9) several times and the task may ex-
ceed the computational power of the drive. Therefore, an appropriate
numeric approximation was considered.
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c5 1.06 · 10−3 c2 459.3 · 10−3

c4 17.64 · 10−3 c1 985.9 · 10−3

c3 122.1 · 10−3 c0 999.2 · 10−3

Table 5.1: Approximation coefficients.

First of all, it is worth noting that the exponents nk of ak in (4.8)
ideally ranges from 0 (when an input exactly matches a Gaussian
centre) to minus infinity, when the actual current measurement is
infinitely far from the Gaussian centre. Accordingly, the exponentials
ak range from 1 to 0. In practice, it is reasonable to fix a lower limit ξ:

ξ 6 ak 6 1 → ln(ξ) 6 −(‖idq − xk‖bk)2 6 0 (5.1)

so that only the exponentials whose exponent is in the range indicated
by (5.1) will be considered for approximation, while the others will be
forced to zero. By assuming that the Gaussian functions that are worth
less than one hundredth of their maximum value can be neglected,
a good value was ξ = 0.01 then ln(0.01) = −4.61. Finally, the flux
linkages can be estimated with (4.10), reported hereafter for simplicity:

λ̂d =

K∑
k=1

wk
da

k = wTd a

λ̂q =

K∑
k=1

wk
qa

k = wTq a.

(5.2)

Flux linkages are computed as a summation of several terms and
only the Gaussian functions which return a marginal contribution
are completely neglected. The overall estimation error on the flux
linkages due to the above approximation is less than 0.01, i. e. ξ, since
the Gaussian functions which give a remarkable contribution in (5.2)
are fully evaluated.

The generic exponential function was approximated by a 5-th or-
der polynomial function. The coefficients where computed offline by
imposing the least mean square error in the range specified by (5.1):

ex = c5x
5+ c4x

4+ c3x
3+ c2x

2+ c1x+ c0, (−4.61 6 x 6 0). (5.3)

The values of the coefficients are reported in Table 5.1. The choice
of the order of the polynomial was a trade–off between the required
computational power and the mean square approximation error.

5.1.2 Design the RBF hidden layer

In Sec. 4.2.1, the Gaussian functions are uniformly distributed across
the entire dq input plane, with a regular spacing. The Gaussian num-
ber on one axis Ng was set to 9, as a good trade–off among the density
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of neurons and the algorithm complexity. By defining the total num-
ber of the first layer neurons K = Ng ×Ng, the parameter bk was
imposed equal for all the neurons using (4.7). In the offline version
of the training algorithm, the local property was not crucial since the
whole magnetic maps was estimated through a minimisation of a cost
function in few iterations of the training algorithm. In addition, the
complete set of data was available at the beginning of the training
procedure. It is worth noting that if only the estimation of the magnetic
maps is required, other NN structures are more suitable since better
performances can be achieved with less parameters.

In the new version of the training procedure, data were collected in
any given steady state working point therefore the NN was iteratively
trained till the whole magnetic map is proper identified. Given the it-
erative nature of the new algorithm, the concept of memory associated
to the local property of the NN is essential. Therefore, the parameter bk

becomes the first element to be defined. The choice of bk can be made
so that a Gaussian function gives a negligible contribution (ak in (4.9))
for current vector whose Euclidean distance from the Gaussian centre
exceeds a given constant r, as Figure 5.2 shows. A small value of r
accentuates the local property but increases the number of Gaussian
functions. It was set to half of the rated current r = IN/2. According
to (5.1), the following expression holds:

bk =

√
− ln(ξ)
r

=
2
√

− ln(ξ)
IN

. (5.4)

Given bk, the number of Gaussian functions can be computed by
exploiting (4.7), where the number K of hidden neurons is linked to
bk and to the side IN of the squared training region [42], i.e.:

√
K = 4

√
2INb

k → K = −128 ln(ξ) (5.5)

where the right–hand equality is obtained using (5.4).
In general, the value returned by (5.5) is a real number. It is necessary

to approximate it to the nearest perfect square, so that the centre of the
Gaussian functions will be disposed evenly and symmetrically over
the training region, which is a square with side equal to 2IN. When
the final number of Gaussian functions is determined, the exact bk has
to be recomputed with (4.7).

By arranging the hidden neurons as described in Sec. 4.2.1 leads
to a non–homogeneity in the Gaussian functions distribution. The
Gaussian function with its centre in xk = 0 is surrounded on all sides
by other neurons. This is not verified for the Gaussian function centred
in a corner of the training region since three of the four encircling
quadrants are blank. This difference involves some disequilibriums in
flux linkages estimation (4.10) where the summations have different
number of elements. Therefore, the training algorithm will suffer
of some disequilibrium issues as well. In order to reduce this non–
homogeneity, the region where the Gaussian functions are arranged is
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extended outside the training region, as Figure 5.2 depicts. In order
to guarantee the same numbers of Gaussian function in (4.10) when
the current input vector idq changes, each side of the training region
is extended of r.

The extension of the region covered by Gaussian functions leads to
a considerable boosts in the total number of Gaussian functions. Only
the hidden neurons within the training region are 576 against the 81
of the shown case in Chapter 4. The demanded memory is surely
increased but the required computational resources can be saved due
to the application of the criterion (5.1), as specified hereafter. The
Gaussian function approximation described in Sec. 5.1.1 can be further
exploited. The inequality (5.1) is a constraint which can be represented
as a circle in the dq plane centred in the measured current vector idq

Figure 5.2. The Gaussian functions characterised by a centre within
the circumference return a value greater than ξ, vice–versa the other
ones. By exploiting (5.1), the Gaussian outputs smaller than ξ are set
to zero therefore they do not influence the flux linkages estimates (5.2).
Consequently, the Gaussian functions whose centre is outside by the
circle can be neglected from the beginning. It is worth noting how the
evaluated hidden neurons are a small part of the total amount, indeed
the evaluated Gaussian functions are approximately one hundred.

5.2 the new training algorithm

The new training algorithm is based on the same scheme described in
Chapter 4, namely Figure 4.1. Steady–state condition is still demanded
and same performance index vector εdq (4.5) leads the training of the
NN. The zeroing of the performance index entails that the network is
properly trained. It is worth pointing out that all the parameters of the
first layer, i. e. the position of the Gaussian functions and their wide-
ness, are chosen during the design phase while the RBF weights that
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constitute the hearth of the second layer are obtained by the training
algorithm. Bearing in mind the reduced computational resources in
industrial drives, the training should be selected as computationally
light as possible. The new algorithm has to able to handle few data
and the ability of zeroing the error vector in one iteration. Although
the LMA is the fastest algorithm, it brings along heavy computations
and the inability of working with few data then it was discarded.

In order to design a computationally efficient learning algorithm it is
worthwhile to note an important consideration which is inferable from
(4.9) and (4.5). Any measured current vector idq produces a vector
a = [a1 . . . aK]T of real numbers. Once substituted in (4.5), together
with the related voltages, currents and speed measurements, it yields
an error function εdq whose components are a linear combination of
the RBF weights wdq. If the NN is properly trained the error vector
εdq would be zero but it is non–zero during the update process. It is
possible to define the optimal RBF weights w̃dq which bring to zero
the error vector:

udq − Ridq −ωmeJ
(

w̃Tdqa
)
= 0 (5.6)

where w̃dq is the weights vector which the training procedure has to
be determined. The expression (5.6) is clearly underdetermined, since
there are 2K variables (the second layer weights) and just two equa-
tions (one for each axis). In order to transform an underdetermined
system into a determined one, additional constraints have to be added.
Exploiting the local property of the RBF NN, the weights set should
be updated aiming at improving the flux linkage estimation in the
neighbourhood of the considered input only. In other words, it is more
meaningful to modify the weights linked to the Gaussians closest to
the input current vector idq since they are the ones that contribute
mostly in the flux linkages estimation. In addition, by modifying more
the functions closest to the input and less the other ones, the concept
of memory is created. Without loss of generality, starting from the
existing weight vector wdq, one can write:

w̃dq = wdq +∆wdq (5.7)

where ∆wdq is the unknown vector to be found. In order to imple-
ment the concept of memory, the RBF weights have to be modified
proportionally to the Gaussian outputs a. Therefore, by imposing:

∆wdq = aWT
dq = a

[
WdWq

]
(5.8)

where the two unknown real constants Wd and Wq are the new vari-
ables that have to be determined. The lacking constraints in (5.6) are
created with (5.8). Substituting (5.7) and (5.8) into (5.6) and by solving
the equation for Wdq yields:

Wdq =
J−1εdq

ωmeaTa
. (5.9)
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Replacing (5.9) and (5.8) into (5.7) finalises the proposed training rule
for the RBF NN:

w̃dq = wdq + a

(
J−1εdq

ωmeaTa

)T
. (5.10)

Every time the AC drive enters in a steady–state condition, the voltage
error εdq is averaged on a suitable number of measurements to reduce
the possible errors due to spikes and noise, and then the weights of the
second layer are updated according to (5.10). It is worth noting that the
new training algorithm is capable of working with one measurement
at time then more algorithm iterations are needed to cover the whole
input region and get the complete magnetic maps.

5.2.1 Time complexity

The time complexity is the amount of time it takes to run an algorithm.
It is commonly estimated by counting the number of elementary
operation performed by the algorithm, supposing that each elementary
operation takes a fixed amount of time to perform. Thus, the amount
of time taken and the number of elementary operation performed
by the algorithm may differ by at most a constant factor [45]. The
time complexity is commonly expressed using big O notation. Since
this notation excludes coefficients and minor order terms, it is said
that temporal complexity is asymptotically described. For example,
if the required time for the execution of an algorithm with inputs of
dimension n is 5n3 + 3n, the time complexity is O(n3).

The time complexity is a suitable tool to compare computation
burden required by training algorithms, the one based on LMA and
the newest one. In order to compute the time complexity of both
algorithms it is necessary to observe their updating rule (4.14) and
(5.10) and calculate the number of elementary operations. From the
computation theory, time complexity of matrix algebra is already
known, for example:

• matrix multiplication among one n×m matrix and one m× p
with a resulting n× p matrix, the complexity is O(nmp);

• matrix inversion of one n× n matrix, the complexity is O(n3)
with the Gauss–Jordan elimination algorithm while O(n2.373)
with the optimised CW–like algorithm.

where the assumption that arithmetic with individual elements has
complexity O(1) was made. To compute the complexity of the algo-
rithms, the dimensions of vectors and matrices related to the d–axis
are reported:

Jd ∈ RM×K, εq ∈ RM×1, a ∈ RK×1. (5.11)
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The LMA is composed by the multiplication JTd Jd, an addition among a
full matrix and an identity one of dimension K, a K–matrix inversion,
a multiplication among a K× K and K×M matrices and, finally, a
multiplication among a matrix K×M and the vector εq. Since the
number of collected measurements M is greater than the total number
of Gaussians K, the worst operation is the first multiplication JTd Jd

which has a time complexity of O(K2M). The other operations have a
less burdensome complexity then they constitute minor order terms
in the time complexity. Since the notation big O neglects them, time
complexity of the LMA is O(K2M).

As regards the new algorithm, the computation of the time complex-
ity is easier since it is mainly composed by 3K operations to compute
aTa, one multiplication and one division. The total operations number
is 3K+ 2, therefore the time complexity is O(K). Even if the evaluated
Gaussians with the new algorithm are slightly greater respect to the
ones with LMA, the time complexity is substantially smaller.

5.3 experimental results

In order to validate the lighter algorithm, two tests were carried out.
Analogously to Sec. 4.4, stator resistance has to be known and the use
of the nominal value would lead to an imprecise stator flux linkages
estimation. In the first test, the resistance was estimated as in Sec. 4.4
while, in the second test, it was estimated with the method proposed
in Sec. 3. In both tests, the second layer weights wd and wq were
initialised to zero. This choice represents the worst case scenario and
it allows to show that the proposed technique is insensible to the
initialised weights values. In order to decrease the estimation time it
is possible to initialise them so that the relation among stator currents
and estimated flux linkages would be the no–saturated inductances.

Depending on the application, the AC drive may rest in a steady
state condition once in a while. In order to enhance the training per-
formances, it is possible to further train the network during transients.
The last V steady–state voltages, currents and speed measurements
can be saved and kept updated adding the newest ones and discarding
the oldest ones. During transients and acquisition time, the NN can be
further trained using the stored measurements. In this way, the por-
tions of the sampling times which would not be used due to the lack
of new measurements are fully exploited. In addition, since the stored
measurements correspond to the last V steady–state points, they were
likely collected in several dq working points. An ongoing training
performed over V different points which represent a wide dq input
area allows to reach better and faster training. In the experimental
stage, the buffer length V was of 50 elements.
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5.3.1 Validation of the RBF magnetic model

The aim of this test was the evaluation of the capability of the proposed
method to model the flux linkage map, exactly as in Sec. 4.4. The MUT

was current–controlled while the load motor was speed–driven. Only
the SynR motor was used as MUT. The test was carried out at a speed of
100 rpm to reduce the possible influences of iron losses, which drain
part of the stator current deputed to the flux production [44]. The
current references i∗d and i∗q were generated as described in Sec. 4.3.1,
i. e. they were spread over a grid that covers the whole dq current
plane. The grid resolution was fixed to IN/10. Once the motor was
at steady–state, the measurements of voltages, currents and speed
were collected and averaged over an entire mechanical revolution.
This allows the elimination of any signal with electrical or mechanical
periodicity. When reliable data were available, the (4.5) was computed
and RBF weights were updated with (5.10). It is worth remembering
that this test was done only to validate the online algorithm since if a
test–bench is available and the whole dq plane can be explored, the
best algorithm to be used is the LMA.

The estimated magnetic maps were compared with the estimates
made with the benchmark method proposed in [39] which is neces-
sarily an offline, discrete method. As an advantage, the flux estimates
in the exact test points are quite reliable and fit for acting as a bench-
mark. The normalised error defined in (4.18) was used. The estimated
magnetic model is reported in Figure 5.3 and the normalised errors
are shown in Figure 5.4. It is worth noting that the q–normalised
error obtained with the new algorithm and shown in Figure 5.4b is ex-
tremely akin to the one computed with the first method and depicted
in Figure 4.5b. The plots of both flux linkages, in case of either null
or maximum cross–coupling are reported in Figure 5.5, along with
normalised errors computed according to (4.18). The error magnitude
remains mostly within ±4% for both flux linkages. At low currents,
the q–axis error shows values that reach some percent points more.
Anyway, the electric drive rarely works at low currents because, even
if at no–load, it needs power to keep the motor rotating therefore it
rarely needs a flux estimates. Furthermore, at low current the motor is
usually not saturated then the MTPA curve is close to the sub–optimal
strategy id = iq. The error can be still considered quite negligible as
can be seen in Figure 5.5 where the absolute values of the flux linkages
errors are shown.

Figure 5.6 depicts the measured MTPA curve within the estimated
one from the neural network. The estimated curve is close to the
one considered as benchmark [39], proving the accuracy of the flux
linkages estimates.

It has been proved that the proposed light training algorithm ex-
hibits good performance similar to those of that presented in Chapter 4.
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Figure 5.3: Flux linkages estimate with the proposed method for a SynR motor.

The slight deterioration in the accuracy of the online method respect
to the LMA is due to the LMA computes a minimisation over the entire
dq input plane, and the result is the one that overall minimises the
performance index. The online technique minimises the cost function
only locally then it loses the optimality.

In order to accelerate the construction of the magnetic maps, one
can exploit symmetries and anti–symmetries proper of the maps, see
(2.62). The SynR motor magnetic fluxes are anti–symmetric functions
of the currents. Therefore, the third quadrant of the dq current plane
is actually the same of the first quadrant, but with opposite sign.

5.3.2 Online RBF training with suboptimal MTPA control

The previous sections have demonstrated the ability of RBF network
coupled with the new learning algorithm to cope with the complexity
of the nonlinear magnetic model of SynR motors. The training of the
network was performed online, exploiting every single steady–state
condition during the normal drive operation.

In this section, the effectiveness of the online algorithm with the
RBF NN is tested during the normal working condition of a speed–
controlled drive. The MUT was speed–controlled at a constant speed of
350 rpm and a simple sub–optimal (id = iq) current control strategy
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Figure 5.4: Normalised errors between the proposed flux estimation and the
compared method.
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was selected. The load motor was torque–controlled and it applied six
load steps with the same magnitude from 0 to the nominal torque TN.
The experiment procedure consists in:

• the virtual load imposes a load torque step,

• as soon as the system reaches the steady–state, voltages, currents
and speed are measured and averaged over an entire mechanical
revolution,

• the NN is trained,

• the virtual load applies the following load level or it re–imposes
the first one.

The procedure is repeated several time to simulate a real working
cycle.

Since both currents are needed to produce torque in a SynR motor, it
is not possible to implement the technique previously used to estimate
the stator resistance. In order to overcome this issue, the method
described in Chapter 3 was exploited. The parameters independence
of the resistance identification allows to break the errors chain among
different parameters estimation which occurs when the resistance
identification is based on knowledge of magnetic maps and vice–versa.

Figure 5.7 shows the magnetic maps of λdq after the six–step proce-
dure. The local property of the network implies that only the weights
close to the input idq points are actually updated. As shown in Fig-
ure 5.7, the estimated flux linkages are not null closely around the
id = iq line. However, the correctness of the estimation rapidly de-
crease as one deviates from the id = iq line, due to incompleteness of
the training for those points. The flux linkages estimation has not any
meaning outside the training trajectory. The effectiveness of the mag-
netic model obtained online was verified by comparing the estimated
flux linkages of Figure 5.7 with those obtained by the benchmark
method [39] under the same operating conditions, i. e. along the line
0 6 id = iq 6 IN. The results are reported in Figure 5.8. The errors still
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remain within a narrow band of 2%. The normalised errors along the
trained trajectory are smaller than the ones obtained in Sec. 5.3.1 and
in Chapter 4. The smaller errors can be ascribed to the local property of
the algorithm indeed it nullifies the performance index point by point.
The Gaussian functions centred outside the id = iq curve contribute to
the flux linkages estimation only along the working trajectory without
further constraints. This can be well understood in Figure 5.7a where
third quarter is negative even if no data were available in that region,
the NN was initialised blank and the flux linkages along the explored
curve are positive. The algorithm modified the Gaussian functions in
the third quarter to better identify the flux linkages along the trained
curve, and this explains the setting of those neurons with negative
weights.

It is worth pointing out once more that this test was aimed at
evaluating the capability of the network to self–adjust online from
a completely blank condition. Therefore, only a section of the first
quadrant in the dq current plane was explored and properly trained.
The remaining domain remains blank as it was initialised, i. e. at zero.
Finally, it is worth noting that the RBF NN is able to estimate properly
the flux linkages even where no measures are available, as among two
load levels.

5.4 future works

This chapter and the previous one demonstrate the capability of RBF

NN to estimate the magnetic map of a synchronous motor. Both the
proposed training algorithms assume that the system is in steady state
and that the resistance is properly tracked. Both hypotheses should be
overcome in order to create an effective and accurate estimation system.
The exceeding of the first assumption leads to a cross–coupling among
the voltage equations then the identification cannot be carried out
for the two axes separately, as it was hitherto. On the other hand, by
removing the second assumption a complete different algorithm has
to be developed since the error vector εdq cannot be defined anymore.
The fall of the two hypotheses represents a major challenge that must
be addressed.
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Figure 5.7: RBF–based 3D magnetic maps, obtained by online training from
blank conditions and sub–optimal MTPA strategy (id = iq).
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M O T O R C O N T R O L





6
M T PA T R A C K I N G C O N T R O L

Modern AC drives have to accomplish two main tasks, i. e. the identifi-
cation of the motor and its efficient control. An original and innovative
identification scheme has been proposed in Part i, able to identify dur-
ing the normal working conditions, both the stator resistance and the
magnetic map of a synchronous motor. The technique for estimating
the flux linkages based on a special kind of NN is particularly inno-
vative. Its local property joined a computationally efficient training
algorithm enables new control paradigms, based on the availability of
a precise motor model.

SynR motors are prone to magnetic saturation and their torque
generation, as function of currents, is nonlinear. Both stator currents
are demanded to produce torque then the control has an additional
degree–of–freedom respect to PMSMs, where the direct current is held
to zero to maximise the efficiency. This additional control target can
be handled in different ways. One could set both currents equal or
leave the direct current to control the flux linkage in the motor and the
torque generation entrusted to the quadrature current. Each of these
control strategies have pros and cons but they are not efficient, for
sure. The preferable control strategy should be the MTPA. It minimises
the copper losses for any given torque level but, as shown in [46], the
maximum efficiency is not guaranteed.

The are several ways to obtain the MTPA curve for a synchronous
motor. The main ones can be partitioned in:

• parameter based,

• finite element analysis (FEA) based,

• model–free based.

The first group relies on a precise knowledge of all machine param-
eters, usually obtained by several offline tests on a laboratory test
rig. The FEA based techniques require the design parameters of the
machine, which are not usually available. The latter group is the most
interesting one, since it does not depend on the motor parameters.
Different techniques have been already proposed, mostly based on
perturb–and–observe method [47–49]. The main disadvantage is the
detrimental injection which generates an undesired torque ripple.

6.1 mtpa tracking algorithm

The MTPA curve can be computed from the complete magnetic model.
Unfortunately, different motor and electric drive manufacturers usu-

85
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ally prevent an a–priori tuning. During the commissioning procedure,
the electric drive should identify most of the motor parameters to
allow it to run. The magnetic model, then the MTPA curve, is one of
the most complicated parameters to estimate at standstill, i. e. the pre-
ferred condition [21, 22, 36]. For this reason, it is allowed to initialise
the electric drive with sub–optimal control strategy and during its
operation the control is modified to achieve the desired control targets.

Chapter 5 presented a novel method able to identify online the mag-
netic map of a synchronous motor. It is based on RBF NN and through
a light training algorithm it can be implemented on an industrial drive
and can locally estimate flux linkages. Sec. 5.3.2 showed the identified
flux linkage of a SynR motor with the proposed method, envisaging the
electric drive initialised with a sub–optimal1 (id = iq) control strategy.

In order to achieve a better efficiency of the whole system and
having a technique able to estimate the flux linkages along the current
control trajectory, a method able to find and track the real MTPA curve
can be inferred. For sake of clarity, the main equations of the NN–based
model which allow the computation of the flux linkages are reported
hereafter from Chapter 4:

ak = e−(‖idq−xk‖bk)2 k = 1 . . . K (6.1)

and

λ̂d =

K∑
k=1

wk
da

k λ̂q =

K∑
k=1

wk
qa

k. (6.2)

The expressions (6.1) and (6.2) clarify that the flux linkages estimates
are continuous and derivable functions of the stator currents id and iq.
This is peculiar to the NN–based technique and it can be exploited to
develop a MTPA tracking algorithm.

For a given reference current vector i∗dq = I∗ejβ
∗

of a fixed ampli-
tude I∗ and a variable phase β∗, the maximum torque–per–ampere
condition is obtained imposing a null derivative of the torque equation
(2.66) with respect to the current angle β∗:

∂τ

∂β∗
=
3

2
p
∂
(
λ̂∗di
∗
q − λ̂

∗
qi
∗
d

)

∂β∗
!
= 0. (6.3)

1 Assuming a constant inductances SynR motor, the torque equation is τ =

3/2p
(
(Ld − Lq)idiq

)
then the MTPA curve is characterised by (id = iq). Having stated

this, the aforementioned condition is usually considered as the sub–optimal MTPA

control for a SynR motor.



6.1 mtpa tracking algorithm 87

Replacing i∗d = I∗ cos (β∗) and i∗q = I∗ sin (β∗) and by means of the
explicit expression of the flux linkages estimation (6.2), the condition
(6.3) becomes:

∂τ

∂β∗
=
3

2
pI∗
(
λ̂∗d cos(β∗) + λ̂∗q sin(β∗)+

K∑
k=1

(
wk

d sin(β∗) −wk
q cos(β∗)

) ∂ak

∂β∗

)
!
= 0.

(6.4)

Actually, the ak terms, defined by (6.1), depend on the stator currents.
Using the polar notation, the derivative of ak respects to the current
phase angle is:

∂ak

∂β∗
= 2ak(bk)2I∗(xk

d sin(β∗) − xk
q cos(β∗)) (6.5)

where xk = [xk
d x

k
q]
T is centre of the k–th Gaussian function in the

(id–iq) plane, see Sec. 4.2.1. The (6.4) is equal to zero when the current
vector is along the MTPA curve while it is greater than zero when the
MTPA curve has a greater current angle respect to the actual one and
vice–versa when (6.4) is negative.

Anyway, the straightforward computation of β∗ might be burden-
some. The solution of (6.4) is the MTPA angle for a given current
module I∗ only if the whole magnetic map is identified. The MTPA

curve shown in Figure 4.10 can be obtained calculating the (6.4) for
different current module I∗ but only when the magnetic model is
completely known.

Usually, in a real applications the electric drive is speed–controlled
and it is initially set with a sub–optimal strategy. With this background,
the flux linkages can be estimated using the proposed method only
along the control trajectory, as shown in Sec. 5.3.2. Therefore, the (6.4)
does not return the correct MTPA angle, due to the limited extent of
the magnetic model. Nevertheless, the (6.4) can be used to find the
direction of the MTPA curve respect to the actual working point instead
of the exact angle. The left–hand term of (6.4) is greater than zero
for current phase angles below the correct one, and vice–versa. In
addition, the greater the derivative of the torque respect to the current
angle, the greater the MTPA angle respect to the current working point.

6.1.1 MTPA control implementation

The MTPA tracking algorithm is deeply merged with the flux linkages
estimate method, presented in Chapter 5. It returns a meaningful
direction toward the real MTPA curve only if the flux linkages are
already estimated properly, almost locally. Therefore, while the iden-
tification algorithm runs continuously and only when new voltages,
currents and speed measurements are collected and the RBF NN is
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properly trained, the (6.4) can be evaluated. The procedure can be
explained with the aid of Figure 6.1. Without loss of generality, an
outer speed control loop is usually present and it is supposed to
produce the torque reference τ∗. It is worth noting that (6.4) returns
only the direction of the real MTPA respect to the current working
point. Therefore, the MTPA curve has to be implemented in a classical
manner, i. e. through a LUT or a polynomial function. Once the (6.4) is
evaluated, the implemented MTPA has to be updated accordingly. It is
worth noting that the online MTPA condition is obtained without any
disturbing signal injection, as a key–feature of the proposed method.

6.2 experimental results

In order to prove the MTPA tracking algorithm, two tests were carried
out. The NN architecture was the same as described in Chapter 5
and the second layer weights wd and wq were initialised to zero.
Furthermore, the electric drive was set with the sub–optimal MTPA,
i. e. (id = iq). It allows the running of any kind of synchronous motor
without any specific knowledge, i. e. the ideal choice for a general
purpose electric drive.

6.2.1 Local convergence

The first experiment was designed to prove the effectiveness of the
proposed strategy and to evaluate the time it takes to find a true MTPA

point including the contemporary training of the RBF NN. Any time the
MTPA tracking moves the working point closer to the real MTPA curve,
a new set of measurements enable an updating of the magnetic model
by the RBF NN. It is worth reminding how the MTPA tracker depends on
the NN training. The time to find the true MTPA curve strictly depends
on the capability of the NN training algorithm to update. The proposed
strategy trusts on the motor steady–state conditions then the training
time could be not negligible. The test was carried out by applying a
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constant load. Then, the adaptive MTPA algorithm was started and the
drive reached the true MTPA point.

Figure 6.2a depicts the current path in dq plane while Figure 6.2b
shows the current vector magnitude dynamic over the time. The test
was repeated four times, with different initial working points (P1,...,4),
changing the load level and the initial MTPA angle. It is evident that
the MTPA search is precise and effective, regardless of the initial guess.
The stator current idq starts from the initialised working point and
sweeps the iso–torque curve till to reach the true MTPA point. The
operating point moves towards its target without ever exceeding it,
as it can be seen in Figure 6.2b since the current vector magnitude
is a monotonous decreasing function. Furthermore, the algorithm
takes the current vector amplitude to its minimum. In Figure 6.2b, the
initial values of the currents corresponding to curves (a) and (b) are
slightly above the rated value. However, the final value of the current
magnitude, i. e. the MTPA point, remains below the rated value. The
current limitation was relaxed during the initial training of the NN to
allow the correct identification of the MTPA point at rated load. The
convergence time depends on how far the MTPA point is from the
initial guess, indeed the convergence time of test P4 results smaller
than the others. Finally, the convergence time can be further reduced
by optimising the C–code. This was not implemented because out of
the scope of this work and it concerns only the final implementation.

To fully understand the MTPA tracking algorithm, the Figure 6.3
reports the MTPA curve at the end of test P4. The MTPA curve is as
initialised, i. e. a straight line at 45°, except around the point P, where
it was modified by the tracking algorithm to get the MTPA condition.
Furthermore, at the end of the test the expression (6.4) was evaluated
along the whole MTPA curve. It is equal to zero only around the point
P and it is greater than zero elsewhere, meaning that the true MTPA

locus is characterised by a bigger current angle.

6.2.2 Global convergence

The second experiment was to prove the global effectiveness of the
(6.4). It was performed by applying five different load torque levels to
the SynR motor drive. Whenever the electric drive reached a steady–
state condition, voltages, currents and speed were collected. Then,
the flux linkages were estimated, the RBF NN was trained and the
MTPA curve was modified accordingly with (6.4). The load levels were
repeated many times until (6.4) was zero everywhere. The five load
points reached by the adaptive algorithm are denoted by diamond–
shape marks in Figure 6.4, which reports as a solid line the real
MTPA curve as well. The true MTPA was obtained offline by using a
torque–meter. The dashed line refers to the initial sub–optimal (id = iq)
condition. The accuracy is rather good and the estimated MTPA curve
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represented by the diamond marks is close to the real one. Figure 6.5
shows the complete magnetic map at the end of the experiment. It
is similar to Figure 5.7 but the ridge of the curve is no longer along
id = iq but along another trajectory characterised by a greater current
angle.

As a final remark, it is worth noting that the NN training linked to
the adaptive MTPA algorithm takes just a small portion of the time in
the lifespan of a electric drive. It can be carried out during the very
first hours of the entire lifespan. In this scenario, the RBF NN training
is a rather cheap price to pay in terms of time. It is worth reminding
that the trained second layer weights wd and wq are always saved and
they are reloaded every time the power is turned on. Whatever the NN

has learnt, it is not forgotten but it is used as a starting point during
the next training. In this, the proposed technique is different from an
online MTPA which has to be continuously active to track the MTPA

curve.
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Figure 6.5: 3D flux linkages maps after the convergence of the adaptive MTPA

tracking procedure on five different working points. The flux
linkages along the id = iq and MTPA trajectories are highlighted.



7
A D VA N C E D C U R R E N T C O N T R O L

Current control is the innermost loop and the heart of high perfor-
mance electric drives and converters [50–53]. Due to the tight link
between current and electromagnetic torque, the current control is re-
sponsible for torque ripple and the dynamic response to load changes,
both of extreme interest in most of drive applications. It should be
able to carry out the following goals:

• handle the magnetic saturation and cross–coupling that charac-
terise the motor,

• compensate the semiconductor voltage drop and dead times of
the converter,

• stabilise the controlled system satisfying the given specification.

In the last decades, the research efforts about current control has
been quite considerable. Many techniques have been presented with
the purpose of increasing the dynamic performances, with particular
attention to PMSMs. The proposed control structures can be subdi-
vided in three main categories: predictive, hysteresis and PI control.
Every proposed control technique has strengths and week points. For
instance, model–based methods can achieve high steady–state and
dynamic performances but they are sensible to the model inaccuracy.
On the other hand, model–free schemes, like the hysteresis one, suffers
of the well–known problem of chattering even at steady–state.

The stability is an essential element for a control scheme, more than
the maximum achievable performances. The performances of a system
that is weakly or not stable cannot even be calculated. Stability is
deeply studied for PI controllers [35] while there is a limited literature
for other techniques. PI controls take the lion’s share in industrial
electric drives due to the broad literature about stability jointly with an
(apparent) ease of calibration and the good achievable performances.
In addition, their implementation is quite trivial and well–known.

PI controller is a linear control and it works properly with linear
system, e. g. with PMSMs. The recent interest in anisotropic motors, e. g.
IPM motors, PMASRMs and SynR motors, has posed the issue of the de-
velopment of control structures able to manage nonlinear system and
to obtain good performances, as PIs do with PMSMs. Since nonlinear
motors are already an industrial reality1, it is fundamental to fill this

1 In 1998 an important patent about SynR motor design was published [54]. It has
partially limited the development and spread of these motors as companies that
wanted to market would have to pay royalties. In the last years, only few companies
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Figure 7.1: Closed–loop system of the d–axis current control.

control gap. Researchers have to quickly develop effective and ease
control schemes for rapid technology transfer to the companies. At
the same time, more tailored control paradigms have to be examined
in depth for electric drives of tomorrow.

7.1 model of the system and pi design

The controlled plant consists in the series of the inverter and electric
motor, as sketched in Figure 7.1.

7.1.1 Motor model

The mathematical model of a generic synchronous motor, i. e. taking
into account magnetic saturation and cross–coupling, in the rotating
reference frame was derived in Sec. 2.1.4 and hereafter reported for
sake of clarity:

ud = Rid +
dλd

(
idq
)

dt
−ωmeλq

(
idq
)

uq = Riq +
dλq

(
idq
)

dt
+ωmeλd

(
idq
)

.

(7.1)

The motional terms ωmeλq
(
idq
)

and ωmeλd
(
idq
)

in (7.1) are consid-
ered as a disturbance in the current control loop and they are compen-
sated by means of two FF terms. This is known as decoupling and it is
almost universally applied in electric drives. Therefore, the motional
terms will be omitted and the expression (7.1) reduces to the following:

u ′d = Rid +
dλd

(
idq
)

dt

u ′q = Riq +
dλq

(
idq
)

dt
.

(7.2)

The symbols u ′d and u ′q are used to emphasise the absence of the
motional terms with respect to (7.1).

have sold SynR motors. Nowadays, the patent is expired and the commercial offer of
reluctance–based motor is expanding considerably.
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In order to highlight the cross–coupling and to derive the control
strategies, the linearised version of (7.2) can be derived by recalling
(2.50):

u ′d = Rid +
∂λd

(
idq
)

∂id

∂id
∂t

+
∂λd

(
idq
)

∂iq

∂iq

∂t

u ′q = Riq +
∂λq

(
idq
)

∂id

∂id
∂t

+
∂λq

(
idq
)

∂iq

∂iq

∂t

(7.3)

where the flux linkages derivatives over the stator current are the
differential inductances defined in (2.51). The structure of equations
(7.3) is akin to those of (7.1). In particular, cross–coupling terms are
present which consist in motional terms in (7.1) and in voltage drop
due to the cross–differential inductances in (7.3). Since they have the
same structure, they can be treated analogously. The already intro-
duced FF action is integrated with the cross–differential inductances
contribution. The overall FF terms are the following:

uFF
d = −ωmeλq

(
idq
)
+
∂λd

(
idq
)

∂iq

∂iq

∂t

uFF
q = ωmeλd

(
idq
)
+
∂λq

(
idq
)

∂id

∂id
∂t

(7.4)

Figure 7.1 shows the closed–loop system for the d–axis where the FF

action is highlighted. The voltage components in (7.4) related to the
cross–differential inductances are functions of the current time deriva-
tive which is notoriously difficult to calculate in discrete time system.
In order to overcome this issue, the derivative was low–pass filtered
to limit the computational noise. However, the filtered derivative in-
troduces an undesired time delay. The effect of the delay jointly to the
parametric uncertainties can be partially smoothed by an attenuation
gain on the second terms of the right members in the FF action (7.4). It
is worth noting that the whole or partial FF action can be omitted, by
leaving to the PI controller the effort of compensating the disturbances.
Of course, this leads to a detrimental control action during transients.

In order to understand the effect of the cross–differential inductances
on the current behaviour, some simulations were carried out with the
SynR motor and they are reported in Figure 7.2. Tests were obtained
by imposing a current step variation on the q–axis, and observing the
behaviour of the measured current on the d–axis. The proposed tests
were carried out with the rotor locked to completely disregard the
motional terms and applying a q–axis current step from 0 to IN, i. e.
4A. The d–axis current reference was set at 4A. As a consequence of
the cross–differential inductances effect, an overshoot of amplitude
250mA, equal to 6.25%IN, appeared on the d–axis current. By applying
the proposed FF terms, the current overshoot is 50% smaller than of
case with the standard PI. The id does not exactly follow the reference
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Figure 7.2: d–axis current response with a q–axis current step with and
without the proposed FF action. The cross–differential inductances
coupling on the d–axis is shown.

probably due to small errors in the magnetic model and the attenuation
gain introduced in the filtered current derivative to mitigate the delay.
Nevertheless, the FF action improved the overall current behaviour.

By implementing the FF actions, the electric motor can be modelled
as a first order system, where the electrical time constant is τe , L/R
and a constant gain equal to 1/R. Actually, the conventional (and
constant) inductance L has to be replaced by Ldiff

d or Ldiff
q for the design

of the current control along each synchronous coordinate (d,q). In
Laplace domain, the transfer function of the electric motor becomes:

Gm(s) =
1

Ls+ R
=
1

R

1

1+ sτe
(7.5)

7.1.2 Inverter and controller model

The digital control and the voltage source inverter (VSI) introduce
delays in the control loop. They can be modelled as an unique time
delay Td. The digital control takes some time to process the voltage
reference and a time delay elapses between when the voltage reference
is given to the VSI and when it is actually applied. Typically, the former
is negligible or it is a fraction of Ts when a FPGA with a fast control
paradigm is implemented [50] while it is equal to Ts using a digital
signal processor (DSP). The latter delay is not trivial to be computed
and it is strongly affected by the modulation technique [55]. Using a
symmetric pulse width modulation (PWM), the delay is exactly half of
Ts. Therefore, the overall control delay is equal to Td = 3/2Ts, since the
test bench is based on a DSP with a symmetric PWM, as described in
Appendix A. In Laplace domain, the delay can be approximated by a
first–order lag system:

uαβ(s) = e−sTdu∗αβ(s) ≈
1

1+ sTd
u∗αβ(s). (7.6)
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Since the control algorithm is implemented in the rotating reference
frame, it is worth representing the delay accordingly. As detailed in
Appendix D, the equation (7.6) becomes:

udq(s) = e−sTdDu∗dq(s) (7.7)

where D is a rotating matrix defined as follow:

D =

[
cos(ωmeTd) sin(ωmeTd)

− sin(ωmeTd) cos(ωmeTd)

]
(7.8)

The delay Td introduces a coupling among the axes and an attenuation,
as equation (7.7) shows. These effects should be compensated by
the controller since they have a detrimental effects on the current
behaviour. In particular, the higher the motor speed, the greater the
distortion. In the present chapter, all the simulations and experimental
tests were carried out at standstill, so that the matrix D becomes the
identity one and it has no effect.

7.1.3 Constant PI design

Engineers are familiars with PI controllers since they are used in a
wide range of applications. They are effective and good performances
can be attained if the system is linear. It is worth highlighting that
the linearity of the model is only a necessary condition, not sufficient,
since the system parameters have to be known for an analytical tuning.
The PI design can be carried out by the pole–placement method, the
magnitude optimum or the root locus and the frequency response cri-
terion [35, 50, 56, 57]. Nevertheless, the design of a stable PI controller
in the whole operating region can be challenging when the system is
nonlinear. SynR motors are highly nonlinear systems and their differ-
ential inductances are prone a factor 10 variation in dependence of
the working point, as shown in Figure 4.11. The first, simple solution
to control SynR motors is to design the controller by considering the
worst case scenario. It is usually called robust control and assures the
stability of the system. The worst condition has to be found by the
designer and it may not be trivial.

Usually, the minimum control bandwidth is one of the control re-
quirements with the stability. In order to design a current regulator
able to guarantee a minimum control bandwidth, the tuning would be
done with the biggest motor inductance. By decreasing the inductance
due to the magnetic saturation, the electric pole shifts rightward in
the Bode plane by increasing the system bandwidth so the require-
ment would always be satisfied. Nevertheless, the phase margin could
excessively decrease due to the system delay and stability could be
affected.

A robust PI design can be carried out using the smallest differential
inductances of the motor. At lighter loads, when the effects of satura-
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tion are gradually reduced, the electrical pole shifts leftwards in the
Bode plane, by keeping a sufficient phase margin while reducing the
cut–off frequency. Therefore, the bandwidth decreases but the stability
is preserved.

In order to prove the aforementioned claims, several simulation
tests were carried out. The current control specifications were a band-
width of 300Hz and 70° phase margin. All the tests were carried out
at standstill in order to isolate the effects on stator currents due to the
PI design from the effects due to motional terms. Many current steps
were carried out around different working points. A first group of
tests was done with a constant–gain conventional PI controller where
it was design by taking the no–load values of the stator inductances.
The results are reported in Figure 7.3a. Only the curve with Ioff = 0A

has the desired profile, which is indeed the case where the actual
inductance is the same used in the PI design. A completely different
situation appears at Ioff = 4A. The real value of the differential induc-
tance is very different to the one used during the tuning. The electrical
pole of the system is placed quite far from the one used in the design.
The real pole is at higher frequency, due to the inductance saturation,
and the system undergoes an oscillatory response meaning that the
controlled system was close to the instability.

The second group of tests is reported in Figure 7.3b where a robust
PI regulator was used. In this case, the curves have no oscillatory
behaviours, i. e. the stability is always preserved, but only the step at
Ioff = 4A responded with the imposed dynamic. The remaining cases
exhibited slower dynamics performances. For instance, the current
response step with Ioff = 0A shows a 70Hz bandwidth, quite far from
the design value.

7.2 model–based pi structures

The proposed current controls are both model–based since a novel
and accurate technique to estimate stator resistance and magnetic map
is available and it was proposed in Part i. The presented methods
rely on classical PI scheme and the frequency response criterion is
chosen to design the current PIs. Furthermore, the aim was to develop
control schemes which can accomplish the aforementioned described
goals in a simple manner to encourage a fast and ease industrial
implementation.

They are based on the availability of a precise magnetic model then
differential, cross–differential and apparent inductances are known.
The already presented FF terms in Sec. 7.1.1 are included in both
techniques. Finally, only the d–axis current controller is considered in
the following. This is not a limitation, since the same techniques also
apply for the q–axis current control, with identical considerations.
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Figure 7.3: d–axis current responses with a conventional PI.
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Figure 7.4: Gain–scheduling current control with FF.

7.2.1 Gain–scheduling PI control

The PI current control with variable parameters can be designed by
exploiting the availability of the differential inductances. The block
diagram of the proposed gain–scheduling PI current regulator is re-
ported in Figure 7.4, which corresponds to the dot–dashed area of
Figure 7.1. In order to design a gain–scheduling PI controllers, the
system sketched in Figure 7.1 can be described by the product of
expressions (7.5) and (7.7). The PI transfer function is:

C(s) = kp(id, iq) +
ki(id, iq)

s
= ki(id, iq)

1+ sτc(id, iq)

s
(7.9)

where kp(id, iq) is the proportional gain, ki(id, iq) is the integral gain
and τc(id, iq) = kp(id, iq)/kp(id, iq) is the time constant of the con-
troller. To ease the mathematical notation, the explicit dependence of
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the PI parameters from the stator currents will be omitted from now
on.

By imposing the desired phase margin ϕm at the chosen cut–off
frequency ωc, the following equation can be obtained:

τc =
tan
(
ϕm −

π

2
+ tan−1

(ωc

R
Ldiff

d

)
+ tan−1(ωcTd)

)

ωc
. (7.10)

Finally, the variable parameters of the PI controller are calculated as:

ki =
ωcR

√
1+

(ωc

R

)2
(Ldiff

d )2
√
1+ω2c T

2
d

√
1+ω2c τ

2
c

kp = τcki.

(7.11)

The differential inductance in (7.10) and (7.11) is computed using
(4.19) at each sampling time Ts. The clear advantage is that both kp

and ki depend on the operating point, guaranteeing the same dynamic
response over the whole dq operating region.

7.2.2 Constant gain PI regulator with additional feed–forward

The second method consists in a constant gain PI controller with an
additional FF term able to compensate all nonlinearities. It is based on
the similarities present in equations (7.3), where there are two similar
nonlinear terms composed by differential inductances and currents
derivatives. In method presented in Sec. 7.2.1, the voltage term related
to the cross–differential inductance was compensated with a FF term
while the main differential inductance effect was managed with a
gain–scheduling controller. In theory, both voltage terms related to
differential and cross–differential inductances can be handled in the
same manner, without the use of a PI. Nevertheless, an integral action
is usually wished to have a zero tracking error to a constant reference.
The solution proposed in this section consists in compensating the
nonlinear effects in both derivative terms by two FF actions.

Let defined a new flux linkage λ ′d(id, iq) as:

λ ′d(id, iq) , λd(id, iq) − Ldmid (7.12)

where Ldm is the smallest differential inductance on the d–axis. The
voltage equation (7.2) can be rewritten as follow:

u ′d = Rid +
∂λd

∂t
= Rid +

∂
(
λ ′d + Ldmid

)

∂t

= Rid +
∂
(
λ ′d + Ldmid

)

∂id

∂id
∂t

+
∂
(
λ ′d + Ldmid

)

∂iq

∂iq

∂t

= Rid + Ldm
∂id
∂t

+
∂λ ′d
∂id

∂id
∂t

+
∂λ ′d
∂iq

∂iq

∂t
.

(7.13)
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The first two terms on the right–hand side of (7.13) constitute a linear
first–order system, for which a standard PI regulator can be properly
designed. It is worth remembering that the obtained PI controller is
always stable since it is designed using the smallest inductance of the
d–axis, as described in Sec. 7.1.3. The last term in (7.13) is the cross–
differential inductance voltage drop since the following equalities
hold:

∂λd

∂iq
=
∂λ ′d
∂iq

=
∂λq

∂id
=
∂λ ′q
∂id

= Ldiff
dq . (7.14)

Being the same described in Sec. 7.1.1, it is already compensated by
applying the FF terms (7.4). Finally, the (7.13) is composed by two
terms which are similar, where one is balanced by a FF action as afore-
mentioned said. Therefore, the third term in the right member of (7.13)
would be compensated with a FF term, as well. Actually, it cannot be
implemented as a simple FF since it is directly function of the con-
trolled variable id. Its implementation would lead to an uncontrollable
modification of the loop transfer function, with detrimental effects
on stability and performances. In order to solve this issue, the real
current id is replaced by the current reference in the computation of
the derivative. The control scheme is shown in Figure 7.5, which still
corresponds to the dot–dashed area of Figure 7.1. To increase the simi-
larity with the actual current, the reference is processed by a low–pass
filter, whose bandwidth is equal to that fixed during the design of the
PI regulator. As a positive aspect, the current reference contains less
noise than the measured current, which yields a smoother derivative
computation.

In Sec. 7.1.3 several tests were carried out to show the issues related
to a constant–gain PI regulator. Some experimental tests were executed
to prove the effectiveness of the proposed control techniques. Same re-
quirements were used to do a fair comparison, i. e. a control bandwidth
of 300Hz, a phase margin of 70° and all the tests were carried out
at standstill. The results are reported in Figure 7.6. The current tran-
sients from 0A to 0.4A are reported in Figure 7.6a. It is evident how
the proposed techniques allow very fast responses, conversely to the
standard robust PI controller. The dual–FF PI exhibits a little overshoot
and undershoot, probably due to the approximation of considering
the reference current instead of the measured one. When the transient
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Figure 7.6: Experimental d–axis current response with proposed methods.

due to the low–pass filter on the current reference is over, the FF action
is zero and the current control is based only on the constant–gain PI

regulator. It is tuned with the smallest inductance Ldm of the d–axis
then the system has a small bandwidth at low current. Therefore, the
quite long settling time is motivated. The d–axis current responses to
a step from 3.6A to 4A are shown in Figure 7.6b. The three current
responses have similar behaviour because (at nominal current) the
robust PI, gain–scheduling and the dual–FF are all designed with the
same saturated motor inductances.

7.3 future works

The proposed current regulators are tailored for nonlinear motors,
such as SynR motors. They were all tested in laboratory and the results
met the expectation. Both are stable and they maintain same dynamic
performances over the whole operating region. It is worth noting that
the proposed techniques handle the nonlinearities differently. The
former adapts the regulator’s gain over the working point sampling
time by sampling time then the transfer function of the control loop
varies continuously. The latter one has a fixed regulator while the
nonlinearity is managed by the FF terms. Intuitively, the stability
analysis of the latter method should demand less effort since the loop
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transfer function is already stable. A comprehensive analytical study
of the stability is in progress, as conclusion of this peculiar current
control activity.





8
D I R E C T M O D E L P R E D I C T I V E C O N T R O L

The MPC is an advanced method that is used to control a process
while satisfying a set of constraints. The first uses were in the refining,
petrochemicals and chemical industries since 1980s while it received
little attention from power electronics community [58]. The reasons for
the late adoption of MPC by power electronics community include the
limited processing power that was available in the last century, which
was a strong limitation for NNs too, and the very short time constants
of the power electronic systems. The former led to limitations in solv-
ing the control problem in real–time, while the latter imposed the use
of a short sampling interval. Nevertheless, some initial investigations
in MPC–related concepts for power converters were accomplished in
the 1980s [59]. In the recent years, MPC has rapidly emerged in power
electronics [60]. The tremendous increase of the computational power
available in the controller hardware has facilitated its progress but
it was accompanied by a significant speed–up of the solvers that
compute the solution to the underlying optimisation problem.

In motor control field, MPC has been applied to several variables,
for instance to the electromechanical torque [61–64], the mechanical
speed [65–67] or the stator currents [68–70], and to different kind
of motors like IMs, PMSMs and SynR motors. Furthermore, different
MPC schemes have been proposed, some called indirect MPC where a
modulator is compulsory and others called direct MPC or finite control
set (FCS) MPC able to directly manipulate the switching pattern. Since
the discrete nature of a VSI, direct MPCs are playing the lion’s share.
Its inherent ability to find the optimal switching pattern, according
to a cost function, allows to fully exploit the potentialities of the
converter. This feature is interesting in high power application, where
the hardware oversizing is remarkably expensive. Alternatively, MPC

allows to reduce the hardware requirements, for example to reduce or
remove harmonic filters and to reduce DC–link capacitors [60].

The main advantage of MPC is the time domain formulation rather
than the frequency one. Generally, it enables MPC to address nonlinear
systems in a systematic way. It is worthwhile noting how SynR motors
are nonlinear systems and they are driven by VSIs which are switched
nonlinear systems. Moreover, MPC is the only controller able to system-
atically cope with hard constraints on manipulated variables, states
and controlled variable. This feature is suited for SynR motors control
since they can work in different conditions, as MTPA, flux–weakening
or MTPV, which are characterised by different active constraints. The
possibility to include these constraints directly in the controller could
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be extremely convenient for an effective control strategy. MPC consists
in shifting a major part of the control effort from the design stage to the
computational one. Therefore, in order to implement a comprehensive
MPC, a powerful hardware is mandatory.

A fundamental parameter in MPC is the prediction horizon since
performances, stability, parameters mismatch sensitivity, computa-
tional burden depend on it. Long prediction horizons yields a better
closed–loop performances than a short ones. In particular, the infinite
horizon case often ensures closed–loop stability, provided that a solu-
tion with a finite cost exists. Unfortunately, long horizons exacerbate
the computational issue. FCS MPC provides a quite intuitive implemen-
tation but the computational complexity grows exponentially with the
length of the prediction horizon, making the brute–force approach
of exhaustive search rapidly unfeasible when long horizons are em-
ployed. In order to make the problem computational tractable, in [68] a
heuristic branch–and–bound algorithm, namely SDA [71], used in e. g.
communications and cryptography, is utilised for power electronic
systems.

MPC is a promising control strategy for SynR motors, due to its
ability to control nonlinear system. In addition, it is based on a cost
function and it allows to address diverse and possibly conflicting
control objectives. These objectives can be prioritised, by weighting
them differently in the cost function. The cost function endues the
MPC with the capability of directly handles multiple–input multiple–
output (MIMO) plants without dividing them into multiple control
loops with single-input single–output (SISO) controllers in a cascaded
manner, unlike by PI controllers.

As introduced in Chapter 7, current control is the heart of high–
end VSI then an extensive research has to be carry out to design
the inverters of tomorrow. The proposed methods in Chapter 7 are
feasible and easy to understand since PI regulators are well known
in engineering. Nevertheless, they were not devised for controlling
nonlinear and discontinuous systems such as SynR motors driven by a
VSIs, indeed the concept of averaging is adopted. In some conditions,
better performances can be achieved with a more sophisticated control
scheme.

8.1 physical model of the system

The analysed MPC belongs to the FCS MPC then the switching pattern
is directly computed by the controller, i. e. the modulator is no longer
required. The computational complexity of FCS MPC grows exponen-
tially with the prediction horizon and with the number of levels that
characterise the VSI taken into account. The studied system consists of
a three–level neural point clamped (3L-NPC) VSI driving a SynR motor,
as shown in Figure 8.1. It is assumed that the DC–link voltage Vdc is
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Figure 8.1: 3L-NPC VSI with a SynR motor. The inverter has a constant neutral
point potential.

constant and the neural point potential vN is fixed to zero. It is worth
noting that 3L-NPC VSI is not the industrial standard but it is used for
high power application, typically above the megawatt. Nevertheless, it
was coupled with the SynR motor used throughout the thesis since the
main aim of this work was to extend the method proposed in [68] to
a nonlinear system. Of course, the DC–link voltage Vdc was reduced
from the typically 5200V for high power application to the industrial
standard 560V .

8.1.1 Inverter model

The single–phase switch position of a 3L-NPC is modelled with the
integer variables sa, sb, sc ∈ S , {−1, 0, 1}. Each leg of the 3L-NPC can
output a phase voltage of −Vdc/2, 0, Vdc/2. Introducing the vector
sabc = [sa sb sc]

T ∈ S = S× S× S to denote the three–phase switch
position, the output voltage of a three–level inverter in the three–phase
abc frame can be expressed as:

uabc =
Vdc

2
sabc. (8.1)

The voltage vectors of a 3L-NPC are depicted in Figure 8.2.

8.1.2 Motor model discretisation

The discretisation of the motor voltage equation is a fundamental step
indeed it is crucial to find a trade–off among accuracy and complexity
of the model, in order to make the state prediction feasible in real–time.

For the last time, the voltage equation of a SynR motor in the rotating
reference frame is reported:

dλdq
(
idq
)

dt
= udq − Ridq −ωmeJλdq

(
idq
)

. (8.2)

Since the mechanical dynamics are much slower than the electrical
ones, a constant motor speed is assumed during a control cycle.
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Figure 8.2: Voltage vectors produced by a three–level inverter shown in the
αβ plane with the corresponding values of the three–phase switch
positions sabc (where “+” refers to “+1’ and “-” to “-1”).

The implementation of the control strategy requires the discretisa-
tion of the continuous model. The method developed in [66] for a SynR

motor is adopted, as a trade–off between accuracy and complexity. Let
ξk indicate the sampled version of a generic continuous variable ξ(t)
at the sampling instant t = kTs. Introducing the average operator:

〈ξ〉k ,
1

Ts

∫ (k+1)Ts

kTs

ξ(t)dt (8.3)

the integration of (8.2) over the interval [kTs, (k+ 1)Ts] yields:

λk+1dq = λkdq + Ts
〈
udq
〉k

− RTs
〈
idq
〉k

− JTs
〈
ωmeλdq

〉k . (8.4)

Recalling the constant speed assumption over a sampling period,
imposing a constant voltage vector udq over the whole sampling
period and assuming that:

〈
idq
〉k ≈

ik+1dq + ikdq

2
,

〈
ωmeλdq

〉k ≈ ωme
λk+1dq + λkdq

2
(8.5)

the expression (8.4) can be further simplified to:

λk+1dq ≈ λkdq + Tsukdq − RTs
ik+1dq + ikdq

2
− JωmeTs

λk+1dq + λkdq

2
. (8.6)

Given the nonlinear relation between the current vector ik+1dq and

the flux linkage λk+1dq , (8.6) can be solved only numerically, which
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is undesirable when real–time applications are of concern. However,
accepting that the average current

〈
idq
〉k in (8.6) is approximated by

its instantaneous value ikdq (due to the small sampling interval), the

following closed–form solution for λk+1dq can be obtained:

λk+1dq ≈ (I − JωmeTs/2) (I + JωmeTs/2)
−1 λkdq

+ Ts

(
ukdq − Rikdq

)
(I + JωmeTs/2)

−1 .
(8.7)

The constant current assumption over a sampling period introduces a
negligible error. It is worth noting that the voltage resistance drop is
usually small respect to the motional terms. Therefore the error done
by neglecting the current variation on the stator resistance is less than
what would be obtained by keeping the flux linkages constant over a
sampling period.

When devising MPC algorithms it is useful to have the model in its
state–space representation [58]. Defining the state vector and the input
one as:

xkdq =

[
λkd

λkq

]
, ukdq =

[
ukd

ukq

]
(8.8)

the equation (8.7) can be rewritten as:

xk+1dq = Akxkdq + B̃ukdq (8.9)

where the time–varying state matrix is:

Ak =
1

1+M2


1−M

2 − RTs
Lkd

2M− RTsM
Lkq

−2M+ RTsM
Lkd

1−M2 − RTs
Lkq


 (8.10)

and the input matrix is:

B̃ =
1

1+M2

[
Ts MTs

−MTs Ts

]
(8.11)

where M = Tsωme/2. Moreover, the Lkd and Lkq are the d– and q–
apparent inductances computed at the current ikdq. The time–varying
output matrix Ck is defined as:

Ck =



1
Lkd

0

0 1
Lkq


 (8.12)

and the output equation is:

yk = Ckxkdq (8.13)

with the stator current in the dq frame forming the output vector, i. e.
yk = ikdq.
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Figure 8.3: Magnetic maps of a SynR motor: (a) flux linkages; (b) differential
and (c) apparent inductances.

The aim of the chosen MPC is to find the optimal switch position to
be applied to the inverter, i. e. sopt

abc. Therefore, the model of the drive
needs to be revised to reflect this. To this aim, (8.9) is written as:

xk+1dq = Akxkdq + B̃Tabc/dqukabc = Akxkdq + Bkskabc (8.14)

where the input matrix Bk = B̃Tabc/dqVdc/2 becomes time–varying.
With the proposed modelling the features of the motor model in the
dq frame, i. e. the magnetic maps independent of the position, are
still present, while, at the same time, the three–phase switch position
is modelled in a straightforward manner. Moreover, equations (8.13)
and (8.14) represent a state model with the input expressed in the
abc reference frame and state and output variables written in the
rotating reference frame. This simplifies the derivation of the reference
currents.

In order to simplify the analysis, but without any loss of generality,
only the saturation effects are taken into account and the magnetic
cross–coupling is neglected. The two flux components λd and λq are
modelled as two nonlinear functions, each depending on the relative
axis coordinate, i.e.:

λd = fd(id) , λq = fq(iq). (8.15)

The two functions (8.15) and the associated differential and apparent
inductances are shown in Figure 8.3. It was worth noting that the aim
is to extend a linear MPC to a nonlinear system and it was carried out
even if the cross–coupling is neglected. Probably, a real implementation
of the proposed MPC control paradigm would lead lower performance
than that achievable one with a MPC controller based on the entire
magnetic maps.
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8.2 direct model predictive control

Direct MPC or FCS MPC is a control paradigm in which the switching
signals are directly generated by the controller and fed into the inverter,
namely without the interposition of a modulator. Each possible three–
phase switch position is evaluated by the controller on the basis of the
subsequent system performance, as quantified by a scalar performance
index. The control action (i. e. the sequence of switch positions) that
yields the minimum cost of the chosen performance index is selected
as optimal. As can be understood, the definition of the performance
index, also known as cost function, is one of the key–elements of an
MPC algorithm and it is formulated based on the control objectives.
For the system under investigation, the control tasks are the following:

• the flux linkage λdq should track its reference λ∗dq accurately;

• the switching frequency has to be minimised;

• the inverter should be protected from overcurrents.

With regards to the first objective, by directly controlling the flux
linkage the stator current is indirectly controlled, as can be seen from
(8.15). It is worth remembering that the relation among flux linkages
and stator currents is a static mapping in a synchronous motor, as
shown in Chapter 4, and not a first–order dynamic relation as in IMs
[72]. Therefore, the flux linkage is chosen to be controlled because this
allows for the mathematical manipulations required when deriving
the integer least–squares (ILS) problem in Sec. 8.3.

At time–step k, the first two control objectives are mapped into the
cost function:

Jk =

k+N−1∑
l=k

∥∥∥λ∗,l+1dq − λl+1dq

∥∥∥
2

Q
+
∥∥∆slabc

∥∥2
2

(8.16)

which penalises the variables of interest over a finite prediction horizon
of N time–steps1. The λ∗dq is the flux linkage reference trajectory and
the term ∆slabc = slabc − sl−1abc accounts for the number of switching tran-
sitions involved between two consecutive time–steps. By minimising
the number of transitions the switching losses (switching frequency)
can be minimised as well. Matrix Q ∈ R2×2 is a diagonal, positive defi-
nite weighting matrix which is used to compute the quadratic forms of
the cost function. Note that ‖ξ‖2Q , ξTQξ denotes the squared norm
of the vector ξ weighted by the matrix Q. The choice of the diagonal
entries of the weighting matrix sets the trade–off between the tracking
accuracy of each flux linkage and the switching losses. In this thesis,

1 The 1–norm and the squared Euclidean norm of the switching effort yield the same
cost ‖∆sabc‖1 = ‖∆sabc‖22 since switching is possible only by one step up or down in
each phase.
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all the diagonal terms of Q are the same, meaning that the flux linkage
tracking errors are equally penalised. In principle, it is possible to
assign different weights. For instance, it could be interesting to track
accurately the flux λd, as it is the main responsible for the torque
response. It is worth noting how the most of the MPC schemes already
presented weigh the term related to the switching effort, i. e. ∆sabc,
since the stator currents were tracked with the same relevance.

As listed above, the protection of the inverter from overcurrents has
to be considered. This can be realised by imposing a constraint on the
stator current as follows:

∥∥∥ik+1dq

∥∥∥
2
6 ibnd (8.17)

where the positive scalar ibnd ∈ R+ defines the boundary value of
the stator current, as proposed in [73]. Generally, the control action
of MPC guarantees that the cost function is always the smallest as
possible. Nevertheless, the single controlled variables could assume
unacceptable values, e. g. the current could overcome a safety limita-
tion therefore an adequate constraint has to be added.

In order to find the optimal sequence of control actions at time–
step k, the cost function (8.16) has to be minimised with respect
to the so–called optimisation variable, namely the switch sequence
Sk =

[
sk,Tabc sk+1,Tabc . . . sk+N−1,T

abc

]T , over the horizon N. The following
problem needs to be solved in real–time:

Sopt,k = arg minimise
S

Jk (8.18a)

subject to: Sk ∈ S (8.18b)
∥∥∆slabc

∥∥∞ 6 1, ∀l = k, . . . , k+N− 1 (8.18c)∥∥∥ik+1dq

∥∥∥
2
6 ibnd (8.18d)

with S = S× · · · × S being the N–times Cartesian product of the set S,
representing the feasible input set2. Note that constraint (8.18c) allows
to avoid a shoot–through in the inverter.

According to the receding horizon principle [58], only the first
element sk,Tabc of the sequence Sopt,k is applied to the system, whereas
the rest elements are discarded. Following, at step k+ 1 the whole
procedure is repeated over a shifted prediction horizon after acquiring
new measurements and/or estimates. The receding horizon policy
is fundamental to provide feed–back to the control action since the
solution to the optimisation problem (8.18) yields at the time–step k an
open–loop optimal sequence Sopt,k from the time–step k to k+N− 1.
Hence, MPC combines open–loop constrained optimal control with the
receding horizon policy that provides feed–back and closes the control

2 The ‖∆sabc‖∞ denotes the infinity–norm of the vector ∆sabc, which is defined
as the component of ∆sabc with the largest absolute value, that is, ‖∆sabc‖∞ =

max (|∆sa|, |∆sb|, |∆sc|).
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loop. It is worth noting how the receding horizon policy is one of the
main differences together the capability to manage constraints among
the MPC and the linear–quadratic regulator (LQR).

8.3 integer least–squares problem

The integer optimisation problem (8.18) is clearly nonlinear. However,
since its form somewhat resembles the linear problem solved in [68],
motivated by [74] where a nonlinear problem was transformed to a
linear one, it was reformulated so as to solve it with the SDA. More
details on the operation of the SDA can be found in [68] and [75]. This
algorithm is a smart branch–and–bound method which can find the
solution of the long–horizon direct MPC problem in a computationally
efficient manner [75]. The underlying idea is that the integer solution
of the direct MPC problem is in the hypersphere (n-dimensional sphere)
of radius ρk centred at the unconstrained solution. This allows the a–
priori exclusion of several candidate switch positions, thus, effectively
reducing the number of possible solutions to be tested in real–time.
Only these sequences the elements of which correspond to nodes that
are inside the hypersphere are evaluated.

In brief, the main goal is to explore at least one complete branch,
i. e. a complete switch sequence Sk, from the root of the tree to the
last node (leaf). Every time a complete branch is visited, the radius
of the hypersphere gets smaller and the procedure is repeated as
long as all possible paths to the leaf nodes are explored. By doing so,
the optimal switch sequence that leads to the most desirable system
behaviour is found. To speed up the search process, the initial radius
ρk of the hypersphere should be carefully chosen. It should be large
enough in order to contain at least one complete switch sequence,
but sufficiently small to reduce the number of candidate solutions
that need to be evaluated. Moreover, when computing the radius the
current constraint (8.17) should be taken into account. This makes
the initial choice of ρk more challenging since all switch positions
that result in a current that exceeds its respective limit ibnd should be
discarded from the feasible set. To achieve this, the initial radius is
defined according to [73].

The extension of the SDA to a nonlinear system can be done starting
from the linear formulation [68]. Given the unconstrained solution
Sunc,k, which will be computed in Sec. 8.3.1, the cost function can be
rewritten as follows:

Jk =
(
Sk − Sunc,k)T Hk

(
Sk − Sunc,k) (8.19)

where Hk is symmetric, positive definite matrix defined in Sec. 8.3.1.
A unique invertible and lower triangular matrix Vk ∈ R3N×3N exists
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and satisfies (Vk)TVk = Hk. The problem (8.18) can be rewritten as
the equivalent constrained ILS problem:

Sopt,k = arg minimise
S

∥∥S̄unc,k − VkSk
∥∥2
2

(8.20a)

subject to Sk ∈ S (8.20b)
∥∥∆slabc

∥∥∞ 6 1, ∀l = k, · · · , k+N− 1 (8.20c)∥∥∥ik+1dq

∥∥∥
2
6 ibnd (8.20d)

where S̄unc,k = VkSunc,k. Note that in order to extend the SDA to
the nonlinear system under examination, a linearisation of the system
along the unconstrained solution has been accomplished, see Sec. 8.3.1.

8.3.1 Unconstrained solution

As mentioned, (8.18) represents a nonlinear quadratic function and its
minimum cannot be computed by a closed–form expression. There-
fore, the Gauss–Newton algorithm (GNA) [76] was adopted to find the
unconstrained solution of the cost function, by first ignoring the con-
straints (8.18b)–(8.18d). The GNA can only be used to minimise a sum
of squared function values, but it has the advantage that the second
derivatives, which can be challenging to compute, are not required.
It is worth noting how the LMA, used to train the NN in Chapter 4, is
an extension of GNA where the trust region approach is used. Both
algorithms are obtained in Appendix C. The iterative algorithm is of
the form:

Sunc,k(z+ 1) = Sunc,k(z) −
[
Jk(z)T Jk(z)

]−1
Jk(z)Tε(z)

z ∈ {0, . . . , Z}
(8.21)

where Z ∈ N is the number of iterations needed to find the global
minimum with the given accuracy. Sunc,k(z) denotes the (real–valued)
switch position at iteration z, while Jk(z) is the Jacobian matrix of the
problem and ε(z) is the error vector which has the same arguments
as the cost function Jk, i. e. is a function of the flux linkages and the
switching effort. It should be pointed out that both Jk(z) and ε(z) are
calculated with respect to Sunc,k(z).

Given the error vector, and by splitting the two terms in (8.16), the
following expression is obtained:

Jk =

k+N−1∑
l=k

∥∥∥λ∗,l+1dq − λl+1dq

∥∥∥
2

Q
+

k+N−1∑
l=k

∥∥∆slabc

∥∥2
2
=

εTdqεdq + ε
T
sabc
εsabc = ε

Tε

(8.22)

where ε = [εTdq ε
T
sabc

]T ∈ R5N×1 is the error vector. The structure of ε
facilitates the GNA execution.
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The minimisation procedure (8.21) has to be computed at each time–
step. Therefore, it needs to be as computationally efficient as possible.
To this end, the previously computed unconstrained solution Sunc,k−1

is utilised according to the receding horizon principle of MPC. It is
reasonable to assume that the optimal solution at step k will be close
to that at step k − 1, at least at steady–state conditions. Therefore,
at each step the GNA is initialised using the previous solution and
the system is linearised along the same trajectory. The initial guess
of Sunc,k(0) can be obtained by shifting Sk−1 by one time–step and
repeating the last switch position:

Sunc,k(0) = RSk−1 (8.23)

where the matrix R is defined as:

R =




03 I3 03 · · · 03
03 03 I3

. . .
...

...
. . . . . . 03

03 · · · · · · 03 I3
03 · · · · · · 03 I3




(8.24)

Given the guess for the initial input, it is possible to calculate the
associated initial flux linkage trajectory λkdq(0) using (8.14) and (8.23).
The initial error vector ε(0) can be computed as:

ε(0) =



√

Q̃
(
λ∗dq − λ

k
dq(0)

)

Sunc,k(0) − Sk−1


 =



√

Q̃
(
λ∗dq − λ

k
dq(0)

)

−STSk−1


 (8.25)

where Q̃ ∈ R2N×2N is a block diagonal matrix Q̃ = diag (Q, . . . ,Q)

and the time–invariant matrix S is defined as:

S =




I3 03 03 · · · 03

−I3 I3 03
. . .

...

03 −I3 I3
. . . 03

...
. . . . . . . . . 03

03 · · · 03 −I3 I3




(8.26)

Matrix Jk(z) ∈ R5N×3N is the Jacobian matrix of function (8.16),
calculated along the trajectory λkdq(z). The entries of Jk(z) are defined
as the derivative of each element of ε(z) with respect to each element
of Sunc,k(z). Thanks to the structure of the vector error ε, the Jacobian
has the following advantageous structure:

Jk(z) =

[
Υk(z)

S

]
(8.27)
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In addition, the time–varying matrix Υk(z) is a lower triangular block
matrix owing to the fact that the prediction error at step n is indepen-
dent of the input at step m, with m > n. For this reason, Υk(z) can be
defined as:

Υk(z)
(
2(m− 1) + 1 : 2m, 3(n− 1) : 3n

)
=

=


√

Q




∂εmd
∂sna

∂εmd
∂snb

∂εmd
∂snc

∂εmq
∂sna

∂εmq
∂snb

∂εmq
∂snc


 if n 6 m

02,3 otherwise

(8.28)

where m,n = 1, . . . ,N. It is worth remembering that matrix Jk(z) and
the error vector ε(z) need to be recalculated at each iteration z until
the error vector becomes smaller than a predetermined threshold. The
(real–valued) switch position that minimises the error vector is the
so–called unconstrained solution Sunc,k.

After the preprocessing stage is over, i. e. matrix Υk and the un-
constrained solution Sunc,k are computed, matrix Hk is computed
according to the following expression:

Hk = (Υk)T Q̃Υk + STS (8.29)

8.3.2 Hypersphere radius computation

The initial radius ρk of the hypersphere defines the upper bound
of the search process. As mentioned above, a good upper bound
should guarantee that problem (8.20) is feasible as well as that SDA

can terminate (if possible) within the given time, i. e. the sampling
interval Ts. Therefore, it should be as small as possible, consistently
with the prerequisite that the hypersphere has to include almost one
complete branch of the tree. To this aim, in [77], the initial radius is
computed as:

ρk = min
{
ρk1 , ρ

k
2

}
(8.30)

where

ρk1 =
∥∥∥ S̄unc,k − VkSbab,k

∥∥∥
2

(8.31)

and

ρk2 =
∥∥∥ S̄unc,k − VkUed,k

∥∥∥
2

. (8.32)

Radius ρk1 in (8.31) depends on Sbab,k that corresponds to the rounded
unconstrained solution to the closest integer vector which respects the
constraints [78], i.e.:

Sbab,k = bSunc,ke s.t. Sbab,k ∈ S. (8.33)
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Radius ρk2 , as can be seen in (8.32), is a function of Ued,k which is
the previously applied solution Sk−1 shifted by one step [68], i. e. the
initial guess Sunc,k(0) for the GNA.

However, the computation of the radius ρk is more challenging
when (8.17) has to be considered. More specifically, the hypersphere
needs to include at least one switch position that leads to a current
which does not violate its respective bound ibnd. Calculating the radius
based on (8.30) does not guarantee that the problem is feasible since
the unconstrained solution is computed while neglecting the current
constraint. As a consequence, the procedure for the computation of
the initial radius needs to be revised. To this end, the constraint on the
current, which is an output constraint since yk = ikdq, is translated into
an input one, as follows. By using (8.13), (8.17) can be rewritten as:

∥∥∥∥CkAkxkdq + CkB̃
Vdc

2
skdq

∥∥∥∥
2

6 ibnd (8.34)

that is an ellipse E in the rotating reference frame centred at:

sconstr,k
dq = −

Vdc

2
(B̃)−1Akxkdq (8.35)

where skdq is the switch position in the rotating reference frame. The

ellipse E can be expressed in a matrix form as p̃T G̃p̃ = 0 where the
vector p̃ is defined as p̃ = [(skdq)

T 1]T and the matrix G̃ as:

G̃ =

[
Θ ΨT/2

Ψ/2 Γ

]
(8.36)

where

Θ =

(
CkB̃

Vdc

2

)T (
CkB̃

Vdc

2

)

Ψ = 2(xkdq)
T
(
CkAk

)T
(

CkB̃
Vdc

2

)

Γ = (xkdq)
T
(
CkAk

)T (
CkAk

)
xkdq − (ibnd)2.

(8.37)

The ellipse can be brought back to the abc three–phase frame pTGp =

0 by employing the transformation from the dq to abc, namely:

G = T̄abc/dqG̃T̄Tabc/dq (8.38)

being the vector p defined as p = skabc and the matrix T̄abc/dq as
T̄abc/dq = [Tabc/dq; 1/2 1/2 1/2].

In order to meet constraint (8.17) the control input has to lie within
the ellipse E, as shown in Figure 8.4 in the αβ plane. It is worth
remembering that there is a static relation between abc and αβ frames,
then they are equivalent. Formulating the output constraint (8.17)
as an input one changes the feasible set of the integer–valued input
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sfeas,k
αβ

sunc,k
αβ

sconstr,k
αβ

ρk

β

α

E

Hypersphere

Figure 8.4: Feasible set in the αβ plane when the current constraint (8.17) is
active. The switches positions that satisfy the current constraint
are the black solid circles. In this example, only one solid circle lies
inside the hypersphere and meets all the constraint at the same
time; this is the solution to the problem, and the corresponding
three-phase switch position is applied to the converter.

S to Sconstr = Sconstr1 × Sconstr2 × · · · × SconstrN with Sconstri = S for
i ∈ {2, . . . ,N} and

Sconstr1 =
{

skabc|s
k
abc ∈ E ∧ skabc ∈ S

}
(8.39)

Having defined the feasible set, the computation of the initial radius
ρk has to be refined accordingly. It has to respect the same requirement
as in the unconstrained case, i.e. it should be smallest as possible, and
the associate hypersphere has to include almost one feasible input.
Therefore, the initial radius is computed as in [73].

In order to explain the concept of the refined feasible set and the
revised computation of the radius, Figure 8.4 shows a case where
the feasible set does not include all possible switch positions, but
rather a subset of them, as limited because of the current constraint
(8.17). For simplicity, the visualisation is done in the αβ plane. As can
be seen, the nearest point, i. e. switch position, to the unconstrained
solution does not respect the current constraint. This implies that the
hypersphere needs to be enlarged to include at least one feasible point.
Hence, the radius ρk increases until it encloses until one feasible point,
i. e. the point sfeas,k

αβ , which corresponds to a switch position in the abc
frame.

8.4 simulation results

The proposed method was simulated for a 3L-NPC inverter with a
constant DC bus voltage Vdc = 560V , driving the SynR motor with
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parameters reported in Table A.1. All the simulations were carried
out under the MTPA condition. Accordingly, the nominal torque is
produced by id = 2.25A and iq = 3.30A. The sampling interval was Ts

= 25µs. It is worth noting that the sampling interval plays a crucial role
on the MPC performances. It should be as small as possible in order to
have a high granularity in the control action but, at the same time, the
prediction horizon should be extended to cover a proper time horizon.
A trade–off among the sampling time and the prediction horizon has
to be found [79]. Finally, the computational burden inherited by the
prediction horizon has to taken into account for a real implementation
which plays a strong restriction. The performance of direct MPC with
long prediction horizon was investigated at steady–state, for a ten–step
N = 10 prediction horizon. To minimise the nonlinear cost function Jk,
only one iteration of the proposed algorithm was needed. A matrix
Q = diag (132, 132) was chosen by a trial–and–error procedure, to
obtain a switching frequency of approximately 190Hz.

The results over one fundamental period are depicted in Figure 8.5.
Figure 8.5a shows the three–phase switch positions, i. e. the outputs of
direct MPC. The corresponding stator current iabc and the flux linkages
in the rotating reference frame along their references are depicted
in Figure 8.5b and Figure 8.5c, respectively. Both flux linkages and
stator currents follow accurately their reference values. For the sake
of completeness, the harmonic content of the stator currents is shown
in Figure 8.5d. A current total harmonic distortion (THD) of 5.01% is
achieved, a satisfactory result if compared with the THD=7.62% of the
conventional asymmetric space vector modulation (SVM) at the same
switching frequency, see also Figure 8.6.

Figure 8.6 depicts the MPC performances obtained with different
horizon lengths (N = 1, 5, 10) compared to ones obtained with carrier–
based PWM and SVM. Specifically, a three–level, asymmetric, regularly
sampled carrier–based PWM was implemented with two triangular
carriers that are in phase, the so called phase disposition. In addition,
a third harmonic component is added to the modulating reference
signal. The carrier–based PWM with phase disposition is generally
accepted for multilevel converter because a lowest harmonic distortion
is achieved. Each dot corresponds to a single simulation carried out
with a different value for the diagonal, non–zero entries of Q, to
test different switching frequencies. The fundamental frequency was
50Hz.

It is worth noting that the proposed direct MPC shows its advantages
with respect to SVM at lower switching frequencies or, more generally,
when the ratio between the switching frequency and the fundamental
one is less than 10, Figure 8.6. One more thing observed in this figure
is that the current THD reduces as the length of the prediction horizon
increases. This is in line with the published literature, see i. e. [79] and
[72]. However, it should be mentioned that the computational require-
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Figure 8.5: Direct MPC with flux linkages reference tracking at steady-state
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prediction horizons. The THD obtained with the asymmetric SVM

is added for comparison.

ments increase with the length of the prediction horizon, thus, there is
a trade–off between system performance and prediction horizon that
can be implemented [77]. Finally, for a complete analysis it is worth
remembering that the SVM and the MPC cannot be implemented with
the same hardware. The computational effort of the proposed MPC

is orders of magnitude greater than that required by SVM, which is
widespread implemented.

Figure 8.7 shows the effectiveness of the current limitation around
1.05 IN, envisaging the unconstrained case in Figure 8.7a and the
constrained one in Figure 8.7b. The stator current is depicted in the
stationary αβ plane, with the current reference and the bound. As can
be seen in Figure 8.7a, where the current constraint (8.17) is inactive,
such control actions, namely the switch position, are taken by the
MPC algorithm that result, occasionally, in an instantaneous current
that exceeds the bound, shown as a dashed circle. On the other hand,
when the current constraint is taken into account by the optimisation
problem, the current always remains within the current limitation, as
depicted in Figure 8.7b. A side effect is that the MPC algorithm forces
the converter to switch more frequently to keep the current within
its bound, so that the switching frequency increases from 190Hz to
227Hz. The subsequent increase in the switching losses is balanced by
a lower current distortion, which reduces from THD = 5.01% to THD =
4.12%.

8.5 future works

The proposed MPC scheme was evaluated only through simulation
since the real implementation demands a remarkable computational
load. Therefore, an extensive work has to be carried out in order to
implement it on a real test bench where a FPGA is likely mandatory.
The optimisation stage has to be further developed in relation with
the available hardware. At the same time, other aspects of MPC have
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to be deeply understood. In some working conditions, better THD can
be achieve with MPC respect to the SVM and the prediction horizon
influence was depicted. Notwithstanding, some open issues which
would be interesting to analyse are the prediction horizon effect on
parameters mismatch, MPC behaviour during transients, development
of MPC speed control which takes into account additional constraints
such as MTPA, flux–weakening and MTPV curves.





9
C O N C L U S I O N

Horizon 2020 is pushing forward a comprehensive strategy to foster
smart, inclusive and sustainable growth in Europe. Innovation was
placed at the heart of the 2020 strategy since it is also the best means of
successfully tackling major societal challenges, such as climate change
and energy efficiency [80]. Smart urban technologies can provide an
important contribution to the sustainable development of European
cities. The smart cities and communities cover the areas of energy,
transport, information and communication. The objective is to catalyse
progress in those areas which offer new interdisciplinary opportunities
to improve services while reducing energy and resource consumption
and greenhouse gas and other polluting emissions. Electric motors
represent one of the biggest electric energy consumers in the world,
due to their wide utilisation both in industrial, transport and domestic
applications.

In this thesis work, the aspects involving the development of AC

high–end electric drives for SynR motors have been carefully studied
and deepened. SynR motors fulfil the objectives posed by Horizon 2020
since they lack PM then they have smaller environmental footprint
than PMSM, they may attain higher efficiency than IM and, last but not
least, they are cheap. In order to fully exploit their features and to
essentially increase the system efficiency, the first part of this disser-
tation introduced novel techniques to estimate the stator resistance
and the highly nonlinear magnetic model of the connected motor. The
main characteristic of the proposed methods is that they can work
even without the need of specific tests, namely they can estimate the
motor parameters during the normal working cycle of the electric
drive.

The introduced magnetic model is based on RBF NN. A grey–box
approach looked appropriate since the magnetic model of a reluctance–
based motor is highly nonlinear and the NN returns a continuous
function. It is an original contribution since it paves the way to many
applications in which the flux linkages derivatives are needed. For
instance, an innovative MTPA tracking method was presented. It is
deeply merged with the magnetic model identification and it is able
to understand where the real MTPA curve is respect to the current
working point by exploiting the locally estimated flux linkages. The
overall accuracy in the model estimation takes advantage of the precise
stator resistance identification. It is completely independent from
all the other motor parameters, providing a reliable and accurate
estimation that is exploited for the NN training algorithm.
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An accurate motor model shows its usefulness when used in con-
junction with an advanced control algorithm. As a natural prosecution
of the activities, the second part of the dissertation dealt with model–
based control paradigms. The proposed PI–based current regulators
exhibited clear improvements compared to classical control methods.
Current dynamics met overall requirements in the entire input current
range. All the proposed techniques, both identification and control
algorithms, were deeply discussed and experimentally evaluated. The
last control technique taken into consideration was the sophisticated
MPC. It was proven to exhibit many advantages, but the implemen-
tation is still tricky. The study carried out in this work about it was
devoted to the extension of the prediction horizon for nonlinear sys-
tems. The results were satisfactory and promising as well. A reduced
harmonic content was attained respect to that achievable with SVM

for low switching frequencies which can be benefited by high power
converters. It opens up interesting researches perspectives.

The identification and control techniques presented in this dis-
sertation can be implemented in general–purpose AC electric drive,
especially if connected to a nonlinear motor as SynR one. Some of
the depicted methods, i. e. the NN and the MPC, require a powerful
hardware with a fast DSP and/or a FPGA while the other techniques
can be directly applied on a standard drive. Future activities will focus
on further optimisation and comprehension of the MPC potentialities,
on development of a sensorless scheme for anisotropic motors based
on the accurate available motor model and on overcoming of the
assumptions made for the magnetic maps identification.



Part III

A P P E N D I X





A
T E S T B E N C H

The test bench was composed by two motors coupled in a back-to-back
configuration with a torque transducer, as in Figure A.1. The load
motor was a PMSM and it was driven by a standard AC drive which
could be set in current or speed control, depending on the test that had
to carried out. Different MUTs were used in the experimental stages
and their parameters are shown in Table A.1. The MUT was fed by a
two-level three-phase insulated gate bipolar transistor (IGBT) voltage
inverter, connected to a variable voltage DC bus and controlled by a
fast control prototyping system featuring a dSPACE DS1104 controlled
board, programmed in C-language. The switching frequency Fs was
set to 10 kHz. The inverter nonlinearities are compensated by a LUT

based technique as described in [81], that is a common approach in
standard AC drives. In order to improve the precision of the estimation
techniques, a direct voltage measurement was also adopted. The volt-
age measurements was carried out by means of a custom FPGA–based
digital voltage measurement system, based on a fast PWM signal over-
sampling. In fact, a direct voltage measurement is usually preferred
over an estimation based on the use of the voltage references [24, 82–
84]. It is worth noting how the benefits coming from the voltage mea-
surements are manifolds. To mention some of them, advanced control
strategies based on model based prediction, sensorless control and
parameters estimation take great advantages from exact knowledge of
the voltages.

VLMMUT

Figure A.1: Experimental rig.
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IPM1 IPM2 SynR

Nominal current (A) 4.2 12.1 4

Nominal speed (rpm) 3000 3000 1500

Nominal Torque (Nm) 4.5 16 5.5

Pole pairs 2 3 2

Stator resistance (Ω) 2.73 0.367 4.76

d–inductance (mH) 21 8 380

q–inductance (mH) 114 15.7 85

Inertia (kgm2) 3 · 10−3 2.4 · 10−3 3 · 10−3

PM flux linkage (V s) 0.23 0.24 –

Table A.1: Synchronous motors nameplate data.



B
I N D U C TA N C E S C O M P U TAT I O N

b.1 inductances in p pole pairs machine

The winding inductances of a p pole pairs machine may be determined
by considering the elementary 4–pole, 3–phase synchronous machine
shown in Figure B.1. In order to compute the self–inductance of the a
winding, the air–gap flux density due to current only in the a winding
can be obtained from (2.12) as:

Br(φs, θrm) = µ0
MMFa(φs)

g(φs − θrm)
(B.1)

where for a p pole pairs machine the MMFa is given by (2.7) and θrm

is defined in Figure B.1. From (2.11), the air–gap length for a p pole
machine can be approximated as:

g(φs − θrm) =
1

α1 −α2 cos (2p(φs − θrm))
. (B.2)

Substituting (2.7) and (B.2) into (B.1), it yields:

Br(φs, θrm) = µ0
Ns

2p
ia cos(pφs) [α1 −α2 cos (2p (φs − θrm))] . (B.3)

Following (2.16), the flux linkage for a p pole pairs machine can be
obtained as:

λa = Lσia + p

∫ 2π
p

π
p

Na(φs)

∫φs+
π
p

φs

Br(ξ, θrm)rl dξdφs (B.4)

where

Na(φs) = −
Ns

2p
sin (pφs) ,

π

p
6 φs 6

2π

p
. (B.5)

The double integral in (B.4) is multiplied by p to account for the flux
linkages of the complete a winding. Evaluating (B.4) and dividing by
ia yields:

La = Lσ +
N2s
4p3

πµ0rl
(
α1 −

α2
2

cos (2pθrm)
)

(B.6)

Finally, to link the p pole pairs machine inductances with the one pole
pair motor describe in Sec. 2.1.2, it holds that:

θr = pθrm. (B.7)

The same procedure can be followed to compute the others self–
and mutual–inductances for a p pair poles machines.
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Figure B.1: Elementary 4–pole, 3–phase synchronous machine.

b.2 inductances in the rotating reference frame

The inductances matrix in the rotating reference frame (2.39) can be
computed by starting (2.27). Reminding the matrix transformation
Tabc/dqo among the abc reference frame to the dqo rotating reference
frame defined as:

Tabc/dqo =
2

3




cos (ϑme) cos
(
ϑme −

2π

3

)
cos
(
ϑme −

4π

3

)

− sin (ϑme) − sin
(
ϑme −

2π

3

)
− sin

(
ϑme −

4π

3

)

1√
2

1√
2

1√
2




(B.8)

and in compact notation:

ξdqo = Tabc/dqoξabc (B.9a)

ξabc = T−1
abc/dqoξdqo (B.9b)

where Tdqo/abc = T−1
abc/dqo. By applying (B.9b) to (2.27), it yields:

T−1
abc/dqoudqo = RT−1

abc/dqoidqo +
dT−1

abc/dqoλdqo

dt
(B.10)

or equivalently:

udqo = Ridqo + Tabc/dqo

dT−1
abc/dqoλdqo

dt
(B.11)
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In the linear case, the flux linkages can be computed by multiplying
the motor inductances with the stator currents plus the flux linkages
contribute due to the PM, as following:

λabc = Labciabc + λmg,abc (B.12)

and by applying (B.9b) to (B.12), it yields:

T−1
abc/dqoλdqo = LabcT−1

abc/dqoidqo + T−1
abc/dqoλmg,dqo (B.13)

therefore:

λdqo = Tabc/dqoLabcT−1
abc/dqoidqo + λmg,dqo

= Ldqoidqo + λmg,dqo
(B.14)

where Ldqo = Tabc/dqoLabcT−1
abc/dqo. The flux linkages due to the PM in

the rotating reference frame λmg,dqo is a constant vector and equal to:

λmg,dqo = Tabc/dqoλmg,abc =



Λmg

0

0


 (B.15)

The inductances matrix in the rotating reference frame Ldqo can be ob-
tained after many tedious algebraic manipulations which are hereafter
omitted. The final result can be obtained by substituting (2.22) and
(2.23) into (2.29b) and the resulting matrix computed with (B.9a) and
(B.9b) in according to Ldqo = Tabc/dqoLabcT−1

abc/dqo. The matrix Ldqo is
equal to:

Ldqo =



Ld 0 0

0 Lq 0

0 0 Lσ


 (B.16)

with

Ld = Lσ +
3

2
(L0 − L2)

Lq = Lσ +
3

2
(L0 + L2) .

(B.17)

By replacing (B.14) into the (B.11), it gets:

udqo = Ridqo + Tabc/dqo

dT−1
abc/dqo(Ldqoidqo + λmg,dqo)

dt

= Ridqo + Tabc/dqo

dT−1
abc/dqo

dt
(Ldqoidqo + λmg,dqo)

+ Ldqo
didqo

dt

(B.18)
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where the position independence of the matrix Ldqo and the vector
λdqo is exploited. In addition, it holds:

Tabc/dqo

dT−1
abc/dqo

dt
= ωme



0 −1 0

1 0 0

0 0 0


 = ωmeJ̄. (B.19)

Finally, the voltage balance in the rotating reference frame is:

udqo = Ridqo + Ldqo
didqo

dt
+ωmeJ̄(Ldqoidqo + λmg,dqo)

= Ridqo + Ldqo
didqo

dt
+ωmeJ̄Ldqoidqo + edqo

(B.20)

where

edqo = ωmeJ̄λdqo =




0

ωmeΛmg

0


 (B.21)

By disregarding the homopolar component in (B.20), the (2.37) is
obtained.



C
G AU S S – N E W T O N A N D L E V E N B E R G – M A R Q UA R D T
A L G O R I T H M

The aim of GNA, LMA and other algorithms introduced in this appendix
is to find the value of x which minimise the cost function F(x) [42]. All
the presented algorithms are iterative then from some initial guess x0,
they are updated according to an equation of the form:

xk+1 = xk +αkpk (C.1)

where the vector pk represents a search direction and the positive
scalar αk is the learning rate which determines the length of the step.

Updating the initial guess, the cost function has to decrease at each
iteration as follow:

F(xk+1) < F(xk) (C.2)

therefore the direction pk has to be chosen to go downhill for suffi-
ciently small learning rate αk. Considering the first–order Taylor series
expansion of F(xk) as:

F(xk+1) = F(xk +∆xk) ≈ F(xk) + (gk)T∆xk (C.3)

where gk is the gradient evaluated in xk:

gk , ∇ F(x)|x=xk . (C.4)

For F(xk+1) to be less than F(xk), the second terms on the right–hand
side of (C.3) must be negative:

(gk)T∆xk = αk(gk)Tpk < 0. (C.5)

By selecting αk small but greater than zero, this implies:

(gk)Tpk < 0. (C.6)

Any vector pk that satisfies this equation is called a descent direction
and the function has to go down if a small enough step in this direction
is taken. The direction in which the function F(xk) decreases most
rapidly corresponds when (gk)Tpk is most negative. By assuming
that the length of pk does not change but only the direction, the inner
product between the gradient and the direction vector is most negative
when the direction vector has the same direction but opposite sign of
the gradient. Therefore, a vector that points in the steepest descent
direction is:

pk = −gk. (C.7)
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Replacing (C.7) in (C.1) yields:

xk+1 = xk −αkgk (C.8)

which is the method called steepest descent.
The derivation of the steepest descent algorithm is based on the

first–order Taylor series expansion. Exploiting the second–order Taylor
series:

F(xk+1) = F(xk +∆xk) ≈ F(xk) + (gk)T∆xk +
1

2
∆(xk)TGk∆xk (C.9)

where

Gk = ∇2 F(x)|x=xk (C.10)

is the Hessian evaluated in xk, the Newton’s method can be derived.
The principle behind the Newton’s method is to locate the stationary
point of this quadratic approximation to F(x). In order to find the
minimum of (C.9), the gradient of F(xk+1) can be computed as:

∇F(xk+1) = Gk∆xk + gk (C.11)

and setting (C.11) equal to zero and solving for ∆xk yields:

∆xk = −(Gk)−1gk. (C.12)

The Newton’s method is then defined as:

xk+1 = xk − (Gk)−1gk (C.13)

This method always finds the minimum of a quadratic function in
one step because it is designed to locate the stationary point of the
quadratic function. If the cost function is quadratic, it is minimised
in one step. If the cost function F(xk) is not quadratic, the Newton’s
method does not generally converge in one step. Actually, the conver-
gence is not guaranteed at all since it depends on the function and the
initial guess.

In case of the cost function F(x) is a sum of squares of other nonlinear
function, GNA and LMA can be derived. By assuming that F(x) is a
sum of squares function:

F(x) =
N∑

n=1

(vn)2(x) = vT (x)v(x) (C.14)

then the j–th element of the gradient is:

[∇F(x)]j = ∂F(x)
∂xj = 2

N∑
n=1

vn(x)
∂vn(x)
∂xj . (C.15)

The gradient can therefore be written in matrix form:

∇F(x) = 2JT (x)v(x) (C.16)
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where

J(x) =




∂v1(x)
∂x1

∂v1(x)
∂x2

· · · ∂v1(x)
∂xn

∂v2(x)
∂x1

∂v2(x)
∂x2

· · · ∂v2(x)
∂xn

...
...

...
∂vN(x)
∂x1

∂vN(x)
∂x2

· · · ∂vN(x)
∂xn




(C.17)

is the Jacobian matrix. In order to minimise (C.14) with the Newton’s
method (C.13), the Hessian matrix has to be computed as:

[
∇2F(x)

]k,j
=
∂F(x)
∂xk∂xj = 2

N∑
n=1

{
∂vn(x)
∂xk

∂vn(x)
∂xj + vn ∂v

n(x)
∂xk∂xj

}
(C.18)

which can be expressed in matrix form as following:

∇2F(x) = 2JT (x)J(x) + 2S(x) (C.19)

where

S(x) =
N∑

n=1

vn(x)∇2vn(x). (C.20)

By assuming that S(x) is small then negligible, the Hessian matrix can
be approximated as:

∇2F(x) ≈ 2JT (x)J(x) (C.21)

Substituting (C.21) and (C.16) into (C.13), the GNA can be obtained:

xk+1 = xk −
[
2JT (xk)J(xk)

]−1
2JT (xk)v(xk)

= xk −
[
JT (xk)J(xk)

]−1
JT (xk)v(xk).

(C.22)

It is worth noting how that the advantage of GNA over the standard
Newton’s method is that it does not require the calculation of second
derivatives.

One problem with the GNA is that the matrix H = JT (x)J(x) may not
be invertible. This can be overcome by using the following modification
to the approximate Hessian matrix:

H̃ = H + µI (C.23)

This expedient makes the matrix H̃ certainly invertible. In order to
demonstrate it, let suppose that the eigenvalues and eigenvectors of
H are {λ1, λ2, . . . , λn} and {z1, z2, . . . , zn}, respectively. Then:

H̃zi = [H + µI] zi = Hzi + µzi = λizi + µzi = (λi + µ)zi (C.24)

therefore the eigenvectors of H̃ are the same as the eigenvectors of
H, and the eigenvalues of H̃ are (λi + µ). The matrix H̃ can be made
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positive definite by increasing µ until (λi + µ) > 0 for all i, then the
matrix will be invertible.

Replacing the H with H̃ in (C.22), the LMA is derived:

xk+1 = xk −
[
JT (xk)J(xk) + µkI

]−1
JT (xk)v(xk). (C.25)

The LMA has the very useful feature that as µk is increased it ap-
proaches the steepest descent algorithm with small learning rate:

xk+1 ≈ xk 1

µk JT (xk)v(xk) = xk −
1

2µk∇F(x), for large µk (C.26)

while as µk is decreased to zero the algorithm becomes the GNA.
The algorithm begins with a µk set to some small value. If a step

does not yield a smaller value for F(x), then the step is repeated
with µk multiplied by some factor ϑ > 1. The cost function should
decrease since a small step in the direction of the steepest descent
is taken. If the step produces a smaller value for F(x), then µk is
divided by ϑ for the next step, so that the algorithm will approach
GNA, which should provide a faster convergence. The LMA provides
a nice compromise between the speed of Newton’s method and the
guaranteed convergence of the steepest descent.



D
D E L AY I N T H E R O TAT I N G R E F E R E N C E F R A M E

In order to describe the effect of the control and inverter delay Td in
the rotating reference frame, the method illustrated in Sec. 3.2 can be
used. The relation among the actual voltages and the reference ones in
the rotating reference frame, shown in Figure D.1, can be written as:

udq = Tαβ/dq(ωmet)×
[

e−sTd 0

0 e−sTd

]
×Tdq/αβ(ωmet)u∗dq (D.1)

which represents the base-band dynamical response of a modulated
system, i. e. the delay. Equation (D.1) is akin to (3.5) with (3.6). Both
equations are a composition of time–domain and Laplace–domain
matrices, so (D.1) can be rewritten in the Laplace–domain only by
applying the technique presented in Sec. 3.2. In detail, udq can be
expanded to obtain the expressions of ud and uq. For sake of simplicity,
only ud is obtained hereafter:

ud = cos(ωmet)× e−sTd × cos(ωmet)u
∗
d − · · ·

· · ·− cos(ωmet)× e−sTd × sin(ωmet)u
∗
q + · · ·

· · ·+ sin(ωmet)× e−sTd × cos(ωmet)u
∗
q + · · ·

· · ·+ sin(ωmet)× e−sTd × sin(ωmet)u
∗
d.

(D.2)

and, analogously, uq can be obtained. It is worth noting that both
voltages are composed by addends which represents the sequence of
a modulation (with carrier frequency ωme), a base–band filtering and
a demodulation.

The first term of (D.2) coincided with the modulated system shown
in Figure D.2. It is equal to Figure 3.4, with the exception of the final
filter F(s). Exploiting the Laplace transform of a modulated signal
(see (3.26)), the transfer function of the modulated system (D.2) can
be computed. For sake of simplicity, the transfer functions of the
modulated system depicted in Figure D.2 are reported hereafter. The
transfer function of the modulated input um is:

Um(s) =
1

2
[U(s− jωme) +U(s+ jωme)] . (D.3)

dq

αβ dq

αβu∗
d

u∗
q

u∗
α

u∗
β

ud

uq

uα

uβ

Delay Td

Figure D.1: Relation among the actual voltages and the reference ones in the
rotating frame.
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um ymu y
e−sTd

cos(ωme t) cos(ωme t)

Figure D.2: Modulated system.

The modulated signal is then delayed to get:

Ym(s) = e−sTdUm(s). (D.4)

The property (3.26) can be further applied to obtain the Laplace trans-
form of the demodulated output, namely:

Y(s) =
1

2
[Ym(s− jωme) + Ym(s+ jωme)] . (D.5)

Expression (D.5) can be expanded by using (D.3) and (D.4) as follow:

Y(s) =
1

4

[
e−(s−jωme)Td + e−(s+jωme)Td

]
U(s) + · · ·

· · ·+ 1
4

[
e−(s−jωme)TdU(s− 2jωme) + · · ·

· · ·+ e−(s+jωme)TdU(s+ 2jωme)
]

.

(D.6)

By repeating the same procedure for all the modulated system with
any other combination of modulation and demodulation carriers in
(D.2) and uq and recalling the Euler’s formula, i.e.:

cos(x) =
eix + e−ix

2
, sin(x) =

eix − e−ix

2
(D.7)

the transfer function of (D.1) can be calculated and it is equal to:

udq(s) = e−sTdDu∗dq(s) (D.8)

where D is a rotating matrix defined as follow:

D =

[
cos(ωmeTd) sin(ωmeTd)

− sin(ωmeTd) cos(ωmeTd)

]
(D.9)
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