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ABSTRACT 

Tendon injuries are often associated with skeletal muscle lesions that can originate 

from a variety of events, including direct trauma, tendon and muscle lacerations and 

contusions, indirect insults and degenerative diseases as muscular dystrophies. 

Currently, a complete cure for musculoskeletal diseases is not present and the 

restitutio ad integrum is difficult to obtain.  

In the last decade, adult MSCs gained general attention in both human and 

veterinary medicine and the understanding of MSC function is improved promoting 

the application of cell therapy and the development of powerful cell-derived 

therapeutics for regenerative medicine. 

The first part of this research focused on the reprogramming of stromal cells derived 

from equine and sheep mesenchymal tissue towards tenogenic and myogenic fate 

in vitro using new non-viral transfection system. 

1) Equine MSCs isolated from peripheral blood (PB-MSCs) can develop the 

tenogenic pathway using four specific growth factors such as TGFβ3 

(transforming growth factor β3), EGF2 (epidermal growth factor 2), bFGF2 

(fibroblast growth factor 2) and IGF1 (insulin-like growth factor 1) in presence 

or without Low Level Laser Technology (LLLT). 

2) PB-MSCs were induced to differentiate towards myogenic fate using the 

complex TAT-MyoD in presence of a conditioned medium obtained from co-

culturing PB-MSCs with C2C12 without a direct contact.  
3) A novel surface-active maghemite nanoparticles (SAMNs) were tested as 

vectors for eukaryotic cell transfection of coding gene in PB-MSCs without 

the application of external magnetic fields.  
The full characterization of these three techniques was achieved using molecular 

and immunohistochemistry analysis.  

Real-time PCR (rt-PCR) was performed to study the expression level of the typical 

tenogenic genes markers Early Growth Response Protein-1 (EGR1), Tenascin C 

(TNC) and Decorin (DCN) to discover the best combination of GFs in presence or 

without LLLT.  
To evaluate the myoblasts differentiation, rt-PCR analysis was executed to study 

Myf5 and Myogenin gene expression while immunofluorescence experiments was 

performed to estimate MyoD, Myf5 and Myogenin protein expression. 

The cytotoxicity effects of SAMNs nanoparticles was observed with XTT cell 

proliferation assay and to evaluate SAMNs efficacy as vector for pDNA coding GFP, 

an immunofluorescence analysis was performed. 

 

The second topic of this research project was on skin regeneration studied in vivo. 

Skin is a soft tissue and covers the entire surface area of body. It is a self-repairing, 

self-renewing organ that forms an important barrier from the outer environment to 

the inner environment. Therefore, damage to the skin leads to debilitating wounds 

that is an impairment of the anatomical structure and function of the skin. In the two 

papers of the second section, the capability of adult equine and ovine MSCs to 

regenerate skin injuries has been studied.  
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1) Wounds were induced in the gluteus region of six horses and treated with 

autologous epithelial stem cells (EpSCs), allogeneic EpSCs, vehicle 

treatment or untreated control.  

2) Sheep allogeneic PB-MSCs were utilized to treat experimental lesions on the 

back of six sheep. This project is part of a large scheme where conventional 

treatments (Manuka Honey, Connettivina and Acemannane) were compared 

to innovative cures (MSCs and gas-ionized plasma). In this thesis, only the 

data about skin regeneration with PB-MSCs was reported. 

In the first work of the second section, rt-PCR was performed on tissue biopsies 

collected after one and five weeks of treatment and IFN-y, IL-6, VEGF, EGF, IGF-1 

and epidermal keratin (eKER) were analyzed to study cellular immune response, 

neovascularization and the epidermal keratinization.  

In the second paper, clinical analysis have been performed to analyze the healing 

time, the presence, the color and the nature of exudate, the aspect of gauze, the 

hydration of the wound, the percentage of re-epithelization and contraction of the 

lesions. Tissue biopsies were collected after 15 and 42 days of treatments to 

conduct molecular analysis, histological and immunohistochemical staining. 

Molecular analysis were performed to study the expression level of genes such as 

Collagen 1α1 (Col1α1) and Keratin of hair (hKER). Dermal and subcutaneous 

inflammation, granulation tissue and skin adnexa were evaluated using histological 

analysis while the expression of MHCII, von Willebrand factor (vWF) and a cellular 

proliferation marker (KI67) were estimated with immunohistochemical staining. 
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ACRONIMS 

ADMSCs = Adipose derived MSCs 

AEG = Apoeccrine Sweat Glands 

bFGF2 = fibroblast growth factor 

bHLH = basic helix-loop-helix 

BM = Bone Marrow 

BM-MSCs = MSCs isolated from Bone Marrow 

BMPs = Bone Morphogenetic Proteins 

CD = Cluster of differentiation 

CFU-Fs = Fibroblasts like Colonies Forming Units 

Col1α1 = Collagen 1α1  

COMP = Cartilage Oligomeric Matrix Protein 

Dcn = Decorin 

DMEM = Dulbecco’s Modified Eagle Medium 

ECM = Extracellular Matrix 

EGF= Epidermal Growth Factor 

EGR1 = Growth Response Protein-1 

EGF2 = epidermal growth factor-2 

eKER = epidermal Keratin 

EpSCs = Epithelial Stem Cells 

ES = Embryonic Stem Cells 

FBS = Fetal Bovine Serum 

GFs = Growth Factors 

GFP = Green Fluorescence Protein  

hKER = Keratin of hair  

HSCs = Hematopoietic Stem Cells 

HSPCs = Hematopoietic Stem/Progenitor Cells 

IFN-y = Interferon gamma  

IGF-1 = insulin-like growth factor-1 

IL-6 = Interleukin-6 

KI67 = cellular proliferation 
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LLLT = Low Level Laser Technology 

MDSCs = Muscle-derived Stem Cells 

MHCII = Major Histocompatibility Complex II 

MRFs= Muscle Regulatory Factors 

MSCs = Mesenchymal Stem Cells 

MYF5 = Myogenic Factor 5 

PAX3-PAX7 = Paired Box Gene 3-7 

PB-MSCs = Mesenchymal Stem Cells isolated from peripheral blood 

PBS = Phosphate Saline Buffer  

PRP = Platelet-rich Plasma 

rt-PCR = real time-PCR 

SAMNs = novel surface-active maghemite nanoparticles 

SC = Stem Cells 

SCF = Stem Cells Factor 

Scx = Scleraxis 

TeM = Tenomodulin  

TNC = Tenascin C 

TSC = Tendon derived Stem/Progenitor Cell 

TGFβ3 = transforming growth factor-3 

TNC = Tenascin C 

VEGF = Vascular Endothelial Growth Factor 

vWF = von Willebrand factor  
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GENERAL INTRODUCTION 

Chapter 1: Stem cells 

1.1 Adult stromal cells 

Within recent decades, the focus of medical science shifted from repair to 

regeneration. Regenerative medicine including stem cell (SC)-based tissue 

engineering has become one of the most intensively researched medical fields, not 

only in human but also in veterinary medicine (Brehm W et al., 2012). Indeed this 

raising interest in the field of stem cells is ascribed to the great promise that adult 

stromal cells offer in treating previous incurable disease and because of the lack of 

ethical controversies like the one associated with embryonic stem cells (ES) (Fortier 

LA, 2005). 

Adult mesenchymal stem cells (MSC)  are characterized by a fibroblast-like 

morphology, long term self-renewing capacity, give rise at least to one identical 

daughter cell, maintaining the stem cells pool, and an ability to generate many 

mature and specialized cell types (Chamberlain G et al., 2007).  

Vice versa, ES are defined totipotent, because they are able to create an entire 

organism, a property retained by early progeny of the zigote up to the 8-cell stage 

of the morula. Most of the adult stem cells are multipotent since are able to 

differentiate into multiple cells type that are, however, restricted to a given tissue. 

Stromal cells have the potential to robustly restore a give tissue in vivo, which 

implies they are able to respond to specific needs to differentiate into cells type of 

that particular tissue.  

Since the 1960s, the stromal compartment of bone marrow is the first source 

reported to contain multipotent progenitor cells able to restore the bone marrow 

functions (Fortier LA et al., 1998, Pittenger MF et al., 1999). For this reason, bone 

marrow is the best investigated origin of MSC. Several other tissue-specific stem 

cells have been defined, supporting the main hypothesis that each different tissue 

has a stem cells reservoir to guarantee the replenish of the tissue composed of 

mature cells with finite half-life. Example of identification of somatic stromal cells in 

adult tissue include adipose–derived MSC (Del Bue M et al., 2008) that seem to 

display a higher proliferation potential and less senescence compared to MSC from 

other tissue (Vidal MA et al., 2011). Another source is peripheral blood that appears 

to be a good alternative source compared to bone marrow and adipose tissue 

(Brehm W et al., 2012) and other tissues such as synovial membrane (Yoshimura 

H et al., 2007, Koga H et al., 2008), skin, hair follicle, gut, muscle, liver, testes, 

breast, central as well as peripheral nervous system. Indeed, adult stromal cells are 

divided by the tissue from which they originate into stromal cells derived from 

ectoderm, endoderm and mesoderm layer. Mesenchymal stromal cells are 

characterized by their common derivation from mesodermal layer (Spaas JH et al., 

2016). 
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1.2 Mesenchymal stromal cells and their niches 

Mesenchymal stromal cells (MSCs) are a class of adult stem cells, which have been 

firstly identified in bone marrow by Till and McCulloch in 1961. MSCs are described 

as adherent, clonogenic, non phagocytic cells capable to form fibroblast-like 

colonies (CFU-Fs) (da Silva Meirelles L, et al., 2009). In 2008, the Mesenchymal 

and Tissue Stem Cell Committee of the International Society for Cellular Therapy 

proposed minimal criteria to define human MSCs: i) they must be plastic adherent 

when maintained in standard culture conditions, ii) they must be lineage negative 

and express CD105, CD73, and CD90 and lack expression of CD45, CD34, CD14 

or CD11b, CD79a or CD19, and HLA-DR surface molecules, and iii) they must have 

the ability to differentiate to at least osteoblasts, adipocytes, and chondroblasts 

(Dominici M et al., 2006) and other mesodermal lineage cells, including 

cardiomyocytes, hepatocytes, endothelial cells, smooth muscle cells, and neuronal 

cells (Caplan AI 1989, 1991 and 2005; Parmar N et al., 2014) in vitro (Fig. 1) under 

usual culture conditions using suitable tissue culture media (Satija NK  et al., 2013) 

and when implanted in vivo (da Silva Meirelles L, et al., 2009). 

 
Fig.1. The mesengenic process. Mesenchymal progenitor cells entering different lineage pathways 
to contribute to formation of mature tissue such as bone, cartilage, muscle, bone marrow, tendon 
ligament, adipose and connective tissue (Caplan AI 2010). 
 

On the other hand, even there are evidences that suggest that MSCs exist not only 

in the bone marrow but also virtually in all organs even if the exact localization of 

the MSCs in vivo remains poorly understood (Doherty MJ et al., 1998; Farrington-

Rock C et al., 1998). 

It then became clear that post-natal tissues have reservoir of specific stem cells, 

which contribute to maintenance and regeneration; examples include epithelial stem 
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cells in the epidermis (Chunmeng S et al., 2004, Spaas JH et al. 2016), in the 

intestinal crypts (Slack JM, 2000), neural stem cells in the central nervous system 

(McKay R, 1997), satellite cells in muscle (Chargé SB and Rudnicki MA, 2004); 

indeed MSCs were further isolated from adipose tissue (Zuk PA et al., 2002), tendon 

(Salingcarnboriboon R. et al., 2003), synovial membrane (De Bari C et al., 2003), 

synovial liquid (Jones E et al., 2008), periodontal ligament (da Silva Meirelles L et 

al., 2006) and lung (Sabatini F et al., 2005). Moreover MSCs populations were found 

also in blood and umbilical cord blood (Erices A et al., 2000), placentar villi (Igura K 

et al., 2004) and amniotic liquid (In't Anker PS et al., 2003). Indeed due to the 

etherology of these sources, different methodologies are required in order to isolate, 

cultivate and characterize MSCs related cells type: consequently, it is important to 

realize studies to characterize MSCs both histologically and phenotipically (Bianco 

P et al., 2008). Hence, these findings have led to the evaluation of MSCs potential 

for treating diseases and the birth of MSC-based therapy (Satija NK et al., 2013). 

Clinical trials for diseases, such as osteogenesis imperfecta, graft-versus-host 

disease, and myocardial infarction, have shown some promise, demonstrating the 

safe use of MSCs. Preclinical trials have exposed the successful use of MSCs for 

delivering therapeutic proteins and repairing defects in several disease models. 

However, lack of knowledge of MSCs behavior and responses in vitro and in vivo 

requires basic and animal studies before bringing these therapies to humans (Satija 

NK et al., 2013). 

The ability of stem cells to both self-renew and produce daughters cells able to 

initiate the process of differentiation, is the key for tissue homeostasis, providing a 

continuous supply of new cells to replace short-lived but highly differentiated cells 

type. The decision between stem cells self-renew or differentiation must be tightly 

controlled, and now is known that the stem cells niche provide the integration of 

intrinsic factor and extrinsic cues to regulate the stem cells number, division, self-

renew, and differentiation. 

Schofield, who defined the niche a “stable micro-environment that might control 

hematopoietic stem cells (HSCs) behavior”, introduced the concept of “niches” in 

1978 (Schofield R., 1978). In brief, the precise spatial organization of the stem cells 

respect to surrounding support cells plays an important role in the ability of the niche 

to adequately provide proliferative and anti-apoptotic signals and to exclude factors 

that promote differentiation (Jones DL and Fuller MT, 2006). Adult and tissue 

specific stem cells are found in specialized niches in their corresponding tissues of 

origin. Specialized niches for different types of adult stem cells are characterized by 

the complex interactions between surrounding cells, extracellular matrix molecules, 

and soluble factors.  

Recent studies have shown the existence of two types of niches in the bone marrow 

compartment: an “endosteal” and a “perivascular” niche which are closed to each 

other or interdigitated.  

Osteolineage cells, such osteoblast and fibroblast, lining endosteal surfaces located 

at the endosteum of the trabecular bone were the first functional niche cells to be 

discovered. Imaging approaches have demonstrated that transplanted primitive 

HSCs localize closer to the endosteum than more mature progenitors (Lo Celso C 
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et al., 2009). Increasing osteoblast number has been shown to expand the HSCs 

pool (Arai F et al., 2004) whereas deletion of osteoblasts leads to bone marrow 

HSCs depletion (Ferraro F et al., 2011). Osteolineage cells secrete large amounts 

of proteins that affect HSCs, including granulocyte colony- stimulating factor (G-

CSF), and express surface molecules that retain HSCs in the niche (Taichman RS 

et al., 1996). 

In addition to the endosteum, hematopoietic stem/progenitor cells (HSPCs) localize 

adjacent to bone marrow sinusoids (Lo Celso C et al., 2009). The importance of 

endothelial cells for HSCs traces back to the embryonic life, because HSCs first 

emerge in the aorta-gonad mesonephric region from a common hemangioblast. 

Dinget al. (Dinget L et al., 2012) demonstrated that en- dothelial cells regulate stem 

cell factor (SCF) production to retain HSCs in the niche.  

Perivascular niche cells in close contact to endothelial cells have also been 

described as influencing HSPC biology in humans and mice (Dinget L et al., 2012; 

Sacchetti P et al., 2009). CD146+ adventitial perisinusoidal cells have bone-forming 

properties and sustain hematopoiesis (Sacchetti P et al., 2009). Depletion of 

perivascular cells leads to HSPC mobilization (Omatsu Y  et al., 2010). Nestin+ cells 

are enriched in niche and retention genes (Angpt1,Vcam1,Cxcl12, andScf), have 

skeletal stem cell properties, and colocalize perivascularly with sympathetic nerve 

terminal. Nestin+ cells express the b3-adrenergic receptor, and following nor-

adrenergic signaling or administration of G-CSF (which ultimately activates BM 

sympathetic activity), they downregulate retention signals, allowing HSPC 

mobilization (Mendez-Ferrer S et al., 2010). 

 

1.3 Mesenchymal stromal cells plasticity, interconversion 

potentials and differentiation 

Adult stem cells have great potential and their main feature is the ability of self-

renewal and of differentiating into a number of different cell types. Generally, stem 

cells have been classified as being totipotent, pluripotent, multipotent, oligopotent, 

and unipotent, depending on all their differentiation potential (Wagers AJ and 

Weissman IL, 2004). Totipotent cells are able to give rise to all embryonic and extra-

embryonic cells type while pluripotent cells give rise to all cells of the embryonic 

proper. The multipotent cells originate a subset to cells lineages and oligopotent 

cells are able to give rise to a more restricted cells subset respect to the multipotent 

cells. Finally, unipotent cells create only one mature cells type (Wagner W et al., 

2010). Traditionally, adult MSCs are defined as multipotent cells committed to a 

particular cells fate to produce cells from the tissue of origin and not cells of non-

related tissue. Currently there are increasing evidences that suggest their ability to 

differentiate into ectodermal and endodermal lineages under certain 

microenvironment conditions (Lakshmipathy U and Verfaillie C, 2005; da Silva 

Meirelles L et al., 2006). These findings lead to the concept of “stem cells plasticity” 

the ability of adult stem cells to acquire mature phenotypes that are different from 

their tissue of origin (Groove JE et al., 2004). The stem cells plasticity concept is 
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crucial and can be rigorously defined and experimentally proven. In fact, until now 

most studies has not shown that multi lineage differentiation is derived from the 

single cells that differentiate into the expected cells type, and even when this 

happens it is a very low frequency (Lakshmipathy U and Verfaillie C, 2005). Much 

of the problem regarding the plasticity of stem cells is derived from the lack of 

established parameters that help to uniformly define plasticity. Lakshimpaty et al. 

(2005) suggested three main criteria based on which stem cells plasticity had to be 

examined: 

- A single cell differentiate into multiple cell lineages; 

- Differentiated cells are functional in vitro and in vivo; 

- Engraftment is robust and persistent.  

Wagers and Weissman (2004) suggest some possible explanations of the 

mechanisms that underlie the stem cells plasticity that could would allow stem cells 

to transdifferentiate that is the ability of adult stem cells to contribute to cells type of 

different lineages (Wagers AJ and Weissman IL, 2004). This theory emerged when 

first papers were published suggesting evidence of BM-MSCs contribution to non-

hematopoietic tissue (Ferrari G et al., 1998) or of neural stem cells to blood lineages 

(Bjornsonn CRR et al., 1999). This lineage conversion was proposed to occur 

directly, by activation of an otherwise silent differentiation program to change the 

commitment of the cells. Brockes and Kumar in 2002 suggested that lineage 

differentiation could also theoretically occur via dedifferentiation of tissue specific 

cells into a more primitive, multipotent cells, and subsequent re-differentiation along 

new lineage pathway. The dedifferentiation mechanism has been described in 

amphibians; in adult mammals (Tosh D and Slack J, 2002) is possible to find the 

conversion of pancreatic exocrine cells to hepatocytes in vivo under conditions of 

copper deficiency, as well as in vitro. Other examples include the transition between 

smooth and skeletal muscle in the developing oesophagus, and the conversion of 

myoblasts to adipocytes. There has been much recent interest in transdifferentiation 

of stem cells, for example, the ability of haematopoietic stem cells or MSCs to give 

rise to neural and other epithelial derivatives after transplantation. However, 

transdifferentiation remains an important area for understanding cell plasticity (Tsai 

RY et al., 2002).  

Studies from a number of groups have shown that bone marrow cells can be plated 

onto tissue culture plastic and the initial adherent bone marrow-derived stromal 

colonies are derived from a single MSCs (Bianco P et al., 2001). These colonies are 

multipotent and can be induced to form bone, cartilage, and fat by simple 

manipulation of culture conditions (Pittenger MF et al., 1999, Park SR et al., 1999, 

Kuznetsov SA et al., 2001). Culture in the presence of dexamethasone, methyl 

isobutylxanthine, insulin, and indomethacin has been found to favor adipogenesis 

of human bone marrow cells that present an accumulation of lipid rich vacuoles 

within cells, and they express peroxisome proliferation-activated receptor γ2, 

lipoprotein lipase, and the fatty acid-binding protein aP2 (Pittenger MF et al., 1999). 

Accumulation of lipid in the vacuoles is assayed histologically by oil red O staining 

(Zhu M et al., 2013). The nuclear hormone receptor peroxisome proliferation 
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activated receptor γ (PPAR γ) is a critical adipogenic regulator promoting MSCs 

adipogenesis while repressing osteogenesis (Nuttal ME and Gimble JM, 2004).  

The culture in presence of serum with transforming growth factor-β (TGF-β) favors 

chondrogenesis (Mackay AM et al., 1998). The cells develop a multilayered, matrix-

rich morphology, and histological analysis shows strong staining with toluidine blue, 

indicating an abundance of glycosaminoglycans within the extracellular matrix 

(Kopen CG et al., 1999) such as type II collagen and aggrecan. Sections are also 

stained with Safranin O to detect the accumulation of proteoglycans (Park SR et al., 

1999, Pittenger MF et al., 1999). Expression markers associated with 

chondrogenesis have been positively characterizated in MSC-derived 

chondrocytes, including transcription factors (Sox-9 and Scleraxis) and extracellular 

matrix (ECM) genes (Collagen type II and IX, aggrecan, biglycan, decorin, and 

cartilage oligomeric matrix protein COMP) (Baksh D et al., 2004, Tuan RS et al., 

2003). In contrast, it is well established that marrow cells cultured in serum with 

dexamethasone, β-glycerophosphate and ascorbic acid favor osteo-progenitor 

differentiation with enhanced alkaline phosphatase expression, matrix production, 

nodule formation, and deposition of calcium, confirming the presence of 

osteoprogenitor cells. Calcium deposition is examined by the von Kossa stain and 

through a quantitative measurement of calcium deposition (Park SR et al., 1999, 

Triffitt JT et al., 1998, Zhu M et al., 2013). With the understanding of defined 

conditions required to modulate cell phenotype, the potential for cells to “switch” or 

differentiate among different phenotypes after considerable differentiation has led 

to the concept of plasticity of phenotype. It has long been known that an association 

exists between an increase in marrow adipose tissue and osteopenia (reduction in 

skeletal bone mass) with increasing age and in a variety of experimental and 

pathological conditions, such as disuse osteoporosis and glucocorticoid-induced 

osteoporosis (Nuttall ME and Gimble JM, 2000). This suggests plasticity or 

interconversion potential among the lineages and confirms that the adipocytic and 

osteogenic cells share a common lineage.  

Most investigations of myogenesis in adult stem cells are based on a small 

population of skeletal muscle-derived stem cells, or satellite cells. In vitro, studies 

demonstrated a successful induction of myogenesis from adult stromal MSCs after 

transfection with activated Notch1 (Dezawa M et al., 2005). Moreover, it has been 

shown that MSCs may differentiate into skeletal muscle cells with conditioned 

medium as well as in co-culture with a fusion between MSCs and myoblasts 

(Dezawa M et al., 2005; Dugan JM et al., 2014; Sung MS et al., 2013). Specific 

signaling molecules, such as dexamethasone together with insulin and EGF 

(epidermal growth factor) (Jalali et al., 2014), are able to induce the differentiation 

into skeletal muscle.  Furthermore, MSCs isolated from bone marrow and treated 

with FGF (Fibroblast Growth Factors), forskolin, PDGF (Platelet-Derived Growth 

Factor) and transfected with an NICD plasmid were able to express MyoD (Dezawa 

M et al., 2005).  

Finally, GDF proteins, members of TGF-β superfamily, promote the formation of 

tendons in vivo (Wolfman NM et al., 1997). Differentiation of MSC into tenocytes in 
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vitro requires mechanical loading (Altman GH et al., 2002) which is critical to tendon 

fiber alignment during development.  

 

1.4 Cluster of differentiation (CD) expression on mesenchymal 

stromal cells  

Several studies aimed at clarify the mechanism underlying the potential of MSCs to 

differentiate into multiple lineage have encountered difficulties. MSCs are usually 

harvested as plastic adherent multipotent cells, capable of differentiating into bone, 

cartilage and fat cells (among others), can be isolated from many adult tissue type. 

However, even if isolated by density-gradient fractionation, they remain a 

heterogeneous mixture of cells with varying proliferation and differentiation 

potentials (Kolf CM et al., 2007). For example, bone marrow contains various types 

of adherent cells including mesenchymal stromal cells, endothelial cells, osteogenic 

cells, phagocytotic cells, and others (Wagers AJ and Weissman IL, 2004). Although 

acceptable for cell-based therapeutic applications, a rigorous understanding of 

MSCs requires a better definition of what an MSCs is. For this reason Pittinger MF 

et al., (1999) was one of the first to analyze the surface antigens profile in human 

MSCs in detail. They described that MSCs are uniformly positive for the following 

markers: SH2 that is an antibody which recognize an epitope on endogline or CD105 

(Mackay AM et al., 1998); SH3 antibody that recognize the epitope CD73; CD29 or 

integrin beta-1, CD44 (involved in cells-cells interactions, cells adhesion and 

migration), CD71, CD90 or Thy-1, CD106, CD120a, and CD124. Unfortunately, 

there are no articles bringing together and summarizing the cell surface markers of 

MSCs, but the review of Mafi et al. (2011) is useful to systematic summarize and 

provide a good basis for collect the published literature in this regard so far. What 

clearly emerged from different studies is that CD105, CD90, CD44, CD73, CD29, 

CD13, CD34, CD146, CD106, CD54 and CD166 rank the among the most 

commonly reported positive cell surface markers on mesenchymal cells. In addition 

to these, a number of other cell surface markers have been further identified: STRO-

1, SH2, SH3, SH4, HLA-A, HLA-B, HLA-c, HLA-DR, HLA-I, DP, EMA, DQ (MHC 

Class II), CDIO5, Oct4, Oct4A, Nanog Sox-2, TERT, Stat-3, fibroblast surface 

antigen, smooth muscle alpha-actin, vimentin, integrin subunits alpha4, alpha5, 

beta1, integrins alphavbeta3 and alphavbeta5 and ICAM-1. Interestingly, several 

studies have reported conflicting information about some of the cell surface markers 

including CD10, CD34, CD44, CD45, CD49d, and CD106 or VCAM-1. Moreover, 

STRO-1 is considered one of the most important MSCs markers (Simmons PJ and 

Torok-Storb B, 1991): the cell population negative for STRO-1 is not capable of 

forming colonies. STRO-1 positive cells can become HSC-supporting fibroblasts, 

smooth muscle cells, adipocytes, osteoblasts, and chondrocytes (Dennis JE et al., 

2002). Another factor accounting for the variability in the expression of adult MSCs 

surface markers seems to be the different stages during cell proliferation and culture 

where the markers have been accessed.  
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On the other hand, MSCs were found negative for hematopoietic lineage markers 

expression, like CD14 (lipopolysaccharide receptor), CD34, and the common 

leukocyte antigens CD45 (Kuroda Y et al., 2011). Moreover there are a number of 

cell surface markers that have been reported as being absent in MSCs: among them 

the most frequently reported are CD11b, CD49d, CD106, CD10, and glycophorin-A 

(Kolf CM et al., 2007). MSCs also do not express the costimulatory molecules CD80, 

CD86, or CD40 or the adhesion molecules CD31 (platelet/endothelial cell adhesion 

molecule PECAM-1), CD18 (leukocyte function-associated anti- gen-1 LFA-1), or 

CD56 (neuronal cell adhesion molecule-1) (Haynesworth SE et al., 1992, Galmiche 

MC et al., 1993, Pittenger MF et al., 1999, Sordi V et al., 2005, Le Blanc K et al., 

2003).  

In 2008, the Mesenchymal and Tissue Stem Cell Committee of the International 

Society for Cellular Therapy (ISCT) introduced a set of statement whit the aim to 

define human MSCs for both laboratory-based scientific research, as well as pre-

clinical studies. ISCT stated that MSCs must be plastic adherent in standard culture 

conditions, have a specific surface antigen expression and the ability to differentiate 

in different lineage in vitro (Horwitz EM et al., 2005; Dominici M et al., 2006). They 

stated that human MSCs are defined by their expression of CD105, CD73 and 

CD90, and lack the expression of CD45, CD34, CD14, CD11b, CD79a, or CD19 

and HLA-DR surface molecules (Horwitz EM et al., 2005; Dominici M et al., 2006). 

they concluded that convincing data for defining “stemness” of un-fractionated 

plastic-adherent cells was lacking, and proposed that plastic adherent cells 

described as mesenchymal stem cells be termed as mesenchymal “stromal” cells. 

For several reasons ISCT decided to maintain the acronym MSCs to avoid any 

confusion in the scientific community, since this term has been extensively used in 

the literature for at least two decades than it has been designed to eliminate the 

term “stem” from the nomenclature, as this word has specific connotation (Horwitz 

EM et al., 2005).  

 

1.5 Clinical application of mesenchymal stromal cells  

Despite the challenges of isolating, expanding and defining stem cells populations, 

they hold great promise for tissue regeneration at clinical useful level (Fortier LA., 

2005). Recent progress especially on the tissue-resident adult stem cells biology 

has suspired great optimism and given new hopes in offering the possibility to use 

these undifferentiated cells or their further differentiated progenies for cell 

replacement in regenerative medicine. Cellular therapies have emerged as leading 

candidates for regenerative treatment of a variety of diseases; in particular, MSCs 

have shown great promise in numerous clinical trials (Kraus KH and Kirker-Head C, 

2006). 
Depending on the disease process and wound, different strategies involving specific 

cell delivery systems, genetic modification, and the use of scaffolds have been 

developed. Different strategies for MSCs delivery such direct topical/spray, scaffold 

loaded, subcutaneous injection, or systemic delivery (Ennis WJ et al., 2013).  
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Freshly harvested bone marrow  has been used for years by surgeons to augment 

local skeletal tissue healing, and methods to concentrate and enrich the marrow are 

been introduced commercially as well as scaffold used to concentrate or deliver the 

cells to the repair site. One of the first and most obvious uses of MSCs is in the area 

of bone regeneration in sites where the body cannot organize this activity, i.e. in 

non-unions fractures. Critical size defects in non-union models, have clearly 

demonstrated that culture expanded marrow MSCs in a porous, calcium phosphate, 

ceramic delivery vehicle are capable of regenerating structurally bone, where whole 

marrow of the vehicle alone cannot accomplish satisfactory this repair. Bone repair 

is an example for regeneration of tissue ad integrum to its original quality, exhibiting 

similar biochemical and biomechanical properties (Kraus KH and Kirker-Head C, 

2006). 
MSCs have been used also in the cartilage regeneration, since cartilage is an 

avascular and a highly specialized tissue incapable of regeneration or repair of even 

small defects in adults. Although chondrocytes have been used in attempt to repair 

large cartilage defects, it is difficult to integrate neo tissue with that of the host. 

Inability to repair or even regenerate cartilage defects results in pain and mobility 

impairment. Current standard of care is similar in all species and comprises a 

combination of physical therapy, reduced exercise and medical (systemic and local) 

and surgical modalities (i.e. arthroscopy) (Brehm W et al., 2012). In the last decade, 

several types of scaffold have been used in combination with MSCs in order to 

provide an inductive microenvironment for MSCs to enter the chondrogenic lineage 

and facilitate the integration of the neo tissue in the lesion site (Zscharnack M et al., 

2010).  

Moreover, MSCs could be injected into a specific muscle of the muscular dystrophy 

mouse to cure it by providing newly synthesized dystrophin to the affected 

myotubes. The donor MSCs dedifferentiated into skeletal myoblast, fused with the 

host myotubes, and caused the synthesis and distribution of the dystrophin. 

Labelled MSCs injected into injured rat or pig heart appear to differentiate into 

cardiac myocytes (Toma C et al., 2002). Several studies have focused on the use 

of autologous MSCs for tendon repair, as well as the efficacy of these cells in acute 

graft-versus-host disease (GvHD) (Le Blanc K et al, 2008). Falanga V et al. (2007) 

showed an acceleration of wound closure in both human and diabetic mouse models 

by topical delivery of MSCs with a modified fibrin spray system (Falanga V  et al., 

2007). This work, for the first time, supported the concept of MSC wound 

engraftment. Javazon et al. (2007) (Javazon EH et al., 2007) demonstrated 

improvement in wound healing in a diabetic mouse model by using a topical 

application of stem cells. Dash et al (2009) treated ischemic and diabetic ulcers and 

noted both accelerating wound healing and decreased pain. Those experiments 

used intramuscular injections of MSCs and showed an increase in immature cells, 

blood vessels, and reticulin fibers (Dash NR  et al., 2009). 

Only in the last years, it is becoming accepted that MSCs stimulate host recovery 

and regeneration through the secretion of numerous pro-regenerative factors. In 

vitro studies have documented the secretion of multiple anti-inflammatory, 

angiogenic, neutrotrophic, immunomodulatory and antifibrotic factor from MSCs. In 
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addition to the potential clinical use of MSCs, it should be taken into account that 

diverse poorly differentiated adult stem cells types have been identified in the most 

mammalian tissues and organs (Fig.2). 

 

 
  

Fig.2. Scheme showing the potential therapeutic applications of embryonic and tissue-specific adult 

stem cells in cellular and gene therapies. The pluripotent ESC types derived from blastocyst stage 

during embryonic development and multipotent tissue-resident adult stem cells arising from 

endodermal, mesodermal, and ectodermal germ layers are shown (http://www.ebioworld.com). 

Hematopoietic stem cells transplantation: the bone marrow hematopoietic stem 

cells (BM-HSCs) provide a critical role by continually renewing all of the new mature 

and differentiated hematopoietic cell lineages in peripheral circulation including 

leucocytes, erythrocytes and thrombocytes along lifespan of an individual. The 

immature and quiescent multipotent HSCs which are characterized by the 

expression of specific biomarkers including CD34- or CD34+/CD38-/low, Thy1+ C-

Kit-/low, CD133+ are localized with the osteoblast in a specialized niche within a 

bone marrow region designed as endosteum (Mimeault M. et al., 2007). Marrow 

derived hematopoietic stem cells transplantation had been successfully established 

as a method to restore marrow function in patients whose bone marrows have been 

obliterated by disease, or by administration of marrow ablative therapies. After the 

first series of patients reported to receive hematopoietic stem cells transplant in 

Grain Britain between 1977 and 1983, these source of cells have become the most 

commonly used autograft product. (McCarthy DM and Goldmann JM, 1984).  

The BM-derived MSCs can generate diverse mesodermal cells lineages involved in 

osteogenesis, adipogenesis, cartilage and, muscle formation under appropriate 

culturing condition ex vivo and in vivo. MSCs may also be induced to differentiate 

into fibroblast, neuronal cells, pulmonary cells, pancreatic islet cells, corneal 
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epithelial cells and cardiomyocytes ex vivo and/or in vivo using specific growth factor 

and cytokines (Chang YJ et al., 2006; Bobis S et al., 2006). Moreover, it has been 

found that BM-derived and tissue-resident MSCs are little immunogenic and display 

immunomodulatory effect in host in vivo. Indeed, MSCs can prolong skin allograft 

survival and reverse severe acute graft-versus-host disease in vivo supporting their 

use in treating skin disease as well as in the maxillofacial surgery (Shanti, RM et al., 

2007).  

Adipose tissue-derived stem cells: adipose tissue is a highly specialized, complex 

and active metabolic and endocrine structure that contributed to the energy storage 

under form of fat. In mammals, adipose tissue is present in diverse anatomic 

compartment and designed as subcutaneous adipose tissue, internal organ-

surrounding adipose tissue and interstitial adipose tissue (Shen W et al., 2003). Like 

BM is of mesenchymal origin and contain a stromal vascular fraction. Mature 

adipocytes, connective tissue matrix, nerve tissue and stromal host cells including 

immature MSC like cells, fibroblast, vascular smooth muscle cells, endothelial cells, 

and immature cells such as the resident hematopoietic progenitor cells and 

macrophages compose specifically adipose tissue. A putative adult stem/progenitor 

cells population has been identify within the human adipose compartment and 

termed as processed lipoaspirate (PLA) or adipose tissue derived stem cells 

(ADSC) (Zuk PA et al., 2002; Lin Y et al., 2007). The stromal cells isolated from the 

lipoaspirates express the CD29, CD44, CD71, CD90, CD105/SH2 and SH3 (Zuk PA 

et al., 2002); they could be distinguished from BM-derived stromal MSCs by its 

unique expression of antigen CD49d (a4-integrin) and CD106 (VCAM). Indeed, it 

has been demonstrated that ADSCs may be differentiated into functional cells 

expressing the specific markers of mesodermal or ectodermal tissue origin in vitro 

and in vivo under well definite culture conditions. The most advantageous property 

of ADSCs is that they can easily obtained by surgical resection, lipoaspiration, or 

ultrasound assisted lipoaspiration, and this characteristic constitutes another 

promising source enriched in immature cells for cellular therapy. Among them, there 

are the clinical management of diverse bone, cartilage and musculoskeletal 

disorders (Niemela SM et al., 2007; Liu Y et al., 2007). 

Muscle-Derived stem cells: adult skeletal muscle contain two distinct 

stem/progenitor cells, the muscle-derived stem cells (MDSCs) and satellite cell 

population that may actively participate to myofiber regenerative process and repair 

of diseased musculoskeletal tissues (Usas A and Huard J, 2007). 

Muscle-committed satellite cells expressing the marker such as M-cadherin, 

myogenic factor5 (MYF5) and paired box gene 7 (PAX7) transcription factor, and 

neuronal cell adhesion molecule-1, are quiescent progenitor cells located at the 

periphery of skeletal myofibers under homeostatic conditions. The satellite cells 

endowed with self-renew ability may be activated and trigger a migration and 

differentiation into myogenic cells in vitro and after muscle injuries in vivo (Rouger 

K et al., 2007). The multipotent MDSCs, which may correspond to the more 

immature progenitor cells, if compared with satellite cells, can give rise to satellite 

cells and more committed progenies such as musculoskeletal, osteogenic, 

chondrogenic, vascular, cardiac and peripheral nerve cells lineages in vitro under 
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specific conditions, and induce new myofiber formation in animal models in vivo. 

Muscle stem/progenitor cell-based therapy and orthopaedic tissue engineering 

using ex vivo gene therapy, are promising approaches for the treatment of muscle 

atrophy with aging, muscle wasting (cachexia) and various musculoskeletal and 

neuromuscular degenerative disorders such as muscular Duchenne and Becker 

dystrophies and amyotrophic lateral sclerosis (Peault B et al., 2007). At present 

time, no curative treatment for DMS exist and the current therapies principally 

consist to delay its progression and provide palliative cares that will result to the 

death of young patient. Importantly, the results obtained from phase I trial have 

revealed that the autologous transplantation of CD133+ MDSCs was safe, without 

secondary systemic effects and improved the symptoms of DMS in treated patients. 

Recently, MDSC or ADSC injection based-therapies have also emerging as a valid 

alternative therapeutic option for the remedial treatment of deficient urethral 

functions such as the repair of the damaged urethral sphincter associated with the 

stress urinary incontinence (Torrente Y et al., 2007). The genetic and/or epigenetic 

alteration and changes in the microenviroment “niche” of adult MDSCs and/or 

satellite cells or the embryonic muscle precursor may however lead to defective 

skeletal muscle differentiation and rabdomyosarcoma development. The metastatic 

forms of rabdomyosarcomas have a poor clinical management and prognosis.  

 

1.6 Mesenchymal stromal cells in veterinary medicine 

Regenerative medicine is one of the most intensively researched medical branches 

with enormous progress every year. Contextually to the interest that over the past 

few years, MSCs have risen in human medicine, also in the veterinary field there 

has been an increased interest in understanding the biology and potential clinical 

application of MSCs. Indeed MSCs research in veterinary medicine has been 

performed not only in order to find a potential clinical treatment for previous 

incurable veterinary disease, but also to develop animal models, which could be 

useful to elucidate the MSCs in vitro and in vivo behavior, and use the obtained 

results as a template for human MSCs research. While widespread clinical use of 

human adult stem cells is largely restricted to the use of hematopoietic stem cells 

derived from adult peripheral blood, adult bone marrow, or umbilical cord blood 

(Koch TG et al., 2009), MSCs in veterinary field are mainly utilized for animal 

patients like the treatment of equine tendinopathies (Dudhia J et al., 2015, Garvican 

ER et al., 2014, Smith RK et al 2013) or cartilage degeneration in dogs (Zhang Y et 

al, 2015).   

However, in some pathological conditions, including non-union fractures, 

osteoporosis, osteoarthritis and infection the normal repair and remodelling process 

are often impaired. Furthermore, other associated connective tissues such as 

cartilage, tendon and ligament demonstrate a limited capacity for regeneration in 

response to damage caused by trauma or disease. For these reasons, MSCs offer 

promise as novel cell-based therapies to ameliorate the healing process of damaged 

bones, tendon and ligament (Wang X et al., 2013). In vivo studies employing rabbit 
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as animal model have demonstrated that MSCs transplantation increased bone 

production and the stiffness of the regenerated structures using mechanical strength 

testing and animals models where the sight of injury was in weight-bearing location 

(Tatebe M et al., 2005). Subsequently in canine experiments, critical bone loss has 

successfully been tackled with the use of MSC in combination with other concepts 

like bone substitutes called scaffold or platelet-rich plasma (PRP). Allogeneic MSC 

loaded on hydroxyapatite-tricalcium phosphate implants improved the regeneration 

of a critical-sized segmental defect in the canine femur (Arinzeh TL et al., 2003). 

Recently, Adamzyk et al. (2015) studied the viability, growth and osteogenic 

differentiation of bone marrow-derived human and sheep MSCs in combination with 

a 3D scaffold made of polyetherketoneketone (PEKK) a high performance 

thermoplastic polymer that is FDA-approved for cranium- and maxillofacial as well 

as spinal surgery (PEKK). The results show that the 3D PEKK scaffolds were cyto- 

and bio-compatible, allowed for adherence, growth and osteogenic differentiation of 

human and ovine MSCs.  

Animal models have been used also to study the vertebral disk regeneration: 

Muschler GF et al. (2003) demonstrated that, in a canine model of spinal fusion, an 

enriched bone matrix containing a bone marrow clot have a greatest union, stiffness 

and number of osteogenic cells compared to bone marrow alone. Recently, Cavallo 

C et al 2016 used a new approach that is represented by the use of bone marrow 

concentrate (BMC) that could allow the delivery of cells surrounded by their 

microenvironment in injured tissue. This study is focused on the potentiality of BMC 

seeded onto a hyaluronan-based scaffold (Hyaff-11) to differentiate into osteogenic 

lineage. This process depends on the specific interaction between cells derived from 

bone marrow (surrounded by their niche) and scaffold that create an environment 

able to support the regeneration of damaged tissue. The data obtained demonstrate 

that BMC grown onto Hyaff-11 are able to differentiate toward osteogenic sense, 

producing specific osteogenic genes and matrix proteins. 

Regarding the cartilage regeneration, research conducted using rabbits 

demonstrated that MSCs in combination with scaffold or fibrin gels produced 

hyaline-like cartilage that integrated with the surrounding cartilage and improved the 

repair of the osteochondral defects created in the knee (Chang F et al., 2008).  

Song K et al. (2016) demonstrated the cancellous bone and hydrogel composite 

scaffold are a promising biomaterial that shows an essential physical performance 

and strength with excellent osteochondral tissue interaction in situ. Moreover, the 

bi-layered scaffold significantly enhanced cell proliferation compared to the cells 

seeded on either single scaffold.  

For tendon and ligament related injuries, researchers have started to investigate the 

therapeutic potential of MSCs. The majority of the studies relating to the repair of 

tendons and ligament by MSCs are limited to in vitro assay, rat, rabbit, pig, and 

horse animal models; from them it appears that MSCs therapy in combination with 

either a collagen, laminin or fibrin scaffold may be effective in the initial stages of 

tendon repair (Hirfild-Stein M et al., 2007; Kajikawa Y et al., 2007).  

Undoubtedly, horse is established as an animal model for focal cartilage injuries and 

osteoarthritis (Goodrich LR et al., 2007; Frisbie DD et al., 2001). Advantages of 
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horse joint models compared with those of the of the other animals, are their sheer 

size, which allows for easy manipulation and exploration, and their cartilage 

thickness and composition, which most closely resemble those of human articular 

cartilage among the current animal models (Fisbie DD and McIlwraith CW, 2001). 

For these reasons, spontaneous injuries seen in the horses are similar to those seen 

in human athletes (Smith RK et al., 2005). Surgical therapies are invasive, 

expensive and sometimes dangerous for the patient because of complications due 

to induction and recovery from general anesthesia and the risk of infection. Actually, 

regenerative medicine is defined as innovative medical therapies that enable the 

body to repair, replace, restore and regenerate damaged or diseased cells, tissues 

and organs (Spaas JH et l., 2012). Smith et al. (2003), studied for the first time the 

implantation of cultured-expanded autologous bone marrow derived MSCs into a 

spontaneously occurring core lesion of the superficial flexor tendon. This case 

demonstrated the feasibility of using culture-expanded MSCs therapeutically and 

more important the absence of adverse reaction at 10 days or 6 weeks post 

injection.  

Crovace A et al. in 2007 created core lesions in the superficial digital flexor tendon 

by injecting collagenase in three horses. The lesions were subsequently treated with 

either culture-expanded BM-MSCs suspended in fibrinogen, freshly isolated 

mononuclear cells from the bone marrow aspirates suspended in fibrinogen, or a 

placebo treatment with as unknown substance.  

Cell based therapy using MSCs are increasingly been used in races horses like 

human athletes often suffer of musculoskeletal disease which currently are not 

curable. In equine medicine, the therapeutic use of MSCs derived from bone marrow 

has been reported (Guest DJ et al., 2008). Recently, Komatsu I et al 2016 tested 

the hypothesis that introduction of a tendon derived stem/progenitor cell (TSC) sheet 

accelerates tendon healing and tendon regeneration in a rat model. TSC sheets 

were produced on temperature-responsive culture dishes and grafted on 

unwounded Achilles tendons and at sites of a 3mm of Achilles tendon defect. The 

results showed that the implanted TSC sheet remained stably attached on the 

tendon surface at 4 weeks after implantation. While in the tendon defect model, 

tendon defect area where TSC sheet was implanted was well regenerated and had 

better organized collagen fibers with elongated spindle shaped cells, compared to 

relatively disorganized collagen fibers and round shaped cells in the control group.  

Lastly, MSCs derived from either the bone marrow or adipose tissue have been 

demonstrated to accelerate cutaneous wound healing (Otero-Vinas M and Falanga 

V, 2016). Huang SP  et al, (2012) in an animal study, demonstrate that the use of 

adipose MSCs seeded on an acellular dermal matrix enhanced wound healing, 

promoted angiogenesis, and contributed to newly formed vasculature in murine 

mouse models (Huang SP et al., 2012), reduces inflammation and promotes 

granulation tissue (Phillips T et al., 1994). 
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Chapter 2: Musculoskeletal tissue and regeneration 

2.1 Muscle anatomy and physiology  

Skeletal muscle tissue is the largest organ in the animals, representing up to 50% 

of body mass in some athletic species such as the dog and the horse (Gunn HM, 

1989). Each muscle is composed of hundreds to hundreds of thousands of 

individual, elongated, multinucleated cells named fibers. Each fiber is constituted of 

many parallel myofibrils that consist of a repetitive series of an identical banded unit 

called sarcomere (Fig. 3). A sarcomere is formed by overlapping arrays of thick 

filaments and thin filaments (constituted of the contractile proteins myosin and actin, 

respectively), which represent the contractile machinery (Brooks SV, 2003; 

Schiaffino S and Reggiani C, 2011).  

 

 
 

Fig.3. Macroscopic and microscopic muscle structural organization (Encyclopedia Britannica). 

 

Myosin is a hexamer consisting of two heavy chains (MHC) and two pairs of light 

chains (MLC). The two heavy chains have the COOH-terminal ends that form a 

coiled spiral of two α-helices creating the body of the thick filaments. The other end 

of the heavy chains projects outward from the thick filament forming the cross-bridge 

portion of the molecule that connect the light chains with a non-covalently bound 

(Brooks SV, 2003). The heavy chains are organized into three structurally and 

functionally different domains. The globular head domain (catalytic domain) 

contains both actin-binding site and ATP-binding site and is responsible for 

generating force (conserved region of myosin). The long α -helical neck domain lies 
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adjacent to the head domain and extends toward the tail of the molecule. The tail 

domain is the third and longer domain. It contains the binding sites that determine 

the specific activities of a particular myosin (Vale R, 2000; Rüegg C et al., 2002). 

The final product is the thick filament decorated with hundreds of myosin heads 

responsible for force generation and filaments sliding movement (Schiaffino S and 

Reggiani C, 2011). 

Actin filaments constitute the thin filaments of sarcomere. They are helical polymers 

that have 13 actin molecules arranged on six left-handed turns. The actin monomer 

consists of two similar domains each of which contains a 5-stranded β-sheet and 

associated α-helices. One of the domains carries a sub-domain involved in actin-

actin interactions while the other is involved in the formation of the nucleotide-

binding pocket. Moreover, the thin filaments contain the regulatory proteins 

tropomyosin and troponin that are involved in the interaction between myosin and 

actin (Geeves MA and Holmes KC, 1999). Actin is the main structural component of 

the thin filaments that form the trail along which myosin motors work. Two isoforms 

of actin can be expressed in mammalian skeletal muscle fibers: α-skeletal and α-

cardiac isoforms, which differ by only four amino acids and are encoded by two 

different genes (Schiaffino S and Reggiani C, 2011). 

In mammals, the number of fibers in a muscle is determined at birth and it is barely 

modified during the life except in case of injury or disease. Whereas, the number of 

myofibrils and fiber diameter can radically change depending on external factors. 

For example, training exercise can induce hypertrophy while immobilization, 

inactivity, disease, or old age may lead to atrophy that means decrease in number 

of myofibrils and volume of fibers (Brooks SV, 2003). Skeletal muscle injuries may 

be caused from a variety of events, including direct trauma (as muscle lacerations 

and contusions), indirect insults (strains) and from degenerative diseases (muscular 

dystrophies) (Cossu G and Sampaolesi M, 2007). Skeletal muscle can regenerate 

completely and spontaneously in response to minor injuries, such as strain. In 

contrast, after severe injuries, muscle healing is incomplete, often resulting in the 

formation of fibrotic tissue that impairs muscle function. Although researchers have 

extensively investigated various approaches to improve muscle healing, there is still 

no gold standard treatment (Laumonier T and Menetrey J, 2016). 

 

2.2 Muscle healing process 

Skeletal muscle has a robust innate capability for repair after injury through the 

presence of adult muscle stem cells known as satellite cells (SC) (Mauro A, 1961). 

They reside in a niche between the sarcolemma and the basal lamina, normally in 

a quiescent state. In vitro cultures of satellite cells have shown the ability to 

differentiate not only into muscle cells but also to other mesenchymal-originated 

tissues such as bone and cartilage and therefore can be classified as stem cells 

(Boonen KJM & Post MJ, 2008). During muscle regeneration and under the control 

of extrinsic signals from the surrounding tissue, the satellite cells can become active 

coming out of their state of quiescent and start to differentiate into more specialized 
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cells that can then fuse with other near cells and create new multinucleated muscle 

cells (Grounds MD et al., 2002; Buckingham M et al., 2003).  

Briefly, the disruption of muscle tissue homeostasis, caused by injury, generates 

sequential involvement of various players around three main phases: i) 

degeneration/inflammation phase characterized by rupture and necrosis of the 

myofibers, formation of a hematoma and an important inflammatory reaction. ii) 

Regeneration phase that presents phagocytosis of damaged tissue followed by 

myofibers regeneration and leading to satellite cell activation. iii) Remodeling phase: 

maturation of regenerated myofibers with recovery of muscle functional capacity and 

also fibrosis and scar tissue formation (Laumonier T and Menetrey J, 2016).  

 

 

2.3 Myogenesis 

The formation of skeletal muscle provides one of the best models for studying the 

processes of cellular specification and differentiation and of organogenesis. 

Vertebrate skeletal muscle development originates from the mesoderm primary 

germ layer (Gros J, et al., 2005). The majority of skeletal muscles in vertebrates, 

with the exception of certain head muscles, develop from the somites (Bryson-

Richardson RJ and Currie PD, 2008; Buckingham M and Vincent SD, 2009). 

Maturing somites develop the dorsally located epithelial dermomyotome and the 

ventrally located mesenchymal sclerotome. The sclerotome forms cartilage and 

bone, tendons arise from the syndetome, while the dermomyotome develops into 

the dermis and the skeletal muscles of the trunk and limbs (Parker MH, et al., 2003). 

The first cells in the developmental chain are the progenitor cells. They are 

undifferentiated multipotent cells that upon the first differentiation signals will give 

rise to myoblasts. Myoblasts are already committed to the muscle lineage. The next 

link in the chain are the myotubes which are elongated multinucleated cells formed 

by the fusion of myoblasts. The myotubes will then continue to elongate and form 

the muscle basic component, the multinucleated myofiber. The activation of the core 

myogenic cascade occurs in all tissues destined for the skeletal myogenic lineage; 

however, the factors that initiate the cascade differ radically in the different locations 

of the embryo. The myogenic precursor cells (MPCs), which arise in the 

dermomyotome, are specified by the expression of the paired-box transcription 

factors Pax3 and Pax7 that activate the quiescent cells (Kassar-Duchossoy L, et al. 

2005). It has been observed that Splotch (Sp) mice, lacking a functional Pax3 gene, 

do not survive to term and fail to form limb muscles due to impaired migration of 

Pax3-expressing cells originating from the somite (Tremblay et al., 1998). In contrast 

Pax7 appears to be dispensable for embryonic muscle development although it can 

compensate for reduced expression of Pax3 and it seems to be essential for 

myogenesis after birth (Relaix F et al., 2005). It is now well known that the 

differentiation of the embryonic pluripotent cells would not continue without the 

governing role of four muscle regulatory factors (MRFs): Myf5, MyoD, Myogenin, 

and Mrf4 (also known as Myf6 or herculin). All four belong to the basic helix–loop–

helix (bHLH) super family of proteins that bind to the E-box sequence, a DNA motif 
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that contains the sequence CANNTG which is found in the promoters of many 

muscle-specific genes (Moncaut N et al., 2013). The sequence of MRFs activation 

throughout the embryonic muscle development is well regulated and it is important 

a strict order. The first MRFs expressed are Myf5 and MyoD that are considered to 

be the “commitment” factors (Berkes CA and Tapscott SJ, 2005). After the activation 

of myogenic linage, the two other MRFs are taking over, Myogenin and Mrf4 are 

expressed downstream from the first two and are considered as the “differentiation” 

factors. Under the control of these two factors, myoblasts evolve to myotubes and 

eventually to myofibers. Mutant mice embryos lacking Myogenin and or Mrf4 genes 

are dying prenatally because the cells were unable to fuse and form multinucleated 

myotubes and myofibers. (Parker MH et al, 2003) (Fig. 4). Although the MRFs are 

indispensable for skeletal muscle formation in the developing embryo, the activation 

of MRFs is under the control of other extrinsic factors that are secreted and activated 

upstream such as Wnt and Sonic Hedgehog (Shh). Wnts are expressed in the dorsal 

regions of the neural tube and induce somitic myogenesis in cooperation with Shh 

signaling from the notochord, Wnt signaling has also been demonstrated to 

influence the expression of MRFs (von Maltzahn J et al., 2012). 

 

 

Fig.4. Schematic of satellite cell myogenesis and markers typical of each stage. Satellite cells are quiescent in 

normal adult muscle and can be activated by muscle damage. Once activated, satellite cells divide to produce 

satellite cell-derived myoblasts that further proliferate, before committing to differentiation and fusing to form 

myotubes, which then mature into myofibers. CD34, Pax7, and Myf5/β-gal are expressed in quiescent satellite 

cells (Zammit PS et al., 2006). 

 

 

 



23 

 

2.4 Tendon anatomy and physiology 

Tendons link muscles to bone at the musculo-tendinous junction and osteo-

tendinous junction respectively and their essential role is transferring contraction 

forces. Macroscopically, tendons can take the form of cords or straps of round or 

oval cross-section. Tendons are generally white and have a smooth surface but in 

strongest and largest tendons the fasciculi can be enough thick to give a 

longitudinally striated aspect. Tendon fibers of the same tendon or of adjacent 

tendons can form cords or bridges. A tendon’s shape strictly depends on its function. 

In general, more the movement is subtle and precise, more the tendon is long and 

thin (e.g. hand flexors), vice versa if strength and resistance are required, the tendon 

will be thick and short (e.g. Achille’s tendon). When a muscle has a long tendon at 

one hand, it has a short or aponeurotic tendon at the other one (Williams PL et al., 

2003).  

Microscopically, tendons are a poorly cellularized tissue and they have a 

hierarchical structure composed by a cellular unit called tenocytes, a fibroblastic-

like cell that produces collagens, lying within a network of ECM (Benjamin M et al., 

2008; Magne D and Bougault C, 2015). The fibroblast are termed “tenoblast” when 

they are still immature spindle shaped and numerous cytoplasmatic organelles 

reflecting their high metabolic activity. Aged tenoblast become elongated and 

transform into tenocytes with a lower nucleus-cytoplasm ratio than tenoblast. 

Together tenoblast and tenocyte account for the 90-95% of the cellular elements of 

tendons. The remaining 5-10% consist of chondrocytes at the bone attachment and 

insertion sites, synovial cells of the tendon sheath and vascular cells, including 

capillary endothelial cells and smooth muscle cells of arterioles (Sharma P and 

Maffulli N, 2006).  

The most important protein is the collagen type 1 that gives tendons their high tensile 

strength and it is responsible for the hierarchical structure. The tropocollagen 

molecules consist of triple helix with two alpha-1 chains and one alpha-2 chain that 

spontaneously self-assemble after secretion and cross-linking into collagen micro 

fibrils that arrange themselves into larger units, called sub-fibrils, in ligaments or 

sub-fascicles/primary fiber bundles. The fibrils then gather into collage fibers or 

fascicles/secondary fiber bundles (Fig. 5) 
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Fig. 5. Schematic of a multi-unit hierarchical structure of the tendon. The tendon has a multi-unit hierarchical 

structure composed of collagen molecules, fibrils, fibre bundles, fascicles and tendon units that run parallel to 

the tendon's long axis. This hierarchical structure contributes to the mechanical competence of the tendon (Liu 

Y et al., 2008) 

In addition, tendons are bound together by the endotenon, a loose connective tissue 

that also includes blood, lymph vessels and nerves and is continuous with the 

epitenon, which surrounds the whole tendon. Surrounding the epitenon superficially, 

another thin layer, called paratenon that permits movements within the surrounding 

tissue. Epi- and paratenon together constitute the peritenon (Liu CF et al., 2011). 

Tendons are extraordinarily strong in resisting tensile loads. Given to their low 

metabolic rate and well-developed anaerobic energy generation capacity, tendons 

are able to carry loads and maintain tension for long periods. This characteristic 

reduces the incidence of ischemia and necrosis, but on the other hand, the low 

metabolic rate entails slow healing after injury. A stress-strain curve helps to 

demonstrate the behavior of the tendon (Fig. 6).  
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Fig. 6. Stress-strain curve demonstrating the physical properties of the normal tendon (Maffulli N, 1998). 

Collagen fibers and fibrils display a crimped configuration. It is possible to distingue 

three regions: i) physiological response: tendon is lengthened by low tensile loads 

up to 3-4% of its resting length and quickly resumes its initial length after release 

(toe region). ii) Overuse injury: at strains of 4-8% pathological irreversible tensile 

elongation begins to take place. iii) Tendon rupture: tendon breaking point is 9% to 

30% strain, depending on type, age and organization on the tendon fiber bundle 

(Hoffman A and Gross G, 2007). 

 

 

2.5 Tendon healing process 

Tendon injuries, degenerative tendinopathy and overuse tendinitis are very common 

both in human and veterinary field. It has been estimated that 30 billion dollars are 

spent on musculoskeletal injuries in the United States each year, and 

tendon/ligament injuries represent about 45% of these injuries (Praemer A et al., 

1999). In general, tendon injury occurs due to acute trauma or inflammation of either 

the tendon tissue or the surrounding tissues. This includes tendonitis, tendinosis, 

bursitis, epicondylitis, and complete tendon rupture, depending on the extent of the 

tissue damage (Biundo JJ Jr et al., 2001; Baring T et al., 2007). In the veterinary 

field, overstrain injuries to weight-bearing tendons are common in racing animals 

that can run fast for long distances. The horse is particularly predisposed to 

overstrain injury of the palmar soft tissue structures of the distal limb due to 
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hyperextension of the metacarpophalangeal joint during weight-bearing (Kasashima 

Y. et al., 2004). 

Tendon healing starts with hematoma formation, followed by the formation of 

granulation tissue (Aspenberg P, 2007). Bone morphogenetic proteins (BMPs) and 

growth and differentiation factors (GDFs) are the main players in the latter process, 

which is followed by collagen fiber deposition and organization. Basic fibroblast 

growth factor (bFGF) seems to play a role during cell proliferation and invasion of 

vascular tissues into the healing tendon (Chang J et al., 1998). Mechanical 

stimulation seems to be of great significance in tendon healing, contributing to 

mechanical strength in the regenerating tissue (Aspenberg P, 2007). 

 

 

2.6 Tenogenesis 

In contrast to muscle, tendon morphogenesis is less understood. From most studies 

of limb tendon development, it seems that tendons arise from the lateral plate 

mesoderm (Hurle J et al., 1989; Ros M et al., 1995). Tenascin C (TNC) is a protein 

that can be detected in all tendon blastema and proximal tendons, however, TNC 

seems not to be a specific marker of tendons, since it is expressed by other cell 

types, including glial cells and chondrocytes (Kardon G, 1998; Chiquet M and 

Fambrough DM, 1984). A more specific marker of tendon development is Scleraxis 

(SCX), a basic helix-loop-helix (bHLH) transcription factor that can bind to DNA 

sequences containing the E-box consensus sequence through its bHLH motif. In 

normal condition, SCX is expressed in mature tendons and ligaments of the limbs 

and trunk, as well as in their progenitors.  

SCX gene expression is induced in superficial mesenchyme–derived tendon 

progenitors by the adjacent ectoderm. Its expression is restricted to these cells by 

BMPs, which inhibit SCX gene expression, and this inhibition is antagonized by 

Noggin (Schweitzer, R., et al. 2001). In addition to SCX, the homeobox gene sine 

oculis–related homeobox 1 homolog (Six1) has been proposed as a potential 

“player” in the development of tendons. Six1 being expressed in dorsal extensor 

tendons and Six2 in the ventral flexor tendons of the digits impaired due to the 

diminution of muscle tissue in these mice (Bonnin, M., et al. 2005).  

Other markers of tendon development, such as tenomodulin (TeM), have also been 

described. Expression of the gene encoding TeM was found in association with the 

appearance of tenocytes (also called tendon fibroblasts), derived from tendon 

primordia, during chick development and is upregulated by retrovirus-mediated SCX 

expression in cultured tenocytes (Shukunami C et al., 2006). These data suggest 

that TeM as a late marker of tendon morphogenesis and that expression of the gene 

encoding TeM is positively regulated by SCX in tenocytes (Aslan H et al., 2008). 

Another marker is Decorin a proteoglycan that regulated tendon structure by 

stabilizing and aligning collagen fibrils (Zhang G et al., 2006). Decorin-null mice 

(Dcn−/−) exhibit fragile skin and abnormal fibril morphology (Danielson et al., 1997). 

Decorin performs an important role in regulating fibril development, growth, fusion, 

and orientation during tendon development. However, the regulatory role of decorin 

during advanced aging has not been previously described (Dunkman AA et al., 

2013). 
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Chapter 3: Skin tissue and regeneration 

 

3.1 Skin anatomy 

The skin is the largest organ of mammals, accounting for about 15% of the total 

adult body weight. It performs many vital functions, including protection against 

external physical, chemical, and biologic assailants, as well as prevention of excess 

water loss from the body and a role in thermoregulation. The skin is continuous, with 

the mucous membranes lining the body’s surface (Kanitakis J, 2002). The barrier 

function of the skin is of critical importance, which is evident when this barrier is 

disrupted following injury, or in atopic dermatitis, ichthyosis, or irritant contact 

dermatitis (Richmond JM and Harris JE, 2015). The loss of skin integrity may induce 

important dysfunctions or even death. Once the barrier is disrupted, the rapid but 

nonspecific innate immune response is recruited in defense, a process that relies 

on detection of both self and foreign “danger signals” as the initial alarm (Richmond 

JM and Harris JE, 2015). For superficial wounds, the endogenous healing 

mechanisms in combination with traditional injuries care are sufficient to achieve 

functional repair. In contrast, in larger lesions, like third and fourth degree burns, 

chronic wound or deep ulcers, it is difficult to obtain the restitutio ad integrum and 

often the result leads to fibrosis and scar tissue formation (Broeckx SY et al 2014, 

Spaas JH et al., 2016).  

3.1.1 General Structure 

The integumentary system (Fig. 7) is composed of three layers: the epidermis, the 

dermis, and subcutaneous tissue (Kanitakis J, 2002).  

 

 

Fig.7. Schematic representation of the cross section of the skin (Poinern GEJ et al., 2011). 
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The outermost level is the epidermis that consists of a specific constellation of cells 

known as keratinocytes, which function to synthesize keratin, a protein with a 

protective role. It is originated from the primary germ embryonic layer ectoderm. The 

middle layer, the dermis, derived from the mesoderm layer and is fundamentally 

made up of the collagen. The subcutaneous tissue or panniculus contains small 

lobes of fat cells known as lipocytes. The thickness of these layers varies 

considerably, depending on the geographic location on the anatomy of the body and 

the dermis is thickest on the back, where it is 30–40 times as thick as the overlying 

epidermis (Kierszenbaum AL, 2006). 

 

3.1.2 Epidermis and its structures 

The epidermis is a keratinized squamous epithelium and it is composed of different 

cell populations such as 1) keratinocytes (85%), 2) melanocytes, 3) Langerhans 

cells, and 4) Merkel cells, but the keratinocyte cell type comprises the majority of 

the cells (Reese et al., 2000).  

Keratinocytes: At least 80% of cells in the epidermis are keratinocytes. The 

differentiation process that occurs as the cells migrate from the basal layer to the 

surface of the skin results in keratinization (Chu DH et al., 2008) a process where, 

in the synthetic phase, the cell builds up a cytoplasmic supply of keratin, a fibrous 

intermediate filament arranged in an alpha-helical coil pattern that serves for the 

cytoskeleton. After bundles of these keratin filaments converge on and terminate at 

the plasma membrane forming the desmosomes. During the degradative phase of 

keratinization, cellular organelles are lost, the contents of the cell are consolidated 

into a mixture of filaments and amorphous cell envelopes, and the cell finally is 

known as a horny cell or corneocyte (James WD et al., 2006). 

 

Non-keratinocyte cells 

Melanocytes are a dendritic, pigment-synthesizing cell derived from the neural crest 

and confined in the skin predominantly to the basal layer (Chu DH et al., 2008), on 

the external sheath and hair follicles, in sweat and sebaceous glands. They are 

responsible for the production of the pigment granules (melanin) (Reese et al., 2000) 

and its transfer to keratinocytes. Melanin is produced in a rounded, membrane-

bound organelle known as the melanosome via a series of receptor mediated, 

hormone stimulated, enzyme, catalyzed reactions (Haake AR and Hollbrook KA, 

1999). The enzyme tyrosinase is involved in the production of melanin. The 

tyrosinase is absent in albino animals that do not produce melanin even if they 

present a normal quantity of melanocites (Fig. 8). Melanin protects the skin from 

ultraviolet radiation. 
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Fig.8. The distribution of skin melanin in the word (www.creofire.wordpress.com) 

 

Langerhans cells are involved in a variety of T-cell responses. Derived from the 

bone marrow, these cells migrate to a suprabasal position in the epidermis early in 

embryonic development and continue to circulate and repopulate the epidermis 

throughout life. The cells are dendritic and do not form cellular junctions with 

neighboring cells. Langerhans cells constitute 2%–8% of the total epidermal cell 

population and maintain nearly constant numbers and distributions in a particular 

area of the body. In the epidermis, the cells mainly are distributed among the 

squamous and granular layers with fewer cells in the basal layer (Chu DH et al., 

2008).  

Merkel cells are oval-shaped, slow adapting, type I mechanoreceptors located in 

sites of high tactile sensitivity that are attached to basal keratinocytes by 

desmosomal junctions. They are neuroendocrine cells (Reese et al., 2000) and they 

have a long axis that are parallel to the surface of the skin and are perpendicular to 

the columnar basal epithelial cells above (Eurell, JA and Frappier BL., 2013). Merkel 

cells are found in the digits, lips, regions of the oral cavity, and outer root sheath of 

the hair follicle and are sometimes assembled into specialized structures known as 

tactile discs or touch domes (Moll I, 1994).  

The epidermis commonly is divided into four layers differentiate into 1) the basal cell 

layer (stratum germinativum), 2) the squamous cell layer (stratum spinosum), 3) the 

granular cell layer (stratum granulosum), 4) stratum lucidum and 5) the cornified or 

horny cell layer (stratum corneum) (James et al., 2006; Roosje PJ et al., 1997) 

(Fig.9).  
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Fig. 9. The anatomy of epidermis: stratum corneum, lucidum, granulosum, spinosum and 

germinativum (http://www.123rf.com) 

 

The basal layer or stratum germinativum contains column-shaped keratinocytes that 

attach to the basement membrane zone with their long axis perpendicular to the 

dermis. These basal cells form a single layer and adhere to one another as well as 

to more superficial squamous cells through desmosomal junctions. The basal layer 

is the primary location of mitotically active cells in the epidermis that give rise to cells 

of the outer epidermal layers (Jones PH et al., 1996). Hyperplasiogenic conditions, 

such as wounding, can increase the number of cycling cells in the epidermis by 

stimulating division of stem cells. DNA damage caused by carcinogenic agents may 

mutate cell proliferation machinery and can also affect the rate of cellular division. 

Migration of a basal cell from the basal layer to the cornified layer in humans takes 

at least 14 days, and the transit through the cornified layer to the outermost 

epidermis requires another 14 days (Chu DH et al., 2008). 

The squamous cell layer (stratum spinosum). Overlying the basal cell layer is a layer 

of the epidermis that is 5–10 cells thick (Roosje PJ et al., 1997). The squamous 

layer is composed of a variety of cells that differ in shape, structure, and subcellular 

properties depending on their location. In this layer are present the lamellar granules 

that bound organelles containing glycoproteins, glycolipids, phospholipids, free 

sterols, and a number of acid hydrolases, including lipases, proteases, acid 

phosphatases, and glycosidases. The abundance of hydrolytic enzymes indicates 

that the lamellar granules are a type of lysosome. Although the lamellar granules 

primarily are active in cells at the interface between the granular and cornified 

layers, they also function in cells of the upper spinous layer to deliver precursors of 
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stratum corneum lipids into the intercellular space (Haake AR and Hollbrook KA, 

1999). Keratin filaments in the cytoplasm are bound to desmosomal plaques at one 

end and remain free at the end closer to the nucleus (Roosje PJ et al., 1997). Gap 

junctions are another type of connection between epidermal cells forming an 

intercellular pore, these junctions allow for physiologic communication via chemical 

signals that is important in the regulation of cell metabolism, growth, and 

differentiation (Caputo R and Peluchetti D, 1977). 

The granular cell layer (stratum granulosum) is composed of flattened cells holding 

abundant keratohyaline granules in their cytoplasm. These cells are responsible for 

further synthesis and modification of proteins involved in keratinization (Chu DH et 

al., 2008). The granular layer varies in thickness: for example, under thin cornified 

layer areas, the granular layer may be only 1–3 cell layers in thickness, whereas 

under the palms of the hands and soles of the feet the granular layer may be 10 

times this thickness (Roosje PJ et al., 1997). The keratohyaline granules are deeply 

basophilic and irregular in shape and size, and they are necessary in the formation 

of the interfibrillary matrix that holds keratin filaments together and the inner lining 

of the horny cells. Enzymatic action of the keratohyaline granules results in the 

production of keratin in the epidermis by providing periodic cutting of keratin 

filaments. In contrast, the hair and nails do not contain keratohyaline granules 

(Matoltsy AG, 1976; Schwarz R et al., 1979).  

Lucidum layer (stratum lucidum) can be found only in a thick skin and in hairless 

regions (handheld and plantar surfaces and planum nasale). It is compound of 

several layers of keratinized, closely compact together cells (Eurell, JA and Frappier 

BL., 2013).  

Cornified layer. Horny cells (corneocytes) of the cornified layer offer mechanical 

protection to the underlying epidermis and a barrier to prevent water loss and 

invasion by foreign elements (Jackson SM et al., 1993). The corneocytes, rich in 

protein and low in lipid content (Chu DH et al., 2008), are large, flat, polyhedral-

shaped horny cells have without nuclei. The physical and biochemical properties of 

cells in the cornified layer vary in accordance with position in order to promote 

desquamation moving outward. Cells in the middle have a much higher capacity for 

water-binding than the deeper layers because of the high concentration of free 

amino acids found in the cytoplasm of middle layer cells. The deep cells also are 

more densely compact and display a greater array of intercellular attachments than 

the more superficial layers (Haake AR and Hollbrook KA, 1999). 

 

Moreover, the epidermis presents derivative structures, such as eccrine sweat 

glands, apocrine sweat glands, apoeccrine sweat glands, sebaceous glands, hair 

follicles, and nails.  

Eccrine Sweat Glands are involved in the regulation of heat and are most abundant 

on the soles of the feet and least plentiful on the back (Roosje PJ et al., 1997); Sato 

K and Dobson RL, 1970). The sweat glands originate as a band of epithelial cells 
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growing downward from the epidermal ridge (Mauro T and Goldsmith L, 2008). This 

tubular structure is modified during development to generate the three composite 

parts of the eccrine sweat unit that correspond to the intra-epidermal spiral duct, the 

straight dermal portion, and the coiled secretory duct (James WD et al., 2006; Mauro 

T and Goldsmith L, 2008). They are found in special skin areas such as the footpads 

of dogs and cats and the bovine palnum nasolabiale (Eurell, JA and Frappier BL., 

2013). The spiral duct opens onto the skin surface and is composed of dermal duct 

cells that have migrated upward. The secretory coil of the eccrine unit lies deep in 

the dermis or within the superficial panniculus and is composed of glycogen-rich 

clear secretory cells, dark mucoidal cells, and myoepithelial cells specialized in 

contractile properties (James WD et al., 2006; Mauro T and Goldsmith L, 2008). 

Dark cells have more ribosomes and numerous mucin droplets that occur in the 

apical part of the cell. Clear cells rest either on the basement membrane or on the 

myoepithelial cells and form intercellular canaliculi that open directly into the lumen 

of the gland (Mauro T and Goldsmith L, 2008). Large, glycogen-rich inner epithelial 

cells initiate the formation of sweat in response to a thermal stimulus. Initially an 

isotonic solution, the darker mucoidal cells in the secretory coil and in the dermal 

duct actively reabsorb sodium from sweat in the duct, thereby resulting in the 

extremely hypotonic solution that is emitted onto skin surface through the 

intraepidermal spiral duct (James WD et al., 2006). 

Apocrine Sweat Glands are involved in scent release (Roosje PJ et al., 1997). They 

are saccular or tubular glands with a coiled secretory portion and a straight duct. 

The secretory portion has a large lumen line with flattened cuboidal to low columnar 

epithelial cells (Kierszenbaum AL, 2006). Apocrine sweat glands in humans are 

confined mainly to the regions of the axillae and perineum. Instead, the 

intraepithelial duct opens into pilosebaceous follicles, entering in the infundibulum 

above the sebaceous duct. The basal secretory coil of apocrine glands, which is 

normally located entirely in subcutaneous fat, differs from that of eccrine glands in 

that it is composed exclusively of secretory cells; no ductal cells are present (Roosje 

PJ et al., 1997). Apocrine sweat glands develop their secretory portions and become 

active just before puberty, a response induced presumably by hormonal signals. 

The viscous secretion has distinct odor and can function as a territorial marker, 

warning signal, and sexual attractant, but its sexual functions may now be vestigial 

in humans. It is impossible to determine the exact chemical composition of the 

secretion because is difficult to acquire pure samples of apocrine sweat. (Mauro T 

and Goldsmith L, 2008). 

Apoeccrine sweat glands (AEG) develops during puberty from eccrine-like 

precursors directly unto the skin. Discovered during the isolation of human axillary 

sweat from patients with axillary hyperhidrosis, the AEG is found in the adult axillae 

and the frequency depends from person to person. AEG opens directly to the skin 

surface (Mauro T and Goldsmith L, 2008).  

 

Sebaceous glands are found in greatest number on the face and scalp but are 

present on all other locations of the body with the exception of the tarsal plate of the 
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eye lids, the buccal mucosa and vermilion borders of the lip, the prepuce and 

mucosa lateral to the penile frenulum, the labia minora, and the female areola 

(James WD et al., 2006). The secretory portion lies in the dermis and consists of 

groups of alveoli connected to the excretory duct. Cells of the sebaceous glands 

contain abundant lipid droplets known as sebum, an oily secretion containing a 

mixture of lipids and disintegrated cells, in their cytoplasm and are arranged into 

lobules off the upper segment of the hair follicle. Basaloid germinative cells 

surrounding the lobule give rise to the lipid-filled cells, which are then expelled into 

the infundibular segment of the hair follicle via the sebaceous duct. The sebaceous 

glands are thought to be evolutionarily important in providing a secondary lubrication 

during the passage through the birth canal. This extra lubrication covers the 

surfaces that come in direct contact with the birth canal including the vertex, anterior 

scalp over the forehead and nose to the lower jaw line, and the shoulders, chest, 

and upper aspect of arms posteriorly (Danby FW, 2005; Thiboutot D, 2004). 

 

Hair and Hair follicles. Hair has many biologic functions including protection from 

the elements and distribution of sweat-gland products. Hair is a flexible, keratinized 

structure produced by the hair follicle and it is composed of a cuticle (a single layer 

of the flat keratinized cells), a cortex with densely packed keratinized cells 

containing remnants of nuclei and pigment granules and a medulla (the center of 

the hair with cuboidal or flattened cells). The hair root is the part within the follicle 

that ends in a hair bulb attached to a dermal papilla (Eurell, JA and Frappier BL., 

2013). Sheep have a characteristic hair that is referred to as fibers. There are three 

types of fibers: wool fibers (tightly crimped of small diameter and without medulla), 

kemp fibers (coarse with a particular medulla) and coarse fibers with an intermediate 

size (Reese et al., 2000). Hair follicles vary considerably in size and shape, 

depending on their location, but they all have the same basic structure. The number 

and distribution of hair follicles over the body and the future phenotype of each hair 

is established during fetal development; no extra follicles are added after birth 

(Kratochwil K et al., 1996, Paus R et al., 1997, Zhou P et al., 1995). The follicle 

continues to develop until finally widening at the base and forming a bulb around the 

group of mesenchymal cells from which the dermal Tpapilla is formed (James WD 

et al. 2006). The differentiation occurs at the lower portion of the hair follicle forming 

the hair cone and later the hair, the cuticle, and the two inner root sheaths. Along 

the same side of the follicle but below the sebaceous gland, develops arrector pili 

muscle (AP) that are a smooth muscle bundle that attaches to the external root 

sheath of the follicle. The bulge, which is the zone of the AP muscle’s follicular 

attachment, is thought to contain epithelial stem cells responsible for regenerating 

follicles, a crucial role in the hair growth cycle (Cotsarelis G et al., 1990). The region 

of the follicle above the sebaceous gland is known as the infundibular segment, and 

the region between the sebaceous duct and AP attachment is known as the isthmus. 

The region below the isthmus is known as the inferior portion and contains the 

bottom of the follicle as well as the hair bulb. The inferior segment undergoes cycles 

of involution and regeneration throughout life (James WD et al., 2006). The matrix 

cells are responsible for the production of the hair shaft as well as the inner and 
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outer root sheaths. The number of cells entering the sheath determines the size of 

the hair, and the dimensions and curvature of the inner root sheath determine the 

shape of the hair (Paus R and Cotsarelis G, 1999). The hair bulb contains 

melanocytes that synthesize melanosomes and transfer them to the keratinocytes 

of the bulb matrix. Hair color is determined by the distribution of melanosomes in 

the hair shaft. The hair growth cell cycle present three phases: anagen, catagen, 

and telogen (Paus R et al., 1996; St-Jacques B et al., 1998).  

• Anagen is the active growth stage during which hairs grow at a rate of about 

0.33 mm per day. The length of the anagen phase declines with age and 

decreases dramatically in individuals with alopecia. 

• Catagen is a period of involution resulting in hair formation after many cells 

in the outer root sheath undergo apoptosis.  

• Telogen where the hairs in this stage are eventually pushed out by the 

growing anagen hair shaft (James WD et al., 2006). 

Insulin-like growth factor 1 (IGF-1) and fibroblast growth factor 7 (FGF-7) have 

important roles in hair follicle development and cycling. In addition, estrogens, 

thyroid hormones, glucocorticoids, retinoid, prolactin, and growth hormone control 

are able to influence the cell cycle of hair. The most important hormones are the 

androgens: testosterone and its active metabolite, dihydrotestosterone act through 

androgen receptors in the dermal papilla. These hormones increase the size of hair 

follicles in androgen-dependent areas such as the beard area during adolescence. 

Later in life they can cause miniaturization of follicles in the scalp resulting in 

androgen alopecia (male pattern baldness) (Kaufman KD, 1996).  

 

Nails. Fingernails provide protection to the fingertips, enhance sensation, and allow 

small objects to be grasped. The underlying nail bed is part of the nail matrix 

containing blood vessels, nerves, and melanocytes and has parallel rete ridges. The 

nail plate is formed from matrix keratinocytes (James WD et al., 2006). Fingernails 

grow at an average rate of 0.1 mm per day, two to three times faster than the rate 

of toenail growth. Because of the slow growth rate, toenails can provide information 

about toxic exposure or disease from many months in the past (James WD et al., 

2006).  

 

The interface between the epidermis and dermis is formed by a porous basement 

membrane zone that allows the exchange of cells and fluid and holds the two layers 

together (James WD et al., 2006). Basal keratinocytes are the most important 

components of structures of the dermal-epidermal junction; dermal fibroblasts are 

also involved but to a lesser extent (Gayraud B et al., 1997). The basal lamina is a 

layer synthesized by basal cells of the epidermis consisting mainly of type IV 

collagen as well as anchoring fibrils and dermal microfibrils. This includes the lamina 

lucida as well as the lamina densa (Aumailley M and Krieg T, 1996). The plasma 

membranes of basal cells are attached to the basal lamina by rivet-like 

hemidesmosomes that distribute tensile or shearing forces through the epithelium. 

The dermal-epidermal junction acts as support for the epidermis, establishes cell 
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polarity and direction of growth, directs the organization of the cytoskeleton in basal 

cells, provides developmental signals, and functions as a semipermeable barrier 

between layers (Stepp MA et al., 1990). 

 

3.1.3 Dermis and Hypodermis 

The dermis is an integrated system of fibrous, filamentous, and amorphous 

connective tissue that accommodates stimulus-induced entry by nerve and vascular 

networks. The predominant cells are fibrocytes, macrophages, and mast cells. Other 

blood-borne cells, including lymphocytes, plasma cells, and other leukocytes, enter 

the dermis in response to various stimuli as well. The dermis comprises the bulk of 

the skin and provides its pliability, elasticity, and tensile strength. It protects the body 

from mechanical injury, binds water, aids in thermal regulation, and includes 

receptors of sensory stimuli. The dermis interacts with the epidermis in maintaining 

the properties of both tissues. The matrix components, including collagen and 

elastic connective tissue, also vary in a depth-dependent manner and undergo 

turnover and remodeling in normal skin, in pathologic processes, and in response 

to external stimuli (Chu DH, 2008). The constituents of the dermis are mesodermal 

in origin except for nerves, which, like melanocytes, derive from the neural crest. 

Until the sixth week of fetal life, the dermis is merely a pool of dendritic-shaped cells 

full of acid-muco-polysaccharides, which are the precursors of fibroblasts. By the 

12th week, fibroblasts are actively synthesizing reticulum fibers, elastic fibers, and 

collagen. The principal component of the dermis is collagen that is found in tendons, 

ligaments, the lining of bones, and the skin (James WD et al., 2006). The major 

constituent of the dermis is type I collagen. Type IV collagen is found in the 

basement membrane zone, and the major structural component of anchoring fibrils 

is collagen type VII, which is produced primarily by keratinocyte. Hyaluronic acid is 

a minor component of the normal dermis but is the major mucopolysaccharide that 

accumulates in pathologic states (James WD et al., 2006). 

In the dermis are present many structures:  

Vasculature is made up of three intercommunicating plexuses. The subpapillary or 

superficial plexus composed of postcapillary venules found at the junction of the 

papillary and reticular dermis and the lower plexus at the dermal-subcutaneous 

interface. The dermal papillae are supplied by capillaries, end arterioles, and 

venules of the superficial plexus. The middle or cutaneous plexures are located at 

the papillary and reticular layers of the dermis give branches to the subpapillary 

plexus. The deeper plexus is supplied by larger blood vessels and is more complex 

surrounding adnexal structures. Vasodilation and increased skin blood flow, along 

with sweating, are crucial to heat dissipation during heat exposure and exercise. 

During exposure to cold, vasoconstriction in the skin decreases heat loss from the 

body to prevent hypothermia. Altered control of skin blood flow can considerably 

impair the ability to maintain normal body temperature (James WD et al., 2006). 



36 

 

Muscles involuntary or smooth muscle of the skin occurs as AP, tunica dartos of the 

external genitals, and the areolas around the nipples. The location of the nucleus in 

the center of the muscle cell and the absence of striation distinguishes smooth 

muscle from striated muscle. The muscle fibers of the arrectores pilorum are located 

in the connective tissue of the upper dermis and are attached to the hair follicle 

below the sebaceous glands (James WD et al., 2006).  

Nerves bundles, together with arterioles and venules, are found in great quantity in 

neurovascular bundles of the dermis (James WD et al., 2006). Meissner corpuscles, 

found in the dermal papillae, help to mediate touch and are found predominantly on 

the ventral sides of the hands and feet. Meissner corpuscles occur in greater 

abundance on the hands, with greatest concentration in the fingertips. Vater-Pacini 

corpuscles are large nerve-end organs that generate a sense of pressure and are 

located in the deeper portion of the dermis of weight-bearing surfaces and genitalia. 

Pain, temperature, and itch sensation are transmitted by unmyelinated nerve fibers 

that end around hair follicles and the papillary dermis (James WD et al. 2006).  

Mast cells are specialized secretory cells derived from bone marrow and distributed 

in connective tissues throughout the body. Although present in greatest numbers in 

the papillary dermis, they also are present in the subcutaneous fat (Chu DH, 2008). 

In the normal dermis, mast cells appear as oval to spindle-shaped cells with a 

centrally located round to oval nucleus. Numerous mast cells are located around 

blood vessels, especially postcapillary venules. Mast cell granules are round, oval, 

or angular membrane-bound structures containing histamine, heparin, serine 

proteinases, and certain cytokines. The cell’s surface contains hundreds of 

thousands of glycoprotein receptor sites for IgE. Type I or connective tissue mast 

cells are located in the dermis and submucosa. Type II or mucosal mast cells are 

located in the respiratory tract mucosa and in the bowel (James WD et al., 2006). 

Traditionally associated with the allergic response, more recent studies suggest that 

these cells also may be capable of regulating inflammation, host defense, and innate 

immunity. After activation, mast cells express histamine, leukotrienes, prostanoids, 

proteases, and many cytokines and chemokines (Krishnaswamy G et al., 2006). 

Subcutaneous fat toward the end of the fifth month fat cells begin to develop in the 

subcutaneous tissue. These lobules of fat cells or lipocytes are separated by fibrous 

septa made up of large blood vessels and collagen. The panniculus varies in 

thickness depending on the skin site. Considered an endocrine organ, the 

subcutaneous tissue provides the body with buoyancy and functions as a 

storehouse of energy. Hormone conversion takes place in the panniculus, 

converting androstenedione into estrone by aromatase. Lipocytes produce leptin, a 

hormone that regulates body weight by way of the hypothalamus (James WD et al., 

2006) 
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3.2 Skin pathology 

The skin is the largest organ of vertebrates and is crucial for defense as well as 

survival. Injury induces loss of the integrity of the skin resulting in functional 

imbalance, eventually accompanied by disability or even death (Theoret C, 2009).  

3.2.1 Epidermis 

The epidermis can suffer of different pathologies. 

Disorders of cornification. Seborrhea or inflammation, trauma, metabolic or 

nutritional disorders.  

Hyperkeratosis is an increase in the thickness of the stratum corneum in presence 

of chronic stimuli. 

Epidermal hyperplasia is an alteration in the epidermal growth or differentiation. It is 

characterized by an increase in the number of cells. In early stages the epidermal-

dermal interface can appear undulating and with the progression of the condition 

the ridges can extend into the dermis and interdigitate with the dermal papillae 

receiving an elongation that can appear regular or irregular. In this group is possible 

to find the Pseudocarcinomatous hyperplasia that is a chronic late stage due to 

chronic injury such as long term actinic radiation or persisting and nonhealing ulcers. 

It can developed after the regular or irregular forms (McGavin D, 2013). 

Dyskeratosis is an alteration in the proliferation and maturation of the epidermis that 

is characterized by premature keratinization of cells. The keratinocytes appear 

shrunk and separated from adjacent cells with pyknotic nucleus and brightly 

eosinophilic cytoplasm because of the accumulation of keratin filaments (McGavin 

2013). 

Apoptosis is the programed cell death of the keratinocytes. The apoptotic cells are 

phagocytosed by adjacent keratinocytes before the cellular disintegration to prevent 

the development of an acute inflammatory response. Apoptosis is tipical of diseases 

such as lupus erythematosus and erythema multiforme (McGavin D, 2013). 

Necrosis is the death of cells characterized by nuclear pyknosis, nuclear 

karyorrhexis (a rupture of the nuclear membrane with fragmentation and the release 

of contents) or nuclear karyolysis (a complete dissolution of the nucleus with a loss 

of chromatin material). This process is accompanied by an acute inflammatory 

response typical of thermal burns, lacerations, irritant contact dermatitis, and injury 

as a result of ischemia and infarction (McGavin D, 2013). 

Dysplasia is an abnormal development of the keratinocytes, characterized by 

alterations in size, shape and organization. In this condition, the dysplasia can 

precede to a formation of noninvasive (in situ) carcinoma (McGavin D, 2013). 
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Alterations in epidermal fluid balance 

Edema is a fluid accumulation between the cells and spongiosis is the term to 

indicate the intracellular edema of the epidermis. It can result in the formation of 

spongiotic vesicles that are common in epidermal inflammation by Staphylococci or 

Malassezia. The histological appearance is a swelling of the keratinocytes because 

of the fluid accumulation in the cytoplasm.  

Ballooning degeneration is an intracellular accumulation of keratinocytes in the 

superficial layers such as stratum spinosum. It is characterized by swollen cells that 

have lost their intracellular attachments. This type can be seen in a virus infection 

such as pox and parapox virus (McGavin D, 2013). 

Acantolysis is the disruption of intracellular junctions in particular the desmosomes 

between keratinocytes of the epidermis. It occurs with immune-mediated injury like 

in “pemphigus foliaceus” or with a neutrophilic enzymatic destruction as seen in 

superficial pyoderma. The aspect can be the presence of subcorneal vescicles and 

pustules or a separation of the upper epidermis from the basal cells attached to the 

basal lamina (McGavin D, 2013) 

Inflammatory lesions. Acute inflammation begins in the dermis layer with hyperemia, 

an edema fluid that arises from dilated veins causing spongiosis and the leukocytes 

migrate in the site of injury (exocytosis) (McGavin D, 2013). If the inflammation 

progresses, the migrating leukocytes form pustules within the epidermis or in the 

stratum corneum. In thermal burns, there is the formation of vesicles due to fluid 

accumulation within or below the epidermis. When the fluid reaches the surface, it 

dries and forms a crust. 

The type of leukocyte recruit depends on the pathogenesis of the disease: a 

population of eosinophils can be seen in case of ectoparasitic bites while 

lymphocytes are often seen with immune-mediated diseases (Lupus 

erythematosus) (McGavin D, 2013). 

Pustules are accumulations of inflammatory cells within the epidermis. The 

presence of degenerated neutrophils and coccoid bacteria is usually due to a 

superficial bacterial infections and will be localized beneath the stratum corneum 

(McGavin D, 2013). 

Crusts is dried fluid and cellular debris exudate located on the epidermal surface.  

 

Alteration of epidermal pigmentation 

Hyperpigmentation: is a result of an increased production of melanin from 

melanocytes or an increased amount of melanocytes (McGavin D, 2013). The 

increased production of melanin occur during chronic inflammatory diseases such 

as hyperadrenocorticism (McGavin D, 2013).  

Hypopigmentation:  can be congenital/hereditary and develops because of a lack of 

melanocytes, or a failure to produce melanin or to transfer it to the epidermis.  
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The acquired form is due to a loss of melanocytes or of their pigment such as in the 

case of copper deficiency (McGavin D, 2013). 

 

3.2.2 Dermis  

Alterations of growth, development and maintenance  

Dermal atrophy is a decrease of collagen fibrils and fibroblasts with a reduction in 

the thickness of the layer. Macroscopically the skin appears thin, translucent and 

the vessels are more (McGavin D, 2013). 

Fibrosis (fibroplasia) consists in the proliferation of fibroblasts and newly formed 

collagen fibrils as a response to various injuries. It is a gradual deposition and 

maturation of collagen production, the fibroblast and capillary decreases, resulting 

in the formation of a scar.  

Granulation tissue: is a term for early stage fibroplasia. The long axis of the 

fibroblasts and collagen fibrils are parallel to the surface of the skin and are 

perpendicular to vertically align the vessels  (McGavin D, 2013) 

Collagen dysplasia usually is an inherited condition of decreased tensile strength 

but with an increased ability to stretch. This results in a very fragile skin. Collagen 

fibers can vary in size and shape and consist of tangled fibers with abnormal 

organizational patterns (McGavin D, 2013). 

Collagen degeneration disorders is a brightly eosinophilic granular to amorphous 

material boarding the fibers and somewhat obscuring them. The fibers can have a 

“flame figures” due to irregular radiating, edges and brightly eosinophilic staining 

intensity such as in the case of insect bites, must cell tumors and eosinophilic 

granulomas. Eosinophilic granuloma, ulcerated skin of a cat with fragmented 

collagen, bordered by de-granulated eosinophils (McGavin D, 2013). 

Inflammation of the dermis 

Acute dermatitis: i) Complete resolution in case of a little tissue damage that can be 

completely repaired. ii) Formation of an abscess due to bacterial infections with the 

formation of pus. iii) Formation of a scar after a replacement of the injured area by 

fibrous connective tissue in case of a significant tissue destruction, for example a 

deep burn. iv) Progression to chronic dermatitis (McGavin D, 2013). 

Chronic dermatitis is an inflammation that lasts weeks or months. The histological 

features are accumulation of macrophages, lymphocytes and plasma cells 

(McGavin D, 2013). 

Perivascular dermatitis in presence of eosinophils. There is a situation of 

hypersensitivity due to parasites or other antigens.  

Interface dermatitis is a mild inflammation affecting the basilar epidermis and 

superficial dermis. With the presence of lymphocytes is suggestive of an immune 

response such as Lupus erithematosus.  
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Nodular to diffused dermatitis with infectious agents. There are macrophages 

(granulomatous dermatitis) that can indicate a persistent stimulus by a bacteria or 

fungi (McGavin D, 2013). 

Adnexa: represents alterations in hair follicles and glands.  

Atrophy can be physiologic or pathologic; it can be associated with hormonal or 

nutritional abnormalities, alterations of the blood supply, inflammation or stressful 

events. Damage to germinal epithelium can result in destruction or a total loss of the 

adnexa with replacement by a scar. 

Hypertrophy is an increase in the unit size of a structure. Follicles are longer and 

wider; this pathology is common to find in the case of chronic allergic dermatitis 

(McGavin D, 2013). 

Abnormalities of hair cycle stages is characterized by a disruption in the normal 

progression of the hair cycle: anagen  catagen  telogen  exogen. Those 

abnormalities vary from animal to animal, in fact, some can have a failure of hair to 

regrow after clipping (alopecia or hypothyroidism), others can have a sudden 

shedding like in case of “telogen effluvium” or it can be associated with endocrine 

diseases such as hyperadrenocorticism (McGavin D, 2013). 

Follicular dysplasia is an incomplete or abnormal development of follicles and hair 

shafts. Microscopically appears as the presence of abnormal keratinocytes in the 

hair matrix and the lesions appear with a color mutant alopecia (McGavin D, 2013).  

Skin vessels 

Vasculitis appear as an inflammation of the vessels by microbes, toxins, 

immunologic injury or disseminated intravascular coagulation. Histologic lesions 

include damage to the vessel wall, necrotic cells or foci of fibrinoid necrosis, mural 

infiltrates of leukocytes. Intramural or perivascular edema or fibrin exudation 

(McGavin D, 2013) 

 

Panniculus 

Panniculitis is an inflammation of the subcutaneous adipose tissue. It can be caused 

by infectious agents (bacteria, funghi), immune-mediated disorders (lupus 

erithematosus), physical injury (trauma, foreign bodies), nutritional disorders 

(vitamin E deficiency) or pancreatic diseases (pancreatitis or tumor of the pancreas) 

(McGavin D, 2013). There are two types of this pathology. Primary panniculitis is 

typical of feline panosteatitis due to diets that are high in polyunsaturated fats and 

a lack of vitamin E that causes oxidation of the lipids and pyogranulomatous 

inflammation. Secondary panniculitis where the subcutis is affected by inflammation 

primarily involving the dermis (McGavin D, 2013). 

 

Physical Injury 

Acral lick dermatitis is a common psychogenic dermatitis mostly localized on the 

extremities. It is caused by a persistent licking or chewing and, usually, a single 
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lesion is found. They are circumscribed, hairless and sometimes ulcerated. 

Microscopically, the dermis is thickened by fibrosis. Capillaries and collagen fibers 

are oriented parallel to hair follicles. Sebaceous glands and hair are hypertrophic, 

and there is a perivascular and a periadnexal plasmacytic dermatitis. There can be 

some secondary complications of the lesions due to bacterial infections (McGavin 

D, 2013). 

 

Pyotraumatic dermatitis is common in dogs. Longhaired and dense undercoat dogs 

are more predisposed. Lesions are more commonly to develop in humid weather. It 

is secondary to irritation due to scratching and biting because of pain or itching by 

allergies, parasites (fleabite dermatitis) or irritant chemicals. The lesions are 

hairless, red, with exudate fluid and circumscribed edges (McGavin D, 2013). 

Feline ulcerative dermatitis syndrome is an uncommon disorder with an unknown 

pathogenesis although a self-trauma appears to contribute to the lesions. Lesions 

are mostly located in the dorsal neck or intercapsular regions and consist of a non-

healing ulcer with serocellular exudate. Microscopically the lesions consist of ulcers 

covered by fibrinecrotic crust. The dermis below the ulcer contains necrotic 

epidermis and adnexa intermixed with degenerate neutrophils (McGavin D, 2013). 

 

Temperature extremes 

Direct freezing: causes disruption of cells and vascular damage leading to tissue 

anoxia. With the formation of extracellular ice crystals that damage the cellular 

membranes leading to the death of the cells. As freezing continues, a shift in 

intracellular water to the extracellular space leads to cellular dehydration and 

increased intracellular sodium concentration that leads to intracellular ice crystal 

formation. Lesions are located in the extremities (McGavin D, 2013). 

Slow chilling produces vasoconstriction with endothelial and parenchymal cell 

damage. Secondary vasodilatation causes increased vascular permeability, which 

leads to edema and neutrophilic inflammation.  

Thermal burns are categorized as partial (first or second degree) or full-thickness 

(third degree). Dry heat causes desiccation and carbonization, whereas moist heat 

causes coagulation of tissue. First-degree burn is present only the epidermis is 

harmed, there will be erythema and edema. Second degree hits the epidermis and 

a part of the dermis are injured. Formation of “burn blister” (vesicle formation as a 

result of fluid accumulation at the dermal-epidermal junction). Third degree is a 

coagulation of the epidermis and all dermal components. Desiccation of the 

epidermis with underlying amorphous accretion of connective tissue representing 

the coagulated dermis and adnexa. Forth degree burns: the damage extends to the 

subcutaneous fascia and underlying tissue (McGavin D, 2013). 
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3.3 Skin healing 

Acute wounds normally heal in a very orderly and efficient manner characterized by 

four distinct, but overlapping phases: hemostasis, inflammation, proliferation and 

remodeling (Diegelmann RF and Evans MC, 2004). The stages of wound healing 

based on microscopic characteristics and events that are initiated, mediated and 

sustained by biochemical mediators known as cytokines and growth factors 

(Hosgood G, 2006) 

3.3.1 Normal and pathological response to injury 

The term wound has been defined as a disruption of normal anatomical structure 

and, more importantly, function. Therefore, healing is the complex and dynamic 

process that results in the restoration of anatomical continuity and function (Lazarus 

GS et al., 1994).  

Four basic responses can occur following an injury.  

Normal repair is the response where there is a re-established equilibrium between 

scar formation and scar remodeling.  

The pathological responses to tissue injury stand in sharp contrast to the normal 

repair response. In excessive healing, there is too much deposition of connective 

tissue that results in altered structure and, thus, loss of function (van Zuijlen PP et 

al., 2002). Fibrosis, strictures, adhesions and contractures are examples of 

excessive healing. Keloids and hypertrophic scars in the skin are examples of 

fibrosis (Rahban SR and Garner WL, 2003).  

Deficient healing is the opposite of fibrosis; it exists when there is insufficient 

deposition of connective tissue matrix and the tissue is weakened to the point where 

it can fall apart.  

Chronic non-healing ulcers are examples of deficient healing.  

Regeneration is the elegant process that occurs when there is loss of structure and 

function but the organism has the sophisticated capacity to replace that structure by 

replacing exactly what was there before the injury. All dermal wounds heal by three 

basic mechanisms: connective tissue matrix deposition, contraction and 

epithelization. Wounds that are simple and can be closed by sutures, tape or staples 

heal by Primary Intention. The main mechanism of healing during primary intention 

is connective tissue matrix deposition, where collagen, proteoglycans and 

attachment proteins are deposited to form a new extracellular matrix. In contrast, 

wounds that remain open heal mainly by contraction do not present interaction 

between cells and matrix. The underlying mechanisms responsible for contraction 

are not fully understood but there appears to be a complex interaction between 

contractile fibroblasts sometimes referred to as "myofibroblasts" and the matrix 

components (Tomasek JJ et al., 2002).  
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3.3.2. The healing cascade 

Homeostasis 

Immediately after injury, hemorrhage from damaged vessels and lymphatics fills the 

wound and cleans the surface. Catecholamines and other vasoactive compounds 

such as serotonin, bradykinin and histamine cause vasoconstriction, which lasts for 

only 5 to 10 minutes. After that, there is a vasodilatation and through diapedesis, 

intravascular cells and fluid pass through the vessel walls into the extravascular 

space.  

The healing cascade begins immediately following injury when the platelets come 

into contact with exposed collagen. As platelet aggregation proceeds, clotting 

factors are released resulting in the deposition of a fibrin clot at the site of injury. 

The fibrin clot serves as a provisional matrix and sets the stage for the subsequent 

events of healing (Clark RA, 2001). The most important component is fibronectin. 

With the presence of factor XIII, fibronectin becomes covalently cross-linked to fibrin 

providing a limited wound strength and forms a provisional extracellular matrix. This 

provisional extracellular matrix has multiple binding sites for adhesive molecules 

such as neutrophils, macrophages and connective tissue cells.  The blood clot has 

the ability to provide protection in the form of a barrier against infection and it 

prevents fluid loss and provides a substrate for the early reorganization of the wound 

(Slatter DH, 2003). 

The two most important signals involved in this phase are platelet-derived growth 

factor (PDGF) and transforming growth factor-beta (TGF-β). The PDGF initiates the 

chemotaxis of neutrophils, macrophages, smooth muscle cells and fibroblasts. In 

addition, it also stimulates the mitogenesis of the fibroblasts and smooth muscle 

cells. TGF- β adds another important signal for the initiation of the healing cascade 

by attracting macrophages and stimulates them to secrete additional cytokines 

including FGF (fibroblast growth factor), PDGF, TNFα (tumor necrosis alpha) and 

IL-1 (interleukin-1). In addition, TGF-β further enhances fibroblast and smooth 

muscle cell chemotaxis and modulates collagen and collagenase expression. The 

net result of these redundant signals is a vigorous response of the matrix producing 

cells to ensure a rapid deposition of new connective tissue at the injury site during 

the proliferative phase that follows the inflammatory phase.  

 

Inflammation 

Chemoattractants encourage neutrophils and monocytes to appear in wounds 

approximately 6 hours and then 12 hours after injury. 

Neutrophils are the next predominant cell marker in the wound within 24 hours after 

injury. Neutrophils increase in number for 2-3 days, they prevent infection and 

phagocytize organisms and debris (Fossum T et al., 2007). The major function of 

the neutrophil is to remove foreign material, bacteria and non-functional host cells 

and damaged matrix components that may be present in the wound site. Bacteria 

give off chemical signals, attracting neutrophils, which ingest them by the process 

of phagocytosis. During bacterial protein synthesis a waste product represented by 

a tri-peptide called f-Met-Leu-Phe is released which in turn attracts inflammatory 
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cells. Neutrophils will engorge themselves until they are filled with bacteria and 

constitute what is called "laudable pus" in the wound (Thurston AJ, 2000). The mast 

cell is another marker cell of interest in wound healing that release granules filled 

with enzymes, histamine and other active amines. These mediators are responsible 

for the characteristic signs of inflammation around the wound site. The active 

amines released from the mast cell, causes surrounding vessels to become leaky 

and thus allow the speedy passage of the mononuclear cells into the injury area. In 

addition, fluid accumulates at the wound site and the characteristic signs of 

inflammation begin. The signs of inflammation have been well recognized since 

ancient times: rubor (redness), calor (heat), tumor (swelling) and dolor (pain). 

Monocytes become wound macrophages in 24-48 hours and they secrete 

collagenases removing necrotic tissue, bacteria and foreign material (Fossum T et 

al., 2007). These highly phagocytic macrophages are also responsible for removing 

nonfunctional host cells, bacteria- filled neutrophils, damaged matrix, foreign debris 

and any remaining bacteria from the wound site. The presence of wound 

macrophages is a marker that the inflammatory phase is nearing an end and that 

the proliferative phase is beginning. Macrophages also recruit mesenchymal cells, 

stimulate angiogenesis and modulate matrix production in wounds.  

Lymphocytes appear later and secrete soluble factors that may stimulate or inhibit 

migration and protein synthesis by other cells (Fossum T et al., 2007) and they are 

not considered to be major inflammatory cells involved in the healing response 

(Diegelmann RF and Evans MC, 2004).  

Proliferation 

The transition from inflammation to proliferation is marked by the invasion of 

fibroblasts and an increased accumulation of collagen in the wound. In addition, 

there is a new endothelial structures formation. Those mechanisms are 

angiogenesis, fibroplasia and epithelialization. 

Angiogenesis is the growth of new capillaries from preexisting vessels at wound 

edges into areas previously unoccupied by vascular tissue. In the earliest phase, 

local factors in the wound microenvironment such as low pH, reduced oxygen 

tension and increased lactate actually initiate the release of factors needed to bring 

in a new blood supply. Intact or recently broken capillary blood vessels are 

stimulated and this allows the migration of capillary endothelial cells toward the site 

of injury and simultaneously endothelial proliferation initiates (Hosgood G, 2006).  

The early granulation tissue appears with deep red color because of the multiple 

new capillaries that have recently formed. As the healing process progresses, the 

new blood vessels disintegrate because of apoptosis and the wound color becomes 

paler (Hosgood G, 2006).  

Fibroplasia. Wound fibroblast have a characteristic myofibroblastic appearance, 

with abundant contractile filaments, intracellular tight junctions, and distorted 

nuclear envelope. They contain actin, a smooth muscle protein, desmin and 

vimentin. The fibroblastic cells are responsible for the synthesis of the true 

extracellular matrix by gradually replacing the provisional one. It starts with the 

presence of type 3 collagen. A collagen molecule that is relatively abundant in blood 
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vessels and is associated with the capillary content of the granulation tissue. With 

the formation of collagen type 1 by the fibroblasts the production spreads quickly till 

it overtakes the type 3 collagen (Slatter DH, 2003). The elaboration, orientation and 

contraction of the extracellular matrix components by the myofibroblasts leads to 

the progression of re-organization of the fibrin filled wound into a durable connective 

tissue. The accumulation of connective tissue reaches its peak from 7 to 14 days 

after injury. After reaching that peak, the fibroblasts stop producing collagen and 

there is a regression of the capillary content of the granulation tissue. The 

granulation tissue then results as an acellular scar as the cells undergo apoptosis 

(Slatter DH, 2003). 

Epithelialization starts with the mobilization of epithelial cells at the margin of the 

wound and follows by proliferation of epithelial cells from the origin site 1-2 days 

after injury (Slatter DH, 2003). 

The process of epithelization is stimulated by the presence of EGF, TGFα, KGF 

(Keratinocyte growth factor) produced by epithelial cells, wound fibroblasts and 

wound macrophages (Zanaboni G 2000). As the Proliferative phase progresses the 

predominant cell in the wound site is the fibroblast. This cell of mesenchymal origin 

is responsible for producing the new matrix needed to restore structure and function 

to the injured tissue. Fibroblasts attach to the cables of the provisional fibrin matrix 

and begin to produce collagen (Clark RA, 2001). At least 23 individual types of 

collagen have been identified to date but type I is predominant in the scar tissue of 

skin. Dermal collagen on a per weight basis approaches the tensile strength of steel; 

in normal tissue it is a strong and highly organized molecule. In contrast, collagen 

fibers formed in scar tissue are much smaller and have a random appearance; scar 

tissue is always weaker and will break apart before the surrounding normal tissue. 

The regained tensile strength in a wound will never approach normal. In fact, the 

maximum tensile strength that a wound can ever achieve is approximately 80% of 

normal skin. Finally, in the process of collagen remodeling, collagen degradation 

also occurs (Parks WC, 1999).  

Contraction is the reduction of the wound size that corresponds to changes in the 

tension of the wound and the surrounding tissue. During the second week of repair, 

fibroblasts assume a myofibroblast phenotype characterized by actin-containing 

microfilaments disposed along the cytoplasmic face of the plasma cell membrane 

and by cell-to-cell and cell-to-matrix linkages.  

The stimulation of the contraction occurs with the TGF-β1 or TGF-β2 and platelet 

derived growth factor, attachment of fibroblasts to the collagen matrix through 

integrin receptors, and cross-links between individual bundles of collagen. During 

the contraction, the surrounding skin stretches and the wound takes on a stellate 

appearance. Once the contraction begins it continues until the wound edges meet 

and the contraction ends (Slatter DH, 2003). 

Remodeling 

This phase begins once collagen has been adequately deposited in wounds (17-20 

days) and may continue for years. The cellularity of granulation tissue is reduced as 

cell die. There is a reduction in collagen content of the extracellular matrix. Collagen 
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fibers remodel with alteration of their orientation and increased cross-linking which 

improves wound strength. (Fossum et al. 2007) 

Fibers orient along lines of stress with the decrease of type 3 collagen and increase 

in type 1. The degradation occurs due to proteolytic enzymes (matrix 

metalloproteinases) secreted by macrophages, epithelial cells, endothelial cells and 

fibroblasts within the extracellular matrix. The most rapid gain in wound strength 

occurs between 7 to 14 days after injury. Slower increase in wound strength then 

occurs, but normal tissue strength is never regained. As the number of capillaries 

also decrease the scar becomes paler, less cellular, flattened and soften (Fossum 

T et al., 2007). Many clinical problems are associated with excessive scar formation. 

Fibrosis can be defined as the replacement of the normal structural elements of the 

tissue by distorted, non-functional and excessive accumulation of scar tissue. 

Keloids can be used as a clinical example of fibrosis to define some of the 

biochemical and cellular markers characteristic of fibrosis (Rahbam SR and Garner 

WL, 2003). Fibroblasts isolated from keloids produce about 2 to 3 times more 

collagen compared to fibroblasts isolated from normal skin in the same patients 

(Diegelmann RF and Evans MC, 2004). It appears that keloids have increased 

expression of TGFβ and also an up-regulation of receptors for TGFβ. Hypertrophic 

scars are also characterized by excessive accumulation of scar collagen and are 

frequently misdiagnosed as keloids. There is one very significant biological marker 

that distinguishes keloids from hypertrophic scars and that is the absence of 

myofibroblasts in keloids and an abundance of these contractile cells in hypertrophic 

scars (Ehrlich HP et al., 1994).  
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3.4 Treatments of skin injuries 

 
3.4.1 Conventional treatments 

Treatment Specie Deliver Methods Results 
Hyaluronic Acid (Fidia 
Farmaceutici, Italy) 

Non experimental 
open wound in dog 

Application in 
defect side 

Wound area reduction 
(Ferrari R. et al., 2015) 

CMHA-S 
2x2 cm wound in 
dog 

Application in 
defect side 

Scar minimization (Hadley 
H. et al., 2013) 

Aloe Vera or Aloe 
Barbadensis 

Diabetic rat wounds 
Gel applications in 
defect side 

Accelerated healing 
process (Pereira R. et al., 
2014) 

Acemannan 
Full-thickness skin 
excisional wound 
(1x1 cm) 

Injected 
subcutaneously in 
four sites 
surrounding the 
wound. 

Accelerated skin wound 
closure and proliferation 
(Xing W. et al., 2014) 

Manuka Honey 
 

Second degree 
burns created in 
rabbit model 

Cream application 
in defect side 

Increase in the healing 
process and wound 
contraction (Pereira R. et 
al., 2014) 

Mono Flower Honey 
of Thymus plant + 
Propolis 

Open wound healing 
in Wistar rat 

Cream application 
in defect side 

Accelerated wound 
healing process, 
shortened inflammatory 
phase, increased tissue 
granulation and 
angiogenesis. (Takzaree 
N. et al., 2016) 

PRP and growth 
factors: PDGF, EGF, 
FGF, IGF1, IGF2, 
VEGF, TGF-β and 
KGF) 

Diabetic mouse 
model, human 
chronic wounds 

Application in 
defect side 

Production of 
inflammatory cells, 
vascular endothelial cells, 
fibroblasts and 
keratinocytes and 
contribute to re-
epithelialization, 
angiogenesis and 
granulation tissue 
formation 

 
CMSA-S: thiolated carboxymethylhyaluronic acid  
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3.4.2 Innovative treatments 
 

Treatment Specie Deliver Methods Results 

PLGA-collagen-ASC 
Full-thickness lesion 
(3x3 cm) on skin of 
large pig 

Implanted of PLGA-
collagen-ASC 

Granulation tissue 
formation, inhibition of 
inflammation and of 
scarring (Domingues 
JA et al., 2016) 

BM-MSC seeded on 
Integra matrix 
enriched with PRP 
(Ematrix) 

Lesion (2x4 cm) on 
skin of Lewis rat. 

Integra matrix and 
Ematrix fixed to the 
skin 

Regenerated skin, 
reduced collagen 
deposition, 
reepithelization, neo-
angiogenesis, hair 
follicles and 
sebaceous glands 
(Formigli L et al., 
2015) 

ASC + scaffold CMC 
Circular lesion (7mm) 
on skin of Wistar rat 

Implanted of scaffold 
CMC with ASC 

Improved 
epithelization, 
granulation tissue and 
cell proliferation 
(Rodrigues C et al., 
2014) 

Allogeneic putative 
EpSC in combination 
with autologous PRP 

Full-thickness skin 
wound (4x4 cm) in 
horse 

Intradermal injection 
and topical 
application in defect 
side 

Accelerated wound 
healing process 
(Broeckx SY et al., 
2014) 

Autologous and 
allogeneic EpSC 

Full-thickness lesion 
on skin of horse 

Intradermal injection 
and topical 
application in defect 
side 

Highest expression of 
IL-6, VEGF and IGF-1 
mRNA (Spaas J et al., 
2016) 

Plasma (Ionized gas) 

Animal and human 
living tissue 
sterilization and 
medical application 

Application in defect 
side 

Regulation of blood 
vessel tone and blood 
coagulation, immune 
system and early 
apoptosis (Fridman G 
et al., 2008) 

 
PLGA: Poly(Lactic-co-Glycolic Acid), ASC: adipose stem cells, BM-MSC: bone marrow MSC, PRP: 
platelet rich plasma, CMC: sodium carboxymethylcellulose, EpSC: epithelial stem cells. 
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GENERAL AIM 

Adult MSCs gained general attention, both in human and veterinary research fields, 

due to the great promise they offer as a resolute alternative for the treatment of 

disease that currently not guarantee the restitution ad integrum. Moreover adult 

MSCs possess considerable advantages with respect to embryonic stem cells (ES), 

since the latter receives attention because of the ethical controversies associated 

with the destruction of human embryos, and the possibility to give rise to tumors, 

when clinically applied. Improved understanding of MSCs function holds great 

promise for the application of cell therapy and also for the development of powerful 

cell-derived therapeutics for human and veterinary regenerative medicine (Brehm 

W et al., 2012; Spees JL et al., 2016). 

The present work has been focused on two main topics correlated between each 

other: the reprogramming of adult mesenchymal stromal cells isolated from 

peripheral blood of horses and sheep towards tenogenic and myogenic fate in vitro, 

and the application of autologous and allogeneic MSCs in skin injuries in vivo. 

 

The major aim of the first part of this work has been to reprogram PB-MSCs into 

new cell lines. 

Tendons are structures that present low cellularity and low vascularity and they are 

constituted of dense connective tissue that reduce the self-healing and regenerative 

potential of tendons (Jiang D et al. 2014; Veronesi F et al. 2015). Autologous 

tenocytes can be used to repair injured tendons (Cao Y et al., 2002), nevertheless 

tenocytes may not be an ideal source for tendon repair (Bi Y et al., 2007) because 

these cells have a limited proliferative potential and ethic committees from many 

countries prohibit invasive collection of tendon tissue to obtain tenocytes (Tan Q et 

al., 2012). The same problems can be found in the regeneration of muscle tissue: it 

is very important to have differentiated cells to regenerate muscle disease such as 

injuries, muscle degeneration (Duchenne dystrophy) and inflammation.  

With the increasing perspective to use MSCs for clinical purpose, growth factors 

(GFs) TGFβ3 (transforming growth factor), EGF2 (Epidermal growth factor), bFGF2 

(Fibroblast growth factor) and IGF-1 (insulin-like growth factor) in presence or 

without Low Level Laser Technology (LLLT) were tested to differentiate equine PB-

MSCs towards tenogenic fate. 

To obtain myoblasts to regenerate muscle diseases, PB-MSCs were induced to 

differentiate towards myogenic fate using the complex TAT-MyoD in presence of a 

conditioned medium obtained from co-culturing PB-MSCs with C2C12 without a 

direct contact.  

Lastly, to reduce the time and to increase efficiency of cell transfection, novel 

surface-active maghemite nanoparticles (SAMNs) were tested as vectors for 

eukaryotic cell transfection of coding gene in PB-MSCs without the application of 

external magnetic fields. Molecular and immunostaining analysis were performed to 

assess the cellular differentiation. 



50 

 

The goal of this section was to obtain reprogrammed MSCs to implant in the 

recellularized scaffold to use for tendon, muscle, skin and other type of tissue 

lesions in human and veterinary medicine. 

The second major topic of this work was to study the regenerative capacity of MSCs 

derived from peripheral blood in the skin healing process. 

Wound healing is a complex multi-stage process that organizes the reconstitution 

of the dermal and epidermal layers of the skin. In many pathological circumstances 

such as diabetes or severe burns, the normal wound healing process fails to 

adequately restore function to the skin, leading to potentially severe complications 

from ulcers or resulting infections (Beckles GL, Chou CF, 2006). In human medicine, 

the treatment of open wounds has been already described thousands of years ago 

and currently, there are many choices for the topical treatment of open wounds in 

veterinary medicine.  

The aim of this second section was the evaluation of the PB-MSCs regenerative 

potential in wounds performed on animal skin. The first study shows wounds 

induced in the gluteus region of six horses and treated with autologous epithelial 

stem cells (EpSCs), allogeneic EpSCs, vehicle treatment or untreated control. The 

second project evaluates the use of sheep allogeneic PB-MSCs to treat 

experimental lesions on the back of six sheep. This project is part of a large scheme 

where conventional treatments (Manuka Honey, Connettivina and Acemannane) 

were compared to innovative cures (MSCs and gas-ionized plasma). In this thesis, 

only the data about skin regeneration with PB-MSCs was reported. 

In particular, in the first work, the aim was achieved by molecular analysis performed 

from biopsies collected in the areas of the lacerations after 1 and 5 weeks of 

treatments with equine allogeneic and autologous PB-MSCs. In the second project, 

the effect of sheep allogeneic PB-MSC on skin lesions was analyzed from biopsies 

obtained after 15 and 42 days of trial. Clinical and molecular analysis and 

histological and immunohistochemical staining were performed to evaluate time of 

healing, inflammation, neovascularization and cell proliferation. 

Overall, the major aim of this second part of the present work was the evaluation of 

MSCs ability to suppress excessive inflammation and decrease scarring while 

stimulating de novo angiogenesis in the wound bed, all leading to promising 

outcomes in chronic wound repair in vivo. 
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FIRST PAPERWORK SECTION 

Studies of MSCs reprogramming in vitro towards tenogenic and 
myogenic fate 

Tendon injuries may result from an acute trauma (e.g. tendon laceration or rupture) 

or, more commonly, from overuse (chronic tendon injury) (Nirchls RP, 1990, Riley 

G, 2004). Abuse tendon injuries are a major cause of musculoskeletal morbidity and 

often compromise the return to the same level of activity. In humans, an estimated 

30–50% of all sports lesions that affect professional and recreational athletes are 

tendon injuries (Kannus P and Natri A, 1997). In racing thoroughbreds, tendon and 

ligament injuries are the most common orthopedic injuries (Pinchbeck GL et al, 

2004, Kasashima Y et al, 1999). In addition, a large number of event, dressage and 

show jumping horses (Singer ER et al, 2008) suffer from tendon injuries. Although 

it has been reported in early chronic tendinopathies that tendon structure may 

normalize in some cases (Cook JL and Purdam CR, 2009) in other cases, scar 

tissue may have important consequences for the individual in terms of reduced 

performance and a substantial risk of reinjure (Dowling BA et al, 2000). The primary 

need to restore tendon functionality has therefore encouraged the development of 

regenerative therapies. Hereby, several growth factor (GF) and cell-based therapies 

have been introduced for the treatment of tendon injuries, with the aim to accelerate 

the healing and to improve the quality of the repaired tissue (Richardson LE et al, 

2007; Waselau M et al, 2008). Frequently, tendon injuries are associated with 

skeletal muscle lasions that can generate from a variety of events, including direct 

trauma such as muscle lacerations and contusions, indirect insults and also from 

degenerative diseases such as muscular dystrophies (Huard J et al. 2002; Jarvinen 

TA et al. 2005; Cossu G and Sampaolesi M, 2007). Currently, there is no cure for 

any of the muscular dystrophies, although improved understanding of the genetics 

of muscular dystrophies has led to important insights into the basic 

pathophysiological mechanisms (Townsend D et al, 2011).  

Skeletal muscle can regenerate completely and spontaneously in response to minor 

injuries, such as strain. In contrast, after severe injuries, muscle healing is 

incomplete, often resulting in the formation of fibrotic tissue that impairs muscle 

function. Various strategies, including growth factors injections, transplantation of 

muscle stem cells in combination or not with biological scaffolds, anti-fibrotic 

therapies and mechanical stimulation, may become therapeutic alternatives to 

improve functional muscle recovery. Current therapeutic approaches have limited 

effectiveness and there is still no gold standard treatment (Laumonier T and 

Menetrey J, 2016). For this reason, researchers are aware of having to find new 

cures to obtain the restitutio ad integrum of tendon and muscle injuries, the common 

goal for humans and animals patients. In this section, new techniques are described 

to ameliorate the tendon and muscle regenerative capabilities.  

Tenocytes are adult and specialized cells that demonstrated biomechanical and 

histologic regenerative properties in a full-size tendon defect when compared to 
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undifferentiated MSCs. Unfortunately, autologous tenocytes present a limited 

proliferative potential and ethic committees prohibit invasive collection of tendon 

tissue to obtain tenocytes (Pietschmann MF et al, 2013, Tan Q et al. 2012). Vice 

versa, scarce data are present in literature about the differentiation of MSCs into 

myoblasts (Dugan JM et al, 2014). As it is known that stem cells can be 

reprogrammed (Takahashi K et al., 2007; Yu J et al., 2007) to differentiate toward 

the tenogenic and myogenic fate, new techniques are tested during the three years 

of PhD project to obtain this goal. 

In the first paper, it was demonstrated that equine MSCs isolated from peripheral 

blood can develop the tenogenic pathway using four specific growth factors such as 

TGFβ3 (transforming growth factor), EGF2 (epidermal growth factor), bFGF2 

(fibroblast growth factor) and IGF-1 (insulin-like growth factor) in presence or without 

Low Level Laser Technology (LLLT). Expression levels of genes Early Growth 

Response Protein-1 (EGR1), Tenascin (TNC) and Decorin (DCN) were quantified 

with real time-PCR (rt-PCR) to demonstrate the tenogenic induction. 

In the second paper, equine PB-MSCs may differentiate into skeletal muscle cells 

with conditioned medium as well as in co-culture with C2C12 without direct contact 

in presence of the construct TAT-MyoD.  

The Tat proteins of human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-

2) are powerful transcriptional activators of viral gene expression. HIV-1 Tat is a 

small polypeptide of 101 amino acids (Fittipaldi A and Giacca M, 2005) and it is 

essential for the transcription of viral genes and for viral replication. After infection 

of susceptible cells, the HIV-1 genome integrates into the host cell DNA (Greene 

WC and Peterlin BM, 2002). For these properties, TAT can be used as a cargo to 

introduce new cDNA or protein in the cells. In our study, Myf5, Myogenin and 

exogenous MyoD expression were evaluated by rt-PCR analysis to quantify the 

myogenic differentiation of MSCs. Therefore, the effective process was evaluated 

observing the localization of Myf5 and Myogenin by immunofluorescence.  

To increase in the future the effectiveness and the speed of transfection of MSCs 

with cDNA, SAMNs (novel surface active maghemite nanoparticles) are proposed 

as vectors for eukaryotic cell transfection. These nanoparticles present peculiar 

colloidal properties, surface characteristics and, for their ability to covalently and 

reversibly bind biomolecules are perfect to join exogenous cDNA and to penetrate 

the lipid membrane cells (Venerando R, 2013). 

In the third paper, equine PB-MSCs were transfected with nude SAMNs to study the 

delivery of nanoparticles into the cells. In a second time, MSCs were incubated with 

SAMNs-pDNA coding of GFP to test the new transfection method. 

Immunofluorescence reveled a consistent cytoplasmic green fluorescence light 

originated by GFP protein in ePB-MSCs treated with SAMN@pDNA, demonstrating 

the correct cell transfection. 

Further studies will be necessary to develop this methodology for clinical purposes 

such as the induction of MSCs toward tenogenic and myogenic fate without the use 

of viral vector.  
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The following publications are focused on tenogenic and myogenic differentiation 

and SAMNs transfection:  

 

1) Tenogenic induction of equine mesenchymal stem cells by means of 

growth factors and low-level laser technology. 

Gomiero C, Bertolutti G, Martinello T, Van Bruaene N, Broeckx SY, Patruno 

M, Spaas JH.  

Veterinary Research Communication 2016 Mar;40(1):39-48.  

 

2) TAT-MyoD fused proteins, together with C2C12 conditioned medium, 

are able to induce equine adult mesenchymal stem cells towards the 

myogenic fate. Patruno M, Gomiero C, Sacchetto R, Topel O, Negro A, 

Martinello T. Journal of Veterinary Science.  

Submitted for pubblication.  

 

3) Intelligent colloidal nano-vector for mesenchymal stem cells 

transfection.  

Draft paper in preparation (nor submitted yet). 
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Abstract Tendons regenerate poorly due to a dense extracel-
lular matrix and low cellularity. Cellular therapies aim to im-
prove tendon repair using mesenchymal stem cells and
tenocytes; however, a current limitation is the low prolifera-
tive potential of tenocytes in cases of severe trauma. The pur-
pose of this study was to develop a method useful in veteri-
nary medicine to improve the differentiation of Peripheral
Blood equine mesenchymal stem cells (PB-MSCs) into
tenocytes. PB-MSCs were used to study the effects of the
addition of some growth factors (GFs) as TGFβ3
(transforming growth factor), EGF2 (Epidermal growth fac-
tor), bFGF2 (Fibroblast growth factor) and IGF-1 (insulin-like
growth factor) in presence or without Low Level Laser
Technology (LLLT) on the mRNA expression levels of genes
important in the tenogenic induction as Early Growth
Response Protein-1 (EGR1), Tenascin (TNC) and Decorin
(DCN). The singular addition of GFs did not show any influ-
ence on the mRNA expression of tenogenic genes whereas the
specific combinations that arrested cell proliferation in favour
of differentiation were the following: bFGF2 + TGFβ3 and

bFGF2 + TGFβ3 + LLLT. Indeed, the supplement of bFGF2
and TGFβ3 significantly upregulated the expression of Early
Growth Response Protein-1 and Decorin, while the use of
LLLT induced a significant increase of Tenascin C levels. In
conclusion, the present studymight furnish significant sugges-
tions for developing an efficient approach for tenocyte induc-
tion since the external administration of bFGF2 and TGFβ3,
along with LLLT, influences the differentiation of PB-MSCs
towards the tenogenic fate.

Keywords Growth factors . Low level laser technology .

Mesenchymal stromal cells . Tenocytes . Tenogenic induction

Introduction

Tendons are made of dense connective tissue and present low
cellularity and low vascularity. These properties confer char-
acteristics such as stiffness and elasticity (Brehm et al. 2012;
Smith et al. 2013; Patruno and Martinello 2014), which are
essential in transmitting forces between muscles and bones
(Freedman et al. 2014). However, the not-vascularized nature
and low number of tenocytes, reduce the self-healing and re-
generative potential of tendons (Jiang et al. 2014; Veronesi
et al. 2015). In veterinary medicine, several therapies are used
to improve tendon regeneration although long rehabilitation
periods are needed and relapses are frequent (Riley 2008;
Spaas et al. 2012). In order to augment tendon healing, inno-
vative techniques are being used to treat tendon lesions, in-
cluding tissue engineering and cell therapies (Delincé and
Ghafil 2012) such as platelet-rich plasma (PRP), growth fac-
tors (GFs) (Maia et al. 2009), mesenchymal stem cells (MSCs)
(Brehm et al. 2012) and low level laser irradiation (LLLI)
(Sperandio et al. 2014; Iacopetti et al. 2015). Since it should
exists a synergy action between GFs present in PRP and
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low-level laser technology (LLLT), the aim of this study was
to verify their influence in reprogramming MSCs into
tenocytes fate.

PRP is an important source of autologous GFs (Abate et al.
2012) such as PDGF (Platelet-Derived Growth Factor), VEGF
(Vascular endothelial growth factor), thromboxane, fibronec-
tin/vitronectin, TGFβ (transforming growth factor), EGF
(Epidermal growth factor), FGF (Fibroblast growth factor)
(Anitua et al. 2015), IGF (insulin-like growth factor)
(Schär et al. 2015) and cell fractions that can accelerate
wound healing, decrease the inflammatory reaction and
promote regeneration of affected tissues (Dimauro et al.
2014). In horses autologous platelet concentrates (APCs)
are recently intensively studied in order to find the most
appropriate protocols for clinical purposes (Hessel et al.
2015). Moreover, it has been demonstrated that several
GFs, such as EGF, bFGF, PDGF-BB and TGF-β1, in-
fluence tenogenic differentiation and extracellular matrix
production (Goncalves et al. 2013).

MSCs can be isolated from several sources (Martinello
et al. 2010; Martinello et al. 2011; Zhu et al. 2013,
Toupadakis et al. 2010), are able to generate several types of
mature and differentiated cells and to improve tendinopathy
treatment (Smith et al. 2013). In equine medicine, bone mar-
row and peripheral blood are commonly used (Crovace et al.
2010; Martinello et al. 2013; Broeckx et al. 2014a, 2014b).
MSCs isolated from horse peripheral blood (PB-MSCs) are
able to differentiate into diverse mesenchymal lineages and
could be used in cell-based therapies for the treatment of ten-
don, ligament, and bone pathologies as well as cartilage de-
fects (Koerner et al. 2006; Giovannini et al. 2008; Martinello
et al. 2010; Martinello et al. 2011; Spaas et al. 2013; Barberini
et al. 2014).

LLLT is a therapy being used by veterinarians to reduce
inflammation and pain and accelerate tissue healing (Hawkins
and Abrahamse 2006). In vivo and in vitro studies have dem-
onstrated the stimulatory capacity of low-level laser energy on
cell populations obtained from different tissues (Posten et al.
2005). Chen et al. (2015) showed that LLLT is able to stimu-
late proliferation and collagen synthesis of tenocytes as well as
keratinocyte proliferation. Pyo et al. (2013) demonstrated that
LLLI increase cell proliferation and promote the expression of
BMP-2, osteocalcin, and TGFβ1 hypothesizing an influence
in bone regeneration through a stimulatory effect on osteo-
blasts favouring their growth and maturation.

Although these new treatments have shown some positive
effects on tendon regeneration, researchers are starting to com-
bine different strategies to improve tendon regenerative capa-
bilities. Another recent approach for enhancing tendon regen-
eration is the tenogenic induction ofMSCs before clinical use.
Using this methodology, Pietschmann et al. (2013) showed
that tenocytes demonstrated increased biomechanical and his-
tologic regenerative properties in a full-size tendon defect

when compared to non-induced MSCs. Unfortunately, autol-
ogous tenocytes have a limited proliferative potential and eth-
ic committees from many countries prohibit invasive collec-
tion of tendon tissue to obtain tenocytes (Tan et al. 2012). Our
hypothesis was to evaluate the synergic action of GFs, usually
present in PRP preparations, and LLLT for inducing the dif-
ferentiation of low immunogenic MSCs (Broeckx et al.
2014a, 2014b) towards the tenogenic fate; therefore, we have
used different combinations of GFs, with and without LLLT,
in order to check the gene expression of EGR1 (Early growth
response protein 1), Tenascin C (TNC) and Decorin (DCN),
all crucial genes involved in tenogenesis (Pajala et al. 2009;
Tao et al. 2015; Dunkman et al. 2013).

Materials and methods

Isolation and culture of PB-MSCs

Twenty millilitres of blood were collected into sterile EDTA
(Ethylenediaminetetraacetic acid) tubes from the external jug-
ular vein of four adult mares between five and seven years of
age. Animal Ethics Committee approval numbers and date
are: EC_2012_001 (21–11-2012) and EC_2014_001, (17–
02-2014) by Global Stem Cell Technology, GST, Belgium;
EC_2014_020 (07–04-2014) by Faculty of Veterinary
Medicine, Ghent University, Belgium.

Blood samples were transported to the GST-ANACURA
laboratory at room temperature within 4 h of sampling. Blood
samples were centrifuged at 1000 g for 20 min at room tem-
perature (RT) and the buffy coat collected and diluted 1:2 with
Phosphate Buffered Saline (PBS). The cell suspension was
layered on Percoll gradient (density 1.080 g/mL; GE
Healthcare) and centrifuged at 600 g for 15 min at RT. The
interphase was collected, washed three times with PBS and
centrifuged at 200 g for 10 min at RT (Spaas et al. 2013). The
putative MSCs were seeded in a T75 flask (BD Falcon) with
an expansion medium (Exp) made as follows: Dulbecco’s
Modified Eagle Medium (DMEM, Euroclone ECM0728L),
20 % fetal calf serum (FCS, (Euroclone ECS0180L),
1 % antibiotics/antimycotics (Euroclone ECB3001D)
and 10−11 M dexamethasone (Sigma Aldrich). The me-
dium was refreshed twice a week and cells cultured at
37 °C and 5 % CO2. At 70 % of confluence, the cells
were trypsinized with 0.25 % trypsin- ethylenediamine-
tetraacetic acid (Euroclone ECB3051D) passage 0 (P0)
and further cultured for 10 additional passages
(P1 → P10) with the same medium, but without dexa-
methasone (Sigma Aldrich). Cells were used at specific
passages (P1-P10 for PDT experiment, P5 and P10 for
Flow cytometry and P5 for GF and laser experiments)
as described below.
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Population doubling time (PDT)

PDT was calculated from P1 to P10 using the following for-
mula: PDT = cell culture time (T)/cell doubling time (CDT). T
was expressed as days from Ni to Nf, where Ni is the initial
and Nf the final number of cells for each passage and CDT
was obtained with the following formula: CDT = ln(Nf/Ni)/
ln(2) (Hoynowski et al. 2007).

Flow cytometry

For quality control purposes, immunophenotypic characteri-
zation (Spaas et al. 2013) of all donor PB-MSCs was per-
formed at P5 and P10. Briefly, PB-MSCs were tested for the
stem cell Cluster of Differentiation (CD) markers CD29,
CD44 and CD90 and for the adult blood cell (negative)
markers CD45, major histocompatibility complex (MHC)
type II and monocyte/macrophage marker by flow cytometry.
The cells were prepared as described in Spaas et al. (2013).
The following combinations of markers and their respective
clones were assessed: CD29-APC (TS2/16, Biolegend),
CD44-FITC (CVS18, AbD Serotec), CD90 (DH24A,
VMRD) + IgG1-PE-Cy7 (Biolegend)/as positive subset;
CD45-PeCy5.5 (F10-89-4, AbD Serotec), mono- & macro-
cyte marker-Alexa 488 (MAC387, AbD Serotec), +
MHCII-PE (CVS20, AbD Serotec) as negative subset.
Control isotypes were tested for each marker to define the
threshold (the range for isotype controls was defined at 0–
1 % of positive signals). The samples were analyzed on a
FACSCanto II (BD Biosciences) instrument, equipped with
two lasers (488 nm solid state and a 633 nm HeNe laser).
The optimal settings for the MSC were determined by
Compbeads Plus beads. Flow cytometer performance was
monitored on a daily basis by Cytometer Setup & Tracking
beads (BD Biosciences). The data were analyzed with
FacsDiva software.

Addition of growth factors (GFs)

PB-MSCs obtained from four donor horses were seeded, at
passage 5, each in T25 flasks (1500 cells/cm2) to test the
effects of the addition of some growth factors (GFs) on the
mRNA expression levels of genes important in the tenogenic
induction such as EGR1, TNC and DCN (see below the Real
Time PCR method). The GFs added were the following:
TGFβ3 (transforming growth factor), EGF2 (Epidermal
growth factor), bFGF2 (Fibroblast growth factor) and IGF-1
(insulin-like growth factor). The latter GFs were tested singu-
larly with and without LLLT (data not shown) in order to
confirm previous observations (Schneider et al. 2011) that
described no changes when GFs were tested alone.
However, our preliminary results indicated that bFGF2 in-
creased, although not significantly, the expression of the tested

genes; consequently, and also because bFGF2 is essential in
the tenogenic differentiation and wound repair, it has been
decided to always use it in the following GFs combinations
(see the panel below).

Combination Growth factors

1 Exp

2 Exp LLLT

3 Exp bFGF2

4 Exp bFGF2 LLLT

5 Exp bFGF2 TGFβ3

6 Exp bFGF2 TGFβ3 LLLT

7 Exp bFGF2 IGF1

8 Exp bFGF2 IGF1 LLLT

9 Exp bFGF2 EGF2

10 Exp bFGF2 EGF2 LLLT

The expansion medium (Exp) was therefore used alone
(combination N.1) or with LLLT (combination N.2) or sup-
plemented with: bFGF2 (combination N.3), bFGF2 and LLLT
(combination N.4), bFGF2 and TGFβ3 (combination N.5),
bFGF2, TGFβ3 and LLLT (combination N.6), bFGF2 and
IGF1 (combination N.7), bFGF2, IGF1 and LLLT (combina-
tion N.8), bFGF2 and EGF2 (combination N.9), bFGF2,
EGF2 and LLLT (combination N.10). All GFs are by
Sigma-Aldrich and were added to the medium at 10 ng/ml.
PB-MSCs were cultured in duplicate to evaluate the effect of
the GFs treatment alone and in addition to LLLT. Cells were
cultured in supplemented media for five days, with the medi-
um refreshed at day three. Five days after seeding cells
reached 70 % confluency and were trypsinized, counted and
frozen at −80 °C with 90 % expansion medium with 10 %
DMSO (Dimethyl sulfoxide) for subsequent Real Time poly-
merase chain reaction (Real time-PCR) analyses. These exper-
iments were repeated four times.

Low level laser technology (LLLT)

PB-MSCs seeded at 1500 cells/cm2 in T25 flasks were con-
ditioned with GFs, as previously described in the paragraph
above, and submitted to LLLT (ASAlaser, M6 handpiece)
equipped with combined, synchronized and overlapping con-
tinuous and pulsed emissions emitted by a single handpiece.
The emission was produced by an InGa(Al)As diode laser
with the following parameters: for continuous wave the wave-
length was of 660 nm while for pulsed laser diode the wave-
length was of 905 nm (peak optical power 25W). A daily dose
of 5 J/cm2 for 2 min performed by the same operator. The first
irradiation was performed 24 h after seeding to allow cell
attachment and conditioning of GFs. Subsequently, LLLT
was performed once a day up to the fifth day after seeding;
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when cells reached 70 % of confluence they were trypsinized,
counted and frozen.

Cell count

Cells were trypsinized and collected after each treatment with
GFs and LLLT. The number were determined by Burker
chamber counting and the cells were marked with Trypan
Blue (Sigma B-7021) in order to calculate the average number
of dead and live cells. This evaluation allowed discerning the
effect of treatments between the arrest of proliferation and cell
death.

RNA isolation and gene expression analysis

Total RNA extraction was performed using TRIzol (Life
Technologies) reagent following the manufacturer’s instruc-
tions. RNA was quantified on a Nanodrop (Thermo
Scientific) spectrophotometer and a complementary single
strand DNA (cDNA) was synthesized from 2 μg of purified
RNA to perform real time-PCR using the ABI 7500 Real
Time PCR system (Applied Biosystem). The relative expres-
sion of the following genes was used to evaluate tenogenic
induction after five days of treatments: EGR1, DCN and TNC.
Each sample was tested in triplicate and untreated PB-MSCs
were used as a calibrator sample. The 2-ΔΔct method was used
to analyze and normalize the RNA expression of the target
genes with respect to the endogenous housekeeping gene
Glyceraldehyde- 3- phosphate dehydrogenase (GAPDH).
PCR primers were designed using Primer Express 3.0 soft-
ware (Applied Biosystems).

Statistical analysis

Normally distr ibuted data were expressed as the
mean ± standard deviation. Normality of the data was con-
firmed using the Kolmogorov–Smirnov test (α = 5 %).
Statistical analyses were performed using the paired Student
t test (SPSS software, version 11.0, SPSS, IBM). The level of
statistical significance was set at P ≤ 0.05 for all analyses.

Results

Flow cytometric analysis of isolated PB-MSCs

PB-MSCs were successfully isolated from peripheral blood of
four healthy horses. The expression profile of cell-surface an-
tigen in adherent PB-MSCs was evaluated by flow cytometry
in cell samples at P5 (Fig. 1a) and P10 (Fig. 1b). Cells from
the four horses were uniformly positive for adhesion markers
CD29 (100 % ± 0 at P5 and P10), CD44 (92 % ± 4 at P5,
99.3 % ± 0.5 at P10) and CD90 (100 % ± 0 at P5 and P10). In

addition, the analysis demonstrated less than 5% positivity for
the hematopoietic lineage marker as CD45 (1.7 % ± 0.6 at P5,
1.2 % ± 0.3 at P10), for the leukocytes markers Mo/Ma
(0.8 % ± 0.3 at P5, 1.4 % ± 2 at P10) and for the MHCII
(0 % ± 0 at P5 and P10). In Fig. 1c, the CD percentages of
different markers used in the study are summarized.

Population doubling time of isolated PB-MSCs

To examine PDT of PB-MSC samples (n = 4), the prolifera-
tion potential was measured according to the passage number
(from P1 to P10). The PDT showed an initial lag time (sup-
plemental figure), but PDT was relatively constant from P3
until P10.

Cell proliferation of PB-MSCs treated with GFs
and LLLT

Figure 2 shows the concentration of dead cells (dark grey bars)
and live cells (light grey bars) detected in cell culture after
each treatment. All combination of GFs caused the same cy-
totoxicity (dead cells 31.5 ± 14.2, Fig. 2) and it was slightly
greater than control medium and laser treatment. The combi-
nations of bFGF2 + TGFβ3 and bFGF2 + TGFβ3 + LLLT,
arrested cell proliferation compared to control cells and other
GFs treatments (Fig. 2 light grey bars) without increasing the
cell death. This data indicate that TGFβ3 influences the pro-
liferation of MSCs, while EGF2 and IGF1 do not modify cell
growth.

MRNA expression of EGR1, TNC and DCN

PB-MSCs were used to test the effects of the addition of some
GFs (TGFβ3, IGF1, bFGF2 and EGF2) on the mRNA expres-
sion levels of genes involved in the tenogenic differentiation
such as EGR1, TNC and DCN. TGFβ3, IGF1, bFGF2 and
EGF2 were previously tested individually with and without
LLLT (data not shown) without obtaining any significant re-
sults; therefore, we started to use combinations of GFs with
and without LLLT (see panel in the material and methods).

Figure 3a and 3c indicate that EGR1 and DCN expression,
respectively, increased significantly in the presence of bFGF2
and TGFβ3 with and without LLLT treatment (combination n.
5). The level of the TNC gene (Fig. 3b) appears to be influ-
enced by treatment with bFGF2, TGFβ3 and LLLT (combi-
nation n. 6) since its expression increased significantly,

�Fig. 1 Detection of Cluster of Differentiation (CD) markers of peripheral
blood cells using a flow cytometry assay. Peripheral Blood-MSCs (PB-
MSCs) tested at P5 (a) and P10 (b) showed a positivity for antibodies
against CD29, CD44 and CD90 (in blue) and a negativity for Mo/Ma,
MHCII and CD45 (in red). The table shows the average expression ±
standard deviation of CD positivity and negativity of PB-MSCs at P5 and
P10. Control isotypes were tested for each marker to define the threshold
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whereas, treatment with bFGF2 and TGFβ3 without LLLT
showed a similar, but not-significant increasing trend. The
factors bFGF2-EGF2 and bFGF2-IGF1 did not cause varia-
tions in EGR1, DCN and TNCmRNA levels in comparison to
control PB-MSCs (Table 1).

Discussion

Novel treatments used for tendon regeneration include PRP,
MSCs and LLLT. Unfortunately, these methods do not typi-
cally result in complete healing of injured tendons and a return
to total function is very difficult to achieve (Liu et al. 2011).
Obtaining in vitro functional tenocytes from MSCs is impor-
tant for tissue healing and engineering applications (Bi et al.
2007; Tan et al. 2012). We have hypothesized that a specific
mixture of GFs in combination with LLLT induced the differ-
entiation of MSCs towards a tenogenic fate.

TheMSCs used in this study were obtained from peripheral
blood (PB) of healthy horses (n = 4) and the cells were sub-
jected to flow cytometric analysis for characterization. In the
present study it was chosen to use the allogeneic PB-MSCs
between P5 and P10 due to the insufficient cell yield at earlier
passages and in order to generate multiple doses and perform
all necessary quality assessments (Broeckx et al. 2014c;
Vandenbergh et al. 2016).

PB-derived MSCs showed a positive expression for adhe-
sion and the MSC markers CD29, CD44 and CD90, both at
passage P5 and P10. In contrast, PB-MSCs were not positive
for the hematopoietic lineage marker CD45, the monocyte/
macrophage (Mo/Ma) leukocyte markers and MHC II. The
present results showed that PB-MSCs did not lose their stem
markers and the cells maintained their proliferative capacity
through P10 after an initial lag phase.

In experimental studies conducted in vivo, LLLT produced
an anti-inflammatory effect by decreasing the number of fi-
broblasts and neovascularization in tendon lesions of sheep

Fig. 2 The histogram shows the average ± SD of the cell number counted
after different treatments. The number of alive cells is rapresented by light
grey bars while the number of dead cells is indicated by dark grey bars. The
treatments did not modify the cell mortality while influenced the
proliferation activity. Asterisk indicates significant differences (*P < 0.05)

Fig. 3 mRNA expression of EGR1 (early growth response protein 1), TNC
(tenascin c) and DCN (decorin) in PB-MSCs before treatment (Exp) and
after different treatments (Exp L: laser treated cells; F: bFGF2; FL: bFGF2 +
laser; FT: bFGF2 + TGFβ3; FTL: bFGF2 + TGFβ3 + laser; FI: bFGF2 +
IGF1; FIL: bFGF2 + IGF + laser; FE: bFGF2 + EGF2; FEL: bFGF2 +
EGF2 + laser) detected by Real-Time PCR. Each graph rappresents the
average ± SD of cells isolated from four hoses and Exp sample was used
as calibrator. Asterisk indicates significant differences (*P < 0.05)

Table 1 Primers used for the quantitative Real time- PCR analysis

Gene 5′ Forward primer 3′ 5′ Reverse primer 3′

GAPDH gcatcgtggagggactca gccacatcttcccagagg

EGR1 cggacatgacaacaaccttttc cctttgccctttcctttagca

DCN gagagctgcgtgtccatgag agtgggttggtgccaagttc

TNC catccaccatcatccaggagtt tggcaaacacacggatgaa

GAPDH (glyceraldehyde- 3- phosphate dehydrogenase); EGR1 (early
growth response protein 1); DCN (decorin); TNC (tenascin C)
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included in the study (Iacopetti et al. 2015). In addition, LLLT
used on tendinopathies in rats reduced the mRNA expression
of pro-inflammatory mediators such as TNFa (tumor necrosis
factors), IL1b and IL6 (interleukin), and TGFβ (Pires et al.
2011). It is important to precise here that in vivo studies in-
clude many variables and, therefore, the contribution of LLLT
is very difficult to understand. In vitro Huertas et al. (2014)
observed a correlation between the energy density applied and
cell growth rate while Pyo et al. (2013) attributed an increase
in osteoblastic BMP2 (bone morphogenetic protein) and
TGFβ1 expression to LLLT. In the latter study, it is possible
to comment that LLLT induces a general increase of the su-
perfamily TGF-β (BMPs are a subfamily of TGF-β) because
it probably stimulates cell proliferation in regenerative pro-
cesses. Surely, diverse energy densities differently stimulate
cellular metabolic processes (i.e. increasing the oxidation, as
discussed by Hamblin and Demidova 2006) and in our in vitro
experiments a density that should influence cellular
proliferation/differentiation was used, as previously observed
in myoblasts (Monici et al. 2013). Several studies have dem-
onstrated the involvement of bFGF2 in regulating cell growth
and differentiation (Hoffmann and Gross 2007). In this regard,
Cai et al. (2013) indicated that bFGF2 is able to activate the
MAPK pathway promoting the differentiation of MSCs into
tendons. In fact, the expression of bFGF2 induced tendon
matrix protein collagen type I, collagen type III and scleraxis
expression. Furthermore, it was demonstrated that bFGF2,
introduced with a viral vector, modulated the expression of
genes for multiple GFs, increased the gene level of TGF-β1,
CTGF and VEGF and down-regulated IGF1 during the ten-
don repair process (Tang et al. 2014). Overall, bFGF2 has
been reported as the most potent growth stimulator among
the various GFs (Takehara 2000) and it also plays a pivotal
role in wound repair (Molloy et al. 2003). However, in the
present study, bFGF2 alone was not sufficient to induce a
significant increase of expression of EGR1, TNC and DNC.
Therefore, we evaluated the synergic action of bFGF2 in com-
bination with TGFβ3, IGF1 or EGF2 to promote an increase
of those tenogenic genes.

TGFβ is a well-known cytokine that regulates various pro-
cesses in tendon healing. Increased TGFβ levels are associat-
ed with tendon adhesion (Khan et al. 2000) as well as
t end inos i s (Fu e t a l . 2002) . TGFβ i s a ma jo r
anti-proliferative and pro-differentiation signal for hematopoi-
etic stem/progenitor cells (Zhao and Chen 2014). Decreased
TGFβ expression reduces migration and proliferation of
keratinocytes (Hameedaldeen et al. 2014) and the addition of
TGFβ decreases the number of tendon sheath, epitenon and
endotenon cells in culture (Klein et al. 2002). Our results
confirm the anti-proliferative activity of TGFβ3 in
PB-MSCs. In fact, this GF decreased significantly the cellular
proliferation but it did not modify cell death respect other GF
treatments. The activation of a mechanism of cellular

differentiation of PB-MSCs towards the tenogenic fate is hy-
pothesized. Moreover, our results are supported by Rider et al.
(2008), which demonstrated that TGFβ3 inhibits endogenous
bFGF activity for human adipose stem cells (hASCs) prolif-
eration. In 3D culture this GF increased the expression of
TNC, COL1 (collagen 1), COMP (cartilage oligomeric matrix
protein) and Tenomodulin (Barsby et al. 2014).

For the first time in equine MSCs, the genes EGR1, TNC
and DCNwere evaluated with the exogenous addition of GFs.

TGFβ3, IGF1 and EGF2 were tested individually (data not
shown) but, as described by Schneider et al. (2011), were not
able to increase genes involved in the tenogenic pathway.

On the contrary, the combination of bFGF2 and TGFβ3
significantly upregulated the expression of EGR1 and DCN
while the use of LLLT induced a significant increase in TNC
levels. The EGR1 is one of the first transcription factors in-
volved in the tenogenic cascade; it is associated with increased
collagen formation during embryonic tenogenesis and induces
Scleraxis (SCX) and Col1a1 genes (Lejard et al. 2011). TNC
although rarely present in most adult tissues is upregulated in
embryonic and developing tissues or in tissues experiencing a
fast rate of growth and influences cell adhesion and migration
(Goncalves et al. 2013). DCN is a proteoglycan that regulates
tendon structure by stabilizing and aligning collagen fibrils
(Zhang et al. 2006).

The combination of bFGF2-IGF1 and bFGF2-EGF2 did
not alter the expression of EGR1, TNC and DCN in treated
PB-MSC versus control cells. In this case, the addition of
LLLT to GF treatments did not promote the stimulation of
EGR1, DCN and TNC tendon markers. Moreover, the com-
bination bFGF2-IGF1 and bFGF2-EGF2 induced a level of
proliferation activity similar to untreated MSCs, although
IGF1 and EGF2 are known for their proliferative and differ-
entiating effects. EGF2 is a single-chain polypeptide that has
the ability to enhance migration and cell proliferation of bone
marrow derived MSCs (Tamama et al. 2006), and has been
well documented for its mitogenic and chemotactic effects on
fibroblasts (Brown et al. 1991). Regarding IGF1, it is known
that it has a stimulating effect on collagen synthesis in
tendon-ligament tissue since it stimulates fibroblast prolifera-
tion and synthesis of extracellular matrix protein (Durgam
et al. 2012; Hansen et al. 2013). Most likely, in our study,
the effect of IGF1 on tenogenic induction was not seen be-
cause the use of bFGF2 treatment might have down-regulated
its expression (Tsubone et al. 2004).

Conclusions

The effects of GFs on cell cultures are conditioned by numer-
ous variables, such as concentration and timing of incubation,
combination of GFs, evaluated markers and cell type.
However, we consider that this study might furnish significant
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suggestions for developing an efficient approach for tenogenic
induction since from our results, the external administration of
bFGF2 and TGFβ3, along with LLLT, surely optimize and
accelerate the differentiation of PB-MSCs.
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Abstract 15 

The Tat protein is able to translocate through the plasma membrane and when it is fused with other 16 

peptides may act as a protein transduction system. This ability appears particularly interesting to 17 

induce tissue-specific differentiation when the Tat protein is associated to transcription factors. In 18 

the present work, the potential of the complex Tat-MyoD in inducing equine peripheral blood 19 

mesenchymal stem cells (PB-MSCs) towards the myogenic fate, was evaluated. Results showed that 20 

the internalization process of Tat-MyoD happens only in serum free conditions and that the nuclear 21 

localization of the fused complex is observed after 15 hours of incubation. However, the 22 

supplement of Tat-MyoD only was not sufficient to induce myogenesis and, therefore, in order to 23 

achieve the myogenic differentiation of PB-MSCs, conditioned medium was added. The latter was 24 

obtained coculturing PB-MSCs with C2C12 without direct contact. These results suggest that TAT- 25 

transduction of Tat-MyoD, when supported by conditioned medium, represents a useful 26 

methodology to induce myoblasts differentiation. 27 

KEYWORDS: Tat-MyoD, equine PB-MSCs, C2C12, coculture, myogenic induction. 28 

 29 
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 2 

Adult skeletal muscle presents a low cellular turnover in the absence of disease or damages 32 

(Cheung et l 2013). On the contrary, during regenerative mechanisms the muscle tissue becomes 33 

very dynamic thanks to the involvement of satellite cells. The use of these cells for therapeutic 34 

purpose appears promising for treatment of diseases and injuries affecting skeletal muscle, 35 

including muscular dystrophy (Partridge 2003). Both skeletal muscle injuries and disorders are 36 

actually quite common among athletic animals such as horses (Freestone and Carlson, 1991; Lee et 37 

al., 2016). However, the self-renewal potential of adult satellite cells is per se limited, decreases 38 

with age, sarcopenia (Chen and Goldhamer 2003) and is depleted by wasting muscular dystrophies 39 

(Yusuf and Brand-Saberi 2012). Given the need to use an unlimited cell population, mesenchymal 40 

stem cell (MSCs) deserves a particular attention to offer an alternative therapeutic solution for 41 

muscle diseases (Mizuno 2010). MSCs can be isolated from various anatomical districts such as 42 

bone marrow, adipose tissue, amniotic fluid, peripheral blood (Kuznetsov et al. 2001; Kern et al. 43 

2006; Koerner et al. 2006;  Martinello et al. 2010; Martinello et al. 2011) and they share the ability 44 

to differentiate along several pathways (Chamberlain et al. 2007; Giovannini et al. 2008). Up to 45 

now, scarce data are present in literature about the differentiation of MSCs into myoblasts. In vitro, 46 

it has been shown that MSCs may differentiate into skeletal muscle cells with conditioned medium 47 

as well as in coculture with a fusion between MSCs and myoblasts (Dezawa et al. 2005; Sung et al. 48 

2013; Dugan et al. 2014). Specific signaling molecules, such as dexamethasone together with 49 

insulin and EGF (epidermal growth factor) (Tehrani et al. 2014), are able to induce the 50 

differentiation into skeletal muscle. Furthermore, MSCs isolated from bone marrow and treated 51 

with FGF (Fibroblast Growth Factors), forskolin, PDGF (Platelet-Derived Growth Factor) and 52 

transfected with an NICD plasmid were able to express MyoD (Dezawa et al. 2005), although the 53 

frequency of spontaneous cell fusion was very low. Recently, Rabiee et al. demonstrated that the 54 

overexpression of FND5, using an inducible lentivirus system, increased the transcription level for 55 

cardiac progenitors in embryonic stem cells (Rabiee et al. 2014) and Sung et al. induced equine 56 

MyoD expression in equine adipose-derived mesenchymal stem cell using a MyoD lentiviral vector 57 
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(Sung et al. 2016). Moreover, embryonic stem cells were induced to differentiate also into smooth 58 

muscle cells if Olfm2 (olfactomedin 2) overexpression was promoted (Shi et al. 2014). In a 59 

coculture of stem cells from amniotic fluid and cardiac cells, the physical contact between the two 60 

types of cells seems to be necessary but not sufficient to induce the cardiogenic potential (Gao et al. 61 

2014); this fact means that a specific microenvironment is required to induce the maturation of 62 

myogenic cells. Therefore, the innovative approach of protein transduction with Tat domain fused 63 

with various transcription factors (Lin and Kao 2015; Woo et al. 2015), including MyoD (Sung et 64 

al. 2013; Hidema et al. 2014), appears to be a valid technical approach. Even though some data 65 

indicate that Tat-MyoD induces myogenic differentiation in naturally predisposed cells only, like 66 

the C2C12 cell line (Noda et al. 2009) or the mouse muscle primary cells (Hidema et al. 2014) Sung 67 

et al. demonstrated that myogenic differentiation of human adipose-derived stem cells was reached 68 

usingTat-MyoD transduction when the cells were fused with C2C12 myoblasts (Sung et al. 2013). 69 

In the present study, we described that myogenic differentiation of equine peripheral blood 70 

mesenchymal stem cells (PB-MSCs) using the Tat-MyoD transduction can be achieved simply with 71 

a coculture C2C12 myoblasts. .  72 

 73 

2. Materials and methods 74 

 75 

2.1.Generation of Tat-MyoD fused proteins 76 

 77 

The nucleotide sequence encoding human MyoD was amplified from a human cDNA library with 78 

the following oligonucleotides (CAGCTAGCATGTCCTTCGCCATGCTGCGTTCAG -  79 

TGCAAGCTTCTAACTTCGAATCGCCGTCTTTTC) and cloned in plasmid Tat-Prp (Vicario et 80 

al. 2014) between NheI and HindIII restriction site, in order to obtain plasmid pTat-MyoD. The 81 

plasmid pTAT-MyoD is able to coding for MyoD sequence fused to peptide containing the 82 

translocation of HIV-1 protein TAT with 6x Histidine tag at N-terminus.  83 
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 4 

(NH2-MRGSHHHHHHGMARGYGRKKGRQRRR-).  84 

The plasmid pTat-MyoD was trasformed in Escherichia Coli BL21 bacteria cells. The bacteria were 85 

grown at 37°C in Luria Broth (LB) medium containing ampicillin (100 µg/ml) to an OD600 of 600 86 

nm. Protein expression was induced by adding IPTG (Isopropil-β-D-1-Thiogalactopyranoside) 87 

about 4 hours at 25°C. To collect the Tat-MyoD protein, bacteria were harvested and cell membrane 88 

was lysed by sonication under denaturing condition using 6 M guanidinium. The proteins were 89 

bound to the resin IMAC and then were eluted with 8 M urea and 300 mM imidazole (pH 6.3). The 90 

fractions containing the larger quantity of protein were purified using a gel filtration PD10 column 91 

(GE Healthcare) to eliminate urea and imidazole. The purified protein was quantified using a 92 

spectrophotometer and then an SDS-PAGE was made to verify the purity of Tat-MyoD (44 KDa). 93 

The final protein concentration obtained was 0,5 mg/ml. 94 

 95 

2.2.Transduction of Tat-MyoD into peripheral blood derived-mesenchymal stem cells (PB-96 

MSCs)  97 

 98 

MSCs were isolated from equine peripheral blood (Martinello et al. 2010) and were cultured in GM 99 

(growth medium, DMEM Dulbecco’s Modified Eagle’s Medium, 10% fetal bovine serum FBS, and 100 

antibiotics 100 mg/ml streptomycin, 100 U/ml penicillin, Euroclone) at 37°C. In order to evaluate 101 

the internalization of Tat-MyoD, PB-MSCs (when reaching confluence) were incubated in the 102 

presence of 0,1µg/ml Tat-MyoD for 2, 6, 15, 24 and 48 hours in medium without serum. The time 103 

course analysis was repeated in quadruplicate. 104 

 105 

2.3.Coculture of PB-MSCs and C2C12 106 

 107 

PB-MSCs and C2C12 cells were cocultered independently by using transwell insert (BD Falcon) 108 

with a 1µm pore size of membrane to separate each cell type. PB-MSCs were plated at the bottom 109 
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 5 

of 6-well plates at concentration of 1,5x105 cells/well in GM and the day after the cells were treated 110 

with Tat-MyoD for 15h in medium without serum. Concurrently, C2C12 were seeded at density of 111 

3x105 cells per insert in GM, when the cells reached 80% of confluence the medium was changed to 112 

DM (differentiation medium, DMEM, horse serum 2%, antibiotics 1%, Euroclone). After 3 days the 113 

inserts with C2C12 were transferred into the wells with PB-MSCs in DM. The coculture was 114 

maintained for 7 days in DM and the experiment was repeated in triplicate. 115 

 116 

2.4.Immunostaining 117 

 118 

To perform immunostaining experiments cells were washed with PBS and fixed in 4% 119 

paraformaldehyde for 10 min; after further washing they were permeabilized with 0,3% Triton X-120 

100 for 5 min and blocked for 1h using 1% FBS. Anti-His tag antibody (1:100, Sigma) was 121 

employed to evaluate the internalization of Tat-MyoD. To evaluate the differentiation of cells, anti-122 

MyoD (1:100, Santa Cruz), anti-Myf5 (1:100, Santa Cruz) and anti-Myogenin antibodies (1:500, 123 

Chemicon) were used. All antibodies were maintained overnight at 4°C. Fixed cells were washed 124 

with PBS followed by addition of anti-mouse or anti-rabbit Alexa 568 conjugated antibody 125 

(Molecular Probes) at a 1:500 (v/v) dilution. Finally, staining of nuclei was obtained with DAPI 126 

(Sigma). As controls, PB-MSCs treated with Tat-MyoD without coculture and PB-MSCs in 127 

coculture, but without Tat-MyoD treatment, were used. 128 

 129 

3. Results 130 

 131 

3.1.Purification of Tat-MyoD protein 132 

 133 

Tat-MyoD was expressed in E. Coli Bl21 and purification was performed using a Ni-NTA column. 134 

Tat-MyoD purified to homogeneity shows and apparent molecular weight of 44 KDa on SDS-135 
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 6 

PAGE and migrate on gel slower respect its theoretical molecular weight of 37905.1 Da (Fig. 1). 136 

This common behavior may be explained due to the high number of basic amino acids (17.2% 137 

respect to total amino acids). 138 

 139 

3.2.Localization of Tat-MyoD into PB-MSCs 140 

 141 

In order to evaluate the cellular pathway of Tat-MyoD protein construct, an immunofluorescence 142 

assay was chosen (Fig. 2). Using confocal microscopy, it was found that after 2 and 6 hours of PB-143 

MSCs treatment with MyoD-Tat, the protein permeated cell membrane and was present in the 144 

cytoplasm; only after 15 hours of incubation, the construct was confined in the nucleus and this 145 

localization was persistent after 24 and 48 hours of treatment (Fig. 2). Experiments were performed 146 

in serum free medium since the latter inhibits this process (data not shown).   147 

 148 

3.3.Myogenic differentiation of PB-MSCs 149 

 150 

Myogenic differentiation was achieved using Tat-MyoD transduction and the inductive medium of 151 

the cellular line C2C12. To study the effect of our set up on myogenic marker expression in PB-152 

MSCs, we performed an indirect coculture using transwell insert (Fig. 3B). The scheme of 153 

experiment is illustrated in Figure 3A. The effective differentiation was evaluated observing the 154 

localization of Myf5 and Myogenin by immunofluorescence (Fig. 4). Results indicated that to 155 

activate the myogenic pathway in mesenchymal stem cells it was necessary the co-action of MyoD 156 

transduction and the molecular signals present in the medium of C2C12. Figure 4 (A, B) shows 157 

Myf5 and Myogenin expression in PB-MSCs treated for 15 hours with Tat-MyoD in serum free 158 

medium and, subsequently grown for 7 days in coculture with C2C12 myotubes in differentiative 159 

medium. The myogenic differentiation of PB-MSCs was not achieved using, separately, Tat-MyoD 160 
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 7 

(Fig. 4 D, E) or the C2C12 conditioned medium (Fig. 4 G, H). Fig 4C and 4F show the internal 161 

localization of Tat-MyoD complex by means of His-Tag antibody and fig. 4I confirms the absence 162 

of myogenic differentiation with only C2C12 conditioned medium with the use of MyoD antibody. 163 

  164 

4. Discussion 165 

The equine model offers a unique opportunity to explore treatment strategies for musculoskeletal 166 

disorders under conditions similar to the pathophysiology of human patients. Current treatments are 167 

often restricted to the management of symptoms or replacement with inert materials; therefore, 168 

there is a need for alternative biological approaches. MSCs may differentiate into cell types relevant 169 

to amend musculoskeletal diseases (Gupta et al. 2007; Lee et al. 2011; Galli et al. 2014) and are 170 

able to secrete growth factors to promote a repairing environment. However, for cell therapy 171 

purposes is necessary that MSCs are able to participate in the formation of new muscle fibers, a 172 

critical process that has not been fully elucidated so far. In vitro, hASCs (Human adipose-derived 173 

stem cells) treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) stimulates the early 174 

muscle differentiation steps (Eom et al. 2011); more, the expression of MyoD using high efficient 175 

lentiviral transduction induces myogenic differentiation while adipogenic differentiation is inhibited 176 

(Goudenege et al. 2009). Moreover, using MyoD lentiviral vector Sung et al. induced the expression 177 

of MyoD but not of Myogenin, (Sung et al. 2016). However, these methods are not appropriated for 178 

clinical use due to their mutagenic potential. In the last decade, several groups have demonstrated 179 

that the Tat protein transduction domain (PTD) is a great transactivator of gene expression (Dietz 180 

and Bähr 2004; Fittipaldi and Giacca 2005); its short amino acid motif, highly enriched in basic 181 

amino acids, binds to the cell surface and internalize in a variety of different cell types. In the recent 182 

past, various cellular proteins were described to interact with Tat and mediate or control its 183 

transcriptional activity (Kashanchi et al. 1996; Benkirane et al. 1998; Marzio et al. 1998; Col et al. 184 

2001). In the present study, the human MyoD protein was engineered with the Tat sequence in order 185 
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to evaluate a safe method for the induction of mesenchymal stem cells towards the myogenic 186 

differentiation. This approach was already proposed in cells that naturally follow the myogenic fate, 187 

as mouse myogenic primary cells (Noda et al. 2009) and C2C12 cell line (Hidema et al. 2012) but 188 

to our knowledge was never tried on PB-MSCs. Additionally, experiments from Sung et al. (2013) 189 

underlines the importance of the extracellular environment, as they were able to differentiated 190 

human adipose-derived stem cells into myogenic cells using a fusion with C2C12 cells.  191 

We were successful in inducing myoblasts differentiation in PB-MSCs. Our experiment indicates 192 

that the development of myogenic phenotypes of mesenchymal stem cells by Tat-MyoD construct 193 

depends on time and culture conditions, highlighting the role of in vitro microenvironment in terms 194 

of secreted factors and cell contacts.  195 

Indeed, an important observation raised from our experiments was the necessity to add Tat-MyoD 196 

in a cell culture with serum free medium. It has been demonstrated that short peptides (Green and 197 

Loewenstein 1988) rich in arginine (Suzuki et al. 2002) are rapidly internalized by cells, in a 198 

receptor-independent manner and without energy consumption. This does not happen for Tat basic 199 

domain when fused to protein cargos (Fittipaldi and Giacca 2005). It was suggested that the process 200 

of Tat internalization occurs through adsorptive endocytosis. Several investigators (Hakansson et al. 201 

2001; Mann and Frankel 1991) state that Tat sequence binds homologue of heparin sulfate (HS) 202 

glycosaminoglycan (GAG), a major constituent of extracellular matrix, suggesting that the bound 203 

HS/Tat might be involved in the internalization process. In accordance with this hypothesis, our 204 

study suggests that the presence of heparin in serum competes with the bound of HS/Tat, decreasing 205 

the uptake progression. To stimulate myogenic differentiation, Tat-MyoD has to be localized in the 206 

nucleus. Our results demonstrated that after 2 and 6 hours the construct remained in the cytoplasm, 207 

probably in vesicle as hypothesized by (Noda et al. 2009). Only after 15 hrs of incubation, Tat-208 

MyoD was localized in the nucleus where it persisted after 24 and 48 hrs. However, the activation 209 

of myogenic pathway by nuclear MyoD was not sufficient to induce cellular differentiation.. 210 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 9 

Likewise PB-MSCs cocultured with C2C12 grown in cell insert (prevent the cell direct contact but 211 

permits the interaction of culture medium) was not enough to induce the myogenic commitment. 212 

To our knowledge, this is the first study that shows a myogenic differentiation in equine adult stem 213 

cells using the TAT-mediated protein transduction system; the advantage of our method consists in 214 

obtaining committed myogenic cells derived from an abundant cell source, as PB-MSCs, without 215 

the need of fusion with other cells. It is important to state that our model might easily be reproduced 216 

also in human mesenchymal stem cells too (Martinello et al, unpublished results) although further 217 

studies will be necessary to develop this methodology for clinical purposes.  218 

 219 

Acknowledgments  220 

We thank Prof. Anthea Rowlerson (King’s College London, UK) for manuscript language 221 

revision. This work was supported by a grant from the University of Padova, Italy (PRAT 2013, 222 

code number CPDA138242). 223 

 224 

Conflict of Interest: None 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 10 

 234 

 235 

References 236 

1. Benkirane M, Chun RF, Xiao H, Ogryzko VV, Howard BH, Nakatani Y, Jeang K (1998) 237 

Activation of Integrated Provirus Requires Histone Acetyltransferase. J Biol Chem 273, 238 

24898–24905 239 

2. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: Molecular regulation of 240 

myogenesis. Cold Spring Harb Perspect Biol 4, a008342 241 

3. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem 242 

cells: their phenotype, differentiation capacity, immunological features, and potential for 243 

homing. Stem Cells 25, 2739–2749 244 

4. Chen JCJ, Goldhamer DJ (2003) Skeletal muscle stem cells. Reprod Biol Endocrinol 13, 245 

1:101 246 

5. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol 247 

Cell Biol 14, 329–340 248 

6. Col E, Caron C, Seigneurin-Berny D, Gracia J, Favier A, Khochbin S (2001) The histone 249 

acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. J Biol 250 

Chem 276, 28179–28184 251 

7. Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Chizuka I, 252 

Nabeshima Y (2005) Bone marrow stromal cells generate muscle cells and repair muscle 253 

degeneration. Science 309, 314–317  254 

8. Dietz GPH, Bähr M (2004) Delivery of bioactive molecules into the cell: the Trojan horse 255 

approach. Mol Cell Neurosci 27, 85–131 256 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Caron%20C%5BAuthor%5D&cauthor=true&cauthor_uid=11384967
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gracia%20J%5BAuthor%5D&cauthor=true&cauthor_uid=11384967
http://www.ncbi.nlm.nih.gov/pubmed/?term=Favier%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11384967
http://www.ncbi.nlm.nih.gov/pubmed/?term=Seigneurin-Berny%20D%5BAuthor%5D&cauthor=true&cauthor_uid=11384967
http://www.ncbi.nlm.nih.gov/pubmed/?term=Khochbin%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11384967


 11 

9. Dugan JM, Cartmell SH, Gough JE (2014) Uniaxial cyclic strain of human adipose-derived 257 

mesenchymal stem cells and C2C12 myoblasts in coculture. J Tissue Eng 5, 258 

2041731414530138 259 

10. Eom YW, Lee JE, Yang MS, Jang IK, Kim HE, Lee DH, Kim YJ, Park WJ, Kong JH, Shim 260 

KY, Lee JI, Kim HS (2011) Effective myotube formation in human adipose tissue-derived 261 

stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse 262 

C2C12 myoblasts. Biochem Biophys Res Commun 408, 167–173 263 

11. Fittipaldi A, Giacca M (2005) Transcellular protein transduction using the Tat protein of 264 

HIV-1. Adv Drug Deliv Rev 57, 597-608 265 

12. Freestone JF, Carlson GR (1991) Muscle disorders in the horse: a retrospective study. 266 

Equine veterinary journal 23, 86-90. 267 

13. Galli D, Vitale M, Vaccarezza M (2014) Bone marrow-derived mesenchymal cell 268 

differentiation toward myogenic lineages: facts and perspectives. BioMed Res Int  269 

ID762695 270 

14. Gao Y, Connell JP, Wadhwa L, Ruano R, Jacot JG (2014) Amniotic Fluid-Derived Stem 271 

Cells Demonstrated Cardiogenic Potential in Indirect Co-culture with Human Cardiac Cells. 272 

An Biomed Eng 42, 2490-2500 273 

15. Giovannini S, Brehm W, Mainil-Varlet P, Nesic D (2008) Multilineage differentiation 274 

potential of equine blood-derived fibroblast-like cells. Differentiation 76, 118–129 275 

16. Goudenege S, Pisani DF, Wdziekonski B, Di Santo JP, Bagnis C, Dani C, Dechesne CA 276 

(2009) Enhancement of myogenic and muscle repair capacities of human adipose-derived 277 

stem cells with forced expression of MyoD. Mol Ther 17, 1064–1072 278 

17. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically 279 

synthesized human immunodefi- ciency virus Tat trans-activator protein. Cell 55, 1179–280 

1188 281 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 12 

18. Gupta A, Leong DT, Bai HF, Singh SB, Lim TC, Hutmacher DW (2007) Osteo-maturation 282 

of adipose-derived stem cells required the combined action of vitamin D3, beta-283 

glycerophosphate, and ascorbic acid. Biochem Biophys Res Commun 362, 17–24 284 

19. Hakansson S, Jacobs A, Caffrey M (2001) Heparin binding by the HIV-1 Tat protein 285 

transduction domain. Protein Sci 10, 2138–2139 286 

20. Hidema S, Tonomura Y, Date S, Nishimori K (2012) Effects of protein transduction with 287 

intact myogenic transcription factors tagged with HIV-1 Tat-PTD (T-PTD) on myogenic 288 

differentiation of mouse primary cells. J Biosci Bioeng 113, 5–11 289 

21. Kashanchi F, Khleif SN, Duvall JF, Sadaie MR, Radonovich MF, Cho M, Martin MA, Chen 290 

SY, Weinmann R, Brady JN (1996) Interaction of human immunodeficiency virus type 1 291 

Tat with a unique site of TFIID inhibits negative cofactor Dr1 and stabilizes the TFIID-292 

TFIIA complex. J Virol 70, 5503–5510 293 

22. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of 294 

mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem 295 

Cells 24, 1294–1301  296 

23. Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP (2006) Equine 297 

peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal 298 

stem cells. Stem Cells 24, 1613–1619 299 

24. Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG (2001) 300 

Circulating skeletal stem cells. J Cell Biol 153, 1133–1140 301 

25. Lee JY, Zhou Z, Taub PJ, Ramcharan M, Li Y, Akinbiyi T, Maharam ER, Leong DJ, 302 

Laudier DM, Ruike T, Torina PJ, Zaidi M, Majeska RJ, Schaffler MB, Flatow EL, Sun HB 303 

(2011) BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like 304 

tissue formation and defect repair in vivo. PloS One 6, e17531 305 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 13 

26. Lee EM, Kim AY, Lee EJ, Park JK, Park SI, Cho SG, Kim HK, Kim SY, Jeong KS (2016) 306 

Generation of Equine-Induced Pluripotent Stem Cells and Analysis of Their Therapeutic 307 

Potential for Muscle Injuries. Cell transplantation 25, 2003-2016. 308 

27. Lin BY, Kao MC (2015) Therapeutic applications of the Tat-mediated protein transduction 309 

system for complex I deficiency and other mitochondrial diseases. Ann N Y Acad Sci 1350, 310 

17–28.  311 

28. Mann DA, Frankel AD (1991) Endocytosis and targeting of exogenous HIV-1 Tat protein, 312 

EMBO J 10, 1733–1739 313 

29. Martinello T, Bronzini I, Maccatrozzo L, Iacopetti I, Sampaolesi M, Mascarello F, Patruno 314 

M (2010) Cryopreservation does not affect the stem characteristics of multipotent cells 315 

isolated from equine peripheral blood. Tissue Eng Part C Methods 16, 771–781 316 

30. Martinello T, Bronzini I, Maccatrozzo L, Mollo A, Sampaolesi M, Mascarello F, 317 

Decaminada M, Patruno M (2011) Canine adipose-derived-mesenchymal stem cells do not 318 

lose stem features after a long-term cryopreservation. Res Vet Sci 91, 18–24 319 

31. Marzio G, Tyagi M, Gutierrez MI, Giacca M (1998) HIV-1 Tat transactivator recruits p300 320 

and CREB-binding protein histone acetyltransferases to the viral promoter. PNAS 95, 321 

13519–13524 322 

32. Mizuno H (2010) The potential for treatment of skeletal muscle disorders with adipose-323 

derived stem cells. Curr Stem Cell Res Ther 5, 133-136 324 

33. Noda T, Fujino T, Mie M, Kobatake E (2009) Biochemical and Biophysical Research 325 

Communications Transduction of MyoD protein into myoblasts induces myogenic 326 

differentiation without addition of protein transduction domain. Biochem Biophys Res 327 

Commun 382, 473–477  328 

34. Partridge TA (2003) Stem cell route to neuromuscular therapies. Muscle Nerve 27, 133–141 329 

35. Rabiee F, Forouzanfar M, Ghazvini Zadegan F, Tanhaei S, Ghaedi K, Motovali Bashi M, 330 

Baharvand H, Nasr-Esfahani MH (2014) Induced expression of Fndc5 significantly 331 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 14 

increased cardiomyocyte differentiation rate of mouse embryonic stem cells. Gene 551, 332 

127–137  333 

36. Shi N, Guo X, Chen SY (2014) Olfactomedin 2, a novel regulator for transforming growth 334 

factor-β-induced smooth muscle differentiation of human embryonic stem cell-derived 335 

mesenchymal cells. Mol Biol Cell 15, 4106-4114 336 

37. Sung MS, Mun JY, Kwon O, Kwon KS, Oh DB (2013) Efficient myogenic differentiation 337 

of human adipose-derived stem cells by the transduction of engineered MyoD protein. 338 

Biochem Biophys Res Commun 437, 156–161 339 

38. Sung SE, Hwang M, Kim AY, Lee EM, Lee EJ, Hwang SK, Kim SY, Kim HK, Jeong KS 340 

(2016). MYOD overexpressed equine adipose-derived stem cells enhanced myogenic 341 

differentiation potential. Cell Transplant Nov;25(11):2017-2026. 342 

39. Suzuki T, Futaki S, Niwa M, Tanaka S, Ueda K, Sugiura Y (2002) Possible Existence of 343 

Common Internalization Mechanisms among Arginine-rich Peptides. J Biol Chem 277, 344 

2437–2443 345 

40. Tehrani HJ,  Parivar K,  Ai J, Kajbafzadeh A, Rahbarghazi R, Hashemi M, Sadeghizadeh M 346 

(2014) Effect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human 347 

Endometrial Stem Cell. Iran J Pharm Res 13, 659–664 348 

41. Vicario M, Zagari A, Granata V, Munari F, Mammi S, Bubacco L. Skaper SD, Negro A 349 

(2014) A novel prion protein-tyrosine hydroxylase interaction. CNS Neurol Disord Drug 350 

Targets 13, 896-908 351 

42. Woo S J, Shin MJ, Kim DW, Jo HS, Yong IJ, Ryu EJ, Cha HJ, Kim SJ, Yeo HJ, Cho SB, 352 

Park JH, Lee CH, Yeo EJ, Choi, YJ, Park S, Im SK, Kim DS, Kwon OS, Park J, Eum WS, 353 

Choi SY (2015) Effects of low doses of Tat-PIM2 protein against hippocampal neuronal cell 354 

survival. J Neurol Sci 358, 226-235 355 

43. Yusuf F, Brand-Saberi B (2012) Myogenesis and muscle regeneration. Histochem Cell Biol 356 

138, 187–199 357 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Kajbafzadeh%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25237362
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rahbarghazi%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25237362
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ai%20J%5BAuthor%5D&cauthor=true&cauthor_uid=25237362
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mammi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25012618
http://www.ncbi.nlm.nih.gov/pubmed/?term=Skaper%20SD%5BAuthor%5D&cauthor=true&cauthor_uid=25012618
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vicario%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25012618
http://www.ncbi.nlm.nih.gov/pubmed/?term=Munari%20F%5BAuthor%5D&cauthor=true&cauthor_uid=25012618
http://www.ncbi.nlm.nih.gov/pubmed/?term=Parivar%20K%5BAuthor%5D&cauthor=true&cauthor_uid=25237362
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bubacco%20L%5BAuthor%5D&cauthor=true&cauthor_uid=25012618
http://www.ncbi.nlm.nih.gov/pubmed/?term=Granata%20V%5BAuthor%5D&cauthor=true&cauthor_uid=25012618
http://www.ncbi.nlm.nih.gov/pubmed/?term=Negro%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25012618
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hashemi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25237362
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jalali%20Tehrani%20H%5BAuthor%5D&cauthor=true&cauthor_uid=25237362
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sadeghizadeh%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25237362
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zagari%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25012618


 15 

 358 

 359 

 360 

 361 

 362 

Figure Legends 363 

 364 

Fig. 1. Purification of Tat-MyoD by Ni-NTA column. Lane 1, BL21 cell and Sumo-hyrudin. Lane 365 

2, BL21 and pTat-MyoD before induction. Lane 3, BL21 and pTat-MyoD after induction with 0.5 366 

mM IPTG. Lane 4, Purified Tat-MyoD after Ni-NTA column. 367 

 368 

Fig. 2. Immunofluorescence analysis of PB-MSCs treated with Tat-MyoD for 2, 6, 15, 24 and 48 369 

hours using the anti-His Tag antibody (red) and DAPI (blue). From 15 hours of incubation anti-His 370 

Tag and DAPI colocalized. Bottom right image shows PB-MSCs after 48 hours of Tat-MyoD 371 

incubation (PC = Phase contrast). Scale bars: 58µm 372 

 373 

Fig. 3. (A) Scheme of coculture between PB-MSCs treated with Tat-MyoD and C2C12, GM 374 

indicates growth medium and DM differentiation medium. (B) Scheme of transwell insert used for 375 

the coculture. 376 

 377 

Fig. 4. Myogenic differentiation of PB-MSCs. Immunofluorescence of PB-MSCs after the Tat-378 

MyoD treatment and the contemporary coculture with differentiated C2C12 (A, B, C). 379 

Immunofluorescence of PB-MSCs after 7 days of Tat-MyoD treatment (D, E, F) and after 7 days of 380 

coculture with differentiated C2C12 (G, H, I). The images show the merge between nuclear DAPI 381 
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staining (blue) and anti-Myf5 (A, D, G), anti-Myogenin (B, E, H), anti-His Tag (C, F), and anti 382 

MyoD (I) antibodies (red staining). Scale bars: 58 µm.  383 
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ABSTRACT 

 

Intelligent colloidal nano-vector for mesenchymal stem cells 

transfection (Draft paper in preparation, nor submitted yet). 

 
DNA does not possess the ability to independently translocate through the cellular 

and nuclear membranes; therefore, certain agents are employed to carry out this 

task. Novel surface active maghemite nanoparticles (SAMNs), standing out for their 

peculiar colloidal properties, surface characteristics and for their ability to covalently 

and reversibly bind biomolecules, are proposed as vectors for eukaryotic cell 

transfection. Due to their unique size-related properties and peculiar behavior, 

nanoparticles are said to bear great potential for scientific innovation. A magnetic 

drivable DNA nano-vector (SAMN@pDNA) was synthetized by self-assembly of 

SAMNs and plasmidic DNA (pDNA). SAMN@pDNA was characterized by TEM, 

light scattering, zeta-potential, Electron Paramagnetic Resonance, UV-Vis and x-

ray photoelectron spectroscopy. Conversely, to coated iron oxide nanoparticles, 

complexing nucleic acids by electrostatic interactions, naked SAMNs, due to the 

covalent nature of the binding with DNA, lead to an extremely robust gene delivery 

tool. On the other hand, SAMN@pDNA showed a higher efficiency with respect to 

lipofectamine in the transfection of GFP coding gene in equine peripheral blood-

derived mesenchymal stem cells, without the necessity of application of an external 

magnetic field. Thus, SAMNs are intelligent DNA nano vectors, able to match DNA 

protection, due to the unusual covalent nature of the interaction, with a pronounced 

transfection proclivity. This, along with the extensively demonstrated colloidal 

stability, excellent cell uptake, stability in being maintained in the host cells, low 

toxicity and great MRI contrast agent properties make of SAMN elective vector for 

a novel strategy in gene therapy. This work could provide a new, more effective, 

transfection method with numerous potential biomedical applications such as 

targeted drug delivery. SAMN based nano-bio-composites can be employed for the 

preparation of self-assembled opsonized nanoparticles as future candidates for 

biomedical applications. 

 

Keywords:  magnetic nanoparticles, transfection, mesenchymal stem cells, green 

fluorescent protein (GFP), rhodamine isothiocyanate (TRITC). 
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SECOND PAPERWORK SECTION 

Studies of skin regeneration in vivo 

Skin is a soft tissue that forms about 8% of the total body mass and covers the entire 

surface area. It is a self-repairing, self-renewing organ in the body that forms an 

important barrier from the outer to the inner environment (William PL et al., 1995). 

Therefore, damage to the skin leads to debilitating effects forming wounds that is an 

impairment of the anatomical structure and function of the skin (Atiyeh BS et al., 

2002). Cutaneous wound healing is comprised of a network of biological processes, 

collectively restoring the integrity of the skin after injury. Unfortunately, the ideal 

outcome of cutaneous wound healing, which encompasses complete tissue 

regeneration, is often sacrificed in favor of quickly closing a wound with formation of 

fibrotic scar tissue (Van den Broek LJ et al., 2014). Fibrotic scar formation is an 

undesirable result of cutaneous wound healing, not only for cosmetic reasons but 

because scar tissue has compromised mechanical strength and is more sensitive 

to pain than healthy skin (Clark JA et al., 1996). Treating cutaneous skin wounds 

and reducing scar tissue cause a financial burden worldwide, and annual 

expenditures on products designed to minimize scarring exceed $5 billion (Jackson 

WM et al., 2012). For these reasons, different strategies are being used to generate 

skin component. Implantation of biodegradable scaffolds with or without cells (Sun 

G et al., 2011; Kawai K et al., 2000; Cornwell KG et al., 2009) such as Integra™ 

(Johnson & Johnson, New Brunswick, NJ) can regenerate dermal components. This 

scaffold presents a dermal component derived from bovine collagen, and 

chondroitin-6-sulphate that forms the dermal component and degrades slowly. 

Some disadvantages associated with the clinical use of dermal substitutes include 

slow vascularization, poor integration, and rejection. Furthermore, the dermal 

substitute Integra™ can be uneconomical and other disadvantages include poor 

handling properties, short shelf life, high manufacturing and distribution costs, and 

restriction to wounds of relatively low severity (Branski LK et al., 2007). These 

problems have been partially solved with the use of MSCs. The interest in the use 

of stem cells for potential wound healing applications is increasing for the treatment 

of deep burn wounds (Gohari S et al., 2002; Lattari V et al., 1997). MSCs actively 

contribute to regenerative processes, as they are involved in the inflammatory 

(Beckrich K and Aronovitch SA, 1999), proliferative (Boyce ST and Warden GD, 

2002), and remodeling (Falanga V, 2004) phases of tissue regeneration and they 

are good therapeutic alternatives for regeneration and repair of damaged organs 

and tissues in various diseases (Mimeault M et al., 2007; Parker AM and Katz AJ, 

2006). Although embryonic stem cells (Levenberg S et al., 2002) and induce 

pluripotent stem cells (iPSCs) (Park IH et al., 2008) are able to generate tissue cells 

of whole organism, these cells present various limitations: genetic manipulation of 

iPSCs, ethical consideration, and control of cellular differentiation of embryonic stem 

cells make them less attractive for translational approaches. Adult stem cells on the 

other hand do not pose any ethical issues and are also available in abundant supply. 
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To date, lot of research has focused on bone marrow-derived stem cells (BMSCs). 

However, the procurement of these cells is a painful procedure and usually leads to 

low yield and may lead to donor site morbidity. On the other hand, stem cells derived 

from adipose tissue are easy to obtain and provide a much higher yield (Musina R 

et al., 2005; Liu TM et al., 2007; Fraser JK et al., 2006). Due to their ease of 

collection and similar properties, ASCs (Hassan WU et al., 2014) are an attractive 

source and worthy of attention for clinical translation. Recently, the focus has shifted 

to regenerate the dermal component of the skin as well to overcome the lack of 

dermis in skin grafts (Compton CC et al., 1993; Burke JF et al., 1981). Actually, 

peripheral blood seems to be a good alternative source compared to bone marrow 

and adipose tissue. Frequent isolation success in rabbits, mice and guinea pigs 

(Kuznetsov et al. 2001), some difficulty was found in isolation in humans, dogs and 

horses (Roufosse et al. 2004; Koerner et al. 2006; da Silva et al. 2006; Giovannini 

et al. 2008). Equine peripheral blood represents an interesting source of MSCs 

because of the low invasivity, ease of harvesting, and low pain levels involved in the 

harvesting procedure. It is evident that MSCs can be obtained from peripheral blood, 

albeit in low numbers (Dhar M et al., 2012) and the differentiation of equine 

peripheral blood-derived MSCs into adipocytes, chondrocytes and osteocytes could 

be observed but only following induction with modified differentiation protocols or 

prolonged incubation time (Koerner et al. 2006; Giovannini et al. 2008).  

In the works that follow, MSCs derived from peripheral blood have been used in 

attempt to regenerate sheep and equine skin lesions. In the first paper, wounds of 

6 cm2 were induced in the gluteus region of 6 horses and treated with (i) autologous 

epithelial stem cells (EpSCs), (ii) allogeneic EpSCs, (iii) vehicle treatment or (iv) 

untreated control. RT-PCR was performed on tissue biopsies collected after 1 and 

5 weeks of treatment and IFN-y, IL-6, VEGF, EGF, IGF-1 and eKER were analyzed. 

Equine wounds treated with allogeneic EpSCs demonstrate a significant increase in 

mRNA expression of IL-6, VEGF and IGF-1 in the acute phase. In the longer term, 

an increase in IFN-y, VEGF and eKER mRNA was detected in the wounds treated 

with allogenic EpSCs, autologous EpSCs or their vehicle.  

This study showed that there are no differences in cellular immune response 

between autologous and allogeneic EpSC-treated wounds and the wounds heal 

faster in presence of the two different types of cells.  

In the second study, sheep allogeneic PB-MSCs were utilized to treat experimental 

lesions on the back of 6 sheep. Two biopsies were collected after 15 and 42 days 

of treatments and used to performed clinical and molecular analysis and histological 

and immunohistochemically staining.  

Clinical analysis allowed us to analyze different parameters such as the healing 

time, the presence, the color and the nature of exudate, the aspect of gauze, the 

hydration of the wound, the percentage of re-epithelization and contraction of the 

lesions. Clinical evaluation showed that the healing time of the cell PB-MSCs treated 

group (30,05 ± 1,7 days) was faster than placebo (31,80 ± 1,9 days) and that the 

closure of the wound is better than the group control. Molecular analysis was 

performed to study the expression level of genes Collagen 1α1 (Col1α1) and Keratin 



93 

 

of hair (hKER). Sheep PB-MSCs are able to stimulate the Col1α1 gene expression 

after 15 days of treatment raising further after 42 days. The expression level of gene 

hKER increases significantly only in PB-MSCs-treated lesions after 42 days of trail. 

Dermal and subcutaneous inflammation, immature and undifferentiated 

mesenchymal tissue (mature granulation tissue) and skin adnexa were evaluated 

using histological analysis: PB-MSCs-treated wounds after 42 days have better 

healing than control group, in fact, dermal and subcutaneous inflammation were 

absent, undifferentiated mesenchymal tissue was present and skin adnexa were 

perfectly regenerated. Lastly, MHCII, vWF and KI67 were evaluated with 

immunohistochemical staining: PB-MSCs-treated wounds showed a protein 

expression raising of the major histocompatibility complex II (MHCII), 

neovascularization and cellular proliferation respect PBS-treated lesions. 

This project is part of a large scheme where conventional treatments (Manuka 

Honey, Connettivina and Acemannane) were compared to innovative cures (MSCs 

and gas-ionized plasma). In this thesis, only the article about skin regeneration with 

PB-MSCs was reported. 

 

 

It follows the paperwork focused on skin regeneration using equine and ovine PB-

MSCs. 

 

1) Wound-healing markers after autologous and allogeneic epithelial-like 

stem cell treatment. 

Spaas JH, Gomiero C, Broeckx SY, Van Hecke L, Maccatrozzo L, Martens 

A, Martinello T, Patruno M.  

Cytotherapy. 2016 Apr;18(4):562-9.  

 

2) Mesenchymal stem cells improve the wound healing process of 

mammalian skin. 

Draft paper in preparation (nor submitted yet). 
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Wound-healing markers after autologous and allogeneic epithelial-like
stem cell treatment
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LISA MACCATROZZO3, ANN MARTENS4, TIZIANA MARTINELLO3 &
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1Global Stem cell Technology,ANACURA group, Evergem, Belgium, 2Pell Cell Medicals,ANACURA group, Evergem,
Belgium, 3Department of Comparative Biomedicine and Food Science, University of Padova, Italy, and 4Department of
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Abstract
Background aims. Several cytokines and growth factors play an essential role in skin regeneration and epithelial-like stem
cells (EpSCs) have beneficial effects on wound healing in horses. However, there are no reports available on the expression
of these growth factors and cytokines after EpSC therapy. Methods. Wounds of 6 cm2 were induced in the gluteus region
of 6 horses and treated with (i) autologous EpSCs, (ii) allogeneic EpSCs, (iii) vehicle treatment or (iv) untreated control.
Real time polymerase chain reaction was performed on tissue biopsies taken 1 and 5 weeks after these treatments to eval-
uate mRNA expression of interferon (IFN)-γ, interleukin (IL)-6, vascular endothelial growth factor (VEGF), epidermal growth
factor (EGF), insulin-like growth factor (IGF)-1 and epidermal keratin (eKER). Results. One week after treatments, mRNA
levels of IL-6 (P = 0.012) and VEGF (P = 0.008) were higher in allogeneic EpSC-treated wounds compared with controls.
Also, mRNA levels of IGF-1 were higher at 1 week in both autologous (P = 0.027) and allogeneic (P = 0.035) EpSC-
treated wounds. At week 5, all EpSC- and vehicle-treated wounds demonstrated significantly higher IFN-γ, VEGF and eKER
mRNA expression compared with controls and compared with their respective levels at week 1. Conclusions. Equine wounds
treated with allogeneic EpSCs demonstrate a significant increase in mRNA expression of IL-6, VEGF and IGF-1 in the
acute phase. In the longer term, an increase in IFN-γ, VEGF and eKER mRNA was detected in the wounds treated with
allogenic EpSCs, autologous EpSCs or their vehicle.

Key Words: allogeneic, autologous, cytokines, growth factors, horse, skin, stem cells

Introduction

The skin is the largest organ of the mammalian body,
and its healing and regeneration has been exten-
sively studied [1]. Currently, scientists mainly focus
on enhancing skin wound repair because wounds might
result in severe dysfunction and can be life threaten-
ing when they are chronic or involve an extended skin
surface [2]. In general, wound healing consists of a
dynamic process driven by cell proliferation and dif-
ferentiation and is mediated by different types of growth
factors, cytokines and chemokines [3,4].

It has been reported in horses that autologous as
well as allogeneic epithelial-like stem cells (EpSCs)
improve different wound-healing parameters, result-
ing in significantly enhanced wound repair [5,6].The
authors described a significant increase in early cel-

lular immune response and vascularization to result
in reduced tissue granulation and earlier wound closure.
This is reinforced by other studies, which have re-
ported that an earlier inflammatory peak in wounds
of ponies leads to enhanced wound contraction and
epithelialization compared with wounds in horses [7–9].
Additionally, it has been described that keratinocytes
would also be able to induce a cellular immune re-
sponse after exposure to pro-inflammatory cytokines,
such as interferon (IFN)-γ [10,11] which results in en-
hanced wound healing as well [12].

Besides inflammatory parameters, growth factors
also play a pivotal role during the wound-healing
process.Vascular endothelial growth factor (VEGF),
for example, promotes skin wound angiogenesis by ex-
erting a paracrine effect on endothelial cells [13], and
epidermal growth factor (EGF) influences epithelial
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cell proliferation and migration and enhances angio-
genesis [14,15]. Another important growth factor is
insulin-like growth factor (IGF), which promotes
keratinocyte migration [16], and research has shown
that wounds with lower IGF levels display less healing
capacity [17]. Additionally, epidermal keratin (eKER)
is an interesting structural parameter to investigate
because this fibrous protein can be found in wool, hair,
nails, mammalian claws, equine and bovine hooves and
horns [18]. Indeed, these intermediate filaments are
abundantly present in stratified epithelia, particular-
ly in the suprabasal layers of the epidermis, and may
therefore be considered an epidermal reconstitution
marker [19]. The present study is the first to investi-
gate the aforementioned growth factors, cytokines and
keratin mRNA expression levels at two time points in
an in vivo experimental wound-healing study where
the following treatments are evaluated: (i) autolo-
gous EpSCs, (ii) allogeneic EpSCs, (iii) vehicle
treatment and (iv) untreated control wounds.

Methods

Skin sampling for EpSC isolation and wound induction

Six French trotter mares between 5 and 7 years of age
were included in this study. A 1-cm2 skin sample was
retrieved from the neck region of these horses for EpSC
isolation and characterization as previously de-
scribed [20]. Twelve weeks after EpSC harvesting,
12 × 6 cm2 wounds were created in the gluteus region
of all horses to allow the evaluation of diverse treat-
ments (three wounds per treatment group) at different
time points, as reported by our group [5]. Before skin
harvesting, horses were sedated with detomidine
(0.04 mg/kg intravenous [IV]; Medesedan), and an-
algesia was achieved using butorphanol (0.1 mg/kg IV;
Dolorex). Procaine 4% plus adrenalin was used for
local subcutaneous anesthesia. Samples for real-time
polymerase chain reaction (rt-PCR) analyses were taken
at 1 and 5 weeks after treatment by means of a 3-mm
punch biopsy after aforementioned sedation and an-
algesic drug administration and with a subcutaneous
anesthesia consisting of procaine 4% without adren-
aline. The experimental procedure was approved by
the ethics committee of Global Stem Cell Technolo-
gy (EC_2012_002, EC_2013_003 and EC_2014_001)
and the Faculty of Veterinary Medicine, Ghent Uni-
versity (EC_2014_020).

Different treatment groups

Four treatment groups were considered: (i) autolo-
gous EpSCs, (ii) allogeneic EpSCs from two randomly
chosen donors within the same group of horses, (iii)
Dulbecco’s Modified Eagle’s Medium (DMEM) as
a vehicle control and (iv) untreated controls. Twenty

minutes after wound induction, 4 × 106 cells in 2 mL
DMEM were injected subcutaneously in the wound
margins and 4 × 106 cells in 1 mL DMEM were
applied topically for the autologous and allogeneic treat-
ment. Two of the six horses received half the doses
in both the autologous and allogeneic treated group
because the obtained number of cells for autologous
treatment in these horses was insufficient. In the vehicle
control wounds, 2 mL DMEM was injected subcu-
taneously, and 1 mL DMEM was applied topically.
The remaining group of control wounds was left un-
treated to monitor the normal healing process. The
horses did not receive any other medication.

RNA isolation and gene expression analysis

Total RNA extraction was performed usingTrizol (Life
Technologies) reagent following the manufacturer’s in-
structions. RNA was quantified on a Nanodrop
(Thermo Scientific) spectrophotometer and a com-
plementary single strand DNA (cDNA) was
synthesized from 2 μg of purified RNA to perform rt-
PCR using the ABI 7500 Real Time PCR system
(Applied Biosystems). The relative expression of the
following genes was used to evaluate pro-inflammatory
cytokines IFN-γ and IL-6; growth factors VEGF, EGF
and IGF-1; and epidermis reconstitution marker eKER.

Each sample was tested in triplicate, and un-
treated skin was used as a calibrator sample. Real-
time conditions were 2 min at 50°C, 10 min at 95°C,
40 cycles of denaturation at 95°C for 15 sec and
annealing/extension at 60°C for 1 min. Wells con-
tained 30 μL of PCR mixture (SYBR Green PCR
Master Mix, Applied Biosystems), including 3 μL of
cDNA at a dilution of 1:10.The 2-ΔΔct method was
used to analyze and normalize the RNA expression
of the target genes with respect to the endogenous
housekeeping genes GAPDH (glyceraldehyde-3- phos-
phate dehydrogenase) and 18S. The value Δct was
calculated as the difference between the average Ct
for each target gene and the GAPDH/18S genes.The
value ΔΔct was obtained as the difference between the
average ΔCT for each treatment and the calibrator
sample. PCR primers were designed using Primer
Express 3.0 software (Applied Biosystems). All primer
sequences used in the present study are listed in
Table I.Wherever possible, primers were designed to
span introns in the genomic DNA to minimize non-
specific fluorescence signals due to contaminating
genomic DNA.

Statistical analysis

Normally distributed data were expressed as the
mean ± SEM. Normality of the data was confirmed
using the Kolmogorov-Smirnov test (a = 5%). Statis-
tical analyses were performed using the paired
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Student’s t-test comparing data within each time
point with the untreated controls at week 1 or week
5 (Figures 1A,B and 2); when the expression levels
were compared between week 1 and week 5, the un-
treated sample at week 5 was used as calibrator
(Figures 1C,D and 3) (SPSS software, version 11.0,
SPSS Inc.).The level of statistical significance was set
at P < 0.05 for all analyses.

Results

Isolation and characterization of equine
skin-derived EpSCs

Isolated and purified cells were characterized as EpSCs
based on sphere-forming assays, multilineage differ-
entiation capacities and immunophenotypic properties
as previously described [6,20]. For safety reasons, one

Table I. Sequences of primers related to genes INF-γ, IL-6, VEGF, EGF, IGF-1, eKER, GAPDH and S18 used for the rt-PCR analysis.

Gene Forward Sequence Reverse Sequence

INF-γ AGGCCTAACTCTCTCCGAAACA CGCGGCCTGGCAGTAATA
IL-6 CCCCTGACCCAACTGCAA GGCTGAACTGCAGGAAATCC
VEGF ACCCCGATGAGATCGAGTACA GCAGTGGGCACGCACTCTA
EGF GGATGCATTGTCTAGACTCGACTGT CCGTCATAGGACTGGGAACATT
IGF-1 GCACATCATGTCCTCCTCACA CTCAGCCCCGCAGAGTGT
eKER GGGCGTGGACCCAGAGAT GAACCGCACCTTGTCAATGA
GAPDH GCATCGTGGAGGGACTCA GCCACATCTTCCCAGAGG
S18 AAACGGCTACCACATCCAAG TCCTGTATTGTTATTTTTCGTCAC

Figure 1. Tissue mRNA expression levels of IFN-γ and IL-6 at weeks 1 and 5 after treatment with autologous (autol) or allogeneic (allog)
epithelial-like stem cells (EpSCs) or vehicle treatment. Untreated wounds were used as sample calibrator at each time point: 1 week for
the left side of the panel (A, B) and 5 weeks for the right side of the same panel; the black bar indicates that the two sides of the panel
were produced with the two different sample calibrators (A, B). IFN-γ and IL-6 expression were compared between the two time points
(the untreated wounds at week 5 were used as calibrator) (C, D). Histograms indicate averages ± SEM. *Statistically significant difference
between treatment groups (A, B) or over time (C, D), P < 0.05.
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of the six horses had to be positioned in lateral de-
cubitus, and the topical treatments were compromised.
Therefore, the biopsies of this horse were excluded
from the study, and only the data from the other five
horses were used. Because there were no consider-
able differences in any of the evaluated wound-
healing parameters after administering a total
(subcutaneously and topically) of 8 × 106 EpSCs (n = 3)
versus 4 × 106 EpSCs (n = 2) per wound, the data of
all five horses were taken together for further analyses.

Pro-inflammatory cytokine expression

The rt-PCR analyses revealed no differences in IFN-γ
mRNA expression at 1 week after different treat-
ments (Figure 1A, left). All injected wounds (also
vehicle control) demonstrated a significantly higher
IFN-γ mRNA expression after 5 weeks in compari-
son to the untreated wounds (Figure 1A, right side
of the panel). When the mRNA expression levels of
IFN-γ were compared between the two time points
(using the untreated at week 5 as calibrator) a signif-

icant increase was observed at 5 weeks after treatments
(Figure 1C).

The IL-6 mRNA expression showed the highest level
in allogeneic EpSC treated wounds (P = 0.012) at 1 week
(Figure 1B, left side of the panel) while at 5 weeks after
treatment no significant differences were observed.When
the expression levels of IL-6 mRNA were compared
between the two time points (using the untreated at week
5 as calibrator) a significant decrease was observed at
5 weeks after treatment (Figure 1D).

Growth factor expression

Compared with all other treatments, allogeneic EpSC-
treated wounds showed the highest VEGF mRNA
expression (P = 0.008) at week 1 (Figure 2A). At week
5, by contrast, VEGF mRNA expression was signifi-
cantly higher in all injected wounds (also vehicle)
compared with untreated controls (Figure 2A) and
compared with the respective levels of all different treat-
ments at week 1 (Figure 3A). The eKER mRNA
expression levels were similar in all wounds at 1 week

Figure 2. Tissue mRNA expression levels of VEGF (A), eKER (B), EGF (C) and IGF (D) at weeks 1 and 5 after treatment with autolo-
gous (autol) or allogeneic (allog) epithelial-like stem cells (EpSCs) or vehicle treatment. Untreated wounds were used as sample calibrator
at each time point: 1 week for the left side of the panels and 5 weeks for the right side of the same panels.The black bar indicates that the
two sides of the panels were produced with two different sample calibrators. Histograms indicate averages ± SEM. *Statistically significant
difference between treatment groups, P < 0.05.
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after treatment (Figure 2B), yet increased (P < 0.001)
over time (Figure 3B) with a significantly higher eKER
mRNA expression in all injected wounds compared
with untreated controls at week 5 (Figure 2B). Al-
though EGF mRNA expression remained relative
constant over time in the autologous and allogeneic
EpSC-treated wounds (Figure 3C), the latter wounds
demonstrated significantly lower EGF mRNA expres-
sion at week 5 compared with vehicle-treated and
untreated wounds (Figure 2C). At week 1, IGF-1
mRNA expression was significantly higher in autolo-
gous and allogeneic EpSC-treated wounds compared
with vehicle-treated and untreated wounds (Figure 2D)
and only for the cell-treated wounds IGF-1 mRNA
levels significantly decreased over time (Figure 3D).

Discussion

The present study investigated the expression of growth
factors and cytokines in skin wounds after treatment
with autologous EpSCs, allogeneic EpSCs and vehicle
compared with untreated wounds. The latter group
served as a control group for all injections because it

has been reported that just an injection might in-
crease vascularization and T-cell response [5], which
has to be taken into account.

For the present study, biopsies were taken from the
same wounds of which protein analyses and wound-
healing assessments were performed as previously
reported [5]. In agreement with the IFN-γ mRNA ex-
pression analyses, no differences in wound fluid IFN-γ
protein levels were detected between the treatment
groups at 1 week after treatment, and a significant in-
crease was visible over time. However, the increased
IFN-γ mRNA and protein expression were both
unrelated to EpSC addition. This is in contrast to a
previous report in canine wounds in which allogene-
ic bone marrow–derived mesenchymal stromal cells
(BM-MSCs) significantly decreased IFN-γ mRNA ex-
pression at 1 week after treatment compared with
saline-injected groups, and the expression levels nor-
malized at week 2 [21]. Although the authors used
another cell type and did not show any data from later
time points, the injection technique could have had
an influence on the outcome of IFN-γ mRNA
expression.

Figure 3. Tissue mRNA expression levels of VEGF (A), eKER (B), EGF (C) and IGF (D) at weeks 1 and 5 after treatments with autolo-
gous (autol) or allogeneic (allog) epithelial-like stem cells (EpSCs) or vehicle treatment.The expression levels were compared between the
two time points (untreated wounds at week 5 were used as calibrator). Histograms indicate averages ± SEM. *Statistically significant dif-
ference over time, P < 0.05.
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IL-6 mRNA expression was the highest in alloge-
neic EpSC treated wounds at week 1, whereas
autologous EpSC treatment did not induce a signif-
icant increase. This is a remarkable finding because
no differences in cellular immune response (CD3,
CD20 and MHC II expressing cells) were noted
between autologous and allogeneic EpSC-treated
wounds at this time point [5]. However, at 2 weeks
after treatment, allogeneic EpSC-treated wounds con-
tained a slightly higher level of CD3 and MHC
II–positive cells than autologous EpSC-treated wounds,
which could result from up-regulation of IL-6 in the
allogeneic group the week before [22,23]. Because
this increase was not significant, one might postulate
that the temporary IL-6 increase could be donor
specific. Nevertheless, the same EpSCs were used in
an autologous setting, and no IL-6 mRNA increase
was observed there. This means that an allogeneic
setup initiates certain pathways that might not be
directly correlated with the cellular immune re-
sponse and that this is part of the modus operandi
of allogeneic EpSCs. Indeed, IL-6 mRNA has been
associated with MSC communication before because
these cells produce IL-6 and contain the IL-6 recep-
tor [24]. In the present study, IL-6 mRNA expression
decreased in all wounds towards week 5, which, on
the other hand, was in agreement with the cellular
immune response evolution and IL-1 and IL-2 mea-
surements from previous studies [5,21]. Further
research is warranted to investigate the role of IL-6
in allogeneic EpSC treatment.

Another interesting finding was the significant
increase in VEGF mRNA at week 1 in allogeneic
EpSC-treated wounds only. Because increased vas-
cularization was observed in both autologous and
allogeneic EpSC-treated wounds at this time point
[5], other wound healing aspects should be related
with the increased VEGF expression. In this regard,
epithelialization, granulation tissue deposition and
minimizing scar formation have been correlated with
the latter growth factor [25]. However, all the afore-
mentioned parameters scored very similarly in
autologous and allogeneic EpSC-treated wounds [5].
Nevertheless, an increase in VEGF mRNA is a de-
sirable finding in any wound-healing study because
it has been shown that topical VEGF application
accelerates diabetic wound healing in mice [26], rats
[27] and humans [28]. Although the present study
was performed in healthy animals, these findings are
promising and stimulate exploration of the influence
of allogeneic EpSC treatment in diabetic patients
who are immune compromised and suffer from
microangiopathy. At week 5, all injected groups dem-
onstrated a significant increase in VEGF and eKER
mRNA compared with the untreated sample, dem-
onstrating at least a favorable influence of the injection

technique on the long-term epithelialization rate.
Indeed, at this time point, almost complete re-
epithelialization was obtained in 80% of the treated
wounds, whereas only 60% of untreated wounds
demonstrated this level of epithelialization [5]. To-
gether with the findings on IFN-γ mRNA expression
as mentioned earlier, investigating different injection
routes and procedures might benefit future studies
and generate valuable information for determining
the most suitable application route for novel wound
treatments.

In our hands, EGF mRNA was significantly lower
in both EpSC-treated groups compared with vehicle
injection and untreated wounds at week 5.This is prob-
ably because untreated control wounds exhibited a
lower epithelialization rate [5] and vehicle treatment
results in less mature epithelial cell–containing fol-
licles [6].Therefore, a low EGF mRNA expression at
week 5 probably corresponded to the low need for epi-
thelialization after wound closure and a return to a
more-or-less original status. In this regard, it has been
reported that increasing EGF concentration in healthy
human skin equivalents results in a decreased epider-
mal proliferation and increased epidermal stress [29].
Corresponding with the EGF expression levels, IGF-1
mRNA expression was the highest 1 week after EpSC
treatments, and these levels significantly decreased over
time only in these wounds. The increase of this re-
generative growth factor after autologous and allogeneic
EpSC treatment, in contrast to vehicle-treated and un-
treated wounds, indicates an EpSC-associated finding.
In this study, a clear correlation among EpSCs, early
IGF-1 expression and improved wound healing could
be made. The latter was demonstrated by signifi-
cantly reduced granulation tissue, faster wound closure
and increased vascularization [5], which are all fea-
tures that have been reported after MSC treatment
as well [30].This is in agreement with previous studies
in which low IGF-1 levels were associated with non-
healing wounds in diabetic patients [17] and exogenous
IGF-1 application accelerated wound healing [31,32].
Interestingly, the correlation of IGF-1 with healing en-
hancement seems to be a process that is synergistic
with other growth factors [33], and, together with the
aforementioned findings, it can also be concluded that
EpSC-associated wound healing improvement is a mul-
tifactorial process.

Our results suggest that allogeneic EpSC-treated
wounds demonstrate the highest expression of IL-6,
VEGF and IGF-1 mRNA, whereas the injection itself
caused a long-term increase in IFN-γ, VEGF and eKER
mRNA expression, independent of the presence of cells.
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Mesenchymal stem cells improve the wound healing process of 1 

mammalian skin. 2 

 3 

INTRODUCTION 4 

Skin is a multilayer organ with primary function of protective barrier against external 5 

environment; in fact it prevents the body dehydration and the penetration of external 6 

microorganisms (Pereira RF et al., 2013). Loss of the integrity of large portions of the skin 7 

as a result of injury or illness may cause major disability associate to decreased bodily 8 

function, social problems and poor quality of life (Pereira RF and Bártolo PJ, 2014). The 9 

wound healing is a complex process that starts after injury and pass through three phases: 10 

hemostasis and inflammation, proliferation, and remodeling (Martin P, 1997; Singer AJ and 11 

Clark RA, 1999; Kondo T., 2007, McGavin MD and Zachary JF, 2007). Various cells, 12 

cytokines and growth factors regulate these phases. After the hemostasis, via vasospasm, 13 

fibrin the position and the coagulation process, in the inflammatory phase, leukocytes 14 

infiltrate the wound site, secret cytokines and through phagocytosis and the degenerative 15 

enzymes remove cell debris and pathogenic organisms. The proliferative phase consist in 16 

vessels neoangiogenesis, re-epithelialization and formation of connective tissue stroma to 17 

restore normal structure and function to injured tissue. In this phase, a new fibrovascular 18 

tissue, the granulation tissue, fills the wound. Its capillaries are arranged perpendicular to 19 

the surface of the skin and the proliferating fibroblasts are arranged perpendicular to them. 20 

The remodeling phase begins following injury and it includes remodeling of granulation 21 

tissue by conversion of immature connective tissue to mature connective tissue through new 22 

extracellular collagen formation. This connective tissue drives wound contraction and, if 23 

excessive, can cause fibrosis and hyperplastic scar (Diegelmann RF and Evans MC, 2004; 24 

Otero-Viñas M and Falanga V, 2016). The wound healing comprehends skin restoration and 25 

reestablishment of its tensile strength and natural barrier function (Singer AJ et al., 2000, 26 

Cerqueira MT et al., 2012). Dysfunctional healing causes frequently to lifelong disability, with 27 

significant consequences and economic impact. To optimize wound healing, cell therapy 28 

would be the perfect choice, particularly for extensive and chronic wounds. The presence of 29 

mesenchymal stem cells (MSCs) in normal skin (Sellheyer K and Krahl D, 2010; Maxon S 30 

et al., 2012) and their role in natural wound healing (Paquet-Fifield S et al., 2009; Maxon S 31 

et al., 2012) indicates that the use of exogenous MSCs might be a solution to treat wounds. 32 

MSCs are self-renewing and expandable cells in fact, they are able to differentiate into 33 

different cell lineages such as osteoblast, adipocytes, chondrocytes, tenocytes, and 34 

myocytes (Martinello T et al., 2010; Martinello T et al., 2011; Gomiero C et al., 2016). 35 



Although bone marrow is one of the most frequently source used, there are few data in 36 

literature showing advantage of a particular tissue origin of MSC, for instance peripheral 37 

blood, adipose tissue, periosteum, synovial membrane, skin and others (Martinello T et al., 38 

2010; Martinello T et al., 2011; da Silva Meirelles L et al., 2008; Maxon S et al., 2012). The 39 

involvement of MSCs in the wound-healing process is significant, in particular related to 40 

distant wound margin, vascular insufficient and inflammation grade. MSCs may regulate and 41 

improve the main phases of wound healing (Otero-Viñas M and Falanga V, 2016), 42 

contributing to the reduction of inflammation (Wu Y et al., 2007; Cerqueira MT et al., 2012), 43 

promoting the angiogenesis, reducing the wound contraction, attenuating the scar formation 44 

(Liu P et al., 2008; Cerqueira MT et al., 2012), and stimulating the cell movement during 45 

epithelial remodeling (Otero-Viñas M and Falanga V, 2016). Moreover, the 46 

immunosuppressive properties of MSCs allow their potential use in allogeneic therapy. 47 

Although the contribute of stem cell involvement in cutaneous wound healing is largely 48 

studied (Hu M et al., 2014; Jackson W et al., 2012; Cerqueira MT et al., 2016) this process 49 

has never been observed in extended wound and in large animal model. In this study a 50 

surgical wound model was developed in sheep and the effect of allogeneic MSCs treatment 51 

was evaluated.  52 

 53 

MATERIALS AND METHODS 54 

Animal model 55 

Six female Bergamasca sheep homogeneous for size and age were used in this study. 56 

Sheep were acclimated to a box of the clinical science department (MAPS Department, 57 

University of Padua, Legnaro, Italy) of our University, 2 weeks prior to beginning of the 58 

experimental study. Parasitological and biochemistry examinations were carried out to 59 

ensure the good health of the subjects. In this study, sheep was chosen because they are 60 

less neurologically developed in comparison to carnivores/equines and have sufficient 61 

superficial space on their back for the experimental lesions. Moreover, sheep is also 62 

considered a possible animal model for human medicine. The experiment was approved by 63 

The Body for the Protection of Animals (OPBA) which deals with topics regarding animals 64 

used for scientific and educational purposes, in all facilities of the University which carry out 65 

scientific activity using animals, as per Legislative Decree no. 26/2014, and approved by 66 

article 9 of the executive order 116/92 and the ministerial decree n° 51/2015-PR released 67 

by the Health Department of Italy on January 29th, 2015. The number of sheep was chosen 68 

based on statistical models and on the “The 3Rs principles replacement-reduction-69 



refinement” (Russel WMS and Burch RL, 1959). On the basis of these principles, it is 70 

possible i) to make the replacement of animals with other experimental methods when 71 

possible (replacement), ii) the reduction of the number of employed subjects (reduction) and 72 

iii) the improvement of the techniques and procedures in order to eliminate or minimize 73 

stress and suffering of the animals (Refinement) (Russel WMS and Burch RL, 1959). At the 74 

end of project, the animals have not been sacrificed.  75 

 76 

Sheep PB-MSCs isolation 77 

MSCs used in the experiment were isolated from peripheral blood (PB) of different sheep 78 

that were not part of the experiment (homologous MSCs). A 100 ml of peripheral blood were 79 

taken from the jugular vein and collected in a vacutainer containing anticoagulant Li-heparin. 80 

The mononuclear cells were isolated using the protocol of Martinello et al (2010). Cultures 81 

were maintained at 37°C with 5% CO2 and on the day of experiment, PB-MSCs were 82 

trypsinized with 0.25% trypsin-EDTA and used for the trial. 83 

Induction of the surgical lesions 84 

Six full-thickness square wound (4x4 cm) were performed under general anesthesia and 85 

analgesia on the back of the sheep using a scalpel and a sterilized square guide model. All 86 

lesions were used to analyze the effect of five different treatments and the distance of each 87 

lesion did not influence the result of trials. In this study, PB-MSCs treatment was compared 88 

to control, phosphate saline buffer (PBS) treatment. 89 

At 15 and 42 days after the induction of the lesions, samples for histology, 90 

immunohistochemistry (IHC) and molecular analyses were collected by means of a 6-mm 91 

punch biopsy with appropriate sedation and analgesic drug administration of the sheep.  92 

Application of treatments and management 93 

Few minutes after wound induction, 1x106 cells diluted in 1ml of PBS were injected in the 94 

margins of the lesions and 1x106 cells diluted in 1ml of hyaluronic acid (Hyalgan®, Fidia) 95 

was topically applied. PBS was administered onto control wounds. Both PB-MSCs and PBS 96 

were applied only in the first day of experiment. After the application of the treatments, the 97 

lesions were bandaged with sterile gauze using the “wet-to-dry” method. Every day, wounds 98 

were cleaned with PBS and the bandage was changed. 99 

 100 

Clinical Evaluation  101 



The macroscopic aspect of the lesions was documented with photographs that were taken 102 

every day using a ruler for the evaluation of the process of healing of the wounds. Every 103 

week, the same operator performed a clinical evaluation without knowing the number of the 104 

subject and the type of treatment that was judging. The valuations obtained were catalogued 105 

using the model of Hadley (Hadley HS et al., 2012), giving different parameters such as 106 

presence, color and character of the exudate, the aspect of the gauze after removal and the 107 

hydration of the wound.   108 

The score system is reported in Table 1. 109 

 110 

Parameter Score 

Presence of exudate 

1 absent 
2 small 
3 moderate 
4 abundant 

Color of exudate 

1 clear 
2 pink/red 
3 brown 
4 yellow 
5 green 

Character of exudate 

1 serous 
2 serosanguineous 
3 sanguineous 
4 purulent + 
5 purulent ++ 
6 purulent +++ 

Gauze 

1 dry/clean 
2 dry/stained 
3 moist 
4 wet 

Hydration 

1 Normal 
2 Maceration + 
3 Maceration ++ 
4 Desiccation + 
5 Desiccation ++ 

 111 
Table 1. Skin-healing parameters scored in the experiment. 112 

The percentages of re-epithelization and wound contraction were measured at different time 113 

periods after 7, 14, 21, 28 and 42 days. 114 

Microscopic evaluation 115 

For the histological evaluation two sections were cut at different deepness from each biopsy 116 

punch (day 15 and day 42); sections have been examined for the presence of dermal and 117 

subcutaneous infiltrate, (immature) granulation tissue, undifferentiated mesenchymal tissue 118 

(mature granulation tissue) and the development of adnexa. The score system used was a 119 

scale from 0 to 4 (0 absence, 1 presence, 2 small amount, 3 moderate amount, 4 abundant 120 

amount). 121 

 122 

RNA isolation and gene expression analysis  123 



Total RNA extraction was performed using Trizol (Life Technologies) reagent and quantified 124 

on a Nanodrop spectrophotometer (Thermo Scientific). The complementary single strand 125 

DNA (cDNA) was synthetized to perform rt-PCR using ABI 7500 Real Time PCR system 126 

(Applied Biosystems) to evaluate Collagen 1α1 (Col1α1) and hair keratin (hKER) gene 127 

expression. All samples were tested in triplicate and untreated skin were used as a calibrator 128 

sample. The 2-ΔΔct method was used to analyze and normalize the RNA expression of the 129 

target genes with respect to the endogenous housekeeping gene RPS24 (ribosomal protein 130 

S24). PCR primers (Table 2) were designed using Primer Express 3.0 software (Applied 131 

Biosystems). 132 

 133 

Gene Abbreviation 5’-Forward primer-3’ 5’-Reverse primer-3’ 

Collagen 1α1 COL1α1 GTACCATGACCGAGACGTGT AGATCACGTCATCGCACAGCA 

Hair Keratin hKER TGGTTCTGTGAGGGCTCCTT GGCGCACCTTCTCCAGGTA 

Ribosomal Protein S24 RPS24 TTTGCCAGCACCAACGTTG AAGGAACGCAAGAACAGAATGAA 

 134 

Table 2. Primers used for the quantitative Real time-PCR analysis. 135 

 136 

IHC evaluation on tissue sections  137 

In order to study inflammatory response, skin tissue was stained with polyclonal rabbit anti-138 

human CD3 (Dako, 1:100), polyclonal rabbit anti-human CD20 (Thermo Fisher, 1:100) and 139 

monoclonal mouse anti-human MHCII (Dako, 1:40). To localize proliferating cells, 140 

monoclonal mouse anti-human Ki67 (Dako, 1:10) was used while to examine the 141 

neovascularization, tissue sections were stained with monoclonal rabbit anti-human vWF 142 

(Dako; 1:3200). Immunolabeling was achieved with a high-sensitive horseradish PO mouse 143 

or rabbit diaminobenzidine kit with blocking of endogenous PO (Envision DAB+kit; Dako) in 144 

an autoimmunostainer (Cytomation S/N S38-7410-01; Dako). An antibody diluent (Dako) 145 

with background-reducing components was used to block hydrophobic interactions. The 146 

average of three fields was used to evaluate different immunohistological parameters and 147 

all measurements were performed with a computer-based program (Leica microscope DM 148 

LB2 with Leica Application Suite LAS V4.0) using 20X magnification. 149 

 150 

RESULTS  151 

Macroscopic examination 152 

Assessment of the trend of the healing process 153 

Wound closure was observed between day 21 and day 28 in all sheep. During this period, 154 

the PB-MSC-treated group showed a faster closure rate than PBS-treated lesions (Fig. 1A). 155 



Although there was no significant difference, mean wound closure time of the PB-MSC 156 

treated wounds (30,05 days) was slightly quicker than that of the PBS control group (31,80 157 

days) (Fig. 1B).  158 

 159 

Fig. 1. (A) Serial macroscopic image of the wound site at different time points after PB-MSCs and PBS treatment. Between 160 

day 21 and 28, a smaller wound diameter and higher wound closure rate was observed in PB-MSCs-treated wounds. (B) 161 

The panel represents the percentage of days of healing. The wound closure time of the PB-MSC treated wounds (30,05 162 

days) was slightly faster respect than the PBS-treated group (31,80 days). 163 

Furthermore, the percentage of re-epithelization and contraction of the wound have been 164 

examined. Two weeks after the induction of injuries, PB-MSCs/PBS-treated wounds showed 165 

a percentage of re-epithelialization under the 40%. Between 14 and 28 days, PB-MSCs-166 

treated lesions presented a higher percentage of re-epithelialization in comparison with PBS 167 

control group (58,69% vs 49,89% at 21 days and 93,5% vs 87% at 28 days). The data 168 

presented variability but not statistical significance. After 42 days of treatment, all wounds 169 

were healed presenting a 100% of re-epithelialization (Fig. 2A). After two weeks of 170 

treatments, PB-MSCs-treated wounds presented an 81% of percentage of contraction 171 

respect of 78% of PBS control group. These data revealed a small variability without 172 

statistical significance. All lesions presented a 100% of contraction after 42 days of treatment 173 

(Fig. 2B). 174 



 175 

Fig. 2 the histogram shows the percentage of re-epithelization (A) and the percentage of concentration (B) after 14, 21, 28 176 

days of treatment. PB-MSCs-treated wounds trend is represented by black lane while PBS control group is indicated in 177 

grey line.    178 

 179 

Evaluation of the aspect of the wound 180 

Presence, color and character of exudate: the wound exudate appears to be variable during 181 

the first week of experimentation and PB-MSCs-treated wound present a slight non-182 

significant increase of exudate than PBS control group. From the second week, the exudate 183 

is absent in all lesions of sheep and they did not present variability or statistical significance. 184 

The color and the character of exudate were evaluated during the first week. For all lesions, 185 

the color of exudate is pink/red and the characters of exudate changed from the 186 

serosanguineous to sanguineous but the data did not present variability or statistical 187 

significance.  188 

Aspect of gauze and hydration: the aspect of gauze of PB-MSCs-treated wounds were dry 189 

and clean while PBS control group were slightly moist than treated lesions. The data were 190 

not significant from the first week of the trial.  191 

From the first week until the end of experimentation, the PBS control injuries and PB-MSCs-192 

treated wounds showed a normal state of hydration.  193 

 194 

Microscopic examination 195 

Dermal inflammation: 33% of PB-MSCs-treated wounds presented a moderate amount of 196 

dermal inflammation, while 67% of them presented a small amount compared to PBS-197 

treated wounds that contained 50% of moderate and 50% of small amount of dermal 198 

inflammation after 15 days of treatment. After 42 days of trial, in PB-MSC-treated wounds, 199 



the inflammation is completely absent while the PBS control group presented a 60% of small 200 

amount. 201 

Subcutaneous inflammation: after 15 days of treatment, the 83% of PB-MSCs-treated 202 

wounds contained a small amount of subcutaneous inflammation. The PBS control group 203 

showed a 17% of moderate and a 67% of small quantity of inflammation. After 42 days of 204 

treatment, subcutaneous inflammation was absent in all samples. 205 

Immature granulation tissue: After 15 days of treatment, all PB-MSCs/PBS-treated wounds 206 

presented an abundant amount of immature granulation tissue and it was absent in all 207 

wounds after 42 days of trial (Fig 3). 208 

Mature granulation tissue and cutaneous adnexa: They were observed in samples collected 209 

at 42 days only; the skin appendages were complete in all the components, such as hair 210 

follicles, sebaceous and apocrine glands. The cutaneous adnexa observed in PB-MSCs-211 

treated wounds appeared more mature and densely disposed compare to those in PBS-212 

treated wounds. Moreover, in PB-MSCs-treated wounds, vascular plexus were detected 213 

(Fig. 3). 214 

Re-epithelization: After 15 days of treatment, all samples showed a 100% of ulceration and 215 

100% of absent re-epithelization. Vice versa, after 42 days of trial all wounds contained 216 

100% of absent ulceration and 100% of re-epithelization. 217 

 218 

Fig.3 Sheep, skin, Hematoxylin-Eosin. Representative photomicrographs of PBS and PB-MSCs treated wounds analyzed 219 

after 15 and 42 days of treatments. The images show the presence of immature granulation tissue at 15 days, while mature 220 

connective tissue and developing cutaneous adnexa are present at 42 days.  221 



Quantitative analysis of inflammatory, proliferative, vascular and structural factors  222 

Histochemical staining revealed that skin lesions treated with sheep PB-MSCs (in black 223 

bars) presented, after 15 days, a significant increase in cells positive for MHCII respect the 224 

wounds treated with PBS only (in grey bars). After 42 days, the PBS-treated wounds showed 225 

a significant presence of inflammation cells (Fig. 4A, left).  226 

Cell proliferation was studied with Ki67 marker: within the newly formed dermis, the lesions 227 

treated with PB-MSCs presented a higher cell proliferation compared to the PBS control 228 

group. After 42 days of trial, the expression of Ki67 in the PB-MSCs/PBS-treated skin injuries 229 

decreased over time showing areas with minimal Ki67 staining (Fig. 4A, center). 230 

Neovascularization was evaluated by means of vWF staining and a considerably higher 231 

average of dermal blood vessels was noticed in PB-MSCs-treated wounds compared with 232 

the PBS-treated lesions. Neovascularization decreased in the PB-MSCs/PBS-treated 233 

lesions during the healing, showing the same protein expression values (Fig. 4A, right) after 234 

42 days of trial.  235 

In the molecular analysis (rt-PCR) the expression level of gene Col1α1 and hKER were 236 

studied. Figure 4B indicates that after 15 and 42 days of trial, Col1α1 mRNA expression 237 

level was significant higher in the wounds treated with PB-MSCs compared to the PBS 238 

control group. The PBS treatment seems to not influence the expression level of the gene 239 

Col1α1.  240 

After 15 days of treatment the hKER mRNA expression levels was already present in the 241 

wounds treated with PB-MSCs. Furthermore, the expression level of gene hKER was 242 

significantly increased only in the PB-MSCs-treated lesions after 42 days of trial. PBS 243 

treatment does not stimulate the cutaneous adnexa formation after 15 and 42 days of 244 

treatment (Fig. 4B).  245 



 246 

Fig.4 Immunohistochemistry analysis of MHCII, KI67, vWF and mRNA expression of Col1α1 and hKER in PB-MSCs-247 

treated wounds (in black bars) and control group (PBS, in grey bars). Each graph represents the average ± SD of wound 248 

treated with PB-MSCs and saline solution PBS. Asterisk indicates significant differences between PB-MSC group and PBS 249 

control group (*P <0.05). 250 

 251 

DISCUSSION 252 

MSCs are a promising solution to promote wound healing. The presence of these cells in 253 

normal skin (Sellheyer K and Krahl D, 2010) suggests their important role in maintenance 254 

of skin; there are different types of stem cells in the epidermis, dermis, and hair follicle (Cui 255 

P et al., 2014), which preserve the dynamic state of tissue. Endogenous stem cells 256 

coordinate cell signaling of wound healing (Cerqueira MT et al., 2016) through different 257 

mechanism such as the targeting wound re-epithelialization, formation of granulation tissue 258 

and neovascularization, hair follicle formation. Several in vivo studies performed in small 259 

animals, have demonstrated that stem cells accelerate wound healing, hypothesizing their 260 

contribute in re-epithelization, vascularization and extracellular remodeling (Yoshikawa T et 261 

al., 2008; Kwon DS et al., 2008; Badillo AT et al., 2007; Stoff A et al., 2009; Fathke C et al., 262 

2004). The present study investigated, in a large animal, the influences of a PB-MSC 263 

treatment in an experimental wound model evaluating their short/long-term effects on skin 264 

regeneration. 265 
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It is known that exists three modes of wound healing: primary, secondary and tertiary 266 

intention (Jeffcoate W et al., 2004). Primary intention refers to wound healing after a clean 267 

injury, such as an incision or a superficial burn, in which there is minimal epithelialization 268 

and the apposition of wound margins is needed to repair the skin defect (Iocono JA et al., 269 

1998; Russell L, 1999; You HJ and SK Han, 2014) using sutures, staples or adhesive 270 

(Iocono JA et al., 1998; Russell L, 1999). Healing associated with a large and/or deep wound 271 

in which the tissue edges cannot be approximated is called of secondary intention (Iocono 272 

JA et al., 1998; Russell L, 1999). Wounds are left open to heal with the production of 273 

granulation tissue, followed by contraction and epithelialization (You HJ and SK H, 2014). 274 

Often, this type of healing can be associated with substantial scarring (Iocono JA et al., 275 

1998; Russell L, 1999). Tertiary intention is a healing associated with wounds that are 276 

usually infected or dehisced surgical wounds. Healing is promoted by leaving the wound 277 

open for a prescribed period of time to treat the contamination or infection and to allow 278 

intention for growth of new tissue before approximating the skin edges for a primary closure 279 

(Iocono JA et al., 1998; Russell L, 1999). In literature, it is already known the capacity of 280 

stem cells seeded on nanostructured membrane to help healing of primary intention such 281 

as skin burned in a murine model (Souza C et al., 2014). This study suggests that MSCs 282 

might be used as a possible treatment also for wound healing of secondary intention. 283 

After skin injury, the inflammatory phase starts immediately. During this process, it is 284 

observed a platelet aggregation at the injury site followed by the infiltration of neutrophils, 285 

macrophages and T-lymphocytes into the wound site (Martin P, 1997; Singer AJ, 1999). The 286 

data presented in this paper show, from a clinical perspective, a level of inflammation not 287 

significantly different between the PBS treatment and the PB-MSCs-treated wounds. The 288 

presence of exudate increases slightly after PB-MSC treatment, the color appears in all 289 

wound pink/red and the characters of exudate change not significantly from 290 

serosanguineous to sanguineous. Microscopic evaluations indicate the presence of 291 

inflammation phase 15 days after injury both in PBS control group and in PB-MSC group, 292 

and both at dermal level and at subcutaneous level. On the contrary, a considerable result 293 

obtained in our study is the complete absence of inflammation after 42 days in PB-MSC 294 

group whereas PBS control group still presented a 60% of dermal inflammation. These 295 

results corroborate data present in literature; for istance, Kim JW et al. (2013) showed that 296 

experimental full-thickness wounds treated with topical applications of allogeneic MSCs 297 

presented an increase healing and less inflammation probably because MSCs are able to 298 

release immunosuppressive factors in the wound bed that inhibit proliferation of immune 299 



cells such as B cells, T cell and natural killers cells, therefore reducing the inflammation 300 

(Beyth S et al., 2005; Matthay MA et al., 2010; Hass R  et al., 2011). Interestingly, Chen et 301 

al (2008) reported the influence of MSCs in the inflammatory response as an up-regulation 302 

of MIP-1α and β with an increase in the number of macrophages infiltrating the wound (Chen 303 

et al 2008). Moreover, in the last decade, it has been found that MSCs possesses also an 304 

antimicrobial effect, an important benefit in reducing excess inflammation from contaminants 305 

in the wound during injury and treatment (Mei SH et al., 2010) and in the scar formation 306 

(Nuschke et al., 2014). 307 

After the inflammation phase there is the proliferative phase with newly formed granulation 308 

tissue that cover the wound area to complete tissue repair. This phase is characterized by 309 

angiogenesis indispensable for leading cytokines and sustaining the granulation tissue and 310 

re-epithelization (Singer AJ, 1999; Burnouf T et al., 2013). The granulation tissue, evaluated 311 

histologically in this study, is more abundant with PB-MSC respect PBS treatment and in 312 

both case it decrease with time. The newly granulation tissue is supported at 15 days both 313 

in PBS and in PB-MSC treatment by expression of vWF. vWF, a glycoprotein essential for 314 

normal hemostasis, plays multiple vascular roles and it is associated to angiogenesis. The 315 

evidence of the presence of a proliferative action is confirmed also by an increase of Ki67 316 

expression. Ki67 is a cellular marker for proliferation; in fact, this protein is present during 317 

all active phase of the cell cycle. The PB-MSC treatment induces a significant increase of 318 

Ki67 expression respect PBS, correlated with the presence of more abundant granulation 319 

tissue. The increase of matrix and vessel formation could be probably attributed to the 320 

observed up-regulation of growth factors such as EGF, TGF-β1 and stromal-derived growth 321 

factor-1 (Chen et al. 2008). The more active proliferation induced by PB-MSC treatment 322 

reflected the percentage of re-epithelization and contraction. In fact if at 14 days PB-MSC 323 

and PBS treatment show the same level of re-epithelization, at 28 days the 93,5% of PB-324 

MSC treated wound is re-epithelized, versus the 87% of PBS treated wound; moreover, the 325 

contraction of PB-MSC appears earlier respect PBS treated wounds. The last described 326 

parameters were observed clinically while histologically, none difference was noted between 327 

PB-MSC and PBS treatment. This could be explained by the sampling technique: small 328 

biopsies indeed have been taken at the healing edge of the wound and are not 329 

representative of the entire affected area. Furthermore, the proliferating and remodeling 330 

phases of the healing process could be present simultaneously in the healing wound 331 

(McGavin MD and Zachary JF, 2007). This leads to a variability of recorded observations in 332 

the different samples. 333 



The data obtained in this study confirm that MSCs should produce a multiplicity of pro-334 

angiogenic factors recruited in the site lesion to promote the stimulation of endothelial cell 335 

leading to novel blood vessels formation in the wound bed. The most notably is VEGF, a 336 

potent stimulator of angiogenesis in the wound bed (Herrmann JL et al., 2011). 337 

Revascularization of the wound bed is an important phase of the normal wound healing 338 

process and the new formation of vessels is necessary to carry blood in the wound area, 339 

which is in need of oxygen and nutrients (Morimoto N et al., 2012; Zhang Y et al., 2014).  340 

The last phase that is observed during wound healing is the maturation of the tissue. In 341 

normal skin, a population of multipotent stem cells able of generating all of the components 342 

of hair as well as epithelial cells and is located in a specialized site, the hair follicle bulge 343 

(Oshima H et al., 2001). These cells do not contribute to preservation of the interfollicular 344 

epidermis but can differentiate into epidermal stem cells after a trauma (Levy V et al., 2007). 345 

The treatment of wound with PB-MSC demonstrated the ability of these cells of stimulating 346 

the appropriate production of matrix and developing new hair follicles. Collagen type 1 is the 347 

predominant collagen in normal skin and exceeds collagen type 3 by a ratio of 4:1. During 348 

wound healing, this ratio decreases to 2:1 because of an early increase in the deposition of 349 

collagen type (Fathke C et al., 2004). In our study, the expression of matrix protein collagen 350 

1 is higher in PB-MSC treatment wounds respect than PBS control group at 14 and 42 days, 351 

indicating a correct and early process of wound healing. Our study conducted on large 352 

animals has led to the same results obtained with small animals. In fact, lesions created in 353 

rabbits (Borena BM et al., 2010) and in dogs (Borena BM et al., 2009) demonstrated 354 

significantly earlier vascularization, fibroplasia and premature maturation of collagen using 355 

autologous bone marrow-derived mononuclear cells. Another important result obtained in 356 

this study showed that the treatment with PB-MSC induce, in this last phase, a high and 357 

significant increase of mRNA level of hair Keratin, which expression is detectable already at 358 

14 days. Furthermore, after 42 days, microscopic evaluation highlights the higher presence 359 

of skin appendages after PB-MSC respect PBS treatment; in particular, a higher percentage 360 

of treated sample present more mature adnexa such as hair follicles, sebaceous and 361 

apocrine glands and densely disposed. Formigli L et al. (2015) demonstrated as MSC-362 

seeded on bioengineering scaffolds induced enhanced re-epithelialization (characterized by 363 

a multilayered epidermis, return of hair follicles, sebaceous glands and enhanced blood 364 

vessel formation); our study showed similar results in the presence of MSCs isolated from 365 

peripheral blood of sheep.  366 

 367 



In conclusion, in the skin regeneration, PB-MSCs seem to have different roles but the most 368 

significant appears to be related to an improved quality of the healing process. Probably, 369 

the therapeutic benefit of these cells derives from the so-called bystander effects, although 370 

the molecular mechanisms are still under study (Savukinas UB et al. 2016). In fact, the PB-371 

MSCs treated wound closed faster respect PBS control group, and the contraction area was 372 

larger. Moreover, the data presented in this paper indicate that the treatment with PB-MSCs 373 

might be advisable not only for superficial injuries, but even for deep lesions, such as burns 374 

or diabetic ulcers (Nuschke A, 2014; Falanga V et., 2007) supporting the stimulation of 375 

secondary intention wound healing. Indeed, PB-MSCs were able to speed up the 376 

appearance of granulation tissue, neovascularization, structural proteins and skin adnexa. 377 

 378 
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DISCUSSION 

Adult stem cells have been isolated from different tissues and their potential 

application is still under investigation in both human and veterinary medicine. 

Indeed, MSCs offer great promise in treating previously incurable disease for 

several reasons: i) they lack the ethical controversies that are associated to 

embryonic stem cells (ES) since are derived from adult tissues and do not require 

manipulation or destruction of embryo, ii) do not possess the risk of tumorigenicity 

if implanted in vivo. It has been generally demonstrated that iii) MSCs possess the 

ability to undergo toward different lineages of differentiation. 

Current standard of care for tendon, muscle and other pathologies, is similar in all 

species and comprises a combination of physical therapy, reduced exercise and 

medical (systemic and local) and surgical modalities. Consequently, regenerative 

strategies including stem cell therapy have come into the focus not only in the 

human surgery but also in the veterinary medicine for dogs and horses (Brehm W 

et al., 2012). Despite the great advances made in the isolation, expansion and 

definition of the stromal cells population, several challenges remain open to fully 

understand the MSCs behavior of in vivo and in vitro. Improved understanding of 

MSCs function holds great promise for the application of cell therapy and also for 

the development of powerful cell-derived therapeutics for regenerative medicine 

(Spees JL et al., 2016). 

 

This thesis has been divided in two sections: the first part focused on the in vitro 

mesenchymal stromal cells isolated from peripheral blood (PB-MSCs) 

reprogrammed towards musculoskeletal fate using i) growth factors (bFGF2 + TGF-

β3) combined with the low level laser technology (LLLT), ii) innovative methods for 

transfection such as MyoD-TAT and iii) an “intelligent” colloidal nano-vector 

(SAMNs). The second part regarded two studies of in vivo application of autologous 

and allogeneic epithelial stem cells (EP-MSCs) and allogeneic PB-MSCs to improve 

skin wound regeneration respectively in horses and sheep.  

 

The first section of this work investigates innovative methods to reprogram PB-

MSCs towards tenogenic and myogenic fates. 

Tendons are structures that present low cellularity and low vascularity and they are 

constituted of regulare dense connective tissue. These properties confer stiffness 

and elasticity to the tendons (Brehm W et al., 2012; Smith RK et al., 2013; Patruno 

M and Martinello T, 2014), which are essential in transmitting forces between 

muscles and bones (Freedman BR et al. 2014) but the not-vascularized nature and 

low number of tenocytes, reduce the self-healing and regenerative potential of 

tendons (Jiang D et al. 2014; Veronesi F et al. 2015). Autologous tenocytes can be 

used to repair injured tendons, (Cao Y et al., 2002) nevertheless tenocytes may not 

be an ideal source for tendon repair (Bi Y et al., 2007) because these cells have a 

limited proliferative potential and ethic committees from many countries prohibit 

invasive collection of tendon tissue to obtain tenocytes (Tan Q et al., 2012). For this 

reason, our first study tried to fulfill this problem: PB-MSCs were cultured in media 
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conditioned with different growth factors (GFs) such as TGFβ3 (transforming growth 

factor), EGF2 (Epidermal growth factor), bFGF2 (Fibroblast growth factor) and IGF-

1 (insulin-like growth factor) in presence or without of the Low Level Laser 

Technology (LLLT). RT-PCR was used to study the mRNA expression levels of 

genes involved in the tenogenic induction such as Early Growth Response Protein-

1 (EGR1), Tenascin (TNC) and Decorin (DCN). The singular addition of GFs did not 

show any influence on the mRNA expression of genes above mentioned, whereas 

the specific combinations bFGF2 + TGFβ3 and bFGF2 + TGFβ3 + LLLT arrested 

cell proliferation in favor of differentiation toward tenogenic fate. Indeed, the 

supplement of bFGF2 and TGFβ3 significantly upregulated the expression of EGR1 

and DCN, while the use of LLLT induced a significant increase of TNC levels.  

In literature, Gonçalves AI et al. (2013) showed that bFGF, EGF, PDGF-BB and 

TGF-β1 have a molecular influence on the tendon-related genetic expression of 

MSCs isolated from amniotic fluid (hAFSCs) and adipose tissue (hASCs), starting 

up the process of tenogenic differentiation and an extracellular matrix production. 

Moreover, Cai TY et al. (2013) indicated that bFGF2 is able to activate the MAPK 

pathway promoting the differentiation of MSCs into tendons with the expression of 

tendon matrix protein such as collagen type I, collagen type III and scleraxis. 

Furthermore, it was demonstrated that bFGF2, introduced with a viral vector, 

increased the gene level of TGF-β1, and VEGF and down-regulated IGF1 during 

the tendon repair process (Tang JB et al., 2014).  

LLLT is a technique that usually is used in vivo as generate an anti-inflammatory 

effect, decrease the number of fibroblasts and neo vascularization in tendon lesions 

of sheep (Iacopetti I et al., 2015). In vitro, LLLT increase the bone morphogenetic 

protein 2 (BMP-2) because it stimulates cell proliferation in regenerative process 

(Pyo SJ et al., 2013).  

It is known that bFGF2, TGF-β and LLLT possess stimulatory effects on cells: this 

study is a pivotal work where bFGF2 and TGFβ3 and LLLT were used together to 

differentiate PB-MSCs in tenoblasts in vitro.  

The second paper highlighted the importance to have differentiated cells to 

regenerate muscle disease such as injuries, muscle degeneration (Duchenne 

dystrophy) and inflammation. Currently, is possible to use different methods to 

regenerate muscle lesions. Gene therapy may be an effective method by which to 

deliver high, maintainable concentrations of growth factor to injured muscle (Barton-

Davis ER et al., 1998; Barton ER et al., 2002; Musaro A et al., 2001). Although IGF1 

improved muscle healing, histology of the injected muscle revealed fibrosis within 

the lacerated site (Lee C et al. 2000). Another growth factor, VEGF, by favoring 

angiogenesis, is known to enhance skeletal muscle repair (Deasy BM et al., 2009; 

Frey SP et al., 2012; Messina S et al., 2007). By targeting simultaneously 

angiogenesis and myogenesis, it was shown that combined delivery of VEGF and 

IGF1 enhance the muscle regenerative process (Borselli C et al., 2010). In this 

direction, the use of platelet-rich plasma (PRP) is considered a possible alternative 

approach based on the ability of autologous growth factors to improve skeletal 

muscle regeneration (Hamid MS et al., 2014; Hammond JW et al., 2009). 



123 

 

Considered as safe products, autologous PRP injections are increasingly used in 

human and animal patients with sports-related injuries (Engebretsen L et al., 2010).  

Scaffolds are good helpers for muscle injuries: myogenic precursor cell survival and 

migration is greatly increased by using appropriate scaffold composition and growth 

factor delivery (Hill E et al., 2006; Boldrin L et al., 2007). Ideally, using an appropriate 

ECM composition and stiffness, scaffolds should best replicate the in vivo milieu and 

mechanical microenvironment (Gilbert PM et al., 2010; Engler AJ et al., 2006). A 

combination of stem cells, biomaterial-based scaffolds and growth factors may 

provide a therapeutic option to improve regeneration of injured skeletal muscles 

(Jeon OH and Elisseeff J, 2016). After an initial demonstration that normal 

myoblasts can restore dystrophin expression in mdx mice (Partridge TA et al., 

1989), clinical trials, in which allogeneic normal human myoblasts were injected 

intramuscularly several times in dystrophic young boys muscles, have not been 

successful (Law PK et al. 1990; Mendell JR et al., 1995). Even recently, despite 

clear improvement in methodologies that enhance the success of myoblast 

transplantation in Duchenne patients (Skuk D et al., 2007) outcomes of clinical trials 

are still disappointing. These experiments have raised concerns about the limited 

migratory and proliferative capacities of human myoblasts, as well as their limited 

life span in vivo. Among all these non-satellite myogenic stem cells, human 

mesoangioblasts, human myogenic-endothelial cells and human muscle–derived 

CD133+ have shown myogenic potentials in vitro and in vivo (Sampaolesi M et al., 

2006; Zheng B et al., 2007; Meng J et al. 2014).  

As it is known that DNA does not possess the ability to translocate through the 

cellular membrane, various approaches are employed to accomplish this task 

(Ghosh PS et al., 2008) including physical manipulations (mechanical pressure, 

electric shock and hydrodynamic forces (Kamimura K et al. 2011), as well as the 

use of viral and non-viral vectors. In order, regarding viral vectors such as retrovirus, 

adenovirus, and herpes simplex virus, are typically selected (Kamimura K et al., 

2011). Furthermore, viruses can be genetically modified in order to be highly 

effective. The promise of retroviral-mediated gene delivery to treat or even cure 

genetic diseases has been demonstrated in animal models and the clinic. Despite 

present accomplishments and vector design improvements such as the self-

inactivating mechanism, testing in humans has not gone without serious 

consequences. Most notoriously, the emergence of cancer in several patients 

enrolled in a y-retroviral-mediated clinical trial for X-linked SCID (severe combined 

immunodeficiency) has forced current vector systems to be reconsidered 

(Papayannakos C and Daniel R, 2013).  

Our study focused on the reprogramming of PB-MSCs towards myogenic 

progenitors using the small peptide TAT of HIV-1 that is a powerful transactivator of 

gene expression. It is able to translocate through the plasma membrane and when 

it is fused with other peptides may act as a protein transduction system. A short 

amino acid motif, highly enriched in basic amino acids, promotes the export of the 

protein from the expressing cells. Cellular internalization of TAT and TAT fusion 

proteins requires the integrity of cell membrane lipid rafts and when TAT basic 

domain attached to large protein cargos, also mediates their efficient cellular 
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internalization and can be thus utilized for transcellular protein transduction 

(Fittipaldi A and Giacca M, 2005). This ability appears particularly interesting to 

induce tissue-specific differentiation when the TAT protein is associated to 

transcription factors.  

In our work, the potential of the complex TAT-MyoD in inducing equine PB-MSCs 

towards the myogenic fate was evaluated. Results showed that the internalization 

process of TAT-MyoD needs the absence of serum and the nuclear localization of 

the fused complex is observed after 15 hours of incubation. However, the 

supplement of TAT-MyoD only was not sufficient to induce myogenesis and 

conditioned medium, obtained coculturing PB-MSCs with C2C12 without a direct 

contact, was added.  

To evaluate the myoblasts differentiation, RT-PCR analysis was performed to study 

Myf5 and Myogenin gene expression, and immunostaining experiments to estimate 

the expression protein of MyoD, Myf5 and Myogenin. It was interesting to note that 

the complex TAT-MyoD was able to remain in the cytoplasm after 2 and 6 hours 

after the cell transfection. Only after 15hrs of incubation, TAT-MyoD was localized 

in the nucleus and persists after 48hrs.  

In the third paper, novel surface-active maghemite nanoparticles (SAMNs) are 

tested as vectors for eukaryotic cell transfection. SAMNs showed a higher efficiency 

respect lipofectamine in the transfection of coding gene in PB-MSCs without the 

application of external magnetic fields. The labelling efficiently, allows to informative 

data on redistribution, localization, and quantification of SAMNs nanoparticles in 

MSCs cells. In our study, SAMNs linked to rhodamine (SAMN@RITC) presented a 

cytoplasmic distribution in MSCs after 48hrs of incubation and no cytotoxicity effects 

was observed with XTT cell proliferation assay. The second step was to evaluate 

SAMNs efficacy as vector for pDNA coding GFP: equine PB-MSCs were incubated 

with SAMNs@pDNA and a consistent cytoplasmic green fluorescence light was 

originated in the cells after 24hrs of treatment. This novel pDNA vector offers a very 

good transfection efficiency even at low DNA concentration. Differently from 

complex TAT-MyoD, SAMNs@pDNA can be used in cell culture with medium 

containing serum and this peculiarity becomes particularly important with delicate 

cell lines.  

In all studies reported in this section, equine MSCs isolated from peripheral blood 

were used: it is known that MSCs can be isolated from several types of tissues in 

adult mammalians (Martinello T et al., 2010; Martinello T et al., 2011; Zhu et al. 

2013, Toupadakis CA et al., 2010). In terms of invasive MSCs collection, cells 

obtained from bone marrow require an offensive procedure associated with the risk 

of complications (Giovannini S et al, 2008). Another source is adipose tissue via 

lipectomy: this method is very hostile for human and animal patients because 

anesthesia is necessary to obtain abdominal fat. Peripheral blood seems to be a 

good alternative non-invasive source compared to bone marrow and adipose tissue. 

For this reason, PB-MSCs were chosen for our experiment and they can 

differentiate into mesodermal lineage cells, including osteoblasts, chondrocytes, 

adipocytes, cardiomyocytes, hepatocytes, endothelial cells, smooth muscle cells, 

and neuronal cells, under appropriate culture conditions (Parmar N et al., 2014).  
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To conclude, the three novel methods proposed in the first section have been used 

to overcome the problem of MSCs reprogramming towards musculoskeletal fate 

using viral vectors or gene therapy. These new non-viral transfection systems are 

able to reprogram PB-MSCs without biological risk and the cells can be used in 

complete safety for the treatment of tendon and muscle lesions. 

 

The second part of this work has been focused on application of stromal cells of 

mesenchymal origin in skin repair.  

Wound healing is a complex multi-stage process that organizes the reconstitution 

of the dermal and epidermal layers of the skin. In many pathological circumstances 

such as diabetes or severe burns, the normal wound healing process fails to 

adequately restore function to the skin, leading to potentially severe complications 

from ulcers or resulting infections. As the incidence of obesity and resulting diabetes 

continues to increase in the western world (Beckles GL, Chou CF, 2006), the 

prevalence of chronic wounds related to these conditions continues to be a major 

focus of wound care research. In fact, non-healing wounds from these conditions 

have produced a multi-billion dollar advanced wound care market for technologies 

aimed at stimulating wound healing in patients that suffer from dysfunctional wound 

repair (Stuart M, 2007). Individuals with extensive skin lesions (e.g., full-thickness 

burns) suffer a substantial loss of dermis that does not regenerate spontaneously 

and may require a skin graft (Li X et al., 2015; Shen Y et al., 2015). Over the years, 

skin regeneration has been attempted with various types of transplantation, such as 

xenografts, allografts, or autografts. However, antigenicity (in allografts and 

xenografts) and the limited number of donor sites available (in autografts) mean that 

in many cases, these substitutes are unsuccessful in promoting skin regeneration 

(Freyman TM et al., 2001; Caliari-Oliveira C et al., 2015). Hence, there is a need to 

develop devices that can adequately replace the damaged tissue. Most current 

biological technologies for advanced wound care aim to provide antimicrobial 

support to the open wound and a matrix scaffold (collagen-based in many cases) 

for invading cells to reestablish the skin, with some focus on growth factor support 

of the healing process (Rees RS et al., 1999; Boateng JS et al., 2008).  

MSCs are another important “device” able to orchestrate the three main phases of 

normal wound healing (inflammatory/proliferative/remodeling), directing 

inflammation and antimicrobial activity and promoting cell migration during epithelial 

remodeling (Maxson S et al., 2012). Nuschke A (2014) showed that MSCs used in 

a chronic or non-healing wound, promotes immunosuppression, angiogenesis 

stimulation, and scar reduction and the combination of matrix scaffold with MSCs-

based cell therapy improves wound healing becoming a potential strategy in 

treatment of non-healing wounds (Huang S et al., 2012).  

Based on this knowledge, our works present skin lesions performed in vivo in 

particular on the glutei of equines and on the back of the sheep and treated, 

respectively, with autologous and allogeneic Ep-SCs and allogeneic PB-MSCs.  

In the first work of second section, autologous and allogeneic Ep-MSCs have been 

used to regenerate skin of equine glutei: the biopsies were collected after 1 and 5 

weeks of treatments. Our results suggest that allogeneic EpSCs are able to increase 
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the expression of IL-6, VEGF and IGF-1 mRNA in the wound treated, whereas the 

injection itself caused a long-term increase in IFN-y, VEGF and eKER mRNA 

expression, independent of the presence of cells.  

In the second project, six lesions performed on the back of six Bergamasca sheep 

were treated with allogeneic MSCs and two biopsies were obtained after 15 and 42 

days of treatment. Clinical evaluation performed every day showed that the healing 

time of the cells treated group (30,05 days) was faster than placebo (31,80 days) 

and that the closure of the wound was better than the group control. 

Dermal and subcutaneous inflammation, immature and undifferentiated 

mesenchymal tissue (mature granulation tissue) and skin adnexa were evaluated 

using histological analysis: PB-MSCs-treated wounds after 42 days have better 

healing than control group: dermal and subcutaneous inflammation were absent, 

undifferentiated mesenchymal tissue was slightly present and skin adnexa were 

perfectly regenerated. Molecular analysis confirmed the result obtained for skin 

adnexa in fact, the expression level of gene hKER increases significantly only in PB-

MSCs-treated lesions after 42 days of trail. The Col1α1 gene expression increased 

after 15 days of treatment in the PB-MSCs-treated wounds raising further after 42 

days. 

Lastly, MHCII, vWF and KI67 were evaluated with immunohistochemical staining: 

PB-MSCs-treated wounds showed a higher protein expression of the major 

histocompatibility complex II (MHCII), neovascularization (vWF) and cellular 

proliferation (KI67) respect PBS-treated lesions confirming that i) MSCs naturally 

produce a variety of pro-angiogenic factors following recruitment to the wound bed 

that stimulate endothelial cell proliferation and tube formation in the wound bed, 

most notably VEGF, a potent stimulator for angiogenesis that is regulated by IL-6 

and TGF-α in the wound bed (Herrmann JL  et al., 2011). It has been shown that 

exogenous VEGF application to wounds can stimulate angiogenesis (Callaghan M 

et al., 2004); MSCs used in cell therapeutics also have been shown to stimulate EC 

recruitment and wound healing via VEGF secretion (Chen L et al., 2008; Wu Y et 

al., 2007) or via pre-differentiation into angiogenic precursors (Roura S et al., 2012). 

MSCs are able to secrete paracrine factors, including VEGF, EGF, keratinocyte 

growth factor, stromal cell-derived factor 1, insulin-like growth factor-1, and 

angiopoietin-1, which enhance the recruitment of macrophages, keratinocytes, 

dermal fibroblasts, and endothelial cells to the wound site, facilitate angiogenesis, 

stimulate collagen production from dermal fibroblasts, and reduce apoptosis, 

inflammation, and scar formation at the site of the wound (Ennis WJ et al., 2013; 

Satija NK  et al., 2013; Hocking AM et al., 2010). ii) MSCs have several effects on 

fibrotic phenotypes in the wound, and thus play a major role in reducing scar 

formation following wound healing. The project about regeneration skin of sheep 

confirmed the results of Wu Y et al., (2013) (Huang S et al., 2013) that has seen an 

important decrease of scar tissue in a mouse model after the MSCs treatment. It is 

possible that MSCs can sense the degree of inflammation in the microenvironment 

and respond by releasing of growth factors, cytokines, and other mediators to 

reduce inflammation using real-time biochemical cues (Ennis WJ et al., 2013).  

Probably MSCs produce PGE2 that drives a variety of changes in the scarring 
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phenotype and increase secretion of IL-10 by T cells and macrophages involved in 

the wound environment (Németh K et al., 2009). iii) MSCs are able to reduce 

inflammation in the wound bed. Probably MSCs release immunosuppressive factors 

that inhibit proliferation of immune cells such as T cells, B cells, and natural killer 

cells (Matthay MA et al., 2010; Hass R et al., 2011). Moreover, the results obtained 

with allogeneic MSCs used to treat lesions performed on equine glutei confirmed 

the effects found by Li P et al. (2013) and Huang XP et al. (2010). Allogeneic MSCs 

do not induce a significant response in the host: these findings suggest that 

allogeneic cells may be used for chronic wound therapy and could be a useful 

strategy for situations when the host’s endogenous MSC population may possibly 

be defective, as in diabetes (Li P et al., 2013 and Huang XP et al., 2010). This aspect 

is particularly important for treating chronic wounds in older individuals, patients with 

diabetes, and those with autoimmune diseases and compromised MSCs 

(Wikramanayake TC et al., 2014) and burns (Nuscke A, 2014).  

In conclusion, it is known in literature that MSCs are currently used to improve the 

healing of primary intention such as burns and diabetic ulcers using MSCs seeded 

on bioengineering scaffolds (Nuschke A, 2014; Falanga V et. al, 2007). The second 

part of this tesis showed the complete regeneration of skin wounds using MSCs 

isolated from peripheral blood and suggesting their involment not only to improve 

the healing of primary intention but also for the stimulation of secondary intention 

wound healing. 

 

Overall, and based on collected data during this research project, it should briefly 

point out that: 

1. PB-MSCs can be used in vitro to be induced towards the tenogenic and 

myogenic fate with innovative methods such as combination of growth factors 

with laser, TAT peptide and SAMNs nanoparticles linked to cDNA or proteins. 

These experiments open the opportunity to have large amount of 

differentiated cells available to be used in wound heling without the use of 

viral vectors. 

2. In vivo, MSCs have the ability to suppress excessive inflammation and 

decrease scarring while simulating de novo angiogenesis in the wound bed, 

all positive effects leading to promising outcomes in chronic wound repair. 

Although MSCs contribute to tissue regeneration and repair by modulating 

the host tissue via secreted cues, the therapeutic benefit of MSCs is thought 

to derive from the so-called bystander effects (Savukinas UB et al., 2016).  

Future study will have to focus on tracking of cells, e.g. using cells marked 

with GFP protein to enable tracking and investigation of homing as well as 

migration in the wound. 
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[...] la tua Leggenda Personale. [...] è quello che hai sempre desiderato fare. Tutti, 

all'inizio della gioventù, sanno qual è la propria Leggenda Personale. In quel 

periodo della vita tutto è chiaro, tutto è possibile, e gli uomini non hanno paura di 

sognare e di desiderare tutto quello che vorrebbero veder fare nella vita. Ma poi, a 

mano a mano che il tempo passa, una misteriosa forza comincia a tentare di 

dimostrare come sia impossibile realizzare la Leggenda Personale. [...] Sono le forze 

che sembrano negative, ma che in realtà ti insegnano a realizzare la tua Leggenda 

Personale. Preparano il tuo spirito e la tua volontà. Perché esiste una grande verità 

su questo pianeta: chiunque tu sia o qualunque cosa tu faccia, quando desideri una 

cosa con volontà, è perché questo desiderio è nato nell'anima dell'Universo. Quella 

cosa rappresenta la tua missione sulla terra. [...] 

l'Anima del Mondo è alimentata dalla felicità degli uomini. O dall'infelicità, 

dall'invidia, dalla gelosia. Realizzare la propria Leggenda Personale è il solo dovere 

degli uomini. Tutto è una sola cosa. E quando desideri qualcosa, tutto l'Universo 

cospira affinché tu realizzi il tuo desiderio. 

Paulo Coelho "L'alchimista"  

 

Grazie a tutti coloro che mi hanno appoggiata e aiutata a realizzare la mia 

Leggenda Personale! 

 

Chiara 
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