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Abstract 

 

 

Human cytomegalovirus (HCMV) is a leading cause of congenital defects in humans. Currently 

available antivirals utilized for the therapy against HCMV infections have a series of 

contraindications due to their high cost, low bioavailability, high toxicity and the uprising of 

resistant viral strains. Furthermore no vaccine is available and no drugs are approved to prevent 

vertical transmission during pregnancy, therefore new, effective antiviral are highly needed.  

 

HCMV DNA polymerase accessory protein UL44 plays an essential role in viral replication, 

conferring processivity to the DNA polymerase catalytic subunit UL54 by tethering it to the DNA. 

Binding of UL44 to dsDNA occurs in the absence of ATP and clamp loaders, and depends on UL44 

homodimerization. Indeed, our research group recently demonstrated that the protein can dimerize 

in cells and point mutations disrupting protein self-interaction also prevent DNA binding and 

abolish viral oriLyt-dependent DNA replication in transient transcomplementation assays. 

Therefore, disruption of UL44 homodimerization represents an attractive target for the development 

of new anti-virals. Based on these observations, using the recently published crystal structure of 

UL44 homodimers our research group previously performed a virtual screening with the Glide 

software in combination with a library of 1.3 x 10^6 small molecules (SMs) to identify SMs 

potentially interfering with UL44 homodimerization. After three rounds of screening (HTVS: high-

throughput virtual screening, SP: standard precision, XP: extra precision), followed by an in depth 

analysis of compounds chemical properties, 18 SMs were selected for further analysis. Selected 

compounds were obtained from a commercial supplier, to be tested in a variety of assays for their 

ability to inhibit UL44 homodimerization both in cells and in vitro, as well as on HCMV 

replication. 

 

To this end, we applied a number of in cells and in vitro assays to monitor the effect of the SMs on 

UL44 dimerization. In cells methods included Fluorescent Resonant Energy Transfer (FRET) and 

Bioluminescence Resonant Energy Transfer (BRET), while as GST pull-down assays was chosen as 

the in vitro method.  
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FRET acceptor photobleaching was capable of detecting both UL44 homodimerization and UL44 

binding to the catalytic subunit C-terminal domain (residues 1125-1242). Such interactions were 

sensitive to point mutations specifically impairing the two processes, highlighting the specificity of 

this technique. Therefore, we were able to confirm that UL44 forms dimers in cells. However, data 

acquisition and analysis proved quite time consuming and dependent on high fusion proteins 

expression levels.  

BRET assays allowed to quickly and precisely quantitatively monitor UL44 self-interaction and 

binding to UL54 in living cells, and through saturation experiments allowed to precisely calculate 

Bmax and B50 values, relative to homodimerization or binding to UL54 for a number of single amino 

acids substitution derivatives of UL44 impaired for dimerization, binding to UL54 or to dsDNA, as 

well as for nuclear targeting. These data allowed gaining insights relative to the formation of 

HMCV DNA polymerase holoenzyme, suggesting conformational changes within UL44 upon DNA 

binding in complex to UL54. Furthermore, calculation of Bmax and B50 values was used to establish 

three different cellular systems expressing ideal amount of UL44 for screening purposes, in that 

they generated a BRET ratio similar to half of the Bmax. These included a fully stable expression 

system, whereby both RLuc-UL44 and YFP-UL44 are stably expressed in HEKA derived cells, a 

stable/transient system whereby YFP-UL44 is stably expressed and RLuc-UL44 is transiently 

expressed, or a fully transient system whereby both fusion proteins are transiently expressed. 

Competition assays performed overexpressing increasing amounts of FLAG-tagged UL44 as a 

competitor revealed that no inhibition could be obtained for the fully stably expressing system. This 

result highlighted the difficulty in disrupting a pre-existing protein complex and suggested to focus 

our attention on transient systems. 

Keeping this in mind, a first small-scale screening was performed to study the impact of 18 SMs on 

UL44 dimerization by BRET using the stable/transient system. The 18 selected SMs were 

resuspended in DMSO and their toxicity was evaluated in cell culture, before being added at sub-

toxic concentration to the YFP-UL44 cell line, six hours post-transfection with RLuc-UL44. Our 

analysis identified only compounds slightly inhibiting the BRET ratio relative to UL44 

homodimerization.  

 

Based on these disappointing results, we revaluated the BRET assays setup, by decreasing the time 

of SM incubation before assaying their effect from 42 to 18h, by switching to a completely transient 

system, and by decreasing the amount of expressed proteins. The last modification required a 
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change in the substrate used for generation of bioluminescent signal from RLuc-fusion proteins 

from CTZ to hCTZ. 

 

A new screening was performed, which resulted in very similar results to those obtained using the 

original setup. Furthermore when hit candidates were re-evaluated for their effect using a negative 

control, their effect on BRET ratio of UL44 proved unspecific. Additionally, BRET - similarly to 

FRET - failed to detect a specific effect on the UL54/UL44 interaction by a SM known to disrupt 

such interaction. Therefore we conclude that, with our current settings, BRET and FRET are not the 

ideal techniques to search for SM inhibitors of protein-protein interactions   

 

We then focused on in vitro methods, starting with a GST pull-down assay, which was performed 

using UL44 C-terminal domain (residues 1-290), either fused to GST of a 6His-tag. Our results 

indicated that GST pull-down was capable of detecting differences in binding between wild-type 

UL44 and a dimerization-impaired mutant, suggesting a possible application for the screening of 

SMs. GST pull-down is currently being implemented for this purpose, and preliminary data suggest 

that a number of tested SMs could impair UL44 dimerization.  

 

In summary, we have developed a number of assays to monitor UL44 dimerization. Whereas in 

cells RET based assays confirmed that UL44 form dimers in living cells, they proved suboptimal 

for screening proposes. On the other hand, in vitro methods such as GST pull-down might prove 

more sensitive and are currently being implemented for the identification of SMs inhibitors of 

UL44 dimerization 
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Riassunto 

 

Cytomegalovirus (CMV) è un importante patogeno di interesse umano. Al momento gli antivirali 

disponibili ed utilizzati per la terapia contro l’infezione da CMV presentano una serie di 

controindicazioni dovute all’alto costo, bassa biodisponibilità, alta tossicità ed il presentarsi di ceppi 

virali resistenti. Inoltre non è disponibile un vaccine ed ancora non è ancora stato approvato l’uso di  

alcun farmaco per prevenire la trasmissione verticale durante la gravidanza. Per questi motivi, sono 

necessari nuovi ed efficaci farmaci antivirali. 

La proteina accessoria UL44 della DNA polimerasi di CMV, svolge un ruolo essenziale nella 

replicazione virale, conferendo processività alla subunità catalitica UL54 ancorando il complesso 

oloenzimatico al DNA. 

Il legame di UL44 al dsDNA avviene in assenza di ATP e dei clamp loaders, e dipende dalla 

omodimerizzazione di UL44. Infatti, il nostro gruppo di ricerca ha recentemente dimostrato che la 

proteina può dimerizzare in cellule e che mutazioni puntiformi in grado di inficiare tale 

dimerizzazione prevengono il legame con il DNA ed aboliscono la replicazione del DNA virale 

oriLyt-dipendente in saggi di transcomplementazione transiente. 

Perciò, la distruzione dell’omodimerizzazione UL44 rappresenta un potenziale allettante bersaglio 

per lo sviluppo di nuovi anti-virali. Partendo da queste osservazioni ed usando la struttura 

cristallografica recentemente pubblicata degli omodimeri UL44, il nostro gruppo di ricerca ha 

eseguito un virtual screening con il software Glide in combinazione con una libreria di 1.3 x 10^6 

piccole molecole (SMs) per identificare SMs che potenzialmente potessero interferire con 

l’omodimerizzazione di UL44. Dopo tre rounds di screening (HTVS: high-throughput virtual 

screening, SP: standard precision, XP: extra precision), seguiti da un’analisi delle proprietà 

chimiche dei composti, sono state selezione 18 SM per ulteriori analisi. I composti selezionati sono 

stati acquistati presso un fornitore commerciale, per essere testati in diversi saggi per valutare le 

loro abilità di inibire l’omodimerizzazione di UL44, sia in cellule che in vitro. 

A questo scopo, abbiamo utilizzato diversi saggi in cellule e in vitro per monitorare l’effetto delle 

SMs sulla dimerizzazione di UL44. Nei saggi cellulari, le tecniche utilizzate includono Fluorescent 

Resonant Energy Transfer (FRET) e Bioluminescence Resonant Energy Transfer (BRET), mentre 

per saggi in vitro è stato utilizzato il saggio GST-pull down. 
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I nostri dati indicano che la metodica FRET acceptor photobleaching è in grado di rilevare sia 

l’omodimerizzazione di UL44, sia il legame con il dominio C-terminale della subunità catalitica 

(residui 1125-1242). Queste interazioni sono sensibili all’introduzione di mutazioni puntiformi che 

alterano i due processi,  evidenziando la specificità di questa tecnica. Siamo stati quindi in grado di 

confermare che UL44 forma dimeri in un contesto cellulare. Purtroppo, l’acquisizione dei dati e la 

loro analisi richiedono un lungo tempo e dipendono da alti livelli di espressione delle proteine di 

fusione. 

Per contro, il saggio BRET permette un rapido e preciso monitoraggio quantitativo 

dell’omodimerizzazione di UL44 e il legame con UL54 in cellule viventi. Inoltre, attraverso 

esperimenti di saturazione, che permettono di calcolare in modo preciso i valori di Bmax e B50 

relative all’omodimerizzazione o al legame con UL54 per varianti di UL44 che contengono singole 

sostituzioni amminoacidiche che affliggono la dimerizzazione di UL44, il suo legame a UL54 o il 

DNA, nonché il trasporto al nucleo della proteina.  

I dati ottenuti possono aiutare a comprendere il processo di formazione dell’oloenzima della DNA 

polimerasi di CMV, suggerendo cambiamenti conformazionali nel complesso olenzimatico in 

seguito a legame con il DNA. Inoltre, il calcolo di Bmax e B50 è stato usato per sviluppare tre 

differenti sistemi cellulari esprimenti un’ideale quantità di UL44 da utilizzare come piattaforma per 

lo screening di SM, poiché sono in grado di generare valori di BRET ratio simili al 50% della Bmax 

.Questi includono un sistema di espressione completamente stabile, in cui sia RLuc-UL44 che YFP-

UL44 sono stabilmente espresse in cellule derivate da HEK293 A, un sistema ibrido 

stabile/transiente, in cui YFP-UL44 è stabilmente espressa e RLuc-UL44 è espressa in transiente, o 

un sistema completamente transiente in cui entrambe le proteine sono espresse transientemente. 

Saggi di competizione eseguiti sovra-esprimendo quantità crescenti di UL44 fusa a un FLAG tag 

hanno evidenziato che nessun inibizione può essere ottenuta per il sistema completamente stabile, 

probabilmente per la difficoltà di distruggere un complesso proteico preformato piuttosto che 

prevenirne la formazione. Per questo motive ci siamo focalizzati su sistemi transienti di espressione 

piuttosto che sul sistema interamente stabile.  

Sulla base di questi dati, un primo screening su piccolo scala è stato eseguito per studiare l’effetto 

di 18 SMs sulla dimerizzazione di UL44 usando il sistema BRET stabile/transiente. Le 18 piccole 

molecole sono state risospese in DMSO e la loro tossicità è stata valutata in coltura cellulare, prima 

di essere aggiunte a concentrazioni subtossiche alla linea YFP-UL44, sei ore dopo la trasfezione per 
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esprimere RLuc-UL44. La nostra analisi ha identificato solo composti che inibivano blandamente il 

BRET ratio relativo alla dimerizzazione di UL44.  

Per questo motivo abbiamo ri-valutato il set up del saggio BRET, diminuendo il tempo 

d’incubazione delle SM prima di testare i valori BRET da 42 a 18 ore, utilizzando un saggio 

completamente transiente e diminuendo la quantità di proteine espresse. Per quest’ultima è stato 

necessario cambiare il substrato utilizzato per generare il segnale bioluminescente da CTZ a hCTZ. 

 

È stato eseguito un nuovo screening, con risultati molto simili a quelli ottenuti utilizzando il setup 

originale. Inoltre, quando i candidati migliori sono stati rivalutati usando un controllo negativo, il 

loro effetto sul BRET ratio è risultato aspecifico. Ulteriormente,  la BRET, come la FRET, non è 

riuscita a rilevare uno specifico effetto nell’interazione UL44/UL54 di una SM in grado di 

distruggere questa interazione. Possiamo quindi concludere che BRET e FRET non sono tecniche 

ideali per la ricerca di SM inibitrici dell’interazione tra le proteine. 

 

Ci siamo poi focalizzati su metodi in vitro, partendo dal saggio GST-pull down, il quale è stato 

effettato utilizzando il dominio C-terminale (residui 1-290) di UL44, fuso o con GST  o con 6His-

tag. I risultati ottenuti mostrano che la tecnica GST-pull down è in grado di rilevare differenze nel 

legame tra UL44 wild-type e i mutanti con mutazioni nel sito di dimerizzazione, suggerendo una 

possibile applicazione di GST-pull down per lo screening delle SMs. 

Questa tecnica è stata implementata per questo studio, e i dati preliminari suggeriscono che il 

numero di SMs testate potrebbe portare all’inibizione della dimerizzazione di UL44.  

 

In conclusione, abbiamo sviluppato diversi saggi per monitorare la dimerizzazione di UL44. I saggi 

cellulari basati su RET confermano che UL44 forma dimeri in cellule viventi, e dimostrano di 

essere subottimali per lo screening. D’altro canto, i metodi in vitro come GST-pull down 

dimostrerebbero un maggiore sensibilità e sono stati implementati per l’identificazione degli 

inibitori della dimerizzazione di UL44. 
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4. INTRODUCTION 

 

1.1 Human Cytomegalovirus (HCMV) 

Human Cytomegalovirus (HCMV), also known as Human Herpesvirus-5 (HHV-5), is a member of 

the Herpesviridae family, subfamily Betaherpesvirinae. CMVs from other mammals also belong to 

this subfamily. HCMV is a species-specific ubiquitous virus which only rarely causes diseases in 

immunocompetent individuals, but it is responsible for a variety of pathologies in 

immunocompromised patients. It is also one of the major causes of congenital defects in newborns. 

The name Cytomegalovirus derives from the fact that the virus causes enlargement of the infected 

cells (cytomegaly), inducing the formation of inclusion bodies in the nucleus and in the cytoplasm 

containing neo-formed viruses and lysosomes. HCMV shares several characteristics with the others 

Herpesviridae members, such as viral particle and genome structure, the ability to induce acute 

infections associated with a highly productive lytic cycle, persistent infections with low replicative 

levels, or latent infections without production of viral particles [1]. In addition to infectious virions, 

HCMV infected cell cultures also produce the Non-Infective Enveloped Particles (NIEPS) and the 

Dense Bodies (DB). The NIEPS differ from the infective virions because they lack the viral 

genome; the DB, instead, are completely devoid of both capsid and genome [2]. The relative 

presence of the three forms depends on the cell culture passages and on the viral strain [3]. 

 

1.2 Epidemiology and Pathogenesis  

HCMV is a ubiquitous pathogen that causes a variety of diseases both in adults and children. It is 

widespread in the population, 50-90% of adults being seropositive worldwide. The seroprevalence 

depends on socio-economic factors and on the geographic area [4].  
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HCMV comes in contact with the body through mucous membranes or parenterally (blood, or stem 

cell, organ transplants) and can lead to general infection with involvement of the whole organism, 

causing a wide range of symptoms such as encephalitis, retinitis, hepatitis and splenomegaly. The 

transmission can be vertical or horizontal. The frequency of vertical transmission the is of about 

0.5-1%, and can occur either transplacentally from the mother to the foetus/child, or via 

cervical/vaginal secretions as wells as via breast milk. Vertically transmitted CMV infections 

represent the major cause of congenital defects in newborns. The horizontal ways, instead, are 

sexual or oral transmission, trough urine or after organs or hematopoietic stem cells transplant [5]. 

In immunocompetent individuals, most HCMV infections are asymptomatic, even though the levels 

of viremia are very high. After the primary infection, which is usually followed by a 4-8 weeks 

viremic incubation period, the virus remains latent in the host lifelong in blood cells or bone 

marrow (involving monocytes, macrophages and dendritic cells), and it reactivates periodically 

when the immunity system control fails [6]. Only rarely HCMV infections display minor symptoms 

similar to that of mononucleosis [7].  However, there are four cases in which HCMV can cause 

dangerous consequences: in congenital primary infection and in immunocompromised individuals; 

in primary infection; in reinfection; in reactivation. Congenital infections can be asymptomatic or 

symptomatic, and in both cases they can lead to serious consequences. In fact, in 10-17% cases of 

asymptomatic infections there can be neuronal or hearing impairment; in 5-10% of cases instead, 

the infection is symptomatic and causes the classic HCMV symptoms such as encephalitis, hearing 

loss, motor deficits, and rarely myopathies and retinitis. In immunocompromised patients, such as 

transplanted individuals, or HIV infected people, consequences are more serious with the risk of 

transplant reject, pneumonia, retinitis and finally death [8]. 
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1.3 HCMV structure 

HCMV viral particle is composed by a host cell membranes-derived viral envelope, in which 

several glycoproteins are embedded, an icosahedral nucleocapsid and, between them, the so called 

tegument which is a phosphoprotein layer [9] (Figure 1.1). 

 Figure 1.1: HCMV viral particle structure. From: http://www.virology.net/big_virology/bvdnaherpes.html 
website. 

 

The viral capsid is made up of 162 capsomers subdivided into 12 pentons and 150 exons which are 

composed by four main proteins: UL86 (major capsid protein), UL48-49, UL85 (minor capsid 

protein), and UL46 (minor capsid binding protein). The envelope contains six viral encoded 

glycoproteins, which are essential for the virus entry into the host cell, cell-to-cell diffusion as well 

as for virus maturation: gpUL55 (gB), gpUL73 (gN), gpUL74 (gO), gpUL75 (gH), gpUL100 (gM), 

and gpUL115 (gL). The tegument contains the majority of viral proteins, most of which are 

phosphorylated and able to interact with the cytoplasmatic portions of envelope and capsid proteins, 

thus bridging the two viral elements [10]. When the virus is released into the cytoplasm, the 

tegument proteins become functionally active and play an important role in all the phases of the 

viral cycle, including virus entry, gene expression, evasion from the host immune response, 

assembly, maturation and release [11]. Many tegument proteins are of particular interest for the role 



 10 

they play in the HCMV replication cycle. The most abundant of them are pp150 (ppUL32, or basic 

phosphoprotein), and pp65, which is used as target for rapid diagnosis test of infection. 

1.4 Genome structure 

HCMV is a double stranded non segmented DNA virus with a very large linear genome of about 

235kbp. HCMV genome is the largest among the Herpesviruses and with the highest amount of G-

C content. Its genome can be divided into two main regions: a unique long (UL), and a unique short 

(US), which are flanked by terminal (TRL and TRS) and internal (IRL and IRS) inverted repeats 

(Figure 1.2). UL and US can be orientated in both directions, so the viral progeny can present any 

of the four possible isomers of the genome. In the terminal part of the genome and in the junction 

between the UL and US, there is a direct repeated sequence, responsible for the inversion of the two 

regions, and, through cis elements called pac-1 and pac-2, for the cleavage and packaging of 

theDNA [12].  

 

Figure 1.2 The 4 isomers of the HCMV genome with the UL region and US region flanked by terminal and 
internal repeats. From: [11]. 

 

HCMV genome contains a large number of protein coding genes, whose transcription is driven by a 

series of ORFs (Open Reading Frames) named by the region and numerical order in which they 

occur [13]. The gene products of more than 40 ORFs are very similar to proteins encoded by α- and 

γ-herpesviruses [14], and of these ORFs, c. 25% encode for functions relative to metabolism and 

replication of the viral DNA, while c. 75% are involved in maturation and structural organization of 
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virions. The products of more than 50 ORFs, instead, are not essential for a productive viral 

replication, and the function of many ORFs has not been characterized yet. In addition to the coding 

genes there are also polyadenylated non-coding RNAs (some in antisense with respect to protein 

coding regions, and some which do not overlap with them) and non-polyadenylated RNAs such as 

micro-RNAS [13].  

 

1.5 Genome expression  

 

Expression of HCMV genome starts within one hour post infection (pi), without protein synthesis, 

from the viral origin oriLyt. There is an initial circularization of the genome within four hours pi, 

followed by the synthesis of the DNA with a bidirectional θ mechanism from the oriLyt [15]. The 

viral genome is synthetized by a virally-encoded DNA polymerase via a rolling circle mechanism, 

producing concatamers which are then cleaved in monomers ready to be packed in the viral capsids. 

The dsDNA is transcribed by the host RNA polymerase II, but numerous viral proteins are also 

involved in every step of the infection. Transcription and synthesis of gene products is strictly 

regulated both transcriptionally and post-transcriptionally. During productive infection, the 

replication of the virus occurs in the nucleus in a temporally ordered manner: in fact, as soon as the 

virus enters the host nucleus through the nuclear pores, there is first the expression of the immediate 

early (IE) genes, which are transcriptional regulators necessary for the transcription of the early 

genes (E). The early genes, the second class of genes, are instead involved in DNA replication. 

Once replication begins, the third class of genes, the late genes [15] are transcribed to produce 

mainly structural and assembly proteins. Some genes can be assigned to more than one temporal 

class. 

HCMV genome replication is a complex process requiring the activity of several proteins endowed 

with different enzymatic activities. Pioneeristic studies demonstrated that 11 viral genomic loci are 
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required to transcomplement oriLyt dependent DNA replication in transient transfection based 

assays [16]. Six of them encode for replication fork proteins, as identified by similarity to 

homologous proteins in Herpes Simplex Virus type 1 (HSV-1). Such proteins are the DNA 

polymerase catalytic subunit UL54 and its processivity factor UL44, ssDNA binding protein UL57 

as well as heterotrimeric a trimeric helicase-primase complex, whose function is to unwind dsDNA 

and synthesize a RNA primer. composed by the helicase UL105, the primase and a cofactor UL102. 

During viral DNA replication, the trimeric helicase-primase complex unwinds dsDNA and 

synthesize RNA primers [17]. Subsequently, UL57 binds and stabilizes the ssDNA strand released 

by the helicase primase complex, while the DNA polymerase holoenzyme mediated DNA 

synthesis. The remaining five loci do not have obvious homologous proteins in other herpesviruses. 

Such loci comprise three immediate early (IE) regulatory regions such as UL122-123, UL36-38 and 

Internal Repeated Sequence 1/Terminal Repeated Sequence 1 (IRS1/TRS1), as well as two early 

(E) proteins such as UL112-113 and UL84.  

The UL122-123 regions are localized under the control of the extremely strong Major Immediate 

Early (MIE) promoter/enhancer, containing several binding sites for cellular transcription factors 

(TFs). It primarily encodes the IE-72 and IE86 proteins, which are the main viral trans-activators, 

driving the expression of several cellular and viral genes. The UL36-38 region generates several 

different transcripts, based on the activation of different promoters and the use of a number of 

splicing sites [18]. Such genes encode for a number of proteins endowed with anti-apoptotic 

function such as viral Inhibitor of Caspase-8-Induced Apoptosis (vICA), encoded by UL36, a 

protein able to bind to pro-caspase 8 preventing its auto-proteolytic activation, and subsequently 

Fas-binding and apoptosis [19]. UL37 encodes proteins gpUL37 e pUL37x1 (pUL37exon1). 

gpUL37 is a glycoprotein also known as viral Mitochondria-localized Inhibitor of Apoptosis, 

(vMIA), which inhibits Fas-mediated apoptosis by localizing to mitochondria and preventing 

cytochrome c release. pUL37x1, prevents cytochrome c release by interacting with mitochondrial 
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Adenosine Nucleoside Transporter (ANT) [20]. Also the UL38 gene product encodes an anti-

apoptotic factor blocking caspase-mediated apoptosis [21].  

The two highly homologous proteins IRS1/TRS1 cooperate with other IE proteins in viral mediated 

transactivation of viral and cellular promoters [22].: for example, they can activate expression of ß 

genes together with IE1-72 and IE2-86 and increase the activity of the MIE promoter cooperating 

with UL69 [22].  

Genes UL112-113 can generate four different phosphoproteins as a consequence of alterative 

splicing events. Such proteins have different molecular weights (34, 43, 50 e 84 kDa), and are 

differently expressed and localized at different stages of the viral life cycle. Such proteins bind to 

dsDNA and recruit UL44 to replication sites [23, 24]. Furthermore, the 84 kDa protein appears to 

regulate nuclear transport of the other UL112-113 proteins [25].  

Finally, the UL84 protein is a nucleocytoplasmic shuttling protein, with structural and functional 

homology to DExD/H box helicases, a family of nucleocytoplasmic shuttling RNA helicases with 

transcriptional regulation activities [26].  Indeed, UL84 a multitasking factor which shuttles 

between the nucleus and the cytoplasm, it is endowed with transcriptional regulation abilities and it 

is the proposed origin binding protein. Its transcriptional properties are exemplified by its ability to 

bind IE2, inhibiting its activity, while such complex activates a bidirectional promoter present at the 

oriLyt, most likely starting the replication process. UL84 is also capable of binding RNA and 

possess UTPase activity [27-30].  Its role as origin binding protein is supported by the interaction in 

vivo with HCMV oriLyt, in a region containing RNA/DNA hybrid structures and stem-loops, with 

in vitro studies suggesting it can change the structure of such stem loop structures possibly priming 

the assembly of the replication complex [31]. Furthermore, UL84 is able to bind both UL44 and 

UL57 [27M, 32].  
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1.6 Herpetic DNA polymerase holoenzyme general characteristics 

 All known Herpesviridae members encode their own DNA polymerase holoenzymes, essential for 

viral DNA replication. Sequence alignments shown that all herpetic DNA polymerases have 

conserved structures and functional domains. Furthermore, such polymerases are composed by two 

distinct subunits, a catalytic and an accessory protein, whose physical interaction is essential for 

replication of viral DNA (Table 1.1).  

Virus Catalytic Subunit  Accessory Subunit Reference  

HSV-1  UL30  UL42  [33] 

HSV-2 POL  ICSP34, 35  [34] 

VZV  POL  ORF16  [35] 

HCMV UL54 UL44   [36] 

HHV-6  Pol6  p41  [37] 

HHV-7  U38  U27  [38] 

HHV-8  Pol-8  PF-8  [39] 

Table 1.1: Human Herpesvridae members DNA holoenzyme subunits. 
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For all known Herpesviridae members, the catalytic subunit is of the DNA Polymerase holoenzyme 

is a large protein (110-140 kDa), constituted by six conserved functional domains: a pre Nh2 

domain, with 6 highly conserved residues, most likely involved in the interaction with the 

helicase/primase complex; a NH2 domain, probably endowed with RNA binding ability and 

hypothesized to be involved in RNAse activity; a domain possessing 3’-5’ esonuclease activity; a 

palm domain involved in catalytic activity; a fingers domain responsible for nucleotide binding; a 

thumb domain, binding dsDNA. Such catalytic subunit thus possesses a 5’-3’ DNA polymerase 

activity, being able to extend DNA templates as well as RNA primers. It also possesses an intrinsic 

3’-5’ proofreading a activity as well as 3’-5’ and 5’-3’ esonuclease activities. However, the catalytic 

DNA polymerase has a much lower activity as compared to the holoenzyme (therefore defined 

basal activity). Binding to the smaller accessory subunit, results in increased holoenzyme DNA 

polymerase and DNA binding activities, as well as in higher nucleotides incorporation rates and 

processivity, thus making the holoenzyme capable of replicating the entire viral genome. The 

essential role of the association between the two subunits has been proved by the fact that mutations 

impairing such intermolecular association also prevent viral replication [40, 41].  

The current biochemical model, universally accepted for all known Herpesviridae DNA polymerase 

holoenzymes, is mainly based on studies on the HSV-1 holoenzyme, formed by the catalytic 

subunit UL30 and the processivity factor UL42. UL42 is known to be able to simultaneously bind 

to dsDNA and UL30 using different protein domains, thus tethering it to dsDNA [40, 41]. 
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1.7 HCMV DNA Polymerase Catalytic subunit 

 

DNA polymerases are classified in seven different families. Herpetic DNA polymerases belong to 

the B family.  Such family comprises several viral and cellular DNA polymerases, all containing 7 

conserved regions, designed I, II, III, IV, V, VI and VII. Such regions play an important role in 

enzyme catalytic activity. Regions I to V, along with an additional region called region C, shared by 

all Herpesviridae DNA polymerase catalytic subunits, are involved in binding to substrates and 

antiviral nucleoside analogs. The N-terminal domain possesses RNAse H activity and interacts with 

several viral proteins, while the intrinsic exonuclease 3’-5’ activity has been mapped to region IV 

and the C region [42]. In the catalytic site, three highly conserved regions (Exo I, II and III) possess 

5’-3’ exonuclease activity. 

The most conserve region is the one N-terminally located, with regions I, II and III being extremely 

conserved in all known DNA polymerases (from bacteriophages to mammals), thus suggesting they 

could fulfil all catalytic functions. Region I in involved in substrate recognition, including dNTPs 

and PPi, since several mutants mapping in this region exhibit resistance to nucleoside and 

pirophospahte analogues, or affect its catalytic activity. Furthermore, several mutations affecting 

sensibility to nucleoside or pirophoasphate analogues map to regions II and II suggesting a direct 

role in dNTPs binding and pirophospahte hydrolysis [43]. Finally, regions V and VII are less 

conserved and characterized, and their role has still to be defined. In The HCMV DNA polymerase 

is called UL54 and it is a 140 kDa protein of 1242 amino acids. Regions I to VII are located within 

residues 379-1100 [44], so that the catalytic core is located in the central part of the protein. On the 

other hand, the N-terminal part of the protein contains the three regions (Exo I, II, III) responsible 

for the 5’ -3’ exonuclease activity [45], while the C-terminal domain is responsible for binding to 

UL44 and nuclear transport of the protein. Indeed, UL54 C-terminal 22 residues are necessary and 

sufficient to mediate binding to its accessory subunit UL44 [46]. In addition, UL54 C-terminal 

domain contains two NLSs. The first to be discovered was an atypical, poorly characterized 
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hydrophobic NLS (hNLS), which lies within the protein UL44 binding domain (PRRLHL-1127), 

and thus appears to be active only when UL54 is not associated with UL44 [46, 47]. UL54 also 

contains a classical NLS (cNLS), located upstream of the UL44 binding domain (PAKKRAR-

1159). Such NLS is active also when UL54 is in complex with UL44 and confers energy- and Ran-

dependent nuclear targeting to reporter proteins, as well as recognition by the IMPα/β heterodimer 

through direct interaction with IMPα [48, 49]. 

 

1.8 HCMV DNA polymerase accessory subunit UL44  

 

HCMV DNA polymerase accessory subunit, UL44 is a 52 kDa phosphoprotein essential for HCMV 

genome replication [50]. UL44 has been shown dimerize, thus being able to bind to dsDNA in the 

absence of clamp loaders and ATP, and to directly interact with UL54, thus stimulating its 

holoenzyme activity [17, 51]. UL44 can be functionally and structurally divided in a N-terminal 

domain (residues 1-290), and a C-terminal domain (residues 291-433). The N-terminal domain 

retains all known UL44 biochemical properties, including the ability to bind to dsDNA and UL54 

and to stimulate to latter activity [51]. The C-terminal domain is largely unstructured, containing 

five stretches of glycine which confer extreme flexibility. Its main function described so far appears 

that of regulating the nuclear import process of UL44 thanks to a C-terminally located NLS A 

functional cNLS (PNTKKQK-431) is located at the very C terminus of the protein, driving the 

protein into the nucleus upon binding to IMPα/β binding [52]. In addition, UL44 C-terminus 

(residues 409-433) is the target of extensive post-translational modifications. These include 

multiple phosphorylation sites (S413, S415, S418 and T42T) and a sumoylation site (K410), which 

regulate UL44 subcellular localization by controlling its ability to interact with host cell proteins 

[48, 52-55], although the exact role of UL44 sumoylation is still unknown [54]. UL44 N-terminal 

portion (residues 1-290) has been recently crystallized [56]. UL44 forms heat to head dimers, and 
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each monomer shares a very similar structure to that of other processivity factors such as 

proliferating nuclear antigen (PCNA) monomers, and the monomeric HSV-1 UL42 (Figure 1.3), 

despite lacking high sequence homology [57, 58].  

  

 

 

 

 

 

 

 

 

 

Figure 1.3 Comparison of the UL44 dimer, the UL42 monomer, and the PCNA trimer. Adapted from [59]. 

 

Each monomer forms two topologically similar domains. They share a central β-sheet and are 

connected by a long connector loop running along the front face of the molecule which is important  

for binding to other protein partners, including UL54 [59] (Figure 1.4). 

 

 

 

 

 

Figure 1.4: Representation of the UL44-UL54 complex (blue and yellow, respectively). From: [59]. 
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The back face of UL44 is flanked by four helices and is rich in basic residues involved in DNA 

binding [60]. Dimerization relies on the interaction between the two most N-terminal B-sheets of 

each monomer, with six main chain hydrogen bonds formed. The interaction involves also 

extensive packing of hydrophobic side chains at the interface, with F121, M123 and L93 of each  

monomer is being packed against L86 and L87 of the opposite monomer (Figure 1.5).   

 

 

 

Figure 1.5. Structural representation of UL44 dimerization interface with crucial residues depicted in ball 
and stick. Adapted from [59]. 

 

Intriguingly, dimerization appears a prerequisite for DNA binding by UL44. Upon dimerization, the 

basic face of each monomer contributes to the formation of a positively charged central cavity 

which is involved in DNA binding via electrostatic interaction [60]. Accordingly, point mutations 

impairing dimerization – such as the L86A/L87A double mutant, strongly impair binding to 

dsDNA. Also the F121A mutant is impaired for DNA binding although to a lesser extent as 

compared to the L86A/L87A double mutant, and it has been speculated that it could possess weak 

DNA binding upon dimerization. Importantly, the L86A/L87A double substitution prevented viral 

DNA replication as shown by the failure of such mutants to sustain oriLyt dependent DNA 

replication in transient trans-complementation assays, suggesting that UL44 homodimerization is 

essential for viral genome replication [61]. Therefore, UL44 dimerization can be considered a 

potential target of therapeutic intervention to interfere with HCMV replication. 

Furthermore, each UL44 monomer possesses a basic face containing several basic lysine residues 

which, upon dimerization, forma a basic cavity binding to dsDNA via electrostatic interactions. In 
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addition, each UL44 monomer has a 13 aa long flexible loop (FL), not visible in the electron 

density map [PHTRVKRNVKKAP-172], which has been modelled as protruding towards the back 

face and potentially contacting dsDNA. In vitro modelling and mutagenic studies have shown that 

basic residues within the back face and the FL of UL44 are important for DNA binding: their 

substitution to alanine strongly impaired DNA binding [60]. The importance of UL44-FL in cells 

has been recently demonstrated by our research group in cells: substitution of UL44-FL basic 

residues with hydrophobic ones impaired DNA binding, and its ability to form nuclear speckles, 

simultaneously increasing its intranuclear mobility upon transfection in Mammalian cells. Such 

mutation also abolished HCMV oriLyt-dependent DNA replication in transient 

transcomplementation assays, implying that the UL44-FL is important for DNA binding during 

viral replication [62]. Furthermore, overexpression of such UL44 mutant (called UL44Dloop) in the 

presence of wild-type UL44, abolished HCMV oriLyt-dependent DNA replication in transient 

transcomplementation assays, suggesting a transdominant negative phenotype [62]. Indeed, 

transient relocalization assays suggested that UL44Dloop could still interact both with UL54 and to 

interact with UL44, implying that the formation of DNA defective UL54/UL44 and UL44/UL44 

complexes could be detrimental for viral replication [62].  

 

1.9 UL54 and UL44 mutants used in this study 

 

Point mutations (substitutions) in UL44 are known to affect several UL44 biochemical properties 

such as the interaction between UL44-UL44 homodimers, the formation of UL54-UL44 complex, 

as well as its ability to bind dsDNA and were used in different combination in this study, as 

expressed from a variety of Mammalian expression plasmids (see Appendix §6.4).  

In particular, UL44-F121A and UL44-L86/L87A mutants possess amino acid substitutions that 

interfere with the dimerization of UL44, without affecting binding to UL54 neither in vitro nor in 
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living cells [49, 61]. Importantly such mutants exhibit reduced DNA binding ability in filter binding 

assays [56], and are not compatible with viral DNA replication in oriLyt replication assays, 

suggesting that UL44 homodimerization is essential for viral life cycle [61]. The UL44-I135A 

mutant, instead, has an amino acid substitution in the connector loop of UL44. Such mutation does 

not affect UL44 DNA binding ability or dimerization ability [56, 61] but completely disrupts the 

UL54-UL44 interaction preventing DNA replication [62]. On the other hand, UL44∆loop, 

containing hydrophobic substitutions in place of basic residues within UL44-FL (see above), retains 

the ability to dimerize and bind to UL54 in cells but is defective for DNA binding, as shown by 

cellular subfractionating experiments and by subcellular localization assays [62]. Such mutant, 

intriguingly, does not support HCMV oriLyt-dependent HCMV DNA replication, where it behaves 

as a trans-dominant-negative mutant [62]. Finally, the UL44DNLS mutant bears point mutations 

within UL44-NLS (PNTKKQK-431), impairing its nuclear localization, without affecting its ability 

to bind to UL54 and self-interact [48, 52].  

  

1.10 Currently available HCMV antivirals 

 

The treatment against HCMV infections could be prophylactic or preventive.  

The prophylactic treatment starts immediately after an organ or stem cells transplant and continues 

for the next 90-100 days to prevent the appearance of the virus [63]. Even though the prophylactic 

therapy doesn’t exclude the possibility of infections, without it 20-30% of transplanted patients are 

infected in the subsequent 90 days post transplantation. 

The preventive treatment, instead, starts when in asymptomatic patients is diagnosed the presence 

of the virus, also at very low levels (sign of primary infection or viral reactivation). Antivirals are 

administered to prevent the progression of the asymptomatic viremia. 
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Currently available antivirals utilized for the therapy against HCMV infection, have a series of 

contraindications due to their high cost, low bioavailability, high toxicity and the uprising of 

resistant viral strains. Indeed, several viral strains have developed resistance or cross-resistance to 

them causing serious issues, especially to immunodeficient patients [64]. 

The majority of the antiviral drugs are analogues of the DNA polymerase substrates, nucleoside or 

pyrophosphate analogues, because, being the herpetic DNA polymerases essential for the 

replication of the genome, it is a good target for antivirals. HCMV encodes for a protein kinase 

(UL97) able to monophosphorylate nucleosidic analogues, which are then di- and tri-

phosphorylated by cellular kinases. The polyphosphorylated form acts as inhibitor of the HCMV 

DNA polymerase hindering the synthesis of the viral genome.  

Ganciclovir (GCV) was the first antiviral approved for the treatment of HCMV infections and 

nowadays is the most commonly administered drug against HCMV [65]. It is a guanosine analogue, 

it requires the UL97-mediated phosphorylation to become active and causes the termination of the 

nascent viral DNA. GCV is available for intravenous or intraocular use.  

Valganciclovir (VGCV) is the L-valyl ester of GCV, it is a prodrug which has a higher 

bioavailability (60%) and it is rapidly metabolized to the active form (GCV). 

Cidofivir (CDV) is a nucleosidic analogue of dCMP, which becomes active after the tri-

phosphorylation by cellular kinases. Similarly to GCV, it causes the termination of the DNA chain 

synthesis, acting as a competitive inhibitor of the viral DNA polymerase, not only of herpesviruses 

but also of other viruses. Despite its wide range of action, CDV has a very low bioavailability and it 

is highly toxic for kidneys. Foscarnet (FOS) is a non-nucleosidic inhibitor of herpetic DNA 

polymerases which acts blocking the release of pyrophosphate by the polymerase. It is mainly 

administered to patients resistant to GCV. Fomivirsen is a synthetic 21-mer phosphorothioate 

oligonucleotide which binds to the viral mRNA encoding the IE2 protein preventing its translation.  
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It is used in the treatment of cytomegalovirus retinitis (CMV) in immunocompromised patients, 

including those with AIDS. Currently, no drugs are approved for the treatment of infected pregnant 

women. Such issues stimulated the research of more active, specific and less toxic new compounds 

against HCMV. To this end, one possible strategy is hinder viral replication by dissociating viral 

protein-protein complexes can either be achieved via small molecules or peptidomimetic 

compounds mimicking one of the partners involved in the interaction between the subunits of the 

complex [66, 67]. A potential target for this inhibition of HCMV replication with this strategy is 

represented UL44 homodimerization. In fact, as mentioned previously, it was demonstrated that 

mutations of residues involved in UL44 homodimerization, reduce also its ability to bind dsDNA 

and so to support HCMV DNA replication [61]. 

 

1.11 Protein-protein interaction (PPI) as druggable targets in human disease 

 

The importance of the complex network of direct interactions between proteins in both cellular 

physiology and development of disease is widely recognized. Despite this, small-molecule drugs 

that act by directly disrupting the interaction between two proteins are relatively rare and PPIs are 

viewed as challenging targets [68]. 

Inhibitors of protein–protein interactions have several potential advantages with respect to other 

kind of drugs. First of all, the extreme specificity of partner interactions offers the possibility of 

interfering with them in a highly selective fashion, making them attractive targets. Additionally, 

inhibitors of PPI could be less prone to drug resistance than are inhibitors that bind enzymes active 

site. This is especially important when considering viral enzymes, which are particularly prone to 

mutation. In fact, a single mutation in one subunit of protein-protein interfaces requires a 

complementary mutation in the other subunit to maintain the complex intact, making this event less 
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likely when compared to the probability of a single mutation on the catalytic site, which is often 

sufficient to confer drug resistance [67]. 

The first example in literature of successful disruption of protein–protein interactions regards an 

enzyme, the ribonucleotide reductase (RR) of herpes simplex virus type 1 (HSV-1) [69]. The results 

obtained with HSV-1 RR inhibitors encouraged further efforts in this direction. Screening of small 

molecules libraries bring to the identification of an inhibitor of the interaction between HSV-1 

catalytic subunit (UL30) and accessory protein (UL42) leading to the inhibition of viral replication 

[70]. Other examples of successfully disrupted viral PPI include peptides and small molecules 

targeting dimerization of HIV protease, reverse transcriptase, or integrase, as well as small 

molecules targeting the Influenza A virus RNA polymerase PB1 and PA subunits. Notably, a high 

throughput screening approach recently identified AL18, a small molecule capable of interfering 

with the UL54-UL44 interaction, thus inhibiting HCMV replication in cells in the low micromolar 

range. This small molecule is able to inhibit in a dose dependent manner the of UL54-UL44 

interaction, with an IC50 of 9-30 µM (as assessed by ELISA or fluorescence polarization assays, 

respectively), and with a selectivity index above 100 (as defined by the ratio between the CC50 - 

compound concentration causing death in 50% of cells, and the ED50, compound concentration 

causing a reduction of 50% in viral replication) [71]. 

 

1.12 Virtual screening of SMs potentially disrupting the UL44 homodimerization 

 

Based on these observations, our research group recently performed a structure-based virtual  

screening of commercially available databases, with the aim of identifying small molecule 

inhibitors of the HCMV UL44 homodimerization (Federico Falchi, Unpublished). The Glide 

software (Schrödinger, NY, USA) was employed to dock molecules to the interface of the two 
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monomers. Three rounds of screening by docking were performed using the High throughput 

virtual screening (HTVS), Standard Precision (SP) and Extra Precision (XP) docking settings. 

After each docking round only the top-ranked molecules in term of docking score were selected for 

the following round. The resulting 500 molecules were further reduced by visual inspection, cluster 

analysis and on the basis of their commercial availability, 18 compounds were purchased and 

tested for their ability to disrupt UL44 dimerization (see Figure 1.6). 

 

Figure 1.6. Use of Virtual screening to identify SMs potentially interfering with UL44 homodimerization. 
Falchi et al., unpublished. 

 

1.13 Methods to detect protein-protein interaction (PPI) 

 

Biological systems are made up of very large numbers of different components interacting at 

various scales. Most genes, proteins and other cell components carry out their functions within a 

complex network of interactions, and protein–protein interactions (PPIs) are crucial events of 

virtually all cellular processes. The investigation of these PPIs is essential for the comprehension of 

how gene functions and regulations are integrated within an organism [72]. PPIs are conceived as 

physical contacts with molecular docking between proteins that occur in a cell or in a living 

organism in vivo. Therefore, the interaction interface should be intentional and not accidental, and 

should be non-generic but evolved for a specific purpose. PPIs can be characterized as stable or 

transient and both can be either strong or weak. The investigation of these PPIs requires different 



 26 

experimental techniques designed to characterize protein complexes and PPI network. There are 

two main approaches for the investigation: in vitro methods and in cells methods. In vitro methods 

comprise a broad range of techniques adopted for both interaction discovery and confirmation. 

These methods rely on the natural affinity of binding partners for each other (see Table 1.2).  

 

 

Table 1.2. In cells methods for PPIs analysis [Thermo Scientific Pierce Protein Interaction Technical 
Handbook. Version 2, Thermo Scientific, 2010].  

In vitro method Description 

Co-immunoprecipitation  An immunoprecipitation (IP) experiment designed to affinity-
purify a bait protein antigen together with its binding partner 
using a specific antibody against the bait. 

Pull-down Assays An affinity chromatography method that involves using a tagged 
or labelled bait to create a specific affinity matrix that will enable 
binding and purification of a prey protein from a lysate sample or 
other protein-containing mixture. 

Crosslinking Reagents Strategies involve chemical crosslinking which  may or may not be 
reversed. Nearest neighbours (suspected to interact) in vivo or in 

vitro can be trapped in their complexes for further study.  

Protein Interaction 

Mapping 

Uses an “artificial protease” on a bait protein to initiate contact-
dependent cleavages in the prey protein in the presence of specific 
reactants. contact sites or interface of a known protein-protein 
interaction. 

Surface Plasmon 

Resonance 

Relates binding information to small changes in refractive indices 
of laser light reflected from gold surfaces to which a bait protein 
has been attached.  

Mass Spectroscopy Used in concert with affinity-based methods (such as co-IPs) to 
isolate binding partners and complexes and to identify the 
component proteins using standard mass spectral methods. 
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In cells methods, instead, are a more restricted number and can be found listed in the Table 1.3 
below. 

In cells method Description 

Yeast Two-Hybrid System Monitor complex formation through transcriptional 
activation of reporter genes. 

Crosslinking Reagents Incorporating functional groups into proteins which can 

react, trapping a protein complex. 

Immunofluorescence/FRET/BRET Detect co-localized signal from two different proteins or 
monitor complex formation thought 
fluorescent/bioluminescent resonance energy transfer. 

Proximity Ligation Assay  Two primary antibodies recognize the target antigens of 
interest. Secondary antibodies (PLA), each with a unique 
short DNA strand attached, bind to the primary 
antibodies. When the PLA probes are in close proximity, 
the DNA strands can interact forming DNA 
oligonucleotides. 

After their joining, oligonucleotides are amplified using a 
polymerase, and labelled complementary oligonucleotide 
probes highlight the product. 

Biomolecular Fluorescence 
Complementation (BiFC) 

Based on the association of fluorescent protein fragments 
that are attached to components of the 
same macromolecular complex. 

 

Table 1.3: In cells methods for PPIs analysis [Thermo Scientific Pierce Protein Interaction Technical 
Handbook. Version 2, Thermo Scientific, 2010].  

 

Each method has its own advantages and disadvantages. In vitro methods allow great sensitivity, 

but often rely on the use of non-physiological systems, such as bacterial cells, to produce proteins to 

a large extent, so that their conformation might result different from what expected. Furthermore, in 

vitro methods, detect interactions occurring outside their physiological context, i.e. the cell. On the 

other hand, in cells methods, overcome these issues. The proteins of interest are directly expressed 
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in their preferred cell type, and localization is readily detectable. However, such methods, are more 

limited, offer reduced flexibility, and are less sensitive as compared to in vitro ones. 

1.14 Fluorescent Resonant Energy Transfer (FRET) 

 

Fluorescent Resonant Energy Transfer (FRET) is a nanotechnology able to give information on 

PPIs. FRET technique is based on the energy transfer between two fluorophores called donor and 

acceptor. The energy transfer is possible only when the donor fluorophore, once excited at an 

appropriate wavelength, transfers part of its energy to the acceptor fluorophore by means of a 

dipole-dipole interaction. To this end, it is necessary that donor and acceptor fluorophores are 

located within 10 nm. Another necessary condition to have a FRET signal is that the emission 

spectrum of the donor has a sufficient overlap with the excitation spectrum of the acceptor. In this 

study the two fluorophores used were two proteins derived from the GFP (Green Fluorescent 

Protein): CFP (Cyan Fluorescent Protein) as donor, and YFP (Yellow Fluorescent Protein) as 

acceptor. To evaluate the interaction between two proteins, donor (CFP), and acceptor (YFP), are 

fused to the proteins of interest, and the fusion proteins are expressed in cells. If the two proteins of 

interest interact, donor and acceptor will be in close proximity to generate an energy transfer and so 

a FRET signal. One of the most common methods to measure FRET efficiency, is the Acceptor 

Photobleaching. The basic principle of this technique, is that the energy transferred from the donor 

to the acceptor will be reduced, or eliminated, if the acceptor is bleached by laser excitation at 

maximum power for an opportune time. FRET efficiency is calculated on the bases of donor 

fluorescence intensity variations pre- and post-bleaching of the acceptor, using the following 

equation: 
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Where Dpost is the donor fluorescence intensity post-bleaching, and Dpre the donor fluorescence 

intensity pre-bleaching. FRET is an in cell method to detect PPIs, usually ex vivo but can be also 

performed in vivo with the use of more sophisticated confocal scanning microscopes. It also allows 

to detected the cellular compartment were the interaction take place. However, it requires complex 

setup for data acquisition and processing, which cannot easily be automated for high throughput 

screening without sophisticated apparatuses.  

 

1.15 Bioluminescent Resonant Energy Transfer (BRET) 

 

Bioluminescence Resonance Energy Transfer (BRET), is a nonradioactive resonance energy 

transfer occurring between a light-emitting bioluminescent donor and an acceptor fluorescent 

protein, whose emission and excitation spectra significantly overlap. As for FRET, when donor and 

acceptor are brought into close proximity (1-10 nm), and are properly oriented each other, the donor 

can transfer energy to the acceptor, which then emits light at a specific wavelength. Since light 

emission from the donor takes place at a different wavelength than that from the acceptor, the 

energy transfer can be easily detected by measuring the ratio of the acceptor to the donor emission 

intensities. Such output allows to compensate for well-to-well aspecific signal variations (e.g., due 

to different cell numbers in each well or signal decay across the plate). Because BRET strictly 

depends on the molecular proximity between donor and acceptor, it is suitable for monitoring the 

activation state of any protein (e.g., receptor or transcription factor) that undergoes association or 

conformational changes. A strong advantage of BRET assays over other in vivo methods such as 

FRET and BiFC (Figure 1.7) is the fact that is easily scalable to multiwell plate formats. This 

phenomenon can either be observed in vitro, using purified proteins, or directly within the cells 

where the fusion proteins were produced. Differently from FRET, BRET does not require a light 

source, therefore it is not affected by photobleaching, light scattering or autofluorescence and direct 
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excitation of the acceptor cannot take place. The intrinsic low background of BRET allows either 

detection of weak interactions and performing experiments with low concentrated proteins. BRET 

is also able to analyze millions of cells in a very short time, making possible the analysis of multiple 

samples simultaneously. 

Usually, detection of protein-protein interactions by BRET, requires fusion of one of the protein of 

interest to a donor protein and of its binding partner to an acceptor protein. The most commonly 

used donor and acceptor proteins are Renilla Luciferase (RLuc) and Yellow Fluorescent Protein 

(YFP),  

 

Figure 1.7. Comparison between FRET, BRET and BiFC 

 

respectively. Addition of the natural substrate of Rluc, Coelenteraine (CTZ), leads to the emission 

of blue light (with a maximum at a 480 nm) with an emission spectrum that overlaps with the 

excitation spectrum of the YFP. If the two fusion proteins do not interact, only blue light is emitted 
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upon substrate addition. Instead, if the two fusion proteins interact, thereby placing the donor and 

acceptor molecules within a distance less than 10 nm, resonance energy transfer occurs and an 

additional light signal corresponding to the acceptor reemission can be detected (with a maximum 

at 535 nm in the case of YFP). The typical readout of a BRET experiment is the calculation of the 

BRET value and the BRET ratio (see § 3.27).  

The BRET value is defined as the ratio between the YFP and RLuc signals calculated for a specific 

BRET pair, according to the formula: 

 

Similarly, the BRET ratio is defined as the difference between the BRET value relative to a BRET 

pair and the BRET value relative to the BRET donor (RLuc) alone, is calculated according to the 

formula: 

 

Usually a BRET ratio above 0.1 is considered indicative of PPI. A strong advantage of BRET 

assays is the possibility to discriminate between specific and non-specific interactions performing 

donor saturation experiments. In such experiments a fixed amount of donor molecule is expressed 

in the presence of increasing amounts of acceptor. In the case of a specific interaction, the BRET 

ratio augments in a hyperbolic manner and reaches a plateau (BRET max) representing complete 

saturation of all donors with acceptor molecules.  On the other hand, in the case of non-specific 

interactions, the BRET ratio increases linearly with the increase of acceptor expression levels (see 

Figure. 1.8) 
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Figure 1.8: Example of the outcome of a BRET saturation experiment in the case of specific and aspecific 
protein-protein interactions. Adapted from [73]. 

 

1.16 Biomolecular Fluorescence Complementation (BiFC) 

Biomolecular Fluorescence Complementation (BiFC) is a technique used to validate PPIs. BiFC 

relies on the association of fluorescent protein fragments fused to the proteins whose interaction has 

to be evaluated. In particular, the fluorescent protein is split into its N- and C-terminal domains, 

each one attached to one of the protein under investigation and expressed in live cells. If these two 

proteins interact, the two domains of the fluorophore will be close enough to reform their native 3D 

conformation and the so reconstituted fluorophore, under proper light excitation, can emit its 

fluorescent signal. The BiFC technique permits not only the detection and validation of PPIs in 

vivo, but can also localize the proteins in the cells and give information about the strength of the 

PPI, since the intensity of the fluorescent light emitted is proportional to the strength of the 

interaction. 
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2. Aim 

 

Antiviral agents currently used for the treatment of HCMV infection have several 

disadvantages: toxic side effects, similar mechanisms of action and induction of resistant 

viral strains, leading to countless problems, especially in immunodeficient individuals 

(4). 

Furthermore, HCMV is the leading cause of congenital viral infection and there are no 

drugs available during pregnancy. These problems have stimulated the search for new 

compounds that are less toxic, more active and more specific against HCMV. That is why 

we propose to inhibit viral replication through the dissociation of UL44 homodimeric 

complex using compounds that bind to homodimerization interface. 

This strategy has two possible advantages. The first one is given by the fact that a 

protein-protein interaction - in this case, the dimerization of UL44 - is highly specific and 

therefore this paves the way for a virus-specific inhibition. Secondly, whereas a single 

point mutation in the catalytic site of an enzyme is sufficient to give rise to drug 

resistance, the homodimerization of UL44 would be restored by two different mutations, 

thus reducing the possibility of drug resistance onset.  
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3. MATERIALS AND METHODS 

 

3.1 Lentiviral vectors productions 

To produce Lentiviral pseudoparticles, 2 wells of a 6 well plate containing HEK293 T cells were 

transfected by Lipofectamine 2000 (Invitrogen)  

using the following plasmids:. 

• pCMVR8.74, Gag Pol expressing plasmid ( 6.4 µg). 

• pMD.G, Encoding Vesicular stomatitis virus G protein (2.1 µg). 

• Lentiviral plasmid coding the transgene of interest (6.4 µg), either pWPI–YFP-UL44puro or 

pWPIpuro empty vector. 

After 24 hours, 8 x 104 cells HEK293A cells were seeded in a 12 well plate. The next day, 

Lentiviral pseudoparticles were harvested from HEK293 T cells and replaced by 3 ml of DMEM 

cpt w to the HEK293 T cells. Viral supernatants were collected at 48,52 and 72 hours post 

transfection, filtered through a 0.45 µ filter and stored in cryovials at 4°C or -80°C for short and 

long term use, respectively. 

 

3.2 Generation of stable cell lines by Lentiviral transduction  

 HEK293 A cells were seeded in 12 well plates (8 x 104/ well). 24 hours later, media was replaced 

with 500 µl to 1000 µl of the filtered viral supernatants. When required, cells were transduced every 

12 hours up to three times, in order to maximize transgene expression. 96 hours post transduction 

cells were grown in DMEM cpt containing with the appropriate amount of selection agent (see § 
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3.22). Media was changed every 3 days, and cells subcultured to a 6 well plate when reached 

confluence. 

 

3.3 Generation of stable cell lines by Calcium Phosphate Transfection 

HEK293 A cells, seeded on 2 wells of o 6 well plate, were transfected with a variable amount (5-

15µg) of pre-linearized mammalian expression plasmid by Lipofectamine 2000. Plasmids were 

linearized using enzyme in order to promote integration in the host genome without interruption of 

any important sequence. 8h hours post transfection, media was changed and replace with DMEM 

cpt. Subsequently, 24h hours post transfection, the appropriate amount of selection agent was added 

to the cells (see § 3.22). 

 

3.4 Determination of the optimal selection agent concentration for generation of stable cell 

lines 

In order to select cells expressing the transgene of interest after either Lentiviral transduction 

(§3.20) or transfection (§3.21) we determined the optimal concentration of the appropriate 

antibiotics puromycin 0-6 µg/ml, (Clontech), blasticidin 0-20 µg/ml (Life Sciences) and neomycin 

0-2000 µg/ml (Life Sciences). To this end, HEK293 A seeded 1x105 in 24 well plates. 24 hour later, 

media was replaced with DMEM cpt containing a variable amount of antibiotic (see Table 6.3). 

Media was replaced every 3 days, and cell viability was monitored daily for up to 10 days. For each 

antibiotic, the minimum concentration sufficient for killing all cells present in the well was selected 

for further experiments. 

 

3.5 Generation of polyclonal and monoclonal cell lines  
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Polyclonal HEK293 A cell lines stably expressing the transgene of interest, were obtained by either 

transducing the parental cell line with a Lentiviral pseudoparticle (§3.20) or transfecting them with 

a linearized plasmid DNA (§ 3.21),  followed by incubation in the presence of an appropriate 

amount of selection agent (§ 3.22). Cells were subsequently expanded from a 12 well plate to a 6 

well plate, then to a T25 flask. When confluent cells were passaged to a T150 flasks, before being 

frozen. Such polyclonal cell lines were then either used for specific assays, or used to derive 

monoclonal cell lines. To this end, 0.5 cells/well in 200µl were seeded in each wel of a 96 well 

plate using a multichannel pipet (Eppendorf), in the presence of media containing the appropriate 

selective agent. Plates were monitored daily for appearance of colonies and media was changed 

every 3 days. When the colonies reached confluency, they were passaged to 24 well plates and 

subsequently to 6 well plates, before being further expanded and frozen for long term storage.  

 

3.6 Preparation of glass coverslips for microscopic imaging 

Poly lysine solution (SIGMA 6282) was used to treat glass coverslips to ensure a better adherence 

of the cells to the coverslips. One day before seeding, sterile glass coverslips (Assistent®, REF 

1001/12, 12mm ø) were placed, under sterile hood, into 24 well plates and 300 µl of poly lysine 

solution were added to each well, ensuring that all the surface of the glass coverslip was covered, 

and then incubated for 2 h at 37°C by gently shaking. At the end of the incubation period, poly 

lysine was removed and the coverslips were washed, first with 1 ml of sterile H2O MQ, and then 

with 1 ml of sterile PBS. After the removal of PBS, coverslips were positioned at 45° and dried ON 

at RT. HEK293 T cells were subsequently seeded on such Poly-Lysinated coverslips, and then 

transfected with the appropriate DNA mixtures using Lipofectamine. 48h p.t., culture media was 

removed from the wells and cells were washed with 1 ml of PBS to eliminate debris. Cells were 

then fixed for 10 minutes at RT with 350 µl of Paraformaldehyde (4% v/v in PBS, pH 7.4) and 

washed twice with 1 ml of PBS to remove residues of paraformaldehyde. Finally, glass coverslips 
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were mounted on microscope slides using 5µl of Fluoromount-G (Southernbiotech) as mounting 

media. Slides were equilibrated for 30 min at RT before being stored in the dark at 4°C. 

 

3.7 Coelenterazine stocks preparation 

Coelenterazine (native-CTZ; cat. 102171) and Benzyl Coelenterazine (h-CTZ; cat. 102181) were 

purchased from PJK GmbH. Native-CTZ (MW: 423.463 g/mol) stock solutions were prepared in 

the dark dissolving 1 mg of compound in 2.36 ml of MetOH, to obtain 1 mM stocks. h-CTZ (MW: 

407.464 g/mol) stock solutions were prepared in the dark dissolving 1 mg of compound in 2.45 ml 

of MetOH, to obtain 1 mM stocks. Stocks were aliquoted in foil covered eppendorfs (50 µl/vials) 

and stored at -80°C until required. 

 

3.8 ZI
 factor analysis  

The Z-factor is a parameter quantifying the suitability of a particular assay for use in high-

throughput screen. An assay with 0.5 < Z-factor < 1 is considered to be excellent [74]. Z-factors 

were calculated according to the formula: 

 

 

3.9 Bioluminescence Resonant Energy Transfer (BRET) measurements 

HEK293 T were detached from culture flasks and 1 or 2 x 105 cells/well were seeded on 24 well 

plates and analysed 24h or 48h post transfection, respectively. Plates were incubated ON at 37°C in 

a 5% CO2, 95% humidified incubator. The following day cells were transfected with the appropriate 

DNA mixtures containing BRET pairs expression plasmids, using Lipofectamine 2000. Cells were 

also mock transfected, to establish background levels of luminescence and fluorescence. 

Additionally, each Rluc-expressing plasmid was also transfected in the absence of a YFP construct 

to be used as a background for calculation of the BRET ratio. 16h post transfection cells were 
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observed using an inverted fluorescent microscope (Leica, DFC420 C) to verify cells conditions 

and to verify that the YFP-fusions were expressed as expected. At the established time post 

transfections, cells were processed for BRET assays. Culture media was removed from wells and 

cells were very gently washed with 1 ml of PBS, before being resuspended with 290 µl of fresh 

PBS. Using a p200 filter tip cells were further resuspended and 90 µl of mixture were transferred to 

a black bottomed 96-well plate (Costar®, REF 3916, 2018-04-12) well, in triplicate. When 

acquisition of fluorescent signal was required (YFPnet), the 96-well plate was first read with a 

spectrometer compatible with BRET measurements (VICTOR X2 Multilabel Plate Reader, Perkin) 

for the YFP fluorescent emission, using a fluorimetric excitation filter (band pass 485 ± 14 nm) and 

a fluorimetric emission filter (band pass 535 ± 25 nm). The YFPnet value corresponds to the 

acquired value relative to each well, subtracted the background value acquired relative to mock 

transfected cells. Subsequently, h-CTZ 1 mM stocks were appropriately diluted (1:20, 1:10 or 1:5, 

v/v in PBS) before being added to each well (10 µl/well) to reach the desired final concentration (5- 

20 µM). The plate was then read in luminometry, to allow acquisition of the YFP and RLuc signals. 

Initially it was acquired the YFP signal, using a luminometric 535 ± 25 nm emission filter. 

Subsequently, it was acquired the Rluc signal, using a luminometric 460 ± 25 nm emission filter. 

YFP and RLuc emission values relative to each condition were calculated by subtracting the YFP 

and RLuc signal relative to mock transfected cells to their YFP and RLuc signals. Luminometric 

readings were performed at 5’, 15’, 30’, 45’ and 60’ after addition of the substrate. Before each 

reading, the plate was shacked for 1 sec. at normal speed and with double orbit. Details relative to 

the fluorimetric and luminometric readings are detailed in the Appendix section (§6.10). 

Finally, the data obtained were analysed calculating to calculate the BRET value, defined as the 

ratio between the YFP and RLuc signals calculated for a specific BRET pair, according to the 

formula: 
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Similarly, the BRET ratio, defined as the difference between the BRET value relative to a BRET 

pair and the BRET value relative to the BRET donor alone, was calculated according to the 

formula: 

 

 

 

3.9.1 BRET saturation curves 

HEK293 T cells were transfected with appropriate amounts of BRET donor plasmids (RLuc; 

generally 2.5-10ng), sufficient to yield a RLuc signal clearly distinguishable from the background, 

in the presence of increasing amounts of BRET acceptor plasmids (YFP; generally 0-180ng), and of 

a variable amount of empty vector pCDNA3 (to 500ng final plasmid DNA). At the appropriate time 

post transfection (24-48h) samples were processed as above (see §3.27) to calculate the BRET 

ratio, The YFPnet and the RLuc signal values, relative to each condition. BRET saturation curves 

were then calculated using the GraphPad Prism software by plotting each individual BRET ratio 

value to the YFPnet/RLuc signals (YFP/RLuc) and interpolating such values using the one-site 

binding hyperbola function of PRISM. A specific BRET pair would then generate a logarithmic 

shaped curve and reach a plateau. This would thus allow calculation of BRETmax (Bmax) and 

BRET50 (B50) values, indicative of maximum energy transfer and relative affinity of the BRET 

pair tested. On the opposite, a non-specific interacting BRET pair would not reach plateau, resulting 

in a linear BRET ratio over Y/R curve. 

 

3.9.2 Normalization of Y/R ratios using control molecule RLuc-YFP 

When required Y/R ratios relative to each condition, were normalized to the Y/R ratio of control 

molecule RLuc-YFP, in order to reflect more accurately the relative number of RLuc and YFP 
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fusions expressed. To this end, different amounts of the RLuc-YFP control plasmid (h-CTZ: 3-9ng; 

CTZ: 45ng) were used to transfect HEK293 T cells along with the BRET pair expression plasmids, 

and similarly processed at the required time points (see §3.27). Both in the case of h-CTZ and CTZ, 

curves were normalized using the Y/R values 15 min post substrate addition normalized to the Y/R 

ratio of RLuc-YFP control molecule of the correspondent time point (15min). 

 

3.9.3 BRET competition curves 

Bret competition curves were performed to verify the possibility to detect inhibition of the 

interaction between the BRET pairs. 

To this end appropriate amounts of BRET donor and acceptor plasmids (RLuc-UL44 2.5ng + YFP-

UL44 40/22ng or RLuc-UL54 10ng + YFP-UL44 40/22ng) were transfected into HEK293 T cells 

together with increasing amounts of a competitor, YFP-UL44-FLAG. As negative control, a BRET 

competition curve was performed transfecting increasing amounts of YFP-UL42-FLAG competitor, 

which is known to not interact with UL44 nor with UL54. Variable amount of empty vector 

pCDNA3 were also added to reach a final plasmid DNA quantity of 500ng. At the appropriate time 

post transfection (24-48h) samples were processed as above (see §3.27) to calculate the BRET 

ratio, the YFPnet and the RLuc signal values, relative to each condition. BRET competition 

curves were then calculated plotting each individual BRET ratio value to the quantity of 

competitor transfected. 

 

3.9.4 Evaluation of the effect of SMs on UL44 homodimerization by BRET assays 

HEK293 T cells were seeded 1x105 or 2x105 in to 24-well plate and incubated ON at 37°C, 5% 

CO2 and 95% humidity. The following day cells were transfected with the appropriate DNA 

mixtures containing the BRET pairs expression plasmids, using Lipofectamine 2000. 6h post 

transfection mixtures were removed and added the SMs, two concentrations each compound 
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according to viability experiment (see §3.30.2). 24h or 48h later the cells were processed as above 

(see §3.27) to calculate the BRET ratio, the YFPnet and the RLuc signal values, relative to each 

condition. The BRET inhibition was calculated plotting each individual BRET ratio value to the 

quantity of BRET pair transfected. 

 

3.9.5 Evaluation of the effect of AL18 on the UL54-UL44 interaction by BRET assays 

According to viability experiments from [71] we decided to use two concentrations for the BRET 

experiments, 3µM and 30µM respectively. 

HEK293 T cells were seeded into a 24-well plate, 2x105, 1x105 respectively for the 24h and 48h 

test, and incubated ON at 37°C, 5% CO2 and 95% humidity. The following day cells were 

transfected with the appropriate DNA mixtures containing the BRET pairs expression plasmids, 

using Lipofectamine 2000. 6h post transfection mixtures were removed and add AL18. 

24h or 48h post transfection cells were observed using an inverted fluorescent microscope (Leica, 

DFC420 C) to verify cells conditions, localization and expression of the YFP-fusions.  

24h or 48h time post transfection samples were processed as above (see §3.27) to calculate the 

BRET ratio, the YFPnet and the RLuc signal values, relative to each condition. The BRET 

inhibition was calculated plotting each individual BRET ratio value to the quantity of BRET pair 

transfected. 

 

3.10 Fluorescence Resonant Energy Transfer (FRET) 

HEK293 T were detached from culture flasks and 0.5 x 105 cells/well were seeded on 24 well plates 

containing poly-lysinated glass coverslips 12 mm ø (see §3.24). Plates were incubated ON at 37°C 

in a 5% CO2, 95% humidified incubator. The following day cells were transfected with the 

appropriate DNA mixtures containing the FRET pairs expression plasmids, using Lipofectamine 

2000. Subsequently, transfection mixtures were removed, 8h or 16h post transfection. 16h post 
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transfection cells were observed using an inverted fluorescent microscope (Leica, DFC420 C) to 

verify cells conditions and expression of the YFP- or CFP-fusions. At 24 or 48 hours post 

transfection, media was removed from 24 well plates containing cells grown on 12 mm glass 

coverslips and cells were then processed for Immunofluorescence as described in §3.32.  

 

3.10.1 Localization analysis 

Subcellular localization of CFP and YFP fusion proteins, was microscopically evaluated using a 

Leica SP2 Confocal Scanning Laser Microscope (CSLM) equipped with a 63X oil immersion 

objective and an argon laser. Samples were scanned at 200 Hz, using a line average of 3, image 

resolution of 512 x 512 pixels and zoom 2.5. CFP was exited at 458 nm, whereas YFP at 514 nm. 

Laser power, gain and offset were set in order to obtain an optimal signal to noise ratio. Digital 

images were subsequently analysed with ImageJ software to create panels of localization containing 

CFP and YFP fusions alone and a merge of the two. 

 

 

3.10.2 FRET Acceptor Photobleaching analysis 

Samples previously analyzed for the subcellular localization, were then subjected to FRET 

Acceptor Photobleaching using a Leica SP2 CSLM equipped with a 63X oil immersion objective 

and an argon laser. After an initial scanning (see §3.28.1), FRET Acceptor Photobleaching was 

performed following three basic steps, using the FRET acceptor bleaching function of the Leica 

Confocal software (version 2.61). 1) images of donor and acceptor fusion proteins were first 

acquired pre bleaching using the same parameters described in § 3.28.1; 2) acceptor was bleached 

with argon laser at maximum power (6 to 10 scans); 3) post bleaching images of donor and acceptor 
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were acquired, using the same settings as in step 1). FRET efficiency % was calculated on the basis 

of donor fluorescence intensity variations pre- and post-bleaching, using the following equation: 

 

Where Dpost is the donor fluorescence intensity post-bleaching, and Dpre the donor fluorescence 

intensity pre-bleaching. For each sample 10 to 30 cells in different areas of the slide were selected 

and subjected to FRET. We preferentially selected that cells which displayed comparable levels of 

expression between the donor and the acceptor and which were not saturated. Due to the different 

levels of expression of the different samples, we were not able to use a single setting for all the 

samples, but the same setting (laser potency, pinhole, gain and offset) was used for FRET pairs 

which were then compared the one to the other (i.e. CFP-UL54 + YFP-UL44 vs CFP-UL54 + YFP-

UL44-I135A). Data obtained (FRET efficiency %, CFP and YFP expression levels pre bleaching) 

were then analysed using GraphPad Prism software. 

 

3.10.3 FRET efficiency statistical analysis  

FRET efficiency % between different samples was statistically compared with GraphPad Prism, to 

perform the parametric t test with Welch's correction relative to each FRET pair considered. 

FRET correlation Analysis. To calculate correlation between FRET efficiency % with CFP and 

YFP expression levels, FRET efficiency % and fluorophore expression levels were analyzed with 

the correlation function of GraphPad Prism, computing the r between the two datasets, and using 

two tailed Pearson correlation coefficients with 95 % confidence interval. Pearson r values > than 

0.5 or smaller than - 0.5 were considered indicative of positive or negative correlation, respectively. 

 

3.10.4 Processing of digital images 

8 bit CLSM images acquired using the Leica software were processed with ImageJ to generate tiff 

images. First, brightness was adjusted and images were smoothened, then the most significant area 
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of the image was selected and cropped (256 x 256). Subsequently a colour was assigned to each 

channel, green for CFP and red for YFP, before merging the two to obtain a composite image. The 

composite image was transformed in a RGB colour image and the merged channels were split again 

in 8 bit images. A scale bar of 10 µm was added to the merge RGB colour image before creating a 

stack of the three images (CFP on the left, YFP in the middle, merge on the right). To highlight 

protein-protein co-localization in HEK293 T cells confocal images acquired as in §3.19.1 and 

processed as described above, were analyzed with ImageJ. On a selected cell present in the merge 

image of the stack, a line was drawn on the entire surface of the cell. Subsequently a RGB profile 

plot of the selected area was obtained the plugins graphic option of ImageJ. 

 

3.11 SMs stocks preparation in DMSO 

SMs and AL18 were purchased from Vitas-M and Maybridge, respectively. According to each SM 

MW, molecules were diluted in appropriate amounts of DMSO 100% to obtain the following stocks 

concentrations: 20 mM, 10 mM, 5 mM, 2.5 mM, 1.25 mM, 625 µM, and 312.5 µM. Stocks were 

aliquoted in foil covered eppendorfs (20 µl/vials) and stored at -20°C until required. 

 

3.12 WST-1 cell viability assay  

Viability assays on HEK293 A cells were performed through a colorimetric assay using the 

nonradioactive cell proliferation reagent WST-1 (Roche, version 16). WST-1 is a stable tetrazolium 

salt which is cleaved to a soluble formazan by a bioreduction reaction dependent on the production 

of NAD(P)H in viable cells. The amount of formazan dye produced is directly proportional to the 

number of metabolically active cells in which the respiratory chain of mitochondria is functional. 

The quantification is measured with a scanning multi-well spectrophotometer and the recorded 

absorbance is proportional to the number of viable cells. HEK293 A cells were seeded into a 96-

well plate, 1x104/well for the 24h and 0.5x104/well for 48h, and incubated ON at 37°C, 5% CO2 
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and 95% humidity. The following day, cell culture medium was replaced with either different 

concentrations of DMSO or with freshly prepared dilutions of the SMs in 1% DMSO. To this end, 

SMs stocks in 100% DMSO were diluted 1:100, under sterility and in the dark, into DMEM 

(DMSO 1% final concentration v/v) in order to obtain different concentrations: 200 µM, 100 µM, 

50 µM, 25 µM, 12.5 µM, 6.125 µM, 3.125 µM. After addition of SMs and the plates were 

incubated again at 37°C, 5% CO2, 95% humidity. The test was done in duplicate and as controls 

some seeded wells were left with DMEM-DMSO 1%, and some wells without cells with DMEM-

DMSO 1%. After 24h or 48h, the plates were observed under optical microscope to evaluate cells 

confluence and morphology as well as the presence of precipitates. Subsequently, 10 µl of WST-1 

(1:10 v/v) were added to each well, and absorbance was determined with a spectrophotometer plate 

reader at 450 nm at different time points post addition of the substrate: 10’, 20’, 30’, 40’, 50’, 60’, 

90’, 120’, 180’. Data acquired were analyzed with the software PRISM and fitted to a linear 

regression or 4 Parameter Logisitic Equation (Sigmoidal) to calculate the cell culture viability of 

50% of cells (CC50) values. 

 

3.13 GST-pulldown assay 

The recombinant 6His-UL44, 6His-UL44-L86/L87A, GST-UL44, GST proteins were purified as 

described [75]. 0.03 nmol of either GST- fusion proteins were incubated for 2 hours at 4°C with 

0.12nmol of 6His-UL44 wild type in a final volume of 100 µl in Binding Buffer (see Appendix 

6.1). After that 100 µl of samples were loaded onto columns previously activated with 100 µl of 

glutathione-sepharose columns (Biorad). Columns were washed with 2.5 ml of NETN buffer (see 

Appendix 6.1). 100µl of the last wash fraction were collected and used for subsequent analysis. The 

bound complexes were eluted with 300 µl of elution buffer (NETN buffer plus 15 mM glutathione). 

Samples derivate from Input, Wash fractions and Eluted fractions were analyzed by Western-Blot 

as described in § 3.34. 
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3.14 Immunofluorescence analysis  

Cells were plated (5x104 per well) in 24 well with glass coverslips, previously treated with poly-

lysine (see§ 3.24), and incubated, in order to allow adhesion. The following day, cells were fixed in 

4% formaldehyde (see § 3.24) and permeabilized in PBS-0.5% Triton X-100 (Applichem) for 5 

minutes at RT. Subsequently cells were washed with PBS and saturated with 3% PBS-BSA for 30 

minutes. Samples were then incubated for 1 hour at RT with Anti-Rluc Mouse monoclonal antibody 

(Sigma-Aldrich, MAB4400) diluted 1:50 in 1% BSA in PBS- (weight/volume). Following three 

washes in PBS, cells were incubated with Alexa Fluor® conjugated secondary antibody (Molecular 

Probes) diluted in 1% PBS-BSA for 1 hour in the dark. Immunofluorescence signals were either 

visualized on inverted fluorescent microscope (Leica, DFC420 C), or with a Leica SP2 CLSM 

system. 

3.15 Western-blot assays  

The following primary and secondary antibodies and were diluted in PBS containing 5% milk at the 

concentrations reported below: 

• Anti-Rluc Luciferasi mouse monoclonal, 1:4000 (Sigma, MAB4400) 

• Anti-GFP rabbit polyclonal, 1:1000 (Santa Cruz Biotech sc-8335) 

• Anti-Tubulin mouse monoclonal, 1:10000 (Sigma, T6074) 

• Anti-6His tag, 1:2500 (Sigma, H-1029).   

• Goat Anti-mouse IgG Peroxidase Conjugate 1:10000(Sigma, A4416) 

Goat Anti-rabbit Peroxidase Conjugate 1:10000 (Sigma, A6154).  

• Goat Anti-mouse immunoglobulin Ab conjugated to horseradish peroxidase 1:2000 (sc-

2055, Santa Cruz Biotech). 
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4. RESULTS 

I. Study of UL44 dimerization in cells and in vitro 

Since UL44 has been crystallized as a dimer, and point mutations affecting UL44 dimerization in 

vitro affected its DNA binding properties as well as oriLyt dependent DNA replication, we 

speculated that UL44 dimerization could represent a therapeutic target. UL44 dimerization has not 

been detected only in vitro, but also in cells, by using subcellular localization assays by 

simultaneously co-expressing differently tagged nuclear and cytosolic versions of UL44 [49]. Such 

assays suggested that UL44 could also function as a dimer in cells, however they are not amenable 

to the screening of compounds interfering with dimerization given their non-quantitative nature. We 

therefore decided to develop new in cells quantitative assays to verify UL44 dimerization in cells, 

which would be potentially amenable to screening of UL44 dimerization in cells. 

 

4.1 Study of UL44 dimerization in cells by Resonant Energy Transfer techniques  

We initially focused on Resonant Energy Transfer (RET) techniques, which are based on the ability 

of a specific molecule, called "donor", to transfer energy to an "acceptor" molecule when the two 

are located in close proximity (< 10 nm) (see Introduction 1.15). To this end we used Fluorescence 

Energy Transfer (FRET) and Bioluminescence Energy Transfer (BRET). 

 

4.2 Generation of Mammalian expression plasmids to study UL44 interactions by FRET 

 

The first RET method we tested is FRET, based on the ability of a fluorescent donor such as CFP to 

transfer energy to a acceptor molecule such as YFP (see section 1.15). To this end, we generated 
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plasmids mediating the expression of N-terminally tagged versions of UL44 as fused to either CFP 

or YFP, using the GatewayTM technology. As a control, we also generated expression plasmids 

between such fluorescent protein and the C-terminal 95 amino acids of UL54 (residues 1125-1242) 

containing the NLS and the UL44 binding domain of the protein (see introduction) [46]. Additional 

control plasmids mediating the individual expression of YFP and CFP as well as a CFP-YFP fusion 

protein were also obtained  [76].  

 

4.3 Analysis of subcellular localization and molecular weight of expressed proteins.  

Plasmids were transfected in HEK293 T cells 5x104 containing poly-lysinated glass coverslips (see 

§3.24) and their subcellular localization investigated by CLSM 48h p.t. (see §3.28.1). As expected 

both CFP, YFP and CFP-YFP homogenously distributed throughout the cells with a diffuse pattern 

(Figure 4.1 A). On the other hand, fusion of UL44 to either CFP or YFP resulted in strong nuclear 

localization, often accompanied by a pointy intranuclear pattern, indicative of DNA binding and 

consistent with the presence of a NLS within the DNA binding protein UL44. Fusion to UL54 

(1125-1242) resulted in proteins mainly localized to the cell nuclei with a diffuse pattern due to the 

presence of a NLS, but the lack of any DNA binding domain in UL54 C-terminus (figure 4.1A). We 

also evaluated that all fusion proteins were correctly expressed by Western blotting. To this end, 

HEK293 T cells were transfected with each expressing plasmid, and 48h p.t. samples were lysed, 

electrophoretically separated on 8.5 % bis-tris acrylamide gels and subjected to Western blotting  (§ 

3.34). The presence of specific bands relative to each fusion protein was detected using an anti GFP 

antibody (§ 3.34). Our results indicate that all fusion proteins could be readily detected at the 

expected molecular weight (Figure 4.1 B). In particular both YFP and CFP-UL44 fusions could be 

detected as 70 kDa discrete bands, whereas UL54 (1125-1242) fusions (apparent MW of 37 kDa) 

migrated slower than CFP and YFP as individually expressed (MW ca. 27 kDa), but slightly faster 

than the CFP-YFP fusion protein (MW ca. 54 kDa).  
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Overall, our results indicate that all the CFP and YFP expression plasmids employed mediate the 

expression of proteins exhibiting the expected subcellular localization (Figure 4.1 A) and molecular 

weight and could be therefore used for subsequent analysis (Figure 4.1 B). 

 

4.4 Analysis of UL44 dimerization and its interaction with UL54 by FRET acceptor 

photobleaching 

Based on these results, we decided to perform FRET acceptor photobleaching experiments. We 

used CFP-UL44 and CFP-UL54 (1125-1242) (from now CFP-UL54) as donor molecules, and YFP-

UL44 along with a set of point mutant derivatives (L86/L87A, defective for dimerization; I135A, 

defective for UL54 binding) as acceptors. We additionally transfected cells with a positive control 

plasmid mediating expression of a CFP-YFP fusion, and with negative control plasmids mediating 

the expression of CFP and YFP as individual proteins. In this set of experiments, 5x104 HEK293 T 

cells were seeded in 24 well plates, containing glass coverslips, before being transfected. In order to 

maximize the chance to obtain comparable expression levels between FRET pairs of interest (CFP-

UL44/YFP-UL44 vs CFP-UL44-L86-L87A/YFP-UL44-L86-L87A and CFP-UL54/YFP-UL44 vs 

CFP-UL54/YFP-UL44-I135A), we transfected cells with two different amounts (Condition A, 

Condition B) of the relevant CFP-UL44/YFP-UL44 and CFP-UL54/YFP-UL44 FRET pairs 

expressing plasmids (Table 4.1). Subsequently, coverslips were processed (§3.24) before being 

observed by CLSM to determine the localization pattern of the proteins of interest (§3.28.1). In 

some cases, transfection mixtures were removed 8h p.t. in order to maximize cell viability. In other 

experiments, transfection complexes were removed after 16h in order to maximize transfection 

efficiency.  

While performing FRET assays, we also evaluated the subcellular localization of each fusion 

protein, when expressed in the presence of its interacting partner. We first observed samples whose 

media was changed 16h p.t. As reported above, CFP localized with a diffuse pattern 

homogeneously distributed throughout the whole cell, and its localization was not affected by 
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simultaneous expression of YFP. Such subcellular distribution was undistinguishable from that of 

the CFP-YFP fusion (Figure 4.2). As expected, CFP-UL44 showed a nuclear localization with a 

spotty pattern dependent on its DNA binding ability, and such distribution was not affected by 

expression of YFP-UL44 (Figure 4.2). On the opposite, point mutant CFP-UL44-L86/L87A showed 

a more diffuse nuclear localization with decreased formation of speckles when expressed alone, 

most likely due to its inability to dimerize and therefore bind dsDNA, both in the presence and in 

the absence of its YFP-UL44-L86/L87A partner (Figure 4.2). On the other hand, CFP-UL54 

showed a diffuse nuclear localization when expressed alone, whereas it strongly colocalized with 

YFP-UL44 in nuclear spots upon co-expression. Importantly, such co-localization was not observed 

when CFP-UL54 was expressed in the presence of YFP-UL44-I135A, a mutant derivative impaired 

in UL54 binding (Figure 4.2). In all cases, no difference was observed between conditions A and B 

and similar results were obtained when media was changed 8h p.t. (not shown). 

FRET efficiency is expected to correlate with protein expression levels, therefore it is very 

important to compare values calculated for samples were similar levels of proteins are expressed. 

For this reasons we applied FRET acceptor photobleaching (see §3.28.2) to samples transfected 

with relevant FRET pairs at the different conditions (A and B; see Table 4.1), with identical settings 

(listed in Table 4.2). We first analyzed samples whose media was changed 8h p.t. As expected, we 

calculated a FRET efficiency of 33% for the positive control CFP-YFP, significantly higher than 

the 8% calculated for the negative control, represented by the simultaneous expression of CFP and 

YFP (Figure 4.3 A B).  In order to avoid artifacts due to different protein expression levels between 

wt and mutant proteins, the same acquisition settings were used to analyze samples transfected 

according to the conditions represented in Table 4.3. Intriguingly, for both conditions the wt UL44 

FRET pair revealed a FRET efficiency significantly higher than its dimerization impaired 

counterpart (Condition A: 23 ± 4 vs. 11 ± 5; Condition B: 27 ± 5 vs 7 ± 3) (Figure 4.3 A B). Similar 

results were obtained when comparing the FRET efficiency relative to expression of CFP-UL54 in 

the presence of YFP-UL44 and of the UL54-binding defective point mutant YFP-UL44-I135A 
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(Condition A: 19 ± 3 vs. 8 ± 4; Condition B: 18 ± 3 vs. 4 ± 2). Taken together, these results further 

confirm that UL44 forms dimers and binds to UL54 in cells, and that the L86A/L87A substitution 

within the dimerization site, as well as the I135A substitution within the connector loop, negatively 

affect these processes. Furthermore, these results indicated that acceptor bleaching could be used to 

monitor both the UL44 homodimerization and the UL54-UL44 interaction. Similar results were 

obtained for the relevant FRET pairs relative to cells whose media was changed 16h p.t. (Figure 4.3 

C), as well as after pooling data from condition A and B (Figure 4.3D). 

 

4.5 Analysis of YFP and CFP correlation with FRET efficiency  

In order to determine the effect of relative acceptor and donor expression levels on FRET 

efficiency, we investigated if there was a correlation between the fluorophores expression levels 

and the FRET efficiency as described in §3.28.3, analyzing the two previous experiments in which 

media was changed 8h or 16h p.t.  

Correlation was found more often between FRET efficiency and YFP as compared to CFP 

expression (40% vs 25% of cases, respectively) (Figure 4.4 and Figure 4.5). As expected, 

correlation between YFP and FRET efficiency was always positive (reaching maximum Pearson r 

value of 0.88), while that between CFP and FRET efficiency was preferentially negative (reaching a 

minimum Pearson r value of -0.68).  These results suggest that, as expected, increasing the relative 

acceptor expression levels (YFP) also increases FRET efficiency, while increasing the relative 

donor levels (CFP) causes a decrease in FRET efficiency. 

We therefore decided to investigate whether the observed differences in FRET efficiency between 

wt and point mutant-interaction impaired version of UL44 were due to altered expression protein 

expression levels. To this end, we compared CFP (Figure 4.6A, B) and YFP (Figure 4.6C, D) 

expression levels of the different FRET pairs relative to UL44 homodimerization (Figure 4.16 A, C) 

or to the UL54-UL44 interaction (Figure 4.6, D) of samples whose media was changed 8h p.t.. Our 
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analysis revealed no marked differences between conditions examined, thus showing that decreased 

FRET efficiency observed for UL44 mutants is a specific effect due to reduced PPI and does not 

depend upon altered fluorophores expression levels. Similar results were obtained also for samples 

whose media was changed 16h p.t. (not shown). 

 

5 BRET-based analysis of UL44 dimerization  

Our FRET-based results clearly indicated that UL44 dimerizes and binds to UL54 in cells, and that 

such interactions are affected by specific amino acids substitutions (see Figure 4.3.). However, 

FRET is sensitive to protein expression levels, and thus does not easily allow precise quantitation of 

inhibition of such PPIs. Furthermore FRET is extremely time consuming and not easily scalable to 

SMs screening. To overcome these limits, we decided to test if UL44 dimerization and binding to 

UL54 could also be monitored by an alternative RET method, such as Biolominescent (B)RET. 

BRET is based on non-radioactive energy transfer between a bioluminescent donor molecule, such 

as Renilla luciferase (Rluc) to a fluorescent acceptor molecule, such as YFP (see section 1.15).  

 

5.1 Subcellular localization and expression analysis of RLuc-fusion proteins 

To this end, we generated plasmids mediating the expression of N-terminally tagged versions of 

UL44 and UL54 as fused to RLuc, using the GatewayTM technology. As a negative control for 

UL44 dimerization, we generated the RLuc.UL44 (405-433) expression plasmid. UL44 (405-433) 

contains a NLS, responsible for nuclear targeting the protein, but lacks UL44 N-terminal domain 

responsible for all known biochemical activities, including the ability to self-associate, and 

therefore represents an ideal negative control for BRET assays. As a positive control, we also 

generated expression plasmids driving the expression of the YFP-RLuc and RLuc-YFP fusion 

proteins (Table §8.5).  
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HEK293 T cells were seeded in 24 well plate containing poly lysinated coverslip glasses and after 

24h p.t. the cells were transfected with RLuc expressing plasmids and the subcellular localization of 

expressed proteins was investigated by inverted fluorescent microscope (Leica, DFC420 C), 48 h 

p.t. (see § 3.28.1). As expected, both RLuc-UL44 and RLuc-UL54, as well as the RLuc-UL44 (405-

433), localized to the cell nuclei (see Figure 4.7). On the other hand, YFP-RLuc localized mainly in 

the cytosol, whereas Rluc-YFP appeared more nuclear. 

We also evaluated that all fusion proteins were correctly expressed by Western blotting. To this 

end, HEK293 T cells were transfected with each expressing plasmids, and 48h p.t. samples were 

lysed, electrophoretically separated on 8.5 % bis-tris acrylamide gels and subjected to Western 

blotting  (§ 3.34). The presence of specific bands relative to each fusion protein was detected using 

an anti RLuc antibody (§3.34). Our results indicate that all fusion proteins could be readily detected 

at the expected molecular weight (see Figure 4.7). In particular RLuc-UL44 fusions could be 

detected as ca. 100 kDa discrete band, whereas RLuc-UL54 (1125-1242) fusion (apparent MW of 

46) migrated quicker than RLuc-YFP and YFP-RLuc fusion proteins (apparent MW ca.63 kDa). 

Very little degradation was detected relative to each fusion protein. 

Overall our results indicate that all RLuc- expression plasmids employed mediate the expression of 

proteins exhibiting the expected subcellular localization and molecular weight and could be 

therefore used for subsequent analysis. 

 

5.2 Analysis of protein expression levels mediated by BRET plasmids 

 

Similarly to FRET, BRET is also sensitive to protein expression levels. Strong BRET signals, 

resulting in highest BRET ratio values (see § 3.28) are obtained under low RLuc and high YFP 

expression conditions. In order to evaluate the possible BRET ratio relative to UL44 dimerization, 

as compared to the BRET ratio relative to a negative control BRET pair, such as those represented 
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by the interaction of RLuc-UL44 (405-433) with YFP-UL44, we initially decided to compare the 

expression levels of fusion protein mediated by the aforementioned expression plasmids. To this 

end, we therefore seeded 1x105 HEK293 T cells per well of a 24 well plate, and 24h later, 

transfected cells using Lipofectamine 2000 with increasing amounts of plasmids (from 0 to 500 ng) 

mediating the expression of either the YFP-UL44, the RLuc-UL44 or the RLuc-UL44(405-433) 

fusion proteins. 48h p.t. cells were processed for detection of fluorimetric (YFP-fusions) and 

luminescent (RLuc-fusion) expression by using a plate reader, 5' after addition of RLuc substrate 

CTZ (5µM, see §3.25). Our results indicate that the signals could be readily detected (Figure 4.8). 

Interestingly, while the signal relative to YFP-UL44 continued to increase with the increase of 

transfected plasmid (Figure 4.8 A, up to 500 ng), expression from both RLuc expression plasmids 

did not seem to increase linearly with the increase of transfected plasmid (Figure 4.8 B, C). 

Importantly, the RLuc-UL44 (405-433) protein appeared to be much more stable than the RLuc-

UL44, with 50ng of expressing plasmid already resulting in a RLuc signal higher than that 

generated after transfection with 500 ng of RLuc-UL44 (Figure 4.8 B, C).  

 

5.3 Detection of UL44 dimerization in living cells by BRET  

 

We then decided to evaluate the ability of UL44 to form dimers in living cells. To this end 1x105 

HEK293 T cells were seeded and transfected as above with either RLuc-UL44 or RLuc-UL44 (405-

433) alone, or in combination with YFP-UL44. Appropriate amounts of each plasmids were chosen 

in order to mediate the expression of comparable amounts of the RLuc-fusions. To this end, cells 

were transfected with either 100 ng of RLuc-UL44 or 12.5 ng of RLuc-UL44 (405-433). Where 

required, transfections were performed in the presence of an excess of YFP-UL44 expressing 

plasmid (500 ng), to allow calculation of the BRET signal. 48h p.t. later cells were processed for 

BRET analysis. Per each condition, the YFP fluorescent signal generated after excitation at 485 nm 

(YFP-Net, see §3.27) was recorded, and subsequently the YFP and RLuc emission values relative to 
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each condition was performed in luminometry, at different times after the addition of RLuc 

substrate CTZ (see § 3.27). 

Luminometric measurements were recorded at different times points post CTZ substrate, in order to 

follow variations in the signals. As expected, RLuc (Figure 4.9 A) and YFP (Fig. 4.9 B) rapidly 

decreased over the 45’ considered period. On the opposite, the BRET signal increased, reaching a 

maximum at 45’ post CTZ addition, and was used as the selected time point to calculate BRET 

measurements post CTZ addition. These results, suggest that UL44 homodimerization can be 

successfully monitored by BRET assays (Figure 4.9 C). Importantly, RLuc-UL44 and RLuc-UL44 

(405-433) were expressed to comparable levels (Figure 4.10 A), similarly to the YFP-UL44 (Figure 

4.10 B). When individually expressed, RLuc-UL44 generated a BRET value of 0.31±0.03, similarly 

to the 0.32±0.02 BRET value calculated for Rluc-UL44 (405-433), and corresponding to the 

background signal. Importantly, co-expression of YFP-UL44 increased the RLuc-UL44 BRET 

value to 0.67±0.05, resulting in a BRET ratio of 0.36±0.10. On the other hand, BRET value of 

RLuc-UL44 (405-433) was not increased by co-expression with YFP-UL44 (0.35±0.01), resulting 

in a BRET ratio of 0.03±0.00 (Figure 4.10 C, D).  

 

5.4 Probing the specificity of UL44 dimerization by BRET 

 

Our results suggest that BRET might be suitable to detection UL44 interaction in living cells. 

However, the BRET signal generated by the presence of RLuc and YFP tagged version of UL44 

could also result from aspecific interaction between the two proteins. The most common way to 

prove such specificity is by performing saturation experiments, whereby increasing amount of 

acceptor (YFP)- expression plasmid are transfected in the presence of fixed amounts of RLuc 

expressing plasmids (see § 3.27.1). To this end, HEK293 T cells were seeded 1x105 in 24 well 

plates and transfected with either 25 ng of RLuc-UL44 or 6.25 ng of RLuc-UL44 (405-433), in the 

presence of increasing amounts of the YFP-UL44 (range: 0 to 900 ng). 48h later cells were 
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processed for BRET analysis. Per each condition, the YFP fluorescent signal generated after 

excitation at 485 nm (YFP-Net, see §3.27) was recorded, and subsequently the YFP and RLuc 

emission values relative to each condition was performed in luminometry, 45’ after the addition of 

RLuc substrate CTZ (0.5 µM see § 3.25). Our analysis indicates that the BRET ratio relative to the 

RLuc-UL44/YFP-UL44 BRET pair rapidly increases with the increase of the ratio between YFP 

and RLuc expressed proteins (Y/R), reaching a plateau at the higher Y/R. Importantly, the data 

could be fitted to a one site-specific binding curve (R2 = 0.982) to generate a logarithmic shaped 

curve, which reached a plateau, indicative of a specific interaction (Figure 4.11). On the opposite, 

the BRET ratio relative to the RLuc-UL44 (405-433)/YFP-UL44 BRET pair slowly increased in a 

linear fashion, without reaching a plateau, indicative of random interaction due to protein 

overexpression (Figure 4.11). 

Such result is of a great importance because, like FRET, BRET is indeed also very sensitive to 

protein expression levels. Indeed the ability to correlate Y/R to the BRET ratio relative to different 

BRET pairs has implications to the study of the affinity of a PPI and to the potential identification 

of SMs disrupting such interaction. Indeed saturation experiments allow to calculate the Bmax 

(defined as the maximum energy transferred between donor and acceptor) and the B50 (define as 

the ratio of YFP/RLuc sufficient to generate a BRET ratio equal to 50% of Bmax), respectively 

depending on the distance and orientation of the two interacting molecules and on the affinity of 

such interaction (for more details, see §). For RLuc-UL44/YFP-UL44 BRET pair this first set of 

experiments allowed to calculate a Bmax of 0.65 and a B50 of 3.76.  

Our previous results suggested that FRET could detect differences between wild type and mutant 

versions of UL44 in terms of binding to either UL44 itself or its catalytic subunit. However, 

differences in FRET values were extremely sensitive to expression levels, and data acquisition was 

rather complex and time consuming. On the other hand, BRET measurements can be easily 

performed on thousands of cells in a few seconds. In addition, they offer the possibility to estimate 

differences in binding affinity by comparing B50 values relative to different BRET pairs. To this 
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end we decided to compare the effect of a set of amino acids substitutions affecting several UL44 

functions on protein dimerization and binding to UL54.  

To this end, plasmids mediating the expression of several UL44 mutants N-terminally fused to both 

YFP and RLuc were generated (see APPENDIX 8.5). These included the dimerization defective 

UL44-F121A and UL44-L86A/L87A, the UL54 binding impaired UL44-I135A, UL44-∆loop, 

which bears point mutations within UL44 basic loop and it is therefore impaired in DNA binding, 

and UL44∆NLS lacking the NLS. We also included plasmids driving the expression of a fragment 

of the catalytic subunit UL54 (1125-1242), containing both UL54 NLS and the binding site for 

UL44 as well as plamsids encoding for UL54 (1145-1213), devoid of the UL44 binding site (see § 

1.7). To this end, we transfected 1x105 HEK 293T cells, 24h later seeding in a 24 well plate, using 

different amount of plasmids mediating the expression of RLuc and YFP plasmids fused to the 

protein of interest. 48h p.t. cells were processed for detection of fluorimetric (YFP-fusions) and 

luminescent (RLuc-fusion) expression by using a plate reader, 5' after addition of RLuc substrate 

CTZ (5µM, see § 3.27). Data showed that most of the point mutations introduced in UL44 mutants 

fused with RLuc caused reduced protein expression levels (see §4.12). A similar trend was also 

observed when analysing YFP-UL44 fusion (data not show).  

We also analyzed the expression levels of UL54-RLuc fusion proteins. Our data shows that UL54 

(1125-1242) expressed less than UL44, impaling reduced stability. However the mutants UL54 

(1145-1213) expressed to higher level (Figure 4.12). For subsequent experiments we chose the 

amount of each plasmid based on the signal generated by RLuc. We have chosen the following 

amounts of plasmids: 25 ng for RLuc-U44, RLuc-UL44F121A, RLuc-UL44L86/L87, RLuc-

UL44∆loop, RLuc-UL44∆NLS, 50 ng RLuc-UL44I135A, 100 ng for RLuc-UL54 (1125-1242), 

RLuc-UL54 (1145-1213).  

 

5.5 BRET can accurately quantitate differences in binding affinity between UL44 

dimerization defective and UL54 binding impaired mutants in living cells 
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We decided to use such plasmids to test the ability of BRET to quantitatively detect differences in 

binding affinity between expressed proteins. To this end, we transfected 1x105 HEK 293T cells, 24h 

later seeding in a 24 well plate, using different amount of plasmids mediating the expression of 

RLuc and increasing amount of YFP fusions (0 to 900 ng), processed samples for 

fluorimeteric/luminometric detection, and calculated saturation curves using data obtained 45 min 

after CTZ addition. We could detect marked differences in terms of Bmax and B50 (see in §3.27.1) 

relative to mutant and wild-type proteins, indicating that our assay is able to discriminate even point 

mutations (see figure §4.7.2). We calculated similar Bmax and B50 values for UL44 self interaction 

and for its interaction with UL54 (Bmax = 0.64 + 0.09 (8) vs. 52+0.15(5), and B50 = 19,04 + 13.66 

vs. 19.95 + 13.88). In particular mutations affecting dimerization such as L86A/L87A and F121A 

strongly increased the B50 relative to UL44 dimerization (to ca. 90 and 70, respectively), but not 

those relative to UL54 binding (ca. 10 and 1, respectively). On the other hand, the I135A 

substitution within UL44 connector loop, essential for the UL44-UL54 interaction specifically 

increased the B50 relative to the UL44-UL54 interaction (ca. 80), but not relative to UL44 

homodimerization (ca. 25). As expected, mutation of UL44 NLS, which selectively affects nuclear 

import of the protein, did not affect either UL44 dimerization (B50 = 11.18 + 4.91 (4)) or binding to 

UL54 (B50 = 15.13 + 5.43 (2)). Similar results were obtained for the UL44-∆loop mutant, which 

cannot efficiently bind to dsDNA in cells. Such mutant still efficiently dimerized (B50 = 11.31 + 

2.13 (2)) and bound UL54 B50 = 35.37 + 12.93 (4). Importantly, all UL44 mutants impaired in DNA 

binding generated lower Bmax values both in case of UL44 dimerization and UL54 binding, 

implying a potential conformational change of UL44 upon DNA binding (Table 4.3, Figure 4.13).  

Overall the data shown suggest that BRET is a very fast, simple and semiquantitiative assay, which 

appears therefore ideal to be used for screening SM compounds able to interfere with UL44 

dimerization.  
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6 Study of UL44 dimerization by GST-pull down in vitro method  

 

In order to complete our study of the dimerization of UL44 we wanted to use another assay, an in 

vitro test. 

The pull-down assay is an in vitro method used to determine a physical interaction between two or 

more proteins. Pull-down assays are useful for both confirming the existence of a protein-protein 

interaction predicted by other research techniques (e.g., co-immunoprecipitation) and as an initial 

screening assay for identifying previously unknown protein-protein interactions. 

To do this, we performed an assay, using the recombinant proteins 6His-UL44(1-290), 6His-

UL44(1-290)-L86/L87A dimerization impaired point mutant, GST-UL44 (1-290) and GST [75, 77]. 

We incubated the recombinant proteins (see§ 3.31) for 2h at RT in binding buffer (see appendix), 

using 0.03nmol of either GST or GST-UL44(1-290) fusion protein with 0.12nmol of either 6His-

UL44(1-290), 6His-UL44(1-290)L86/L87A. After incubation, the complexes were loaded on 

glutathione specific columns. After extensive washes with NETN buffer, complexes where eluted 

with NETN+GSH buffer. Input, Wash and Eluted fractions were electrophoretically separated on 

8.5% bis-tris acrylamide gels and analysed by Western Blotting (see §3.33) using a mouse 

monoclonal antibody anti-6His tag (see 3.34).   

Importantly, we could detect a band of the expected molecular weight corresponding 6His-UL44(1-

290) relative to the GST-UL44(1-290)/6His-UL44(1-290), complex, but not relative to the 

GST/6His-UL44(1-290) complex. Intriguingly, the 6His-UL44(1-290)-L86/L87A band, relative to 

the GST-UL44(1-290)/6His-UL44(1-290)L86/L87A complex was much less intense (Figure 4.14).  

These results suggest that GST-pulldown is suitable to monitor UL44 dimerization in vitro and 

provides an alternative to the in cells methods described in the previous sections. 
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II Testing the effect of SMs on UL44 dimerization and assays 

optimization 

 

We previously identified 18 small molecules potentially interfering with UL44 dimerization (see 

1.12 . We decided to use our BRET assay to test the effect of such molecule on UL44 dimerization.  

We reasoned that stable cell lines would offer the advantage of more reliable assays, not being 

influenced by external factors such as transfection efficiency. Therefore we decided to generate cell 

lines that expressed stable levels of YFP-UL44. 

 

7. Polyclonal and monoclonal cell lines YFP-UL44 

To do so, it is ideal to work at a Y/R which results in a BRET ratio closed to the 50% of the Bmax. 

Under these conditions, the binding of YFP-UL44 to RLuc-UL44 would not result in saturation, 

thereby offering an ideal dynamic range to detect SMs decreasing or increasing dimerization. To 

allow generation of cell lines stably expressing the appropriate amount of YFP-UL44, we initially 

determined concentration the optimal selection agents (see §3.22). To this end, we seeded HEK293 

A 1x105 in 24 well plate and we treated with increasing concentration of each selection agent 

(puromycin, blasticidin and neomycin, see table §4.5) and cell viability assessed daily for 10 days. 

We noted that three selection agents acted with very different kinetics (see § figure 4.14 A). Cells 

treated in puromicyn or blaticidin started to die as early as one or two days post treatment, 

respectively, while cells treated in neomycin did not exhibit any cytotoxic effect until day 6. Based 

on our analysis, we chose the minimum concentration sufficient for killing all cells at a specific 

time point. In particular, for puromycin we chosen 1 µg/ml, for blasticidin 5 µg/ml and for 

neomycin 700 µg/ml (see § figure 4.15.) 
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7.1 Generation of stable cells line 

 

We initially decided to generate different polyclonal cell line stably expressing YFP-UL44, with the 

aim of identifying cell lines expressing the appropriate amount of protein to generate a BRET ratio 

close to 50% of the Bmax in the presence of RLuc-UL44. HEK293 A were transduced once, twice, 

or trice at 12 h intervals with lentiviral supernatant containing either lentivirus pWPI-YFP-UL44-

PURO or empty pWPI-puro 48 hour after the transduced, puromycin (1µg/ml) was added to kill any 

un transduced cells, and cells passage (as describe§ 3.23) We treaded the cell with 1µg/ml of 

puromycin for 10 days.  

 

7.2 Analysis of stable YFP-UL44 cell lines expression levels and BRET ratio in the presence 

of transiently expressed RLuc-UL44  

 

In order to verify the right localization, we seeded 1x105 HEK293 A-YFP-UL44 (68-1x, 68-2x, 68-

3x) and HEK293 A-pWPI-puro (7-1x, 7-2x, 7-3x) in 24 well plates, and after 24 hour we checked 

the cells by inverted fluorescent microscope. Our data indicated that increasing the number of 

transduction rounds also increased proteins expression levels. Also, despite most of YFP-UL44 

localized to the cell nuclei, in some cells its localization was mainly cytosolic (see figure § 4.16).  

We also tested the expression and the ability to generate a BRET signal. To do this we seeded 1x105 

HEK293 A-YFP-UL44 (68-1x, 68-2x, 68-3x) and HEK293 A-pWPI-puro (7-1x, 7-2x, 7-3x) in 24 

well plates in duplicate, and after 24 hour we transfected them with either UL44 (25 ng) or RLuc-

UL44 (405-433) (12.5 ng) as a control, or pCDNA3 empty vector to calculate background. 48h later 

cells were processed for BRET analysis. Per each condition, the YFP fluorescent signal generated 

after excitation at 485 nm (YFP-Net, see §3.27) was recorded, and subsequently the YFP and RLuc 
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emission values relative to each condition was performed in luminometry, at 5 minutes after the 

addition of RLuc substrate CTZ (5 µM, see § 3.25).  

Our results indicated that all HEK293 A-YFP-UL44 cells expressed the fusion protein to detectable 

levels, while cells transduced with empty vector did not. (see §4.17A). We also evaluated the BRET 

ratio at 45 minutes (see § 3.27) generated by the different stable cell lines. Transfections of pWPI-

puro empty vector cell line with RLuc-UL44 or RLuc-UL44 (405-433) was used as the background 

BRET values to calculate BRET ratios. As expected transfection of HEK293 A YFP-UL44 stable 

cell lines with RLuc-UL44 but not with RLuc-UL44 (405-433) generated a detectable BRET ratio 

(see §4.17C). Importantly, HEK293 A YFP-UL44 3x generated the higher BRET ratio (0.17) 

According to our results, we decided to use the YFP-UL44 3x cell line to generate subsequent 

monoclonal lines.  

 

7.3 Generation of monoclonal stable cell line YFP-UL44  

 

Our data indicated that our polyclonal cell lines mediated the expression of a heterogeneous YFP-

UL44 population with a detectable number of cells exhibiting aberrant localization. Therefore, we 

decided to generate monoclonal cell lines by performing limiting dilution assay (see § 3.23). To this 

end, we seeded polyclonal stable cells line and HEK293 A- YFP-UL44 (68-3x) 0.5 cells/well into 

96 well plates. We monitored the cells and we select only the wells containing one colony. Once the 

cells reach confluent we transferred them into 24 well plates to be able to evaluate the expression 

and test their ability to generate a BRET signal. In fact, in accord with previous data we want to 

select one or more cell lines that generate a BRET signal similar to the B50. 

In order to verify what was the monoclonal cell line that would express an optimal level of YFP, we 

performed an expression test on four monoclonal cell lines (called 1F6, 1B2, 2B3, 1F3), and as 

controls, we used the polyclonal cell line YFP-UL44 3x and a empty cell line. The first step we 
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evaluated the YFP levels. The resulted indicated that the YFP expression levels were different for 

each cells line.  

In order to verify the BRET signal, we transfected the cells with RLuc-UL44 (25 ng, 50 ng and 100 

ng) and 48h p.t. we analyzed RLuc activity and BRET ratio by plate reader (see § 3.27).  

The data obtained show that the lines 1F6, 1B2 and 2B3 express, in terms of YFP levels, more than 

the polyclonal cell line, and that 1F3 line express much less than the other. For all monoclonal lines 

the best BRET signal is generated in combination with 25 ng of RLuc, (BRET ratio 45 minutes, 

1F6= 0.18±0.06 , 12=0.23±0.00, 2B3=0.19±0.04, 1F3=0.20±0.00.  

According to our results, we chose to use in subsequent assays the monoclonal cell line 

denominated 1B2 because it generates a BRET ratio equal to the B50 when we used 25 ng of RLuc-

UL44 (see § Figure 4.18).  

 

8 Probing the effect of DMSO on cell viability  

 

Before testing the effect of SMs on the BRET ratio generated by the 1B2 cell line, we evaluated the 

effect of DMSO, the agent used for SM resuspension, cell viability by WST assay. In order to do 

so, we initially identified the optimal number of cells to be seeded by means of cell proliferation 

curves.  To do this, we have seeded different concentrations of cells for 24h (0-10000 cells/well) 

and 48h (0-5000 cells/well). At the indicated time points post seeding WST substrate was added 

and plate analyzed using an ELISA plate reader to calculate the cell number. Our results indicate 

that the assay maintained a good linearity at 24h post seeding at all cell numbers tested. On the 

other hand, cells seeded for 48h seemed to maintain linearity between cell numbers and signal up to 

2500 cells seeded Figure 4.19 A, C).  . Therefore, we seeded HEK293 A in 96 well at 24h 1x104 

cells/well and 0.5x104 cells/well for 48h and we treaded the cells with DMSO at different 

concentrations (10%, 1%, 0.1%, 0.01% and 0%). After 24h or 48h depending on the plate, we 
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added the WST-1 and analyzed the plate by ELISA plate reader. Our data indicated that HEK293 A 

cells well tolerated a DMSO of 1%, which was then set as the final solvent concentrations of our 

assay (Figure 4.19 B, D).   

 

9 Probing the effect of DMSO 1% on BRET signal 

 

We similarly tested the effect of the solvent (1% DMSO) on the BRET signal generated after 

transient transfection with RLuc-UL44 of a polyclonal and a monoclonal stable cell line, HEK293 

A pWPI-puro was used as a control.  

We seeded 1x105 of cells in 24 well plate and 24h later we transfected polyclonal, monoclonal and 

HEK293 A-pPWI-puro cells line with RLuc-UL44 (25ng) and HEK293 A with RLuc-UL44 (25 ng) 

and YFP-UL44 (80 ng) and we used mock-untransfected cells were processed in parallel.  6h p.t. 

media was replaced with 1% DMSO or with fresh DMEM. 48h p.t. We evaluated the effect of 1% 

DMSO on YFP expression levels and RLuc activity, and the results indicated that DMSO does not 

have affect. We, also, evaluated the effect of 1% DMSO on BRET signal relative to each condition, 

at different time points after substrate addition. According to the results obtained, we can say that 

there was no difference between BRET signal obtained in DMEM and 1% DMSO. Furthermore, we 

wanted to verify the robustness of our assay as screening assay for our compounds. To do this, we 

calculated the Z’ score § 3.26. Our results indicate that under every condition tested, DMSO had no 

negative impact on either BRET ratio or Z’ factor, which reached a value > 0.5 starting from 15’ 

post addition of CTZ, (Figure 4.20 C, D). 
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10 Assessment of Cell viability upon SMs treatment 

 

Before testing the ability of SMs to inhibit UL44 homodimerization, we assessed their effect on cell 

viability, in order to determine the appropriate concentration to be used in subsequent experiments. 

To this end WST assays were performed at 48h. We seeded 0.5x104 cells/well HEK293 A in 96 

well plate, and we treated the cells with increasing concentrations of each SM (3-200 µM). After 

48h of incubation with the SMs, cells were processed as described in §3.29,3.30.  

For each SM, the CC50 (Cytotoxic Concentration to reduce cells viability by 50%) was calculated 

using GraphPad Prism software using either a linear regression (Figure 4.21) or with a sigmoidal 

4PL logarithmic mode (Figure 4.22). In parallel cell viability was also visually inspections 

evaluated ( see Figure 4.23 and 4.24). Our data showed very different toxicity levels associated to 

the tested SMs with CC50 ranging from c. 10 to  > 200 µM (see Table 4.3). In order to screen SMs 

we chose two different concentration for each SMs (see Table 4.3).            

 

11 Assessment of the Effect of SMs on UL44 dimerization by BRET using the stable YFP-

UL44 1B2 cell line transiently transfected with RLuc-UL44 

 

We decided to use the stable YFP-UL44 (1B2) cell line to study the effect of the effect of SMs 

identified by an in silico screening (see §1.12) on UL44 dimerization. 

To do this, 1x105 1B2 stably expressing YFP-UL44 cells were seeded in 24 well plates cells and 

24h later cells were transfected with 25 ng of RLuc-UL44 expression plasmid. HEK293A cells 

were seeded in parallel and transfected either with 25 ng of RLuc-UL44, to allow calculation of 

background BRET signal, or with both 25 ng of RLuc-UL44 and 40 ng of YFP-UL44, as a positive 

control. Based on previous experiments, we calculated that such combination of plasmids would 

result in a BRET ratio similar to 50% of the Bmax. In order to subtract background due to cell 
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autoluminescence and autofluorescence, mock-transfected cells were processed in parallel. 6h p.t. 

media was changed and replaced with DMEM containing either DMSO1% or with two different 

final concentrations of each SM in 1% DMSO. Such concentrations were selected on the basis of 

the cytotoxicity assays (see § 3.30, (see Table 4.3).  Samples were analysed 48h p.t. to calculate the 

BRET ratio relative to the Rluc-UL44/YFP-UL44 in the absence or in the presence of the SMs.  

Our results indicated that treatment with SMs did not cause large variations of BRET ratio. 

However, three compounds (A4, B6 and C6) at the highest concentration tested, generated a BRET 

ratio between 30% and 40% lower than the control (see § figure 4.25, Table 4.6).   

These results suggested that our BRET assay could in principle detect variations in BRET ratio 

caused by SMs, but also that the assay in the current setup, might not be sensitive enough to allow 

identification of all relevant hits. Prompted by these results, we decided to optimize the assay, and 

re-evaluated the original experimental set up.  

 

12 Optimization experimental set-up for BRET assay  

 

We wanted to optimize our assay in order to have more chances to detect the inhibition of UL44 

dimerization upon treatment with molecules. To do this we have re-evaluated the settings of our 

assay. As a first step, we decided to compare different systems mediating the expression of the 

BRET pairs and therefore, in addition to the mixed expressing platform tested previously, whereby 

YFP-UL44 was stably expressed and RLuc-UL44 was expressed transiently, we developed 

platforms enabling the expression of the BRET pair of interest either in a completely stable or in a 

completely transient fashion. In addition, we reasoned that increasing the ratio between SM and 

expressed proteins would have made easier the disruption of protein dimerization. This could be 

achieved by decreasing the amount of transfected plasmids encoding for RLuc and YFP fusions. 

However, this is not an easy task since the RLuc signal relative to RLuc-UL44 using our previous 

setup were already very close to the background, making the reduction of RLuc expressing 
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plasmids a potentially problematic. Such issue was avoided by decreasing the amount of transfected 

DNA and using a substrate that generates a RLuc signal ten times higher than CTZ, Coelenterazine-

h (h-CTZ).  

We also wanted to reduce the time between the treatment of the cells with molecules and their 

analysis, because we do not know the half-life of the small molecules. Indeed the time between 

SMs addition and sample processing was reduced from 48 hours p.t. to 24 hours p.t. Finally; we 

also included a control molecule, AL18 (see § 1.11), known to disrupt the UL54-UL44 interaction, 

as a positive control for our assay. We also tested the effect of SMs on the control protein RLuc-

YFP to determine if the effect of the SMs was specific, as negative control.  

 

12.1  Development of additional biological expression systems to study UL44 dimerization 

by BRET  

 

In order to verify which biological expression system was the most appropriate to detect inhibition 

of UL44 dimerization, we decided to express our BRET pairs from three distinct expression 

systems. In addition to the transient/stable setting, whereby Rluc-UL44 was transiently expressed in 

a YFP-UL44 stably expressing cell line, we also generated cell lines stably expressing both RLuc-

UL44 and YFP-UL44 (stable/stable expression system) and compared them to a transient/transient 

expression system, whereby RLuc-UL44 and YFP-UL44 are both transiently expressed. Such 

expression systems were then challenged in inhibition experiments, whereby the ability of an 

overexpressed, non-labelled competitor such as FLAG-UL44, to decrease the BRET ratio was 

tested.  To do this we generating double monoclonal stable cells line expressed optimal levels of 

RLuc-UL44 and YFP-UL44. 
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12.1.1 Generation double stable cells line from 1B2 

The generation of double stable cells line has been done starting from the HEK293A monoclonal 

cell line 1B2, stably expressing high levels of YFP-UL44. Such cell line was transfected with pre-

linearized RLuc-UL44 in a 6 well plate (see §3.21), and cells expressing RLuc-UL44 were selected 

by treatment with neomycin (700 µg/ml). When cells reached confluence, they were expanded to a 

T25 flask. When the cells reached confluence they were subjected to limited dilution assays by 

being seeded at in 96 well plates described (SS). 

After 14 days, we could select 13 wells that contained one colony per well. When cells became 

confluent their content was split to two independent wells. One well was used for subculturing, the 

other one was used to assay fluorimetric and luminometric signals as described in (§3.27), thus also 

allowing to monitor the BRET ratio generated, by using a plate reader 45' post CTZ (5 µM) 

addition. 

The results obtained here indicate that the tested cell lines generated variable YFP fluorescent 

signal, despite originating from the monoclonal cell line 1B2 (Fig. 4.26 A). The luminometric RLuc 

signal was even more variable, and in four cases it was indistinguishable from the background (Fig. 

4.26B). Importantly, six cell lines generate a BRET ratio higher than the background (see figure 

4.26 C). Cell line G5A was selected for further analysis because generated a BRET signal very 

close to 50% of the Bmax previously calculated for the RLuc-UL44/YFP-UL44 BRET pair, in 

combination with low but detectable RLuc activity (see figure §4.26 B, C).  

 

13 BRET inhibition experiments  

 

In order to identify the most suitable biological expression system to allow selective screening, we 

compared all the systems generated in inhibition experiments. To do this, we seeded 1B2, G5A and 

HEK293 T 1x105 in 24 well plates. 24 hours later, 1B2 cells were transfected using 25ng RLuc-
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UL44, and HEK293T cells were transfected 25 ng of RLuc-UL44 and 40 YFP-UL44, combinations 

which - based on our previous experiments - result in a BRET ratio close to half of the Bmax. Since 

cell line G5A already express an optimal ratio of RLuc-UL44 and YFP-UL44, it was transfected 

with neither RLuc nor YFP-UL44 expression plasmids. All cell lines were also transfected with 

increasing amounts of a competitor expressing plasmid FLAG-UL44 (0-900 ng), which would be 

expected to disrupt the YFP-UL44/RLuc-UL44 complexes. As negative control, a parallel set of 

cells was transfected with increasing amounts of a plasmid expressing FLAG-UL42, the monomeric 

processivity factor of Herpes Simplex Virus-1 (§1.8). Samples were then processed for BRET 

measurements 48h p.t. as described in §3.27. Surprisingly, we could not detect any inhibition of the 

BRET ratio relative to G5A stable cell line (stable/stable expression system, Figure 4.27A), 

whereas clear inhibition was detected for both the transient/stable expression system (1B2 + Rluc 

UL44; Figure 4.27I) and for the transient/transient expression system (HEK293 T + RLucUL44 and 

YFP-UL44; Figure 4.27E). The latter system generated maximum observable inhibition (up to 70% 

reduction in BRET ratio) upon overexpression of FLAG-UL44. Much milder effects observed upon 

overexpression of FLAG-UL42. Importantly, both overexpression of UL44-FLAG and UL42-

FLAG, similarly affected YFP-UL44 expression levels, stressing the specificity of the inhibition 

(Figure 4.7C, D, G, H, M, N). These results suggest that stable expressing systems are not ideal to 

detect the disruption of PPI in BRET assays, most likely because of the difficulty of disrupting a 

pre-existing protein-protein complex as compared to the prevention of the formation of a similar 

complex. According to our result, we have decided to use to screen for SMs inhibitors of the UL44-

UL44 interaction a transient expression system. 

 

14 Substitution of CTZ with h-CTZ allows to decrease plasmid amount required for 

BRET assays 
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Our previously performed BRET-based screening did not allow identification of SMs interfering 

with UL44 dimerization by more than 40% (see §5). Therefore, we reasoned that this could be the 

consequence of the high protein expression levels used in the assay. In such assay, cells were 

transfected with high amounts (25-100 ng) of RLuc expressing plasmids, required to generate a 

RLuc signal sufficiently higher from the background to perform the analysis. This would result in 

very high SMs amounts necessary to mediate PPI inhibition. In principle, lowering protein 

expression levels would also facilitate the disruption of a PPI by a given SM concentration. We 

therefore set out to decrease protein expression levels in our BRET assays. All previous BRET 

experiments were performed using Coelenterazine-n (CTZ) as a substrate for RLuc. RLuc can also 

use Coelenterazine-h (h-CTZ) as a substrate, which results in higher emission in comparison to 

CTZ. We therefore decided to test the possibility to use h-CTZ with the purpose of lowering the 

levels of expressed proteins in the context of the RLuc-UL44/YFP-UL44 and RLuc-UL54/YFP-

UL44 BRET pairs expressing plasmids. To this end, we transfected HEK293 T cells with different 

amounts of RLuc-UL44, in triplicate and 24 h p.t. RLuc activity was quantified using a plate 

luminometer as described in §3.27. In order to subtract background due to cell autoluminescence, 

mock-transfected cells were processed in parallel. RLuc activity was then recorded at different time 

points after substrate addition, starting from 5 min. Since we expected incubation with h-CTZ to 

result in higher signal as compared to CTZ, we transfected lower amounts of plasmid as compared 

to what usually done for CTZ (25ng of RLuc-UL44).  

Interestingly, h-CTZ derived luminescent signal appeared more stable over time as compared to that 

derived from CTZ. Indeed, h-CTZ generated RLuc signal peaked at 15 min post substrate addition, 

and being 100% of that obtained 5 min after substrate addition 30 min later. On the other hand, by 

that time, CTZ derived luminescent signal after 30 min was 70%, lower than showing a more rapid 

decay (Figure 4.28 A). In the subsequent analysis we therefore focused on RLuc signal generated at 

15' post substrate addition. 



 71 

We also studied the influence of h-CTZ concentration on signal intensity, and incubated cells with 

increasing amount of the substrate (5, 10 and 20 µM, respectively). Importantly, increasing 

concentrations of h-CTZ over a 5-20 µM range did not significantly affected RLuc signal (Figure 

4.28 B). For this reason, we decided to use 5µM h-CTZ concentration for subsequent experiments. 

Importantly, we observed detectable signal already with 1 ng of RLuc-UL44, suggesting that it 

might be possible to significantly decrease the amount of plasmids for BRET studies (Figure 4.28 

B). 

We subsequently decided to evaluate the optimal amount of RLuc-UL44 and RLuc-UL54 plasmids 

to transfect in order to obtain a luminescent signal of about 4000 RLU. This, considering the 

expected inter-assay variability, would reasonably ensure to obtain a signal distinguishable from the 

background in future experiments. We performed an experiment transfecting HEK239 T cells with 

increasing amounts of RLuc-UL44 (1; 2.5 and 5 ng, respectively) and Rluc-UL54 (2.5; 5 and 10 ng 

respectively), and detected RLuc activity 24h and 48 h p.t. after the addition of 5µM h-CTZ. Both 

for the 24h and 48h pt. experiments, we measured optimal RLuc activity transfecting 2.5ng of 

RLuc-UL44 and 10ng of RLuc-UL54 expression plasmids (Figure 4.28C). These amounts are 10 

times lower as compared from those required to generate similar signals using CTZ as substrate. 

Therefore, subsequent experiments were performed with such quantity of plasmid DNA. 

 

14.1 BRET saturation curves 

 

Once identified the optimal amount of the BRET donor (RLuc fusions) plasmids to be used in 

transfection assays, saturation experiments were performed in order to calculate Bmax and B50 

values, which would then be used to determine the amount of BRET pair plasmids to be transfected 

for inhibition experiments. To this end a fixed amount of donor plasmids (2.5 ng for RLuc-UL44 

and 10ng for RLuc-UL54) were transfected with increasing amounts of the acceptor plasmids 

(YFP-UL44; 0-180 ng) in HEK293 T cells. Experiments were performed five times. Briefly, 
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transfected cells were processed (see §3.27) to calculate BRET ratio and YFP/RLuc values relative 

to each condition, and generate BRET saturation curves, which then allowed to calculate Bmax and 

B50 values as described in §3.27.1.   

Previously we calculated saturation curves using data obtained 45 min after CTZ addition. This was 

mainly because BRET signal at earlier time points was either too low or too variable (Di Antonio et 

al., unpublished). Since h-CTZ appears to generate a more stable RLuc signal over time as 

compared to CTZ (see Figure 4.29A), we firstly re-assessed the optimal time to calculate BRET 

ratio to be plotted for generation of saturation curves. We considered the variations over time of 

both RLuc and BRET ratio for both the RLuc-UL44/YFP-UL44 and RLuc-UL54/YFP-UL44 BRET 

pairs obtained using maximum amounts of acceptor plasmid (YFP-UL44 180 ng), relative to the h-

CTZ substrate and compared them to those previously obtained for the CTZ substrate under similar 

conditions (YFP-UL44 900 ng) (Figure 4.29). Our results indicate that for both RLuc-UL44 and 

RLuc-UL54, h-CTZ allowed to reach a signal comparable to that obtained with CTZ, using 1/10 of 

donor plasmid (Figure 4.29 A, E). As mentioned earlier such signal was more stable over time as 

compared to CTZ (Figure 4.29 B, F). As compared to those observed for CTZ, BRET ratios 

appeared higher (Figure 4.29 C, G) and more stable (Figure 4.29 D, H), with stable signals already 

obtained 15 min post substrate addition. Therefore, we used data generated 15 min post substrate 

addition for further analysis, thus also reducing the experimental time required for the procedure for 

data acquisition from 45 to 15 min. In order to reduce inter assay variability, YFPnet/RLuc values 

were also normalized for those obtained for the control BRET expressing construct RLuc-YFP (15 

min after h-CTZ addition). As expected, lowering the amount of transfected Rluc expression 

plasmid, the BRET signal reached saturation by transfecting lower amounts of YFP expression 

plasmids. For UL44-UL44 self-dimerization we calculated Bmax values of 0.49 ± 0.18 and of 0.76 

± 0.13 at 24h and 48h p.t. respectively. Similarly, we calculated B50 values of 2.47 ± 2.62 and of 

7.52 ± 5.51 at 24h and 48h pt respectively (see Table 4.4 A, Figure 4.30). These values are 

consistent with a specific PPI. For the UL54-UL44 interaction we calculated Bmax values of 0.46 ± 
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0.07 and of 0.51 ± 0.16, at 24h and 48h p.t. respectively, and B50 values of 2.69 ± 1.72 and of 3.40 

± 2.19 at 24h and 48h p.t. respectively (see Table 4.5 B, Figure 4.30). Normalization of the 

YFP/RLuc values using that relative to the RLuc-YFP fusion control protein (see §3.27.2), offered 

the possibility to compare Bmax and B50 values calculated using h-CTZ and CTZ, which resulted 

almost identical (Table 4.5, Figure 4.30).  

Since it is advisable to perform BRET inhibition assays using amounts of BRET expressing 

plasmids resulting in a YFP/Rluc value close to the B50 value, we identified the ng of acceptor 

plasmid required to fulfil this condition. According to our analysis, 40 ng and 22 ng of YFP-UL44 

were selected for both pairing with RLuc-UL44 and RLuc-UL54 at 24h and 48h p.t., respectively. 

  

14.1.1 BRET competition curves 

 

We then decided to verify it our new BRET assay setup allowed to detect a reduction of BRET ratio 

for the UL44-UL44 and UL44-UL54 interaction upon overexpression of a competitor. To this end, 

HEK293 T cells were transfected using the identified BRET pair quantities (RLuc-UL44/YFP-

UL44 2.5 ng + 40 ng; RLuc-UL54/YFP-UL44 10 ng + 40 ng), in the presence of increasing 

amounts of a competitor expressing plasmid FLAG-UL44 (0-180 ng). As negative control, a 

parallel set of cells was transfected with increasing amounts of a plasmid expressing UL42, the 

processivity factor of Herpes Simplex Virus-1 (FLAG-UL42). Samples were then processed for 

BRET measurements 48h pt as described in §3.27.3. We performed one experiment using h-CTZ 

(Figure 4.31) and we compared the results to those obtained using CTZ and cells transfected with 

higher amount of plasmids (Figure 4.30). As expected, overexpression of FLAG-UL44 resulted in a 

much stronger inhibition of the BRET signal, as compared to the control molecule FLAG-UL42. 

Importantly, both overexpression of UL44-FLAG and UL42-FLAG, similarly affected YFP-UL44 

expression levels, stressing the specificity of the inhibition (Figure 4.31C, D, G, H). Overall the 

extent of inhibition was similar to that obtained using CTZ as substrate which however required 
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much higher amounts of competitor expressing plasmid to be transfected (Figure 4.30). Therefore, 

h-CTZ allowed to reach similar inhibition of BRET signal, using lower amounts of competitor 

expression plasmid. Consequently, we planned to use these new BRET assay setups to screen for 

SMs inhibitors of the UL44-UL44 interaction. 

 

14.1.2 Effect of SMs on UL44 dimerization as assessed by BRET using h-CTZ 

We then used our modified BRET setup to investigate the effect of our SM library to affect UL44 

dimerization. To this end, 2x104 2HEK293 T cells were seeded into 24 well plates. Cells were 

transfected 24 h later with 2.5 ng of Rluc-UL44, alone or in the present of 40ng of YFP-UL44. In 

order to subtract background due to cell autoluminescence and autofluorescence, mock-transfected 

cells were processed in parallel. 8h p.t. media was changed and replaced with either DMEM 

containing either 1% DMSO or with two different final concentrations of each SM. Samples were 

analysed 24 h pt to calculate the BRET ratio relative to the Rluc-UL44/YFP-UL44 in the absence or 

in the presence of the SM. The addition of SMs only mildly affected the BRET ratio, with a small 

reduction relative to the B6 and C6 molecules (Figure 4.33). These results did not significantly 

differ from those obtained with the previous experimental set-up, implying that reduction of SM 

incubation time and amount of proteins expressed do not increase their inhibitory effect as assessed 

by BRET. 

 

15 Analysis of the effect of SMs on BRET relative to the control RLuc-YFP fusion protein 

 

We decided to investigate the specificity of the observed inhibition of BRET signal relative to 

UL44 dimerization. Indeed, a decrease of BRET signal upon treatment with SM can depend on 

several factors other than the disruption of the PPI of interest. This can be the result of light 

emission or fluorescence of the molecule that would alter the calculations of the BRET values, as 
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well as from interference of the molecule with the energy transfer due to conformational changes of 

the donor and acceptor moieties. We therefore tested the effect of treatment with the most 

promising compounds on the BRET ratio of the Rluc-YFP fusion control molecule. This is a fusion 

protein between RLuc and YFP and constitutively undergoes BRET as a consequence of energy 

transfer from RLuc to the neighbouring YFP.  

To this end, we transfected HEK293 T cells with the appropriate amounts of RLuc-UL44 and YFP-

UL44 expression plasmids, or of the RLuc-YFP control molecule. In order to subtract background 

due to cell autoluminescence, mock-transfected cells were processed in parallel. 8h pt media was 

replaced DMEM containing either DMSO1% or with two different final concentrations of the SMs 

A6, B6 and C6h. 24h pt cells were processed to calculate BRET ratio, YFPnet and RLuc activity 

relative to each condition. Subsequently we calculated the precent of inhibition relative to each 

sample due to treatment with the SMs (Figure 4.34). Our results indicate that treatment with SM A6 

and C6 neither affected the BRET ratio relative to RLuc-UL44/YFP-UL44, nor that relative to 

RLuc-YFP. Surprisingly, treatment of cells with B6 decreased to similar extent the BRET ratio 

relative to RLuc-UL44/YFP-UL44, and that relative to RLuc-YFP. These data suggest that the 

observed inhibition of BRET ratio after treatment with B6 is likely not the effect of the inhibition of 

the UL44 homodimerization. 

 

16 Effect of AL18 on the UL54-UL44 interaction as detected by BRET  

 

We therefore wished to assess if our BRET assay was capable of detecting the disruption of a 

known PPI as mediated by a molecule known to interfere with such process. To this end we choose 

to test the effect of AL18, known to disrupt the UL54-UL44 interaction in vitro and to impair viral 

replication in cells (see Introduction §1.11). To this end, we transfected HEK293 T cells with the 

appropriate amounts of plasmids expressing RLuc-UL54 and YFP-UL44, as well as RLuc-UL44 
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and YFP-UL44, or the RLuc-YFP control molecule as controls. In order to subtract background due 

to cell autoluminescence, mock-transfected cells were processed in parallel. 6h p.t. media was 

replaced DMEM containing either DMSO1% or with two different final concentrations of AL18. 

24h and 48h p.t. cells were processed to calculate BRET ratio, YFPnet and RLuc activity relative to 

each condition (§3.27). Subsequently, we calculated the precent of inhibition relative to each 

sample due to treatment with AL18. Our results indicate that AL18 does not interfere with the 

BRET ratio relative to the negative control at all time p.t. tested. However, at 24h p.t. no effect was 

observed on the BRET ratio relative to RLuc-UL54/YFP-UL44, while a mild, although dose 

dependent inhibition of the BRET ratio relative to RLuc-UL44/YFP-UL44 was detected (Figure 

4.35). This scenario did not change much 48h later, with AL18 causing a 20% decrease of the 

BRET ratio relative to RLuc-UL54/YFP-UL44RLuc-YFP at the highest concentration tested 

(Figure 4.36), but inhibiting the BRET ratio relative to RLuc-UL54/YFP-UL44 to significantly 

higher extent in a dose dependent manner (up to 50%). These results suggest that our BRET set up 

might not be sensitive enough to be used as a screening tool to identify molecules disrupting 

protein-protein interactions.  

 

17 Analysis of the effect of AL18 on the UL44/UL54 interaction as assessed by FRET 

acceptor photobleaching 

 

After the validation of FRET acceptor photobleaching as a method to detect the interaction between 

FRET pairs (§3.28,) we verified its reliability for the screening of small molecules inhibiting 

specific PPI. Since FRET is extremely time consuming as compared to BRET, we decided to 

initially test the ability of small molecule AL18, which is known to impair the UL54-UL44 

interaction (see Introduction §1.8), but which failed to specifically reduce the BRET ratio relative to 

RLuc-UL54/YFP-UL44, (see Figure 4.11) to selectively reduce FRET efficiency relative to CFP-
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UL54/YFP-UL44. We therefore transfected HEK293 T cells with the fFRET pairs CFP-UL54/YFP-

UL44, CFP-UL54/YFP-UL44-I135A, CFP-UL44/YFP-UL44, and CFP-YFP using condition A 

(Table 4.2), as well as with donor expression plasmids alone. Media was changed 8h p.t. and 

substituted with DMEM containing either DMSO 1% or AL18 at 3µM and 30 µM (in 1% DMSO 

final concentration). Samples were processed 48h p.t. for localization studies and FRET acceptor 

photobleaching (§3.28 and §3.28.2). Treatment with AL18 did not seem to significantly affect the 

subcellular localization of the proteins expressed, as assessed by CLSM analysis (Figure 4.37). 

Importantly, AL18 did not caused a specific inhibition of FRET efficiency relative to the CFP-

UL54/YFP-UL44 FRET pair (Figure 4.38A). In addition, neither FRET efficiency of the control 

fusion protein CFP-YFP, nor of the CFP-UL44/YFP-UL44 and CFP-UL54/YFP-UL44-I135A 

FRET pairs, were affected by treatment by AL18 (Figure 4.37A). Likewise, AL18 treatment did not 

affect FRET relative to expression of CFP expressed alone (Figure 4.37B). Therefore, we reasoned 

that FRET acceptor photobleaching, similarly to BRET, probably it is not suitable to identify SMs 

able to interfere with PPI. 

 

17.1 Analysis of YFP and CFP correlation with FRET efficiency upon AL18 treatment 

 

As for previously analysed samples (§4.3.), we investigated if there was a correlation between the 

fluorophores expression levels and the FRET efficiency as after treatment of cells with AL18.  The 

same frequency of correlation was found between FRET efficiency and YFP or CFP expression 

(19% of cases for both, Figure 4.19 and Figure 4.20). As expected, correlation between YFP and 

FRET efficiency was always positive (reaching maximum Pearson r value of 0.80), while that 

between CFP and FRET efficiency % was preferentially negative (reaching a minimum Pearson r 

value of -0.95). Subsequently, we investigated whether the decreased in FRET efficiency caused by 

treatment of cells expressing CFP-UL54/YFP-UL44 was due to an alteration of the expression 
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levels of the two proteins. To this end, we compared CFP (Figure 4.21B) and YFP (Figure 4.21A) 

expression levels of the different FRET pairs, in the presence or in the absence of AL18, and found 

no marked differences.  

 

18 Identification of SMs inhibiting UL44 dimerization by GST-pull down 

 

Since our BRET based assay failed to identify any molecule specifically inhibiting UL44 

dimerization, and our FRET acceptor photobleaching assay failed to detect the effect of positive 

control molecule AL18 on UL44/UL54 interaction, we reasoned that an in vitro method might be 

better suitable to our aim.  To this end we decided to test the effect of the 18 SMs identified as 

potentially important for UL44 dimerization by means of GST pull down assays. We initially tested 

the effect of DMSO on the ability of GST-UL44(1-290) to bind to 6His-UL44. To this end, 

recombinant proteins were incubated for 2h, either in binding buffer alone, or in binding buffer 

containing DMSO 1%, before being processed for GST-pull down analysis as described in (§ 3.31). 

Analysis of input, wash and elution fractions by Western blotting (see §3.34) using a mouse 

monoclonal antibody anti-6His tag (clone His-1, Sigma, 1:2500). We detected the immunocomplex 

by goat anti-mouse immunoglobulin Ab conjugated to horseradish peroxidase (HRP, Santa Cruz 

Biotech, 1:2000) and visualized them with using a Versadoc image station (Biorad).  Our analysis 

revealed that DMSO negatively affected binding of GST-UL44(1-290) to 6His-UL44(1-290) 

(Figure 4.3). For this reason, we decided to test the effect of SMs on UL44 dimerization at the 

lowest DMSO concentration possible, i.e. 0.25%.  We subsequently incubated the recombinant 

proteins for 2h in 0.25% DMSO, in the presence or in the absence of the SMs (50 µM), or of AL18 as 

a negative control, before proceeding with GST-pull down assays as described above. A first 

screening of indicated that some molecules, such as A6, B6, an AL18 appear to have positive effect 

on dimerization, while other molecules appeared to inhibit the formation of the complex (see Figure 

4.4), in particular the most extreme inhibition was observed upon incubation of GST-UL44 (1-290) 
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and 6His-UL44(1-290) in the presence of SMs A4, B1, B2, B3, B4 and C6. A repetition of such 

experiment is currently being performed. 
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5. DISCUSSION 

 

HCMV is a major human pathogen, whose genome is replicated via a rolling circle mechanism in 

the nucleus of infected cells by a number of cellular and viral proteins. Among them, the DNA 

polymerase holoenzyme is strictly required for viral genome replication. Such enzyme is composed 

by a catalytic subunit, UL54 and a processivity factor UL44, which tethers the holoenzyme to 

dsDNA. The latter protein functions as a dimer, and dimerization is essential for DNA binding. 

Since SMs have already been identified as capable of inhibiting HMCV replication by mediating 

disruption of the UL44/UL54 complex, we reasoned that it might be possible to identify compounds 

hindering viral replication by targeting the dimerization of UL44. This idea was fostered by the 

recent crystallization of UL44 N-terminal dimeric structure, which revealed a surface potentially 

amenable to drug targeting. Before the start of this thesis, a virtual screening had been performed to 

identify 137 SMs potentially targeting UL44 dimerization and elected the 18 ideal candidates by 

means of visual inspection.  

In the current study we initially dedicated great efforts to the development of assays to monitor 

UL44 dimerization. In particular we develop two new in cell based assays which could confirm that 

UL44 dimerizes in a cellular context, further extending earlier results that showed that UL44(1-290) 

exists as a dimer in vitro [56], and that UL44 can dimerize in cells before nuclear translocation 

occurs [49, 61]. Indeed our study provides the first quantitative assays of UL44 dimerization in cells 

by means of FRET and BRET experiments (see Figs.). Furthermore, our assays performed with 

hCTZ as substrate showed dimerization of UL44 at very low protein expression levels, deriving by 

transfection with as low as 2.5 ng of plasmid DNA per a 24 well plate of HEK293-T cells, thus 

suggesting that UL44 is very likely to dimerize in the context of the viral infection, where it is 

expressed to very high levels.  
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Furthermore our BRET assays calculated very similar B50 values for the UL44/UL54 interaction 

and for UL44 dimerization (CTZ:, hCTZ: normalized CTZ, normalized hCTZ). This interesting 

because these data suggest that the dissociation constant (Kd) of the UL44 homodimerization in 

living cells is very similar to that of the UL54-UL44 interaction. Since the UL54-UL44 interaction 

has been successfully disrupted by the SM AL18, which is capable of interfering with HCMV 

replication [71] it is therefore hypothesaziable that the UL44 dimerization could be similarly 

disrupted. It should be noted that the Kd calculated for the UL54/UL44 interaction (700 nM) and 

for UL44 dimerization (243 nM) in vitro, are almost three times different uM [56, 78]. This 

difference is in apparent contrast with the data reported here, and most likely depend on the fact that 

different methods were used to analyze UL44/UL54 interaction and UL44 dimerization in vitro. In 

particular the binding between UL44 and UL54 was studied using, isotermal titration calorimetry 

and UL44 dimerization was studied using gel filtration. In addition, it should be mentioned that in 

vitro studies were performed using UL44(1-290) a C-terminal deletion mutant devoid of UL44 C-

terminal 143 aa. Furthermore, our BRET assays revealed that several UL44 point mutants unable to 

bind DNA, but still capable of both binding to UL54 and dimerizing, such as UL44-∆loop, and 

UL44∆NLS, exhibited reduced Bmax values, without significant changes in B50 when challenged for 

binding to UL54 or for dimerization. Such findings are of interest because they might suggest that 

UL44 can change conformation upon DNA binding, thus resulting in a change in efficiency of 

energy transfer. Consistently it has been shown that UL44 dimeric conformation changes upon 

binding to UL54 [59], and that UL44 can be efficiently sumoylated on multiple residues only upon 

DNA binding [54]. 

By generating cell lines stably expressing YFP-UL44 as well as YFP-UL44 in the presence of 

RLuc-UL44 to levels very similar to those needed to generate a BRET ratio similar to 50% of the 

Bmax, and comparing the ability of such systems to undergo a reduction in BRET ratio after 

overexpression of a competing FLAG-tagged version of UL44, we could show that transiently 
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expressing YFP-UL44/RLuc-UL44 cells were more prone to inhibition of stably expressing cell 

lines. This is probably due to the difficulty of disrupting a pre formed complex [79]. 

Unfortunately, the in cells assays developed in this study were not sensitive enough to enable the 

discovery of SMs inhibiting UL44 dimerization. This is further highlighted by the failure of such 

assays to detect any inhibition of the UL54/UL44 interaction as mediated by the positive control 

molecule AL18, a well-known inhibitor of HCV DNA polymerase holoenzyme formation. 

While in the case of FRET-based assay such phenomenon can be explained by the high expression 

levels required to generate a positive signal, in the case of BRET this could not be the exploitation. 

Indeed, extensive assay optimization lead to the possibility to detect UL44 dimerization at very low 

protein concentrations. The reason for such failure might depend on the fact that some compounds 

might interfere with RLuc mediated luminescence or with YFP fluorescence, thus masking the 

potential disruption of the interaction by creating art factual BRET measurements. For these 

reasons, in the last part of our study we started to adopt an in vitro assay, based on previously 

described GST-pull-down approach, to monitor UL44 dimerization in vitro. By performing a first 

screening of the SMs we could identify several potential candidates potentially interfering with 

UL44 dimerization. GST-pull down assays have been previously adopted to monitor the disruption 

of PPI [77]. We are currently re-testing the effect of SMs on UL44 dimerization by means of GST-

pull down assays. 
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6. RESULTS TABLES AND FIGURES 
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Figure 4.3 
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Figure 4.4 
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Figure 4.5 

0 5 0 1 0 0 1 5 0

0

1 0

2 0

3 0

C F P -E x p re s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 5 4  (5 0 0 n g )  +

Y F P -U L 4 4 -I1 3 5 A  (1 2 5 n g )

0 2 0 4 0 6 0 8 0

0

1 0

2 0

3 0

Y F P -E x p re s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 5 4  (5 0 0 n g ) +

Y F P -U L 4 4 - I1 3 5 A  (1 2 5 n g )

r  =  0 .6 7

0 5 0 1 0 0 1 5 0

0

1 0

2 0

3 0

C F P -E x p re s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 5 4  (1 2 5 n g )  +

Y F P -U L 4 4 - I1 3 5 A  (1 2 5 n g )

0 5 0 1 0 0 1 5 0

0

1 0

2 0

3 0

Y F P -E x p r e s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 5 4  (1 2 5 n g )  +

Y F P -U L 4 4 - I1 3 5 A  (1 2 5 n g )

r  =  0 .7 5

0 5 0 1 0 0 1 5 0

0

1 0

2 0

3 0

4 0

5 0

C F P -E x p r e s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 5 4  (5 0 0 n g ) +

Y F P -U L 4 4  (1 2 5 n g )

0 1 0 2 0 3 0 4 0 5 0

0

1 0

2 0

3 0

4 0

5 0

Y F P -E x p re s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 5 4  (5 0 0 n g )  +

Y F P -U L 4 4  (1 2 5 n g )

r  =  0 .5 8

0 5 0 1 0 0 1 5 0 2 0 0

0

1 0

2 0

3 0

4 0

5 0

C F P -E x p re s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 5 4  (1 2 5 n g )  +

Y F P -U L 4 4  (1 2 5 n g )

0 5 0 1 0 0 1 5 0

0

1 0

2 0

3 0

4 0

5 0

Y F P -E x p re s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 5 4  (1 2 5 n g )  +

Y F P -U L 4 4  (1 2 5 n g )

0 5 0 1 0 0 1 5 0

0

5

1 0

1 5

2 0

2 5

C F P -E x p re s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 4 4 -L 8 6 /L 8 7 A  (2 5 0 n g ) +

Y F P -U L 4 4 -L 8 6 /L 8 7 A  (2 5 0 n g )

r  =  0 .5 2

0 5 0 1 0 0 1 5 0 2 0 0

0

5

1 0

1 5

2 0

2 5

Y F P -E x p r e s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 4 4 -L 8 6 /L 8 7 A  (2 5 0 n g )  +

Y F P -U L 4 4 -L 8 6 /L 8 7 A  (2 5 0 n g )

r  =  0 .6 4

0 2 0 4 0 6 0 8 0 1 0 0

0

5

1 0

1 5

2 0

2 5

C F P -E x p re s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 4 4 -L 8 6 /L 8 7 A  (4 5 0 n g ) +

Y F P -U L 4 4 -L 8 6 /L 8 7 A  (4 5 0 n g )

0 5 0 1 0 0 1 5 0

0

5

1 0

1 5

2 0

2 5

Y F P -E x p r e s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P - U L 4 4 -L 8 6 /L 8 7 A  (4 5 0 n g ) +

Y F P - U L 4 4 -L 8 6 /L 8 7 A  (4 5 0 n g )

r  =  0 .7 3

0 5 0 1 0 0 1 5 0

0

1 0

2 0

3 0

4 0

5 0

C F P -E x p re s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 4 4  (6 0 n g )  +

Y F P -U L 4 4  (6 0 n g )

0 2 0 4 0 6 0 8 0 1 0 0

0

1 0

2 0

3 0

4 0

5 0

Y F P -E x p re s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 4 4  (6 0 n g )  +

Y F P -U L 4 4  (6 0 n g )

0 5 0 1 0 0 1 5 0

0

1 0

2 0

3 0

4 0

5 0

C F P -E x p r e s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P - U L 4 4  (1 2 5 n g )  +

Y F P - U L 4 4  (1 2 5 n g )

r  =  - 0 .6 8

0 2 0 4 0 6 0 8 0

0

1 0

2 0

3 0

4 0

5 0

Y F P -E x p re s s io n  (A .U .)

F
R

E
T

 E
ff

ic
ie

n
c

y
 %

 C F P -U L 4 4  (1 2 5 n g )  +

Y F P -U L 4 4  (1 2 5 n g )



 
9

5
 

          

F
ig

u
re

 4
.6

 

w
t (1

2
5
n

g
)

I1
3
5
A

 (1
2
5
n

g
)  w

t  (5
0
0
 +

 1
2
5
n

g
)

I1
3
5
A

 (5
0
0
 +

 1
2
5
n

g
)  

0

5
0

1
0

0

1
5

0

2
0

0

E
x

p
r
e

s
s

io
n

 p
la

s
m

id

Y F P  e x p re s s io n  le v e ls  (A .U .)

C
F

P
-U

L
5

4
 +

 Y
F

P
-U

L
4

4

w
t (1

2
5
n

g
) 

L
8
6
/L

8
7
A

 (4
5
0
n

g
)

w
t  (6

0
n

g
)

L
8
6
/L

8
7
A

 (2
5
0
n

g
)

C
F

P
-Y

F
PC

F
P

 +
 Y

F
P

0

5
0

1
0

0

1
5

0

2
0

0

E
x

p
r
e

s
s

io
n

 p
la

s
m

id

Y F P  e x p re s s io n  le v e ls  (A .U .)

C
F

P
-U

L
4

4
 +

 Y
F

P
-U

L
4

4
w

t (1
2
5

I1
3
5
A

 (1
2
5
n

g
)  w

t  (5
0
0
 +

 1
2
5
n

g
)

I1
3
5
A

 (5
0
0
 +

 1
2
5
n

g
)   

0

5
0

1
0

0

1
5

0

2
0

0

E
x

p
r
e

s
s

io
n

 p
la

s
m

id

C F P  e x p r e s s io n  le v e ls  (A .U .)

C
F

P
-U

L
5

4
 +

 Y
F

P
-U

L
4

4

w
t (1

2
5
n

g
) 

L
8
6
/L

8
7
A

 (4
5
0
n

g
)  

w
t 6

0
n

g
)  

L
8
6
/L

8
7
A

 (2
5
0
n

g
)

C
F

P
-Y

F
PC

F
P

 +
 Y

F
P

0

5
0

1
0

0

1
5

0

2
0

0

E
x

p
r
e

s
s

io
n

 p
la

s
m

id

C F P  e x p r e s s io n  le v e ls  (A .U .)

C
F

P
-U

L
4

4
 +

 Y
F

P
-U

L
4

4
w
t 

L86-87/A 

wt 
L86-87/A 

w
t 

I135A 

     w
t 

I135A 

w
t 

L86-87/A 

w
t 

L86-87/A 

w
t 

L86-87/A 

w
t 

L86-87/A 

wt 

I135A 

     w
t 

I135A 

A
 

B
 

C
 

D
 

CFP-YFP C
FP + YFP 

C
FP-YFP C

FP + YFP 



 96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 
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Figure 4.10 
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Figure 4.11 
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Figure 4.12 
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Figure 4.13 
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Figure 4.14 

GST	+	

His6-UL44	
GST-UL44	+	

	His6-UL44	

GST-UL44	+		

His6-UL44-L86/L87A	

I	 I	W	 E2	 W	 E2	 E3	 I	 W	 E2	 E3	E3	

55	

36	

28	



 103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 
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Figure 4.16 
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Figure 4.17 
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Figure 4.18 
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Figure 4.19 
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Figure 4.20 
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Figure 4.21 
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Figure 4.22 
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Figure 4.23 
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Figure 4.24 
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Figure 4.25 
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Figure 4.27 
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Figure 4.28 
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Figure 4.29 

0 1 5 3 0 4 5 6 0

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

T im e  p o s t s u b s tra te  a d d it io n  (m in )

R
L

u
c

 a
c

ti
v

it
y

R L u c -U L 4 4  +  Y F P -U L 4 4

0 1 5 3 0 4 5 6 0

0

5 0

1 0 0

1 5 0

2 0 0

T im e  p o s t s u b s tra te  a d d it io n  (m in )

R
L

u
c

 a
c

ti
v

it
y

 %

R L u c - U L 4 4  +  Y F P -U L 4 4

C T Z

H -C T Z

0 1 5 3 0 4 5 6 0

0 .0

0 .5

1 .0

1 .5

R L u c -U L 4 4  +  Y F P -U L 4 4

T im e  p o s t  s u b s tra te  a d d it io n  (m in )

B
R

E
T

 r
a

ti
o

0 1 5 3 0 4 5 6 0

0

1 0 0

2 0 0

3 0 0

4 0 0

R L u c - U L 4 4  +  Y F P -U L 4 4

T im e  p o s t s u b s tra te  a d d itio n  (m in )

B
R

E
T

 r
a

ti
o

 %

0 1 5 3 0 4 5 6 0

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

R L u c U L 5 4 -Y F P U L 4 4

T im e  p o s t s u b s tra te  a d d it io n  (m in )

R
L

u
c

 a
c

ti
v

it
y

0 1 5 3 0 4 5 6 0

0

5 0

1 0 0

1 5 0

2 0 0

R L u c U L 5 4 -Y F P U L 4 4

T im e  p o s t s u b s tra te  a d d it io n  (m in )

R
L

u
c

 a
c

ti
v

it
y

 %

0 1 5 3 0 4 5 6 0

0 .0

0 .2

0 .4

0 .6

0 .8

T im e  p o s t s u b s tra te  a d d it io n  (m in )

B
R

E
T

 r
a

ti
o

R L u c - U L 5 4  +  Y F P -U L 4 4

0 1 5 3 0 4 5 6 0

0

5 0 0

1 0 0 0

1 5 0 0

T im e  p o s t s u b s tra te  a d d it io n  (m in )

B
R

E
T

 r
a

ti
o

 %

R L u c -U L 5 4  +  Y F P -U L 4 4

A B 

C D 

E F 

G H 



 118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30 
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Figure 4.31 
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Figure 4.32 
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Figure 4.33 
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Figure 4.34 
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Figure 4.35 
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Figure 4.36 
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Figure 4.37 
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Figure 4.38 
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Figure 4.39 
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Figure 4.40 
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Figure 4.43 
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Figure 4.44 
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7. Table and figures legends 

 

Table 4.1. FRET transfection conditions. Table reports all FRET plasmids used during this study with the 
relative amounts used to transfect HEK 293-T cells, related to conditions A and B. 

 

Table 4.2. Laser and PMT settings used for FRET acceptor photobleaching analysis. Settings used 
(Laser power, Gain and Offset) for samples acquisition of pre and post-beaching images are indicated. 

 

Table 4.3. Effect of point mutations of UL44 on indicated properties. 

1: Isotermal titration calorimetry; bacterially expressed UL44 (CD290) 5-10 uM + 22 C-terminal peptide of 
UL54 100-250 uM  [56, 78], when available, Kd is shown. 

2: Subcellular re-localization assay [61, 62]. 

3: BRET assays using CTZ, Di Antonio et al., unpublished. Bmax and B50 are shown. 

4: Analytical gel filtration using 20-25 uM of bacterially expressed UL44 (CD290) [56]. 

5: Analytical ultracentrifugation usingbacterially expressed UL44 (CD290) [56]. 

6: Cellular permeabilization assays [62]. 

7: OriLyt transcomplementation assay [61, 62]. 

8: Confocal microscopy [61, 62]. 

 

Table 4.4.Toxicity and solubility of SMs. The CC50 calculated for each of the indicated compounds in 
shown along with the maximum concentration at which precipitates were not observed. The concentration 
used for SMs screening in BRET assays is shown on the right. A, indicated the CC50 calculated by WST 
assay; B indicated the CC50 calculated by visual inspections. 1 Parameter Logistic Equation (Sigmoidal) 
method; 2linear regression method; *massive precipitation at higher concentrations. 

 

Table 4.5.BRET parameters related to the indicated BRET pairs obtained using CTZ or h-CTZ as 

substrates. BRET saturation curves such as those shown in Figure 4.5 were used as described in §3.28.1, to 
calculate Bmax and B50 values. Data indicated are mean values of different independent experiments, along 
with the S.D. of the mean and sample size. Values calculated based on raw YFP/RLuc values are shown on 
the left, whereas values calculated based on YFP/RLuc values normalized to that of the RLuc-YFP control 
molecule are shown on the right. (*) Indicates statistically significant difference between values obtained 
with CTZ and h-CTZ (t student, p < 0.05). 
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Table 4.6. Scheme Scheme of the concentrations used for the cell viability assay. 

 

Table 4.7. Effect of SMs on UL44 dimerization by BRET using the stable YFP-UL44 1B2 cell line . 

1x105 1B2 stably expressing YFP-UL44 cells were seeded in 24 well plates cells and 24h later cells were 
transfected with 25ng of RLuc-UL44 expression plasmid. HEK293A cells were seeded in parallel and 
transfected either with 25ng of RLuc-UL44, to allow calculation of background BRET signal, or with both 
25ng of RLuc-UL44 and 40ng of YFP-UL44, as a positive control. Based on previous experiments, we 
calculated that such combination of plasmids would result in a BRET ratio similar to 50% of the Bmax 

 

Figure 4.1. Analysis of subcellular localization and molecular weight of expressed proteins. Plasmids 
were transfected in HEK293 T cells 5x104 containing poly-lysinated glass coverslips and their subcellular 
localization investigated by CLSM 48h p.t. CFP, YFP and CFP-YFP homogenously distributed throughout 
the cells with a diffuse pattern (A).Fusion of UL44 to either CFP or YFP resulted in strong nuclear 
localization and fusion to UL54 (1125-1242) resulted in proteins mainly localized to the cell nuclei with a 
diffuse pattern due to the presence of a NLS, but the lack of any DNA binding domain in UL54 C-terminus.  
(B), YFP and CFP-UL44 fusions could be detected as 70 kDa discrete bands, whereas UL54 (1125-1242) 
fusions (apparent MW of 37 kDa) migrated slower than CFP and YFP as individually expressed (MW c. 27 
kDa), but slightly faster than the CFP-YFP fusion protein (MW c. 54 kDa). 

 

Figure 4.2 Subcellular localization of fusion proteins used for FRET experiments. HEK 293 T cells 
were seeded on glass coverslips and transfected with the indicated expression plasmids . 48h pt, cells were 
fixed and processed for IF, before being analyzed by CLSM to investigate the subcellular localization of the 
indicated fusion proteins. The subcellular localization of CFP fusions as expressed alone (left panels) or in 
the presence of YFP fusions (middle panels) is shown, together with the correspondent RGB profiles (right 

panels). 

 

Figure 4.3. Detection of dimerization of UL44 and its interaction with UL54 by means of FRET 

acceptor photobleaching. Cells described in Figure 4.2, were subjected to FRET acceptor photobleaching to 
calculate FRET efficiency (  

 

§3.19.2). FRET efficiency relative to the indicated proteins in cells were media was changed 8h pt or 16 pt is 
shown in panel A or B, respectively. Filled circles, condition A, Empty circles, condition B (see Table 4.2). 
Data obtained after pooling all cells from panel A and B are reported in panel C. Filled circles, condition A, 

Empty circles, condition B (see Table 4.2). Panel D reports data from panel C where conditions A and B are 
pooled. 

 

Figure 4.4. Correlation between FRET efficiency % and fluorophores expression levels. YFP and CFP 
pre-bleaching expression levels, relative to images, such those shown in Figure 4.13A, are plotted against 
FRET efficiency. Pearson r values relative to correlations higher than 0.5 or lower than -0.5 are reported on 
the correspondent graph 
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Figure 4.5. Correlation between FRET efficiency % and fluorophores expression levels. YFP and CFP 
pre-bleaching expression levels, relative to images, such those shown in Figure 4.13A, are plotted against 
FRET efficiency. Pearson r values relative to correlations higher than 0.5 or lower than -0.5 are reported on 
the correspondent graph. 

 

Figure 4.6. Analysis of pre-bleaching CFP- and YFP-fusion expression levels. CFP (A, B) and YFP (C, 
D) pre-bleaching expression levels relative to the indicated FRET pairs of samples such those in Figure 4.3A 
are shown. 

 

Figure 4.7. Analysis of subcellular localization and molecular weight of expressed proteins. 

(A)HEK293 T cells were seeded in 24 well plate containing poly lysinated coverslip glasses and after 24h 
p.t. the cells were transfected with RLuc expressing plasmids and the subcellular localization of expressed 
proteins was investigated by inverted fluorescent microscope (Leica, DFC420 C), 48 h p.t.. (B) Western 
blotting  analysis indicate that all fusion proteins could be readily detected at the expected molecular weight. 

 

Figure 4.8. Analysis of protein expression levels mediated by BRET plasmids. Seeded 1x105 HEK293 T 
cells per well of a 24 well plate, and 24h later, transfected cells using Lipofectamine 2000 with increasing 
amounts of plasmids (from 0 to 500ng) mediating the expression of either the YFP-UL44, the RLuc-UL44 or 
the RLuc-UL44(405-433) fusion proteins. 48h p.t. cells were processed for detection of fluorimetric (YFP-
fusions) and luminescent (RLuc-fusion) expression by using a plate reader, 5' after addition of RLuc 
substrate CTZ (5µM). 

 

Figure 4.9. Analysis of protein expression levels mediated by BRET plasmids. Seeded 1x105 HEK293 T 
cells per well of a 24 well plate, and 24h later, transfected cells using Lipofectamine 2000 with increasing 
amounts of plasmids (from 0 to 500ng) mediating the expression of either the YFP-UL44, the RLuc-UL44 or 
the RLuc-UL44(405-433) fusion proteins. 48h p.t. cells were processed for detection of fluorimetric (YFP-
fusions) and luminescent (RLuc-fusion) expression by using a plate reader, 5' after addition of RLuc 
substrate CTZ (5µM) 

 

Figure 4.10. Detection of UL44 dimerization in living cells by BRET. 

1x105 HEK293 T cells were seeded and transfected as above with either 25ng RLuc-UL44 or 12.5ng RLuc-
UL44 (405-433) alone, or in combination with YFP-UL44 500ng. 48h p.t. later cells were processed for 
BRET analysis . 

 

Figure 4.11.Saturations curve. HEK293 T cells were seeded 1x105 in 24 well plates and transfected with 
either 25ng of RLuc-UL44 or 6.25ng of RLuc-UL44 (405-433), in the presence of increasing amounts of the 
YFP-UL44 (range: 0 to 900ng). 48h later cells were processed for BRET analysis. Data could be fitted to a 
one site-specific binding curve (R2 = 0.982) to generate a logarithmic shaped curve, which reached a plateau, 
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indicative of a specific interaction. On the opposite, the BRET ratio relative to the RLuc-UL44 (405-
433)/YFP-UL44 BRET pair slowly increased in a linear fashion, without reaching a plateau, indicative of 
random interaction due to protein overexpression. 

 

Figure 4.12. Analysis of expression of UL44, UL54 and their mutants. We transfected 1x105 HEK 293T 
cells, 24h later seeding in a 24 well plate, using different amount of plasmids mediating the expression of 
RLuc and YFP plasmids fused to the protein of interest.  48h p.t. cells were processed for detection of 
fluorimetric (YFP-fusions) and luminescent (RLuc-fusion) expression by using a plate reader, 5' after 
addition of RLuc substrate CTZ. 

 

Figure 4.13. Saturation curves of UL44, UL54 and their mutants. 

we transfected 1x105 HEK 293T cells, 24h later seeding in a 24 well plate, using different amount of 
plasmids mediating the expression of RLuc and increasing amount of YFP fusions (0 to 900ng), processed 
samples for fluorimeteric/luminometric detection, and calculated saturation curves using data obtained 45 
min after CTZ addition. We calculated similar Bmax and B50 values for BRET pair. 

 

Figure 4.14. Study of UL44 dimerization by GST-pull down. We incubated the recombinant proteins 
6His-UL44(1-290), 6His-UL44(1-290)-L86/L87A dimerization impaired point mutant, GST-UL44 (1-290) 
and GST [75, 77]. After incubation, the complexes were loaded on glutathione specific columns. After 
extensive washes with NETN buffer, complexes where eluted with NETN+GSH buffer. The Figure show 
Input, Wash and Eluted fractions loaded. 

 

Figure 4.15 Determination of concentrations of selective agent to be used. (A), trend of all concentrations 
from 0 day to 10 days. (B) trend of work concentration. 

 

Figure 4.16 Localizzation on Stable cell line by inverted microscopie. 

 

Figure 4.17. Analysis of stable YFP-UL44 cell lines expression levels and BRET ratio in the presence of 

transiently expressed RLuc-UL44. 1x105 HEK293 A-YFP-UL44 (68-1x, 68-2x, 68-3x) and HEK293 A-
pWPI-puro (7-1x, 7-2x, 7-3x) in 24 well plates in duplicate, and after 24 hour we transfected them with 
either UL44 (25ng) or RLuc-UL44 (405-433) (12.5ng) as a control, or pCDNA3 empty vector to calculate 
background. 48h later cells were processed for BRET analysis. 

 

Figure 4.18. Generation stable cell line YFP-UL44. Analysis of YFP expression (A), RLuc activity (B) 
and BRET ratio. 
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Figure 4.19. Analysis of the effect of DMSO on cell viability . (A) Curve of cell viability. (B) HEK293 A 
in 96 well at 24h 1x104 cells/well and 0.5x104 cells/well for 48h and we treaded the cells with DMSO a 
different concentrations (10%, 1%, 0.1%, 0.01% and 0%). After 24h or 48h depending on the plate, we add 
the WST-1 and analyzed the plate by ELISA plate reader 

 

Figure 4.20. Analysis of the effect of SMs on cell BRET signal . 1x105 of cells in 24 well plate and 24h 
later we transfected polyclonal, monoclonal and HEK293 A-pPWI-puro cells line with RLuc-UL44 (25ng) 
and HEK293 A with RLuc-UL44 (25ng) and YFP-UL44 (80ng) and we used mock-untransfected cells were 
processed in parallel.  6 h p.t. media was replaced with DMSO1% or with fresh DMEM. 48 h p.t. We 
evaluated the effect of DMSO 1% on YFP (A) expression levels and RLuc activity (B) and BRET ratio (C), 
Z’ score  (D). 

 

Figure 4.21 . Evaluation of toxicity of SMs on HEK 293A cells by linear regression. 5x104 HEK293 A 
were seeded into 96 well and 24h later were treated with increasing amounts of compounds, (3µM-200µM). 
48h post treatment absorbance at 450 nm was measured . Data were analyzed and fitted with linear 
regression with the software Prism to calculate CC50. 

 

Figure 4.22. Evaluation of toxicity of SMs on HEK 293A cells by 4 Parameter Logisitic Equation 

(Sigmoidal). 5x104 HEK293 A were seeded into 96 well and 24h later were treated with increasing amounts 
of compounds, (3µM-200µM). 48h post treatment absorbance at 450 nm was measured. Data was analyzed 
and fitted to a 4 Parameter Logistic Equation (Sigmoidal), with the software Prism to calculate CC50. 

 

Figure 4.23 . Evaluation of toxicity of SMs on HEK293 A cells by linear regression. 5x104 HEK293 A 
were seeded into 96 well and 24h later were treated with increasing amounts of compounds, (3µM-200µM). 
48h post treatment we evaluated the CC50 by visual inspections. Data was analyzed and fitted to a 4 
Parameter Logistic Equation (Sigmoidal), with the software Prism to calculate CC50. 

 

Figure 4.24. Evaluation of toxicity of SMs on HEK293 A cells by linear regression. 5x104 HEK293 A 
were seeded into 96 well and 24h later were treated with increasing amounts of compounds, (3µM-200µM). 
48h post treatment we evaluated the CC50 by visual inspections. Data were analyzed and fitted with linear 
regression with the software Prism to calculate CC50. 

 

Figure 4.25 . Assessment of the effect of SMs on UL44 dimerization by means of BRET assays. 
Monoclonal cell line (1B2) cells were transfected with 25 ng of RLuc-UL44, either alone (red rhombus) or 
in the presence of 40ng of YFP-UL44 expressing plasmid (other rhombuses). 8h p.t. transfection media was 
changed with DMEM containing 1% DMSO (empty rhombus) or two different concentrations of the 
indicated SMs (black rhombus, see Table 4.1 for concentrations). 24h later, cells were processed for BRET 
measurements. The BRET ratio at 45’ after n-CTZ substrate addition is reported for each condition. 
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Figure 4.26 . Generation double stable cell line RLuc-UL44/YFP-UL44. 1B2 cell lline was transfected 
with pre-linearized RLuc-UL44 in a 6 well plate, and cells expressing RLuc-UL44 were selected by 
treatment with neomycin (700µg/ml). 

 

Figure 4.27. Dose dependent inhibition of BRET ratio by overexpression of BRET competitors using 

CTZ. Polyclonal , HEK 293 T and monoclonal and cells were transfected respectively with fixed amounts of 
RLuc-UL44/YFP-UL44, A-D; 0 ng for RLuc-UL44, 0 ng for YFP-UL44, E-H; 25ng for RLuc-UL44, 40 ng 
for YFP-UL44, and I-N; 25 ng for RLuc-UL44, 0 ng for YFP-UL44) expressing plasmids in the presence of 
increasing amounts of the indicated FLAG-tagged fusions expressing plasmids (FLAG-UL44, empty circles; 
FLAG-UL42, filled squares) and processed 48h pt before addition of CTZ and data acquisition and analysis 
to calculate BRET inhibition. BRET ratio (A, B, E, F, I L) and YFPnet (C, G, M), either as raw values (A, C, 
E, G, I,M) or as a percentage of values obtained for samples in the absence of competitor, are plotted against 
the amounts of competitor plasmids used to transfect cells. 

 

Figure 4.28. Effect of substitution of CTZ with h-CTZ on RLuc activity. 

293 T cells were transfected with 2.5 ng (h-CTZ) or 25 ng of RLuc-UL44 (CTZ) for 24h before being 
processed for RLuc measurement). Cells were further incubated with the indicated substrates (5 µM) before 
measuring RLuc activity at the indicated time points. Data shown are the mean ± standard deviation of the 
mean (S.D.) of three independent experiments. 

293-T cells were transfected with the indicated amounts of RLuc-UL44 for 24h before being processed for 
RLuc measurement. Cells were incubated with the indicated concentrations of h-CTZ before measurement of 
RLuc activity, 15 min post substrate addition. Data show the RLuc activities (RLU) ± S.D. from three 
technical replicas relative to a single experiment. 

293 T cells were transfected with increasing amounts of RLuc-UL44 and RLuc-UL54 as indicated, 24h and 
48h before being processed for RLuc measurement. Cells were incubated with 5 µM h-CTZ before 
measurement of RLuc activity at 15 min post substrate addition. Data show the RLuc activities (RLU) ± S.D. 
at the different plasmid quantities. 

 

Figure 4.29. Time dependent variations of RLuc activity and BRET ratio using CTZ or h-CTZ. Data 
from saturation experiments such those in Figure 4.5 were used to compare RLuc activity and BRET ratio 
values at the indicated time points after substrate addition (CTZ, blue circles or h-CTZ, red circles). RLuc 
activity and BRET ratio, relative to transfection with maximum amounts of acceptor plasmid (YFP-UL44) in 
the presence of fixed amounts of RLuc-UL44 (A-D; 2.5 ng for h-CTZ, 25 ng for CTZ) or RLuc-UL54 (E-H; 
10 ng for h-CTZ, 100 ng for CTZ), are either shown as raw values (A, C, E, G) or normalized as a 
percentage of values obtained 5 min post substrate addition (B, D, F, H). 

 

Figure 4.30. BRET saturation curves relative to the indicated BRET pairs obtained using CTZ or h-

CTZ. HEK 293 T cells were transfected for BRET saturation experiments, and processed 48h later, before 
data acquisition and analysis to generate BRET saturation curves. Where indicated, data were normalized 
using the YFP/RLuc value relative to the RLuc-YFP control. For each condition, the BRET ratio is plotted 
against the relative YFP/RLuc signal. For CTZ based experiments, raw values are calculated 45 min post 
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substrate addition. In all other cases, values are derived from measurement performed 15 min post substrate 
addition. A representative curve for each condition is shown. 

 

Figure 4.31 . Dose dependent inhibition of BRET ratio by overexpression of BRET competitors using 

CTZ. HEK 293 T cells were transfected with fixed amounts of RLuc-UL44/YFP-UL44 (A-D; 25 ng for 
RLuc-UL44, 40 ng for YFP-UL44) or RLuc-UL54/YFP-UL44 (E-H; 100 ng for RLuc-UL54, 40 ng for 
YFP-UL44) expressing plasmids in the presence of increasing amounts of the indicated FLAG-tagged 
fusions expressing plasmids (FLAG-UL44, empty circles; FLAG-UL42, filled squares) and processed 48h pt 
before addition of CTZ and data acquisition and analysis to calculate BRET inhibition. BRET ratio (A, B, E, 
F) and YFPnet (C, D, G, H), either as raw values (A, C, E, G) or as a percentage of values obtained for 
samples in the absence of competitor, are plotted against the amounts of competitor plasmids used to 
transfect cells. 

 

Figure 4.32 . Dose dependent inhibition of BRET ratio by overexpression of BRET competitors using 

CTZ. HEK 293 T cells were transfected with fixed amounts of RLuc-UL44/YFP-UL44 (A-D; 25 ng for 
RLuc-UL44, 40 ng for YFP-UL44) or RLuc-UL54/YFP-UL44 (E-H; 100 ng for RLuc-UL54, 40 ng for 
YFP-UL44) expressing plasmids in the presence of increasing amounts of the indicated FLAG-tagged 
fusions expressing plasmids (FLAG-UL44, empty circles; FLAG-UL42, filled squares) and processed 48h pt 
before addition of CTZ and data acquisition and analysis to calculate BRET inhibition. BRET ratio (A, B, E, 
F) and YFPnet (C, D, G, H), either as raw values (A, C, E, G) or as a percentage of values obtained for 
samples in the absence of competitor, are plotted against the amounts of competitor plasmids used to 
transfect cells. 

 

Figure 4.33 . Assessment of the effect of SMs on UL44 dimerization by means of BRET assays. 
HEK293 T cells were transfected with 2.5 ng of RLuc-UL44, either alone (red rhombus) or in the presence 
of 40 ng of YFP-UL44 expressing plasmid (other rhombuses). 8h p.t. transfection media was changed with 
DMEM containing 1% DMSO (empty rhombus) or two different concentrations of the indicated SMs (black 

rhombus, see Table 4.1 for concentrations). 24h later, cells were processed for BRET measurements. The 
BRET ratio at 15’ after h-CTZ substrate addition is reported for each condition. 

 

Figure 4.34. Effect of selected SMs, on BRET ratio relative to RLuc-UL44/YFP-UL44 and the control 

fusion protein RLuc-YFP. 2x105 HEK 293-T cells were transfected with RLuc-UL44 (2.5ng) alone or in 
the presence of YFP-UL44 (40ng; black bars), or with a plasmid encoding the control fusion protein Rluc-
YFP (22ng; white bars). 8h later cells media was replaced with DMEM containing either 1% DMSO or the 
indicated concentrations of SMs (Table 4.1). 24h pt cells were processed for measurement of BRET 
inhibition after 15' after addition of h-CTZ. For each BRET pair, BRET ratio (A, B), YFPnet (C, D), and 
Rluc activity (E, F) are shown, either as raw values (A, C, E) or as a percentage of values obtained for 
samples in the absence of compound (B, D, F). 

 

Figure 4.35. Effect of AL18 treatment for 16h on UL54-UL44 interaction as detected by BRET. 2x105 

HEK293 T cells were transfected with plasmids expressing the indicated BRET expressing plasmids (2,5 ng 
of Rluc-UL44 + 40 ng of YFP-UL44; 10 ng of Rluc-UL54 + 40 ng of YFP-UL44; 22 ng of RLuc-YFP). 8h 
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p.i. media was substituted with DMEM containing either DMSO1% or AL18 at the indicated concentrations. 
24h pt cells were processed for measurement of BRET inhibition after 15' after addition of h-CTZ. For each 
BRET pair are shown BRET ratio (A, B), YFPnet (C, D), and Rluc activity (E, F) either as raw values (A, C, 
E) or as a percentage of values obtained for samples in the absence of compound (B, D, F). Data are the 
mean ± S.D. of the mean relative to two independent experiments. 

 

Figure 4.36. Effect of AL18 treatment for 40h on UL54-UL44 interaction as detected by BRET. 1x105 

HEK293 T cells were transfected with plasmids expressing the indicated BRET expressing plasmids (2,5 ng 
of Rluc-UL44 + 40 ng of YFP-UL44; 10 ng of Rluc-UL54 + 40 ng of YFP-UL44; 22 ng of RLuc-YFP). 8h 
p.i. media was substituted with DMEM containing either DMSO1% or AL18 at the indicated concentrations. 
48h pt cells were processed for measurement of BRET inhibition after 15' after addition of h-CTZ. For each 
BRET pair are shown BRET ratio (A, B), YFPnet (C, D), and Rluc activity (E, F) either as raw values (A, C, 
E) or as a percentage of values obtained for samples in the absence of compound (B, D, F). Data are the 
mean ± S.D. of the mean relative to two independent experiments. 

 

Figure 4.37. Effect of AL18 on subcellular localization relative to the indicated FRET fusion proteins. 

HEK283 T cells were seeded on glass coverslips and transfected with the indicated donor expression 
plasmids. 8h pt, media was replaced with DMEM containing either DMSO 1% or AL18 at the indicated 
concentration. 48h later cells were fixed and processed for IF, before being analyzed by CLSM to investigate 
the subcellular localization of the indicated fusion proteins. The subcellular localization of the indicated 
FRET pairs is shown for each condition (left panels) together with the correspondent RGB profiles (right 

panels). 

 

Figure 4.38. Effect of AL18 on FRET efficiency relative to the indicated FRET pairs. Samples such as 
those shown in Figure 4.37 were subjected to FRET acceptor photobleaching analysis to calculate FRET 
efficiency.  Data are shown as FRET efficiency relative to the indicated FRET pair (panel A) or the indicated 
donor fusions alone (panel B), upon treatment with the indicated concentration of DMSO or AL18. 

 

Figure 4.39. Correlation between FRET efficiency % and fluorophore expression levels upon AL18 

treatment. YFP and CFP pre-bleaching expression levels, relative to images, such those shown in Figure 
4.18A, are plotted against FRET efficiency. Pearson r values relative correlations higher than 0.5 or lower 
than -0.5 are reported on the correspondent graph. 

 

Figure 4.40. Correlation between FRET efficiency % and fluorophores expression levels upon AL18 

treatment. YFP and CFP pre-bleaching expression levels, relative to images, such those shown in Figure 
4.18B, are plotted against FRET efficiency. Pearson r values relative correlations higher than 0.5 or lower 
than -0.5 are reported on the correspondent graph. 

 

Figure 4.41. Effect of AL18 treatment on CFP and YFP fusions expression levels. CFP and YFP pre-
bleaching expression levels of samples such those in Figure 4.37, are shown. 
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Figure 4.42. Analysis of pre-bleaching CFP- and YFP-fusion expression levels. CFP (A, B) and YFP (C, 
D) pre-bleaching expression levels relative to the indicated FRET pairs of samples such those in Figure 4.3A 
are shown. 

 

Figure 4.43. Test effect of DMSO by GST-pull down. tested the effect of DMSO on the ability of GST-
UL44(1-290) to bind to 6His-UL44. To this end, recombinant proteins were incubated for 2h, either in 
binding buffer alone, or in binding buffer containing DMSO 1%, before being processed for GST-pull down 
analysis. We load Input, Wash 1 and the last (15°), Elution E1, E2, E3. 

 

Figure 4.44. Identification of SMs inhibiting UL44 dimerization by GST-pull down. Test the effect of 
the 18 SMs identified as potentially important for UL44 dimerization by means of GST pull down assays. 
GST-UL44 (1-290) to bind to 6His-UL44 proteins were incubated for 2h, either in binding buffer alone, or in 
binding buffer containing DMSO 0.25%. 
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8. APPENDIX 

8.1 Solutions 

Elution buffer (Sigma)       Tris HCl, 10 mM 

 

50x TAE buffer (1 litre)        242 g Tris base 

       57.1 ml Glacial acetic acid 

                      100 ml 0.5 M EDTA pH 8.0 

 

DNA loading buffer (6X)        30% (v/v) glycerol 

                                                                          0.25% (w/v) bromophenol blue 

                                                                          0.25% (w/v) xylene cyanol FF 

 

Laemni loading buffer (5X)      0.25% Bromophenol blue  

                                                                         0.5 M DTT (dithiothreitol) 

                                                                         50% Glycerol  

                                                                         10% SDS (sodium dodecyl sulfate) 

                                                                         0.25 M Tris-Cl (pH 6.8) 

Poly Lysine (100 mg/ml in H2O)    5 mg poly-lysine (SIGMA 6282) 

             50 ml sterile MQ H2O 

                                         The solution was stored at 4°C. 

DNA loading dye 6X     0.25% (w/v) bromophenol blue 

 0.25% (w/v) xylene cyanol FF 

Running buffer gel  (8.5%-15%)  H2O 

  30% acrylamide  

1.5M Tris pH 8.8 
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10% SDS 

      10% ammonium persulfate 

      TEMED 

 

Staking buffer gel (5%)   H2O 

30% acrylamide 

1M Tris pH 6.8 

10% SDS 

      10% ammonium persulfate 

      TEMED 

 

Running buffer pH 8.3    25mM Tris Base  

  192mM glycine 

0.1% SDS 

        

Transfer buffer pH 8.3     25mM Tris Base  

  150mM glycine 

20% Methanol  

 

Binding Buffer  25mM HEPES pH 7.5 

  12.5 mM MgCl2  

  20% glycerol 

  0.1% NP-40 

  150mM KCL 

  0.15 mg/ml Bovine Serum Albumin (BSA) 

  1mM DTT 

 

NETN Buffer   20mM Tris-HCL pH7.5 

100mM NaCl 
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0.1mM EDTA 

0.5% NP-40  

 

DMEM cpt (GIBCO, 500ml)            FBS 1:10 

      Pen-strep 1:100 

      L-Glutammina 1:100 

      Non-Essential Amino Acids Solution (1:100) 

 

Freezing media (50 ml)   45 ml DMEM 

5 ml heath inactivated FBS (10 % v/v)      Solution stored at 

-20°C. 

 

0.5M PIPES (pH 6.7)             15.1 g of PIPES (pH 6.7)  

pH of the solution was adjusted to 6.7 with5 M KOH. Sterilized solution stored frozen at -20°C. 

PBS 10x (1 litre)                           2.4 g KH2PO4 

                        80 g NaCl 

                           11.45 g Na2HPO4 

            2g KCL 

 

LB (Luria Broth) media (1 liter)         10 g Bacto Tryptone 

                 5 g Bacto Yeast Extract 

   10 g NaCl 

   H2O up to 1 liter  

The solution was autoclaved for sterilization and stored at room temperature (RT). 

 

LB Agar for plates (1 liter)                     10 g Bacto Tryptone 
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  5 g Bacto Yeast Extract 

 10 g NaCl 

 15 g Agar 

 H2O up to 1 liter  

The solution was sterilized by autoclaving, cooled to 55/60°C prior to addition of the appropriate antibiotics 

(see table 8.1). Plates were stored at 4 °C for up to 3 weeks. 

Antibiotic Stock Solution Working Solution Dilution  

Ampicillin 50mg/ml 50µg/ml 1:1000 

Kanamkycin 50mg/ml 50µg/ml 1:1000 

Gentamicin 10mg/ml 10µg/µl 1:500 

Table 8.1. Antibiotics used in this study for bacterial selection 

 

Inoue Transformation Buffer 

The Inoue transformation buffer is composed by: 

Reagent Amount per Liter Final Concentration 

MnCl2 x 4H2O  10.88 g 55mM 

CaCl2 x 2H2O 2.20 g 15mM 

KCl 18.65 g 250mM 

PIPES (0.5M, pH6.7) 20 ml 10mM 

Water to 1l  

Table 8.2. 

 

Antibiotic for cells 

We used for select cells different antibiotics:  puromycin, (Clontech), blasticidin (Life Sciences) and 

neomycin (Life Sciences). Each antibiotic was resuspend in H2O and filtrated. Store -20°C. 
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Antibiotic Stock Solution Working Solution Dilution  

Puromycin 10mg/ml 1µg/ml 1:10000 

Blasticidin 5mg/ml 5µg/ml 1:1000 

Neomycin 500mg/ml 700µg/µl 1:714 

Table 8.3. Antibiotics used in this study for cells selection 

 

 

DNA Markers 

 

 

DirectLoad™ Wide Range DNA Marker 

(SIGMA) 

 

 

 

 

 

 

100 bp DNA Ladder 

(Promega)
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Protein marker 

 

Prestained Protein SHARPMASStm VI 

(Euroclone) 

 

 

 

 

 

 

8.2 Cell used in this study 

 

8.2.1 Bacterial cells 

 

E. Coli DH5α. Life Technologies F–Φ80lacZ∆M15∆(lacZYA-argF)U169 recA1 endA1 hsdR17 (rK–, 

mK+) phoA supE44λ– thi-1 gyrA96 relA1). This E. coli strain is designed for general cloning and 

subcloning. It is, versatile strain that can be used in many everyday cloning applications. DH5α contains 

recA1 and endA1 mutations. The endA1 mutation greatly improves the quality of plasmid DNA, and the 

recA mutation helps ensure insert stability. Additionally, this strain lacks some endonucleases, which might 

digest the plasmids during the isolation procedure. DH5α is additionally competent for blue-white screening. 

8.2.2 Mammalian cells  

 

HEK293 T: HEK293 T is a cell line derived from Human Embryotic Kidney cells grown in tissue culture. 

This particular line was initiated by the transformation and culturing of normal HEK cells with sheared 

adenovirus 5 DNA (characteristics of a human cell line transformed by DNA from human adenovirus type 5).  
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The HEK293 T cell line (obtained from ATCC; ATCC CRL-11268) is an important variant of this cells line, 

because it stably expresses the SV40 large T- antigen, that allows episomal replications of transfected 

plasmids containing the SV40 origin of replication. This permits to increase protein production upon plasmid 

transfection (Vectors bicistronically linking a gene of interest to the SV40 large T antigen in combination 

with the SV40 origin of replication enhance transient protein expression and luciferase reporter activity).  

HEK293 A: HEK293 A are a specific clone of HEK 293 cells, isolated because of its particular ability to 

adhere in cell culture. They display a typical flat phenotype. Cells were transformed by exposing them to 

sheared fragments of adenovirus type 5 DNA. The transformed cells exhibited many of the characteristics of 

transformed cells, including the expression of a virus-specific tumor antigen.  
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7.3 Plasmids 

 

pDONOR207 

 

 

This vector contains a Gateway recombination cassette, containing the ccdB suicide gene and the 

chloramphenicol resistance (CmR) gene flanked by attP sites. The ccdB gene encodes a toxic product that 

interferes with E.coli gyrase, and propagation of such plasmid requires a ccdB resistant strain such a DB3.1 

or 2T1R strains. This vector is designed to allow recombination between the Gateway recombination cassette 

flanked by attP sites, and a GOI flanked by attB sites (often represented by a attB-flanked PCR products), 

thus generating an entry clone. Such entry clone does not bear the ccdB gene and can grow in standard E.coli 

strains such as DH5α. The plasmid also contains the Gentamycin resistance gene (GenR), to allow a positive 

selection in E.coli. 
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pDEST-ntYFP 

 

 

 

 

The pDEST-ntYFP vector [80] is a destination vector. It contains the YFP ORF under the control of the 

Human Cytomegalovirus (CMV) immediate early (IE) promoter, followed by the Gateway recombination 

cassette, whereby the ccdB suicide gene and the chloramphenicol resistance (CmR) gene are flanked by AttR 

sites. The ccdB gene encodes a toxic product, which interferes with E.coli gyrase, and propagation of such 

plasmid requires a ccdB resistant strain such a E.coli DB3.1 or 2T1R strains. It recombines with and entry 

clone via an LR reaction to generate an expression clone that contains elements necessary to express the GOI 

fused to the C-terminus of YFP in Mammalian cells under the control of the CMV IE promoter. It contains 

Ampicillin (AmpR) and Neomycin (NeoR) resistance genes to allow selection in bacterial and Mammalian 

cells, respectively. After a LR reaction with a suitable entry vector, the Gateway recombination cassette is 

replaced by the GOI enabling the expression of a YFP-GOI fusion, and allowing growth in standard E.coli 

strains such as DH5α. 
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pDEST-ntCFP 

 

 

The pDEST-ntCFP vector [80] is a destination vector. It contains the CFP ORF under the control of the 

Human Cytomegalovirus (CMV) immediate early (IE) promoter, followed by the Gateway recombination 

cassette, whereby the ccdB suicide gene and the chloramphenicol resistance (CmR) gene are flanked by AttR 

sites. The ccdB gene encodes a toxic product, which interferes with E.coli gyrase, and propagation of such 

plasmid requires a ccdB resistant strain such a E.coli DB3.1 or 2T1R strains. It recombines with and entry 

clone via an LR reaction to generate an expression clone that contains elements necessary to express the GOI 

fused to the C-terminus of CFP in Mammalian cells under the control of the CMV IE promoter. It contains 

Ampicillin (AmpR) and Neomycin (NeoR) resistance genes to allow selection in bacterial and Mammalian 

cells, respectively. After a LR reaction with a suitable entry vector, the Gateway recombination cassette is 

replaced by the GOI enabling the expression of a CFP-GOI fusion, and allowing growth in standard E.coli 

strains such as DH5α. 
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pcDNA3RLuc-rfb 
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pWPI_BLR 
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pMD2.G 
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pCMVR8.74 
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Entry clone pDONOR207-UL44 (2-433) 

  

 

 

  

Unlike the parental pDONR207 plasmid from which it is derived, this vector does not contain the ccdB 

suicide gene and the CmR gene, and can be therefore grown in standard E.coli strains such as DH5α. It does 

not contain any promoter to drive the expression of UL44 (2-433) and only serves as a shuttle vector to 

generate expression vectors after recombination with destination vectors via LR reactions respect to the 

pDONOR207 plasmid, the Gateway recombination cassette is replaced with UL44 (2-433) coding sequence. 
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Entry clone pDONOR207-UL54 (1125-1242) 

 

 

Unlike the parental pDONR207 plasmid from which it is derived, this vector does not contain the ccdB 

suicide gene and the CmR gene, and can be therefore grown in standard E.coli strains such as DH5α. It does 

not contain any promoter to drive the expression of UL54 (1125-1242) and only serves as a shuttle vector to 

generate expression vectors after recombination with destination vectors via LR reactions respect to the 

pDONOR207 plasmid, the Gateway recombination cassette is replaced with UL54 (1125-1242) coding 

sequence. 
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Entry clone pDONOR207-UL44 (405-433) 

 

 

 

 

Unlike the parental pDONR207 plasmid from which it is derived, this vector does not contain the ccdB 

suicide gene and the CmR gene, and can be therefore grown in standard E.coli strains such as DH5α. It does 

not contain any promoter to drive the expression of UL44 (405-433) and only serves as a shuttle vector to 

generate expression vectors after recombination with destination vectors via LR reactions respect to the 

pDONOR207 plasmid, the Gateway recombination cassette is replaced with UL44 (405-433) coding 

sequence. 
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Entry clone pDONOR207-UL44 L86/L87A 

 

 

 

Unlike the parental pDONR207 plasmid from which it is derived, this vector does not contain the ccdB 

suicide gene and the CmR gene, and can be therefore grown in standard E.coli strains such as DH5α. It does 

not contain any promoter to drive the expression of UL44 L86/L87A and only serves as a shuttle vector to 

generate expression vectors after recombination with destination vectors via LR reactions respect to the 

pDONOR207 plasmid, the Gateway recombination cassette is replaced with UL44 L86/L87A coding  

sequence. 
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Entry clone pDONOR207-UL44 F121A 

 

 

Unlike the parental pDONR207 plasmid from which it is derived, this vector does not contain the ccdB 

suicide gene and the CmR gene, and can be therefore grown in standard E.coli strains such as DH5α. It does 

not contain any promoter to drive the expression of UL44 F121A and only serves as a shuttle vector to 

generate expression vectors after recombination with destination vectors via LR reactions respect to the 

pDONOR207 plasmid, the Gateway recombination cassette is replaced with UL44 F121A coding sequence. 
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Entry clone pDONOR207-UL44 I135A 

 

 

 

Unlike the parental pDONR207 plasmid from which it is derived, this vector does not contain the ccdB 

suicide gene and the CmR gene, and can be therefore grown in standard E.coli strains such as DH5α. It does 

not contain any promoter to drive the expression of UL44 I135A and only serves as a shuttle vector to 

generate expression vectors after recombination with destination vectors via LR reactions respect to the 

pDONOR207 plasmid, the Gateway recombination cassette is replaced with UL44 I135A coding sequence. 
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pWPI_puro-YFP-UL44 
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8.4 Primers used in this study 

 

Primer Name Primer 

Code 

Sequence (5' - 3') 

EGFP FW A14 GATCACATGGTCCTGCTG 

EGFP RW A15 CCGTCCAGCTCGACCAG 

pDNR RW A16 GCAATGTAACATCAGAGAT 

pDNR FW A17 TAACGCTAGCATGGATCTC 

T7 RW A18 TAATACGACTCACTATAGGG 

CMV FW A19 CGCAAATGGGCGGTAGGCGTG 

BGH RW A28 TAGAAGGCACAGTCGAGG 

AttB1-YFP-ATG D21 GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGGTGAGCAAGGGCGA

GGAG 

AttB1-YFP-

noATG 

D22 GGGGACAAGTTTGTACAAAAAAGCAGGCTTGGTGAGCAAGGGCGAGGA

G 

AttB2-YFP-

noSTOP 

D23 GGGGACCACTTTGTACAAGAAAGCTGGGTCCTTGTACAGCTCGTCCAT

GCC 

AttB2-YFP-stop D24 GGGGACCACTTTGTACAAGAAAGCTGGGTTTACTTGTACAGCTCGTCC

ATGCC 

AttB1-RLuc-

ATG 

D25 GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGACCAGCAAGGTGTA

CGAC 

AttB2-RLuc no 

STOP 

D26 GGGGACCACTTTGTACAAGAAAGCTGGGTCATCCCCCTGCTCGTTCTTC

AGC 

AttB2-RLuc-

noATG 

D27 GGGGACAAGTTTGTACAAAAAAGCAGGCTTGACCAGCAAGGTGTACGA

C 

AttB2-RLuc-

STOP 

D28 GGGGACCACTTTGTACAAGAAAGCTGGGTTTAGAGATCCCCCTGCTCG

TTC 

Table 8.4. List of primers used in this study. Where present, GatewayTM attB sites are in boldface 
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Table 8.5 Cloning vectors used in this study 
 

Plasmid n. Plasmid name Description 

GW5 pDONOR207  GatewayTM Destination vector containing the Gentamicin 
resistance gene and the ccdB suicide gene as well as the 
Cloranphenicol resistance gene (Invitrogen). 

GW6 pDEST-EPI-GFP GatewayTM Destination vector for mammalian episomal 

propagation and expression of N-terminal EGFP tagged 

fusion proteins [52]. 

GW14 pDEST-FLAG GatewayTM Destination vector for Mammalian expression 

of N-terminal fusions with FLAG [81]. 

GW17 pDEST-ntCFP GatewayTM Destination vector for Mammalian expression 

of CFP N-terminal tagged proteins. CMV promoter [82]. 

GW22 pDEST-ntYFP GatewayTM Destination vector for Mammalian expression 

of tagRFP-T C-terminal tagged proteins. CMV promoter 

[82]. 

GW29 pCDNA3ntRLucGW GatewayTM Destination vector for Mammalian expression 

of Renilla N-terminal tagged proteins [82]. 

6 pWPI-blr Lentiviral vector for Mammalian expression. Blastadicin R. 

E2α promoter. 
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Table 8.6 Other plasmids used in this study 

 

n. Plasmid name Description Application 

21 CFP-YFP  Mammalian Expression Vector encoding a fusion 
protein betrween CFP and YFP, connected fused 
through a 5-amino-acid (SGGGG) linker sequence 
under the control of the IE CMV promoter.  REF 

Positive control in 
FRET assays 

24 pDESTntYFP-UL44  Mammalian Expression Vector encoding a N-terminal 
YFP-UL44(2-433) fusion protein, under the control of 
the IE CMV promoter. This study, see Table 6.6 

FRET/BRET assays 

30 pDESTntCFP-UL44  Mammalian Expression Vector encoding a N-terminal 
YFP-UL44(2-433) fusion protein, under the control of 
the IE CMV promoter. This study, see Table 6.6 

FRET assays 

57 pDESTntCFP-
UL44-L86/L87A 

Mammalian Expression Vector encoding a N-terminal 
CFP-UL44(2-433) fusion protein, bearing point 
mutations in the dimerization interface, under the 
control of the IE CMV promoter. This study, see 
Table 6.6 

FRET assays 

92 pDESTntYFP-
UL44-F121A 

Mammalian Expression Vector encoding a N-terminal 
YFP-UL44(2-433) fusion protein, bearing point 
mutations in the dimerization interface, under the 
control of the IE CMV promoter. This study, see 
Table 6.6 

BRET assays 

92 pDESTntRLuc-
UL44-F121A 

Mammalian Expression Vector encoding a N-terminal 
RLuc-UL44(2-433) fusion protein, bearing point 
mutations in the dimerization interface, under the 
control of the IE CMV promoter. This study, see 
Table 6.6 

BRET assays 

59 pDESTntRLuc 
UL44 

Mammalian Expression clone encoding a N-terminal 
RLuc-UL44(2-433) fusion protein, under the control 
of the CMV promoter. This study, see Table 6.6 

BRET assays 

62 pcDNA.31 Empty vector. Invitrogen BRET assays 

82 pDESTntYFP-
UL44-L86/L87A 

Mammalian Expression Vector encoding a N-terminal 
YFP-UL44(2-433) fusion protein, bearing point 
mutations in the dimerization interface, under the 
control of the IE CMV promoter. This study, see 
Table 6.6 

FRET/BRET assays 
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205 pDESTntRLuc-
UL44-∆loop 

Mammalian Expression Vector encoding a N-terminal 
RLuc-UL44(2-433) fusion protein, with point 
mutations within FL involved in DNA binding, under 
the control of the IE CMV promoter. This study, see 
Table 6.6 

BRET assays 

66 pDESTntYFP-
UL44-∆loop 

Mammalian Expression Vector encoding a N-terminal 
YFP-UL44(2-433) fusion protein, without flexible 
loop involved in DNA binding, under the control of 
the IE CMV promoter. This study, see Table 6.6 

BRET assays 

87 pCMVHA-X-CFP Mammalian expression vector encoding HA-tagged 
Cyan Fluorescent Protein (CFP). [76] 

FRET assays 

88 pCMVFLAG-X-
YFP 

 

Mammalian expression vector encoding HA-tagged 
Yellow Fluorescent Protein (YFP). [76] 

FRET assays 

243 pDESTntYFP-
UL44(I135A) 

Mammalian Expression Vector encoding a N-terminal 
YFP-UL44(2-433) fusion protein, bearing point 
mutations in the connector loop preventing binding to 
UL54, under the control of the IE CMV promoter. 
This study, see Table 6.6. 

BRET assays 

249 pDESTntRLuc-
UL54(1125-1242) 

Mammalian Expression Vector encoding a N-
terminalRLuc-UL54(1125-1242) fusion protein, 
containing UL54 binding site for UL44 as well as a 
classical NLS, under the control of the IE CMV 
promoter. This study, see Table 6.6 

BRET assays 

382 pDESTntCFP-
UL54(1125-1242) 

Mammalian Expression Vector encoding a N-terminal 
CFP-UL54(1125-1242) fusion protein, containing 
UL54 binding site for UL44 as well as a classical 
NLS, under the control of the IE CMV promoter. This 
study, see Table 6.6 

FRET assays 

242 pDESTntRLuc-
UL54(1145-1213) 

Mammalian Expression Vector encoding a N-
terminalRLuc-UL54(1125-1242) fusion protein, 
containing point mutation for UL44, under the control 
of the IE CMV promoter. This study, see Table 6.6 

FRET/BRET assays 

241 pDESTntYFP-
UL54(1145-1213) 

Mammalian Expression Vector encoding a N-terminal 
YFP-UL54 UL54(1125-1242) fusion protein, 
containing point mutation for UL44, under the control 
of the IE CMV promoter. This study, see Table 6.6 

BRET assays 

341 pDEST-RLuc-YFP Mammalian Expression Vector encoding a fusion 
protein betrween RLuc and YFP, under the control of 
the IE CMV promoter. This study, see Table 6.6 

BRET assays 
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343 pDEST-FLAG-
UL42 

Mammalian Expression plasmid expressing full-lenght 
UL42 with a FLAG-terminal TAG, with point 
mutations within the bipartite NLS under the control 
of the CMV IE promoter. [48]. 

BRET assays 

60 pcDNA.3 Rluc_rfB-
UL44(405-433) 

Mammalian Expression clone encoding a N-terminal 
RLuc-UL44(2-433) fusion protein impaired NLS, 
under the control of the CMV promoter. This study, 
see Table 6.6 

BRET assays 

247 pcDNA.3 Ubc9-
FLAG 

Mammalian Expression clone encoding a N-terminal 
FLAG-Ubc9 fusion protein, under the control of the 
CMV promoter. [54]. 

BRET assays 

40 pDONOR-UL44(2-
433) 

Entry clone encoding a N-terminal UL44(2-433) 
fusion protein. [49]. 

Subcloning 

39 pDONOR-
UL54(1145-1213) 

Entry clone encoding a N-terminal UL54(1145-1213) 
fusion protein, containing UL54 binding site for UL44 
as well as a classical NLS. [49]. 

Subcloning 

43 pDONOR- 
UL44(I135A) 

Entry clone encoding full length UL44(2-433) fusion 
protein, bearing point mutations in the connector loop 
preventing binding to UL54. [83]. 

Subcloning 

42 pDONOR-UL44-
F121A 

Entry clone encoding UL44 (2-433) fusion protein, 
bearing point mutations in the dimerization interface. 
[83]. 

Subcloning 

41 pDONOR-UL44-
L86/L87A 

Entry clone encoding UL44 (2-433) fusion protein, 
bearing point mutations in the dimerization interface. 
[83]. 

Subcloning 

54 pDONOR-
UL44(405-433) 

Entry clone encoding a N-terminal UL44 (2-433) 
fusion protein.  

[54]. 

Subcloning 

126 pDONOR-UL44-
∆loop 

Entry clone encoding a N-terminal YFP-UL44(2-433) 
fusion protein, without flexible loop involved in DNA 
binding. [62]. 

Subcloning 

237 pDONOR -
UL54(1125-1242) 

Entry clone encoding a UL54(1125-1242) fusion 
protein, containing UL54 binding site for UL44 as 
well as a classical NLS. [49]. 

Subcloning 
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333 pDONOR –RLuc 
noATG 

Entry clone encoding a the Renilla luciferase gene. 
This study, see Table 6.7. 

Subcloning 
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Table 8.7 LR reactions performed in this study  

 

Description Resulting Construct 

LR reaction between GW17 pDEST-ntCFP 

 and pDONOR-UL44(2-433)  

30. pDEST-ntCFP-UL44 

LR reaction between GW17 pDEST-ntCFP  

and 41 pDONOR-UL44-L86/L87A 

57. pDEST-ntCFP-UL44-L86/L87A 

LR reaction between GW22 pDEST-ntYFP  

and 126 pDONOR-UL44-∆loop 

66. pDEST-ntYFP-UL44-∆loop 

LR reaction between GW29 pcDNA3RLuc_rfb  

and 54 pDONOR-UL44(405-433) 

60. pDEST-ntRLuc UL44(405-433) 

LR reaction between GW29 pcDNA3RLuc_rfb  

and 60 pDONOR-UL44(2-433) 

59. pDEST-ntRLuc-UL44(2-433) 

LR reaction between GW22 pDEST-ntYFP  

and 42 pDONOR-UL44-F121A 

92. pDEST-ntYFP-UL44-F121A 

LR reaction between GW29 pcDNA3RLuc_rfb  

and 42 pDONOR-UL44-F121A 

91. pDEST-ntRLuc-UL44-F121A 

LR reaction between GW29 pcDNA3RLuc_rfb  

and 41 pDONOR-UL44-L86/L87A 

90. pDEST-ntRLuc UL44-L86/L87A 

LR reaction between GW29 pcDNA3RLuc_rfb  

and 126 pDONOR- UL44-∆loop 

205. pDEST-ntRLuc UL44-∆loop 

LR reaction between GW29 pcDNA3RLuc_rfb  

and 43 pDONOR- UL44(I135A) 

244. pDEST-ntRLucUL44(I135A) 

LR reaction between GW29 pcDNA3RLuc_rfb  

and 39 pDONOR-UL54(1145-1213) 

243. pDEST-ntRLucUL54(1145-1213) 

LR reaction between GW22 pDEST-ntYFP  

and 39 pDONOR-UL54(1145-1213) 

241. pDEST-ntYFP-UL54(1145-1213) 

LR reaction between GW29 pcDNA3RLuc_rfb 249. pDEST-ntRLuc-UL54(1125-1242) 
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and 237 pDONOR-UL54(1125-1242) 

LR reaction between GW22 pDEST-ntYFP 

and 237 pDONOR-UL54(1125-1242) 

248. pDEST-ntYFP -UL54(1125-1242) 

LR reaction between GW29 pcDNA3RLuc_rfb 

and 334 pDONOR-YFPnoATG 

 336.pDESTntYFP-RLuc 

LR reaction between GW22 pDEST-ntYFP 

and 333 pDONOR-RLucnoATG 

 341.pDESTntRLuc-YFP 

LR reaction between GW22 pDEST-ntYFP 

and pDESTntYFP-UL44 

 24.pDESTntYFP-UL44 
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Table 8.8 BP reactions performed in this study 

Description Resulting Construct 

BP reaction between GW5 pDONOR207 

and PCR_RLuc_noATG (primers D21,D22)  

333. pDONOR- RLuc_noATG 

BP reaction between GW5 pDONOR207 

and 41 PCR_YFP_noATG (primers D22,D24) 

334. pDONOR- YFP_noATG 

 

Table 7.9 Ligations performed in this study 
 

Description Resulting Construct 

Ligation reaction between 7 pWPI-Puro and 24 ntYFP-

UL44wt 
68. pWPI-Puro- ntYFP-UL44 

Ligation reaction between 6 pWPI-Blr and 24 ntYFP-UL44wt 137. pWPI-Blr- ntYFP-UL44 
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Table 8.10 VIKTOR X2 acquisition settings for BRET experiments 

Fluorometric detection of YFP signal (YFPNet) 

Protocol name ..................... yfp x BRET 

Protocol number ................... N/A 

Name of the plate type ............ Generic 8x12 size plate 

Number of repeats ................. 1 

Delay between repeats ............. 0 s 

Measurement height ................ Default 

Protocol notes ....................  

 

Shaking duration .................. 1.0 s 

Shaking speed ..................... Normal 

Shaking diameter .................. 0.10 mm 

Shaking type ...................... Double orbit 

Repeated operation ................ Yes 

 

Name of the label ................. Fluorescein (1.0s) 

Label technology .................. Prompt fluorometry 

CW-lamp filter name ............... F485 

CW-lamp filter slot ............... A5 

Emission filter name .............. F535 

Emission filter slot .............. A5 

Measurement time .................. 1.0 s 

Emission aperture ................. Small 

CW-lamp energy .................... 8704 

Second measurement CW-lamp energy. 0 

Emission side ..................... Above 

CW-Lamp Control ................... Stabilized Energy 
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Excitation Aperture ............... N/A 

 

Luminometric detection of YFP and RLuc signal 

Protocol name ..................... BRET 1 s filter Y/R 

Protocol number ................... N/A 

Name of the plate type ............ Generic 8x12 size plate 

Number of repeats ................. 1 

Delay between repeats ............. 0 s 

Measurement height ................ Default 

Protocol notes ....................  

 

Shaking duration .................. 1.0 s 

Shaking speed ..................... Normal 

Shaking diameter .................. 0.10 mm 

Shaking type ...................... Double orbit 

Repeated operation ................ Yes 

 

Name of the label ................. CPS 1 sec Normal YFP BRET 

Label technology .................. Luminometry 

Emission filter name .............. F535 

Emission filter slot .............. A5 

Measurement time .................. 1.0 s 

Emission aperture ................. Normal 

 

Name of the label .................  CPS 1 sec Normal Renilla BRET 

Label technology .................. Luminometry 

Emission filter name .............. F460 

Emission filter slot .............. A6 

Measurement time .................. 1.0 s 
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Emission aperture ................. Normal 
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