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Summary 
Mitochondria are very dynamic organelles with a crucial role in life and death of 

eukaryotic cells. These organelles regulate cellular energy generation, calcium 

and redox homeostasis, and apoptosis. To perform the cellular functions 

effectively, mitochondria continuously change their structure and morphology 

through protein machineries controlling fission and fusion process 

(mitochondrial dynamics). Strong evidence has emerged to implicate disturbed 

mitochondrial fusion and fission as central pathological components 

underpinning a number of childhood and adult-onset neurodegenerative 

disorders. Several proteins that regulate the morphology of the mitochondrial 

network have been identified, the most widely studied of which are Optic 

Atrophy 1 (OPA1), Mitofusin1 and 2 (Mfn1 and 2) and Dynamin Related Protein 

1 (DRP1).  

OPA1 is a ubiquitously expressed dynamin-like GTPase in the inner 

mitochondrial membrane. It plays important roles in mitochondrial fusion, 

apoptosis, reactive oxygen species (ROS) and ATP production. Mutations of 

OPA1 result in autosomal Dominant Optic Atrophy (DOA), a common hereditary 

optic neuropathy characterized by retinal ganglion cell degeneration leading to 

optic neuropathy, symmetrical central visual loss and dyschromatopsia. The 

majority of OPA1 mutations result in premature termination codons, and the 

resultant truncated mRNA species are highly unstable, being rapidly degraded 

by protective surveillance mechanisms operating via nonsense-mediated 

mRNA decay. Haploinsufficiency, therefore, is a major disease mechanism in 

DOA, and the pathological consequences of a dramatic reduction in OPA1 

protein levels is highlighted by those rare families who are heterozygous for 

microdeletions spanning the entire OPA1 coding region. Progressive visual 

failure remains the defining feature of DOA but, with greater availability of 

genetic testing, a specific OPA1 mutation in exon 14 (c.1334G>A, p.Arg445His) 

has been found to cause sensorineural deafness, ataxia, myopathy, peripheral 

neuropathy, and classical chronic progressive external ophthalmoplegia. This 

syndrome is called DOA plus. 
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The molecular mechanisms linking OPA1 mutations and DOA are not fully 

understood. In this work a new model of OPA1-linked Dominant Optic Atrophy 

was generated in Drosophila melanogaster, in order to use it for studying DOA 

pathogenesis. 

The Drosophila OPA1 gene (dOPA1) shares 51.2% similarity with its human 

orthologue and the alignment of protein sequence of hOPA1 with dOPA1 shows 

that the domains most subjected to pathogenic mutations are well conserved. 

To address the pathophysiological mechanism of OPA1-linked DOA, we 

generated two dOPA1 mutants: OPA1 R417H, a mutant that carries in 

endogenous dOPA1 the mutation corresponding to R445H in humans; OPA1null 

carrying a microdeletion leading to production of a inactive truncated protein of 

482 amino acids.  

To model these mutations we have used in vivo CRISPR/Cas9, a genome 

engineering system that has revolutionized genetic analysis in many organisms. 

For use in genome engineering the system requires two essential components: 

gRNA and Cas9-endonuclease. The gRNA recognizes a 20-nt target sequence 

next to a trinucleotide NGG protospacer adjacent motif (PAM) to direct Cas9-

dependent cleavage of both DNA strands within the target sequence. Several 

groups have used the CRISPR/Cas9 system to induce targeted mutations in 

Drosophila, but differ in their approach to supply the Cas9 protein and gRNA 

components of the system. It has been demonstrated that two targeting gRNAs 

can be used to generated a large defined deletions and the Cas9 catalyzed 

gene replacement by homologous recombination. 

The experimental design of my work requires the following steps: generation of 

the gRNAs responsible for precisely targeting the genomic region where 

recombination should take place; generation of the dsDNA templates containing 

the desired genomic modifications to be introduced and homology arms for 

accurate recombination; choice of a screening method. 

The gRNAs guide the cut of the Cas9 on the genomic region of the dOPA1 

gene through the target sequences and the PAM sites; the cut of genomic DNA 

favors homologous recombination with the dOPA1 mutated fragment cloned 

into dsDNA plasmid donor. The exogenous dOPA1 mutated gene in addition to 

the pathological mutations carries a silent mutation that introduces a novel 
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BamHI restriction site necessary for screening the occurrence of homologous 

recombination events by restriction digest. 

The gRNAs and the dsDNA plasmids donors were microinjected in the embryo 

of the Drosophila line expressing Cas9 protein in the ovary under control of 

vasa regulatory sequences. 

The mutants were screened for the presence of the mutation through PCR on 

genomic DNA, restriction digest and sequencing of the OPA1 mutated 

fragment. After having verified that the mutants had mutations of interest 

without any other alterations, we described the phenotypic effects observed in 

these mutants. We also analyzed the mitochondria in the nervous and muscular 

systems using confocal microscopy and the mitochondrial functions through   

biochemical assays.    

Observations of the adults within the lines shows that both mutations in 

heterozygosity do not cause any evident morphological alterations. However, 

both mutations in homozygosity turned out to be lethal but differently R417H 

homozygous mutants develop until the second instar larva stage whereas the 

OPA1null homozygotes die earlier at the first instar larva stage. 

We were more interested in studying the heterozygote dOPA1 mutants 

because DOA is a dominant disease. The lifespan reduction of both dOPA1 

mutants indicate that the heterozygous mutations of OPA1 is likely to cause 

systemic consequences probably affecting multiple processes. Since OPA1 is 

involved in mitochondrial dynamics we performed a series of experiments to 

analyze mitochondrial morphology in the neuronal and muscular systems of 

both dOPA1 mutants. Heterozygous dOPA1 mutants display defects of 

mitochondria morphology in nerves and muscles in Drosophila third instar 

larvae, mitochondria network shape is characterized by mild fragmentation and 

clusterization. Mitochondria function was analyzed on homozygous and 

heterozygous dOPA1 mutants. Mitochondrial respiration and the redox activity 

of respiratory complexes was decreased in both mutants. Furthermore 

heterozygous OPA1 R417H displayed more severe effects in some assays than 

OPA1null heterozygotes.  This suggested that R417H mutation could interfere 

with the activity of the wild type copy of dOPA1 resulting in more severe 

phenotypes than those caused by the presence of a single loss of function 

allele. 
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In conclusion, we have produced a model to study the Dominant Optic Atrophy 

which can be helpful to understand the pathogenesis of this disease caused by 

different classes of mutations within the OPA1 gene. 
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Riassunto  
I mitocondri sono organelli dinamici fondamentali per la vita e la morte delle 

cellule eucariotiche, svolgono diverse funzioni tra cui: produzione di ATP, 

regolazione dell’omeostasi del Ca2+, produzione di ROS e regolazione 

dell’apoptosi. I processi di fusione e fissione mitocondriale (dinamiche 

mitocondriali) sono alla base del corretto funzionamento di questi organelli e  

sono controllati da una serie di proteine che, di conseguenza, regolano forma e 

struttura dei mitocondri.    

Disturbi delle dinamiche mitocondriali sono alla base di diverse patologie 

neurodegenerative che colpiscono bambini e giovani adulti. Le diverse proteine 

che regolano la morfologia della network mitocondriale sono state individuate in 

vari studi, le principali sono: Optic Atrophy 1 (OPA1), Mitofusin1 and 2 (Mfn1 

and 2) and Dynamin Related Protein 1 (DRP1).  

OPA1 è una proteina ubiquitaria della famiglia delle dianamine, con attività 

GTPasica, situata sulla membrana interna dei mitocondri. Presenta un ruolo 

fondamentale nel processo di fusione mitocondriale, apoptosi, produzione di 

ROS e produzione di ATP. Mutazioni di OPA1 sono alla base dell’ Atrofia Ottica 

Dominante (DOA), una comune neuropatia ottica ereditaria caratterizzata da 

degenerazione delle cellule ganglionari della retina con conseguente 

neuropatia, perdita della capacità visiva simmetrica centrale e discromatopsia. 

La maggior parte delle mutazioni patologiche di OPA1 determinano la 

formazione di codoni di stop, con conseguente produzione di forme troncate di 

mRNA altamente instabili che vengono rapidamente degradate dai vari 

meccanismi di controllo. L’aploinsufficienza è il principale meccanismo 

patogenetico della DOA, le conseguenze di una drastica riduzione dei livelli di 

OPA1 sono ben visibili in famiglie in cui sono state identificate microdelezioni in 

eterozigosi, localizzate nella regione codificante del gene di OPA1. La perdita 

progressiva della vista rimane la caratteristica principale della DOA ma, la 

maggior disponibilità di test genetici, ha permesso di identificare una mutazione 

specifica del gene OPA1 localizzata sull’esone 14 (c.1334G>A, p.Arg445His) 

che causa DOA, associa a sordità neurosensoriale, atassia, miopatia, 

neuropatia periferica e oftalmoplegia esterna progressiva cronica. Questa 

sindrome è chiamata DOA plus. 
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I meccanismi molecolari alla base di DOA causata da mutazioni di OPA1 non 

sono del tutto chiari. In questo lavoro abbiamo generato un nuovo modello di 

Atrofia Ottica Dominante usando Drosophila melanogaster, al fine di utilizzarlo 

per studiare e comprendere al meglio la patogenesi di questa malattia.       

Il gene OPA1 di Drosophila (dOPA1) mostra il 51.2% di similarità con il gene 

ortologo umano, l’allineamento della proteina umana con quella di Drosophila 

mostra che i domini, su cui si localizzano la maggior parte delle mutazioni 

patologiche, sono altamente conservati. 

Per studiare il meccanismo patofisiologico della DOA dovuta a mutazioni di 

OPA1, abbiamo generato due  mutanti dOPA1: OPA1 R417H, un mutante che 

porta la mutazione corrispondente alla mutazione umana OPA1 R445H; e il 

mutante OPA1null in cui è stata inserita una microdelezione che determina la 

produzione di una forma tronca inattiva di 482 aminoacidi. 

Per inserire queste mutazione nel genoma di Drosophila abbiamo utilizzato il 

sistema CRISPR/Cas9, un sistema che permette la modifica del DNA genomico 

e che ha rivoluzionato le analisi genetiche in diversi organismi. Le componenti 

fondamentali di questo sistema sono gRNA e endonucleasi Cas9. Il gRNA  

riconosce una sequenza target di 20nt seguita da un sito PAM (protospacer 

adjacent motif), costituito da tre nucleotidi NGG, e necessario per indirizzare il 

taglio dei due filamenti del DNA genomico ad opera dell’endonucleasi Casλ. 

Diversi gruppi di ricercatori hanno utilizzato il sistema CRISPR/Cas9 per 

introdurre specifiche mutazioni nel genoma di Drosophila, mettendo a punto 

vari metodi di somministrazione delle diverse componenti. È stato dimostrato 

che un approccio metodologico efficace, è l’utilizzo di una coppia di gRNA che, 

mediante il taglio del Ca9, determinano una larga delezione in una porzione 

genomica ben definita e questo, in presenza di una dsDNA donatore, favorisce 

la sostituzione genica mediante ricombinazione omologa. 

Il disegno sperimentale del mio lavoro richiede i seguenti steps: generazione 

dei gRNA in grado di indirizzare il taglio dell’endonucleasi sulla regione 

genomica di interesse; generazione del dsDNA donatore contenete la porzione 

genica con le mutazioni desiderate e due regioni di omologia limitrofe ad essa e 

necessarie per la corretta ricombinazione e infine la scelta di un metodo di 

screening. 
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I gRNA guidano il taglio del Cas9 sulla porzione genomica del gene dOPA1 

grazie alla sequenza target di 20nt e ai siti PAM; il taglio del DNA genomico 

favorisce la ricombinazione omologa con il frammento mutato di dOPA1 clonato 

nel plasmide dsDNA donatore. Sul frammento genico esogeno, oltre alla 

mutazione patologica di OPA1, è stata inserita una mutazione silente per 

introdurre un sito di restrizione dell’enzima BamHI, necessario per lo screening 

dei mutanti in cui è avvenuta la corretta ricombinazione.  

I gRNAs e i plasmidi dsDNA donatori sono stati microiniettati in embrioni di una 

linea di Drosophila in cui la proteina Cas9 è espressa nelle cellule germinali, 

sotto il controllo del fattore di regolazione della trascrizione genica, vasa. 

Lo screening per individuare i mutanti corretti è stato fatto mediante PCR sul 

DNA genomico, taglio di restrizione e sequenziamento. Dopo aver verificato la 

corretta ricombinazione omologa del frammento esogeno abbiamo eseguito 

una caratterizzazione fenotipica dei mutanti. Mediante microscopia confocale, 

abbiamo analizzato la morfologia dei mitocondri nel sistema nervoso e 

muscolare; con dei saggi biochimici abbiamo poi testato la funzionalità 

mitocondriale in larve mutanti. 

Gli adulti eterozigoti per le mutazioni di dOPA1 non presentano evidenti 

alterazioni morfologiche. Entrambe le mutazioni però, risultano letali in 

omozigosi ma con delle differenze: la mutazione R417H risulta essere letale al 

secondo stadio larvale mentre la completa assenza di OPA1, che si determina 

nel mutante omozigote OPA1null, è letale al primo stadio larvale. Essendo DOA 

una malattia genetica dominante, è importante studiare gli effetti di queste 

mutazioni sui mutanti eterozigoti. Analizzando la durata media della vita dei 

mutanti adulti eterozigoti, abbiamo osservato un importante riduzione di questo 

parametro, simile per entrambe le mutazioni e collegato probabilmente agli 

effetti sistemici che si hanno in seguito all’alterazione di vari processi cellulari 

che coinvolgono OPA1 e i mitocondri. Dato che OPA1 è una proteina coinvolta 

nella regolazione delle dinamiche mitocondriali, abbiamo messo a punto una 

serie di esperimenti per analizzare la morfologia mitocondriale nel sistema 

nervoso e muscolare dei mutanti dOPA1. In larve terzo stadio eterozigoti per 

entrambe le mutazioni abbiamo osservato alterazioni della morfologia 

mitocondriale in nervi e muscoli, il network mitocondriale è caratterizzato da 

lieve frammentazione e presenza di cluster. La funzionalità mitocondriale è 
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stata analizzata nei mutanti dOPA1 eterozigoti ed omozigoti. Respirazione 

mitocondriale e attività redox dei complessi della catena respiratoria risultano 

ridotte in entrambi i mutanti. Inoltre, il mutante OPA1 R417H eterozigote risulta 

avere deficit di funzionalità mitocondriale maggiore rispetto al mutante OPA1null 

eterozigote. Questo suggerisce che la mutazione R417H possa interferire con 

l’attività della copia wild type di dOPA1, determinando un fenotipo più grave 

della perdita di un solo allele funzionante. 

Per concludere, possiamo affermare di aver prodotto un modello di Atrofia 

Ottica Dominate che potrebbe essere d’aiuto per lo studio della patogenesi di 

questa malattia e per comprendere meglio come agiscono le diverse classi di  

mutazioni sul gene OPA1. 
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1.INTRODUCTION 
Mitochondria are fundamental organelles in life and death of eukaryotic cells. 

They are the main site of energy production and they have a central position in 

the programmed cell death pathway. Moreover, they are involved in many 

others processes, such as Ca2+ homeostasis, cellular differentiation, control of 

cell cycle and growth, amplification of signaling cascades. Finally, mitochondria 

are involved in several human diseases, including neurodegenerative disorders 

and cancer, and may play a role in aging processes.  

The structure of these organelles is very elaborate and supports their multiple 

functions. In certain cell types they are organized in networks of interconnected 

mitochondria. Similarly, the ultrastructure of mitochondria is extremely complex, 

with the organelle bound by two distinct membrane: the outer membrane 

(OMM) and the inner membrane (IMM).  

 
Figure 1: Mitochondrial morphology. (A) Mitochondria are double membrane-bound organelles with 

characteristic inner membrane folds, termed cristae. The schematic shows the structure of mitochondria. A 

transmission electron microscopy image of mitochondria in ultrathin sections of human fibroblast cells is 
also shown. (B) In many cell types, mitochondria appear as long, tubular and sometimes branched 

structures that spread throughout the entire cytoplasm. Mitochondria (green) were stained in human 

osteosarcoma cells (U2OS) by indirect immunofluorescence using antibodies against the outer membrane 

protein TOM20.Nuclei (blue) were stained with DAPI (4′,6-diamidino-2-phenylindole). Cells were analysed 

by confocal microscopy.1 



 

10 
 

The IMM is organized in distinct compartments, the peripheral inner membrane 

and the cristae that are separated from the peripheral inner membrane by 

narrow tubular junction (Figure 1a). The cristae are key mitochondrial 

structures: they are the site of oxidative phosphorylation where the complexes 

of respiratory chain are localized. Furthermore live cell microscopy studies 

showed that mitochondria are highly dynamic organelles that can build large 

interconnected intracellular networks (Figure 1b). In many eukaryotic cell types, 

mitochondria continuously move along cytoskeletal tracks and frequently fuse 

and divide. These concerted activities control mitochondrial morphology and 

intracellular distribution and determine their cell type-specific appearance1. 

The morphology of the mitochondrial network is in a constant state of flux, 

influenced by the delicate balance between opposing fusional and fissional 

forces. The main players in this intricate and tightly coordinated process were 

first identified in seminal experiments using yeast models. These mediators of 

mitochondrial dynamics have been highly conserved throughout evolution, 

which is in keeping with the critical regulatory roles of these proteins in both 

simple and complex organisms. Pathogenic mutations have been identified in 

several pro-fusion and pro-fission nuclear genes, with disease phenotypes 

ranging from severe, early-onset and invariably lethal encephalomyopathies, 

through isolated optic atrophy and peripheral neuropathy, to more-complex late-

onset multisystemic neuromuscular disorders. Mutations in the pro-fusion 

genes optic atrophy 1 (OPA1) were initially reported in families with autosomal 

dominant optic atrophy (DOA; OMIM #605290)2.  
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1.1 Mitochondrial network dynamics 
Research on mitochondrial fusion and fission (collectively termed mitochondrial 

dynamics) gained much attention in recent years, as it is important for our 

understanding of many biological processes, including the maintenance of 

mitochondrial functions, apoptosis and ageing.  

Mitochondria in cells of most tissues are tubular, but dynamic changes in 

morphology are driven by fission, fusion and translocation (Figure 2)3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Mitochondrial fusion and fission dissected. (A) Fusion of mitochondria requires the sequential 

interaction of outer and inner membranes. Fusion of the outer membranes of two adjacent mitochondria 

requires low GTP levels, whereas the subsequent fusion of the inner membranes requires high GTP 

levels. Two components of the mitochondrial fusion machinery are known in mammalian cells, the outer 

membrane proteins mitofusins Mfn1 and Mfn2, which each have a cytosolic GTPase domain and two 
coiled-coil regions, and the intermembrane space proteins GTPase OPA1. (B) Models and molecules of 

mitochondrial fission. Fission protein 1 (Fis1) is localized uniformly to the mitochondrial outer membrane, 

whereas dynamin-related protein (Drp1) is localized to the cytosol and punctate spots on mitochondria. 

Some of these spots are constriction sites that lead to mitochondrial fission. How Drp1 is recruited to 

mitochondria is unclear. 

Mechanisms of mitochondrial fusion 
Membrane fusion is a fundamental process in the life of eukaryotic cells. For 

example, transport vesicles fuse with the organelles of the secretory pathway, 
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gametes fuse during fertilization, and enveloped viruses enter the host cytosol 

by fusion with endosomal membranes. Mitochondrial fusion is a particularly 

complex process, as mitochondria are double membrane-bound organelles and 

must coordinate the fusion of four membranes. 

The first known mediator of mitochondrial fusion was identified in 1997 by 

molecular genetic analysis of the male sterile fuzzy onions (fzo) mutant in 

Drosophila melanogaster4. Mitofusins in yeast and metazoa share a similar 

domain structure. They are large GTPases that contain two transmembrane 

regions in the mitochondrial outer membrane, with a short loop in the 

intermembrane space and the major parts of the protein facing the cytosol5,6. 

Yeast Fzo1 contains three predicted heptad repeat regions. Mammals have two 

mitofusin isoforms, MFN1 and MFN2, both of which lack the most amino-

terminal heptad repeat. 

Mgm1 is a dynamin-related large GTPase that is essential for inner membrane 

fusion in yeast7. It has an N-terminal mitochondrial targeting sequence that is 

cleaved by matrix-processing peptidase (MPP) following import. A large Mgm1 

isoform contains an N-terminal transmembrane domain that anchors the protein 

in the inner membrane, and its main part is located in the intermembrane 

space. A fraction of Mgm1 molecules is processed further during import by the 

rhomboid-related membrane protease Pcp1, generating a short isoform that 

lacks the transmembrane anchor8. Both isoforms contain a GTPase domain, a 

GTPase effector domain and several heptad repeats. The mammalian Mgm1 

orthologue, optic atrophy protein 1 (OPA1), and related proteins in worms and 

flies have also been shown to be required for mitochondrial fusion9,10. OPA1 is 

present in eight isoforms that are generated by alternative splicing and 

alternative processing at two cleavage sites that are located between the N-

terminal transmembrane domain and the first heptad repeat. 

During fusion two mitochondria approaching each other are tethered in a 

docking step, consistently the carboxy-terminal heptad repeats of mammalian 

MFN1 have been shown to form an intermolecular antiparallel coiled coil that 

may tether adjacent mitochondria prior to fusion11. Coiled coil formation by 

mitofusins might then draw the membranes close together and initiate lipid 

bilayer mixing, and the GTPase could provide biomechanical energy for outer 

membrane fusion. 
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The first mechanistic insights into the role of Mgm1 in inner membrane fusion 

came from the analysis of yeast mutant mitochondria in vitro. After the 

completion of outer membrane fusion, Mgm1 is required in trans on both inner 

membranes of the fusion partners. Certain mgm1 mutant alleles show a specific 

defect in inner membrane tethering, whereas others are defective in inner 

membrane fusion, suggesting that Mgm1 participates in both processes7. 

Interestingly, studies using purified Mgm1 variants reconstituted with liposomes 

showed that only the short Mgm1 isoform, which lacks the transmembrane 

region, has GTPase activity, and that its GTPase is activated in heterotypic 

complexes containing the membrane-bound long isoform. Thus, the long Mgm1 

isoform is proposed to tether opposing inner membranes and harness GTPase 

dependent conformational changes of the short isoform to initiate lipid bilayer 

mixing of the inner membrane12. 

Mechanisms of the mitochondrial fission 
Dynamin superfamily members are versatile large GTPases that mediate 

various membrane remodeling processes in eukaryotic cells. Mgm1 and OPA1, 

and in particular Fzo1 and mitofusins, are distantly related dynamin superfamily 

members. Although these proteins function in membrane fusion, classical 

dynamins are typically involved in membrane scission events in vesicle budding 

pathways. Classical dynamins assemble into higher oligomeric structures that 

form rings and spirals around membranes. These spirals are thought to sever 

the enclosed membranes following GTP hydrolysis through the 

mechanoenzymatic activity of dynamin1. Dynamin-related proteins have similar 

roles in the division of membrane-bound organelles, including endosomes, 

peroxisomes and mitochondria. 

A dynamin-related protein, termed Dnm1 in yeast and dynamin-related protein 

1 (DRP1) in mammals, is the master regulator of mitochondrial division in most 

eukaryotic organisms. It is a soluble protein containing an N-terminal GTPase, 

a middle domain and a C-terminal GTPase effector domain that is involved in 

self-assembly. Cells lacking DRP1 contain highly interconnected mitochondrial 

nets that are formed by ongoing fusion in the absence of fission activity13. 

The function of the mitochondrial fission machinery is best understood in yeast. 

Recruitment of Dnm1 from the cytosol and assembly in punctate structures on 

the mitochondrial surface depends on two partner proteins, mitochondrial 
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fission-1 (Fis1) and mitochondrial division protein 1 (Mdv1)14. Fis1 is a small 

tailanchored protein in the outer membrane. Its N-terminal domain faces the 

cytosol, where it forms a six-helix bundle with tandem tetratricopeptide repeat 

motifs (TPR) that provide an interface for interaction with the adaptor protein 

Mdv115. Mdv1 contains an N-terminal extension for Fis1 binding, a heptad 

repeat region mediating homo-oligomeric interactions and a C-terminal WD40 

repeat domain that interacts with Dnm116.  

Recent in vitro studies using purified proteins revealed mechanistic insights into 

the role of Mdv1 as a dynamin effector that mediates the assembly of Dnm1 

and suggests the following model of mitochondrial division in yeast. First, Fis1 

recruits Mdv1 from the cytosol. Membrane-associated Mdv1 then nucleates the 

assembly of Dnm1–GTP oligomers on the mitochondrial surface. Dnm1–GTP 

oligomers proceed to form spirals that are eventually wrapped around the 

organelle. Finally, Dnm1 spirals sever the mitochondrial membranes following 

GTP hydrolysis in a manner that is probably similar to the action of classical 

dynamins in vesicular budding pathways17,18. 

In mammals FIS1 interacts with DRP1 and apparently has a similar role in 

mitochondrial fission to its yeast counterpart, as FIS1 overexpression promotes 

mitochondrial fragmentation and FIS1 depletion produces interconnected 

mitochondrial nets19, 20. However, Mdv1 homologues have not been identified in 

metazoans which indicates significant differences between the metazoan and 

yeast mitochondrial division machineries. Furthermore, knockdown of human 

FIS1 does not affect the distribution of DRP1 in mitochondria21, and deletion of 

the two FIS1 homologous genes in Caenorhabditis elegans does not produce a 

strong mitochondrial fission phenotype22, suggesting that additional pathways of 

DRP1 recruitment exist in metazoans. One possible candidate for an alternative 

fission factor is mitochondrial fission factor (MFF), a tail-anchored protein that is 

conserved in metazoans but does not exist in yeast. MFF contains heptad 

repeats and a C-terminal transmembrane domain that is embedded in the outer 

membrane. Depletion of MFF attenuates mitochondrial division, both in 

mammalian and D. melanogaster cells. Interestingly, MFF and FIS1 exist in 

separate complexes, suggesting that they have different roles in mitochondrial 

division23.  
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Functions of mitochondrial dynamics 
Mitochondria cannot be generated de novo; instead, they proliferate by growth 

and division of pre-existing organelles. They contain their own genome and 

protein translation machinery. mtDNA is present in multiple copies and packed 

into compact particles, termed nucleoids. It encodes ribosomal RNAs, tRNAs 

and some  proteins required for respiration. However, most mitochondrial 

proteins are encoded by nuclear genes and synthesized by cytosolic 

ribosomes. Mitochondrial biogenesis involves the import of nucleus-encoded 

proteins from the cytosol, the incorporation of mitochondrion synthesized and 

imported membrane lipids, the amplification of the mitochondrial genome and 

the translation of mitochondrion-encoded proteins. Damaged and surplus 

organelles are removed by autophagy. During their life cycle, mitochondria fuse 

with each other and split apart again; fusion serves to mix and unify the 

mitochondrial compartment, whereas fission generates morphologically and 

functionally distinct organelles. These processes have important consequences 

for mitochondrial functions in cell life and death (Figure 3)1. 
Figure 3: Biological functions of mitochondrial 

dynamics. (A) The mitochondrial life cycle starts 

with growth and division of pre-existing organelles 

(biogenesis) and ends with degradation of 

impaired or surplus organelles by mitophagy 

(turnover). In between, mitochondria undergo 

frequent cycles of fusion and fission that allow the 

cell to generate multiple heterogeneous 

mitochondria or interconnected mitochondrial 

networks, depending on the physiological 
conditions. (B) Fusion and fission of mitochondria 

are important for many biological functions. 

Division is required for inheritance and partitioning 

of organelles during cell division, for the release of 

pro-apoptotic factors from the intermembrane 

space, for intracellular distribution by 

cytoskeleton-mediated transport and for turnover 

of damaged organelles by mitophagy. Fused mitochondrial networks are important for the dissipation of 

metabolic energy through transmission of membrane potential along mitochondrial filaments and for the 

complementation of mitochondrial DNA (mtDNA) gene products in heteroplasmic cells to counteract 

decline of respiratory functions in ageing (X and Y depict alleles of different mitochondrial genes).1 

 



 

16 
 

Mitochondrial dynamics is essential in mammalian development. Mitochondrial 

fusion is important for inheritance and maintenance of mtDNA. In yeast, fusion-

defective mutants rapidly lose their mitochondrial genome and consequently 

show defects in respiration24. This is probably because fragmentation of 

mitochondria produces multiple small organelles, most of which lack mtDNA, so 

partitioning of these organelles to daughter cells produces a significant number 

of progeny lacking mtDNA. As a result, mitochondrial genomes are lost from the 

population after several generations.  

Disruption of fusion in mammalian cells also leads to mitochondrial 

heterogeneity and dysfunction, possibly as a consequence of nucleoid loss in 

individual mitochondria25. Thus, it seems that fusion serves as a fundamental 

mechanism to maintain a mitochondrial population with a full complement of 

nucleus- and mitochondrion-encoded gene products. Although mitochondrial 

fission inevitably generates organelles lacking nucleoids, fusion ensures that 

the mitochondrial genome and gene products are replenished before 

functionality is lost. 

Cells defective in mitochondrial division contain highly interconnected net-like 

mitochondria that typically accumulate in restricted areas, leaving large parts of 

the cell devoid of mitochondria. Proper mitochondrial distribution depends on 

division to split the mitochondrial network into transportable units. Obviously, 

this is particularly important in large and extended cells, such as neurons. 

Accordingly, DRP1 and OPA1 are crucial to establish proper mitochondrial 

content and distribution in dendrites. This, in turn, is essential for the 

maintenance of dendritic spines and synapses, which are neuronal structures 

with a particularly high energy demand26,25. 

In other cell types, fused mitochondrial networks act as electrically united 

systems that transmit the membrane potential generated by the proton pumps 

of the respiratory chain27. This mechanism was proposed to play an important 

part in the dissipation of metabolic energy in muscle cells. 

Hence, it seems that concerted activities of the mitochondrial fusion and fission 

machineries shape the mitochondrial compartment and adapt it to the specific 

requirements of the cells. 

Furthermore research over the past decades leaves no doubt that mitochondria 

have a crucial role in ageing. The mitochondrial theory of ageing postulates that 
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the respiratory chain produces reactive oxygen species (ROS) as byproducts of 

oxidative phosphorylation. Because mitochondria are a major source for ROS, 

mtDNA is particularly vulnerable to ROS-induced mutations and lesions. As a 

result, gradual and progressive accumulation of mtDNA mutations leads to a 

loss of functional respiratory chain complexes, resulting in a decline of 

bioenergetic capacity and eventually age-associated pathologies and death28. 

Mitochondrial dynamics was proposed to counteract this detrimental process 

through two activities: rescue of non-functional organelles by fusion and 

elimination of damaged organelles after fission. Irrespective of the level of 

heteroplasmy, mitochondria showed a homogenous pattern of respiratory 

activity at the cellular level as a result of fusion and inter mixing of mitochondrial 

contents29. These suggests that fusion of mitochondria and complementation of 

mitochondrial gene products are a defence mechanism against cellular ageing. 

Autophagy is a process of self-degradation of cellular components that are 

harmful or no longer required. damaged or surplus organelles or portions of 

cytosol are sequestered by double-membrane autophagosomes that fuse with 

lysosomes or vacuoles and are broken down by hydrolytic enzymes30. The 

autophagic breakdown of mitochondria is termed mitophagy. It is tempting to 

speculate that mitophagy constitutes a mechanism to remove dysfunctional 

mitochondria from the cell and thereby prevent proliferation of mutated mtDNA. 

Support for this hypothesis came recently from a seminal study that described 

the behaviour of fluorescently labelled mitochondria in cultured mammalian 

cells31. Mitochondrial division was found to frequently produce two uneven 

daughter organelles, one with high membrane potential and one with decreased 

membrane potential and reduced OPA1 levels. Intriguingly, mitochondria with 

decreased membrane potential and reduced OPA1 levels are less likely to be 

engaged in subsequent fusion events and, instead, are prone to removal by 

mitophagy. Remarkably, inhibition of fission decreases mitophagy and results in 

decline of respiratory capacity, whereas arrest of autophagy leads to the 

accumulation of mitochondria with low membrane potential and low OPA1. on 

the basis of these observations a hypothesis was proposed that integrates 

mitochondrial dynamics and turnover in the mitochondrial life cycle. 

Mitochondrial fission frequently generates solitary mitochondria that might 

either maintain an intact membrane potential and re-fuse with the mitochondrial 
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network, or might be depolarized and depleted of OPA1, thereby preventing 

further rounds of fusion. This enables subsequent elimination by mitophagy31. 

Therefore, mitochondrial division may contribute to a quality control mechanism 

that facilitates removal of damaged mitochondria from the cell. 

At last mitochondrial fission is important for apoptosis. A key event in apoptosis 

is mitochondrial outer membrane permeabilization, which releases cytochrome-

c and other pro-apoptotic factors from the intermembrane space into the cytosol 

to trigger downstream cell death pathways32,33. Regulation of apoptosis 

involves DRP1-dependent mitochondrial fragmentation in a wide range of 

organisms, including yeast34, flies35, worms36 and mammals37. 

Although many issues remain controversial, it seems that mitochondrial 

fragmentation occurs early in the apoptotic pathway, just prior to or 

simultaneously with outer membrane permeabilization and before effector 

caspase activation. Further work is required to determine how the components 

of mitochondrial fission and fusion actively participate in programmed cell 

death. 

1.2 Bioenergetics of mitochondria 
The cellular energy currency, ATP, can be produced in 3 ways: (a) by 

anaerobic glycolysis (which takes place in the cytosol); when glucose is 

converted to pyruvate only a small fraction of total free energy potentially 

available for ATP synthesis is released with an overall net gain of 2 ATP 

molecules; (b) by tricarboxylic acid (TCA), also known as citric acid or Krebs 

cycle, which takes place in mitochondrial matrix and yields one ATP molecule 

percycle, (c) by oxidative phosphorylation (OXPHOS), which takes place in the 

IMM and allows~15 times more ATP to be made than that produced by 

glycolysis. This is because mitochondria house the major enzymatic systems 

used to complete the oxidation of sugars, fats and proteins that enter the Krebs 

cycle after being converted to acetyl-CoA. Pyruvate produced by glycolysis 

enters mitochondria, where pyruvate dehydrogenase catalyzes its conversion to 

acetyl-CoA, also reducing NAD+ to NADH; fatty acids are converted to acetyl-

CoA by β oxidation; while various enzymes exist for the conversion of specific 

amino acids in to pyruvate, acetyl-CoA or directly into specific citric acid cycle 

intermediates. Once in the TCA cycle, CoA causes the acetyl moiety to react 
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with oxaloacetate to produce citrate. In a series of seven subsequent enzymatic 

steps, citrate is oxidized back to oxaloacetate while giving off two molecules of 

carbon in the form of CO2, three NADH and one of flavin adenine dinucleotide 

FADH238. The latter two carry the free energy liberated from the Krebs cycle to 

the mitochondrial electron transport chain made up of OXPHOS complexes I to 

V (Figure 4). 

 
 

Figure 4. Cellular respiration: the electron transport chain and ATP synthase. 
Complexes I-IV of electron transport chain (ETC) and the ATP synthase (Complex V) are embedded in the 

IMM. The ETC substrates coming from Krebs cycle feed the electrons to complexes I and II, electrons are 

then transferred along the chain due to the increasing redox potential of the OXPHOS enzymes. The flow 

of electrons is accompanied by proton pumping from the matrix to theintermembrane space creating the 

electrochemical proton gradient which then drives the synthesis of ATP. Complexes I to V can be inhibited 

by rotenone, thenoyltrifluoroacetone (TTFA), antimycin A, cyanide and oligomycin, respectively. 

 

NADH donates electrons to respiratory complex I, also called NADH 

dehydrogenase, an L-shaped enzyme complex that contains a hydrophobic 

domain embedded in the IMM and a hydrophilic arm which protrudes into the 

mitochondrial matrix and contains the NADH binding site. The reduced cofactor 

donates two electrons to a flavin mononucleotide prosthetic group contained in 

the hydrophilic arm of complex I. These electrons are then passed down the 

arm via a series of iron–sulphur clusters to the lipid soluble redox carrier 

coenzyme Q (CoQ)38. The liberated energy is used to pump out four protons 

(H+) from the matrix to the IMS against their concentration gradient. The other 

cofactor formed in the citric acid cycle (FADH2) never leaves the complex, as 

the dehydrogenase itself is a part of the electron transport chain. The enzyme, 

also known as complex II, contains FAD as a prosthetic group alongside Fe–S 
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clusters to catalyze of electron transfer to ubiquinone (CoQ)39. In contrast to 

complex I, no protons are pumped by this complex as the liberated energy is 

insufficient. The electrons coming either from complex I or II reduce CoQ; the 

ubiquinone diffuses through the IMM to complex III, also called cytochrome c 

reductase. This enzyme oxidizes CoQ and passes the liberated electrons to two 

molecules of cyt c. In total four protons are translocated to intermembrane 

space – two coming from the oxidation of CoQ and two additional ones40. 

Finally electrons arrive to complex IV (cytochrome c oxidase) where they are 

passed to oxygen to form water. Again, alongside this reaction, four protons are 

pumped from the mitochondrial matrix into the intermembrane space41. 

Because the IMM is impermeable to H+ and charged species in general, the 

movement of protons across the inner mitochondrial membrane generates an 

electrochemical proton gradient or proton-motive force (ΔµH), which can be 

calculated with the Nernst equation: 

  
 

It can be appreciated that the ΔµH results from the sum of the pH difference 

and the membrane potential difference (ΔΨm), which is negative inside. ΔpH in 

mammalian cells is about 0.5-1 units, which corresponds to 30-60 mV; ΔΨm is 

in the order of 180-200 mV, which makes it the major component of the proton-

motive force42. As suggested by Peter Mitchell in 196143, ΔµH is coupled to 

phosphorylation of ADP, which occurs at OXPHOS complex V, or ATP 

synthase. The enzyme consists of a membrane-spanning Fo domain, made of a 

variable number of c subunits organized in a ring-like structure. This proton-

conducting ring allows proton influx back to the matrix, which results in Fo 

rotation. This is transmitted through a shaft to the F1 portion, a matrix-exposed 

complex where conversion of ADP+Pi to ATP takes place. Of note, the ATP 

synthase can work in reverse, that is hydrolyze ATP and pump protons to 

intermembrane space when nΔµH is lower than the phosphorylation potential 

(ΔGp), where n is the H+/ATP stoichiometry42. 

Several studies showed that inhibition of respiratory chain complexes by drug 

treatment induces fragmentation of the mitochondrial network. This was 
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observed, for example, in HeLa cells44, 45, CV1-4A cells44, 46, mouse embryonic 

fibroblasts46, human skin fibroblasts47, cultured cortical neurons47,MRC5 

fibroblasts48, and other cell types49. In contrast, some cell types retain 

filamentous mitochondria during respiratory chain inhibition, and the 

phenotypes of respiratory-deficient cells lacking an intact mitochondrial genome 

are ambiguous49. Mitochondria appear more elaborately interconnected and 

ramified in HeLa cells when mitochondrial respiration is induced by growth in 

galactose containing medium ( in comparison to glucose medium)50. However, 

this effect was not observed in MRC5 fibroblasts50. In sum, the majority of the 

available data point to a functional link between changes of energy metabolism 

and adaptations of mitochondrial morphology in mammalian cells. It appears 

that interconnected mitochondrial networks are frequently present in 

metabolically and respiratory active cells, whereas small and fragmented 

mitochondria are more prevalent in quiescent and respiratory inactive cells51. 

Bioenergetic role of mitochondrial fusion 
Mitochondrial fusion allows efficient mixing of mitochondrial content, and it 

generates extended mitochondrial networks. Both effects are advantageous 

under conditions of high energy demand, and disruption of mitochondrial fusion 

results in mitochondrial dysfunction and loss of respiratory capacity both in 

yeast and in mammalian cells51-53. 

Deletion of the FZO1 or MGM1 genes, encoding key components of the 

mitochondrial fusion machinery, leads to rapid loss of the mitochondrial genome 

in yeast24. As several respiratory chain subunits are encoded by the 

mitochondrial DNA (mtDNA), it is difficult to determine whether loss of fusion 

directly contributes to a decline of respiratory capacity, or whether respiratory 

defects infusion-deficient yeast mutants are an indirect consequence of a defect 

in mtDNA inheritance. Deletion of the DNM1 gene, encoding a key mediator of 

mitochondrial fission, extends life span in yeast54. It is not exactly known 

whether longevity is directly related to the highly fused, interconnected 

mitochondrial network characteristic for fission-defective yeast mutants, or 

whether it is linked to the inactivation of cell death pathways or other reasons. 

Furthermore, deletion of the MGM1 gene reduces life span in yeast55, 

suggesting that mitochondrial fusion is beneficial for cell physiology. However, it 

remain sun known whether loss of mtDNA in mgm1 mutants has an impact on 
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life span, and whether there is a direct link between mitochondrial fusion activity 

and respiratory capacity in yeast51. 

Content mixing and complementation of gene products in fused mitochondria 

were proposed to be crucial for maintenance of mitochondrial functions and 

counteract cellular aging. During the process of aging, different mutations 

accumulate in different mtDNA molecules. Thus, wild-type mtDNA coexists with 

different mutant alleles or deletions, a state termed heteroplasmy. When 

individual mitochondria have acquired mutations in different genes, each 

mitochondrion will be respiratory deficient. However, when these mitochondria 

fuse, each fusion partner contributes an intact allele, and complementation of 

gene products restores respiratory activity56. 

Several recent reports underscore the importance of mitochondrial fusion under 

conditions of high energy demand in mammals. It was shown that some cell 

stressors, including UV irradiation and several drugs that inhibit cytosolic 

protein synthesis, can trigger increased mitochondrial fusion in mouse 

embryonic fibroblasts, a process termed stress-induced mitochondrial 

hyperfusion. Mitochondria elongate and form a mesh of highly interconnected 

filaments in an Mfn1 and Opa1-dependent manner. Stress-induced 

mitochondrial hyperfusion is accompanied by increased mitochondrial ATP 

production. It is conceivable that fusion is necessary to optimize mitochondrial 

function in order to allow the cell to cope with increased energy demand during 

selective forms of stress57. 

Bioenergetic role of mitochondrial fission 
Mitochondrial division serves a variety of different functions. These include 

partitioning and inheritance of the organelles during cell division, release of 

cytochrome c and other intermembrane space proteins during apoptosis, and 

generation of transportable mitochondrial units for movement along the 

cytoskeleton1. While these functions are not directly related to bioenergetics, it 

was proposed that mitochondrial fission also serves to eliminate damaged 

organelles from the mitochondrial network in order to allow their removal by 

autophagy. This activity supposedly constitutes an organellar quality control 

mechanism and contributes to maintenance of bioenergetic capacity51, 5831, 51, 

5831, 31, 51, 58. 
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The observation of fluorescently labelled mitochondria in cultured mammalian 

cells revealed that mitochondrial division frequently generates two uneven 

daughter organelles, one with high membrane potential and another one with 

decreased membrane potential. Strikingly, mitochondria with low membrane 

potential were found to have reduced levels of the inner membrane fusion 

factor Opa1, and thus are less likely to re-fuse with the mitochondrial network. 

Instead, these dysfunctional mitochondria are removed from the cell by 

autophagy31. Thus, mitochondrial fission followed by selective fusion provides a 

mechanism to segregate damaged and dysfunctional mitochondria and permit 

their degradation by autophagy. In the long term, this mechanism contributes to 

the maintenance of a healthy mitochondrial population and maintenance of 

bioenergetic capacity31. 

Adaptation of mitochondrial dynamics to bioenergetic conditions 
What are the molecular processes that adapt the activities of the mitochondrial 

fusion and fission machineries to the bioenergetic state of the cell? At least 

three different, mutually non-exclusive mechanisms likely play important roles: 

first, the activity of the mitochondrial fusion machinery might directly respond to 

the bioenergetic state of mitochondria; second, several cellular signalling 

pathways modulate the activity of fusion and fission proteins; and third, the 

expression of key factors of mitochondrial dynamics is regulated at the 

transcriptional level51. 

Fusion and fission are antagonistic processes that predominate under different 

conditions to adapt mitochondrial morphology and dynamics to the bioenergetic 

requirements of the cell (Figure 5). Fused mitochondria are preferred when 

optimal mitochondrial function is needed. Thus, fused mitochondrial networks 

are frequently found in respiratory active cells. Apparently, mixing of the matrix 

and the inner membrane allows the constituents of the respiratory machinery to 

cooperate most efficiently. Furthermore, fusion engages the entire 

mitochondrial compartment in respiration to maximize ATP synthesis. It is 

conceivable that the sudden need for metabolic energy is the reason for the 

formation of hyperfused mitochondrial networks that are formed upon exposure 

of cells to stress, and that fusion optimizes mitochondrial function during 

starvation. While fusion in stress-exposed or starving cells constitutes a short-

term adaptation to changing environmental conditions, it also plays a beneficial 
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role for maintenance of bioenergetic capacity in the long term. Upon aging, 

fusion allows complementation of gene products and thus compensates for the 

accumulation of mitochondrial mutations in heteroplasmic cells. Moreover, 

fused mitochondrial networks contribute to the dissipation of energy in large 

cells with a particularly high energy demand. In contrast, fragmented 

mitochondria are frequently found in resting cells and might represent a 

“default” morphological state when high respiratory activity is not required. The 

activity of the mitochondrial fission machinery contributes to maintenance of 

bioenergetic capacity as it allows the elimination of irreversibly damaged 

mitochondria by autophagy. The activity of the key proteins of mitochondrial 

dynamics is regulated at multiple levels, including transcription, post-

translational modification, and direct response to the bioenergetic state of 

mitochondria51. 

 

 
 
Figure 5. Model of adaptation of mitochondrial morphology to respiratory activity.  
Fragmented mitochondria constitute the preferred morphological state when respiratory activity is low. 

Under respiratory conditions mitochondria undergo frequent cycles of fusion and fission to allow spreading 

of metabolites and macromolecules throughout the entire compartment. At the same time, mitochondrial 

fission is required for removal of damaged and inactive organelles by autophagy. When the bioenergetic 

state becomes critical, for example under nutrient deprivation or exposure to certain forms of stress, highly 

fused mitochondria are formed to optimize mitochondrial function51.  
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1.2 Mitochondrial dynamics and disease 
Defects in mitochondrial fusion and fission primarily affect neuronal functions, 

as nerve cells have a high energy demand and strictly depend on mitochondrial 

functions, and neurons are particularly sensitive to perturbations of 

mitochondrial distribution. Dysfunctions of mitochondrial dynamics are 

implicated in inherited and age-associated neurodegenerative diseases (table 

1) 1. 

 

 
 

 

Autosomal Dominant Optic Atrophy (DOA) 
DOA is the most common inherited optic nerve disorder seen in clinical 

practice, the pathological hallmark of this disorder is preferential loss of the 

retinal ganglion cell (RGC) layer within the inner retina, which leads to optic 

nerve degeneration and subsequent visual failure59. DOA has an insidious 

onset, and it typically presents in early childhood with bilateral, symmetrical 

central visual loss and dyschromatopsia. Visual loss is invariably progressive, 

and almost all affected individuals will eventually fulfil the legal requirement for 

blind registration60. 
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The majority (50–65%) of families with DOA harbour pathogenic mutations 

within the OPA1 gene, which consists of 30 coding exons spanning over 100 kb 

of genomic DNA61. OPA1 codes for a 960-amino-acid, dynamin-related GTPase 

that localizes to the inner mitochondrial membrane(Figure 6).  

 
Figure 6: Domains and motifs identified in human OPA1. The GTPase domains are shown in blue with the 

distinct G motifs shown in black bars (from G1 to G4). Coiled-coil regions (CC) and/or GED (GTPase 

effector domain) are shown in yellow. The transmembrane domains (TM) are shown in red. The 

mitochondrial import sequence (MIS) is shown in purple, with the cleavage site of mitochondrial 

processing protease (MPP) in residue F88. The middle domain is colored in brown and the alternative 

spliced region (Spl. Reg.) in black. The length and topology in amino acids for each region and domain are 

shown. The primary sequence for each OPA1 splicing isoform is also depicted. The alternative splicing of 

exons 4, 4b, and 5b generates eight isoforms of OPA1 with distinct numbers of total amino acids. All 

OPA1 isoforms contain exon 5 with the S1 cleavage site (alanine). Exon 5b contains a second cleavage 

site S2, although the exact residue of this site has not been determined62. 

 

The gene is highly expressed within the RGC layer, although the protein is 

ubiquitous, and abundant levels have also been identified in photoreceptors 

and other non ocular tissues such as the inner ear and the brain63. Over 200 

disease-causing variants have been reported so far in this highly polymorphic 

gene, with mutational hot spots in the catalytic GTPase domain (exons 8–15) 

and the dynamin central domain (exons 16–23)64. The majority of OPA1 

mutations result in premature termination codons, and the resultant truncated 

mRNA species are highly unstable, being rapidly degraded by protective 

surveillance mechanisms operating via nonsense-mediated mRNA decay. 

Haploinsufficiency, therefore, is a major disease mechanism in DOA, and the 

pathological consequences of a dramatic reduction in OPA1 protein levels is 
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highlighted by those rare families who are heterozygous for microdeletions 

spanning the entire OPA1 coding region65. 

Progressive visual failure remains the defining feature of DOA but, with greater 

availability of genetic testing, a specific OPA1 mutation in exon 14 (c.1334G>A, 

p.Arg445His) has been found to have a particular predilection for causing 

sensorineural deafness66,67. The phenotypes associated with OPA1-linked 

disease have expanded even further to encompass a wide range of prominent 

neuromuscular features such as ataxia, myopathy, peripheral neuropathy, and 

classical chronic progressive external ophthalmoplegia (CPEO)68. These so-

called DOA+ variants are mechanistically relevant, as they highlight the 

deleterious consequences of OPA1 mutations not only for RGCs, but also for 

other CNS populations, peripheral nerves, and skeletal muscle. 

Although DOA+ was only recently recognized as a distinct clinical entity, up to 

20% of OPA1 mutation carriers are now thought to be at risk of developing 

DOA+ features, which has major implications for patient counselling69. 

Furthermore, OPA1 screening is increasingly performed as part of diagnostic 

panels for patients with unexplained neurodegenerative disorders, and other 

hitherto unreported pathological manifestations are bound to emerge70. 

It remains unclear why Opa1-DOA manifests with an apparently restricted 

clinical ocular phenotype, comprising retinal ganglion cells (RGC) loss. OPA1 is 

ubiquitously expressed throughout the body: in the heart, skeletal muscle, liver, 

testis, and most abundantly in the brain and retina. In the human retina, OPA1 

is present in the cells of the RGC layer, nerve fibre layer, the photoreceptor 

layer, and the inner and outer plexiform layers (IPL & OPL). A plausible 

hypothesis as to why RGC neurons may be more vulnerable to OPA1 

inactivation could be a particular susceptibility to mitochondrial membrane 

disorders inducing mitochondrial dysfunction or mislocalization. Indeed, reports 

describe altered mitochondrial ATP synthesis and respiration in OPA1-

inactivated cells66. Moreover, recent studies show the effect of mitochondrial 

morphology regulation on mitochondrial distribution in neurons and their 

contribution to dendrite formation and synaptic plasticity21. This could be of 

particular importance in RGC neurons that display a specific distribution of 

mitochondria in the cell body, myelinated and unmyelinated axons. Additionally, 
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the defects in DOA can be ascribed to the loss of the crucial control exerted by 

OPA1 on the structural organization of the cristae and apoptosis71,21.  

1.3 Drosophila as a model organism 
Ever since Morgan isolated the white mutation in Drosophila melanogaster in 

1910, the tiny fruit fly has made large contributions to the understanding of the 

genetic and molecular mechanisms of heredity and development. More 

recently, the remarkable power of fruit fly genetics has been applied to study 

the basic mechanisms of human diseases, including those debilitating 

pathologies that affect the human brain.  

There are several reasons why Drosophila m. is widely used as models of 

human diseases. The first and foremost reason is based on the presumption 

that fundamental aspects of cell biology in flies have been conserved 

throughout evolution in higherorder organisms such as humans72. A report 

demonstrating that approximately 75% of the disease-related loci in humans 

have at least one Drosophila homologue confirms the high degree of 

conservation present in flies. Furthermore, studies of developmental events in 

the fly and subsequent similar studies in higher animals have revealed a 

stunning degree of functional conservation of genes. These studies indicate 

that not only basic cell biology but also higher-order events such as organ 

“construction” and function are conserved. 

Drosophila has an unrivalled battery of genetic tools including a rapidly 

expanding collection of mutants, transposon-based methods for gene 

manipulation and systems that allow controlled ectopic gene expression and 

balancer chromosomes73. It should be possible to target endogenous wild-type 

copies of "disease gene" in the fly genome for inactivation (knock-out); defined 

mutations can also be "engineered" (knock-in) into respective endogenous 

genes, to create gain-offunction models74. 

The above characteristics of such a minuscule system model, combined with 

the rapid generation time, inexpensive culture requirements, large progeny 

numbers produced in a single cross and a small highly annotated genome 

devoid of genetic redundancy, are poised to yield seminal insights into human 

disease73. 
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For almost a century, fruit flies have been providing a useful tool to study 

various different subjects: form the chemical basis of mutagenesis, to the 

definition of genes, from developmental biology, to animal behaviour. The ability 

to use Drosophila as a powerful tool to approach pathogenetic disease 

mechanisms for human diseases speaks to a tremendous application in 

biomedical research74. 

Mitochondrial dynamics in Drosophila 

Thanks to the use of animal models, we are starting to understand how this 

leads to neuronal dysfunction and loss, the interplay between mitochondrial 

shape and function is extremely complex and the current discovery rate is 

slowed down by the complexity of murine models. A valid alternative is 

represented by Drosophila melanogaster that has been successfully employed 

to lay the basis for several key findings in the field of neurodegeneration. 

Mitochondrial shape in living cells is very heterogeneous and can range from 

small spheres to interconnected tubules. The morphological plasticity of 

mitochondria results from the ability of this organelle to undergo fusion and 

fission, which are regulated by a family of mitochondrial shaping proteins. 

As described above, mitochondrial fusion is promoted by large trans-membrane 

dynamin-related proteins. OPA1 resides in the inner mitochondrial membrane 

and is involved in mitochondrial fusion, as well as in the regulation of cristae 

biogenesis and remodeling. In H. sapiens, 8 different OPA1 isoforms are 

retrieved, which are differentially post-translationally processed in at least five 

different protein forms by a complicated and yet not completely understood 

network of proteases that include iAAA, mAAA, paraplegin, Oma1,and Parl; the 

concerted action of these proteases results in the production of long and short 

forms of the protein that are both required for correct function of the protein and 

therefore for mitochondrial fusion, as well as of a soluble form that albeit 

quantitatively scarce, participates in the formation of the OPA1-containing 

oligomers that stabilizes the cristae during apoptosis75. 

Drosophila OPA1 homologue (dOPA1) shares 51.2% similarity with the human 

orthologue. In fruitflies, Opa1 gene is transcribed into 2 isoforms, that are 

processed into a short form by Drosophila presenilin-associated rhomboid-like 

(PARL) homologue rho-7, a protease that is conserved during evolution from 

yeast to mammals. Most studies on dOPA1 analyzed mutant flies where the 
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shows that the domains most subjected to pathogenic mutations are well 

conserved (Figure 7)75. 

 
Figure 7: Protein sequence alignment between human OPA1 (hOPA1) and Drosophila OPA1 (dOPA1). 

Identity is highlighted in gray, GTPase domain in red and amino acids codified by exons 27 and 28 in blue. 

 

Although apparently different, humans and flies are very similar in crucial 

aspects. Key molecular pathways required for the development of a complex 

animal, such as patterning of the primary body axes, organogenesis, wiring of a 

complex nervous system and control of cell proliferation are highly conserved 

between flies and vertebrates, then Drosophila melanogaster represents a 

powerful and useful model to study DOA. Recent studies highlighted that 

heterozygous mutations of OPA1 in Drosophila do not show defective eye 

formation, but results in reduction of life span, abnormal mitochondria 

morphology and increase ROS production in whole body77. Even if eyes have 

no gross phenotype, mutated opa1 flies show visual alterations in phototaxis 

with age-dependent progressive reduction of on/off transients in 

electroretinograms (ERG)78. Given lethal phenotype of homozygous mutations 

of Opa1 in the fruitfly, Drosophila were generated carrying homozygous mutant 

somatic clones in the eye10. Mosaic–eyes were rough and glossy indicating 

dysregulation of apoptosis and defective deposition of lens and pigments. In 

both whole body mutant and mosaic mutant-eyes flies, antioxidants were used 

to rescue phenotype. The use of Drosophila allowed to identify an important 

role for ROS in the dysregulation of eye and whole body functions and possibly 

in the pathogenesis of DOA, but many aspects still remain obscure, claiming for 

further investigation. 

Two main approaches can be used in D. melanogaster to create a model for 

human disease. First, ‘forward-genetic’ approaches can be applied. Usually, 

mutagenizing agents or transposable elements are used to generate a large-
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scale number of mutant flies. Screenings for the desired disease phenotype (for 

example, brain degeneration) are set up. Once the desired mutant flies have 

been selected, one can proceed to the identification of mutant genes, 

presumably involved in the generation of the phenotype of interest. Human 

homologues of the identified Drosophila gene products are plausible candidates 

for involvement in the disease that is being investigated. Many disease models 

were developed through this approach79.  

Alternately, when the disease genetic agent is known, ‘reverse genetics’ can be 

applied. Overexpression of dominant negative mutation or downregulation of a 

gene product may be used to screen for genetic interactors, after identification 

of a “scorable” phenotype (such as alteration of organization of cells in the eye). 

This approach is accomplished thanks to The Vienna Drosophila RNAi Center 

(VDRC), a joint initiative of the Institute of Molecular Biotechnology (IMBA) and 

the Research Institute of Molecular Pathology (IMP), which developed a 

Drosophila transgenic RNAi library. Moreover, the use of the binary system 

GAL4/UAS is a major tool in reverse genetics, because it allows the ectopic 

expression of a transgene in a specific tissue or cell type. Geneticists created 

genetic varieties of fruit flies, called GAL4 lines, each of which expresses the 

yeast transcriptional activator GAL4 in some subset of the fly's tissues. 

In this work I generated a new opa1 mutant in Drosophila using the new 

genome editing system CRISPR/Cas9.  
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1.4 Genome Editing in Drosophila  
The advent of genome sequencing and genome-wide technologies for study of 

gene expression, polymorphism and regulation has revolutionalised our ability 

to associate genes with particular cellular functions or disease states. They 

have also allowed us to make predictions about the function of a large 

proportion of both coding and non-coding sequences. Although various 

techniques such as homologous gene targeting have allowed us to selectively 

mutagenise or alter gene function in a desired manner, the difficulty of applying 

these techniques on a large scale has restricted our ability to test hypotheses 

generated from such genome-wide analyses80. 

Genome editing technologies have been developed over the past decade that 

allow us to selectively mutagenise specific regions of the genome, and allow 

sophisticated and detailed mechanistic studies to be performed in a variety of 

organisms including Drosophila81. These technologies rely on specific DNA 

binding factors that can be used to target various functional domains to defined 

regions of the genome. Most experiments have used these reagents to 

generate a double strand break (DSB) in the DNA at the target site, that can 

then be repaired by nonhomologous end joining (NHEJ) or homologous 

recombination (HR)82. NHEJ is somewhat errorprone, and can result in the 

deletion or insertion of a few bases at the cut site, resulting in mutation of the 

DNA82. HR normally results in precise repair from the sister chromatid, but if an 

excess of a desired homologous template is supplied, this may be used to 

introduce defined changes in the underlying DNA62,83. 

CRISPR/Cas9 system  
The clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) 

system acts as a bacterial defense system against invading viruses and 

plasmids in many different bacterial species84-87. The best studied system is 

that from Streptococcus pyogenes. Here, the Cas9 endonuclease is targeted to 

sequences from the invading pathogen by a crRNA (CRISPR RNA), that 

provides specificity to the endonuclease by base pairing with a 20 nt 

complimentary sequence within the DNA88, 89. 

Endogenously, a further component, known as the tracrRNA (trans-acting 

crRNA) forms a complex with the crRNA and targets its incorporation into the 
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Cas9 complex. Recently, this system has been shown to work in many other 

organisms, including mammalian90, 91, insect92,93, plant94 and fungal95 cells. 

Fusion of the crRNA and tracrRNA into a ~100 nt synthetic single guide or 

chimeric RNA (sgRNA or chiRNA) has further simplified this system, which then 

only requires two components to be expressed89, 90. The specificity is 

determined by a 20 nt sequence at the 50 end of the sgRNA, which can be 

altered to match any desired sequence in the DNA. The only limitation upon this 

targeting is that the 20 nt guide sequence has to be followed by a protospacer 

adjacent motif (PAM) of NGG in the DNA in order for efficient cleavage to occur 

(Figure 8)96. This sequence should occur on average every 8 bases in the DNA, 

but recent reports have suggested that this requirement may be relaxed to 

include NAG sequences97, increasing the number of potential target sites still 

further. CRISPR systems from other bacterial species have different PAM 

requirements98, 99 and this suggests that it will be possible to engineer Cas 

proteins to bind to essentially any sequence in the future. 

 
 

Figure 8: Schematic of the 2-component CRIRISPR/Cas9 system. A target site in the yellow locus is 

shown as an example. Cas9 is guided to a cleavage site by a chimeric RNA containing critical crRNA and 

tracrRNA sequences, including 20-nt of homology to a target site. This RNA has alternately been referred 

to as a guide RNA (gRNA), a single-guide RNA (sgRNA) or a chimeric RNA (chiRNA). Cas9 (gray) 

contains 2 distinct endonuclease domains, a HNH domain and a RuvC-like domain, that independently 

cleave both stands at the target site to generate a DSB (red arrowheads). Cleavage of target sites 

requires a high degree of homology to the gRNA and a 3-bp PAM (NGG) immediately 3′ of the target 

sequence. 
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Drosophila CRISPR system 
Several groups have used the CRISPR/Cas9 system to induce targeted 

mutations in Drosophila93, 96, 100-102, but differ in their approach to supplying the 

Cas9 protein and sgRNA components of the system. The first description of 

mutagenesis with CRISPR/Cas9 involved coinjection of two plasmids into 

syncytial blastoderm stage Drosophila embryos96. One plasmid expresses the 

Cas9 gene under the Hsp70 promoter, and the second produces the sgRNA, 

driven by a pol III promoter from the U6 gene. This was tested at the yellow 

gene, and resulted in mutagenesis of the gene that was capable of being 

transmitted to subsequent generations. The efficiency of mutagenesis due to 

inefficient NHEJ was fairly low, with 5.9% of the injected flies giving rise to at 

least one mutant offspring96. However, the authors further demonstrated that if 

two sgRNAs are supplied, targeting either end of the yellow gene, this can 

result in deletion of the intervening sequence, and that integration of short 

sequences at the cleavage site is possible by coinjection with a short single 

stranded oligonucleotide donor sequence96. 

A second technique that has been applied by two groups independently 

involves coinjection of in vitro transcribed Cas9 mRNA and sgRNA into early 

stage embryos, and achieves much higher mutagenesis rates due to inefficient 

NHEJ93, 100. Bassett et al. showed that up to 88% of injected flies gave rise to 

mosaic expression of the yellow gene implying that this technique is highly 

efficient. A second study by Yu et al. showed a similar efficiency (80%) at the 

yellow gene, but also showed successful mutagenesis at six other target loci 

spread throughout the genome, demonstrating the general applicability of this 

approach. The difference in efficiency between plasmid and mRNA injection 

techniques may be explained by the expression levels of the Cas9 protein and 

sgRNA, or by the timing of expression relative to the specification of germ cells 

in the embryo.  

A third system has also been developed whereby two transgenic flies are 

produced, one expressing Cas9 in the germline under the nanos promoter, and 

a second with ubiquitous expression of the sgRNA again driven by the U6 

promoter103. When these two flies are crossed together, highly efficient 

mutagenesis can be achieved, giving rise to up to more than 90% of flies with at 

least one mutant offspring, and allowing longer deletions of up to 1.6 kb to be 
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made efficiently by coexpression of two sgRNAs. Although efficient, this 

requires the time consuming step of producing a new transgenic fly for each 

sgRNA required, and removal of the Cas9 and sgRNA transgenes after mutant 

generation. However, this technique will have advantages in certain 

applications, since it is more reproducible than the techniques involving embryo 

injection.  

The final technique uses injection of plasmids encoding the sgRNA into 

transgenic lines in which Cas9 is expressed specifically in the germline under 

the vasa102 or nanos104 promoters. These techniques avoid potentially 

problematic somatic mutagenesis by limiting Cas9 expression to the germline 

cells. Sebo et al. demonstrated high rates of mutagenesis in the G1 offspring 

derived from flies injected with plasmids encoding sgRNAs, but a significant 

proportion of the injected flies were infertile. By using the nanos promoter to 

drive Cas9 expression, Ren et al. achieved higher rates of fertility, and 

generated high rates of mutagenesis in G1 offspring.  

In addition to the injection of vectors expressing guide RNAs (gRNAs), the 

production of fly lines that express Cas9 either ubiquitously or in the germline 

will also allow direct injection of in vitro transcribed sgRNA into these embryos. 

However, the relative efficiency of this technique has not been established. 

Recently, expression vectors for Cas9 expression in Drosophila cell lines have 

also been described. The Actin5c and U6 promoters were use to drive 

expression of the Cas9 and sgRNA components, respectively. This results in 

highly efficient mutagenesis inmore than 80%cells due to the indels generated 

by inefficient NHEJ. The authors also demonstrated that homologous 

integration is possible using short oligonucleotide donors to insertsmall 

sequences, or longer homology arms to insert a 1.8 kb cassette at up to 4% 

efficiency92. 

Application of CRISPR/Cas9 system 
The majority of applications of CRISPR/Cas9 in genome engineering use its 

ability to introduce DSBs at specific sites within the genome. The DSBs can be 

repaired by either NHEJ or HR, and both repair mechanisms can be used to 

generate mutations and manipulate the genome in a defined manner (Figures 9 

and 10). 
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Figure 9 Double strand break repair can be used to target defined genomic changes. The double strand 

break (DSB) induced by the Cas9/sgRNA complex can be repaired by non-homologous end joining 

(NHEJ) or homologous recombination (HR). This can result in small insertions or deletions at the target 

site (left), deletions of larger genomic regions when two cuts are made (middle) or homologous repair with 

a desired template (right). This can be used to alter the genome in a variety of different ways (bottom). 

 

 
 
Figure 10 Uses of genome editing within protein coding genes. NHEJ repair (top) of Cas9-induced DSBs 

can be used to remove functional elements or disrupt genes in a variety of different ways. HR repair 

(bottom) can be used to insert or replace sequences present within the gene for a variety of different uses. 

Exons are indicated as boxes, with coding sequence (CDS) in dark blue and untranslated region (UTR) in 

grey. Enhancers are also indicated in light blue. 
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Creation of a DSB increases the rate of homologous repair at that site by 

several orders of magnitude105, and this enables gene targeting to produce 

defined genetic changes much more rapidly and quickly than with classical 

techniques106 (Figure 9). This relies on supplying a large excess of a 

homologous repair template with the desired changes107. The donor DNA can 

take two forms: single stranded DNA (ssDNA) oligonucleotides synthesised up 

to 200 nt in length and used to integrate short sequences, or longer double 

stranded DNA (dsDNA) constructs containing hundreds to thousands of 

nucleotides of homologous sequence on either side of the DSB site107. The 

latter are capable of integrating longer sequences at higher efficiency (Figure 

10-11)80, 108.  

 

 
 
Figure 11: (a) Targeted DNA sequence consists of the DNA target (red bar) directly upstream of a 

requisite 5′-NGG adjacent motif (PAM; green). Cas9 mediates a DSB ∼3 bp upstream of the PAM for (+) 

strand (blue triangle) or (−) strand (red triangle). (b) The guide oligos contain overhangs for ligation into 

the BbsI sites in px330, a G-C base pair (blue) added at the 5′ end of the guide sequence for T7 

transcription and the 20-bp sequence preceding 5′-NGG in genomic DNA. (c) ssDNA for point mutation 

consists of a point-mutation site (purple), flanked by 60 base sequences on each side adjoining the DSBs. 

(d) ssDNA for tag/loxP insertion consists of tag/loxP site (purple), flanked by 60-bp sequences on each 

side adjoining the DSBs. (e) A circular donor vector for large fragment insertion consists of a large 

fragment, flanked by homology arm sequences on each side adjoining the DSBs. 
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2.AIM OF WORK 
For a century, Drosophila has been a favored organism for genetic research. 

However, the array of materials and methods available to the Drosophila, 

worker has expanded dramatically in the last decade. Genetic engineering 

techniques have been optimized for studying several disease including defects 

of mitochondrial dynamics and thus also Dominant Optic Atrophy. 

In this work I used the CRISPR/Cas9 system to generate the only mutant of 

DOA which can be helpful to understand the pathogenesis of this disease. 

As describe above we generated two different dOPA1 mutants: OPA1 R417H, 

a mutant that carries in endogenous dOPA1 gene the mutation corresponding 

to R445H in humans; and OPA1null carrying a microdeletion leading to 

production of a inactive truncated protein of 482 amino acids.  

We described the phenotypic effects observed in these mutants to determined if 

they have pathological features. We also analyzed the mitochondrial 

morphology in the nervous and muscular systems using confocal microscopy 

and the mitochondria functions through biochemical assays. 
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3.METHODS 

3.1 Molecular Biology  

Production of the chiRNAs  
We chose the target PAM site NGG using the online tool 

http://tools.flycripr.molbio.wisc.edu/targetFinder/. The sequence adjacent to the 

PAM sites was used to cloned into pU6-BbsI-chiRNA. 

We have done synthesize the oligos with BbsI site by Bio-Fab Research: 

 5’gRNA: Sense oligo       CTTCGGAGTTCCGAATGAAGGCGT 

                         Antisense oligo  AAACACGCCTTCATTCGGAACTCC 

 3’gRNA: Sense oligo       CTTCGTCATCCT TTCGTCCACGAC 

                         Antisense oligo  AAACGTCGTGGACGAAAGGATGAC  

For annealing the oligos were diluted in TE or 1X ligation buffer, then the 

following program was run in a thermocycler 95°C for 5 min, than ramp to 25°C 

at a rate of -5°C/min. 

The pU6-BbsI-chiRNA plasmid was cut with BbsI and de-phosphorylated finally 

the annealed oligos were ligated into the cut pU6-BbsI-chiRNA and the ligation 

transformed in E.Coli. 

Production of the donor plasmids  
The two dsDNAs were synthesize by Eurofins Genomics, these fragments have 

the following sequence: 

 

dsDNA OPA1_R417H 

 
 

 

 

 

http://tools.flycripr.molbio.wisc.edu/targetFinder/
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Transformation of chemiocompetent cells 
We transformed competent cells NEB 5-alpha Competent E. coli (High 

Efficiency, NEB #C2987) following the protocol: 

 Thaw chemically competent cells on ice. 

 Add 2 l of the chilled assembly product to the competent cells. Mix 

gently by pipetting up and down or by flicking the tube 4–5 times. Do not 

vortex. 

 Place the mixture on ice for 30 minutes. Do not mix. 

 Heat shock at 42°C for 30 seconds. Do not mix. 

 Transfer tubes to ice for 2 minutes. 

 Add λ50 l of room-temperature SOC media to the tube. 

 Incubate the tube at 37°C for 60 minutes. Shake vigorously (250 rpm) or 

rotate. 

 Warm selection plates to 37°C. 

 Spread 100 l of the cells onto the selection plates. Use Amp plates for 

positive control sample. 

 Incubate overnight at 37°C. 

Drosophila genomic DNA extraction protocol 

 Obtain 1-5 flies per tube and keep on ice 

 Add 100µl of Buffer A and grind with tissue grinder ~5 min  

 Incubate at 65°C for 30 min 

 Add 200µl of Buffer B 

 Incubate on ice for 1 hour 

 Centrifuge at 12000 rpm for 15 min 

 Transfer supernatant to a new eppendorf tube  

 Add 150µl of Isopropanol  

 Centrifuge at 12000 rpm for 15 min 

 Remove supernatant 

 Wash with 200µl of cold Ethanol 70% 

 Centrifuge at 12000 rpm for 15 min 

 Remove supernatant  

 Dry the pellet and resuspend in 30µl of H2O 

 Add 1µl of RNase 
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3.2 Drosophila genetics 

Embryo injection 
The plasmids were sent to BestGene Inc. for Drosophila embryo injection. The 

line vas-Cas9-III (BDSC#51324) was chosen for microinjection. 

Generation of stable stocks 
Individuals of the F2 carrying the dOPA1 mutation and the SM6a balancer 

chromosome, were crossed to generate the stable mutant lines 

OPA1_R417H/SM6a and OPA1null/SM6a. the stable mutant lines were crossed 

to generate other two lines OPA1 R417H/CyoGFP and OPA1null/CyoGFP. 

Drosophila strains used 

 elav-Gal4 

 D42-Gal4 

 UAS-mito-GFP (Bloomington Drosophila stock center) 

 Control genotypes was W1118 

3.3 Microscopy 

Immunohistochemistry 
Immunostaining was performed on wandering third instar larvae raised at 25°C. 

After harvesting larvae, they were dissected dorsally in standard saline and 

fixed in 4% paraformaldehyde for 10 min and then washed in PBS containing 

0.3% Triton-X and incubated overnight at 4°C with Goat Anti-Horseradish 

Peroxidase HRP antibody conjugate with Cyanine Cy™3 red (dilution 1:500, 

product by Jackson ImmunoResearch, Amax: 550nm, Emax: 570nm). 

Preparations were then washed 3 time in PBS. Coverslips were mounted with a 

drop of Mowiol mounting medium (Sigma). 

Live imaging of mitochondrial network on muscles of Drosophila larvae  
Experimental larvae were dissected dorsally in HL3 solution containing 7µM 

Glutamate, in order to reduce muscle contractions. After the larvae were 

incubated 30min at RT with MitoTracker® Orange CMTMRos 0.5µM in HL3 

(Mitochondrion-Selective Probes produce by ThermoFisher scientific, Amax: 
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550nm, Emax: 570nm). Preparations were then washed in HL3 and analyzed 

using a Nikon C1 confocal microscope with a 60X water immersion objective. 

Mitochondria density analysis 
Larvae were dissected as previously described. To quantify mitochondria 

distribution we compared mitochondrial density in 40µm long proximal and 

distal regions of the same segmental nerve. Mitochondria density was 

evaluated by collecting a series of confocal z-stacks to determine the volume of 

mitochondria (volume of mitoGFP) and the volume of the nerve (volume 

enclosed by HRP fluorescence). The volume of mitochondria was normalized to 

the volume of the HRP labeled nerve and the ratio between mitochondria 

density in distal region and mitochondria density in proximal region was 

calculated for each nerve. 

Image analysis 
Confocal images were acquired through x40 or x60 CFI Plan Apochromat Nikon 

objectives with a Nikon C1 confocal microscope and analyzed using either 

Nikon EZC1 (version 3.91), Volocity (PaerkinElmer Company, Santa Clara, CA) 

or NIH ImageJ softwares. 

3.4 Biochemical Assays 

Mitochondrial Respiration Assay 
Oxygen consumption measurements were performed using a Clark type 

electrode (Hansatech Instruments, King’s Lynn, England). Equal weight of 

larvae were cut up and added to 1 ml of Respiration Buffer (see Appendix A) at 

room temperature. Total oxygen consumption was calculated by subtracting the 

rate measured under physiological conditions with that measured after addition 

of 5 µM Rotenone and 5 µM Antimycin A. Mitochondrial respiration was 

normalized to total larvae weight. 

Activity of respiratory complexes 
The redox enzymatic activities were performed on crude mitochondria obtained 

from third instar larvae of Drosophila. Equal weight of larvae was used and 

frozen in liquid nitrogen and stored at -80°C. 
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To obtain the crude mitochondria, the larvae were suspended in mitochondrial 

isolation buffer (70mM sucrose, 200mM Mannitol, 10mM KH2PO4, 2mM Hepes, 

1mM EGTA, 4mg/ml BSA, pH 7.2) supplemented with protease inhibitors 

cocktail and homogenized using a glass teflon homogenizer. This and all the 

subsequent procedures were carried out at 4°C. The homogenate was 

centrifuged at 600g for 10min in order to precipitate unbroken cells and portions 

of larvae cuticle. The supernatant was centrifuged again at 10000g for 20min. 

The mitochondrial pellet was suspended with 200µl of mitochondria isolation 

buffer and immediately used for analysis.  

The enzymatic reactions were performed in constant agitation, at 25°C using a 

dual wavelength spectrophotometer (V550 Jasco Europe, Italy).   

 

Complex I (NADH-quinone oxidoreductase). The NADH-quinone 

oxidoreductase activity was assessed following the reduction of 2,6-Dichloro-4-

[(4-hydroxyphenyl)imino]-2,5-cyclohexadien-1-one (DCIP) by quinol. After 

addition of NADH and decylbenzoquionone (DB) in the assay, the reduced 

quinone (DBH2) gives electron to the high affinity acceptor DCIP inducing a 

change color from blue to colorless. The reaction mix is the following: 

 Buffer  KH2PO4 50mM, EDTA 1mM, KCN 2mM, pH 7.6                1 ml 

 DCIP                                                                                            60 µM   

 DB                                                                                                50 µM  

 Antimycin A (inhibitor of Complex III )                                            1 µM  

 Crude mitochondria                                                                       10 µl 

The reaction was started adding 150 µM NADH. 

Complex I specific activity was measured at = 600nm using a molar extinction 

coefficient of 19Mm-1cm-1 for DCIP, after subtraction of 1µM rotenone-

insensitive activity. 

 

Complex III (Cytocrome-C oxidoreductase). The enzymatic activity was 

determined as antimycin A-sensitive ubiquinol: Cytocrome-C reductase activity 

in the presence of DBH2. The reaction mix is the following: 

 Buffer KH2PO4 50mM, EDTA 1mM, KCN 2mM, pH 7.6             1 ml   

 CytC3+                                                                                       20µM 

 Rotenone ( inhibitor of Complex I)                                              1µM 
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 Crude mitochondria                                                              10µl 

The reaction was started by adding 50µM DBH2. 

Complex III specific activity was measured at at = 550nm using a molar 

extinction coefficient of 19Mm-1cm-1 for Cyt-C2+.  

 

Complex IV (Cytocrome-C oxidase). The enzymatic activity was assessed by 

the capacity to oxidize Cyt-C2+ in Cyt-C3+ in presence of oxygen. The reaction 

mix is the following: 

 Buffer KH2PO4 50mM, EDTA 1mM, pH 7.6                            1 ml   

 Cyt-C2+                                                                                  20µM 

The reaction was started by adding 10µl of crude mitochondria.                                                    

Complex IV specific activity was measured at = 550nm using a molar 

extinction coefficient of 19Mm-1cm-1 for Cyt-C2+.        

 

Citrate Synthase activity. The activity of different ETC enzymes was normalized 

to Citrate Synthase (CS) activity which is generally considered a mitochondrial 

mass index109. The enzymatic activity was assessed by the ability of CoaSH 

derived from the reaction to cleave the disulfide bond of DTNB, producing  2-

nitro-5-thiobenzoate (TNB−), which ionizes to the TNB2− dianion in water  and  

has a yellow color. 

The reaction mix is the following: 

 Buffer  TRIS pH8 125mM, 0.1% Tiriton-X 100                   0.85 ml   

 AcetylCoA (enzyme substrate)                                           0.3mM 

 DTNB                                                                                  0.1mM 

 Crude mitochondria                                                               10µl 

After one minute in agitation Oxaloacetic Acid 0.5mM was added to starting the 

reaction.       

CS specific activity was measured at = 412nm using a molar extinction 

coefficient of 13.6 mM-1cm-1 for DTNB.        
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APPENDIX A: Stock and Solutions 
LB Medium (Luria-Bertani Medium) 

Bacto-tryptone     10g 

Yeast extract        5g 

NaCl                    10g 

H2O                     to 1 Liter 

Autoclave. 

 

LB Agar 

Bacto-tryptone      10g 

Yeast extract          5g 

NaCl                     10g 

Agar                     20g 

H2O                     to 1 Liter 

Adjust pH to 7.0 with 5N NaOH. Autoclave. 

 

LB–Ampicillin Agar 

Cool 1 Liter of autoclaved LB agar to 55° and then add 100 µg/ml filter-sterilized 

ampicillin. Pour into petri dishes (~30 ml/100 mm plate). 

 

SOC medium 

Bacto-tryptone      20g 

Yeast extract          5g 

NaCl                     0.5g 

KCl 1M                 2.5 ml 

H2O                      to 1 Liter 

Adjust pH to 7.0 with 10N NaOH, autoclave to sterilize and add 20 ml of sterile 

1M glucose immediately before use. 
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Drosophila’s food 

Agar                          7 g 

Yeast extract         26.4 g 

Sucrose                26.4 g 

H2O                      to 600ml 

Autoclave and then add 1.5 g of Nipagin dissolved in 90% ethanol. 

 

Phoshate Buffered Saline (PBS) 

KH2PO4               15 g/L 

NaCl                     9 g/L 

Na2HPO4              8 g/L 

 

Mitochondrial isolation buffer pH 7.2 

Sucrose              70 mM 

Mannitol            200 mM  

KH2PO4              10 mM  

Hepes                  2 mM  

EGTA                   1 mM  

BSA                   4 mg/ml  

 

HL3 

NaCl   70   mM 

KCl               5    mM 

CaCl2   1.5  mM 

MgCl2             20   mM 

NaHCO3             10   mM 

Trealosio              5    mM 

Sucrosio             115 mM 

HEPES    5    mM 

Adjust pH to 7.0 with 10N NaOH 
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APPENDIX B: Plasmids maps 
pBluescript II SK+ (BSSK+) 

 
 

pBS-U6-BbsI-chiRNA 

 

 
 

 



 

52 
 

4. RESULTS 

4.1 Drosophila OPA1  MUTANTS: GENERATION AND 
PHENOTYPIC CHARACTERIZATION 

Generation of mutants 
To generate a model of Dominant Optic Atrophy, we introduced disease 

mutations in the Drosophila dOPA1 ortholog using the CRISPR/Cas9 system 

(described previously). Two different dOPA1 mutants were generated: OPA1 

R417H carrying a severe missense mutation and OPA1null which carries a stop 

codon in position 482 of the dOPA1 protein. Availability of these mutants 

allowed us to compare the phenotypic effects of a completely null mutation with 

those induced by the R417H mutations responsible for the DOA plus phenotype 

in humans.     

The experimental design to generate mutants using CRISPR/Cas9 system 

requires the following steps: (a) generation of the gRNAs responsible for 

precisely targeting the genomic region where recombination should take place; 

(b) generation of the dsDNA templates containing the desired genomic 

modifications to be introduced and homology arms for accurate recombination; 

(c) choice of a screening method. 

(a) To generate the gRNAs we first chose two PAM sites using the online tool 

FlyCrispr_TargetFinder. The NGG PAM sites have some important features. 

They should be adjacent or as close as possible to the region of the dOPA1 

gene where the desired mutation is introduced, they must have no potential off-

target matches elsewhere in the Drosophila genome and they should permit 

replacement of one of their two Gs by silent mutagenesis such that the 

fragment introduced by recombination no longer contains a PAM site in that 

position thereby increasing the efficiency of template incorporation. Figure 12 

shows the PAM sites chosen for this project. 
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Figure 12: Genomic sequence of portion of the dOPA1 gene. Greenμ 5’ and 3’ PAM sites, the respective 

target sequences of the gRNA are underlined. Red: c.1250G>A mutation to generate OPA1 R417H 

mutant. Gray: c.1415delT mutation to generate OPA1null mutant.  

 

After choosing the PAM sites targeting gRNAs were completed by adding 

appropriate genomic targeting sequences. The genomic target sequences 

should fulfill the following requirements: (1) 20-nt long, (2) followed by a 3-nt 

PAM sequence NGG, (3) begin with a G to optimize U6-driven transcription. 

The resulting sequences of the 5’ and 3’ gRNA are the following: 

5’gRNAμ     5’- GGAGTTCCGAATGAAGGCGTCGG - 3’ 

3’gRNAμ     5’- GTCATCCTTTCGTCCACGACCGG – 3’ 
Targeting gRNAs were cloned into pU6-BbsI-chiRNA plasmid by annealed 

oligos via the BbsI restriction sites (Figure 13). 

 

 
Figure 13: Targeting gRNA: annealing and cloning into pU6-BbsI-chiRNA  
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(b) To generate the dsDNA templates necessary for homologous recombination 

we synthesized two DNA fragments each containing the desired disease 

mutation and the silent mutations required to eliminate the PAM sites present in 

the wild type genome sequence. (c) In addition to these features, in the 

synthesized DNA we added a silent mutation that introduces a novel BamHI 

restriction site necessary for screening the occurrence of homologous 

recombination events by restriction digest. dsDNA templates also require the 

presence of two 1500bp homology arms at the 5’-end and 3’-end of the mutated 

DNA segment that are responsible for homologous pairing during the 

recombination event. These arms were very simply generated by PCR 

amplification on genomic Drosophila DNA of the two regions adjacent on either 

side of the DNA fragment to be replaced.   

Completion of the dsDNA templates was achieved by assembling the 

synthesized DNA with the two homology arms. We used a technology known as 

Gateway assembly cloning where after amplification of each fragment with 

specific primers containing homologous ends, they were all ligated together in 

one step into pBluescript II SK+. The following plasmids were produced:  

 

BSSK+OPA1_R417H 

 
 

BSSK+OPA1null 
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As shown in Figure 16, the mutants strains display a robust reduction in 

lifespan. In controls 50% of survival is reached at 47 days, in OPA1null and 

OPA1 R417H mutants this parameter goes down to 28 and 24 days 

respectively. No obvious differences between the two mutants were detectable 

using our assay. 

 

 
Figure 18: Heterozygous dOPA1 mutation shortens lifespan in Drosophila.  

 

The lifespan reduction of both dOPA1 mutants indicate that the heterozygous 

mutations of OPA1 is likely to cause systemic consequences probably affecting 

multiple processes. This dominant effect on lifespan is interesting in 

consideration of the fact that OPA1 pathology is also dominant and suggests 

that these flies can potentially offer a useful disease model.    

4.2 ANALYSIS OF MITOCHONDRIAL DYNAMICS 
It is known that the OPA1 protein is involved in mitochondrial dynamics, the 

literature suggests that in DOA patients the mitochondrial network is altered in 

different tissues, therefore we performed a series of experiments to analyze 

mitochondrial morphology in the neuronal and muscular systems of both 

dOPA1 mutants. 
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As shown in figure 19a, mitochondrial fragmentation is not evident at first sight. 

However, analysis of the length of individual fluorescent spots with a specific 

software reveals that a reduction of the average length of mitochondria was 

detectable in dOPA1 mutants when compared to controls (Figure 19b). This 

result indicates that mitochondria morphology is affected by mutation of a single 

copy of the fly dOPA1 gene. 

Existing evidence intimates that dysfunction of the mitochondrial dynamics 

alters mitochondrial axonal distribution. We thus went on to investigate the 

distribution of mitochondria in segmental nerves of Drosophila third instar 

larvae. Mitochondria were labeled in control and dOPA1 mutants using 

mitoGFP expressed under the control of the D42-gal4 driver line which 

specifically expresses specifically in motor neurons thus labeling the larva 

segmental nerves. were crossed to UAS-mitoGFP,D42-Gal4/TM6. The nerves 

where identified by simultaneous labeling of axonal membranes using the 

neuronal marker HRP. Mitochondria distribution along the nerves was then 

evaluated by measuring mitochondrial density in proximal (250 µm away from 

the cell bodies) and distal (1500 µm away from the cell bodies) regions of the 

segmental nerves. 
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Analysis of mitochondrial respiratory capacity shows that in larvae homozygous 

for dOPA1 mutations oxygen consumption was reduced by approximately 35% 

compared to controls; whereas in heterozygous larvae OPA1null and OPA1 

R417H  , oxygen consumption was reduced by 20% and 10% respectively of 

that of controls (Figure 23). 

These data indicate that mutations on dOPA1 protein with morphological 

alterations of mitochondria shape cause reduction of the mitochondrial 

functions. Although this was an expected result based on the available 

literature, it is interesting to underscore the observation that the OPA1 R417H 

mutation in heterozygosity causes a greater reduction of mitochondrial 

respiration compared to an heterozygote OPA1null mutant.  

Analysis of the activity of respiratory complexes 
In order to confirm the results observed on mitochondrial respiration, the redox 

activity of respiratory complexes was measured in a spectrometry assay using 

crude mitochondria extracted from third instar larvae of control W1118, 

heterozygous and homozygous OPA1 R417H, heterozygous and homozygous 

OPA1null individuals. The activities of complex I (CI), complex III (CIII) and 

complex IV (CIV) were normalized to Citrate Synthase (CS) activity. CS activity 

is universally accepted as an index of mitochondrial mass since it is encoded in 

the nucleus and localized in the mitochondrial matrix. 

The bar graph in figure 24 shows the redox activity of different ETC complexes. 

CI activity was reduced in both homozygous dOPA1 mutants, especially in  

OPA1null homozygote mutant, as well as in heterozygous OPA1 R417H. 

Surprisingly, CI activity of OPA1null heterozygotes was similar to controls, 

suggesting that the mutated copy of OPA1 R417H alters CI activity more than a 

reduced expression of OPA1. Furthermore, also complex IV activity was 

strongly affected in OPA1 R417H heterozygote and slightly reduced in the other 

mutants. Finally, CIII activity resulted similar to controls or enhanced in OPA1null 

heterozygotes. 

These data confirm that mutation of dOPA1 causes a reduction of mitochondrial 

function. The most interesting result concerns the heterozygous mutant OPA1 

R417H in which the activities of CI and CIV are drastically reduced. Again, this 

result suggests that some functional parameters are more severely altered by 
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5. DISCUSSION 
The mechanisms by which OPA1 mutations produce DOA or DOA plus in 

humans are not clear. A broad mutational spectrum has been observed for 

OPA1 mutations. Over 250 OPA1 mutations have so far been reported and 

they can be grouped into two main categories depending on whether they are 

predicted to cause disease due to haploinsufficiency (deletions, insertions, 

splice site and nonsense mutations) or can potentially act through a dominant-

negative mechanism (missense mutations)68. Although optic atrophy is the 

defining feature of DOA, a specific missense mutation within the OPA1gene, 

R455H, has been consistently associated with a number of additional clinical 

manifestations including sensorineural deafness, chronic progressive external 

ophthalmoplegia ataxia, myopathy and peripheral neuropathy thus giving rise to 

the so called DOA plus phenotype. 

To address the pathophysiological mechanism of OPA1 mutations we have 

taken advantage of the outstanding sequence homology between the human 

and Drosophila OPA1 (dOPA1) proteins has allowed us to use Drosophila as 

model system to attempt an investigation of the mode of action of different 

categories of OPA1 mutations, a nonsense mutation predicted to be 

haploinsufficient and a missense mutation R417H homologous to human 

R445H, thought to exert a dominant negative effect. Because the R455H 

mutation has been linked to a DOA plus phenotype, it is believed to be a more 

severe mutation, at least in a heterozygous state, than a null. To model these 

mutations we have used the latest genome engineering technology, in vivo 

CRISPR/Cas9 to modify the endogenous Drosophila OPA1 gene. To our 

knowledge this is the first reported instance of a model organism that carries a 

systemic pathogenic OPA1 mutation. Comparison of the two dOPA1 mutants 

generated has allowed an initial assessment of the phenotypes elicited by the 

mutations fundamentally revealing that two types of mutations show a number 

of differences in their in vivo behavior. The first important observation concerns 

viability. Since we are dealing with a fully mutant organism we have been able 

to examine the effects of the mutations on viability. Not surprisingly, we found 

that both mutants are lethal in homozygosity thus underscoring the importance 

of OPA1 function for the organism. However, lethality occurs at a different 
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developmental stage. Homozygous null mutants (carrying the nonsense 

mutation) die at the first instar larva stage while homozygous R417H mutants 

die later, around the second instar larva stage. This result shows that not 

having the OPA1 protein at all turns out to be a more severe condition than 

having a R417H mutant OPA1 under this paradigm. However, both DOA and 

DOA plus are dominant diseases and therefore caused by mutation of a single 

copy of the gene in the heterozygous state66. Examination of both heterozygous 

Drosophila mutants shows that they are viable but revealed also that they 

display a similar shortening of lifespan, suggesting that under an heterozygosity 

paradigm they behave similarly. However, the presence of more subtle 

differences in lifespan may be hindered by the rather gross experimental 

approach. Confirmation of the observation that heterozygous dOPA1 mutants 

display defects has come from the analysis of mitochondria morphology which 

has shown that both in nerves and muscles mitochondria network shape is 

characterized by mild fragmentation and clusterization. Yet, it remains 

absolutely clear that a single copy mutation of the OPA1 gene in flies displays a 

dominant effect likely due to perturbation of mitochondria morphology which in 

turn causes systemic defects that result in shortened lifespan. This is 

reminiscent of the condition in humans where onset of DOA or DOA plus 

disease demonstrates that alteration of a single copy of OPA1 has harmful 

consequences for the organism. 

How does perturbation of mitochondria morphology lead to the dominant 

systemic consequences observed in our dOPA1 mutants? It has been reported 

that loss or mutation of OPA1 is associated with impairment of oxidative 

phosphorylation. In agreement with these reports, we found that both 

homozygous mutants display a substantial decrease in oxygen consumption. 

However, it is interesting to note that despite a similar effect on mitochondrial 

morphology the null mutation and the R417 mutation behaved differently in the 

respiration assay. Indeed, the observation that R417 heterozygote individual 

show a greater decrease of oxygen consumption when compared to null 

heterozygotes seem to suggest that that some functional parameters are more 

severely altered by the presence of a single copy of a missense pathological 

mutation than by the presence of a single copy complete loss of function allele. 

This result appears to be in line with the fact that R417H has been linked to 
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DOA plus, a more severe pathology than DOA which is normally associated 

with OPA1 haploinsufficiency66, 68, 110. This would indicate that also in an 

organism model R417H may lead to a dominant interfering effect on the wild 

type OPA1 protein thus accounting for the greater severity of the R417H 

mutation compared to the null mutation. Therefore, the Drosophila models we 

have generated appear to reproduce to some extent features that are typical of 

OPA1 affected individuals. A previous report111 has shown that in fibroblasts 

derived from patients carrying a R445H mutation (homologous to the R417H fly 

mutant) the rate of mitochondria ATP synthesis was significantly decreased at 

the level of complex I thus pointing to complex I as the culprit for the defective 

oxidative phosphorylation. Although we also found that the activity of complex I 

was generally reduced for both dOPA1 null and R417H homozygous mutants, it 

was surprisingly normal in dOPA1 null heterozygous individuals while it was 

reduced to about 50% of controls in R417H heterozygous individuals. Even 

more striking are the results regarding complex IV activity since essentially both 

homozygous mutants as well as the dOPA1 null heterozygote are unaffected. 

Unexpectedly, however, complex IV activity was largely diminished in dOPA1 

R417H heterozygous individuals. These results further point to a different 

behavior for the two mutations in vivo in a whole organism, with the DOA plus 

causing mutation R417H leading to more severe effects than the nonsense, null 

mutation. 

In this thesis work we have investigated the role of two types of pathogenic 

mutations in the endogenous OPA1 gene using Drosophila as a model system. 

One mutation completely obliterates OPA1 function and has been linked in 

humans to DOA pathology through a haploinsufficient mechanism. The other 

type is a severe missense mutation whose occurrence in humans is thought to 

give rise to the more severe DOA plus pathology by functioning as a dominant 

negative allelic form. Our novel animal models appear to suggest that indeed 

the two types of mutation differentially affect some of the morphological and 

functional parameters of mitochondria when heterozygous. We have observed 

that in none of the experiments conducted the null heterozygous mutation had 

worse consequences than the R417H mutation. It either behaved the same way 

or was obviously milder. This result is in apparent contrast with the observation 

that in homozygosity the null mutant dies at a very early developmental stage 
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while the R417H homozygote carries on until a later stage but can be explained 

by viewing the R417H as a partially though severely inactivating mutation and 

thus by definition weaker than a completely inactivating one. However, in 

heterozygosity R417H could interfere with the activity of the wild type copy of 

dOPA1 resulting in more severe phenotypes than those caused by the 

presence of a single loss of function allele. Furthermore, the fact that some 

tests do not show differences between the two mutations can easily be ascribed 

to the coarseness of the test itself that would not permit to discriminate 

relatively subtle divergences. 

We believe that we have produced a rather good model to study the 

etiopathology of different forms of DOA caused by different classes of 

mutations within the OPA1 gene. Further validation of these models is 

obviously still required and is already under way. 
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